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Abstract 

Global climate change is happening now, and the average temperature of Earth is rising. 

Several evidences show that one of the main reasons for global warming is the increased 

concentration of greenhouse gases (GHGs) in the atmosphere, particularly carbon dioxide 

(CO2). CO2 is mostly producing from burning fossil fuels. One of the effective strategies to 

reduce CO2 emissions is implementing carbon capture in fossil fuel power plants. Current post-

combustion carbon capture techniques typically employ amine-based solvents, such as 

monoethanolamine (MEA), for the absorption of CO2. Although alkanol amines have an 

acceptable absorption capacity, their high vapor pressure, solvent loss during desorption, and 

high corrosion rate make amines absorption plants energy-intensive. In recent years, Ionic 

Liquids (ILs) have been emerged as promising alternative solvents for physisorption and 

chemisorption of acid gases due to their unique physiochemical properties, including 

negligible vapor pressure, high thermal stability, tunability, and being environmentally safe. 

ILs require to be screened based on technical, economical, and environmental aspects. The 

main challenges of using ILs are increasing CO2 capture capacity of ILs, and detailed 

understanding of the diffusivity of CO2 in ILs, the effect of additives in solubility, selectivity 

features of ILs, phase behavior of gas-IL systems, and absorption mechanism. These 

challenges can be addressed using either experiment, thermodynamic modeling, and/or 

molecular simulations. In this study, the potential of the screened imidazolium-based ILs is 

investigated using thermodynamic modeling. The extended Peng–Robinson (PR) and 

Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) EOSs are implemented to 

evaluate the solubility and selectivity of CO2 in pure ILs and their mixture with water and 

toluene. The effects of water and toluene on solubility and viscosity of ILs are investigated.  
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Low concentrations of water (< 1 wt%) do not affect solubility; however, with increasing water 

concentration, the solubility of CO2 is decreased.  On the other hand, with increasing water 

content, the IL viscosity significantly decreases, which is in the favor of using viscous ILs for 

CO2 separation.  

In this thesis, Molecular Dynamics (MD) simulation is performed to determine the properties 

of ILs ([Bmim][BF4] and [Bmim][Ac]), their structures, and molecular dynamics. A great 

agreement is noticed between the density and viscosity of the studied ILs from MD simulations 

and experimental data, indicating the accuracy of our simulation runs.  This study also includes 

the effect of temperature and anion type on the structuring of ions and their self-diffusivities. 

Bulk systems of ILs and CO2 are studied to evaluate the influence of temperature and types of 

ions on the diffusivity of CO2 in the solvent as well as structural characteristics. A 

comprehensive analysis of the characteristics of the interface of IL/CO2 is performed to explore 

species distribution, gas behavior at the interface, and molecule orientation. At the interface, 

CO2 creates a dense layer which interrupts the association of cations and anions, leading to a 

decrease in the surface tension.  

In addition, a comprehensive study on hydrophilic IL, 1-Butyl-3-methylimidazolium acetate 

or [Bmim][Ac], is conducted to evaluate the thermophysical properties, excess energy, 

structure, and dynamic characteristics of IL/Water and IL/Water/CO2 systems, using MD 

simulation approach. The effect of water on radial distribution functions, coordination 

numbers, water clusters, hydrogen bonding, and diffusivity coefficients of the ions is assessed. 

The presence of water in IL mixture, even at high concentrations of water (>0.8 mole fraction), 

increases the diffusivity of cation, anion, water, and CO2 molecules in the mixture due to 
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hydrophilicity of [Bmim][Ac] IL. MD simulations generate reliable and accurate results while 

dealing with systems including water, CO2, and IL for carbon capture. 

 In this thesis, novel and robust computational approaches are also introduced to estimate the 

solubility of CO2 in a large number of ILs within a wide range of temperatures and pressures. 

Four connectionist tools- Least Square Support Vector Machine (LSSVM), Decision Tree 

(DT), Random Forest (RF), and Multilinear Regression (MLR)- are employed to obtain CO2 

solubility in a variety of ILs based on thermodynamic properties and Quantitative Structure-

Activity Relationship (QSPR) model. Among different types of descriptors, the most important 

input variables (e.g., Chi_G/D 3D and Homo/Lumo fraction (anion); SpMax_RG and Disps 

(cation)) are selected using Genetic Algorithm (GA)-MLR method. A great agreement between 

the predicted values and experimental measurements is attained while using RF and DT 

techniques developed based on descriptors and thermodynamics properties. The structural 

descriptors-based models are more accurate and robust than those built on critical properties.  
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1.1.  Motivation 

The dramatic climate change occurring around the world has been mostly attributed to 

accumulating CO2 emissions in the atmosphere.  CO2 concentration increases mainly due to the 

use of fossil fuels. Although renewable energies are an appropriate alternative for fossil fuels, it is 

inevitable to remove fossil fuels due to their uses such as producing petroleum compounds and 

generating energy demands of the world. One of the methods to overcome climate change is 

retrofitting already operating fossil fuel power plants with Carbon Capture and Storage (CCS) 

systems. The primary idea of carbon capture is to separate CO2 and acid gases (before emitting 

gases to the atmosphere) and then compress them for various utilizations such as underground 

storage and enhanced oil recovery.  Carbon capture methods still require research and development 

to find a cost-effective, reliable, and safe technique.  

CO2 capture processes include three categories: post-combustion, oxy-combustion, and pre-

combustion. The post-combustion carbon capture as the most promising and efficient method is 

currently implemented in some countries around the world. The most common applied post-

combustion method is physically and/or chemically absorption and adsorption of CO2. The 

captured CO2 can be utilized in producing fuels (and chemicals), urea, carbonated beverages, 

polymers, and mineralization. Hence, absorption or adsorption of CO2, while expensive, is 

profitable. The most commercialized solvents to capture CO2 are amine-based solvents such as 

monoethanolamine (MEA). Amines are a popular choice of absorption due to high CO2 absorption 

capacity, quick reaction with CO2, and being relatively cheap. Besides these advantages, there are 

some drawbacks allied with them such as high vapor pressure, being corrosive, forming 

degradation products, and energy-intensive during the regeneration process. Thus, there is a need 

to find alternative techniques to overcome high energy consumption, high vapor pressure; the 
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alternatives should be also environmentally safe and non-corrosive.  Ionic Liquids (ILs) have been 

recently proposed as a potential alternative solvent to amines. ILs are molten salts consisting of 

ions which are liquid at room temperatures. They have a very low vapor pressure, which makes 

them a safe absorbent without releasing to the atmosphere. An important feature of ILs is their 

tenability, means that their properties (e.g., density, viscosity, hydrophilicity, hydrophobicity, 

polar and quadrupole molecules affinity, and hydrogen bonding capability) can be tuned by 

varying the type of ions, and their structure by adding functionalized groups, to obtain a desirable 

solvent for various applications. 

Numerous studies have evaluated the applications of ILs in selectively separating CO2 with some 

promising outcomes based on preliminary results [3-5]. This research field still requires more 

experimental and modeling works on screening ILs, designing more efficient ILs, reducing the 

cost of synthesis, determining their properties in various mixtures, adjusting with more industrial 

applications, and further understanding of their detailed mechanism and dynamics of absorption. 

To accomplish the current knowledge gaps in this area, we propose studying CO2 capture with ILs. 

The goals of this research are to characterize and assess the thermodynamic and molecular 

behaviors of CO2 in IL and IL/Water mixtures to address some of the most fundamental challenges 

of the CO2 absorption method. 

1.2.  Problem statement  

The main technical obstacles for using ILs as an absorbent of CO2 (in flue gases) in the real cases 

are as follows: 

1. The solubility of CO2 in some of ILs is studied; however, due to the large number of ILs, 

it is time-consuming and expensive to perform experiments on all the ILs for solubility 
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determination. Thermodynamic modeling is an appropriate method to characterize phase 

behavior of CO2 and IL systems without conducting experimental tests at different 

operating conditions. There are challenges with selecting an appropriate EOS and mixing 

rules to be applicable for a wide range of ILs and complex systems such as IL/Water/CO2 

systems. Inappropriate models result in significant errors while predicting thermodynamic 

properties. 

2. The primary concern associated with using ILs is their higher viscosity, compared to 

commercial solvents. The viscosity of ILs, which is vital in physisorption, can vary 

significantly by the type of cations and anions, the alkyl chain length of cation, and addition 

of other solvents such as water or other organic solvents. The properties and performance 

of ILs with a chemisorption mechanism strongly depend on the type of reaction happening 

between gas and solvent, the rate of reaction, and the diffusivity of CO2 in the solvent. The 

magnitude of CO2 diffusivity can be altered in ILs by additives and operating conditions. 

This challenge requires comprehensive studies. 

3. Designing tunable ILs needs deep knowledge of transport phenomena mechanisms, 

chemical (and molecular) structures, and molecular dynamics of IL systems. The 

orientation of gases at the interface of ILs (and their mixtures) is still unclear. Molecular 

dynamics simulation can help to determine a considerable number of important 

thermodynamic and molecular properties. The influences of water, aggregation of 

molecules, operating conditions (temperature and pressure), structuring in bulk and 

interface, surface tension, and dynamics of CO2 and ions can be investigated while dealing 

with pure ILs and their mixture with other solvents.  
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4. Fast and reliable deterministic (and screening) methods are required to study acid gases 

solubility in ILs, due to the high number of ILs, and expensive and laborious experiments. 

A robust and generalized model should be able to calculate the solubility of gases in ILs, 

and physiochemical properties with considering structural features of ILs. 

In this thesis, we address the above concerns to facilitate the application of ILs in the absorption 

of gases at different processes and thermodynamic conditions. 

 

1.3.  Thesis structure 

This thesis consists of seven chapters as follows: 

Chapter 1 presents the motivation of the study, problem statement, and also provides the structure 

of the thesis. 

Chapter 2 provides a comprehensive literature review on CO2 capture using ILs method and 

fundamental concepts on absorption and properties (physical and chemical) which are required to 

evaluate the properties of ILs and their mixture with water, and interactions between species, and 

to design tunable ILs in the absorption processes. Chapter 2 is in the form of a review article that 

has been published in the Journal of Renewable and Sustainable Reviews. 

Chapter 3 has been published in the Journal of Molecular Liquids. This chapter describes Vapor-

Liquid Equilibrium (VLE) of the screened ILs, and IL/Water, and IL/Toluene systems; the 

accuracy performance of PR and PC-SAFT EOSs is also compared. It includes the solubility of 

CO2 in ILs, the effect of water concentration on viscosity and solubility, and the selectivity of ILs 

in separating CO2. 
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Chapter 4 has been published to the Journal of Molecular Liquids; it discusses the properties of 

pure [Bmim][BF4] and [Bmim][Ac] ILs, CO2 diffusivity in ILs, and structuring of different species 

in the mixture.  

Chapter 5 has been accepted for publication in the Journal of Physical Chemistry B.  It includes 

the influence of water on the diffusivity of ions and CO2 in hydrophilic [bmim][Ac] IL. It evaluates 

the diffusivity coefficients, excess enthalpy, excess molar volume, and structuring order of species 

in the systems. 

Chapter 6 introduces the developed smart models for the prediction of CO2 solubility in ILs. It is 

prepared in the form of a manuscript that is now accepted for publication in the Journal of Fuel. 

Chapter 7 contains a summary, conclusions, and recommendations for future work.  
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2. CHAPTER TWO 

 

 

Literature Review (A Systematic Review on CO2 Capture with Ionic Liquids: 

Current Status and Future Prospects) 

Preface  

A version of this chapter has been published in the Journal of Renewable and Sustainable Energy 

Reviews 96, 502-525 (2018). I am the primary author of this paper. Along with the co-authors, 

Sohrab Zendehboudi and Nima Rezaei. I carried out most of the literature review, data collection 

and the comparison of different carbon capture methods. I prepared the first draft of the manuscript 

and subsequently revised the manuscript based on the co-authors’ feedback as well as the 

comments received from the peer-review process. The co-author, Nima Rezaei, helped in 

reviewing and revising the manuscript. The co-author, Sohrab Zendehboudi, contributed through 

providing the manuscript’s outlines, comments on various parts of the manuscript, and technical 

points/critiques on previous works in the related field. Sohrab Zendehboudi also assisted in 

reviewing and revising the manuscript. 
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Abstract 

Global warming due to the emission of greenhouse gases, especially carbon dioxide (CO2), has a 

significant effect on climate change and has become a widespread concern in recent years. Carbon 

capture, utilization, and sequestration (CCUS) strategy appear to be effective to decrease the 

carbon dioxide level in the atmosphere. Despite great progress in this field, there are still major 

limitations in commercialized CO2 capture methods through absorption processes. The high capital 

cost for CO2 capture, low absorption and desorption rates (which requires large facilities), solvent 

loss due to evaporation, and the corrosive nature of the used solvents are the main limitations. 

Recently, CO2 capture with ionic liquids (ILs) has appreciably attracted researchers’ attention. The 

distinct properties of ILs such as negligible vapor pressure and their affinity towards CO2 

molecules make them a feasible alternative for currently available solvents including amines.  

This chapter covers a brief of previous works on CO2 capture, the description of CO2 capture 

process using ILs, mechanisms of CO2 capture with ILs at molecular and atomic levels, CO2 and 

ILs properties, characterization of the CO2/IL systems, impacts of operating and fluids conditions 

on CO2 absorption capacity by ILs, and CO2 solubility and selectivity in ILs. Moreover, the 

technical and economic aspects of the CO2 capture with ILs, screening criteria for ILs/CO2 

systems, and important results obtained from previous studies will form the last parts of this 

chapter. This review offers a proper/systematic guideline that assists researchers and engineers to 

comprehensively understand and to effectively design the CO2/ILs processes, focusing on 

thermodynamic and mass transfer aspects. 
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2.1.  Introduction 

It is believed that global warming mainly results from greenhouse gases (water vapor, carbon 

dioxide, methane, and nitrous oxide) which are trapping the heat in the Earth’s atmosphere. Carbon 

dioxide (CO2), which remains longer than other gases in the atmosphere, is more responsible 

for global warming and climate changes [6]. Carbon dioxide is naturally produced and consumed 

in the carbon cycle. As humans are currently consuming the long-buried carbons in the forms of 

fossil fuels and coal in significant amounts, excessive carbon is released in the atmosphere. On the 

other hand, the oceans (as a natural absorbent of CO2) are not able to absorb all emitted carbon 

dioxide from the atmosphere [7].  

Intergovernmental Panel on Climate Change (IPCC) report shows that about 79% of total CO2 

emissions come from fossil fuels and minerals that are being used for power generation [8]. Coal 

power plants (operated by natural gas and oil) with 60% of total CO2 emissions have a great 

contribution to global warming [3,4]. Hence, removing the carbon dioxide from flue gases 

produced by power plants can effectively decrease the carbon level in the Earth’s atmosphere. The 

production, processing, and utilization of fossil fuel sources such as oil, coal, and natural gases 

undoubtedly will continue. Thus, it seems necessary to use them as clean as feasible through 

employing effective strategies for carbon and other pollutants reduction. Carbon capture, 

utilization, and storage (CCUS) is an emerging method that helps to better manage CO2 

concentration through various techniques such as capturing carbon, sequestration, or/and turning 

it to useful chemicals [9, 10]. 

Carbon capture processes, in general, are divided into three main categories including pre-

combustion, post-combustion, and oxy-combustion. In the post-combustion and oxy-combustion 

methods, the fuel is burned with air and oxygen, respectively. The heat released in these methods 
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is used to generate electricity. The main difference between the post-combustion and oxy-

combustion processes is the composition of the flue-gas. In the latter technique, the flue-gas 

contains highly concentrated CO2 which seems suitable for underground storage. However, in the 

post-combustion method, further stages/process units are required to capture the carbon from the 

flue-gas [11]. 

The pre-combustion method is associated with the integrated gasification combined cycle (IGCC). 

In the pre-combustion, the fuel is gasified to produce syngas [12]. The syngas, which contains CO 

and H2, is utilized as a feed for the water-gas-shift reactors. In the presence of steam, CO is 

converted to CO2 and H2. CO2 is then captured from the outlet stream and H2 is combusted to 

generate the energy. Post-combustion is easier to be implemented as a retrofit option in the existing 

power plants, compared to the other two approaches [11]. In other words, pre-combustion and oxy-

combustion methods can only be applied in new power plants [13].  

As illustrated in Figure 2-1, the post-combustion carbon capture technique is divided into several 

main subcategories such as absorption, microbial (algal), adsorption, membrane, and cryogenics. 

Among these techniques, absorption is more popular and is widely employed in the commercial 

post-combustion CO2 capture plants. In this method, the flue-gas in the tall columns or towers 

(known as absorbers) is in contact with the solvent which captures CO2 from the flue-gas. The rate 

of CO2 absorption with solvent is a crucial parameter in the chemical absorption processes.  High 

absorption rate not only can reduce the capital costs of CO2 capturing, but is also considered as an 

asset for an absorption process to be operated at the industrial scale [14, 15]. Figure 2-2 also 

illustrates a simple schematic of CO2 absorption and desorption columns in a typical carbon 

capture plant.   
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Figure 2-1: Diagram of main carbon separation/capture methods in the post-combustion category 

(modified after [16]);[MOFs: metal-organic frameworks; PDMS: polydimethylsiloxane; PPO: 

polyphenyleneoxide; PP: polypropylene]. 

 

 

Figure 2-2: Schematic figure of absorption/desorption columns in a CO2 capture process (modified after 

[17])Various solvents in the chemical absorption of CO2 capture processes have been introduced [18].  

 

Amines due to their high reactivity with CO2 molecules, high thermal stability, and high absorption 

capacity are widely used as the absorbent for carbon capture operations [19]. Among all amine 
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groups, monoethanolamine (MEA), tertiary amines such as methyl diethanolamine (MDEA), and 

sterically hindered amines such as 2-amino-2-methyl-1-propanol (AMP) are the common 

absorbents for CO2 capture systems [20]. Application of amines faces several drawbacks, 

including, high construction cost, high equipment corrosion rate, and amine degradation by SO2, 

NO2, and O2 in the flue-gases which induces a high absorbent make-up rate and high energy 

consumption during high-temperature absorbent regeneration processes where large equipment are 

required [21]. These disadvantages are linked with the inherent properties of amines which have 

high vapor pressures, corrosive nature, and high energy contribution for regeneration [3]. Several 

research studies have been conducted to replace amines with superior solvents which have lower 

volatility, better thermal stability, lower corrosive characteristic, lower degradation rate, and lower 

regeneration cost [12-15]. Recently, Ionic Liquids (ILs) have been proposed as a potential 

replacement solvent for amines in the carbon capture processes [22]. The general properties of a 

majority of ILs are listed in Table 2-1 [23]. 

Table 2-1: General properties of ionic liquids [23]. 

Property General characters 

Salt ions large cations and anions 

Freezing temperature  < 100°C 

Liquidous temperature > 200°C 

Thermal stability high 

Viscosity < 100 cP, workable 

Dielectric constant < 30 

Polarity moderate 

Specific conductivity < 10 mS/cm, good 

Vapor pressure negligible 

As a solvent strong 

As a catalyst excellent (for organic reactions) 

 

Strong ion-ion interactions for ILs (compared to other common intermolecular forces such as 

London forces and ion-dipole interactions in organic solvents) lead to negligible evaporation at the 
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ambient conditions [24]. Other appealing properties of ILs are their high thermal stability, large 

electrochemical window, and their ability to dissolve compounds with various polarities [25]. 

Furthermore, the physical and chemical properties of ILs can be adjusted by altering the cation 

and anion parts to make them suitable for particular applications [26]. From the environmental 

point of view, ILs are inflammable, non-volatile, and recyclable which make them environmentally 

friendly, compared to other chemicals such as amines [4, 27].  

In a research work by Blanchard et al. [28] reported that CO2 gas can be considerably dissolved 

into certain ILs. Since then, there is a growing interest in exploring and understanding the solubility 

of various gases in ILs [13, 22, 23].  

A drawback of using ILs for CO2 capture is their high viscosity due to their complex synthesis and 

purification processes. ILs have a higher viscosity, compared to conventional solvents [29]. This 

character makes them less suitable for industrial CO2 capture since the rate, at which the CO2 is 

absorbed by ILs, is much slower. Solvents that have a lower viscosity tend to be more favorable 

for this separation purpose as the pumping costs are lower and the mass transfer rates are normally 

higher [30]. According to Krupiczka et al. [31], the viscosity of ILs can be modified by using a 

proper combination of cations and anions. The cation has generally a lower impact on ILs 

properties than the anion. With increasing the alkyl chain of cations, the viscosity of ILs increases. 

The effect of anion on viscosity in imidazolium-based ILs is reported as [bmim][NTf2] < 

[bmim][CF3SO3] < [bmim][BF4] < [bmim][PF6]. The viscosity of ILs also changes by adding a 

co-solvent. The effect of co-solvent in decreasing viscosity depends on the solvent polarity and 

the extent of dissociation of ILs into ions. Polar solvents such as water lower the viscosity more 

than nonpolar solvents, including, benzene and toluene.   
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Conventional ILs capture the carbon through a physical absorption mechanism. Although 

adjusting cations/anions in the ILs can enhance the solubility of CO2 in conventional ILs, 

compared to the current commercial carbon capture technologies such as amine-based solvents, 

their CO2 capture capacity is still low [32]. A comprehensive understanding of molecular 

structure/interactions and accurate determination of thermodynamic and physical characters such 

as solubility, vapor-liquid equilibria (VLE), liquid-liquid equilibria (LLE), selectivity, density, and 

viscosity are necessary to employ appropriate ILs in different applications/cases. To use ILs in gas 

separation processes, it is required to understand the phase behavior of ILs/gas systems. A well-

developed methodology to obtain phase equilibrium conditions is thermodynamic modeling using 

appropriate equations of state (EOS). A large number of research works have focused on the 

solubility of gases in common imidazolium-based ILs with [BF4]- and [PF6]
- anions [26-28]. 

Karakastani et al. [33] predicted the solubility of CO2 in some ILs through employing perturbed 

chain-statistical associating fluid theory (PC-SAFT) EOS where they considered the quadrupole 

interactions between CO2 molecules, dipolar interactions between ionic liquid (IL) molecules, and 

the Lewis acid−base type of association between the IL and CO2.  They found a great agreement 

between the modeling results and experimental data at pressures 0-100 MPa. Shiftlet et al. [34, 35] 

utilized the most popular EOSs including Redlich–Kwong (RK), Soave-Redlich-Kwong (SRK), 

van der Waals (vdW), and Peng-Robinson (PR) with proper mixing rules for multi-component 

mixtures. They concluded that the experimental solubility data of CO2, SO2, CF3-CFH2, and NH3 

in ILs are well correlated with the cubic (modified) EOSs. Andrew et al. [36] examined Soft-SAFT 

EOS ability to estimate the solubility of CO2 in [Cn-mim][NTf2] using one binary parameter, 

resulting in a good match with the experimental data. Chen et al. [11] checked the competence of 

PC-SAFT with and without associating parameters in determining the solubility of CO2 in 
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imidazolium-based ILs where the temperature-dependent binary interaction parameters were taken 

into account. The results revealed that PC-SAFT can acceptably forecast the solubility so that the 

modeling results were very close to the experimental data. It was also found that PC-SAFT with 

the associating parameters describes VLE more precise, compared to that without the associating 

parameters. 

The solubility of gases in ILs can be increased by extending the interface area of gas/ILs systems 

and by increasing the operating pressure. Maginn et al. [22] examined the solubility of nine 

different gases into [bmim][PF6] IL and found out that water and CO2 have strong interactions. 

CO2 in ILs exhibits higher solubility, compared to solubility of ethylene, ethane, methane, carbon 

monoxide, hydrogen, and nitrogen in ILs. Argon and oxygen have also very low solubility in ILs. 

They also reported Henry’s law constants of gases in ILs. The gas solubility can be explained 

based on the interactions of the molecules in terms of polarizability and dipole and quadrupole 

moments between the gas and solvent molecules. It should be noted that the mixing enthalpy and 

entropy can also indicate the strength of interactions between CO2 and ILs. Yokozeki et al. [5] 

successfully correlated the experimental solubility of CO2 in 18 ILs to fluids properties and 

operating conditions through using Redlich-Kwong equation of state (RK-EOS). In addition, they 

presented the data in terms of excess functions (excess Gibbs, GE; excess enthalpy, HE; and excess 

entropy SE). Depending on the magnitudes of these excess functions, the CO2 absorption might be 

a chemical or physical process. 

The thermodynamic behaviors of CO2/ILs systems such as physical and chemical properties, phase 

equilibrium of CO2/ILs mixtures, and solubility and selectivity of CO2 in ILs should be properly 

investigated. A suitable equation of state (EOS) and mixing rules are required to accurately model 

the thermodynamic behaviors of CO2 and IL systems. A part of the common EOSs for research 
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investigations in this area are PR EOS, RK EOS [37], SRK EOS [38], Predictive Peng-Robinson 

EOS, Peng-Robinson-Stryjek-Vera EOS, Sanchez-Lacombe EOS [39], PC-SAFT EOS, extended 

PC-SAFT (PC-PSAFT) EOS, and truncated PC-PSAFT EOS [40]. The solubility of CO2 in most 

of ILs are not determined yet since a majority of the previous studies have assessed the solubility 

of CO2 in common imidazolium-based ILs [5,14,30]. Thus, modified versions of various EOSs 

need to be utilized to obtain the solubility of CO2 in phosphonium, pyridinium, ammonium, and 

gauinidium-based ILs. 

In this chapter, CO2 capture using ILs is briefly described in terms of mechanisms, advantages, 

and disadvantages. The past research works in this research field are discussed and their main 

findings are reported. Comprehensive information on the properties and thermodynamic behaviors 

of CO2, ILs, and CO2/ILs systems are also provided. The last sections summarize the practical, 

economic, and theoretical aspects of CO2 capture with ILs. 

2.2.  CO2 emissions: sources and statistical data 

Global greenhouse gas (GHG) emissions are mainly due to human activities, including fossil fuel 

burning, deforestation, and industrial processes. Among different sources of GHG emissions, the 

energy sector has the largest contribution [39,40]. The other shares come from agriculture, 

industrial processes, and solid biomass burning for the generation of heat and energy. Due to 

economic growth and population increase, the energy demand is increasing. Global total primary 

energy supply has increased by 150 % from 1971 to 2014 [39]. CO2 has the largest share of 

anthropogenic GHG emissions. The growing world energy demand is mainly responsible for 

increasing CO2 emissions. In 2014, global CO2 emissions reached 32.4 Gt CO2, of which 82 % 

comes from the energy sector, mainly due to the burning of fossil fuels. Among the fossil fuels, 

34 % is from oil, 46 % from coal, 19 % from gas fuels, and the remaining 1 % has been resulted 
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from nuclear, hydro, geothermal, solar, wind, biofuels energies and waste [41]. Global GHG 

emissions from various sectors and world CO2 emissions from fuel combustion are depicted in 

Figure 2-3: Schematic plot of (a) shares of global anthropogenic GHG emissions and (b) world CO2 

emissions from fuel combustion by sector in 2014 (modified after [42]) Electricity and heat generation, 

and transportation together are two major sectors, producing about two-thirds of the global CO2 

emissions from fuel combustion. A significant extent of the GHG emissions in heat and electricity 

generation is from coal, while road transportation is responsible for most of the CO2 emissions in 

the transportation sector. 

 

(a) 
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(b) 

Figure 2-3: Schematic plot of (a) shares of global anthropogenic GHG emissions and (b) world CO2 

emissions from fuel combustion by sector in 2014 (modified after [42]). 

In the atmosphere, the average volume concentration of CO2 is about 385 ppm (or, 582 ppm by 

mass); the total mass of CO2 in the atmosphere is therefore about 3.0×1015 kg [36,37]. The 

concentration of CO2 varies by season, geographical region, and human-induced activities that 

produce carbon [43].  Figure 2-4 demonstrates the CO2 emissions by sectors in the period of 1971 

to 2014 [42, 44]. According to Figure 2-4, global carbon emissions from fossil fuels have been 

increased by about 90% since 1971. The carbon emissions from all sectors have exhibited a 

considerable increase from 1971 to 2014. In 2016, the annual rate of CO2 emissions increased from 

3.2 ppm at the beginning of 2016 to 3.6 ppm towards the end [45]. 

The total carbon dioxide emitted by region in 2014 is illustrated in Figure 2-5. China has the 

highest contribution to CO2 emissions. It is clear that increasing the atmospheric carbon dioxide 

(CO2) concentration will lead to an increase in CO2 concentration in the ocean surface, because 

of the gas exchange between the air and oceans. Hence, the dissolved inorganic carbon (e.g., 
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CO2, HCO3
-, and CO3

2-) will be increased and subsequently, the pH of the ocean surface will 

decrease, resulting in ocean acidification [46].  

 

Figure 2-4: Global CO2 emissions by sector in the period 1971-2014 (modified after [42, 44]). 

 

 

Figure 2-5: Regional distribution of 2014 global CO2 emissions from fossil fuels combustion and 

industrial processes (modified after [47]). 
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2.3.  CO2 properties 

CO2 is an odorless and colorless gas at the atmospheric condition. This chemical component is 

relatively nontoxic, non-combustible, and soluble in water. Its molecular weight is 44.009 g/mol. 

The normal melting point of CO2 is -56.5 oC and its solubility in water is 2.9 g/L at 25 oC [48]. 

CO2 is also miscible with hydrocarbons and organic liquids at particular thermodynamic conditions 

[57,58]. The density of gas CO2 is 1.976 g/l at 25 oC. Its vapor pressure and viscosity are 5720 kPa 

(56.5 atm) at 20 oC and 0.01503 cP at the atmospheric condition, respectively [49]. The surface 

tension of CO2 is 0.0162 N/m at the melting point [58].  

Viscosity: The viscosity of CO2 in different conditions can be calculated using Equation (2-1), 

where it expresses ( , )T   as a summation of three terms. The first term 
0( )T  is the dilute gas 

viscosity at a given temperature, ( , )T  which is the excess viscosity which signifies the effect 

of density (or pressure) and ( , )c T   is the critical enhancement due to fluctuations near the 

critical point [50]. Equation 2-1) represents the above description in the mathematical form:  

0( , ) ( ) ( , ) ( , )cT T T T      = +  +   2-1) 

Fenghour et al. [51] proposed the following correlation to calculate the viscosity of carbon dioxide 

in dilute regions: 
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where 
0( )T  is the zero-density viscosity in sPa. , T is the temperature in Kelvin, and ( )T  

 

denotes the reduced effective cross-section, which is represented by the following empirical 

equation: 
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The reduced temperature (T*) can be calculated using the following expression: 
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where ε is the particle energy, k stands for the Boltzmann constant, and T represents the absolute 

temperature ( K
k

196.251=


).  Ai is a coefficient in Equation (2-3) which is listed in Table 2.2. 

 

 

 

 

 

Table 2-2: Coefficients used in Equation (2-3) to obtain the viscosity of CO2 at low density [51]. 

i ai 

0 0.235156 

1 -0.491266 

2 5.211155×10-2 

3 5.347906×10-2 

4 -1.537102×10-2 

 

The excess viscosity describes the behavior of viscosity change with the density outside the critical 

region as given by the following expression: 
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Where T  stands for the reduced temperature as defined by Equation (2-5) and ijd denotes a 

coefficient that is obtained through curve fitting of the excess viscosity experimental data versus 

the reduced temperature. 

Vapor Pressure: The vapor pressure of CO2 (P
sat) can be calculated using the Antoine equation 

as follows [50]:  

)(
)(log

CTC

B
AmmHgP

o

sat

+
−=  (2-6) 

where A, B, and C are the constants (For CO2: A=9.8206, B=1347.790, and C=273.00) [52].  

 

Thermodynamic Behavior and Critical Properties:  Figure 2-6 presents the pressure-

temperature diagram of CO2. As depicted in Figure 2-6, the triple point represents the temperature 

and pressure of (-56.7 °C and 5.11 atm) that three phases can coexist at the thermodynamic 

equilibrium. The critical point also corresponds to 73.8 atm and 31.1 °C [51,52].  

 

Figure 2-6: CO2 phase diagram (reprinted with permission from [53]). 
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To reasonably forecast, the thermodynamic behavior of any component or mixture through 

Equations of States (EOSs), the critical properties and acentric factor of the component/mixture 

are required. The critical properties and acentric factor of CO2 are listed in Table 2- [54]. 

Table 2-3: Critical properties of CO2 [54]. 

Critical parameter Designation/symbol Value  

Temperature Tc (K) 304.2 

Pressure Pc (bar) 73.8 

Volume Vc (cm3. mol-1) 94.0 

Acentric factor ω 0.2236 

 

2.4.  Ionic Liquids (ILs) characteristics  

Based on the molecular structure, ILs are classified into proton-donating (protic ILs (PILs)) and 

nonproton-donating (aprotic ILs (AILs)) solvents. A general molecular configuration of common 

cations and anions of ILs is shown in Figure 2-7. 

 

 
Figure 2-7: Structures of cations and anions of most common ionic liquids [55]. 
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In Table 2-, the characteristics of ILs are listed and compared to the atomic, molecular, and molten 

salts. As clear from a comparison between the physical properties of different solvents, ILs due to 

their various structures and ions have different solvent properties, compared to the atomic salts; 

however, they are similar to the polar protic liquids and molten salts in terms of physical 

characteristics. 

 

 

 

 

 

 

 

 

Table 2-4: A comparison between the physical properties of different solvents [55]. 

Parameter* 

Solvent type 

Atomic  Molecular  Molten salt  Ionic liquid 

Hg  H2O  NaCl  
PIL 

[CH3CH2NH3][NO3] 

AIL 

[C4mim][PF6] 

Tm (°C) -38.8  0  801  12 10 

Tb (°C) 356.7  100  1413  255 409 

  (g/cm3) 13.53  0.997  1.539  1.21 1.366 

  (Pa.s) 1.526×10−3  8.95×10−4  12.5×10−4  35.9×10−4 36.9×10−4 

Psat (Pa) 2.67  3173  12700  0.49 <10-2 

D×10−6 (cm2/s) 85  22.99  
Na+: 80.1 

Cl−: 63.5 
 

[CH3CH2NH3
+]: 0.158 

[NO3
−]: 0.151 

[C4mim+]: 1.5 

[PF6
−]: 1.8 

γLV (mN/m) 486.5  72.8  111.7  47.3 43.8 

κ (S/cm) 105  5.5×10−4  0.256  2.69×10−2 1.4×10−3 
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Cp (J/mol.K) 27.98  75.3  66.9  206 406 

* Tm: melting temperature; Tb: boiling temperature; ρ: density; : viscosity; Psat: vapor pressure; D: 

diffusion coefficient; γLV: interfacial tension of liquid-vapor; κ: conductivity; and Cp: specific heat 

capacity at constant pressure. 

 

Density: ILs are denser than water, except pyrrolidinium dicyano-diamide and guanidinium with 

a density ranging from 0.9 g/cm3 to 0.97 g/cm3. As shown in Figure 2-8, the density of ILs declines 

while the number of carbons in the alkyl chain increases. Furthermore, the density of 1-

methylimidazolium ILs decreases linearly with increasing temperature. An increase in the 

viscosity value of ILs is noticed by increasing the number of carbons in the alkyl group which 

exhibits a different trend, compared to the viscosity behavior for conventional organic solvents. 

The high viscosity of ILs is attributed to the van der Waals interactions and hydrogen bonding. 

Generally, the molecular interactions increase with alkyl lengthening and/or fluorination. 

Luciana Tome et al. [56] showed that experimental density data of ILs are in good agreement with 

the Tait equation [57] for the density of liquids which is given below. 
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where a1, a2, and a3 can be fitted to the experimental density data for different ILs versus 

temperature. C, b1, and b2 are also obtained if the density is plotted against temperature and 

pressure, using Equations (2-7) to (2-9). 
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Figure 2-8: Density variation of ILs with number of carbons [25]. 

 

Viscosity: The empirical equation for the apparent dynamic viscosity (η in cP) of ILs to describe 

its temperature dependency is as follows [58]: 

RTeA / =  (2-10) 

where A represents a constant for a given liquid,   is the activation energy for the viscous flow of 

liquid, T is the temperature in Kelvin, and R denotes the universal gas constant in J/(mol.K). 

Temperature and chemical additives strongly affect the viscosity of ILs. For instance, increasing 

temperature or/and adding organic solvents lead to a reduction in the viscosity. 

The surface tension data of ILs is rare in the literature. It has been reported that ILs have a higher 

surface tension than conventional solvents (e.g., hexane with a surface tension of 1.8 Pa.cm); but, 

not as much as water (7.3 Pa.cm) [59]. For instance, the surface tensions of most imidazolium-

based ILs at 298.15 K are in the range of 2.5 (Pa.cm) to 3.5 (Pa.cm). 
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Critical Properties: The critical properties of ILs are not readily available and should be estimated 

due to the decomposition phenomenon at temperatures near the boiling point. There are certain 

techniques/methods introduced by researchers to determine the critical properties of ILs. For 

instance, Valderrama and Robles  [60] employed an extended group contribution method based on 

the concepts developed by Lydersen [61] and Joback and Reid [62] to obtain the critical properties, 

normal boiling point, and acentric factors of ILs. In this method, the only structure of the ILs and 

their molecular weights are required [63]. It is accurate enough to be used in the generalized 

correlations and methods based on equations of state. The absolute average deviation (AAD) of 

calculated and experimental liquid densities is 5 % to 6 % [63]. The critical properties and acentric 

factors for some common ILs are tabulated in Table 2-. 

 

 

 

 

 

 

 

Table 2-5: The critical properties of common imidazolium-based ionic liquids [60, 64]. 

IL IUPAC Name* Tc (K) Pc (bar) 
Vc 

(cm3/mol) 
  

[bmim][PF6] 
1-n-butyl-3-methylimidazolium 

hexafluorophosphate 
708.9 17.3 779.5 0.7553 

[hmim][PF6] 
1-hexyl-3-methylimidazolium 

hexafluorophosphate 
754.3 15.5 893.7 0.8352 

[bmim][BF4] 
1-butyl-3-methylimidazolium 

tetrafluoroborate 
623.3 20.4 672.0 0.8489 
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[hmim][BF4] 
1-hexyl-3-methylimidazolium 

tetrafluoroborat 
679.1 17.9 786.2 0.9258 

[N-bupy][BF4] 
N-butylpyridinium 

tetrafluoroborate 
597.6 20.3 648.1 0.8307 

[omim][Cl] 
1-octyl-3-methylimidazolium 

chloride 
860.1 20.3 814.2 0.6190 

[emim][EtSO4] 
1-ethyl-3-methylimidazolium 

ethyl sulfate 
1061.1 40.4 676.8 0.3368 

[bmim][TfO] 
1-butyl-3-methylimidazolium 

trifluoromethanesulfonate 
1016.3 29.4 767.6 0.3677 

[emim][TfO] 
1-ethyl-3-methylimidazolium 

trifluoromethanesulfonate 
985.2 35.8 653.4 0.2891 

[bmim] [Nf2T] 

 

1-butyl-3-methylimidazolium 

trifluoromethanesulfonate 
1265.0 27.6 1007.1 0.2656 

[hmim] [Nf2T] 
1-hexyl-3-methylimidazolium 

trifluoromethanesulfonate 
1287.3 23.9 1121.3 0.3539 

[bmim] [Br] 

 

1-butyl-3-methylimidazolium 

bromide 
834.9 29.8 583.3 0.4891 

[bmim] [dca] 
1-butyl-3-methylimidazolium 

dicyanamid 
1035.8 24.4 712.0 0.8419 

*IUPAC is an acronym for International Union of Pure and Applied Chemistry 

 

The group contribution method for the estimation of critical properties was developed by Lydersen 

[61]. In this approach, the critical properties of a compound are calculated based on the 

contribution of certain groups of atoms and the number of frequency of a group of atoms in a 

molecule, through the following expressions:  
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in which, ni stands for the number of times that a group appears in the molecule, Tb represents the 

normal boiling temperature, ∆TLi denotes the contribution of group i to the critical temperature, 

∆PLi symbolizes the contribution of group i to the critical pressure, ∆VLi is the contribution of group 

i to the critical volume, M is the molecular weight, and AL , CL, and EL  are the constants equal to 
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0.567, 0.34, and 40, respectively [61]. Equations (2-14) to (2-16) were also proposed by Joback 

and Reid [62] to determine the critical properties:  
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where N is the number of atoms in the molecule; AJ , BJ,  CJ , DJ, and EL represent the constants 

which are equal to 0.584, 0.965, 0.113, 0.0032, and 17.5, respectively [62]. 

The combination of Lydersen’s method, Joback Reid method, and the technique proposed by 

Alvarez and Valderrama [65] was resulted in a proper strategy, called “modified Lydersen-Joback-

Reid” method, as presented by the following equations: 
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The constant parameters in Equations (2-18) to (2-20) are AM = 0.5703, BM = 1.0121, CM = 0.2573, 

and  EM=6.75 [58]. 
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Valderrama et al. [60] extended the “modified Lydersen-Joback-Reid method” to ILs. Following 

this strategy, the acentric factor is calculated using Equation (2-21): 
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Valderrama et al. [2] used the group contribution method with 44 defined groups and prepared the 

most complete database for the critical properties of ILs. 

 

Vapor Pressure: The vapor pressure of chemical components is required in many applications 

such as separation, solvent selection, and design and operation of process equipment. According 

to the literature, ILs have a negligible vapor pressure. There are a few models to predict the vapor 

pressure of ILs. 

The vapor pressure of ILs might be estimated through the equilibrium condition concept, implying 

the same fugacity of components in both vapor and liquid phases [66].  

The vapor pressure of ILs can also be calculated using the Antoine equation (logPSat = A – B/(T + 

C)) with water as a reference (C = 43). Valderrama and Sanga [64] suggested Equations (2-22) 

and (2-23) to determine the two constants of A and B for twenty ILs, respectively: 
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The values for vapor pressure are accurate based on the generalized correlations and EOSs [67]. 

Knudsen's strategy introduces another method to determine the vapor pressure of ILs. Knudson 

equation for calculation of ILs vapor pressure is as follows [68]: 
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where Δm stands for the mass loss during an elapsed time τ, S refers to the orifice area, k is the 

transmission coefficient, M signifies the molecular weight of a vapor, S′ denotes the surface area 

of a liquid which is assumed to be equal to the cross-section area of a cell, and α represents the 

vaporization coefficient.  

Vladimir et al. [69] measured the vapor pressure using the transpiration method and compared 

them with the values obtained from the Knudsen technique. They also introduced a relationship to 

calculate the saturated vapor pressure (Psat ) at different temperatures. The following equation is 

utilized to obtain vapor pressure [78]: 
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In Equation (2-25), T0 is the reference temperature (298.15 K) and p

g

l C  represents the difference 

between the heat capacities of gas and liquid phases [69]. 

Thermogravimetric analysis (TGA) is also a promising method for the rapid determination of 

vapor pressure. Equation (2-26)  proposed by Langmuir can be used to calculate the vapor pressure 

based on the evaporation rate [70]:  
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where dm/dt is the evaporation rate,  is the evaporation coefficient, M is the molecular weight of 

the vapor, and T and Psat denote the temperature and vapor pressure, respectively.   depends on 

experimental conditions. Phang et al. [71] suggested a reference substance similar to the 



52 

 

experimental substance in terms of boiling and melting points and molecular structure so that   

can be assumed constant. Thus, the vapor pressure of a substance S (as a sample) can be expressed 

by the following equation:  
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Mref and Ms represent the molecular weight of the reference and sample, respectively. 

They concluded that the vapor pressures obtained through evaporation data are reliable where the 

TGA method is employed [72]. 

In general, the physical and thermodynamic properties of ILs including heat capacity, viscosity, 

density, solubility, excess enthalpies, and vapor-liquid equilibrium data of the water/CO2/ILs 

mixtures are necessary to evaluate ILs for CO2 capture and to design the absorption processes 

[73]. 

 

2.5.  Characterization of CO2/IL systems  

Experimental Methods: It is vital to investigate the thermodynamic properties of the substances 

which are utilized in the CO2 capture processes so that the appropriate equipment is chosen to 

attain the ultimate separation goal. There are several experimental methods developed by 

researchers and research centers to determine the thermodynamic properties of various ILs, CO2, 

and their mixtures. 

High-pressure phase equilibria experiments are traditionally classified as analytical systems when 

the composition is identified. They are referred to the synthetic systems if only the overall 

composition is known. Sub-classifications are based on the mobility of the sample. In the dynamic 
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systems, one or more phases are recirculated outside the equilibrium cell. However, in the static 

methods, the sample is agitated in a closed-cell. The volume of the cell can be constant or variable. 

A summary of common techniques for obtaining thermodynamic phase equilibria parameters is 

depicted in Figure 2-9. 

 
Figure 2-9: Experimental methods to obtain phase equilibria data (modified after [74]). 

 

The common methods to determine the CO2 solubility in an IL without sampling are the 

gravimetric analysis, pressure drop method, and gas chromatography. Gravimetric analysis is an 

analytical method that describes the quantitative determination of gas solubility through measuring 

the overall weight variation of a sample over the absorption process [3]. The schematic of the basic 

components of a gravimetric system is demonstrated in Figure 2-10(a). The pressure drop method 

is a synthetic technique. In this methodology, the system volume and temperature are held constant 

and the pressure difference is recorded during gas absorption  [75]. A schematic of a pressure drop 

equipment is shown in Figure 2-10 (b). Since ILs have a negligible vapor pressure, the changes in 

pressure are assumed to be due to the gas absorption. Thus, the gas absorbed by the IL can be 

determined. Solubility data from a gas chromatography equipment can be achieved through 

employing a systematic procedure.  The solvent (IL) is saturated with the solute (CO2) and then 
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coated on a column.  A non-absorbing carrier gas is directed into the column to extract CO2 from 

the IL. The carrier gas is then analyzed in the gas chromatograph. This procedure determines the 

amount of absorbed CO2 [75]. The pressure drop and synthetic methods are simpler than the 

gravimetric analysis and their results have higher sensitivity; but, their precision is lower [75]. 

 

 

 

(a) (b) 

Figure 2-10: Schematics of (a) a simple gravimetric system, including basic components, and (b) diagram 

for pressure drop method [P and T correspond to the pressure and temperature sensors, correspondingly] 

(modified after [3]). 

 

According to Blanchard, Gu, and Brennecke [76], a pycnometer with a known volume can be used 

to determine the density of each pure IL. The pycnometer is immersed in a constant-temperature 

bath and the amount of IL in the pycnometer is gravimetrically obtained where thermal equilibrium 

is maintained [77]. The density of ILs can also be measured using a density measuring module 

such as DMA 4500 (manufacturer: Anton Paar GmbH). Another method for the determination of 

IL density is with the aid of the proven oscillating U-tube principle that leads to a high accuracy 

[78]. 
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Thermodynamic Modeling (Equations of State): It is important to study the vapor-liquid 

equilibrium (VLE) for the CO2 capture processes to design and operate the separation stages [79] 

[54]. One of the most common approaches to correlate and predict phase equilibrium is using 

Equations of State (EOSs). According to Li [80], an EOS with a simple structure and reasonable 

accuracy are preferable, suggesting a cubic EOS is well suited to model phase equilibrium of multi-

component systems. EOSs have been used to obtain the physical and thermodynamic 

characteristics of pure ILs and mixtures containing water, gases, and amines [63]. There are 

various EOSs; however, the most common EOSs are the cubic equations derived from van der 

Waals EOS. Among them, it has been proven that the Peng-Robinson (PR) EOS combines the 

simplicity and accuracy required for thermodynamic equilibrium calculations [54]. The well-

known cubic EOSs are listed in Table 2-. Li [80] reported that there are four cubic EOSs which 

are widely used in oil and gas industries, including Peng-Robinson; Patel-Teja, Redlich-Kwong; 

and Soave-Redlich-Kwong. 

 

 

Table 2-6: Summary of cubic EOSs widely used for VLE calculations [80]. 

EOS Name EOS or P = P(V,T) Reference 

vdW van der Waals (1837) 
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SRK Soave-Redlich-Kwong (1972) 
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The Peng-Robinson (PR) EOS can be used with different mixing rules to model the VLE of 

mixtures so that it can accurately predict important parameters such as gas and liquid volumes and 

vapor pressure [80]. In many chemical and petroleum engineering cases, the results obtained from 

EOSs are well-matched with experimental data.  Ren et al. [86] used the PR EOS with the van der 

Waals 2-parameter mixing rule to correlate VLE data for the CO2-IL systems. A great agreement 

was attained between the experimental data and modeling outputs at all isotherms and pressures. 

However, Freitas et al. (2013) claimed that the combination of the van der Waals 2-parameter 

mixing rule and the PR EOS does not lead to acceptable VLE results for some multi-component 

systems [87]. Using a more complicated mixing rule such as the Wong-Sandler (WS) mixing rule 

was proposed for several multi-component mixtures.  Based on Maia et al. [88], the PR EOS 

combined with the van der Waals and Wong-Sandler mixing rules is accurate at low pressures to 

model the VLE of binary systems; however, it does not offer reliable results at high pressures. 

Another EOS, which is often addressed in the literature, is the Soave-Redlich-Kwong (SRK) EOS. 

According to Maia et al. [89], the PR EOS and SRK EOS can model the VLE data for most ternary 

systems with a total standard deviation of less than 0.03 and 0.04, respectively. 

The general form of five-parameter EOSs is given below [90]:  
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The parameters ε, 𝜃, 𝛿, and b might be constant or zero for a single component. They may depend 

on the composition of the mixture. These parameters are listed in Table 2-. 

Table 2-7: Parameters of EOSs [90]. 

EOS 
General EOS parameters 

   µ 

van der Waals (1890) 0 0 a b 

Redlich and Kwong (1949) 0 0 a/(Tr
0.5) b 

Soave (1972) b 0 a(T) b 

Peng and Robinson (1976) 2b -b2 
a(T) b 

Patel and Teja (1982) b+c -bc a(T) b 

Stryjek and Vera (1986) 2b -b2 
a(T) b 

 

In all EOSs listed in Tables 2-6 and 2-7, parameter b is a positive constant and equal to µ. 

Parameters a and b are dependent on the critical properties of the component as expressed by the 

following equations: 

),(  rc Taa =  (2-29) 
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where the parameter 𝛼 is a function of temperature and acentric factor. 

C1 and C2 are the constants, depending on the type of EOS. C1 is 0.0778 for Peng Robinson (PR) 

[81] and 0.0833 for Soave-Redlich- Kwong (SRK)  [91].  C2 is 0.4572 for PR and 0.4218 for SRK. 

( , )rT  is a temperature-dependent parameter expressed in terms of the reduced temperature (
rT

), as tabulated in Table 2-. 

Table 2-8: Temperature-dependent parameter ( ( , )rT  ) for different EOSs [90]. 

Equation of state 
rα(T , )  

van der Waals (1890) 1 

Redlich and Kwong (1949) Tr
-1/2 
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Soave (1972) 22/12 )]1)(176.0574.148.0(1[ rT−−++   

Peng and Robinson (1976) 22/12 )]1)(2699.05422.137646.0(1[ rT−−++   

Patel and Teja (1982) 22/122/12 ))1()]1)(295937.038092.1452413.0(1[1( rr TT −−−+++   

Stryjek and Vera (1986) 

)7.0)(1()]1(

)019655.0171318.0.048971.137889.0(1[

1

22/1

32

rrr TTkT −−+−

+−++ 
 

 

Recently, some molecular-based models have been introduced which are more suitable for both 

complex and simple molecule structures. For instance, Chapman et al. [92] proposed the statistical 

associating fluid theory (SAFT) which uses a reference fluid that incorporates the chain length and 

molecular association. The reference fluid utilized in SAFT is simpler than the hard-sphere 

reference fluid used in most of EOSs. This EOS provides a useful thermodynamic basis through 

employing the chemical potential or fugacity concept to take into account the effects of molecular 

structure and interactions on the phase behavior and properties of fluids [11]. In late 1990, different 

versions of SAFT such as SAFT-VR (for potentials of variable attractive range),[93] Soft-SAFT 

(built from a reference Lennard-Jones fluid) [94, 95], and PC-SAFT (perturbed-chain SAFT) [96] 

have been developed for improving the accuracy of the reference fluid term. According to the 

literature, the perturbed-chain statistical associating fluid theory (PC-SAFT) is a suitable model to 

simulate the thermodynamic behaviors of pure ILs and binary systems of CO2 and ILs. 

The PC-SAFT equation is written in terms of Helmholtz free energy as the following: 

assocdisphcres aaaa ~~~~ ++=  (2-32) 

in which, resa~  is the residual Helmholtz free energy of the system. The superscripts hc, disp, and 

assoc refer to a reference hard-chain contribution, a dispersion contribution, and an associating 

contribution, respectively. The following relationship also exists, according to PC-SAFT: 
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RT

a
a =~  

(2-33) 

The binary interaction parameters are normally used to match the modeling results with the 

experimental data. In some cases, if the van der Waals 2-parameter mixing rules are incorporated 

in EOSs, modeling of VLE through EOS is not feasible. Based on the previous studies, the Wong-

Sandler mixing rules are a proper choice while studying CO2-IL systems [97]. Further information 

on the mixing rules is found in Appendix A1. 

Pressure-Temperature-Composition Diagrams: To further understand the thermodynamic 

behaviors of CO2/IL Systems, it seems necessary to plot pressure-temperature-composition 

diagrams through experimental and modeling methods so that researchers/engineers can specify 

the thermodynamic state of mixtures at the various process and thermodynamic conditions without 

conducting timely and difficult computational tasks. 

In the literature, different models for obtaining VLE data with the aid of experimental data have 

been proposed. Generally, the Differential Evolution (DE) and Differential Evolution with Tabu 

List (DETL) show better performance than simulated annealing (SA), genetic algorithm (GA), and 

particle swarm optimization (PSO) [98]. The DE approach is based on the difference between two 

individuals and adding it to another individual and generating a new individual.  

The pressure-temperature (P-T) diagram is depicted in Figure 2-11 for the CO2/[omim][BF4] 

system, based on the experimental data. The measured P-T data (isopleths) indicate the values at 

which the last tiny CO2 bubble is completely dissolved in [omim][BF4] at the equilibrium 

conditions [99]. A homogeneous liquid phase appears at higher pressures whereas, at lower 

pressures, gas and liquid phases co-exist: a CO2-rich phase and a [omim][BF4]-rich phase [99]. 

Gutkowski et al. [100] found no critical points for any of the measured isopleths. It was concluded 
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that the critical condition will not happen at temperatures below 363 K and pressures up to 100 

MPa.  

 

Figure 2-11: P-T diagram for the CO2/[omim][BF4] system at different isopleths for 
2COx :⚫ 0.101,  

0.200, ◼ 0.299,  0.412,  0.505,  0.602, ⧫ 0.702,  0.752 [99]. 

 

Figure 2-12 shows a pressure-composition diagram for CO2 in ten common imidazolium-based 

ILs where the pressure is plotted against the CO2 mole fraction at 298 K [101].  
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Figure 2-12: Effect of the anion and pressure on the solubility of CO2 in [bmim] cation based ILs at a 

temperature of 298 K [101]. 

 

Another approach to attain appropriate and reliable properties of ILs and to experience high gas 

solubility of amines is using mixtures of ILs and amines. For example, Camper et al. [102]  used 

two mixtures of alkanolamines, namely MEA and DEA with [Rmim][Tf2N] ILs. Figure 2-13 

demonstrates CO2 uptake by two mixtures of ILs-amine. They observed that the absorption 

performance of the ILs-amine mixture is higher than pure amines and the desorption energy is 

lower. Furthermore, they do not exhibit the drawbacks of functionalized ILs. 
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Figure 2-13: CO2 uptake in equimolar solutions of [C2mim][Tf2N]-MEA and [Rmim][Tf2N]-DEA 

(modified after [102]). 

 

Optimization algorithms are an important element for properly controlling processes and 

developing mathematical models with optimal variables [103]. Algorithms simplify calculations 

and can be used to help researchers determine the VLE data. This is vital as pressure-temperature 

-composition diagrams can provide important thermodynamic data through a simple, 

straightforward, and understandable manner.  

Particle swarm optimization (PSO) is an algorithm based on a social-psychological metaphor; a 

population of individuals (referred to particles) adapts by returning stochastically towards 

previously successful regions [104]. According to Lazzús [104], the PSO algorithm is appropriate 

to obtain the optimal values of important parameters involved in the VLE of binary systems 

containing supercritical fluids and ILs. Providing further information, the proposed PSO algorithm 

evaluates the binary interaction parameters with high accuracy.  Lazzùs [104] compared the results 

obtained from the PSO and Levenberg-Marquart (LM) algorithms. It was found that the PSO 
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algorithm estimates VLE information of the system more accurately than LM. The flow diagram 

of the PSO algorithm to determine VLE data is shown in Figure 2-14. 

Lazzus [105] also introduced a hybrid model including artificial neural network (ANN) and 

particle swarm optimization (PSO) for prediction of the thermodynamic properties. 

 

 
Figure 2-14:  PSO algorithm diagram for vapor-liquid equilibrium modeling [104]. 
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Experimental and Modelling Data for Thermodynamic Properties: There are advantages and 

disadvantages with both experimental and modeling approaches to forecasting the thermodynamic 

properties and behaviors of CO2-IL systems. Experiments provide useful thermodynamic 

information. However, conducting experiments is costly and time-consuming. The cost associated 

with the experiments also limits the amount of ILs to be used in the tests. On the other hand, the 

modeling data are associated with some inherent errors due to assumptions, convergence, and 

solution method drawbacks [106]. Table 2-2, Table 2-3 and Table 2-4 represent the experimental 

CO2 solubility data for imidazolium, phosphonium, pyridinium, pyrrolidinium, and functionalized 

ILs.  It is important to compare experimental and modeling data to ensure that the appropriate 

model is chosen for the process and the model is accurate enough to predict the system’s behaviors. 

Table 2- shows the absolute average deviations, in percentage, between the experimental and 

modeling data of the PC-SAFT EOS and PR EOS where Wong-Sandler/Van Laar (WS/VL) 

mixing rules and van der Waals (vdW) mixing rules are employed. These results show that the 

PR/WS/VL model predicts the high-pressure solubility of CO2 in [Cn-mim][Tf2N] more accurate 

than PR/vdW model under pressures up to the supercritical region of CO2 [97]. PC-SAFT EOS 

was used to compare the experimental solubility data of CO2 in the imidazolium-based ILs. It was 

found that PC-SAFT EOS can estimate the solubility in a good agreement with experimental data 

[11]. PC-SAFT parameters can be determined using a correlation in terms of density and vapor 

pressure data of ILs. Hence, the parameters can be obtained without carrying out experiments. The 

binary interaction of ILs (as discussed before) is temperature dependant and increases linearly with 

temperature. The binary interaction can be obtained by curve-fitting of the experimental vapor-

liquid equilibrium data, and a correlation can be determined using the group contribution method. 
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As shown in Table 2-, PC-SAFT EOS estimates the solubility of CO2 in ILs with higher accuracy, 

compared to cubic EOSs.  

In recent years, advanced EOS have been developed in the framework of statistical mechanics and 

have been proven promising due to their capability to accurately simulate complicated systems 

[104, 105]. Arguably, the most widely used EOSs in this context are the Statistical Associating 

Fluid Theory (SAFT) and the Perturbed Chain-SAFT (PC-SAFT) [107]. 

The SAFT and PC-SAFT EOSs were proposed to overcome the drawbacks of cubic EOSs, 

especially in estimating the density and compressibility factor of liquid phases. The cubic EOSs 

do not consider the effect of association and cross association of molecules on the phase equilibria. 

This will be an important feature in the IL-CO2 systems. The PC-SAFT EOS incorporates the 

influence of molecular association on the volume and energy, and can potentially predict a more 

precise and reliable phase behavior when the association between the molecules becomes 

important. The SAFT parameters have physical significance, featuring diameter, number of 

segments, and segment-segment interactions [108]. Therefore, the SAFT EOSs consider the effect 

of molecular structure and interactions on the bulk properties and phase behavior, unlike the cubic 

EOSs that assume molecules as a hard-sphere [11].   

Based on the experimental and modeling investigations available in the literature, the proper cubic 

EOSs to reasonably simulate the thermodynamic behaviors of CO2-IL systems are also reported in 

this study (see Table 2-) where modifications on the mixing rules and interaction terms of the cubic 

EOSs have been made to attain a good agreement between the real data and modeling outputs [78]. 

As Equation (2-34) shows, AAD in Figure 2-9 stands for the average absolute deviation which 

represents the difference between the experimental and calculated target parameter(s). 
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in which, npts represents the number of data points. 

 

Table 2-9: Average absolute deviations of experimental and calculated data for equilibrium (saturation) 

pressure [11, 109]. 

Models Ionic liquids 
 AAD (%)  

303.15 K 313.15 K Average 

PR/WS/VL [C2-mim][Tf2N] 4.5 4.1031 4.3015 

 [C4-mim][Tf2N] 5.4092 3.91 4.6596 

 [C6-mim][Tf2N] 5.8032 4.811 5.3071 

 [C8-mim][Tf2N] 4.798 4.9773 4.8876 

PR/VdW [C2-mim][Tf2N] 12.0 13.5 12.75 

 [C4-mim][Tf2N] 11.71 11.0 11.35 

 [C6-mim][Tf2N] 9.7 9.6 9.65 

 [C8-mim][Tf2N] 10.6 9.9 10.25 

PC-SAFT [C2-mim][Tf2N] 4.418 3.901 4.159 

 [C4-mim][Tf2N] 4.934 6.920 5.927 

 [C6-mim][Tf2N] 8.233 6.714 7.473 

 [C8-mim][Tf2N] 8.056 9.171 8.613 

 
 

Table 2-2: CO2 solubility experimental data for imidazolium-based ionic liquids. 

Ionic Liquid T (K) P (bar) Max Solubility* 

(mol CO2/mol IL) 

H (bar) References 

[hmim][FEP],  283.15, 298.6 

,323.2 

0.297-18.1 0.517 

 

18.5 [110] 

[bmpyrr][FEP],   0.498 20.3  

[ETT][FEP]   0.497 20.8  

[bmim][PF6] 293-393 1-97 0.555 12 [111] 

[bmim][PF6] 

 

[bmim][BF4] 

 

283-348 0.096-19.99 0.379 

0.364 

34 

38 

[112] 

([bmim][PF6] 

 

313.15, 

323.15, 333.15 

0.97-92 0.729 

 

N/A [76] 

[C8mim][PF6]),    0.755   

[C8mim][BF4]),   0.513   
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([bmim][NO3]   0.708   

[emim][EtSO4],   0.579   

[N-bupy][BF4]    0.423   

 [C2-mim][Tf2N] 301-344.4 10-43 0.761  [113] 

 [C4-mim][Tf2N]   0.803   

 [C6-mim][Tf2N]   0.833   

 [C8-mim][Tf2N]   0.845   

[bmim] [DCA] 298.15, 

313.15, 333.15 

1-120 0.55  [101] 

[bmim] [NO3]      

[bmim] [BF4]   0.52   

[bmim] [PF6]   0.64   

[bmim] [TfO]   0.64   

[bmim] [Tf2N]   0.68   

[bmim] [methide]   0.76   

[bmim][NO3]   0.44   

* Maximum solubility in the range of tested operating conditions. 
 

Table 2-3: CO2 solubility for phosphonium, pyridinium, and pyrrolidinium ionic liquids. 

Ionic Liquid T(K) P(bar) Max Solubility* 

(mol CO2/mol IL)  

H (bar) References 

[THTDP][NTf2] 293.2-363.2 1.06-375 0.879 19.8 [114] 

[THTDP][Cl]   0.8 18.9  

[N-bupy][BF4] 

 

313.15,323.15, 

333.15 

0.97-91.9 0.581  [76] 

[P(14)666][Cl] 303.15 1  36 [115] 

[P(14)666][DCA]   0.033 29  

[P(14)666][Tf2N] 

[P(2)444][DEP] 

   37 

59 

 

[P(14)444][DBS]    29  

[N(4)113][Tf2N]    65  

[N(6)113][Tf2N]    53  

[N(10)113][Tf2N]    43  

[N(4)111][Tf2N]    61  

[N(6)111][Tf2N]    N/A  

[N(10)111][Tf2N]    44  

[N(1)888][Tf2N]   0.034 29  

[N(6)222][Tf2N]    60  

[hmpy][Tf2N] 283 1-10 0.2 25.8 [116] 

* Maximum solubility in the range of tested operating conditions. 
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Table 2-4 shows the CO2 solubility for functionalized ionic liquids at two different temperatures 

and pressures. Providing further clarification on Table 2-4, the functionality of NH2 -Cation means 

that the group of NH2 is attached to a chemical group in the IL to form the cation part of the 

functionalized IL.  NH2 -Anion refers to the combination of the NH2 group and a chemical branch 

in the IL structure to hold a negative charge, leading to the formation of the anion part of the 

functionalized IL.    

 

Table 2-4: CO2 solubility for functionalized ionic liquids. 

Ionic Liquid Functionality P(bar) T(K) 
Max Solubility 

(mol CO2/mol IL) 
H (bar) References 

[P66614][Ile] NH2 -Anion 0-1.5 295.15 0.5 26 [117] 

[P66614][Sar] NH2 -Anion   0.523 1000  

[P66614][Gly] NH2 -Anion   0.574 5.5  

[P66614][Pro] NH2 -Anion   0.56 1000  

[P66614][Met] NH2 -Anion   0.568 18  

APMim[NTf2] NH2 -Cation 0-10 303 0.26  [118] 

APMim[DCA] NH2 -Cation   0.29   

APMim[BF4] NH2 -Cation   0.33   

AEMPyrr[BF4] NH2 -Cation   0.27   

MeImNet2[BF4] NR3- -Cation   0.25   

Bmim[Tau] NH2 -Anion   0.44   

Bmim[Gly] NH2 -Anion   0.4   

 

Effect of ions on Thermodynamic Behaviors: ILs are composed solely of anions and cations. It 

implies that there are many different combinations of ions that can be used to tailor ILs for various 

purposes. According to the literature, certain anions and cations offer higher performance for CO2 

capture processes. Brennecke and Maginn [119] found from their research study that the types of 

cations and anions significantly affect the chemical, physical, and thermodynamic properties of  

ILs. For instance, the anion part of ILs has the greatest effect on the solubility. According to Freitas 

et al. [87], the solubility is strongly related to the energy of vaporization and molar volume. As 
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most of ILs have high energy of vaporization, ILs with larger anions have higher molar volumes, 

leading to greater CO2 dissolution. It has been confirmed that the alkyl chain length of the cation 

has a major impact on the solubility of CO2  in ILs. The alkyl group increases the dispersion forces 

of the cation for better interaction with CO2, implying that growing the length of the alkyl chain 

leads to an increase in the CO2 solubility [120].                                

The type of ions can also influence the melting point of the ILs. It was found that the melting point 

shows an ascending trend with increasing the chain length. When an IL contains a halide as an 

anion, the melting point is higher, compared to the cases having other anions [121]. 

The miscibility and hydrophobicity of ILs with water are also affected by the type of ions. For 

example, 1-alkyl-3-methylimidazolium hexafluorophosphate ILs are immiscible with water, while 

1-alkyl-3-methylimidazolium nitrate ILs are completely miscible with water. Similarly, the 

hydrophobicity of an IL increases with increasing the chain length of the alkyl chain [122]. 

There is a correlation between the cation and the density where Uygur [90] concluded that the 

density of the IL lowers with increasing the alkyl chain length for the imidazolium cation case. 

2.6.  CO2 solubility and selectivity 

Flue-gas in practice contain various gases and impurities. Hence, the selectivity and solubility of 

CO2 in ILs concerning various gases such as N2, CH4, H2, and H2S should be evaluated. In this 

section, the solubility of CO2 in ILs and its selectivity in the presence of different gases will be 

discussed. 

CO2 Solubility in ILs:  It has been found that anions have a higher impact, compared to cations, 

on the solubility of CO2 in ILs [122]. The CO2 solubility in ten distinct imidazolium-based ILs 

was evaluated by Sudhir et al. [99]. They observed that the highest and lowest CO2 solubility can 
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be obtained in the ILs with fluoroalkyl groups in the anion part (e.g., [methide] and [Tf2N]−) and 

nonfluorinated inorganic anions (e.g., [NO3]
− and [DCA]−), respectively. Their experiments also 

showed that the solubility strongly depends on the type of anions. However, in a smaller extent, 

the CO2 solubility can be affected by the selection of alkyl groups on the cation part. In general, 

when the length of the alkyl chain increases from butyl to octyl, the CO2 solubility increases [99]. 

Molecular simulations show that the imidazolium-based ILs have better performance in terms of 

CO2 capture than phosphonium-based ILs, where the same cation and anion are in the structure of 

ILs. For instance, [Tf2N]- is more efficient, compared to [PF6]
- [123].  Zhang et al. [108] used 

COSMO-RS and conducted a series of experiments to investigate CO2 capture with ILs. They 

determined Henry's law constants of CO2 with different combinations of cations and anions. Their 

results implied that [FEP] anion has the greatest CO2 solubility. Their experiments on three 

different cations with [FEP] anion revealed that CO2 is more soluble in [hmim][FEP] 

(imidazolium-based IL) than other ILs. Solubility and other properties including Henry’s law 

constant, enthalpies, and entropies of nine gases dissolved in common imidazolium-based IL 

([bmim][PF6]) were studies where the pressure was up to 13 bar and three distinct temperatures 

(10, 25, and 50 °C) were examined. The experimental results showed that the highest and lowest 

solubilities in [bmim][PF6] are obtained for carbon dioxide and oxygen, respectively. It was also 

concluded that [bmim][PF6] (compared to common organic solvents) is not a very good solvent 

for reactions containing H2, O2, and CO (e.g., hydrogenation reactions, oxidation reactions, and 

hydroformylation reactions) for industrial purposes at extremely high pressures [19]. The 

solubility of CO2 in ILs is an important factor to screen proper solvents and to design an efficient 

absorption system in CO2 capture plants [123]. The solubility of gases in liquid solvents using 

Krichevsky-Kasarnovsky [124] equation is obtained as follows: 
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where f2(T, P) represents the fugacity of gas solute in the gas phase at temperature T and pressure 

P; x2 is the mole fraction of the gas dissolved in the liquid solvent; Psat denotes the saturation or 

vapor pressure of the liquid solvents; V2
 refers to the partial molar volume of the gas at the infinite 

dilution of the liquid solvents; H2 stands for Henry’s law constant of the gas in the liquid solvents; 

R signifies the universal gas constant; T is the temperature of the system. The Krichevsky-

Kasarnovsky equation is often used to obtain Henry’s law constant from solubility data [124]. 

Thus, this equation is only limited to predicting the solubility of a gas in a liquid at low solubility 

conditions and should be avoided for the cases of CO2 solubility in an IL with high magnitudes of 

solubility.  It should be noted that Henry’s law is valid only if the concentration of a component in 

the liquid phase is minor. 

The fugacity of a pure gas can be determined using the following equation: 

PPTPTf ),(),(2 =
 

(2-36) 

in which,  refers to the fugacity coefficient at pressure P and temperature T. This thermodynamic 

property can be obtained using various EOSs such as SRK and PR [38].  

Maia et al. [89] claimed that all cubic-modified EOSs lead to almost the same accuracy while 

determining the solubility. In many cases, the Peng-Robinson (PR) and modified PR EOSs are 

appropriate EOSs to model the gas solubility. The PR EOS combined with the Wong-

Sandler/UNIQUAC mixing rules can be used to estimate Henry’s law constant, which provides 

the gas solubility in a liquid solvent when the gas concentration in the liquid phase is small. This 

strategy helps to obtain the limiting slope defined by Henry’s law as the solubility approaches zero 

[125]. According to Carvalho et al. [114], this methodology results in uncertainty that considerably 
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affects the accuracy and reliability of the model outputs. Other models such as Predictive Peng-

Robinson, Peng-Robinson-Stryjek-Vera, and Sanchez-Lacombe EOSs have been utilized to 

determine the gas solubility in ILs, exhibiting an error percentage of less than 9.0 % [39].  

CO2 Selectivity:  Due to the presence of gases and impurities in the flue-gas, the selectivity of 

CO2 in ILs appears to be vital in the carbon capture technique with ILs [127]. To systematically 

study the solubility of CO2 in ILs, CO2 selectivity in ILs needs to be investigated [128]. According 

to Zhang et al. [129], conventional ILs have greater CO2 selectivity, compared to other gases (e.g., 

CO, H2, and O2) due to the large quadrupole moment of CO2. Since there is a mixture of different 

gases in the flue-gas, this high CO2 selectivity is interesting, implying that ILs absorb CO2 easier 

than other gases. In general, the solubility of CO2 in ILs is higher than N2 and H2. However, the 

solubility of H2 and N2 exhibits an increase with increasing temperature [33, 130]. In CO2/H2S 

systems, CO2 selectivity is highly dependent on CO2/H2S feed ratio and CO2 solubility is 

remarkably decreased in the presence of H2S [36]. Mahinder Ramdin et al. [131] showed that the 

selectivity of CO2/CH4 in different phosphonium and imidazolium-based ILs significantly 

decreases with increasing temperature.   

It seems necessary to optimize CO2 selectivity in ILs in terms of gas composition and operating 

conditions. The selectivity generally increases the number of stages required for CO2 capture 

processes and consequently the operating and capital costs. For instance, in the case of CO2/H2S 

/CH4 systems at high temperatures, an additional step is required to separate H2S and CH4 from 

CO2 [128]. 

2.7.  CO2 capture using ILs: performance and modifications 

As discussed in the introduction, carbon capture processes, in general, are divided into three main 

categories including pre-combustion, post-combustion, and oxy-combustion. Among these 
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methods, the post-combustion is appropriate for retrofit plants and the industrialized absorption 

methods mainly employ post-combustion technology. The current solutions for the absorption 

method are amine-based solvents since they have a high CO2 capacity. The practical applications 

of ILs for CO2 capture depend on their effectiveness, compared to the amines. It is believed that 

ILs can be tailored to have a comparable CO2 capacity without having the disadvantages associated 

with amine-based solvents.  

Due to the volatility of amine-based solvents, the processes, which use this type of solvents, 

consume a high amount of energy during the solvent regeneration stage which leads to an extra 

cost to the entire CO2 capture process. This cost can be significantly lowered or even eliminated 

through using ILs as the non-volatile solvents. The amine-based solvents are not environmentally 

friendly due to their volatility nature. They are unstable, resulting in producing dangerous toxic 

materials such as nitrosamines, nitramines, and amides. It should be noted that nitrosamines are of 

the most concern as they are carcinogenic and noxious to humans even at low concentrations [3].  

ILs due to their negligibly low vapor pressure are considered non-volatile. It means that they do 

not vaporize and therefore do not contaminate the atmosphere. Therefore, solvent losses are 

negligible. Amines also participate in various parts of absorption processes and produce waste 

which can eventually corrode the equipment. However, ILs are not usually corrosive due to their 

high thermal and chemical stability. ILs are normally degraded at temperatures higher than 300 C 

and only cause corrosion to equipment if there are impurities in the ILs [3]. 

Conventional ILs capture carbon through physical absorption mechanisms. Although adjusting 

cations/anions in the ILs can enhance the solubility of CO2 in conventional ILs, their CO2 capture 

capacity is still low in comparison with the current commercial carbon capture technologies such 

as amine-based solvents [32]. Indeed, there are strong chemical interactions between amine and 
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CO2 (−ΔH = 80–130 kJ/mol) in the amine-based solvents which make amines favorable for CO2 

molecules.  However, in the case of conventional ILs/ CO2 systems, there are comparatively weak 

forces (−ΔH = ~15 kJ/ mol) between ILs and CO2 molecules [29]. Among alkanolamines as the 

most common solvents for the absorption purpose, mono ethanol amine (MEA) is more efficient 

than other amines. The order of absorption rate for amines is as following: 

MEA>DEA>AMP>DIPA>MDEA [126]. Popular solvents for the physical absorption processes 

are DEPG (Selexol process), methanol (Rectisol process), NMP or N-methyl-2-pyrrolidone 

(Purisol process), Morphysorb process, and Propylene Carbonate (Flour process) [127]. A general 

comparison between CO2 capture processes through conventional ILs and the most commonly 

used commercial solvents are provided in Table 2-5 [128]. 

 

 

 

 

 

 

 

Table 2-5: Comparison of properties of ILs with common solvents used for CO2 capture [127-129]. 

Variable                                    Chemicals for CO2 capture 

Conventional 

ILs 

Task-Specific 

ILs 

MEA (30%wt) DEPG PC 

Absorption type Physical Chemical Chemical Physical Physical 

Viscosity (cP)  20-2000 50-2000 18.98 5.8 3.0 
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Vapor pressure (bar) at 

25oC 

1.33e-9 1.33E-9 8.5E-4 9.73E-7 1.13E-4 

ΔHabs (kJ/mol CO2) at 1bar 

and 40ºC  

~10- 20 ~40-50 ~85 ~14.3 ~15.9 

CO2 solubility (mol/mol) 

at 1bar and 20-40 ºC 

>2.51 1.6  50-85 

 

3.63 3.41 

Selectivity CO2/CH4 8-35  n/a 15 26 

 H2S/CO2 2-10  1-2 8.8 3.3 

 CO2/H2 50-150  n/a 77 126 

 CO2/N2 30-100  n/a 50 117 

Cost  200 $/5 gr 400$/5gr 370 $/1L 80 $/1L 117 $/1L 

 

As provided in Table 2-5, pure conventional ILs are not a promising option for the CO2 capture 

processes. To overcome this drawback, task-specific or functionalized ILs with the ability of 

chemisorption rather than physisorption have been developed. In this type of ILs, suitable moieties 

such as amines are introduced in the conventional ILs [130]. In this property-modification process, 

CO2 -philic functional groups are attached to ILs which can significantly increase the CO2 capture 

capacity of ILs [131]. Task-specific ILs in the broad classification is divided into three groups 

including; cation-functionalized ILs, anion functionalized ILs, and dual amino-functionalized ILs. 

The experimental results show that the reaction mechanisms between the amine-functionalized IL 

and CO2 are similar to the mechanisms between the organic amine and CO2.  The carbon capture 

capacity of task-specific ILs is also comparable to alkanolamines [9].  

Complicated synthesis and purification steps, high viscosity which leads to slow CO2 diffusion 

mass transfer, and high production cost are the main challenges to use functionalized ILs for CO2 

capture [132]. For instance, Camper et al. [102] concluded that the synthesis of amine-

functionalized imidazolium-based ILs requires several steps, implying that the process is not 

economical compared to the absorption processes that utilize conventional solvents such as MEA. 

Therefore, to improve CO2 capture capacity and to avoid these drawbacks, mixing ILs with other 

appropriate compounds such as water and amines are proposed. In this approach, solubility 
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increases due to the viscosity reduction of IL in the presence of water [128]. This mixture preserves 

the favorable properties of ILs for CO2 capture and overcomes the inherent drawbacks of ILs 

including high viscosity and cost [133]. A mixture of alkanolamines such as MEA and an IL can 

also increase energy efficiency, absorption rate, and CO2 absorption capacity [11]. There are some 

research studies in the literature, focusing on this challenging topic [102, 134-136]. Common IL-

amine mixtures are MEA + 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) + H2O 

and MEA + 1-(2-hydroxyethyl)-3-methylimidazolium ([hemim][DCA]) + H2O.  Xu et al. [137] 

conducted several experiments and found that the viscosity of two ILs, known as 1-(2-

hydroxyethyl)-3-methyl-imidazolium dicyanamide ([C2OHmim][DCA]) and 1-butyl-3-

methylimidazolium ([Bmim][DCA]), which are 50 mPa.s and 7 mPa.s at 313.15 K respectively, 

lowers to 3.54 mPa.s through mixing with amine (MEA). According to another study carried out 

by Yang et al. [135], the viscosity of an IL-amine solution including [bmim][BF4] (as an IL) is 

3.54 mPa.s at 323 K, which is much lower than the viscosity of the conventional [bmim][BF4] 

(e.g., 31.08 mPa s). The low viscosity of the IL-amine systems conveys the message that a higher 

mass transfer occurs where they are in contact with CO2 such that more CO2 is absorbed at a faster 

rate which is favourable for the CO2 capture operations.  

It should be noted that when the conventional amines are used for CO2 capture, the energy 

consumption is fairly high which can be considerably decreased by utilizing an IL-amine system 

[102]. Based on the literature, when the content of ILs is 30 wt%, the energy consumption lowers 

by 27%, in contrast to the conventional MEA processes. However, if the concentration of ILs is 

lower than 10 wt%, the presence of ILs in aqueous 30 wt% MEA might decrease the required 

energy during the regeneration process without affecting the absorption efficiency/performance 

[137]. This increase in energy efficiency would be beneficial as it would cause a decrease in the 
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total costs of CO2 capture processes. Table 2-6 summarizes various characters of three types of IL 

mixtures discussed in this section. 

 

Table 2-6: Summary of advantages and disadvantages of  three ionic liquid (IL) mixture systems [3]. 

Type Advantages Disadvantages 

Conventional ILs 

(CILs) 
• High CO2 selectivity  

• Lower energy consumptions than 

conventional solvents 

• High viscosity 

 

Task-specific ILs • Higher CO2 storage capacity, 

compared to CILs (due to functional 

groups) 

• Higher viscosities, compared to 

CILs 

• Complicated synthesis 

processes 

IL-alkanolamine-water 

mixture 
• Lower viscosities, compared to CILs 

• Higher CO2 dissolution, compared 

to CILs 

• Not environmentally friendly 

as pure ILs 

• Amine loss and energy 

consumption lower than 

amines but higher than CILs 

 

Recently, a new generation of task-specific ILs such as super base and amino acid ILs with an 

equimolar CO2 absorption capacity has been introduced. In the super basic task-specific ILs, the 

CO2 molecule from C atom is bonded to the nitrogen atoms in the anionic part of ILs, as shown in 

Figure 2-15. Amino acids contain a carboxylic acid and an amino group which can be utilized as 

either an anion or a cation. Amino acid ILs have a promising carbon capture characteristic due to 

the presence of two functional groups, including carboxylic and amino groups. Furthermore, these 

ILs are more biodegradable, biocompatible, and easily producible in large scales with low cost 

[138]. The general reaction of amino acid IL production is illustrated in Figure 2-16 [139]. 
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Figure 2-15: CO2 absorption mechanism of super basic ILs [140]. 

 

 

 

 
Figure 2-16: General reaction leading to production of amino acid IL [139]. 

 

Recently, deep eutectic solvents (DESs) have been introduced as a new class of ILs. They have 

most of the promising properties of ILs and they are economically comparable to the amines for 

CO2 capture. DESs are synthesized by ammonium and phosphonium salts with different hydrogen 

bond donors (HBDs) such as urea. Some DESs offer a higher CO2 solubility and a lower viscosity, 

compared to ILs. Moreover, functionalized DESs promote higher solubility for CO2, compared to 

the conventional DESs [143,145,146].  It is important to note that CO2 solubility in amine-based 

DESs such as ChCl-DEA is much higher than conventional DES and 30% (by weight) aqueous 

amines [141, 142]. 
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2.8.  Economic analysis of CO2 capture using ionic liquids 

Currently, ILs are not as commercially available as other solvents such as amine-based solvents. 

They are usually used at the lab scale which varies the industrial scale in terms of efficiency, 

operation, and cost. According to Waseem Arshad [143], there are several vendors such as Merck, 

Sigma Aldrich, DuPont, Fluka, Scionix, Chemada, and Degussa that provide ILs for various 

purposes; however, most of ILs are produced at the laboratory scales and their prices are in the 

range of $1/g-$10/g.  The cost should be reduced by a factor of approximately 100 or greater to be 

comparable with that of the conventional solvents. Ramdin et al. [29] reported that the lab-scale 

cost of ILs is around $1000/kg, which is 100-1000 times more expensive, compared to the 

conventional solvents. This price is expected to drop by $40/kg to $100/kg according to the BASF 

company when ILs are produced at larger scales; however, it is still higher than the price of 

conventional solvents by a factor of 10-20 due to the complexity and cost of the synthesis and 

purification stages. The price of imidazolium-based, phosphonium based, pyridinium based, and 

tailored ILs are listed in Table 2-7. As shown in Table 2-7, the conventional ILs are cheaper than 

the functionalized ones. In general, the tailored ILs are at least five times more expensive than 

most conventional ILs. It is worth mentioning that all prices are based on the official website of 

Sigma Aldrich company, accessed June 2016 [144].   

Protic ILs with their simple acid-base chemistry are used in industrial processes and have a low 

cost (<$1.23/kg) which is comparable to that of the organic solvents such as toluene and acetone 

[145]. Also, the cost for synthesizing ILs with hydrogen sulfate (as the anion group) through acid-

base neutralization is comparable with that of the organic solvents such as acetone and ethyl acetate 

($1.34/kg to $1.4 /kg). For example, the prices of triethylammonium hydrogen sulfate and 1-

methylimidazolium hydrogen sulfate are $1.24/kg, and $2.96/kg to $5.88/kg, respectively [146]. 
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Power plants include the costs for CO2 capture from flue-gas (by amines) in the capital cost (CC) 

and operating costs (OC) [139]. Using ILs, some parts of the capital costs are less than those with 

amines. For example, in the desorption process, ILs will be recovered completely due to the low 

vapor pressure of the ILs. However, amines are volatile and some quantity of amines will be lost 

during the desorption process, leading to an increase in material and energy demands. Researchers 

found that using mixtures of ILs and amines, the energy consumption of the desorption stage 

lowers by more than 37%,  compared to that with the amine solution [135]. 

Even though ILs are currently more expensive than the amines, their price is expected to be 

considerably decreased in the future. There are a large number of ILs available that can be 

synthesized in different ways. They have multiple-form markets such as use as a solvent and 

catalyst with application to reaction systems, separation systems, bio-refinery systems, energy 

storage, and GHG reducing media. These are great incentives for the commercialization of 

functional ILs with low costs. Some of the benefits of ILs, compared to the amines, in CO2 capture 

are as follows [17]: 

• Less energy is required for regeneration of diluted ILs to remove the absorbed CO2, than 

amines due to their physical absorption mechanisms. 

• There is a low chance of being involved in a reaction with impurities and low probability 

of corrosion occurrence in the equipment due to the high thermal and chemical stability 

(>300 oC) of ILs.  

• There is no loss in the gas stream during regeneration due to the low vapor pressure of ILs. 

• There are high potentials to produce a task-specific IL with manipulating anions and 

cations due to the tunable nature of the ILs.  
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Table 2-7: Prices for imidazolium, phosphonium, pyridinium, and guanidium-based ILs and tailored ILs 

[144]. 

IL-based Cation Anion Price (CAD$) Quantity (g) 
Im

id
az

o
li

u
m

 

 bis(trifluoromethylsulfonyl)imide 160 5 

  bromide 151 5 

1-Allyl-3-methylimidazolium chloride 113 5 

 dicyanamide  150 5 

 iodide 225 5 

 chloride 90 5 

1-Benzyl-3-

methylimidazolium 
hexafluorophosphate 105 5 

 tetrafluoroborate 125 5 

 chloride 225 5 

1-Butyl-2,3-

dimethylimidazolium 
hexafluorophosphate 83 5 

  tetrafluoroborate  
99.4 (>99%), 

33(>97%) 
5 

4-(3-Butyl-1-imidazolio) butanesulfonate 303 5 

 acetate 331 5 

 bis(trifluoromethylsulfonyl)imide  142 5 

  bromide  71 5 

 chloride 73 5 

 dicyanamide  305 5 

1-Butyl-3-methylimidazolium  hexafluoroantimonate 105 5 

 hexafluorophosphate 90(>97%) 5 

  hydrogen sulfate 149 5 

 iodide 68 5 

  tetrafluoroborate 45 5 

1,3-Dimethylimidazolium  dimethyl phosphate 46 5 

 methyl sulfate 188 5 

  tetrafluoroborate 43 5 

 
bis(pentafluoroethylsulfonyl)imide

  
339 5 

 bis(trifluoromethylsulfonyl)imide  221 5 

1-Ethyl-2,3-

dimethylimidazolium 
 chloride 40 5 

  bromide 40 5 

 dicyanamide 313 5 

  tetrafluoroborate 275 5 

 trifluoromethanesulfonate  103 5 

 bis(trifluormethylsulfonyl)imide 185 5 

1-Hexyl-3-methylimidazolium  chloride 194 5 

 hexafluorophosphate 87 5 

1-Methylimidazolium  Chloride 135 5 

http://www.sigmaaldrich.com/catalog/product/aldrich/41382
http://www.sigmaaldrich.com/catalog/product/aldrich/43961
http://www.sigmaaldrich.com/catalog/product/aldrich/727709
http://www.sigmaaldrich.com/catalog/product/aldrich/727717
http://www.sigmaaldrich.com/catalog/product/aldrich/43961
http://www.sigmaaldrich.com/catalog/product/aldrich/49914
http://www.sigmaaldrich.com/catalog/product/aldrich/49914
http://www.sigmaaldrich.com/catalog/product/aldrich/39447
http://www.sigmaaldrich.com/catalog/product/aldrich/40819
http://www.sigmaaldrich.com/catalog/product/aldrich/43961
http://www.sigmaaldrich.com/catalog/product/aldrich/78194
http://www.sigmaaldrich.com/catalog/product/aldrich/78194
http://www.sigmaaldrich.com/catalog/product/aldrich/70869
http://www.sigmaaldrich.com/catalog/product/sial/04383
http://www.sigmaaldrich.com/catalog/product/aldrich/51131
http://www.sigmaaldrich.com/catalog/product/aldrich/39952
http://www.sigmaaldrich.com/catalog/product/aldrich/77896
http://www.sigmaaldrich.com/catalog/product/aldrich/64133
http://www.sigmaaldrich.com/catalog/product/aldrich/38899
http://www.sigmaaldrich.com/catalog/product/aldrich/55220
http://www.sigmaaldrich.com/catalog/product/aldrich/39952
http://www.sigmaaldrich.com/catalog/product/aldrich/51027
http://www.sigmaaldrich.com/catalog/product/sial/18122
http://www.sigmaaldrich.com/catalog/product/aldrich/57457
http://www.sigmaaldrich.com/catalog/product/aldrich/713066
http://www.sigmaaldrich.com/catalog/product/aldrich/711748
http://www.sigmaaldrich.com/catalog/product/aldrich/671444
http://www.sigmaaldrich.com/catalog/product/aldrich/19409
http://www.sigmaaldrich.com/catalog/product/aldrich/713023
http://www.sigmaaldrich.com/catalog/product/aldrich/39056
http://www.sigmaaldrich.com/catalog/product/aldrich/39056
http://www.sigmaaldrich.com/catalog/product/sial/11291
http://www.sigmaaldrich.com/catalog/product/aldrich/713023
http://www.sigmaaldrich.com/catalog/product/aldrich/713023
http://www.sigmaaldrich.com/catalog/product/aldrich/272841
http://www.sigmaaldrich.com/catalog/product/sial/89483
http://www.sigmaaldrich.com/catalog/product/sial/00796
http://www.sigmaaldrich.com/catalog/product/aldrich/39736
http://www.sigmaaldrich.com/catalog/product/sial/04367
http://www.sigmaaldrich.com/catalog/product/sial/89020
http://www.sigmaaldrich.com/catalog/product/aldrich/15689
http://www.sigmaaldrich.com/catalog/product/sial/89320
http://www.sigmaaldrich.com/catalog/product/aldrich/40477
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IL-based Cation Anion Price (CAD$) Quantity (g) 
P

h
o

sp
h

o
n

iu
m

 

 Methanesulfonate 84 5 

Tetrabutylphosphonium  Tetrafluoroborate 338 5 

 p-toluenesulfonate 122 5 

  bis(trifluoromethylsulfonyl)amide 56 5 

  bis(2,4,4-

trimethylpentyl)phosphinate 

27 5 

Trihexyltetradecylphosphonium  Bromide 90 5 

  Chloride 25 5 

  Decanoate 90 5 

  Dicyanamide 33 5 

Triphenylphosphonio propane-1-sulfonate 258 5 

Triphenylphosphonio propane-1-sulfonic 963 50 

P
y

ri
d

in
iu

m
 

1-Butyl-3-methylpyridinium  bis(trifluormethylsulfonyl)imide 175 1 

 Hexafluorophosphate 156 5 

1-Butyl-4-methylpyridinium  Iodide 59 5 

  Tetrafluoroborate 110 5 

1-Butylpyridinium  Bromide 97 5 

1-(3-Cyanopropyl)pyridinium  Chloride 158 5 

1-Ethylpyridinium Tetrafluoroborate 90 5 

3-Methyl-1-propylpyridinium  bis(trifluormethylsulfonyl)imide 183 1 

G
u

an
id

in
iu

m
 

Guanidinium iodide 82.50 5 

Guanidinium chloride 97 5 

Guanidine thiocyanate 120 100 

Guanidine thiocyanate (solution) 107.50 50 ml 

T
ai

lo
re

d
 1-(3-Cyanopropyl)-3-

methylimidazolium  

bis(trifluoromethylsulfonyl)amide 439 5 

1-(3-Cyanopropyl)-3-

methylimidazolium 

chloride 390 5 

 

The separation cost consists of two parts including direct costs and indirect costs. The direct costs 

correspond to the costs of absorption and regeneration columns, lean/rich solvent heat exchangers, 

pumps, lean-solvent coolers, CO2 compression unit, and other major equipment. The indirect costs 

include the general facilities, emergency, and owner’s costs [147]. In addition, the Operating and 

Maintenance Expenses (OME) should be considered. The OME consists of operating labor, 

http://www.sigmaaldrich.com/catalog/product/sial/86934
http://www.sigmaaldrich.com/catalog/product/aldrich/50971
http://www.sigmaaldrich.com/catalog/product/aldrich/28612
http://www.sigmaaldrich.com/catalog/product/aldrich/96662
http://www.sigmaaldrich.com/catalog/product/aldrich/89744
http://www.sigmaaldrich.com/catalog/product/aldrich/50826
http://www.sigmaaldrich.com/catalog/product/aldrich/56776
http://www.sigmaaldrich.com/catalog/product/aldrich/53166
http://www.sigmaaldrich.com/catalog/product/sial/07349
http://www.sigmaaldrich.com/catalog/product/aldrich/14654
http://www.sigmaaldrich.com/catalog/product/aldrich/713112
http://www.sigmaaldrich.com/catalog/product/aldrich/73261
http://www.sigmaaldrich.com/catalog/product/sial/00285
http://www.sigmaaldrich.com/catalog/product/aldrich/12136
http://www.sigmaaldrich.com/catalog/product/aldrich/713104
http://www.sigmaaldrich.com/catalog/product/aldrich/30565
http://www.sigmaaldrich.com/catalog/product/aldrich/38943
http://www.sigmaaldrich.com/catalog/product/aldrich/38943
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maintenance costs, administrative and support labor costs, IL makeup, chemicals, solid waste 

treatment, power, and CO2 transport and storage [147]. 

2.9.  Screening of ionic liquids for CO2 capture  

Due to the tunability of ILs, room temperature ILs have 1018 possible structures [148]. This makes 

the selection of the best ILs for CO2 capture difficult. However, particular factors should be 

considered to choose the most suitable ILs for CO2 capture processes. These features include cost, 

the ability of the IL to absorb CO2, how well the IL will work at ideal conditions, and selectivity 

of CO2 in the presence of various gases by the IL. There are also other factors such as the toxicity 

and biodegradability of the ILs if it is planned to use ILs in large quantities. 

 

Economic Prospect: As discussed before, ILs are currently expensive solvents. Their production 

processes are fairly difficult, which is a major obstacle while utilizing ILs for CO2 capture at large 

scales. Many ILs are only available at the lab scales. Hence, it is not easy to estimate the total 

purchase cost if they are used in industrialized operations. The supplier Sigma-Aldrich is one of 

the ILs suppliers that provide the typical costs of a majority of ILs.  It is clear that as the amount 

of the requested ILs increases, the price per gram drops significantly.  

According to the prices listed for ILs by Sigma-Aldrich, the five best ILs in terms of economic 

aspect are: tributylmethylammonium chloride ([TBMA][Cl]); 1-butyl-3-methylimidazolium 

tetrafluoroborate ([bmim][BF4]); trihexyl(tetradecyl)phosphonium bromide ([P14,6,6,6][Br]); 

trihexyl(tetradecyl)phosphonium chloride ([P14,6,6,6][Cl]); and 1-ethyl-1-methylpyrrolidinium 

bromide ([C2Mpyrr][Br]). The prices of ILs at different scales are listed in Table 2-8. 
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Table 2-8: Prices for five potential ILs for CO2 capture [144]. 

 

 

 

 

 

 

Solubility and Selectivity Prospects: The CO2 capture capacity of an IL is an important factor 

while choosing an IL for a CO2 capture process. Researchers have studied many different ILs to 

determine what are the best in terms of their CO2 solubility for the post-combustion CO2 capture 

processes. It has been found that the anion of ILs has the greatest impact on the CO2 capture 

capacity of ILs.  According to the literature, the more fluorinated the anion is, the higher the CO2 

solubility is. It was also concluded that task-specific ionic liquids (TSILs) have a much greater 

CO2 solubility than conventional ILs, since they are usually modified to absorb more CO2. 

Oliferenko et al. [149] provided a spreadsheet which lists many ILs and their corresponding 

Henry’s law constants. Based on the data/information, the best ILs in terms of solubility are: 1-

pentyl-3-methylimidazolium tris(nonafluorobutyl)trifluorophosphate ([p5mim][bFAP]); 

trihexyl(tetradecyl)phosphonium chloride ([P14666][Cl]); 1-hexyl-3-methylimidazolium 

tris(heptafluoropropyl)trifluorophosphate ([hmim][pFAP]); trihexyl(tetradecyl)phosphonium 

bis(trifluoromethylsulfonyl)imide ([P14666][Tf2N]); and methyltrioctylammonium 

bis(trifluoromethylsulfonyl)imide ([N1888][Tf2N]).  The Henry’s law constants for these ILs are 

Ionic Liquid Weight (g) 
Price 

(CAD$) 

Price per weight 

(CAD$/g) 

[TBMA][Cl] 
100 129 1.29 

500 595 1.19 

[bmim][BF4] 
100 180.5 1.81 

1000 108.5 1.09 

[P14666] [Br] 50 107.5 3.25 

[P14666] [Cl] 
5 35.5 7.10 

50 112.5 2.25 

[C2Mpyrr] [Br] 
5 36.2 7.24 

50 136 2.72 
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presented in Table 2-9. It should be noted that the Henry’s law constant represents the amount of 

CO2 which is physically absorbed by an IL. In fact, it does not account for chemical absorption 

which can occur in TSILs.  

The promising ILs in terms of selectivity of CO2 and H2S over other gases (e.g., methane) include 

BF4, NO3, and CH3SO4 anions and cations such as Tetrabutylammonium (N4111), 

Pentamethylguanidinium (pmg), and Tetramethylguanidinium (tmg) [150]. 

Maiti [151] concluded that ILs containing pentamethylpropylguanidinium [ppg] cation and [BF4], 

[FEP], and [PF6] anions have higher CO2 solubility. The solubility data are illustrated in Figure 2-

17 and Figure 2-18. Thus, the functionalized-guanidinium cations show higher solubility than the 

imidazolium-based ILs [152]. Among anions, BF4 and PF6 are the best where the CO2 solubility 

is the main selection criterion. 

Table 2-9: Henry's law constant for potential ILs in terms of solubility [149]. 

Ionic Liquid T (K) Henry’s law constant (bar) 

[p5mim][bFAP] 
313 26.92 

303 22.44* 

[hmim][pFAP] 
313 28.84 

303 24.01* 

[[P14666][Cl] 303 23.99 

[P14666][Tf2N] 303 26.30 

[N1888][Tf2N] 303 38.18 

* Linearly interpolated for comparison 
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Figure 2-17: Calculated CO2 solubility in various ILs having an anion of Tf2N [151]. 

 

 

 
Figure 2-18: CO2 solubility in different ILs having a cation of bmim [151]. 

 

Operational Condition Prospects:  Since high pressure and low temperature operations facilitate 

CO2 absorption, the high pressure and low temperature conditions favor to absorb a high amount 
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of CO2. However, this is not appropriate for post-combustion processes, because increasing the 

pressure will increase the operating costs. Therefore, it is necessary to employ ILs that can attain 

an acceptable solubility of >40 % at the moderate temperature range of 293-313.15 K and the 

moderate pressure range of 5-10 bar. Several researchers have studied important absorption and 

characterization aspects of the amine-functionalized ILs, since they exhibit higher CO2 absorption 

capacities due to chemical absorption, compared to conventional ILs. A part of functionalized ILs 

used for CO2 capture are trihexyl(tetradecyl)phosphonium glycinate ([P14666][Gly]), isoleucinate 

([P14666][Ile]), 2-cyanopyrrolide ([P14666][2-CNpyr]), 3-(trifluoromethyl) ([P14666][3-CF3pyra]), 

prolinate ([P14666][Pro]), and methionate ([P14666][Met]) [29, 117, 131]. These studies reveal that 

non-conventional ILs are able to absorb CO2 in a 1:1 stoichiometry at 295 K under low pressure 

conditions. 

2.10. Main technical and practical challenges  

Although thermodynamic models are very useful to characterize CO2 and IL systems, there are 

still major challenges in this area. Adequate knowledge is required to select appropriate EOSs and 

mixing rules for complex systems such as water/CO2/IL. Inappropriate selection results in 

significant errors while predicting the thermodynamic characteristics [158,159].  

The critical properties of CO2 are available; however, finding the critical properties of the ILs is a 

challenging task, since they are decomposed at the normal boiling point. Hence, efficient 

methodologies need to be developed to accurately obtain the critical properties of ILs. 

Thermodynamic models are often complex to be solved in phase equilibria for the determination 

of the corresponding parameters. There are computational and software tools that may assist 

researchers. However, most of these approaches are expensive, difficult, and time-consuming. This 

poses another major challenge while employing thermodynamic models. 
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The high viscosity of ILs, which leads to a decrease in the solubility of CO2 in ILs, is one of the 

main challenges while utilizing ILs. There are some solutions to this challenge, which they need 

to be examined and investigated properly. One of the solutions is using a mixture of water and 

amines with ILs, in which the optimum composition and process conditions should be determined 

for these mixtures. 

Another disadvantage of using ILs for CO2 capture is the cost.  ILs are more expensive, compared 

to amines. Although the price of ILs in the large scale (less than $40/kg) can be much lower than 

the currently available lab scale price (~$1000/kg),  the cost is still 10 to 20 higher than the cost 

for conventional solvents [153]. Researchers need to find simple and economic synthesis solutions 

for CO2 capture where the targeted solvent is an IL. To use ILs for the absorption method in large 

scales, appropriate system design and optimal operating conditions should be selected.  

Recently, there have been new developments in CO2 capture and utilization techniques such as the 

introduction of efficient solid/liquid/gas systems with high CO2 capture efficiency, utilization of a 

single liquid absorber to simultaneously capture CO2 and SO2, hydrogen production through 

employing chemical looping technique for CO2 capture, electrofuels production from CO2, and 

use of CO2 for algae culturing [160-164].  However, more systematic engineering and research 

activities need to be conducted to assess the viability of the new strategies in terms of practical 

implications and economic and environmental prospects. 

2.11. Conclusions  

CO2 capture processes involve several challenges in terms of technical, economical, and 

environmental prospects. Novel options for removal of CO2 from flue-gases including absorption 

with ionic liquids (ILs) have been proposed and investigated from thermodynamic, transport 

phenomena, and economic points of view. The CO2 capture process using ILs is briefly explained 
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in this chapter where the absorption mechanisms and the main practical and economic advantages 

and advantages are highlighted.  The physical and chemical characteristics and critical properties 

of CO2 and ILs (and their mixtures) obtained from both experimental and modeling approaches 

are reported. The influences of important parameters such as type of anions and cations, ions 

length, IL volatility, and operating conditions on CO2 solubility and selectivity are also discussed. 

The most appropriate equations of state (EOSs) to study the vapor-liquid equilibrium of CO2/ILs 

systems are described in this work. In addition, the price of the most common ILs is reported as 

the economic analysis is very important in commercializing the IL-CO2 absorption technique.  The 

main conclusions are drawn as follows: 

• The current CO2 capture techniques mainly suffer from high capital and operating costs, 

solvent degradation, high solvent loss, corrosive nature of solvents, the toxicity of solvents, 

required large absorption equipment, and high energy consumption for solvent 

regeneration.  

• Among EOSs, the results obtained by using PC-SAFT EOS showed great agreement with 

the experimental data at atmospheric and high pressures. Also, PR EOS results in good 

outputs where the Wong-Sandler/van Laar mixing rules are utilized.  

• The functionalized ILs though are more suitable for absorption of CO2, they are 2-4 times 

more expensive than conventional ILs.  

• The best ILs in terms of technical and economic perspective are screened. Based on this 

investigation, it is concluded that Guanidinium cations and fluorine anions including [BF4], 

[FEP], and [PF6] are the best cation and anion, respectively as they exhibit high CO2 

solubility. 
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• To commercialize CO2 capture technology with ILs, it is vital to find cheap but suitable 

IL/additive mixtures with relatively high solubility and selectivity where important mass 

transfer and thermodynamic prospects of CO2/Water/IL/additive systems (diffusivity, mass 

transfer rate, vapor pressure, and equilibrium conditions) are well explored through 

experimental and modeling investigations. 

• ILs as green solvents offer a promising CO2 capture technique where an acceptable 

absorption rate can be attained if a proper ion or chemical is added to IL. In addition to 

engineering design aspects, their high viscosity, cost, availability, compatibility, and purity 

are the main challenges to developing appropriate absorption systems to capture CO2 using 

ILs at an industrial scale. 

 

Appendix A1:  Mixing rules for equations of state  

To use an EOS for mixtures, EOS constants should be obtained using mixing rules. Mixing rules 

include the binary interaction terms which represent the attractive and repulsive forces [154]. In 

general, the mixing rules are divided into two main categories including random and non-random 

mixing rules. The non-random mixing rules are used when the system contains asymmetric 

compounds such as water and methanol. The non-random mixing rules are represented by two 

terms; namely, conventional random mixing term and asymmetric term due to polarity.   

The random mixing rules offer acceptable results in many practical cases. It is suggested that the 

mixing rules used in any EOS should attain the same form as that of the virial equation at 

conditions at which both equations are valid. The interactions between molecules in the 

multicomponent systems (the coefficients of virial equations) at low pressures are described at 

Table A1-1 [1]. 
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The attractive (aij) and repulsive (bij) forces between molecules i and j in the EOS can be expressed 

by the simple geometric and arithmetic average, respectively, through the following equations [1]: 

2/1)( jiij aaa =  (A1-1) 

2/)( jiij bbb +=  (A1-2) 

Considering the attractive term between two non-similar molecules, the following binary 

interaction parameter (kij) should be added, as well [1]:  

)1()( 2/1

ijjiij kaaa −=  (A1-3) 

For the repulsive term, if there is a high concentration of CO2 in the system, another binary 

interaction parameter for the repulsion term (
'

ijK ) should be used as follows: 

)1](2/)[( ijjiij Kbbb −+=  (A1-4) 

where bij represents the coefficients due to interaction between molecules i and j. 
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Table A1-1: Different mixing rules for EOSs [1]. 
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Once the parameters a and b are determined, they can be used in EOSs. 

 

NOMENCLATURES  

 

Acronyms 

AAD 

AIL 

ANN 

CILs 

CC 

CCS 

CCUS 

DE 

DESs 

DETL 

EOS 

 

average absolute deviation 

aprotic ionic liquid 

artificial neural network 

conventional ionic liquids 

capital cost 

carbon capture and storage 

carbon capture, utilization, and storage 

differential evolution 

deep eutectic solvents 

differential evolution with Tabu List 

equation of state 
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GA 

GHG 

HBDs 

IGCC 

IL 

IPCC 

IUPAC 

LLE 

LM 

MD 

MOFs 

NRTL 

OC 

OME 

PC-SAFT 

PILs 

PR 

PT 

PRSV 

PSO 

RK 

SA 

SAFT 

SRK 

TGA 

TSIL 

vdW 

VL 

VLE 

WS 

 

Chemicals 

genetic algorithm  

greenhouse gas 

hydrogen bond donors 

integrated gasification combined cycle 

ionic liquid 

intergovernmental panel on climate change 

International Union of Pure and Applied Chemistry 

liquid-liquid equilibria 

Levenberg-Marquart 

molecular dynamics 

metal-organic frameworks 

non-random two liquid equation of state 

operating cost 

operating and maintenance expenses 

perturbed chain statistical association fluid theory  

protic ILs 

Peng-Robinson equation of state 

Patel-Teja 

Peng-Robinson-Stryjek-Vera equation of state 

particle swarm optimization  

Redlich-Kwong equation of state 

simulated annealing 

statistical association fluid theory  

Soave-Redlich-Kwong equation of state 

thermogravimetric analysis 

task-specific ionic liquid 

van der Waals  

van Laar equation of state 

vapor-liquid equilibria 

Wong-Sandler mixing rule 

AMP 2-amino-2-methl-1-propanol  

BF4
− tetra fluoroborate anion 

[bmim][BF4] 1-butyl-3-methylimidazolium tetrafluoroborate  

[bmim] [Br] 1-butyl-3-methylimidazolium bromide 

[bmim] [dca] 1-butyl-3-methylimidazolium dicyanamid 

[bmim][NO3] 1-butyl-3- methylimidazolium nitrate 

[bmim][NTf2] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

[bmim][CF3SO3] 1-butyl-3-methylimidazolium trifluoromethanesulfonate 

[bmim][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 

[bmim][TfO] 1-butyl-3-methylimidazolium trifluoromethanesulfonate 

Br− bromide anion 

CF3-CFH2CH3SO3
− methylsulfate anion 

[CH3CH2NH3][NO3] ethylammonium nitrate 
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CO2  carbon dioxide 

CO3
2- carbonate 

[C2Mpyrr][Br] 1-ethyl-1-methylpyrrolidinium bromide  

[CnCnMIM]+ 1-alkyl-3-alkylimidazolium cation (n= carbon chain length) 

[CnMIM]+ 1-alkyl-3-methylimidazolium cation (n= carbon chain length) 

[C2mim][NTf2] 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

[emim][EtSO4] 1-ethyl-3-methylimidazolium ethyl sulfate 

[emim][TfO] 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 

HCO3
-  bicarbonate 

Hg mercury 

hmg hexamethylguanidinium 

[hmim][BF4] 1-hexyl-3-methylimidazolium tetrafluoroborat 

[hmim] [Ntf2] 1-hexyl-3-methylimidazolium trifluoromethanesulfonate 

[hmim][PF6] 1-hexyl-3-methylimidazolium hexafluorophosphate 

HSO4
− hydrogen sulfate anion 

MDEA methyl diethanolamine  

MEA monoethanolamine 

[N-bupy][BF4] N-butylpyridinium tetrafluoroborate 

N(CN)2− dicyanamide anion 

N4111 tetrabutylammonium 

NaCl sodium chloride 

Nn,n,n,n
+ tetraalkylammonium cation (n= carbon chain length) 

NO2 nitrogen dioxide 

NPf2− bis(pentafluoroethylsulfonyl)imide anion 

O2 oxygen 

OAc− acetate anion 

omim 1-octyl-3-methyl imidazolium 

[omim][BF4] 1-methyl-3-octylimidazolium tetrafluoroborate 

[omim][Cl] 1-octyl-3-methylimidazolium chloride 

PDMS polydimethylsiloxane 

[PF6]
- hexafluorophosphate 

pmg pentamethylguanidinium 

PP polypropylene 

ppg pentamethylpropylguanidinium 

PPO polyphenyleneoxide 

[P14666][2-CNpyr] trihexyl(tetradecyl)phosphonium 2-cyanopyrrolide  

[P14666][3-CF3pyra] trihexyl(tetradecyl)phosphonium 3-(trifluoromethyl) pyrazolide 

[P14666][Br] trihexyl(tetradecyl)phosphonium bromide  

[P14666][Cl] trihexyl(tetradecyl)phosphonium chloride  

[P14666][Gly] trihexyl(tetradecyl)phosphonium glycinate  

[P14666][Ile] trihexyl(tetradecyl)phosphonium isoleucinate  

Pn,n,n,n
+ tetraalkylphosphonium cation (n= carbon chain length) 

[Pyn,n]+ 1-alkyl-1-alkylpyrrolidinium cation (n= carbon chain length) 

[Rmim][Tf2N] 1-alkyl-3-methylimidazolium (alkyl = methyl, butyl, octyl, and 

dodecyl) bis(trifluoromethylsulfonyl)imides 
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SCN− thiocyanate anion 

SO2 sulphur dioxide 

tba tetrabutylammonium 

[TBMA][Cl] tributylmethylammonium chloride  

tbp tetrabutylphosphonium 

tea tetraethylammonium 

tma tetramethylammonium 

tmg tetramethylguanidinium 

ttp trihexyl(tetradecyl)phosphonium 

 

 

Variables/Parameters 

 

A Antoine constant in Equation (2-6); viscosity model coefficient 

in Equation (2-10) 

AJ, AL, AM critical temperature model constants in Equations (2-11), (2-14) 

and (2-18), respectively 

a constant in Equation (2-11); constant in vapor pressure model in 

Equation (2-25); energy parameter in Equations (2-33), (A2-1), 

(A2-7), (A2-8), and Table A2-1 

a1, a2, and a3 constants in dentistry-temperature correlation in Equation (2-8) 

ac a constant in energy parameter in Equation (2-30) 

ai, and aj a coefficient in reduced effective cross section model in Equation 

(2-3); energy parameter for component i and j in Equations (A2-

1), (A2-3), (A2-6), (A2-7), (A2-8), (A2-12), (A2-14) and Table 

A2-1 

aij attractive forces between molecules i and j in Equations (A2-3), 

(A2-12), (A2-14), and Table A2-1 

�̃� Helmholtz free energy in Equations (2-32) and (2-33) 

�̃�𝑎𝑠𝑠𝑜𝑐 association contribution of Helmholtz free energy in Equation (2-

32) 

�̃�𝑑𝑖𝑠𝑝 dispersion contribution of Helmholtz free energy in Equation (2-

32) 

�̃�ℎ𝑐 hard chain molecules contribution of Helmholtz free energy in 

Equation (2-32) 

B coefficient of vapor pressure model in Equations (2-6) and (2-

23); parameter in density model in Equations (2-7) and (2-9) 

b coefficient in vapor pressure model in Equation (25); volume 

parameter in Equations (2-28), (2-31), (A2-5), (A2-6), (A2-7), 

(A2-9) and in Tables 2-6, 2-7, and A2-1 

b1 and b2 parameters used in density model in Equation (2-9) 

bi and bj volume parameter for component i and j in Equations (A-2), (A2-

4), (A2-5), (A2-9), (A2-13), (A2-15) and Table A2-1 

bij binary interaction coefficient of molecules i and j in Equations 

(A2-2), (A2-4), (A2-6), (A2-13), (A2-15) and Table A2-1 
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C coefficient of vapor pressure model in Equation (2-6); coefficient 

in density model in Equation (2-7); parameter in Equations (A2-

6), Equation (A2-7), and Table A2-1 

CJ, CL, CM critical pressure model constants in Equations (2-12), (2-15), and 

(2-19), respectively 

Cp specific heat capacity at constant pressure in Equation (2-25) 

c volume parameter in Tables 2-6 and 2-7 

DJ parameter in critical pressure model in Equation (2-15) 

dij parameter in viscosity-temperature model in Equation (2-5) 

EJ, EL, EM critical volume model constants in Equations (2-13), (2-16) and 

(2-20), respectively 

f2 fugacity of component 2 (solute) in Equations (2-35), (2-36), 

(A2-10), and (A2-11) 

GE Gibbs excess free energy in Equations (A2-6), Equation (A2-7), 

and Table A2-1 

H2 enthalpy of component 2 (solute) in Equations (2-35) and (A2-

10)  

Iji binary interaction coefficient between molecules j and i in 

Equation (A2-8) and Table A2-1 

k transmission coefficient in Equation (2-24) 

k1 coefficient in energy parameter model in Table 2-8 

kij binary interaction coefficient in Equations (A2-1), (A2-3), (A2-

4), (A2-7), (A2-14) and in Table A2-1 

Kij
’ binary interaction coefficient in Equation (A2-15) 

M molecular weight in Equations (2-19), (2-24), and (2-26) 

Mref molecular weight of reference in Equation (2-27) 

MS molecular weight of reference in Equation (2-27) 

m mass in Equations (2-24) and (2-26) 

mref mass of reference in Equation (2-27) 

mS mass of sample in Equation (2-27) 

N number of atoms in molecule in Equation (2-15) 

ni number of occurrences of group i in Equations (2-11) – (2-20) 

npts number of data points in Equation (2-34) 

P pressure 

Pb bubble point pressure 

Pc critical pressure 

PJi, PLi, PMi contributions of component i to critical pressure in Equations (2-

12), (2-15), and (2-19), respectively 

Psat saturation pressure 

R universal gas constant 

S orifice area in Equation (2-24) 

S’ surface area to liquid in Equation (2-24) 

T temperature 

T* reduced temperature in Equations (2-2) – (2-5) 

Tb boiling point temperature 
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Tc critical temperature 

TJi, TLi, TMi contributions of component i to critical temperature in Equations 

(2-12), (2-14), and (2-18), respectively 

Tr reduced temperature 

t time in Equations (2-26) and (2-27) 

u parameter in PRSV model in Table 2-6 

V volume 

Vc critical volume 

VJi, VLi, VMi contributions of component i to critical volume in Equations (2-

13), (2-16), and (2-20), respectively 

v parameter in PRSV model in Table 2-6 

V2
 partial molar volume of solute at infinite dilatation in Equations 

(2-35) and (A2-10) 

w parameter in PRSV model in Table 2-6 

xi and xj mole fraction of component i and j, respectively 

  

Greek Letters  

 vaporization coefficient in Equations (2-24) and (2-26); energy 

parameter in Equation (2-29) and Table 2-7 

Δ change or difference 

ϕ fugacity coefficient 

( )T  

 
reduced effective cross section in Equations (2-2) and (2-3) 

 parameter in five parameter EOSs in Equation (2-28) and Table 

2-7 

ε particle energy in Equation (2-4); activation energy in Equation 

(2-10); a parameter in five parameter EOS in Equation (2-28) and 

Table 2-7 

η apparent viscosity in Equation (2-10); a parameter in five 

parameter EOS in Equation (2-28) and Table 2-7 

κ conductivity in Table 2-4 

ρ density  

 elapsed time in Equation (2-24) 

ω  acentric factor 

Subscripts and Superscripts 

0  reference state, and dilute 

*  reduced 

  infinite dilution 

assoc  association 

b  boiling 
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c  critical 

calc  calculation 

disp  dispersion 

E  excess 

exp  experiment 

hc  hard chain 

LV  liquid-vapor 

m  melting 

r  reduced 

ref  reference 

res  residual 

s  sample 

sat  saturation 
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3. CHAPTER THREE 

 

Assessment of carbon dioxide solubility in ionic liquid/toluene/water systems 

by extended PR and PC-SAFT EOSs: Carbon capture implication 

Preface  

A version of this chapter has been published in the Journal of Molecular Liquids 275, 323-337 

(2018). I am the primary author of this paper. With the help and advice of the coauthors, Sohrab 

Zendehboudi and Nima Rezaei, I developed the conceptual thermodynamic model and designed 

the manuscript’s structure. Most of the literature review, data collection, and the performance 

analysis of different methods were done by me as the first author. I prepared the first draft of the 

manuscript and subsequently revised the manuscript based on the co-authors’ feedback and 

comments received from journal reviewers. The co-author, Sohrab Zendehboudi, helped in 

developing the method, results interpretation, and statistical analysis. The co-author, Sohrab 

Zendehboudi, also considerably contributed to entirely correcting the text in terms of technical and 

editorial aspects. Nima Rezaei reviewed and revised the manuscript. 
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Abstract 

Recently, there has been a growing interest in CO2 capture using Ionic Liquids (ILs). To determine 

the CO2 absorption ability of ionic liquids and their selectivity in the presence of other gas 

mixtures, the solubility of ILs at various operating conditions and the influence of impurities such 

as water and toluene should be evaluated. The carbon capture capacity of ILs can be examined 

using various methods such as experiments, Equations of State (EOSs) modeling, and molecular-

based modeling. In this research work, the extended Peng–Robinson (PR) and Perturbed-Chain 

Statistical Associating Fluid Theory (PC-SAFT) EOSs are utilized to evaluate the solubility and 

selectivity of CO2 in ILs through comparing the modeling results with experimental data. PC-

SAFT and PR parameters are determined by employing the experimental density data. Modeling 

results reveal that the solubility values estimated by PC-SAFT due to the association have lower 

deviation than PR EOS based on the magnitudes of Absolute Average Deviation (AAD %).  The 

AAD (%) for [bmim][BF4], [bmim][PF6], [bmim][Tf2N], [hmim][Tf2N], [hmim][FAP], and 

[hmim][FAP] are calculated using PR EOS and PC-SAFT EOS in a range of 2-5.7% and 3-7.5%, 

respectively. Furthermore, ternary systems of CO2/ILs/Water and CO2/ILs/Toluene are modeled 

to determine the effect of water and toluene on the gas solubility in ILs and viscosity of ILs with 

PC-SAFT EOS. Based on the results, low concentrations of water (0.1 wt%) have a negligible 

effect on the CO2 solubility in ILs. However, with increasing the water concentration, the solubility 

of water reduces significantly. On the other hand, the viscosity of ILs is reduced by increasing 

water concentration. Viscosity reduction in the hydrophilic ILs is significant. It is efficient to add 

water up to 10 wt% to hydrophilic ILs, with the implication of a decrease in the viscosity to an 

amount close to the viscosity of water and a decrease in solubility by 9%.  Finally, the selectivity 

of [hmim][Tf2N] in the separation of CO2 and H2S, SO2, CH4, and H2 are reported. Based on the 
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results, [hmim][Tf2N] is not appropriate for the separation of CO2 from streams with a high 

concentration of H2S and SO2 gases. 

3.1. Introduction 

Ionic Liquids (ILs) are molten salts at temperatures below 100 oC. Their unique properties such as 

having a low vapor pressure (e.g., less than 10-8 bar [155] ) and high thermal stability (473-673 K 

[156])  make them promising materials in different processes. Common ILs are those with cations 

based on imidazolium, phosphonium, pyridinium, ammonium, and guanidinium. The tunability of 

ILs is another attractive feature, enabling the design of engineered liquids for specific applications 

by selecting different cations, anions, and functionality. For instance, a specific IL can be tuned to 

promote desired viscosity, miscibility (in water), and reactivity with other compounds [116]. ILs 

are suitable substitutions for volatile organic solvents. They can be used as solvents for organic 

and polymer synthesis, biphasic separations (liquid-liquid extraction), and as a catalyst and catalyst 

support for reactions [157]. One of the important characteristics of ILs is their potential in 

separating gas from a mixture of gases. ILs have an exceptionally high solubility for some gases 

(such as CO2 or/and H2S). Hence, they can be regulated to selectively capture one gas from a 

mixture of gases [158]. Moreover, due to their unusual low vapor pressure, the solvent loss can be 

minimized. These characters give ILs great potential in capturing CO2 from flue gases. As ILs do 

not contaminate the gas phase due to their non-volatility, the selectivity of gases is greater with 

ILs, compared to other solvents. The thermal stability of ILs also makes them suitable for high 

temperature applications. 

Experimental measurements of CO2 solubility in ILs are extensive in the literature, using 

gravimetric, isochoric saturation, synthetic, chromatography, and thermodynamic consistency 

tests [22, 29, 112, 159-168]. Aki et al. [101] investigated the solubility of CO2 in 10 different 
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imidazolium-based ILs at temperature levels of 25 °C, 40 °C, and 60 °C and pressures up to 150 

bar. They studied the effect of anion, cation alkyl chain length, and the addition of alkyl 

substituents (on the cation ring) on the solubility of CO2 in ILs at high pressures. The experiments 

were conducted at the stoichiometric equilibrium condition. The ILs were charged into the cell 

which was kept at a constant temperature, using a water bath. A known amount of CO2 was added 

to the cell, after stirring when they reached the equilibrium. The solubility of CO2 in ILs was then 

measured. Shariati and Peters [169] conducted experiments based on the synthetic method (in this 

method, the composition of the mixture is known and temperature or pressure is adjusted until 

homogenous phase is achieved.) at high pressures in an autoclave cell for high concentrations of 

CO2 and the Cailletet apparatus for lower concentrations of CO2 in 1-hexyl-3-methylimidazolium 

hexafluorophosphate. Jacek Kumełan [170] conducted tests using a high-pressure view-cell 

technique based on the synthetic method for solubility of CO2 in [hmim][Tf2N]. Unfortunately, 

the experimental data are available in a narrow region of temperatures and pressures. To study the 

phase behavior of CO2-ILs in a wider range of temperature and pressure, a thermodynamic model 

(or Equation of state) is required. 

Lawien et al. [171] reported experimental results for the solubility and diffusivity of CO2 in 

[Cnmim][TCM] ILs, using a magnetic suspension balance at pressures up to 2 MPa. They 

employed electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT) [172] 

EOS to model the system’s behavior and verified it by the real data. Karakatsani et al. [33, 40] 

used the correlated density data at various temperatures to obtain the parameters of the truncated 

Perturbed Chain-Polar Statistical Associating Fluid Theory (tPC-PSAFT) [173] model. Using the 

correlated binary interaction from tuning solubility data, they determined the solubility of CO2 and 

O2 in [bmim][PF6]. They reported an excellent agreement between the model and experimental 

http://www.sciencedirect.com/science/article/pii/S0021961406000516
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results. The tPC-PSAFT is suitable for systems with weakly dispersed and highly oriented polar 

interactions and short-range strong hydrogen bonding interactions. They modeled the ILs as highly 

polar and neutral ion pairs. Shiflett et al. [112, 174] generated the solubility data of CO2 in three 

common ILs including, [bmim][PF6], [bmim][BF4], and [hmim][Tf2N] through the gravimetric 

microbalance experiments over a temperature range of 283.15 K to 348.15 K and pressures up to 

2.0 MPa. They simulated the phase equilibrium behavior by employing Redlich-Kwong (RK)[84]  

EOS.  Shin et al. [175] reported the solubility of CO2 in [Cn-mim][TfO] (for n =2, 4, 6, and 8)  at 

pressures up to about 40 MPa and temperature levels of 303.85 K and 344.55 K, using Peng-

Robinson (PR) EOS and van der Waals (vdW) mixing rules. Cavaliho et al. used PR EOS with 

Wong-Sandler mixing rule (PRWS EOS) to model the phase behavior of CO2 and ILs 

([bmim][Tf2N] , [C5-mim][Tf2N], [THTDP][NTf2], and [THTDP][Cl]) at temperatures up to 363 

K and pressures up to 50 MPa [114, 176]. There are several modeling data for solubility of CO2 in 

some ILs; however, they examined EOSs that is not as much accurate as PC-SAFT. In this work, 

we investigate the solubility of new ILs with PC-SAFT; the parameters are determined with high 

precision.  The final solubility correlated data are more accurate and reliable than the data reported 

in the literature while comparing the Average Absolute Deviation (AAD %) results.  

Fu et al. [177] studied the effect of water content from 0.0067 wt% to 1.6 wt% on the solubility of 

CO2 in [bmim][PF6]. They concluded that the deviation in solubility was not more than 15%. Most 

researchers only reported the effect of water on the solubility of gases in ILs without considering 

the effect of water content on the viscosity and solubility of CO2 in ILs.  In this research study, the 

effect of water on decreasing viscosity of ILs and solubility of CO2 in the mixture of hydrophilic 

and hydrophobic ILs with water is evaluated.  
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SAFT based EOSs for CO2 separation processes have not been studied and developed enough; 

however, they have shown accurate results for CO2-ILs and CO2-Amines systems. To the best of 

our knowledge, the PC-SAFT EOS has not been utilized in determining the solubility of CO2 in 

some of the ILs, yet.  

In this work, the solubility of CO2 in different ILs is modeled using PR and PC-SAFT EOSs in 

broad ranges of temperature and pressure. The accuracy of PR and PC-SAFT EOSs in predicting 

the solubility of CO2 in various ILs is compared. Then, the influence of water and toluene in the 

IL phase on the solubility of CO2 in IL-water and IL-toluene mixtures and the IL mixture 

viscosities are investigated. Also, Henry’s constant and the selectivity of CO2 over other gases in 

[hmim][Tf2N] IL are calculated. Finally, some concluding remarks are given in the last section.  

3.2.  Thermodynamic modeling 

In this study, the Vaper-Liquid Equilibria (VLE) for the CO2-IL system and Vapor-Liquid-Liquid 

Equilibria (VLLE) for the CO2-IL-Water system are modeled by two thermodynamic models, 

namely: PRWS EOS (Peng-Robinson with Wong-Sandler mixing rules) and PC-SAFT (Perturbed 

Chain Statistical Associating Fluid Theory). The PRWS model serves as a reference to show the 

importance of association in the CO2-IL system. 

3.2.1. Peng-Robinson EOS 

The Peng-Robinson EOS [81] is one of the appropriate cubic EOSs in the thermodynamics, which 

is defined as follows: 

2 2
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P

v b v bv b
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0.07780 c

c

RT
b

P
=  

(3-3) 

 

where Pc and Tc are the critical pressure and critical temperature of pure compounds; v  stands for 

the molar volume; a refers to the attraction parameter; b represents the hard-core or co-volume 

parameter [178]; and (T) denotes the temperature-dependent term, which is expressed as follows: 

2 2( ) [1 (0.37464 1.54226 0.26992 )(1 )]rT T  = + + − −  (3-4) 

where  represents the acentric factor and Tr symbolizes the reduced temperature. PR EOS can be 

applied to mixtures by applying a suitable mixing rule. The most common mixing rules are the van 

der Waals mixing rules as given below: 

1 1

c c

m i j ij

i j

a x x a
= =

=   
(3-5) 

1 1

c c

m i j ij

i j

b x x b
= =

=     
(3-6) 

 

where am and bm signify the attraction and co-volume parameters of PR EOS for mixture, 

respectively; c is the number of components; xi and xj stand for the mole fractions of component i 

and j, respectively; ija  and ijb  are the ij pair interaction parameters between molecules i and j 

which can be determined from a set of combining rules such as: 

)1()( 2/1

ijjiij kaaa −=  (3-7) 

)1](2/)[( ijjiij Kbbb −+=  (3-8) 

where ijk and ijK  denote the binary interaction parameters. For cubic EOSs, using van der Waals 

mixing and combining rules, there are two problems. First, the predicted error for the liquid density 

of pure fluids and mixtures exceeds 5%.  Second, for the system of molecules with the size or 
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chemical nature dissimilarity, the predictions may not be in a good agreement with real data. To 

overcome these problems, the modified mixing rules are introduced, among which Wong-Sandler 

[179] has been verified promising in estimating the liquid density [180]. The Wong-Sandler 

mixing rule combines the cubic EOS with excess free-energy (or liquid activity coefficient) 

models.  

Wong Sandler [179] derived a general form of mixing rules first by combining the quadratic 

dependence of the second virial coefficient on composition and the relationship between the 

second virial coefficient and the parameters in a cubic EOS.  The second equation in their mixing 

rules was derived by taking the limit of the excess Helmholtz free energy for a cubic EOS mixture 

at an infinite pressure.  Helmholtz free energy is less pressure-dependent and can be approximated 

by excess Gibbs energy at low pressures where most experimental data are collected.  The resultant 

mixing rules are the pressure independent, which satisfy the quadratic requirement: 

( )
a

B T b
RT

= −
 

(3-9) 

in which, a and b denote the attraction and co-volume parameters of PR EOS. Since the 

composition dependence of the second virial coefficient is quadratic, the following relationships 

are obtained from the statistical mechanics: 

( )i j ij

a a
b x x b

RT RT
− = −

 
(3-10) 
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(3-12) 

where xi and xj denote the composition of component i and j, and C*= 0.34657 for the PR EOS.  

The expression ( / )ijb a RT− , cross second virial coefficient, is given by the EOS as follows: 

  

( )
1/2

1
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i j ij

ij

aaa
b b b k

RT RT RT

    
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(3-13) 

or 

( ) ( )
1

1
2

i j

i j ij

ij

a aa
b b b k

RT RT

 
− = + − − 

   

(3-14) 

In Equations (3-13) and (3-14), ijk stands for the second virial coefficient binary interaction 

parameter. The values of the parameter are given in Appendix A2 for various CO2/IL cases. This 

parameter has to be obtained experimentally near the conditions of interests. The experimental 

dependence of  ijk  renders the WS model, not a fully predictive scheme. 

Another relationship between a and b is defined by the excess Helmholtz free energy AE for the 

liquid phase, as given below: 

( )
lim [ ] ( )

E E

p i i

A A x
x

RT RT
  → = − =  

(3-15) 

where σ is an EOS dependant constant and α represents the reduced attractive-term parameter,  

/a bRT = . The subscript i corresponds to pure component values of component i. Wong and 

Sandler assumed that AE for liquid solutions is the same as GE at low pressures, as shown below: 
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( ) ( )E EA x G x

RT RT

 =  
(3-16) 

where 
EA  signifies the excess Helmholtz free energy at the limit of infinite pressure and EG is the 

excess Gibbs free energy. 

3.2.2. PC-SAFT 

The PC-SAFT EOS [181] can add the contribution of different terms to the residual Helmholtz 

free energy of the system, as listed below:  

res hs chain disp assoca a a a a= + + +  
(3-17) 

where 
resa~  is the residual Helmholtz free energy of the system. The terms 

hsa , 
chaina , 

dispa , and 

assoca  introduce the reference hard-sphere, chain (segment) formation, dispersion, and association 

contributions to the residual Helmholtz free energy, respectively. a  can be obtained from the 

following equation: 

 ã= a/RT (3-18) 

where T is the absolute temperature and R represents the universal gas constant. The hard-sphere 

term in Equation (3-17) can be calculated using the Wertheim's theories [182] : 

2

2

)1(

34





−

−
= m

RT

ahs

 (3-19) 

where m denotes the number of spherical segments per molecule and  stands for the reduced 

density, as defined below: 

0mv =  (3-20) 

in which, 
0v is the segment molar volume of the fluid that can be expressed as follows: 
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3000 ))
3

exp(1(
kT

u
Cvv −−=  (3-21) 

where u/k  stands for the dispersive energy parameter per segment , 00v is the reference segment 

molar volume, and C=0.12 for all elements except for the hydrogen [183]. The chain formation 

and association contributions of Helmholtz free energy are calculated as follows [184]: 
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                        (3-24) 

 

 

in which, Miα signifies the number of association sites of segment type α per molecule and XA 

symbolizes the mole fraction of molecules not bonded at the association interaction site A. The 

summation is over all association sites on the molecule. The non-bonded fraction XA is calculated 

from the following equation: 

1

1

(1 )i j

M
A BAi Bj

j

j B

X x X   



  −

=

= +     (3-25) 

where i jA B   is the association strength which is introduced by the following expression: 

3( ) [exp( ) 1]
i j

i j i j

A B
A B A B

i i i i i ig d
kT

 

   

     


  = −  (3-26) 

where i jA B   is the association energy and i jA B   is the effective association volume between site 

A of molecule i and site B of molecule j. 

The dispersion contribution to the Helmholtz free energy is given by the following equation [181]: 
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 (3-27) 

where 1(1 )
hc

hc Z
Z 



−
+ +


, I1 and I2 integrals are given by the following relationships: 
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where the ai and bi coefficients are given below:   

0 1 2

1 1 2
( )i i i i

m m m
a m a a a

m m m

− − −
= + +  (3-31) 

0 1 2

1 1 2
( )i i i i

m m m
b m b b b

m m m

− − −
= + +  (3-32) 

The model constants a0i , a1i , a2i, b0i, b1i, and b2i are reported in reference [181]. 

3.2.3. Modeling Algorithm and Assumptions 

The solubility of CO2 in ILs, using the PR and PC-SAFT EOSs, are obtained by applying the 

equilibrium condition at a constant temperature and pressure through the equality of fugacity of 

CO2 (Component 1) in the gas phase ( 1
ˆ gasf

) and ionic liquid phase ( 1
ˆ ILf

) for the VLE system, as 

given below [181]: 

ILgas ff 11
ˆˆ =  (3-33) 

Using Equation (3-33) and conducting flash calculations with the PC-SAFT and PR EOSs, the 

solubility of CO2 in different IL mixtures containing water and toluene are determined. 
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Figure 3-1 shows the computational procedure to calculate the solubility of gas components in the 

liquid phase. The main steps are as follows: (1) Enter pressure (P), temperature (T), and initial 

compositions of CO2 and IL mixtures; (2) Guess the reduced density and K-values (distribution 

coefficients); (3) Input EOS parameters obtained from the density regression; (4) Obtain Z 

compressibility factor and fugacity coefficients for all components; (5) Determine the fugacity of 

each component in both phases; (6) Calculate the difference between the fugacity of the component 

in the phases (
vl

if ); (7) If the values of old and new pressures and magnitudes of fugacity of each 

component in both phases are equal, the correct extent of the solubility will be attained, otherwise, 

the reduced density and K-values should be updated; and (8) Determine the final pressure and 

solubility of gases in the liquid after the stop conditions are met. 
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Figure 3-1: Flash algorithm to obtain solubility using EOSs such as PC-SAFT. 

 

For three phases in equilibrium, the (VLLE) multi-flash calculations need to be performed. An 

isothermal flash with multiple phases is considered so that two functions/equations including a 

fraction of each phase in the equilibrium and stability of each phase are solved simultaneously. 

Minimization of Gibbs energy is implemented to solve these two functions. 

In this modeling approach, ILs composed of cation and anions are considered as a single chain 

molecule with two associating sites.  

Association or self-association occurs when complex formation due to the chemical forces act 

between like molecules and solvation. Cross association happens between unlike molecules. It is 
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important to define how molecules interact with each other using a number of association sites and 

their type (electron donor and/or electron acceptor) [185]. 

Associating molecules, which tend to form hydrogen bonds, and two association parameters are 

considered in the modeling. The first one is the association energy between sites A and B on 

molecule I and the second one is the effective association volume between sites A and B on the 

same molecule. 

In this work, CO2 gas is taken into account as a non-associating and also cross association between 

CO2 and ILs is neglected. ILs are considered as associating molecules with the type of 2B. It 

implies that each IL molecule has one site type A as a donor site and one site type B as an acceptor 

site with a negative charge; only the donor-acceptor association bonding A-B type is allowed. In 

this case, the only non-zero interactions AB and BA are equivalent, as shown below [183]: 

i j i jB A A B    =   (3-34) 

which,   refers to the association strength. Thus, the mole fraction of molecules of type A and 

B will be equal, as follows:  

i iA B
X X =  (3-35) 

The proton donor can be one of the hydrogen atoms bonded to the carbons on the imidazolium 

ring. The proton acceptor can be any atoms of oxygen and fluorine in the anion [183]. 

3.3.  Parameter estimation 

The pure component parameters for PR EOS such as Tc and Pc are not available for all of the ionic 

liquids, but they can be determined from the group contribution method such as the modified 

Lyderson-Joback-Reid method [2]. The acentric factor ω for PR EOS can be calculated from the 

Ambrose-Walton corresponding-states method [186]. For the ILs used in this study, the parameters 

Tc, Pc, and ω are obtained based on the research work conducted by Valderrama et al. [2, 64]. The 
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binary interaction coefficients and activity coefficients are determined from fitting the 

experimental P-xy data for the CO2-IL binary systems within the temperature range of interest. 

The optimized parameters are attained from minimizing the objective function which is the relative 

absolute error between the experimental and correlated solubility data for PR EOS. The objective 

function (OF) is defined as follows: 

exp
2

exp
min ( )

calcN
i i

i i

P P
OF

P

−
=   (3-36) 

where 
exp

iP  is the experimental pressure, 
calc

iP  represents the calculated pressure from PR, and N 

stands for the number of data points. 

The parameters of PC-SAFT EOS include the association and non-association parameters. Three 

non-association parameters include the segment number m, the segment diameter σ, and the 

segment energy parameter / Bk . The two association-based parameters are the association 

energy εAB and the association volume κAB. The PC-SAFT pure-component parameters for CO2 are 

reported in the literature [173]. The non-association parameters for some ILs are also found in the 

literature [11]. The association parameters for the Lewis acid-base association between the CO2 

(Lewis acid) and the anion site on IL (Lewis base) can be estimated from the following equations 

[33]:  

dissol
AB

H
k

−


  (3-37) 

)exp(
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S dissol
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  (3-38) 
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The values of the association energy (εAB /k) and association volume (κAB)  are reported as 3540 K 

and 0.00225 for CO2-IL system, respectively [11]. Values such as εAB /k=5000 K and κAB = 0.1 are 

also given in the open sources for the system of CO2-IL, which exhibited accurate results for 

association parameters using the density correlation in some ILs [187].  Both values are adjusted 

for each IL and the best magnitudes are selected. 

PC-SAFT parameters for pure ILs are obtained by fitting the pure component density data in a 

range of temperatures (260-370 K). The binary interaction coefficients are also calculated from 

fitting the VLE data for the CO2-IL system. In the regression of density data for pure ILs to find 

the PC-SAFT parameters, it is noticed that the effect of the segment energy parameter is negligible, 

compared to other parameters. The segment number m and the segment diameter σ are found to 

have a considerable effect. It means that a slight change in these parameters leads to a significant 

variation in the estimation of density, using the fitted parameters. The references for the density 

data of studied ILs are listed in Table 3-1. 

 

Table 3-1: Experimental information of pure-IL density data used for parameter fitting (P ≤ 1000 bar). 

ILs T (K) Ref 

[BMIM][BF4] 278–373  [188] 

[BMIM][PF6] 278–373 [188] 

[BMIM][Tf2N] 278-373 [189] 

[hmim][Tf2N]  273–413 [190] 

[hmim][PF6] 278–365 [191] 

[hmim][FAP] 278-373 [192, 193] 

 

In fitting the experimental data of pure IL density to the PC-SAFT EOS, the association parameters 

are considered constant. The values for these parameters are taken from the literature for the system 

of CO2-IL [11, 194]. A better fit for [hmim][Tf2N] is found with κAB=0.1 and (εAB /k)=5000 K as 

suggested by Ji et al. [187]. For [bmim][BF4], [bmim][PF6], [bmim][Tf2N], [hmim][PF6], and 
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[hmim][FAP] ILs, the association parameters are fitted with the association parameters as κAB = 

0.00225 and (εAB /k)=3540 K.  

The objective function, which is used for the density data regression, is the maximum-likelihood 

function using the Britt-Luecke algorithm [195]. PC-SAFT parameters of pure ILs are obtained by 

fitting the calculated density data of ILs to the experimental density data. 

The optimal parameters of PC-SAFT that are determined for various ILs (used in this work) are 

presented in Table 3-2. Absolute Average Deviation Percentage (AAD %) is used as a measure of 

model accuracy, as shown below: 

exp

exp
1

100
(%) ( ) ( )

calcN
i i

i i

AAD
N

 

=

−
=   (3-39) 

where 
exp

i  is experimental density;  
calc

i  is the calculated density; N denotes the number of data 

points. Figure 3-2 compares the PC-SAFT and experimental results to forecast pure IL 

([hmim][Tf2N]) density with temperature. For brevity, we do not show the results for other ILs 

here; they are presented in Appendix A2. The resultant density-temperature diagram shows that 

the density is well correlated within the range of temperature. The magnitudes of AAD (%) 

achieved in estimating the density of pure ILs are tabulated in Table 3-2: Optimized PC-SAFT 

parameters used for different ILs. These values are in the order of 0.01% which shows a great 

agreement between the PC-SAFT predictions and experimental density data.  
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Figure 3-2: Comparison of the density of pure [hmim][Tf2N] with temperature, using experimental data 

[190] (scatter points) and PC-SAFT EOS (solid line). 

 

Table 3-2: Optimized PC-SAFT parameters used for different ILs.  

IL 
Mw 

(g/mol) 

PC-SAFT parameters  Absolute Deviation (%) 
No. 

data m σ (A) ɛ/k (K)  AB ɛAB/k (K) 
 min average max 

[bmim][BF4] 226 2.2969 5.037 483.53 0.00225 3450  0.00017 0.0056 0.0190 22 

[bmim][PF6] 284 2.2820 5.201 456.29 0.00225 3450  0.00027 0.0080 0.0150 22 

[bmim][ Tf2N] 419 2.7150 5.451 350.50 0.00225 3450  0.00046 0.0044 0.0140 28 

[hmim][Tf2N] 447 11.000 3.342 305.25 0.10000 5000  0.00120 0.0141 0.0350 18 

[hmim][PF6] 312 2.5500 5.301 487.13 0.00225 3450  0.00240 0.0152 0.0250 18 

[hmim][FAP] 239 4.4060 5.145 357.91 0.00225 3450  0.00096 0.0140 0.0410 21 

 

The Heat capacities of [hmim][Tf2N], [hmim][PF6], and [hmim][FAP] at different temperatures 

and pressures are reported in [196], [197], and [198], respectively. The binary interaction 

coefficients between ILs and CO2 are also presented in Appendix A2. 
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3.4.  Results and discussion 

3.4.1. The solubility of CO2 in pure Ionic Liquids (ILs) 

The solubility of CO2 in [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] at 298 K, 313 K, and 333 

K are modeled, using PR and PC-SAFT EOSs in a broad pressure range of 1–100 bar. The average 

absolute deviation percentage, AAD (%), between the calculated and experimental equilibrium 

pressure data is calculated at different temperatures for various CO2-IL systems. The results are 

shown in Table 3-3.  

 
Table 3-3: Calculated AAD (%) for the solubility of CO2 in ILs based on PR and PC-SAFT EOSs. 

EOS IL 
AAD (%) 

Data Ref. 
298 K 313 K 333 K 

PR [bmim][BF4] 3.630 5.806 4.699 [101, 161] 

[bmim][PF6] 3.164 5.700 4.510 [112] 

[bmim][Tf2N] 6.473 7.513 6.710 [199] 

PC-SAFT [bmim][BF4] 2.013 4.163 2.827 [101, 161] 

[bmim][PF6] 3.010 4.300 5.420 [112] 

[bmim][Tf2N] 5.710 5.730 5.120 [199] 

 

Based on AAD (%) for PR and PC-SAFT EOSs presented in Table 3-, the PC-SAFT estimates the 

solubility with more accuracy for all ILs, compared to the PR. The SAFT EOS considers the effect 

of molecular structure and interactions on the bulk properties and phase behavior, while the PR 

EOS assumes molecules to behave as hard spheres. The SAFT parameters have the physical 

significance, featuring the diameter of a segment, the number of segments in a chain, and the 

segment-segment van der Waals interactions [108]. Furthermore, the PC-SAFT EOS incorporates 

the influence of molecular association on the volume and energy, which can potentially predict a 

more precise and reliable phase behavior when the association between the molecules becomes 

important.   
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Since PC-SAFT modeling had accurate results compared to PR, the rest of the solubility 

predictions in this study are done with PC-SAFT EOS. In this section, three ILs with relatively 

high CO2 solubility have chosen to study. The solubility of CO2 in [hmim][Tf2N], [hmim][PF6], 

and [hmim][FAP] at temperatures of 298.15 K, 313.15 K, and 333.15 K (common temperatures 

for experiments in the literature) and a broad range of pressure (1–100 bar) is determined using 

PC-SAFT. The solubility results (P-x) diagram is given in terms of mole fraction (xCO2) in the 

liquid phase for different isotherms. For each isotherm, the maximum pressure is chosen around 

the bubble point pressure of the mixture. The temperature-dependent binary interaction coefficient 

is tuned by fitting to the experimental VLE data for the binary systems of CO2-IL. Figure 3-3 

depicts the solubility values for [hmim][PF6], [hmim][Tf2N], and [hmim][FAP] at wide range of 

pressure. The modeling results are also compared with the experimental data in Figure 3-3, 

exhibiting an excellent agreement between the experimental data of solubility and those estimated 

from the PC-SAFT model. However, at higher pressures and temperature, some deviations in both 

systems, particularly at 313 K are observed. As it is expected, the solubility of CO2 in IL increases 

with increasing pressure and decreases with increasing temperature. The AAD (%) values for each 

IL at various temperatures are reported in Table 3-, showing that the modeling outputs are in great 

agreement with the experimental data of the solubility for the CO2-IL systems. 
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(a) 

 

(b) 

 

(c) 

Figure 3-3: Solubility of CO2 in different ILs at 298 K, 313 K, and 333 K for (a) [hmim][PF6] 

(scatter data from [169, 200]) , (b) [hmim][Tf2N] (scatter data from [101]), and (c) [hmim][FAP] 
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(scatter data from [110, 201, 202]). Solid lines show the PC-SAFT predictions and scatter points are 

taken from the experiments. 

Table 3-4: Calculated AAD (%) achieved in estimating CO2 solubility in ILs with PC-SAFT for 

[hmim][Tf2N], [hmim][PF6], and [hmim][FAP] at various temperatures. 

IL 
AAD (%) 

Data Ref. 
298 K 313 K 333 K 

[hmim][PF6] 5.26 - 2.97 [169, 200] 

[hmim][Tf2N] 3.52 2.29 1.20 [101] 

[hmim][FAP] 1.70 2.08 4.45 [110, 201, 

202] 
 

3.4.2. The solubility of CO2 in Mixtures of ILs and Water  

Adding other solvents to ILs is performed for two main purposes: 1) to reduce the viscosity of ILs 

by using a less viscous solvent such as water, and 2) to decrease the overall cost. In this section, 

the solubility of CO2 in ILs + water and ILs + toluene systems are investigated and compared to 

that in pure ILs. The solubility of CO2 in hydrophilic IL, [bmim][Ac], and two hydrophobic ILs 

including [hmim][Tf2N] and [hmim][FAP] at different water contents (0.1, 1.0, and 10 wt%) and 

various temperatures and pressures are investigated. In general, the hydrophobicity of the ILs 

increases with increasing the alkyl cation chain length [191, 203]. Figure 3-4 demonstrates the 

influence of water content in the liquid medium on the solubility of CO2 at 298 K, 313 K, and 323 

K for [hmim][FAP], being used as the IL. According to Figure 3-4, the presence of water at low 

concentrations (e.g., <1 wt%) does not have a significant impact on the solubility of CO2 when 

compared to the case, using pure IL ([hmim][FAP) at the same temperature and pressure. However, 

at a higher water content, the solubility of CO2 is lowered considerably. When the concentration 

of water reaches 10 wt%, there is a substantial decrease (by about 45%) in the solubility of CO2 in 

IL+W solution (IL and water mixture), compared to the solubility of CO2 in pure IL at 298 K. On 

the other hand, the mixture viscosity decreases with increasing the water content, as shown in 
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Table 3-. To evaluate the solubility of CO2 in the mixture of ILs and water, the Vapor-Liquid-

Liquid Equilibrium (VLLE) is performed. There are two liquid phases; the first phase is mostly 

water at which a minor amount of CO2 (e.g., 3×10-5 mole/mole) is dissolved in, and the second 

phase is mainly IL where most of the CO2 is dissolved in this phase.  
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(a) 

 

(b) 

 

(c) 

Figure 3-4: Effect of water content on the solubility of CO2 in [hmim][FAP] at (a) 298 K, 

(b) 313 K, and (c) 333 K. 
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With increasing the concentration of water from 0 to 10 wt% the viscosity of the system decreases 

from 88.49 to 56.01 cP at temperature and pressure of 298 K and 20 bar. Adding water to reduce 

the viscosity of hydrophobic ILs is not the best solution since it decreases the solubility of CO2 

significantly. Similarly, we investigate the effect of water content on the solubility of CO2 in 

[hmim][Tf2N] mixture with water in Figure 3-5 and in [bmim][Ac] mixture with water in Figure 

3-6.  

The temperature dependency of the viscosity for pure liquids is expressed by the Vogel-Tammann-

Fulcher equation, where various mixing rules can be applied for the mixtures [204]. 

The mixing rule used to determine the viscosity of the mixture of ILs and water is based on the 

Katti and Chaudhri mixing law as shown below [205]: 

( ) ( ) ( )
*

1 1 1 1 2 2log log (1 ) log
EG

v x v x v
RT

  


= + − +  (3-40) 

where v denotes the molar volume; η symbolizes the absolute viscosity of the mixture; η1 and η2 

stand for the viscosity of component 1 and component 2, respectively; x1 represents the mole 

fraction of component 1; R is the universal gas constant; T introduces the absolute temperature, 

and *EG  is the excess molar Gibbs energy of activation. If a mixture does not deviate 

considerably from the ideal mixture model, *EG =0.  

There is another equation, based on a similar hypothesis, called the “ideal” Grunberg and Nissan 

mixing law [206]. The corresponding equation is given by the following expression: 

( ) ( ) ( )1 1 1 2log log (1 ) logx x  = + −  (3-41) 
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Equation (3-39) is also suitable for systems which do not exhibit large deviations from the ideal 

mixture model. 

It is found that the organic solutes including water and toluene studied in this work alter the viscosity 

of the IL (ηIL) by the following exponential equation: 

η = ηIL exp(−xs/a) (3-42) 

where η and ηIL represent the viscosity of the mixture and the viscosity of the pure ionic liquid, 

respectively; xs signifies the mole fraction of the organic solutes; and a is a constant with a value of 

0.231 ± 0.003 for [hmim][Tf2N] and [hmim][FAP] and 0.022 ± 0.011 for [bmim][Ac]. This confirms 

the findings attained by Seddon et al. [207]. Therefore, the viscosity of a mixture can be estimated as a 

function of the concentration of the dissolved compounds, independent of their polarity [208]. 

Table 3-5: Solubility of CO2 in IL+W mixtures and the viscosity of IL and IL+W mixtures at various levels 

of water contents. 

Parameter T (K) IL 
IL+W mixture (wt% of W) 

0 0.1 % 1 % 2 % 5 % 10 % 

Viscosity† 

(cP) 

298 
[hmim][Tf2N] 69.48 69.18 66.54 63.71 55.95 45.05 

[hmim][FAP] 88.49 88.09 84.54 80.76 70.40 56.01 

[bmim][Ac] 416 389 225.86 135.5 44.08 14.34 

313 

[hmim][Tf2N] 36.86 36.72 35.42 34.02 30.17 24.69 

[hmim][FAP] 43.64 43.61 43.59 43.53 43.36 43.02 

[bmim][Ac] 139.86 131.96 81.92 56.53 19.73 7.41 

333 

[hmim][Tf2N] 18.88 18.6 18.2 17.54 15.7 13.066 

[hmim][FAP] 20.72 20.71 20.70 20.66 20.60 20.47 

[bmim][Ac] 47.64 45.30 30.04 20.45 8.78 3.77 

Solubility 

of CO2
† 

(mol/mol) 

298 
[hmim][Tf2N] 0.394 0.361 0.318 0.297 0.247 0.219 

[hmim][FAP] 0.478 0.473 0.429 0.390 0.304 0.215 

[bmim][Ac] 0.456 0.45 0.436 0.429 0.419 0.41 

313 
[hmim][Tf2N] 0.315 0.297 0.256 0.247 0.203 0.172 

[hmim][FAP] 0.417 0.412 0.37 0.31 0.272 0.177 

[bmim][Ac] 0.424 0.421 0.405 0.391 0.378 0.363 

333 
[hmim][Tf2N] 0.251 0.239 0.208 0.197 0.163 0.131 

[hmim][FAP] 0.344 0.339 0.304 0.281 0.235 0.14 

323 [bmim][Ac] 0.389 0.388 0.378 0.367 0.334 0.318 
†  At P=20 bar 
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The result for adding water into the moderately hydrophobic IL [hmim][Tf2N] reveals that at a low 

concentration of water (0.1 wt%) there is no effect on the solubility of CO2 similar to the case for 

[hmim][FAP]. However, by increasing the concentration of water in [hmim][Tf2N] to 10 wt%, the 

solubility of CO2 is reduced by about 20 % at 298 K and 20 bar, as demonstrated in Figure 3-5 

(and also Table 3-). The reduction in the solubility of CO2 in [hmim][Tf2N] by adding 10 wt% 

water is less than that with [hmim][FAP]. The influence of water on the IL+W mixture viscosity 

shows the same trend as that with the strongly hydrophobic IL. Also, at a higher temperature and 

pressure, the reduction in the solubility is more pronounced. By increasing the concentration of 

water from 0 to 10 wt%, the mixture viscosity ([hmim][Tf2N] and water) declines from 69.48 to 

45.2 cP at a temperature and pressure of 298 K and 20 bar, respectively. Hence, water with low 

concentrations such as 0.1 wt% case can be employed as a suitable additive to decrease the 

viscosity of hydrophilic ILs that has a minimal effect on the solubility at lower concentrations. The 

optimum amount of water in the IL+W mixture depends on the composition of the IL systems.  

As shown in Table 3-, the viscosity of IL+W mixture decreases and the solubility of CO2 in the 

mixture of IL+W also decreases with increasing the water content. The optimum amount of water 

needs to be obtained by considering the thermodynamic characteristics (solubility and selectivity), 

transport properties (rate of mass transfer), unit operations (number of equilibrium stages), process 

design (equipment sizing), and energy requirement (for pumping based on the viscosity). For 

instance, in the case of [hmim][Tf2N] at 298 K and 20 bar, there is less than 2 % reduction in the 

viscosity by adding 10 wt% water, while the solubility lowers by about 20%. A careful 

optimization process requires the contribution of water content to a reduction in the capital and 

operating costs (due to viscosity reduction and an increase in dissolution rate) to be evaluated.  
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Figure 3-6 illustrates the effect of water content in the IL on the solubility of CO2 at temperatures 

298 K, 313 K, and 333 K within a pressure range of up to 30 bar with [bmim][Ac], which is a 

hydrophilic IL. As clear from Figure 3-6, at low water concentrations (e.g., 0.1 wt%), water content 

does not exhibit an appreciable influence on the solubility of CO2. With increasing the 

concentration of water to 10 wt%, the solubility of CO2 is reduced by about 9 % at 298 K and 20 

bar. The effect of water concentration on IL+W mixture viscosity implies that by increasing the 

concentration of water from 0 to 10 wt%, the viscosity of the mixture lowers dramatically from 

416 to 14.5 cP at a temperature and a pressure of 298 K and 20 bar. Thus, water can be considered 

as a viable additive to hydrophilic ILs for CO2 separation, as a significant viscosity reduction is 

experienced without sacrificing solubility. This helps to lower the pressure drop in the CO2 capture 

process that will affect the amount of energy requirement and GHG emissions. 

Although with the addition of water to the IL, the solubility decreases (slightly), the rate of CO2 

mass transfer in the IL+W mixture will be increased as it is proportional to the inverse of viscosity. 

Therefore, it will contribute to a decrease in the capital cost due to smaller process equipment as a 

result of shorter processing time.   
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(a) 

 

(b) 

 

(c) 

Figure 3-5: Effect of water content on the solubility of CO2 in [hmim][Tf2N] at (a) 298 

K, (b) 313 K, and (c) 333 K. 
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(a) 

 

(b) 

Figure 3-6: Effect of water content on the solubility of CO2 in [bmim][Ac] at (a) 298 K, 

and (b) 323 K. 

 

The effect of water on the solubility of CO2 in mixtures of IL with water is also explored by plotting 

the ratio of solubility in IL with and without water as a function of solubility in pure IL (without 

water). This is shown for [hmim][FAP] (in Figure 3-7(a)), [hmim][Tf2N] (in Figure 3-7 (b)), and 

[bmim][Ac] (in Figure 3-7(c)). The solubility behavior is interesting. For Figure 3-7 (a) and (b), 

the solubility values are compiled for different temperatures (298, 313, and 333 K) and pressure 
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(up to 100 bar) conditions. In Figure 3-7(c), the ranges of operating conditions for the solubility 

are temperatures of 298 and 323 K and pressures up to 30 bar.  



131 

 

 

(a) 

 

(b) 

 

(c) 

Figure 3-7: The effect of water content on the solubility of CO2 in mixtures of IL with water, using PC-SAFT 

EOS for (a) [hmim][FAP], (b) [hmim][Tf2N], and (c) [bmim][Ac]. In panels (a) and (b), temperatures of 298, 

313, and 333 K and the pressure range 1-100 bar are used; while in panel (c) temperatures 298 and 323 K; 

and pressure range 1-30 bar are utilized. 
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Figure 3-7 depicts that there is a minimum in the ratio of solubility in IL+W mixtures and that in 

the pure ILs, which appears at a lower solubility limit (0.1-0.3 mol/mol). This will occur at higher 

temperatures and lower pressures. Among the three ILs shown in Figure 3-7, [hmim][FAP] and 

[hmim][Tf2N] are hydrophobic and [bmim][Ac] is hydrophilic. Moreover, [hmim][FAP] is more 

hydrophobic than [hmim][Tf2N]. Based on Figure 3-7, it is concluded that the effect of water 

content is different for hydrophobic and hydrophilic IL cases. The extent of hydrophobicity also 

affects the contribution/role of water (as an additive to the IL) to the solubility of CO2. Comparing 

Figure 3-7 panels (a) and (b) conveys the message that the performance of IL in CO2 capture 

process is not affected by the water content at concentration 0.1 wt%. By adding 1% water, a 

negative effect on the solubility for most of the solubility range is noticed and there is no strong 

correlation between the performance and temperature. However, by adding 10 wt% water, there is 

a significant reduction in the solubility of CO2 in IL+W mixture, compared to that in the pure IL. 

Moreover, we observe a minimum performance compared to the baseline, which occurs at an 

equivalent solubility in pure IL at 0.1 mol/mol for [hmim][FAP] and about 0.2 for [hmim][Tf2N]. 

This minimum performance (in terms of solubility) is experienced at 0.25 mol/mol for 

[bmim][Ac]. Therefore, there is a shift in the minimum solubility towards higher solubility values 

with lowering the hydrophobicity characteristic. Also, the ratio of solubility in IL+W mixture to 

that in pure IL at 10 wt% water is not correlated with temperature for the most hydrophobic IL 

([hmim][FAP]), while there is a significant correlation to temperature for the other two ILs (in 

Figure 3-7 (b) and (c)) for which, the performance decreases due to an increase in the temperature. 

A shift in the location of the minimum concentration towards lower solubility values (with respect 

to the solubility in pure IL) is also observed. The drop in the solubility of CO2 as a result of the 

water presence is much more predominant for the hydrophilic IL ([hmim][Ac]); however, it affects 
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a narrower range of solubility, beyond which the solubility is not much different than the pure IL 

(without water). This analysis (as described in Figure 3-7(c)) suggests that the addition of a fixed 

amount of water to the IL will not significantly alter the performance of IL+W mixture beyond the 

solubility value of 0.3 mol/mol. This will provide screening criteria on operating temperatures and 

pressures, which are suitable for CO2 capture. 

 

3.4.3. The solubility of CO2 in Mixtures of ILs and Toluene 

Toluene can be added to ILs to decrease their viscosity and make them more suitable for high-

temperature carbon capture systems. To study the influence of toluene (T) content on the viscosity 

and vapor pressure of IL+T mixture and the solubility of CO2 in IL+T mixture, [hmim][Tf2N] is 

utilized. The toluene content in the IL+T mixture in the range of 0-100 % is investigated as listed 

in Table 3-. Through adding toluene, the viscosity of the mixture reduces. In this research work, 

the effect of adding toluene on the vapor pressure of IL+T mixtures is also determined. Based on 

the results, the vapor pressure of the mixture is similar to the vapor pressure of toluene (as a volatile 

component). Even by adding only 1 mol % toluene to the ionic liquid, the vapor pressure of the 

mixture will be 0.0011 bar, which is much higher than the vapor pressure of pure IL. Hence, the 

effect of ILs in reducing the volatility of toluene is not applicable. The solubility of CO2 in pure 

[hmim][Tf2N] is higher than that in pure toluene. Hence, to decrease the cost of using ILs and 

lower the viscosity, we can add some toluene into the system at lower temperatures. The optimum 

amount of added toluene should be determined. At 298 K and 20 bar, the solubility of CO2 in the 

mixture is reported in Table 3-.  It appears that having up to 8.1 wt% of toluene in the IL+T mixture 

is acceptable. However, adding more than 30 mole% toluene causes an increase in the volatility of 

the mixture close to the volatility of the toluene.  Due to this addition, solubility will be also 
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declined by more than 6.3%. The validity of the model is tested by comparing the experimental 

data in the literature with those from the PC-SAFT model. As demonstrated in Figure 3-8, the 

solubility predictions from PC-SAFT EOS show a great match with the real data for the solubility 

of CO2 in pure IL ([hmim][Tf2N]), pure toluene, and mixtures of [hmim][Tf2N] + toluene. 

However, the solubility values estimated by the PC-SAFT model deviate from the experimental 

data for pure IL at higher pressures (e.g., >40 bar).  

 

Table 3-6: Viscosity, vapor pressure, and solubility of CO2 in IL+T mixtures for [hmim][Tf2N]. 

Parameter 

% Toluene (T) in IL+T mixture (mol%) 

 0%  
(0 wt%) 

1% 
(0.2 wt%) 

10% 
(1.1 wt%) 

30% 
(8.1 wt%) 

50% 
(17 wt%) 

70% 
(32.4 wt%) 

100%  
(100 wt%) 

Viscosity (cP) 69.48 68.79 62.37 46.92 30.45 14.48 0.554 

Psat
  

* (bar) 610-17 0.0011 0.0109 0.0288 0.0399 0.042 0.0366 

Solubility* (mol/mol) 0.394 0.39 0.386 0.369 0.351 0.328 0.25 
* At T=298 K and P=20 bar 

 

 

Figure 3-8: Solubility of CO2 in pure IL ([hmim][Tf2N]) [101, 209], pure toluene [210], and their mixtures 

[211]. Scatter points show the experimental values and the solid lines represent PC-SAFT model results, 
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using the parameters listed in Table 3-2, and kij= -0.01 for [hmim][Tf2N]+CO2 and kij= 0.105 for 

toluene+CO2 at 298 K. 

 

According to Figure 3-8, it is clear that IL has a higher solubility at the same pressure (at 298 K). 

Toluene exhibits a good solubility in [hmim][Tf2N]. With the addition of toluene to the IL, the 

solubility decreases slightly while the viscosity is significantly reduced. This reduction in the 

viscosity is expected to lower the dissolution rate of CO2 and also the energy input for the 

processing/transferring of IL. The effect of toluene on the solubility of CO2 in the IL+T mixture is 

also depicted in Figure 3-9 as the ratio of solubility in the IL with and without toluene versus the 

CO2 solubility in pure IL (without toluene). Figure 3-9 illustrates a different trend, compared to 

the behavior of water as an additive, as seen in Figure 3-7.  In this research investigation, a 

monotonic increase in the performance of toluene as an additive is observed at higher levels of 

solubility, compared to the CO2 solubility in pure IL as the baseline. In other words, the negative 

effect of toluene as an additive on the solubility of CO2 is less pronounced at higher solubility 

values (higher pressures and lower temperatures). Moreover, with increasing the toluene 

concentration, the solubility of CO2 is decreased, which is expected. However, this difference 

becomes less at a greater range of CO2 solubility (in pure IL). 
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Figure 3-9: Influence of toluene (T) on the solubility of CO2 in mixtures of [hmim][Tf2N] and toluene at a 

temperature 298 K and a pressure range 1-100 bar, using PC-SAFT EOS. 

 

The effect of an additive (water or toluene) on the solubility of the IL-additive mixture is illustrated 

in Figure 3-10. It implies that the solubility behavior for W (water) as an additive to the 

hydrophobic IL and the solubility behavior of toluene (T) in the hydrophilic IL follow a similar 

trend while adding water to the hydrophilic IL shows significantly different behavior. There is a 

substantial decrease in the solubility of hydrophilic IL ([bmim][Ac] mixture with increasing the 

water concentration upon the addition of water. At about 10 w% water content, the solubility of 

IL in the mixture is about 0.05 of that without the water phase. This IL has the highest viscosity 

among the studied cases. At 298 K, its viscosity is about 416 cP, which decreases to about 14 cP 

by adding 10 wt% water. 
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Figure 3-10: Effect of additives (water (W) or/and toluene(T)) on the viscosity of IL-additive mixture for 

[hmim][Tf2N], [hmim][FAP], and [hmim][Ac] at 298 K. 

3.4.4. Selectivity 

To assess the solvent's ability in gas separation, the selectivity of gases into the solvent should be 

examined. The selectivity can be calculated from Henry’s constant of various gases. Henry’s 

constant relates the fugacity of CO2 in the vapor phase to the molality of CO2 in the liquid phase, 

which is represented by the following expression: 
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where 0m =1 mol/kg, 
2
( , )COf T P  denotes the fugacity of CO2 in the vapor phase and 

2COm  stands 

for the molality of CO2 in the liquid phase. 

The PC-SAFT EOS is used to compute Henry’s constant as the pressure approaches zero. The PC-

SAFT parameters for various gases are reported in Table 3- based on the literature. The magnitudes 

of Henry’s constant at different temperatures for [hmim][Tf2N] are listed in  
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Table 3-. Henry’s law constants for CO2, H2S, and SO2 are intensely lower than other gases, which 

is due to the higher solubility of CO2, H2S, and SO2. Using Henry’s constants of all gases, the gas 

selectivity can be calculated as the ratio of Henry’s constants of two gases, as written below: 

2

2

/

gas

CO gas

CO

H
S

H
=  (3-44) 

The results of the selectivity of gases are displayed in  

Table 3-8: Henry’s constant (bar) for CO2, CH4, H2, H2S, and SO2 in [hmim][Tf2N], estimated 

through using PC-SAFT EOS at various temperatures. [hmim][Tf2N] has high selectivity for CO2 

separation from H2 and CH4, which is due to the very low solubility of H2 and CH4 in 

[hmim][Tf2N]. Hence, carbon dioxide capture from gaseous streams containing these gases is 

recommended where the IL is employed. On the other hand, due to the low selectivity of CO2 

concerning H2S and SO2, [hmim][Tf2N] is not appropriate for separation of CO2 from the stream 

with a high concentration of H2S and SO2 gases. This is in agreement that H2S and SO2 have a 

high solubility and low Henry’s constant in [hmim][Tf2N]. However, the low values of selectivity 

show that the solvent can be used to remove these acid gases from the gaseous effluents and leave 

the CO2 in the gas phase without contaminants.  

It is worth noting that the Henry’s constant is not a suitable measure for the selectivity evaluation 

when the extent of solubility is at high to moderate level. 

Table 3-7: PC-SAFT parameters for different gases used in the selectivity study phase [212]. 

Gas 
PC-SAFT parameters 

m σ (A) ɛ/k (K)  AB
 ɛAB/k (K) 

CO2 2.604 2.550 151.04 - - 

CO2(4C) 2.228 2.731 157.25 0.0287 307.41 

CH4 1.000 3.704 150.03 - - 

H2S 1.630 3.075 230.35 0.00689 273.55 

N2 1.205 3.313 90.96 - - 
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SO2 2.444 2.680 228.30 - - 

H2 0.487 4.240 33.85 - - 

 

Table 3-8: Henry’s constant (bar) for CO2, CH4, H2, H2S, and SO2 in [hmim][Tf2N], estimated through 

using PC-SAFT EOS at various temperatures. 

 

Gas T (K)        
Henry’s constant H (bar) 

Ref. 
PC-SAFT Experiment % Abs Error 

CO2 

293 19.11 12.44+0.024 53.62 

[101, 

170] 

298 20.20 18.91 6.82 

303 21.35 - n/a 

313 26.57 23.64 12.39 

333 33.80 28.56+0.029 18.34 

H2S 

303 17.67 17.4 ± 0.01 1.55 

[213] 
313 21.52 21.7 ± 0.01 0.83 

323 26.19 26.2 ± 0.07 0.04 

333 34.06 33.7 ± 0.03 1.07 

H2 
293 886.74 863±0.7 2.75 

[214] 
333 704.77 701±0.6 0.54 

SO2 

298 1.64 1.64±0.01 0.00 

[116] 313 2.62 2.29±0.02 14.41 

333 4.36 4.09±0.06 6.60 

CH4 

298 328.33 329±23 0.20 

[116] 313 380.34 380±31 0.09 

333 360.09 359±28 0.30 

 

Table 3-9: Selectivity of CO2 over H2S, H2, SO2, and CH4, using [hmim][Tf2N] through thermodynamic 

modeling with PC-SAFT EOS. 

T (K) 
Selectivity (S) 

CO2 / H2S CO2 / H2 CO2 / SO2 CO2 / CH4 

293 n/a 46.40188 n/a n/a 

298 n/a n/a 0.08119 16.2540 

303 0.82764 n/a n/a n/a 

313 0.80994 n/a 0.09861 14.3146 

333 1.00769 20.85118 0.12899 10.6536 

 

Since various gases are present in real flue gases, it appears to be inevitable to study the solubility 

of each gas in the presence of other gases. In this research work, the selectivity of CO2 over other 

gases is determined. Based on the modeling results, it is not easy to separate CO2, SO2, and H2S 

from flue gas in one single separation stage. Variations of gas selectivity in recycling ILs to use in 
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the regeneration operation of ILs should be analyzed carefully. Energy consumption of the 

desorption column needs to be considered while using the CO2 capture methods in pilot-scale 

applications. 

In general, the model presented in this research investigation can simulate the solubility of the 

common gas mixtures in quantitative agreement with the available experimental data. 

3.5.  Conclusions 

In this research work, the reliability and accuracy of PC-SAFT and PR EOSs to forecast the 

solubility of CO2 in ILs are investigated over practical ranges of temperature, pressure, and 

composition. The influences of adding water and toluene on the carbon capture capacity of ILs are 

thermodynamically modeled using PC-SAFT EOS. The main conclusion drawn based on the 

modeling outputs are listed below:  

• PC-SAFT EOS is more accurate and applicable than PR while predicting the CO2 solubility 

in ILs. This precision comes from the characteristic/nature of SAFT EOSs where they take 

into account the effect of molecular structure and interactions on the bulk properties and 

phase behavior, unlike the cubic EOSs that assume molecules as a hard-sphere.  

• PC-SAFT EOS estimates the solubility of CO2 in the mixtures of IL + water with great 

accuracy. Water can decrease the viscosity of ILs, however, its effect on the solubility of 

CO2 in the ILs is different for the cases of hydrophilic and hydrophobic ILs. The 

hydrophobic IL shows more solubility reduction in the presence of water, compared to 

hydrophilic ILs.  

• ILs with high hydrophilicity such as [bmim][Ac] are miscible with water so that it leads to 

a decrease in the viscosity of the mixture of [bmim][Ac] and water significantly, although 
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the solubility of CO2 in the mixture of [bmim][Ac]+Water is not decreased as much as 

hydrophobic ILs. 

• The solubility of CO2 in the mixtures of IL + toluene is also modeled by utilizing PC-SAFT 

with high accuracy. The presence of toluene with small concentrations (e.g., 0.002 wt%) 

can increase the vapor pressure of the ILs, which is not favorable for using a mixture of 

toluene and ILs. However, adding up to 0.081wt % toluene to [hmim][Tf2N] does not 

exhibit a remarkable negative effect on the solubility of CO2. Since toluene is much cheaper 

than ILs, employing mixtures of toluene and ILs is still an option to be considered in 

potential CO2 capture operations. 

• CO2 separation in the presence of other gases is studied in terms of selectivity. The Henry’s 

constant and selectivity of CO2 with CH4, H2, H2S, and SO2 gases are estimated. CO2 

separation can be achieved in the presence of CH4 and H2, while H2S and SO2 are absorbed 

favorably and CO2 remains in the gas phase. 

 

Appendix A2 

Density data for different ILs correlated with PC-SAFT EOS are compared with the experimental 

data available in the literature. Figure A2-1 represents a very good match between the experimental 

and correlated data. 
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Figure A2-1: Density of a variety of pure ILs versus temperature and comparison of predictions 

and experimental data. The scatter points and solid lines represent the real data and PC-SAFT EOS 

results, respectively.  

 

Table A2-1 lists the magnitudes of the binary interactions of CO2 and ILs (kij) at different 

temperatures where various ILs are utilized. 

Table A2-1: Binary interactions of CO2 and IL systems (kij) versus temperature for different ILs used in 

this research work. 

IL 

T (K) 

298 313 333 

[bmim][BF4] -0.016 -0.014 -0.011 

[bmim][PF6] 0.080 0.090 0.100 

[bmim][Tf2N] -0.031 -0.028 -0.025 

[hmim][PF6] 0.199 0.220 0.240 

[hmim][FAP] 0.175 0.179 0.182 

[hmim][Tf2N] 0.010 0.015 0.019 

[bmim][Ac] -0.19 -0.15 -0.12 
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NOMENCLATURES 

Variables/Parameters Description 
EA   Helmholtz excess free energy at the limit of infinite pressure 

EG  Gibbs excess free energy 

1
ˆ gasf  

Fugacity of comp-1 (solute) in the gas phase 

1
ˆ ILf  

Fugacity of comp-1 (solute) in the IL id phase 

i jB A   Association strength 

iA
X   Mole fraction of molecules bonded at interaction site A  

iig   Site-site radial distribution function 

/k Segment energy parameter 

a Attraction parameters of PR EOS 

aassoc Helmholtz free energy of the association reference contribution 

achain Helmholtz free energy of the hard-chain reference contribution 

adisp Helmholtz free energy of the dispersion reference contribution 

ahs Helmholtz free energy of the hard-sphere reference contribution 

b Co-volume parameters of PR EOS 

d Segment diameter 

H Henry’s constant 

I Integral 

k Boltzmann constant 

K’
ij Binary interaction coefficient parameter 

kij  Binary interaction parameter for the attractive parameter 

m Number of segments 

PC Critical pressure 

Psat Vapor pressure  

R Universal gas constant 

Tb Boiling point  

TC Critical temperature 

V Molar volume 

x Mole fraction  

Z Compressibility factor 

Zassoc Association contribution to the compressibility factor 

Zchain Hard chain contribution to the compressibility factor  

Zdisp Dispersion contribution to the compressibility factor 

Zhs Hard sphere contribution to the compressibility factor  

  

Chemical Formula  
[bmim][Ac] 1-Butyl-3-methylimidazolium acetate 

 

[bmim][BF4] 1-Butyl-3-methylimidazolium tetrafluoroborate 

[bmim][PF6] 1-Butyl-3-methylimidazolium hexafluorophosphate 

[bmim][Tf2N] 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

[FAP] tris(pentafluoroalkyl)-trifluorophosphate  

[hmim][FAP] 1-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluoro phosphate 

[hmim][PF6] 1-Hexyl-3-methylimidazolium hexafluorophosphate 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiRhMHtiK_eAhWD2lMKHQ4tBvUQFjABegQIARAB&url=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F39952%3Flang%3Den%26region%3DUS&usg=AOvVaw12bGvlgvTPo88F4rjx93b3
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiRhMHtiK_eAhWD2lMKHQ4tBvUQFjABegQIARAB&url=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F39952%3Flang%3Den%26region%3DUS&usg=AOvVaw12bGvlgvTPo88F4rjx93b3
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[hmim][Tf2N] 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

[THTDP][Cl]) trihexyltetradecylphosphonium chloride 

[THTDP][NTf2] trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide 

CH4 Methane 

CO2 Carbon dioxide 

H2 Hydrogen 

H2S Hydrogen sulfide 

SO2 Sulphur dioxide 

  

Acronyms  

AAD  Average absolute deviation 

CCS 

EOS 

Carbon capture and storage 

Equation of state 

IL Ionic liquid 

PC-SAFT Perturbed chain statistical associating fluid theory 

PR  Peng-Robinson EOS 

VLE Vapor liquid equilibria 

VLLE Vapor liquid liquid equilibria 

WS Wong Sandler 

 

Greek Letters  

εAB Association energy  

µ Viscosity  

γ Surface tension  

κ Conductivity 

κAB Association volume  

ρ Density  

σ Viscosity, and also the diameter of the segment  

ω  Acentric factor 

𝜂 Viscosity 
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4. CHAPTER FOUR 

New Insights into Bulk and Interface Properties of [Bmim][Ac]/[Bmim][BF4] 

Ionic Liquid/CO2 Systems- Molecular Dynamics Simulation Approach 
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Abstract 

Ionic liquids (ILs) show great potential for CO2 separation. In this research, we perform molecular 

dynamics (MD) simulations to explore vital transport and thermodynamic behaviors of CO2 in the 

bulk and interface of [Bmim][Ac] and [Bmim][BF4] ILs. Physiochemical properties of pure ILs 

are calculated, and structural properties such as radial distribution function (RDF) and self-

diffusivity of cations and anions are determined at various conditions. A great agreement between 

the experimental and calculated properties is achieved. Diffusion coefficients obtained for cations 

and anions of the ILs are in the range of (3-34 )×10-12 m2/s.  The cations have a higher diffusivity 

than the anions. In the bulk systems of ILs and CO2, the structuring of CO2 around the cation and 

anion and comparing volume expansion of the bulk system with that of pure ILs imply that the 

anion has an important effect on CO2 absorption. With the addition of CO2 to ILs, their volume 

expansion is relatively smaller, compared to other organic solvents. The diffusion coefficient of 

CO2 in ILs varies from 1×10-10 to 3×10-10 m2/s, depending on temperature, CO2 concentration, and 

mixture viscosity. At the interface, the cation and anion association density increases. Due to CO2 

diffusion, CO2 creates a dense layer at the interface that interrupts the association of the cation and 

anion, leading to a reduction in the surface tension. MD simulations show that the diffusion of CO2 

in the bulk occurs slowly. This study can be beneficial in designing appropriate ILs for various 

energy and environment applications at different processes and thermodynamic conditions. 

 

4.1. Introduction 

Greenhouse gases (GHGs) emissions into the atmosphere are the main reason for global warming. 

The combustion of fossil fuels produces CO2 (as a GHG) that can be used as a precursor in the 

synthesis of other chemicals (e.g., urea and methanol) [215]. Therefore, the separation of CO2 from 
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other flue gases has a significant role in reducing the GHG impacts on climate change while 

making it available for utilization and sequestration. Absorption of CO2 using solvents is the most 

commercialized method for CO2 capture. Alkanolamine solutions have shown satisfactory CO2 

absorption capacity; however, they pose drawbacks such as low vapor pressure, solvent loss during 

desorption, and high corrosion rate [216]. 

In recent years, ionic liquids (ILs) have been emerged as promising alternative solvents for 

physisorption and chemisorption of the acid gases due to their unique physicochemical 

characteristics; they feature negligible vapor pressure, high thermal stability, the proper capability 

to be engineered (task-specific), and environmentally friendly characteristic. The main 

shortcoming of the ILs is their high viscosity. The solubility of CO2 in a variety of ILs has been 

examined experimentally [217] and theoretically [218, 219]. Recently, we proposed a technical 

and economic screening of various ILs with applications to capturing CO2 from other gases [158]. 

We found fluorinated anions, including [BF4]
-, [FEP]-, and [PF6]

-, to provide the highest solubility 

of CO2 with the imidazolium-based ILs.  In another research study by Aghaie et al. [220], it was 

concluded that an equation of state with associating terms (such as perturbed-chain statistical 

associating fluid theory  (PC-SAFT)) can accurately estimate the CO2 solubility in different ILs 

when compared to the experimental data [218].  Zhang et al. [217] screened Henry’s constants for 

CO2 with 409 different ILs, using COSMO-RS (conductor-like screening model for reactive 

solvents) method at 298 K; they also conducted experiments using selected effective ILs; their 

finding reveals that the [FEP]- anion exhibits a higher CO2 solubility among the examined ILs. 

They suggested using molecular dynamics (MD) simulations to further understand the absorption 

performance of the ILs at the molecular level. Phase equilibria thermodynamic models are 

generally used to forecast the vapor-liquid equilibrium of CO2/IL systems [219]. Although the 
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experimental and analytical models help researchers and engineers to screen suitable ILs for 

absorption and to predict some physical and chemical properties, they lack generalization. Also, 

the experimental runs/tests are relatively costly and time-consuming to obtain equilibrium data 

points. It seems difficult to use appropriate correlations and models to determine various properties 

of the IL/CO2 systems without a molecular-level understanding of the CO2 absorption mechanisms 

in ILs.  

Due to the economic burden of experimental works and a large number of anion-cation 

combinations of the ILs, the MD simulation technique can be used as a powerful tool to study the 

physical properties, solubility, and interactions between the molecules of CO2 and ILs. Also, MD 

helps to better understand the nature of solvation in ILs and to obtain the liquid phase properties 

based on the chemical structures. Research studies have been performed to determine the pure ILs’ 

properties with MD [221-223]. According to a study by Koddermann et al. [224], very good 

agreement was observed between the simulation results and experimental data for the heat of 

vaporization, viscosity, and nuclear magnetic resonance (NMR) rotational correlation times for 

[Cnmim][NTf2] where their own parametrized force-fields were utilized. They refined the force-

field developed by Lopes and coworkers [225] in such a way that simulation data agree with 

experimental densities, self-diffusion coefficients for anions and cations of studied IL, and NMR 

rotational correlation times for the cations. The ILs properties can be obtained from MD 

simulations, using various force-field parameters, which are imperative for the determination of 

the molecular interactions of ILs. The MD is also employed to investigate the molecular 

phenomena, occurring in the bulk and interface of ILs and gases using different force-fields, 

computational algorithms, and run times [226-228]. The interactions between the anions and CO2 
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play a dominant role in the absorption of gases, based on MD simulation and density functional 

theory (DFT) [223].  

Three different types of non-polarizable force-fields, including all-atom, united atom (UA), and 

coarse-grained (CG) are introduced for ILs [229]. The CG reduces computational time by 

removing details; UA accelerates the calculations by reducing the number of degree of freedom; 

all-atom force-field explicitly represents the aliphatic hydrogen atoms [229]. Maginn studied 

molecular behaviors (and dynamics) of ILs using mostly the all-atom force field. Compared to 

other force-fields, the all-atom model can capture the particular interactions in IL+CO2 systems 

with more details [230]. The ILs molecular simulation is complicated by its slow dynamics 

(compared to other liquids), dynamic heterogeneity, and long-range order in the liquid phase [230].  

Sprenger et al. [229] showed that general Amber force-filed can accurately predict the 

thermodynamic and transport properties of different ILs.  The all-atom optimized potentials with 

liquid simulations (OPLS-AA) force-field parameters were developed and validated for 

combinations of [Rmim]+ cations and different anions of ILs with high precision in predicting 

properties of ILs [231]. 

The self-diffusivity of ILs, excess molar volume of CO2-ILs systems, CO2 solubility, and CO2 

absorption mechanisms in a mixture of gases are reported in the literature [224, 232-235]. There 

are some limitations and drawbacks with previous MD simulations for bulk ILs and mixture 

systems. A majority of studies have focused on imidazolium cations and PF6 and Nf2T anions 

[236]. A validated force-field parametrization of ILs is still needed to be extended for including 

other combinations of the cations and anions; the force-fields are required to obtain physical 

properties, structure, hydrogen bonding, and intra-molecular interactions of pure ILs and their 

mixtures with other solvents. An adequate understanding of the mechanisms that govern the high 
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solubility and selectivity of CO2 in some ILs needs further elaborations, using MD simulations. 

Most of the previous molecular simulation studies of gas dissolution in ILs have been conducted 

at equilibrium condition, using Monte Carlo; this methodology lacks information on the dynamics 

of ILs. To the best of our knowledge, only a few research studies focus on transport properties of 

gases in the IL bulk and at the gas-IL interface. In addition, there are only a few systematic MD 

simulation studies to estimate the chemical and physical properties of IL mixtures.  In the current 

research, the characteristics of pure ILs and gas-IL systems are determined, using MD simulations 

where an optimal force-field is selected. A comprehensive investigation of molecules interactions, 

structures, coordination around other molecules, probability of positioning in the mixture, 

diffusivity, volume expansion upon mixing (swelling), and interfacial behaviors is included in this 

study. The outcomes can assist to effectively design (and operate) separation processes with IL 

through a more reliable and cost-effective manner. 

In this work, we use the all-atom force-field OPLS-AA [231] in the MD simulations in systems of 

CO2 with two promising ILs, namely, [Bmim][BF4] and [Bmim][Ac]. In the first phase, pure ILs 

physical properties (e.g., density and shear viscosity) and structural properties (e.g., radial 

distribution functions (RDF) and self-diffusivities) are studied. In the bulk systems, we investigate 

the effects of CO2 presence on the viscosity and volume expansion of the IL-CO2 mixtures, RDF, 

the coordination number of absorption, and diffusivity of CO2 in the ILs.  Finally, the interfacial 

behavior of the CO2-IL systems is analyzed in terms of the number density profile along simulation 

box length, distribution and the molecular orientation of gas around the IL cations and anions, 

interaction energy, and interfacial tension. 

This chapter is organized as follows: After the introduction, a brief theory of molecular dynamics 

simulation, force-field, viscosity, diffusivity, and radial distribution functions are provided in 
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Section 4.2. In Section 4.3, a brief description of the simulation methodology, input parameters, 

and cell configuration are presented. Section 4.4 includes the results and discussions in three 

subsections, including the simulation results for pure ILs, bulk systems of CO2/IL, and the 

interfacial characteristics. Finally, the main findings of the study are highlighted in Section 4.5 

(conclusions).  

4.2.  Theory on computational approach 

The molecular dynamics (MD) approach is a powerful tool for understanding the physicochemical 

properties and structures of the molecules and mixtures. MD can also provide detailed information 

on the molecule dynamics and interactions between molecules. Thus, the MD simulation can 

provide the properties of the systems at a lower cost, compared to laboratory tests. Another 

importance of the molecular simulation is that potentials used in the simulations can be altered by 

a user so that the contribution of each term in the potentials can be examined/studied for further 

understanding of molecules interactions [237]. The force field parameters have an important 

impact on the accuracy of the MD results while predicting physiochemical and dynamic properties.  

MD simulation requires a set of initial coordinates and velocities of particles (molecules) in the 

system which normally appears in the form of simulation cell with specific dimensions. Then, it 

calculates the forces between non-bonded and bonded interactions and the summation of various 

contributions to the total potential energy of the system. The configuration of each particle is 

updated, using the integration of Newton’s equations of motion through the Verlet algorithm [238]. 

It is necessary to control the temperature and pressure of the system due to drift, occurring in the 

equilibration stage. The drift is a result of force truncation and integration errors, and also heating 

as a result of external or frictional forces. The simulation outputs are the temperature, pressure, 

positions, velocities, and different contributions of energy. 
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4.2.1. Force-Field Parameters 

The standard form of force-filed (U) includes the intramolecular interactions such as bond 

stretching ( stretchU ), angle bending ( bendU ), dihedral torsion ( torsionU ), and the non-bonded 

interactions, including Lennard-Jones ( LJU ), and Coulomb interactions ( CoulombU ) as shown 

below: 

stretch bend torsion LJ CoulombU U U U U U= + + + +  (4-1) 

The functional forms of the above potentials for the OPLS-AA force-field [239] used in this work 

are listed below [240]: 
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where 
0ijr , 

0,ijk , and 
0,ijkl  are the initial bond length, angle, and dihedral angle, respectively.  

Other parameters are the force constant (k), Fourier coefficients ( ), partial atomic charges (q), 

Lennard-Jones potential radii (σ), and potential well depths (ε). Repulsive and dispersive terms are 

described by the Lennard-Jones 12-6 potentials. The electrostatic interactions are introduced by 

the Coulomb potential term. These two potentials act between sites in different molecules and sites 

within the same molecules.  



153 

 

4.2.2. Viscosity Calculation 

The shear viscosity of each IL can be calculated using the Green-Kubo relationship [241, 242], as 

the integral over time of the pressure tensor autocorrelation function:   

0

lim (0) ( )

t

t
B

V
P P t dt

k T
 

→
=   

(4-7) 

In Equation (4-7), V symbolizes the volume of the system; T is the temperature; Bk  resembles the 

Boltzmann constant. The brackets show that the pressure tensors are averaged over time. P  

denotes the pressure tensor of the   element. To attain more reliable results, the viscosity is 

determined by taking the average over three independent terms of the pressure tensor components, 

namely, xyP , yzP and xzP . To calculate viscosity, the canonical ensemble (NVT) is employed as 

the Green-Kubo equation is defined for a constant-volume system. 

4.2.3. Diffusivity Calculation 

The dynamic properties of the ILs in the liquid phase can be calculated in terms of mean square 

displacement (MSD) of the ion center of mass, as expressed below: 

2
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The diffusivity is obtained by the MSDs averaged with time through the Einstein correlation: [243]  

21
lim ( ) (0)
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(4-9) 

where ( )ir t  is the center of mass of the ions at time t and ...  denotes a moving time average. The 

diffusivities can be obtained through the least square fit of the MSD versus time for the particles 
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(molecules) transport. The activation energy (ED) is related to self-diffusion (D) through Arrhenius 

expression as shown below: 

0
DE RT

D D e
−

=  (4-10) 

where ED represents the activation energy of diffusion; D0 symbolizes the pre-exponential factor 

of the Arrhenius equation (m2 s-1); R is the universal gas constant. 

4.2.4. Radial Distribution Function Calculation 

The radial distribution function (RDF) or the pair correlation function is defined by the following 

expression [244]: 
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In Equation (4-11), ( )B r  denotes the particle density of type B at a distance of r around particles 

A, and B local
  is the particle density of type B averaged with time over all spheres around 

particles A with the radius of rmax. Usually, rmax is half of the simulation cell length. NA and NB refer 

to the total number of molecules of A and B, respectively. 

4.3.  Simulation/modeling methodology 

The structures of isolated cations and anions are optimized at the density functional theory (DFT) 

level, using the 6-311G + (d, p) basis set in the Gaussian 16 package [245].  A set of underlying 

approximations is made to describe the chemistry of the system. Basis sets are a set of functions 

to describe the electronic wave functions. The parameters for [Bmim], [BF4], and [Ac] are taken 

from the OPLS-AA force field, developed by Sambasivarao and Acevedo [231]. The partial 
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charges of the ILs are scaled uniformly by 0.8 to consider the impact of charge transfer and 

polarizability in the bulk [246]. 

In the case of CO2, the force-field parameters are taken from the literature [231].  A simple 

schematic of the cations and anions used in this work is depicted in Figure 4-1. 

 

   

(a) (b) (c) 

Figure 4-1: Components of the ILs considered in this work, (a) [Bmim]+, (b) [BF4]- (green for fluoride 

atom and red for boron atom), and (c) acetate or [Ac]- (green for carbon, white for the hydrogen atom, and 

red for oxygen atom). 

 

MD simulations are accomplished by the Gromacs 5.1.4 package [247, 248]. The MD runs are 

conducted by considering periodic boundary conditions and a time step of 1 fs. The electrostatic 

interactions are calculated, using the particle-mesh-Ewald (PME) method with a real space cut-off 

of 1.4 nm. The vdW interactions are calculated, using the Lennard-Jones equation. The Nose-

Hoover thermostat [249] and extended Lagrangian method [250] are applied to control the 

temperature and pressure, respectively. The flowchart presented in Figure 4-2 shows the main 

steps of the simulation. 
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Figure 4-2: An algorithm, showing the key stages of the MD simulation. 

First, a cubic box of pure ionic liquids, including 300 pairs of [Bmim][BF4] IL and [Bmim][Ac] 

IL is created using Packmol [251]. Then, the energy minimization and annealing processes are 

performed on the system to obtain a reliable initial configuration. After that, the system is 

equilibrated using two steps of isothermal-isobaric (NPT) ensemble in 1 ns and 4 ns, respectively, 



157 

 

at 300 K, 313 K, and 333 K.  The Nose-Hoover pressure coupling is also kept at a pressure of 1 

bar. After equilibrium is reached, a trajectory over 4 ns is generated. The production run is then 

performed for 5–8 ns. 

For the bulk system, the simulation box is constructed for the ILs and CO2 including 300 ion pairs 

and 5 and 110 CO2 molecules, based on experimental data, in a cubic box of [Bmim][BF4] and 

[Bmim][Ac] using Packmol [251], respectively. Three-dimensional periodic boundary conditions 

consistent with a cubic box were employed to obtain bulk behavior. The system is equilibrated for 

4 ns isothermal-isobaric ensemble (NPT) and followed by for 4 ns in the canonical ensemble 

(NVT). Then, the production run is continued for 5–8 ns. The densities are calculated after the 

NPT ensemble reached equilibrium. The bulk system MD simulations only represent the system 

at equilibrium. To investigate the interfacial aspect of the CO2/IL system, a two-phase box is 

considered that consists of the IL in the middle and CO2 on either side. The IL box is extended in 

the positive and negative z-direction by 5 nm and the cell dimensions are 5 nm×5 nm×15 nm in 

the x, y, and z directions, respectively. The CO2 molecules are located on either side of the IL slab, 

containing 50 and 200 molecules to reach the pressures of 10 bar and 42 bar. The CO2 molecules 

diffuse in the gas phase, transfer across the interface, and diffuse through the liquid bulk (see 

Figure 4-3). The MD simulation for this system represents a non-equilibrium case.  
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(a) 

 

(b) 

Figure 4-3: Schematics of (a) bulk system and (b) interface simulation box. 

 

4.4.  Limitations of MD Simulations 

There are some assumptions and limitations in our MD simulations as listed below: 

• The simulations use the classical mechanics of Newton’s equation to describe the motion 

of atoms.  

• A conservative force-field in MD simulations is used, which is only a function of positions 

of the atoms without considering the electron motion. Hence, the electrons remain in the 

ground state when the atomic positions change. However, we scale the partial charges of 
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the ILs uniformly by 0.8 to consider the effect of charge transfer and polarizability in the 

system. 

• The force-fields are pair-additive, implying that all non-bonded forces are originated from 

the sum of the non-bonded pair interactions. Non-pair-additive interactions are considered 

by the effective pair potentials. 

• The long-range interactions, including Lennard-Jones and Coulomb interactions, are cut-

off around 1.4 nm. 

 

4.5.  Results and discussions 

This study investigates important physicochemical and structural properties of various CO2/IL 

systems through performing MD simulations. The results and discussions section is divided into 

three parts, covering the simulation results for pure ILs, CO2/IL bulk systems, and CO2/IL 

interfacial systems. 

4.5.1. Pure ILs 

Density: The densities of pure [Bmim][BF4] and [Bmim][Ac] ILs are calculated from MD 

simulations, and the predictions are compared with the experimental values to evaluate the 

viability of the OPLS-AA force-fields. The densities are determined based on the NPT at three 

different temperatures of 300, 313, and 333 K; the experimental density data for [Bmim][BF4] and 

[Bmim][Ac] ILs are taken from literature. [252], [253]  A comparison between the experimental 

and calculated density values is illustrated in Figure 4-4.  The magnitude of error (%E) is obtained 

using the following equation: 
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=   

(4-12) 

According to Figure 4-4, the experimental values are in great agreement with the calculated 

densities from MD simulation; the maximum deviations are 0.48% for [Bmim][BF4] and 0.67% 

for [Bmim][Ac]. The density results imply that the OPLS-AA force-fields used for the simulations 

are reliable/appropriate. 

 

Figure 4-4: Liquid density of pure ILs as a function of temperature at P=1 bar; Markers indicate 

experimental data. 

Viscosity: We also verify the viability of the force-field used in the MD simulation by comparing 

viscosity values from the experiments and simulations. The viscosity of each IL is calculated from 

MD simulations at various temperatures and the results are compared with the experimental 

viscosities, as reported in Figure 4-5. Viscosity is determined using the Green-Kubo equation in 

the MD simulations at three different temperature levels of 300, 313, and 333 K. The experimental 

values for the viscosities are obtained from the literature [252, 253].  As it is clear, a good match 

is noticed between the predictions and real data for viscosities at all temperatures.  The error 
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percentages (
exp

exp

% 100
calc

E
 



−
=  ) in estimating the viscosity of pure ILs are less than 3.4% 

for [Bmim][BF4] and less than 2.1% for [Bmim][Ac]. The small differences between the calculated 

and experimental viscosities reveal the high accuracy of the OPLS-AA force-field to simulate the 

ILs behaviors. According to Figure 4-5, the viscosity of ILs decreases with increasing temperature, 

implying that the interaction potentials between the cations and anions are susceptible to 

temperature. The relationship between the temperature and viscosity (ɳ) can be generally 

expressed with an exponential Arrhenius type (
0 exp( )aE

RT
 = − ) correlation. Plotting ln ɳ versus 

1/T yields the activation energies -44.3 kJ mol-1 and -35.76 kJ mol-1 for [Bmim][BF4] and 

[Bmim][Ac], respectively, which are close to the experimental values. 

 

Figure 4-5: Shear viscosity of [Bmim][BF4] and [Bmim][Ac] at various temperatures; Experimental 

values are shown with filled symbols, and the lines show the simulated results. 

 

RDF: Radial distribution function (RDF) describes the probability of finding an ion at a distance 

r from the reference ion. RDF refers to the ratio of the area density of neighbors around a reference 
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atom/particle and the average density of the entire system, which discovers the distance of a given 

molecule from other particles in the system. Thus, the interactions between molecules will be 

explored by analyzing the distribution of particles in the system. To clarify how strong the 

associations of cation-anion are, we carry out the RDF analysis on the particles; the results are 

illustrated in Figure 4-6 (a) and (b) for all anions and cations of [Bmim][BF4] and [Bmim][Ac] 

ILs, respectively. As shown in Figure 4-6 (a), the RDF peak for anion-cation of [Bmim][BF4] IL 

at 300 K is at a distance of 0.47 nm with a peak value of 2.71. The first minimum is observed at 

0.8 nm with a RDF of 0.623, indicating that the chance of finding ions in this separation distance 

is very low. In Figure 4-6 (a), the RDF diagrams are compared for the center of mass of cation, 

cation ring, and cation chain with respect to the anion. It is found that the RDF peak happens at 

0.47 nm, 0.51 nm, and 0.49 nm for the center of mass of cation, cation ring, and cation chain, 

respectively. The higher RDF peak for the anion-cation ring reveals that the anions have a stronger 

association with the ring of imidazolium cation than its chain. The local environments around the 

key residues of the [Bmim][Ac] IL at 300 K are obtained. As depicted in Figure 4-6 (b), the RDF 

peak from anion-cation is 2.727, which is obtained at the separation distance of 0.46 nm. Similar 

to [Bmim][BF4] IL, at the separation distance of 0.76 nm, it is unlikely to find anions at the 

neighborhood of cation. According to Figure 4-6 (b), the acetate anion has a stronger association 

with the ring of the [Bmim]+ cation in the [Bmim][Ac] IL. Figure 4-7 (panels (a) and (b)) 

demonstrates the RDF for the center of mass in cation-cation, anion-anion, and anion-cation pairs 

for pure ILs at 300 K. As clear from Figure 4-7 (a) and (b), the RDF peak for cation-anion of 

[Bmim][BF4] and [Bmim][Ac] is higher than RDF for cation-cation and anion-anion pairs; 

implying the strong associations of the cation-anion pairs. 
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(a) [Bmim][BF4] (b) [Bmim][Ac] 

  
Figure 4-6: Radial distribution function g(r) between the anions with cation and different segments of the 

cation (ring and chain) for pure ILs: (a) [Bmim][BF4] and (b) [Bmim][Ac] at T=300 K and P=1 bar. 

 

 

Dynamic characteristics of liquid phase: Mean square displacement (MSD) is a measure of the 

deviation of the position of an atom with respect to its reference position over time in MD 

simulations, as presented by Equation (4-8). We compare the MSD variable for the two ILs at 

temperatures 300, 313, and 333 K (see Figure 4-8). The initial rapid increase in MSD with time 

until 1 ns reveals that a long simulation is required to evaluate the self-diffusion coefficients of 

different ions in both ILs. The slopes of the MSDs for the cations are steeper than those for the 

(a) [Bmim][BF4] (b) [Bmim][Ac] 

  

Figure 4-7: Radial distribution function g(r) for the center of mass in cation-cation, anion-anion, and 

anion-cation pairs for pure ILs at 300 K and 1 bar: (a) [Bmim][BF4] and (b) [Bmim][Ac]. 



164 

 

anions in both ILs. This suggests that the cations move faster than the anions in the mixture within 

the timescale of few nanoseconds. The MSDs of the cations and anions for [Bmim][BF4] and 

[Bmim][Ac] ILs at 300 K are shown in Figure 4-8 (a), for MD results up to 8 ns and 5 ns simulation 

runs, respectively. The slopes of MSDs with time for the cation and anion of [Bmim][BF4] are 

steeper than those for [Bmim][Ac]. Thus, it can be concluded that the motion of the cation and 

anion is faster in [Bmim][BF4], compared to [Bmim][Ac]. It confirms that [Bmim][Ac] is more 

viscous than [Bmim][BF4].  Also, [Ac]- anion has a larger gyration radius than [BF4 ]
- that can be 

another reason for the slower movement of the ions in [Bmim][Ac]. The larger size of the [Ac]-  

anion and its bulky shape (compared to [BF4 ]
-) can also lead to slower diffusion of [Ac]-  than 

[BF4 ]
- anion. The self-diffusion coefficients of the cations and anions are calculated by fitting a 

straight line to the slope of the linear region of the MSD curve from 1 ns to 8 ns, using Equation 

(4-8). Table 4-1 reports the self-diffusion coefficients for the cations and anions of [Bmim][BF4] 

and [Bmim][Ac] at 300, 313, and 333 K where the pressure is 1 bar. According to  Table 4-1, at 

300 K, the self-diffusion coefficients of [Bmim]+ cation in [Bmim][BF4] and [Bmim][Ac] are 

10.1×10-12 and 5.03 ×10-12 m2/s, respectively. It is concluded that the [Bmim]+ cations diffuse twice 

faster in pure [Bmim][BF4] than [Bmim][Ac]. In addition, the self-diffusion coefficients of the 

[BF4]
- and [Ac]- anions are 6.67×10-12 and 3.34×10-12 m2/s, respectively. The anions, in general, 

have a lower self-diffusion coefficient, compared to the cations for both ILs at all temperature 

levels. The results also confirm that [Bmim][Ac] has a lower diffusion coefficient than 

[bmim][BF4] due to a higher viscosity and larger anion size. 
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 (a) (b) (c) 

   

Figure 4-8: A comparison between the mean square displacement (MSD) of anions and cations for [Bmim][BF4] 

and [Bmim][Ac] at different temperatures: (a) 300 K, (b) 313 K, and (c) 333 K. 

 

Table 4-1: Self-diffusion coefficient of cations and anions for different ILs at 1 bar. 

T (K) IL D×10 -12 (m2/s) 

Cation Anion 

300 
[Bmim][BF4] 10.01 6.67 

[Bmim][Ac] 5.08 3.34 

313 
[Bmim][BF4] 11.70 8.33 

[Bmim][Ac] 8.36 5.13 

333 
[Bmim][BF4] 33.30 16.70 

[Bmim][Ac] 10.04 6.76 

4.5.2. CO2-IL Bulk Systems 

The analysis of MD simulations for CO2-IL bulk systems is performed by considering: 1) 

microscopic structural properties, using radial distribution functions (RDFs) and volume 

expansion upon CO2 absorption, and 2) dynamic properties using mean square displacement 

(MSD) and diffusion coefficient. 

Volume expansion (swelling): The system's total volume increases with the CO2 mole fraction in 

the liquid phase. The volume expansion percentage is defined as the relative change in the total 

volume of the IL-CO2 mixture, compared to pure IL [101], as given below [254]: 
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%𝑉exp𝑎𝑛𝑠𝑖𝑜𝑛,𝐿 =
𝑉𝑚𝑖𝑥(𝑇, 𝑃, 𝑥) − 𝑉𝐼𝐿(𝑇, 𝑃0)

𝑉𝐼𝐿(𝑇, 𝑃0)
× 100 (4-13) 

where the subscripts of mix and IL represent the volume of the IL/CO2 and IL systems, 

respectively. P0 is the standard pressure of 1 bar. The molar volumes of the IL/CO2 mixtures after 

CO2 absorption, volume expansion upon mixing, and the molar volume ratio of mixture to pure IL 

are calculated for both IL systems (see Figure 4-2). Volumes are computed in the experimental 

solubility limit of each IL (mole fractions of 0.016 and 0.27 for [Bmim][BF4] and [Bmim][Ac], 

respectively) at 1 bar and 300 K.  Based on the results, the volume expansion increases with 

increasing temperature. The maximum volume expansion is reported to be 1.31% for [Bmim][BF4] 

and 6.15% for [Bmim][Ac]. Volume expansion due to CO2 absorption in [Bmim][Ac] is higher 

than that in [Bmim][BF4], confirming that higher CO2 solubility leads to an increase in the total 

volume of the mixture. Adding CO2 to normal organic solvents usually increases the liquid 

volume, and consequently lowers the mixture solvent strength.[255]  IL volume expands relatively 

small upon the addition of CO2 to IL. It seems that CO2 has a lower influence on the polarity of 

the mixture and cannot disrupt the hydrogen bonding and cation-anion interactions between the IL 

molecules, compared to organic solvents.  

Table 4-2: Physical properties of CO2-IL mixtures at the CO2 solubility limit. 

T (K) IL 
Vm 

(cm3/mol) 
∆V (vol%) Vm,mix/Vm,IL 

 ɳ (cP) 

 
CO2-IL 

pure 

IL[256],[257] 

300 
[Bmim][BF4] 195.33 0.84 0.991  96 103.5 

[Bmim][Ac] 158.17 5.01 0.826  186 263 

313 
[Bmim][BF4] 197.87 1.24 0.995   45 51.3 

[Bmim][Ac] 160.36 5.44 0.830         94  112 

333 
[Bmim][BF4] 200.32 1.31 0.996   21 24.5 

[Bmim][Ac] 163.37 6.15 0.836   37 42.7 
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Mixture viscosity: Figure 4-2 also summarizes the viscosity of the CO2 and IL mixtures.  

According to Figure 4-2, the viscosity decreases with increasing CO2 concentration (in the 

mixture). Also, the viscosity decreases upon an increase in temperature, which is in agreement 

with the variation of the liquid viscosity with temperature, as reported in the open sources. 

RDF: Detailed RDFs for the center of mass of anion-cation, anion-CO2, and cation-CO2 for 

studied ILs are presented in Figure 4-9 and Figure 4-10. The RDFs show very small oscillations 

beyond r =2.25 nm. The shapes of RDFs for both anions and CO2 pairs are similar. It is observed 

that solvated CO2 mainly resides close to the butyl chain of the cations. In both ILs, CO2 molecules 

show stronger association with anions, compared to cations. As demonstrated in Figure 4-9 (a), 

for [Bmim][BF4], the RDF of the cation-anion at the bulk system is similar to that for the pure 

[Bmim][BF4] (refer to Figure 4-7 (a)). According to Figure 4-9, the RDF peaks for the anion and 

cation of [Bmim][BF4] IL at 300 K are located at distances 0.39 nm and 0.52 nm with the peak 

values of g(r)=2.609 and 1.458, respectively. The first minimums for the anions and cations are 

0.87 and 0.83 nm, implying that it is unlikely to find a CO2 molecule at these distances around the 

anion and cation. The distribution of CO2-[Bmim]+ shows that the largest peak and the first 

maximum correspond to the center of mass of [Bmim]+ and [BF4]
- ions at about 0.52 and 0.4 nm 

at 300 K, respectively.  The distribution functions of CO2 - [BF4]
- have closer peaks (0.4–0.6 nm). 

The higher peaks with a shorter distance for the case of anions indicate that the anions with smaller 

size are located in the neighborhood of the CO2 molecules easier and make powerful interactions. 

Also, the second peak in the RDFs is located in a shorter distance for the anion than the cation. 

There is no significant difference in RDFs while investigating the effect of temperature on the 

peaks of site-site interactions. It means temperature does not have a significant impact on the 

distribution of molecules and ions in the IL-CO2 system. 
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The RDFs for center of mass of the anion-cation, CO2-anion, and CO2-cation pairs for the 

[Bmim][Ac] case at 300 K are demonstrated in Figure 4-10. Like [Bmim][BF4], the RDF of the 

bulk system is similar to that for the pure [Bmim][Ac] (see Figure 4-7 (b)). According to Figure 

4-10, the RDF peaks for the anion-cation pair in [Bmim][Ac]-CO2 mixture at 300 K are at distances 

of 0.38 nm and 0.53 nm, with peak values 2.363 and 1.301, respectively. The locations of the first 

minimums for the anion and cation in the mixture are 0.75 and 1.01 nm, respectively. Thus, the 

CO2-anion association is stronger than CO2 –cation pairs in the [Bmim][Ac]-CO2 mixture. The 

distribution of CO2-cation in [Bmim][Ac] IL shows a peak at a distance of 0.53 nm. The RDF of 

CO2-anion has peaked at relatively shorter distances of 0.38 nm and 0.87 nm for the [Bmim][Ac]-

CO2 mixture. When comparing the effect of anions, it seems that the CO2 molecule is coordinated 

at a closer distance to [Ac]- than [BF4]
-, which is attributed to the different structures of anions.  

 

(a) 

 

(b) 
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(c) 

Figure 4-9: Radial distribution function for the center of mass for pairs of anion-cation, CO2-anion, and 

CO2-cation in the bulk of [Bmim][BF4] IL at 1 bar: (a) 300 K, (b) 313 K, and (c) 333 K. 

 

 

Figure 4-10: Radial distribution function for the center of mass for pairs of anion-cation, CO2-anion, and 

CO2-cation in the bulk of [Bmim][Ac] at 1 bar and 300 K. 

 

MSD: We illustrate the MSD of the center of mass for the ions of CO2-[Bmim][BF4] and CO2-

[Bmim][Ac] in Figure 4-11 and Figure 4-12, respectively.  
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(a) (b) (c) 

   

Figure 4-11: Mean square displacement at different temperatures for CO2-[Bmim][BF4] bulk system for: (a) CO2, (b) 

anion, and (c) cation. 

(a) (b) (c) 

   

Figure 4-12: Mean square displacement at various temperatures for CO2-[Bmim][Ac] bulk system for (a) CO2, (b) 

anion, and (c) cation. 

 

Based on Figure 4-11 and Figure 4-12, the MSD values for CO2, cations, and anions are simulated 

for a run time of 5 ns, except for those of [Bmim][BF4] at 333 K that are calculated up to 8 ns. The 

MSD values vary relatively linearly with time, suggesting the significance of normal molecular 

diffusion during the absorption of CO2 in the IL. The reason for non-linearity in some points can 

be related to the presence of natural convection in the IL due to a change in density of the mixture. 

The MSD values for the cations are higher than those for the anions; this is consistent with our 

conclusion on higher diffusivity of the cations (compared to anions) in the CO2-IL mixtures. The 

MSD profiles for CO2 in ILs are steeper than those of anions and cations. It implies that CO2 has 
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a greater diffusivity and can move faster than the anion and cation in the system. It is noticed that 

the MSD in [Bmim][BF4] is around 1.5 times higher than that in [Bmim][Ac] (see Figure 4-12). It 

means that CO2 diffuses in [Bmim][BF4] easier than in [Bmim][Ac]. The higher solubility of CO2 

in [Bmim][Ac] confirms that it makes a stronger association with this IL. Thus, the diffusivity of 

CO2 in [Bmim][Ac] is smaller, compared to [Bmim][BF4] IL. The linear behavior from 1–8 ns can 

be attributed to the prevalence of molecular diffusion as the governing mechanism for the mass 

transfer in the liquid phase. Diffusivities of CO2 in [Bmim][BF4] and [Bmim][Ac] at a pressure of 

1 bar, a temperature of 300 K, and a CO2 mole fraction at solubility limit are calculated to be 3 

×10-10 m2/s and 1.5×10-10 m2/s, respectively, which are in good agreement with the experimental 

data.[112]  The magnitude of CO2 diffusivity is 10-10 m2/s that is close to the diffusivity of ILs. It 

can be concluded again that CO2 has a higher diffusivity in [Bmim][BF4] than in [Bmim][Ac], 

while the CO2 solubility exhibits the opposite trend. The diffusion coefficient generally depends 

on temperature and pressure, viscosity, molecule size, and concentration. As it is clear, the 

diffusivity increases with increasing temperature at a constant pressure, which is consistent with 

free-volume theories.  In particular, molecules at higher temperatures retain enough energy to 

escape from the imposed force-field from their neighbor particles and jump between the neighbor 

holes [258]. The temperature dependence of the diffusion coefficient is also attributed to the 

solvent density reduction due to the free volume increment. Self-diffusivity of the cations and 

anions in [Bmim][BF4] and [Bmim][Ac] after the CO2 solvation is increased. It follows that a 

decrease in the mixture viscosity and volume expansion occurs upon the CO2 addition. In fact, the 

molecules of CO2 occupy the spaces between the cations and anions in the solution, which leads 

to weakening the interactions between these ions. This results in a high diffusion coefficient for 

the ions in the solution. 



172 

 

4.5.3. CO2-IL Interface  

Number density: The number density distributions of the cation [Bmim]-, anion [BF4]
-, and CO2 

in the z-direction are shown at 10 bar and 42 bar in panels a and b of Figure 4-13, respectively. For 

this phase of the study, the temperature is fixed at 300 K, and the MD simulation is run for up to 

8 ns. According to Figure 4-13, a dramatic increase in the number density, as well as considerable 

fluctuations, are noticed at the interface of the anion and cation. Unlike the ions, the number 

density of CO2 shows more fluctuations, especially at a higher pressure of 42 bar. Panels a and b 

of Figure 4-13 elucidate the number density of the cation, anion, and CO2 in the z-direction for the 

case of [Bmim][Ac] and CO2 at 10 bar and 42 bar, respectively. The mixture with a greater 

concentration of CO2 has a higher density peak at the interface. It is also concluded that the 

presence of adsorbed CO2 layer at the interface has a minor impact on the order of the number 

density of the cation and anion oscillations. The number densities for the atoms in the anions are 

shown in Figure 4-15 (a); Figure 4-15 (b) illustrates the number density distributions for N02, C06, 

C0G, C0J, and C0N atoms in the cation. The distributions shown in Figure 4-15 (b) are in the order 

of C0N > C0J > C06 > C0G > N02.  At the interface, the anions number density is higher than that 

for the cations, which is due to the assembly of the anions and tendency of CO2 toward anions of 

ILs. Also, the cation butyl chain directs into the gas phase in the z-direction. This is a result of 

self-assembly of the amphiphilic cations at the interface. The maximum gas density is observed at 

the interface, which is more than the gas layer density in the gas phase and IL slab. This might be 

attributed to the CO2 van der Waals and quadrupole-charge interactions with the IL. The number 

density of the [Bmim]+ cation, [Ac]- anion, and CO2 at various CO2 concentrations and pressures 

is depicted in Figure 4-14. Similar to [Bmim][BF4], all particle densities increase at the interface. 

For this IL, higher concentrations of CO2 have more influence on the oscillations of the cation and 
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anion densities. The final configurations of the different systems, after simulation, are shown in 

Figure 4-16. For each part/case, the left figure shows only the positions of CO2 molecules, while 

the right side of each part (a and b) includes all molecules of IL and CO2 and their positions after 

the simulation run is over.  

 (a) (b) 

 
 

Figure 4-13: The number density for CO2, [Bmim]+ cation, and [BF4]-
  anion along z-direction for IL-CO2 

system at: (a) 10 bar and (b) 42 bar. 

(a) (b) 

  
Figure 4-14: The number density for CO2, [Bmim]+ cation, and [Ac]-

  anion along z-direction for IL-CO2 

system at: (a) 10 bar and (b) 42 bar. 

 

 



174 

 

 

(a) (b) 

 
 

Figure 4-15: The number density for (a) B and F in anion [BF4]-, and (b) C06, C0G, C0J, C0N, and N02 of 

cation [Bmim]+ along z-direction for the IL-CO2 system. 

 

 

 

(a) 

 
 

(b) 

Figure 4-16: Schematic of the simulation box after MD simulation run: (a) [Bmim][BF4] IL and  (b) 

[Bmim][Ac] IL. 
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Surface tension: Table 4-3 lists the surface (interfacial) tension calculated for different systems 

of IL-vacuum and IL-CO2. The predicted surface tension for the IL-vacuum system is close to the 

value reported in the literature. The experimental surface tension values for pure ILs are in the 

range of 30–50 mN/m. The surface energy of the IL/CO2 systems is less than that of the IL/vacuum 

system. In fact, the presence of CO2 has a stabilizing influence on the surface as the IL molecules 

interact with CO2 molecules and interact less with themselves. The obtained data show a 

qualitative trend while investigating the effect of gas on the surface tension of ILs. The CO2 layer 

adsorbed at the interface with [Bmim][Ac] builds a more stable surface, compared to the case of 

[Bmim][BF4]. This phenomenon can be interpreted by the absorption of CO2 at the interface as 

depicted in the number density profile. The high density of CO2 at the interface shows the affinity 

of CO2 and ILs to each other. It also seems that CO2 disrupts the intramolecular interactions of the 

IL molecules. The surface tension usually decreases with increasing pressure until the IL is 

saturated with CO2. 

Table 4-3: A comparison between the interfacial tensions (γ) of CO2-IL at 300 K. 

System   (mN/m) 

[Bmim][BF4] [Bmim][Ac] 

IL/Vacuum 58.9* 43.9* 

IL/50 CO2 52.5 42.1 

IL/200CO2 50.1 40.2 

* Literature [235] values are 44.4 (mN/m) for [Bmim][BF4] and 37.6 (mN/m) for [Bmim][Ac] 

MD simulations provide a microscopic approach to better explain experimental results and 

dynamic and structural behaviors of various chemical solutions. Our research work regarding the 

properties of ILs and behavior of CO2 in the bulk and interface of CO2-ILs systems can help 

researchers in developing IL absorbents with high efficiency and designing better absorption-
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desorption processes. This study may offer useful technical insights into governing mechanisms 

to separate CO2 from other flue gases with ILs, which is one of the vital goals toward a green and 

clean environment. 

4.6.  Conclusions 

Ionic liquids (ILs) have special physicochemical properties (e.g., high thermal stability and 

negligible vapor pressure) with applications to a wide range of processing and separation 

operations in energy and environment. However, a limited number of research works have been 

conducted to explore the bulk and interface properties of ILs in the presence of gases. In this 

research work, the molecular dynamics (MD) simulation is employed to forecast the properties of 

pure ILs and diffusivity of CO2 in the bulk and interface of [Bmim][BF4] and [Bmim][Ac] ILs. 

The density and viscosity calculated using MD for pure ILs are in good agreement with the 

experimental data.   

The dynamics of the atoms in the alkyl chain domains are different from the imidazolium rings 

and anions domains. The difference in the motion of atoms in various domains is important to 

further understand the transport behaviors/characteristics (viscosity and diffusivity) of cations, 

anions, and solute molecules in the system. Three factors including the molecule size, shape of 

ions, and the magnitude of interaction energy play an important role while determining the 

diffusion coefficients of ILs.  Diffusion coefficients obtained for the cations and anions of 

[Bmim][BF4] and [Bmim][Ac] ILs are in the range of (3–34 )×10-12 m2/s.  It should be mentioned 

that cations have a higher diffusivity than anions. The activation energy is higher for [Bmim][BF4] 

IL, compared to [Bmim][Ac] IL, leading to a higher diffusion coefficient for CO2 in [Bmim][BF4]. 

The greater absolute value of activation energy for [Bmim][BF4] might be due to strong ionic bond 
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energy within the liquid, which consequently lowers the CO2 absorption capacity of the IL with 

[BF4]
- anion. 

In the bulk system, the anion has an important role in structuring CO2 around the cations and 

anions. CO2 is located more likely around anion than around cation and has a stronger interaction 

with anion. The expansion of IL volume is relatively small upon the addition of CO2 to IL. Solution 

viscosity decreases dramatically with increasing temperature and CO2 concentration in the 

mixture. Diffusivity of CO2 in [Bmim][BF4] is relatively higher than that in [Bmim][Ac], due to 

its lower viscosity and smaller anion size. Based on the dynamic properties analysis, the diffusivity 

has no direct relationship with CO2 solubility in some ILs. 

The presence of CO2 at the interface of the CO2/IL systems makes a dense layer and decreases the 

strong association of cation-anion, causing a reduction in the surface tension. Also, the 

composition analysis of the interface of CO2-IL cases shows an increase in the concentration of 

alkyl side chains of the cations, anions, and CO2 molecules at the interface. 

This study provides a detailed knowledge of IL-CO2 bulk and interfacial properties using a 

molecular- scale investigation. The attained information/data can assist to develop and design 

suitable IL-based absorbents. 

NOMENCLATURES 

Variables/Parameters Description 

ijr   bond length 

ijk  angle 

ijkl  dihedral angle 

ijklV  Fourier coefficients 

P
 pressure tensor of the   element 

D diffusion coefficient 
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ED  activation energy of diffusion   

kB Boltzmann constant 

q partial atomic charges 

R universal gas constant 

T temperature 

V  volume  

x mole fraction  

ε well depths 

σ Lennard-Jones potential radii 

Chemical Formulas  

[Bmim][Ac] 1-butyl-3-methylimidazolium acetate 

[Bmim][BF4] 1-butyl-3-methylimidazolium tetrafluoroborate 

[Bmim][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 

[Bmim][Tf2N] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

[FAP] tris(pentafluoroalkyl)-trifluorophosphate  

CO2 carbon dioxide 

Acronyms  

AAD  Average Absolute Deviation 

CCS                       Carbon Capture and Storage 

CG Coarse-Grained 

DFT Density Functional Theory 

ESP Electrostatic Potential Surface 

GHG Greenhouse Gases 

IL Ionic Liquid 

MSD  Mean Square Displacement 

OPLS-AA All-Atom Optimized Potentials for Liquid Simulations 

PME Particle-Mesh-Ewald 

RDF Radial Distribution Function 

UA United Atom 

Greek Letters  

γ surface tension  

ρ density  

𝜂 viscosity 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiRhMHtiK_eAhWD2lMKHQ4tBvUQFjABegQIARAB&url=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F39952%3Flang%3Den%26region%3DUS&usg=AOvVaw12bGvlgvTPo88F4rjx93b3
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwjfrIe5g8TaAhUIWN8KHbe8DiYQFggpMAA&url=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F91508%3Flang%3Den%26region%3DUS&usg=AOvVaw0jl_AacqKvRUkEIJdRtP5g


179 

 

 

 

5. CHAPTER FIVE 

 

Effect of Water on Molecular Behavior of [Bmim][Ac]/Water/CO2, Using 

Molecular Dynamics Simulation  

Preface  

A version of this chapter has been published in the Journal of Physical Chemistry B (2020). I am 

the primary author of this paper. All authors were involved in the definition of the objectives, 

outlines of paper structure. I carried out a majority of the literature review, and the MD simulations 

with the aid of technical comments from co-authors, Sohrab Zendehboudi and Nima Rezaei. The 

first draft of the manuscript are prepared and revised based on the co-authors’ feedback. The co-

author, Sohrab Zendehboudi, had a considerable contribution in revising the manuscript in terms 

of editorial and technical aspects. Nima Rezaei also had a final look to edit the manuscript if some 

corrections were still needed. 
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Abstract 

Mixing ionic liquids (ILs) with some components such as water appears to be an effective way of 

designing the ILs applicable in various industries/processes. It might also help to better control the 

IL solution characteristics. Molecular interactions of IL, water, and carbon dioxide (CO2) 

substances are of great importance in the selection of ILs with proper features (e.g., selectivity and 

solubility) for CO2 capture.  We perform molecular dynamics (MD) simulations to investigate the 

effect of water concentration on excess energy, molecular distribution, and dynamic behaviors of 

mixtures of 1-Butyl-3-methylimidazolium acetate ([Bmim][Ac]) IL, water, and CO2 at different 

water concentrations. The radial distribution functions, coordination numbers, water clusters, 

hydrogen bonding, and diffusivity coefficients of [Bmim][Ac]-Water (or IL-W) and [Bmim][Ac]-

Water-CO2 (or IL-W- CO2) systems are also discussed at various water mole fractions. Water 

molecules at high concentrations most likely form clusters. Analysis of water clusters in 

[Bmim][Ac] /W mixture reveals that water clusters are connected mainly with hydrogen bonds. 

The presence of water in the IL solutions, even at high concentrations of water (>0.7), increases 

the diffusivity of cation, anion, water, and CO2 molecules in the mixture due to hydrophilicity of 

[Bmim][Ac]. Although cations diffuse faster than anions in the mixture anomalously, anion 

diffusion exceeds cation self-diffusion at high water concentrations, causing that the polar and 

non-polar regions in the liquid disappear. This study further highlights the important aspects (e.g., 

diffusion coefficient and cluster formation) of the water presence in IL solution that can assist 

researchers and engineers for better design and operation of a carbon capture process dealing with 

IL/W mixtures.  
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5.1. Introduction 

Carbon dioxide (CO2) is a dominant greenhouse gas (GHG) in the atmosphere, produced in large 

quantities from industrial processes/plants, such as fossil fuel power plants, refineries, cement and 

steel production, and natural gas purification [259, 260]. Oceans warming has increased the sea 

levels that are the consequence of the CO2 accumulations in the atmosphere, causing an irreversible 

climate change [261]. The CO2 existing in natural gas can also accelerate corrosion in pipelines 

and other process equipment, reduce the gas heating value, and cause catalyst poisoning in several 

petrochemical processes including ammonia synthesis [262]. CO2 alone contributes to over 76% 

of global GHG emissions, followed by contributions from methane and nitrous oxides at 16% and 

6%, respectively [263]. Due to the focus of the global community on environmental concerns (e.g., 

global climate change), conducting systematic research and engineering activities on CO2 capture, 

storage, and utilization (CCSU) is imperative. Separation and utilization of CO2 can have 

economical and commercial applications, such as conversion process (e.g., synthesis of new 

chemicals) and utilization as a solvent/working fluid for different operations including enhanced 

oil recovery and supercritical CO2 power cycles. 

Various methods, such as amine-based absorption, adsorption, and algae-based separation, are 

currently employed for the separation and capture of CO2 from flue gases and gas streams. The 

most commercialized and economical separation approach is absorption with amine-based 

solvents.  However, this technique has several technical and non-technical problems, such as 

solvent loss due to low vapor pressure and degradability of amines, leading to large investment 

costs and high energy consumption [259].  

In recent years, ionic liquids (ILs) have emerged as promising alternate solvents for physisorption 

and chemisorption of acid gases due to their unique physiochemical properties, such as negligible 
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vapor pressure, high thermal stability, tunability, and having a low environmental impact. The 

properties of imidazolium-based ILs have been studied extensively, suggesting that [FEP]- and 

[Ac]- based ILs have a high CO2 solubility [158].  However, the main drawback of ILs is their 

high viscosity. To overcome this problem, they can be mixed with other organic solvents. One of 

the best solvents to reduce the mixture viscosity without affecting other IL properties is water with 

no adverse impact on the environment. Water can decrease the viscosity of ILs without a 

significant change in the CO2 capture capacity.  

The imidazolium cations have an aromatic ring containing two nitrogen atoms and alkyl groups 

with varying lengths. Their properties change from being completely miscible with water 

(hydrophilic) to completely immiscible with water (hydrophobic). In general, cations with long 

alkyl side chains and large anions (e.g., [PF6]
-) are more hydrophobic than small anions and short 

alkyl chains [207]. The hydrophilic/hydrophobic behavior of ILs is crucial, not only for the 

solvation properties of the liquids, such as dissolving reactants but also for the recovery of products 

through solvent extraction. The solubility of water in ILs depends on the type, length and structure 

of cation and anion (and groups), pressure, and temperature. Adding water to a pure IL slightly 

decreases the IL capacity of CO2 absorption; however, it reduces the IL viscosity that is a favorable 

feature. Low-viscous IL solvents can promote gas diffusion and lower the operational constraints 

on their use [128]. 

Effect of water on IL surface tension was investigated in a study by Freire et al. [264]. Based on 

their results, low water content leads to a reduction in the surface tension of hydrophilic ILs, while 

the surface tension of hydrophobic ILs is similar to that of dry ILs. In fact, the hydrogen bonding 

of water with anions and cations of ILs lowers the electrostatic interactions between ions, resulting 

in a decrease in the IL surface tension.  
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ILs have the ability to absorb water at ambient conditions. Adding water to imidazolium-based ILs 

breaks down the original network of cation-anion in ILs and forms new water-cation/water-anion 

networks [265]. This process causes a change in the structure and dynamics of ILs, including 

surface tension, diffusion, and viscosity. The viscosity of ILs decreases rapidly with an increase in 

the water content [266]. In other words, the presence of water in the IL solution significantly 

reduces the viscosity of pure ILs and CO2-saturated ILs; it also causes a slight decrease in the CO2 

absorption capacity [267]. 

Absorption of CO2 by the pure ILs, 1-ethyl-3-methylimidazolium acetate and 1-butyl-3-

methylimidazolium acetate, within the temperature range of 303 -343 K was reported by 

Stevanovic et al. [13]. They also investigated the effect of water on CO2 solubility at various 

temperatures and compositions [268]. Viscosities of the acetate and chloride-based ILs and their 

mixture with water have been studied [269]. Their findings show that the addition of a small 

amount of water into acetate-based ILs at 25ºC reduces the viscosity of the mixture to almost one-

half of pure ILs. 

The influence of water on the interfacial behaviors of CO2 and IL systems has been analyzed by 

Perez-Blanco and Maginn [235], with a focus on [Bmim][Tf2N]/ W/CO2 system.  It was concluded 

that H2O is absorbed into the IL and avoids interfacing. 

To design (and choose) appropriate ILs for various purposes such as carbon capture, it is important 

to understand their properties, structures, and molecular interactions with other molecules involved 

in corresponding phenomena/processes. Molecular dynamics (MD) simulation strategy is a 

powerful tool to obtain structural, physiochemical, dynamics, thermophysical, and association 

characteristics of complex liquids such as ILs.  The selection of a reliable force field will help to 



184 

 

effectively simulate the real molecular behaviors of the targeted system(s) through accurate and 

generalized simulation runs. For gas-liquid systems, MD approaches are able to compute the 

dilution properties, adsorptions isotherms, solubility, excess chemical potential, and gas dynamics 

characteristics of the mixtures. The solubility, structure, and molecular interactions/motion of CO2 

in ILs have been studied in the literature [16-18]. There are also a few research investigations in 

the open sources that discuss the solvation of water in ILs in terms of molecular structure and 

dynamics [16-18]. However, the interactions, structure, and detailed molecular dynamics of the 

ternary system of CO2/IL/W are still a matter of controversy. Moreno et al. [270] studied the 

dynamics and molecular interactions of the bulk system of H2O and [Bmim] [BF4] using MD 

simulations. Their results showed that at low concentrations of water, the diffusivities of cation 

and anion in a mixture of IL/W are lower, compared to pure ILs. Upon an increase in water 

concentration, ions diffusivity increases. The dynamics of ILs mixture with water were studied by 

Hanke et al. [271], revealing that water molecules create small clusters that change the mixture 

properties. They found that excess energy and water diffusion coefficient in mixtures of either 

hydrophilic or hydrophobic IL and water differ significantly, while radial distribution functions 

and ion diffusion coefficients seem irrelevant to the hydrophilicity of ILs. Shi et al. [272] studied 

water interactions with acetate-based IL using an experimental investigation and ab initio 

simulation method. Their experiments showed that water makes hydrogen bonding with IL and 

affects self-diffusivities of ions. In addition, water-acetate interactions dominate water-water and 

water-cation interactions. 

The CO2 absorption capacity in several IL/W mixtures has been reported experimentally [273, 

274]. However, molecular simulations have been rarely applied to explore the influence of water 

on CO2 solubility and diffusivity in mixtures. Stevanovic et al. [268] claimed that in the presence 
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of water, the absorption properties of 1-alkyl-3- methylimidazolium acetate IL significantly 

change; the mixture viscosity and CO2 absorption decrease. Although there are a few research 

works on the influence of water on the solubility of CO2 in ILs, the impact of water on the CO2 

molecular dynamics and interface behaviour in ternary mixtures has not been discussed in the 

literature, yet. The current research aims to further explore the water clustering, diffusivity of CO2 

and ions, and excess energies in the binary system of [Bmim][Ac]/W and the ternary system of 

[Bmim][Ac]/CO2/W.  

In this work, the MD simulation of all-atom force field OPLS-AA [231] is used to study the 

thermodynamic and physical properties (enthalpy, viscosity, and density), water distribution,  

radial distribution functions (RDFs) of components, and diffusivity of ions and components in the 

[Bmim][Ac]/W and CO2/IL/W systems at various water concentrations. 

This chapter is organized as follows: after the introductory section, Section 5.2 provides a brief 

theory and description on molecular dynamics (MD) simulation methodology. Section 5.3 then 

presents and discusses the results of MD simulation runs including excess enthalpy and excess 

volume; radial distribution functions of ions, CO2, and water; water cluster sizes; mean square 

displacements of the compounds and their corresponding diffusivity coefficient. Section 5.4 

includes the conclusions to highlight the main findings of the study. 

5.2.  Molecular dynamics simulation: theory and methodology 

In this study, molecular dynamics (MD) simulations are implemented to investigate the molecular 

and thermodynamic characteristics of pure IL, binary [Bmim][Ac] IL/W, and ternary 

CO2/[Bmim][Ac] /W systems. The effect of water (as an additive) mole fraction to IL is also 

assessed where water mole fractions of 0, 0.2, 0.4, 0.6, and 0.9 are considered. The solubility of 
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CO2 in IL and IL/W mixtures is examined and determined, using Gromacs 5.1.4 package [247, 

248]. The structures of the cation 1-butyl-3-methylimidazolium ([Bmim]+) and anion acetate 

([Ac]-) are optimized from density functional theory (DFT), using the Becke three parameter Lee-

Yang-Parr hybrid correlation functional (B3LYP) method [275] with the Gaussian 16 package 

[245]. The basis set used were 6-311G+(d,p). The partial charges of the IL molecules are scaled 

uniformly by 0.8 to compensate for the effects of charge transfer and polarizability in the bulk 

[246]. The force fields for the IL are taken from OPLS-AA [239, 240]. OPLS-AA forcefield 

parameters developed and validated for number of ionic liquids [231]. Their parameters were fitted 

to conformational profiles from gas-phase ab initio calculations at the LMP2/cc-pVTZ(-f)//HF/6-

31G(d) theory level and compared to experimental thermodynamic and structural data. Their 

calculations for ILs density and heats of vaporization from Monte Carlo simulations were in good 

agreement with experimental values. For CO2, the force field parameters are obtained from the 

literature [231]. The water molecules are simulated, using the TIP4P model [260]. A simple 

schematic of the cation and anion used in this work is shown in Figure 5-1. 

 (a) (b) 

 

 

Figure 5-1: Schematic of the IL components considered in this work: (a) [Bmim]+ cations, and (b) [Ac]- 

anions; [Atoms: C (red), H (white), and O (Green)]. 
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The OPLS-AA force field is implemented with van der Waals interactions, using Lennard-Jones 

with a cut-off radius of 1.4 nm. A brief theory on the MD force fields is provided in Appendix A3. 

The particle mesh Ewald method [276] is applied for the long-range electrostatic interactions. The 

MD simulations are conducted under periodic boundary conditions with time-steps of 1 fs. 

Temperature and pressure are controlled by the Nose-Hoover thermostat [249], and Parrinello-

Rahman pressure coupling [250], with coupling times τT=0.2 ps and τp=1.0 ps, respectively. 

For all IL/W mixture combinations (with varying water mole fractions), we use 300 pairs of IL 

ions; the number of water molecules is adjusted to reach the desired water mole fractions. 

Therefore, a total number of 79, 199, 463 and 2700 molecules of water are included with 300 pairs 

of the IL ions to reach the target water mole fractions of 0.2, 0.4, 0.6, and 0.9, respectively. After 

energy minimization, the selected IL/W systems are heated up to 1000 K, and then gradually 

cooled to the target temperature of 300 K. After that, the system is equilibrated, using a step of 

isothermal-isobaric (NPT) ensembles in 5 ns; temperature is kept at 300 K using Nose-Hoover 

thermostat with a coupling constant of 0.5 fs; and the Parrinello-Rahman pressure coupling keeps 

the pressure at 1 bar. The radial distribution functions (RDFs) calculated at different time regions 

are compared to infer whether the equilibrium condition is reached. Finally, each equilibrated 

system is used as an initial configuration for performing 5-ns production runs. The atomic 

coordinates are saved every 10.0 ps for later analysis. 

For the ternary system of CO2/IL/W, the simulation box consists of 300 ion pairs, various numbers 

of the water molecules to obtain the desired water concentration in IL/W mixture, and different 

numbers of CO2 molecules as dictated by the solubility limit of CO2 in IL/W mixtures. For 

sensitivity analysis, we maintain different concentrations of the water molecules in a cubic 

simulation box, using Packmol [251]. The system is equilibrated for 5 ns NPT and followed by for 
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4 ns in a canonical ensemble (NVT). Density values are calculated after the NPT ensemble. The 

production run is then performed in a period of 8 and 5 ns for the IL/W and CO2/IL/W systems, 

respectively. The structures of the molecules in the simulation runs are illustrated in Figure 5-2.  

(a) (b) 

 

 

Figure 5-2:  Molecular graphical representation of (a) IL/W system and (b) CO2/IL/W system. 

 

5.3.  Results and discussions 

In this section, first, we present the physiochemical properties of the IL and water system (e.g., 

density, viscosity, and excess energy) that are calculated from the MD simulation runs. After that, 

the structural properties of the system including water clusters and CO2 distribution in the mixture 

are discussed. Finally, dynamic analysis of the compounds including radial distribution functions 

and diffusivity coefficients is presented. More detailed information about the theory of viscosity, 
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mean square displacement (MSD), and radial distribution function (RDF) is provided in Appendix 

A3. 

5.3.1. Physical and Thermodynamic Properties 

Density and molar volume of pure IL ([Bmim] [Ac]) and IL/W mixtures at different compositions 

are plotted in Figure 5-3 at a temperature of 300 K and a pressure of 1 bar. By increasing the water 

mole concentration from xw=0.2 to 0.8, the mixture density decreases from 1.048 g/cm3 to 1.036 

g/cm3 at xw=0.8, respectively;  the molar volume decreases from 138.2 cm3/mol  to 51.3 cm3/mol, 

respectively. The results of MD simulations are in good agreement with the experimental data 

[253], as can be observed from Figure 5-3.  

 (a) (b) 

  

Figure 5-3: Physical properties of IL/W mixtures at different water contents: (a) mixture density and 

molar volume, and (b) mixture viscosity. The solid circles are experimental data from [253, 277]. 

 

Also, the mixture viscosity for the IL/W system at different water concentrations is reported in 

Figure 5-3 (b). Increasing the water concentration dramatically decreases the viscosity of the IL/W 

mixture (see Figure 5-3 (b)). At 300 K and atmospheric pressure, the density of water is 0.997 g/ 

cm3 while it is slightly higher for the IL (e.g., 1.051 g/cm3). This lower density magnitude of water 
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contributes to a reduction in IL/W density upon the addition of water. The molar volume is given 

by the ratio molar mass/mass density where both the numerator and denominator decrease due to 

adding water. The overall trend for the molar volume shows a decrease by adding water to IL. This 

behavior may be justified by the stronger association and columbic interactions of water with the 

ions (in ILs) due to the IL hydrophilicity. 

The excess molar volume and excess molar enthalpy for the mixture of IL/W are calculated; the 

excess molar volume (vE) is obtained, using the following expression: 

E

m i i

i

v v x v= −   (5-1) 

where mv  is the molar volume of the mixture; ix  and iv  represent the mole fraction and the molar 

volume of pure component i, respectively. The excess molar enthalpy can be written in a similar 

equation, by replacing enthalpy (h) for the molar volume (v). The effect of water concentration on 

the excess molar volume and molar enthalpy of the IL/W mixtures at 300 K and 1 bar is illustrated 

in Figure 5-4. The minimum excess molar volume and minimum excess molar enthalpy are located 

near water concentrations xw =0.5 `and 0.7, respectively (see Figure 5-4), which is justified with 

strong hydrogen bonding (high number of hydrogen bonds as a function of time) between H2O and 

[Ac]- in the mole fraction range 0.5–0.7 mol/mol. In an experimental investigation, Alvarez et al. 

[278] measured the excess molar volume of 2-hyroxyethyl ammonium acetate/water mixture. The 

minimum excess molar volume occurs for this mixture at xw=0.7 mol/mol, which is close to the 

range found in our simulation. However, its minimum excess volume value is smaller than our 

simulated value. This different value is due to the different type of the cation, and is related to the 

variation in the force field parameters, underestimating the interaction energy between water and 

anion. As observed in Figure 5-4, the excess molar volume and excess molar enthalpy have 
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negative values. Gonzalez et al. [279] studied the effect of ions and temperature on excess 

properties of binary mixtures of IL/W.  Based on their results, the chemical structure of anion plays 

an important role in the shape of VE curves, and therefore considerably affects the thermodynamic 

behavior of the IL/W mixtures [279]. The excess molar volume and excess molar enthalpy 

simulation data are fitted to the Redlich-Kister polynomial equation, as listed below: 

0

( )
N

n

ij i j n i j

n

Q x x B x x
=

 = −   (5-2) 

where 
ijQ  introduces the excess property; xi is the mole fraction of component i; nB  is the fitting 

parameter; n stands for the degree of polynomial expansion. The corresponding fitted curve using 

the Redlich-Kister equation for excess properties (enthalpy and molar volume) is plotted in Figure 

5-4 as a function of water mole fraction, at 300 K and 1 bar. 

The optimal degree of polynomial expansion is determined through minimizing the deviation (σ) 

between experimental and calculated values, as defined below: 

1/2

exp( )calcQ Q

N


  − 
=  

  


 

(5-3) 

Where N refers to the total number of experimental points. The magnitudes of Bi and σ for the 

[Bmim][Ac]/W system at 300 K are reported in Table 5-1. 

Table 5-1: Fitting parameters and standard relative deviations (σ) for IL/W mixture at T = 300 K. 

Excess property B0 B1 B2 B3 B4   

vE (cm3·mol−1) -21.170 4.819 19.613 -4.775 -40.788 0.031 

hE (kJ·mol−1) -38.27 45.28 -45.28 -45.00 83.55 0.086 
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Figure 5-4: Excess molar volume (vE) and excess molar enthalpy (hE) for IL/W mixtures as a function of 

water mole fraction at 300 K and 1 bar. The curves are fitted to the simulated data. 

5.3.2. Structural properties 

Water and ions distribution. Radial distribution functions (RDFs or g(r)) are used in our system 

to characterize the spatial coordination of water molecules in the mixture of IL/W. The RDFs are 

determined based on the distance between the center of mass between water-water (or W-W), W-

IL, and cation-anion, as demonstrated in Figure 5-5. In Figure 5-6, the coordination numbers for 

W-W and IL-W molecule pairs are demonstrated. Figure 5-6, also provides information on the 

association strength. 

(a) W-W (b) W-IL (c) Cation-Anion 

   

Figure 5-5: RDF in IL/W mixtures at different water concentrations, for the center of mass between 

molecule pairs: (a) W-W, (b) W-IL, and (c) Cation-Anion at 300 K and 1 bar; [Cation=[Bmim]+, and 

anion=[Ac]-].  
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Figure 5-5 (a) shows the RDF (g(r)) for the center of mass in W-W pairs. At all water concentration 

levels, the first peak is obtained at r=0.28 nm, indicating a close contact between the water 

molecules. Note that the approximate kinetic diameter of the water molecule is 0.275 nm. As the 

water mole fraction increases, the probability of observing a water molecule around another water 

molecule increases. It implies that water molecules create a stronger association with themselves.  

However, the number of close water molecules exhibits a slower increase rate than a number of 

water molecules in the defined concentration. The RDFs for the W-IL pairs at various mole 

fractions of water are depicted in Figure 5-5 (b). As it is clear from Figure 5-5 (b), the RDF for the 

W-IL center of mass decreases with increasing the water mole fraction as the probability of 

observing a water molecule around ILs in the system lowers. Thus, water molecules create larger 

clusters at higher concentrations of water and have weak associations with IL molecules. To study 

the association/interaction strength between the cation-anion, the RDF analysis is described in 

Figure 5-5(c), where [Bmim]+ and [Ac]- represent the cation and anion, respectively. The minimum 

distance of cation-anion is located at the same distance as pure IL; however, their distribution has 

a slightly smaller peak than pure IL. It implies that the water presence weakened the cation-anion 

association. The radial distributions for the cation-anion center of mass in IL/W and pure IL (xw=0 

mol/mol) are presented in Figure 5-5 (c), showing that the cation-anion association is stronger in 

pure IL compared to that in mixtures with a high water concentration (e.g., 0.6 mol/mol). It seems 

that the water molecules are oriented themselves around the anions; hence, the probability of 

having a cation-anion close to each other is decreased at elevated water concentrations. According 

to the RDF plots, the water-water (or W-W) association is more probable than W-IL and cation-

anion pairs associations. 
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The W-IL association becomes weaker as the water concentration increases. The coordination 

number gives the number of ions in the ionic liquid that a central water molecule can hold as its 

nearest neighbor in the mixture; its value increases upon an increase in the water mole fraction. In 

the literature, the common approach for evaluating the coordination number is numerical 

integration of 4πr2g(r) up to its first minimum [280]. The association of the water molecules 

becomes stronger at a higher concentration of water (e.g., 0.6 mol/mol, compared to 0.2 mol/mol), 

as observed in Figure 5-6. It suggests that the water molecules create a smaller cluster at a lower 

water concentration. The coordination number for the water around IL up to the first minimum at 

0.53 nm increases with increasing the water mole fraction in the mixture. The coordination number 

of water molecules around the central water molecule also increases with increasing water 

concentration in the mixture. 

 

Figure 5-6: The coordination number for W-W and IL-W pairs in IL/W systems at different water 

concentrations. 

 

The aggregation number, which is the number of molecules in a cluster, is used to monitor the 

approach to equilibrium and the expected water cluster size. “Hydrogen bond or H-bond” is 

defined using a geometrical or an energetic criterion in the context of molecular computation [281]. 
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According to the literature, H-bond is considered in a pair of molecules if the distance between the 

hydrogen atom and the acceptor group is smaller than 0.35 nm and the angle of the donor-

hydrogen-acceptor is lower than 30° [281]. The value of rHB = 0.35 nm corresponds to the location 

of the first minimum of the RDF of SPC water. The water molecules can form a cluster when the 

minimum distance between the atoms is less than 0.35 nm [282]. The distance between the oxygen 

atoms and hydrogen atoms on the water molecule is used to determine if each water molecule is 

located in others’ coordination shell. In this study, rcut is set to 0.34 nm which corresponds to the 

first minimum of the RDF for TIP4P water molecules [283]. The coordination number of the water 

molecules is considered as an average number of water molecules that are located in each 

coordination shell. The cluster size is obtained by averaging the number of clusters formed over 

the entire simulation time. The water clusters are indicated at rcut=0.34 nm, where rcut is the 

distance between the oxygen atoms and hydrogen atoms in a water molecule at various water 

concentrations in CO2/IL/W systems.  

The size distribution of water clusters versus water concentration is demonstrated in Figure 5-7. 

At xw =0.2 mole fraction, the water clusters contain 2–5 water molecules in the IL/W mixture. As 

the water mole fraction increases to 0.4 and 0.6, the water cluster size increases to >8 water 

molecules. The water molecules have less probability to make a cluster at a low water 

concentration. Thus, at a low mole fraction of water, the probability of forming clusters through 

hydrogen bonding decreases. Figure 5-7(b) shows the cluster structure in the CO2/IL/W mixtures 

in which more clusters are created compared to the IL/W system. It is confirmed that in the 

CO2/IL/W mixture, larger water clusters exist at greater water concentrations. This observation 

can justify the hypothesis that the CO2 molecules may locate themselves around the IL ions, 

repelling the water molecules from the proximity of the IL molecules. Therefore, the water 
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molecules will have the chance to form more clusters with themselves. Moreover, at xw=0.2, water 

clusters have approximately the same sizes in both binary and ternary systems. It can be concluded 

that at low water concentrations, CO2 is not able to interrupt the association of IL-W molecules. 

Distribution of the water cluster sizes reveals that monomers and dimers constitute the most 

common cluster sizes.  

 (a) IL/W (b) CO2/IL/W 

  

Figure 5-7: Water cluster size distributions in (a) IL/W and (b) CO2/IL/W mixtures at different water 

mole fractions. 

 

The average cluster sizes in the solution over 5 ns simulation are calculated to be 4.5, 5.6, and 12.8 

nm at the water mole fractions (in IL/W mixtures) of 0.2, 0.4, and 0.6, respectively. The average 

cluster size as a function of time is depicted in Figure 5-8. The finding implies that water is less 

soluble in the [Bmim][Ac] at a higher water concentration; consequently, larger clusters can be 

formed which may lead to phase separation. Since [Bmim][Ac] is hydrophilic, phase separation 

will occur at high concentrations of water; while for hydrophobic ILs, the phase separation can be 

noticed even at low concentrations.  
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Figure 5-8: Average water cluster size (nm) versus time (ps) based on the simulations of water molecules 

in IL/W/ CO2 System. 

 

The connectivity of molecules in the water clusters is mainly through hydrogen bonds, as depicted 

in Figure 5-9. The cluster structure and connectivity through hydrogen bonding between the water 

molecules are shown in Figure 5-9 for the IL/W system at xw =0.4 mol/mol. The presence of water 

affects the physical properties of ILs, particularly dynamical properties. Thus, it is important to 

know how these dynamical properties varies upon CO2 addition and water concentrations. To 

study the effect of water on CO2 diffusivity and mixture interactions, the water clusters are 

investigated in binary and ternary systems. It is necessary to study the water and IL structures at 

mixture at various water concentrations to find out the optimum water concentration for CO2 

absorption. Because water molecules create clusters that changes the mixture properties. 
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Figure 5-9: Water distribution in IL/W mixtures at xw =0.4 mol/mol along with information on the H-

bond in clusters (Red spheres represent O, white spheres show hydrogen, and dashed lines illustrate H- 

bonding in Angstrom). 

 

CO2 Distribution.The radial distribution functions g(r) are calculated from MD simulation runs 

conducted on CO2/[Bmim][Ac] IL/W systems. As shown in Figure 5-10, the cation-anion radial 

distribution functions of the CO2/IL/W system at water mole fractions of 0.2, 0.4, and 0.6 present 

a major peak at 2.72 nm, 2.69 nm, and 2.31 nm, and minor peaks in the range of 1.1–1.25 nm. For 

the pure cation-anion, the peak is at 2.75nm and a small hump is observed at 1 nm (see Figure 

5-10). 

The center of mass radial distribution of CO2-[Bmim]+ increases with an increase in the water 

concentration from 0.2 to 0.6.  The peaks in the RDF at water mole fractions of 0.2, 0.4 , and 0.6 

are located  at 0.52 , 0.53 , and 0.54 nm, respectively for CO2-[Bmim]+; 0.37, 0.38, and 0.39 nm 

for CO2-[Ac]-, respectively;  and 0.31, 0.31, and 0.31 nm for CO2-W, respectively (see Figure 5-

11). As shown in Figure 5-11, the radial distribution of CO2 around the cation and water is 

approximately the same at all water concentration levels. However, the distribution of CO2 around 

anion decreases with an increase in the water mole fraction. It confirms that CO2 molecules mostly 
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associate with the anions and have less interaction with the cation imidazolium ring.  Electrostatic 

energy plays an important role in the IL structure and the solvation interactions for quadrupole and 

dipolar molecules in ILs [282]. CO2 preferential position around anion was confirmed in a study 

conducted by Kazarian et al. [284] where an IR spectroscopy was employed. It was found that 

carbon dioxide interacts with the oxygen atoms of the anion. Thus, with an increase in water 

concentration of the mixture, carbon dioxide interactions with anion will be most likely interrupted 

by the water molecules. 

 

Figure 5-10: RDF of [Bmim]+-[Ac]- at various water concentrations. 

 

 (a) xw=0.2 (b) xw=0.4 (c) xw=0.6 

   

Figure 5-11: RDFs for center of mass of CO2-[Bmim]+, CO2-[Ac]-, and CO2-W in CO2/IL/W system at (a) xw=0.2 

mol/mol, (b) 0.4, and (c) 0.6. 
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5.3.3. Dynamic Characteristics 

The diffusion coefficients (Di) for ions, water, and CO2 are calculated using the mean square 

displacement (MSD) of the MD trajectories by the Einstein equation, as expressed below: 
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where 〈∆𝑟𝑖
2(𝑡)〉 symbolizes the MSD of species i at time t. To attain more reliable MSD results, it 

is recommended to run MD simulations for longer periods (3-10 ns or more) due to the slow 

dynamics of the diffusion in ILs because of its high viscosity. The MSD plots of the cation, anion, 

and water with varying water concentrations are illustrated in Figure 5-12 for the IL/W system. 

The simulated self-diffusion coefficients of water in [Bmim][Ac] at different water concentrations 

are reported in Table 5-2. It is noticed that the water self-diffusivity remarkably increases at high 

water concentrations. This behavior can be due to a decrease in W-IL interactions and the presence 

of large water clusters in the mixture. Self-diffusivities of cation and anion in the IL/W mixture 

are also summarized in Table 5-2. In general, the self-diffusivity of [Bmim]+ is larger than that of 

[Ac]- at water mole fractions up to 0.6. However, self-diffusivity of [Ac]- is considerably increased 

to 25.4 ×10-11 m2/s at xw=0.9, compared to [Bmim]+ whose diffusivity is 18.21 ×10-11 m2/s. This 

behavior is probably due to the decreased interaction of water-anion, resulting in faster diffusion 

of anions. In general, anions should move faster than imidazolium cations due to their smaller size. 

However, the existence of polar- and non-polar regions in imidazolium-based ILs leads to opposite 

behavior/phenomenon. It can be concluded that at higher water concentrations, this unusual 

behavior of polar and non-polar regions does not happen anymore. Thus, the diffusivity of the 

anion becomes larger than that of the cation. 
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(a) (b) (c) 

   

Figure 5-12: MSD dynamics in IL/W system at different water mole fractions for: (a) [Bmim]+ (cation), (b) [Ac]- 

(anion), and (c) water. 

 

In Figure 5-13, the MSD dynamic behaviors of the cation, anion, water, and CO2 in the ternary 

system of CO2/IL/W is illustrated. An increase in the diffusion of all species is observed in the 

IL/W and CO2/IL/W systems by increasing the water concentration; diffusivity of water molecules 

increases upon an increase in the water mole fraction.  It is obvious that the presence of water in 

hydrophilic [Bmim][Ac] IL decreases the mixture viscosity.  Hence, the dynamics of the molecules 

becomes faster than usual.  It is concluded that the diffusivity of all species increases upon the 

addition of water to the system, which is justified with a decrease in the mixture viscosity. 

According to Menjoge et al. [285], an increase in the diffusivity of ions with adding water is 

observed for Ethylmethylimidazolium ethylsulfate ([C2C1Im]+[EtSO4]
−) and 

Ethylmethylimidazolium triflate ([C2C1Im]+[TfO]−) ILs, which is attributed to a decrease in the 

activation energy (based on relationship of the self-diffusion with activation energy in the 

Arrhenius equation).  In general, the relationship between the activation energy, temperature, and 

viscosity can be expressed with the Arrhenius exponential equation (
0 exp( )aE

RT
 = − ). Where 

Ea represents the activation energy of diffusion, ɳ0 is the pre-exponential factor of the Arrhenius 

equation (Pa.s), and R refers to the universal gas constant. Adding water to IL, a decrease in the 
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activation energy (of self-diffusion) occurs; this reduction becomes less significant at high water 

concentrations. In fact, water plays an important role in increasing the self-diffusion coefficient of 

compounds at low water mole fractions. This impact would be more significant at high water 

concentrations. 

(a) (b) (c) 

   

Figure 5-13: MSD dynamics in CO2/IL/W system at different water mole fractions: (a) [Bmim]+ (cation), (b) [Ac]- 

(anion), and (c) water and CO2. 

 

The effect of temperature on the MSD dynamics of CO2 in pure IL is shown in Figure 5-14 in 

which both the rate of change in MSD and diffusivity increase with increasing temperature in the 

range 300–333 K. 

 

Figure 5-14: MSD of CO2 in the bulk system of CO2/[Bmim][Ac] as a function of time and temperature at 

the atmospheric pressure (1 bar). 
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A summary of the diffusion coefficients for water, cation, anion, and CO2 at various concentrations 

of water is provided in Table 5-2. The diffusivities of [Bmim]+ and [Ac]- in the pure IL at 300 K 

are obtained to be 0.51×10-11 and 0.32×10-11 m2/s, respectively. The diffusion coefficient of pure 

water from the TIP4P model at 300 K is determined to be 2.35 × 10-9 m2/s, which is in agreement 

with the experimental data [286].  

Table 5-2: Diffusivity of cation, anion, water, and CO2 in IL/W and CO2/IL/W systems at different water 

contents at 300 K and P=1 bar. 

xw 

(mol/mol) 

D (1×10-11 m2/s) 

CO2/IL/W  IL/W 

Water [Bmim]+ [Ac]- CO2  Water [Bmim]+ [Ac]- 

0 - 1.01 0.61 13.30  - 0.51 0.33 

0.2 1.25 1.60 1.34 31.31  1.32 0.58 0.39 

0.4 2.40 1.84 1.57 38.67  1.69 0.77 0.61 

0.6 6.80 3.06 3.58 65.19  2.15 0.90 0.71 

0.9 - - - -  66.3 18.21 25.4 

 

The MSDs behaviors for cation, anion, water, and CO2 in pure IL, binary IL/W, and ternary 

CO2/IL/W systems are illustrated in Figure 5-12 and Figure 5-13. With an increase in water 

concentration, the diffusion of cation and anion in pure IL, IL/W, and CO2/IL/W systems increase.  

The self-diffusivity rises with increasing the concentrations of water in the IL/W system, as shown 

in Table 5-2. At high water concentrations (>0.7), phase separation may occur due to the 

immiscibility of the IL and water; for hydrophobic ILs, the phase separation may even occur at 

low water concentrations. According to Table 5-2, the diffusion coefficient of water in the IL is 

larger than that of the cation and anion; however, the water diffusivity in the IL solution is much 

smaller than that for pure water (2.3 × 10-9 m2/s at 298 K) [287]. In pure [Bmim][Ac], the self-

diffusivity of the cation (which is larger) is higher than that of the anion (which is smaller).  Indeed, 

larger molecules are expected to diffuse slower than smaller molecules, according to the classical 

Stokes-Einstein relation. This unusual behavior is well explained in previous experimental and 
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computational investigations where the existence of polar- and non-polar regions are confirmed in 

imidazolium-based ILs [265]. The addition of water to the ILs leads to the formation of complexes 

of water with ions [265, 288]. At a low water concentration, these complexes can be described as 

hydrogen-bonded complexes, anion ··· HOH ··· anion. Hence, the water molecules tend to be 

isolated from each other and preferably interact with anions; this observation is also confirmed in 

Figure 5-7. However, at higher water mole fractions (>0.75), water clusters with a high number of 

molecules are created, resulting in phase separation.  

MD simulations provide a microscopic approach to explain experimental results, and dynamics 

and structural behaviors of various chemical systems. Our research to further explore the effect of 

water presence on the static and dynamic properties of hydrophilic IL [Bmim][Ac] with and 

without CO2, can help researchers to utilize water as an inexpensive and safe additive for reducing 

the viscosity of ILs, and to improve their applicability in the chemical industry. This work may 

offer useful technical insights into the influences of water on viscosity, excess properties, transport 

dynamics, and radial distribution of the molecules in various mixtures.  

5.4.  Conclusions 

The molecular behaviors of binary W/[Bmim][Ac] and ternary CO2/[Bmim][Ac]/W systems are 

investigated, using molecular dynamics (MD) simulations. The excess energy, radial pair 

distribution function, coordination number, water clusters, and dynamic properties of compounds 

are obtained from the analysis of the MD trajectories.  

The mixture viscosity decreases by 40% in the presence of water where the mole fraction of water 

in [Bmim][Ac] IL is 0.2.  Excess volume and excess enthalpy of the mixture are obtained upon the 
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water solvation in IL. Both properties/parameters hold negative values and are fitted to the 

Redlich-Kister equation. 

The water molecules can form clusters at high water concentrations and the water structure 

depends on the strength of water-anion interactions. Analysis of water clusters in [Bmim][Ac] /W 

mixture reveals that the water clusters are connected mainly through hydrogen bonds. Due to 

hydrophilicity of [Bmim][Ac] IL, phase separation does not happen at the water mole fraction 

below 0.6. This implies that the association of polar solvents (e.g., water) is affected by the 

hydrophilicity of anions and their sizes. 

The presence of water in [Bmim][Ac] IL within the mole fraction range of 0.2–0.6, leads to a 

significant increase in the diffusivities and activation energies for ions in comparison to self-

diffusivities in pure IL. A further increase in the water mole fraction (>0.8) results in a sharp 

change in the ions diffusion coefficients. This can be explained that the presence of one water 

molecule per two ion pairs can ensure the formation of hydrogen bonding in anion-water pairs. 

Hence, increasing the water mole fraction beyond 0.8 does not increase the number of anions 

interacting directly with the water molecules; however, the diffusivity of molecules is significantly 

increased due to the low viscosity of the mixture. Diverse nanometer-sized water clusters form and 

grow with addition of water to the mixture; at high water concentrations, water continues to 

separate the dissolved state and water only phase. 

In pure [Bmim][Ac], the self-diffusivities of cations are larger than those for the anions. This 

anomalous relationship between the size of the molecules and diffusivity of species can be 

attributed to the presence of local polar and non-polar regions in the IL. Adding water to the 
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mixture reduces the magnitude of the anomalous difference between the diffusivities of the cation 

and anion. 

 

Appendix A3 

 

Force Field Parameters: The standard form of force filed includes intramolecular interactions 

(U) contributions from bond stretching ( stretchU ), angle bending ( bendU ), dihedral torsion ( torsionU ), 

non-bonded interactions Lennard-Jones (
LJU ), and Columbic interactions ( CoulombU ), as presented 

below: 

stretch bend torsion LJ CoulombU U U U U U= + + + +  (A3-1) 

The functional forms of these individual potential terms are obtained from OPLS-AA force fields 

[239]; they are used in this research as given below [240]: 
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in which, 
0ijr  , 

0,ijk , and 
0,ijkl  stand for the initial bond length, angle, and dihedral angle, 

respectively. Other parameters are the force constant k, the Fourier coefficients V, the partial 

atomic charges q, and the Lennard-Jones potential radii and well depths (σ and ε). The repulsive 

and dispersive terms are described by Lennard-Jones 12-6 potential. The electrostatic interactions 

are obtained by the Coulombic potential. These two potentials are between sites in different 

molecules and sites within the same molecule.  

Viscosity: The shear viscosity (η) of each IL is calculated using the Green-Kubo relation [241, 

242]. The shear viscosity is obtained from the integral over time of the pressure tensor 

autocorrelation function, based on the Green-Kubo equation, as follows:   

0

lim (0) ( )

t

t
B

V
P P t dt

k T
 

→
=   (A3-7) 

In Equation (A3-7), V refers to the system volume; T represents the temperature; Bk  is the 

Boltzmann constant. The brackets mean that pressure tensors are averaged over time. P  denotes 

the pressure tensor of the  element. To attain more accurate and reliable results, the shear 

viscosity is calculated by taking the averaging over three independent terms of pressure tensor, 

namely,
xyP ,

yzP , and 
xzP . 

Diffusivity: The dynamic properties of the ionic liquid (ILs) in the liquid phase are calculated in 

terms of mean-square displacements (MSDs) for the center of mass of the ion, as expressed below: 

2
2

1

1
( ) ( ) ( )

N

i i

i

MSD r t r t r t
N =

= − =   (A3-8) 
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The diffusivities are also determined using the MSDs averaged over time, through Einstein relation 

shown in Equation (A5-9) [243]:  

21
lim ( ) (0)

6
i i i

t

d
D r t r

dt→
= −  (A3-9) 

where ( )ir t  represents the center of mass of ion i at time t and ...  denotes a moving time average. 

Diffusivities can be obtained through the least square fit of the MSD versus time for the molecule 

transport. 

Radial distribution function (RDF): The radial distribution function (RDF) is the pair correlation 

function as defined below [244]: 

2

( )( ) 1 1
( )

4

A BN N
ijB
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i A i BB B Alocal local

r rr
g r

N r



   

−
= =   (A3-10) 

In Equation (A3-10), ( )B r  resembles the density of molecule B at a distance of r around 

molecules A; and B local
 is the density of molecule B averaged in time over all spheres around 

molecules A with the maximum radius rmax. Usually, rmax is calculated as the half length of the 

simulation box; and NA and NB refer to the total numbers of the molecules of A and B, respectively.  

 

NOMENCLATURES 

Acronyms  

AAD  Average Absolute Deviation 

CCSU  Carbon Capture, Storage, And Utilization 

CG Coarse-Grained 

DFT Density Functional Theory 

ESP Electrostatic Potential Surface 

GHG Greenhouse Gases 

IL Ionic Liquid 

IR Infrared Spectroscopy 
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MD Molecular Dynamics 
MSD  Mean Square Displacement 

NPT Isothermal-Isobaric Ensemble 

NVT Canonical Ensemble  
OPLS-AA All-Atom Optimized Potentials for Liquid Simulations 

PME Particle-Mesh-Ewald 

RDF Radial Distribution Function 

UA United Atom 

Chemical Formula  

[Bmim][Ac] 1-Butyl-3-methylimidazolium acetate 

 

[Bmim][Tf2N] 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

CO2 Carbon dioxide 

Greek Letters  

ijk  angle 

ijkl  dihedral angle 

ε well depths 

ρ density  

σ Lennard-Jones potential radii 

𝜂 viscosity 

Variables/Parameters Description 

ijr   bond length 

ijklV  Fourier coefficients 

P  pressure tensor of the   element 

Bk   Boltzmann constant 

stretchU  
bond stretching  

bendU  
angle bending 

torsionU  dihedral torsion 

LJU  Lennard-Jones interactions 

CoulombU  Columbic interactions 

rcut cut-off radius 

D diffusion coefficient 

Ea  the activation energy of diffusion   

hE  excess molar enthalpy 

kB Boltzmann constant 

N the total numbers of the molecules  

q the partial atomic charges 

R universal gas constant 

T temperature 

t time 

V volume 

v  molar volume  

vE  excess molar volume 

x mole fraction  

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiRhMHtiK_eAhWD2lMKHQ4tBvUQFjABegQIARAB&url=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F39952%3Flang%3Den%26region%3DUS&usg=AOvVaw12bGvlgvTPo88F4rjx93b3
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiRhMHtiK_eAhWD2lMKHQ4tBvUQFjABegQIARAB&url=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F39952%3Flang%3Den%26region%3DUS&usg=AOvVaw12bGvlgvTPo88F4rjx93b3
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Estimation of CO2 Solubility in Ionic Liquids Using Connectionist Tools 

Based on Thermodynamic and Structural Characteristics  
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Abstract 

Ionic Liquids (ILs) are a promising alternative to conventional amine-based solvents in CO2 

absorption processes. Relatively high cost and viscous nature of ILs tempt researchers to find an 

appropriate combination of cations and anions for targeting a competitive absorbent close to 

amines in terms of CO2 absorption capacity. Conducting extensive experimental studies appears 

to be time-consuming and expensive for a large number of common CO2/ILs systems. One of the 

fast and reliable approaches to predict the solubility of CO2 in ILs is Machine Learning (ML)-

based models or smart tools where the thermodynamic-based and structure-based property 

relationships can be explored. Four ML methods including Least Square Support Vector Machine 

(LSSVM), Decision Tree (DT), Random Forest (RF), and Multilinear Regression (MLR) are 

employed to obtain CO2 solubility in a structurally diverse set of ILs based on thermodynamic 

properties and Quantitative Structure-Activity Relationship (QSPR) model. In this chapter, two 

datasets of CO2 solubility (taken from the literature) at various operating conditions are used; one 

model (or dataset) considers critical properties, molecular weight, and acentric factor of pure ILs 

as the input information, and the second one includes structural descriptors of cations and anions 

as the input parameters. Among different types of descriptors, the most important input variables 

(e.g., Chi_G/D 3D and Homo/Lumo fraction (anion); SpMax_RG and Disps (cation)) are selected 

using Genetic Algorithm (GA)-MLR method. The predictive ability of the introduced models is 

also analyzed using a 4-fold external cross-validation procedure. A great match between the 

predicted values and experimental measurements is attained while using RF and DT techniques 

developed based on descriptors and thermodynamics properties. The structural descriptors-based 

models are more accurate and robust than those built on critical properties. The feature selection 

approach is also applied to identify the most effective cations and anions descriptors. For both 
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thermodynamic and QSPR modeling approaches, pressure has the maximum relative importance 

in the estimation of CO2 solubility in ILs.  In the absence of temperature and pressure impacts, the 

critical pressure and Homo/Lumo fraction have the highest contribution to the thermodynamic- 

based and structural-based tools, respectively. 

6.1. Introduction 

The increased concentration of greenhouse gases (GHG), particularly CO2, in the atmosphere is a 

result of human activities in the last 150 years [1]. The shares of industry and electricity sectors in 

GHG emissions/production are, respectively, 22.2 and 28 percent in 2017 [1]. The GHG emissions 

mainly come from power plants, cement/brick factories, and generally industries/sectors operating 

with burning fossil fuels, mostly coal and natural gas. Significant efforts have been made (and are 

being made) by both academia and industry to find effective solutions for the reduction of GHG 

emissions and/or to mitigate their adverse environmental impacts. One of the effective remedies 

implemented in the coal-fired power plants is post-combustion CO2 capture from emitted flue 

gases [289]. 

The most widely used technology for carbon capture is post-combustion CO2 absorption approach 

that mainly utilizes amines as solvents. However, there are some drawbacks to this method 

including high energy consumption, volatility, corrosive nature, and thermal and chemical stability 

of amines [290]. One of the promising alternatives to aqueous amines are Ionic Liquids (ILs) 

including conventional and task-specific IL solvents. In general, task-specific ILs can absorb CO2 

through a chemical reaction, while the main absorption mechanism is physical while utilizing 

Conventional ILs. There are some research works on CO2 capture with various ILs in the literature 

[29, 291, 292], though still more research investigations are required to further explore the CO2 
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absorption mechanisms, roles of cations and anions, and molecular interactions between ILs and 

CO2 at the different process and thermodynamic conditions.  

There are a large number of ILs with a variety of physical and chemical properties. The high degree 

of tunability of ILs makes them an appropriate solvent for the dissolution of acid gases. Hence, 

cations and anions can be modified (e.g., changing cation chain size and functionalizing ions) for 

the synthesis of various ILs [293, 294]. Physiochemical and thermophysical characteristics of ILs 

can be determined through a series of static and dynamic experiments. Although experimental runs 

can provide reliable and accurate phase behavior and physicochemical data of ILs and IL/gas 

systems, some limitations such as costs and timely procedure might exist. Providing further 

information, a large number of ILs and their high expenses make experiments expensive, time-

consuming, leading to rigorous quality assurance for sample synthesis and experimental procedure 

[158]. Supporting this claim, a majority of the experiments have been carried out on most common 

imidazolium cations and adequate data are not available for other groups of cations and anions 

combinations. Thus, besides conducting more experimental tests, it seems essential to employ 

appropriate/ reliable modeling and screening methods.  

Modeling phase behavior and physical properties of solvents using thermodynamic Equations of 

State (EOS) is a well-known strategy in chemical engineering, particularly while dealing with 

various applications/processes in energy and environment fields. Some of the EOSs such as Peng-

Robinson [81], Redlich-Kwong-Soave [295], and Statistical Associating Fluid Theory (SAFT) 

EOSs [296] are widely used to obtain properties of ILs.  Despite numerous advantages of the EOS 

modeling, this approach requires experimental data for determining EOSs parameters/coefficients; 

EOSs need to be tuned using experimental data for accurate prediction. In other words, the 

precision and reliability of EOS modeling strongly depend on the type of EOS, laboratory tests, 
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mixing rules, and tuning procedures [297]. In addition, molecular simulations such as Monte Carlo, 

Molecular Dynamics (MD), and Quantitative Structure-Property Relationships (QSPR) [2, 3] are 

implemented to simulate/model the thermodynamic and physical/chemical characteristics of pure 

ILs and their mixtures with other chemicals.  

It would be desirable to develop fast screening and deterministic tools that can help forecast the 

component (or chemical) properties such as solubility, density, viscosity, melting points, and 

thermal decomposition at different conditions. Recently, advanced computational approaches 

based on artificial intelligence have been employed in various science and engineering disciplines 

[200, 298]. Artificial Neural Networks (ANNs) are a well-known category of connectionist models 

[299, 300]. As a powerful non-linear regression approach, ANNs - evolved from the human brain’s 

data analysis pattern- represent networks of parallel distributed processing elements called 

neurons. They have some limitations including the black box nature and over-fitting; considerable 

user interference of relations is also required to adjust parameters of networks [301]. Other ML 

methods, which have been recently used for prediction and classification, include Least Square 

Support Vector Machine (LSSVM) [302], Decision Tree (DT) [303], Random Forest (RF) [304], 

and Gene expression Programming (GEP) [305]. Like other deterministic methods, there are some 

advantages and disadvantages with smart models. For instance,  Support Vector Machines (SVM) 

techniques [306]  are useful due to their simplicity in solving complex equations/systems. 

However, the SVM algorithm is not proper for the cases with a large number of data points [307]. 

Smart models can be used along with the QSPR-based method to find the mathematical 

relationships between molecular properties of chemicals and the response of interest [308]. The 

theory or model of QSPR/QSAR is employed to obtain a correlation between property/activity and 

structural descriptors of compounds. Thus, it is possible to design and develop new chemicals or 
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solvents using this method for various applications. The molecular descriptors can provide 

important insights into the physiochemical nature of a specific characteristic under study [309]. 

Most of the studies have used thermodynamic critical properties of ILs in order to estimate the 

solubility parameter and/or physiochemical property of ILs. Since the critical characteristics of 

some ILs are not available in the open sources, it is more logical to develop a model based on the 

structural properties of ILs. In addition, structural features for most compounds are available and 

a model based on structural properties will offer robust, and more accurate predictions [309].  

Several research investigations have been conducted on the prediction of solubility using a variety 

of correlations and deterministic methods, however, a limited number of data have been utilized 

and only critical properties of solvents have been considered as input parameters [298, 310, 311] . 

For example, Baghban et al. predicted the solubility of CO2 in 14 ILs using a multi-layer perceptron 

artificial neural network (MLP-ANN) model and an adaptive neuro-fuzzy interference system 

(ANFIS) model based on critical properties [298]. It was reported that MLP-ANN exhibits a better 

performance in determining the solubility of CO2. The QSPR model was employed for predicting 

Henry’s Law Constant (HLC) for CO2 solvation in 32 ILs [312]. It was found that the proposed 

QSPR models linked with MLR and LSSVM methods are reliable so that the coefficient of 

determination (R2) values are 0.935 and 0.965, respectively. 

In this research work, an extensive amount of CO2 solubility data in ILs at various operating 

conditions is first collected from the literature; the critical properties, acentric factor, and thousands 

of molecular descriptors of ILs are also obtained. We employ four advanced ML approaches 

including Random Forest (RF), Least Squares Support Vector Machine (LSSVM), Decision Tree 

(DT), and Multilinear Regression (MLR) for prediction of CO2 solubility in 46 ILs over wide 

ranges of temperature and pressure based on thermodynamic features including critical properties, 
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molecular weight, and acentric factor. In addition, the solubility of CO2 in 40 ILs in terms of their 

structural properties using the QSPR method is determined. Besides the prediction of the objective 

function, the feature selection method is applied to reduce the number of input parameters from 

+1000 for cations and anions to develop a model with a limited number of input parameters. The 

performance of developed models (on the basis of both approaches) in terms of accuracy and 

robustness is compared.  It is worth noting that various combinations of cations and anions are 

taken into account in this work to model the CO2 solubility in different ILs using ML techniques. 

The performance of all methods is evaluated through conducting a statistical analysis where 

important statistical parameters such as relative error percentages and coefficient of determination 

are calculated.   

To the best of our knowledge, this research is the first work that uses large datasets of CO2 

solubility in ILs, considering important structural descriptors and thermodynamic properties. Also, 

no research work in the literature uses RF and DT methods based on the QSPR model and critical 

properties for estimation of CO2 solubility in ILs. 

This chapter is organized as follows: after the introduction, the background/theory and 

methodology of used predictive techniques such as MLR, RF, DT, and LSSVM are provided in 

Section 6.2. Data collection is given in Section 6.3. Section 6.4 presents the results obtained from 

the developed models as well as discussions on the trends/behaviors and corresponding figures 

and tables. Finally, the main findings of the study are highlighted in Section 6.5 (Conclusions).  
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6.2.  Theory and methodology 

Quantitative Structure-Property Relationships (QSPR). This technique is used to predict the 

solubility of CO2 in ILs by representing the chemical characteristics of ILs. The structural 

properties of compounds are encrypted in a form of molecular descriptors. We obtain 1500 

molecular descriptors from Dragon 5.9, including constitutional, geometrical, charge, Weighted 

Holistic Invariant Molecular (WHIM) descriptors, information indices, P_VSA_like descriptors, 

3d matrix-based descriptors, and molecular properties [313]. 25 quantum-chemical descriptors are 

provided from Mopac software [314], Molecular Orbital Package– Austin model (MOPAC) 7.1 

descriptors. A simple flowchart of the main steps of the QSPR method is demonstrated in Figure 

6-1. 

 

Figure 6-1: Main steps to develop a QSPR model. 
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Genetic Algorithm-Multilinear Regression (GA-MLR). Due to the presence of a large number 

of descriptors, the best possible combinations of features should be identified for the QSPR model. 

In order to ensure the diversity in both training and testing data, a diversity test using Principal 

Component Analysis (PCA) is conducted; this technique is applied with the structural descriptors 

of the entire dataset to measure the diversity that assists in the separation of training and testing 

data points. After splitting the data into training and testing series, the important features for the 

solubility of CO2 in ILs need to be selected.  GA is used to find the most relevant descriptors for 

obtaining linear models with the highest predictive performance using the training stage. It should 

be noted that GA is an evolutionary widely used approach in QSPR/QSAR feature selection [294]. 

In this study, feature selection with GA simulates the evolution of the population which each 

individual defined by a chromosome of binary values representing descriptors subset (1, if the 

descriptor is included in the subset; otherwise, it takes zero value) [315]. A fitness function (


) is 

calculated from the Root Mean Square Errors (RMSE) of training and validation phases to ensure 

the performance of each neuron. The following fitness function proposed by Depczynsky et al. is 

used in this study [316]: 

 
1/2

2 2[( 1) ] / ( 1)t T v V v tm n RSME m RMSE m m n = − − + + − −
 

(6-1) 

where tm  and vm
 stand for the number of data points in the training and validation sets, respectively; 

and n denotes the number of selected descriptors. The most significant descriptors based on the 

GA-MLR algorithm are Chi_G/D 3D and HomoLumoFraction for anion, and Disps and 

SpMax_RG for cation. 

The Variance Inflation Factor (VIF) is employed to investigate the existence of multicollinearity 

among the nominated descriptors [317]: 
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1

(1 )i

VIF
R

=
−

 

(6-2) 

In Equation (6-2), Ri represents the correlation coefficient between the ith descriptor regressed 

against all other descriptors in the model. When VIF=1.0 (Ri
2 = 0), it implies that no inter-

correlation exists among the descriptors; if 1.0<VIF<5.0, the developed model is acceptable; and 

if VIF > 10.0, the model is unstable. 

The quality of the QSPR model is assessed based on its fitting capability and prediction accuracy; 

the prediction ability is more important. In order to build the QSPR model, a dataset of CO2 

solubility in 40 ILs which is divided into tow set of training and testing sets, are used. The four 

selected molecular descriptors from 2000+ descriptors with the corresponding detailed description 

are illustrated in Table 6-1. 

Table 6-1: Selected molecular descriptors and their corresponding description and types. 

Ion Molecular Descriptor Description Type VIF 

Anion Chi_G/D 3D  Randic-like index from 

distance/distance matrix 

Matrix-based descriptors 2.56 

Cation Disps Displacement value / weighted 

by I-state 

Geometrical descriptors 3.12 

Cation SpMax_RG  Leading eigenvalue from 

reciprocal squared geometrical 

matrix 

3D matrix-based descriptors 3.67 

Anion HomoLumoFraction The energy (eV) of the lowest 

unoccupied molecular orbital 

calculated using the PM3 

Hamiltonian [MOPAC]/ the 

energy (eV) of the highest 

occupied molecular orbital 

calculated using the PM3 

Hamiltonian [MOPAC]. 

Quantum-chemical 

 

2.89 
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Decision Tree (DT). The DT technique is a non-parametric and nonlinear supervised learning 

algorithm that can be used in regression and classification problems. The DT divides the original 

dataset into several sub-groups using particular graphical rules. The tree includes a root node (all 

data), several internal nodes (subgroups), and some terminal nodes (leaves), as depicted in Figure 

6-2 [303]. The root node is where the training set is split into nodes as the first layer of subsets.  

The internal nodes represent input features and perform a test, leading another layer of internal 

nodes or terminal leaves. The input variables are divided into branches in a way to minimize the 

objective function (sum of the squared deviations from the mean in the separate parts). The branch 

represents a decision rule of a tree. The leaf nodes signify the outcomes that are either a class label 

in classification trees or the average predicted value of the training data in regression problems. 

The leaves of the regression trees are called prediction values ( iy
) as the local average of output 

variables that are obtained as follows [318]: 

( , ):

1
ˆ

i j i
j

i i

x x x Lj

y y
L 

= 

 

(6-3) 

where jL
 resembles the number of learning cases that reach the leaf node jL

. 

DT regression can be used to estimate objective functions such as solubility of CO2 in ILs. The 

regression tree is also being constructed based on the iterative splitting procedure, which is also 

known as binary recursive subdividing. The dataset is initially divided into two groups of training 

and testing samples. Then, the training data are used to construct the tree’s structure. The splitting 

procedure continues until each node reaches the defined minimum node size [319].  In other words, 

DT maps a suitable regression to solubility data by splitting a complex decision (dataset) into 

several simpler decisions. QSPR model is represented as DTs to solve classification and regression 
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solubility problems [320]. DTs are applied to create a model, which is able to predict solubility 

through learning simple decision rules. The rules are obtained from the thermodynamic and 

structural features of ILs dataset for modeling purposes.  

 

Figure 6-2: A simple structure of the Decision Tree (DT) model. 

Random Forest (RF).  This is a statistical approach for classification and regression cases [321]. 

Recent studies have suggested that RF is appealing for developing QSPR models since it is an 

effective non-parametric statistical technique for the analysis of large databases [297].  RF 

approach is an ensemble of single DTs built by Classification and Regression Trees (CART) [321]. 

DTs are an ensemble of hierarchically structured rules (see Figure 6-3). In the RF method, 

bootstrap samples are generated from the training samples of the original dataset. For each 

bootstrap, an unpruned regression tree is constructed. In each stage, unlike the decision tree 

method which selects the best split among all predictors, a random sample of the predictors is 

created and the best split among these variables is selected.  The data, which are not used for the 

growth of a tree, are known as Out-of-Bag (OOB) sample. The average of predictions of all trees 
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for their OOB samples provides an estimation on the model’s error, variable importance, and OOB 

validation.  

RF utilizes the ensemble of DTs that are trained using random small samples of the dataset. The 

final output in the RF technique is decided based on averaging the predictions of all trees. Some 

of the key RF features are their tolerance to noise in experimental data, the reliable procedure for 

the development of an accurate model, internal predictive ability, and the possibility of analysis of 

molecules with various mechanisms within one dataset [322]. RF algorithm tries to find common 

criteria for objects from the same class using the selected descriptors. In this research work, 100 

DTs are built with a reduced number of descriptors. 

As mentioned earlier, RF is a reliable statistical method, which can be used for both validation and 

model selection. Although the RF algorithm has not been widely used for QSPR approaches yet, 

it seems effective to be used in this “structure – aqueous solubility” investigation. 

 

Figure 6-3: A simple schematic of the Random Forest (RF) technique. 
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Least Squares Support Vector Machine (LSSVM).  Support vector machine (SVM) is 

introduced as an effective non-linear supervised machine learning model for accurate prediction, 

classification, clustering, and regression analysis [323]. Further theory and background on the 

SVM can be found in the literature [324, 325].  SVM models have several assets that make them 

popular, including, stability, robustness, and generality in contact with ANNs [326]. Furthermore, 

they have generalization ability and superior performance, compared to ANNs, in classification 

tasks [325]. The modified version of SVM method called least squares SVM (LSSVM) has been 

introduced by Suykens and Vandewalle, which solves a set of linear equations instead of a set of 

non-linear equations (quadratic programming) while implementing the LSSVM approach [327, 

328]. This method has low computation time and easier to apply for complicated systems.  

A regression model for a given set of ( , )i ix y , which ix
is the input vector and iy

introduces the 

expected outputs, can be used as follows [329]: 

, ( )y w x b=   +  (6-4) 

Equation (6-4), w  is the weight vector; ( )x  refers to a nonlinear mapping function, and b 

represents a bias term. The term , ( )w x  introduces the scalar product of w  and ( )x . A least 

square cost function, QLSSVM, has been proposed to solve a set of linear equations. The following 

LSSVM cost function needs to be minimized by considering the equality constraint (Equation (6-

6)), as given below [329]: 

2

1

1

2

n
T

LSSVM k

k

Q w w e
=

= + 
 

(6-5) 

 (6-6) 

  

, ( )i ky w x b e=   + +
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where
,w 

, and ke
stand for the regression weight, the relative weight of regression errors 

summation, and error of the regression, respectively; superscript T indicates the transpose matrix; 

K represents each training data point, and n denotes the number of training data points. The 

Lagrange function of the LSSVM cost function is expressed below [327]: 

 
2 2

1 1

1 1
, ( )

2 2

n n

LSSVM k i k i

k k

Q w e w x b e y  
= =

= + −   + + − 
 

(6-7) 

where i
s introduce the Lagrange multipliers. The optimal parameters/results are given below 

[327]: 
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(6-8) 

By eliminating the variables of w  and ke
, the following linear equation is attained: 

1

01 0

1

T

N

N
N

b

y
−

 
   

  =   
      +   

(6-9) 

where 
 1 1,...,1N =

, 1[ ,..., ]N  =
, 1[ ,..., ]Ny y y=

, and ij
 is the Kernel function as defined 

below [327]: 
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( ) ( ) ( , )T

ij i j i jx x K x x =  =
 

For i and j 1,2,…,N. (6-10) 

Here, 
( , )i jK x x

refers to the Kernel function. Kernel functions using inner products of images of 

all data pairs in the feature space enable ML operations in multidimensional implicit feature 

spaces. This eliminates the need to compute the coordinates of the data points in those spaces. In 

this work, Radial Basis Kernel Function (RBF) is used as a Kernel function in the LSSVM model. 

The RBF has strong nonlinear mapping ability and wide convergence domain, as shown below 

[327]: 

2

2
( , ) exp

i j

i j

x x
K x x



 −
 = −
 
   

(6-11) 

where   symbolizes the width of the RBF. The convergence speed is linked to the RBF width 

  and regularization parameter (


). Thus, these two parameters need to be optimized to guarantee 

good generalization and fast convergence of the model. 

Assessment Criteria. To evaluate the performance of each model in predicting the solubility of 

CO2 in ILs at various operating conditions, the following statistical parameters are utilized: 

2

2

2

( .( ) .( ))
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(6-15) 

max .( ) .( )
i

ME Calc i Exp i= −

  

(6-16) 

where R2, AARD%, Std, RMSE and ME introduce the coefficient of determination, average 

absolute relative deviation percent, standard deviation, root mean square error, and maximum 

error, respectively; Calc. and Exp. refer to the predicted (calculated) value and the experimental 

value of the objective function, respectively; and N denotes the number of samples in each category 

(training and testing). 

In both methods, the collected data points are divided into two series: 80% percent for the training 

phase and the rest for the testing phase. The final output is averaged between four random splitting 

series of data points using a cross-validation technique.  

6.3.  Data collection 

The accuracy, reliability, and robustness of an ML model strongly depend on the quality of the 

input dataset [330].  A review of the previous studies on the modeling of solubility of CO2 in 

solvents reveals that this parameter is a function of thermodynamics properties and molecular and 

structural properties of solvents [329-331].  In this study, two datasets of relevant thermodynamics 

and structural properties are utilized to determine the solubility.  The first dataset includes 

experimental solubility data for a group of 36 ILs with their corresponding critical properties, 

acentric factors, and molecular weights, as presented in Table 6-2. The second category contains 

IL/CO2 solubility data based on cation and anions structural descriptors obtained from the QSPR 
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model (see Table 6-3).  It is confirmed that the collected data are well distributed over various 

combinations of cations, anions, temperatures, and pressure; thus, they can lead to attaining a 

reliable generalized model for prediction of CO2 solubility in ILs. 

The structures of cations and anions used in this work are tabulated in Tables A4-1 and A4-2 (in 

Appendix). The thermodynamic characteristics (e.g., critical properties) and structural properties 

of the ILs are also provided in Appendix A4. 

In the QSPR model, the thermodynamic and transport phenomena behaviors of pure ILs and their 

mixtures with chemicals are proportional to their molecular descriptors such as constitutional, 

topological, geometrical, charge, and information indices. To obtain a model based on the QSPR, 

different types of descriptors are calculated using the optimized structures of ILs.  3D structure of 

all cations and anions are optimized at the Density Functional Theory (DFT) level using the 6-

311G+(d,p) basis set with Gaussian 16 package. After that, the descriptors of the optimized 

structures are calculated using open-source Dragon software [332] and Mopac software [314]. To 

quantify the solubility based on these descriptors, the most important and effective descriptors 

should be selected among a large number of descriptors (nearly 2000 descriptors). First, the 

descriptors with zero and constant values are eliminated. Using the GA method, the most vital 

features are chosen. 

Table 6-2: Summary of the solubility data (Dataset 1). 

No. Ionic liquid Temperature range (K) Pressure 

range (kPa) 

CO2 solubility 

range (mole 

fraction) 

No. of data 

points 

Ref. 

1 [Bmim][PF6] 283-323 0.01-1300 6.6e-06-0.262 160 [161] 

2 [Bmim][PF6] 298-352 590-73500 0.1-0.65 99 [333] 

3 [Hmim][PF6] 309-342.8 640-94600 0.098-0.727 90 [169] 
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4 [Omim][PF6] 293-353.15 10000-20000 0.101-0.402 48 [334] 

5 [Bmim][BF4] 283-323 1-1300 4.7e-06-0.243 90 [161] 

6 [Hmim][BF4] 293-362 540-86600 0.103-0.703 90 [335] 

7 [Omim][BF4] 308.22-357.4 571-85800 0.1-0.75 100 [100] 

8 [Bmim][MeSO4] 293-413.1 908-9805  54 [336] 

9 [Bmim][MeSO4] 303.18-333.05 49.9-1500 0.005-0.092 28 [337] 

10 [Bmim][Ac] 303.15-343.15 112-3708.2 0.194-0.4098 27 [338] 

11 [Bmim][TFA] 293-363 979-56900 0.3-0.679 46 [339] 

12 [Bmim][TfO] 303-344 850-14700 0.218-0.576 49 [175] 

13 [Bmim][DCA] 303-373 820-28100 0.174-0.514 56 [340] 

14 [Bmim][SCN] 303-373 8600-95500 0.422-0.514 48 [340] 

15 [Emim][NTf2] 312-450.5 2743-11520 0.212-0.519 98 [341] 

16 [Emim][TfO] 302-344 800-16500 0.179-0.543 37 [175] 

17 [Emim][TfO] 303-343.2 180-5884 0.102-0.965 30 [342] 

18 [Hmim][FAP] 298-333.13 0.826-1300 0.00023-0.243  [202] 

19 [N4,1,1,1][NTf 2] 303-342 100-14550 0.0776-0.6711 50 [343] 

20 [P6,6,6,14][NTf2]      [114] 

21 [THTDP][NTf2] 293-361 106-72180 0.169-0.879 120 [114] 

22 [THTDP][Cl] 303-363 168-24570 0.119-0.8 69 [114] 

23 [P6,6,6,14][Cl]     [114] 

24 [P6,6,6,14][dc] 298-363 304-13400 0.111-0.758 56 [344] 

25  [P6,6,6,14] [TMPP] 298-363 163-14000 0.15-0.815 46 [344] 

26  [P6,6,6,14][MeSO4] 307-322 4480-8730  28 [345] 

27 [P6,6,6,14][FAP] 303-343 67.8-78.8 0.0266-0.0355- 15 [346] 

28 [N-BuPy][BF4] 313-333 1550-9580 0.144-0.549  [76] 

29 [MeBuPyrr][DCA] 303-343 420-14800 0.109-0.564 47 [347] 

30 [bmpyr] [Tf2N] 303-343 390-20400 0.1423-0.744 50 [347] 

31 [TBP][FOR] 298 10-999 0.008-0.203 9 [5] 

http://www.molbase.com/cas/460092-03-9.html
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32 [BmPyrr][FEP] 303-343 63-74 0.0163-0.0246 15 [346] 

33 [Hmpy] [Nf2T] 298    [116] 

34 HEF 313-333 1850-4550 0.086-0.308  [348] 

35 HEA 313-333 8030-10980 0.0918-0.409   

36 HEL 313-333 2520-5710 0.0584-0.242   

37 THEAA 313-333 2400-2050 0.0614-0.256   

38 THEAL 313-333 1840-8470 0.0835-0.4032   

39 HEAF 313-333 2100-8520 0.0863-0.1348   

40 HEAA 313-333 1500-3470 0.166-0.239   

41 HEAL 313-333 2510-5370 0.131-0.486   

42 [bheaa] 298-328    [349] 

43 [hhemea] 298-328     

44 [bheal] 298-328    [349] 

45 [hhemel] 298-328    [349] 

46 [TMG][La] 289-333    [51] 

 

Table 6-3: Summary of the solubility data (Dataset 2). 

IL Abbreviation  Ref. 

Tributylmethylammonium 

bis((trifluoromethyl)sulfonyl)imide 

[N4,4,4,1][Nf2T]  [161] 

Butyltrimethylammonium 

bis(trifluoromethylsulfonyl)imide 

[N1,1,1,4][Nf2T]  [343] 

ethylammonium nitrate [EA][NO3]  [350] 

Choline bis(trifluoromethylsulfonyl)imide [C5H14NO][Nf2T]  [202] 

N-ethyl-N,N-dimethyl-1-propanaminium 1,1,1-

trifluoro-N 

[(trifluoromethyl)sulfonyl]methanesulfonamide 

[N2,1,1,3][Nf2T]  [351] 

2-hydroxyethylammonium lactate [hea][La]  [349] 

methyltrioctylammonium 1,1,1-trifluoro-N-

[(trifluoromethyl)sulfonyl]methanesulfonamide 

[N8,8,8,1][Tf2N]  [343] 
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N,N-dimethyl-N-ethyl-N-pentylammonium 

bis(trifluoromethylsulfonyl) 

[N1,1,2,5][Tf2N]  [352] 

trihexyl(tetradecyl)phosphonium 

bis[(trifluoromethyl)sulfonyl]imide 

[P6,6,6,14][Nf2T]  [114] 

Trihexyl(tetradecyl)phosphonium chloride [P6,6,6,14][Cl]  [114] 

Tetradecyl(trihexyl)phosphonium dicyanamide [P6,6,6,14][SCN]  [344] 

Tributylmethylphosphonium 

bis[(trifluoromethyl)sulfonyl]imide 

[P4,4,4,1][Nf2T]  [353] 

1,1,3,3-tetramethylguanidinium lactate [Gau][La]  [354] 

1-butyl-1-methylpyrrolidinium tricyanomethanide [BMpyrrol][TCM]  [355] 

1-(methoxymethyl)-1-methylpyrrolidinium 

bis(fluorosulfonyl)amide 

[Metomepyrrol][FSA]  [356] 

1-methyl-1-propylpiperidinium 

bis(fluorosulfonyl)imide 

[Meprpip][FSA]  [357] 

1-butyl-4-methylpyridinium tricyanomethanide [Bumepyr]][TCM]  [355] 

N-benzylpyridinium 

bis(trifluoromethylsulfonyl)amide 

[Benzpyr][Nf2T]  [358] 

3-methyl-1-propylpyridinium 

bis(trifluoromethylsulfonyl)imide 

[Meproppyr][Nf2T]  [359] 

1-(2-hydroxyethyl)-pyridinium 

bis(trifluoromethylsulfonyl)imide 

[Hydethpyr][Nf2T]  [360] 

1-(2-(2-(2-methoxyethoxy)ethoxy)ethyl)pyridinium 

bis(trifluoromethylsulfonyl)amide 

[Methethpyr][Nf2T]  [361] 

1-ethyl-3-methylimidazolium acetate [Emim][Ace]  [362] 

1-ethyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

[Emim][Nf2T]  [341] 

1-ethyl-3-methyl-1H-imidazolium tricyanomethanide [Emim][TCM]  [171] 

1-ethyl-3-methylimidazolium ethyl sulfate [Emim][EtSO3]  [362] 

1-ethyl-3-methylimidazolium 

tris(pentafluoroethyl)trifluorophosphate 

[Emim][FAP]  [363] 

1-ethyl-3-methylimidazolium dicyanamide [Emim][diSCN]  [364] 

1-ethyl-3-methylimidazolium thiocyanate [Emim][tiSCN]   
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1-ethyl-3-methylimidazolium 

trifluoromethanesulfonate 

[Emim][TFO]  [175] 

1-ethyl-3-methylimidazolium lactate [emim][La]  [359] 

1-ethyl-3-methylimidazolium tetrafluoroborate [Emim][BF4]  [365] 

1-ethyl-3-methylimidazolium tetracyanoborate [Emim][tcb]  [352] 

3-hexyl-1-methylimidazolium tricyanomethanide [Hmim][trSCN]   

1-hexyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

[Hmim][Nf2T]  [366] 

1-hexyl-3-methylimidazolium nitrate [Hmim][NO3]  [367] 

1-hexyl-3-methylimidazolium 

tris(heptafluoropropyl)trifluorophosphate 

[Hmim][FAP]  [202] 

1-hexyl-3-methylimidazolium hexafluorophosphate [Hmim][PF6]  [200] 

1-methyl-3-octylimidazolium tricyanomethanide [Omim][tricynme]  [171] 

1-octyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

[Omim][Nf2T]  [368] 

1-octyl-3-methylimidazolium hexafluorophosphate [Omim][PF6]  [368] 

 

6.4.  Results and discussions 

Four models are developed in this study to estimate the solubility of CO2 in various ILs using 

critical properties and the QSPR model. In this section, the modeling results and discussions are 

divided into two main parts: development of predictive models for solubility based on dataset 1 

with thermodynamic variables (molecular weight, critical properties, and acentric factor) and 

introduction of models using dataset 2 with molecular structural variables or descriptors such as 

geometrical, topological, information indices, 3D matrix-based descriptors, and quantum chemical 

characteristics. 

Performance Evaluation of Thermodynamic-Based Models. According to dataset 1, the 

solubility of CO2 in ILs is determined where the temperature (T), pressure (P), critical temperature 
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(Tc), critical pressure (Pc), acentric factor (ω), and molecular weight (Mw) are the input 

parameters. The accuracy of predictions obtained from various models including DT, RF, LSSVM, 

and MLR is compared in Table 6-4 and Figure 6-4. In this work, the statistical parameters including 

coefficient of determination (R2), average absolute relative deviation (AARD), maximum error 

(ME) and average relative deviation (ARD) are utilized for reliability and accuracy assessment of 

the models. The optimal model is determined based on statistical analysis. It should be noted that 

the fitted model can perform differently in various ranges of the data points. Cross-validation 

strategies can help to visually explore the model performance variations. For dataset 1, the RF and 

DT algorithms yield better predictive performance with having an R2 of 0.96 and 0.94, 

respectively. The lowest predictive performance based on the comparison of experimental data 

and predictions is attained for the MLR method with an R2 of 0.55, indicating that CO2 solubility 

does not have a linear relationship with thermodynamic properties. A similar conclusion can be 

made by comparing the AARD% and ARD% of the deterministic tools. The error values of all 

models confirm a higher accuracy and robustness of the RF model in comparison with LSSVM, 

MLR, and DT techniques. To further evaluate the accuracy of the studied models in both training 

and testing phases, the relative error, which is the difference between the predictions and the 

corresponding experimental solubility values, is also obtained by the following equation: 

( )
_

i p i

i

X X
Relative Error

X

−
=

 

(6-16) 

The relative error value can be positive or negative, indicating underestimation or overestimation 

of the model with respect to the real data. Figure 6-5 shows the relative error versus the data index.  

Four-fold cross-validation is applied for each algorithm to model the internal validation. The 

values reported in the cross-section column of Table 6-4 reflect the average accuracy of each fold. 
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As expected, RF and DT algorithms have a better performance in predicting the experimental data 

in different folds of a dataset with cross-validation scores of 0.76 and 0.70, respectively. According 

to Figure 6-4 and 6-5, it can be concluded that the predicted values obtained from DT and RF 

models are in good agreement with experimental data. However, other ML algorithms generally 

fail to estimate the CO2 solubility with acceptable precision.  

Table 6-4: Statistical parameters of models developed based on thermodynamic variables using dataset 1.  

Model   Statistical Parameters 

  R2 AARD% ARD% ME Cross-Validation 

Score with CV=4 

DT Training 0.965 2.85 1.97e-16 0.17  

 Testing 0.94 21.24 11.42 0.22 0.70 

RF Training 0.988 4.72 0.72 0.18  

 Testing 0.96 12.05 2.12 0.21 0.76 

LSSVM Training 0.72 29.73 10.08 0.36  

 Testing 0.75 31.01 11.54 0.36 0.56 

MLR Training 0.42 42.42 2.91 0.31  

 Testing 0.55 40.48 8.54 0.31 0.21 

 

(a) 

 
 

(b) 
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(c) 

  

(d) 

(e) 

  

(f) 

(g) 

  

(h) 

Figure 6-4: Cross plot of the model outputs versus corresponding experimental values of 

CO2 solubility in ILs with thermodynamic features using DT (panels a and b), RF (Panels c and d), 

LSSVM (panels e and f), and MLR (panels g and f). 

https://www.sciencedirect.com/topics/engineering/solubility
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(a) 

 
 

(c) 

 

 

Figure 6-5: Relative error versus data index for introduced models: (a) DT, (b) RF, (c) LSSVM (d) MLR 

[The blue points represent the training data and the red points show the testing data]. 

 

Performance Evaluation of Deterministic Tools Based on the QSPR Model.  For the second 

data series, four models (e.g., DT, RF, LSSVM, and MLR) are also developed for prediction of 

CO2 solubility using the structural properties attained from descriptors of ILs, including Chi_G/D 

3D, Disps, SpMax_RG, and HomoLumoFraction, as well as temperature and pressure, as input 

variables.  In dataset 2, more than 2000 experimental solubility data are included. Table 6-5 lists 

the magnitudes of statistical quality measures for all models used for prediction purposes. The 

regression plots for training and testing phases of introduced predictive tools are depicted in Figure 

6-6.  According to the attained results, AARD% values of the testing phase are 20.26, 12.36, 44, 

64, and 55.36 for the DT, RF, LSSVM, and MLR methods, respectively. Similar to the first dataset, 

developed DT and RF models exhibit a better (or stronger) correlation between the predicted and 

target values, compared to the LSSVM and MLR approaches. Relative errors of both training and 



236 

 

testing steps of all introduced models are shown in Figure 6-7. Although the DT model leads to 

having a higher error for a few data points, the overall predictive performance of the DT model is 

acceptable, showing low relative errors as well as a good match between the real data and modeling 

results.  However, the LSSVM and LMR models result in higher relative errors for a high number 

of data points, compared to the DT and RF techniques.  

Comparing the performance of deterministic tools based on dataset 1 and dataset 2, a small 

improvement in the accuracy of all models except MLR is noticed for the second dataset. This 

implies that molecular descriptors such as Chi_G/D 3D, Disps, SpMax_RG, and 

HomoLumoFraction appear to be better features for prediction of the CO2 solubility in ILs, 

compared to thermodynamic properties of ILs.  

Table 6-5: Statistical analysis to evaluate the performance of predictive models based on dataset 2. 

Model  Statistical Parameters 

  R2 AARD% ARD% ME Cross-Validation 

Score with CV=4 

DT Training 0.999 0.53 0.143 0.003 0.77 

 Testing 0.96 20.26 6.52 0.2  

RF Training 0.99 5.89 1.91 0.15 0.83  

 Testing 0.98 12.36 0.65 0.21  

LSSVM Training 0.71 42.61 14.32 0.41 0.60  

 Testing 0.76 44.64 13.48 0.46  

MLR Training 0.24 55.65 3.39 0.52 0.15 

 Testing 0.28 55.36 4.68 0.59  
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(a) 

  

(b) 

(c) 

 
 

(d) 

(e) 

  

(f) 
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(g) 

 
 

(h) 

Figure 6-6: Estimated versus experimental CO2 solubility in ILs based on the QSPR approach using DT 

(panels a and b), RF (panels c and d), LSSVM (panels e and f), and MLR (panels g and h). 

 

(a) 

 
 

(b) 

(c) 

 

 

(d) 

Figure 6-7: Relative error values for both training and testing phases while using (a) DT, (b) RF, (c) 

LSSVM, and (d) MLR. 
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Sensitivity Analysis. The solubility of CO2 in the IL of 1-ethyl-3-methyl-1H-imidazolium 

tricyanomethanide is determined at four constant pressures (see Figure 6-8). We also obtain this 

parameter for three ILs including 1-ethyl-3-methylimidazolium dicyanamidetemperature, 1-ethyl-

3-methylimidazolium tetracyanoborate, and 1-butyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide at a constant temperature of 298 K, as reported in Figure 6-9.  It 

should be noted that the most accurate model (e.g., DT) is selected to show the variations of 

solubility with temperature and pressure based on the model predictions and also to compare the 

modeling and experimental values. As depicted in Figure 6-8 and Figure 6-9, the mole fraction of 

CO2 in the solvent increases with an increase in pressure. However, the solubility lowers if the 

temperature is decreased (see Figure 6-8). These results are in agreement with the theory on the 

variations of solubility with temperature and pressure. It is also concluded from Figure 6-8 and 

Figure 6-9 that the DT model can simulate the experimental data precisely so that there is no 

considerable error based on the comparison of estimated and real solubility values.   

 

Figure 6-8: Influence of temperature and pressure on CO2 solubility in 1-ethyl-3-methyl-1H-imidazolium 

tricyanomethanide [emim][C4N3] [The symbols show the experimental data and the solid lines represent 

the DT modeling results]. 
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Figure 6-9: CO2 solubility versus pressure at a temperature of 298 K for three ILs such as 1-ethyl-3-

methylimidazolium dicyanamide [emim][N(cn)2], 1-ethyl-3-methylimidazolium tetracyanoborate 

[emim][B(CN)4], and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [bmim][Nf2T] [The 

symbols represent the experimental data points and the solid lines indicate the DT predictions]. 

 

Feature Selection in QSPR Model.  In the ML models, feature selection is an important aspect, 

which helps to identify the features/parameters mostly contributing to the objective function(s). 

After specifying the most vital input parameters, the partially relevant or entirely irrelevant 

features can be removed to avoid overfitting, lower the computational costs, and improve the 

accuracy of the model and its applicability.  

In QSPR modeling, four important descriptors are selected from 2000+ descriptors of ILs using 

the GA-MLR method. The Extra Trees feature selection method is employed to rank the input 

parameters based on their influence on the CO2 solubility in ILs. In Extra Trees classifier each 

decision stump built with all the data available in the training set. Splits of each node is determined 

randomly by searching in a subset of randomly selected features with a size of sqrt( number of 

features).  Thus, by pruning trees below a particular node, a subset of the most important features 
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will be created. The results of feature ranking are presented in Figure 6-10 and 6-11 for data series 

1 and 2, respectively. According to Figure 6-10, pressure has the highest contribution to the 

solubility of CO2 in ILs with %81 relative importance, followed by temperature with a relative 

importance of about 10%; the remaining four features (critical temperature, critical pressure, 

molecular weight, and acentric factor) have a considerably smaller relative importance.  It can be 

also concluded from Figure 6-11 that the ranking order of the input parameters/properties are 

pressure, temperature, HomoLumoFraction (anion), SpMax_RG (cation), and Disps (cation), from 

the highest to the minimum relative importance. Thus, Homo/Lumo fraction has the most impact 

on the solubility based on the DT and RF models, if the temperature and pressure remain 

unchanged. 

The feature reduction is useful while predicting compounds’ characteristics, particularly if an 

adequate number of thermodynamics properties are not available. In addition, a model with a large 

number of descriptors might not be appropriate to be used for theoretical and practical 

implications. Thus, identification of important features from thousands of descriptors for a 

particular process or phenomenon can be useful in various stages such as design, operation, and 

optimization of the process.  For instance, it is important to recognize the important features of ILs 

and consider them in designing suitable cations and anions for the synthesis of ILs with effective 

properties for CO2 absorption. 

ML models provide a fast screening technique to study the significant properties of solvents. The 

developed models in this work, can help researchers to estimate the CO2 solubility in ILs based on 

structural and thermodynamic properties of pure ILs. This work may offer useful information/data 

on designing technically effective and environmentally safe ILs for CO2 capture systems.  
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Figure 6-10: Feature importance of input parameters involved in the predictive model based on dataset 1. 

 

 

Figure 6-11: The relative importance of structural properties and operating conditions based on dataset 2 

for estimation of CO2 solubility in ILs. 
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6.5.  Summary and conclusions 

In this study, four models, namely Decision Tree (DT), Least Square Support Vector Machine 

(LSSVM), Random Forest (RF), and Multilinear Regression (MLR), are developed for the 

estimation of the solubility of CO2 in various Ionic Liquids (ILs) at a wide range of operating 

conditions where the thermodynamic and structural properties of ILs are considered as the input 

parameters. Two large datasets are used for development of the predictive tools. In the first data 

bank, in addition to temperature and pressure, the critical properties such as critical temperature, 

critical pressure, molecular weight, and acentric factor of ILs are the input variables. The models 

developed on the basis of the Quantitative Structure–Activity Relationship (QSPR) model include 

the structural characteristics (e.g., Chi_G/D 3D, Disps, SpMax_RG, and HomoLumoFraction), 

which are selected among a large number of descriptors, and process conditions (temperature and 

pressure) while using dataset 2. The predictive performance of all introduced models is assessed 

through conducting an error analysis where the statistical parameters such as coefficient of 

determination (R2), average absolute relative deviation (AARD), and average relative deviation 

(ARD) are obtained. Based on the study results, the following conclusions can be drawn: 

• For both datasets, the DT and RF models show greater performance (in terms of accuracy 

and reliability) in predicting CO2 solubility in ILs, compared to the LSSVM and MLR 

approaches. 

• The errors resulted from QSPR-based models are slightly lower than the thermodynamic-

based models. This might be due to the strong relationship between ILs structural 

properties and CO2 solubility in ILs. Hence, the models developed based on dataset 2 is 

more reliable and accurate (compared to the models obtained from dataset 1), since the ILs 
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descriptors in the QSPR model generally take into account the key geometrical, structural, 

charge, and quantum chemical characteristics of ILs.  

•  The RF model is capable of forecasting the solubility of CO2 in ILs with an average 

absolute relative deviation of 12.05 and 12.36 with respect to the experimental data for 

datasets 1 and 2, respectively. It is found that there is a non-linear relationship between 

molecular descriptors and CO2 solubility in ILs.  

• The DT and RF models developed based on the QSPR model provide the key insights into 

the structural properties. The sensitivity analysis reveals that pressure has the highest 

impact on CO2 solubility in ILs. The important structural characteristics affecting the 

solubility of CO2 in ILs are relevant to the structure of ions, 3D matrix of ions, orbital 

energy, and the complexity and polarity of the molecules.  

• It is recommended to collect more experimental data for a variety of IL cases under broad 

thermodynamic conditions and physical (and chemical) properties. This can lead to more 

generalized predictive tools for the determination of CO2 solubility in ILs. It might be also 

useful to develop more connectionist models with optimal parameters and screen the most 

deterministic tools for prediction and classification purposes. Such a strategy can result in 

designing and finding suitable ILs for carbon capture. 

 

Appendix A4 

The cation structures of ILs investigated in this study are given in Table A4-1.   
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Table A4-1: Structures of cations for ILs studied in this work.  

Cation Name Smiles Structure 

Emim 1-ethyl-3-methylimidazolium  

 

Bmim 1-Butyl-3 methylimidazolium 

 

CCCCN1C=C[N+](C)=C1 
 

Hmim 3-hexyl-1-methylimidazolium  

 

Omim 1-octyl-3-methylimidazolium  

 

Epyr 1-ethylpyridinium  

 

N-Bpyr 1-Butylpyridinium CCCC[N+]1=CC=CC=C1 
 

Bu-Mepyr 1-butyl-4-methylpyridinium  
 

MeBuPyr

r 

1-Butyl-1-methylpyrrolidinium CCCC[N+]1(C)CCCC1 

 

HMePyr 1-hexyl-3-methylpyridinium  

 

https://www.sigmaaldrich.com/catalog/product/sial/30367?lang=en&region=US
https://www.sigmaaldrich.com/catalog/product/sial/30367?lang=en&region=US
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benzylpyr N-benzylpyridinium  
 

 1-(2-hydroxyethyl)-pyridinium  
 

 1-(2-(2-(2-

methoxyethoxy)ethoxy)ethyl)pyri

dinium 

 
 

P6,6,6,14 trihexyl(tetradecyl)phosphonium CCCCCCCCCCCCCC[P+](CC

CCCC)(CCCCCC)CCCCCC 

 

 Tributylmethylphosphonium  

 

TMG 1,1,3,3-Tetramethylguanidinium CN\C(=N\C)N(C)C 

 

 Octyl trimethyl ammonium   

 methyltrioctylammonium  
 

 butyltrimethylammonium  
 

 ethyl ammonium  
 

 N,N-dimethyl-N-ethyl-N-

pentylammonium 
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 2-(2-

Hydroxyethoxy)ethylammonium 

 

[NH3+]CCOCCO  

 trimethyl-butylammonium 

 

CCCC[N+](C)(C)C  

 Choline (2-

hydroxyethyl)trimethylammoniu

m 

 

 

 1-butyl-1-methylpyrrolidinium   
 

 1-(methoxymethyl)-1-

methylpyrrolidinium 

 
 

 1-methyl-1-propylpiperidinium   
 

 

Table A4-2 also provides the anion structures of ILs studied in this research. 
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Table A4-2: Structures of the anions studied in this work. 

Anion  Structure 

PF6  

 

Nf2T bis[(trifluoromethyl)sulfonyl]imide 

 

Tricyanomethanide TCM 

 

BF4 tetrafluoroborate 

 

DCA dicyanamide 

 

MeSO3 methyl sulfate 

 

 Trifluoromethanesulfonate 

 

OTf 

 

https://www.sigmaaldrich.com/catalog/product/sial/04367?lang=en&region=US
https://www.sigmaaldrich.com/catalog/product/sial/04367?lang=en&region=US


249 

 

Chloride Cl 

 

Thiocyanate 

 

SCN 

 

methanesulfonate OMS 

 

TFA trifluroacetate 

 

Acetate 

 

Ace 

 

Tetrachloroferrate FeCl4 

 

Nitrate NO3 
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Tris(pentafluoroethyl)trifluorophosphate FAP 

 

Propanoate Prop 

 

2,2-dimethylpropanoate Pivalate 

 

 

Table A6-3 lists the critical properties, molecular weight, and acentric factor of the ILs used in this 

research. The structural characteristics of employed ILs are also given in Table A6-4. 

 

Table A4-3: Critical properties, acentric factors, and molecular weights of ILs investigated in this work 

[2]. 

Ionic liquid  global M Tb (K) Tc (K) Pc (bar) ω 

[bmim][PF6]  C8H15N2PF6 284.2 554.6 719.4 17.3 0.7917 

[hmim][PF6] C10H19N2PF6 312.2 600.3 764.9 15.5 0.8697 

[omim][PF6] C12H23N2PF6 340.3 646.1 810.8 14 0.9385 
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[bmim][BF4] C8H15N2BF4 226 495.2 643.2 20.4 0.8877 

[hmim][BF4] C10H19N2BF4 254.1 541 690 17.9 0.9625 

[omim][BF4] C12H23N2BF4 282.1 586.7 737 16 1.0287 

[bmim][MeSO4] C9H18N2SO4 250.3 735.6 1081.6 36.1 0.4111 

[bmim][Ac] C10H18N2O2 198.3 624.6 847.3 24.5 0.6681 

[bmim][ta] C10H15N2F3O2 252.2 619.2 826.8 20.9 0.6891 

[bmim][TfO] C9H15N2F3SO3 288.3 707.7 1023.5 29.5 0.4046 

[bmim][dca] C10H15N5 205.3 783 1035.8 24.4 0.8419 

[bmim][tca] C9H15N3S 197.3 763.1 1047.4 19.4 0.4781 

[bmim][Nf2T] C10H15N3F6S2O4 419.4 862.4 1269.9 27.6 0.3004 

[emim][TfO] C7H11N2F3SO3 260.2 662 992.3 35.8 0.3255 

[Emim][eFAP]  556..2 760.5 830.67 100.3 0.8743 

[Hmim][FAP]  612.28  847.9 13.93  

[NHHH,(CH2)2OH][Ac] C4H11NO3 121.1 514.8 699.2 41.39 0.9359 

[NHHH,(CH2)2OH][La] C5H13NO4 151.2 629.4 812.6 39.38 1.3579 

[N1444][Nf2T] C15H30N2F6S2O4 480.5 852.7 1136.3 17.7 0.6068 

[P6,6,6,14][Nf2T] C34H68NF6PS2O4 764 1310.6 1586.7 8.5 0.8915 

[P6,6,6,14][Cl] C32H68PCl 519.3 1006.2 1222.8 7.9 0.7947 
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[bpy][BF4] C9H14NBF4 223 456.9 597.6 20.3 0.8307 

[mbpyr][dca] C11H20N4 208.3 680.3 887.2 20.6 0.8555 

[bmpyr][Nf2T] C11H20N2F6S2O4 422.4 759.8 1093.1 24.3 0.3467 

[TBP][FOR] 303.44  933.6 18.3   

[hmim][BF4] C10H19N2BF4 254.1 541 690 17.9 0.9625 

[omim][BF4] C12H23N2BF4 282.1 586.7 737 16 1.0287 

[bmim][MSO4] C9H18N2SO4 250.3 735.6 1081.6 36.1 0.4111 

[bmim][Ac] C10H18N2O2 198.3 624.6 847.3 24.5 0.6681 

[bmim][ta] C10H15N2F3O2 252.2 619.2 826.8 20.9 0.6891 

[bmim][TfO] C9H15N2F3SO3 288.3 707.7 1023.5 29.5 0.4046 

 

Table A4-4: Structural properties of compounds used in the QSPR model. 

Name DISPs+ SpMax_RG+ Chi_G/D- HomoLum

oFraction- 

tributylmethylammonium 

bis(trifluoromethylsulfonyl)imide 

0.016 4.61 0.834 1.79 

butyltrimethylammonium 

bis(trifluoromethylsulfonyl)imide 

0.041 3.94 0.834 1.79 

ethylammonium nitrate 0.221 2.8 0.918 1.08 

Choline bis(trifluoromethylsulfonyl)imide 0.347 3.71 0.834 1.79 

N-ethyl-N,N-dimethyl-1-

propanaminium1,1,1-trifluoro-N-

0.017 4.0 0.834 1.79 
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[(trifluoromethyl)sulfonyl]methanesulfonami

de 

2-hydroxyethylammonium2-

hydroxyethylammonium lactate 

0.424 2.5 0.961 0.826 

trihexyl(tetradecyl)phosphonium 

bis[(trifluoromethyl)sulfonyl]imide 

0.022 5.25 0.834 1.79 

trihexyl(tetradecyl)phosphonium chloride 0.022 5.25 0 0.737 

tetradecyl(trihexyl)phosphonium 

dicyanamide 

0.022 5.25 0.869 0.973 

Tributylmethylphosphonium 

bis[(trifluoromethyl)sulfonyl]imide 

0.021 4.3 0.834 1.79 

N,N-dimethyl-N-ethyl-N-pentylammonium 

bis(trifluoromethylsulfonyl) 

0.034 4.18 0.834 1.79 

1-butyl-1-methylpyrrolidinium 

tricyanomethanide 

0.03 4.11 0.824 1.21 

1-(methoxymethyl)-1-methylpyrrolidinium 

bis(fluorosulfonyl)amide 

0.184 3.88 4.6 1.34 

1-methyl-1-propylpiperidinium 

bis(fluorosulfonyl)imide 

0.035 4.41 4.6 1.34 

1-butyl-4-methylpyridinium 

tricyanomethanide 

0.159 3.59 0.824 1.21 

N-benzylpyridinium 

bis(trifluoromethylsulfonyl)amide 

0.032 3.3 0.834 1.79 

3-methyl-1-propylpyridinium 

bis(trifluoromethylsulfonyl)imide 

0.154 3.47 0.834 1.79 

1-(2-hydroxyethyl)-pyridinium 

bis(trifluoromethylsulfonyl)imide 

0.424 2.5 0.834 1.79 

1-(2-(2-(2-

methoxyethoxy)ethoxy)ethyl)pyridinium 

bis(trifluoromethylsulfonyl)amide 

0.102 3.67 0.834 1.79 

1-ethyl-3-methylimidazolium acetate 0.1 3.2 0.941 0.835 
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1-ethyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

0.1 3.2 0.834 1.79 

1-ethyl-3-methyl-1H-imidazolium 

tricyanomethanide 

0.1 3.2 0.824 1.21 

1-ethyl-3-methylimidazolium ethyl sulfate 0.1 3.2 0.899 1.11 

1-ethyl-3-methylimidazolium 

tris(pentafluoroethyl)trifluorophosphate 

0.1 3.2 0.822 2.83 

1-ethyl-3-methylimidazolium dicyanamide 0.1 3.2 0.869 0.973 

1-ethyl-3-methylimidazolium thiocyanate 0.1 3.2 0.75 1.04 

1-ethyl-3-methylimidazolium 

trifluoromethanesulfonate 

0.1 3.2 0.776 1.48 

1-ethyl-3-methylimidazolium lactate 0.1 3.2 0.961 0.826 

1-ethyl-3-methylimidazolium 

tetracyanoborate 

0.1 3.2 0.784 6.8 

1-Butyl-3 methylimidazolium 

Hexafluorophosphate 

0.18 3.55 0.716 4.18 

1-Butyl-3 methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

0.18 3.55 0.834 1.79 

1-Butyl-3 methylimidazolium 

tricyanomethanide 

0.18 3.55 0.824 1.21 

1-Butyl-3 methylimidazolium 

Tetrafluoroborate 

0.18 3.55 0.741 4.74 

1-Butyl-3 methylimidazolium dicyanamide 0.18 3.55 0.869 0.973 

1-Butyl-3 methylimidazolium methyl sulfate 0.18 3.55 0.882 1.11 

1-Butyl-3 methylimidazolium Thiocyanate 0.18 3.55 0.75 1.04 

1-Butyl-3 methylimidazolium 

methanesulfonate 

0.18 3.55 0.846 1.12 

1-Butyl-3 methylimidazolium trifluroacetate 0.18 3.55 0.85 1.03 

1-Butyl-3 methylimidazolium Acetate 0.18 3.55 0.941 0.835 
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1-Butyl-3 methylimidazolium 

tetrachloroferrate 

0.18 3.55 0.472  

1-Butyl-3 methylimidazolium Nitrate 0.18 3.55 0.918 1.08 

1-Butyl-3 methylimidazolium 

Trifluoro[tris(pentafluoroethyl)]phosphate 

0.18 3.55 0.822 2.83 

1-Butyl-3 methylimidazolium propanoate 0.18 3.55 0.943 0.837 

3-hexyl-1-methylimidazolium 

tricyanomethanide 

0.285 3.69 0.824 1.21 

1-hexyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

0.285 3.69 0.834 1.79 

1-hexyl-3-methylimidazolium nitrate 0.285 3.69 0.918 1.08 

1-hexyl-3-methylimidazolium 

tris(heptafluoropropyl)trifluorophosphate 

0.285 3.69 0.822 2.83 

1-hexyl-3-methylimidazolium 

hexafluorophosphate 

0.285 3.69 0.716 4.18 

1-methyl-3-octylimidazolium 

tricyanomethanide 

0.32 3.89 0.824 1.21 

1-octyl-3-methylimidazolium 

bis[(trifluoromethyl)sulfonyl]imide 

0.32 3.89 0.834 1.79 

1-octyl-3-methylimidazolium 

hexafluorophosphate 

0.32 3.89 0.716 4.18 

 

NOMENCLATURES 

Acronyms Description 

AARD%, Average Absolute Relative Deviation Percent 

ANFIS Adaptive Neuro-Fuzzy Interference System  

ANN Artificial Neural Networks 

CART Classification and Regression Trees  

DT Decision Tree 

EOS Equation of State 

 GA Genetic Algorithm 
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GHG Greenhouse gases  

IL Ionic Liquid 

LSSVM Least Square Support Vector Machine 

MD Molecular Dynamics 

ME Maximum Error 

MLR Multilinear Regression 

QSPR Quantitative Structure-Activity Relationship 

RF Random Forest 

RMSE Root Mean Square Error 

Std Standard deviation 

VIF Variance Inflation Factor  

Chemical Formulas  

[bmim][Ac] 1-butyl-3-methylimidazolium acetate 

[bmim][BF4] 1-butyl-3-methylimidazolium tetrafluoroborate 

[bmim][PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 

[bmim][Tf2N] 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

[FAP] tris(pentafluoroalkyl)-trifluorophosphate  

CO2 carbon dioxide 

[bmim] [PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 

[hmim] [PF6] 1-hexyl-3-methylimidazolium hexafluorophosphate 

[omim] [PF6] 1-octyl-3-methylimidazolium hexafluorophosphate 

[bmim] [BF4] 1-butyl-3-methilimidazolium tetrafluoroborate 

[hmim] [BF4] 1-hexyl-3-methylimidazolium tetrafluoroborate 

[omim] [BF4] 1-octyl-3-methylimidazolium tetrafluoroborate 

[bmim] [MSO4] 1-butyl-3-methylimidazolium methylsulfate 

[bmim] [Ac] 1-butyl-3-methylimidazolium acetate 

[bmim] [ta] 1-butyl-3-methylimidazolium trifluoroacetate 

[bmim] [TfO] 1-butyl-3-methylimidazolium trifluoromethanesulfonate 

[bmim] [dca] 1-butyl-3-methylimidazolium dicyanamide 

[bmim] [tca] 1-butyl-3-methylimidazolium thiocyanate 

[bmim] [bti] 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide 

[emim] [TfO] 1-ethyl-3-methylimidazolium trifluoromethanesulfonate 

[C2mim][eFAP] 1-ethyl-3-methylimidazolium 

tris(pentafluoroethyl)trifluorophosphate 

  

[hmim][FAP] 1-hexyl-3-methylimidazolium 

tris(pentafluoroethyl)trifluorophosphate 

 

[NHHH,(CH2)2OH] [Ac] 2-hydroxyethylammonium acetate 

[NHHH,(CH2)2OH] [lactate] 2-hydroxyethylammonium lactate 

[N1444] [bti] Tributylmethylammonium bis[(trifluoromethyl)sulfonyl]imide 

[P6,6,6,14] [bti] Trihexyltetradecylphosphonium 

bis[(trifluoromethyl)sulfonyl]imide 

[P6,6,6,14] [Cl] trihexyltetradecylphosphonium chloride 

[bpy] [BF4] 1-butylpyridinium tetrafluoroborate 

[mbpyr] [dca] n-methyl-n-butylpyrrolidinium dicyanamide 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwiRhMHtiK_eAhWD2lMKHQ4tBvUQFjABegQIARAB&url=https%3A%2F%2Fwww.sigmaaldrich.com%2Fcatalog%2Fproduct%2Faldrich%2F39952%3Flang%3Den%26region%3DUS&usg=AOvVaw12bGvlgvTPo88F4rjx93b3
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[bmpyr] [bti] 1-butyl-1-methylpyrrolidinium 

bis[(trifluoromethyl)sulfonyl]imide 

[TBP][FOR]  

[bmim] [PF6] 1-butyl-3-methylimidazolium hexafluorophosphate 

[hmim] [PF6] 1-hexyl-3-methylimidazolium hexafluorophosphate 

[omim] [PF6] 1-octyl-3-methylimidazolium hexafluorophosphate 

[bmim] [BF4] 1-butyl-3-methilimidazolium tetrafluoroborate 

[hmim] [BF4] 1-hexyl-3-methylimidazolium tetrafluoroborate 

[omim] [BF4] 1-octyl-3-methylimidazolium tetrafluoroborate 

HEF 2-Hydroxy ethylammonium formate (HEF) 

HEA 2-Hydroxy ethylammonium acetate (HEA) 

HEL 2-Hydroxy ethylammonium lactate  

THEAA Tri-(2-hydroxy ethyl)-ammonium acetate  

THEAL Tri-(2-hydroxy ethyl)-ammonium lactate  

HEAF 2-(2-Hydroxy ethoxy)-ammonium formate  

HEAA 2-(2-Hydroxy ethoxy)-ammonium acetate  

HEAL 2-(2-Hydroxy ethoxy)-ammonium lactate  

Greek Letters  

   RBF width 


 regularization parameter 

( )x  nonlinear mapping function 

Variables/Parameters  

R2 coefficient of determination 

AARD%, the average absolute relative deviation percent 

Std standard deviation 

jL
 

leaf node 

w  weight vector 

( )x  nonlinear mapping function 

b  a bias term 

Calc. predicted (calculated) value 

Exp. experimental value 

N  the number of samples in each category (training and testing) 
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The current CO2 capture techniques mainly suffer from high capital and operating costs, solvent 

degradation, solvent loss, corrosivity, toxicity, large equipment size, and high energy consumption 

for solvent recovery. Development, characterization, and evaluation of promising solvents such as 

ILs for post-combustion CO2 capture are the main objectives of this thesis. Imidazolium based ILs 

with various alkyl chain and anion types are mostly studied in this work. The favorable properties 

of ILs (negligible vapor pressure, environmentally safe, and acceptable absorption capacity) reveal 

that they are suitable for a wide range of applications in the energy and chemical industries. 

However, many challenges should be addressed before broadly using them in large practical scales. 

Determining the solubility of CO2 in ILs using thermodynamic models and attaining a reasonable 

match with experimental data appear to be important challenges. A reliable EOS is required to 

simulate the VLE data at different operating conditions. In this case, it would be possible to predict 

the solubility of CO2 in a variety of imidazolium-based ILs with acceptable precision. ILs with 

different affinities toward water molecules, hydrophilic and hydrophobic ILs, show different 

behaviors in Water/ IL mixtures.  Hence, CO2 capture should be evaluated in both types of ILs.  

Another challenge while using ILs for absorption is their high viscosity, which adversely affects 

mass transfer (convection and diffusion) in the absorption column. One of the suitable approaches 

to overcome the high-viscosity issue is using additives such as water for viscosity reduction. It 

seems interesting to investigate the diffusion mechanisms of CO2 in the IL/Water mixtures with 

different properties and wetness affinities.  

The properties of ILs and their mixtures can be evaluated using molecular simulations instead of 

expensive and time-consuming experiments. MD simulations can accurately predict the 

thermophysical properties of ILs (e.g., density, viscosity, pressure, enthalpy, entropy, heat 
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capacity, and thermal conductivity), transport properties such as diffusion coefficient, and 

interaction energies (e.g., van der Waals forces, electrostatic forces, and hydrogen bonding), 

resulting in good accordance with experimental data. The MD results are generally dependent on 

the type of force field. Also, powerful molecular simulations are capable of computing properties, 

which are needed for the efficient design of ILs for particular purposes. Hence, the effects of cation 

and anion types, operating conditions, presence of solvents such as water, diffusivity, and 

structuring species in the bulk system and interface should be systematically investigated to 

evaluate the capability of ILs in CO2 absorption. 

It seems essential to develop fast predictive tools to estimate the properties of ILs and solubility 

of various gases in ILs due to the existence of a large number of ILs. Although there are several 

experimental methods for estimating solubility of acid gases in ILs, it is expensive, laborious, and 

time-consuming to conduct many laboratory tests. Alternative strategies for properties 

determination are thermodynamic EOS models, correlations, smart techniques, and molecular 

simulations. Thermodynamic models generally lead to accurate results at low and moderate 

pressures; however, they might suffer from some downsides. For instance, they need an adequate 

number of experimental data for the optimization of adjustable parameters and model validation. 

Hence, developing more general and accurate thermodynamic models is of great importance. 

Recently, machine or statistical learning approaches have attracted the attention of researchers in 

different research fields.  Artificial Neural Networks (ANN), Fuzzy Logic (FL), Multilinear 

Regression (MLR), Decision Tree (DT), and Random Forest or RF (as computational intelligence 

methods) can model complicated non-linear processes (or phenomena) and obtain thermodynamic 

and physical properties. Most of the machine learning tools are inspired in physical sciences by 
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quantitative structure-property/activity relationships, QSPR/QSAR. This type of model can be 

applied for forecasting solubility of CO2 in ILs and designing new ILs for absorption applications. 

In this thesis, a part of the major challenges is addressed. After a comprehensive review of CO2 

capture using ILs, the thermodynamic modeling of the system using PR and PC-SAFT EOSs is 

discussed in Chapter 3. The molecular dynamics simulations of pure ILs and IL/ CO2 cases are 

implemented; the chemiophysical properties, structural characteristics, and dynamics behaviors 

are investigated in Chapter 4. The effect of water on the structure and dynamics of species in the 

mixture is assessed in Chapter 5. The soft-computing models are developed in Chapter 6 to 

estimate the CO2 solubility in ILs. 

7.1.  Literature Review (Chapter 2) 

This phase of the study provides an overview of the research works conducted on various 

challenges in terms of technical, economical, and environmental prospects of CO2 capture. The 

main findings/conclusions of the first phase are as follows: 

• The current CO2 capture techniques mainly suffer from high capital and operating costs. 

The main technical problems of post-combustion absorption systems are solvent 

degradation, high solvent loss, corrosive nature of solvents, the toxicity of solvents, 

required large absorption equipment, and high energy consumption for solvent 

regeneration. 

• The functionalized ILs though have higher CO2 absorption capacity, they are 2-4 times 

more expensive than conventional ILs. The viscous complex ILs after reaction with CO2 

makes them an inappropriate choice for absorption-desorption processes. They will have 
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an energy-intensive regeneration process, similar to amines; viscous products will make 

the absorption process ineffective. 

• The best ILs in terms of technical and economic perspectives are screened. It is concluded 

that Guanidinium cations; and acetate-based [Ac] and fluorinated anions including [BF4], 

[FEP], and [PF6] exhibit high CO2 solubility. 

• To commercialize CO2 capture technology with ILs, it is vital to find cheap but suitable 

IL/additive mixtures with relatively high solubility and selectivity where important mass 

transfer and thermodynamic prospects of CO2/Water/IL/additive systems (diffusivity, mass 

transfer rate, vapor pressure, and equilibrium conditions) are well explored through 

experimental and modeling studies. 

• ILs as green solvents offer a promising CO2 capture technique where an acceptable 

absorption rate can be attained if a proper ion or chemical is added to IL. In addition to 

engineering design aspects, their high viscosity, cost, availability, compatibility, and purity 

are the main challenges to developing appropriate absorption systems for CO2 capture 

using ILs at an industrial scale. 

• There are not enough experimental data for acid gas solubility in different ILs. Fast 

screening methods are required to be implemented to study the phase behavior of gas-IL, 

dynamics of gas in ILs, and absorption mechanisms. Thermodynamic modeling, molecular 

dynamics simulations, and soft-computing methods are powerful approaches to further 

study the ILs properties, and their behaviors in different systems (bulk and the interface). 
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7.2.  Thermodynamic Modeling (Chapter 3) 

The main objective of this chapter is to conduct thermodynamic modeling for performance 

evaluation of the PR and PC-SAFT EOSs in predicting solubility of acid gases in ILs within a wide 

range of temperatures and pressures. In addition, the influence of adding solvents (e.g., water and 

toluene) on CO2 solubility and viscosity of corresponding mixtures is studied through using PC-

SAFT EOS.  

PR and PC-SAFT EOSs are applied in various IL/CO2 systems. The association contribution and 

binary interactions between components are considered in the modeling. PC-SAFT EOS model 

exhibits better performance and more accurate results than PR while predicting the CO2 solubility 

in ILs. This precision is originated from the characteristic/nature of SAFT EOSs where they take 

into account the effect of molecular structure and interactions on the bulk properties and phase 

behavior, unlike the cubic EOSs that assume molecules as a hard-sphere. The effect of different 

water mole fractions on the solubility of CO2 in ILs/water mixtures is properly evaluated using 

PC-SAFT EOS. It is concluded that the presence of water in the solvent will decrease the viscosity 

of ILs; it also leads to solubility reduction. The viscosity reduction is highlighted in hydrophilic 

ILs, compared to hydrophobic ones. In ILs with more hydrophilic behavior such as [Bmim][Ac], 

the addition of various concentrations of water will decrease the viscosity, but the solubility 

reduction is minor. The ratio of solubility reduction to viscosity reduction in hydrophobic ILs (e.g., 

[Bmim][BF4]) is considerable; it makes them inappropriate choices to be used with water for 

carbon capture.  
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7.3.  Molecular Dynamics Simulation (Chapters 4 and 5) 

This study phase assesses the thermophysical properties, local structure, and transport properties 

of pure ILs and their mixture with water and CO2. We calculate the densities, viscosities, transport 

properties of pure cations and anions of ILs. MD simulations are performed to determine the bulk 

properties of [Bmim][BF4] and [bmim][Ac] ILs using OPLS-AA force field.  Densities of ILs are 

in good agreement with experimental data within a broad range of temperatures. Dynamics of ions 

shows that cations diffuse faster than anions, which is not consistent with the relationship between 

the diffusivity and size of the ions. It is explained with polar and non-polar locations in the mixture. 

Radial distribution functions (RDFs) are obtained at different temperatures; it is found that anion 

is willing to locate around the ring of the imidazolium cation. 

At the bulk system of CO2 in IL, structuring CO2 around cation and anion, and volume expansion 

upon CO2 absorption are analyzed; it is concluded that anions have an important role in CO2 

absorption. Diffusion coefficients of CO2 in ILs are in the range of (1-3) ×10-10 m2/s, depending 

on temperature, CO2 concentration, and mixture viscosity. 

MD simulations are also implemented to study the molecular and structural behaviors of the 

interface of IL/CO2 systems at various CO2 concentrations. CO2 creates a dense layer at the 

interface, which interrupts the association between cation and anion and eventually decreases the 

surface tension. It is found that the diffusion of CO2 in the bulk occurs slowly. The results 

corresponding to interfacial behavior and transport properties of CO2 and ILs are useful to design 

ILs with high solubility and diffusivity.  

The molecular behaviors of binary Water/[Bmim][Ac] and ternary CO2/[Bmim][Ac]/Water 

systems are also studied, using MD simulations. The excess energy, radial pair distribution 
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function, coordination number, water clusters, and dynamic properties of compounds are attained 

from the analysis of the MD results. The mixture viscosity decreases by 40% in the presence of 

water where the mole fraction of water in [Bmim][Ac] IL is 0.2. The presence of water in 

[Bmim][Ac] IL within the mole fraction range of 0.2–0.6, leads to a significant increase in the 

diffusivities and activation energies for ions in comparison to self-diffusivities in pure IL. A further 

increase in the water mole fraction (>0.8) results in a sharp change in the ions diffusion 

coefficients. In general, this phase of the research work offers useful tips in further understanding 

of solubility and diffusivity behavior of ILs, volume expansivity upon CO2 absorption, interfacial 

behaviors of CO2/ILs, and effect of water in viscosity and diffusivity coefficients which are crucial 

in designing ILs for various applications in energy and environment sectors at different conditions. 

7.4. Rigorous Connectionist Models to Predict CO2 Solubility in ILs (Chapter 6) 

This research phase aims to develop robust and reliable machine learning models for the prediction 

of CO2 solubility in ILs.  Four approaches including Least Square Support Vector Machine 

(LSSVM), Decision Tree (DT), Random Forest (RF), and Multilinear Regression (MLR) are 

applied under various thermodynamic and operating conditions where the thermodynamic and 

structural properties of ILs are considered as the input parameters. Statistical parameters such as 

determination coefficient (R2), Average Relative Deviation (ARD), and Root Mean Square Error 

(RMSE) are used to evaluate the accuracy and reliability of the developed methods. The DT and 

RF models show greater performance (in terms of accuracy and reliability) in predicting CO2 

solubility in ILs, compared to the LSSVM and MLR approaches. The errors resulted from QSPR-

based models are slightly lower than the thermodynamic-based models. This might be due to the 

strong relationship between ILs structural properties and CO2 solubility in ILs. Hence, the models 

developed based on structural properties are more reliable and accurate (compared to the models 
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obtained from critical properties), since the ILs descriptors in the QSPR model generally take into 

account the key geometrical, structural, charge, and quantum chemical characteristics of ILs.  

 

7.5.  Recommendations for Future Work  

The application of ILs for the CO2 absorption needs further research and engineering investigations 

to explore important aspects such as combinations of cations and anions, absorption mechanisms, 

optimal process design and operation, mass transfer coefficient, component diffusivity, and 

addition of chemicals/solvents. The recommendations for future work based on the results of this 

thesis are summarized below:   

• The CO2 capture capacity of other ILs such as phosphonium based, ammonium-based, and 

guanidinium-based ILs (as potential CO2 absorbents) has been rarely investigated in the 

literature. Hence, further research is required to comprehensively screen and design new 

effective ILs with high performance. Deep eutectic solvents (DESs) are also novel solvents 

that can be studied for possible CO2 capture. 

• In practice, flue gas streams contain other gases including N2, H2, H2S, SOX, and NOX. The 

presence of impurities/gases can considerably affect the CO2 capture capacity of solvents 

and their selectivity. They can also alter the micro and macro characteristics of the bulk 

and interface in CO2/ ILs systems.  

• Analysis of molecular-level behaviors of the ILs mixtures is still at an early stage. Further 

multiscale modeling/simulation works need to be conducted for accurate determination of 

physicochemical and thermophysical characteristics of pure ILs and their mixtures with 

other chemicals (and/or gases). 
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• It would be useful to study the influence of adding solvents/chemicals such as amines to 

ILs on physical and chemical properties as well as the absorption capacity of ILs. They 

might have a positive impact on CO2 capture capacity and reduce IL viscosity.  Also, a 

mixture of two or more ILs can be recommended for CO2 capture. This strategy might lead 

to a greater CO2 absorption capacity.  

• MD and Monte Carlo simulations (or multi-scale simulations) can be employed to 

determine thermodynamic and phase behaviors of Additive/IL/CO2 systems. The results 

can be then compared with those obtained from EOS thermodynamic modeling where 

various EOSs are examined. 

 

• Utilization of various soft computing methods such as ANN and RF to predict the solubility 

of acid gases in mixtures of ILs and water or organic solvents can be an interesting future 

study in this area. It is expected that more robust and generalized deterministic models can 

be presented to obtain the solubility of CO2 in pure ILs and solvent/IL systems if a large 

number of experimental data are available. 

 

• It would also be of interest in the future to carry out accelerated dynamics simulations of 

IL/CO2/Solvent mixtures with more effective force fields and longer simulation periods to 

attain more precise results. 

 

• The economic and environmental prospects of ILs (cost and toxicity) can be systematically 

studied through employing QSPR models. 

 

• Challenges with the theoretical and practical implementation of CO2 capture plant with IL 

can be addressed through dynamic simulation and optimization tools as a future study. 
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• Energy and exergy analysis of a potential carbon capture plant (with ILs) can be an 

interesting research work. 
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