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Abstract—Speedup is one of the main performance charac-
teristics of distributed applications. It is defined as the ratio
of application’s execution time on a single processor to the
execution time, of the same workload, on a system composed
on N processors. This paper analyzes, in very general terms,
the speedup that can be achieved in distributed environ-
ments and shows why some applications scale very well with
the number of processors while others have strict limitations
on the speedup that can be achieved in distributed environ-
ments. The existence of such limitations simply means that
a straightforward distribution of a (sequential) workload is
not a satisfactory approach, and new algorithms are needed
to use distributed environments in a more satisfactory way.
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I. Introduction

The performance of computer systems can be increased
either by increasing the performance of uniprocessors, or by
increasing the number of processors in a (concurrent) sys-
tem. The current computer technology favors concurrent
systems because they are more economical [7]. Moreover,
distributed systems are often considered as a less expen-
sive and more easily available alternative to parallel sys-
tems [15]. The Beowulf cluster [16], [18] is probably the
most popular example of a system composed of (many)
standard (or “off-the-shelf”) components, connected by a
communication medium that exchanges messages among
the components of the system. Distributed systems can
be tightly coupled, with a high–performance interconnect-
ing network, or can be loosely connected by a local area
network or even Internet [5].
As the CPU performance and communication bandwidth

increase, distributed computing is becoming an attractive
platform for high–performance computing. Although the
number of practical applications of distributed computing
is still somewhat limited [6] and the challenges – in par-
ticular, the standardization – are still significant, there are
some spectacular examples of using thousands and even
millions of processors working in a coordinated way on the
same problem.
In distributed applications, the total workload is divided

among the processors of the system. One of the main per-
formance characteristics of a distributed application is its
speedup [17], which is usually defined as the ratio of the
execution time on a single processor, T (1), to the execu-
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tion time of the same workload on a system composed of
N processors, T (N):

S(N) =
T (1)

T (N)
.

The speedup depends upon a number of factors which
include the number of processors and their performances,
the connections between the processors, the algorithm used
for the distribution of the workload, etc. Some of these
factors may be difficult to take into account when estimat-
ing the speedup of a distributed application. Therefore,
in many cases, a simplified analysis is used to characterize
the steady–state behavior of an application. This simpli-
fied analysis is based on a number of assumptions, such as
a uniform distribution of workload among the processors,
constant communication times, and so on.
This paper estimates the speedup of several distributed

applications showing that for some applications the per-
formance increases linearly with the number of available
processors, while other applications exhibit strict limita-
tions on the speedup that can be achieved in distributed
environments.

II. Large Sparse Linear Systems

The solution of large, sparse systems of linear equations
is a common part of many computational techniques. Large
sparse systems of linear equations are created by the finite
element method, they arise in analysis of electronic cir-
cuits (in the frequency domain), in the solution of Markov
chains, and many others. For large sparse systems of equa-
tions, iterative methods [3], [4], [8] are often preferable to
direct methods because they are less demanding with re-
spect to memory requirements and have low computational
demands per iteration, their convergence, however, can be
a challenge.
For distributed processing, the (numerous) equations are

split into approximately equal groups allocated to different
processors. The iterative process repeatedly executes the
following three consecutive steps:

1. the current approximation to the solution is distributed
to all processors,
2. parts of the new approximation to the solution are de-
termined (concurrently) by the processors,
3. the new approximation is collected from all processors
and the convergence is checked.

The first step typically uses a broadcast (or multicast)
operation, and it can be assumed that its execution time,
Tb, does not depend upon the number of processors (in fact,
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it usually depends on this number, but this dependence is
ignored here as it is rather inessential). The last step re-
quires a transfer from all processors to a single processor
which performs the convergence check, so the transfers are
performed sequentially. It is assumed that the total execu-
tion time of this step is equal to N ∗ Tr, where Tr is the
communication time of a single processor. Although Tr de-
pends upon N , the dependence is not very strong [14], and
is neglected here.
Let Ts denote the total (sequential) computation time

of one iteration. The (approximate) time of a distributed
execution of a single iteration is then:

T (N) = Tb + Ts/N +N ∗ Tr.

For simplicity, it can also be assumed that Tr = Tb,
which is an oversimplification, but not very significant, as
it appears. With this additional assumption, the speedup
is:

S(N) =
Ts

Ts/N + (N + 1) ∗ Tr
.

Let rcomp/comm denote the ratio Ts/Tr, i.e., the ratio of
total (sequential) computation time (per iteration) to the
communication associated with a single processor (such a
ratio makes sense only for programs with cyclic behavior).
Then the speedup becomes a function of two variables, N
and rcomp/comm:

S(N) =
rcomp/comm

rcomp/comm/N +N + 1
.

Fig.1 shows the values of S(N) for N = 2, ..., 20 and for
rcomp/comm = 10, ...., 100.
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Fig.1. Speedup of a distributed iterative solver.

Reasonable speedups (around 5) can be obtained only
when the computation–to–communication ratio is suffi-
ciently high. The best speedup is obtained for a rather
small number of processors (5 to 10); for a larger number
of processors, the execution time actually increases as it is
dominated by the communication time.
It should be observed that the simplifying assumptions

are not really important as they affect terms which do

not have significant influence on the speedup, especially
for larger values of N .
For this applications, when the number of processors

is large, the communication time becomes the dominat-
ing component of the execution time. In order to reduce
the communication time, the results can be collected in a
hierarchical way, in which first the results of computations
are collected in groups of, say, K processors, and then the
results of groups are combined together. It can be shown
that the number of groups that minimizes the total com-
munication time is equal to

√
N , and then the speedup

becomes:

S(N) =
rcomp/comm

rcomp/comm/N + 2 ∗
√
N + 1

.

Fig.2 shows the values of S(N) for N = 2, ..., 20 and for
rcomp/comm = 10, ...., 100 for this modification.
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Fig.2. Speedup of a modified iterative solver.

The relation between the speedup and the number of
processors is quite different in this case, better speedup
values can be obtained then previously, and the speedup is
much less sensitive to the number of processors. For very
large values of N , further improvement can be obtained by
additional levels of the hierarchical collection of results.

III. State Space Exploration

A popular approach to the verification of discrete–state
systems is based on the exhaustive exploration of their state
spaces to check if all states which are reachable from the
initial state(s) satisfy the required conditions (e.g., mu-
tual exclusion, boundedness, and so on). For large net
models, such exploration of the state space can be quite
time-consuming, and the state space can easily exceed the
resources of a single computer system. The availability of
distributed systems offers an attractive alternative to the
traditional sequential reachability analysis.
In distributed reachability analysis, the (yet un-

known) state space is partitioned into n disjoint regions,
R1, R2, ..., Rn, and these regions are constructed indepen-
dently by n identical processes running concurrently on N
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different machines (most often N = n). At the end, the
regions can be integrated in one state space if needed.

There are several approaches to the distributed reacha-
bility analysis. Many results and implementation details
for parallel reachability analysis on shared–memory multi-
processors are given in [1], [2]. In shared–memory systems,
however, the processors are tightly connected, so inter–
processor communication is quite efficient, which makes
such systems significantly different from loosely connected
collections of workstations or PCs. Distributed state space
generation described in [12] is organized into a sequence
of phases, and each phase contains processing of currently
available states followed by communication in which non-
local states are sent to their regions (i.e., processors). The
next phase begins only after completion of all operations
of the previous phase. The generation of the state space is
thus similar to the solution of linear systems discussed in
the previous section. Reasonable values of speedup were
reported for small numbers of processors (2 to 4) and for
large state spaces.

An approach described in [11], [13] is a straightforward
modification of the sequential algorithm for state space gen-
eration:

1. Sequential state space generation:
2. var States := ∅; (* set of states *)
3. unexplored := ∅; (* queue of states *)
4. begin
5. for each s in IntitalStates do
6. States := States ∪ {s};
7. insert(unexplored, s)
8. endfor;
9. while nonempty(unexplored) do
10. state := remove(unexplored);
11. for each s in NextStates(state) do
12. if s /∈ States then
13. States := States ∪ {s};
14. insert(unexplored, s)
15. endif
16. endfor
17. endwhile
18. end.

where IntialStates denotes the set of initial states, and func-
tion NextStates(s) determines the set of successor states of
state s.

Distributed generation of the state space uses a parti-
tioning function, region(s), which assigns each state s to
the region to which it belongs. The detailed definition of
this function depends upon the representation of the state
[12], [11], but is assumed that this function uniformly dis-
tributes the states over the regions (which may not be quite
simple to accomplish because the state space is not usually
known in advance).

Each of the processors constituting the distributed sys-
tem analyzes states belonging to one of the regions. For
each analyzed state, the set of successor states is deter-
mined. A successor state can be in the same region (in
which case it is called a local state) or in a different region
(in which case it is called an external state). All external
states are sent to regions (i.e., processors) determined by
the partitioning function.

In order to perform state analysis concurrently with com-
munication, each processor runs three processes: the An-
alyzer, responsible for processing the states, the Sender,
responsible for sending messages to other processes, and
the Receiver, responsible for receiving messages from other
processes and for the termination detection [11], [13]. Since
the Analyzer, Receiver, and Sender processes for each re-
gion reside on the same processor, they communicate by
shared variables. The Receiver process passes the data (i.e.,
states) received from other processors to the Analyzer pro-
cess using a shared buffer recv buff, while the Analyzer pro-
cess passes all external states to the Sender process using
another shared buffer send buff.
Processes residing on different processors constitute a

“virtual machine”; they communicate by exchanging mes-
sages using a popular message passing library [9].
The distributed reachability analysis is started by creat-

ing the Analyzer processes and sending the initial states to
the corresponding processors:

1. Initialization of distributed state space generation:
2. begin
3. get N and the description of all processors;
4. for i := 1 to N do
5. create Analyzer on processor[i]
6. endfor;
7. for each s in InitialStates do
8. send(s, processor[region(s)])
9. endfor
10. end.

Each Analyzer processes the states from the internal
queue unexplored (local states) and from recv buffer (non–
local states), with non–local states taking priority over the
local ones:

1. Analyzeri:
2. var Statesi := ∅; (* set of states *)
3. unexplored := ∅; (* queue of states *)
4. cont := true; (* continuation flag *)
5. begin
6. create Receiver, Sender on this host;
7. while cont do
8. if empty(recv buffer) ∧ nonempty(unexplored) then
9. state := remove(unexplored);
10. new := true
11. else
12. state :=get(recv buffer);
13. if state = null then
14. cont :=false
15. else
16. new := state /∈ Statesi;
17. if new then
18. Statesi := Statesi ∪ {state}
19. endif
20. endif
21. endif;
22. if cont ∧ new then
23. for each s in NextStates(state) do
24. if region(s) = i then
25. if s /∈ Statesi then
26. Statesi := Statesi ∪ {s};
27. insert(unexplored, s)
28. endif
29. else
30. put(send buffer, s)
31. endif
32. endfor
33. endif
34. endwhile
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35. end.

A global termination detection algorithm is interleaved
with the computations, repeatedly checking if all processors
have finished their tasks [11]. When global termination is
detected (i.e., when all Analyzer processes are waiting on
get operation – line 12), a special null state is sent to all
Analyzer processes to terminate their operation (lines 13,
14).

Let the (average) time needed for analysis of a single
state be denoted by Ta, and the (average) time of send-
ing one state from one processor to another by Tc. For
the ideal, uniform distribution of workload among the pro-
cessors, and uniform distribution of states among the re-
gions, assuming the steady–state conditions in which for
each analyzed state there is one new generated state which
is local with probability 1/N and external with probability
(N − 1)/N , and sequential transmission of messages in the
interconnecting network, the speedup can be expressed as:

S(N) =
N ∗ Ta

max(Ta, (N − 1) ∗ Tc)

Let rcomp/comm be the ratio of Ta/Tc. Then the speedup
becomes a function of two parameters, N and rcomp/comm,
as before:

S(N) =
N ∗ rcomp/comm

max(rcomp/comm, N − 1)

Fig.3 shows the values of S(N) for N = 2, ..., 20 and for
rcomp/comm = 1, ...., 25.
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Fig.3. Speedup of a distributed state space generation.

For rcomp/comm > N − 1, the speedup is equal to N , its
ideal value, because the communication is being done “in
the background” of computing, and it does not affect the
execution time. However, when rcomp/comm < N − 1, the
speedup degrades linearly with the value of rcomp/comm; in
this case, the performance of the distributed application
is determined by the performance of the interconnecting
network.

IV. Massively Distributed Computing

The SETI@home project, managed by a group of re-
searchers at the Space Science Laboratory of the University
of California at Berkeley, is the first attempt to use large-
scale distributed computing to perform a sensitive search
for radio signals from extraterrestrial civilizations [19].
SETI@home uses a dedicated L band receiver at the Na-

tional Astronomy and Ionospheric Center’s 305-meter ra-
diotelescope in Arecibo, Puerto Rico. The receiver pro-
vides a beam of 0.1 degree width which is digitized and
converted to a 2.5 MHz-wide band centered at the 1,420
Mhz hydrogen line. It is believed that this frequency is one
of the most likely locations for deliberate extraterrestrial
transmissions. Digitized data are recorded continuously on
magnetic tapes, along with data on telescope coordinates,
time and some additional information. A single tape (35 gi-
gabytes) records 17 hours of observations. Tapes are mailed
to Berkeley for analysis; the complete survey requires 1,100
tapes to record the total of 39 terabytes of data. Observa-
tions began in October 1998.
At Berkeley, data are divided into small “work units” by

first splitting the 2.5 MHz bandwidth into 256 sub-bands
(by means of a 2048 point FFT and 256 eight point inverse
transforms), an then dividing each 9,765 Hz sub-band into
units of 220 samples (which corresponds to 107 seconds of
recorded data). Subsequent work units overlap by 20 to 30
seconds to allow full analysis of signals that might be on the
boundary of units. Work units are sent over the Internet
to the client programs around the world for the bulk of the
data analysis. A database of work units, their processing
status, and returned results is maintained in Berkeley.
SETI@home distributes client software for about 50 dif-

ferent combinations of processor and its operating system
[19]. For Microsoft Windows and Apple Macintosh com-
puters, the software installs itself as a screen saver, pro-
cessing data only when the computer is not used. For other
platforms, it runs in the background and becomes inactive
whenever the user executes his jobs.
The client software, after receiving a work unit, performs

a baseline smoothing to remove any wideband features (this
prevents the client from confusing fluctuations in broad-
band noise with intelligent signals), and then searches the
data for signals with drift rates between -10 Hz/sec to +10
Hz/sec in steps of 0.0018 Hz/sec (to take into account the
unknown accelaration of a rotating planet sending the sig-
nals). At each drift rate, the client searches for signals
at one or more bandwidths between 0.075 and 1,221 Hz.
The data are examined for signals that exceed 22 times the
mean noise power. All potential signals are sent back to
the central server for further processing.
Analysis of a single work unit requires 2.4 to 3.8 trillion

floating-point operations (Tflops), and takes 5 to 6 hours of
a 1 GHz processor. On average, a client reports 8 detected
signals for each work unit.
The vast majority of detected signals are created by

sources of narrow-band emissions at or near the obser-
vatory, such as equipment, aircraft, satellites, and other
transmitters. As these signals are long-duration ones, they
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are rejected in post-processing phase [19].
Some of detected signals are caused by errors in comput-

ers or communication networks. Although the probability
of such errors is very low, the amount of computations
required by the SETI@home project (in the order of mil-
lions of computation-years) must take the existence of such
errors into consideration. Therefore each work unit is pro-
cessed 3 times, on different processors, and the obtained
results are compared for consistency.
The number of “standard”, 1 GHz processors, needed for

on-line processing of the recorded data can be estimated as
follows. Analysis of 80 seconds of data (i.e., 107 seconds
with 20 to 30 second overlap) in a single sub-band requires
5 to 6 hours of processing, so on-line processing of a single
sub-band requires:

3, 600 ∗ 5.5

80
= 247.5 processors.

Multiplying this number by 256 sub-bands, and by the
replication factor 3, results in almost 200,000 “standard”
processors working “full time” on the analysis of the
recorded data. The actual number of computers registered
for the SETI@home project is greater at least an order
of magnitude ([10] reports 2.5 millions of registered com-
puters), but these computers are usually not available “full
time” ([10] reports that only about 20 % of registered com-
puters are active), and not all have 1 GHz processors.
Let the execution time of a single work unit on a “stan-

dard” processor be denoted by Tu, and let Td denotes the
time of sending a work unit to a client, while Tr – the time
needed to return the results of data analysis. The speedup,
S(N), of distributed processing on a system composed of
N processors, is:

S(N) =
N ∗ Tu

Td + Tu + Tr

and, since Tu is much greater than Td and Tr:

S(N) ≈ N

so, for this particular application, the practical speedup ap-
proximates the ideal speedup. This is why the SETI@home
project is so spectacularly successful.

V. Concluding Remarks

This paper analyzes, in very general terms, the speedup
which can be obtained in distributed environments. Using
a number of simplifying assumptions, it introduces several
classes of applications and estimates the speedup that can
be obtained by distributed execution of an (idealized) ap-
plication in each class. The paper shows that some classes
scale quite well with the number of processors while others
impose very strict limitations on the speedup, which simply
means that a straightforward distribution of a sequential
workload is not a satisfactory approach in such cases, and
new algorithms are needed to use distributed environments
in a more satisfactory way.
SETI@home may be the most imaginative large-scale

distributed application, but there are other applications

which could readily benefit from execution on a distributed
environment:

• Complex modeling and simulation techniques that in-
crease the accuracy of results by increasing the number of
random trials; the trials can be run concurrently on many
processors, and the results combined to achieve greater sta-
tistical significance.
• Applications that require exhaustive search through a
huge number of results that can be distributed over the
many processors, such as drug screening [6].
• Simulations of complex systems (such as VLSI designs)
in which the system is partitioned into a number of sub-
systems, and the subsystems are simulated concurrently on
different processors.

In the future, traditional distributed systems are ex-
pected to be used in specialized domains, such as trans-
action processing for banking applications, in mainstream
applications, however, grid computing is emerging as the
next evolutionary platform for large–scale computing.
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