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SYMBOLIC ANALYSIS IN PARAMETER EXTRACTION

ITS IMPLEMENTATION AND PERFORMANCE

Abstract

An interface between a symbolic analysis tool and a SPICE–like circuit simulation pack-
age has been developed in order to integrate numerical and symbolic circuit analyses. In
effect, both numerical and symbolic analyses use the same internal representation of circuits
which makes the two approaches truly complementary. This integrated simulation capabil-
ity is used in simulation–based parameter extraction where all ac small-signal parameters
are fitted through the symbolic analysis rather than numerical one, significantly reducing
the execution time of the extraction process.

Résumé

Une interface entre un programme d’analyse symbolique et une bibliothèque de modules
pour un simulateur de type SPICE a été développée afin d’intégrer les analyses numérique
et symbolique. En effet, ces deux analyses utilisent une même représentation interne des
circuits, ce qui rend les deux approches pleinement complémentaires. Cette intégration est
utilisée dans un extracteur de paramètres basé sur la simulation, dans lequel les paramètres
petit–signal (ac) sont ajustés par une analyse symbolique, plutôt que numérique, ce qui
conduit à une réduction importante du temps d’exécution de l’extraction.
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1. INTRODUCTION

Because of rapid developments in semiconductor technologies, increasing performance
and complexity of circuits, verifying designs through simulation has become an indispensable
part of IC design process. This continuously creates demand for new and more efficient
analog methods for circuit analysis. Integration of numerical and symbolic circuit analyses
is one of possible improvements that can be used to increase the efficiency of circuit analysis
tools.

Reliable computer–aided circuit analysis or circuit simulation cannot be obtained with-
out accurate specification of circuit elements and device models. Existing device models
use large sets of parameters, values of which must be properly determined to represent
device characteristics accurately. Because of highly nonlinear device models, these parame-
ters usually cannot be determined by direct measurements; popular extraction methods use
iterative techniques to minimize differences between measurement data and model behavior
in the full range of operating conditions.

Iterative extraction of model parameters can be regarded as an optimization process
[BCYZ,BST,CCLL,DoSc,Garw] which minimizes the (total) differences between a set of
measurement data and the corresponding circuit responses by adjusting the values of model
parameters (which are optimization variables). The result of this optimization determines
such values of model parameters for which the circuit responses are “as close as possible”
to the measurement data (in the sense of the error function used).

One of flexible approaches to parameter extraction is to use a circuit simulator rather
than a set of model equations (such an approach is called simulation–based parameter ex-
traction). An important advantage of the simulation–based method is that the extractor
can use all the capabilities of the circuit simulator, so all packaging and mounting para-
sitics can easily be taken into account during extraction, and the extraction can use many
types of measurement data, including noise, distortion, etc. On the other hand, repeated
simulations can easily become rather time–consuming, especially when numerous param-
eters are extracted from large sets of measurement data. In some cases (e.g., parameter
extraction for microwave applications), groups of parameters correspond to linear analyses
of the circuit. For linear analyses, the dependence of circuit responses on some variables
can be derived in a symbolic form, and this symbolic form can be used very efficiently in
repeated analyses of the same circuit for different combinations of values of the variables.
Therefore, a circuit simulation package used for simulation–based parameter extraction (the
FIT extractor) has recently been enhanced by an interface to symbolic circuit analysis. The
interface is composed of a number of functions which provide a convenient access from the
symbolic analyzer to the internal representation of the analyzed circuit. The input module
of an existing symbolic analyzer (SYBILIN) has been modified to conform to the interface
from a SPICE-like numerical simulator. This integrated numerical–symbolic simulation is
used in a simulation–based data–driven parameter extraction program called FIT–S [ZK].

The concept of data–driven parameter extraction is related to flexibility of the extractor,
a property quite important because of efficiency as well as the convergence properties of
the extraction process. The popular optimization methods provide local optimization only,
so in a case of numerous local minima, the starting point should be disturbed externally to
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cover as large part of the feasible space as seems reasonable. However, local optimization
algorithms are seldom satisfactory even when restarted from several randomly chosen initial
points. Measurement error coupled with the large number of variables of a physically based
circuit leads to an error function with many nonphysical local minima in addition to the
global minimum [BST]. Therefore, more general (and efficient) global optimization methods
are needed but they are rather difficult to find. However, quite often the extraction process
can be decomposed into a sequence of “partial extractions”, performed for small subsets of
carefully selected parameters and relevant subsets of measurement data. Such an approach
can eliminate numerous local minima and also minimize the number of iterations required
to reach the solution.

In the data–driven organization, the extraction process is controlled by the (selected)
variables and data. The FIT extractor [ZKAW] has built–in facilities to select variables and
data interactively (so the next selection of variables and data may depend upon the results
of the previous step) and the extractions can be performed on arbitrary subsets of variables
and measurement data.

The measurement data normally include several types of data, for example, DC measure-
ments, frequency–domain (AC) and/or time–domain (TR) measurements (used for large–
signal analysis of the periodic steady–state); because of the simulation–based organization,
FIT can also deal with harmonic and noise measurements. Measurements of the same type
(e.g., AC for a given bias point, steady–state time–domain for a given frequency, etc.) form
a data “group”, so the collection of measurement data is simply a sequence of data groups.
There is no limit imposed on the number or composition of data groups. In fact, a section
of one data group can be repeated (with more data points) as another data group to provide
a better fit in regions which are believed to be more important or more difficult for fitting
(e.g., initial parts of characteristics or highly nonlinear regions).

A general scheme of data–driven extraction can be illustrated by the following outline
of a typical “partial extraction”:

select(variables);

select(data_groups);

continue_optimization := true;

while continue_optimization do

update_the_values_of_variables;

error := 0;

for each selected_data_group do

adjust_circuit_parameters;

find_simulation_results(results);

error := error + differences(data,results)

endfor;

if error < accuracy then continue_optimization := false

else get_new_values_of_variables(error) endif

endwhile;

display_the_results;

where the select operations and the optimization are performed by interactive commands,
the results of optimizations are presented to the user in some convenient form (e.g., as a
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graphical plot), and the optimization loop can also be terminated if no progress is detected,
or one of the optimization limits is reached.

2. NUMERICAL AND SYMBOLIC SIMULATION

The popular “third–generation” (numerical) circuit simulators [Ped] use a modified form
of nodal analysis (modified to take care of voltage sources, floating sources, and inductive
elements) and Newton–Raphson iteration to solve the system of simultaneous nonlinear
algebraic equations [Coh,MC]

F (X) = 0

which describes the balance of currents at the nodes of the network in terms of node voltages
(and some branch currents) X.

Let the solution be denoted by X∗. The Newton–Raphson iteration solves the original
system of nonlinear equations through a sequence of linear approximations to the nonlinear
function F (X) at points X(j), j = 1, 2, ...

F (X(j)) +G(X(j))(X∗ −X(j)) ≈ 0

where G is the Jacobian of F with respect to X (evaluated at X(j)). The (j + 1) approxi-
mation to the solution X∗ is obtained by solving a system of simultaneous linear equations
with respect to the correction ∆(j)

G(X(j))∆(j) = −F (X(j))

and X(j+1) = X(j) +∆(j). The iteration terminates when ∆(j) is sufficiently small.
The “main computational effort” is thus devoted to: (i) evaluating the Jacobian G and

the function F , and then (ii) solving the system of linear equations.

This basic scheme is used in the DC operating point, DC transfer curve, and even
time–domain analysis; in the last case, the dependence upon time is eliminated by approxi-
mating the differential equations by difference equations [MC,VS]. Only frequency–domain
(small–signal) analyses are significantly different because they require (for each frequency)
a solution of a system of simultaneous linear equations in the complex domain; this is often
done by separating the real and imaginary parts of coefficients and variables, and solving a
twice as large system of linear equations in the real domain.

The principle of symbolic simulation [GS,Lin] is to derive analytic (or symbolic) network
functions from a representation of a network rather than solve (numerically) the systems of
circuit equations. This means that (some of) circuit parameters are represented by symbols
in the derived functions, and then the circuit responses can be obtained very efficiently by
evaluation of the derived analytic formulas.

For linear, lumped and stationary circuits, the transfer functions H(s) of two–port
networks are in the form of rational functions of the complex frequency s:
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H(x) =
Fj(s)

Fk(s)

in which the numerator Fj(x) and the denominator Fk(x) are characteristic polynomials of
the two–port:

Fi(s) =
ni∑

ℓ=0

sℓPiℓ(x1, ..., xm)

and the coefficients P(x1, ..., xm) are (nested or expanded) polynomial functions in symbolic
elements x1, ..., xm. In the fully expanded form, the polynomial coefficients are in the “sum–
of–product” form:

P(x1, ..., xm) =
p∑

i=1

Ci

r∏

j=1

xij

where Ci are real numbers, xij are circuit symbols, and p and r depend upon the topology
of the circuit.

By extracting common factors and rearranging the terms, the coefficients P(x1, ..., xm)
can be represented equivalently as

Fi = skiTi

ni∑

j=0

sjRij

where each Ti is a product of a constant Ci and (some) symbols xik, k = 1, ...,mi

Ti = Ci

mi∏

k=1

xik

and each Rij , j = 0, 1, ..., ni, is a sum of products

Rij =

ℓij∑

k=1

Cijk

mijk∏

ℓ=1

xijkℓ

An important aspect of integrated symbolic–numerical analysis is the representation
of symbolic functions. FIT uses a collection of arrays (actually, vectors) which store (real)
coefficients and (integer) indices to other arrays as well as symbol identifiers (which are inte-
ger indices in a “symbol table”) for representation of (symbolic) characteristic polynomials.
Several other representations are discussed and compared in section 6.

The representation of symbolic functions uses the following arrays:

• Ntab – integer, the degrees of characteristic polynomials,

• Ktab – integer, the exponents of s associated with the products Ti,
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• Ltab – integer, the numbers of terms in Rij sums,

• Ctab – real, the values of coefficients Ci and Cijk,

• Mtab – integer, the lengths of (i.e., the number of symbols in) products Ti and all
terms of Rij ,

• Itab – integer, the identifiers of symbols used in all products Ti and all terms of Rij .

The organization of these arrays for 5 symbolic functions, i = 1, ..., 5, is sketched in
Fig.1.

Ntab

n1

n2

n3

n4

n5

Ktab

k1

k2

k3

k4

k5

Ltab

ℓ10

ℓ11

...

ℓ1n1

ℓ20

ℓ21

.....

Ctab

C1

C101

...

C10ℓ10

C111

...

C11ℓ11

C121

.....

C1n1ℓ1n1

C2

C201

.....

Mtab

m1

m101

...

m10ℓ10

m111

...

m11ℓ11

m121

.....

m1n1ℓ1n1

m2

m201

.....

Itab

x11

...

x1m1

x1011

...

x101m101

x1021

.....

x10ℓ10m10ℓ

x1111

....

x11ℓ11m11ℓ

x1211

.....

x1m1ℓ1m1
m11ℓ

x21

.....

Fig.1. Representation of symbolic functions.

Symbolic simulators use different circuit representations and different algorithms to de-
rive network functions. The algorithm used in SYBILIN [KMGB], the symbolic simulator
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integrated with FIT, uses the Coates flowgraph representation, in which variables corre-
sponding to graph nodes are the same as those used in the modified nodal analysis.

For the Coates flowgraph representation, the calcution of all two–terminal immitances
(or two–port transfer functions) is based on the evaluation of 0–connections. 0–connection
of a graph G is a subgraph composed of node–disjoint directed loops incident with all nodes
of the graph [SK].

If D is an n × n matrix of a Coates graph with each element dij denoting the set of
directed edges from i to j, then the set Z of 0–connections of this graph is defined by:

Z =
⋃

(i1,...,in)∈In

d1i1 × d2i2 × ...× dnin

where In is the set of all permutations of the sequence (1, 2, ..., n).
Characteristic functions are determined from the corresponding sets of 0–connections

(i.e., sets of 0–connections of subgraphs of the Coates graph corresponding to cofactors of
the indefinite admittance matrix):

Fi(s) =
∑

z∈Zi

(−1)n+ℓ(z)
∏

e∈z

y(e)

where:
Zi – is the set of 0–connections of the Coates graph corresponding to Fi,
n – is the number of the nodes of the graph,
ℓ(z) – is the number of loops in the 0–connection z,
y(e) – is the (symbolic) admittance of element e (or its equivalent description).

In order to eliminate repetition of identical computations, the symbolic analysis is per-
formed in two stages. The first stage, performed only once, creates the Coates graph of
the analyzed circuit and then generates symbolic products for each of the characteristic
functions:

generate_Coates_graph;

for each characteristic_function do

update_Coates_graph;

generate_and_store_symbolic_products

endfor;

The second stage converts the stored symbolic products into the set of arrays represent-
ing the symbolic functions (Fig.1).

3. SYMBOLIC ANALYSIS IN PARAMETER EXTRACTION

For parameter extraction in general, but especially in the case of microwave applications,
a significant part of the extraction process analyzes the small–signal, linear behavior of the
circuit (which is typically rather small, with less than 10 nodes and less than 15 symbols).
These linear analyses can conveniently be performed using symbolic simulation rather than
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numerical one, providing circuit responses very efficiently from symbolic functions. More-
over, it is often the case that the extraction of a set of parameters is decomposed into a
sequence of “partial extractions”, performed on subsets of parameters and relevant subsets
of measurement data [KZD]. For such partial extractions, the sets of parameters usually
contains only a few symbols, which means that the corresponding symbolic functions are
also quite simple.

For simulation–based parameter extraction (as implemented in the FIT program) the
(iterative) frequency–domain analyses are performed within a general optimization scheme
[ZK]:

continue_optimization := true;

while continue_optimization do

update_the_values_of_variables;

error := 0;

for each frequency_domain_data_group do

update_op_point_voltages_and_currents;

find_the_op_point_solution;

for each frequency do

find_the_solution_of_linear_equations(results);

error := error + differences(data,results)

endfor

endfor;

for each non_frequency_domain_data_group do

find_circuit_responses(results);

error := error + differences(data,results)

endfor;

if error < accuracy then continue_optimization := false

else get_new_values_of_variables(error) endif

endwhile;

Since all frequency–domain analyses are performed for the circuit with the same topol-
ogy, the generation of symbolic functions can be done only once. Furthermore, the number
of symbols which can change their values during one optimization cycle (or one “partial
extraction”) is rather small, and includes a subset of parameters which are updated in the
optimization loop (i.e., which are optimization variables) and all those symbols which de-
pend upon the operating point solution. All such symbols are called variable symbols while
the remaining symbols are called fixed symbols. Variable symbols include direct symbols,
i.e., symbols updated in the optimizations loop, and dependent symbols, i.e., symbols which
depend upon the operating point solution. It should be observed that all fixed symbols
can be replaced by their numerical values during the generation of the symbolic functions,
reducing the functions and simplifying the subsequent evaluations.

The values of variable symbols can be retrieved in two steps: (i) at the beginning of
the optimization loop (all direct symbols), and (ii) after each operating point solution (all
dependent symbols). The values of variable symbols are used for a transformation of the
symbolic functions to their reduced form:

F
(r)
i = skiAi

ni∑

j=0

sjAij
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where all Ai and Aij , j = 0, 1, ..., ni, are constants provided that no frequency–dependent
elements are used. Only this very simple polynomial form needs to be evaluated in the
innermost (i.e., frequency) loop.

Symbolic simulation can be included in the previous optimization scheme in the following
way:

retrieve_the_values_of_all_fixed_symbols;

generate_symbolic_products;

continue_optimization := true;

while continue_optimization do

update_the_values_of_variables;

retrieve_the_values_of_direct_symbols;

delta := 0;

for each frequency_domain_data_group do

update_op_point_voltages_and_currents;

find_the_op_point_solution;

retrieve_the_values_of_dependent_symbols;

evaluate_products;

for each frequency do

evaluate_reduced_functions(values);

convert_to_circuit_responses(values,results);

delta := delta + differences(data,results)

endfor

endfor;

for each non_frequency_domain_data_group do

find_circuit_responses(results);

delta := delta + differences(data,results)

endfor;

if delta < accuracy then continue_optimization := false

else get_new_values_of_variables(delta) endif

endwhile;

where the step generate_symbolic_products generates the products Ti and Rij (Section
2), while the step evaluate_products calculates the values of Ai and Aij using the retrieved
values of variable symbols.

For the representation of symbolic products shown in Section 2, the outline of the step
evaluate_products is as follows (Nf is the number of characteristic polynomials);

il := 0;

im := 0;

is := 0;

for i := 1 to Nf do

A[i] := Product(im,is);

for j := 0 to Ntab[i] do

sum := 0.0;

il := il + 1;

for l := 1 to Ltab[il] do

sum := sum + Product(im,is)

endfor;
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A[i,j] := sum

endfor

endfor;

where the real function Product increments the indicators im and is, so “passing by ref-
erence” is assumed (ST denotes the “Symbol Table”, i.e., an array containing the values of
all symbols (as well as their attributes)):

real function Product (int im, int is);

begin

real val;

int last;

im := im + 1;

val := Ctab[im];

last := is + Mtab[im];

while is < last do

is := is + 1;

val := val * ST[Itab[is]]

endwhile;

return val

end;

4. INTEGRATION OF NUMERICAL AND SYMBOLIC SIMULATION

Any integration of numerical and symbolic simulations must provide some sort of in-
teraction between these two types of analyses. In the FIT–S program, the interaction is
performed through an interface which supports the following operations (implemented as
interface procedures):

• reset(name),

• nextel(desc,type,nodes,len),

• getval(desc,type,values,len).

• getvar(names,len).

reset must always be used as the first operation, before any other operation of the
interface; it initializes extraction of circuit elements for symbolic analysis; its parameter
name is either “∗” which indicates all elements of the simulated circuits, or it must be a
name of a subcircuit expansion (i.e., an X–name in the SPICE convention) which indicates
the subcircuit for symbolic analysis.

nextel returns the descriptor desc, the type type, and the list of nodes nodes of
length len of the next circuit element (or indicates that the “next” element does not
exist); it is implemented in such a way that consecutive invocations of this operation return
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descriptions of consecutive circuit elements (according to the internal representation of the
circuit); zero returned as the value of desc indicates that there are no more elements.

getval uses the vector values to return the numerical value(s) of parameters associated
with an element identified by desc and type; len is set to the number of values returned
in values.

getvar uses the character vector names to return the identifiers (or names) of all
declared variables (i.e., symbols) used in symbolic functions (in the internal representation
of symbolic functions all symbols are replaced by numbers indicating their positions in the
vector names); num returns the number of symbols.

Typical sequence of interface operations (during generation of symbolic functions) is as
follows:

getvar(vnames,len);

reset(cktname);

graph := 0;

nextel(desc,type,nodes,num);

while desc > 0 do

add_to_flowgraph(id,nodes,graph);

add_to_symbol_table(desc,type,id);

if fixed_symbol(desc) then

getval(desc,type,value,len);

store_in_symbol_table(id,value,"fixed")

endif;

nextel(desc,type,nodes,num)

endwhile;

generate_intermediate_representation(graph);

The function fixed_symbol(desc) first checks if the symbol identified by desc is de-
pendent and returns false if it is; then it checks if the symbol desc belongs to variables
returned by getvar (in vnames); if it does, the symbols is direct and fixed_symbol returns
false, otherwise it is a fixed symbol, so fixed_symbol returns true.

The symbol table combines all attributes of all symbols used in the simulation and
extraction. These attributes include the class of symbols (fixed, direct, dependent), which
is used for selective retrieval of values. For example, after each solution of the operating
point, the values of all operating-point dependent symbols are retrieved from the circuit
description and stored in the symbol table:

for each symbol in symbol_table do

if dependent(symbol) then

getval(desc,type,value,len);

store_in_symbol_table(id,value)

endif

endfor;

The table of symbols is used during evaluation of all coefficients Ai and Aij of reduced
functions.
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Note: Symbolic simulation can be used only if the circuit description file contains a
directive .ACSYMB, a new directive introduced for integrated symbolic analysis [ZK], which
specifies the subcircuit for the small–signal analysis, its input port and its output port.
The subcircuit must be indicated by its expansion (an “X”–class name) or “*” if the whole
circuit is to be analyzed. The ports are indicated by pairs of nodes, and if the second node
is the “reference” node (i.e., “0”), it can be omitted; for example:

.ACSYMB ckt(Xsub1) input(11) output(22)

(the order of input, output and circuit sections is immaterial).

5. EXAMPLE

A comparison of numerical and symbolic simulation is given for parameter extraction
of a submicron (0.25 µ) GaAs FET on InP substrate. A small-signal model (with its
parameters) is shown in Fig.2.

Lg Rg

Cpg

Ri

Cgs

Cgd Rd Ld

Cpd

Gds

Rs

Ls

gm

Fig.2. GaAs FET small-signal model.

For the model shown in Fig.2, the (five) reduced symbolic functions are polynomials of
degrees 3, 6, 7, 5 and 6, while the exponents of the common factors are equal to -2, -3, -3,
-3 and -3.

Polynomial evaluations can be performed in the complex domain, or in the real domain;
in the second case, the evaluation can be performed for combined real and imaginary parts
or independently for the two parts. The evaluation times for 1,000,000 evaluations of poly-
nomials of several different degrees (the text of the testing program is given in Appendix 1)
are compared in the following table (the execution times are in seconds, on a SPARCstation
2):

polynomial’s degree 2 3 4 5 6 7 8

real domain – independent Re/Im 6.97 8.02 8.95 9.85 10.8 11.7 11.8
real domain – combined Re/Im 7.44 9.47 11.5 13.5 15.5 17.6 19.5
complex domain 12.4 16.8 21.3 26.0 30.3 34.8 39.3
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For the real domain, the “combined” evaluation uses twice as many multiplications as
the “independent” scheme (it updates the real and imaginary parts for consecutive values
of the exponent); the “independent” scheme evaluates the real part for even values of the
exponent and the imaginary part for odd values of the exponent only. The evaluation in the
complex domain (which uses a subroutine for complex multiplication in double precision)
is clearly unattractive. Therefore FIT–S performs all evaluations of the symbolic functions
in the real domain, independently for the real and imaginary parts.

The evaluation of the symbolic functions is only a rather small part of all computations
involved in parameter extraction; the values of symbolic functions must be converted into
S–parameters (or some other form which is used by the measurement data), they must
be stored in a database of results, compared with the corresponding measurement values
to update the value of the error function, etc. Therefore, a more realistic comparison
of symbolic and numerical analysis is obtained by measuring the total execution times
for a typical extraction process. Such comparison results, with corresponding values of
the speedup, are shown in the following table in which the columns correspond to data
groups with 10, 20, 50 and 100 frequency values (the execution times are in seconds, on a
SPARCstation 2, for 100 iteration steps):

number of frequencies (per data group) 10 20 50 100

execution time – symbolic analysis 3.30 3.62 4.32 5.61

execution time – numerical analysis 8.95 12.9 24.8 44.6

speedup 2.7 3.6 5.7 8.0

The number of variable symbols influences the execution time rather insignificantly, es-
pecially for data groups with large numbers of frequency values; the number of variable
symbols affects the evaluation of the coefficients of reduced functions, but this evaluation
is performed only once for each data group.

6. OTHER REPRESENTATIONS

In addition to the “table” representation described in Section 2, several other meth-
ods were considered for representation of symbolic functions but were found overall less
attractive than the implemented one:

• high–level code, compiled and linked with FIT–S; in this approach, the symbolic
functions are generated in the source form (as a Fortran, C, or any other popular
language routine) which is then compiled and linked with the program; any invocation
of this routine (with the frequency as a parameter) returns the corresponding values of
characteristic polynomials which are used for computation of S–parameters (or some
other results); the solution is rather inconvenient and definitely inefficient because of
the compilation and linking involved;

• binary code; basically this approach is similar to the previous one, but both com-
pilation and linking are eliminated by generating directly binary code which, when



MUN–CS Technical Report #9405 14

invoked, determines the values of characteristic functions; this solution is the most
efficient one, but it also is machine–dependent and generally not portable (because of
machine dependence);

• postfix notation (reverse Polish); the (reduced) symbolic functions are represented
in postfix notation (as a sequence of arguments and operators) and evaluated by a
simple stack–based interpreter; for example, a polynomial of degree 3, which in infix
parenthesized Horner’s form is:

P(3)(s) = ((a3 ∗ s+ a2) ∗ s+ a1) ∗ s+ a0

in the postfix notation is:

postfix(P(3)(s)) = a3 s ∗ a2 + s ∗ a1 + s ∗ a0+

The evaluation of postfix expressions uses an argument stack with operations push(x)
storing its argument on the “top” of the stack and a function pop which returns the
top element of the stack and deletes this top element from the stack (“uncovering”
the second top element). Assuming that the reverse representation is stored in an
array R in which it is terminated by a “special” element, the evaluation scheme is:

i := 0;

cont := true;

while cont do

i := i + 1;

a := R[i];

if argument(a) then push(a)

else if operator(a) then

y := pop;

x := pop;

push(apply(a,x,y))

else

cont := false

endif

endwhile;

value := pop;

where the logical functions argument(a) and operator(a) return true is the argu-
ment a is an argument or an operator, respectively, and apply(a,x,y) simply applies
the operator “a” to its arguments x and y (assuming that a is a binary operator),
so apply(+,x,y) returns the values of x + y. The result of evaluation is left on the
stack, so the last pop operation retrieves it from there.

For evaluations in the real domain, two postfix expressions are generated and evalu-
ated, one for the real and the second for the imaginary parts.
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• parse trees; the (reduced) symbolic functions are represented by trees (which for binary
operators are binary trees); the polynomial P(3)(s) is represented by the following
parse tree:

root
❄
+
❅❅

a0

��
*
❅❅

s
��

+
❅❅

a1

��
*
❅❅

s
��

+
❅❅

a2

��
*
❅❅

s
��

a3

Evaluation is performed by a recursive scheme which implements a depth–first traver-
sal of the tree (root indicates the root of the tree; the two outgoing branches (if any)
are denoted root.left and root.right, the operator associated with it root.oper,
and the argument root.val; it should be observed that all argument nodes have
nil (or “empty”) outgoing branches, while for binary operators, both branches are
non–empty):

real function eval(tree root);

begin

if root.left = nil and root.right = nil then return root.val

else apply(root.oper,eval(root.left),eval(root.right)) endif

end;

For evaluation in the real domain, each polynomial is represented by a pair of trees,
one for the real part and the second for the imaginary part of the polynomial.

For comparison, the following table shows the execution times of 1,000,000 evaluations
of polynomials of several degrees using the binary code, postfix notation and parse tree rep-
resentations; all evaluations are performed in the real domain, and the execution times are
in seconds, for a SPARCstation 2 (the corresponding code is shown in Appendix 2, partially
in Fortran and partially in C – because of pointers used in parse tree representation):

polynomiaal’s degree 2 3 4 5 6 7 8

binary code 6.70 7.02 7.30 7.70 8.07 8.42 8.68
postfix notation 17.9 24.7 31.5 38.1 44.8 51.7 58.0
parse tree 14.1 19.6 25.3 39.7 54.3 76.2 101.0
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The evaluation times for the binary code are only slightly better than those for the table
representation discussed in the previous section.

It should be noted that the evaluation times of the polynomials shown in the table above
account for a rather small part of the total time of symbolic analysis. The total evaluation
time of (reduced) characteristic functions (i.e., the evaluation of the polynomials as well as
the exponential factors) and its contribution to the execution time of symbolic analysis is
as follows (the execution times are in seconds, for a SPARCstation 2, and correspond to
100 iteration steps):

number of frequencies (per group) 10 20 50 100

execution time (symbolic analysis) 3.30 3.62 4.32 5.61
evaluation time (reduced functions) 0.13 0.26 0.64 1.29

percent of total execution time 3.9 7.2 14.8 23.0

If the conversion to S–parameters is taken into account, the comparison is as follows:

number of frequencies (per group) 10 20 50 100

execution time (symbolic analysis) 3.30 3.62 4.32 5.61
evaluation time (results) 0.23 0.45 1.12 2.27

percent of total execution time 7.0 12.4 25.9 40.5

The difference between the total execution times and the evaluation times shown in the
table is almost independent of the number of frequencies; this difference corresponds to: (i)
updating group parameters, (ii) finding operating point solutions, (iii) retrieving the values
of all variable symbols, (iv) evaluation of coefficients of reduced functions, and (v) storing
the results and evaluation of the error function (only this part depends upon the number
of frequencies, but its contribution is rather insignificant).

Since the differences between different representations influence the overall performance
rather insignificantly, other considerations (like memory requirements and simplicity of
implementation) may have more influence on the choice of the representation than just the
execution time of the evaluation scheme.

7. CONCLUDING REMARKS

An integration of symbolic approach with traditional numerical computer–aided cir-
cuit analysis can significantly reduce the simulation time. This reduction can be used for
more sophisticated simulation strategies, which – in general – are more computationally
demanding.

In the case of parameter extraction, the analyzed circuits are rather small (typically they
contain less than 10 nodes and less than 15 elements), so the symbolic functions are relatively
simple and no function approximations are really needed. Moreover, many symbols can
usually be eliminated during the generation of symbolic function because their values cannot
change during the extraction (fixed symbols). More general applications of symbolic and
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integrated numerical/symbolic simulation must take into account that for larger circuits the
symbolic functions become very complex, so additional function simplification is required
[GS].

The presented approach was developed with the assumption that no frequency–dependent
elements are used in the small-signal analysis, because the proposed “reduced” deos not
support frequency–dependency. If this assumption is not true and frequency–dependent
elements are to be taken into account, the approach must be modified by introducing
slightly different reduction step, which creates “reduced symbolic products” by elimination
all frequency–independent symbols. These (usually small) reduced symbolic products must
be evaluated for each frequency (instead of simple polynomials). An outline of the modified
reduction step, which creates (new, reduced) tables LtabR, CtabR, MtabR and ItabR) can
be as follows:

il := 0;

im := 0;

is := 0;

imr := 0;

isr := 0;

for i := 1 to Nf do

sbase := isr;

imr := imr + 1;

CtabR[imr] := Reduce(im,is,isr);

MtarR[imr] := isr - sbase;

for j := 0 to Ntab[i] do

sum := 0.0;

imbase := imr;

il := il + 1;

for k := 1 to Ltab[il] do

isbase := isr;

val := Reduce(im,is,isr);

if isr = isbase then

sum := sum + val

else

imr := imr + 1;

CtabR[imr] := val;

MtabR[imr] := isr - isbase

endif

endfor;

if sum <> 0.0 then

imr := imr + 1;

CtabR[imr] := sum;

MtabR[imr] := 0

endif;

LtabR[il] := imr - imbase;

endfor

endfor;

where the procedure Reduce processes one symbolic product, checking for frequency–dependent
symbols, and returning the product of all frequency–independent symbols (while copying
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all frequency–dependent symbols to ItabR):

real function Reduce (int im, int is, int isr);

begin

real val;

int last;

im := im + 1;

val := Ctab[im];

last := is + Mtab[im];

while is < last do

is := is + 1;

if frequency_dependent(symbol(Itab[is])) then

isr := isr + 1;

ItabR[isr] := Itab[is]

else val := val * ST[Itab[is]] endif

endwhile;

return val

end;

It should be observed that if there are no frequency–dependent symbols, the (completely)
reduced form (all elements of MtabR are zeros and all elements of LtabR are equal to 1)
is equivalent to a “reduced polynomial” but is less efficient in both representation and
evaluation time than a simple polynomial discussed earlier.

In FIT–S, symbolic analysis is used for (small–signal) frequency–domain analyses only.
If ongoing research succeeds in developing symbolic methods that can be applied to non–
LLS (linear, lumped and stationary) circuits, further reduction of the “computational effort”
required for simulation–based parameter extraction will be possible.
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APPENDIX 1

TESTPOL compares execution times for evaluation of polynomials in the real and complex
domains for polynomials of several degrees.

PROGRAM TESTPOL
PARAMETER (NDEG=8)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(10)
DATA A / 1.D1,9.D0,8.D0,7.D0,6.D0,5.D0,4.D0,3.D0,2.D0,1.D0 /

C ... set the number of repetitions
NREP=1000000
WRITE(*,100) NREP

100 FORMAT(’ test-pol : number of repetitions : ’,I7)
C ... set the frequency

OMEGA1=1.5D0
C ... print the header

WRITE(*,200)
200 FORMAT(/’ deg real/i real/c complex’)

C ... for consecutive degrees
DO 80 N=1,NDEG
T1=exectime()
OMEGA=OMEGA1
DO 91 II=1,NREP
OMEGA=OMEGA+1.D0
CALL EVPOLR(N,OMEGA,A,V1RE,V1IM)

91 CONTINUE
T2=exectime()
OMEGA=OMEGA1
DO 92 II=1,NREP
OMEGA=OMEGA+1.D0
CALL EVPOLS(N,OMEGA,A,V2RE,V2IM)

92 CONTINUE
T3=exectime()
OMEGA=OMEGA1
DO 93 II=1,NREP
OMEGA=OMEGA+1.D0
CALL EVPOLC(N,OMEGA,A,V3RE,V3IM)

93 CONTINUE
T4=exectime()
WRITE(*,300) N,T2-T1,T3-T2,T4-T3

300 FORMAT(I5,1P3D10.2)
80 CONTINUE

STOP
END

C --- evpolc ----------------------------------------------------------*
C This routine evaluates the polynomial in the complex domain; CMXMUL
C performs complex multiplication in double precision.
C

SUBROUTINE EVPOLC (NDEG,OMEGA,A,VALRE,VALIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(10)
VALRE=A(NDEG+1)
VALIM=0.D0
DO 10 I=NDEG,1,-1
CALL CMXMUL(VALRE,VALIM,0.D0,OMEGA)
VALRE=VALRE+A(I)
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10 CONTINUE
RETURN
END

C --- evpolr ----------------------------------------------------------*
C This routine evaluates the polynomial in the real domain.
C

SUBROUTINE EVPOLR (NDEG,OMEGA,A,VALRE,VALIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(10)
OMEGA2=-OMEGA*OMEGA

C ... first evaluate the real part
NE=NDEG
IF ((NDEG.AND.1).EQ.0) NE=NE+1
VALRE=A(NE)
DO 10 I=NE-2,1,-2
VALRE=VALRE*OMEGA2+A(I)

10 CONTINUE
C ... then the imaginary part

NN=NDEG
IF (NE.EQ.NDEG) NN=NN+1
VALIM=A(NN)
DO 20 I=NN-2,2,-2
VALIM=VALIM*OMEGA2+A(I)

20 CONTINUE
VALIM=VALIM*OMEGA
RETURN
END

C --- evpols ----------------------------------------------------------*
C This routine evaluates the polynomial in the real domain.
C

SUBROUTINE EVPOLS (NDEG,OMEGA,A,VALRE,VALIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION A(10)
VALRE=A(NDEG+1)
VALIM=0.D0
DO 10 I=NDEG,1,-1
VAL=VALRE*OMEGA
VALRE=-VALIM*OMEGA+A(I)
VALIM=VAL

10 CONTINUE
RETURN
END

C --- cmxmul ----------------------------------------------------------*
C Complex multiply (A,Bj) = (A,Bj)*(C,Dj)
C

SUBROUTINE CMXMUL (A,B,C,D)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
X=A*C-B*D
B=A*D+B*C
A=X
RETURN
END
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/* C-language routine returns the execution (or processor) time ------- */
#include <sys/time.h>
#include <sys/times.h>
#include <sys/types.h>
#include <unistd.h>

double exectime_ ()
{

double e;
struct tms buffer;
static int mark = 0;
if (mark == 0) mark = sysconf(_SC_CLK_TCK);
times(&buffer);
e = ((float) buffer.tms_utime) / mark;
return(e);

}
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APPENDIX 2

TESTREP compares execution times for evaluation of polynomials using several different
represetations of polynomials.

PROGRAM TESTREP
PARAMETER(LR=50,NDEG=8)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION SYMB(15)
DIMENSION KOD(LR)
DATA SYMB / 0.D0,0.D0,13.D0,12.D0,11.D0,10.D0,9.D0,8.D0,7.D0,6.D0,
+ 5.D0,4.D0,3.D0,2.D0,1.D0 /

C ... set the number of repetitions
NREP=1000000
WRITE(*,100) NREP

100 FORMAT(’ test-rep : number of repetitions : ’,I7)
C ... set the frequency

OMEGA1=1.5D0
C ... print the header

WRITE(*,150)
150 FORMAT(/’ deg tree reverse binary ’)

C ... for consecutive degrees
DO 80 N=2,NDEG

C ..... generate reverse representation
CALL REVREP(N,KOD,LR)

C ..... create parse tree representation
CALL mktree(N)

C ..... evaluate tree representation
T0=exectime()
OMEGA=OMEGA1
DO 91 II=1,NREP
OMEGA=OMEGA+1.D0
CALL evtree(OMEGA,SYMB(1),POLRE(1),POLIM(1))

91 CONTINUE
T1=exectime()
OMEGA=OMEGA1
DO 92 II=1,NREP
OMEGA=OMEGA+1.D0
CALL EVALRR(OMEGA,KOD,SYMB,VALR1,VALI1)

92 CONTINUE
T2=exectime()
OMEGA=OMEGA1
DO 93 II=1,NREP
OMEGA=OMEGA+1.D0
CALL SPSEVB(N,OMEGA,SYMB,VALR2,VALI2)

93 CONTINUE
T3=exectime()
WRITE(*,900) N,T1-T0,T2-T1,T3-T2

900 FORMAT(I5,1P3D10.2)
80 CONTINUE

STOP
END

C --- revrep ----------------------------------------------------------*
C This routine generates the reverse representation in KOD; arguments
C are represented by their subscripts+3, operators: * as -3, + as -1.
C It is assumed that SYMB[1]=omega and SYMB[2]=-omega*omega.
C
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SUBROUTINE REVREP (N,KOD,LR)
DIMENSION KOD(*)

C ... first generate code for the real part of the polynomial
I=1
NE=N
IF ((NE.AND.1).NE.0) NE=NE-1
KOD(I)=NE+3
DO 20 J=NE-2,0,-2
I=I+1
KOD(I)=2
I=I+1
KOD(I)=-3
I=I+1
KOD(I)=J+3
I=I+1
KOD(I)=-1

20 CONTINUE
C ... then generate code for the imaginary part

NN=N
IF (NE.EQ.N) NN=N-1
I=I+1
KOD(I)=NN+3
DO 30 J=NN-2,1,-2
I=I+1
KOD(I)=2
I=I+1
KOD(I)=-3
I=I+1
KOD(I)=J+3
I=I+1
KOD(I)=-1

30 CONTINUE
I=I+1
KOD(I)=1
I=I+1
KOD(I)=-3

C ... finaly append the terminator
I=I+1
KOD(I)=0
IF (I.GT.LR) STOP ’insufficient length of KOD.-’
LR=I
RETURN
END

C --- evalrr ----------------------------------------------------------*
C This routine evaluates the reverse representation stored in KOD.
C It sets SYMB[1]=omega and SYMB[2]=-omega*omega.
C

SUBROUTINE EVALRR (OMEGA,KOD,SYMB,VALRE,VALIM)
IMPLICIT DOUBLE PRECISION(A-H,O-Z)
DIMENSION KOD(*),SYMB(*)
DIMENSION ARGS(15)
SYMB(1)=OMEGA
SYMB(2)=-OMEGA*OMEGA
ITOP=0
IP=1

10 K=KOD(IP)
IP=IP+1
IF (K.NE.0) THEN
IF (K.GT.0) THEN
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ITOP=ITOP+1
ARGS(ITOP)=SYMB(K)

ELSE
ITOP=ITOP-1
GO TO (21,22,23,24),-K
STOP ’SPSEVF : undefined operator.-’

21 ARGS(ITOP)=ARGS(ITOP)+ARGS(ITOP+1)
GO TO 30

22 ARGS(ITOP)=ARGS(ITOP)-ARGS(ITOP+1)
GO TO 30

23 ARGS(ITOP)=ARGS(ITOP)*ARGS(ITOP+1)
GO TO 30

24 ARGS(ITOP)=ARGS(ITOP)/ARGS(ITOP+1)
30 CONTINUE

ENDIF
GO TO 10

ENDIF
IF (ITOP.NE.2) WRITE(*,900) ITOP

900 FORMAT(’ ... SPSEVF :: incorrect argument stack :’,I3)
VALRE=ARGS(1)
VALIM=ARGS(2)
RETURN
END

C --- spsevb ---------------------------------------- standard --------*
C This routine performs "binary code" evaluation.
C

SUBROUTINE SPSEVB (N,OMEGA,SYMB,VALRE,VALIM)
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DIMENSION SYMB(*)
OMEGA2=-OMEGA*OMEGA
VALRE=0.D0
VALIM=0.D0
GO TO (11,12,13,14,15,16,17,18,19),N

19 VALIM=((((SYMB(12)*OMEGA2+
+ SYMB(10))*OMEGA2+
+ SYMB(8))*OMEGA2+
+ SYMB(6))*OMEGA2+
+ SYMB(4))*OMEGA

18 VALRE=(((SYMB(11)*OMEGA2+
+ SYMB(9))*OMEGA2+
+ SYMB(7))*OMEGA2+
+ SYMB(5))*OMEGA2+
+ SYMB(3)
IF (N.EQ.9) RETURN

17 VALIM=(((SYMB(10)*OMEGA2+
+ SYMB(8))*OMEGA2+
+ SYMB(6))*OMEGA2+
+ SYMB(4))*OMEGA
IF (N.EQ.8) RETURN

16 VALRE=((SYMB(9)*OMEGA2+
+ SYMB(7))*OMEGA2+
+ SYMB(5))*OMEGA2+
+ SYMB(3)
IF (N.EQ.7) RETURN

15 VALIM=((SYMB(8)*OMEGA2+
+ SYMB(6))*OMEGA2+
+ SYMB(4))*OMEGA
IF (N.EQ.6) RETURN

14 VALRE=(SYMB(7)*OMEGA2+
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+ SYMB(5))*OMEGA2+
+ SYMB(3)
IF (N.EQ.5) RETURN

13 VALIM=(SYMB(6)*OMEGA2+
+ SYMB(4))*OMEGA
IF (N.EQ.4) RETURN

12 VALRE=SYMB(5)*OMEGA2+
+ SYMB(3)
IF (N.EQ.3) RETURN

11 VALIM=SYMB(4)*OMEGA
IF (N.EQ.2) RETURN
VALRE=SYMB(3)
RETURN
END
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/* C-language routines for parse tree generation and evalaution --------- */
#include <stdio.h>
#include <ctype.h>

/* tree structure */

typedef struct tree {
struct tree * left;
struct tree * right;
int val;

} tree;

extern char * malloc (int);

tree * TreeRe = NULL;
tree * TreeIm = NULL;

tree * FreeNode = NULL;
int NumGetNode = 0;
int NumMemNode = 0;
int NumRelNode = 0;

tree * GetNode () /* ---------------------------------------------------- */
{

tree * node = NULL;
if (FreeNode != NULL)
{

node = FreeNode;
FreeNode = node->left;
NumGetNode++;

}
else
{

if ((node = (tree *) malloc(sizeof(tree))) == NULL)
{

fprintf(stdout," ... <malloc> : no available memory.-");
exit(1);

}
NumMemNode++;

}
return (node);

}

void RelNode (tree * node) /* ------------------------------------------- */
{

node->left = FreeNode;
node->right = FreeNode;
FreeNode = node;
NumRelNode++;

}

void RelTree (tree * node) /*- ------------------------------------------ */
{

if (node->left != NULL) RelTree(node->left);
if (node->right != NULL) RelTree(node->right);
RelNode(node);

}

tree * Node (int val) /* ------------------------------------------------ */
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{
tree * node = NULL;
node = GetNode();
node->left = NULL;
node->right = NULL;
node->val = val;
return (node);

}

void mktree_ (int * deg) /* --------------------------------------------- */
{

tree * p = NULL;
int i;
for (i = 0; i <= *deg; i = i+2)
{

if (i < *deg-1)
{

if (i == 0)
{

p = Node(-1);
TreeRe = p;

}
else
{

p->left = Node(-1);
p = p->left;

}
p->right = Node(i+2);
p->left = Node(-3);
p = p->left;
p->right = Node(1);

}
else p->left = Node(i+2);

}
TreeIm = Node(-3);
p = TreeIm;
p->right = Node(0);
for (i = 1; i <= *deg; i = i+2)
{

if (i < *deg-1)
{

p->left = Node(-1);
p = p->left;
p->right = Node(i+2);
p->left = Node(-3);
p = p->left;
p->right = Node(1);

}
else p->left = Node(i+2);

}
}

double Eval (tree *root,double Val[]) /* -------------------------------- */
{

int k;
double a1;
double a2;
if ((k = root->val) >= 0) return (Val[k]);
a1 = Eval(root->left,Val);
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a2 = Eval(root->right,Val);
switch (k) {
case -1 : return (a1 + a2);
case -2 : return (a1 - a2);
case -3 : return (a1 * a2);
case -4 : return (a1 / a2);
default : fprintf(stdout," ... undefined operator : %d\n",root->val);
exit (-1);
}

}

evtree_ (double * Freq,double Val[],double * Re,double * Im) /* --------- */
{

double x;
double y;
Val[0] = *Freq;
Val[1] = - Val[0] * Val[0];
x = Eval(TreeRe,Val);
y = Eval(TreeIm,Val);
*Re = x;
*Im = y;

}


