
4-th Int. Conf. on Application of Concurrency to System Design, Hamilton, Canada, 16–18 June 2004, pp.7-15.

c©2004 IEEE (DOI 10.1109/CSD.2004.1309111).

Enhanced Interleaved Multithreaded Multiprocessors and Their

Performance Analysis

W.M. Zuberek

Department of Computer Science
Memorial University

St.John’s, Canada A1B 3X5
wlodek@cs.mun.ca

Abstract

In interleaved multithreading, the thread changes
in each processor cycle, consecutive instructions are
issued from different threads, and no data depen-
dencies can stall the pipeline. Enhanced inteleaved
multithreading maintains a number of additional
threads which are used to replace an active thread
when it initiates a long–latency operation. Instruc-
tion issuing slots, which are lost in pure interleaved
multithreading, are thus used by instructions from
the new thread. The paper studies performance im-
provements due to enhanced multithreading by ana-
lyzing a timed Petri net model of an enhanced mul-
tithreaded architecture at the instruction execution
level.

Keywords: Interleaved multithreaded architec-
tures, distributed–memory multiprocessors, timed
Petri nets, performance analysis, event–driven sim-
ulation.

1 Introduction

Due to continuous progress in manufacturing tech-
nologies, the performance of microprocessors has
been steadily improving over the last decades, dou-
bling every 18 months (the so called Moore’s law
[5]). At the same time, the capacity of memory
chips has also been doubling every 18 months, but
the performance has been improving less than 10%
per year [9]. The latency gap between the proces-
sor and its memory doubles approximately every six
years, and it is not unusual that as much as 60%
of the processor’s time is spent on waiting for the
completion of memory operations [11]. Matching
the performances of the processor and the memory
is an increasingly difficult task [13].

In distributed–memory systems, the latency of
memory accesses is much more pronounced than in
centralized–memory systems as memory access re-
quests may need to be forwarded through several

intermediate nodes before they reach their destina-
tion, and then the results need to be sent back to
the original nodes. Each of the “hops” introduces
some delay, typically assigned to the switches that
control the traffic between the nodes [3], [4].

Instruction–level multithreading is a technique of
tolerating long–latency memory accesses and syn-
chronization delays in multiprocessor systems [1],
[2], and in particular, in distributed–memory sys-
tems. The general idea is quite straightforward. In
block multithreading, when a long–latency memory
operation occurs, the processor, instead of wait-
ing for the completion of this operation (which in
distributed–memory systems can require hundreds
and even thousands of processor cycles), switches to
another thread if such a thread is ready for execu-
tion. If different threads are associated with differ-
ent sets of processor registers, switching from one
thread to another can be done very efficiently [1],
[3].

In interleaved multithreading (also known as
fine–grain multithreading), the thread changes in
every processor cycle [12]; this approach is advanta-
geous for eliminating data dependencies that slow–
down the processor’s pipeline; since consecutive in-
structions are issued from different threads, they
have no data dependencies. Typically, the num-
ber of threads is equal to the number of pipeline
stages, so no inter-instruction dependencies can stall
the pipeline. In pure interleaved multithreading, a
thread issuing a long–latency memory operation be-
comes ‘waiting’ for the result of the requested opera-
tion. If a waiting thread is selected for execution, its
slot simply remains empty (i.e., no instruction is is-
sued), which is equivalent to a single–cycle pipeline
stall. Since the threads issue their instructions one
after another, fewer processor cycles are lost during
a long–latency operation of a single thread.

In enhanced interleaved multithreading [17], ad-
ditional threads are available to replace any active
thread when it initiates a long–latency operations
and becomes inactive until the end of the initi-



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 8

ated operation. Consequently, the processor cycles
are not lost, the utilization of processors increases
and this improves the performance of the system.
The enhanced interleaved multithreading combines
elements of interleaved and block multithreading
within one architecture.

The main objective of this paper is to study the
performance improvements that can be obtained by
enhancing interleaved multithreading. In particu-
lar, the relationship between the number of addi-
tional threads and the improvements which they
can provide is investigated. This investigation is
performed using a timed Petri net model of an en-
hanced multithreaded distributed–memory system
at the instruction execution level. The performance
of this model is studied as a function of several mod-
eling parameters.

A distributed memory system with 16 processors
connected by a 2–dimensional torus–like network is
used as a running example in this paper; an outline
of such a system is shown in Fig.1, in which all con-
nections between nodes are actually double because
they are used for communication in both directions.

Fig.1. Outline of a 16–processor system.

It is assumed that all messages are routed along
the shortest paths. It is also assumed that this rout-
ing is done in a nondeterministic way, i.e., if there
are several shortest paths between two nodes, each
of them is equally likely to be used. The average
length of the shortest path between two nodes, or
the average number of hops (from one node to an-
other) that a message must perform to reach its des-
tination, is usually determined assuming that the
memory accesses are uniformly distributed over the
nodes of the system.

Although many specific details refer to this 16–
processor system, most of these details can easily be
adjusted to other systems by changing the values of
a few model parameters [19].

Each node in the network shown in Fig.1 is a fine-
grain multithreaded processor which contains a pro-
cessor, local memory, and two network interfaces,
as shown in Fig.2. The outbound interface handles
outgoing traffic, i.e., requests to remote memories
originating at this node as well as results of remote
accesses to the memory at this node; the inbound

interface deals with incoming traffic, i.e., results of
remote requests that “return” to this node and re-
mote requests to access memory at this node.

ProcessorReady
Queue

Interconnecting
Network

Memory
Queue Memory

Outbound
Interface

Inbound
Interface

Fig.2. Outline of a single multithreaded processor.

Fig.2 shows the processor which cyclically
changes the threads (4 threads in Fig.2), issuing
and executing the instructions. The queue of ready
threads is used whenever one of the active threads
initiates a long–latency operation; such a thread is
replaced by a thread selected from this queue if the
queue is non–empty. When the operation initiated
by a replaced thread is completed, the thread joins
the queue of ready threads, waiting for another ac-
cess to the processor.

2 Timed Petri Net Models

Petri nets have become a popular formalism for
modeling systems that exhibit parallel and concur-
rent activities [10], [8]. In timed nets [15], [14], de-
terministic or stochastic (exponentially distributed)
firing times are associated with transitions, and
transition firings occur in real–time, i.e., tokens are
removed from input places at the beginning of the
firing period, and they are deposited to the output
places at the end of this period.

A timed Petri net model of a interleaved 4–
threaded processor at the level of instruction execu-
tion is outlined in Fig.3, in which timed transitions
are represented by solid bars and immediate transi-
tions by thin bars; all transition names begin with
letter “T”.

Cyclic issuing of instruction from consecutive
threads is represented by a “thread control” section
in the left part of Fig.3, where four threads are rep-
resented by four identical sections connected in a cy-
cle. The details of this control are discussed later on
in this section. Each issued instruction corresponds
to a token deposited in place Pnxt (in the center of
Fig.3). The execution of each issued instruction is



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 9

Lmem

Trmem
Tlmem

Rmem

Tloc

Trem

Memory

Dec

Tlocal

Mem

Rem

Inp

TsoutSout

Sinp
Tsinp

Tgo

to Inp

to Inp

to Inp

to Inp

Out

from Out

from Out

from Out

from Out

Trun Tend

Pend

Tnxt

Pth1

Pth2

Pth3

Pth4

Tth1

Tth2

Tth3

Tth4

Pnxt

Pcnt

Prd

Tw1

Tw2

Tw3

Tw4

Ps1

Pw1

Pw2

Pw3

Pw4

Pr1

Pr2

Pr3

Pr4

Td1

Td2

Td3

Td4

Tm1

Tm2

Tm3

Tm4

Tr1

Tr2

Tr3

Tr4

Ps2

Ps3

Ps4

Pwt

Tret

Fig.3. Instruction–level Petri net model of a interleaved multithreaded processor.



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 10

modeled by transition Trun (in the center of Fig.3).
Pend is a free–choice place with the choice proba-
bilities reflecting the runlength, ℓt, of threads (i.e.,
the average number of thread instructions executed
between long–latency operations). In general, the
free–choice probability assigned to Tnxt is equal to
(ℓt − 1)/ℓt, so if ℓt is equal to 10, the probability of
choosing Tnxt is 0.9; if ℓt is equal to 5, this proba-
bility is 0.8, and so on. The free–choice probability
of Tend is just 1/ℓt.

The selection of Tend for firing indicates a long–
latency memory access issued by the current thread.
The access request (to local or remote memory) is
placed in Mem, and a token is also deposited in Pwt
to indicate a possible thread replacement. Prd (left
boundary of Fig.3) is the queue of available threads;
in Fig.3 there are two enhancement threads, repre-
sented by two initial tokens assigned to this place.

Mem (in the center of Fig.3) is a free–choice
place, with a random choice of either accessing local
memory (T loc) or remote memory (Trem); in the
first case, the request is directed to Lmem where it
waits for availability of Memory, and after access-
ing the memory, the thread returns to the queue
of waiting threads, Prd. Memory is a shared place
with two conflicting transitions, Trmem (for remote
accesses) and T lmem (for local accesses); the reso-
lution of this conflict (if both requests are waiting)
is based on marking–dependent (relative) frequen-
cies determined by the numbers of tokens in Lmem
and Rmem, respectively.

The free–choice probability of Trem, pr, is the
probability of long–latency accesses to remote mem-
ory; the free–choice probability of T loc is pℓ = 1−pr.

Requests for remote accesses are directed to
Rem, and then, after a sequential delay (the out-
bound switch modeled by Sout and Tsout), for-
warded to Out, where a random selection is made
of one of the four (in this case) adjacent nodes (all
nodes are selected with equal probabilities). Simi-
larly, the incoming traffic is collected from all neigh-
boring nodes in Inp, and, after a sequential delay
(the inbound switch Sinp and Tsinp), forwarded to
Dec. Dec is a free–choice place with three transi-
tions sharing it: Tret, which represents the satisfied
requests returning to their ‘home’ nodes; Tgo, which
represents requests as well as responses forwarded
to another node (another ‘hop’ in the interconnect-
ing network); and T local, which represents remote
requests accessing the memory at the destination
node; these remote requests are queued in Rmem
and served by Trmem when the Memory becomes
available. The free–choice probabilities associated
with Tret, Tgo and T local characterize the inter-
connecting network and are determined on the basis
of the average number of hops required to reach the

destination node [4].
The traffic outgoing from a node (place Out) is

composed of requests and responses forwarded to
another node (transition Tgo), responses to requests
from other nodes (transition Trmem) and remote
memory requests originating in this node (transition
Trem).

The thread control (upper left part of Fig.3)
may look somewhat complicated, but it has a regu-
lar structure repeated for each represented thread.
This basic structure, for thread “2”, is shown in
Fig.4. The idea of this model is as follows. If the
thread is active, a token is waiting in Pth2 for a
‘control token’ to appear in Ps2 (the marking of Ps2
in Fig.4 indicates that an instruction from thread
“2” is going to be issued in the next processor cycle).
Place Ps2 is an element of a ‘thread ring’ (in Fig.3
this ring connects Ps1, Ps2, Ps3, Ps4 and back
to Ps1; there are several different ways connecting
consecutive threads). This ‘thread ring’ contains a
single token (Ps1 in Fig.3 and Ps2 in Fig.4).

Pth2

Tth2

TrunPnxt

Pcnt

Prd

Tw2

Pw2

Pr2
Td2

Tm2

Tr2

Ps2

Ps3

Tw1

Td1

Tm1

Pend

MemTend

Pwt

Tnxt

Fig.4. Single thread control section.

If the selected thread is active, the firing of Tth2
inserts a token in Pnxt (the next instruction to be
executed by Trun), and another token in Pr2. If
the issued instruction does not initiate long–latency
operation, the free–choice transition Tnxt is fired
(with the probability depending upon the thread
runlength ℓt), and a token is deposited in Pcnt.
This token (together with a token in Pr2) enables
Td2, firing of which regenerates a token in Pth2 and
forwards the control token to Ps3.

If transition Tend is selected for firing rather
than Tnxt, a long–latency memory access (local or
remote) is initiated, and a token is deposited in Pwt.
In this case Tm2 becomes enabled, and its firing in-
serts a token in Pw2 (to indicate that the thread is
waiting for termination of its long-latency memory



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 11

access), and also the control token is forwarded to
Ps3.

If the queue of ready threads, Prd, is nonempty,
transition Tr2 becomes enabled and its firing re-
places the current thread by a new one, regener-
ating a token in Pth2 (immediate transitions take
precedence in firing over the timed ones), so that
another instruction will be issued when thread “2”
is selected again. If, however, Prd contains no to-
kens, the current thread remains ‘waiting’ for the
completion of its long–latency operation (or for a
ready thread entering Prd).

If a thread is ‘waiting’ (in Pw2) and a selection
token appears in Ps2, the timed transition Tw2 fires
and, after a unit of time (one processor cycle), de-
posits a control token in Ps3 (without issuing an
instruction in this case).

The interconnecting network is characterized by
two parameters, the delay of network switches, ts,
and the average number of hops, nh, that a memory
access request needs to perform to reach its destina-
tion. For a 16–processor system (shown in Fig.1),
the value of this parameter, assuming uniform dis-
tribution of information over the nodes of the sys-
tem, can be estimated from the (shortest) distances
between pair of nodes. Since, for each node, there
are 4 nodes that can be reached in 1 hop, 6 nodes
that can be reach in 2 hops, 4 nodes requiring 3
hops, and just 1 node requiring 4 hops, the value of
nh is:

nh =
1 ∗ 4 + 2 ∗ 6 + 4 ∗ 3 + 4 ∗ 1

15
≈ 2.

Also, it is convenient to represent all timing in-
formation in relative rather than absolute units, and
the processor cycle has been assumed as the unit of
time. Consequently, all temporal data are expressed
in processor cycles; e.g., tm = 10 means that the
memory cycle time (tm) is equal to 10 processor cy-
cles, ts = 5 means that the switch delay (ts) is equal
to 5 processor cycles.

The main parameters of the enhanced interleaved
multithreading, and their typical values, are shown
in Tab.1.

3 Performance Analysis

Performane results are obtained by simulation of the
model shown in Fig.3. The simulation results can
be verified by analytical performance estimated for
the extreme values of pℓ, i.e., pℓ = 0 and pℓ = 1. If
pℓ = 1, all long–latency memory accesses are to local
memory (the nodes can be analyzed in isolation one
from another), and the utilization of each processor
is determined by the ratio of slots used for issuing

Table 1: Main parameters of interleaved multi-
threaded architectures and their typical values.

parameter values

np – number of processors 16
nt – number of processor’s threads 4, 8
na – number of additional threads 0, ..., 4
ℓt – thread runlength 5, 10
tp – processor cycle time 1
tm – memory cycle time 5, 10, 20
ts – switch delay 5, 10
nh – average number of hops 2
pℓ – prob. of accessing local memory 0.1, ..., 0.9
pr – prob. of accessing remote memory 1− pℓ

instructions to the total number of slots (used as
well as not used):

up(1) =
ℓt ∗ nt

ℓt ∗ nt + tm
.

For pℓ = 0, all long–latency memory accesses are
to remote memory, so the processor’s utilization is
estimated as:

up(0) =
ℓt ∗ nt

ℓt ∗ nt + tm + 2 ∗ (nh + 1) ∗ ts

where the additional term in the denominator de-
scribes the delays of the interconnecting network
(for both directions, the request sent to the desti-
nation node, and the result of the memory access
sent back to the ‘home’ node). The above estimates
do not take queueing delays into account so they
are actually upper bounds on the utilization of pro-
cessors.

Although the above formulas can be refined in a
number of ways, they nicely capture one of inter-
leaved multithreading trends; increasing the num-
ber of processor’s threads improves the performance
of multithreaded processors.

The utilization of 4–thread processors, as a func-
tion of pℓ, the probability of long–latency accesses
to local memory, and na, the number of additional
threads, is shown in Fig.5 (each point on the sur-
face shown in Fig.5 is obtained by simulating the
behavior of the model shown in Fig.3, with the cor-
responding vaues of model parameters).

The predicted utilization of processors for pure
interleaved multithreading (i.e., with zero addi-
tional threads available) for pℓ = 0 is equal to 0.8
(or 80%) in this case, which is slightly higher than
the utilization obtained from simulation as it does
not take into account the queuing delays for mem-
ory accesses. For pℓ = 0, the predicted value is equal



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 12

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4
0

0.2

0.4

0.6

0.8

prob to access local mem

Processor utilization (4 threads)

number of additional threads

pr
oc

es
so

r 
ut

ili
za

tio
n

Runlength: 10 units
Memory cycle: 10 units
Switch delay: 10 units

Fig.5. Processor utilization for a 4–thread system
(ℓt = 10, tm = 10, ts = 10).

to 0.36, and is also higher that than the simulation
results because the prediction ignores the queuing
delays in the interconnecting network.

It can be observed that the effect of enhance-
ments is more pronounced for values of pℓ close to
1 (i.e., when most of accesses are to local memory);
for small values of pℓ (in this particular case) the
availability of additional threads does not have any
significant effect on the utilization of processors.

The improvement of the performance, due to the
availability of additional threads, is up to 30% (for
4 additional threads).

Utilization of processors for an 8–thread system
are shown in Fig.6. The results are better than for
the 4–thread system, but the effects of enhanced
multithreading are less significant than in Fig.5.

Both Fig.5 and Fig.6 show that the performance
of processors decreases quite significantly for small
values of pℓ, i.e., when most of long–latency oper-
ations are accesses to remote memory. This is an
indication that the interconnecting network may be
the limiting component of this system. This is also
the reason that the enhancement of multithreading
has practically no effect in the region of small values
of pℓ (or values of pr close to 1); the interconnect-
ing network, and more precisely, the delay of its
switches, determine the performance of the system.
Indeed, the utilization of the input switch, for the 4–
thread system, as a function of pℓ and the number
of available threads, is shown in Fig.7 (for the 8–
thread system, the utilization of the input switch is
very similar to Fig.7). The region of low utilization
of processors in Fig.5 and Fig.6, i.e., the region of
small values of pℓ, corresponds to almost 100% uti-
lization of the input switches, which indicates that

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

prob to access local mem

Processor utilization (8 threads)

number of additional threads

pr
oc

es
so

r 
ut

ili
za

tio
n

Runlength: 10 units
Memory cycle: 10 units
Switch delay: 10 units

Fig.6. Processor utilization for an 8–thread system
(ℓt = 10, tm = 10, ts = 10).

the switches are the bottleneck of this system, lim-
iting its performance; the switches are simply too
slow for this system.

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

prob to access local mem

Switch utilization (4 threads)

number of additional threads

sw
itc

h 
ut

ili
za

tio
n

Runlength: 10 units
Memory cycle: 10 units
Switch delay: 10 units

Fig.7. Switch utilization for a 4–thread system
(ℓt = 10, tm = 10, ts = 10).

Fig.8 shows the utilization of processors for the
case when the switch delay is one half of that used in
Fig.5 and Fig.7, while Fig.9 shows the correspond-
ing utilization of the input switches. The utiliza-
tion of processors is generally much improved, and
the effects of enhanced multithreading are also more
significant. Fig.9 indicates that the input switch re-
mains the bottleneck only for very small values of
pℓ.

Further improvement of the processor’s perfor-
mance (for small values of pℓ) can be obtained by
using even faster switches or by using several paral-



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 13

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4
0

0.2

0.4

0.6

0.8

prob to access local mem

Processor utilization (4 threads)

number of additional threads

pr
oc

es
so

r 
ut

ili
za

tio
n

Runlength: 10 units
Memory cycle: 10 units
Switch delay: 5 units

Fig.8. Processor utilization for a 4–thread systems
(ℓt = 10, tm = 10, ts = 5).

0
0.2

0.4
0.6

0.8
1

0

1

2

3

4
0

0.2

0.4

0.6

0.8

1

prob to access local mem

Switch utilization (4 threads)

number of additional threads

sw
itc

h 
ut

ili
za

tio
n

Runlength: 10 units
Memory cycle: 10 units
Switch delay: 5 units

Fig.9. Switch utilization for a 4–thread systems
(ℓt = 10, tm = 10, ts = 5).

lel switches and sharing the load among them [18]; it
appears that when a component (such as a switch)
is the system’s bottleneck, its throughput is more
important for the performance of the entire system
than the component’s response time; in this sense,
several slower parallel components can provide the
same performance improvement as a single fast com-
ponent [18].

Fig.10 shows the relative improvement of the
processor utilization when 4 additional threads are
used. The values in Fig.10 are obtained by sub-
tracting processor utilization for na = 0 from that
for na = 4 and dividing it by the utilization for
na = 0. The maximum improvement of more than
40% can be achieved when approximately one half
of long–latency memory accesses are local.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

probability of accessing local memory

utilization
gain

Fig.10. Utilization gain for an enhanced interleaved 4–thread
system (ℓt = 10, tm = 10, ts = 5).

The potential improvements of the performance
in enhanced multithreading can be reduced by the
presence of system bottlenecks performance im-
provement in Fig.5 is much smaller than that in
Fig.8). System bottlenecks can be identified by
analysis of service demands for different compo-
nents of a system; the component with the maxi-
mum service demand is the bottleneck because it
will reach the upper limit of its utilization first.
For multithreaded multiprocessors, service demands
can be considered with respect to a runlegth of
a single thread, i.e., to a sequence of instructions
executed (by a single thread) between consecutive
long–latency operations. In such a context, the pro-
cessor’s service demand is equal to ℓt cycles, the
service demand for memory (local and remote, com-
bined) is equal to tm, while the service demand for
input switches depends on the probability of access-
ing remote memory, and is equal to 2 ∗ pr ∗ nh ∗ ts,
where the factor 2 represents the two directions of
traffic (requests and results), nh is the average num-
ber of hops in the interconnecting network, and ts
is the switch delay. For the case illustrated in Fig.5,
Fig.6 and Fig.7, the switch becomes the bottleneck
when its service demand is greater than that of
other components, i.e., when 2∗pr∗nh > 1 (because,
in Fig.5, Fig.6 and Fig.7, ℓt = tm = ts), and since
nh is approximately equal to 2 for a 16–processor
system (Section 2), the switch is the bottleneck for
pr > 0.25, or pℓ < 0.75; this is well illustrated in
Fig.5 and Fig.6.

4 Concluding Remarks

The paper presents a timed Petri net model of fine-
grain multithreaded multiprocessor system at the
instruction execution level, and analyzes the effects
of enhanced multithreading in which a number of



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 14

Lmem

Trmem
Tlmem

Rmem

Tloc

Trem

Memory

Dec

Tlocal

Mem

Rem

Inp

TsoutSout

Sinp
Tsinp

Tgo

Out

Trun Tend

Pend

Tnxt

Pnxt

Pcnt

Prd

Pwt

Tret

Pr

Td

Tr

Tw

TthPth

PwTm

Ps

Fig.11. Instruction–level colored Petri net model of a interleaved multithreaded multiprocessor system.

additional threads are available to be used as re-
placements for threads which become inactive wait-
ing for the completion of their long–latency oper-
ations. It appears that a small number of such
threads can quite significantly improve the perfor-
mance of the system.

The Petri net model of interleaved multithreaded
architectures may seem unnecessarily complicated
by incorporating several identical sections of thread
control. Such repetitions can easily be eliminated
by using high–level models, for example, colored
Petri nets [6], [7]. The complete model of a in-
terleaved multithreaded multiprocessor systems (for
any number of processors) is shown in Fig.11.

It should be noticed that the model is much more
compact than the place/transition model, but the
analysis of such high-level models is usually much
more difficult than analysis of place/transition nets.

The derived models assume that accesses to
memory are uniformly distributed over the nodes of
the system. If this assumption is not realistic and
some sort of ‘locality’ is present, the only change

that needs to be done is an adjustment of the value
of nh; for example, if the probability of accessing
nodes decreases with the distance (i.e., nodes which
are close are more likely to be accessed that the dis-
tant ones), the value of nh will be smaller than that
determined for the uniform distribution of accesses,
and will result in improved performance.

The processor model uses a very simple represen-
tation of memory which does not include the typ-
ical levels of memory hierarchy with different per-
formance characteristics for different levels of this
hierarchy. This simplification follows the results of
an earlier study [18] which demonstrated that the
results for a detailed model of memory hierarchy
differ only insignificantly from results obtained for
a simple model with the average values of parame-
ters.

The results obtained for a 2–dimensional torus–
like network are also valid for other interconnect-
ing networks with the same connectivity character-
istics. For example, Fig.12 shows a hypercube net-
work for a 16–processor system that is composed



Enhanced Interleaved Multithreaded Multiprocessors and Their Performance Analysis 15

of two 8–processor subsystems. Since the average
number of hops in this network is the same as in the
two–dimensional network shown in Fig.1, the per-
formance characteristics of both networks are also
the same (although the two interconning networks
scale in different ways).

Fig.12. Outline of a 16–processor system.

Although the discussion and presented results re-
fer to a 16–processor system, the model needs only
a few small changes to represent other multiproces-
sor systems. For example, the only changes that
need to be made to represent a 25–processor or
a 36–processor system, are the values of the free–
choice probabilities associated with the transitions
of Dec. Other aspects of performance equivalence
in distributed–memory multiprocessor systems are
discussed in [19], [20].

A comparison of the performance of interleaved
multithreading and block multithreading is pre-
sented in [16].

References

[1] Byrd, G.T., Holliday, M.A., “Multithreaded
processor architecture”; IEEE Spectrum,
vol.32, no.8, pp.38-46, 1995.

[2] Dennis, J.B., Gao, G.R., “Multithreaded ar-
chitectures: principles, projects, and issues”;
in: “Multithreaded Computer Architecture: a
Summary of the State of the Art”, pp.1-72,
Kluwer Academic 1994.

[3] Govindarajan, R., Nemawarkar, S.S., LeNir,
P., “Design and performance evaluation of a
multithreaded architecture”; Proc. First IEEE
Symp. on High–Performance Computer Archi-
tecture, Raleigh, NC, pp.298-307, 1995.

[4] Govindarajan, R., Suciu, F., Zuberek, W.M.,
“Timed Petri net models of multithreaded
multiprocessor architectures”; Proc. 7-th Int.
Workshop on Petri Nets and Performance
Models (PNPM’97), St. Malo, France, pp.153-
162, 1997.

[5] Hamilton, S., “Taking Moore’s law into the
next century”; IEEE Computer Magazine,
vol.32, no.1, pp.43-48, 1999.

[6] Jensen, K., “Coloured Petri nets”; in: “Ad-
vanced Course on Petri Nets 1986” (Lecture

Notes in Computer Science 254), pp.248-299,
Springer-Verlag 1987.

[7] Kristensen, L.M., Christensen, S., Jensen, K.,
“The practitioner’s guide to coloured Petri
nets”; International Journal on Software Tools
for Technology Transfer, vol.2, no.2, pp.98-132,
1998.

[8] Murata, T., “Petri nets: properties, analy-
sis and applications”; Proceedings of IEEE,
vol.77, no.4, pp.541-580, 1989.

[9] Patterson, D.A., Hennessy, J.L., “Computer
architecture – a qualitative approach”; Morgan
Kaufman 1996.

[10] Reisig, W., “Petri nets – an introduction”
(EATCS Monographs on Theoretical Com-
puter Science 4); Springer-Verlag 1995.

[11] Sinharoy B., “Optimized thread creation for
processor multithreading”; The Computer
Journal, vol.40, no.6, pp.388-400, 1997.

[12] Smith, B.J., “Architecture and applications of
the HEP multiprocessor computer System”;
Proc. SPIE – Real-Time Signal Processing IV,
vol. 298, pp. 241-248, 1981.

[13] Sohi, G.S., “Microprocessors – 10 years back,
10 years ahead”; in: “Informatics: 10 Years
Back, 10 Years Ahead” (Lecture Notes in Com-
puter Science 2000); pp.209-218, 2001.

[14] Wang, J., “Timed Petri nets”; Kluwer Aca-
demic Publ. 1998.

[15] Zuberek, W.M., “Timed Petri nets – defini-
tions, properties and applications”; Microelec-
tronics and Reliability, (Special Issue on Petri
Nets and Related Graph Models), vol.31, no.4,
pp.627-644, 1991.

[16] Zuberek, W.M., “Performance comparison of
fine-grain and block multithreaded architec-
tures”; Proc. High Performance Computing
Symposium 2000, Washington, DC, pp.383-
388, 2000.

[17] Zuberek, W.M., “Performance analysis of en-
hanced fine–grain multithreaded distributed–
memory systems”; Proc. IEEE Systems, Man
and Cybernetics Conf., Tucson, AZ, pp.1101-
1106, 2001.

[18] Zuberek, W.M., “Analysis of performance bot-
tlenecks in multithreaded multiprocessor sys-
tems”; Fundamenta Informaticae, vol.50, no.2,
pp.223-241, 2002.

[19] Zuberek, W.M., “Performance equivalence in
the simulation of multiprocessor systems”; In-
ternational Journal of Simulation, vol.3, no.1-2,
pp.80-88, 2002.

[20] Zuberek, W.M., “Performance analysis of fine-
grain multiprocessors”; International Journal
of Simulation, vol.4, no.3-4, pp.12-20, 2003.


