
Systematic Construction and Performance Analysis

of Cluster Tools Using Timed Petri Net Models

W.M. Zuberek

Department of Computer Science
Memorial University

St.John’s, Canada A1B 3X5
e-mail: wlodek@cs.mun.ca

14 Congresso Brasileiro de Automatica, Natal Brazil, 2-5 September 2002

Brazilian Petri Net Workshop, 4 September 2002

Copyright c© 2002 by W.M. Zuberek. All right reserved.

Abstract. A cluster tool is an integrated, envi-
ronmentally isolated manufacturing system consisting
of process, transport, and cassette modules, mechan-
ically linked together, that is used in manufacturing
of semiconductor chips. Because of high throughput
requirements, cluster tools perform a number of activ-
ities concurrently. Petri nets are formal models devel-
oped specifically for representation of concurrent ac-
tivities and for their coordination. In timed nets, the
durations of modeled activities are represented by oc-
currence times associated with transitions, and this
allows to study the performance characteristics of the
modeled systems.

Since cluster tools can be quite complex, a system-
atic approach to generating net models is proposed.
Net models derived in such a way have modular struc-
ture, which is used to determine model’s steady–state
performance on the basis of net invariants, without the
exhaustive reachability analysis. Performance charac-
teristics are obtained in symbolic form, in terms of
modeling parameters, so different variants of cluster
tools can be evaluated and compared very efficiently,
without repetitive model analyses.

1. Introduction

A cluster tool is an integrated, environmentally
isolated manufacturing system consisting of process,
transport, and cassette modules, mechanically linked
together [3], [11], [21]. The factors which stimulate an
increased use of clustered tools in recent years include
improved yield and throughput, reduced contamina-
tion, better utilization of the floor space, and reduced
human intervention [18]. Because of high throughput
requirements, cluster tools perform a number of ac-
tivities concurrently, for example, different wafers are
processed in different chambers at the same time, and
also the robotic transporter can be moving to a posi-
tion required by the next step. Formal models devel-
oped specifically for representation of concurrent ac-
tivities and for their coordination, i.e., for ordering

specific actions or for performing actions simultane-
ously by more than one component of a system, are
known as Petri nets [15], [10]. Petri nets are some-
times called “condition–event systems” because their
two types of basic elements, called places and transi-
tions, represent the (satisfied or unsatisfied) conditions
of events, and the (occurrences of) events; events can
occur only when all conditions associated with them
are satisfied. Formally, Petri nets are represented by
bipartite graphs (i.e., graphs with two types of ver-
tices, one representing places, and the other transi-
tions), and directed arcs connecting these two types of
vertices (sometimes called the causality relation). The
dynamic behavior of nets is represented using the so
called tokens assigned to places. The occurrences of
events (represented by transitions) change the distri-
bution of tokens, which is used to represent the behav-
ior of the modeled system.

In order to analyze the performance of modeled
systems, the durations of all activities must also be
taken into account. Several types of nets “with time”
have been proposed by associating “time delays” with
places [16], or occurrence durations with transitions
[1], [13], [23] of net models. Also, such temporal prop-
erties can be deterministic [13], [14], [16], [23], or can
be random variables described by probability distribu-
tion functions (the negative exponential distribution
being probably the most popular choice) [1], [2], [23].

Analysis of timed net models based on their behav-
ior (represented by the set of states and transitions
between states) is known as reachability analysis. For
complex models, the exhaustive reachability analysis
can easily become quite difficult because of a very
large number of states (for some models the number
of states increases exponentially with the size of the
model, which is known as the “state explosion prob-
lem”). Several approaches can be used to deal with the
excessive numbers of states. One approach reduces the
number of states by using state aggregation (i.e., by
combining groups of states into single ‘superstates’);
another uses symmetries of the state space. For some
classes of net models, the performance properties can



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 2

be derived from the structure of the net models; this
approach is known as structural analysis. The most
popular example of this approach is analysis based on
place–invariants (or P–invariants) for models covered
by families of simple cyclic subnets (which are implied
by P–invariants).

Traditionally, the performance of cluster tools was
analyzed by using timing diagrams representing typ-
ical sequences of events, with performance formulas
derived from the critical path determining the cyclic
behavior of a tool [11], [12], [21]; such an approach is
highly dependent on the analyzed cluster tool and its
properties, and becomes quite complicated for tools
which are complex.

This paper proposes a systematic approach to de-
riving timed Petri nets models of cluster tools. The
approach is based on formal description of tool config-
urations and changes of configurations corresponding
to transfers of wafers between the chambers and load-
locks of the tool. The approach can be used for mod-
eling and evaluation of a large variety of cluster tools,
including single–blade and dual–blade ones, tools with
multiple loadlocks, redundant chambers and multiple
robots. Several such models are discussed in greater
detail. The performance of the derived models is ob-
tained by structural analysis (for the steady–state), as
an alternative approach to the one presented in [19],
where the performance of Petri net models is obtained
by the exhaustive generation and analysis of the state
space that needs to be repeated for each change of any
one of modeling parameters. Net models generated by
the proposed approach are composed of simple sub-
nets implied by place invariants, and this allows to
derive the performance in symbolic form, similar to
the approach proposed in [13], [16]. There is, however,
a significant difference between the approach proposed
in [13] and the one used in this paper; [13] uses the sets
of all possible circuits in nets which must be “consis-
tent”. The number of such circuits, for many nets,
grows exponentially with the size of the model. The
approach proposed in this paper is based on basic place
invariants which represent only some of the circuits.
Moreover, the number of place invariants can be fur-
ther reduced by simple net transformations [26] which
eliminate all those net elements which are insignificant
for performance evaluation. In effect, the number of
significant place invariants is a linear function of the
model size. In addition, the approach presented in [13]
is valid for basic place/transition nets only, and does
not allow to use net extensions (e.g., multiple arcs)
which are useful in modeling of cluster tools [25].

The approach presented in this paper is similar to an
approach developed earlier for modeling and analysis
of schedules for manufacturing cells [26].

Section 2 recalls basic concepts of timed Petri nets
in order to avoid confusion that may arise due to a
large variety of different types of Petri nets and espe-
cially timed Petri nets; in modeling using timed Petri
nets, even a minor difference in the assumed behavior
of net models may have a major impact on the rep-
resentation of the model. Section 3 introduces single–
blade cluster tools and their description, and Section
4 presents net models of cluster tools derived from the
descriptions discussed in Section 3. Dual–blade cluster
tools are introduced in Section 5. Section 6 discusses
some generalization of the model presented in Section
4, and Section 7 describes an extension of the approach
presented in Section 3, that is needed to model and
evaluate cluster tools with chamber revisiting. Several
concluding remarks are given in Section 8.

2. Timed Petri Nets

Petri nets have been proposed as a simple and con-
venient formalism for modeling systems that exhibit
parallel and concurrent activities [10], [15], [20]. In
Petri nets, these activities are represented by the so
called tokens which can move within a (static) graph–
like structure of the net. More formally, a marked

(place/transition) Petri net M is defined as M =
(N ,m0), where the net structure N is a bipartite di-
rected multigraph, N = (P, T,A,w), with a set of
places P , a set of transitions T , a set of directed arcs
A connecting places with transitions and transitions
with places, A ⊆ T × P ∪ P × T , arc weight function
which assigns a weight (or multiplicity) to each arc
of the net, w : A → {1, 2, ...}, and an initial mark-
ing function m0 which assigns nonnegative numbers of
tokens to places of the net, m0 : P → {0, 1, ...}.
A place is shared if it is connected to more than one

transition. A shared place p is free–choice if the sets
of places connected by directed arcs for all transitions
sharing p are identical and the weights of the arcs are
the same. A net is free-choice if all its shared places
are free–choice. A marked net is (structurally or stati-
cally) conflict–free if it does not contain shared places.
A marked net is (dynamically) conflict–free if for any
marking reachable from the initial marking, and for
any shared place, at most one of transitions sharing
this place is enabled. The models of cluster tools dis-
cussed in this paper are (statically or dynamically)
conflict–free nets.
In order to study performance aspects of Petri net

models, the duration of activities must also be taken
into account and included into model specifications. In
timed nets [23], occurrence times are associated with
transitions, and transition occurrences are real–time

events, i.e., tokens are removed from input places at



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 3

the beginning of the occurrence period, and they are
deposited to the output places at the end of this period
(sometimes this is called a three–phase firing mech-
anism as opposed to one–phase instantaneous occur-
rences of transitions in stochastic nets [1], [2] and time
nets [6], [9]). All occurrences of enabled transitions are
initiated in the same instants of time in which the tran-
sitions become enabled (although some enabled transi-
tions cannot initiate their occurrences). If, during the
occurrence period of a transition, the transition be-
comes enabled again, a new, independent occurrence
can be initiated, which will overlap with the other oc-
currence(s). There is no limit on the number of simul-
taneous occurrences of the same transition (sometimes
this is called infinite occurrence semantics). Similarly,
if a transition is enabled “several times” (i.e., it re-
mains enabled after initiating an occurrence), it may
start several independent occurrences in the same time
instant.

More formally, a conflict–free timed Petri net is a
pair, T = (M, f), where M is a marked net and f is a
timing function which assigns a (constant or randomly
distributed) occurrence time to each transition of the
net, f : T → R

+, where R
+ is the set of nonnegative

real numbers.

The occurrence times of transitions can be either de-
terministic or stochastic (i.e., described by some prob-
ability distribution function); in the first case, the cor-
responding timed nets are referred to as D–timed nets,
in the second, for the (negative) exponential distribu-
tion of firing times, the nets are called M–timed nets
(Markovian nets). In both cases, the concepts of state
and state transitions have been formally defined and
used in the derivation of different performance char-
acteristics of the model [23]. Only D–timed Petri nets
are used in this paper.

In timed nets, the occurrence times of some tran-
sitions may be equal to zero, which means that the
occurrences are instantaneous; all such transitions are
called immediate (while the others are called timed).
Since the immediate transitions have no tangible ef-
fects on the (timed) behavior of the model, it is conve-
nient to ‘split’ the set of transitions into two parts, the
set of immediate and the set of timed transitions, and
to first perform all occurrences of the (enabled) im-
mediate transitions, and then (still in the same time
instant), when no more immediate transitions are en-
abled, to start the occurrences of (enabled) timed tran-
sitions. It should be noted that such a convention
effectively introduces the priority of immediate transi-
tions over the timed ones, so the conflicts of immediate
and timed transitions are not allowed in timed nets.
Detailed characterization of the behavior of timed nets
with immediate and timed transitions is given in [23].

Each place/transition net N = (P, T,A,w) can be
conveniently represented by a connectivity (or inci-

dence) matrix C : P × T → Z (Z denotes the set of
integer numbers) in which places correspond to rows,
transitions to columns, and for each p ∈ P and each
t ∈ T , the entries are defined as:

C[p, t] =























−w(p, t), if (p, t) ∈ A ∧ (t, p) 6∈ A,
+w(t, p), if (t, p) ∈ A ∧ (p, t) 6∈ A,
w(t, p)− w(p, t),

if (t, p) ∈ A ∧ (p, t) ∈ A,
0, otherwise.

Connectivity matrices disregard ‘selfloops’, that is,
pairs of arcs (p, t) and (t, p) with the same weights w.
A pure net is defined as a net without selfloops [15].
A P–invariant (place invariant, sometimes also

called S–invariant) of a net N is any nonnegative,
nonzero integer (column) vector I which is a solution
of the matrix equation

C
T × I = 0,

where C
T denotes the transpose of matrix C. It fol-

lows immediately from this definition that if I1 and I2
are P–invariants of N , then any linear (positive) com-
bination of I1 and I2 is also a P–invariant of N . A
basic P–invariant of a net is defined as a P–invariant
which does not contain simpler invariants.
Similarly, a T–invariant (transition invariant) of a

net N is any nonnegative, nonzero integer (column)
vector J which is a solution of the matrix equation

C× J = 0,

and a basic T–invariant of a net is defined as a T–
invariant which does not contain simpler invariants.

Moreover, a net Ni = (Pi, Ti, Ai, w) is a Pi-implied
subnet of a net N = (P, T,A,w), Pi ⊂ P , if the fol-
lowing holds:

(1) Ai = A ∩ (Pi × T ∪ T × Pi), and

(2) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ Ai∨(t, p) ∈ Ai}.

It should be observed that in a pure net N , each
P–invariant I of a net N determines a PI -implied (in-
variant) subnet of N , where PI = {p ∈ P | I(p) > 0};
PI is sometimes called the support of the invariant I.
All nonzero elements of I select rows of C, and each
selected row i corresponds to a place pi with all its
input and all output arcs associated with it.
Finding basic invariants is a ‘classical’ problem of

linear algebra, and there are algorithms to solve this
problem efficiently [7], [8].



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 4

Net invariants can be very useful in performance
evaluation of net models; if a net is covered by a family
of conflict–free cyclic subnets, the cycle time of the net,
τ0, is equal to the maximum cycle time of the covering
subnets [13], [16]:

τ0 = max(τ1, τ2, ..., τk)

where k is the number of subnets covering the original
net, and each τi, i = 1, ..., k, is the cycle time of the
subnet i, which is equal to the sum of occurrence times
associated with the transitions, divided by the total
number of tokens assigned to the subnet:

τi =

∑

t∈Ti
f(t)

∑

p∈Pi
m(p)

.

In many cases, the number of basic P–invariants can
be reduced by removing from the analyzed net all these
elements which do not affect the performance of mod-
els [26]. Fig.1 shows one of such transformations; it
reduces a parallel path which has no influence on the
behavior of a timed net, but which can increase the
number of inessential (basic) P–invariants.

t1

t2

t3

p1

p2

p3

(a)

t1

t2

t3

p2

p1

(b)

t1

t2

t3

p1

p2

p3

t1

t2

t3

p1

p2

Fig.1. Parallel path reduction.

In Fig.1, part (a) is the simple case of parallel paths,
while part (b) shows a more intricate case, which still
can be simplified without affecting the performance of
the model (in fact, the state space in both cases is not
affected by the transformation). It should be noted
that the reduction of parallel paths can be performed
only if either all paths are unmarked, as in Fig.1(a),
or all are marked, as in Fig.1(b); the paths to be re-
duced cannot be “mixed”, i.e., one path marked and
the other unmarked.

3. Cluster Tools

The cluster tools analyzed in this section are m–
chamber cluster tools with one robotic transporter.

Each of the chambers performs a unique process, and
there is a single chamber for each process. The only ex-
plicit storage facility is the loadlock. For single–blade
tools, the robotic transporter can carry only one wafer
at a time. The model assumes that all wafers have
the same process sequence, and that no chambers are
revisited, as in [12].
A sketch of a 4–chamber cluster tool (used as a run-

ning example) is shown in Fig.2, where LL denotes the
loadlock to store cassettes of wafers; C1, C2, C3 and
C4 are process chambers which modify the properties
of the wafers, and R is a robotic transporter (or simply
a robot) which moves the wafers between the loadlock
and the chambers as well as from one chamber to an-
other.

C1

C2 C3

R

C4

LL

Fig.2. An outline of a 4–chamber cluster tool.

When a batch of wafers arrives at an empty cluster
tool, it is placed in the loadlock which is then typi-
cally pumped down to vacuum. All the time required
to get a batch into the cluster and ready for processing
is denoted as τload. The robot, assumed to be idle at
the loadlock, moves the first wafer to the first cham-
ber. For simplicity, it is assumed that the chambers
are numbered as they appear in the process sequence.
When the process in the first chamber is finished, the
wafer is moved to the second chamber, after which the
second wafer can be moved into the first chamber. Af-
ter a number of such wafer transports, the first wafer
arrives back at the loadlock. When all wafers have
been processed and returned to the loadlock, the load-
lock is raised to atmospheric pressure and the batch
is removed. The time interval between when the last
wafer arrives at the loadlock and when the batch is
removed is denoted as τunload.
In general, the time to process a batch consists of

the following [12]: τload, the time τinit to reach steady
state, the time spent in steady state τsteady, the time
τend to process final wafers, and τunload.



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 5

Since most of the batch processing time is spent in
the steady–state, the analysis of steady–state process-
ing is usually the most interesting one. The initial and
final transient behaviors can be approximated reason-
ably well by the cycle time of the steady–state behav-
ior.
The behavior of a cluster tool, with a single–blade

robot, can be represented as a sequence of “configu-
rations”, where each configuration corresponds to a
distribution of wafers among the chambers of the tool
(when the robot does not carry a wafer); more specif-
ically, for an m–chamber tool, each configuration is
described by an m–tuple of chamber descriptions (it
should be noted that loadlocks are excluded from these
descriptions in order to capture the cyclic behavior of
the steady–state; from the steady–state point of view,
the loadlocks provide an infinite suply of wafers for
processing):

(k1, k2, ..., km)

where each chamber description ki is “1” if the cham-
ber Ci is loaded with a wafer in this configuration, and
otherwise is “0”. For example, the sequence of config-
urations for a 4–chamber tool with all chambers used
concurrently is shown in Tab.1.
Each change of configurations corresponds to a

wafer moving from one chamber to another, from the
loadlock to the first chamber, or from the last cham-
ber back to the loadlock; it is assumed that each cycle
uniformly begins by moving a (new) wafer from the
loadlock to the first chamber (so, in the first configu-
ration, k1 = 0).
The changes of configurations correspond to the fol-

lowing general rules:

• a configuration (k1, ..., ki, ki+1, ..., km) derives a
configuration (k1, ..., ki − 1, ki+1 + 1, ...km) if and
only if the value of ki is “1” and the value of ki+1

is “0”, i = 1, ...,m− 1;

• a configuration (k1, k2, ..., 1) always derives a con-
figuration (k1, k2, ..., 0) (this change corresponds
to moving a wafer from the last chamber Cm to
loadlock),

• it is assumed that each cycle begins by moving a
(new) wafer from the loadlock to chamber C1, so
the first derivation is always from (0, k2, ...km) to
(1, k2, ..., km).

It can be easily verified that for the case of max-
imally concurrent use of chambers, there is only one
sequence of operations, as shown in Tab.1. However,
if the concurrency is reduced, and only two chambers

Table 1: Sequence of configurations for a 4–chamber
tool with the maximally concurrent use of chambers.

configuration next operation

(0,1,1,1) next wafer is moved from LL to C1;
(1,1,1,1) the wafer from C4 is moved to LL;
(1,1,1,0) the wafer from C3 is moved to C4;
(1,1,0,1) the wafer from C2 is moved to C3;
(1,0,1,1) the wafer from C1 is moved to C2;
(0,1,1,1) this is the initial configuration.

are performing their operations when the next wafer is
loaded into C1, there are several possible sequences of
operations, as shown in Tab.2. These sequences are 1–
2–3–4a–5a–1, 1–2–3–4a–5b–1, 1–2–3–4b–5b–1. In gen-
eral case, one of these sequences will provide a better
throughput than the others.

4. Models of Cluster Tools

The description of a cluster tool discussed in the pre-
vious section can easily be converted into a timed Petri
net model of this tool. In this model, each chamber is
represented by a simple subnet shown in Fig.3. Place
pi is marked if the chamber is empty. Transition tia
represents the operation of loading the chamber, and
place pia – the condition “wafer is loaded into cham-
ber”, so the chamber operation can begin; transition
ti represent the operation performed by the chamber
with the occurrence time equal to the duration of this
operation. Place pib represents the condition “cham-
ber operation is completed”, so the unloading can be
performed (transition tib).

ti

piatia pib tib

pi

Fig.3. Petri net model of a chamber.

The (cyclic) sequence of operations performed by
the robotic transporter is derived from the sequence
of configurations of the cluster tool. For example, the
sequence of configurations corresponding to the maxi-
mally concurrent operation of a 4–chamber cluster tool
implies the following sequence of robot steps (starting
with moving the next wafer from loadlock LL to cham-
ber C1):



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 6

Table 2: Alternative sequences of configurations for a 4–chamber tool.

step configuration next operation

1 (0,1,1,0) next wafer is moved from LL to C1;
2 (1,1,1,0) the wafer from C3 is moved to C4;
3 (1,1,0,1) the wafer from C2 can be moved to C3 (step 4a), or

the wafer from C3 can be moved to the loadlock (step 4b);
4a (1,0,1,1) the wafer from C1 can be moved to C2 (step 5a), or

the wafer from C3 can be moved to the loadlock (step 5b);
5a (0,1,1,1) the wafer from C3 is moved to LL;
1 (0,1,1,0) the initial configuration;
4b (1,1,0,0) the wafer from C2 is moved to C3;
5b (1,0,1,0) the wafer from C1 is moved to C2;
1 (0,1,1,0) the initial configuration.

LL ⇒ C1 → C4 ⇒ LL → C3 ⇒
C4 → C2 ⇒ C3 → C1 ⇒ C2 → LL

where X ⇒ Y represents a move of the robot carrying
a wafer from X to Y, and X → Y, a move without
carrying a wafer. The model of this sequence is a sim-
ple cyclic net composed of transitions representing the
steps and the intermediate places.
The model of chambers and the robotic transporter

can be combined into a complete model of the tool
shown in Fig.4.
The four chambers are represented (in the upper

part of Fig.4) by subnets with transitions t1, t2, t3
and t4; the initial markings of chambers C2, C3 and
C4 correspond to the maximum concurrency assump-
tion – when a new wafer is picked from the loadlock, all
chambers except C1 are loaded and perform their op-
erations. The operations represented by the remaining
transitions are described in Tab.3.
The initial marking (place p01) indicates that the

first robot’s operation is to pick a wafer from the load-
lock and move to C1 (transition t01), then load the
wafer in C1 (transition t1a), and so on.
In order to obtain the effect of steady–state behav-

ior, the loadlock is assumed to have an infinite capacity
and is represented by place p0 which is used as “input”
and “output” of the cluster tool. When processing a
wafer is finished, a token is deposited in p0, and the
same token is used as the next wafer a moment later.
The initial marking of p0 is irrelevant (as long as it
is nonzero), and the behavior is exactly the same if
more than one token is assigned initially to p0. More-
over, it can be observed that p0 creates a parallel path
between t01 and t45, so it has no effect on the perfor-
mance of the model, and can be removed (with the
two arcs connected to it). Similarly, places p1, p2, p3
and p4 can also be removed (with their incident arcs)

without any effect on the performance of the model as
they all create parallel paths (in [17] such places are
called “implicit places”).

Table 3: Operations represented by transitions in
Fig.4.

transition operation

t01 pick next wafer from LL and
move to C1;

t1a load the wafer into C1;
t1b unload C1;
t2a load the wafer into C2;
t2b unload C2;
t3a load the wafer into C3;
t3b unload C3;
t4a load the wafer into C4;
t4b unload C4;
t12 move from C1 to C2;
t14 move from C1 to C4;
t20 move from C2 to LL;
t31 move from C3 to C1;
t42 move from C4 to C2;
t45 move to LL and drop the wafer;
t53 move from LL to C3.

All transitions are timed transitions, and the occur-
rence times associated with them represent the times
of the corresponding operations.

The net shown in Fig.4 (after removal of places p0,
p1, p2, p3 and p4) has five basic P–invariants; the sets
of transitions of subnets implied by these P–invariants
are:



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 7

t1

p1

t1bt1a

p4

t4t4a t4b

t23t12 t34
t31 t42

t14

t20

t01

t53

t45

p3p2

p0

t2t2a t2b t3a t3 t3b

Fig.4. Petri net model of a 4–chamber tool.

invariant set of transitions

1 t1, t1a, t1b, t2a, t01, t12, t20
2 t2, t1b, t2a, t2b, t3a, t12, t23, t31
3 t3, t2b, t3a, t3b, t4a, t23, t34, t42
4 t4, t3b, t4a, t4b, t34, t45, t53
5 t01, t12, t23, t34, t45, t14, t20, t31, t42, t53,

t1a, t1b, t2a, t2b, t3a, t3b, t4a, t4b

Because the cycle time of the model is equal to
the maximum cycle time of subnets implied by P–
invariants, the cycle time τ0 is:

τ0 = max(τ1, τ2, τ3, τ4, τ5)

where τi denotes the cycle time of the subnet i, so, τ1 =
f(t1)+f(t1a)+f(t1b)+f(t2a)+f(t01)+f(t12)+f(t20),
τ2 = f(t2)+f(t1b)+f(t2a)+f(t2b)+f(t3a)+f(t12)+
f(t23) + f(t31), and so on (each P–invariant–implied
subnet contains exactly one token).

If τ0 is equal to one (or more) of the first four terms,
the model is called “process bound” because the dura-
tion of the process performed by one of the chambers
determines the cycle time (and the throughput) of the
tool; if the cycle time is equal to the last term, the
model is called “transport bound” [21].

The temporal characteristics associated with the
transitions of the model can be determined by rep-
resenting each step as a collection of some elementary
actions such as picking a wafer from a loadlock, load-
ing a wafer into a chamber or unloading it. Each of
these actions has its execution time, and it is assumed,
for simplicity, that the execution times of the same ac-
tions for different chambers are equal (it is a minor
modification to make them different). The elementary
actions are:

action description

v pick a wafer from the loadlock;
x load a wafer into a chamber;
y unload a wafer from a chamber;
w drop a wafer in the loadlock;
z move the robot between two adjacent

chambers, or between the loadlock and
the first chamber, or between the last
chamber and the loadlock (for simplicity
all these times are assumed equal).

The execution time of any operation is simply as-
sumed to be equal to the sum of execution times of
actions constituting the operation. For the operations
represented by transitions in Fig.4, these execution
times are thus as follows:

transition execution time

t01 v + z
t1a x
t1b y
t2a x
t2b y
t3a x
t3b y
t4a x
t4b y
t12 z
t14 2z
t20 2z
t31 2z
t42 2z
t45 w + z
t53 2z

and then the cycle times of the subnets are:



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 8

t1

p1

t1bt1a

p4

t4t4a t4b

t23t12 t34
t31 t42

t01
t45

p3p2

p0

t13 t24

t2 t3t2bt2a t3a t3b

Fig.5. Alternative Petri net model of a 4–chamber tool.

τ1 = o1 + v + 2x+ y + 4z,
τ2 = o2 + 2x+ 2y + 4z,
τ3 = o3 + 2x+ 2y + 4z,
τ4 = o4 + w + x+ 2y + 4z,
τ5 = v + w + 4x+ 4y + 15z,

where oi denotes the duration of the operation per-
formed by chamber Ci (or the occurrence time associ-
ated with transition ti).
Similarly, the sequence of configurations 1–2–3–4a–

5a–1 (Tab.2) corresponds to the following sequence of
robot’s moves:

LL ⇒ C1 → C3 ⇒ C4 → C2 ⇒ C3 →
C1 ⇒ C2 → C4 ⇒ LL.

The net model derived from this sequence of opera-
tions is shown in Fig.5.
After removing p0 with the two incident arcs, and

also p1, p2, p3 and p4 with their arcs (as they all create
parallel paths), the net has 6 basic P–invariants, and
the sets of transitions implied by these invariants are:

invariant set of transitions

1 t1, t2, t3, t4, t1a, t1b, t2a, t2b, t3a, t3b,
t4a, t4b, t01, t12, t23, t34, t45

2 t1, t1a, t1b, t2a, t4b, t01, t12, t24, t45
3 t2, t1b, t2a, t2b, t3a, t12, t23, t31
4 t3, t2b, t3a, t3b, t4a, t23, t34, t42
5 t4, t1a, t3b, t4a, t4b, t01, t13, t34, t45
6 t01, t12, t23, t34, t45, t13, t24, t31, t42,

t1a, t1b, t2a, t2b, t3a, t3b, t4a, t4b

The formulas describing the cycle times of this
model can be derived similarly as for the model shown
in Fig.4.

5. Dual–blade Tools

A dual–blade robot can hold two wafers at the same
time, which makes the operations of moving wafers
from one chamber to another significantly simpler than
in the case of single–blade robots. Assuming that the
robot carries a single wafer from one chamber to an-
other (i.e., the second blade is empty), the typical
steps, repeated for each chamber, are:

– unload the chamber,
– rotate the robot,
– load the wafer,
– move to the next chamber,

and then the (cyclic) sequence of robot moves, for the
case of maximally concurrent use of chambers, is sim-
ply:

LL ⇒ C1 ⇒ C2 ⇒ C3 ⇒ C4 ⇒ LL.

The complete net model is shown in Fig.6, in which
the initial marking indicates that the next wafer is
picked (t01) when all chambers are loaded with wafers.
The net shown in Fig.6 (after remowing places p0,

p1, p2, p3 and p4 with their incident arcs, since they
all create parallel paths) has 5 basic invariants, which
imply subnets with the following sets of transitions:

invariant set of transitions

1 t1, t1a, t1b, t11
2 t2, t2a, t2b, t22
3 t3, t3a, t3b, t33
4 t4, t4a, t4b, t44
5 t01, t12, t23, t34, t40, t11, t22, t33, t44,

t1a, t1b, t2a, t2b, t3a, t3b, t4a, t4b



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 9

t1

p1

t1bt1a

p4

t4t4a t4b

t23t12 t34

t01

p3p2

p0

t2t2a t2b t3a t3 t3b

t11 t22 t33 t44

t40

Fig.6. Petri net model of a 4–chamber tool with a dual–blade robot.

The following occurrence times are assigned to tran-
sitions in Fig.6 (u denotes the time required to rotate
the robot; all other elementary actions are as before):

transition execution time

t01 u+ v + z
t1a x
t11 u
t1b y
t2a x
t22 u
t2b y
t3a x
t33 u
t3b y
t4a x
t44 u
t4b y
t12 z
t23 z
t34 z
t40 u+ w + z

The cycle time is equal to τ0 = max(τ1, ..., τ5),
where:

τ1 = o1 + u+ x+ y,
τ2 = o2 + u+ x+ y,
τ3 = o3 + u+ x+ y,
τ4 = o4 + u+ x+ y,
τ5 = 6u+ v + w + 4x+ 4y + 5z,

where oi, as before, denotes the duration of the opera-
tion performed by chamber Ci (or the occurrence time
associated with transition ti).

For the ‘transport bound’ case (i.e., when τ0 = τ5),
a chamber tool with a dual–blade robot offers better

performance than a tool with a single–blade robot if
6u < 10z. Many similar conclusions can easily be
derived by comparing the symbolic formulas describing
the cycle times of the models.

6. Model Extensions

The steady–state performance of the (single–blade
as well as dual–blade) model is limited by the capacity
of a cassette of wafers; when processing of all wafers
is completed, the cassette is replaced by another one,
and the processing continues. Since, during reload-
ing of the loadlock, all chambers remain idle, the per-
formance of a cluster tool can be improved by using
multiple loadlocks, as shown in Fig.7; when one of the
loadlocks is being reloaded, processing of wafers can
continue from the other loadlock.

C1

C2 C3

R

C4

LL1 LL2

Fig.7. An outline of a 2–loadlock cluster tool.

Petri net model of a cluster tool with two loadlocks
is outlined in Fig.8, in which all the chambers are re-
placed by a single transition tsum with the occurrence



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 10

time equal to the time required for processing the en-
tire batch of wafers.

tload tunload

pbatch

N N

(a)

tload’

pbatch’

tunload’

tunload"tload"

pbatch"
N

N N

N

(b)

tsum

N N

tsum
N N

Fig.8. Outline of a model of a cluster tool with
a single loadlock (a) and with two loadlocks (b).

It can be observed in Fig.8(b) that the two load-
locks are connected by a “selection loop” (with a single
token) which switches the loadlock working with the
chambers, and makes the other loadlock available for
loading and unloading. Multiple arcs are used in Fig.8
to represent a batch of N wafers arriving to a loadlock
as a single cassette, and processed in the time interval
associated with tsum as its occurrence time.
Using P–invariants and subnets implied by them,

the total time for processing a batch using a single–
loadlock tool (Fig.8(a)) is:

τ
(1)
batch = τload + τsum + τunload

For a dual-loadlock cluster tool (Fig.8(b)), assuming
the the loadlock loading and unloading times are the

same for both loadlocks, the batch processing time is:

τ
(2)
batch = max(τsum, (τload + τunload + τsum)/2)

so, if the time τsum is comparable with τload+ τunload,
the dual–loadlock cluster tool can have the through-
put almost twice that of a single–loadlock tool. On the
other hand, if τsum is much greater than τload+τunload,
the performance advantages of a dual–loadlock tool are
rather insignificant (but there can be a significant dif-
ference in availability between these two types of tools,
especially when the loadlock is not the most reliable
component of a tool).

If the processing time of one of the chambers is sig-
nificantly longer than processing times of the other
chambers, increased performance can be obtained by
using multiple chambers performing the same opera-
tion. An outline of a 3–chamber tool with dual cham-
ber C2 is shown in Fig.9.

C1

R

LL

C2’’C2’

C3

Fig.9. An outline of a tool with two chambers C2.

The Petri net model of a dual–blade cluster with
two identical chambers C2, for steady–state behavior,
is shown in Fig.10, in which the two chambers C2 are
connected by a “selection loop” (p′22, t

′

2b, p22
′′, t2b

′′),
similar to the one in Fig.8. The two copies of chamber
C2 are used alternatively, processing two wafers simul-
taneously, and therefore increasing the throughput of
the tool.

The net shown in Fig.10 (after removing places p1,
p′2, p′′2 and p3) has six P–invariants, four invariants
corresponding to the chambers, one representing the
robot’s cycle of operations, and one corresponding to
the loop selecting the replicated chambers. The sets
of transitions in the implied subnets are:



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 11

t1

p1

t1bt1a

t01

t11

t12

p3

t33

t3a t3 t3b

t30

t23

p2’

t2’t2a’

t22’

t2b’

p2’’

t2’’t2a’’

t22’’

t2b’’

p22’

p22’’

Fig.10. Petri net model for the steady–state behavior of a dual–blade 3–chamber tool with two chambers C2.

invariant set of transitions

1 t1, t1a, t1b, t11
2 t′2, t

′

2a, t
′

2b, t
′

22

3 t′′2 , t
′′

2a, t
′′

2b, t
′′

22

4 t3, t3a, t3b, t33
5 t′2b, t

′′

2b

6 t01, t1a, t11, t1b, t12, t
′

2a, t
′

22, t
′

2a,
t′′2a, t

′′

22, t
′′

2b, t23, t3a, t33, t3b, t30

The cycle time, in this case, is determined in a
slightly different way because different elements of the
net are used with different frequencies within a sin-
gle cycle of the net. The frequencies of transition
occurrences within each cycle are determined by T–
invariants. The net shown in Fig.10 has only one T–
invariant (i.e., the net is conflict–free), and the ele-
ments of this invariant are equal to 1 for t′2, t

′′

2 , t
′

2a,
t′′2a, t

′

22, t
′′

22, t
′

2b and t′′2b, and are equal to 2 for all re-
maining transitions. Furthermore, each cycle of the
net corresponds to processing 2 wafers. Consequently,

τ0 = 0.5 ∗max(τ1, τ2, τ3, τ4, τ6)

where τ5 is ignored because its set of transitions is a
proper subset of that for invariant 6, and the initial
factor 0.5 is due to the fact that 2 wafers are pro-
cessed in each cycle of this model. Each of the cycle
times τi is, in this case, a weighted sum of T–invariant
components and occurrence times of the corresponding
transitions:

τ1 = 2f(t1) + 2f(t1a) + 2f(t11) + 2f(t1b),
...
τ6 = 2f(t01)+ 2f(t1a)+ 2f(t11)+ 2f(t1b)+ 2f(t12)+

f(t′2a)+f(t′22)+f(t′2b)+f(t′′2a)+f(t′′22)+f(t′′2b)+
2f(t23) + 2f(t3a) + 2f(t33) + 2f(t3b) + 2f(t30)

so, if the value of τ2 is significantly greater than τ1 and
τ4, and the tool is process bound (these are the reasons
of introducing dual chamber C2), then the cycle time
τ0 can be as small as one half of the cycle time τ2 (or
τ3), providing a very convincing justification for using
two chambers C2.

7. Chamber Revisiting

In cluster tools with chamber revisiting, wafers pass
through some chambers more than once. Coordinating
the flow of wafers is more complicated in this case than
for processing without chamber revisiting.
Similarly as before, the steady–state, cyclic behav-

ior of a cluster tool can be described by a sequence
of tool configurations that characterize the distribu-
tions of wafers in the chambers of the tool. However,
in order to take into account chamber revisiting, the
description needs to be extended. The extended con-
figuration is a vector with components corresponding
to all steps of the processing cycle, including the revis-
iting of (some) chambers. For example, if the sequence
of processing steps is 1–2–3–4–2–3, which means that
each wafer first visits C1, then C2, then C3 and C4,
then revisit C2 and finally C3, the configurations are
described by 6 variables, but some of these variables
are “coupled” because they refer to the same physi-
cal chamber; for the sequence 1–2–3–4–2–3, variables
2 and 5 as well as 3 and 6 are coupled because they
correspond to the first and second visits to C2 and
C3, respectively. If any one of the coupled variables
becomes non-zero, all remaining coupled variables be-
come marked by “x” to indicate that the corresponding



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 12

chamber is not available. So, for an implementation of
the process 1–2–3–4–2–3 with maximum concurrency,
an initial configuration (i.e., a configuration just be-
fore loading a new wafer into the first chamber) can
be (0,1,x,1,x,1) or (0,x,x,1,1,1); (0,1,1,1,x,x) is yet an-
other initial configuration but it is of little interest
because, after loading chamber C1, no further contin-
uation is possible.
The possible changes of configurations can be de-

scribed by the following rules.

• A configuration (k1, ..., ki−1, 1, 0, ..., km) derives
a configuration (k1, ..., ki−1, 0, 1, ..., km); all vari-
ables coupled with variable i+ 1 become marked
by x, and all variables coupled with variable i be-
come 0.

• For the steady–state consideration, the cycle is as-
sumed to begin with loading a new wafer into the
first chamber; the starting configuration is thus
(0, k2, ..., km), and this configuration always de-
rives the configuration (1, k2, ..., km), moreover,
all variables coupled with the first variable be-
come marked by x.

• A configuration (k1, ..., km−1, 1) always derives
configuration (k1, ..., km−1, 0); this change of con-
figurations corresponds to unloading the wafer
(after the last operation) and returning it to the
loadlock.

For the 4–chamber tool and for the processing se-
quence 1–2–3–4–2–3, the sequence of configurations
can be as follows:

configuration next operation

(0,1,x,1,x,1) pick new wafer and load it into C1,
(1,1,x,1,x,1) the wafer from C3 is moved to LL,
(1,1,0,1,x,0) the wafer from C2 is moved to C3,
(1,0,1,1,0,x) the wafer from C4 is moved to C2,
(1,x,1,0,1,x) the wafer from C3 is moved to C4,
(1,x,0,1,1,0) the wafer from C2 is moves to C3,
(1,0,x,1,0,1) the wafer from C1 is moved to C2,
(0,1,x,1,x,1) the initial configuration.

For some configurations there may be more than one
possible next operation, which leads to several differ-
ent schedules with possibly different performances. It
is also possible that a configuration has no possible
operation, which indicates that the corresponding ini-
tial configuration leads to a deadlock. For example,
for the previously discussed processing sequence 1–2–
3–4–2–3, the initial configuration (0,0,1,1,0,x) leads to
a deadlock:

configuration next operation

(0,0,1,1,0,x) pick new wafer and load it into C1,
(1,0,1,1,0,x) the wafer from C1 is moved to C2,
(0,1,1,1,x,x) deadlock.

Sequences of operations leading to a deadlock can
easily be identified at the level of changes of configura-
tions. Consequently, the deadlocks can be eliminated
at a very early design stages.

The initial configuration (0,x,x,1,1,1) is acyclic, i.e.,
it is never repeated in the sequence of configurations
which can be derived from it:

configuration next operation

(0,x,x,1,1,1) pick new wafer and load it into C1,
(1,x,x,1,1,1) the wafer from C3 is returned to LL,
(1,x,0,1,1,0) the wafer from C2 is moves to C3,
(1,0,x,1,0,1) the wafer from C1 is moves to C2,
(0,1,x,1,x,1) the previous initial configuration.

The model of the sequence of robot operations is
derived from the sequence of configuration changes.
For the processing sequence 1–2–3–4–2–3, the robot
follows the cycle:

LL ⇒ C1 → C3 ⇒ LL → C2 ⇒ C3 → C4 ⇒ C2 →
C3 ⇒ C4 → C2 ⇒ C3 → C1 ⇒ C2 → LL.

For the case of chamber revisiting, the model of each
(revisited) chamber becomes a free–choice structure.
Such a structure is shown in Fig.11 for the case of two
visits; similar paths represent the two visits (so the
duration of each visit can be modeled independently).

ti’

ti’’

pi

tib’tia’

tia’’ tib’’

pia’ pib’

pib’’pia’’

Fig.11. Petri net model of a chamber with two visits.

The complete model is shown in Fig.12. The 4
chamber models are represented by subnets associated
with places p1, p2, p3 and p4. Places p1 and p4 can
be removed (together with their incident arcs) as they
do not contribute to the performance characteristics



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 13

p
2

t1p
1

p
3

t3
’’

t3
’

t2
’

t2
’’

t1
2

t1
b

t2
c

t2
d

t3
c

t3
d

t3
a

t3
b

t2
a

t2
b

t0
t1

a

t2
0

t3
1

t1
3

t4
2’

t4
2’

’

p
4 t4

t4
a

t4
b

t2
3’

t2
3’

’

t3
4’

’ t3
4’

t2
3

t3
2

Fig.12. Petri net model of a 4–chamber tool
with revisiting chambers C2 and C3.

of the model; they are preserved exclusively for the
consistency of the representation.
The subnet representing the robot seems to be con-

voluted but it is quite straightforward to see its corre-
spondence to the sequence of operations given
It should be observed that although the models of

(revisited) chambers are free–choice subnets, the com-
plete model is (dynamically) conflict–free; there is only
one sequence of transition occurrences which repre-
sents the cyclic behavior of the model.
The operations represented by transitions in Fig.12

are shown in Tab.4 (using the same elementary oper-
ations as before).

Table 4: Operations represented by transitions in Fig.12.

trans. operations exec time

t0 pick a new wafer and
move it to C1 v + z

t1 perform C1 operation o1
t′2 perform first C2 operation o21
t′′2 perform second C2 operation o22
t′3 perform first C3 operation o31
t′′3 perform second C3 operation o32
t4 perform C4 operation o4
t1a load C1 x
t1b unload C1 y
t2a load C2 (first visit) x
t2b unload C2 (first visit) y
t2c load C2 (second visit) x
t2d unload C2 (second visit) y
t3a load C3 (first visit) x
t3b unload C3 (first visit) y
t3c load C3 (second visit) x
t3d unload C3 (second visit) y
t4a load C4 x
t4b unload C4 y
t12 move from C1 to C2 z
t13 move from C1 to C3 2z
t20 move from C2 to LL 2z
t23 move from C2 to C3 z
t′23 move from C2 to C3 z
t′′23 move from C2 to C3 z
t31 move from C3 to C1 2z
t32 move to LL, drop

the wafer, move to C2 2z + w + 2z
t′34 move from C3 to C4 z
t′′34 move from C3 to C4 z
t′42 move from C4 to C2 2z
t′′42 move from C4 to C3 2z

After removal of places p1 and p3, the net shown in



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 14

Fig.12 has 14 basic place invariants, so the cycle time
is equal to:

τ0 = max(τ1, τ2, ..., τ14)

If the chamber operations are denoted by oi where i
is the chamber number, and by oij for revisited cham-
bers, where j is the visit number, the cycle times of
the subnets implied by P–invariants are (some subnets
contain more than one token, e.g., subnet 7, 8 or 9):

τ1 = v + w + 6x+ 6y + 21z;
τ2 = o32 + w + 4x+ 5y + 13z;
τ3 = o21 + 5x+ 5y + 12z;
τ4 = o22 + v + w + 5x+ 5y + 17z;
τ5 = o22 + o32 + w + 3x+ 4y + 9z;
τ6 = o21 + o22 + 4x+ 4y + 8z;
τ7 = (o22 + o31 + o4 + v + 6x+ 6y + 14z)/2;
τ8 = (o22 + o31 + o32 + o4 + w + 4x+ 4y + 9z)/2;
τ9 = (o21 + o22 + o31 + o4 + 5x+ 5y + 8z)/2;
τ10 = o4 + 2x+ 2y + 4z;
τ11 = o31 + v + w + 5x+ 5y + 16z;
τ12 = o31 + o32 + 3x+ 4y + 6z;
τ13 = o21 + o31 + 4x+ 4y + 8z;
τ14 = o1 + v + 2x+ y + 4z.

The cycle time τ1 (the only invariant with no cham-
ber operations) corresponds to the robot’s submodel,
so if τ0 is equal to τ1, the model is “transport bound”
and a different schedule might be considered to reduce
the robot operations, otherwise the model is “process
bound”, which means that one of the chambers limits
the performance of the tool.

8. Concluding Remarks

A systematic approach to modeling and analysis of
a large variety of cluster tools has been described. It
uses timed Petri nets to represent the activities of the
modeled tools, including the durations of these activ-
ities. The developed models represent steady–state
behavior, but transient behavior can also be analyzed
using slightly modified models [25].
The proposed approach is modular in the sense, that

more complicated models can be derived from simpler
ones by replicating some sections of the model; for
example, a model of a 5–chamber tool will be simi-
lar to that shown in Fig.4, but will contain one more
“chamber section” and a corresponding extension of
the sequence of moves performed by the robot. This
modular structure can be used to derive general per-
formance characteristics for “standardized” tools, even
without detailed analysis of their net models.

The performance of the derived models is obtained
in symbolic form, in terms of modeling parameters
(i.e., the occurrence times associated with transitions).
Evaluations of different models with the same “struc-
ture” can be done very efficiently as they only require
reevaluation of the derived symbolic formulas for dif-
ferent sets of modeling parameters (i.e., the occurrence
times associated with transitions of the model).
The derived results also indicate whether the ana-

lyzed tool is process bound or transport bound. For
process bound tools, the performance can be increased
by introducing another level of currency through repli-
cation of the ‘critical’ chambers (i.e., the chambers
which determine the performance of the entire tool).
For transport bound tools, the performance can be in-
creased by introducing additional concurrency in the
form of multiple robots, each of which serves a subset
of chambers, as discussed in [24].
Many simplifications were assumed in previous sec-

tion in order to make the presentation as simple as
possible. Many of these simplifications can easily be
removed; for example, there is no need to assume that
all the moves between the chambers require the same
amount of time or that the load and unload operations
for all chambers are the same, and so on.

Acknowledgements

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through grant RGPIN-8222.

References

[1] M. Ajmone Marsan, G. Conte, G. Balbo, “A class
of generalized stochastic Petri nets for the per-
formance evaluation of multiprocessor systems”;
ACM Trans. on Computer Systems, vol.2, no.2,
pp.93–122, 1984.

[2] F. Bause, P.S. Kritzinger, Stochastic Petri nets –

an introduction to the theory (Academic Studies
in Computer Science); Vieweg Verlag 1996.

[3] P. Burggraaf, “Coping with the high cost of wafer
fabs”; Semiconductor International, vol.18, no.3,
pp.45–50, 1995.

[4] D. Ferrari, Computer systems performance evalu-

ation; Prentice–Hall 1978.

[5] K. Jensen, “Coloured Petri nets”; in Advanced

Course on Petri Nets 1986 (Lecture Notes in
Computer Science 254), pp.248–299, Springer–
Verlag 1987.



Systematic Construction and Performance Analysis of Cluster Tools Using Timed Petri Net Models 15

[6] J. Kim, A.A. Desrochers, “Modeling and analysis
of semiconductor manufacturing plants using time
Petri net models”; Proc. IEEE Int. Conference
on Systems, Man, and Cybernetics (SMC’97),
pp.3227–3232, 1997.

[7] F. Krueckeberg, M. Jaxy, “Mathematical meth-
ods for calculating invariants in Petri nets”; in Ad-

vances in Petri Nets 1987 (Lecture Notes in Com-
puter Science 266), pp.104–131, Springer–Verlag
1987.

[8] J. Martinez, M. Silva, “Simple and fast algorithm
to obtain all invariants of a generalized Petri net”;
in Applications and Theory of Petri Nets (Infor-
matik Fachberichte 52); pp.301–310, Springer–
Verlag 1982.

[9] P.M. Merlin, D.J. Farber, “Recoverability of com-
munication protocols – implications of a theoret-
ical study”; IEEE Trans. on Communications,
vol.24, no.9, pp.1036–1049, 1976.

[10] T. Murata, “Petri nets: properties, analysis and
applications”; Proceedings of IEEE, vol.77, no.4,
pp.541–580, 1989.

[11] T.L. Perkinson, R.S. Gyurcsik, P.K. MacLarty,
“Single-wafer cluster tool performance: an anal-
ysis of the effects of redundant chambers and
revisitations sequences on throughput”; IEEE

Trans. on Semiconductor Manufacturing, vol.9,
no.3, pp.384–400, 1996.

[12] T.L. Perkinson, P.K. MacLarty, R.S. Gyurcsik.
R.K. Cavin III, “Single–wafer cluster tool per-
formance: an analysis of throughput”; IEEE

Trans. on Semiconductor Manufacturing, vol.7,
no.3, pp.369-373, 1994.

[13] C.V. Ramamoorthy, G.S. Ho, “Performance eval-
uation of asynchronous concurrent systems using
Petri nets”; IEEE Trans. on Software Engineer-

ing, vol.6, no.5, pp.440–449, 1980.

[14] R.R. Razouk, C.V. Phelphs, “Performance anal-
ysis using timed Petri nets”; in Protocol Speci-

fication, Testing, and Verification IV (Proc. of
the IFIP WG 6.1 Fourth Int. Workshop, Skytop
Lodge PA), pp.561-576, North-Holland 1985.

[15] W. Reisig, Petri nets – an introduction; Springer–
Verlag 1985.

[16] J. Sifakis, “Use of Petri nets for performance
evaluation”; in Measuring, modeling and evaluat-

ing computer systems, pp.75–93, North–Holland
1977.

[17] M. Silva, E. Teruel, J.M. Colom, “Linear al-
gebraic and linear programming techniques for

the analysis of place/transition net systems”; in
Lectures on Petri Nets I: Basic Models (Lecture
Notes in Computer Science 1491), pp.309–373,
Springer-Verlag 1998.

[18] M. Singer, “The driving forces in cluster tool de-
velopment”; Semiconductor International, vol.18,
no.8, pp.113–118, 1995.

[19] R.S. Srinivasan, “Modeling and performance
analysis of cluster tools using Petri nets”; IEEE
Trans. on Semiconductor Manufacturing, vol.11,
no.3, pp.394–403, 1998.

[20] R. Valk, “Test on zero in Petri nets”; in Ap-

plications and Theory of Petri Nets (Informatik-
Fachberichte 52), pp.193–197, Springer Verlag
1982.

[21] S. Venkatesh, R. Davenport, P. Foxhoven, J. Nul-
man, “A steady–state throughput analysis of clus-
ter tools: dual–blade versus single-blade robots”;
IEEE Trans. on Semiconductor Manufacturing,
vol.10, no.4, pp.418–423, 1997.

[22] R. Wood, “Simple performance models for inte-
grated processing tools”; IEEE Trans. on Semi-

conductor Manufacturing, vol.9, no.3, pp.320–
328, 1996.

[23] W.M. Zuberek, “Timed Petri nets – definitions,
properties and applications”; Microelectronics

and Reliability (Special Issue on Petri Nets and
Related Graph Models), vol.31, no.4, pp.627–644,
1991.

[24] W.M. Zuberek, “Timed Petri net models of multi-
robot cluster tools”; Proc. IEEE Conf. on Sys-
tems, Man, and Cybernetics (SMC’01), Tucson,
AZ, pp.2729-2734, 2001.

[25] W.M. Zuberek, “Timed Petri nets in modeling
and analysis of cluster tools”; IEEE Trans. on

Robotics and Automation, vol.17, no.5, pp.562–
575, 2001.

[26] W.M. Zuberek, W. Kubiak, “Timed Petri nets
in modeling and analysis of simple schedules for
manufacturing cells”; Journal of Computers and

Mathematics with Applications, vol.37, no.11/12,
pp.191–206, 1999.

[27] DAIMI, Department of Computer Science at
Aarhus University, Denmark, maintains a
database of tools for analysis of Petri nets:
http://www.daimi.au.dk/PetriNets.


