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Abstract

Spatial modulation (SM) and quadrature SM (QSM) are promising versions of the single-user
multiple-input multiple-output (MIMO) system that overcome the problem of inter-channel-
interference which occurs in conventional MIMO systems. Both SM and QSM exploit the
index of the activated antenna(s) to carry additional information to enhance the total spectral
efficiency of the system transmission. In the detection, the SM and QSM systems jointly
detect the index of the activated antenna(s) as well as the transmitted modulation symbol,
which is an exhaustive process especially for higher order modulations and large system
dimensions. This exhaustive process contradicts the demands of future wireless networks
that require low-power consumption and low communication latency.

To fulfill the demand of low-complex decoders at the receiver side for future wireless
networks, I propose three different low-complexity decoders for single-user SM and QSM
MIMO systems. These algorithms are based on the concept of sphere decoding for the
tree-search structure. The first proposed algorithm provides a significant reduction in the
decoding complexity with optimal bit error rate (BER) performance. The second proposed
algorithm provides an extra reduction in the decoding complexity without sacrificing the
optimality of the BER performance. Finally, the third algorithm provides a flexible trade-off
between complexity and BER performance to be suitable for most hardware implementations.
The proposed algorithms are studied in terms of BER performance and expected decoding

complexity for the single-user SM and QSM MIMO systems.

i



For multi-user SM-MIMO, a low-cost system is proposed using the sparse code mul-
tiple access (SCMA) technique. The proposed low-cost SM-SCMA system significantly
reduces the required number of transmit antennas with almost no loss in terms of the BER
performance and decoding complexity, compared with the conventional SM-SCMA. At the
receiver, the message passing algorithm (MPA) is employed to detect the transmitted signals,
which suffers from high decoding complexity in practical implementations. To address this
issue, three low-complexity decoding algorithms are proposed for the SM-SCMA system.
The first algorithm provides the benchmark for the decoding complexity at the expense of the
BER performance. The second algorithm slightly increases the decoding complexity with a
significant improvement in the BER performance. Finally, the third algorithm provides a
near-optimum BER performance with a considerable decoding complexity reduction when
compared to the MPA decoder. Moreover, it supports the parallel hardware implementation
and strikes a trade-off between decoding complexity and BER performance.

More specifically, the three low-complexity receivers for the single-user SM and QSM
MIMO systems are introduced in Chapters 2, 3, 4 and 5. In Chapter 2, the first low-
complexity algorithm for single-user QSM-MIMO system is proposed. The second low-
complexity algorithm for SM-MIMO system is introduced in Chapter 3, and is analyzed in
Chapter 4. The reliable decoder for single-user SM-MIMO system is proposed in Chapter 5.
For multi-user SM-SCMA, the low-cost system is proposed in Chapter 6; at the receiver side,
the three low-complexity decoders for the SM-SCMA system are proposed and analyzed in

Chapter 7.
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Chapter 1

Introduction

1.1 Background

In 1874, Guglielmo Marconi, the father of radio frequency (RF) signals, was born in Italy. At
an early age, he was influenced by Heinrich Hertz who tried to transmit the electromagnetic
waves through the air. Following numerous unsuccessful attempts, Marconi was finally able
to send a wireless signal across the Atlantic in 1901, drawing the world’s attention to a
groundbreaking field of technology. The site of Marconi’s experiment is still a venue for
tourists at the Signal Hill in St. John’s, Newfoundland, and continues to be a witness to one
of the remarkable inventions for humanity. About three years after Marconi’s experiment,
specifically in 1904, John Fleming invented the thermionic diode which has become an
essential component in wireless devices. Marconi and Fleming never knew that they were
about to forever change the face of the world. Since then, numerous universities, research labs
and industrial companies have dedicated resources to improve the wireless communication
systems.

Currently, wireless technology is an essential part of life. People rely heavily on tech-

nology for most of their daily life, such as forecasting the weather, following the news all



over the world, communicating with each other, controlling houses and industrial processes
remotely, etc. Recently, there has been a significant pressure on scientists and engineers to
add more advanced and robust elements to the wireless systems to accommodate relentlessly
increasing demands. One such promising element is the multiple-input multiple-output

(MIMO) system.

1.2 MIMO Systems

The MIMO communication system was proposed in 1970 as a multi-channel digital trans-
mission system for wired communication systems [1]. In 1993, the MIMO system was
proposed for wireless communications as a multiplexing scheme that can increase the overall
system data rate. This can be achieved by dividing the higher data rate into several low-data
rate signals and transmitting them from multiple antennas. At that time, the application of
MIMO was limited since the size of antennas was relatively large, and the building of a
wireless system equipped with multiple antennas was infeasible. In the last two decades
and after the revolution of antenna manufacturing, MIMO has received the utmost attention
from both academia and industry [2]. Since then, MIMO has became a key technology for
wireless communication systems that require high data rates/spectral efficiency transmission
[3].

The downside of increasing the spectral efficiency and data rate using MIMO systems is
an increase in the implementation cost and decoding complexity. This is due to the following

reasons:

1. Presence of inter-channel interference (ICI) because all transmit antennas are required

to be activated at the same time, which degrades the performance.

2. Need for inter-antenna synchronization (IAS).



3. Presence of multiple RF chains, which increases the overall cost of the system.

4. High decoding complexity when the optimum decoders are employed to decode the

transmitted signals.

The above drawbacks of MIMO systems limit their application for several wireless commu-
nication systems. The single antenna system avoids the drawbacks of the MIMO system at
the expense of reduced spectral efficiency, absent multiplexing gain, less served users, etc.
Therefore, a novel wireless technology that lies in between the single antenna and MIMO

has been launched in recent years, namely spatial modulation (SM).

1.3 Single-User Spatial Modulation

SM is a promising technique that has been recently proposed to overcome the MIMO
drawbacks for possible application to the next wireless generations [4]-[7]. SM is a type
of MIMO system that exploits the index of the transmit antennas to deliver an extra part of
the input bit-stream, in addition to transmitting the modulated signal. This can be achieved
by activating only one transmit antenna at a time, and then sending the modulated signal
from it. Therefore, the SM-MIMO system utilizes the uniqueness and randomness of the
wireless channel to deliver additional information. Upon implementing this brilliant idea,
the SM system completely eliminates the ICI and does not require IAS since only one RF
chain is used at a time. Besides, the SM system has a lower implementation cost compared
to the traditional MIMO system, and it provides a better spectral efficiency compared to the

traditional single antenna system.



1.3.1 SM Functionality

The SM-MIMO system activates only one antenna at a time to avoid the drawbacks of
multiple antennas systems [8]. Fig. 1.1 shows the tridimensional constellation diagram of
the SM-MIMO system for four transmit antennas and four modulation symbols. Assume that
the current input bit-stream is 1110; the first two bits (i.e., 11) activate the 4-th antenna, while
the rest of the transmitter antennas radiate no power. The modulated symbol corresponding
to the second two bits (i.e., 10) is now ready to be transmitted from the 4-th antenna. It is
worth noting that both the real and imaginary parts of the modulated symbol are transmitted
from the same active antenna (i.e., the 4-th antenna in this example).

Fig. 1.2 shows the bit-steam mapping in the SM-MIMO system for the same example
mentioned above. As seen from this figure, a single RF chain is used at the transmitter and
is received by all receiver antennas. Therefore, no ICI occurs during the transmission. At
the receiver side, the signal is detected by performing all possible combinations between
the transmit antennas and modulated symbols, which is referred to as maximum-likelihood

(ML) decoding.

1.3.2 The QSM-MIMO System

As previously mentioned, the SM-MIMO system overcomes the traditional MIMO problems.
On the other hand, the traditional MIMO provides a better spectral efficiency compared to
the SM-MIMO systems. Quadrature SM (QSM) is a promising variant of the SM-MIMO
system, which employs the in-phase and quadrature dimensions to improve the spectral
efficiency of the conventional SM [9]. In other words, the real and imaginary components of
the modulated symbol are transmitted from two different antennas. At the receiver side, the
optimum ML detector jointly estimates the two active transmit antenna indices conveying

the in-phase and quadrature pulse amplitude modulation (PAM) as well as the PAM symbols.
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Fig. 1.3 depicts an example of the tridimensional constellation diagram of the QSM-
MIMO system for four transmit antennas and four modulation symbols. As shown in this
figure, the real part of the modulated symbol is transmitted from the 4-th antenna, while the
imaginary part of the modulated symbol is delivered from the 2-nd antenna. Thus, the total

number of transmitted bits at a time using QSM is 6, whereas the SM transmits only 4 bits at

a time.
Im i . .
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Fig. 1.3: Tridimensional constellation diagram of the QSM-MIMO system for 4 transmit
antennas and 4 modulation symbols.

1.4 Multi-User SM

In practice, the wireless communication systems include multiple users that can share the
medium and access it based on a specific access technique. Non-orthogonal multiple access
(NOMA) has been recognized as a promising technique for future wireless networks, and
has received remarkable attention in recent years [10]. NOMA can be classified mainly as

power-domain and code-domain. The power and code orthogonality constraints are relaxed

6



for multiple-user access to improve the spectral efficiency and increase the number of served
users.

In this thesis, sparse code multiple access (SCMA) code-domain NOMA is considered,
which was initially proposed in [11] and [12]. In the SCMA scheme that is shown in Fig.
1.4, a unique multidimensional codebook is assigned to each user to share the medium with
the other users. The SCMA codebooks are sparse (i.e., contain zeros) and carefully designed
to provide a good performance. The sparsity property of the SCMA codebooks enables
the application of the iterative message passing algorithm (MPA) to provide near ML BER
performance with complexity lower than the ML. The MPA is an iterative algorithm that
maximizes the posteriori probability of each user’s codeword. Since the complexity of the
MPA is still high for practical implementations, reducing the decoding complexity is a point

of utmost interest in this context.

1.4.1 SCMA Functionality

Herein, an illustrative example is discussed to explain the concept of SCMA using six users,
as seen in Fig. 1.5. Assume that each user has a codebook containing four codewords, i.e.,
each user can send two bits at a time. The users’ codewords consist of four subcarriers. It
is worth noting that all users’ codebooks are designed to allow only three users to share
a subcarrier, as shown in Fig. 1.5. Moreover, the number of non-zero elements for each
codeword is fixed (e.g., two in this example).

Suppose that the six users need to transmit the following two bits per user in its order:
01, 00, 11, 00, 10, O1. Thus, the second codeword that corresponds to 01 in the first user’s
codebook will be transmitted, and so on for the rest of the users. Now, the composite
transmitted signal of the six users is represented by a complex vector which consists of four
elements. Each element of the composite transmitted vector comes from three different

USETS.
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At the receiver, the decoder utilizes MPA to detect the transmitted codeword for each
user, given that the codebooks for all six users are known at the receiver side. The MPA
iteratively maximizes the posteriori probability of each user’s codeword, and estimates a

solution that corresponds to the maximum a posteriori probability.

1.4.2 The SM-SCMA System

With the increased need for high spectral efficiency transmission, the conventional MIMO
assisted by the SCMA scheme becomes infeasible due to its complexity. Besides, the MIMO-
SCMA system suffers from the same problems as the traditional MIMO systems, such as ICI
and [AS. Recently, the multi-user SM has been assisted by SCMA (SM-SCMA) to provide a
high spectral efficiency transmission and overcome the traditional MIMO-SCMA problems
[13], [14]. In an SM-SCMA system, part of the input bit-stream activates only one transmit
antenna, while the rest selects the user codeword to be transmitted from that active antenna.
Thus, no ICI occurs and there is no need for IAS, which would be otherwise required for
MIMO-SCMA. Unfortunately, the high number of required transmit antennas in SM-SCMA
and the high complexity of the MPA implementation renders it unsuitable for many hardware

implementations.

1.5 Potential Applications of SM to Emerging Communi-
cation Systems

e Millimeter-wave (mmWave) communication is a promising wireless communication
system that accommodates increasingly high data rates and spectral efficiency services
[15], [16]. However, it suffers from high propagation loss since it works in high-

frequency bands. One of the proposed solutions to tackle this problem is to apply



beamforming technology with a large number of antennas to compensate for the
introduced propagation loss. Unfortunately, the use of a massive number of antennas
(i.e., a large number of RF chains) increases the cost of the transceiver, which limits
the practical implementation. Besides hybrid pre-coding, currently considered to
reduce the number of RF chains in massive MIMO systems, SM-MIMO system is
a promising candidate for the mmWave communication systems that uses a limited
number of RF chains. The SM-MIMO system for mmWave systems is studied in some

recent research works [17]-[21].

Visible light communication (VLC) is a recent and favorable technology, which attracts
RF-free working environments, such as airports, hospitals, etc. [22], [23]. Usually,
most of the places are equipped with a large number of LEDs, which makes MIMO
feasible for integration with the VLC technology. Therefore, the SM-MIMO system is
also an auspicious candidate for VLC technology, which is studied in recent research

works [24]-[29].

The SCMA system is a code-domain NOMA that progressively suffers from high
decoding complexity as the number of served users increases. Moreover, the design of
the user’s codebook becomes an issue when the spectral efficiency increases. SM is
consequently a propitious candidate when it comes to increasing the spectral efficiency
without changing the user’s codebook while at the same time maintaining an affordable

decoding complexity [13], [14].
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1.6 Motivation and Outline

Motivation

Efficient system design is an important issue in future generations of wireless communication
systems [30], [31]. An example is the design of low-complexity receivers: these not only
decrease the communication system latency but also reduce the receiver power consumption,
which leads to increased battery lifetime.

Based on the aforementioned discussions regarding the single and multi-user SM system,

the following research problems are investigated in this thesis:

e Efficient receivers are proposed, which reduce the decoding complexity of the ML for
the single-user SM and QSM systems. These efficient receivers reduce the decoding

complexity without sacrificing the BER performance.
e A full assessment of these efficient receivers is performed to evaluate their behavior.

e A complete analysis of the expected decoding complexity of the efficient receivers is

provided.

e A reliable decoder is proposed to fit a wide range of practical applications with specific

requirements for both operation and hardware implementation.

e An efficient transmitter for multi-user SM-MIMO assisted by SCMA is proposed.
This efficient transmitter should overcome the high number of required antennas for

the existing SM-SCMA system.

e The efficient transmitter of the SM-SCMA should take into consideration the decoding

complexity and BER performance, compared to the existing SM-SCMA system.

e Efficient receivers should also be considered for the multi-user SM-SCMA system.

11



These receivers should provide a considerable reduction in the decoding complexity

with an acceptable BER performance.

Thesis organization

The rest of this dissertation is organized as follows: Chapter 2 proposes a low-complexity de-
coding algorithm for single-user square QSM-MIMO. Chapter 3 proposes a low-complexity
algorithm for general QSM and SM single-user MIMO system. Chapter 4 provides further
investigations of the algorithm proposed in Chapter 3 in terms of expected decoding com-
plexity and behavior of the algorithm for perfect and imperfect channel state information at
the receiver side. Chapter 5 proposes a reliable decoder for single-user SM-MIMO systems.
A low-cost multi-user SM-MIMO system is subsequently proposed in Chapter 6 with the aid
of the SCMA technique. Low-complexity decoders for the SM-SCMA system are proposed

in Chapter 7. Finally, the thesis is concluded in Chapter 8.

1.7 Contributions

Motivated by the previous discussion, I have identified and investigated the following

research points in both single-user and multi-user SM-MIMO systems:

1. T have designed a low-complexity decoder for a single-user square QSM system
[32]. This algorithm guarantees the optimal ML BER performance with a significant
reduction in the decoding complexity, compared to the ML and other conventional
algorithms. Moreover, the expected decoding complexity of the proposed algorithm is

derived.

2. I have proposed a low-complexity decoder for single-user general SM and QSM

MIMO systems [33]. The proposed algorithm significantly reduces the decoding

12



complexity without sacrificing the optimality of the ML BER performance.

. I have investigated the behavior of the proposed algorithm mentioned in the second
point from the decoding complexity perspective [34]. The expected decoding com-
plexity of the proposed algorithm has been derived in the presence of perfect and
imperfect channel state information at the receiver. The optimality of the proposed
algorithm is mathematically proven. Furthermore, different simulation scenarios with

different spectral efficiencies have been provided to confirm the findings.

. I have designed a reliable decoding algorithm that can either reduce the decoding
complexity with optimal ML BER performance or provide a flexible trade-off between
the BER and complexity for a single-user SM-MIMO system[35]. The BER and

expected complexity analysis have been derived and confirmed with simulations.

. I have proposed an efficient transmitter for the multi-user SM-SCMA system [36].
The complete formulations of the transmitter and receiver for the novel system have
been provided. The complexity analysis of the proposed SM-SCMA system has been
studied. The proposed system significantly reduces the number of transmit antennas
required to deliver the same spectral efficiency as the existing system, at the expense
of a slight increase in the decoding complexity and negligible deterioration in the BER

performance.

. I have proposed three low-complexity decoding algorithms for the multi-user SM-
SCMA system [37]. The first algorithm can be considered a benchmark for the
decoding complexity at the expense of the BER performance, which is still acceptable
for some practical applications. The second algorithm improves the BER performance
of the first algorithm with the added cost of a minimal increase in the decoding
complexity. The third algorithm not only provides the optimal BER performance

with a significant reduction in the decoding complexity, but also ensures a flexible

13



trade-off between the BER and complexity. These algorithms suit a wide range of
practical applications with specific requirements for both operation and hardware
implementation. The mathematical formulation, complexity analysis, and simulation

results are provided to support these findings.
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Chapter 2

Quadrature Spatial Modulation
Decoding Complexity: Study and

Reduction

2.1 Abstract

This chapter presents the computational complexity reduction of the maximum likelihood-
quadrature spatial modulation (QSM-ML) decoder as compared with the conventional SM-
ML. Furthermore, a novel reduced-complexity (RC) sphere decoder algorithm, especially
designed for QSM decoders, is proposed. It is shown that the QSM-RC algorithm achieves
the optimum QSM-ML bit error ratio performance. Using Monte Carlo simulations and
mathematical analysis, at the same spectral efficiency and with notable superior performance,
it is shown that the QSM-ML and QSM-RC decoders provide at least 50% and up to 96%

reduction in the number of visited nodes, respectively, compared to the SM-ML decoder.
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2.2 Introduction

Low complexity represents an important requirement for the next generation of wireless
systems [1]. In practical applications, reducing the computational complexity of algorithms
or systems is of utmost importance, while maintaining the performance within acceptable
limits.

Quadrature spatial modulation (QSM) is a promising technique [2], which employs the
in-phase and quadrature dimensions to improve the throughput of the conventional SM [3].
At the receive-side, the optimum maximum likelihood (ML) detector [2] jointly estimates the
two active transmit antenna indices conveying the in-phase and quadrature pulse amplitude
modulations (PAMs) as well as the PAMs. The detection process requires a high running
cost.

Recently, low-complexity decoding algorithms have been proposed for SM [4]-[6], and
surveyed in [7]. In [4], [5], the sphere decoder (SD) [8] is applied to SM by employing
a pruned radius (threshold) which depends on the number of receive antennas and noise
variance. Estimation of the noise variance can be done either based on pilots/preamble or
blindly [9]. The former leads to a loss of spectral efficiency, while the accuracy in the latter
case depends on the data length. Furthermore, the noise variance estimation is required when
the channel environment changes. In [6], a low-complexity algorithm has been proposed
for SM. However, the algorithm requires an exhaustive pre-processing step to calculate the
pseudo inverse of the channel matrix entries; additionally, the optimum bit error rate (BER)
performance is not attained. In [10], the issue of the exhaustive pre-processing required in
[6] is overcome by exploiting the sparsity property of large-scale QSM and the minimum
mean square equalization. However, this does not hold for low/moderate-scale QSM systems.
Furthermore, the algorithm in [10] requires estimation of the noise variance and does not

provide the optimum BER performance.
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In previous work [2], [10], the authors have not noticed that the QSM not only improves
the conventional SM BER performance, but it also reduces the decoding complexity.

In this chapter, the contribution is twofold:
1) The QSM-ML decoding complexity is studied: it is shown that the QSM-ML reduces the
complexity of the SM-ML decoder by at least half, at the same spectral efficiency.
2) A novel low-complexity SD algorithm is proposed for QSM systems; the proposed
algorithm provides: a) the optimum ML BER performance; b) simple radius which requires
neither estimation of the noise variance nor exhaustive pre-processing; and ¢) more reduction
in the complexity when compared with the existing algorithms, if they are directly applied
to QSM.
Analytical results are obtained for the complexity of the algorithms, and are confirmed with

the Monte Carlo simulation.

2.3 The QSM System Model

Consider an N, x N; MIMO system, which employs QSM [2], with N; and N, as the number
of transmit and receive antennas, respectively. The complex-valued transmitted symbol
sy = sg +7s; is divided into two real-valued PAMs, s7 and s*, where s; € {s1, -+ , Shisu }»
with Mgy as the modulation order of the corresponding quadrature amplitude modulation
(QAM). The transmitted symbol is delivered through an N, x N; flat fading channel,

H € CN>Nt_ The noisy received vector, y € CVr*1, is expressed as

y =hyzsf + jh,ss +w, (2.1)

where hn?}and hn? denote the transmitted n®th and n=th columns of H, respectively, and
weCNr*1 is the additive white Gaussian noise (AWGN), w ~ CAN/(0,0?). Note that, in

this chapter, the subscripts ¢, R and & represent the actual transmitted, real and imaginary,
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receptively.
Assuming that the channel state information is known at the QSM receiver, the optimal ML
detector jointly estimates the two active transmit antenna indices, A2 and 7;>, as well as the

corresponding real-valued PAMs, 8% and 57

(A7, iy, 87, 87| = arg mina| |y—(hprs”+sh,es) Hiﬂ , (2.2)

nRnT R g
where ||.|| , denotes the Frobenius norm. Even though (2.2) is optimum, it requires intensive

computations due to the exhaustive search of the ML detector.

2.4 The QSM-ML Decoder Complexity

In this section, I prove the reduction in decoding complexity of the QSM-ML over the
conventional SM-ML at the same spectral efficiency. Note that the complexity in this chapter
is defined as the average number of visited nodes (VNs) necessary to find the solution [4].

Consider a spectral efficiency of 7 (bit/sec/Hz). In SM, the spectral efficiency is given by
nsm = loga(N:Msm) [3], where Mgy is the SM modulation order. As discussed in [4], [S],
the SM-ML detection can be converted into a tree-search structure with the total number of
nodes equal to Msy Ny N,.. Since the ML procedure visits all nodes, the complexity of the
SM-ML detection is Csyvr. = Msy NN,

Turning to QSM, the spectral efficiency is given by nosm = 10g2( N2Mgsm) [2], where
Magswm is the QSM modulation order. Hence, the condition of achieving the same spectral
efficiency for SM and QSM is Mqsm = Msm/N;.

The QSM-ML detection operation is divided into two independent SM-ML tree-searches;
the first and second tree-searches are for the in-phase and quadrature PAM, respectively. The
in-phase and quadrature PAMs are drawn from \/m real-valued numbers. Thus, the

complexity of the QSM-ML decoder is provided by both in-phase and quadrature tree-search
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complexities, and is expressed as Cosmmr=2+/ Mosm N: V..
Therefore, the complexity reduction ratio between the QSM-ML and the SM-ML,
RaosmML, is given by
Rosa, = Csmmr — Cosmmr 2

-1 23
CsmmL Msm Ny (23)

For example, when Mgy = 4 and N; = 4 (nsm = 4), the reduction ratio is Rosyme = 50%.

It can be easily noticed that Rqgpy.mr increases as Mgy V; increases.

2.5 Reduced-Complexity QSM Algorithm

The proposed reduced-complexity QSM (QSM-RC) algorithm is based on SD [8], and
employs the tree-search structure shown in Fig. 2.1. The figure shows an example of
QSM-RC decoder for n = 4bit/sec/Hz, N, = 3, N; = 2 and Mgsy = 4. As seen, the

QSM-RC decoding procedure is divided into two tree-searches denoted by €2 € {R, &},

with the tree-search level as ¢ € {1,---,N,}. For a given (Q, the tree-search branch,
j € {1,---, Nin/ Mqgsm}, is formed from a combination of the transmit antenna index

n € {1,---, N;} and the transmitted PAM symbol s € {1,--- ,/Magsm}-
For a given (2, the QSM-RC performs an ML search only on paths that lead to nodes
with Euclidean distance (ED) less than or equal to a specific sphere pruned radius p3. The

ED at level ¢ and branch j is denoted by df}; and is given as df; = |y — (hins) 2, where

|.| is the modulus operation, ¥ € {y,- -, yf&r} is the i-th complex-valued element of the
vector yQ and h; 5, is the element (i, n) of the matrix H. Note that, in a given branch j, the
accumulated ED at any node is the sum of the preceding EDs.

For a given (2, the QSM-RC algorithm is summarized in Algorithm 2.1 and explained as
follows:

Step 1: Calculate the EDs at the first level (¢ = 1), then order them ascendingly to obtain
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Q = In-phase (R ! Q = Quadrature( J)
SM tree-search SM tree-search

Fig. 2.1: The tree-search structure for the QSM-RC decoder for n = 4 bit/sec/Hz, N, = 3,
Nt = 2 and MQSM =4,

Q Q _ Q Q
61,1 e e],Nt MQSM] — SOl't ([dl,l e d],Nt MQSM] )} (2.4)

where sort(.) is the ascending order function. Note that the calculations of the EDs of the first
level are common to other algorithms. Thus, this step is not considered to be an additional
step.

Step 2: Visit all nodes of the first branch (j = 1) which starts with e‘ﬁl, to obtain the
accumulated ED of the first branch.

Step 3: Assign the value of the accumulated ED, calculated in step 2, to be the initial

value of p3

Ny
po = e (2.5)
i=1
Step 4: Sequentially visit the tree-search branches in the order of the sorted EDs in (2.4),
as long as the accumulated ED of that branch is still inside the sphere.
Step 5: Update p2 whenever the algorithm finds any branch accumulated ED smaller
than the current value.

Step 6: Estimate n{* and s using
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[, 5] = arg mf}n{”y” S pg}. (2.6)

Note that (2.5) provides a complete branch inside the sphere at the beginning of the
decoding process, and then the QSM-RC algorithm discards visiting the next tree-search
branches based on the value of (2.5). Thus, the optimal solution will not be missed. In other
words, the discarded branches can not provide the optimal solution because they already
have EDs greater than the EDs of the visited branches, which guarantees the optimum ML

BER performance for the QSM-RC algorithm.

2.6 Complexity analysis of the QSM-RC

The number of VNs of the QSM-RC algorithm equal to { = ¢* + ¢, where ¢* and (°
represent the complexities of the in-phase and quadrature tree-search, respectively. For a

given (2, the number of VNs is given by

N/ Mosm
=N+ ) [P}j;?“) (Z ’P“"S‘d‘"'))] (2.7)

j=2
where the first term of the right hand side represents the number of VNs which is required
for calculating the pruned radius in (2.5), ’P(M) denotes the probability of sorting node
(1,7), and Pi(,g-mde) denotes the probability of having a node (7,7) inside the sphere. As long
as P and P are independent random variables, the second term of the right hand
side represents the number of VNs in the branches from j = 2 to V; \/m, with each
branch having N, nodes.

Hence, as shown in Appendix, the number of VNs of the QSM-RC algorithm for a given
Qis

26



Algorithm 2.1 QSM-RC pseudo-code
e Sort {dﬁ?} to obtain {e?’j} as in (2.4).

e Compute p, as in (2.5).

1: fO'." j‘z 2: NMHMQSM

2: Initiate the accumulated ED Dﬁ? =0.
: for i=1: N,

2
Compute the Euclidean distance d?j = |yit — (hi,ns)?

s}

4.

5. Set D! = DS+ df,.

6: if D> p}

7 Go to line 1.

8: end

9: end

10: Update pf, (if accumulated ED D§ < p) .
11: end

o Estimate n? and 3? as in (2.6).

e Repeat the same procedures for the other 2.

¢ (Ne/ Mg = 1) V< (Niy/Mos =1)

2 _
Cosmre = ’
¢t otherwise

Thus, the total number of VNs for the QSM-RC algorithm is Cosmre = Cismre + Cosmres

and the complexity reduction ratio between the QSM-ML and SM-ML is

C —C
Rosmre = SM_ME,SM MfSM_RC- (2.9)

It is worth mentioning that the lowest number of VNs that can be reached is when the
algorithm visits no node inside the tree-search. In this case, the total number of visited nodes

is limited to the number of VNs used in steps 1 and 3, which is

C = N, 4+ Nyv/Mosm — 1. (2.10)
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Therefore, the theoretical upper bound of the complexity reduction (UBCR) ratio Rygcr., is

given by

Q(Nr + Nir/ MQSM — 1)

2.11
Msm NN, @.11)

Rucr =1 —

2.7 Numerical results

In this section, I assess the complexity reduction of the proposed QSM-RC as well as the
QSM-ML, in comparing with the conventional SM-ML.. The effect of sorting in (2.4) will
be demonstrated, and I refer to the unsorted version of the QSM-RC as QSM-URC. The
algorithm proposed for the SM-SD in [4] will be applied for the QSM for comparison
purpose; this is referred to QSM-SD and uses the same parameters as in [4]. The UBCR
in (2.11) is what all the algorithms try to achieve. The presented results are obtained by
running Monte-Carlo simulations over 10° Rayleigh flat fading channel realizations. Note
that simulations confirm the analytical results in (2.3) and Section 2.6.

In Fig. 2.2, the complexity reduction ratio of different QSM decoders is studied in case
of N, = 4 for n = 6 bit/sec/Hz and Mqsy = 4 (Mgm = 16). It can be seen that the QSM-RC
algorithm has the best reduction ratio; it requires only 22 dB signal-to-noise ratio (SNR)
to approach the UBCR which is 92%. At 22 dB SNR, the QSM-URC has a complexity
reduction ratio of 85%, which shows 7% gain obtained from the sorting step in the QSM-RC
algorithm. Fig. 2.3 shows the number of VNs required for different QSM decoders versus
N; at SNR = 10 dB and N,. = 8 using different spectral efficiencies. The QSM-ML requires
a smaller number of VNs than SM-ML, and the QSM-RC has the least number of VNs. Fig.
2.3 shows that the proposed QSM-RC is valid for Ny < N, and N; > N,.

Fig. 2.4 shows the BER performance of different QSM decoders versus SNR for n =
8 bit/sec/Hz, Mgy = 64 and N,, = 4. The QSM-RC and QSM-URC provide the optimum
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Fig. 2.2: Complexity reduction comparison of different QSM decoders for Mqsm = 4,
1 = 6bit/sec/Hz, N; = 4and N, = 4.
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Fig. 2.3: Number of VNs comparison of different QSM decoders for Mgsy = 4, SNR = 10
dB and N, = 8.
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BER performances of the QSM-ML due to (2.5), while the QSM-SD [4] deteriorates at
high SNR due to the dependency of its pruned radius on the noise variance which becomes
small. In this case, the QSM-SD [4] visits fewer nodes than what are required to obtain the
optimum performance. Fig. 2.5 shows that the QSM-ML complexity reduction ratio is 87%
for all SNR values, while 20 dB SNR is enough to allow the QSM-RC reach 96%. Note
that, from Fig. 2.2 and 2.5, the complexity reduction increases as the Mgy increases, which
agrees with (2.11).

It is seen from these figures that the QSM-ML system reduces the decoding complexity
of the SM-ML beside its superiority in BER performance. However, the QSM-ML decoding
process is still exhaustive. The QSM-RC algorithm provides a significant reduction in the

complexity without any loss in BER performance.

2.8 Conclusion

This chapter provides a mathematical proof of the reduction in complexity for the QSM-ML
decoder when compared with the SM-ML at the same spectral efficiency, by at least 50%
of the number of visited nodes. Moreover, a novel reduced-complexity algorithm designed
for QSM is proposed. Unlike the QSM-RC algorithm, the existing SD algorithms in the
literature have some obstacles if directly applied to QSM. The QSM-RC provides the optimal
ML BER performance by assigning at least one tree-search branch inside the sphere, and

provides reduction up to 96% in the number of visited nodes.

2.9 APPENDIX: Proof of (2.8)

To find P and P in (2.7), consider u; = 42 — (hins)? and y = (hspns)? + w,

where (h;ns)$! is the actual transmitted combination element consisting of the transmitted
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Fig. 2.4: BER-performance comparison of different QSM decoders for n = 8 bit/sec/Hz,
N,. — 4, Nt =4, ﬂffSM — 64 and MQSM = 16.
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Fig. 2.5: Complexity reduction comparison of different QSM decoders for n = 8 bit/sec/Hz,
N,. — 4, Nt =4, ﬂffSM — 64 and MQSM = 16.
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PAM symbol s using antenna with index n;, and w$? is i-th noise element of the w in (2.1).

Thus, (2.6) can be re-written as,

Ny
[fi, 87"] = arg min {Z Jufl|” < p?;} - 2.12)
J i=1

Note that the distribution of the accumulated ED for any level 1, Ei‘:l |u§ J|2 = "—;%,j,
with U =37 _ (u;/(¢/+/2))?, is a non-central chi-squared distribution with i degrees of
freedom [4], [11]. Consequently, the cumulative distribution function F(.) of the random

variable IIIZ% is [12, (Ch. 2)]

2 i Q Q|2
Q 21 0 2y P . Ek:l }(hk,wg)z - (hk,n'g)jl
Pr(‘-pe,jﬁw |St?nt?H}J )_F((J/\/i) 'L 02/2 .
(2.13)

The closed form expression of (2.13) for odd degrees of freedom, 7, is not available. However
the solution can be evaluated numerically. For even degrees of freedom, ¢, the solution of

(2.13) is expressed in terms of the generalized Marcum’s Q-function as [12, (2.1-124)].

Since sorting probability ’Pﬁ?") in (2.7) can be expressed as
'P{f‘;’")= Pr (min {esﬁj,esﬁjﬂ, e ,eiNt\/m}Z e?,j), (2.14)
the solution of (2.14) is given as [13, (p. 325)]:
Nt/ Masm
PeY=1— [[ (-Pr(ef, <€), (2.15)
n=j

where the term Pr (e}, < ef’;) is given in (2.13) withi = 1.
Now, I can directly calculate the probability of having a node (z, j) at level ¢ inside the

sphere given a radius pq as



- - 2
pi(",mde) =Pr (@:1, < (0";(;2) |S?: ng, H, 02) ) (2.16)

where (2.16) is evaluated from (2.13).

From (2.7), (2.15) and (2.16), the derived complexity assumes that, initially, the algorithm
knows if the node is outside or inside the sphere. However, this assumption is inaccurate
and a correction factor is required to consider the initial VNS. In other words, the number of
VNs can not be less than (2.10). To account for this, the number of VNs in (2.7) is modified

as in (2.8), where (N;y/Mgsm — 1) is the initial number of VNs.
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Chapter 3

Low Complexity Decoders for Spatial

and Quadrature Spatial Modulations

3.1 Abstract

In spatial modulation (SM) and SM (QSM), the maximum-likelihood (ML) decoder provides
the optimum solution with high decoding complexity at the receiver side. This chapter
presents a novel low-complexity algorithm for decoding the SM and QSM symbols, referred
to as the min-max algorithm. This is an intelligent searching algorithm, particularly designed
for the tree-search of the SM and QSM decoders. The proposed algorithm expands the
minimum Euclidean distance (ED) by adding a single node at each step, without considering
the order of the branches. The expanding process stops if the minimum ED occurs at the end
of a fully expanded branch. It is shown that the proposed algorithm achieves the optimum
ML bit error rate performance with a significant reduction in the decoding complexity
comparing with SM-ML and QSM-ML, as well as other existing sphere decoding algorithms.
Simulations and mathematical analysis are provided to assess the decoding performance and

complexity of the proposed algorithm.
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3.2 Introduction

Low-complexity represents a vital requirement for the next generation of wireless tech-
nologies [1]. In real-time applications, at acceptable limits of performance, having a
low-complexity detection is of utmost importance.

Spatial modulation (SM) overcomes the inter-channel interference problem of multiple-
input multiple-output (MIMO) by activating only one transmit antenna for every time
instance [2]. Transmitted data determines the active antenna, as well as the symbol to be
transmitted from the antenna. Quadrature spatial modulation (QSM) is an evolved version
[3] of SM, which utilizes the in-phase and quadrature dimensions in order to enhance the
throughput of the conventional SM. At the receiver, the optimum maximum likelihood (ML)
detector [2], [3] jointly estimates the active transmit antenna indices and symbols. The
detection procedure has a high running cost, especially for real-time applications.

Recently, low-complexity detection algorithms have been proposed for SM [4]-[6] and
QSM [7], [8]. In [4], [5], the sphere decoder (SD) [9] is applied to the SM system, and
provides the optimum bit error rate (BER) performance. However, it requires knowledge
of the noise variance [10]. In [6], [7], low-complexity decoders are proposed for SM
and large-scale QSM, respectively. However, the proposed decoders have not achieved
the optimum BER. Furthermore, the latter requires knowledge of the noise variance. In
[8], a reduced-complexity algorithm is proposed for QSM, which provides the ML BER
performance and does not depend on the noise variance. However, more reduction in the
decoding complexity can be still achieved.

In this chapter, I propose a low-complexity decoder for both SM and QSM systems,
referred to as the min-max (m-M) algorithm. The main idea of the proposed algorithm is to
perform a single expansion to the minimum Euclidean distance (ED) over all tree-search

branches, until the minimum ED occurs at the end of a fully expanded (maximum length)



branch. The algorithm provides a significant reduction in complexity in terms of the number
of visited nodes when compared with conventional algorithms in the literature, as well as

the optimum BER performance.

3.3 SM and QSM System Models

Assume I have an N, x N; MIMO system, where N; and N, represent the number of transmit
and receive antennas, respectively. The complex-valued symbol z; is transmitted through
an N, x N; flat fading channel, H € CN»xNt and the received signal is also affected by
additive white Gaussian noise (AWGN) with zero-mean and variance o2, w ~ CN(0,02).
The spectral efficiency, 7 is the information rate delivered from the transmitter to the receiver
for a given bandwidth. The received vector y € C¥*! depends on the system, i.e., SM or

QSM.

3.3.1 Spatial Modulation

In the SM system, a symbol is transmitted from only one active antenna at each time instance.
The antenna and transmitted symbol are chosen according to the input data. In this case,
the target spectral efficiency, nsy, is delivered by using two symbols: the spatial symbol
and the constellation symbol. The former represents the index of the active antenna during
transmission, while the latter is drawn from the M-ary quadrature amplitude modulation
(M-QAM). Consequently, gy = log, (N;) + log, (Msm) = log, (N:Msm), where Mgy is
the modulation order of the SM system. In other words, the number of combinations, A,
between the /V; columns of H (spatial symbols) and Mgy symbols (constellation symbols)
is A = 2™ = N, Mgy, leading to a spectral efficiency of ngy bit/second/Hertz (b/s/Hz).

The noisy received vector, ysm, for the SM system can be expressed as



ysm = hy,, xsm, + W = xsm, + W, (3.1)

where h,,, denotes the n;-th column of H, which means that the antenna of index n; €
{1,--- , N;} is activated, zgy, € {21, , Znrg, } is the transmitted symbol, and xsy, =
hp,zsm, € {x1, -, Xxa} is the transmitted combination of the spatial and constellation
symbols. Note that the subscript ¢ represents the transmitted symbol/index.

At the receiver, the target is to estimate the transmitted combination ysy,. Assuming
that the channel state information is perfectly known at the SM receiver, the optimal ML
detector jointly estimates the transmitted combination )Eéﬂ];) by employing an exhaustive
search over all possible combinations as

(ML) _

XsMm; argmin  ||ysm — XSM”; ) (3.2)

XSM=X1,"",XA

where ||.||» denotes the Frobenius norm.

3.3.2 Quadrature Spatial Modulation

The QSM system splits the complex-valued transmitted symbol zqsm, = a:ngSMt + j&?gSMt
. - . R C‘} - .

into its in-phase and quadrature components, zgy, and zggy, , and exploits the orthogonality
property between these dimensions to independently deliver them to the receive-side. It
should be noted that each component is transmitted as in SM, and can have a different

channel environment. The noisy received vector, yosm € CNrx1 g expressed as

yYosm = hng?ﬂ’gsmt + Jhn?ﬂ’gsmt tw= XSQesmt + ngmt +w, (3.3)

where zqsm, € {T1,- -+, Targg, ) With Mosy as the modulation order, and h, and h,s

denote the n-th and n;’-th columns of H, respectively. In square QSM, the constellation
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symbols for the real and imaginary components are drawn from / Mgy real-valued numbers
and transmitted from the same number of transmit antennas, N;. Thus, the QSM spectral
efficiency is nosm = 2 (log, (V;) + log, (1/Masm)) = log, (N2 Maswm).

Consequently, the ML decoder in (3.2) becomes

~R(ML) ~S (ML) . R S 2
XosM, » XosMm, = grg min Hy - (XQSM + .?XQsm) HF ) (3.4)
XQsM, X QsM,
where X&Mt and X{%SMt € {x1,---,xa} represent the two transmitted combinations, and

A = Nyy/Mosw.

3.3.3 The Tree-Search Structure Concept

Equations (3.2) and (3.4) can be solved by employing the tree-search structure [4], [5], [8].
Fig. 3.1 provides an example of how the tree-search is constructed for the SM decoders.
Consider I have a 3 x 2 MIMO system with binary phase-shift-keying (BPSK). The spectral
efficiency in this case is nsm = 4 b/s/Hz with the total number of combinations, A = 4. Each
combination with index j € {1,2,3,4} can be represented as a branch with length N,.. The
ML algorithm visits all nodes for all branches to declare the estimated combination (with
index j) which corresponds to the minimum ED at the last level. In SD [9], the algorithm
discards some nodes based on a pre-determined threshold, in order to save complexity in
the decoding process. Note that the QSM tree-search consists of two independent SM-like

tree-searches: one for the in-phase and one for the quadrature component.

3.4 Proposed m-M Low-Complexity Algorithm

In this section, I propose a low-complexity decoding algorithm for SM and QSM based on a

smart way of finding the ML solution inside the tree-search, which is referred to as the m-M
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Fig. 3.1: The tree-search structure for the SM-SD algorithm for gy, = 4b/s/Hz, N, = 3,
Nt = 2 and MSM = 2.

algorithm. Unlike the existing SD algorithms, the proposed m-M algorithm is not restricted
to perform a full expansion for a specific branch before moving to the next one. It avoids
visiting the unnecessary nodes by making a single expansion to the minimum ED across all
branches. Further, it stops if and only if at least one branch is fully expanded and ends with
the minimum ED.

To formulate it mathematically, let v e R*>! = 15, ... 4 4] represent the vector
of visited nodes for each branch. It should be noted that the value v;, j = 1,--- | A,
represents the number of visited nodes (i.e., levels) for the j-th branch. Assume that

d e R = d, dy, | is the ED vector for each expanded branch, with

1,1

g =Y lye — xedl”, (3.5)
k=1

where d,, ; is the ED of the j-th branch at level v; and |.| is the modulus operation.
The proposed m-M algorithm is summarized in Algorithm 3.1 and explained as follows:
Step 1: Initialize v by the all-ones vector and d by calculating the EDs at the first
level (d = [diy -+ dia ), where the elements of d are calculated from (3.5). In
case of QSM, the m-M algorithm is applied to the two tree-searches corresponding to the

two components, at the same time. Note that the calculation at the EDs of the first level is
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necessary for both ML and SD algorithms. Thus, this step introduces no extra complexity
for the proposed m-M algorithm.

Step 2: Find the index, jmin, Which corresponds to the minimum element value of vector

jmz’n = arg I’l’]lﬂ{d} 3 (36)
j=1, A

j=1
where min {d} finds the minimum element of vector d.

Step 3: Increment the value of the j,,:,-th element of vector v by one

Vjmin 7 Uimin + 1. (3?)

It should be noted that the maximum value of v;, .. is N,.. In this case, I define {j,q, } as the

set of indices whose values reached N,, as

{.]ma:c} = arg {Ujlvj — Nr: J - 1: Tt :A} (38)

Step 4: Update the j,;,-th element of vector d according to the updated value of v;__
using (3.5). In other words, I expand the j,,:,-th tree-search branch by one node.

Step 5: Find j,,;,, from (3.6) as in Step 2, then check whether the updated j,,;, belongs
t0 {jmaz } Or not. If not, repeat Step 2 to Step 5. Otherwise, go to Step 6. Note that this step
guarantees the optimality of the solution, as it will be discussed in Section 3.6.

Step 6: Estimate the transmitted combination, ﬁmM)

"™ = argmin {d ({jmaz})} » (3.9)

where d ({jmaz }) represents the elements of d whose indices belong to the set {jnaz }-

It should be noted that the name of “min-max” comes from Step 6, which estimates the
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Algorithm 3.1 The proposed m-M algorithm pseudo-code.

e Initializev = [1 1 --- 1], jee =0.
e Computed = [dyy dio --- dya] asin(3.5).
e Reserve an empty vector j,,q, = [.] as a buffer.

l:for n=1: N,.A do

2:  Find the index jmin = argmin{d}.
j=1,--,A

3:  if jyae is NOT empty

4: if jmin € jmax
5: go to line 13.
6: else

7 go to line 10.
8: endif

9: endif

10:  Setwj . — wvj,... + 1, then Update v.

11: Update the 7,,;,-th element of d based on (3.5).
12:  Update j,q, based on (3.8).

13: end for

(m-

e Estimate y; M) from (3.9).

transmitted combination by finding the index of the minimum ED of the fully expanded

(maximum length) branches.

3.5 Complexity Analysis

Here, the number of visited nodes is considered to be the decoding complexity indicator.
Thus, the complexity of the ML and m-M algorithms can be calculated from summing up
the elements of the visited nodes vector, v, at the end of the algorithm. In other words,
the decoding complexity C' = sum {v}, where sum {-} is the summation of all elements of
vector v.

For the SM-ML decoders, the algorithm expands all nodes for all branches with length

N,. Thus, the value of the elements of vector v is IV, at the end of the algorithm, and the
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decoding complexity for SM-ML, Cg’l{,]f, is

Cp = sum {v} = N, A = N, N; Msw. (3.10)

In case of square QSM-ML, the total decoding complexity for both tree-searches CSISIM, is

Cosu = 2 x sum {v} = 2N, A = 2N, N,/ Mqsm. (3.11)
Therefore, the complexity reduction ratio between the SM-ML and m-M algorithm, Rgm,
is given by

ML m-M
_ Con — Csm

Rey — 4 sum {vsm, v }

— 3.
CT NN, Mgy’ 3.12)

where vgy_,, 18 the visited nodes vector of the m-M algorithm for the SM system. Further-

more, the total complexity reduction ratio between the QSM-ML and m-M algorithm, Rqgm,

is given by
CngLM QNrNt\’MQSM ’

where vgsm_m and ngMm_M are the visited tree-search nodes vectors of the m-M algorithm
for the two QSM tree-searches.

In the best scenario, the m-M algorithm expands only one branch which ends with
the minimum ED. Consequently, the total number of visited nodes is limited to N, nodes
for the fully expanded branch, as well as A — 1 nodes at the first tree-search level. Thus,
CM — N, + N;Msy — 1 and C2M = 2 (N, + N;y/Masm — 1), where CSM, and CHM
denote the minimum decoding complexity that can be achieved for the SM and QSM,

respectively. Therefore, the theoretical upper bound of the complexity reduction (UBCR)

ratio for the SM and QSM is R{Mcg and RSEBSR, respectively, and can be calculated by
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plugging CSM and CSM into (3.12) and (3.13), respectively, as

mimn mirn

(N-r + NeMgy — 1)

RUBcR = NN My ) (3.14)
and
QM _ 1— (NT+N£\/ MQSM_]') (315)

R N, N;\/Mosw

3.6 Union Bound Error Probability Analysis

In this section, I prove the optimality of the proposed m-M algorithm performance. Although
the exact expression of the SM and QSM BER is not derived because of its difficult analysis,
the union bound provides a tight expression to the simulation analysis [11].

The general expression of the union bound for SM [2] and QSM [3] is

2m02 210

o= (oo )Qm ZZ o {Prp™ (i = ) } (3.16)

where P, (; is the union bound probability, 2 € {SM, QSM}, ]P’rg"'M) (xx — x) denotes the
pairwise error probability (PEP) of the proposed m-M algorithm, [E {-} is the expected value
operation, and dy; represents the number of bit errors which corresponds to the instant PEP
event.

In order to evaluate IPrg"M) (xx — X1), let us assume two sets: ¥y, which is defined as
the set of visited nodes and 1/p, which is the set of discarded nodes by the m-M algorithm.

Thus, PEP can be formulated as [5]

Pro™ (xk = %1) = Pr (Xmin # Xt|Xmin € ¥v) + Pt (Xomin € ¥p) (.17)
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where X, 18 the estimated minimum ED of the m-M algorithm. It should be noted that
Xmin 18 considered to be the output of the proposed algorithm. The two probabilistic terms
on the right-hand side of (3.17) are mutually exclusive because Ymin can not belong to ¥y
and 7p in the same time.

Furthermore, the probabilities Pr (Y.min 7 X¢) and Pr (Xmin € 1y) are independent, and

consequently, (3.17) can be re-written as

Pry™ (e — X1) = Pr (Ximin # X¢) + Pt (Xmin € ), (3.18)

where Pr (Xmin € ¥v) + Pr (Xmin € ¥p) = 1.

From Step 5 of the proposed algorithm, as presented in Section 3.4, the minimum ED
(optimal solution) is not missed because the algorithm stops if the estimated minimum ED,
Xmin, Occurs at the end of a fully expanded branch and no other node has a smaller ED.
In other words, the discarded/saved nodes result from stopping the expansion of a specific
branch because there is another node, in another branch, which has a smaller ED value.
Thus, the saving comes from the branches which are not fully expanded.

Since the EDs inside branches are accumulated (i.e., the new value is added to the
previous one), it is impossible to have a lower ED value in 1p than in ;. Consequently,

Pr (Xmin € ¥p) = 0 and Pr (Xpin € ¥v) = 1. Thus, (3.18) becomes

Pr™ (v = 1) = Pr (Yomin 7 Xt) - (3.19)

It should be noted that the right-hand side of (3.19) is the ML PEP event which can be found
in [2], [5] and [3] for the SM and QSM, respectively. Thus, the proposed algorithm provides
the same union bound error probability as the ML decoder. Having the same union bound
error probability does not necessarily guarantee having the same BER performance as the

ML. However, Pr (Xmin € ¥p) = 0 means that the m-M algorithm will not miss the ML
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solution. Thus, the proposed algorithm guarantees having the same BER ML performance.

3.7 Numerical results

In this section, I evaluate the reduction in the decoding complexity of the proposed m-M
algorithm, when compared with the ML and SD low-complexity algorithms presented in [5]
and [8] for the SM and QSM decoders, respectively. The threshold value required by the
algorithm in [5] is optimized to obtain the ML BER performance, according to [5, Eq. (37)].
I consider two spectral efficiencies, n = 6 b/s/Hz and n = 10b/s/Hz, using 8 x 4 16-QAM
for SM (4-QAM for QSM) and 16 x 16 64-QAM for SM (4-QAM for QSM), respectively.
The presented results are achieved by running Monte-Carlo simulations over 10° Rayleigh
flat fading channel realizations.

In Figs. 3.2 and 3.3, the mean value of the complexity reduction ratio in (3.12) and
(3.13) is shown. It can be seen that the proposed algorithm requires around 22.5 and 20 dB
signal-to-noise ratio (SNR) to approach the UBCRs for the SM and QSM, respectively. At
these specific values of the SNR, for n = 6 b/s/Hz, the proposed m-M algorithm provides
an average reduction in the decoding complexity ratio of 86% and 76.5% for the SM and
QSM, respectively. The complexity reduction ratio increases as 7 increases, which agrees
with (3.12) and (3.13). For example, by increasing 1 to 10 b/s/Hz, the average complexity
reduction ratio increases by 7.5% and 14% for the SM and QSM, respectively.

For the comparison purpose, Figs. 3.4 and 3.5 show the gain in terms of the number of
saved nodes, obtained from using the proposed m-M algorithm over those in [5] and [8], for
both SM and QSM. Note that the gain means the difference in the decoding complexities
of the proposed m-M algorithm and the other algorithms. As a general observation, the
gain achieved by using the proposed algorithm over [5] is greater than the one over [8].

Furthermore, the gain increases as 7 increases, and exceeds 103 and 102 at low SNR and
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Fig. 3.2: Reduction in complexity between the SM-ML and proposed m-M algorithms for
1 = 6b/s/Hz and n = 10 b/s/Hz.
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Fig. 3.3: Reduction in complexity between the QSM-ML and proposed m-M algorithms for
1 = 6b/s/Hz and n = 10 b/s/Hz.
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1 = 10 b/s/Hz for the SM and QSM, respectively.

The BER performance of different SM decoders versus SNR is shown in Fig. 3.6. It
can be seen that the proposed m-M algorithm, as well as those in [5] and [8], provide the
optimum BER performance of the SM-ML decoder. As QSM consists of two independent
SM decoders, the proposed m-M algorithm provides the optimum BER performance for
QSM as well; results are omitted due to the space consideration.

It is seen from these figures that the proposed m-M algorithm reduces the decoding

complexity of the SM-ML and QSM-ML without loss in the BER performance.

3.8 Conclusion

This chapter provides a novel low-complexity decoding algorithm for SM and QSM, referred
to as the m-M algorithm. The proposed algorithm provides a significant reduction in the
decoding complexity over the existing SD algorithms by employing a single expansion to
the minimum ED across branches, until the minimum ED is reached to the end of a fully
expanded branch. When compared with the ML decoder, the proposed m-M algorithm
provides the same BER performance with saving in the number of visited nodes up to 93.6%

and 90.8% in case of SM and QSM, respectively.
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Fig. 3.4: Complexity gain when using the proposed m-M over the SM-SD algorithms in [5]
and [8], for n = 6 b/s/Hz and n = 10b/s/Hz.

103 . . . ; g
=[=QSM-SD [5]|
4-Qsm-sD [8]| ]

102,

n =10 b/s/Hz

Average complexity gain
=

-

[=]
=
T

n =6 b/s/Hz

0 5 10 15 20 25
SNR (dB)
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Chapter 4

Optimum Low-Complexity Decoder for

Spatial Modulation

4.1 Abstract

In this chapter, a novel low-complexity detection algorithm for spatial modulation (SM),
referred to as the minimum-distance of maximum-length (m-M) algorithm, is proposed and
analyzed. The proposed m-M algorithm is a smart searching method that is applied for the
SM tree-search decoders. The behavior of the m-M algorithm is studied for three different
scenarios: i) perfect channel state information at the receiver side (CSIR), ii) imperfect CSIR
of a fixed channel estimation error variance, and iii) imperfect CSIR of a variable channel
estimation error variance. Moreover, the complexity of the m-M algorithm is considered
as a random variable, which is carefully analyzed for all scenarios, using probabilistic
tools. Based on a combination of the sphere decoder (SD) and ordering concepts, the
m-M algorithm guarantees to find the maximum-likelihood (ML) solution with a significant
reduction in the decoding complexity compared to SM-ML and existing SM-SD algorithms;

it can reduce the complexity up to 94% and 85% in the perfect CSIR and the worst scenario
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of imperfect CSIR, respectively, compared to the SM-ML decoder. Monte Carlo simulation
results are provided to support our findings as well as the derived analytical complexity

reduction expressions.

4.2 Introduction

Multiple-input multiple-output (MIMO) systems, which is an integral part of modern wireless
communication standards, activate all transmit antennas to increase the spectral efficiency
and/or improve the bit-error-ratio (BER) performance [2]. On the other hand, activating
all transmit antennas at the same time not only creates a strong inter-channel interference
(ICI) but also requires multiple radio frequency chains. A promising technique called spatial
modulation (SM) has been studied in recent years [3]-[5] to overcome these problems in
next-generation systems. In SM [6]-[9], only one transmit antenna is activated during the
transmission burst, where the active transmit antenna is chosen out of all transmit antennas
according to a part of the input bit-stream. The active antenna transmits a phase shift keying
(PSK) or quadrature amplitude modulation (QAM) symbol, through a wireless medium,
based on the rest of the input bit-stream. At the receiver side, all receive antennas receive the
delivered signal and forward it to the digital signal processor (DSP) unit for decoding. The
maximum-likelihood (ML) detector is utilized to decode the received signal by attempting
all possible combinations of the QAM/PSK symbols and the transmit antennas, where this
process depends on the number of transmit antennas, receive antennas, and modulation order.
Consequently, the ML algorithm is classified to be costly from the decoding complexity point
of view, particularly for increasing number of transmit/receive antennas and constellation
points.

Low-latency communications and energy-efficient transmission techniques are among

the next generation (5G) requirements [10]; one solution to achieve this is the design of
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low-complexity decoding algorithms for the SM system. Recently, low-complexity decoding
algorithms have been proposed for the SM system in [11]-[17], and surveyed in [18]. In [11]-
[13], the sphere decoding (SD) concept of [19], [20] is exploited to provide a low-complexity
detection at the BER level of the brute-force ML detector. The authors of [11]-[13] have
provided a threshold (pruned radius for the SD) that depends on the number of receive
antennas, noise variance, and a predetermined constant, which changes for each different
MIMO system. The noise variance estimation process is an exhaustive step required for
every change in the channel environment; it can be achieved either blindly or using data-
aided (DA) techniques like preamble/pilots [21]-[22] transmission. In [14], the authors have
proposed an algorithm that provides a trade-off between the BER performance and decoding
complexity for the SM decoders. This algorithm requires an exhaustive pre-processing step to
calculate the pseudo-inverse of the channel matrix columns. This step is mitigated in [15] by
considering a sparse channel of a large-scale MIMO system. However, the problem of noise
variance dependency still exists in [15]. Furthermore, the ML BER performance has not been
achieved in [14] and [15]. The authors of [16] have provided a low-complexity algorithm
with the ML BER performance for the quadrature SM (QSM) decoders by treating the QSM
symbol as two independent SM symbols. The reduction in the decoding complexity comes
from the ordering concept, with no dependency on the noise variance. However, further
reduction in the decoding complexity can be attained. The authors in [17] have proposed
an algorithm with near-ML performance, which reduces the computational complexity of
the SM decoders based on modified beam search and ordering concepts, by splitting the
tree-search into sub-trees. It should be noted that the algorithms in [11]-[17] consider perfect
knowledge of the channel state information at the receiver side (CSIR), and no study is
presented in the case of imperfect CSIR.

In this chapter, I propose a low-complexity algorithm for the SM decoders, referred to

as the minimum-distance of maximum-length (m-M) algorithm. Based on the tree-search
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concept, the m-M algorithm performs only one expansion to the minimum Euclidean distance
(ED) across all tree-search branches until the minimum ED occurs at the end of a fully
expanded branch. The proposed m-M algorithm provides a significant reduction in the
decoding complexity with the ML BER performance, and requires no knowledge of the
noise variance. I provide a complete study of our proposed algorithm in the case of perfect
and imperfect CSIR. In case of imperfect CSIR, I consider two scenarios for the fixed and
variable variance of the error in the channel estimation, respectively. In addition, I derive
tight probabilistic expressions for the expected decoding complexity of the m-M algorithm
for all scenarios.

The rest of the chapter' is organized as follows: In Section 4.3, the system model of the
SM transmitter and receiver is summarized. In Section 4.4, the proposed m-M algorithm
is introduced. In Section 4.5, tight analytical expressions of the m-M algorithm decoding
complexity are derived for perfect and imperfect CSIR. In Section 4.6, the optimality of the
m-M algorithm is discussed. The numerical results and conclusion are provided in Sections

4.7 and 4.8, respectively.

4.3 System Model

4.3.1 SM Modulator

Consider the implementation of an SM scheme for NV, x N; MIMO system, where N; and N,
denote the number of transmit and receive antennas, respectively. The incoming bit-stream is

divided into two groups: the first group of log, (/V;) bits selects the transmit antenna that will

'Notations: Boldface uppercase and lowercase letters represent matrices and vectors, respectively. CA
stands for a complex-valued normally distributed random variable. ||.|| denotes the Euclidean norm. |.| returns
the absolute value of an element. .® and .% denote the real and imaginary components, respectively. E {.}
denotes the expectation operation. Pr(.) is the probability of an event. f(.) denotes the probability density
function (pdf) of a random variable. sum {.} returns the summation of all elements values of a vector. k! stands
for the factorial operation of an integer k.
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be activated, while the second group of log, (M) bits selects the QAM/PSK symbol that will
be delivered from that antenna, where M denotes the order of the QAM/PSK constellation.

Therefore, the number of bits delivered in every time instance by the SM system is

n = log, (N;) +log, (M), 4.1)

where 7 denotes the spectral efficiency in bits per channel use (bpcu). The active antenna
transmits s; € {s1, ..., sy} through a Rayleigh fading path between the transmit antenna
and all N, receive antennas, where s; is the transmitted QAM/PSK symbol. This path
represents the transmit channel, h; ~ CN (0,1), which is drawn from the full channel
matrix, H € CNr*Ne,

Assume that the data symbol s; is transmitted over h; to form the transmitted SM
symbol combination, x; € {xy,...,Xyn, }» Where x; = hys;. It should be noted that the
transmitted combination is drawn from M N; different possible combinations, which result
from combining M QAM/PSK symbols with V; transmit antennas. Due to the additive

white Gaussian noise (AWGN), the SM symbol is received as

Yy =X +tWw, (4.2)

where y € CM*! denotes the noisy received vector and w € CV*1 is the AWGN vector
with entries having zero-mean and variance o2 (i.e., w ~ CN (0,02)). Note that QAM is

considered in this chapter.

4.3.2 SM-ML Demodulation

At the receiver side, the DSP unit utilizes the ML detection algorithm to estimate the
transmitted combination. The ML algorithm attempts all possible combinations to find the

one that provides the minimum ED with the received signal vector [7], which corresponds to
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the index of

Nr
jmML = argmin |y — x> = argmin Z Y — Znj|?, 4.3)
j=1,- ,MN; j=1,- ,MN¢ 7

where j’ML is the index of the estimated combination using the ML detection algorithm, y,, is
the n-th element of y, and z,, ; is the n-th element of the j-th combination.

It should be noted that estimating the transmitted combination can be achieved using a
graphical approach, named tree-search method. Fig. 4.1 illustrates the tree-search concept
for the SM demodulation with M = 2, N; = 2, and N, = 3. In the SM tree-search method,
each possible combination of x; in (4.3) is represented by a tree-search branch whose length
is IV, tree-search nodes (or levels). Each node is an accumulation of the previous EDs in the

same branch, which can be represented as

diy=3 lyn—angl’, i=1,...,N, (4.4)
n=1

where d; ; is the node metric at the i-th level of the j-th branch. Hence, (4.3) can be rewritten

as

j'ML = argmin {dy,;}. (4.5)
j=1,..,MN;

Thus, the ML solution for the estimated transmitted combination is denoted by Xy and
given as
(4.6)

XML = XjML .

The total number of nodes for the SM tree-search is M N;N,, which is 12 in the example of
Fig. 4.1. To estimate the transmitted combination using the ML detection algorithm, the

DSP unit exhaustively visits all nodes, which can be problematic for increasing values of M,
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Branch

Antenna

Fig. 4.1: SM tree-search decoder for M = 2, N; = 2, and N,, = 3 with four branches.

N; and N,. Thus, reducing the decoding complexity has paramount importance for real-time

applications.

4.4 Minimum-Distance of Maximum-Length Algorithm

Unlike the existent SD algorithms in the literature, the proposed m-M algorithm performs
only one node expansion at a time; the expanded node is chosen to be of minimum ED
across all branches. The proposed algorithm jumps from one branch to another according
to where the minimum ED is, and stops if the minimum ED occurs at the end of a fully
expanded branch (i.e., maximum length).

For mathematical formulation, assume that v = [v;...vyn,] € RP>*MM denote the
vector of visited nodes, where v; takes integer values from 1 up to N, and represents
the number of nodes already visited of the j-th branch for j = 1,..., M N;. Also, let
d = [dy1...dyyy, mn,] € R"*MNt denote the ED vector, where d,,, ; is given by (4.4) by
setting i = v; (i.e., dy, j = fle |y — 33n,;,-'|2, where d,, ; represents the ED (node metric)
of the v;-th level for the j-th branch).

Algorithm 4.1 summarizes the proposed m-M algorithm that is explained as follows:
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Step 1: Initialize all elements of v to unity (i.e., v; = 1 Vj), and then calculate each
element of the vector d from (4.4) accordingly. It should be noted that the elements of d in
this step represent the first ED of all branches (i.e.,d = [d11 ... d1mn,))-

Step 2: Determine the argument of the minimum element of d as

Jmin = argmin {d,, ;}. 4.7)
J=1....,MN;

Step 3: Increase the jy;,-th element of v by one

Ujmin — Ujmin + ]" (4'8)

Note that this step ensures that the algorithm makes a single expansion to the minimum
ED, which leads to the increase of the corresponding element of the vector v by one. The
maximum value of v; Vj that can be reached is N,; therefore, I can define jmax as the set of

indices whose values reached N,., as

max = find (v = N,) (4.9)

where find (v = N,.) returns the indices of the elements of v that are equal to N,. At the
beginning, jmax 1S buffered as an empty set, and is updated when at least one branch is fully
expanded.

Step 4: Update the jmin-th element of d by calculating the new d, _;,,, from (4.4) based
on v;__ calculated from Step 3.

Step 5: Find the new jy,;, from (4.7) as in Step 2, and then check whether the following

condition is true or not:

jmin € jmax- (410)

If jmin & jmax, then go back to Step 2. Otherwise, find the index of the estimated transmitted
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Fig. 4.2: A numerical example for the m-M algorithm (3 x 4 SM-MIMO system and M = 2).

combination as

Jmm = argmin{d,, ;}, @.11)
JEimax

where f;'m_M denotes the index of the estimated transmitted combination from the m-M
algorithm. Note that in case of v; = N, Vj in (4.11), the ML version in (4.5) is obtained.
The estimated transmitted combination from m-M algorithm, X, M, is

4.12)

XmM = X}m—M .

Note that the condition in (4.10) is called the optimality condition, and guarantees that the
ML solution will not be missed before stopping the m-M algorithm (i.e., Xpm = Xmp)-
Fig. 4.2 illustrates a numerical example for the proposed m-M algorithm. Consider a
3 x 4 MIMO system with M = 2. Thus, I have 8 branches with 3 nodes/levels length. First,
the m-M algorithm initializes v by all-ones, and calculates the the first ED of each branch.

The m-M algorithm finds the minimum ED of d, which is 0.1 in our example. This ED
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Algorithm 4.1 Pseudo-code of the proposed m-M algorithm.
e Initializev =[11... 1] € RV>MNe 5 —=0.

e Compute the elements of d = [d11...d;n,], Where dij = |y1 —z1,4|° and j =
1,..., MN,.
e Reserve an empty vector ju.x = [.] as a buffer.

1: while n < N,MN; do

2: Find the index jmin = argmin {dy, ;}.
j=1,....M Ny

3:  if jpax 1s NOT empty

4 if Jmin € Jmax

5 go to line 14.

6: else

7 go to line 10.

8 end if

9: endif

10:  Set v;_, — vj. ., + 1. then Update v.

11: Update the j,,-th element of d as:
2

Vjimin »Jmin — d“jmn’jmi“ t ‘yvjmin T L0 o Timin
12:  Update jmax based on jmax = find (v = N;.).

13: Setn —n—+1.

14: end while

e Estimate X,y from X, M = X,

corresponds to the 4-th branch (jpi, = 4); thus, the m-M algorithm expands this node after
increasing the 4-th element of v by one (i.e., v; . = v, = 2and dy 4 = 0.4). In the second
iteration, the m-M algorithm finds the new minimum ED in d (i.e., 0.2), which is placed
in the first branch (jmin = 1). Then, the first element of v is updated to be 2 and the first
element of d is updated accordingly (i.e., v1 = 2 and d; = 0.5). The algorithm jumps from
one branch to another according to the location of the minimum ED across all branches, as
illustrated in iterations 3, 4, and 5. Note that the m-M algorithm detects one element of v
reaches N, (i.e., full expansion for that branch) from iteration 5, which is the 4-th branch.
According to (4.10), the algorithm has to check if the new minimum ED comes at a fully

expanded branch or not before deciding to stop. In our example, the algorithm will not stop
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at iteration 5 because there is a minimum ED at the first branch (i.e., 0.5). Therefore, the
algorithm makes a single expansion to the first branch after updating the first element of v
(i.e., v1 = 3 and d3; = 0.55); and then, it checks the place of the minimum ED once more.
In this example, the iteration 6 shows that the minimum ED (i.e., 0.55) comes at the end of
a fully expanded branch, which corresponds to the first branch (i.e., j’m_M = 1). Thus, the
m-M algorithm stops and declares that the estimated transmitted combination is the first one

(i.e., the first symbol was transmitted from the first antenna).

4.5 Complexity Analysis

In this chapter, I consider the number of visited nodes inside the tree-search as the complexity
indicator. Since v represents the visited nodes for each branch, the summation of its elements
at the final iteration gives the total complexity of the m-M algorithm in terms of the number of
visited nodes. Consider the complexity of the m-M algorithm denoted by Crm = sum {v'},
where v' is the vector v at the final iteration. Since the elements of v’ are random variables
(r.v.’s), Cipm is an r.v. as well. In this section, I provide a tight expression for the expected
complexity of the proposed m-M algorithm in the case of perfect CSIR, as well as imperfect
CSIR.

The average complexity of the m-M algorithm Cy,  can be expressed as

Cm = E {sum {v'}}. (4.13)

Although the m-M algorithm is a breadth-first search algorithm, its expected complexity
is equivalent to that of a depth-first SD algorithm with pruned radius, Ry, equal to the
minimum ED of vector d at the final iteration (i.e., 0.55 in the example illustrated in Fig.

4.2). Therefore, R,y can be written as

64



Ruom = dy, 5,0 = Zlyn— i P = 1y = Rmull?, 4.14)

where }'m_M given from (4.11) and X, are given in (4.7) and (4.12), respectively. For
simplicity, I consider X, — x;; this assumption most likely holds particularly in high
signal-to-noise ratio (SNR) (X,,,y = Xmp since the m-M algorithm guarantees the ML

solution). Thus, substituting (4.2) and this assumption in (4.14) yields

Rom = |W]?. (4.15)

It should be noted that the pruned radius in (4.14) is considered the optimum threshold that
can be used in the SD-based algorithms. Since the decoding complexity of the proposed
m-M algorithm is equivalent to that of a depth-first algorithm using the optimum pruned
radius in (4.14), the proposed algorithm provides a better complexity than the optimum BER
algorithms in the literature.
Now, I can write Cpm in (4.13) as [11], [16]
MN; N,

Coom = MN;+ > > "Pr(dij < Ruwm %, H, 02, Ruum) - (4.16)

j=1 i=1

It is worth noting that (4.16) is the generic form of the expected complexity, and its closed-
form solution depends on the algorithm itself. Note that (4.16) finds the probability of d; ;
being visited when the SD radius is Bmm (the node is considered to be visited if d; j; < Rmm
and vice versa). Ideally, Pr (d; ; < Rym) under the conditions previously given should be
zero or one. The correction factor M N, in (4.16) is needed since the Pr (d; ; < Ry, ) misses

almost M N; nodes at the final iteration.
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4.5.1 Perfect Channel State Information at the Receiver

To find the closed form expression of the right-hand-side of (4.16), the conditional probability
distribution of d; ; should be determined first. From (4.2) and (4.4), I can rewrite (4.4) in

terms of the real and imaginary components as

i i
< S SR
dig =) |(wn +ai; —any) +g (w3 +ap, —a2)[ =) (RA+IZ),  @17)
n=1 n=1
where R, = w) + )y, — x%,; and I,, = w, + z,, — z, ; are Gaussian distributed with

variances o7 /2, and means (z)i, — z ;) and (z3, — 2 ;), respectively. Consequently, d; ;

is a non-central chi-squared r.v. with 27 degrees of freedom and non-centrality parameter

7Z; given by [23, (Ch. 2)]

= @k —ak)’+ @ -3, 4.18)

n=1

The probability distribution function (pdf) of d; ; for d; ; > 0 is calculated as [23, (Ch. 2)]

1 /d;; (i-1)/2 3 1+ d,; ; d; %2
fa;(dig) = = (—2) exp (—%) A A (4.19)

n 1,7 n 0'721,/2

where I;_; (.) is the first kind modified Bessel function of order (¢ — 1). Since d;; has an
even degrees of freedom, the closed form expression of the cumulative distribution function

(CDF) for (4.19) is given as [23, (Ch. 2)]

Pr (dij S Rm-M |XhHao'72m Rm—M) =1- Qz’ ( Vi, , M) }
) O'n/\/i Jn/\/ﬁ

where Q);(.,.) denotes the generalized Marcum function of order 3.

(4.20)
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To remove the dependency of (4.20) on the instantaneous value of R, . an expectation
over the pdf of R,y should be calculated. (4.15) can be written in terms of its real and

imaginary components as

N

Rovi =Y (@)’ + (@3)’] . @.21)

n=1

Therefore, R,y is a central chi-square r.v. with 2N, degrees of freedom and its pdf,

SR (Rmwm), is [23, (Ch. 2)]

Rong) V! "R
fRo(Bmm) = D,;ENr (K;) — ) &P ( = M) . (4.22)

From (4.20) and (4.22), the expected value of (4.20) over the pdf of R, M can be written

as

Pr (dij < R xt,H,oi)ZA ll—Q@ (0””/4\/5 "jjf)] fRom(Bmm) ARy
(4.23)

The closed form solution of the integration in (4.23) can be found in [24], and then, the

complexity in (4.16) is expressed as

17 — (N, N2
ot ) Ea (o )]

=1 n

where (NNV,.), denotes the Pochhammer symbol, ®, is the Humbert hypergeometric function

of the first kind, and ; F; denotes the Kummer hypergeometric function [25].
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4.5.2 Imperfect Channel State Information at the Receiver

In this subsection, the complexity of the proposed m-M algorithm in (4.16) is assessed in
the presence of imperfect CSIR. To the best of the authors’ knowledge, in case of imperfect
CSIR, the expected complexity is not analyzed in the literature. Assume that there is an
error between the estimated channel coefficient at the receiver side and the actual channel
coefficient, which is denoted by e ~ CN (0, 02), where o2 is the variance of the error in
the channel estimation. Thus, the estimated channel entry becomes h=h + e and the
combination element in (4.4) becomes z, ; + €, ;j, Where é, ; = e,s;, with s; as the QAM
symbol in j-th combination with energy of |3:,-|2 and e, as the n-th element of vector e.
In this case, for least square solution of (4.4), h ~ CA (0,1 + o2) depends on h with a
correlation coefficient of p =1/ m [26]-[27], [28, (p. 282)]; the conditional variance

of the elements of the noisy received vector, 32, is given by [27], [29]

¢? = Var (y|ﬁ) — o2+ (1—p) s (4.25)

It should be noted that the o2 may be considered as fixed or variable when SNR changes. In
theory, the error in channel estimation decreases as the SNR increases [30], [31]; therefore, I
can consider 02 = 1/snr in case of variable o2 where snr denotes the signal-to-noise ratio in
linear scale (i.e., SNR = 10log,q (snr)).

d;j in (4.17) in the case of imperfect-CSIR is denoted by (ig;,j and given as

2 i

=Y (Ri +ff,f) :

B (4.26)

7 R ~R R R S ~F I I
dﬁ}j — § , |(wn —€nj + Lot — xn,j) T+ 7 (wn —€nj +$n,t - xn,j)

where R, = wyy — €} ;+ay, —xhand I, = wy —é3 4z, —, ; are Gaussian distributed
R _ R

with variances ¢?/2, and means (z), — z} ) and (z;, , — z, ;). respectively. Consequently,
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~

d; ; is a non-central chi-squared r.v. with 27 degrees of freedom and non-centrality parameter

qff,j given by (4.18), and its pdf for dA” > 0 becomes [23, (Ch. 2)]

a2 (3_1)1;2 2 a A‘ A2
5 1 (di; Vi +dij dij Yij
fa,,(dig) = I3 (_QJ) 28y (_JTJ) lig TQJ . (4.27)
J J

i.J

Therefore, (4.20) becomes

~

Pr (dij < Ruu

. VR
WH, 02 0% R ) =1—Q, [ Y mM ) 428
XTI @ M) ? (Cj/ﬁ G/V2 (*:29

where IA%m_M denotes the threshold of the m-M algorithm in the case of imperfect CSIR. It

should be noted that for the case of imperfect CSIR, the threshold in (4.21) becomes

N.
Fnw = [(wf —8)" + (w — 3] (429)

n=1

35

where (wX — é¥,) and (w;; — €;,) are Gaussian distributed with zero-mean and variance

of ¢?/2, where
=02+ (1-p%)|sl?, (4.30)

with s, as the transmitted QAM symbol with energy |s,|*.

~

Consequently, Ry, \ > 0is a central chi-squared distributed r.v. with 2N, degrees of freedom

and its pdf is given by [23, (Ch. 2)]

CON
N m-M — :
me_M(Rm—M) = m exp ( C£2 M) . (431)

From (4.28) and (4.31), the expected value of (4.28) over the pdf of Rm_M can be written

69



as

f Rowm (f%m-M) dE\im—M-
(4.32)

The closed form of the integration in (4.32) can be found in [24], and then, the complexity

in (4.16) is obtained as

R MN; Nr C?Nr exp (_72 /4-2) C2 ’Y'2 . CE
O ~ MN, -2 L by (N, 1,1t
" > Z[ [ (G+ed™ GGG+ a)

j=1 i=1

i—1
- k41— . (4.33)
ok Z(E+Q)

4.6 Optimality of BER Performance

In this section, I discuss the BER performance optimality of the proposed m-M algorithm
based on the condition in (4.10). The effect of omitting this condition on the proposed m-M
algorithm is also studied. I define an indicator for the BER performance optimality as the
number of times the proposed m-M algorithm misses the ML solution, referred to as the
number of misses (NoM). In other words, the BER of the m-M algorithm will be the same
as the ML BER if the NoM equals zero and vice versa. It should be noted that NoM is an r.v.
that depends on the SNR and o2.

Let us invoke the general expression of the union bound error probability of SM-ML

detector as [6], [27]
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am  2n

D) 6E AP (x, —» %)} (4.34)

n)nklll

where P, is the union bound probability, PrMY) (x; — x;) stands for the pairwise error
probability (PEP) of the proposed SM-ML decoder, d;; represents the number of bit errors
which corresponds to the instant PEP event, and the spectral efficiency 7 is given from (4.1).
Let us consider that A™M is the NoM between the m-M algorithm solution and the ML
solution. Now, the PEP of the m-M algorithm is denoted by Pr(™M) (x;, — %;) and given as

[13]

PrmM (xp — %;) = Pr™Y) (xp — %) + Pr (A™M #£0) . (4.35)

According to (4.10), if the m-M algorithm detects a minimum ED at the end of fully expanded
branch, this means that no further expansion will happen in the current minimum ED (the
branch length can not be N, + 1) and the current minimum ED is a global minimum across
all other branches. Therefore, the ML solution will not be missed (i.e., Pr (A™M £ 0) = 0)
and the union bound error probability of the proposed m-M algorithm is exactly the same as
(4.34).

To study the effect of removing the optimality condition in (4.10), consider an m-M
algorithm without this condition, referred to as the m-Mw algorithm. It should be noted that
the m-Mw algorithm is not a stand-alone algorithm, and it is mentioned here to discuss the
optimality condition in (4.10) for the proposed m-M algorithm. The m-Mw algorithm stops
and declares the solution whenever only one branch is fully expanded. In such a case, the
NoM takes a non-zero value and Pr (A™M¥ -£ () £ 0. Fig. 4.3 shows the average NoM
versus SNR; 104 Rayleigh flat fading channel realizations are run for each SNR value, for
8 x 8 SM-MIMO using 8-QAM. As we can see, the NoM reduces as SNR increases and o2

decreases. For instance, the m-Mw algorithm misses 2020, 564 and 20 ML solution out of
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Fig. 4.3: Average number of NoM of the m-Mw algorithm for 8 x 8 SM-MIMO and 8-QAM.

10* runs at SNR of 0, 5 and 10 dB, respectively, in case of perfect CSIR; for imperfect CSIR
with ag = 0.2, the NoM for the m-Mw algorithm is 2371, 1188 and 420 out of 10% runs at
SNR of 0, 5 and 10 dB, respectively.

Hence, the condition in (4.10) ensures that the minimum ED which comes at the end of a fully
expanded branch is a global minimum across all branches; thus, the ML solution is achieved.
Additionally, omitting the condition in (4.10) leads to a significant BER deterioration when

compared with the ML performance.

4.7 Numerical Results and Discussions

In this section, I evaluate the behavior of the proposed m-M algorithm in terms of BER and
decoding complexity. In addition, comparisons between the m-M algorithm and SM-SD
algorithms in the literature are presented. Since the m-M algorithm provides the optimal
BER performance, I consider the SM-SD algorithms (such as given in [13] and [16]) in

comparisons. Three scenarios are considered: a) perfect CSIR (o2 = 0), b) imperfect CSIR
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with fixed o2 (62 = 0.1 and 0.2), and c) imperfect CSIR with variable o2 (02 = 1/snr). Two
spectral efficiency values are considered: 7 = 6 bpcu using 8-QAM for N, x 8 SM-MIMO
system, and 7 = 8 bpcu using 16-QAM for N, x 16 SM-MIMO system. The value of
N,. for both cases describes the type of the system. In the case of determined SM-MIMO
system, IV, = N (i.e., N, = 8 and 16 for = 6 and 8, respectively). For under-determined
SM-MIMO system, N, < N, (e.g., N, = 6 and 12 for n = 6 and 8, respectively). Finally, I
have an over-determined SM-MIMO system if N, > N; (e.g., N, = 10 and 20 forn = 6
and 8, respectively). Monte Carlo simulations are used to obtain the presented results for all

scenarios by running at least 5 x 10° Rayleigh flat fading channel realizations.

4.7.1 BER Comparison

In this subsection, the BER performance of the SM-ML, SM-SD [13], SM-SD [16], and
proposed m-M algorithms are compared with respect to SNR. Figs. 4.4, 4.5 and 4.6 show
the BER performance of different SM decoders for determined, under-determined, and
over-determined SM-MIMO systems, respectively. The left sub-plots in all three figures
present 7 = 6 bpcu, while the right ones show 7 = 8 bpcu. As observed from these figures,
the two SM-SD algorithms in [13] and [16], as well as the proposed m-M algorithm provide
the same SM-ML BER for all values of Jg (i.e., 0,0.1, 0.2, and 1/snr). As expected, the best
BER is obtained when o2 = 0, while the BER degrades for increasing values of o2. Unlike
the BER obtained from having o2 = 1/snr, an error floor occurs in the case of 62 = 0.1
and 0.2 even in high SNR due to the fixed values of ¢2. The error floor is mitigated as
N, increases. For instance, the error floor of the 0'82 = 0.1 curve in Fig. 4.5(b) can not be
reduced to 5 x 10~* when N, = 12; when N, = 16 in Fig. 4.4(b) for the o2 = 0.1 curve, the
error floor occurs at 10™%; however, it further reduces to 10~° when N, = 20 in Fig. 4.6(b)
for the o2 = 0.1 curve.

It can be seen from these figures that there is no preference in BER between the proposed
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m-M algorithm and the other SM-SD algorithms in [13] and [16]. For all presented scenarios,
the low-complexity algorithms (the m-M algorithm, and SM-SD algorithms in [13] and
[16]) provide the same BER as the SM-ML detection. It is worth noting that in practice, the
channel estimation accuracy improves as the SNR increases (i.e., crg = 1/snr), and the ML

BER performance can be still reasonable, as seen from Figs. 4.4, 4.5 and 4.6.

4.7.2 Analytical Complexity Assessment

In this subsection, I evaluate the accuracy of the analytical expressions for the expected
decoding complexity of the m-M algorithm given in (4.24) and (4.33). As mentioned before,
the number of visited nodes (VNs) is used as a measure for the decoding complexity of all
algorithms in this chapter. Figs. 4.7, 4.8 and 4.9 present the comparison results between the
analytical expressions and computer simulation results of the determined, under-determined
and over-determined SM-MIMO systems, respectively, for n = 6 and 8 bpcu. In all figures,
the analytical expression for o2 = 0 is given from (4.24), while the analytical expression
for 02 = 0.1, 0.2 and (1/snr) is given from (4.33). From these figures, I observe that the
analytical expressions in (4.24) and (4.33) match the computer simulation results after SNR
values of 5 dB, while some mismatches occur at low SNR values.

It should be noted that the mismatch between the analytical expressions and simulation
results at low SNR values comes from the assumptions of X,y — X; in (4.15). At low
SNR, the ML solution (the same as x,, ) misses the true solution, x;, which means that
ly — x|z > [y — Xmm|[3- In other words, the threshold Rmy in (4.15) used for the
analytical expressions will be greater than the actual threshold in (4.14), which leads to the
count of more nodes than the reality. By increasing the SNR, the ML solution most probably
estimates the true solution; the assumption of X,y — x; becomes more reliable. In the case
of 02 = 1/snr, o2 becomes very high at low SNR values (e.g., 02 = 1 at zero SNR) which

dramatically affects the accuracy of (4.33).
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As it can be seen from these figures, the derived analytical expressions in (4.24) and
(4.33) accurately describe the decoding complexity of the proposed m-M algorithm in both
perfect and imperfect CSIR especially at high SNR values for determined, under-determined,

and over-determined SM-MIMO systems.

4.7.3 Complexity Comparison

In this subsection, I compare the complexity of the proposed m-M algorithm with the optimal
BER performance SM-SD algorithms ([13] and [16]). It should be noted that the threshold of
the SM-SD algorithm in [13] is optimized to provide the optimal BER. The comparison goal
is to determine the decoding complexity reduction ratio between the desired and SM-ML
algorithms, which is given as

_ MN;N, — Cy Ch

Cr = MN,N, ZI_MMM’

(4.36)
where Cr denotes the complexity reduction ratio, M N, N, is the decoding complexity of
the ML detector, and C} denotes the decoding complexity of the target algorithm with
A €{m-M, SM-SD [13], SM-SD [16]}. The minimum number of nodes that can be visited
by any algorithm is a one fully expanded branch (i.e., N, nodes) in addition to the nodes

of the first row in the tree-search (i.e., M N; — 1 nodes). Thus, I can define the maximum

reduction in the decoding complexity ratio that can be achieved by any algorithm, Cg™*, as

_Nr—l—MNt—l

G =1 MN,N,

(4.37)

Figs. 4.10, 4.11 and 4.12 show the complexity reduction ratio in (4.36) versus different
values of SNR for determined, under-determined, and over-determined SM-MIMO systems,
respectively. Each figure contains four sub-figures which represent all scenarios of o2 (i.e.,

0, 0.1, 0.2, and 1/snr), while each sub-figure presents the two available spectral efficiencies,
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n = 6 and 8 bpcu. According to (4.37), Cg** = 86.1% and 93.4% in Fig. 4.10 forn = 6
and 8 bpcu, respectively; CR* = 82% and 91.3% in Fig. 4.11 for n = 6 and 8 bpcu,
respectively; and Cg™ = 88.6% and 94.6% in Fig. 4.12 for n = 6 and 8 bpcu, respectively.

In the case of 2 = 0 and 1/snr, the proposed m-M algorithm provides the best reduction
in the decoding complexity ratio over the SM-SD [13] and SM-SD [16] algorithms. The
m-M algorithm as well as the other two algorithms reach to Cg** at high SNR. It should be
noted that when 7 increases, the decoding complexity ratio increases for all algorithms. In
the case of fixed Jg (i.e., 0.1 and 0.2), no algorithm reaches Cg**. However, the proposed
m-M algorithm provides the best reduction in the decoding complexity ratio for all values of
SNR. Also, as crg increases, the reduction in complexity gain of the m-M algorithm over the
other two algorithm increases.

As it can be seen from these figures, the proposed m-M algorithm provides a better
complexity reduction ratio in the low SNR in the case of perfect CSIR and variable o2.
Moreover, it has the superiority over the existing SM-SD algorithms for all values of SNR in
the case of imperfect CSIR with fixed O'g. In addition, the m-M algorithm is more robust to

the increase of o2 than the existing SM-SD algorithms.

4.7.4 Complexity Reduction Sensitivity

I have noticed from Figs. 4.10, 4.11 and 4.12 that the reduction in the decoding complexity
ratio for the m-M algorithm increases as the SM-MIMO dimensions (M, N;, and N,)
increase. However, I need to determine which dimension affects more the complexity
reduction ratio. In this subsection, I assess the reduction in the complexity ratio versus only
one SM-MIMO dimension.

In Fig. 4.13, the decoding complexity reduction ratio of the m-M algorithm is assessed
versus the QAM order, M, for the 16 x 16 SM-MIMO system. It can be seen that the

complexity reduction ratio slightly increases as M increases. For example, for o = 0.2, the
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complexity reduction ratio increases from 76% to 78.5% at M = 8 and 128, respectively.
Thus, the complexity reduction ratio of the proposed m-M algorithm is sensitive to the
slightly change of M.

In Fig. 4.14, I evaluate the decoding complexity reduction ratio of the m-M algorithm
versus IV; at N, = M = 16. It can be noticed that the increase of the decoding complexity
reduction is negligible in comparison with the case of variable N;. Consequently, the change
of N; has almost no effect on the decoding complexity ratio of the m-M algorithm.

The decoding complexity reduction is evaluated versus different values of N, in Fig. 4.15
for Ny = M = 16. I can see from this figure that the complexity reduction ratio increases
from 68% at N, = 4 to 90% at N, = 128 for 02 = 0, and from 64% at N, = 4 to 82% at
N, = 128 for 62 = 0.2. Thus, the decoding complexity of the m-M algorithm increases
logarithmically as [V, increases.

Finally, I can see from these figures that the decoding complexity reduction ratio of the

m-M algorithm is sensitive to the change of N, while is nonsensitive to the changes of N;

or M.

4.7.5 Discussions

As seen from our comprehensive comparisons, the proposed m-M algorithm provides
significant reduction in the decoding complexity basically without BER performance loss.
For SM systems, compressive sensing (CS)-based algorithms have been recently proposed
in [32]-[34] to provide sub-optimal BER performance with a reduction in the decoding
complexity. These CS-based algorithms exploit the sparsity of the SM signals to provide
low-complexity detection at the expense of BER deterioration. Normally, the CS-based
algorithms are suitable for over-determined SM-MIMO systems (i.e., N, > V) to reduce
the BER performance gap versus the ML solution. The authors of [34] have proposed an

enhanced Bayesian CS (EBCS) algorithm to provide low-complexity detection with near ML
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BER performance. The minimum decoding complexity of the EBCS algorithm in [34] can be
achieved at high SNR, which is about O( N, N?)+O(N, N;) +O(N;) + O(N,) floating point
operations (flops). Since the ML decoder costs 9M N, N; flops, the maximum complexity
reduction that can be achieved from [34] when compared with the ML decoder in high
SNR is 87.2% and 88.1% for 12 x 8 SM-MIMO with 8-QAM and 20 x 16 SM-MIMO with
16-QAM, respectively. As shown in Fig. 4.12-(a) and (4.37), the proposed m-M algorithm
provides 88.6% and 94.6% complexity reduction after 15 dB for 12 x 8 SM-MIMO with
8-QAM and 20 x 16 SM-MIMO with 16-QAM, respectively. Thus, the proposed algorithm
has a higher complexity reduction without any BER performance loss when compared with
the ML decoder.

Another recent low-complexity algorithm that provides a near-ML BER performance
is proposed in [17] by dividing the tree-search into NV, subtrees with 2N, levels (for the
real-form representation of (4.3)) and M branches. The transmit and receive antennas are
ordered to reach the solution faster. In the first subtree, the algorithm visits a different
number of nodes in each level, K = [k; ko ...kop,|, Where k; represents the number of
best nodes that should be kept in the i-th level and expanded in the next level. The minimum
ED at the final level is used as a pruned radius for scanning the next N; — 1 subtrees by
applying the SD concept in [11]. In high SNR, the minimum decoding complexity of the
algorithm in [17] is (3227 k;) + M(N; — 1) visited nodes plus the cost of Eq. (5) in [17].
As discussed in (4.37), the proposed m-M algorithm can visit only (2N, + M N; — 1) nodes
to achieve the optimum BER performance. For instance, for a 4 x 4 SM-MIMO system
with 64-QAM and K = [64 26 26 8 8 2 2 1] as mentioned in [17], the minimum decoding
complexity of [17] in high SNR is 329 visited nodes plus the cost of Eq. (5) in [17], while
our proposed algorithm visits only 263 nodes to achieve the optimum BER performance in
high SNR (almost high SNR is after 15 dB, as shown in Figs. 4.10, 4.11 and 4.12). Thus,

the m-M algorithm provides a lower decoding complexity than the algorithm in [17] without
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losing the optimality of BER performance.

For high rate SM transmissions, one of the suggested solutions is to use a high value
of N;. Two systems are proposed to provide high rate transmission using smaller N¢; 1)
generalized SM (GSM) which activates more than one transmit antenna at a time [35], and
2) quadrature SM (QSM) which delivers the symbols using the in-phase and quadrature
dimensions [36]. At the receiver side, the GSM and QSM systems have a similar tree-
search structure to the SM, and hence, the proposed m-M algorithm can be applied in a

straightforward manner.

4.8 Conclusion

This chapter has proposed a novel low-complexity decoding algorithm for SM-MIMO
systems, referred to as the m-M algorithm. The m-M algorithm provides a significant
reduction in the decoding complexity in terms of the number of nodes which are visited
during the algorithm run. The proposed algorithm guarantees achieving the ML solution
by employing a single expansion to the minimum ED across all tree-search branches, and
stopping if this minimum ED occurs at the end of a fully expanded tree-search branch.
Furthermore, tight expressions for the expected decoding complexity of the m-M algorithm
have been derived. The proposed algorithm and analytical expressions have been assessed in
three different scenarios: perfect CSIR, as well as imperfect CSIR with a fixed and a variable
channel estimation error variances, respectively. All scenarios have been investigated for
different types of SM-MIMO systems including determined, under-determined, and over-
determined systems. The numerical results have shown that the proposed algorithm provides
the best reduction in the decoding complexity over existing optimal SM-SD algorithms.
The future work may focus on the development of the soft-decoding version of the m-M

algorithm.
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Fig. 4.4: BER comparison of determined SM-MIMO system for different decoders.
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Fig. 4.5: BER comparison of under-determined SM-MIMO system for different decoders.
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Chapter 5

Reliable Detection for Spatial

Modulation Systems

5.1 Abstract

Spatial modulation (SM) is a promising multiple-input multiple-output system used to
increase spectral efficiency. The maximum likelihood (ML) decoder jointly detects the
transmitted SM symbol, which is of high complexity. In this chapter, a novel reliable sphere
decoder (RSD) algorithm based on tree-search is proposed for the SM system. The basic
idea of the proposed RSD algorithm is to reduce the size of the tree-search, and then, a
smart searching method inside the reduced tree-search is performed to find the solution. The
proposed RSD algorithm provides a significant reduction in decoding complexity compared
to the ML decoder and existent decoders as well. Moreover, the RSD algorithm provides a
flexible trade-off between the bit error rate (BER) performance and decoding complexity,
so as to be reliable for a wide range of practical hardware implementations. The BER
performance and decoding complexity analysis for the RSD algorithm are studied, and

Monte Carlo simulations are then provided to demonstrate the findings.
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5.2 Introduction

Spatial modulation (SM) is a promising technique [1] that has been recently applied to
many of the emerging technologies [2], [3]. It overcomes the inter-channel interference
(ICI) problem that exists in multiple-input multiple-output (MIMO) systems. The SM
system completely eliminates the ICI by delivering a phase-shift-keying (PSK) or quadrature
amplitude modulation (QAM) symbol from only one transmit antenna at a time. A part of
the input bit-stream determines an active transmit antenna, while the rest determines the
PSK/QAM symbol to be delivered from the activated antenna [4], [S]. At the receiver, the
maximum-likelihood (ML) decoder is applied to obtain the optimum bit error rate (BER) at
the expense of the decoding complexity [6].

Several low-complexity decoding algorithms have been recently proposed in [7]-[12] to
reduce the high decoding complexity of the ML decoder. In [7] and [8], the sphere decoder
(SD) concept is utilized to reduce the decoding complexity without sacrificing the optimum
BER performance. A low-complexity decoding algorithm has been proposed in [9] and
extended in [10] by exploiting a smart searching algorithm in the tree-search to obtain the
optimum BER performance. The authors in [11] and [12] proposed low-complexity decoders
by sacrificing the optimality of the BER performance. The existing SD algorithms suffer
from a lack of reliability when it comes to fitting the practical hardware implementation
requirements. In other words, the existing algorithms do not provide a suitable trade-off
between the BER performance and decoding complexity.

This chapter proposes a novel and reliable SD (RSD) algorithm that provides an advanta-
geous arrangement between the BER performance and decoding complexity. Besides, the
proposed RSD algorithm can achieve the optimum BER performance with a significant re-
duction in the decoding complexity compared to the ML decoder and the existing algorithms

as well. The analytical BER analysis and expected decoding complexity of the proposed
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algorithm are provided and confirmed through Monte Carlo simulations.

5.3 System Model

Consider an N, x N; SM-MIMO system, where N, and N; represent the number of transmit
and receive antennas, respectively. SM delivers log, (N, M) bit per channel use, where M is
the modulation order of the QAM constellation. The input bit-stream is split into two groups:
the first log, (V;) bits select the active antenna, while the second log, (M) bits determine the
QAM symbol to be transmitted, s; € {s1,--- ,sy}. The SM transmitted message, x, is
equal to h;s;, where h; is a vector of the Rayleigh fading channel coefficients with entries
distributed as CN'(0, 1) and drawn from the channel matrix, H € CV~*Nt, The received

signal is

Yy=xt+g, (5.1)

where g ~ CN(0, 0'3 is the vector of additive white Gaussian noise (AWGN) samples.

At the receiver side, the ML decoder estimates the transmitted SM message, Tmr., as [6]

N»
&yp=argmin ||y — z;|*=argmin Z i — 2. (5.2)
x;|j=1,sMNy zjli=1, ,MNe

The tree-search structure [8], [10] can be used to represent (5.2). The tree-search is a
two-dimensional structure with a size of N, x M N;; the tree-search width represents the
M N; possibilities of the SM message called branches, while its depth represents the N,
levels of each possibility of the SM message. Fig. 5.1 shows a tree-search example of the
ML decoder for M = 2, N; = 4, and N, = 6. The accumulated distance metric vector of

the i-th level, v(i) € R™>*MNe g
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Fig. 5.1: Tree-search of SM-MIMO for M = 2, N; = 4, and N, =.6.

V(D)= et [0 = Znal” -+ Yo 90 — Tnaawe || - (5-3)

Typically, the last level of the tree-search is called the decision level. The ML decoder
estimates @y that corresponds to the minimum node in v(N,.) (i.e., at the decision level
when 7 = N, in (5.3)).

In this chapter, the decoding complexity is defined as the total number of nodes that
should be visited in the tree-search to estimate the transmitted SM message. Since the ML
decoder visits all nodes in the tree-search, its decoding complexity is YML — AN, N,.

The complexity of the ML decoder consequently becomes largely excessive, especially for
higher SM-MIMO dimensions and/or QAM sizes. Several works in the literature have been
proposed to reduce the ML complexity, which are based on tree-search and SD concepts.
However, further complexity reduction can still be achieved, as well as progress towards its

reliability to fit a wide range of hardware implementation.
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5.4 The Proposed RSD Algorithm

The proposed RSD algorithm firstly reduces the size of the tree-search, and then per-
forms a smart searching method to reach the solution. Let us define v, as the number of
branches/SM message possibilities that most likely contains the optimum solution. The RSD
algorithm performs its searching for the solution inside these 1, branches and stops at the
Urow-th level, where 1 < 9, < N, is the maximum number of levels that can be visited
by the RSD algorithm (i.e., the decision level at ¥y ). It is worth noting that the flexibility
trade-off between the BER performance and complexity provided by the RSD algorithm
comes from changing the value of 1o, within the range of 1 and N,.

The steps of searching for the solution of the RSD algorithm inside the reduced tree-
search are as follows:

Step 1: Expand all nodes of the first level, i.e., v(1) in (5.3).

Step 2: Appropriately choose the smallest 1o nodes that come from Step 1. It should be
noted that the RSD algorithm searches for the solution inside the branches that correspond to
the smallest ., nodes. Consequently, the RSD algorithm reduces the decoding complexity

by at least (M Ny — 101 )row nodes. The vector of distance metric nodes in (5.3) yields

v(i)zlv@,n v 0 g) 0l ) | (54

where v(i, j) is the j-th node of level 7, and given by

(5, 7) = Y |y — zagl”- (5.5)
n=1

Step 3: Perform a single expansion to the minimum node in (5.4).
Step 4: Check if the expanded node from Step 3 still has a minimum value among the
rest of 9, nodes or not. If yes, perform another single expansion to that node. If no, find

the new minimum node and expand it once.
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Algorithm 5.1 The proposed RSD algorithm pseudo-code.
e Input H, M, and N;;

e Compute v(1) in (5.3);

e Choose 1), empirically, based on M and N; to most likely include the optimum BER
performance;

e Store the branches indices that corresponding to the smallest v.,; node of v(1) into
E”ubco];

e Choose 1, based on the system requirements from the BER and complexity points
of views;

e Define Len(j) as the length of the j-th branch and initiate it with one for V7;

1: While n < Yo tcor do
2:  Find jn, that solves arg min {v(imin)};
J € Sty
Imin € {1; e awrnw}
Update i,,;, as the level that corresponding to jmin;
I:fLen(jmin) — wamw
break and end the algorithm;
else
Expand U(imim jmin) < U(imin + l;jmin);
Update v (iyi,) based on v (imin, jmin):
end if
10: Setn + n+1;
11: end While

ook w

e Output zgsp = argmin {v(¢row)}-
j € E”ubcol

Step 5: Repeat Step 3 and Step 4 until the RSD algorithm obtains the minimum node at
a branch with a length of oy

Step 6: Find the index corresponding to the node that comes from Step 5, and declare it
as the solution of the RSD algorithm. The estimated SM message using the RSD algorithm,

ZRsp, can be given as
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Yrow
Tpsp =  argmin Z ly: — :t:u|2 = argmin  {v(Ynw)}, (5.6)
zilj € Sy T J € Eyy
where =, denotes the set of branch indices that corresponds to the smallest 1), metric
node values of v(1) (i.e., the first level at i = 1 in (5.3)). The RSD algorithm is summarized

in Algorithm 5.1.

5.5 Theoretical Analysis

The RSD algorithm provides the optimum BER performance with a significant reduction
in the decoding complexity. In addition, by changing the value of 14y, a flexible trade-off
between the BER performance and decoding complexity can be obtained to fit a wide range
of hardware implementation. In this section, the BER performance and expected complexity
are considered random variables, and their approximate expressions are derived using the

probability theory.

5.5.1 BER Upper Bound Analysis

The general expression for the upper bound of the ML BER for SM is [6], [13]

MN; MN, §(x;, 2R {]P’rML (:L' - 117)}
ML A - ’
e < 3y AR 2 s -

=1 j=1

where PiML(z; — ;) is the pairwise error probability (PEP) of the ML algorithm, Pr(.)

denotes the probability of an event, IE {-} represents the expectation operation, and 6 (x;, :E:J)

denotes the Hamming distance which measures the number of bits in error between x; and

Since the RSD algorithm performs the search inside a portion of the tree-search with a
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size of Yoy X Weor, the optimal solution may not be included in that portion of the tree-search.
Thus, the PEP in (5.7) for the RSD algorithm can be written as
PI-RSD (:BJ — é\:}) = Pr (:i:UPt 3& :Etlﬁropt E Ewcol) + Pr (:i:UPt é Ewcol) ? (5'8)

where o is the optimal solution. The conditional probability in (5.8) contains two indepen-

dent events. The expected value of (5.8) can consequently be written as

B{PP (2, &)} = E{Pr (oo £ 20} + E(Pr (b £ S}, 6

W W
Term 1 Term 2

Term 1 in (5.9) can be written as in [6], [13]

Vo 1 [ o — 14+ k
E{Pr (Zop # To)} = 15" (1= pz5)", (5.10)

k=0 k

with

p(ls() 12 + Is(5)1?)
, ol = 1 : (5.11)

where p is the average signal to noise ratio (SNR), and s(7) is the QAM symbol of the j-th

SM transmitted message. Hence, for the RSD algorithm, (5.7) can be written as

RSD wml wonl é‘(a,:j
< }
BER 2.2 MNtlog:,(MNt)

.:"1_:.-1

Vrow 1 1pmw - 1 + k
ple 3 (1= )" | +EAPr (fop ¢ Zp)}| - (5.12)

3.3
k=0 k
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Based on (5.12), the RSD algorithm provides a near optimum BER performance when
Term 2 in (5.9) approaches zero (i.e., Pr(Zop ¢ Zy.,) = 0); this can be achieved by properly

choosing co1. In this chapter, 1. is empirically chosen such that Pr(zoy ¢ =y,,) =~ 0.

5.5.2 Expected Complexity Analysis

In this chapter, the complexity of the RSD algorithm is measured by the number of visited
nodes in the tree-search needed to estimate the solution. In general, the complexity of the SD
algorithms is a random variable. The general approximation for the expected SD complexity
is [10]

MN,; N,

U~ MN, + > > Pr(v(i,j) < ¢ |o,H,07,() (5.13)

j=1 i=1
where 5P is the expected complexity of an SD algorithm and ( is the pruned radius (i.e.,
threshold) of that algorithm. It should be noted that (5.13) represents the general expression
and its solution depends on the algorithm itself.

To find the conditional probability in (5.13) for the RSD algorithm, the distributions of
v(%, j) and ¢ should be defined. From (5.5), v(i, j) has a non-central chi-square distribution
with 2i degrees of freedom. Thus, the closed-form of the conditional probability in (5.13) is

[14, (Ch. 2)]

2’?’:'2,3' V2
Pr (v(i,j) < ¢ |z, H,00,() =1—Q; - J—C : (5.14)
g g

where 72, = 3, [Zn; — 0 |2 Tn; is the n-th element of the j-th SM transmitted message,
and Q;(., .) is the Marcum Q-function.
To remove the dependency of (5.14) on (, the expectation operation should be applied

for (5.14) over the distribution of {. For simplicity, let us assume that the RSD algorithm
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most likely reaches the optimum solution. Thus, the pruned radius can be given from
(= E |g;|%, where g; denotes the i-th element of the AWGN vector in (5.1). It is worth
noting that this simplified assumption of ( is especially for high SNR. The distribution of ¢

is a central chi-square with 21, degrees of freedom and its probability density function,

fe(€),is [14, (Ch. 2)]

Yrow—1 _
fe(Q) = ngf()wm ErTT (—C) : (5.15)

Hence, (5.14) yields

quf,
7"",@ dc. (5.16)
Ty

Og

Pr(v(i, ) < ¢ |2, H,02) = 1 —i )

The closed-form expression of (5.16) can be given as [15]

, —2.\ Y=t (4) 2
Pr(v(é,j)sqlmt,ﬂ;o;’)=2*exp( 63”) o 1B (ﬂ»+i;i; ;3) (5.17)
n=0

where (i), represents the Pochhammer symbol and ; F} is the Kummer hypergeometric
function. Since the RSD algorithm searches for the solution inside a reduced tree-search

with a size of 1y X e, the approximation of the expected complexity in (5.13) becomes

Veol Yrow f}/ Yrow—1 72
lI’RSDN'?’b ]+ZZQ%6XP( %j) (ﬂ,—l—’l,i‘%)? (518)

j=1 i=1 g

where URSD js the expected complexity of the RSD algorithm.
Alternatively, (5.16) can be numerically calculated using the Gauss—Laguerre quadrature

[16]. Thus, (5.13) becomes
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Yeol Yrow B 2"}{3
‘I,RSD ~~ w ] (w + 1) Zzzwk )(‘wrow_l) Qk V »J 22’k
co row | y ¥V 1
1) j=1 i=1 k=1 Tg
(5.19)
where wy, and z; are given values based on the order 8, which is given from [16, (Table

25.9)]. Note that (5.19) provides a value close to that in (5.18) with considerably lower

execution time.

5.6 Simulation Results

In this section, the BER and decoding complexity of the proposed RSD algorithm are
assessed and compared with optimum algorithms in literature, such as [7], [8], and [10]. Two
SM-MIMO systems are considered; 16-QAM for 8 x 8 and 16 x 16 SM-MIMO, respectively.
As mentioned before, 7)o is empirically chosen to provide the optimum BER performance
(i.e., Pr(zop ¢ Zyy) =~ 0in (5.12)) at Yrow = N,, Where 1heq = 70 and 180 for the first
and second SM-MIMO systems, respectively. The proposed RSD algorithm is denoted by
RSD-(?row.%co1) to show the values of )y, and 7).,;. Monte Carlo simulations are used to
obtain the results by running at least 10° Rayleigh flat fading channel realizations. The

channel state information at the receiver is assumed to be perfectly known.

5.6.1 Assessment of Expected Complexity for the RSD Algorithm

The expression in (5.19) is evaluated for the two considered SM-MIMO systems using § = 7.
The expected complexity coming from (5.19) provides almost identical results to (5.18),
however, with added speed. The corresponding wy and z at 8 = 7 are given in [16, (Table

25.9)].

Figures 5.2 and 5.3 depict the average number of visited nodes of the RSD algorithm
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for 16-QAM with 8 x 8 SM-MIMO and 16-QAM with 16 x 16 SM-MIMO, respectively.
By decreasing oy, the size of the tree-search decreases and the complexity decreases
correspondingly, as shown in the figures. It is also notable that the RSD algorithm requires
less complexity to find the solution as the SNR increases. As seen from these figures, the
theoretical analysis in (5.19) (or in (5.18)) provides a tight expression for simulation results,
for different values of 1/y,,,. Note that (5.19) perfectly matches the simulation results in the
higher SNR, which verifies the feasibility of the pruned radius simplification assumption

mentioned in Section 5.5.2.

5.6.2 Comparisons with Literature Algorithms

In this subsection, the BER and complexity are compared with those of the literature
algorithms (e.g., [7], [8], and [10]). The complexity comparison is assessed by calculating
the complexity reduction ratio which is defined as

Q MN,; N, — ¥ B LA

‘I’Reduction = W =1- m:

(5.20)
where U ; .o, is the complexity reduction ratio for the 2 € {RSD, SD-[7], SD-[8], SD-[10]}
algorithm.

Figures 5.4 and 5.5 show the BER performance of the RSD algorithm compared to
the optimum algorithms, for 16-QAM with 8 x 8 SM-MIMO and 16-QAM with 16 x 16
SM-MIMO, respectively. As shown from these figures, the RSD-(8,70) and RSD-(16,180)
provide the same BER as the ML BER performance for 16-QAM with 8 x 8 SM-MIMO
and 16-QAM with 16 x 16 SM-MIMO, respectively. It should be noted that the SD-[7] and
SD-[8] algorithms provide the same BER performance as the ML and SD-[10] algorithms,

and their results are omitted for the visibility of figures. Based on the reliable design of the

RSD algorithm, sub-optimal BER performances can be obtained by varying the value of
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Yrow. The BER analysis in (5.12) is confirmed via simulation results.

Figures 5.6 and 5.7 depict the complexity reduction ratio of all algorithms for 16-QAM
with 8 x 8 SM-MIMO and 16-QAM with 16 x 16 SM-MIMO, respectively. As seen from
these figures, the RSD algorithm provides the best reduction in complexity compared to
all existing algorithms. It also offers reliable decoding complexities that vary from 72% to
92% for 16-QAM with 8 x 8 SM-MIMO and from 68% to 95% for 16-QAM with 16 x 16
SM-MIMO. This reliability in the decoding can fit a wide range of practical application

requirements.

5.7 Conclusion

This chapter proposes a novel reliable algorithm to decode SM transmitted messages. The
BER performance and complexity of the proposed algorithm are theoretically derived. The
proposed algorithm provides a significant reduction in the decoding complexity (e.g., up
to 95%) compared to ML, without sacrificing the BER performance. A flexible trade-off
between the BER performance and complexity is presented to demonstrate the reliability of

the proposed algorithm.
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Fig. 5.2: Average number of visited nodes of the proposed RSD algorithm for 16-QAM and 8 x 8
SM-MIMO system.
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Fig. 5.3: Average number of visited nodes of the proposed RSD algorithm for 16-QAM and 16 x 16
SM-MIMO system.

108



- [mmmaSD-[10]
| |m=—RSD-(8,70)
" |=4=RSD-(7,70)
[ |=e=RSD-(6,70)
10 L |~#=RsD-(5,70)
" |=she=RSD-(4,70)
| |===== Theoretical

0 5 10 15 20
SNR (dB)

Fig. 5.4: BER comparison for the 16-QAM and 8 x 8 SM-MIMO system.

BER

[|[w==sSD-[10]
{[===RSD-(16,180)
[ =0=RSD-(14,180)
|| =e=RSD-(12,180) ]
== RSD-(10,180) 5
| =de=RSD-(08,180) ]
r|====="Theoretical

=
I\

SNR (dB)

Fig. 5.5: BER comparison for the 16-QAM and 16 x 16 SM-MIMO system.

109



e SD-[7]
e SD-[8]
= SD-[10]
=4#—RSD-(8,70)|/
=0=RSD-(7,70)|]
=sh=RSD-(6,70)| |
=&=RSD-(5,70)| 1

—h=RSD-(4,70)|

Complexity reduction ratio (%)
-...d
o

50 |

0 5 10 15 20
SNR (dB)

Fig. 5.6: Complexity reduction comparison for the 16-QAM and 8 x 8 SM-MIMO system.

e SD-[7]
=—SD-[8]
s SD-[10]

=4§—RSD-(16,180)
=0=RSD-(14,180)| ]
== RSD-(12,180)
=8=RSD-(10,180)
=#=~RSD-(08,180)

Complexity reduction ratio (%)
(=] =l
o o

50

0 5 10 15
SNR (dB)

Fig. 5.7: Complexity reduction comparison for the 16-QAM and 16 x 16 SM-MIMO system.

110



References

[1]

(2]

[3]

[4]

[3]

[6]

E. Basar, “Index modulation techniques for 5G wireless networks,” IEEE Commun.

Mag., vol. 54, no. 7, pp. 168—175, Jul. 2016.

Z. Pan, J. Luo, J. Lei, L. Wen, and C. Tang, “Uplink spatial modulation SCMA
system,” IEEE Commun. Lett., vol. 23, no. 1, pp. 184-187, Jan. 2019.

I. Al-Nahhal, O. A. Dobre, E. Basar, and S. Ikki, “Low-cost uplink sparse code
multiple access for spatial modulation,” IEEE Trans. Veh. Technol., vol. 68, no. 9, pp.

9313-9317, Jul. 2019.

R. Mesleh, H. Haas, S. Sinanovic, C. W. Ahn, and S. Yun, “Spatial modulation,” IEEE
Trans. Veh. Technol., vol. 57, no. 4, pp. 2228-2241, July 2008.

M. Di Renzo, H. Haas, and P. M. Grant, “Spatial modulation for multiple-antenna
wireless systems: A survey,” IEEE Commun. Mag., vol. 49, no. 12, pp. 182-191, Dec.
2011.

E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “Performance of spatial modulation
in the presence of channel estimation errors,” IEEE Commun. Lett., vol. 16, no. 2, pp.

176-179, Feb. 2012.

111



[7] A. Younis, S. Sinanovic, M. Di Renzo, R. Mesleh, and H. Haas, “Generalised sphere
decoding for spatial modulation,” IEEE Trans. Commun., vol. 61, no. 7, pp. 2805—
2815, July 2013.

[8] I. Al-Nahhal, O. A. Dobre, and S. Ikki, “Quadrature spatial modulation decoding
complexity: Study and reduction,” IEEE Wireless Commun. Lett., vol. 6, pp. 378-381,
Jun. 2017.

[9] I. Al-Nahhal, O. A. Dobre, and S. Ikki, “Low complexity decoders for spatial and

quadrature spatial modulations,” in Proc. IEEE VTC Spring, Jun. 2018, pp. 1-3.

[10] I. Al-Nahhal, E. Basar, O. A. Dobre, and S. Ikki, “Optimum low-complexity decoder
for spatial modulation,” IEEE J. Sel. Areas Commun., vol. 37, no. 9, pp. 2001-2013,
Jul. 2019.

[11] Q. Tang, Y. Xiao, P. Yang, Q. Yu, and S. Li, “A new low-complexity near-ml detection
algorithm for spatial modulation,” IEEE Wireless Commun. Lett., vol. 2, no. 1, pp.

90-93, Feb. 2013.

[12] L. Xiao, P. Yang, S. Fan, S. Li, L. Song, and Y. Xiao, “Low-complexity signal
detection for large-scale quadrature spatial modulation systems,” IEEE Commun.

Lett., vol. 20, pp. 2173-2176, Nov. 2016.

[13] R. Mesleh, S. S. Ikki, and H. M. Aggoune, “Quadrature spatial modulation,” IEEE
Trans. Veh. Technol., vol. 64, pp. 2738-2742, Jun. 2015.

[14] J. Proakis, Digital Communications Systems Engineering, 4th ed. McGraw-Hill, New
Yourk, 2000.

112



[15] P. C. Sofotasios, S. Muhaidat, G. K. Karagiannidis, and B. S. Sharif, “Solutions to
integrals involving the Marcum Q-function and applications,” IEEE Signal Process.

Lett., vol. 22, no. 10, pp. 1752-1756, Oct. 2015.

[16] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with For-

mulas, Graphs, and Mathematical Tables, 9th ed. Dover Publications, New York,

1972.

113



Chapter 6

Low-Cost Uplink Sparse Code Multiple

Access for Spatial Modulation

6.1 Abstract

Spatial modulation (SM)-sparse code multiple access (SCMA) systems provide high spectral
efficiency (SE) at the expense of using a high number of transmit antennas. To overcome
this drawback, this chapter proposes a novel SM-SCMA system operating in uplink trans-
mission, referred to as rotational generalized SM-SCMA (RGSM-SCMA). For the proposed
system, the following are introduced: a) transmitter design and its formulation, b) maximum
likelihood and maximum a posteriori probability decoders, and c¢) practical low-complexity
message passing algorithm and its complexity analysis. Simulation results and complexity
analysis show that the proposed RGSM-SCMA system delivers the same SE with significant
savings in the number of transmit antennas, at the expense of close bit error rate and a

negligible increase in the decoding complexity, when compared with SM-SCMA.
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6.2 Introduction

Sparse code multiple access (SCMA) is a promising non-orthogonal multiple access (NOMA)
approach for 5G wireless networks [1]-[3] that has been introduced in [4]. SCMA assigns
unique multi-carrier sparse codes to each user to access the medium [5]. The sparsity
property of codes enables the application of the message passing algorithm (MPA) at the
receiver, to provide near maximum likelihood (ML) bit error rate (BER) performance with
lower decoding complexity [6]. The number of interfered users for each sub-carrier is also
reduced, allowing more users to be overloaded, hence increasing the spectral efficiency (SE)
of the system.

Spatial modulation (SM) is another promising technique that provides high SE with
low-complexity signal detection [7], [8]. It increases the SE by assigning part of the input
data stream, named spatial symbol, to activate an antenna to transmit the modulation symbol.
In [9], generalized SM (GSM) is proposed to overcome the limitation of the high number of
transmit antennas required in the SM system.

Recently, for further SE improvement, SM and NOMA have been jointly considered
[10]-[12]. Power-domain NOMA, low-density signature, and SCMA have been explored
for SM in [10], [11], and [12], respectively. Such systems require an integer power of two
transmit antennas to deliver spatial symbols, which comes to be infeasible for higher rate
transmission.

This chapter proposes a novel uplink SM system, referred to as rotational GSM (RGSM)-
SCMA, which overcomes the previously mentioned drawback of the existing SM-NOMA
systems. The models of the proposed RGSM-SCMA transmitter and receiver for the uplink
scenario are introduced. ML and maximum a posteriori probability (MAP) decoders are
provided as theoretical receivers. Additionally, the iterative MPA decoder is presented and

analyzed to provide a practical low-complexity detection. The proposed RGSM-SCMA
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system enjoys a high SE transmission as the SM-SCMA system with a significant reduction
in the number of transmit antennas, which leads to saving resources that can then be used
for channel estimation. It is shown that the MPA decoder for the proposed RGSM-SCMA
system attains a close BER performance to the MPA of the SM-SCMA system, with nearly

the same complexity.

6.3 Related Work and Motivation

In a single-user SM system, the input data stream is transmitted as a combination of spatial
symbols and modulated symbols. At the receiver side, the decoder estimates both the spatial
and modulated symbols by performing an exhaustive search or by using one of the low-
complexity decoding algorithms, such as those in [13]-[15]. For instance, assume that an SM
system is equipped with four transmit antennas (i.e., four spatial symbols) and two modulated
symbols (i.e., binary phase shift keying). Thus, this system can deliver 3-bits at a time; 2-bits
spatial symbol (i.e., log,(number of transmit antennas)-bits which corresponding to each of
the four antennas) and 1-bit modulated symbol. As seen from this example, the number of
transmit antenna must be a power of two, which increases exponentially as the SE increases.

For a multi-user SM system, the SCMA technique is used to organize the accessing of
the users to the medium. This system is known as SM-SCMA. The SM-SCMA system
enjoys a high SE with good BER performance, which is suitable for the future generations
of the wireless networks. However, the use of high number of transmit antennas is still
required.

In this chapter, I propose a solution to this problem by activating more than one antenna
at a time to deliver the same SE of SM-SCMA with a much lower number of transmit
antennas. In addition, rotational angles are used to provide a close BER performance to the

SM-SCMA.
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Fig. 6.1: Uplink RGSM-SCMA block diagram for the u-th user.

6.4 RGSM-SCMA System Model

In this section, the RGSM-SCMA system is introduced. Assume that R orthogonal resource
elements (OREs), e.g., subcarriers, are overloaded with U users (i.e., U > R); each user
has a unique sparse codebook, C,, € CF*M 4 =1,...,U, which contains M codewords,
Cum € CRYm=1,...,M. cu,m has d, non-zero codeword elements in the same positions
for each codebook, and vary from one codebook to another. The number of the overlapped
users per ORE, dy, is fixed for VR. The SE for the u-th user is 7, = 7 + 7¢, bit per channel
use (bpcu), where 7; and 75 denote the spatial and code spectral efficiencies, respectively.
Consider that NV, and M are the number of transmit antennas used to deliver 7; bpcu
and the number of codewords used to deliver 7{ bpcu, respectively, for each user. It is
assumed that the system parameters for all users are the same (i.e., same N;, SEs and M).

In the RGSM-SCMA system, 775 = log,(N.) bpcu, where N, = 2" antenna combinations,

N,
Ne = llog2 ( ‘ )‘ , with |- as the floor operation, and N, < N; is the number of active
N,

antennas at a time, while 75 = log, (M) bpcu.

Fig. 6.1 shows the uplink scenario of the RGSM-SCMA system for the u-th user; the
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TABLE 6.1: The RGSM-SCMA antenna grouping vector lookup table for Ny = 5, N, = 2, N. = 8,

and n;, = 3 bpcu.

bf.-: ‘ k ‘ Bu.k

000 1] [1 0 1 0 0]
0012 [e% 0 0 1 0]
010 | 3| [e% 0 0 0 1]
0114 [0 1 e % 0 0]
100 | 5| [0 e=iT 0 eI 0]
101 |6 ([0 eI T 0 0 eI |
110 | 7| [0 0 e=im eI 0]
111 [ 8([0 0 eiT 0 eI |

input b, € B™ bits for the u-th user is divided into two parts: the first b € B bits
represent the spatial symbol, while the last b € B™ bits represent the code symbol. The
SCMA encoder block maps the b, bits to its corresponding codeword c,, ,, and delivers it to
the input of all transmit antenna multiplexers. The antenna grouping vector block chooses
the antenna grouping vector, g, € C>Ne k € {1,..., N}, according to the value of
b{ from a predetermined lookup table (Table 6.1 is an example lookup table with N; = 5,
N, =2, N, = 8, and bj = 3 bpcu). It should be noted that g, ; has /N, non-zero elements
that correspond to the N, active antennas. The serial-to-parallel (S/P) block distributes the
zero and non-zero elements of g, ; at the same time, to the next stage. The magnitude of
Suks |8uk| € R'*N:_is applied to the multiplexers’ selector pins, which allow the antennas
corresponding to the non-zero elements to transmit c,, ,, rotated with the associated rotation
angle of g, ;. To ensure maximum distance between the successive angles, they should be

equally spaced for each antenna. Thus, the rotation angles of the n;-th antenna are

—2(d—-1)m

{Im

Odn, =  me=1,....Ny, d=1,...,an, (6.1)

where 64, denotes the rotation angle of the d-th occurrence of the n;-th antenna, and ay, is

the number of times that the n,-th antenna is activated for Vk. For instance, in Table 6.1, the
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third antenna (i.e., n, = 3) is activated 4 times (i.e., a3 = 4) at k = 1, 4, 7 and 8. Then, 6, 3,
02 3. 03 3 and 0, 3 equal to 0, =F, — and =5, respectively.
At the receiver side, the noisy received signal for each ORE at the n-th receive antenna,

Yy, 18

up=_ (b} .88 xchn) + 1, (6.2)

uceAr
where hy, ,, € CPNe denotes the Rayleigh fading channel between the N; transmit antennas
and n-th receive antenna of the u-th user for the 7-th ORE, ¢, ,, represents the r-th element
of the m-th codeword for user u, n!, ~ A (0,0?) is the Gaussian noise at the r-th ORE of
the n-th receive antenna with zero-mean and a variance of o2, and A, is the set of indices of
the users that share the r-th ORE. The received signals vector, y,,, for all OREs at the n-th

receive antenna is

U
Yn = Z (diag (hu,ngz,k) Cu,m) + n,, (6.3)

u=1
where y, € CB*! = [y2 ... yB]" h,, € CRM — [hi%,...,hfﬂT, n, € CB1 =
[ny... n,,ff]T, and diag (hyng, ;) € C™*®is a diagonal matrix whose r-th diagonal element

H r T
18 hu,ngu,k'

6.5 RGSM-SCMA Signal Detection

In this section, the formulation of three decoders for the proposed RGSM-SCMA system is
deduced, which are ML, MAP, and MPA decoders.
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6.5.1 ML Decoder

The ML decoder performs an exhaustive search for all (N.M )U possibilities to provide the

optimum BER performance. The ML solution for N, receive antennas is

2

N, U
{€,6} = agmin {3 |lyn D (diag (hungla) cumn) (6.4)
j c NU n=1 u=1
le MY

Here, C € CR*U = [C1m - - - Cum| denotes the estimated transmitted codewords for all
users, with ¢, ,, as the estimated transmitted codeword for the u-th user, and m(l) represents
the value of . € {1,..., M} at the I-th antenna combination. G € CV*Ne = [g, ... gyl
denotes the estimated grouping vectors for all users, with g, as the estimated grouping
vector for the u-th user, and k(j) represents the value of k € {1,..., N.} at the j-th antenna

combination.

6.5.2 MAP Decoder

Unlike the ML decoder, the MAP decoder estimates the pair of transmitted codeword
and grouping vector, {€y m, &uk}, for each user one-by-one by maximizing a posteriori

probability of this pair given the received signal as

{éu,m: gu,k} - arg max {P ({éu,m: gu,k}lyn)}
éu,m € Cu

gu,k S Gu

120



- 31'8 max {P ({éu,m: gu,k}) P (yn|{éu,m: gu,k})}
éu,m S Cu

gu,k € Gu

— arg max { Z P ({€um, &uk} I\ {Cum: Bur})
Cum € Cu 3\ {&y.m, Bui}

éﬂ.,k € Gy c E\{Cu? Gu}

x P (Ynl{éu,m;gu,k}: El\ {éu,m: gu,k})}: (65)

where 3 = [{C1.m, 81k} - -, {Cum, Bu }] represents one possible combination of the trans-
mitted set of codewords and grouping vectors for all U users, E is the set containing
all (N.M )U possibilities of 3, 3\ {€ym, gur} denotes 3 except the set {Cy m, Euk}, and
E\ {C,, G, } denotes E except {C,,, G, }. Note that the total probability theorem is applied
to obtain the last line of (6.5). Since all elements of y,, are independent for all OREs and N,
receive antennas, the conditional probability in the last term of (6.5) becomes

N

P(Ynl{éu,m;gu,k}: El\ {éu,m: gu,k}) :H H P(Yn|3(r)): (66)

n=1refl,
where €2, is the set of indices of the d, non-zero OREs for the u-th user, 3(r) denotes one
possible set of transmitted codewords and grouping vectors at the r-th ORE for the dy users

that share the r-th ORE, and

(6.7)

1 Yn _Eu r h;ngl Cum 2
P(yn|3(r)):ﬁexp(_| ea g(ﬂ, *Com) | .
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6.5.3 MPA Decoder

The MPA decoder provides an approximation to the MAP detector using the factor graph
method, shown in Fig. 6.1. In the factor graph, the OREs and served users are represented
as function nodes (FNs) and variable nodes (VNs), respectively. For each FN, all VNs that
share this FN are connected. Note that each VN has N.M son VNs. The idea of the MPA
is to iteratively update the probability of passing the messages from FNs to VNs and vice
versa. After T iterations, the MPA stops and detects the message which corresponds to the
maximum joint probability. Note that the conventional MPA of the proposed RGSM-SCMA
is modified to jointly estimate the antenna grouping vector and transmitted codeword.

To formulate the MPA, assume that ’P}?_WU({ Crm> 8uky) and P, uafr({cum: Sur)) IS
the probability of passing the message {c}, ,,, ux} from the r-th FN to the u-th VN and
from the u-th VN to the r-th FN, respectively, at the ¢-th iteration, ¢ = 1, ..., 7. First, all

messages sent from VNs to FNs are assumed equiprobable at the first iteration; i.e.,

Pt(xz)—>fr ({C:-:,m: gu,k}) = NIM: ‘v’u, \V!T', Vm? Vk. (68)

Now, P ({¢, s 8uk}) can be written as

— Uy

Nr
P ({Cmgui}) = {]‘[ (P (ynl3(i), 3(w) = {1 8ui}))

3(i)ie A \u \n=1

X H 'P(t_”er (1)) p, Vm, Vk, Vr, ue A, (6.9)

ic Ar\u
where A,\ u denotes A, except the u-th user, and P (yn|3(i), 3(u) = {c}, ,n, Bux}) is given
in (6.7). Then, the probability of passing the messages from VNs to FNs is updated as
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P (feh  eui}) = (1) P ({ch o guk}), Vm, Yk, Yu, r € Q,,

vu—+fr u,m? fi—vu u,m?
JEQu\r

(6.10)
where €2, r denotes 2, except the r-th ORE, and fy(H ) is the normalization factor, which

is given by

m=1 k=1

M N, -1
Y = (ZZPE‘L,«F u,m,gu,k})) : (6.11)

After T iterations, the estimated transmitted codeword and grouping vector are obtained as

{eum Bur}= argmax [ PI2,. {cum 8ur}), Vu. (6.12)
m=1 M

k=1,...,N.

6.5.4 MPA Complexity Analysis

In this subsection, the computational complexity of the MPA decoders for the SM-SCMA
and RGSM-SCMA systems is deduced in terms of real additions and multiplications. Table
6.2 shows the complexity summary, calculated based on (6.8)-(6.12) and the factor graphs of
both systems. At the same SE, it is shown from Table 6.2 that there is a negligible increase in
the number of real multiplications and additions of the RGSM-SCMA by 4Ud, N, N.N, and
2Ud, N, N, (2N, — 1), respectively. This increase is a result of combining the channel entries
by the antenna grouping vectors before performing the MPA decoder, and is independent of
the number of iterations. Thus, at the same SE, the decoding complexity of both systems is

almost similar.
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TABLE 6.2: The real operations of the MPA decoders for the SM-SCMA and RGSM-SCMA
systems.

‘ SM-SCMA ‘ RGSM-SCMA

Rd; (N.M)% (2N,(2d; +1) — 1)
+TRdy ((NCM)df - 1)
+2UdyN,N, (2N, — 1)

Rd; (N;M)% (2N,(2d; +1) — 1)

Additions VTR, ((NtM)df - 1)

Rds (N.M)%
X (2Np(2ds +1) +Tdy +1)
+N.M (dy — 1) (TRd; 4+ U)
+4Ud,N,N,N,

Rdy (N:M)%
Multiplications X (2Ny(2df + 1) +Tdy + 1)
+N,M (d, — 1) (TRd; + U)

6.6 Simulation Results

In this section, simulation is used to study the BER performance of the proposed RGSM-
SCMA system, additionally in comparison with the SM-SCMA [12]. The effect of the
rotation angles in (6.1) is shown, and I refer to the zero rotation angles version of the RGSM-
SCMA as GSM-SCMA. The MPA decoder is considered for all systems. Furthermore, the
Rayleigh fading channel is assumed to be perfectly known at the receiver. The required
number of transmit antennas and decoding complexity comparisons between the proposed
RGSM-SCMA and SM-SCMA are also provided. The system parameters for all systems are
chosen as follows: U =6, R =4 and M = 4.

Fig. 6.2 shows the BER performance comparison for 7; = 3 bpcu (N, = 8 and 5 for
SM-SCMA and RGSM-SCMA, respectively), N, = 2and 7' = 2 in case of N, = 1, 2,
and 4. As shown in this figure, the BER performance is almost the same in the case of
N, = 1 and 2. In the case of high signal-to-noise ratio (SNR) for N, = 4, the proposed
RGSM-SCMA provides a better BER performance than the GSM-SCMA. Thus, using the
rotation angles in (6.1) for the proposed RGSM-SCMA degrades the BER performance by
only 0.6 dB instead of 1.2 dB SNR as in GSM-SCMA, when compared with SM-SCMA.

Fig. 6.3 shows the extra complexity (ExCo) of the RGSM-SCMA over SM-SCMA

mentioned in Table 6.2 and given by: ExCo = (RGSM operations - SM operations) / SM
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operations, where operations can be either additions or multiplications. It can be seen from
Fig. 6.3 that the ExCo is negligible (less than 0.05%) for both additions and multiplications,
and decreases when 7' or 7]} increase.

The RGSM-SCMA system provides significant savings in the number of transmit anten-
nas, IV, required to deliver the same 7; of the SM-SCMA, as shown in Fig. 6.4. Note that
N, ={2,2,3,3,4,4,4,5,5} is used to achieve n5 = 2 : 10 bpcu. The RGSM-SCMA saves
more in terms of N; when 7 increases. For example, to deliver 5 = 7 bpcu, the SM-SCMA
requires 128 transmit antennas, while the RGSM-SCMA requires only 10 antennas.

Finally, the RGSM-SCMA provides a significant reduction in the number of transmit
antennas with almost the same decoding complexity and a very slight deterioration in the

BER performance to deliver the same SE of the SM-SCMA.

6.7 Conclusion

A low-cost SM-SCMA system has been proposed, which utilizes a reduced number of
transmit antennas, referred to as RGSM-SCMA. The transmitter design, as well as the ML
and MAP decoders have been introduced. Furthermore, the low-complexity MPA decoder
has been revised and analyzed for the proposed RGSM-SCMA system. This delivers the
same SE as SM-SCMA with a much lower number of required antennas, at the expense of
less than 0.05% increase in the decoding complexity and up to 0.6 dB SNR degradation in

the BER performance.
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Chapter 7

On the Complexity Reduction of Uplink
Sparse Code Multiple Access for Spatial

Modulation

7.1 Abstract

Multi-user spatial modulation (SM) assisted by sparse code multiple access (SCMA) has
been recently proposed to provide high spectral efficiency transmission. The message
passing algorithm (MPA) is employed to detect the transmitted signals, which suffers
from high decoding complexity in practical implementations. In this chapter, three low-
complexity decoding algorithms are proposed for the SM-SCMA system. The first algorithm
is referred to as successive user detection (SUD), while the second algorithm is the modified
version of SUD, namely modified SUD (MSUD). Then, for the first time, the tree-search
of the SM-SCMA system is constructed. Based on that tree-search, another variant of the
sphere decoder (SD) algorithm is proposed for the SM-SCMA system, referred to as fixed-
complexity SD (FCSD). SUD provides the lowest decoding complexity that can be achieved
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at the expense of bit-error-rate (BER) performance. Further, MSUD slightly increases the
decoding complexity of SUD with a significant improvement in BER performance. Finally,
FCSD provides a near-optimum BER performance with a considerable reduction of the
decoding complexity compared to the MPA decoder. The FCSD algorithm also supports
parallel hardware implementation and strikes a trade-off between decoding complexity and
BER performance. The proposed algorithms provide flexible design choices for practical
implementation based on system design demands. The complexity analysis and Monte-Carlo

simulations of the BER performance are provided for the proposed algorithms.

7.2 Introduction

Non-orthogonal multiple access (NOMA) has been recognized as a promising technique
for future wireless networks, and has received considerable attention in recent years [1]-
[2]. NOMA is composed of two types: power-domain and code-domain. The power and
code orthogonality constraints are relaxed for multiple-user access to improve the spectral
efficiency and increase the number of served users for power-domain and code-domain
NOMA, respectively [3]-[5]. In this chapter, sparse code multiple access (SCMA) code-
domain NOMA is considered, which was firstly proposed in [6]. In the SCMA scheme, a
unique multidimensional codebook is assigned to each user to share the medium with the
other users. The SCMA codebooks are sparse (i.e., contain zeros) and carefully designed to
provide a good performance [7]-[9]. The sparsity property of the SCMA codebooks makes it
feasible to employ the iterative message passing algorithm (MPA) to provide near maximum-
likelihood (ML) bit-error-rate (BER) performance at low-complexity detection [10]. The
complexity of the MPA is still high for practical implementations; several algorithms have
been proposed to tackle this problem [11]-[15]. In [11], the authors proposed a reduced-

complexity version of the MPA decoder, whereas the authors in [12]-[15] adopted the
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concept of the sphere decoder (SD) to reduce the complexity of the SCMA signal detection.

On the other hand, spatial modulation (SM) is a promising technology for single-
user communications, which overcomes the inter-channel-interference problem present
in multiple-input multiple-output (MIMO) schemes [16]-[19]. The SM system employs the
index of the active antenna to deliver additional information supplementary to the modulated
quadrature amplitude modulation (QAM)/phase-shift-keying (PSK) symbol that can be
transmitted from that active antenna [16]. At the receiver side, the ML jointly detects the
active transmit antenna as well as the transmitted QAM/PSK symbol by implementing an
exhaustive search that leads to high decoding complexity. The algorithms in [20]-[25] have
been proposed based on the SD and tree-search concepts to significantly reduce the decoding
complexity while retaining the same BER performance of the ML decoder.

Recently, the multi-user SM has been assisted by SCMA (SM-SCMA) to provide a high
spectral efficiency transmission [26]-[28]. The SM-SCMA system requires a high number of
transmit antennas to provide high spectral efficiency for all users. To effectively tackle this
problem, the rotational generalized SM (RGSM)-SCMA has been proposed in [29]. In the
RGSM-SCMA system, the same spectral efficiency of the SM-SCMA can be achieved using
a significantly reduced number of transmit antennas at the expense of almost negligible
changes to BER performance and decoding complexity, when compared with the SM-SCMA
system. For the SM-SCMA and RGSM-SCMA systems, the iterative MPA decoder has been
proposed to detect the transmitted signal [28], [29]. The MPA decoder iteratively updates
the users message probabilities until achieving the maximum number of iterations; this
leads to an increase in the decoding complexity of both systems. To the best of the authors’
knowledge, low-complexity algorithms for the SM-SCMA and RGSM-SCMA systems are
yet to be proposed.

In this chapter, three low-complexity decoding algorithms for the SM-SCMA system

are proposed, which can also be directly applied for the RGSM-SCMA system. The first
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algorithm is termed successive user detection (SUD). It detects the users messages that share
the first orthogonal resource element (ORE), then by using those detected users messages, it
successively detects the users messages that share the next OREs. The SUD algorithm detects
the user message using only one of the available OREs that carry the signal of that user. The
proposed SUD algorithm is considered to be the lower bound of the decoding complexity
for the SM-SCMA and RGSM-SCMA systems at the expense of the BER performance. By
exploiting all available ORESs for each user with some iterative procedure, the modified SUD
(MSUD) provides a considerable improvement in the BER performance at the expense of a
small increase in the decoding complexity.

The SD and tree-search concepts are carefully designed for the SM-SCMA, referred to
as a fixed-complexity SD (FCSD) algorithm. The FCSD algorithm provides almost the same
BER performance as that of MPA with a significant reduction in the decoding complexity.
The proposed FCSD has a fixed decoding complexity for all values for signal-to-noise ratio
(SNR), as well as for its feasibility of parallel hardware implementation, which is proper for
practical applications [30], [33]. Besides, the FCSD algorithm provides a favorable trade-off
between the decoding complexity and BER performance, which fits a wide range of practical
applications. In summary, each of the three proposed algorithms enjoys different advantages
that can fit a wide range of system specifications. The complexity analysis in terms of the
number of real additions and multiplications is derived. The Monte-Carlo simulations for the
BER performance of the proposed algorithms are provided to support the chapter findings.

The rest of the chapter' is organized as follows: In Section 7.3, the system model of the
SM-SCMA transmitter and receiver is summarized. In Section 7.4, the proposed decoding

algorithms for the SM-SCMA system are introduced. In Section 7.5, the complexity analysis

'Notations: Boldface lowercase and uppercase letters represent vectors and matrices, respectively. CA
denotes a complex-valued normal random variable. diag(-) converts a vector into a diagonal matrix with
diagonal elements that are the same as the original vector elements. ||.|| denotes the Euclidean norm. card {.}
is the is the cardinality of a set that refers to the number of elements in that set. [.]T denotes the matrix or
vector transpose. [E {.} denotes the expectation operation. P(.) is the probability of an event. f(.) denotes the
probability density function (pdf) of a random variable. ¢ is the empty set.
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of the proposed decoding algorithms are derived in terms of the number of real additions
and multiplications. The simulation results and conclusions are provided in Sections 7.6 and

7.7, respectively.

7.3 System Model

In this section, the transmitter and receiver of the SM-SCMA system are discussed. Assume
that U users are sharing R OREs, where U > R. Each of these users has an unparalleled
multidimensional codebook, C* € CF*M 4 =1,... U, withct, €e C®*', m =1,.... M
as codewords within the codebook and M as the number of codewords. Since c, is sparse,
the number of non-zero elements for each codeword is denoted by d,,, whereas the number of
zero elements is R — d,,. It should be noted that the positions of zero and non-zero elements
are fixed for a codebook (i.e., for a user), and vary from codebook to another to provide a
fixed number of overlapped users per ORE of VR. In this chapter, the number of overlapped

users per ORE is denoted by d;.

7.3.1 Transmitted and Received Signal

Consider an N,, x N; MIMO system for each user, where NV; and N, represent the number
of transmit and receive antennas, respectively. For the u-th user in the SM-SCMA trans-
mitter, the first log,(/N;) of the input bits select the transmit antenna to be activated, while
the remaining log, () bits are mapped to choose a corresponding codebook, c¥ . to be
transmitted from that active antenna. Hence, the spectral efficiency of the u-th user is given

by

Nu = logy (Nt) + logy (M), (7.1)

where 7, is the spectral efficiency of the u-th user that is measured in bit per channel use
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(bpcu). It should be noted that the total system spectral efficiency for all users is U, bpcu.

At the receiver, the noisy received signal at the n,.-th receive antenna of the r-th ORE,

Yy 18

v, = > (Wtweit) +mi, r=1.. R, (7.2)

ueA,
where h:{ing represents the Rayleigh fading channel coefficient between the n,-th €
{1,..., N,} receive antenna and n}-th € {1,..., N;} transmit antenna of the u-th user
for the r-th ORE, ¢};* is the non-zero r-th element for the m-th codeword of the u-th user.
Here, A, denotes the set of users indices that share the r-th ORE, and n], ~ CN (0,0?) is
the complex additive white Gaussian noise (AWGN) with zero-mean and a variance of o2

for the -th ORE at the n,.-th receive antenna.

For all OREs, the received signal at the n,-th receive antenna, y,, € C**t = [yl ... yH]T,
is given by
U
yo, =y (diag (1l ) el ) + 1, (7.3)
where h ., € C** = [h:;:fn?, ces h;?fn?]T is the Rayleigh fading channel vector between

the n,-th receive antenna and n¥-th transmit antenna of the u-th user, and n,,, € C#*! =
[nl ...n%]Tis the AWGN vector.

It is worth noting that the relationship between the position of zero/non-zero elements of
users codebooks and OREs can be described by a binary indicator matrix, F. In the indicator
matrix, the number of rows and columns represents the number of OREs and number of
users, respectively. Moreover, the ones in F' show the position of non-zero elements of

the user codebooks. In this chapter, six users overloaded over four OREs (i.e., U = 6 and

R = 4) are considered, with F' given by [6], [29]:
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[

o O

0

(7.4)

As seen from (7.4), d, = 2 for all users and d; = 3 for all OREs. A useful representation

for the indicator matrix is

Ar = {A:(1),..., Arv(df)},

(7.5)

where A, (1) denotes the index of the first user that shares the r-th ORE, and card{A,} = dy.

Thus, F'in (7.4) yields

Al - {A1(1)1A1(2)1A1(3)} = {21315};
AQ - {A2(1)1A2(2)1A2(3)} - {11316};
A3 - {A3(1):A3(2)1 A3(3)} - {2141 6};

Ay = {A4(1):A4(2)1A4(3)} = {11415}'

7.3.2 Signal Detection

(7.6a)
(7.6b)
(7.6¢)

(7.6d)

At the receiver side, the decoder task is to estimate the activated transmit antenna and the

mapped codeword for each user (i.e., user message). In this subsection, the ML and MPA

decoders are discussed.
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7.3.2.1 ML Decoder

The ML decoder jointly performs an exhaustive search for all possible combinations between
the transmit antennas and codewords for all users (i.e., (N;M )U possible combinations).
Although the ML provides the optimum BER performance, it has an impractically high

decoding complexity. The mathematical formulation of the ML decoder is given by

Ny 2

U
{c, j} —  arg min 3 ye -3 (diag (hgmnm)) c;(”) . (1)
j=1,... NV "7 =
I=1,...,MY
Wherej = {?‘ftl, ceey :ritU} denotes the set of indices of the estimated active transmit antenna

for all U users, with 73, as the estimated index of the active transmit antenna for the u-th
user, n'(j) is the active transmit antenna index of the u-th user that corresponds to the j-th
antenna combinations (out of (N;)” combinations) of all U users, C € CF<V = [¢] .. ¢U]
represents the estimated transmitted codewords of the U users, with ¢}, as the estimated

transmitted codeword of the u-th user, and m({) is the m-th codeword of the u-th user that

corresponds to the [-th codeword combinations (out of (M )Y combinations) of all U users.

7.3.2.2 MPA Decoder

The MPA is an alternative practical decoder to the ML decoder. It iteratively updates the
probability of users messages between the function nodes (FNs) that represent the number of
OREs, and the variable nodes (VNs) that represents the number of users. It is worth noting
that each of the FNs is connected with all VNs that share the same FN based on indicator
matrix in (7.4) to form what is called a factor graph. The factor graph of the MPA decoder

used in this chapter is shown in Fig. 7.1 for U = 6, R = 4 and F’, which is given from (7.4).
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Fig. 7.1: MPA factor graph of the SM-SCMA for U =6 and R = 4.

It is assumed that the probability of passing the u-th message, {c;*, ni'}, from the u-th
VN to the r-th FN and vice versa at the k-th iteration (out of K iterations) is ’Pf,i)_} {en,ni'})
and P(flwu({c;f, ny'}), respectively. Initially, all users messages passing from the VNs to
FNs are equiprobable, i.e.,

UU_}fﬂ"

PO (i ntY) = ﬁ, Yu, Vr, Vm. (7.8)

The mathematical formulation of updating the messages at the (k 4 1)-th iteration of the

MPA decoder is given by [28], [29]:

Ny
PR (e = Y {H(P(yn,w(é),w(u):{c;;“}n;‘}))

P(i)ie Ar\u \np=1

< [[ P, @)y, Vm, Vr, ue A, (7.9)

i€ Ar\'ﬂ.
where A,\ u represents A, in (7.5) except the u-th user and 1(.) represents the message of a

user. The conditional probability in (7.9) is given by

2
N Voo e, (Frtmeci’)
P(ynrlib):\/Q—meXD - 53 : (7.10)

where )" represents the possible messages of all users that share the r-th ORE.
Now, Pf::l}r({cfﬁ”, n}) can be calculated as
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PU (et = T PRS0, (et Vi Y, re @, 1D

Vu—+fr
FEQu\r

where (2, denotes the set of ORE indices that correspond to d, non-zero positions for the

u-th user, €2, r represents the set €2, except the r-th ORE, and fy“”l)

M N -1
k ru u
Yt = (ZZ Pols, (e ,n;})) - (7.12)

m=1 n:=1
After the MPA completes K iterations, the estimated message of the u-th user can be

calculated by

{en,n ) = argmax ] P{Y,, (e ni}), Vu. (7.13)
m= 1,...;,MrJEQM
nt — ]_1 [P ;Nt

The set of all estimated users messages using the MPA in (7.13), éMpA, can be given as
fa) _ A1~ 1 (K) AU ~ UV(K) 714
mea = {eh, i b0 L {en i} . (7.14)

7.4 The Proposed Decoding Algorithms

In this section, the three proposed decoding algorithms are introduced. The first two
algorithms focus on decoding the signal with very low complexity and acceptable BER
performance. The third proposed algorithm employs the SD concept to provide a near-
optimum BER performance with low-decoding complexity in addition to other advantages,
such as the feasibility of parallel hardware implementation and the flexible trade-off between

decoding complexity and BER performance.
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7.4.1 The SUD Algorithm

The SUD algorithm provides the lowest decoding complexity among the proposed algorithms
at the expense of BER performance. First, the SUD algorithm performs an exhaustive search
for all combinations of the users messages that share the first ORE. It starts with the OREs
with highest energy, £, based on the following

2

Nr
ETZZZ""%? . r=1....R (7.15)

ucAy ne=1

Then, these estimated users messages are employed to estimate the messages of other users
that share the next OREs. Sequentially, the SUD algorithm estimates the undetected users
messages until they are all estimated based on the descending order of E” in (7.15) for VR.

The mathematical formulation of the SUD algorithm is given by

( 25
Ny
AP . b rau U r,u r,u
{Cr’f} = argmin 0>y = Y Wi = D0 Bl (o
j=1 . NPT ek ued-\dr
1t ~~ <N ~~ d
i \ Term 1 Term 2 J
I=1,....M
1<r<R, (7.16)

where A, is the set of users indices that share the 7-th ORE in which their messages are
already estimated previously, A,,\/\l,, is A, except /i.r or it is the set of users indices that
share the r-th ORE and their messages need to be estimated, U” = card{A,\A,} < d; is
the number of users whose messages need to be estimated at the r-th ORE, j’" represents
the set of indices of the estimated active transmit antennas for all U” users at the r-th ORE,
and C" denotes the estimated transmitted codewords of the U” users at the 7-th ORE. Here,
Term 1 and Term 2 represent the users messages that have already been estimated from

previous OREs and that need to be estimated at the r-th ORE, respectively. It is worth
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noting that Term 1 equals zero at the first ORE used by the SUD algorithm (i.e., fll = o).
After estimating all users messages from certain OREs, the set of complete estimated users

messages using the SUD algorithm in (7.16), ésup, can be written as

Osup = {{&L,, A}, ..., {e¥, 1,91} (7.17)

Consequently, the SUD algorithm detects users messages using a single ORE. Then,
these detected messages are used as given messages to detect the others that share the rest
of the d, — 1 OREs. It should be noted that the SUD algorithm may not use all received
signals on OREs if all users messages are already estimated using certain OREs. The SUD

algorithm is summarized in Algorithm 7.1.

7.4.2 The MSUD Algorithm

As mentioned in the SUD algorithm, the user message is detected using a single ORE;
however, the (d, — 1) non-zero ORE:s for each user are not included in the decoding process
with the aim of reducing the decoding complexity. This leads to a significant deterioration in
the BER performance (i.e., losing the diversity gain). The MSUD is an iterative algorithm
that estimates the user message by considering only one user message unknown at a time.
In contrast, the rest of the users messages are considered to be known from the previous
iteration. Moreover, the MSUD algorithm considers the received signals from all d,, non-zero
ORE:s for each user in the detection process to improve the BER performance. It is important
to mention that the initial values of the users messages used in the MSUD algorithm are
estimated using the SUD algorithm. In other words, the MSUD algorithm performs the SUD
algorithm first. Then, K iterations are performed to improve the BER performance.

To formulate the MSUD algorithm, user messages are first estimated from the SUD

algorithm (i.e., é)SUD, in (7.17)) and are subsequently used as input to/initialization of the
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Algorithm 7.1 The proposed SUD algorithm pseudo-code.
e Store codebooks for all users;

e Input channel matrices for all users;

e Define Ogyp and A as the set of estimated users messages and set of users indices
corresponding to the estimated messages in Ogsyp, respectively;

e Initialize Ogyp = {-} and 4 = {-};
e Order the OREs which should be visited based on (7.15);

1: While v < R, do
2: Set A, + {ANA}:
3: Assigny, < Yn — D i h:{:ﬁy s
4: Find {Cr,jr} that solves the following:
arg mm{En Y VA DWRY W Aoty

St_}—l Nt\ andl=1,..., MY";
Update GSUD based on {C’”,J"’}
Update A based on GSUD,

if card{A} ==U

break and end the algorithm;

end if
10: Setr +r+1;
11: end While

Lo W

e Output éSUD .

iteration stage of the MSUD algorithm. At the (k + 1)-th iteration, the estimated u-th user

message, {c¥, 71"} **1) is given by

2
N,
Ay o~ uy (k+H1) . r Tl rau
{ep, n} = arg min Z Z Un, —Z {hﬁ,,”,ﬂt m} h’nrn?(j] m(j)
G= 1. N, |t e —
= t ~ ~ -
’ ’ Term 3
l=1,...,.M

u=1,...,U, (7.18)
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where Term 3 and Term 4 represent the given estimated users messages that share the same
ORE with the u-th user and the desired user message of the u-th user to be estimated,
respectively. The MSUD algorithm uses all d, non-zero OREs for each user in the detection,
which can be seen from Erenu in (7.18). The estimation process using (7.18) is performed
for all U users for each iteration. After K iterations, the set of estimated messages for all U

users, Ousup, 1S

LY - - K ~ ~
Omsup = {{c,lmntl}( ) {cﬁ,ntU}(K)} . (7.19)

Algorithm 7.2 shows the summary of the MSUD algorithm.

7.4.3 The FCSD Algorithm

The MPA decoder has a limited support to the parallel hardware implementation, where all
users messages are detected together after iterative sequential stages, as seen from (7.9),
(7.11) and (7.13). In practice, this kind of hardware implementation is not preferable.
Besides, the MPA decoder provides a limited trade-off between decoding complexity and
BER performance, which limits its practicality for applications with specific requirements.

The FCSD algorithm supports the parallel hardware implementation and also provides a
flexible trade-off between decoding complexity and BER performance. To clearly understand
the concept of the FCSD algorithm, a tree-search for the SM-SCMA should be constructed

first.

7.4.3.1 SM-SCMA Tree-search

The ML decoder of the SM-SCMA in (7.7) can be represented as a multi-level tree-search,
as in Fig. 7.2. Each of the tree-search levels corresponds to an ORE (i.e., the number of

levels equals R). At each level, there is a certain number of nodes representing the distance
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Algorithm 7.2 The proposed MSUD algorithm pseudo-code.
e Store codebooks for all users;

e Input channel matrices for all users;
e Perform Algorithm 7.1 to obtain Osup;
e Initialize é)MSUD = éSUD;
1: Fork=1: K, do
2: For u=1:U,do
N .y k
3: Assign 7, < yn — EﬂeAr\u {h:uﬁﬁc:?f} ;
4:  Find {&*,75,“}"* that solves the fo]]owing
arg mm{Erenu Enr—l Yn, — nr H‘;‘(J) m(;‘)| }

stg_l ,Nyeandl =1,..., M;
5 Update éMSUD based on {¢%, nt“}( ).
6: end For
7: end For

L] Olltpllt é)MSUD .

metric between the received signal at the -th ORE and possible combinations of the users
messages that share this ORE. Each node at the r-th level is expanded into child nodes at the
next level.

The mathematical formulation of the i-th node at the r-th level, d], is
& =d ' +e, r=1,..., R, (7.20)
where d " is the mother node of df and €] is given by

Ny
= Z y:;,- _Z hrun“c - Z h;fﬂ%‘(%] m(z) : (7.21)
nr=1

u€A, u€A\Ar
At the first level (i.e., 7 = 1), d° = 0 in calculating d} and i = 1, ..., (M N;)%. From

(7.20) and (7.21), it should be noted that a node is an accumulation of the distance metric
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Fig. 7.2: The proposed tree-search for the SM-SCMA system.
of all preceding nodes in the same branch and that the value of €] increases as r increases,
respectively.

Unlike the construction of the SM tree-search [25] and MIMO tree-search [31]-[33], the
number of expanded nodes for each mother node of the SM-SCMA tree-search, as seen
in Fig. 7.2 gradually reduces across the OREs, reaching a limit of one. Consequently, the
SM-SCMA tree-search consists of two stages. The upper stage in which each of the mother
nodes is fully expanded to multiple child nodes, is referred to as fully expanded stage (FES).
The lower stage is called single expanded stage (SES), in which each of the mother nodes
is expanded to only one node. Typically, each level of FES has at least one or more users

messages that have not been estimated from the previous OREs; the number of these users

messages gradually decreases as the ORE increases,

dg>U?>-..>U">1, reFES. (7.22)

It is worth noting that the number of nodes at the first level is (N, M )% since there are d;
users sharing ORE 1 and no users messages have been estimated previously.
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7.4.3.2 The FCSD Algorithm

In the tree-search provided in Fig. 7.2, the ML solution in (7.7) (close to the MPA solu-
tion) can be achieved by visiting all nodes, which is extremely high in terms of decoding
complexity. The basic concept of the FCSD algorithm is to reduce the decoding complexity
of the SM-SCMA system by reducing the search space inside the tree-search based on a
predetermined pruned radius (i.e., threshold). For that, at each level, the nodes that have
values smaller than a certain threshold (i.e., pruned radius) are the only ones which are
expanded at the next level. It is worth noting that the tree-search levels of Fig. 7.2 can be
ordered based on (7.15) before performing the FCSD algorithm.

Let us consider that the pruned radius is denoted by v € RE~! = [y, ...7,...vyz_1] and
keeps [py . .. pr - .. pr_1] survived nodes, where 7, is the pruned radius and p, is the number
of survived nodes at the r-th level. At the final level (i.e., the -th level), the minimum node
is chosen to be the solution of the algorithm. Consequently, p, for the upper R — 1 levels is

given by

p,,,:{d;gfy,,ﬁ:1,...,p,,_1(N£M)f”}, 0<U"<d;, 1<r<R—1, (723)

where U™ = 0 atr € SES, 0 < U” < d; at r € FES, and p, = 1 at the first ORE (i.e.,
r = 1). At the last level (i.e., 7 = R), the number of nodes is pg_1, since there are only pp_;
survived nodes from the R — 1-th level. Thus, the FCSD algorithm declares the argument of

the minimum node at the last level as the solution, which can be represented as

{Ci}= agmin  {df}. (7.24)

izl?...}pR_l

It is worth noting that a higher value of the pruned radius may lead to expanding
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Algorithm 7.3 The proposed FCSD algorithm pseudo-code.
e Store codebooks for all users.

e Input channel matrices for all users.

Input p = [p1...pr...pr-1] € RE-1L.

Order the OREs which should be visited based on (7.15);

Assign V" as an empty vector that contains the distance metric nodes at the r-th level;

Define ¢" as the total number of nodes in the r-th level;

1: While r < R — 1, do

2. Fori=1:/,do

3 Compute d] from (7.20) and (7.21);

4 Store d! in V";

5: end For

6: Keep the smallest p, nodes from V7;

7: Expand the survived p, nodes from Line #6
into V"t1;

8: Setr <+ r+1;

9: end While

10: Find the minimum node in V%

e Output Orcsp as the messages corresponding to the argument of the minimum node
in Line #10.

unnecessary nodes, which increases the decoding complexity. On the other hand, a smaller
value of the pruned radius may cause an early dropping of the optimum solution, which
deteriorates the BER performance. Thus, the appropriate choice of the pruned radius is a
crucial process in the FCSD algorithm. For more clarifications, the accumulated node, d, in
(7.20) is a non-central chi-squared random variable with 2r N, degrees of freedom and its

pdf is given by [34, (Ch. 2)]

L/ g\ N2 o2, 4 dr di a3,
Jar(d}) = = (&; ) exp (—7) LN, 1 (7.25)

2 2 2 !
o r,i o On / 2
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where I, 1 (.) is the first kind modified Bessel function with order (rN, — 1) and the

non-centrality parameter o2, is

Ny r
- Z Z Z (hiﬁfﬂgcgu) Z h:l,:;n o Z h;:‘n?(%) m(t) . (7.26)

nr=17=1 |u€ds ueAr ueAs\Ar

Since d has an even degrees of freedom value, the probability of not dropping the optimum

solution early, dﬂopt, can be calculated as [34, (Ch. 2)]

p (d;‘lopt S ﬁf-r) =1- QrNr ( C;i;i O'\//jj_) (?2?)

where Q,n, (s, .) is the generalized Marcum function of order rN,. As seen from (7.27), by
increasing the value of +,, the value of P(d |, < ;) becomes closer to unity.

In the FCSD algorithm, the value of -, is empirically selected to choose a fixed number
of nodes from each level to increase the probability of including the optimal solution based
on (7.27). Accordingly, at each level, the value of p, in the FCSD algorithm is fixed for
1 <r < R — 1. Finally, the FCSD algorithm selects the minimum node among all expanded
nodes at the last level to be declared as a solution. Thus, the set of estimated messages for

all U users, Opcgp, is

Greso = { {&h, 2!}, (&, aVyOY, (7.28)

where {¢¥,71,"}®) is the estimated message of the u-th user corresponding to the minimum

node at the R-th level. Algorithm 7.3 summarizes the procedure of the FCSD algorithm.
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7.5 Complexity Analysis

In this section, the decoding complexities of the conventional MPA and the proposed
algorithms for the SM-SCMA system are discussed. In this chapter, the decoding complexity
is measured by the number of real additions and multiplications required to perform a
particular algorithm. For the conventional MPA decoder of the SM-SCMA system, the
required number of real additions and multiplications, Add™™) and Mul™?4)| respectively,

are given by [29]

Add™™ = Rd (N.M)™ (2N, (2ds +1) — 1) + K Rdy ((NzM)df - 1) ,  (1.29)

and

Mul™™ = Rd, (N,M)* (2N,(2d; + 1) + Kd; + 1) + N,M (d, — 1) (KRd; + U).
(7.30)

7.5.1 The SUD Algorithm

In the SUD algorithm, the cost of (7.15) is R(2N,d; — 1) real additions and 2RN,.d; real
multiplications. The cost of one possible combination of 7 and [ in (7.16) for N, receive
antennas is N.(4ds+2) — 1 real additions and N, (4dy + 2) real multiplications. The number
of possible combinations between j and [ in (7.16) varies from one ORE to another based on
the system indicator matrix. Thus, the required number of real additions and multiplications,

Add®UP) and Mul®UDP) respectively, of the SUD algorithm can be written as
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R
Add® = R (2N,d; — 1) + (N, (4d; +2) = 1) Y (MN)", (7.31)
r=1

Ur+0

and

R R
Mul®") = 2RN,d; + N, (4d; +2) Y (MN)"". (7.32)
r=1
Ur+0

The summation term in (7.31) and (7.32) depends on the indicator matrix of the system.?

7.5.2 The MSUD Algorithm

The MSUD algorithm iteratively updates the estimated users messages of the SUD algorithm
at an extra cost of KUM N, (N, (4d; +2) — 1) and KUM N,N,.(4d + 2) real additions and
multiplications, respectively. Thus, the required number of real additions and multiplications,

AddMSUD) apd MulMSUD)| respectively, of the MSUD algorithm are given by?

R
AddSUP) = R (2N, dy — 1) + (N, (4d; +2) — 1) |[KUMN, + Y _ (MN)""|, (7.33)
r=1

e

and

%In this chapter, the system in (7.6) is considered. Consequently, the result of the summation term in (7.31)
and (7.32) becomes (M N;)3 + (M N;)? + (MN)!.
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R
Mul®" = 2RN,d; + N, (4ds +2) | KUMN, + > (MN,)""| . (7.34)
r=1
Ur +£0
\ 7 )

7.5.3 The FCSD Algorithm

The FCSD algorithm visits (M N,)% nodes at the first tree-search level, where each node
costs (Ny(4ds+2) — R—2) and N, (4ds+ 2) real additions and multiplications, respectively.
Then, for the rest of R — 1 levels, the FCSD algorithm visits a fixed number of nodes at
each level according to p,.. Thus, the required number of real additions and multiplications,

AddFP) and MulFSP), respectively, of the FCSD algorithm are given by

R
AddFED) = R (2N,d; — 1)+(N, (4d; +2) — R —2) ((MNt)df + Z pr—1 (MN)Y" |,
r=2

(7.35)

and

r=2

R
Mu](FCSD) — 2RN,d; + N, (4d; + 2) ((MNt)df + Zp"”_l (MNt)U’") . (7.36)

7.6 Simulation Results and Discussions

In this section, the proposed decoding algorithms and conventional MPA decoder in [28]

are assessed using Monte-Carlo simulations for the SM-SCMA system. The assessment
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includes the study of parameters sensitivity for the proposed algorithms, BER performance
and decoding complexity comparisons. The Rayleigh fading channel coefficients between
the transmit and receive antennas for all users are assumed to be perfectly known at the
receiver side. An SM-SCMA system of six users that share four OREs based on (7.4) or
(7.6) is considered for the assessment (i.e., U = 6, R = 4, d; = 3 and d,, = 2). Two user
spectral efficiencies based on (7.1) are considered in the results: 1, = 3 bpcu (/V; = 4 and
M = 2) and i, = 4 bpcu (N; = 4 and M = 4), and the M-QAM scheme is used in the
simulations.

Three MIMO scenarios are studied for each user spectral efficiency: under-determined
MIMO system (e.g., N, = 2), determined MIMO system (e.g., IV, = 4) and over-determined
MIMO system (e.g., IV, = 6). Thus, there are six scenarios within the scope of this chapter
(i.e., three MIMO scenarios for each of the two user spectral efficiencies). It is worth noting
that the BER performance of the conventional MPA decoder for the SM-SCMA converges
after five iterations (i.e., K = 5) for the considered six scenarios. The following simulation

results are obtained by running at least 10° independent realizations.

7.6.1 Parameters Sensitivity

In this subsection, the effect of some parameters used with the proposed algorithms is studied.
First, the convergence behavior of the BER performance for the proposed MSUD algorithm
is provided. Finally, the sensitivity of choosing +, (or p,) across the tree-search level for the

proposed FCSD algorithm is included.

Convergence of the MSUD Algorithm

As mentioned in Section 7.4, the proposed MSUD algorithm is iterative. Thus, after a certain

number of iterations, the MSUD algorithm no longer improves the BER performance, a
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Fig. 7.3: Convergence of the proposed MSUD decoder for N, x 4 MIMO SM-SCMA
system.
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point called the convergence of the MSUD algorithm. In Fig. 7.3, the convergence of the
proposed MSUD algorithm is depicted for all six scenarios. For different SNR values (e.g.,
2.5,5,7.5,10 and 12.5 dB), the BER performance of the MSUD algorithm is evaluated for a
different number of iterations, K. As seen in Fig. 7.3, the BER performance converges to a
particular value after four iterations (i.e., K = 4) for all six scenarios. Consequently, the

proposed MSUD algorithm requires a few numbers of iterations to converge.

Pruned Radius Sensitivity of the FCSD Algorithm

As seen from (7.27), as -, increases, the probability of not missing the optimal solution (i.e.,
MPA solution) increases. The question that arises is which level has a significant effect on
the probability in (7.27). To answer this question, let us define the number of misses (NoM)
as the number of times that the FCSD algorithm misses the MPA solution. The NoM can
be used as an indicator to study the effect of selecting -, at each level, taking into account
that a small value of the NoM is a good indicator and vice versa. Thus, the NoM can be

formulated as

U
NoM =E {Z P ({&v, 1"} |rcsp # {€%,73:"} |MPA)} , (7.37)
u=1

where P(.) in (7.37) equals 1 or 0 when the estimated messages of the u-th user using the
FCSD and MPA decoders are different or the same, respectively.

To study the effect of ~,, the FCSD algorithm with [pr pa p3] = [15 15 15 is
considered to be the baseline of this study for the three MIMO scenarios of 1, = 3 bpcu.
As depicted in Fig. 7.4, the increase of p, to 50 when p, is kept 15 provides a significant
improvement in the NoM compared to the increase of survived nodes in the first level (i.e.,
p1 = 15 and ps = 50 is better than p; = 50 and p, = 15). It should be noted that p3 can not

be greater than p, since both belong to SES. Therefore, to study the sensitivity between p;
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and ps, let us consider [pr pa ps] = [15 50 15] as the baseline for that comparison.
As shown in Fig. 7.4, the third level provides a noticeable improvement in NoM when
extra nodes are considered at that level instead of the first level. Consequently, increasing
the number of survived nodes at the SES levels is more effective than at the FES levels.
By taking an in-depth look at Fig. 7.4, one can observe that the increase in the number of
survived nodes at the second level provides better NoM improvements, compared to the
increase in the number of survived nodes at any other level. The reason is that only part of
users share the upper levels of FES; thus, the distance metric nodes at these levels do not
represent all users. On the other hand, the nodes at lower levels include the distance metrics
of all users, which significantly affects the BER performance.

Fig. 7.5 shows the sensitivity of p, in terms of NoM for 7,, = 4 bpcu. In these scenarios,
the FCSD algorithm with [pr p2 p3] = [30 30 30| is considered. As discussed for
M = 3 bpeu, py provides significant improvements in the NoM. On the other hand, p, and
ps provide almost the same improvements for the three scenarios depicted in Fig. 7.5. In
other words, there is no preference for increasing the number of survived nodes at these
two levels from the NoM perspective. However, it is preferable to increase pz rather than p;
from the decoding complexity point of view, as seen from (7.35) and (7.36). This means
that increasing ps results in a lower increase in the decoding complexity compared with the
increase of p;.

Finally, increasing the number of survived nodes at the lower tree-search levels has a
better effect on the BER performance or/and decoding complexity. It is worth noting that the
number of survived nodes at the first levels should be empirically chosen to avoid the early
dropping of the MPA solution. Empirically, the FCSD algorithm with [35 70 50] and

[110 320 300] provides near MPA BER performances (i.e., NoM close to zero) for
7w = 3 bpcu and 7, = 4 bpcu, respectively.
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7.6.2 BER Performance Assessment

In this subsection, the BER performance of the proposed decoders is compared with the
conventional MPA versus different values of SNR for all six scenarios. The proposed MSUD
algorithm and conventional MPA converges at four and five iterations, respectively (i.e.,
K =4 for MSUD and K = 5 for MPA). Moreover, K = 1 is provided for the MSUD and
MPA to highlight the improvement in the BER performance when using the value of K at
the convergence for both algorithms.

Figs. 7.6, 7.7 and 7.8 depict the BER performance of the proposed and MPA decoders
for n, = 3 bpcu in different three MIMO scenarios (i.e., N, = 2, 4 and 6). As men-
tioned in Subsection 7.6.1 and as seen from this figure, the proposed FCSD algorithm with

o1 p2 ps] = [35 70 50] provides a very similar BER performance as MPA. The

FCSD algorithm with  [5, p, ps] =[5 10 8] is depicted in these figures to show
that the FCSD can provide a flexible trade-off between the BER performance and decoding
complexity. It is also shown that the proposed SUD provides an acceptable BER performance
with a considerable degradation in the BER performance of the MPA. The MSUD with
K =1 and K = 4 both provide a considerable improvement in the SUD BER performance.

Figs. 7.9,7.10 and 7.11 show the BER performance of the proposed and MPA decoders
for i, = 4 bpcu in three different MIMO scenarios (i.e., N, = 2, 4 and 6). Here, the value
of [pr p2 psl of the proposed FCSD algorithm is modified to be [110 320 300] to
provide a very similar BER performance as MPA. Same as the findings of Figs. 7.6, 7.7 and
7.8, the SUD algorithm yields an acceptable BER performance, while the MSUD algorithm
significantly improves the BER performance of the SUD algorithm, as seen in Figs. 7.9,

7.10and 7.11.
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7.6.3 Decoding Complexity Assessment

In this subsection, the decoding complexity of the proposed and MPA decoders are compared
in terms of the required number of real additions and multiplications, based on the deduced
equations mentioned in Section 7.5.

Figs. 7.12 and 7.13 show the required number of real additions and multiplications,
respectively, for 7, = 3 bpcu for the three MIMO scenarios. On the other hand, Figs. 7.14
and 7.15 depict the required number of real additions and multiplications, respectively, for
1w = 4 bpcu for the three MIMO scenarios (i.e., N, = 2, 4 and 6). It can be inferred from
all these figures that the proposed SUD algorithm provides the lowest decoding complexity
and is significantly low when compared with the MPA and FCSD algorithms. The proposed
MSUD algorithm slightly increases the decoding complexity compared with the SUD
algorithm; however, its decoding complexity is still very low when compared with the MPA.
Finally, although the complexity of the FCSD algorithm is higher when compared with the
SUD and MSUD algorithms, it is still significantly lower when compared with MPA.

7.7 Conclusions

This chapter proposes three different low-complexity decoding algorithms for the SM-SCMA
system. The proposed SUD algorithm is a non-iterative algorithm that provides a benchmark
for the decoding complexity at the expense of the BER performance which is still acceptable
for some practical applications. The degradation of its BER performance comes from using
only some of the available OREs in estimating the users messages. The proposed MSUD
algorithm is an iterative algorithm that considerably improves the BER performance of
the SUD algorithm, with the cost of a slight increase in the decoding complexity. The
MSUD algorithm uses all available OREs to decode the users messages. The proposed

FCSD algorithm provides a close BER performance as MPA with a considerable reduction
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Fig. 7.4: NoM of different values of p, for n,, = 3 bpcu.

in the decoding complexity. Moreover, the FCSD provides a flexible trade-off between
the BER performance and decoding complexity. Unlike the MPA, the proposed FCSD
algorithm supports parallel hardware implementation. These proposed algorithms can
fit a wide range of practical applications with specific requirements for both operation
and hardware implementation. The mathematical formulation, complexity analysis for all

proposed algorithms, and simulation results are provided to support these findings.
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Fig. 7.6: BER performance comparison of 2 x 4 MIMO with M = 2 (i.e., n, = 3 bpcu).
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Fig. 7.9: BER performance comparison of 2 x 4 MIMO with M = 4 (i.e., n, = 4 bpcu).

Fig. 7.10: BER performance comparison of 4 x 4 MIMO with M = 4 (i.e., 5, = 4 bpcu).
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Chapter 8

Conclusions and Potential Directions of

Future Investigation

In this final chapter, I summarize the contributions presented in this thesis and discuss several

potential future directions of investigation.

8.1 Conclusions

In this work, the focus was on designing efficient schemes for future wireless technologies,
such as SM and QSM in single-user, and SM-SCMA in multi-user scenarios. Most of the
proposed designs provide the optimum BER performance. In Chapter 2, a low-complexity
decoding algorithm for square QSM single-user MIMO was proposed, which significantly
reduces the decoding complexity of the ML decoder with no loss in the optimal BER perfor-
mance. A further reduction in the decoding complexity with optimum BER performance
was proposed in Chapter 3 for general QSM and SM single-user MIMO system. Chapter
4 provided further analysis of the algorithm proposed in Chapter 3 in terms of expected

decoding complexity and the behavior of the algorithm for perfect and imperfect channel
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state information at the receiver side. Furthermore, a novel reliable algorithm to decode
single-user SM transmitted messages was proposed in Chapter 5. The BER performance and
complexity of the proposed algorithm were theoretically derived. The proposed algorithm
provides a significant reduction in the decoding complexity compared to ML, without sacri-
ficing the BER performance. Moreover, a flexible trade-off between the BER performance
and complexity was presented to demonstrate the reliability of the proposed algorithm.

A low-cost multi-user SM MIMO system was proposed in Chapter 6 with the aid of the
SCMA technique. This proposed system requires a smaller number of the transmit antenna
with almost no additional detriments to the BER performance or decoding complexity when
compared with the conventional SM-SCMA. Moreover, three low-complexity decoding
algorithms were proposed in Chapter 7 for the SM-SCMA system. The first algorithm
can be considered the benchmark for the decoding complexity at the expense of the BER
performance, which is still acceptable for some practical applications. The second algo-
rithm improves the BER performance of the first algorithm with the added cost of slightly
increased decoding complexity. Finally, the third algorithm not only provides the optimal
BER performance with a significant reduction in the decoding complexity, but also provides
a flexible trade-off between BER and complexity. These algorithms can fit a wide range of
practical applications with specific requirements for both operation and hardware implemen-
tation. The mathematical formulation, complexity analysis for all proposed algorithms, and

simulation results were provided to support these findings.

8.2 Potential Directions of Future Investigation

The work presented in this thesis opens the door for future investigations, among which I list

the following:

e Machine learning methods can be applied to the single-user SM-MIMO system. Neural
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networks should be a suitable option, as they can approximate any function when the
dataset size is sufficiently large. The number of layers and neurons for each layer
should be investigated according to the given problem, such as system size and target

BER performance.

e Since the multi-user SM-SCMA system is a promising technique proposed very
recently, more investigations should be performed on it, such as evaluating the system

under diverse transmission environments.

e Novel schemes may be proposed for the SM-SCMA system to enhance the functional-

ity of the transmitter and/or receiver.

e Low-complexity receivers may be explored for the SM-SCMA system for further

reduction in the decoding complexity, while taking into account the BER performance.

e Machine learning models may be studied for the SM-SCMA system to reduce its

decoding complexity.

In conclusion, more investigations can be done regarding reducing the decoding complexity
of the SM-MIMO and SM-SCMA systems. The neural network approach should be one of

the avenues to be considered in these investigations.
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