
Technical Report #9402

FIT–S, A SIMULATION–BASED DATA–DRIVEN

PARAMETER EXTRACTION PROGRAM

by

W.M. Zuberek† and A. Konczykowska‡

† Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1C-5S7

‡ Centre National d’Etudes des Télécommunications
Laboratoire de Bagneux
92220 Bagneux, France

May 1994

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1B 3X5
tel: (709) 737–8627
fax: (709) 737–2009

Copyright c© 1994 by W.M. Zuberek and A. Konczykowska.
All rights reserved.

The Natural Sciences and Engineering Research Council of Canada
partially supported this research through Research Grant A8222
and International Colaborative Research Grant ICR0121191.

MUN–CS Technical Report #9402 1

FIT–S, A SIMULATION–BASED DATA–DRIVEN

PARAMETER EXTRACTION PROGRAM 1

A b s t r a c t

FIT–S is an interactive program for extraction of device parameters for SPICE–like
circuit simulators. It is based on a circuit simulator rather than an explicit set of model
equations. Basic advantages of the proposed approach include: (1) explicit model equations
need not be known as they are provided by the circuit simulation tool used, (2) fitting can
be performed not only for single devices but for functional blocks or whole circuits as well,
and (3) the same extractor can be used for a variety of devices and/or device models.
The extractor supports numerical as well as symbolic simulation so repeated analyses of
linearized circuit (for frequency domain analyses) can be performed very efficiently using
the symbolic functions generated from the Coates flowgraph representation of the circuit.
Several optimization methods are built into the program to provide robust as well as efficient
fitting of device characteristics. Flexibility of the approach is obtained by specification
of extraction details in the data sets rather than the extraction procedure. Parameter
extraction for heterojunction bipolar transistors (HBT) is used as an illustration of FIT–S
capabilities.

R é s u m é

FIT–S est un programme interactif d’extraction de paramètres des composants pour les
simulateurs de type SPICE. Le programme est basé sur le simulateur de circuits et non sur
une formulation explicite des équations du modèle. Les avantages essentiels de l’approche
proposée sont: (1) les équations explicites du modèle ne sont pas nécessaires parce qu’elles
sont fournies par le simulateur, (2) l’extraction peut être effectuée non seulement pour des
composants mais aussi pour des blocs fonctionnels ou même des circuits entiers, (3) le même
extracteur peut être utilisé pour une grande variété de composants et/ou modèles de com-
posants. L’extracteur effectue aussi bien l’analyse numérique que symbolique, ce qui fait
que des analyses répétées du circuit linéarisé (dans le domaine fréquentiel) peuvent être
réalisées très efficacement en utilisant les fonctions obtenues à partir de la répresentation
du circuit par le graphe de fluence de Coates. Plusieurs méthodes d’optimisation sont im-
plantées dans le programme pour obtenir un fit des caractéristiques aussi robuste qu’efficace.
La flexibilité de l’approche est obtenue par la spécification de détails d’extraction dans les
fichiers de données plutôt que dans la procédure d’extraction. L’exemple du Transistor
Bipolaire à Héterojonction (TBH) est donné pour illustrer les divers aspects de la procédure
d’extraction.

Acknowledgements

Collaboration with François Durbin of Commissariat à l’Energie Atomique, Bruyères–le–
Châtel, France, and with Michel Bon of Centre National d’Etudes des Télécommunications,
Laboratoire de Bagneux, Bagneux, France, is gratefully acknowledged.

1This report replaces Technical Report #9111 which described an earlier version of the FIT program.

1. Introduction 2

1. INTRODUCTION

Reliable simulation of electronic circuits cannot be obtained without accurate specifica-
tion of circuit elements and device models. Passive elements, such as resistors or capacitors,
can easily be characterized by a few parameters, values of which can usually be obtained by
simple measurements. In the case of semiconductor devices that are characterized by highly
nonlinear models with large sets of of parameters and complicated relationships between
them, a proper selection of values of parameters is a nontrivial task which, if performed
inadequately, can significantly distort simulation results. Usually these model parameters
cannot be determined by direct measurements because of device nonlinearities; popular
parameter extraction methods use thus iterative techniques to minimize the differences
between measurement data and model’s behavior in the full range of operating conditions.

Several different approaches to parameter extraction have been proposed; some charac-
teristic features of these approaches include:

• extraction methods can be general or specialized; specialized methods extract some
subsets of model parameters only, for example, model resistances, or capacitances
[CFG], or DC parameters only [IbGr], while general methods determine all parameters
of the model;

• parameter extraction can be direct or iterative; direct methods approximate model
equations by linear functions and determine the values of parameters graphically or
by solving linearized equations; iterative methods fit the model responses to a set
of measured characteristics by minimizing an objective function that quantitatively
characterizes the fit [DoSc,CCLL,Garw]; sometimes a mixed approach is used in which
some parameters are extracted using the direct methods, and remaining by an iterative
procedure [DaJa,IbGr];

• iterative methods can be equation–based or simulation–based; equation–based meth-
ods use a set of model equations to obtain device responses that correspond to mea-
surement data [DoSc,EGMT]; in simulation–based approach, a circuit simulator (or
its part that handles devices and their models) is used to provide circuit responses;
simulation–based approach eliminates potential inconsistencies between model equa-
tions used by the extractor and equations implemented in simulation tools as the same
simulation tool can be used for both extraction and simulation,

• extraction methods can be program–driven or data–driven; in the program–driven
approach the structure of the data as well as the sequence of processing steps are de-
termined by the extracting software; data–driven approach is more flexible to use but
also more difficult to implement as the extraction “strategy” is specified together with
the measurement data, and the extracting program mainly recognizes and executes
extraction directives formulated in some sort of “high–level language”.

The approach presented in this report is iterative, simulation–based and data–driven;
it uses general optimization methods and an “open” circuit simulation tool rather than
traditional set of model equations. The data-driven capability allows integrated parameter

1. Introduction 3

extraction [BCYZ] as well as selective extraction, performed on subsets of measurement
data and subsets of parameters. Different extraction strategies can thus be developed
for different types of devices and/or their models in order to perform the extraction of
parameters efficiently.

Several extraction programs have been reported that use gradient optimization tech-
niques to fit electrical models to measurement data [DoSc,CCLL,YaCh]. These programs
have successfully demonstrated the general principle of applicability of optimizations meth-
ods, nonetheless they suffered from significant convergence problems. The convergence
properties of these methods depend upon properties of the error functions; typically, it is
required that error function have no singularities, be unimodal, and approximately quadratic
in the region of a minimum. These conditions are not always met by popular error func-
tions [CCLL,BST] especially in the absence of good initial estimates of parameters. To
achieve convergence, strategies must be developed which perform “partial” extractions us-
ing subsets of parameters and subsets of measurement data. Also, less efficient but robust
methods are being used [CCLL,Garw] in order to avoid convergence problems of gradient
techniques. The approach presented in this report uses two optimization algorithms; the
initial optimization is performed by very robust direct search method of Nelder and Mead
[NeMe], while a more efficient gradient–based method (from the NAG library [Phil]) is used
in a neighborhood of the solution.

The proposed approach is simulation–based, i.e., it uses a general circuit simulation tool
rather than a set of model equations. Basic advantages of such an approach include:

• explicit model equations need not be known as the required circuit responses are
provided by a general circuit simulation tool,

• the same extractor can be used for a variety of devices and/or device models; the
actual limitations are imposed by the tool used for circuit simulation rather than by
the extractor,

• fitting can be performed not only for single devices (as is the case for equation–based
extractors) but for any (sub)circuits as well; consequently, all packaging, mounting
and fixture parasitics [EGMT] can easily be taken into account.

The report is composed of five main sections. Section 2 briefly describes general or-
ganization of a data–driven program. Section 3 formulates parameter extraction as an
(data–driven) optimization problem and also contains a brief discussion of the optimization
methods used in FIT–S; it also presents an illustration of the performance of parameter
extraction depending upon the optimization method used. Section 4 presents an enhance-
ment of the original extractor in which self–heating effects of devices are taken into account
by a combined DC transfer curve and thermal analyses. A brief description of integrated
numerical– symbolic simulation is given in Section 5, and illustrated by a comparison of
performance results. Section 6 discusses generalizations of parameter extraction in which
optimization is performed with respect to non–electrical parameters, usually technological
and/or geometric ones. Section 7 concludes the report; it also indicates a number of topics
that need further research.

2. Data–driven organization 4

A description of input data for the FIT–S program is given in Appendix 1, while Ap-
pendix 2 describes the command language in greater detail.

2. DATA–DRIVEN ORGANIZATION

The organization of data for a simulation–based extractor is partially implied by its
circuit simulation tool. FIT–S uses three different types of input data:

• the circuit description file,

• the definition of variables file,

• the measurement data file.

The circuit description file contains the (SPICE–style) description of a circuit that cor-
responds to the measurement environment (including all parasitics). The same circuit file
may contain circuits corresponding to several measurement environments.

The second file defines all variables (e.g., all extracted transistor model parameters as
well as parasitics) with their lower and upper bounds (the bounds are used as optimization
constraints); it also contains the nominal values of parameters (which are used as the
starting point) and the actual values of all variables. Initially, the actual values are equal
to nominal values, but during the extraction process, the actual values are being replaced
by those results of optimizations which improve the fit.

Measurement data normally include DC measurements, frequency–domain (AC) and/or
time–domain (TR) measurements (used for large–signal analysis of the periodic steady–
state), but harmonic and noise measurements can also be handled by the extractor. Mea-
surements of the same type (e.g., AC for a given bias point, steady–state time–domain for
a given frequency, etc.) form a data “group”. It is assumed that each group is composed
of a header that identifies the group and describes its contents, and a rectangular table of
numerical (measurement) data. The table of numerical data is composed of values of one
independent variable and a number of (dependent) measurements; the values of independent
variables are voltages or currents for DC data, frequencies for frequency–domain data, and
timepoints for time–domain results. A more detailed description of data groups is given in
Appendix 1.

The file of measurement data contains a sequence of data groups. There is no limit
imposed on the number or composition of data groups; in fact, a section of one data group
can be repeated (with more data points) as another data group to provide a better fit in
regions which are believed to be more important or more difficult for fitting (e.g., initial
parts of characteristics or highly nonlinear regions).

These three different types of data (circuit description, specification of variables and
measurement data) are handled by different modules of FIT–S. Fig.1 shows a general orga-
nization of the FIT–S extractor. Its main components are:

2. Data–driven organization 5

driver
(interactive)

optimi–
zation

methods

❄

circuit
simulation
(numerical

and
symbolic)

❄

✫✪
✬✩
file
.cir

❄

objective function
(error function)

simulation
driver

✲ ✲ ✲

variables
manager✛

✫✪
✬✩
file
.var

❄
data manager

✫✪
✬✩
file
.dat

❄

❄❄❄

❄ ❄

Fig.1. General organization of the FIT–S program.

• General driver which coordinates all remaining parts of the program and performs
interaction with the user using an interpreter of a simple command language that
describes consecutive steps of the extraction process.

• Variables manager which controls the set of optimization variables. All optimization
variables, with their lower and upper bounds as well as nominal and actual values, are
entered from the variables file during the initial phase of the program. The variables
manager performs all run–time modifications of these variables, it selects subsets of
variables for subsequent optimizations, and updates the corresponding values after
each optimization.

• Data manager that maintains a collection of all measurement data and corresponding
simulation results (for the initial and actual values of variables). It performs selective
extractions of data for any subset of groups and any subset of columns within a group,
and it stores the results of circuit simulation with corresponding measurement data.

• Optimizer which selects the optimization method and adjusts optimization parameters
accordingly; it also selects the starting point for the optimization.

• Circuit simulator which performs the analyses required by the evaluation of the ob-
jective function, e.i., analyses that correspond to consecutive data groups selected for
fitting. The simulator is composed of a SPICE–like (numerical) simulation package
SPICE–PAC [Zub2] integrated with a symbolic package SYBILIN [KMGB].

A general scheme of data–driven extraction can be illustrated by the following outline
of a typical extraction step:

select(variables);

select(data_groups);

continue_optimization := true;

3. Extraction through optimization 6

while continue_optimization do

update_the_values_of_variables;

error := 0;

for each selected_data_group do

adjust_circuit_parameters;

find_simulation_results(results);

error := error + differences(data,results)

endfor;

if error < accuracy then continue_optimization := false

else get_new_values_of_variables(error) endif

endwhile;

display_the_results;

where the select operations and the optimization are performed by interactive commands,
the results of optimizations are presented to the user in some convenient form (e.g., a
graphical plot), and the optimization loop can also be terminated if no progress is detected,
or one of the optimization limits is reached.

The organization of data for FIT–S is described in greater detail in Appendix 1, and
the command language in Appendix 2.

3. EXTRACTION THROUGH OPTIMIZATION

Extraction of device parameters can be formulated as an optimization problem [DoSc,
Garw, MMD] in which a nonlinear objective function E is minimized with respect to a set
of device parameters P subject to a set of constraints C. The objective function E describes
the fit of simulated device responses S against a set of measurement data D. The results
of optimization determine such a set of parameter values which minimizes the differences
between the measurement and simulated data:

minimize
P

subject to C

(E(D,S))

For the set of measurement data composed of K data groups, with each data group
being a rectangular table of Ni rows and Li columns of numerical values, 1 ≤ i ≤ K, the
(nonlinear) objective function E(D,S) used in FIT–S is

E(D,S) =
1

K

∑

1≤i≤K

1

Li

∑

1≤j≤Li

Wi,j fi





1

Ni

∑

1≤k≤Ni

ei(D[i, j, k], S[i, j, k])





where:

D[i, j, k] is a measured value (in the i-th group, j-th column and k-th row),

S[i, j, k] is the corresponding simulated result,

3. Extraction through optimization 7

ei is one of the “built–in” error functions such as the absolute value of the difference
between D[i, j, k] and R[i, j, k] (norm1), the square of this difference (norm2), the
square of the relative difference (relative norm2), the logarithm of the absolute value
of the difference between D[i, j, k], etc.,

fi is a function that is “complementary” to ei, e.g., if ei is the square function, fi is the
square root function, etc.,

Wi,j is a weight factor associated with the j-th column of the i-th data group; weight
factors are introduced in order to “scale” averaged error values of different columns
and different groups, i.e., to make them comparable in magnitude.

Error functions ei are thus associated with data groups, and each data group can have
a different error function associated with it. The formulation of the objective function
“averages” the error values in order to make them independent of the number of data
points. Furthermore, the error functions ei (and fi) are usually selected in such a way that
the errors for different data groups are within the same range of magnitude.

The “built–in” error functions ei(x, y)) include:

• norm1, e1(x, y) = abs(x− y),

• relative norm1, e2(x, y) = abs((x− y)/x),

• norm2, e3(x, y) = (x− y)2,

• relative norm2, e4(x, y) = ((x− y)/x)2,

• norm4, e5(x, y) = (x− y)4,

• relative norm4, e6(x, y) = ((x− y)/x)4,

• norm8, e7(x, y) = (x− y)8,

• relative norm8, e8(x, y) = ((x− y)/x)8,

• logarithmic norm, e9(x, y) = abs(ln(abs(y/x))),

• logarithmic maximum, e10(x, y) = max1≤k≤Ni
(abs(ln(abs(y/x)))).

Simple examples of parameter extraction for heterojunction bipolar transistors are
shown in Fig.2 to Fig.7. Fig.2, Fig.4 and Fig.6 show DC common–base (Gummel plot),
DC common–emitter and AC measurement data (all four S–parameters for the frequencies
from 0.2 to 17 GHz) together with the simulated characteristics obtained for the initial
values of transistor parameters (the initial values of parameters are obtained by simple pre-
diction formulas). It can be observed that these initial values of parameters do not provide
a reasonably good fit of transistor characteristics against the measurement data.

Fig.3, Fig.5 and Fig.7 show the same groups of measurement data but with extracted
values of transistor parameters (using weights equal to 1 and the log norm1, relative norm2

and norm2, respectively). It can be observed that simulated characteristics fit very closely
to the measurement data.

3. Extraction through optimization 8

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1.1 1.2 1.3 1.4 1.5

measured

simulated

I[A]

VEB[V]

IC

IB

++

+
+

+

+

+

+
+

+
+

+
+

+
+

+
+

+
+

+ + + + + + +

+ +

Fig.2. HBT common–base DC characteristics; initial values of parameters.

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1.1 1.2 1.3 1.4 1.5

measured

simulated

I[A]

VEB[V]

IC

IB

++

+
+

+

+

+

+
+

+
+

+
+

+
+

+
+

+
+

+ + + + + + +

+ +

Fig.3. HBT common–base DC characteristics; extracted values of parameters.

3. Extraction through optimization 9

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5 3 3.5 4

measured
simulated

IC [A]

VCE [V]

++

+ +
+ + + + + + + + + + + + + + + + + + +

+
+

+
+ + + + + + + + + + + + + + + + + +

+
+

+

+ + + + + + + + + + + + + + + + + +

+
+

+

+
+ + + + + + + + + + + + + + + + +

Fig.4. HBT common–emitter DC characteristics; initial values of parameters.

0

0.005

0.01

0.015

0 0.5 1 1.5 2 2.5 3 3.5 4

measured
simulated

IC [A]

VCE [V]

++

+ +

+ + + + + + + + + + + + + + + + + + +

+
+

+

+ + + + + + + + + + + + + + + + + +

+

+

+

+
+ + + + + + + + + + + + + + + + +

+

+

+

+

+
+ + + + + + + + + + + + + + + +

Fig.5. HBT common–emitter DC characteristics; extracted values of parameters.

3. Extraction through optimization 10

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

measured
simulated S21/3

S12 ∗ 5

S22

S11

✢
✴

♦

❃

++

+

+
++++++

++
++
+++++
+

+

+
+

+++++++++++
++++

+

+

+
+ + +

++++++++++++

+

+
+++++++

+++++
++++

Fig.6. HBT S–parameters as functions of frequency; initial values of parameters.

Presently, the FIT–S extractor contains two different optimization techniques:

• Quite robust but rather slow direct search method of Nelder and Mead [NeMe] (as
in [Garw]) which requires only function evaluations, not derivatives (so it is not very
efficient in terms of the number of function evaluations, but it is quite insensitive
to large changes and even discontinuities of the objective function). The method
maintains a “simplex” composed ofN+1 vertices (N is the number of dimensions), and
in each step it replaces the vertex corresponding to the largest value of the objective
function with a reflection, a reflection and extension, or a contraction, depending upon
the value of the objective function in the new vertex. If no “better” vertex can be
found in such a way, the whole simplex is reduced, and the procedure continues. The
method is not very efficient in terms of the number of function evaluations, but it is
quite insensitive to large changes and even discontinuities of the objective function.

• A comprehensive quasi–Newton algorithm (the E04JBF routine from the NAG library
[NAG]) for finding a minimum of a function of several variables subject to fixed upper
and lower bounds on the variables. Although the method is intended for functions

3. Extraction through optimization 11

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5

measured
simulated S21/3

S12 ∗ 5

S22

S11

✢

✌

■❃

++

+

+
++++++

++
++
+++++
+

+

+
+

+++++++++++
++++

+

+

+
+ + +

++++++++++++

+

+
+++++++

+++++
++++

Fig.7. HBT S–parameters as functions of frequency; extracted values of parameters.

0.001

0.01

0.1

1

10

0 2 4 6 8 10 12

error for CE data

error for CB data

✴

❑

✸

✸
✸ ✸

✸
✸ ✸

✸ ✸ ✸ ✸

✸ ✸ ✸

✸

✸

✸

✸
✸ ✸ ✸ ✸ ✸ ✸ ✸ ✸

✸

✸

Fig.8. The values of error functions for consecutive steps of optimization.

4. Self–heating effects 12

which have continuos first and second derivatives, it usually works well even if the
derivatives have occasional discontinuities. Explicit derivatives are not required as
they are approximated by finite differences. The method is much more efficient with
respect to the number of required function evaluations than the direct search method
of Nelder and Mead, but it also is more sensitive to large changes of function values.

Normally, the initial optimization is performed by the direct search method which is less
sensitive to changes of the objective function. The quasi–Newton method is most efficient
in the neighborhood of the solution, so its typical application is in the second stage of
optimization, when a neighborhood of a minimum has been reached by the direct search
method. Fig.8 shows the changes of the value of the objective function in consecutive steps
of the optimization.

The influence of the optimization method can be illustrated by the following compar-
ison of the computational effort (i.e., the CPU time) required to find the best fit and the
corresponding values of the error functions at the solution:

optimization method CPU time (in min) objective function at solution

direct search 178 7.5E-3
quasi–Newton 82 2.4E-3

direct search + quasi–Newton 70 2.0E-3

In the first two cases, the optimizations were restarted until no improvements was ob-
tained. In the third case (i.e., direct search + quasi–Newton), the quasi–Newton method
was used to refine the fit produced by the direct search method.

The CPU time was measured on a microVAX 3600 machine running VMS.

4. SELF–HEATING EFFECTS

For heterojunction bipolar transistors (HBTs), the most apparent difference with respect
to silicon BJTs is the HBT’s negative slope of I–V curves. This negative slope can be
observed in most of the published HBT’s I–V curves, however, it cannot be obtained from
the Gummel–Poon model. Experimental results have shown that this negative slope can be
explained by the transistor’s self–heating effect [GrOk].

In order to take into account specific properties of GaAs/GaAlAs semiconductor devices,
such as the high base doping effect, the GaAs material properties and the heterojunction
effect, a new thermal–electrical model based on comparative analysis of HBTs and silicon
BJTs has been developed [WAK]. The model is based on the following two assumptions:
(i) the non–ideal base current is dominated by Shockley–Read–Hall recombination, and (ii)
the ideal current gain is determined mainly by the base transport factor. In this model, the
temperature dependence of the current gain β is proportional to eE∞/kT where E∞ is the
activation energy, k is the Boltzman constant, and T is the absolute temperature (in degrees
K). The temperature dependence of the collector saturation current Js is the same as for
silicon BJTs, and a good approximation of GaAs/GaAlAs HBT’s behavior can be obtained if
the recombination saturation current has the same temperature variation as Js/nβ, where n

4. Self–heating effects 13

is the ideal factor of recombination currents. Consequently, the only modification needed to
represent the self–heating effect in HBTs is the current gain temperature dependence, which
affects not only the current gain itself, but also the recombination current. Implementation
of this modification in FIT–S (and in fact, in the SPICE–PAC simulation tool) was relatively
straightforward because of SPICE–PAC’s direct access to model parameters.

In order to simulate self–heating effects of semiconductor devices, an enhancement of the
DC Transfer Curve analysis has been developed which provides an independent “external”
iteration for each point of the DC Transfer Curve. This “external” iteration is used in FIT–
S for finding, at each sweep point of the transfer curve, the increase of the temperature
∆T which is due to the power dissipated in the device Pdiss using the concept of “thermal
resistance” Rthe:

∆T = RthePdiss

In effect, the enhancement implements mixed–domain simulation which combines DC
Transfer Curve analysis with temperature variation and is quite independent of specific
properties of simulated devices.

The following outline of the modified implementation the DC Transfer Curve analysis
uses parameters DCstrt, DCstop, DCincr and SOURCE to denote the initial value of the
voltage (or current) sweep, the final value of the sweep, the increment and the independent
source used for the sweep, respectively; the logical condition enhanced is true only if the
external enhancement is used:

initialize;
if enhanced then call enhancement(initial_parameters) endif;
value:=DCstrt;
while (DCincr>0 and value<DCstop) or

(DCincr<0 and value>DCstop) do
update(SOURCE,value);
repeat := true;
while repeat do

repeat := false;
solve_the_system_of_circuit_equations;
if nonconvergent then stop_analysis endif;
store_results;
if enhanced then

call enhancement(parameters);
if solution_is_unsatisfactory then

delete_last_results;
repeat := true

endif
endif

endwhile;
value:=value+DCincr

endwhile;

The enhancement procedure is performed after the DC solution for each sweep point
is found. This procedure implements, for each sweep point, an additional (temperature)
iteration which adjusts the device temperature due to self–heating effects. Its outline is as
follows:

4. Self–heating effects 14

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5 3 3.5 4

measured
simulated

IC [A]

VCE [V]

++

++++
+
++++

++++++++++++++++++++++++++++++++

++++
+

+

+
++++++++++++++++++++++++++++++++++

+++
+

+

+

+

+

+
++++++++++++++++++++++++++++++++

+++
+

+

+

+

+

+

+

+
++++++++++++++++++++++++++++++

+++
+

+

+

+

+

+

+

+

+
+++++++++++++++++++++++++++++

Fig.9. HBT common–emitter DC characteristics; extraction without self–heating effects.

0

0.005

0.01

0.015

0.02

0.025

0 0.5 1 1.5 2 2.5 3 3.5 4

measured
simulated

IC [A]

VCE [V]

++

++++
+
++++

++++++++++++++++++++++++++++++++

++++
+

+

+
++++++++++++++++++++++++++++++++++

+++
+

+

+

+

+

+
++++++++++++++++++++++++++++++++

+++
+

+

+

+

+

+

+

+
++++++++++++++++++++++++++++++

+++
+

+

+

+

+

+

+

+

+
+++++++++++++++++++++++++++++

Fig.10. HBT common–emitter DC characteristics; extraction with self–heating effects.

5. Symbolic simulation 15

if initial_invocation then
Tref := the_reference_temperature_from_the_circuit;
Told:=Tref;
get_reference_values_of_temperature_dependent_parameters_from_the_circuit

endif;
find_temperature_increase_due_to_released_power(Tdelta);
Tact:=Tref+Tdelta;
if abs(Told-Tact) > accuracy then

update_the_ambient_temperature_of_the_circuit(Tact);
find_values_of_temperature_dependent_parameters(Tref,Told,Tact);
Told:=Tact;
set_return_flag(solution_unsatisfactory)

else
Told:=Tref;
set_return_flag(continue)

endif;

Fig.9 and Fig.10 compare the measurement data with simulated I–V characteristics
without and with self–heating effects taken into account, respectively (it should be noted
that characteristics shown in Fig.2 to 7 correspond to a different device for which the
self–heatings effects were negligible). Fig.10 clearly shows the negative slopes of simulated
results that match very closely the measurement data.

These results indicate that the self–heating effects in HBTs can be represented using
only two parameters, the thermal resistance of a transistor Rthe, and the activation energy
E∞ (the results in Fig.10 were obtained for Rthe=800 deg /W , and E∞=70 meV).

The dependence of the energy gap Eg and thermal resistance Rthe of temperature was
not considered here, however, for large temperature ranges, these additional dependencies
should also be taken into account.

The implementation of mixed–domain analysis is reasonably efficient. The total numbers
of iteration steps for DC Transfer Curve analysis without and with self–heating effects (and
with temperature accuracy of 0.1 degrees Celsius), are as follows:

base current IB without self–heating with self–heating

160 µA 62 113
320 µA 63 112
480 µA 62 154
640 µA 62 176
800 µA 70 215

The self–heating effects increase the total number of Newton–Raphson iteration steps
on average from 2 to 3 times (for this accuracy), and this average value grows as the self–
heating effects become more significant.

5. SYMBOLIC SIMULATION

For simulation–based parameter extraction in general, but especially in the case of
microwave applications, a significant part of simulation is performed for the small–signal,
linear behavior of the circuit. These linear analyses can conveniently be done using symbolic

5. Symbolic simulation 16

methods rather then numerical ones; the analyzed circuits are typically very small, and the
number of symbols can be significantly reduced by eliminating, as soon as possible, all those
symbols whose values cannot be modified during analyses.

The principle of symbolic simulation is to derive analytic (or symbolic) functions de-
scribing the circuit responses, using symbols representing (some) circuit parameters (rather
than their numerical values). Evaluation of these symbolic functions for specific values of
symbols provides the required responses of the circuit.

Circuit functions which are used in parameter extraction are driving–point immitances
and various matrices (Y, Z, A, S, etc.) for two–port circuit representation. All these circuit
functions can easily be obtained from characteristic polynomials of the analyzed circuit
[Chen].

For linear, lumped and stationary circuits, the transfer functions H(s) of a two–port
network are in the form of rational functions of the complex frequency s:

H(s) =
Fj(s)

Fk(s)

in which the numerator Fj(s) and the denominator Fk(s) are characteristic polynomials of
the two–port:

Fi(s) =
ni
∑

ℓ=0

sℓPiℓ(x1, ..., xm)

and the coefficients Piℓ(x1, ..., xm) are (nested or expanded) polynomial functions of sym-
bolic elements x1, ..., xm. In the fully expanded form (used in FIT–S) the coefficients are in
the sum–of–product form:

P(x1, ..., xm) =
p

∑

k=1

Ck

r
∏

ℓ=1

xkℓ

where Ck are real numbers, xkℓ are circuit symbols, and p and r depend upon the topology
of the circuit.

An equivalent representation of the characteristic polynomials (obtained by extracting
common factors and rearranging the terms) is:

Fi = skiTi

ni
∑

j=0

sjRij

where each Ti is a product of a constant Ci and (some) symbols xik, k = 1, ...,mi

Ti = Ci

mi
∏

k=1

xik

and each Rij , j = 0, 1, ..., ni, is a sum of products

Rij =

ℓij
∑

k=1

Cijk

mijk
∏

ℓ=1

xijkℓ

5. Symbolic simulation 17

Since all frequency–domain analyses are performed for the circuit with the same topol-
ogy, the generation of symbolic functions can be done only once. Furthermore, the number
of of symbols which can change their values during one optimization (or one “partial ex-
traction”) is rather small, and includes a subset of extracted parameters (updated in the
optimization process) and all those symbols which depend upon the operating point solution
(parameters of small–signal transistor models). All such symbols are called variable symbols
while the remaining symbols are called fixed symbols. It should be observed that all fixed
symbols can be replaced by their numerical values during the generation of the symbolic
functions, reducing the functions and simplifying their subsequent evaluations. The values
of all variable symbols are retrieved after each operating point solution, and are used for
evaluation of all Ti and Rij products. This results in a reduced form of symbolic functions

F
(r)
i = skiAi

ni
∑

j=0

sjAij

where all Ai and Aij , j = 0, 1, ..., ni, are constants provided that no frequency–dependent
elements are used. Only this very simple polynomial form needs to be evaluated during the
frequency–domain analysis.

Symbolic simulation is included in the general extraction scheme in the following way:

retrieve_the_values_of_all_fixed_symbols;

generate_symbolic_products;

continue_optimization := true;

while continue_optimization do

update_the_values_of_variables;

error := 0;

for each frequency_domain_data_group do

update_op_point_voltages_and_currents;

find_the_op_point_solution;

retrieve_the_values_of_variable_symbols;

evaluate_coefficients_of_reduced_functions;

for each frequency do

evaluate_reduced_functions(val);

convert_to_circuit_responses(val,results);

error := error + differences(data,results)

endfor

endfor;

for each non_frequency_domain_data_group do

find_circuit_responses(results);

error := error + differences(data,results)

endfor;

if error < accuracy then continue_optimization := false

else get_new_values_of_variables(error) endif

endwhile;

the step generate_symbolic_products generates the products Ti and Rij above using an
intermediate, partially processed representation of the Coates flowgraph [Chen], and the
step evaluate_coefficients_of_reduced_functions calculates the values of Ai and Aij

using the retrieved values of variable symbols.

6. Parameter conversions 18

A comparison of numerical and symbolic simulation is given for parameter extraction
of a submicron (0.25 µ) GaAs FET on InP substrate. The performance of symbolic and
numerical analyses is compared by measuring the total execution times for typical extraction
steps. These results are summarized in the following table in which the columns correspond
to data groups with 10, 20, 50 and 100 frequency values (the execution times are in seconds,
on a SPARCstation 2, for 100 optimization steps):

number of frequencies (in data groups) 10 20 50 100

execution time – symbolic analysis 3.30 3.62 4.32 5.61

execution time – numerical analysis 8.95 12.9 24.8 44.6

speedup 2.7 3.6 5.7 8.0

The number of variable symbols influences the execution time rather insignificantly,
especially for data groups with large number of frequency values; the number of variable
symbols affects the evaluation of the coefficients of reduced functions, but this evaluation
is performed only once for each data group.

It should be noted that the circuit description must specify several ‘special’ parameters
if symbolic analysis is to be used; Appendix 1 describes these parameters in greater detail.

6. PARAMETER CONVERSIONS

Although electrical parameters of semiconductor devices are very useful from circuit de-
sign perspective, they are quite inconvenient from manufacturing viewpoint as they cannot
provide the required feedback for process analysis or device design optimization. A set of
technological and geometric parameters is much more relevant to manufacturing processes
than a set of electrical parameters.

Usually, the relationship between such two sets of parameters is provided by device
modeling, and once such a relationship is established and verified, the new set of parameters
can be used for device characterization, optimization as well as design. Technological and
geometric parameters are also much more convenient to impose technology constraints, and
to analyze parameters deviations and correlations. Quite often a “mixed” set of parameters
is used that includes electrical as well as technological and geometric parameters.

It should be noted that technological parameters and dependencies between techno-
logical and electrical parameters are closely related to manufacturing technology; as this
technology evolves, both parameters and dependencies change. Therefore, a capability of
(flexible) parameter conversions, which can be defined by users without detailed knowledge
of the whole software, is an important aspect of extraction tools.

In order to support different sets of parameters, an interface has been incorporated into
the FIT–S extractor that accepts a user–defined conversion of parameters used as opti-
mization variables (e.g., technological and geometric parameters) into electrical parameters
(used in circuit simulation and called circuit variables). This interface is composed of two
routines, vardef and varmap; vardef performs a mapping of the set of names of opti-
mization variables into a corresponding set of names of circuit variables (names of circuit

6. Parameter conversions 19

variables must be correct with respect to the circuit description file as required by SPICE–
PAC [Zub2]); varmap performs a mapping of values of optimization variables into the
corresponding values of circuit variables assuming that the ordering of variables is the same
as for vardef.

The incorporation of these routines into the structure of the FIT–S program (Fig.1) is
shown in Fig.11

driver
(interactive)

optimi–
zation

methods

❄

circuit
simulation
(numerical

and
symbolic)

varmap
❄

❄

✫✪
✬✩
file
.cir

❄

objective function
(error function)

simulation
driver

✲ ✲ ✲

vardef
❄

variables
manager

✛

✫✪
✬✩
file
.var

❄

data manager

✫✪
✬✩
file
.dat

❄

❄❄❄

❄ ❄

Fig.11. Parameter conversion in the FIT–S program.

For “nonstandard” applications, these two routines must be defined by the user and
linked with the FIT–S program. The routines must conform to the following FORTRAN
headers:

SUBROUTINE VARDEF (NAMOPT,NOV,NAMCKT,LCV,NCV)
CHARACTER*16 NAMOPT(*),NAMCKT(*)

where: NAMOPT is a vector of character*16 names of optimization variables (as entered
form the variables file),

NOV is the number of names in the vector NAMOPT,

NAMCKT is a vector that returns the character*16 names of circuit variables,

LCV is the limit of circuit variables (i.e., the length of NAMCKT),

NCV is the number of defined circuit variables.

SUBROUTINE VARMAP (VAROPT,NOV,VARCKT,LCV,NCV)
DOUBLE PRECISION VAROPT(*),VARCKT(*)

6. Parameter conversions 20

where: VAROPT is a vector of double precision values of optimization variables,

NOV is the number of optimization variables,

VARCKT is a vector that returns the double precision values of circuit variables,

LCV is the limit of circuit variables (i.e., the length of VARCKT),

NCV is the number of circuit variables.

The “standard” interfacing routines correspond to the case when the optimization vari-
ables are also circuit variables, i.e., both routines perform identity mappings:

SUBROUTINE VARDEF (NAMOPT,NOV,NAMCKT,LCV,NCV)
CHARACTER*16 NAMOPT(*),NAMCKT(*)
NCV=0
DO 10 I=1,NOV
IF (NCV.LT.LCV) THEN
NCV=NCV+1
NAMCKT(I)=NAMOPT(I)

ELSE
WRITE(*,900)

900 FORMAT(’ ... vardef : too many circuit variables ...’)
RETURN

ENDIF
10 CONTINUE

RETURN
END

SUBROUTINE VARMAP (VAROPT,NOV,VARCKT,LCV,NCV)
DOUBLE PRECISION VAROPT(*),VARCKT(*)
NCV=0
DO 10 I=1,NOV
IF (NCV.LT.LCV) THEN
NCV=NCV+1
VARCKT(I)=VAROPT(I)

ELSE
WRITE(*,900)

900 FORMAT(’ ... varmap : too many circuit variables ...’)
RETURN

ENDIF
10 CONTINUE

RETURN
END

A potential application of parameter conversion can be illustrated by the following
simple example which assumes that many of the (electrical) Gummel–Poon parameters of
a GaAs/GaAlAs transistor depend on a few other parameters:

ρb base contact resistance
ρe emitter contact resistance
ρc collector contact resistance
Lt transistor length

6. Parameter conversions 21

The first three parameters represent ohmic contacts (in Ω/cm2) of the base, emitter and
collector, respectively. Approximate values of these parameters can be obtained through
measurements of special test devices, however, such test devices are usually much larger
than typical devices, so the measured values do not correspond to the non–test devices
accurately. The last parameter, Lt, is very difficult to measure.

The relationships between these new parameters and the electrical ones are as follows:

RE emitter resistance f1(ρe, Lt)
RC collector resistance f2(ρc, Lt)
RB zero bias base resistance f3(ρb, Lt)
RBM minimum base resistance at high currents f4(ρb, Lt)
CJE base–emitter zero bias depletion capacitance f5(Lt)
CJC base–collector zero bias depletion capacitance f6(Lt)
IS transport saturation current f7(Lt)
ISE base–emitter leakage saturation current f8(Lt)
ISC base–collector leakage saturation current f9(Lt)

Assuming that the set of optimization variables specifies the four variables indicated
above, and that the set of electrical parameters (or circuit variables) includes only the nine
listed parameters, the conversion routines vardef and varmap could be as follows:

SUBROUTINE VARDEF (NAMOPT,NOV,NAMCKT,LCV,NCV)
CHARACTER*16 NAMOPT(*),NAMCKT(*),NAMES1(4),NAMES2(9)
DATA NAMES1 / ’RHOB’,’RHOE’,’RHOC’,’LT’ /
DATA NAMES2 / ’TBH:RE’,’TBH:RC’,’TBH:RB’,’TBH:RBM’,’TBH:CJE’,
+ ’TBH:CJC’,’TBH:IS’,’TBH:ISE’,’TBH:ISC’ /
NCV=0
DO 10 I=1,9
IF (I.LE.4) THEN
IF (NAMOPT(I).NE.NAMES1(I)) WRITE(*,910) NAMES1(I)

910 FORMAT(’ ... vardef : incorrect optimization variable : ’,A)
ENDIF
IF (NCV.LT.LCV) THEN
NCV=NCV+1
NAMCKT(I)=NAMES2(I)

ELSE
WRITE(*,920) NAMES2(I)

920 FORMAT(’ ... vardef : too many circuit variables ... ’,A)
ENDIF

10 CONTINUE
RETURN
END

SUBROUTINE VARMAP (VAROPT,NOV,VARCKT,LCV,NCV)
DOUBLE PRECISION VAROPT(*),VARCKT(*)
IF (NOV.LT.4) THEN
WRITE(*,910) NOV

910 FORMAT(’ ... varmap : incorrect optimization variables : ’,I3)
ELSE IF (LCV.LT.9) THEN
WRITE(*,920) LCV

920 FORMAT(’ ... varmap : there are 9 circuit variables : ’,I3)
ELSE

7. Concluding remarks 22

VARCKT(1)=f1(VAROPT(1),VAROPT(4))
VARCKT(2)=f2(VAROPT(2),VAROPT(4))
VARCKT(3)=f3(VAROPT(3),VAROPT(4))
VARCKT(4)=f4(VAROPT(3),VAROPT(4))
VARCKT(5)=f5(VAROPT(4))
VARCKT(6)=f6(VAROPT(4))
VARCKT(7)=f7(VAROPT(4))
VARCKT(8)=f8(VAROPT(4))
VARCKT(9)=f9(VAROPT(4))
NCV=9

ENDIF
RETURN
END

The example shows that parameter conversion can eventually reduce the set of opti-
mization variables. Furthermore, because of nonlinear dependencies between these two
sets of parameters, simple constraints of technological parameters correspond to nonlinear
constraints of electrical parameters; such constraints may be difficult to take into account
because more powerful optimization methods are needed to deal with general (nonlinear)
constraints. However, the most important aspect of parameter conversion seems to be in
a rather straightforward implementation of parameter dependencies that are introduced by
functions fi in the example, and which are ignored when optimization is performed with
respect to electrical parameters only.

7. CONCLUDING REMARKS

A simulation–based parameter extraction program has been developed as an example
of integrated computer–aided design tools; the program is based on an existing circuit
simulation package instead of traditional model equations, and it uses general optimization
algorithms for minimization of dissimilarities between measurement data and the model
behavior. Conversion of parameters is provided for extraction with respect to technological
and geometric parameters as well as for dealing with parameter dependencies which cannot
be represented (at least not easily) by optimization constraints. An integration with an
existing symbolic simulator (SYBILIN) is implemented to speed up the extraction process
by eliminating (numerical) analyses of the linearized circuit (for frequency–domain data). A
mixed–domain analysis, combining the DC analysis with temperature variation, is provided
to allow self–heating effects to be taken into account.

As expected, a strong correlation between the performance of the extractor and the sen-
sitivity of the error function with respect to the optimization parameters has been observed;
the fitting process is more efficient if the sensitive parameters are used as optimization vari-
ables. Consequently, the extraction process can be simplified considerably if optimizations
are performed on small but relevant subsets of optimization variables. Mechanisms needed
for such selective optimizations (or “partial extractions”) are built into the FIT–S program.
Furthermore, it is our experience that the extracted values of insensitive parameters are
often rather inaccurate, so their usefulness for tuning technological processes or device de-
signs may be limited. Parameter scaling might be considered to reduce the differences in
sensitivities, however, scaling must be used carefully as it affects the objective function.

References 23

Although a number of relationships between measurement data and extracted param-
eters are quite useful in parameter extraction [DaJa,IbGr], practical experiments seem to
indicate that a general extraction strategy may be rather difficult to find. Therefore a
convenient formalism for higher–level specification of the extraction processes can be very
helpful in automation of this process. Elements of such higher–level specification have been
implemented in FIT–S; some further extensions of this formalisms should be included in
future versions of the program.

Both optimization methods available in FIT–S provide local optimization only, so in a
case of numerous local minima, the starting point should be disturbed externally to cover as
large part of the feasible space as seems reasonable. However, local optimization algorithms
are seldom satisfactory even when restarted from several randomly chosen initial points.
Measurement error coupled with the large number of variables of a physically based circuit
leads to an error function with many nonphysical local minima in addition to the global
minimum [BST]. More general (and efficient) global optimization methods are needed but
they are rather difficult to find. Simulated annealing [Rut] has recently been proposed
as an alternative to gradient–descent methods. In simulated annealing, the actual values
of variables are disturbed and the new error is calculated; if this error is smaller than
the previous one, the new values replace the actual ones, as in descent methods. But,
sometimes, in distinction to descent algorithms, the vector of variables with larger error
may be accepted in accordance with a precise probabilistic criterion which becomes less
tolerant of “bad” moves at late stages of the algorithm. The success of this algorithm
depends on generating moves that are neither always accepted nor always rejected [Rut].
The method is very promising but further research is needed to make it generally applicable.

R e f e r e n c e s

[BCYZ] J.W. Bandler, S.H. Chen, S. Ye, Q-J. Zhang, “Integrated model parameter ex-
traction using large–scale optimization concepts”; IEEE Trans. on Microwave Theory
and Techniques, vol.36, no.12, pp.1629-1638, 1988.

[BST] G.L. Bilbro, M.B. Steer, R.J. Trew, C-R Chang, S.G. Skaggs, “Extraction of the
parameters of equivalent circuits of microwave transistors using tree annealing”; IEEE
Trans. on Microwave Theory and Techniques, vol.38, no.11, pp.1711-1718, 1990.

[CCLL] P. Conway, C. Cahill, W.A. Lane, S.U. Lidholm, “Extraction of MOSFET pa-
rameters using the simplex direct search optimization method”; IEEE Trans. on
Computer-Aided Design, vol.4, no.4, pp.694-698, 1985.

[CFG] W.M. Coughran Jr., W. Fichtner, E. Grosse, “Extracting transistor charges from
device simulations by gradient fitting”; IEEE Trans. on Computer-Aided Design,
vol.8, no.4, pp.380-394, 1989.

[Chen] W.K. Chen, “Applied Graph Theory –Graphs and Electrical networks”; North–
Holland 1976.

[DaJa] A. Davies, A.K. Jastrzebski, “Parameter extraction technique for nonlinear MES-
FET models“; Proc IEEE Conf. on Microwave Theory and Techniques, pp.747-750,
1990.

References 24

[DoSc] K. Doganis, D.L. Scharfetter, “General optimization and extraction of IC device
model parameters”; IEEE Trans. on Electron Devices, vol.30, no.9, pp.1219-1228,
1983.

[EGMT] M. Eron, J. Gerber, L. Mah, W. Tompkins, “MESFET model extraction and
verification techniques for nonlinear CAD applications”; Proc. 3–rd Asia–Pacific Mi-
crowave Conf., Tokyo, Japan, pp.321-324, 1990.

[Garw] K. Garwacki, “Extraction of BJT model parameters using optimization method”;
IEEE Trans. on Computer-Aided Design, vol.7, no.8, pp.850-854, 1988.

[GrOk] P.C. Grossman, A. Oki, “A large signal DC model for GaAs/Ga1−xAlxAs het-
erojunction bipolar transistors”; IEEE Proc. Bipolar Circuits Technology Mtg, Min-
neapolis, pp.258-261, 1989.

[IbGr] A. Ibarra, J. Gracia, “Strategy for DC parameter extraction in bipolar transistors”;
IEE Proceedings part G, vol.137, no.1, pp.5-11, 1990.

[KMGB] A. Konczykowska, V. Morin, J. Godin, M. Bon, “Symbolic analysis for CAD mi-
crowave circuits”; Symp. on Computer Aided Design of Microwave Circuits, London,
England, 1985.

[MMD] W. Maes, K.M. DeMeyer, L.H. Dupas, “SIMPAR: a versatile technology indepen-
dent parameter extraction program using a new optimized fit strategy”; IEEE Trans.
on Computer-Aided Design, vol.5, no.2, pp.320-325, 1986.

[NAG] NAG FORTRAN Library Manual Mark 9, vol.3; Numerical Algorithms Group,
1982.

[NeMe] J.A. Nelder, R. Mead, “A simplex method for function minimization”; Computer
Journal, vol.7, pp.308-313, 1965.

[Phil] J. Phillips, “The NAG library: a beginner’s guide”; Oxford University Press 1987.

[Rut] R.A. Rutenbar, “Simulated annealing algorithms: an overview“; IEEE Circuits and
Devices Magazine, vol.5, no.1, pp.19-26, 1989.

[WAK] H. Wang, C. Algani, A. Konczykowska, W.M. Zuberek, “Temperature dependence
of DC currents in HBT”; Proc. IEEE Int. Microwave Symp., Albuquerque, NM,
pp.731-734, 1992.

[YaCh] P. Yang, P.K. Chatterjee, “An optimal parameter extraction program for MOSFET
models”; IEEE Trans. on Electron Devices, vol.30, no.9, pp.1214-1219, 1983.

[Zub1] W.M. Zuberek, “SPICE–PAC version 2G6c — user’s guide”; Technical Report
#8902, Department of Computer Science, Memorial University of Newfoundland, St.
John’s, Canada A1C-5S7, 1989.

[Zub2] W.M. Zuberek, “SPICE–PAC version 2G6c — an overview”; Technical Report
#8903, Department of Computer Science, Memorial University of Newfoundland, St.
John’s, Canada A1C-5S7, 1989.

A1: Input data 25

APPENDIX 1 – INPUT DATA

FIT–S uses three different types of input information stored in three different files:

• the circuit description file (file .cir),

• the variables file (file .var), and

• the measurement data file (file .dat).

Circuit description file

The circuit description file contains the (SPICE–style) description of a circuit that cor-
responds to the measurement environment (including all parasitics). If extraction is per-
formed on a (sub)circuit level rather than for a single device (e.g., the transfer curve of an
inverter is fitted rather than characteristics of transistors), the circuit file must describe the
corresponding (sub)circuit as well as any measurement–related elements.

The following example shows the circuit description file for extraction of (electrical)
parameters of heterojunction bipolar transistors, for which the measurement data include
DC measurements in common–base and common–emitter configurations, in forward and
reverse modes, and AC measurements of all four S–parameters; the independent voltage
and current sources are used to control the bias conditions and to sense the corresponding
currents – the initial values of these voltage and current sources are immaterial because
they are (dynamically) updated during the extraction process to the values used during the
measurements:

.MODEL HBT NPN (IS=6.79D-24 BF=96.4 NF=1.057 VAF=229 IKF=5.53
+ ISE=1.44D-17 NE=1.67 BR=0.28 NR=1.060 VAR=104 IKR=1.00D-06
+ ISC=1.38D-11 NC=2.21 RB=27.7 IRB=6.29D-3 RBM=15.30 RE=9.29
+ RC=26.5 CJE=1.58D-13 VJE=1.80 MJE=0.50 TF=3.76D-12 XTF=0.0
+ VTF=100 ITF=0 PTF=0 CJC=1.09D-13 VJC=1.4 MJC=0.5 XCJC=0.52
+ TR=3.76D-12 CJS=0 VJS=0.75 MJS=0 XTB=0 EG=1.4 XTI=3.0 KF=0
+ AF=1.0 FC=0.5)
**** subcircuit TRPAR : transistor with parasitics
.SUBCKT TRPAR 1 2 3

QA 1 5 3 HBT
RBN 5 2 50
RFCB 1 2 1E8
RFCE 1 3 1E8
RFBE 2 3 1E8
CFCB 1 2 1E-16
CFCE 1 3 1E-16
CFBE 2 3 1E-16

.ENDS
**** CB forward and reverse

XCB 101 102 103 TRPAR
VE 0 103 0
VB 0 102 0
VC 0 101 0

**** CE forward and reverse; parameter: IB’DC

A1: Input data 26

XCE 201 202 0 TRPAR
ECE 201 203 0 203 2.0
VCE 0 203 DC=4
IB 209 202 DC=2E-4
VIB 0 209 0

**** AC analysis
.SUBCKT TRPOL 1 2 3 4

CD 2 5 1.0
CS 1 6 1.0
XAC 6 5 3 TRPAR
FIB 3 5 VB0 1.0
LD 4 6 1.0

.ENDS
**** reference sources

VC0 99 0 DC=3
RC0 99 0 1.0
IB0 0 98 DC=1.3E-4
VB0 98 97 0
RB0 97 0 1.0

**** parameters S11 (V(11)) and S21 (V(21))
I1 1 0 AC -20M
RS 1 0 50.0
E11 10 0 1 0 2.0
V11 10 11 AC 1.0
R11 11 0 1.0
X1 2 1 0 99 TRPOL
RL 2 0 50.0
R21 21 0 1.0
E21 21 0 2 0 2.0

**** parameters S12 (V(12)) and S22 (V(22))
RSB 31 0 50.0
E12 12 0 31 0 2.0
R12 12 0 1.0
X2 32 31 0 99 TRPOL
RLB 32 0 50.0
I2 32 0 AC -20M
V22 20 22 AC 1.0
E22 20 0 32 0 2.0
R22 22 0 1.0

.END

Note 1: Symbolic simulation can be used only if the circuit description file contains
a directive .ACSYMB, a new directive introduced for integrated symbolic analysis, which
specifies the subcircuit for the small–signal analysis, its input port and its output port.
The subcircuit must be indicated by its expansion (an “X”–class name) or “*” if the whole
circuit is to be analyzed. The ports are indicated by pairs of nodes, and if the second node
is the “reference” node (i.e., “0”), it can be omitted.

For the previous example of circuit description (in which the subcircuit TRPOL is defined
for AC analysis), the .ACSYMB directive can use either X1 or X2 as the TRPOL expansion; if
X1 is used, the corresponding ports are (1,0) as input and (2,0) as output:

.ACSYMB ckt(X1) input(1) output(2)

(the order of input, output and circuit sections is immaterial).

A1: Input data 27

Note 2: Self–heating effects can be taken into account only if the circuit description
contains a directive .SELECT DC, a special directive introduced for passing information from
the DC iteration to the thermal iteration; its syntax is very similar to that of .PRINT:

.SELECT DC var1,var2,...

where each var is either a voltage between nodes n1 and n2 written as V(n1,n2) (or simply
V(n1) if n2 is zero), or the current flowing through an independent voltage source denoted
by I(Vsource).

For analysis of self–heating effects, the power dissipated in the device is determined
from device voltages and currents which must be indicated for the thermal analysis in the
.SELECT DC line; FIT–S assumes that the .SELECT DC directive indicates four variables
for each analyzed device, describing two pairs of voltage and the corresponding current at
some device terminal. In the case when self–heating effects of more than one device are
analyzed, the .SELECT DC directive defines several 4–tuples of variables, and specific tuples
are indicated, in the data groups, by positive values of their thermal analysis indicators
(e.g., defined by the !DCTEMP lines).

Since the example circuit description (shown above) contains common-base and common-
emitter transistor configurations, the corresponding .SELECT line should contain two 4–
tuples of variables; assuming that the first tuple corresponds to the common–emitter con-
figuration, the .SELECT line could be:

.SELECT DC V(201) I(VCI) V(202) I(VIB) V(101) I(VC) V(103) I(VE)

and then self–heating effects for common–emitter data must use thermal analysis indicator
equal to 1, and common–base data – thermal analysis indicator equal to 2.

Variables file

The second file describes all variables and their lower and upper bounds; it also contains
the “nominal” values (which are used as starting points) and the actual values of variables;
initially, actual values are equal to nominal ones, but during extraction they are replaced
by the (partial) results of fitting.

For the circuit description shown above, the variables file contains all transistor model
parameters as well as parasitics defined in the subcircuit TRPAR (the lines with “*” as the
leading character are comment lines):

* var min nom max act
HBT’IS 1.0D-24 6.79000D-24 1.0D-23 6.79000D-24
HBT’BF 1.0D+01 9.64000D+01 1.5D+02 9.64000D+01
HBT’NF 1.0D+00 1.05700D+00 1.0D+00 1.05700D+00
HBT’VAF 1.0D+01 2.29000D+02 3.0D+02 2.29000D+02
HBT’IKF 1.0D+00 5.53000D+00 1.0D+01 5.53000D+00
.......
TRPAR.RBN 1.0D-03 5.00000D+01 1.0D+02 5.00000D+01
TRPAR.RFCB 1.0D+05 1.00000D+08 1.0D+10 1.00000D+08
TRPAR.RFCE 1.0D+05 1.00000D+08 1.0D+10 1.00000D+08
TRPAR.RFBE 1.0D+05 1.00000D+08 1.0D+10 1.00000D+08
TRPAR.CFCB 1.0D-16 2.56330D-15 8.0D-15 2.56330D-15
TRPAR.CFCE 1.0D-16 2.35640D-15 8.0D-15 2.35640D-15
TRPAR.CFBE 1.0D-16 5.61994D-15 1.0D-14 5.61994D-15

A1: Input data 28

Note 1: All identifiers of variables must be valid circuit variables in the sense of SPICE–
PAC [Zub1] otherwise errors are reported and further processing of data is discontinued.

Note 2: The ordering of numerical attributes of variables is fixed as must follow the
order indicated above, i.e., the minimal value, the nominal value, the maximal value and
the actual value.

During the extraction process it is possible to store any (partial) results in a file, and
subsequently use such stored results as a “new” variables file; the extraction process can
thus be suspended at any stage, its (partial) results saved, and then restored when needed.
This capability is the main reason of storing the circuit description and the specification of
variables in two independent files.

Measurement data file

Measurement data normally include DC measurements, frequency–domain (AC) and/or
time–domain (TR) measurements, but harmonic measurements and noise measurements can
be included as well.

Measurements of the same type (e.g., DC for a particular configuration, AC for a given
bias point, etc.) form a data “group”. Each data group is composed of:

• a sequence of “comment” lines identified by the exclamation point as the leading
character; one of the comment lines must be the group identification line (the !IDENT
line),

• the header line that describes the contents of consecutive columns of data, followed
by

• a rectangular table of numerical values, which is composed of values of one independent
variable (the first column of data) and a number of (dependent) measurements (the
remaining columns); the values of independent variables are voltages or currents for
DC data, frequencies for frequency–domain data, and timepoints for time–domain
results,

• a blank line that terminates the group.

The identification line !IDENT contains:

• an optional (unique) name of the group which cannot be longer than 8 characters and
which is followed by the equality sign,

• the type of data which can be DC, AC, TR, FO or NO for the DC, frequency–domain,
time–domain, harmonic and noise measurements, respectively,

• an optional group parameterization (enclosed in square brackets), and

• an optional list of group parameters enclosed in parentheses; these group parameters
specify the bias point for AC data, the selected value of the base current for an I–V
characteristic of a bipolar transistor, etc.

A1: Input data 29

For example, the following DC data group describes the DC collector and base current
characteristics of a heterojunction bipolar transistor (in common–base configuration):

!IDENT:TBH_CB_1=DC
!ERRNUM=10
!’ PLAQUE: 129_19 DISPO: BIP, TYPE: T1C, POSIT: 8_5_1’
!’ DATE : 11 Dec 1989 AT 22:11:17’

VE I(VC) I(VB)
0.80 3.028E-08 6.419E-08
0.84 3.225E-08 7.246E-08
0.88 3.589E-08 8.801E-08
0.92 4.696E-08 1.210E-07
0.96 9.328E-08 1.986E-07
1.00 3.017E-07 3.894E-07
1.08 5.321E-06 2.122E-06
1.16 6.808E-05 1.174E-05
1.24 3.506E-04 3.795E-05
1.32 9.349E-04 7.726E-05
1.40 1.856E-03 1.262E-04

The identification line in this data group contains only the group name (TBH_CB_1) and
the data type (DC). The header line indicates VE as the independent variable (VE must be the
name of an independent voltage source controlling the collector–base voltage of the tran-
sistor; see the previous example of circuit description), while I(VC) and I(VB) determine
the collector and base currents, respectively (i.e., currents flowing through the independent
voltage sources VC and VB; again see the previous example of circuit description).

The values of VE (in the VE column) can be distributed quite arbitrarily as SPICE–PAC
performs “data–driven” circuit analyses in which a table of explicit data values determines
the analysis points (for DC Transfer Curve as well as time–domain and frequency–domain
analyses). On the other hand, the convergence properties of DC analysis are usually much
better if the values of the independent variable are monotonously increasing or decreasing.

Note: The !ERRNUM line in the header defines the error function (as the “standard
function # 10”).

Families of similar characteristics (e.g., a family of a bipolar transistor’s collector current
characteristics for different values of the base current) can be described by a “parameter-
ized” group in which the same values of the independent variable (the collector–emitter
voltage in this case) correspond to several columns of data (e.g., different collector current
characteristics); for a parameterized group, the name of the “column” parameter as well as
the specification of output (which is the same for all columns) are given in the identification
line as the “group parameterization” (within square brackets). The following DC group
describes typical common–emitter characteristics of a bipolar transistor:

!IDENT:TBH_CE_2=DC[IB/I(VCE)]
!’ PLAQUE: 129_19, DISPO: BIP, TYPE: T1C, POSIT: 8_5_1’
!’ DATE : 11 Dec 1989 AT 22:11:17’

VCE 5.E-5 1.E-4 1.5E-4 2.E-4 2.5E-4
0.00 -4.993E-5 -9.990E-5 -1.499E-4 -1.999E-4 -2.499E-4
0.20 -4.899E-5 -9.798E-5 -1.468E-4 -1.954E-4 -2.438E-4
0.40 1.299E-4 1.963E-4 2.351E-4 2.570E-4 2.705E-4
0.60 4.936E-4 1.140E-3 1.556E-3 1.785E-3 1.934E-3

A1: Input data 30

0.80 5.024E-4 1.314E-3 2.323E-3 3.394E-3 4.165E-3
1.00 5.039E-4 1.318E-3 2.339E-3 3.555E-3 4.961E-3
1.20 5.048E-4 1.320E-3 2.343E-3 3.561E-3 4.972E-3
1.40 5.054E-4 1.321E-3 2.346E-3 3.563E-3 4.974E-3
1.60 5.060E-4 1.323E-3 2.348E-3 3.564E-3 4.976E-3
1.80 5.068E-4 1.324E-3 2.348E-3 3.566E-3 4.976E-3
2.00 5.072E-4 1.325E-3 2.350E-3 3.566E-3 4.973E-3
2.40 5.082E-4 1.327E-3 2.352E-3 3.567E-3 4.970E-3
2.80 5.091E-4 1.328E-3 2.354E-3 3.567E-3 4.968E-3
3.20 5.096E-4 1.329E-3 2.355E-3 3.567E-3 4.963E-3
3.60 5.106E-4 1.331E-3 2.356E-3 3.567E-3 4.959E-3
4.00 5.115E-4 1.332E-3 2.358E-3 3.567E-3 4.956E-3

IB (base current) is the column parameter, and it must be the name of an independent
current source (see the circuit description) used (by the extractor) to control the base
current during the DC analysis. Similarly, the first element of the header line (VCE) must
be the name of an independent voltage source that is used for the voltage sweep in the
DC Transfer Curve analysis. The remaining values of the header line are values of IB that
correspond to collector current (I(VCE)) characteristics.

Usually the column parameter is the name of an independent current or voltage source;
the associated output must be an “output variable” in the sense of SPICE; both must be
consistent with the circuit description in the circuit description file.

AC data groups usually specify the bias point (parameters VC0 and IB0 in the data
group shown below) as the group parameters; again, VC0 and IB0 must be the names
of independent sources which are used (in the circuit description) to control the collector
voltage and the base current, respectively. The type of data (on the !IDENT line) can be AC
(which indicates general frequency–domain data) or SPAR for S–parameter data (as in the
example below); type SPAR is required if data conversions are to be used (commands stoz,
stoy etc; Appendix 2). The circuit description is specified in such a way that the nodes
11, 12, 21 and 22 represent the values of the corresponding S–parameters, i.e., VM(11) and
VP(11) represent the magnitude and phase of S11, VM(12) and VP(12) represent S12, etc.:

!IDENT:TBH_S_31=SPAR(VC0=3,IB0=1.3E-4)
!’ PLAQUE: 129_19, DISPO: BIP, TYPE: T1C, POSIT: 8_5_1’
!’ DATE : 11 Dec 1989 AT 22:11:17’

FREQ VM(11) VP(11) VM(12) VP(12) VM(21) VP(21) VM(22) VP(22)
0.1E9 .907900 -1.9024 .005604 68.7193 1.92283 176.782 .992218 -1.3091
0.5E9 .885851 -9.2346 .024712 74.4871 1.96212 164.147 .977838 -6.3971
1.0E9 .841972 -18.392 .045578 68.0622 1.93063 152.206 .932817 -12.136
1.5E9 .762174 -28.541 .063145 61.8087 2.06325 140.790 .889376 -16.343
2.0E9 .706567 -35.935 .076629 56.7939 1.87871 131.411 .846614 -19.134
3.0E9 .582672 -48.811 .096839 49.1194 1.61879 114.934 .754855 -23.171
5.0E9 .385694 -67.021 .121180 44.1407 1.31416 93.5795 .672503 -26.436
7.0E9 .272881 -77.497 .143552 41.8148 1.07349 78.5958 .625978 -29.892

10.0E9 .186544 -85.502 .175547 38.1709 .837550 61.8570 .568874 -35.373
15.0E9 .125009 -95.021 .224270 31.3440 .657729 42.2776 .521664 -47.433
20.0E9 .066596 -93.885 .251645 19.4876 .548006 25.0648 .471522 -56.130

For parameterized groups, the simulation results are obtained in a number of analyses,
one analysis for each column, i.e., for each value of the column parameters that is indicated
in the header line.

A1: Input data 31

Time–domain data groupd are indicated by TR on the !IDENT line; parameters of the
time–dependent function of an independent source are typically specified as group param-
eters for this type of data:

!IDENT:T3=TR(VIN’#1=0.2)
!STEPMAX=1E-11

TIME V(2)
4.00E-10 4.72996E-01
5.00E-10 1.48589E-01
6.00E-10 -4.56016E-01
6.50E-10 -5.55942E-01
7.00E-10 -4.41838E-01
8.00E-10 1.75049E-01
9.00E-10 4.72995E-01

The values of TIME can be distributed rather arbitrarily (but they must be monotonously
increasing) as SPICE–PAC performs “data–driven” time–domain analysis in which a table
of explicit values determines the timepoints.

Note 1: The !STEPMAX line in the group header defines the maximum value of the
timestep for the time–domain analysis.

Note 2: The circuit description shown previouly cannot be used for time–domain anal-
ysis with the above data as the circuit does not contain the independent source VIN. In
order to use time–domain measurements, another section in the circuit description file is
needed, for example:

**** TR analysis
VIN 51 0 SIN(0.0,0.5,2E9,0.0,0.0)
RIN 51 0 50.0
XEC 52 50 0 99 TRPOL
ROUT 52 0 50.0

Harmonic data groups are indicated by FO on the !IDENT line; parameters of the time–
dependent function of an independent source are typically specified as group parameters for
this type of data:

!IDENT:F1=FO(VIN’#1=0.355)
!FFREQ=2E9
!TSTART=5E-10
!STEPMAX=1E-11

HFREQ V(2)
2.0E+09 4.16304E-01
4.0E+09 8.06085E-03
6.0E+09 1.85168E-03
8.0E+09 3.63230E-04
1.0E+10 2.54212E-04
0.0E+00 -1.18281E-02

The data lines indicate the values of harmonic frequencies and the corresponding mea-
surements (there can be several measurement values for each harmonic frequency). The
frequencies must be increasing, with the last value (zero frequency) corresponding to the

A1: Input data 32

DC component of analysis. The value of the fundamental frequency must be specified by
a !FFREQ line in the group header. Moreover, !STEPMAX and !TSTART lines in the header
define the maximum timestep and the start time, respectively, both for the time–domain
analysis performed before the proper harmonic analysis.

Note: The circuit description shown previously cannot be used for harmonic analysis
with the above data as the circuit does not contain the independent source VIN. In order
to use harmonic measurements, an addition similar to the time–domain data is needed.

Noise data groups are indicated by NO on the !IDENT line; noise data groups are usu-
ally parameterized, with column headers corresponding to SPICE–defined noise “outputs”
(INOISE and ONOISE in this case); noise analysis is performed as an extension of frequency–
domain analysis, so the values of independent variable are frequencies which can be specified
in arbitrary order:

!IDENT:N2=NO[VIN/V(5)]
FREQ INOISE ONOISE

1.00E+03 6.79E-09 4.70E-07
1.00E+04 6.79E-09 4.70E-07
1.00E+05 6.79E-09 4.70E-07
1.00E+06 6.80E-09 4.51E-07
1.00E+07 6.92E-09 1.52E-07
1.00E+08 1.61E-08 3.04E-08

Note: The circuit description shown previously cannot be used for harmonic analysis
with the above data (the independent voltage source is undefined).

The file of measurement data contains a sequence of data groups. There is no limit
imposed on the number or composition of data groups; in fact, a section of one data group
can be repeated (with more data points) as another data group to obtain better fit in regions
which are believed to be more important or more difficult for fitting (e.g., initial parts of
characteristics or highly nonlinear regions).

“Special” comment lines

The following “special” comment lines are used in the measurement data files:

!IDENT the identification line (all types of data)
!ERRNUM the error function (all types of data)
!TEMP the ambient temperature (all types of data)
!DCTEMP the thermal analysis indicator for DC analysis
!STEPMAX the max timestep for time–domain analyses
!TSTART the start time for Fourier analysis
!FFREQ the fundamental frequency for Fourier analysis

A2: Command language 33

APPENDIX 2 – COMMAND LANGUAGE

FIT–S is an interactive extractor which means that consecutive steps of the extraction
process are usually determined by the user, who communicates with the program using a
simple command language. FIT–S can also be used in a non–interactive mode, in which
case a complete sequence of commands (sometimes called a “script”) is stored in a file from
which the driver fetches consecutive commands and interprets them.

Most commands use some parameters. Command interpreter accepts commands with
complete sets of parameters, but it also accepts incomplete commands prompting the user
for the missing parameters; quite often some auxiliary information is displayed that helps
in selection of parameters.

The present version of the program recognizes the following commands (the commands
can be given in lower case or upper case but not in combination of both):

data – specifies selection of data as a sequence of groups or subgroups; for example:

data(1,3-5,6(1-3,5))

selects data groups 1, 3 to 5, and a subgroup of group 6 that is composed of columns
1 to 3 and 5. Data groups can also be indicated by their (unique) names, so assuming
that name1, name2, etc., are the names of consecutive data groups, an equivalent data
selection command is:

data(name1,name3-name5,name6(1-3,5))

A special version of the command

data(*)

selects all available data groups.

Each data command overrides all previous data selections, so only the most recent
command is used for subsequent extraction steps.

var – specifies selection of variables (i.e., extraction parameters) as a sequence of indicators
or names of variables or their subranges; for example:

var(1,3,5-7,12)

selects variables 1, 3, 5 to 7, and 12 (as defined in the variables file); the variables
can also be identified by their names, so – in the context of the variables file shown
in Appendix 1 – an equivalent variable selection is:

var(HBT’IS,HBT’NF,HBT’IKF-HBT’NE,HBT’ISC)

A2: Command language 34

A special version of the command

var(*)

selects all defined variables.

Each var command overrides all previous selections of variables, so only the most
recent command is used in subsequent extraction steps.

act – lists all variables with their lower and upper bounds and actual and nominal values;
the ordering of values is as in the variables file (Appendix 1), i.e., the minimum values,
the nominal value, the maximum values and the actual value.

sel – lists all selected variables (selected by var) with their lower and upper bounds and
actual and nominal values.

fit, sfit – selects the optimization algorithm and specifies its parameters; fit and sfit
use three parameters, the first parameter identifies the optimization method: nag

indicates the E04JBF routine from the NAG library and sim the simplex direct search
method of Nelder and Mead; the second parameter indicates the maximum number of
iteration steps, and the third parameter determines the starting point as act or nom
for actual or nominal values of optimization variables; for example:

fit(nag,25,act)

fit and sfit differ for frequency–domain analyses; fit always performs numerical
analysis while sfit uses symbolic approach for frequency–domain analysis; the two
command are equivalent if no frequency–domain groups are selected.

step – defines the level of monitoring during the optimization iteration. The default
level monitors all optimization iterations, displaying the iteration number and the
corresponding value of the error function, which is equivalent to step(1). step(10)
results in monitoring every 10–th optimization iteration. step(+) causes monitoring
of those iterations which improve the objective function, while step(-) turns off
the monitoring process. step (without any argument) displays the present level of
monitoring.

noplot – turns off the plotting capabilities; during optimization (execution of the fit
or sfit command), plotting is automatically invoked when the objective function is
reduced by at least 10 % unless plotting is turned off.

error, serror – outputs the result of evaluation of the error function for the selected
data groups; error and serror use one parameter which indicates the nominal or
actual values of variables by nom or act, respectively. Similarly to fit and sfit, error
performs all required analyses numerically, while serror uses symbolic approach to
frequency–domain analyses. err and serr can be used as abbreviations of error
and serror.

A2: Command language 35

plot – similar to error but instead of evaluating the error function, it invokes the plotting
facilities for measurement data and simulated results of selected data groups.

ftfm – evaluates the cut–off frequency (ft) and the maximum oscillation frequency (fmax)
for the measurement data and simulation results of all selected AC data groups (the
H21 characteristic and the Mason gain curve are used for evaluation of ft and fmax).

save – stores the set of variables with their bounds and actual and nominal values in a file;
the command may have one parameter which is the file name to be used for storing
the variables; if save is used without its parameter, the original variables file is used
for storing.

load – restores (saved) values of variables and their bounds; the command may have one
parameter which is the file name to be used for loading the variables; if load is used
without its parameter, the original variables file is used for loading.

new – creates a new data group from an indicated subset of data rows of an existing group;
it uses one string parameter which specifies the name of the new group followed by
the equality sign and the name of an existing group with the selection list enclosed in
parentheses; for example:

new(newgroup=oldgroup(1,3-7,9(3)20,25))

creates a new group named newgroup that contains rows 1, 3 to 7, every third row
from 9 to 20 (i.e., rows 9, 12, 15, 18) and row 25 of the data group named oldgroup;
all attributes of the created newgroup group, such as group and column parameters
(if any), the number of data columns and their associated names, etc., are the same
as for oldgroup. A special symbol “$” can be used in row specification to denote the
“last row”, as in:

new(newgroup=oldgroup(1(3)$))

stoz, stoy, stoh – create new groups converting existing S–parameter data groups into
equivalent Z–parameter, Y–parameter and H–parameter data groups, respectively (so
all these commands can be applied to AC data groups only; moreover, the AC data
groups must use SPAR as the data type – Appendix 1, AC data groups). The groups
to be converted must contain all four (complex) parameters. The commands use one
string parameter, similar to that of new commands:

stoz(zgroup=sgroup(1,3,5(3)$))

del – deletes a group created by new or conversion commands; the group is the only
argument of this command; only the most recently created group can be deleted
(making the second recent group the most recent one).

A2: Command language 36

temp – defines or redefines the (ambient) temperature for data groups; the temperature
can also be specified in the data groups by !TEMP=value lines; temp command speci-
fies the temperatures (in degrees Celsius) by a sequence of pairs “group=value” where
“group” identifies the data group, and “value” is the corresponding temperature; for
example:

temp(1=75.0,3=50.0)

defines the ambient temperature of the data group ‘1’ as 75 degrees, and that of
group ‘3’ as 50 degrees Celsius. The temperatures assigned to groups remain valid
until they are redefined. The default values of the temperature are equal to the
reference temperature (default or indicated) in the circuit description.

moderr – redefines error functions assigned to data groups; error functions can be assigned
by defaults, or they can be specified in the data file by !ERRFUN=number lines; the
moderr command redefines error functions by a sequence of pairs “group=number”
where “group” identifies the data group, and “number” is one of the standard error
functions; for example:

moderr(1=9,3=2)

assigns the logarithmic norm function (9) to the data group ‘1’ and the relative norm1

function (2) to the data group ‘3’. The assigned error functions remain valid until
they are redefined.

modact – redefines actual values of variables indicated in a sequence of pairs “vari-
able=value” where “variable” identifies one of optimization variables, and “value”
is its new actual value; for example:

modact(1=5E-24,4=100.0)

or equivalently using the names of variables:

modact(HBT’IS=5E-24,HBT’VAF=25.0)

assigns the value 5E-5 to the first variable as its actual value, and 25.0 as the actual
value of the third variable. The actual value of a variable must be defined within its
lower and upper bounds.

modnom – as modact but for the nominal values of variables.

modmin – as modact but for lower bounds of variables; the lower bound of a variable
cannot be defined greater than its actual value.

modmax – as modact but for upper bounds of variables; the upper bound of a variable
cannot be defined smaller than its actual value.

A2: Command language 37

modtemp – redefines the group indicators for thermal analysis (combined with DC Trans-
fer Curve analysis); the default indicators are set to zero, indicating no thermal anal-
ysis; if self–heating effects are to be taken into account during DC analysis, the cor-
responding indicator must be nonzero, and typically is set to ‘1’ (the value of the
indicator must be consistent with the .SELECT DC line in the circuit description, as
described in Appendix 1):

modtemp(1=1,3=0)

Thermal analysis indicators can also be defined in the data file by !DCTEMP lines.

coef – defines or redefines weight coefficients Wij associated with columns of data groups;
default values of these coefficients are equal to ‘1.0’; the coef command specifies
a sequence of pairs “column=value” or “group=value” where “column” identifies a
column j of a data group i as i.j, and “value” is the value of the corresponding
coefficient Wij ; the specification “group=value” assigns the ‘value’ to all columns of
the indicated data group; for example:

coef(1.2=0.5,2=0.75)

assigns the coefficient 0.5 to the second column of the first data group, and the coef-
ficient 0.75 to all columns of the second data group. The assigned coefficients remain
valid until they are redefined.

time – outputs the value of the current “execution time” (or the processor’s time).

merge – dynamically combines results of corresponding to several data groups and merges
them for plotting; it has one string argument which specifies a sequence of results
associated with subgroups; for example:

merge(1act(1-3),3nom(2,4,6))

combines the results of group ‘1’ corresponding to actual values of variables and
associated with columns 1 to 3, with the results of group ‘3’ corresponding to nominal
values of variables and associated with columns 2, 4 and 6.

dump – creates a new file which contains measurement data and simulation results associ-
ated with all data groups selected at the time of dump execution, and corresponding
to actual or nominal values of variables which is indicated by a parameter; the values
of all variables are also copied to this file:

dump:file.dmp(act)

creates a file file.dmp with measurement data and simulation results corresponding
to actual values of variables (with some identification information and all variables):

A2: Command language 38

number 1 of 2
ICVC-20 X.act errfun(2)=1.486D-1
21 JAN 94 at 16:41:56 Temp=20 C s-h

Measurement data:

0.00E+00,-1.60E-04,-3.20E-04,-4.80E-04,-6.40E-04,-8.00E-04,
1.00E+00, 2.08E-03, 6.85E-03, 1.30E-02, 1.89E-02, 2.22E-02,
2.00E+00, 2.07E-03, 6.65E-03, 1.24E-02, 1.86E-02, 2.49E-02,
3.00E+00, 2.04E-03, 6.42E-03, 1.17E-02, 1.72E-02, 2.26E-02,
4.00E+00, 2.02E-03, 6.22E-03, 1.11E-02, 1.61E-02, 2.08E-02,

Simulation results:

0.00E+00,-1.60E-04,-3.20E-04,-4.80E-04,-6.40E-04,-7.99E-04,
1.00E+00, 2.78E-03, 7.68E-03, 1.35E-02, 1.88E-02, 2.17E-02,
2.00E+00, 2.76E-03, 7.43E-03, 1.29E-02, 1.87E-02, 2.46E-02,
3.00E+00, 2.73E-03, 7.21E-03, 1.23E-02, 1.75E-02, 2.28E-02,
4.00E+00, 2.71E-03, 7.02E-03, 1.18E-02, 1.66E-02, 2.15E-02,

number 2 of 2
n2 X.act errfun(2)=1.052D-1
21 JAN 94 at 16:41:56 Temp=20 C s-h

Measurement data:

1.30E+00, 2.07E-03, 6.82E-03, 1.29E-02, 1.97E-02, 2.65E-02,
1.80E+00, 2.06E-03, 6.70E-03, 1.26E-02, 1.89E-02, 2.54E-02,
2.30E+00, 2.06E-03, 6.58E-03, 1.22E-02, 1.82E-02, 2.42E-02,
2.80E+00, 2.05E-03, 6.47E-03, 1.19E-02, 1.75E-02, 2.30E-02,
3.30E+00, 2.04E-03, 6.37E-03, 1.16E-02, 1.69E-02, 2.21E-02,
3.80E+00, 2.03E-03, 6.26E-03, 1.12E-02, 1.63E-02, 2.12E-02,

Simulation results:

1.30E+00, 2.77E-03, 7.61E-03, 1.34E-02, 1.97E-02, 2.59E-02,
1.80E+00, 2.76E-03, 7.48E-03, 1.30E-02, 1.89E-02, 2.50E-02,
2.30E+00, 2.75E-03, 7.37E-03, 1.27E-02, 1.83E-02, 2.40E-02,
2.80E+00, 2.73E-03, 7.26E-03, 1.24E-02, 1.77E-02, 2.31E-02,
3.30E+00, 2.72E-03, 7.15E-03, 1.21E-02, 1.72E-02, 2.24E-02,
3.80E+00, 2.71E-03, 7.06E-03, 1.19E-02, 1.68E-02, 2.17E-02,

* date : 21 JAN 94 at 16:41:56

TBH’IS 1.00000D-29 2.16500D-23 1.00000D-21 4.51890D-24
TBH’ISE 1.00000D-18 2.39700D-19 1.00000D-16 3.76642D-18
TBH’NE 1.20000D+00 1.42000D+00 2.10000D+00 1.57590D+00
TBH’BF 1.00000D+01 3.06000D+02 1.00000D+03 1.00000D+03
RTH 5.00000D+01 8.00000D+02 1.20000D+03 8.00000D+02
EIN 7.00000D-02 7.00000D-02 3.00000D-01 7.04232D-02

print – outputs numerical values of measurement data or simulated results of group
columns indicated in its string argument (this command introduced mainly for testing
purposes):

print(1,1.2,1:2,1’2)

A2: Command language 39

It should be noted that print outputs the contents of areas reserved for the indicated
data without checking if their values are consistent with other computations.

outputs the values of independent variables for group ‘1’, then the values of measure-
ment data in column ‘2’ of group ‘1’, then the values of simulated results corresponding
to actual values of variables and associated with column ‘2’ of group ‘1’, and finally the
values of simulated results corresponding to nominal values of variables and associated
with column ‘2’ of group ‘1’.

input – redirects the source of input commands; normally, the commands are entered
from an interactive device (e.g., a keyboard), however, a sequence of commands can
be stored in a file (a “script”) and executed from it. Often such a script is stored in
the circuit description file, following the the .END line. The command input (without
arguments) redirects the input to the circuit description file, so consecutive commands
will be entered from there and executed, and when the “end–of–file” conditions is
detected, the input is returned to the interactive device.

If, during reading commands from a file, input(*) is recognized, the input is redi-
rected to the interactive device. Any subsequent input command redirects the input
back to the file and continues execution of remaining commands.

Command scripts can include comment lines indicated by “#” or “*” as the leading
character. Command scripts can also use multi–level “include” files indicated by
commands input(filename), where filename is the name of the “include” file.

output – similar to input but for redirecting the output.

if ... then ... else ... end – a conditional structure for description of simple extraction
strategies (for noninteractive applications); its condition is a logical expressions that
is composed of simple relations and logical operators and represented by “&” and or
represented by “|”.

For example, the following script first selects data groups 1 to 4 and a subset of opti-
mization variables 1 to 5, 10 and 12 from the set of variables specified in the variables file;
then it performs at most 100 optimization steps using the simplex method and the actual
values of circuit variables as the starting point (command fit(sim,100,act)); if the error
value remains greater than 0.1 (ERROR is a global variable that stores the value of the error
function), then a smaller subset of variables and smaller subset of data are selected and
optimization is repeated using the simplex method; if the new error value becomes less
than 0.5, previous subsets of variables and data are selected and optimization continues,
otherwise some other actions are specified; the final step performs yet another optimiza-
tion, but in this case the NAG routine is used under the assumption that a point close to
a minimum has been reached (which may not be the case, actually):

data(1-4)
var(1-5,10,12)
fit(sim,100,act)
if ERROR>0.1 then

data(1,2)
var(1-3,5)

A2: Command language 40

fit(sim,50,act)
if ERROR<0.5 then

var(1-5,10,12)
data(1-4)
fit(sim,50,act)

else
...

endif
endif
fit(nag,25,act)

ERROR is a global variable that saves the value of the error function (evaluated by the fit or
err commands). RETURN is another such variable and it indicates the termination condition
of the fit command (and in fact, the termination condition of the optimization routine used
within fit).

