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Proper functioning of heating, ventilation, and air conditioning (HVAC) systems is important for efficient thermal management, as
well as operational costs. Most of these systems use nonlinear time variances to handle disturbances, along with controllers that try
to balance rise times and stability. The latest generation of fuzzy logic controllers (FLC) is algorithm-based and is used to control
indoor temperatures, CO, concentrations in air handling units (AHUs), and fan speeds. These types of controllers work through
the manipulation of dampers, fans, and valves to adjust flow rates of water and air. In this paper, modulating equal percentage globe
valves, fans speed, and dampers position have been modeled according to exact flow rates of hot water and air into the building,
and a new approach to adapting FLC through the modification of fuzzy rules surface is presented. The novel system is a redesign

of an FLC using MATLAB/Simulink, with the results showing an enhancement in thermal comfort levels.

1. Introduction

Heating, ventilation, and air conditioning (HVAC) systems
are installed in millions of commercial and noncommer-
cial buildings as a means to provide the desired thermal
comfort standards at an affordable cost and with minimal
maintenance requirements. The HVAC approach to heating
and cooling has become much more complicated, with the
latest HVAC components using control algorithms, sensing
technology, and artificial intelligence [1].

Energy saving is a key feature of HVAC systems and is
increasing in importance [2, 3]. As the housing and business
needs of the developed world generally include buildings that
require HVAC systems, the percentage contribution of the
total energy consumption of these buildings has increased
from 20% to 40% in Western countries [4, 5]. Typically,
an HVAC system requires more energy per building than
any other system, given optimal comfort in home and work
environments. However, there is a rising demand for costs
to remain reasonable but efficiency to be high without
sacrificing comfort levels. Recent research indicates that
intelligent control might be a viable method of achieving

optimal comfort levels at high energy efficiency. Intelligently
controlled HVAC systems have been shown to reduce energy
consumption by up to 30% [6] or higher [7]. Due to the
potential these systems have for future energy needs, this
paper proposes identifying advanced novel HVAC system
models that employ intelligent control algorithms to produce
energy savings without sacrificing comfort levels. Modeling
HVAC systems and components mathematically has been
demonstrated in the literature to be a viable approach for
designing controls and detecting faults.

Earlier research in the field reveals modeling strategies
that fall into two distinct categories: grey box and black box.
The grey box approach depends on the existence of physical
knowledge, while the black box method requires no previous
knowledge. In the literature, black box is more common due
in large part to issues related to thermodynamic modeling.
Some black box options used in modeling HVAC systems
include linear parametric models and polynomial forms such
as OE, BJ, ARMAX, and ARX. However, this approach does
consider a system’s physical characteristics, which can be a
drawback in practical application of designs.
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Chi-Man Yiu et al. [8] investigated black box identity in
an air conditioning system. They compared a single-input
single-output (SISO) system ARMAX model with a multi-
input and multioutput (MIMO) system ARMAX model, and
they they devised the latter using parameters obtained from
the Recursive Extended Least Squares (RELS) technique.
Mustafaraj et al. [9] investigated humidity and temperature
models (OE, BJ, ARMAX, and ARX) to be applied in an office
environment, identifying them with a black box strategy. This
research was extended by Mustafaraj et al. [10], where they
explored nonlinear autoregressive models with eXogenous
(NARX) inputs. Using this approach, they estimated humid-
ity and temperature and compared the performance of these
models with linear ARX models. Mustafaraj et al. [10] also
investigated carbon dioxide concentrations’ impact on the
models, as there is a direct relationship between CO, and
occupancy levels.

In other studies, Qi and Deng [11] reviewed a MIMO
control strategy in air conditioning systems for modulating
humidity and temperature indoors, using an air condi-
tioning model that was based on principles of mass and
energy conservation. Maasoumy [I12] researched tempera-
ture models applicable to a three-room suite, designing a
suitable HVAC control algorithm for the system using an
analogue of electric circuits along with the thermal circuit
technique. More recently, Wu and Sun devised a room
temperature model for an office building using a linear
parametric model that was physics-based; the researchers
used thermodynamics equations to develop structure and
order in the linear regression model. The outcome indi-
cated that the physics-based ARMAX (pbARMAX) model
showed improved functioning over black-box models [13].
Finally, in [14] and based on physical dynamic systems, the
researchers developed MISO ARMAX models to investigate
humidity, temperature, and CO, levels in a standard bed-
room. This model also makes allowances for the impact of
room occupants, as occupants were deemed a “disturbance”
in the room temperature ppARMAX model was designed
in.

The present study develops a simulation for a whole
building, using IDA Indoor Climate and Energy 4.7 as a
simulation program. The IDA Indoor Climate and Energy
program was founded in 1998 to study thermal climate
zones [15]. The simulation will test the energy consumption
(heating and cooling) at Memorial University’s S.J. Carew
building in Newfoundland, Canada. It will investigate a
heat model that is dependent on a range of parameters, a
three-dimensional (3D) model, and IDA ICE model library
components. The present work will also examine results from
[16, 17], which used real data as a basis for developing whole
structures.

There are three primary aims in this study. Our first
aim is to test system identification viability as a means for
shortening the calculation times needed to simulate more
complicated structures in air handling unit one (AHU, ). Our
second aim is to test the usefulness of system identification
in the dynamics identification for structural climate con-
trol design when applying discrete time data for one-hour
samples. Our third aim is to develop fuzzy logic controller
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structures that feature 6 inputs and 3 outputs and use this to
develop a controller in an AHU, state space model.

2. Description of System

2.1. Building Structure. Our analysis will use the S.J. Carew
building at Memorial University in St. John’s, Newfoundland.
S.J. Carew building measures approximately 25,142 m* and
houses the university’s Faculty of Engineering and Applied
Science, as well as teaching rooms, research labs, and a
cafeteria. From a structural perspective, the building houses
four AHUs across 300 zones. The energy report of building is
presented in Table 1 and Figure 1 shows 3D model of building
using IDA ICE (IDA Indoor Climate and Energy) program.
A more detailed description of the structure and amenities
of the S.J. Carew building can be found in earlier studies
(16, 17]. As the building’s HVAC system is based on the IDA
ICE program, good approximation results can be obtained
from the model regarding power and hot water data, which
can then be compared to real data.

2.2. AHU, Structure. Figure 2 illustrates an AHU, with
a variable air volume (VAV) system. There are valves, hot
water pumps, heating and cooling coils, supply and return
fans, and fresh air dampers. To maintain a constant point
of internal air quality (IAQ), the building employs fresh air
control dampers. An economizer mixes outdoor air with
recycled building air, while a supply fan funnels the air
mixture into cold-deck and hot-deck ducts. The return fan
located in the room’s return duct is around 10% slower than
the supply fan. The fan keeps the ducts set at fixed pressure
points.

Figure 3 depicts Room 347 at the S.J. Carew building; also
alternating the fan speed is a means to balance any duct sys-
tem resistance changes caused by opening/closing dampers
located at VAV terminal units. Controllers are employed in
the heat exchanger for keeping zonal temperatures set at
fixed points through the use of modulating control valves.
During the cold season (October to May), the heating system
is turned on and the cold system is turned off. The present
study used data from October to December 2016, so the cold
system was off, as illustrated in Figure 2.

2.3. Simulation Model. The IDA Indoor Climate and Energy
4.7 simulation tool is used for assessing the indoor climate
and energy performance. This simulation tool is suitable for
modeling HVAC systems located in multiple-zoned struc-
tures, such as the S.J. Carew building. The tool can assess IAQ,
dynamic simulation, required energy, and overall thermal
comfort. For the real system, a hot water valve (Figure 2)
provides data on hot water usage for the heating coil, as
the system has a single valve for the building’s entire hot
water generation. However, with the IDA-ICE software, the
hot water valve is divided into four valves, such that every
AHU can have its own valve. Hence, every AHU includes
3 inputs and 3 outputs. This information will be used as a
reference model and identification data when modeling the
AHU,.
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TABLE 1: Energy report for the building.
E Q UA’ Energy report for “S.J. Carew Building”
SIMULATION TECHNOLOGY GROUP
Project Building
Model floor area 25141.7 m?
Customer Model volume 128952.9 m’
Created by Almahdi Abdo-Allah Model ground area 10544.5 m*

. Newfoundland (St. John’s 5
Location Airport) 718010 (ASHRAE 2013) Model envelope area 29440.0 m
Climate file CAN_NF_St.Johns.718010_CWEC Window/envelope 2.40%
Case building2017_fuzzy logic Average U-value 0.3031 W/(m” K)
Simulated 5/23/2017 10:04:07 AM Envelope area per volume 0.2283 m*/m’

FIGURE 1: 3D model of S.J. Carew building.

S.J. Carew Engineering Building
Air Handling Unit 1

FIGURE 2: AHU, for S.J. Carew building.

2.4. System Identification. System identification features three
separate steps:

(a) Data gathering
(b) Choosing the model structure

(c) Building a model that provides the highest system
functionality

AHUs are useful in system identification. There are three
inputs to the AHU: (1) hot water valve for the heating
coil/zones, (2) supply fan speed, and (3) fresh air from
outdoors. The outputs show data for three different system
elements: (1) return air temperature (degree Celsius (°C))
for controlling the valve aperture of hot water, (2) static air

S. J. Carew Engineering Building
EN-VAV-347

PARAMETERS

SYSTEM INFORMATION

FIGURE 3: VAV terminal units of room 347 at the Carew building.

pressure, Py (inches of water (INW)) in ducts for controlling
supply fan speed, and (3) CO, levels (parts per million
(PPM)) for controlling fresh air dampers.

2.5. Inputs and Outputs Signals. Figure 4 shows the inputs of
the AHU, as percentage of the hot water valve aperture, sup-
ply fan speed, and fresh air dampers position. As illustrated
in Figure 5, an output is zone temperature. The second output
is static air pressure (Figure 6) and the third output is CO,
quantity (Figure 7).

A model structure is selected from a range of struc-
tures that are roughly categorized as being either linear or
nonlinear. The identification toolbox of MATLAB is used



100

B

70 " W
3 “' i'
2
200 400 600 800 1000 1200 1400 1600

Time (h)

percentage of inputs (%)

—— Hot water valve position
—— Supply fan speed
—— Fresh air damper position

FIGURE 4: Inputs of AHU, as percentage (%).

24.5
24
23.5
23
22.5
22
21.5

21 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600

Time (h)

Temperature (°C)

FIGURE 5: Zone temperature (in °C).

in preprocessing the data. The decision process can be
categorized into a few steps of optimal model structure (e.g.,
ARX, ARMAX, and process models), model order, optimal
estimation approach, and launching the identification pro-
cess.

3. Control Strategies

3.1. Fuzzy Logic Controller. Comfort levels and energy sav-
ings are the two main driving forces that have led researchers
to create intelligent systems (i.e., Building Intelligent Energy
Management Systems (BIEMS)) as a means to manage energy
use in buildings. BIEMS are usually employed only in large
structures, such as commercial buildings, office towers, and
hotels. These systems can control and monitor a building’s
environmental parameters, creating a comfortable microcli-
mate while reducing energy consumption and operational
costs.

Fuzzy techniques have been used in BIEMS, giving sig-
nificantly better outcomes than traditional control systems.
Practical applications employing fuzzy and neural control in
HVAC systems are also being used, with the overall aim of
lowering energy consumption and costs [18-22].

In traditional control methods, mathematical models
of the building’s operations are needed, but when using
intelligent systems (i.e., model-free automatic controllers),
mathematical modeling is unnecessary. Hence, through the
introduction of higher-level comfort variables in intelligent
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FIGURE 6: Static air pressure Py (INW).
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FIGURE 7: Level of CO, (in PPM).

controllers, such as PMV [23], comfort can be managed
without the need to regulate lower-level variables such as
humidity, air speed, and temperature. Users participating in
intelligent systems are able to choose their preferred comfort
levels with optimized fuzzy controllers that employ genetic
algorithms and adaptive control strategies. Fuzzy logic con-
trol is already being applied in the latest furnace controllers,
using adaptive heating control as a means to optimize comfort
and energy efficiency in domestic heating systems [24]. Fuzzy
controllers are also used to control natural ventilation, visual
comfort, and thermal comfort; there are notable results in
these subsystems [25, 26].

3.2. Design of Fuzzy Logic Controller. There are several
approaches for applying fuzzy logic for closed-loop control.
The most common technique is the fuzzy PI controller [27,
28] that uses process-derived measurement signals as fuzzy
logic controller inputs and outputs to operate the actuators.
A fuzzy PI controller represents an incremental controller. A
traditional fuzzy PI controller can be expressed as in (1), with
fuzzy rules determining the output [29].

u(k+1) =u(k)+Au(k) @

where k is the sampling instance and Au(k) is the incremental
change in controller.

The present study uses a traditional fuzzy PI controller
for the AHU, model. The proportional (P) and integral (I)
actions are combined to benefit from the inherent stability,
which is a feature in proportional controllers, as well as
to benefit from the integral controllers’ offset elimination
feature. Incremental controllers are most suitable for use
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in situations where a valve or motor serves as actuator.
Additionally, it can be beneficial when controller output is
derived from an integrator due to its ease in handling noise
and wind-up. As shown in Figure 8, a fuzzy PI controller
applies error signals and change of error as inputs.

Another benefit in using a fuzzy PI controller is its lack
of operational or setpoint. A rule-driven control strategy
weighs differences between a setpoint and measured values,
measuring any modifications to these differences as a means
to determine if increments or decrements should be applied
to a building’s control variables. While a fuzzy logic controller
is able to perform nonlinear control strategies, applying a
fuzzy logic technique in real applications must be done in the
following three-step process [30]:

(i) Step 1. Fuzzification changes crisp/classical data into
membership functions (MFs) or fuzzy data.

(ii) Step 2. In the fuzzy inference process, MFs are added
to control rules to obtain the required fuzzy output.

(iil) Step 3. Defuzzification employs a variety of strategies
as a means to formulate every associated output, to
place them within a table framework, and to choose
the output in a look-up table in accordance with the
current input obtained for the specific application
being performed.

As it is illustrated in Figure 8, fuzzy controller is assigned
to control zone temperature, static air pressure, and CO, level.
Error signals and their changes are fed to a fuzzy controller.
The output of fuzzy controllers is assigned as inputs of the

1 V-Cold " Cold' Opti’mal "Hot " V-Hot

0.6 1

0.4 1

0.2 | R

Degree of membership

0

-2  -1.5 -1 -0.5 0 0.5 1 1.5 2
Temperature (°C)

FIGURE 10: MFs of zone temperature difference.

system. The system outputs are sent to the fuzzy controller to
make a closed-loop controller.

Fuzzy Logic Designer App of the system is shown in
Figure 9; with this App, the FLC can be designed to add or
remove input or output, fuzzy membership function, and IF-
Then rules and select fuzzy inference functions.

3.3. Fuzzy Membership Function. The MFs editor is used in
unpacking the fuzzy tool box, which is applied in shape-
defining any MFs that are related to variables in the mem-
bership. The AHU, control system indicates 3 outputs and 6
inputs. Brief definitions of the MFs for the input and output
variables are presented in Sections 3.3.1 and 3.3.2.

3.3.1. Input Variables

(1) Temperature Differences (AT). Current zone temperature
of return air as recorded by an electronic sensor (Figure 2)
illustrates that (2) expresses differences between setpoint
(Tsetp) and current zone temperature (T,) for time (k), while
Figure 10 and Table 2 show the 5 MFs of V-hot, hot, okay, cold,
and V-cold.

AT (k) = Ty, (k) — T, (k) (°C) )

(2) Change in AT (dAT). Error input variables related to
changes in temperature are formulated through finding the
ratio for the difference of past and present temperature error
values in relation to sampling time (At), as expressed in
(3). The building’s real system, Honeywell Software, gives a
system sampling time of 3 seconds (Department of Facilities
Management and Honeywell Offices at Memorial Univer-
sity). As shown in Figure 11 and Table 3, three membership
functions can be used to define error variable changes:
Positive (P), Negative (N), and Zero (Z).

(AT (k) — AT (k - 1))
At

(dAT) = ("C/s) 3)

(3) Static Air Pressure Py Differences. Figure 2 illustrates
changes in present duct Pg; these differences were noted by
sensors located in both cold- and hot-deck ducts. As can be
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TABLE 2: MFs of zone temperature difference.
Input field Range Fuzzy set
[-10.52 -8.48 -1.222 1] V-cold
Temperature [-1.222 -1-0.268 0] Cold
difference [-0.268 0 0.2714] Optimal
(AT) [0 0.268 1.02 1.563] Hot
[1.159 1.465 3.549 13.26] V-hot
TABLE 3: MFs of change in AT.
Input field Range Fuzzy set
Change of [-0.118 -0.1031 -0.05 -0.01] N
temperature error [-0.05 -0.01 0.01 0.05] Z
[0.01 0.05 0.1534 0.1794] P

TABLE 4: MFs of static pressure difference (AP).

Input field Range Fuzzy set
[-0.8213 -0.1584 -0.08317 -0.06853] V-low

Static air [-0.0826 -0.0668 -0.00836 0] Low

pressure [-0.00771 0 0.00956] Optimal

difference APg [0 0.00836 0.071 0.0816] High

[0.07052 0.08278 0.1399 1.239] V-high

TABLE 5: MFs of change in AP,.

Input field Range Fuzzy set

Change of [-0.005433 -0.005032 -0.002833 -0.001478] N

P, error [-0.002833 -0.001478 0.001478 0.002833] Z

(d APy) [0.001478 0.002833 0.005835 0.005935] P

seen, the static pressure Pg ., setpoints occur for time (k),
given in (4). Figure 12 and Table 4 present five membership
functions of V-high, high, optimal, low, and V-low.

AP (k) = Py e, = Ps (k) (INW) (4)
(4) Change in APg (dAPs). As expressed in (5), any alterations
in the Pg error input variable are formulated using ratios
for differences between present and past Pg error values in
relation to sampling time (At). Figure 13 and Table 5 illustrate

Journal of Energy

TABLE 6: MFs of CO, level difference (ACO,).

Input field Range Fuzzy set
[-25.9 -20.19 -16.43 -14.2] V-low

Level of CO, [-16.47 -14.03 -2.92 0] Low

difference [-1.92 01.92] Optimal

(ACO,) [02.92 8.84 12.33] High

[8.3912.1120 178] V-high
TABLE 7: MFs of change in ACO,.

Input field Range Fuzzy set

Change of CO, [-21-1-0.5-0.3] N

error [-0.5-0.30.30.5] Z

(d ACO,) [0.298 0.498 0.998 1.1] p

three of the membership functions that indicate changes in
error variables, expressed as Positive (P), Negative (N), and
Zero (Z).

(APS (k) - APs (k - 1))

dAP, (k) = N

(INW/s)  (5)

(5) Differences in CO, Levels (ACO,). As shown in Figure 1,
this is the difference between the present CO, level in the
return air from the sensor in the AHU; return duct and the
CO, level CO,g ., setpoint, as recorded at time (k) and
expressed by (6). The 5 MFs of V-high, high, optimal, low,
and V-low are shown in Figure 14 and Table 6.

ACO, (k) = COZ-setp - CO, (k) (PPM) (6)

(6) Change in ACO, (dACO,). As expressed in (7), CO, error
input variable changes can be formulated through finding the
ratio for the difference between present and past CO, error
values in relation to sampling time (At). Figure 15 and Table 7
show the three MFs error variable changes as sets labelled
Positive (P), Negative (N), and Zero (Z).

(ACO, (k) — ACO, (k — 1))

dACO, (k) = A

(PPM/s) (7)

3.3.2. Output Variables. The three inputs of AHU, (fresh air,
air flow, and hot water) serve as FLC outputs. The values are
introduced as gains to the system in order to move system
responses towards a stability state. As a means to increase
output gains, PI controller tuning can be used, as detailed in
the following subsections.

(1) Aperture on Hot Water Valve. The process involving the
hot water valve’s opening and closing is indicated through
the 5 MFs for the fuzzy controller output in order to find
the zone temperature setpoint (T,). Figure 16 depicts MFs
using MATLAB/Fig, while Table 8 shows MFs and the related
valve operation percentages.

(2) Supply Fan Speed. The FLC’s second output serves as the
speed control for the supply fan in order to reach the ducts’
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TABLE 8: MFs of first output.
Output field Range Corresponding Fuzzy set
[-1320 -10000 -7894 -5060] 0%-20% Close-fast
Hot [-7264 -5570 -1580 0] 20%-40% Close
water [-689 0 768] 40%-60% No-change
valve [0 1580 5100 6594] 60%-80% Open
aperture [5067 6607 10220 10260] 80%-100% Open-fast
TABLE 9: MFs of second output.
Output field Range Corresponding Fuzzy set
[-1060 -913.1 -601 -371] 0%-20% V-slow
Supply [-527.9 -449 -105 50] 20%-40% Slow
fan [-105.3 50 205.4] 40%-60% No-change
speed [46.3 201 661 800] 60%-80% Fast
[658 8111002 1010] 80%-100% V-fast
1 V-Low Low Optlimal Hilgh 1 V-Low | "Low Opti'mal 'High 'V-High
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FIGURE 13: MFs of change in AP,.

static air pressure setpoint. Figure 17 and Table 9 show the five
MFs for this process.

(3) Fresh Air Dampers Position. Five MFs of the fuzzy
controller output were for opening and closing operation
of the fresh air dampers position in order to find the zone

Rate of CO, Level

FIGURE 15: MFs of change in ACO,.

CO, level setpoint; the range of this operation is presented in
Table 10 and Figure 18.

3.3.3. Fuzzy Rule Base. The rule base controls output vari-
ables as the most crucial part within the fuzzy inference
system. In simplified terms, a fuzzy rule is represented as a
basic IF-THEN rule that includes a condition and conclusion.
The fuzzy membership functions can first be applied for
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TABLE 10: MFs of third output.

Output field Range Corresponding Fuzzy set
[-5200 -5028 -3910 -2980] 0%-20% Close-fast
Fresh [-4056 -2860 -1140 -250] 20%-40% Close
air [-1139 -250 641.6] 40%-60% No-change
dampers [-250 6421610 2677] 60%-80% Open
position [1860 2660 4509 4810] 80%-100% Open-fast
1 Close-Fast Close | No-Clllange ' 0P€1'1 Opén-Fast 1 Close-Fast Close 'No-Cha;lge Olpen ' 'Open-leist
(="
e £
E 0.8 - E g 0.8 | i
§ 0.6 B g 0.6 i
g
3 oal 1 Sl .
£ S
0 0.2+ 4 =
g0 gn 02} ]
0 1 1 1 1 1 1 1 1 1 0
-1 -0.8 -06 04 -02 0 02 04 06 08 1 e o o & o o s & <& =
Hot water valve x10* §| §‘ §| (871 §| § § § §

FIGURE 16: MFs of first output.
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Speed of fan

FIGURE 17: MFs of second output.

converting both the input errors (AT, AP, ACO,) and the
error changes (dAT,dAP;,dACO,) to their fuzzy values.
Furthermore, in every output (damper position, fan speed,
and hot water valve), the control action is represented by
fuzzy rules in different error/change of error values. In every
control signal output, the default fuzzy rule is 5 x 3, thus
indicating 45 rules for system control [31].

3.3.4. Defuzzification. In the process of defuzzification, con-
vert the fuzzy output variable back to the crisp variable for
the control objective. This process is required for hardware
applications that exchange crisp data. Generally, defuzzified
output has to be the most appropriate solution. The two
mechanisms are the maxima method, which looks for the
highest pack, and the centroid method, which relies on
determining a property’s balance point. The present study
uses the centroid approach.

Fresh air dampers

F1GURE 18: MFs of third output.

Hot water valve

)

h’pe I'a[ 0.1 2 1

Temp erature

FIGURE 19: Control surface of the first output.

In Figure 19, the control surface for MFs implemented
using zone temperature error values, as well as fuzzy rule-
implemented change of error values, is presented. The values
for the control output are associated with every potential
input combination for controlling hot water valve processes.

Figure 20 shows the control surface for implementing
MFs for static air pressure error values as well as fuzzy
rule-implemented change of error values. The values for
the control output are associated with every potential input
combination for controlling the supply fan speed in order to
obtain static air pressure setpoints for the ducts.

Figure 21 illustrates the control surface for error/change
of error values for MFs related to CO, levels. Fuzzy rules are
applied for controlling output values for every potential input
combination to achieve the CO, setpoint.
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FIGURE 21: Control surface of the third output.

4. Simulation Model and Results

The Simulink model and simulation results are presented
in this section. Figure 22 shows a block diagram for the
AHU, state space model for a fuzzy controller with MAT-
LAB/Simulink. The initial conditions selected for tempera-
ture, air pressure, and CO, levels are 20.7°C, 3.62 INW, and
374.2 MMP, respectively. The sampling time is three seconds
for the control action, which is the same as that for the
real system. Furthermore, the real system’s indoor air quality
setpoints are a zone temperature of 23°C, air pressure of 4
INW, and a CO, level of 500 MMP. A fuzzy-PI type adaptive
controller controls the AHU, system, with Ty, Pg o> and
CO,_geip as input references for temperature, air pressure, and
CO, level, respectively. Control signals are obtained from
FLC to reduce error as well as error change. The control
signals can alter the system inputs which include fresh air, air
flow rate, and hot water to achieve the reference setpoints.

Figure 23 shows the first of the system’s output responses
that demonstrate the system’s stability. Zone temperature T,
achieves the setpoint of 23°C at a rise time of only 10.83
minutes and no overshoot.

Figure 24 depicts the second response of static pressure,
with a rise time of 6.71 minutes and no overshoot.

Figure 25 shows the CO, level response, achieving the
setpoint, again with no overshoot, at a rise time of 14.13
minutes.

Zone Temperature

Static Pressure

CO2_setp

CO2 Level

FIGURE 22: Block diagram for the AHU, state space model with
controller.
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FIGURE 23: Zone temperature T, response.
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FIGURE 24: Static pressure P, response.
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FIGURE 25: CO, level response.

5. Conclusion

This research paper presented a simulation of the S.J. Carew
building’s AHU, system using MATLAB’s system identifica-
tion toolbox along with real data and results from the IDA
ICE program to formulate system parameters for both inputs
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and outputs. A fuzzy logic controller modulated the three
AHU, inputs (fresh air, air flow, and hot water), while FLC
was implemented in the multi-input/multioutput system state
space model for the AHU . The results indicate that the fuzzy
expert controller performance exceeded that of traditional
algorithms, such that sufficient control was obtained from
the fuzzy controller HVAC system. Furthermore, across all
lab conditions, the FLC algorithm gave a stable response and
could deal better with several different parameters, including
steadying errors, response time, and overshoot.

Data Availability

All data are available with us.
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