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1 Abstract

The margin between pore pressure and fracture gradient in new offshore discoveries continues to
get narrower. This poses greater risks and higher cost of ensuring safety of lives, facilities, and
the environment. The 2010 Macondo blowout has fueled increased interests in monitoring
downhole parameter for early kick detection. Early detection of kick is important part of the
process safety. It provides opportunity to activate safety measures. However, after an extensive
literature search, certain gaps were identified in early kick detection research. This ranged from
limited availability of downhole drilling data from oil fields with downhole pressure and flow
measurements for research purposes to limited modelling efforts that applies machine learning to
downhole measurements in the area of early kick detection. Leveraging machine learning is
crucial because of the tremendous advancements in artificial intelligence and information
technology. This research provides a simple design approach to build machine learning kick
detection models. In the absence of field data, we collect data from existing and new experiments
that records downhole measurements. A simple model is rewarding when data processing is done
downhole. The hardware used is typically battery powered. Simpler and fewer software
operations will lead to less power consumption, smaller memory and simpler cooling
requirements. This will lead to an increase battery run time, miniaturized designs/reduced bulk
size, reduced maintenance frequency for such hardware, improved response time and lower

Costs.

In this thesis, we investigate the simplest supervised neural network-based machine learning kick
detection system to ensure high reliability using experimental data. Building upon previous Kick
experiments conducted using a Small Drilling Simulator (SDS), we present a detailed design of a
new kick experiment setup that uses a Large Drilling Simulator (LDS) and synthetic rock



samples. We also provide a detailed design of synthetic rock sample with geometrical capability
to trap high-pressure formation fluid within. The experiment setup produces new set of data from
downhole parameter monitoring that will be used in testing the machine learning model.
Parameters such as mud flow-out rate, conductivity, density, and downhole pressure from two
previous drilling experiment that monitored downhole parameters are combined to build a data-
driven model for early kick detection. This model combines an Artificial Neural Network (ANN)
with a binary classifier at its output. Several input combinations are trained and tested. The
model can be scaled to capture other types of drilling problems such as lost circulation and also
applied in the LDS system. The model was tested and evaluated with data from the SDS system,
SDS system with faulty conductivity data and different experimental drilling system. Abnormal
pressure and flow regimes in the wellbore provide early warnings and are shown to be more
significant parameters than others; however, solely relying on them can increase susceptibility to

false alarm.
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1 Introduction

1.1 Background of study

A Kick is an undesirable event during drilling, workover, and completion operations, which can
compromise the safety of rig workers, the environment, and associated assets. It is simply an
influx of formation fluid into the wellbore when the pore pressure exceeds the bottom-hole
pressure [1]. This situation occurs due to: sudden abnormality in pore pressure, hitting abnormal
geological conditions such as faults, salts, charged zones, over pressured shale, depleted zones
and anticlines while drilling, failure of pump, drop in equivalent circulating density,
swabbing/surging while tripping, loss of casing back pressure, gas, oil or water cuts in drilling

mud.

Gas kicks occur as a coupled dynamic and transient process involving gas migration through
porous and permeable formation from the underlying reservoir and multiphase flow in the
wellbore. This dynamically dampens the bottom-hole pressure initiating a positive mass transfer
rate from the reservoir into the wellbore. Consequent response of other drilling parameters
include increase in flow-out rate from the annulus, quadratic increase in pit gain, drop in
standpipe pressure, decreased equivalent circulating density, increase in the rate of penetration
caused by reduced compaction strength and improved drilling of a porous/permeable formation
[2]. It is important that the formation fluids have a low viscosity to permit flow. Early detection
can be useful in implementing the appropriate well control strategy to manage kick situations [3].
Delay in detecting kick events allows for magnification of the pressure associated with the influx
thus increasing the kill pressure required to control the situation [4], [5] and a blow-out if not

properly managed.



Early detection of kicks is facilitated with the availability of downhole measurements, efficient
communication of data to the processing devices and accurate processing of the data to identify
anomalies. The development and adaptation of downhole monitoring and data-driven approaches
are being seriously considered for field application. One such effort is led by a major oil and gas
company, Total S.A. to address the three crucial areas that facilitate early detection. The first part
is to develop miniaturized sensors that are easier to integrate to the bit/bottom-hole assembly and
the drill-string to measure bottom-hole and annular flow. The second part is the development of
wireless technology to efficiently transmit large amounts of data to the surface. The third part is
to leverage on analytics and artificial intelligence to process the large amount of data and get the

correct information out of them [6].

Given the limited availability of downhole data from the field, The Centre for Risk, Integrity and
Safety Engineering (CRISE) at Memorial University of Newfoundland is building on research
efforts over the last four years that focus on design and conducting of laboratory experiments

that monitor downhole drilling parameters for early kick detection.

The pilot experiment in this research was conducted by Nayeem et al. [7]. They developed a
downhole sensor assembly and kick injection setup that was integrated to a Small-scale Drilling
Simulator (SDS). The setup was used to study relative changes in pressure, drilling fluid density,
conductivity, and mass flow rate downhole when a kick occurs. Their work aimed to identify the
most sensitive parameters to an influx and experimentally verify the expected behavior of
monitored parameters during an abnormal well condition. They concluded that downhole
monitoring could improve kick detection with a difficult-to-achieve precision when compared to

surface monitoring.



Then Islam et al. [8] using the experimental setup in [7], experimentally tested and validated kick
detection using a risk assessment model. Multiple downhole parameters such as fluid
conductivity, fluid density, downhole pressure and mass flow rate were combined in different
logical combination to assess kick occurrence and the associated risk of a blowout and it was
concluded that a combination of flow rate and any other parameters provides very reliable basis

for detecting kicks and estimating the likelihood of blowout.

Sule et al. [9] explored the effect of a gas kick on different downhole drilling parameters using
the laboratory scale drilling rig in [7] with the addition of sensors measuring bit vibrations. They
reported the dampening effect of drilling vibrations due to a kick which became evident after
performing frequency analysis on the axial bit-rock displacement. The rock sample drilled was a
completely pre-drilled synthetic rock of medium compressive strength. This was proposed to be

a potential new kick indicator upon further field investigations.

Previous experiments in [7] and [8] involved circulation of drilling fluid through the
experimental set up only. Actual drilling was not performed; drilling fluid (water) was circulated
through the drill string. Kick was initiated by opening the valve of an air injection system at the
bottom of the pressured drilling cell (wellbore) to allow air influx into the drilling cell during
circulation. However in [9], drilling was performed on a synthetic rock sample. Yet still, kick
was initiated by opening the valve of an injection system at the bottom of the pressured drilling
cell while drilling through the rock sample. The experiments in [7], [8] and [9] were conducted

using the same laboratory scale drilling setup.



Table 1-1: Differences in kick detection experiments using downhole parameter monitoring

reported in [6], [7], [8] and the current work.

Nayeem et al. [7] | Islam et al. [8] Sule et al. [9] Current work
Design of | Yes No No Yes
experimental setup
Modification to | - No Included vibration | New drilling
experiment Sensors system, synthetic
rock geometry
Downhole Yes Yes Yes Yes
monitoring
Drilling fluid | Yes Yes Yes Yes
circulation
Drilling of | No No Yes Yes
synthetic rock
sample
Manner of kick | Manually Manually opening | Manually opening | Drilling into high
initiation opening valve of | valve  of air|valve of  air | pressure fluid
air injection | injection system injection system zone
system
Parameters Downhole Downhole Downhole Downhole
monitored pressure, drilling | pressure, drilling | pressure, drilling | pressure, drilling
fluid density, | fluid density, | fluid density, | fluid density,
conductivity, and | conductivity, and | conductivity, mass | conductivity, mass
mass flow rate mass flow rate flow rate, weight | flow rate, weight
on bit, rotary |on bit, rotary
speed, drill bit | speed, torque on
vibrations, torque, | bit,
rate of penetration,
choke pressure
Frequency No No Yes Yes
analysis
Machine learning | No No No Yes

modeling




1.2 Problem Statement (Research motivation)

There have been numerous efforts in early kick detection including those that use machine
learning (neural network, decision tree, logistic regression etc.) together with monitoring of
surface drilling parameters. There has been a relatively little effort in monitoring downhole
drilling parameters. This is because current downhole monitoring is done with bulky and
expensive Measurement While Drilling (MWD) and Logging While Drilling (LWD) tools. These
tools and data are not always readily available to researchers in the academia. With rapid
advancements in the fields of Micro-Electro-Mechanical Systems (MEMS), wireless
communications, information technology and emphasis on digitalizing the oilfield, there is need
to leverage massive computing power that will be made available from digitalization with the
investigation of machine learning and monitoring of downhole drilling parameters for early kick

detection. The gaps identified in early kick detection research include the following:

1. There are limited modelling efforts that apply machine learning to downhole
measurements in the area of early kick detection.

2. There is limited availability of downhole drilling data from oil fields with downhole
pressure and flow measurements. As a result, data will have to be collected from existing
and new experiments that records downhole measurements.

3. Kick experimental setup described in previous publications simulates kick by manually
opening an air influx system connected to the bottom of a drilling cell while circulating
or drilling through a completely predrilled rock sample. There exists the need to improve
laboratory kick simulation that involves drilling into an overpressure formation. This
requires the replication of kick-prone rock formation. There are designs for synthetic rock

formation with similar geological properties but limited knowledge on the geometric



design of such rock samples to enable them to contain trapped high-pressure kick fluids

within.

1.3 Research Objectives

This research aims to investigate the capabilities of supervised machine learning for early kick
detection using data from existing and new kick experiments. The new kick experiment
simulates drilling into an overpressure formation and monitoring of downhole drilling

parameters to generate downhole measurements.

1.4 Scope of research

The proposed research is an advancement of earlier efforts. The scope of the present work to

achieve the research goals entails:

1. The designing and casting of synthetic rock samples with similar geological properties to
those bearing hydrocarbon and geometrical capability to contain a zone of trapped high-
pressure formation fluids at its bottom. The rock sample will be confined and held in
place for drilling by a pressured drilling cell.

2. Scaling-up of the kick experimental setup design proposed in [7] using a larger drilling
system. This involves:

a. Replacing the Small Drilling Simulator (SDS) system used in in [7], [8] and [9]
with a Large Drilling Simulator (LDS) system.

b. The design and fabrication of a pressured drilling cell to hold the synthetic rock
sample in place for drilling.

c. Integrating the LDS system, pressured drilling cell and kick injection system.



d. Instrumentation of the downhole sensor assembly (for downhole monitoring) and
kick injection system for measurements.
e. Wiring of the sensors and transmitters to the Data Acquisition system to record
process data.
3. Developing experimental methodology to collect downhole data in the laboratory using
the scaled-up experimental setup and the synthetic rock samples.
4. Developing data-driven modelling methodology that leverages on machine learning
a. Comparison of several neural network architectures for building supervised
machine learning-based kick detection models.
b. Building of ANN-based kick detection models with downhole data.
5. Performing frequency analysis of new experimental data before and during the
occurrence of kick using digital signal processing technigues.
6. Testing and evaluating developed data-driven model with data from the SDS system,

SDS system with faulty conductivity data and the LDS system.

1.5 Fundamental Assumptions

The following assumptions have been made in conducting this research:

1. A conventional overbalanced drilling scenario is investigated wherein the bottom hole
pressure is expected to always exceed the pore pressure.

2. Water is used as drilling fluid. This is due to availability and ease of cleanup.

3. Air is used as formation fluid that will cause a kick. This is to mitigate risks associated
with handling other kinds of gases in the laboratory. Air is pressurized using a
compressor to attain a predefined pore pressure value and channeled to the bottom of the
wellbore using a pneumatic kick injection system.
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4. Kick occurs near the drill bit. Kicks that occur due to a previously depleted zone was not

covered

1.6 Research Outcome

This research employs an experimental methodology that relies on collecting downhole data in a
laboratory and a data processing methodology that leverages on machine learning. The expected

outcome of this research includes the following:

1. A detailed design of synthetic rock sample with geometrical capability to trap high-
pressure formation fluid within.

2. A detailed design of a new kick experiment setup that uses a Large Drilling Simulator
(LDS) and synthetic rock samples.

3. New set of experimental data from downhole parameter monitoring.

4. A data-driven model for early kick detection that employs neural network-based
supervised machine learning using historical drilling data from drilling systems with
downhole monitoring capabilities.

5. Results from testing and evaluating the performance of the data-driven model with data

from the SDS and the LDS drilling system.



1.7 Thesis structure

The rest of this thesis document is organized as follows. Chapter 2 provides review of research
articles that use a variety of methods for kick detection. This chapter segments the articles by
type of parameter monitoring vis-a-vis surface or downhole then provides general thoughts that
lead to designing the experiment for the current work. Chapter 3 presents the design of synthetic
rock samples for drilling experiments, rock geometry design to facilitate trapping of high-
pressure fluids, rock materials design, mixing, casting, and curing procedures. Chapter 4
discusses the new experimental system, system setup and the experimental methodology.
Chapter 5 presents the proposed data-driven model development methodology. This chapter
discusses the sources of data and the data processing procedures such as machine learning
problem formulation, selecting training, validation and test datasets, preprocessing, comparison
of several neural network architecture, ANN architecture design, parameter significance, model
training, testing and evaluation. It also presents the technology stack employed in processing the
data. Chapter 6 provides detailed results from testing the three trained models. Results include
values of training features for each model and their corresponding label, plot from testing with
data from SDS system, plot from testing with data from SDS system that includes faulty
conductivity data, plot from testing with data from LDS system and model evaluation metrics for
all three test cases. Chapter 7 provides a brief discussion of the current work. Finally, Chapter 8
provides conclusions and presents recommendations for the possible future extensions of the

current work.
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2 Literature review

2.1 Background

This section presents a comprehensive review of research articles published in the areas of early
kick detection by monitoring either downhole parameters or surface parameters. Irrespective of
the location of sensors, kick detection models have been developed using a variety of model-
based and data-driven methods. A summary of published works can be found in Table 2-1.
Surface parameter monitoring have been widely explored in most of these works [1], [2], [5].
[10]-[13], [10], [14]-119], [13], [3], [20], [21], [22] however fewer works have considered
downhole parameter monitoring for early kick detection such as those reported in [7], [8], [9].
Selected works related to both surface and downhole parameter monitoring for kick detection
will be discussed together with possible areas for improvement in the following subsections.
General remarks will be provided at the end of this section together with a motivation that leads

to the current work.

Table 2-1: Selected kick detection articles, type of monitoring and modelling employed.

Author Type  of | Parameters Modelling technique
monitoring

Jiang et al. | Surface Flowrate and pressure Numerical modelling:  Single

[21] phase transient temperature and

pressure coupling model to an
Unscented Kalman Filter (UKF)

algorithm
Tang et al. | Surface ROP, WOB, rotary speed and | Physics-based dimensionality
[10] bit size, flow-out rate, flow-in | reduction, along with time series

rate, Stand-Pipe Pressure | data mining
(SPP) and reference Pressure

Adedigba et | Surface Bottom-hole pressure, pore | Bayesian Tree Augmented Naive
al. [16] pressure and fracture pressure | Bayes algorithm, Fault tree
analysis, event tree analysis
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Author Type  of | Parameters Modelling technique
monitoring
Sun et al. | Surface Gas and liquid flow | Dynamic wellbore flow by
[2] parameters such as pressure, | solving the momentum
phase  distributions  and | conservation and  continuity
velocities; wellbore pressure | equations, the drift model; a
distribution, reservoir | transient reservoir model and a
properties; stand-pipe | weighted combined parameter
pressure, flow-in rate, flow- | pattern recognition model using
out rate, and pit gain piecewise approximation and
similarity measure algorithms
Hargreaves | Surface Flow rate and tank volume Model-based Bayesian
etal. [15] probabilistic approach
Sabah et al. | Surface Northing, easting, depth, | Decision Tree (DT), Artificial
[23] weight on bit, hole size, | Neural Networks  (ANNS),
pump pressure, pump rate, | Adaptive Neuro-Fuzzy Inference
shear  stress, viscosity, | System (ANFIS) and Genetic
drilling meterage, drilling | Algorithm —  Multi  Layer
time, gel strength, solid | Perceptron (GA-MLP)
percent from retort test,
formation type, bit rotational
speed, drilling mud pressure,
pore pressure and formation
fracture pressure
Tamim et | Surface Pit gain, flow differential, | Decision support algorithms,
al. [14] rate of change in penetration, | probabilistic ~ barrier  failure
changes in pump pressure model, Bayesian network model
Ribeiro et | Surface Annulus  pressure, choke | Artificial Neural Network
al. [24] pressure, water, and mud
pump frequencies, choke
opening index, flow rate and
time
Deregeh et | Surface Depth, d-exponent Artificial Neural Network and
al. [25] Adaptive Neuro-Fuzzy Inference
System, ANFIS
Chhantyal Surface Upstream pressure Dynamic artificial neural
etal. [20] networks with real time recurrent
learning algorithm, static
artificial neural network, and

support vector regression

12




Author Type  of | Parameters Modelling technique
monitoring
Unrau et al. | Surface Mud volumes and flow rates | Machine  learning  (specific
[26] algorithm not stated)
Fuetal. [3] | Surface Annular flow velocity Doppler principle
Karimi et | Surface flow in/out readings and | Transient two-phase model
al. [27] downhole pressure variations
Zheng et al. | Surface Wellbore temperature Discretized wellbore and
[11] formation heat transfer model
using Finite Volume (FV)
method.
Yang et al. | Surface Multipoint pressure | Pressure  fluctuation  model
[28] measurements considering the water hammer
effect
Nayeem et | Downhole | Downhole pressure, drilling
al. [7] fluid density, conductivity,
mass flow rate
Islam et al. | Downhole | Downhole pressure, drilling | Computational Fluid Dynamics
[8] fluid density, conductivity, | (CFD), Risk assessment
mass flow rate modelling
Sule et al. | Downhole | Downhole pressure, drilling | Frequency analysis
[9] fluid density, conductivity,
mass flow rate, Weight on Bit
(WOB), rotary speed, drilling
bit vibrations, Torque on Bit
(TOB), Rate of Penetration
(ROP), choke pressure
Nhat et al. | Downhole | Downhole pressure, drilling | Dynamic Bayesian Network
[29] fluid density, conductivity,

mass flow rate
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2.2 Surface parameter monitoring for kick detection

Previous efforts have focused on developing model-based mathematical techniques as seen in
[30],[10]-[13]. Probabilistic methods have been developed in [10], [14]-[19]. Acoustic tools
have been employed for kick monitoring in [13] to predict the response to gas influx in real time.
Ultrasonic tools have also been employed in [3], [20]. Signal processing have been used in kick
detection in [21]. It has also been used in [22] to reconstruct downhole pressure measurements in

the event of a faulty permanent downhole gauge.

The probability of the occurrence of a kick event was calculated using physics-based
dimensionality reduction, along with time series data mining approach in [10]. The authors used
this to propose an algorithm for analysis of real time drilling data to detect influx events. The
method was tested on data from offshore drilling wells. They presented two kick indicators that
integrated several drilling and circulation parameters. Parameters influencing d-exponent which
alerts of abnormal formation pressure zones were lumped to create a Drilling Parameter Group
(DPG). Parameters influencing flow and pressure were also lumped to create a Flow Parameter
Group (FPG). Parameters affecting the d-exponent include ROP, WOB, rotary speed and bit size,
while those affecting flow and pressure include flow-out rate, flow-in rate, Stand Pipe Pressure

(SPP) and reference Pressure (Py..r). The proposed algorithm in [10] works as follows:

1. First check if the input real-time drilling data conforms to drilling or non-drilling
processes.

2. If it conforms to a drilling process, it checks if it conforms to a transient operational
activity.

3. Non-conformance to a transient operational activity triggers the extraction of kick
indicators and local trend features. This enables proper initialization for probability
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analysis. Trend features include a Divergence of Moving Average (DMA) and
Divergence of Moving Slope Average (DMSA).

4. Probability analysis is done if the DMA shows an increasing trend or the DMSA shows a
decreasing trend. The Kick Risk Index (KRI), which is a weighted sum of the DPG and

FPG, is the output of probability analysis.

This approach requires setting appropriate weights when calculating the KRI. There also exists
the challenge of threshold setting to obtain a reasonable tradeoff between missed alarms and
false alarms. It was reported that from the testing of the method on offshore field data, drilling
parameters are better indicators of kick in terms of detection speed and robustness because these
parameters are measured near the drilling bits and flow parameters responded very slowly.
Despite this, they suffer a setback as they cannot detect kicks that occur during circulation or
tripping. They are limited to only active drilling periods. Flow and pressure parameters were
recognized to be relevant kick indicators for both drilling and non-drilling periods. More so,
since only surface flow parameters were considered, we can say that if flow and pressure
parameters are measured downhole, they have the potential to be more robust, faster and reliable
for kick detection than drilling parameters although both can be combined to improve the fidelity

on the resulting detection system.

Overall, downhole flow and pressure monitoring together with proposing a standard method for
choosing the appropriate window length, weighting factor and alarm threshold are areas for

further investigation based on the proposed methodology in [10].

A data-driven dynamic risk analysis methodology was proposed in [16] to predict time
dependent probability of kick occurrence. The Bayesian Tree Augmented Naive Bayes algorithm

was used to model the probabilistic relationship among primary drilling parameters; the
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developed structure is updated based on the current state of the key drilling parameters; then
tested using real drilling data. The key parameters in the structure were BHP, pore pressure and
fracture pressure while the probability of kick occurrence computed from the time variant
behavior of the key parameters is used to estimate the failure probability of the six safety barriers
from probability assessment using fault tree analysis and the probability of end state events from
the consequence assessment obtained from event tree analysis. The result of the probability and
consequence assessment are then combined to predict the risk of the different category of end

state events in a time dependent fashion.

A gas Kkick diagnosis model was proposed in [2] for deep-water operations which comprises a
dynamic wellbore flow model to extract modes of kick events through multiphase flow
simulation and a weighted combined parameter pattern recognition model using piecewise
approximation and similarity measure algorithms to generate a synthetic kick probability. The
dynamic wellbore flow model incorporated gas and liquid flow parameters such as pressure,
phase distributions and velocities. This was achieved by solving the momentum conservation and
continuity equations, relationship between gas and liquid phase velocities using the drift model, a
transient reservoir model to estimate the gas influx rate based on wellbore pressure distribution
and reservoir properties, and the relationship between stand-pipe pressure, flow-in rate, flow-out
rate and pit gain during a gas kick. The pattern recognition model first performs dimensionality
reduction by applying piecewise approximation to extract features from time series drilling data
for different parameters then similarity measurement against a set of kick and non-kick events by
calculating the Morphological distance (geometric mean of Euclidean distance and an improved
slope distance). The individual similarity result of a feature for all events was normalized by the
total sum of all similarity results. The inverse of this value yielded the relative probability for

each event to be represented by the feature. Finally, to achieve reliable multi-parameter based
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detection, the relative probabilities of kick events for different parameters were assigned
confidence degrees (weights) then summed using the Analytic Hierarchy Process method
described in [31]. The condensed relative probabilities are eventually displayed in a probability
log. One limitation of this work is the static assignment of confidence degrees using AHP to
detect dynamic kick. Drilling is a dynamic operation and the confidence degree (weights) should
be dynamically adjusted based on drilling activity. Another limitation lies in the subsequent
interpretation of the probability log. The overall kick probability reached 50% only after a kick
event was detected in pit gain data. Even if the alarm sounded when pit gain was 11.1% of
traditional threshold value, it does not reflect the benefit of combined parameter-based weighting

as the developed model in [2] followed the most sluggish parameter in the parameter set.

A Kkick detection system was proposed in [15] for Deepwater applications which uses model-
based Bayesian probabilistic approach and presented results from the field. The traditional
threshold approach was not followed, the system comprised of two components; a model set
which contains different length of time series information of flow rate and tank volume regimes
during normal (connections, tripping etc.) and abnormal drilling event (different rates of kick)
and a model matching Bayesian framework which probabilistically matches the incoming data in
the data buffer to all models in the model set. A match with high probability of resembling a kick
event in the model set will be flagged. The data buffer is a sliding window with length up to that
of the longest model in the model set. The tank volume system was used as a back up to the flow
rate system to track small rates of influxes that would not be captured in the kick flow rate model

set.

The data is streamed into a buffer in a sliding window fashion, probabilistic matching using

Bayes rule between the window and each model based on their length is carried out. As
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described earlier, the model set contains different families of drilling events. The probabilities
calculated were normalized then grouped by families. For kick detection, normalized kick
probabilities for different kick rates were summed up and displayed on a probability log. An
alarm goes off when the kick probability is up to 0.9. This is useful as it maintains time-based
profile of kick conditions during drilling operations and can inform the operators of events that
have occurred. Normalizing the kick probabilities to 1 in each window is not straightforward as
all models in the model set were said not to have same length. Very short models may be
compared more than once in a single window which raises the question on which comparison is
to be considered when normalizing, although it was stated that the difference in model length
will reduce the effect of varying levels of noise on the sensitivity of the system. The procedure
for standardizing the models in [15] to capture different operating conditions is unclear when

considering differences in magnitude and ramp rates of the models.

Assessment of drilling operations to predict kicks and prevent blowout using a leading indicator-
based approach was proposed in [14]. Decision support algorithms were employed to understand
kick progression scenario while probabilistic barrier failure model was employed to assess the
performance of the primary well control barrier. The decision support algorithms and
probabilistic barrier failure model were combined to build a Bayesian network model to obtain
the probability distribution of real-time parameters as kick progresses. This serves as a means of
detecting kicks as they propagate and appropriate actions to regain well control. The framework

for categorizing the relevant leading indicators was developed in [32].

An early gas kick detection method that combines a transient temperature and pressure coupling
model to an Unscented Kalman Filter (UKF) algorithm which is suitable for water based muds

have been proposed in [21]. This method requires:
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1. Developing a gas kick detection model from the single-phase transient temperature and
pressure coupling model under normal drilling conditions. Factors will be applied to
flowrate and pressure state values to model the effect of a gas kick. These factors will be
the parameters to be estimated and not the actual states.

2. Synthetic pressure and liquid flow rate data to estimate the four kick detection factors
which includes outlet flow rate factor and three pressure factors in the annulus, drill
string and bit nozzle respectively from the gas kick detection estimator using the UKF
algorithm

3. Performing a generalized likelihood ratio test on a vector containing the estimated
factors. The test result is compared to an adaptive detection threshold to detect changes in

the mean of the pressure and flow rate factors that could indicate a gas kick.

The detection threshold was based on parameters estimated from normal drilling conditions. The
method was compared with delta flow and pit gain monitoring method and reported to perform

better with reduced detection time and high sensitivity to small gas kick rates [21].

Permanent Downhole Gauge (PDG) pressure reconstruction methodology based on digital signal
processing on Christmas tree pressure measurement was proposed in [22] to demonstrate its
superiority over neural network and transfer function estimation-based methodologies in oil and
gas production using real well data. While this does not relate directly to drilling, it provides
some insight for building new kick detection systems. This work proceeded under the
presumption that information about the downstream/downhole pressure is contained in the well
surface pressure measurement since the information flows from the bottom to the topside of the
well with wave reflection and water hammer effect subdued by the large distance between well

surface/sea bed and downhole measurements.
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Available measurements for this study were permanent downhole gauge pressure near the
reservoir, christmas tree pressure on the seabed, surface pressure readings, gas-lift flow, and
choke opening. Slug mechanisms appear as high peaks in the frequency domain of the pressure
measurements which occurs at the same frequency for all three measurements. The difference is
the addition of information as different frequencies and amplitudes but with the same principal
components. However, all three measurements look different in the time domain. Both neural
network and transfer function estimation models used christmas tree pressure, gas lift flow and
choke opening to reconstruct the PDG pressure while the digital signal processing method based

on Fourier analysis and filtering used only the christmas tree pressure.

The proposed methodology requires spectral analysis of the christmas tree pressure to obtain the
cutoff frequency of the low pass filter and design of low pass filter using the obtained cutoff
frequency. The filter was applied to the christmas tree pressure measurements to reconstruct the

downhole pressure. This method requires no model and requires only one measurement reading.

The success reported in [22] raises the question of designing a digital signal processing-based
kick detection system that extracts downstream pressure information and transients from top
stream pressure measurements then uses it as a basis for detecting potential drilling problems

such as kicks.

Kicks could be induced in a zone above the drilling bit as a result of lost circulation which
dampens the equivalent circulating density of the circulating fluid. Prediction models such as
Decision Tree (DT), Artificial Neural Networks (ANNSs), Adaptive Neuro-Fuzzy Inference
System (ANFIS) and Genetic Algorithm — Multi Layer Perceptron (GA-MLP) were employed in
[23] to predict the severity of a lost circulation using field data from Marun oil field in Iran. It

was concluded that due to the values of regression coefficient for all models, they could be
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accurate for predicting amount of lost circulation fluid. A closer look reveals that DT was more
accurate relative to other models since a large amount of variables including northing, easting,
depth, weight on bit, hole size, pump pressure, pump rate, shear stress, viscosity, drilling
meterage, drilling time, gel strength, solid percent from retort test, formation type, bit rotational
speed, drilling mud pressure, pore pressure and formation fracture pressure were used as input
into the models. It was also stated in [23] that ANN followed by ANFIS produced better results

if a small number of variables is considered.

Neural network controllers capable of regulating the annular bottom hole pressure (BHP) in real-
time under Kick, lost circulation and pipe connection procedures have been developed and tested
in [24] using data from an experimental drilling unit and validated with real data from an
offshore oil well. This was achieved by predicting the BHP, then using the predicted value to
manipulate the choke valve opening index in order to regulate equivalent circulating density
(ECD). This found application in a managed pressure drilling (MPD) scenario but could also be
applied to a conventional overbalanced drilling scenario by predicting the pump pressure which
becomes the manipulated variable. The controller was compared to a classic Pl controller and

reported to be a suitable adaptive control scheme for real time closed loop implementation [24].

A model for estimating the BHP in vertical wells with multiphase flow using hybridized
Artificial Neural Network with backpropagation training and Optimized neural networks using
each of Grey Wolves Optimization (GWO), Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA) respectively was proposed in [33] and tested using field data from oil fields in
Algeria. The input parameters were gas flow rate, oil flow rate, water flow rate, gas gravity, oil
gravity, inside pipe diameter, well head pressure, well head temperature, gas/oil ratio, and depth.

All three hybrid models were reported to outperform mechanistic models while comparison of
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the hybrid ANN models showed that the hybrid model with Grey Wolves Optimization for
optimizing the weights and threshold of the neural network showed superiority based on

accuracy ranking.

Acrtificial Neural Network predictive model for multiphase wellbore flow was developed in [34]
using data from a numerical simulator to predict the BHP in the wellbore. The transient
multiphase wellbore simulator captured the dynamics of different phase volume fraction
distribution in the wellbore, slip (velocity difference between phases), phase compressibility,
friction and release of gas in the wellbore as the pressure drops below bubble point while the
input parameters were surface flow rates, wellhead pressure and wellbore geometry. Downhole
pressure data in production wells that provides insights from reservoirs to improve oil and gas
recovery has been investigated in [17] using Fisher’s Discriminant Function (FDF) and Mean
Deviant Function (MDF) to calibrate pressure changes in the downhole pressure gauge,
Spatiotemporal Graphical Modelling (STGM), Synthetic Minority Oversampling Technique
(SMOTE) and multilayer Artificial Neural Network (ANN) to classify risk and Long Short Term
Memory (LSTM) and Fisher’s Discriminant Function/Spatiotemporal based multilayer Artificial
Neural Network (FS-MLP) to predict future risk characteristics . The noise associated with data
acquisition and fluctuation of pressure as a result of changes of reservoir pressure was identified
as critical problems in applying downhole pressure and temperature data making failure
prognosis difficult especially when the data is collected over a long period of time. Real well
data was acquired from an onshore well in Australia. While the application domain is enhanced
oil and gas recovery in reservoirs and production wells, the technique can be studied in relation
to early kick detection. Historical time series of downhole pressure was modelled to classify

operational risk levels of the downhole pressure gauges to prevent the failure of the gauge that

22



occurs when the pressure exceeds a critical threshold after establishing normal and abnormal

operating condition of the gauge [34].

Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System, ANFIS were combined
in [25] for early kick assessment. The system accepts input dataset, perform Gaussian
normalization then uses subtractive clustering to extract a set of rules that generates a fuzzy
inference system. The generated inference system is fed as input into an ANN to obtain d-
exponent which captures the interaction between ROP, RPM, WOB and Hole (bit) diameter
(excluding mud-weight). During testing, depth is fed as the only input and d exponent is the
output. Given that depth is always fixed between the surface and the desired drilled depth, it is
unclear how depth will reliably generate the d-exponent as the zone profile changes. The d-
exponent is a better indicator of an abnormal pressure zone which may be prone to kick rather
than detecting the actual occurrence of kicks. Kicks that occur due to depleted layers may be

difficult to capture by this technique [25].

Dynamic artificial neural networks with real time recurrent learning algorithm was used in [20]
and shown to perform better than static artificial neural network and support vector regression
models when used to estimate the flowrate in an open channel venturi-rig of non-Newtonian
drilling fluids measured from ultrasonic level measurements. The upstream pressure relative to
the venturi flume in the control section was used to estimate flow rate. Different learning
algorithms were compared, and it was found out that despite backpropagation through time and
extended Kalman filters methods fast convergence, real time recurrent learning algorithm was
more accurate and computationally less expensive. They also showed that an alternative to using
expensive flow devices such as Coriolis mass flow meters for flow measurement is an open

venturi channel [20]. This is a single parameter approach to the task of early kick detection.
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Reliability of detection system can be improved when multiple parameters and their relative

interaction are combined.

A system that keeps track of normal values of mud volumes and flow rates during different
phases of drilling (making connections, putting and pulling pipes, transferring mud, changes in
pump rate, increasing depth) was presented in [26]. The values are used as a basis to set adaptive
alarm threshold with the aim of reducing false alarms. The system was tested on 12 hours of real-
time drilling data and was reported to produce no false alarm. The machine learning adaptive
threshold algorithm which was used was not explained. It was presented as a black box model
creating ambiguity and knowledge gap on the part of the reader. Reasons for not explaining the
algorithm was also not stated. The authors rightly pointed that connections and pulling/putting
pipes may cause considerable variations in certain drilling parameters which can trigger false
alarms in traditional alarm systems but did not discuss kicks that could potentially occur in such

scenarios. The tight alarm threshold setting increases the risk of a missed alarm.

The authors in [3] reported developing an early kick detection prototype in the laboratory for
deep-water drilling operations. The prototype monitors annular flow velocity with an ultrasonic
sensor under the mudline using the Doppler principle and studied the effect of changes in drilling
fluid density and gas injection rate on the measured return velocity. They used the return velocity
as the main indicator of kick. They were also able to show that the sensors will operate well at
bearing pressure up to 15MPA. The ultrasonic device non-intrusively measures and records the
Doppler frequency shift from which the annular flow velocity can be determined. A 508mm
diameter riser and 139.7 diameter drill pipe system was simulated with a 244.5mm diameter
casing as riser and 73mm diameter tube as drill pipe, the ultrasonic sensor was placed at the

lower part of the casing to simulate positioning near the mudline with the ultrasonic flowmeter
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connected. Water based mud whose viscosity was reduced, and density increased was used as
drilling fluid. Return velocity was calculated and measured at different flow rate and drilling
fluid density for scenarios with and without gas injection. It was shown that Doppler principle
can detect gas influxes from return velocity and ultrasonic attenuation varies directly with
drilling fluid density and gas injection rate. It was also observed that changes in the ultrasonic
wave propagation velocity in the drilling fluid impacted the measurement accuracy. Increase in
drilling fluid density and gas injection rate resulted to decrease in measurement accuracy This
points out the limitation of this study since inaccurate measurements gives room for delayed
detection. The paper did not show the measurement error for one channel measurement when gas

was injected [3].

A transient two-phase model that automatically selects the best MPD-CBHP response in the
event of an influx based on the size of an influx was reported in [27]. To determine the size of

the influx and detect it early, they combined flow readings and downhole pressure variations.

The impact of a well kick on wellbore temperature distribution that could be seen as changes in
the flowing state and various properties of the drilling fluid motivated the work described in [11].
They developed discretized wellbore and formation heat transfer model for normal circulation
and kick conditions in open hole formation for single phase incompressible fluids using Finite
Volume (FV) method. This was solved with under-relation iterative method with data from the
analytic model. The occurrence of well kick was seen to have significant influence on the

formation radial temperature distribution and temperature difference profile.

It was pointed out in [28] that kick diagnosis can be error prone when detection is inferred from
pressure fluctuation in a single measured point. This was shown from a wellbore fluctuation

model and a laboratory experiment with BHP measured at two points. A pressure fluctuation
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model considering the water hammer effect at the initial occurrence of a gas kick was developed
to capture transient annular pressure variation during the kick. Then, based on the differences
and consistencies between two measurement points, a dual measurement point approach was
proposed. They found out that annular pressure measurements at the set points were affected by
the bottom hole differential pressure, well depth, borehole diameter and formation permeability;
kick capture time reduced with decrease in well depth and borehole diameter; kick capture time
also reduces with increase in formation permeability and negative bottom hole differential
pressure; and that distance between the measured points is mainly determined by the borehole

diameter [28].

The need to automate well-control response to a kick occurrence led [1] to develop an integrated
system capable of early reliable detection of kicks that could occur during drilling or circulation,
connections and tripping in/out using two independent sets of sensors with different sensor

technology for each parameter and distinct audio alarm systems.

2.3 Downhole parameter monitoring for kick detection

Identifying and recovering commercial quantity of hydrocarbons are crucial goals of any drilling
campaign. These hydrocarbon fluids are usually trapped beneath several layers of rock
formation; thus, they may exhibit varying properties due to compression by the overlaying rock
formation. As drilling through hydrocarbon-bearing rocks progresses, one may encounter porous
and/or rock formation layers containing formation fluids that may be higher or lower than the
bottom hole pressure in the wellbore. Surface monitoring alone has been seen to have limited
capabilities in monitoring the risks due to mechanical problems, gas solubility in drilling fluid,

abnormal formation fluid properties, wellbore breathing and ballooning etc. [6]. Drilling fluid
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can be lost in zones with low pore pressure. This loss of circulation fluid increases the potential
of a kick once a high pore pressure zone is reached. It is therefore reasonable to monitor drilling

fluid and formation fluid parameters downhole while drilling.

Highlighting that downhole monitoring is beneficial in a lost circulation induced kick scenario to
enhance blowout prevention, a laboratory scale drilling rig model with a kick injection setup was
reported in [8]. The study investigated relative changes in mass flow rate, drilling fluid density,
electrical conductivity, and pressure in downhole when kick occurs. Drilling fluid was circulated
through the experimental setup without actual drilling of a rock sample. The response of the
circulation fluid parameters to an influx was used to identify the parameters that are most
sensitive. Water was used as a drilling fluid and air was used as the formation fluid. A
methodology to detect kicks without false alarms based on the experimental setup was also

developed. The methodology detects the occurrence of a kick when

1. A minimum of two out of the four observed parameters exhibit variations beyond a
predefined threshold.

2. This variation is sustained for longer than 10 s.

The thresholds were +15 psi for downhole pressure and +-5% for mass flow rate, density, and
conductivity. This experiment was conducted maintaining two sets of pump flow rate (12
USGPM and 16 USGPM) for two sets of constant pressure margin (20 psi and 30 psi) between
different downhole pressure and the air inject pressure. It was observed that all parameters gave
indication of an influx, but downhole pressure and mass flow rate gave a quicker indication. The
delay in response of density and conductivity parameters was attributed to sensor placement. The

pressure response downhole was seen to follow the formation pressure (air inject pressure).
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The limitation of the adoption of the methodology in [8] is the unavailability of miniaturized
flow meters and density meters that can be deployed downhole. Areas identified for
improvement includes experimentally comparing surface and downhole parameter monitoring,
monitoring drilling fluid temperature, using water and oil-based drilling fluids, using water
(liquid kick) as influx fluid and development of numerical models for simulating wide range of

kick scenarios.

Experimental testing and validation of kick detection capability of a bowtie blowout risk
assessment model based on changes in downhole parameters such as conductivity, density,
pressure and mass flow rate were reported in [7]. A laboratory scale downhole sensor assembly
and kick injection setup similar to that used in [8] was employed to generate data. Multiple
downhole parameters were combined in different logical combinations to assess kick occurrence
and the associated risk of a blowout. The bowtie approach combines fault tree analysis for kick
detection and event tree analysis for safety barriers. It was concluded that a combination of flow
rate and any one of the other parameters namely downhole pressure, electrical conductivity, and
density of the resulting multiphase mixture due to an influx provides very reliable basis for
detecting kicks and estimating the likelihood of blowout. Areas identified for improvement
includes exploring blowout prediction models based on real time observation such as Dynamic

Bayesian Network (DBN) models [7].

Downhole drilling parameters were explored for kick indication in [9] using a laboratory scale
drilling rig. The significant finding reported was the dampening effect of drilling vibrations due
to a kick. This was validated with field reports and confirmed by performing frequency analysis
on the axial bit-rock displacement. The rock sample drilled was a synthetic rock of medium

compressive strength. It was reported that a combination of bit-rock vibrations with dynamic
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drilling models enables prediction of the response of a drilling system surface parameter such as
choke pressure or standpipe pressure to a kick. Downhole parameters such as Weight On Bit
(WOB), downhole pressure, rotary speed, drilling bit vibrations, Torque On Bit (TOB), Rate Of
Penetration (ROP), and surface parameters such as choke pressure, return fluid mass flow rate,
volume flow rate and density were measured. The effect of a kick on these parameters were
observed and discussed. The significant decrease in the amplitude of the axial bit-rock
displacement could be visualized in the time domain and showed up as higher order damped
signals in the frequency domain. This was proposed to be a potential new kick indicator upon

further field investigations [9].

Data-driven Bayesian Network has been applied in complex systems to solve problems that do
not require a model-based method if accurate solution is to be found. It was applied in [29] to

model downhole parameters for early kick detection.

2.4 General Remarks

Flow data is a widely acknowledged indicator of a kick; however, it suffers from noisy
measurements as a result of flow sensors used to collect the data. Flow in rate is measured with
pump stroke while flow out rate is measured with flow paddle [15] as Coriolis flow meters can
be costly. Threshold detection has been the main technique applied to monitored parameters
from previous kick detection systems [10]. It could either be sounding an alarm when the
parameter exceeds a predetermined level or when a step change is observed, this could be as a
result of a kick or a lost circulation. Kick indicators such as flow out rate and mud volume varies
during rig activities such as pipe connections, tripping, increasing pump rate, mud transfer and

increasing depth and could trigger traditional threshold alarms [26]. Kicks usually occur as
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ramps thus sacrificing the performance of such system to how well the step sizes are tuned to
imitate a ramp [15]. Most simple kick detection systems do not have the sensitivity required for
applications in deep water environment, especially in the presence of heaves and as Kick
tolerance drops. Predictive models were built to model fluid circulation patterns on the rig. Such
models considered connections and tripping but still used windowed thresholds for detection. It
is also important to note that flow models are unique for different rigs and can be complex. There
have been claims to improving the noise handling capacity of newer sensors but we are yet to see
systems that can adapt to changes in noise levels [15], [35]. Also, when building predictive
models, it is important to train with historical data collected in similar operating conditions.
Deepwater wells are not as numerous as onshore wells, and hence the insufficiency of kick
events data for a priori evidence, threshold determination, and network training, whichever

method is used [2].

Pore pressure prediction gives early warning of abnormal pressure zones wherein a kick is likely
to occur. Traditional methods such as d-exponent and sigma log do not account directly for the
petrophysical properties of the formation but indirect pressure indications and may be less
reliable when compared against resistivity data from the MWD tool. As a result, Kick detection
methods that rely chiefly on d-exponent may be less reliable [4]. As offshore drilling goes deeper
into the oceans, the safe shut-in volume for kick fluid into the well bore decreases [15], the
pressure margin between the fracture gradient and the pore pressure of the underlying formation
drops exposing rig men to higher chances of kicks and losses [9], [27]. It takes more time for a
kick to be detected on the derrick floor in offshore drilling when compared to onshore drilling as

delta flow and pit gain are measured on the surface [10].
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It was pointed out in [36] that kick modelling is dominated by deterministic numerical models
which are approximations of a process highlighting the underlying dominant effects, capturing
disturbances and uncertainties in such processes are intractable and further magnified by
distortions in sensor data. The choice of data-driven modelling captures uncertainties and

disturbances inherent in the monitored process.

Considering the above remarks and observations from literature reviewed, gaps identified in

early kick detection research include the following:

1. There are limited modelling efforts that apply machine learning to downhole
measurements in the area of early kick detection.

2. There is limited availability of downhole drilling data from oil fields with downhole
pressure and flow measurements. As a result, data will have to be collected from existing
and new experiments that records downhole measurements.

3. Kick experimental setup described in previous publications simulates kick by manually
opening an air influx system connected to the bottom of a drilling cell while circulating
or drilling through a predrilled rock sample. There is limited laboratory effort in
simulating kick conditions by drilling into a rock zone of high-pressure formation fluid.

4. There are designs for synthetic rock samples with similar geological properties but
limited knowledge on geometric design of such synthetic rock samples to enable them to

contain trapped high-pressure air within.

Consequently, we propose that these gaps may be addressed by a combination of data-driven
modelling and downhole parameter monitoring as it presents a huge reward in achieving early

kick detection in any drilling campaign. It is also important to design a new experiment in which

31



a rock sample is designed to trap high-pressure fluid and kick happens once the drill bit drills

into the high-pressure zone.
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3 Synthetic rock sample design, casting, and preparation

3.1 Introduction

Sedimentary rock samples bearing trapped oil and gas are not readily available onshore in
Newfoundland, Canada. This motivated the design of highly consistent synthetic rock samples
that will h