
Modeling and Analysis of Dual Block
Multithreading 1

Wlodek M Zuberek

Department of Computer Science, Memorial University,
St.John’s, Canada A1B 3X5

24-th IFIP WG 6.1 Int. Conf. on Formal Techniques for Networked and Distributed

Systems (FORTE’04), Performance Evaluation Worshop (EPEW’04), Toledo, Spain.

Lecture Notes in Computer Science 3236, 209–219. c© 2004 by Springer–Verlag.

Abstract. Instruction level multithreading is a technique for tolerating long–
latency operations (e.g., cache misses) by switching the processor to another
thread instead of waiting for the completion of a lengthy operation. In block mul-
tithreading, context switching occurs for each initiated long–latency operation.
However, processor cycles during pipeline stalls as well as during context switch-
ing are not used in typical block multithreading, reducing the performance of
a processor. Dual block multithreading introduces a second active thread which
is used for instruction issuing whenever the original (main) thread becomes in-
active. Dual block multithreading can be regarded as a simple and specialized
case of simultaneous multithreading when two (simultaneous) threads are used
to issue instructions for a single pipeline. The paper develops a simple timed
Petri net model of a dual block multithreading and uses this model to estimate
the performance improvements of the proposed dual block multithreading.

Keywords: Block multithreading, instruction issuing, pipelined processors,
timed Petri nets, performance analysis, event–driven simulation.

1 Introduction

Continuous progress in manufacturing technologies results in the performance of
microprocessors that has been steadily improving over the last decades, doubling
every 18 months (the so called Moore’s law [4]). At the same time, the capacity
of memory chips has also been doubling every 18 months, but the performance
has been improving less than 10% per year [5]. The latency gap between the pro-
cessor and its memory doubles approximately every six years, and an increasing
part of the processor’s time is spent on waiting for the completion of memory
operations [8]. Matching the performances of the processor and the memory is
an increasingly difficult task [9].

Techniques which tolerate long–latency memory accesses include out–of–
order execution of instructions and instruction–level multithreading. The idea of
out–of–order execution is to execute, during the waiting for the completion of
a long–latency operation, instructions which (logically) follow the long–latency
one, but which do not depend upon the result of this long–latency operation.
Since out–of–order execution exploits instruction–level concurrency using the
existing sequential instruction stream, it conveniently maintains code–base com-
patibility [6]. In effect, the instruction stream is dynamically decomposed into

1 This version of the paper is slightly different from the original one. The paper has
been revised by making several straightforward corrections and improvements.



210 Modeling and Analysis of Dual Block Multithreading

micro-threads, which are scheduled and synchronized at no cost in terms of ex-
ecuting additional instructions. Although this is desirable, speedups using out–
of–order execution on superscalar pipelines are not so impressive, and it is diffi-
cult to obtain a speedup greater than 2 using 4 or 8-way superscalar issue [11].
Moreover, memory latencies are so long that out–of–order processors require
very large instruction windows to tolerate them. A cache miss to main memory
costs about 128 cycles on Alpha 21264 [13] and 330 cycles on a Pentium-4–like
processor [10]. Large instruction windows mean design complexity, verification
difficulty and increased power consumption [7], so the industry is not moving
toward the wide–issue superscalar model [1]. In effect, it is often the case that
up to 60 % of execution cycles are spent waiting for the completion of memory
accesses [7].

Instruction–level multithreading [2], [3] tolerates long–latency memory ac-
cesses by switching to another thread (if it is available for execution) rather than
waiting for the completion of the long–latency operation. If different threads are
associated with different sets of processor registers, switching from one thread
to another (called “context switching”) can be done very efficiently [12].

In block multithreaded processors, the pipeline is stalled occasionally for
one or more processor cycles because of the instruction dependencies. Since the
trend in modern microprocessors is to increase the depth of the pipelines [10],
and deep pipelines increase the probability of pipeline stalls due to instruction
dependencies, the effects of pipeline stalls on the performance of processors can
be quite significant. This paper proposes a variant of block multithreading in
which an additional active thread is used to issue instruction in those processor
cycles in which the main thread is inactive. The proposed approach is called dual
block multithreading.

The main objective of this paper is to study the performance of dual block
multithreaded processors in order to determine how effective the addition of the
second active thread can be. A timed Petri net [14] model of multithreaded pro-
cessors at the instruction execution level is developed, and performance results
for this model are obtained by event–driven simulation. Since the model is rather
simple, simulation results can be verified (with respect to accuracy) by state–
space–based performance analysis (for combinations of modeling parameters for
which the state spaces remains reasonably small).

2 Petri Net Models

A timed Petri net model of a simple block multithreaded processor at the in-
struction execution level is shown in Fig.1 (as usually, timed transitions are
represented by solid bars, and immediate ones, by thin bars). For simplicity,
Fig.1 shows only one level of memory; this simplification is removed further in
this section.

Ready is a pool of available threads; it is assumed that the number of of
threads is constant and does not change during program execution (this as-
sumption is motivated by steady–state considerations). If the processor is idle



Modeling and Analysis of Dual Block Multithreading 211

(place Next is marked), one of available threads is selected for execution (transi-
tion Tsel). Pnxt is a free-choice place with three possible outcomes: Tst0 (with
the choice probability ps0) represents issuing an instruction without any further
delay; Tst1 (with the choice probability ps1) represents a single-cycle pipeline
stall (modeled by Td1), and Tst2 (with the choice probability ps2) represents a
two–cycle pipeline stall (Td2 and then Td1); other pipeline stalls could be repre-
sented in a similar way, if needed. Cont, if marked, indicates that an instruction
is ready to be issued to the execution pipeline. Instruction execution is modeled
by transition Trun which represents the first stage of the execution pipeline. It
is assumed that once the instruction enters the pipeline, it will progress through
the stages and, eventually, leave the pipeline; since these pipeline implementa-
tion details are not important for performance analysis of the processor, they
are not represented here.

Done is another free-choice place which determines if the current instruction
performs a long–latency access to memory or not. If the current instruction is
a non–long–latency one, Tnxt occurs (with the corresponding probability), and
another instruction is fetched for issuing. If long–latency operation is detected in
the issued instruction, Tend initiates two concurrent actions: (i) context switch-
ing performed by enabling an occurrence of Tcsw, after which a new thread is
selected for execution (if it is available), and (ii) a memory access request is
entered into Mreq, the memory queue, and after accessing the memory (transi-
tion Tmem), the thread, suspended for the duration of memory access, becomes
“ready” again and joins the pool of threads Ready.

Td2

Td1

Tst0

Tst2
Tst1

ContPnxtReady

Tsel

Proc Mem
Tcsw

Pcsw

Mreq

Next

Done

Tmem

Pst2 Pst1

Trun

Tnxt

Tend

Fig.1. Petri net model of a block multithreaded processor.

The choice probability associated with Tend determines the runlength of
a thread, ℓt, i.e., the average number of instructions between two consecutive
long–latency operations; if this choice probability is equal to 0.1, the runlength
is equal to 10, if it is equal to 0.2, the runlength is 5, and so on.



212 Modeling and Analysis of Dual Block Multithreading

The number of memory ports, i.e., the number of simultaneous accesses to
memory, is controlled by the initial marking of Mem; for a single port memory,
the initial marking assigns just a single token to Mem, for dual-port memory,
two tokens are assigned to Mem, and so on.

In a similar way, the number of simultaneous threads (or instruction issue
units) is controlled by the initial marking of Next. For a model of dual block
multithreading, the initial marking of Next is 2.

Memory hierarchy can be incorporated into the model shown in Fig.1 by
refining the representation of memory. In particular, levels of memory hierarchy
can be introduced by replacing the subnet Tmem–Mem by a number of subnets,
each subnet for one level of the hierarchy, and adding a free–choice structure
which randomly selects the submodel according to probabilities describing the
use of the hierarchical memory. Such a refinement, for two levels of memory, is
shown in Fig.2, where Mreq is a free–choice place selecting either level–1 (sub-
model Mem–Tmem1) or level–2 (submodel Mem–Tmem2).

Td2

Td1

Tst0

Tst2
Tst1

ContPnxtReady

Tsel

ProcTcsw

Pcsw

Mreq

Next

Done

Pst2 Pst1

Trun

Mreq1Tms1

Mreq2Tms2

Mem

Tnxt

Tend

Tmem2

Tmem1

Fig.2. Petri net model of a block multithreaded processor with a two–level memory.

The effects of memory hierarchy can easily be compared with a uniform,
non–hierarchical memory by selecting the parameters in such a way that the
average access time of the hierarchical model (Fig.2) is equal to the access time
of the non–hierarchical model (Fig.1).

For convenience, all temporal properties of the model are expressed in pro-
cessor cycles, so, the occurrence times of Trun, Td1 and Td2 are all equal to 1
(processor cycle), the occurrence time of Tcsw is equal to the number of pro-
cessor cycles needed for context switching (which is equal to 1 for many of the
following performance analyses), and the occurrence time of Tmem is the average
number of processor cycles needed for a long–latency access to memory.



Modeling and Analysis of Dual Block Multithreading 213

The main modeling parameters and their typical values are summarized in
Tab.1. The number of available threads, nt, changes from 1 to 10 in order to
check if a large number of threads has can provide a reasonable improvement of
the processor’s performance. Thread runlength, ℓt, equal to 10 corresponds to
the (primary) cache miss of 10%. Context switching times equal to 1 and 5 are
used to check the sensitivity of performance results on the duration of context
switching. The average memory access time, tm, of 10 processor cycles matches
the thread runlength, ℓt, providing the balanced utilization of the processor and
the memory; if tm > ℓt, the memory becomes the bottleneck which limits the
performance of the system; if ℓt > tm, the memory has little influence on the
system’s performance. The probabilities of pipeline stalls, ps1 and ps2, correspond
to the probabilities of data hazards used in [5].

Table 1. Block multithreading modeling parameters and their typical values.

symbol parameter value

nt number of available threads 1,...,10
ℓt thread runlength 10
tcs context switching time 1,5
tm average memory access time 10
ps1 prob. of one–cycle pipeline stall 0.2
ps2 prob. of two–cycle pipeline stall 0.1

3 Performance Results

The utilization of the processor, as a function of the number of available threads,
for a “standard” processor (i.e., a processor with a single instruction issue unit)
is shown in Fig.3.

The asymptotic value of the utilization can be estimated from the (average)
number of empty instruction issuing slots. Since the probability of a single–cycle
stall is 0.2, and probability of a two–cycle stall is 0.1, on average 40 % of issuing
slots remain empty because of pipeline stalls. Moreover, there is an overhead of
tcs = 1 slot for context switching. The asymptotic utilization is thus 10/15 =
0.667, which corresponds very well with Fig.3.

The utilization of the processor can be improved by introducing a second (si-
multaneous) thread which issues its instructions in the unused slots. Fig.4 shows
the utilization of a dual block multithreaded processor, i.e., a processor issuing
instructions to a single instruction execution pipeline from two (simultaneous)
threads.

The utilization of the processor is improved by about 40 %.

A more realistic model of memory, that captures the idea of a two–level
hierarchy, is shown in Fig.2. In order to compare the results of this model with



214 Modeling and Analysis of Dual Block Multithreading

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

u
ti

li
za

ti
o
n

number of available threads

Processor utilization (1)

Fig.3. Processor utilization for standard block multithreading; lt = 10, tm = 10, tcs = 1,
ps1 = 0.2, ps2 = 0.1.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

u
ti

li
za

ti
o
n

number of available threads

Processor utilization (2)

Fig.4. Processor utilization for dual block multithreading; lt = 10, tm = 10, tcs = 1,
ps1 = 0.2, ps2 = 0.1.

Fig.3 and Fig.4, the parameters of the two–level memory are chosen in such a
way that the average memory access is equal to the memory access time in Fig.1
(where tm = 10). Let the two levels of memory have access times equal to 8 and
40, respectively; then the choice probabilities are equal to 15/16 and 1/16 for
level–1 and level–2, respectively, and the average access time is:

8 ∗
15

16
+ 40 ∗

1

16
= 10.

The results for a standard block multithreaded processor with a two–level
memory are shown in Fig.5, and for a dual block multithreaded processor in
Fig.6.

The results in Fig.5 and Fig.6 are practically the same as in Fig.3 and Fig.4.
This is the reason that the remaining results are shown for (equivalent) one-



Modeling and Analysis of Dual Block Multithreading 215

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

u
ti

li
za

ti
o
n

number of available threads

Processor utilization (1&2)

Fig.5. Processor utilization for standard block multithreading with 2-level memory;
lt = 10, tm = 8 + 40, tcs = 1, ps1 = 0.2, ps2 = 0.1.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

u
ti

li
za

ti
o
n

number of available threads

Processor utilization (2&2)

Fig.6. Processor utilization for dual block multithreading with 2-level memory; lt = 10,
tm = 8 + 40, tcs = 1, ps1 = 0.2, ps2 = 0.1.

level memory models; the multiple levels of memory hierarchy apparently have
no significant effect on the performance results.

Dual multithreading is also quite flexible with respect to context switch-
ing times because the additional thread fills the instruction issuing slots which
normally would remain empty during context switching. Fig.7 compares the uti-
lization of the standard block multithreaded processor with tcs = 1 (broken line)
and tcs = 5 (solid line). The reduction of the processor’s utilization for tcs = 5
is about 20 %, and is due to the additional 4 cycles of context switching which
remain empty (out of 19 cycles, on average).

Fig.8 compares utilization of the dual block multithreaded processor for tcs =
1 and tcs = 5. The reduction of utilization is much smaller in this case and is
within 10 %.



216 Modeling and Analysis of Dual Block Multithreading

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

u
ti

li
za

ti
o
n

number of available threads

Processor utilization (1)

Fig.7. Processor utilization for standard block multithreading; lt = 10, tm = 10, tcs =
1, 5, ps1 = 0.2, ps2 = 0.1.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

u
ti

li
za

ti
o
n

number of available threads

Processor utilization (2)

Fig.8. Processor utilization for dual block multithreading; lt = 10, tm = 10, tcs = 1, 5,
ps1 = 0.2, ps2 = 0.1.

4 Concluding Remarks

Dual block multithreading discussed in this paper increases the performance
of processors by tolerating long–latency operations (block multithreading) and
pipeline stalls (dual multithreading). Its implementation is rather straightfor-
ward while the improvement of the utilization of processors can be quite signif-
icant, as shown in Fig.9.

However, the improved performance of dual multithreading can be obtained
only if the system is balanced, or if the processor is the system’s bottleneck.
Fig.10 shows the utilization of the processor for standard (solid line) as well as
dual multithreading (broken line); the utilizations of both processors are prac-
tically identical because, in these particular cases, the memory is the system’s
bottleneck that restricts the performance of other components.



Modeling and Analysis of Dual Block Multithreading 217

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10

im
p
ro

v
em

en
t

number of available threads

Utilization improvement

Fig.9. The improvement of processor utilization due to dual block multithreading;
lt = 10, tm = 10, tcs = 1, ps1 = 0.2, ps2 = 0.1.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

u
ti

li
za

ti
o
n

number of available threads

Processor utilization (1-2)

Fig.10. A comparison of processor utilization; lt = 10, tm = 20, tcs = 1, ps1 = 0.2,
ps2 = 0.1.

All presented results indicate that the number of available threads, required
for improved performance of the processor, is rather small, and is practically
not greater than 4 threads. Performance improvement due to a larger number
of available threads is rather insignificant.

Obtained processor utilization results are consistent with other studies of the
performance of multithreaded architectures [16], [15]. The performance of dis-
tributed memory multithreaded multiprocessor systems can be compared with
the results presented in this paper by assuming that the probability of access-
ing local nodes is equal to 1 (which means that the nodes can be analyzed in
isolation).

The presented models of multithreaded processors are quite simple, and for
small values of modeling parameters (nt, np, ns) can be analyzed by the ex-



218 Modeling and Analysis of Dual Block Multithreading

plorations of the state space. The following table compares some results for the
standard block multithreaded processor:

number analytical simulated

nt of states utilization utilization

1 11 0.417 0.417
2 107 0.591 0.587
3 207 0.642 0.643
4 307 0.658 0.655
5 407 0.664 0.663

For a dual block multithreaded processor the comparison is:

number analytical simulated

nt of states utilization utilization

1 11 0.417 0.417
2 130 0.672 0.670
3 320 0.793 0.793
4 642 0.848 0.841
5 972 0.878 0.883

The simulation–based results shown in the tables are very similar to the ana-
lytical results obtained from the analysis of states and state transitions. It should
not be surprising that for more complex models the state space can become quite
large. For example, the state space for the dual multithreaded processor increases
by more than 300 states for each additional thread (above 3). Analytical solution
of very large systems of linear equations (which describe the stationary probabil-
ities of states) may require special numerical techniques to provide the necessary
accuracy. Therefore, discrete–event simulation of net models is an attractive al-
ternative to exhaustive state space exploration of complex models.

Finally, it should be noted that the presented model is oversimplified with
respect to the probabilities of pipeline stalls and does not take into account the
dependence of stall probabilities on the history of instruction issuing. In fact, the
model is “pessimistic” in this regard, and the predicted performance, presented
in the paper, is worse than the expected of real systems. On the other hand, the
simplicity of the presented model is likely to outweight its simplification(s) as
the simplification effects are not expected to be significant.

References

1. Burger, D., Goodman, J.R., “Billion–transistor architectures: there and back
again”; IEEE Computer, vol.37, no.3, pp.22-28, 2004.

2. Byrd, G.T., Holliday, M.A., “Multithreaded processor architecture”; IEEE Spec-
trum, vol.32, no.8, pp.38-46, 1995.

3. Dennis, J.B., Gao, G.R., “Multithreaded architectures: principles, projects, and
issues”; in “Multithreaded Computer Architecture: a Summary of the State of the
Art”, pp.1-72, Kluwer Academic 1994.



Modeling and Analysis of Dual Block Multithreading 219

4. Hamilton, S., “Taking Moore’s law into the next century”; IEEE Computer, vol.32,
no.1, pp.43-48, 1999.

5. Hennessy, J.L., Patterson, D.A., “Computer architecture – a qualitative approach”
(3 ed.), Morgan Kaufman 2003.

6. Jesshope, C., “Multithreaded microprocessors – evolution or revolution”; in “Ad-
vances in Computer Systems Architecture” (LNCS 2823), pp.21-45, 2003.

7. Mutlu, O., Stark, J., Wilkerson, C., Patt, Y.N., “Runahead execution: an effective
alternative to large instruction windows”; IEEE Micro, vol.23, no.6, pp.20-25, 2003.

8. Sinharoy B., “Optimized thread creation for processor multithreading”; The Com-
puter Journal, vol.40, no.6, pp.388-400, 1997.

9. Sohi, G.S., “Microprocessors – 10 years back, 10 years ahead”; in “Informatics: 10
Years Back, 10 Years Ahead” (Lecture Notes in Computer Science 2000), pp.209-
218, 2001.

10. Sprangle, E., Carmean, D., “Increasing processor performance by implementing
deeper pipelines”; Proc. 29-th Annual Int. Symp. on Computer Architecture, An-
chorage, Alaska, pp.25-34, 2002.

11. Tseng, J., Asanovic, K., “Banked multiport register files for high–frequency super-
scalar microprocessor”; Proc. 30-th Int. Annual Symp. on Computer Architecture,
pp.62-71, 2003.

12. Ungerer, T., Robic, G., Silc, J., “Multithreaded processors”; The Computer Jour-
nal, vol.43, no.3, pp.320-348, 2002.

13. Wilkes, M.V., “The memory gap and the future of high-performance memories”;
ACM Architecture News, vol.29, no.1, pp.2-7, 2001.

14. Zuberek, W.M., “Timed Petri nets – definitions, properties and applications”; Mi-
croelectronics and Reliability (Special Issue on Petri Nets and Related Graph Mod-
els), vol.31, no.4, pp.627-644, 1991.

15. Zuberek, W.M., “Analysis of pipeline stall effects in block multithreaded multipro-
cessors”; Proc. 16-th Performance Engineering Workshop, Durham, UK, pp.187-
198, 2000.

16. Zuberek, W.M., “Analysis of performance bottlenecks in multithreaded multipro-
cessor systems”; Fundamenta Informaticae, vol.50, no.2, pp.223-241, 2002.


