
Technical Report #8903

SPICE–PAC version 2G6c

An Overview

by

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1B 3X5

March 1989

Department of Computer Science
Memorial University of Newfoundland

St. John’s, Canada A1B 3X5
tel: (709) 737–8627
fax: (709) 737–2009

Copyright c© 1989 by W.M. Zuberek.
All rights reserved.

The Natural Sciences and Engineering Research Council of Canada
partially supported this research through Operating Grant A8222, and
Northern Telecom through Memorial University Interaction Program.

MUN–CS Technical Report #8903 1

SPICE-PAC version 2G6c

An Overview

A b s t r a c t

SPICE-PAC is a simulation package that is upward compatible with the popular
SPICE-2G circuit simulator; it accepts the same circuit description language
(with only a few minor exceptions) and provides the same circuit analyses, but it
also supports a number of extensions and refinements which are not available in
the original SPICE program. The most important difference, however, between
SPICE and SPICE-PAC is in their internal organizations; SPICE is a program
with one, fixed sequence of operations while SPICE-PAC is a collection of loosely
coupled simulation “primitives” that can be “composed” in many different ways,
as required in a particular application.

This flexibility of SPICE-PAC is quite important in “integrated” applications,
i.e., applications in which circuit simulation is combined with other software
tools, for example, optimization methods, statistical analysis, symbolic simula-
tion, high-level (e.g., behavioral) simulation, and so on.

This report briefly outlines main features of SPICE-PAC, compares SPICE-PAC
with the SPICE circuit simulator, sketches SPICE-PAC’s basic applications, and
then presents several recent extensions to the package. Simple examples are used
to illustrate these extensions.

A more detailed description of the package is given in a Technical Report:
“SPICE-PAC 2G6c - User’s Guide”, available from the Department of Com-
puter Science, Memorial University of Newfoundland, St. John’s, Canada A1C-
5S7 (and also through anonymous ftp at ftp.cs.mun.ca in /pub/techreports

as tr-8902.ps.Z).

MUN–CS Technical Report #8903 2

1. Introduction

Computer-aided circuit analysis or circuit simulation [McCal,Peder,Vlach] has become
an established and accepted tool in the area of circuit design, with the SPICE-2G pro-
gram from the University of California at Berkeley [Cohen,Vlad] as one of the most popular
and widely used “second-generation” circuit simulators. However, second generation circuit
simulators are “batch oriented” programs, which means that even a minor change of the
analyzed circuit requires a new, independent run of the simulator. Many applications, with
interactive circuit analysis and circuit optimization as just two examples, require numerous
analyses of a circuit with the same topology but with a number of variable circuit param-
eters. Values of these parameters may depend upon results of previous analyses, usually
performed within the same simulation session (e.g., circuit optimization). Therefore a more
flexible structure of the circuit simulator is needed, in which different analyses are per-
formed “on demand”, and in which there is a simple and efficient mechanism for accessing
internal representation of circuit elements in order to modify their values. SPICE-PAC is
a simulation package which is compatible with the SPICE simulator, and which satisfies
these additional requirements.

2. SPICE and SPICE-PAC

SPICE-PAC is upward compatible with the SPICE-2G6 program. It means that SPICE-
PAC accepts the same circuit description language as SPICE (with a few minor exceptions)
and provides the same set of circuit analyses, but it also supports a number of new features,
not available in the original SPICE simulators. Examples of these extensions include:

• static and dynamic circuit variables; circuit variables are those attributes of circuit
elements that can be modified during a simulation session; static circuit variables
must be defined within the circuit description, and these definitions are used by the
package to implement a very efficient access to such variables, as required in circuit
optimization; dynamic circuit variables do not require any definition, so they are very
flexible (as required in interactive applications) but relatively slow [Zvar],

• dynamic (i.e., at the “simulation-time”) definitions of analyses, their parameters and
outputs,

• a uniform hierarchical naming scheme in which levels of subcircuits are indicated
by “qualifiers”, i.e., X1.X2.R123 denotes the element R123 in the subcircuit X2 of
the subcircuit X1; subcircuit elements can be used in parameter lists and output
specifications,

• parameterized subcircuit invocations; subcircuit definitions can be modified by pa-
rameters passed to the subcircuit expansion phase [Zpar],

• an interface to libraries of standard modules; standard modules are in the form of
subcircuits stored in independent files within a file system, and they are accessed by
(parameterized) module invocations [Zlib],

MUN–CS Technical Report #8903 3

• enhanced circuit elements, i.e., circuit elements with characteristics defined by users
in the form of formulas or tables of values, etc. [Zsour],

• enhanced analyses, i.e., circuit analyses which are extended by user-defined operations
[Ztdom].

However, the most important difference between the SPICE program and the SPICE-
PAC package is in their internal organizations. SPICE is a program with one, fixed sequence
of analyses, indicated by appropriate parameters within the circuit description. The order of
these analyses as well as representation of results are always the same since they are “built-
into” the simulation program [Cohen]. SPICE-PAC, on the other hand, is a rather loosely
coupled collection of “simulation primitives” (implemented by different components of the
package), which can be combined together in many different ways (similarly to building a va-
riety of structures from a set of LEGO-type elements). Typical examples of such “simulation
primitives” include reading a circuit description, performing one of circuit analysis, chang-
ing values of (some) circuit elements, or redefining analysis parameters. The operations of
the package are thus performed “on demand”, as required by a particular application. In
the case of interactive simulation, it is the user who - during a simulation session - selects
the order, type and parameters of analyses. This means that this type of circuit simulation
provides the user with a “feedback” which is unavailable in traditional “batch-oriented”
simulators; within one interactive simulation session, the results of one analysis can be used
to determine the new values of (some) circuit elements as well as the subsequent analyses
and their parameters. In cases of “integrated” applications, when the simulation package
is used as a “generator” of circuit responses (e.g., circuit optimization in which it evaluates
the objective function and - possibly - the constraint functions [Poiv,Zopt]), the sequence
of package operations, their types and parameters are determined by other software tools,
“integrated” with the simulation package.

This flexible structure of the package makes it possible to combine the same set of “stan-
dard” analyses with several input processors accepting different forms of circuit specification
(e.g., the SPICE input language, a functional-type circuit description, an output of a circuit
extractor, etc.), to represent the results in different ways (graphical for the user, binary for
further processing by other tools, textual for storing in a file, and so on). Furthermore, it
is possible to replace some of the “standard” modules by dedicated user-defined methods,
specialized to particular applications.

3. General organization

SPICE-PAC is organized in two major levels of subroutines, the so called “main” (or
interfacing) subroutines which constitute the “simulation interface”, and a collection of
internal subroutines and functions. The main subroutines are called SPICEA, SPICEB, ...,
SPICEY, and they perform “simulation primitives”, such as reading and processing circuit
descriptions (SPICEA), definitions of circuit variables (SPICEB), circuit analysis (SPICER
or SPICES), etc.; the list of main subroutines and their functions is given in the Appendix

MUN–CS Technical Report #8903 4

A. Each main subroutine invokes a number of internal subroutine and functions, which,
however, are “invisible” to users.

SPICE-PAC is a package in which the “communication” with other packages and/or
programs uses “internal” (or binary) representation of information. This means that pa-
rameters passed to the package as well as results returned from the package are stored in
variables and arrays defined in an external “driving” program, and it is this external pro-
gram that must perform all required conversions and all input/output operations (with the
exception of circuit descriptions which are processed by the package). Consequently, there
are no “printing” or “plotting” facilities built into the package, and any required form of
“output” has to be provided by the external “driving” routines.

4. Input language

SPICE-PAC accepts circuit descriptions in the SPICE-2G form with the following few
exceptions:

• .TEMPERATURE lines, for SPICE-PAC, can define one temperature only (the SPICEM
subroutine should be used for subsequent definitions of the temperature),

• .DC lines, for SPICE-PAC, can describe one set of the DC transfer curve source and
sweep limits (the SPICED subroutine should be used for subsequent definitions of DC
analysis parameters),

• .ALTER sections and

• .PLOT lines, in SPICE-PAC, are simply ignored.

It should be noted that all control lines in circuit descriptions (.DC . . . , .AC . . . , etc.)
are used only to define parameters of the corresponding analyses, while the analyses are
performed (selectively) by calling main subroutines (SPICER or SPICES) with appropriate
arguments. Moreover, all parameters defined by control lines in the circuit description can
be redefined by appropriate subroutines of the package (SPICED, SPICEF, etc.), or can
be replaced by parameters “predefined” in an extended circuit description, and activated
when required (by the SPICEL subroutine).

Several modifications and extensions of the circuit description language (or the input
language) are described in subsequent sections.

5. Extended circuit description

Extended circuit description is an optional part of the input file which follows the “basic”
circuit description, and which can contain:

• definitions of (static) circuit variables,

MUN–CS Technical Report #8903 5

• definitions of parameters and outputs for different analyses,

• declarations of pointers to circuit elements, as required by some SPICE-PAC subrou-
tines (SPICER, SPICES), definitions of constants, requests of monitoring, exception
handling directives, etc.

All information provided by an extended circuit description can also be obtained by
appropriate calls of SPICE-PAC subroutines. In most cases, however, extended circuit de-
scriptions can significantly simplify the use of SPICE-PAC; the use of extended circuit de-
scription allows the “main” program to be more general since all specific, circuit-dependent
information can be placed in the data file rather than incorporated directly into the program
body.

Extended circuit description is separated from the (basic) circuit description by:

.END/EXT

and is terminated by:

.END

Circuit variables are defined by the “VAR” lines:

.VAR variable-name

where variable-name is either a simple element name for those elements which have one
attribute only (usually it is the “value” of the circuit element, e.g., the resistance of a
resistor or the capacitance of a linear capacitor), or a composite name which is used for
multi-attribute circuit elements to indicate:

• polynomial coefficients of nonlinear capacitors and inductors (e.g., C15’#3),

• polynomial coefficients of dependent voltage and current sources (e.g., E1’#0),

• DC and AC parameters of independent voltage and current sources (e.g., VIN’DC),

• parameters of time-dependent functions of voltage and current sources (e.g., if an
independent voltage source is described as “VIN 3 0 PULSE(0,1,0,1NS,1NS,5NS)”
then VIN’#4 denotes the “fall time” of VIN),

• parameters of semiconductor devices (e.g., M1’L),

• parameters of (common) device models (e.g., MOD’RS),

• parameters of models associated with (specific) semiconductor devices (e.g., M2:RS);
in this case “common” model parameters are not influenced by changes of “specific”
device model parameters.

MUN–CS Technical Report #8903 6

Simple and composite variable names can be direct or qualified. Direct names are
used for those elements which are at the “top” (or “main”) level of circuit description
(i.e., elements not belonging to subcircuits). Elements of subcircuits must be identified by
qualified names in which the element name follows the full sequence of the subcircuit names
separated by periods “.” (starting from the “top” level); for example, X1.X3.X2.M12:VTO
is a composite qualified variable name denoting the threshold voltage at zero bias (VTO) of
the MOS transistor M12 in the subcircuit X2 of the subcircuit X3 of the subcircuit X1.

Parameters for SPICE-PAC analyses and their outputs are defined using the following
form:

.PAR/id analysis(parameters)

.OUT/id analysis(output-list)

where id is an unsigned integer number that is used as an identifier of the definition,
analysis is DC, TR, AC, NO, DI, FO, TF, DS or AS for DC transfer curve, transient, small-
signal AC, noise, distortion, Fourier, DC transfer function, DC and AC sensitivity analyses,
respectively, and parameters is a list of corresponding parameters separated by commas:

DC(source-name,Vistrt,Vistop,Nrstep)

TR(Tmstrt,Tmstop,Nrstep,Stpmax,Incond)

AC(freq1,freq2,....,freqn)

NO(source-name,output-var,Incrmt)

DI(rload-name,Fratio,Fampl,Refpwr,Incrmt)

FO(Frqval,Nrharm,Tfstrt,Nrstep,Stpmax,Incond)

TF(source-name,Mkrout)

DS(R-name1,...,Q-name1,....)

AS(Sens-out,SR-name1,...,SI-name1,...)

where source-name is a simple (direct or qualified) name of an independent voltage or
current source, output-var is an output variable which defines the summing point for
equivalent output noise, rload-name is a simple (direct or qualified) name of an output
load resistor for distortion analysis, freq1,freq2, . . . , are either simple frequency values or
linear or logarithmic subranges in the form:

LIN(Nrstep,Frstrt,Frstop)

LOG(Nrstep,Frstrt,Frstop)

and Nrstep is the required number of steps in a subrange (including boundaries), Frstrt
is the initial frequency and Frstop is the final frequency of a subrange. Some examples:

.PAR/11 DC(VIN,-5.0,5.0,21)

.PAR/12 DC(VIN,-0.1,0.1,21)

.OUT/19 DC(V(1),V(5,2))

.PAR/21 AC(LOG(11,1.D2,1.D4),1.D5,LOG(11,1.D6,1.D8))

.OUT/29 AC(VM(5),VP(5),VDB(3,2))

.PAR/53 NO(VIN,V(X2.4),2)

MUN–CS Technical Report #8903 7

6. Examples of applications

Interactive simulation and circuit optimization were two basic goals of the original
SPICE-PAC project. Numerous further refinements and extensions to the package opened
several new domains of interesting applications. Mixed-mode simulation, or simulation of
mixed, analog-digital circuits is the most recent one.

6.1. Interactive simulation

In interactive simulation, the analyses are performed “on demand”, as indicated by the
user who also selects the parameters and outputs. Usually, this selection is based on results
obtained from previous analyses, most likely within the same simulation session.

The organization of an interactive simulator can be outlined as a three-layer structure
composed of a “dialogue manager”, “command interpreter” and the simulation package:

USER
✲

✛

dialogue

manager

command

interpreter

simulation

package
✲

✲

✲

✲

“Dialogue manager” mainly organizes the interaction with the user, selects prompts
(or menus), checks formal correctness of entered commands, and invokes command in-
terpreter(s) to perform the required operations. “Command interpreter” analyzes user-
supplied commands and translates them into equivalent sequences of simulation primitives;
it also returns the results either as generated by the simulation package, or obtained from
a “post-processor”.

The following example shows simple elements of interactive simulation in the “stan-
dard” interactive driver, distributed with the SPICE-PAC package (RE and RB are used
as “dynamic circuit variables”):

**** SPICE-PAC.2G6c:89.02a (MUN:Xg) DATE : 21 FEB 89 AT 16:13:58

**** INPUT LISTING TEMPERATURE = 27.000 DEG C

** single stage CE amplifier

VCC 5 0 12

VIN 1 0 AC 1

RB 2 5 750K

RE 3 0 150

RC 4 5 5K

CC 4 5 100PF

CB 1 2 10UF

Q1 4 2 3 MOD

.MODEL MOD NPN(BF=100 VAF=50 IS=1.E-9 RB=100)

.PRINT AC V(4) VP(4) VDB(4)

MUN–CS Technical Report #8903 8

.AC 100,50K,10MEG

.END

enter operation (or /) : .ac

***** AC ANALYSIS TEMPERATURE : 27.00 DEG C

FREQ V(4) V.P(4) V.DB(4)

1.00d+02 2.92d+01 -1.79d+02 2.93d+01

5.00d+04 2.89d+01 1.71d+02 2.92d+01

1.00d+07 9.45d-01 9.19d+01 -4.96d-01

enter operation (or /) : .var(RE)=100

enter operation (or /) : .ac

***** AC ANALYSIS TEMPERATURE : 27.00 DEG C

FREQ V(4) V.P(4) V.DB(4)

1.00d+02 4.15d+01 -1.79d+02 3.24d+01

5.00d+04 4.10d+01 1.71d+02 3.23d+01

1.00d+07 1.35d+00 9.19d+01 2.61d+00

enter operation (or /) : .var(RB)=1D6

enter operation (or /) : .var(RE)=75

enter operation (or /) : .ac

***** AC ANALYSIS TEMPERATURE : 27.00 DEG C

FREQ V(4) V.P(4) V.DB(4)

1.00d+02 5.03d+01 -1.79d+02 3.40d+01

5.00d+04 4.97d+01 1.71d+02 3.39d+01

1.00d+07 1.64d+00 9.19d+01 4.30d+00

enter operation (or /) : .op

***** OP-POINT INFORMATION TEMPERATURE : 27.00 DEG C

0.00d+00 V(1)

4.59d-01 V(2)

9.64d-02 V(3)

5.63d+00 V(4)

1.20d+01 V(5)

-1.29d-03 VCC

0.00d+00 VIN

MUN–CS Technical Report #8903 9

enter operation (or /) : and so on ...

undefined operation.

6.2. Circuit optimization

In the case of circuit optimization, there are (at least) two packages that need to be co-
ordinated, the optimization package and the simulation package, the latter used to evaluate
the objective (and possibly constraint) functions at points determined by the optimization
algorithm. If “indirect communication” is used, the optimization package “supervises” the
whole optimization process and it invokes the evaluation routines whenever the values of
the objective function, constraints or their derivatives are needed:

optimization

package

main

program

objective

(& constraint)

function(s)

simulation

package
✛

✲

✲

✲

✲ ✲

✲

✲

✲

In the following optimization example, it is to find the values of biasing resistors RB
and RE in a single-stage CE amplifier such that for the midband frequency f=50KHz the
voltage-gain is maximum, the input resistance is not less than 10Kohms, and the output
voltage swing is at least 10V peak-to-peak.

Since the voltage-gain is to be maximized, the (single) objective function is equal to the
negative value of the voltage-gain provided by the AC analysis [Zopt]. There are 3 inequality
(nonlinear) constraints; one describes the required input resistance, also determined by the
AC analysis, while the remaining two constraints deal with the “positive” and “negative”
part of the required output voltage swing determined by the node voltages obtained from
the DC operating point analysis. The extended circuit description is used to indicate the
optimization variables (it could also “pass” other circuit parameters used in the optimization
process):

**** SPICE-PAC.2G6c:89.02a (MUN:Xm) DATE : 14 FEB 89 AT 12:33:51

**** INPUT LISTING TEMPERATURE = 27.000 DEG C

** single stage CE amplifier - AC/DC optimization

VCC 5 0 12

MUN–CS Technical Report #8903 10

VIN 1 0 AC 1

RB 2 5 750K

RE 3 0 150

RC 4 5 5K

CB 1 2 100UF

Q1 4 2 3 MOD

.MODEL MOD NPN(BF=100 VAF=50 IS=1.E-9 RB=100)

.PRINT AC V(4) V(2) I(VIN)

.AC 50K

.END/EXT

.VAR RB

.VAR RE

.END

nr RB RE -obj.fun c.fun.1 c.fun.2 c.fun.3

0 7.50d+05 1.50d+02 2.92d+01-1.71d+00 3.09d+00 5.44d+03

1 7.50d+05 9.38d+01 4.38d+01-1.68d+00 3.16d+00 3.89d+02

2 7.50d+05 8.95d+01 4.55d+01-1.68d+00 3.16d+00-2.60d+00

3 7.50d+05 8.98d+01 4.54d+01-1.68d+00 3.16d+00 2.25d+01

4 7.52d+05 8.95d+01 4.55d+01-1.67d+00 3.15d+00-1.36d-02

5 7.58d+05 8.91d+01 4.56d+01-1.61d+00 3.09d+00-2.51d-01

6 7.90d+05 8.73d+01 4.62d+01-1.31d+00 2.81d+00-6.30d+00

7 9.36d+05 7.94d+01 4.86d+01-2.19d-01 1.75d+00-1.01d+02

8 9.65d+05 7.91d+01 4.85d+01-3.50d-02 1.57d+00-9.20d+00

9 9.71d+05 7.90d+01 4.85d+01-1.10d-03 1.53d+00-8.85d-01

10 9.71d+05 7.90d+01 4.85d+01-5.74d-06 1.53d+00-1.93d-03

...

22 1.31d+06 6.73d+01 5.15d+01 1.58d+00 1.31d-05-4.84d-03

The (partial) trace of the optimization shows that the results after 10 iteration steps
are quite good and that the subsequent 12 steps improve the solution rather insignificantly.
After 22 iteration steps, only the third constraint (input resistance) is “violated” by less
than 5 milliohms, and the voltage gain has been improved from initial 29.2V/V to 51.3V/V.

The evaluation routine is as follows:

SUBROUTINE PROC (N,L,X,F,Y,K)

C N - the number of optimization/circuit variables,

C L - the number of (nonlinear) constraints,

C X - the vector of optimization/circuit variables,

C F - the value of the objective function,

C Y - the vector of constraint values,

C K - communication flag ("stage" of the optimization method).

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION X(N),Y(L),YTAB(5)

COMMON /VARIDS/ NROUTF,NR,ITAB,KTAB(5)

MUN–CS Technical Report #8903 11

C ... update variables

CALL SPICEU(KTAB,X,N,IEX)

IF(IEX.NE.N) CALL ERROR(’U’,IEX,*90)

C ... perform DC-OP analysis

CALL SPICER(0,YTAB,XTAB,5,0,IR,IC,IEX)

IF(IEX.LT.0) CALL ERROR(’R/OP’,IEX,*90)

Y(1)=DABS(YTAB(4)-YTAB(2))-5.0

Y(2)=DABS(YTAB(5)-YTAB(4))-5.0

C ... perform AC analysis

CALL SPICER(3,XTAB,YTAB,1,3,IR,IC,IEX)

IF(IEX.NE.0) CALL ERROR(’R/AC’,IEX,*90)

F=-YTAB(1)

Y(3)=YTAB(2)/YTAB(3)-1.D4

C ... print the trace

NR=NR+1

WRITE(NROUTF,100) NR,(X(I),I=1,N),-F,(Y(I),I=1,L)

100 FORMAT(1X,I1,1X,1P7D9.2)

RETURN

90 STOP

END

7. Enhanced circuit elements

Enhanced circuit elements are elements with “nonstandard” characteristics, described
by user-supplied data tables (for table-driven elements) or formulas (for analytic charac-
teristics). Two types of SPICE-PAC’s enhanced elements, dependent voltage and current
sources, and nonlinear capacitors and inductors, are described in greater detail. A new
“TABLE” pseudoelement is also presented; it has been implemented to allow sharing the
data by several table-driven elements.

7.1. TABLE pseudoelements

Quite often several “table-driven” circuit elements can use the same data (similarly to
several semiconductor devices “sharing” the same model). In such cases it is convenient
(and recommended) to define the “shared” data as an independent (multidimensional) array
described by a “TABLE” pseudoelement, indicated in element descriptions by the “USE”
specifier (see the next section).

The general syntax of “TABLE” descriptions is

.TABLE tname ARG(narg) DIM(d1,d2,...) p0,p1,p2,...

in which

MUN–CS Technical Report #8903 12

tname is the (unique) name of this pseudoelement,

ARG(narg) specifies the number of arguments (or “independent variables) narg (with the
default value equal to 1); this parameter is mandatory if the number of arguments is
greater than 1,

DIM(d1,d2,...) is an optional specification of the “organization” of the following elements
p0,p1,p2,...; if the elements are organized into a multidimensional array, the di-
mensions of this array can be indicated in the DIM option; when this option is used, it
must contain narg (positive) integer values d1,d2,...,dnarg which specify the con-
secutive dimensions of the data array, and then the number of elements p0,p1,p2,...
must be equal to (d1+d2+...+dnarg+d1*d2*...*dnarg), i.e., narg vectors of indepen-
dent variable values (or vectors of arguments values), followed by the corresponding
array of (dependent) data; the ordering of data must be consistent with their uses
since SPICE-PAC simply enters consecutive elements into consecutive positions of an
internal vector, and then passes this vector to the (user-defined) function evaluation
routine,

p0,p1,p2,... are consecutive numerical data elements.

The following simple example approximates a voltage dependent capacitance by a se-
quence of 12 points which are pairs (controlling voltage, capacitance), with increasing values
of controlling voltages (parentheses may be used rather arbitrarily for “grouping” the data
since they are ignored by the SPICE-PAC’s input processor):

.TABLE tabvcap1 ARG(1) (0.0 5.00d-11, 0.1 5.48d-11,

+ 0.2 5.91d-11, 0.3 6.30d-11, 0.4 6.65d-11, 0.5 6.97d-11,

+ 0.6 7.26d-11, 0.8 7.75d-11, 1.0 8.16d-11, 1.2 8.49d-11,

+ 1.5 8.88d-11, 2.0 9.32d-11, 3.0 9.75d-11, 5.0 9.97d-11)

If the values of controlling voltages and corresponding capacitances are to be used as
separate vectors (say, first all controlling voltages, and then the corresponding capacitances),
the DIM option should be specified with one argument (controlling voltage), and then the
same coefficients should be arranged in a different way:

.TABLE tabvcap2 ARG(1) DIM(12)

+ (0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.2 1.5 2.0 3.0 5.0)

+ (5.00d-11 5.48d-11 5.91d-11 6.30d-11 6.65d-11 6.97d-11

+ 7.26d-11 7.75d-11 8.16d-11 8.49d-11 8.88d-11 9.32d-11

+ 9.75d-11 9.97d-11)

7.2. Enhanced dependent sources

The SPICE program defines four types of dependent (nonlinear) sources (or transducers)
[Vlad] characterized by the following equations

MUN–CS Technical Report #8903 13

v=e(v), i=f(i), i=g(v), v=h(i)

where the functions e, f, g and h must be polynomials, and the arguments v and i may
be multidimensional; the polynomial functions are specified by the sets of their coefficients.
The general form of SPICE dependent source description is

Zname node+ node- POLY(narg) arg1,arg2,... p0,p1,p2,... IC=...

where Zname is the name of a source and Z is E, F, G or H for different types of controlled
sources, node+ and node- are the positive and negative nodes of the source, POLY(narg)
must be used for sources with more than one argument (otherwise it is optional), and
narg is the number of arguments; each argument arg1, arg2 ..., is either an independent
voltage source name “Vname” (for current controlled sources) or a pair of node numbers
“vnode+ vnode-” (for voltage controlled sources), p0,p1,..., are consecutive polynomial
coefficients, and the last part is an optional specification of initial conditions IC=....

Enhanced dependent sources can be described in one of the two following forms:

(1) Zname node+ node- FUN(idf) ARG(narg) arg1,arg2,...

+ DIM(d1,d2,...) p0,p1,p2,... IC=...

(2) Zname node+ node- FUN(idf) ARG(narg) arg1,arg2,...

+ USE(tname) IC=...

where:

FUN(idf) defines a numerical identifier idf which is passed to the function evaluation
routine (and its default value is 1); usually idf denotes the “method” of evaluation,
e.g., “idf=1” may indicate unidimensional linear interpolation, “idf=2” unidimen-
sional quadratic interpolation, “idf=5” two-dimensional linear interpolation, etc.; the
interpretation and use of idf depends only on the evaluating routines;

ARG(narg) specifies the number of arguments narg (with the default value equal to 1);
this parameter is mandatory if the number of arguments is greater than 1;

DIM(d1,d2,...) is as for “TABLE” pseudoelements,

p0,p1,... are consecutive data elements,

USE(tname) is a reference to a “TABLE” of shared coefficients which is identified by the
name tname.

The list of coefficients p0,p1,... may thus be used to specify arbitrary parameters
which are passed to the evaluation routine together with some “identification” information.

Both FUN(idf) and ARG(narg) are optional parts but at least one of them must be
present in the description of enhanced dependent sources.

User-supplied enhancing functions must be defined by a SPUDSE routine in a way
equivalent to the following (Fortran) header:

MUN–CS Technical Report #8903 14

SUBROUTINE SPUDSE (IPS,IDF,VARG,NARG,VPAR,NPAR,VAL,PDER)

DOUBLE PRECISION VARG(NARG),VPAR(1),VAL,PDER

INTEGER IPS,IDF,NARG,NPAR(1)

where IPS is a unique internal identifier of the voltage/current source (i.e., IPS is a pointer to
the dependent source descriptor; SPICE-PAC provides subroutines which convert descrip-
tor pointers into corresponding external element names - SPICEY - and external element
names into corresponding descriptors - SPICEP); IDF is the function identifier idf from
the source description; VARG is a vector which on entry is set to indicated controlling volt-
ages or currents, VARG(1)=value(arg1), VARG(2)=value(arg2), ...), and which returns the
values of partial derivatives of the controlled voltage or current with respect to consecutive
arguments; NARG is the number of arguments, narg; VPAR is a vector of coefficients specified
in the source description (i.e., VPAR(1)=p0, VPAR(2)=p1, ...); NPAR is a vector which
contains at least 2 elements; the first element, NPAR(1), is the number of coefficients in
VPAR; if the second element, NPAR(2), is equal to zero, the NPAR vector has no continua-
tion, otherwise the elements NPAR(2),...,NPAR(NARG+1) contain consecutive dimensions
indicated in the DIM option, i.e., NPAR(2)=d1, NPAR(3)=d2, etc.; VAL is a variable which
returns the value of the controlled voltage or current, and PDER is a variable which returns
the (scalar) product of partial derivatives and arguments.

The following example shows a unidimensional table-driven voltage source that describes
the transfer characteristic of a MOSFET inverter:

**** SPICE-PAC.2G6c:89.03 (MUN:Xg) DATE : 27 MAR 89 AT 18:13:25

**** INPUT LISTING TEMPERATURE = 27.000 DEG C

* The design and analysis of VLSI circuits (Glasser,Dobberpuhl), p.139.

* DC transfer curve analysis - controlled volage sources

VIN 1 0 0V

VDD 3 0 5V

.OPTIONS DEFL=2.25E-6

* MOSFET inverter - reference output

M1 2 1 0 0 NENHS W=11.2U AD=61P PD=42U

M2 3 2 2 0 NDEPS W=4.2U L=6.25U

.MODEL NENHS NMOS LEVEL=3 RSH=0 TOX=330E-10 LD=0.19E-6 XJ=0.27E-6

+ VMAX=13E4 ETA=0.25 KAPPA=0.5 NSUB=5E14 UO=650 THETA=0.1

+ VTO=0.946 CGSO=2.43E-10 CGDO=2.43E-10 CJ=6.9E-5 CJSW=3.3E-10

+ PB=0.7 MJ=0.5 MJSW=0.3 NFS=1E10

.MODEL NDEPS NMOS LEVEL=3 RSH=0 TOX=330E-10 LD=0.19E-6 XJ=0.27E-6

+ VMAX=13E4 ETA=0.25 KAPPA=0.5 NSUB=50E14 UO=650 THETA=0.04

+ VTO=-2.078 CGSO=2.43E-10 CGDO=2.43E-10 CJ=6.9E-5 CJSW=3.3E-10

+ PB=0.7 MJ=0.5 MJSW=0.3 NFS=1E10

* source-1 : E1 - table-driven source with linear interpolation

E1 4 0 FUN(1) 1 0 USE(TMOSPAIR)

R1 4 7 1K

V1 7 0 0V

MUN–CS Technical Report #8903 15

* source-2 : E2 - table-driven source with quadratic interpolation

E2 5 0 FUN(2) 1 0 USE(TMOSPAIR)

R2 5 8 1K

V2 8 0 0V

* MOSFET data:

.TABLE TMOSPAIR

+ (0.0 5.00d+00,0.5 5.00E+00,0.8 5.00E+00,0.9 4.96E+00,

+ 1.0 4.86E+00,1.1 4.71E+00,1.2 4.47E+00,1.3 4.10E+00,

+ 1.4 3.13E+00,1.5 1.66E+00,1.6 5.07E-01,1.7 3.60E-01,

+ 1.8 2.96E-01,1.9 2.56E-01,2.0 2.27E-01,2.1 2.05E-01,

+ 2.2 1.87E-01,2.3 1.73E-01,2.4 1.61E-01,2.5 1.51E-01,

+ 2.7 1.34E-01,3.0 1.17E-01,3.5 9.66E-02,4.0 8.36E-02,

+ 4.5 7.43E-02,5.0 6.74E-02)

* DC analysis

.DC VIN 0.25 4.75 0.5

.PRINT DC V(2),V(2,4),V(2,5)

.END

***** DC TRANSFER CURVE TEMPERATURE : 27.00 DEG C

VIN V(2) V(2,4) V(2,5)

2.50d-01 5.00d+00 -1.96d-07 -1.96d-07

7.50d-01 5.00d+00 -3.20d-04 -1.28d-02

1.25d+00 4.31d+00 2.61d-02 -4.89d-02

1.75d+00 3.24d-01 -4.30d-03 -1.30d-03

2.25d+00 1.80d-01 -3.55d-04 -1.05d-04

2.75d+00 1.31d-01 -1.48d-04 1.00d-04

3.25d+00 1.05d-01 -1.36d-03 -4.37d-04

3.75d+00 8.95d-02 -5.97d-04 -1.34d-04

4.25d+00 7.86d-02 -3.66d-04 -6.63d-05

4.75d+00 7.06d-02 -2.29d-04 7.07d-05

The implementation of interpolation used by table-driven sources (preceded by a binary
search, if needed), can be as follows:

SUBROUTINE SPUDSE (IPS,IDF,VARG,NARG,VPAR,NPAR,VAL,PDER)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION VARG(NARG),VPAR(1),NPAR(1)

DATA IND / 1 /

ARG=VARG(1)

N=NPAR(1)

IF (IDF.EQ.1) THEN

C ... idf=1 => table-driven element with linear interpolation

MUN–CS Technical Report #8903 16

IF (NARG.NE.1) GO TO 90

C first check if the new point is close to the last one

IF (ARG.GE.VPAR(IND)) THEN

IF (ARG.LE.VPAR(IND+2)) GO TO 20

IF (IND.EQ.N-3) GO TO 20

IF (IND.LT.N-3) THEN

IND=IND+2

IF (ARG.LE.VPAR(IND+2)) GO TO 20

ENDIF

ENDIF

C binary search

I=1

J=N/2

10 K=(I+J)/2

IND=K+K-1

IF (I.NE.K) THEN

IF (ARG.LT.VPAR(IND)) THEN

J=K

ELSE

I=K

ENDIF

GO TO 10

ENDIF

C interpolation

20 DEL=VPAR(IND+2)-VPAR(IND)

VAL=VPAR(IND+1)

DER=0.D0

IF (DEL.GT.0.D0) THEN

DER=(VPAR(IND+3)-VAL)/DEL

VAL=VAL+DER*(ARG-VPAR(IND))

ENDIF

VARG(1)=DER

PDER=ARG*DER

ELSE

C ... enhancing functions for other idf values

ENDIF

RETURN

90 WRITE(IOFILE,900) IPS,IDF

900 FORMAT(’ ... SPUDSE : incorrect arguments for :’,I4,’ fun:’,I3)

STOP

END

MUN–CS Technical Report #8903 17

7.3. Enhanced capacitors and inductors

The only function that is supported by SPICE for nonlinear capacitors and inductors
is a polynomial (with capacitor’s voltage or inductor’s current as its only variable). The
general form of SPICE description is

Zname node+ node- POLY p0,p1,p2,... IC=...

where Z is C for capacitors and L for inductors, POLY indicates a nonlinear element, poly-
nomial coefficients are given as p0,p1,p2,...,, and IC=... is an optional definition of the
initial condition.

Enhanced capacitors and inductors can be described using one of the following two
variants:

(1) Zname node+ node- FUN(idf) ARG(narg) arg1,arg2,...

+ DIM(d1,d2,...) p0,p1,p2,... IC=...

(2) Zname node+ node- FUN(idf) ARG(narg) arg1,arg2,...

+ USE(tname) IC=...

where all parameters are as before.

User-supplied enhancing functions for capacitors and inductors are specified within sub-
routines SPUNCE and SPUNLE, respectively. The subroutines must conform to the fol-
lowing (Fortran) header:

SUBROUTINE SPUNxE (IPS,IDF,VARG,NARG,VPAR,NPAR,VAL,MOPR)

DOUBLE PRECISION VARG(NARG),VPAR(1),VAL

INTEGER IPS,IDF,NARG,NPAR(1),MOPR

where x is C or L for capacitors and inductors, respectively; IPS, IDF, NARG, VPAR, NPAR
and VAL are as for SPUDSE; VARG, the vector of arguments, always contains at least two
elements since VARG(1) passes the current value of (simulated) time for transient anal-
ysis or radial frequency for (small signal) AC analysis, VARG(2) is the value of the ele-
ment’s voltage (for capacitors) or current (for inductors), while the consecutive elements (if
any) are the values of indicated controlling voltages and currents, VARG(3)=value(arg1),
VARG(4)=value(arg2), ...; finally, MOPR indicates the required operation; if MOPR=0, VAL
should return the capacitance (or inductance) which is required for transient analysis, if
MOPR<0, VAL should return the charge (or flux) of the element if MOPR>0, VAL should
return the capacitance (or inductance), as required for small signal AC analysis.

The following simple example compares two implementations, analytical and table-
driven, of a nonlinear capacitor in which capacitance is an exponential function of the
capacitor voltage Vcap, C=p0*(1-p1*exp(-p2*Vcap)), where “p0” “p1” and “p2” are pa-
rameters (100pF, 0.5 and 1.0, respectively):

MUN–CS Technical Report #8903 18

**** SPICE-PAC.2G6c:88.05 (MUN:X) DATE : 11 MAY 88 AT 18:06:47

**** INPUT LISTING TEMPERATURE = 27.000 DEG C

VV 1 0 DC=5 PULSE(0 5 2NS 2NS 2NS 10NS 20NS)

* ... linear capacitor (for comparison)

R1 1 2 100

C1 2 0 100PF

* ... exponential (analytical) capacitance, idf=9:

R2 1 3 100

C2 3 0 FUN(9) 1E-10 0.5 1.0

* ... table-driven capacitance; idf=2 - quadratic interpolation

R3 1 4 100

C3 4 0 FUN(2) ARG(1) 4 0 USE(TCexp)

* table entries are triples <voltage, capacitance, charge>

.TABLE TCexp ARG(1) (0.00 5.000E-11 0.000E+00,

+ 0.01 5.050E-11 4.520E-13, 0.03 5.148E-11 1.010E-12,

+ 0.05 5.244E-11 2.039E-12, 0.07 5.338E-11 3.088E-12,

+ 0.10 5.476E-11 5.242E-12, 0.30 6.296E-11 1.704E-11,

+ 0.50 6.967E-11 3.033E-11, 0.70 7.517E-11 4.483E-11,

+ 1.00 8.161E-11 6.839E-11, 2.00 9.323E-11 1.568E-10,

+ 3.00 9.751E-11 2.525E-10, 5.00 9.966E-11 4.503E-10)

* ... transient analysis

.TR 2NS 20NS 0

.PRINT TR V(1) V(2) V(3) V(4)

.END

***** TRANSIENT ANALYSIS TEMPERATURE : 27.00 DEG C

TIME V(1) V(2) V(3) V(4)

0.00d+00 0.00d+00 0.00d+00 0.00d+00 0.00d+00

2.00d-09 0.00d+00 0.00d+00 0.00d+00 0.00d+00

4.00d-09 5.00d+00 4.68d-01 7.47d-01 7.52d-01

6.00d-09 5.00d+00 1.29d+00 1.66d+00 1.68d+00

8.00d-09 5.00d+00 1.96d+00 2.31d+00 2.33d+00

1.00d-08 5.00d+00 2.51d+00 2.82d+00 2.83d+00

1.20d-08 5.00d+00 2.96d+00 3.23d+00 3.23d+00

1.40d-08 5.00d+00 3.33d+00 3.55d+00 3.55d+00

1.60d-08 0.00d+00 3.17d+00 3.34d+00 3.35d+00

1.80d-08 0.00d+00 2.59d+00 2.73d+00 2.73d+00

2.00d-08 0.00d+00 2.12d+00 2.21d+00 2.22d+00

External (analytical) evaluation of nonlinear capacitors can be performed by the follow-
ing subroutine:

SUBROUTINE SPUNCE (ID,IDF,VARG,NARG,VPAR,NPAR,VAL,MOPR)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

MUN–CS Technical Report #8903 19

DIMENSION VARG(NARG),NPAR(1),VPAR(1)

C ... exponential function

IF (IDF.EQ.9) THEN

VEXP=DEXP(-VARG(2)*VPAR(3))

IF (MOPR.GE.0) THEN

C find the capacitance

VAL=VPAR(1)*(1.0-VPAR(2)*VEXP)

ELSE

C find the charge

VAL=VPAR(1)*(VARG(2)+VPAR(2)*(VEXP-1.0)/VPAR(3))

ENDIF

ELSE

C other evaluation functions

ENDIF

RETURN

END

8. Enhanced circuit simulation

In enhanced circuit simulation, user-supplied routines augment the “standard” simu-
lation capabilities of the package. Elements of enhanced circuit simulation are presented
for time-domain analysis, one of the of the most useful, but computationally most com-
plex, tasks of circuit simulation [Vlach]. The detailed algorithm depends upon the integra-
tion method used, but generally the simulation interval is divided into (usually variable)
timesteps (sometimes called internal timesteps), and at each timepoint, the information
from previous timepoints is used to derive the solution at the new timepoint. The stability
and accuracy of the integration method has a significant effect on the stability, accuracy,
and efficiency of the resulting simulation.

SPICE-PAC, similarly to SPICE, uses two most popular implicit integration meth-
ods [Cohen], the trapezoidal rule (default) and variable order backward differentiation (or
Gear’s) method, the second designed specifically to deal with stiff differential equations
[Vlach].

In order to allow a flexible control of time-domain (transient) analysis, an in particular,
to allow “external”, user-defined control of this analysis, the original implementation has
been modified in such a way that after each successful solution of an (internal) timestep, the
subroutine SPURTR is invoked with the timepoint solution passed as one of parameters.

The SPURTR subroutine must be defined with the following (Fortran) header:

SUBROUTINE SPURTR (VOUT,NOUT,TDEL,IRET)

DOUBLE PRECISION VOUT(NOUT),TDEL

INTEGER NOUT,IRET

MUN–CS Technical Report #8903 20

where VOUT is an array which contains the values of outputs obtained for the present time-
point; VOUT(1) is always the value of simulated time, VOUT(2) is the value of the first
output variable, etc.; NOUT is the length of VOUT; TDEL is the value of timestep, and IRET

is an entry/return flag; on entry, IRET=–1 indicates the initial call, IRET=0 indicates an
accepted timepoint solution, and IRET=+1 indicates nonconvergence; on exit, IRET=0
indicates continuation of analysis, IRET=+1 terminates transient analysis at the current
timepoint, IRET=–2 turns off external control (i.e., SPURTR will not be called but the
analysis continues), and IRET=–3 rejects the present timepoint, reduces the timestep four
times, and resumes the analysis.

In the following example [Ztdom], the SPURTR routine is used to find the “exact” time
instances at which the output signal of a simple MOSFET inverter circuit reaches the 10%
and 90% levels.

** double inverter - transient analysis

.TR 1NS 20NS

.PRINT TRAN V(1) V(3) V(2)

VDD 5 0 DC=5

VIN 1 0 PULSE(0 5 1NS 2NS 2NS 3NS 10NS)

M1 5 1 2 5 PMOD L=3U W=6U AS=36P AD=36P

M2 2 1 0 0 NMOD L=3U W=3U AS=18P AD=18P

M3 5 2 3 5 PMOD L=3U W=6U AS=36P AD=36P

M4 3 2 0 0 NMOD L=3U W=3U AS=18P AD=18P

*... NMOS transistor model

.MODEL NMOD NMOS LEVEL=2

*... PMOS transistor model

.MODEL PMOD PMOS LEVEL=2

.END

... time : 2.0866d-09 output rising at 10%

... time : 2.7116d-09 output rising at 90%

... time : 6.9168d-09 output falling at 90%

... time : 7.3557d-09 output falling at 10%

... time : 1.2087d-08 output rising at 10%

... time : 1.2712d-08 output rising at 90%

... time : 1.6917d-08 output falling at 90%

... time : 1.7356d-08 output falling at 10%

The SPURTR routine uses the simplest form of linear interpolation to determine the
intercept points (a more rigorous approach would iterate the intercept points using the
“backtrack” mechanism with IRET=–3):

SUBROUTINE SPURTR (VOUT,NOUT,TDEL,IRET)

IMPLICIT DOUBLE PRECISION (A-H,O-Z)

DIMENSION VOUT(NOUT)

MUN–CS Technical Report #8903 21

CHARACTER*21 TXT

IF (IRET.LT.0) THEN

TOLD=VOUT(1)

VOLD=VOUT(3)

ELSE IF (IRET.EQ.0) THEN

TNEW=VOUT(1)

VNEW=VOUT(3)

TXT=’ ’

IF (VOLD.LT.0.5 .AND. VNEW.GE.0.5) THEN

TEMP=TOLD+(0.5-VOLD)*(TNEW-TOLD)/(VNEW-VOLD)

TXT=’output rising at 10%’

ELSE IF (VOLD.LT.4.5 .AND. VOUT(3).GE.4.5) THEN

TEMP=TOLD+(4.5-VOLD)*(TNEW-TOLD)/(VNEW-VOLD)

TXT=’output rising at 90%’

ELSE IF (VOLD.GE.4.5 .AND. VNEW.LT.4.5) THEN

TEMP=TOLD+(4.5-VOLD)*(TNEW-TOLD)/(VNEW-VOLD)

TXT=’output falling at 90%’

ELSE IF (VOLD.GE.0.5 .AND. VNEW.LT.0.5) THEN

TEMP=TOLD+(0.5-VOLD)*(TNEW-TOLD)/(VNEW-VOLD)

TXT=’output falling at 10%’

ENDIF

IF (TXT.NE.’ ’) WRITE(*,100) TEMP,TXT

100 FORMAT(’ ... time :’,1PD12.4,1X,A)

VOLD=VNEW

TOLD=TNEW

ENDIF

RETURN

END

External control of time-domain analysis is one of the basic mechanisms used in in-
tegrated mixed, analog-digital simulation [Goer,deMan] in which two different simulation
techniques, the integration scheme of analog simulation and the event-driven digital simu-
lation must be synchronized at selected timepoints.

9. Mixed-mode simulation

Simulation of mixed, analog-digital circuits is usually referred to as mixed-mode simu-
lation [Goer,deMan]. A basic analog-digital interface has been implemented in SPICE-PAC
[AllZ] to provide a table-driven conversion of analog to (multivalued) digital signals and
vice versa. Piecewise linear characteristics of independent voltage and/or current sources
[Vlad] are used for interactions between digital and analog subnetworks; the “smoothing”
of discrete digital signals is thus implemented by piecewise linear functions. The interface
is composed of two sections, one for analog-to-digital communication, and the second for

MUN–CS Technical Report #8903 22

communication in the opposite direction. In the input (circuit specification) language, these
two sections are described by two new directives, PUTLIST and GETLIST, respectively:

.PUTLIST:Tname1 Voutput1,Voutput2,...

.GETLIST:Tname1:Tname2 Vsource1,Vsource2,...

where Tname1 is the name of a TABLE pseudoelement that defines the conversion table for
analog-to-digital (and digital-to-analog) interface; Tname2 is the name of another TABLE
pseudoelement that defines the delay table for digital-to-analog conversion; each Voutput

is a voltage output in the SPICE sense, i.e., it is either “V(node1,node2)” or “V(node1)” if
the second node is zero; each Vsource is the name of an independent voltage source with a
piecewise linear time-dependent function.

The conversion table is defined as an ordered sequence of increasing (threshold) voltages
interposed with (internal) values of corresponding digital signals:

.TABLE Tname Volt0 Num1 Volt1 Num2 Volt2 Num3 ... Numk Voltk

Voltages in the range Volt0 to Volt1 are converted into a digital signal represented by
the value Num1, etc. For digital-to-analog conversions, the extreme values Num1 and Numk are
translated into Volt0 and Voltk, respectively, while all intermediate values are converted
into “median” voltages, i.e., Num2 corresponds to (Volt1+Volt2)/2, etc.

Presently, the delay table contains just three parameters, the delay time of the converted
digital-to-analog signals (indicated in GETLIST), the rise rate (i.e., the rise time per 1V)
and the fall rate.

In the following example, the digital part (shown later) is simply a two-input AND gate,
with inputs and outputs described by the PUTLIST and GETLIST, respectively. There are
two different conversion tables for analog-to-digital and digital-to-analog conversions, and
also the rise and fall rates are different. The simulation results are shown in Fig.1:

VV 1 0 PULSE(-5.0,+5.0,0.5US,10NS,10NS,2US,5US)

R1 1 2 1K

C1 2 0 1NF

R2 1 3 1K

C2 3 0 200PF

VX 5 0 PWL(0 -5.0,15U -5.0)

RX 5 0 1K

.TRAN 50NS 10US

.PRINT TR V(2) V(3) V(5)

.PUTLIST:TCONV1 V(2),V(3)

.GETLIST:TCONV2:TDEL VX

.TABLE TCONV1 (-5.0,-1,-1.0,1,+5.0)

.TABLE TCONV2 (-5.0,-1,+1.0,1,+5.0)

.TABLE TDEL (1E-6,1E-7,5E-8)

.END

MUN–CS Technical Report #8903 23

-4

-2

0

2

4

0 2 4 6 8 10

V(2)
V(3)
V(5)

V

µs

❥s

✙

Fig.1. Mixed-mode simulation results.

In the SPICE-PAC’s implementation of time-domain analysis (section 5), the logical
condition mixed_simulation is “true” if both PUTLIST and GETLIST are nonempty, and
then the analog-digital interfacing routine (SPPSIM) is invoked for each successfully solved
timepoint. The interfacing routine performs analog-to-digital conversion of all PUTLIST
voltages, and then checks:

• if any digital value created during this conversion differs from the corresponding (dig-
ital) value created in the previous invocation, and if all digital values remain the
same

• if the present timepoint has been explicitly requested by the external simulation rou-
tines (for example, because of the “internal” timing mechanisms).

If both checks fail, the interfacing routine returns and the time-domain analysis con-
tinues. If the present timepoint is requested by the digital simulation (second condition),
the routine SPUSIM is invoked to perform the simulation of the digital part (at the gate,
functional or behavioral level) for the present timepoint. In the case of the first condition
satisfied, i.e., if there is at least one “new” digital value after the conversion, before an in-
vocation of SPUSIM the timepoint is (iteratively) adjusted to a value corresponding to the
closest conversion threshold. After completion of digital simulation, the digital-to-analog
conversions are performed for those (digital) signals which are indicated in the GETLIST
specifications, and which changed their (digital) values during the invoked digital simula-
tion. Then the (analog) time-domain simulation resumes.

The SPUSIM routine is either a simple interfacing routine to a “standard” logic simula-
tion program, or a user-supplied routine (which may “drive” or enhance a logic simulator).
If it is a user routine, it must be defined in a way consistent with the following (FORTRAN)
header:

MUN–CS Technical Report #8903 24

SUBROUTINE SPUSIM (TIME,LINP,NINP,LOUT,NOUT,MARK)

DOUBLE PRECISION TIME

INTEGER LINP(NINP),LOUT(NOUT),MARK

where the parameters are:

TIME - the value of the (simulated) time,

LINP - an array of length NINP which contains the coverted values of PUTLIST data,

NINP - the length of LINP, i.e., the number of analog-to-digital signals,

LOUT - an array of length NOUT which return the new (digital) values of GETLIST
variables; on entry LOUT contains “previous” values of GETLIST variables, so only
“changes” need to be stored in LOUT,

NOUT - the length of LOUT, i.e, the number of digital-to-analog signals,

MARK - an entry/return flag; on entry: MARK=–1 indicates the initial invocation,
MARK=0 indicates an accepted timepoint (i.e., a “regular” invocation), while non-
convergence (and termination of analog simulation) is indicated by MARK=+1; on
exit: MARK=0 indicates continuation of analysis, and MARK=+1 request to termi-
nate the analysis at the current timepoint.

The following example of the SPUSIM routine simulates the “logic” AND gate used in
the previous example:

SUBROUTINE SPUSIM (TIME,LINP,NINP,LOUT,NOUT,MARK)

DOUBLE PRECISION TIME

DIMENSION LINP(NINP),LOUT(NOUT)

C It is assumed that the internal representation of "1" is greater

C than that of "0"; then the logical AND corresponds to the standard

C MIN (or MIN0 for INTEGER arguments) function.

LOUT(1)=MIN0(LINP(1),LINP(2))

RETURN

END

Mixed-mode simulation offers a significant reduction of simulation times with respect to
“all analog simulation” (in the range of one to two orders of magnitude depending on the
level of digital simulation, behavioral, functional or gate-level). However, the development
process of such simulators is quite unreliable and time-consuming because the simulation
code (SPUSIM routines) must be developed for each application, and this code must be
tested and validated before actual simulations take place. Therefore, a “better” approach
is needed, in which the digital simulation is derived directly from design specifications
by appropriate extensions of the specification language, circuit description processors and
evaluation routines.

MUN–CS Technical Report #8903 25

10. Simple postprocessor

A postprocessor has been added to SPICE-PAC in order to provide an elementary
capability for processing the results of circuit analyses; evaluation of sensitivities by the
perturbation method is a good example of postprocessing.

The postprocessor operates on results of “group” analyses, i.e., analyses performed
repeatedly for a given set of parameter values (the perturbations of circuit elements for
sensitivity evaluations correspond to such a set of parameter values). Group analyses are
indicated by an extended version of SPICE PAC’s “.var” operation that specifies the values
of (static) circuit variables (defined in the extended circuit description). For two variables,
say a (parasitic) resistor “Rpar” and capacitor “Cpar”, defined as the first two circuit
variables:

.....

.END/EXT

.VAR Rpar

.VAR Cpar

.END

the set of five different combinations of parameter values (i.e., the “nominal values”, and
“positive” and “negative” perturbations for each “Rpar” and “Cpar”) can be defined as:

.var{1,2}=({100,10E-12},{105,10E-12},{95,10E-12},{100,11E-12},{100,9E-12})

The perturbations of “Rpar” are by 5% and those of “Cpar” by 10%. The subsequent
analysis (for example, “.ac”) will create five different variants of results, corresponding
to consecutive combinations of parameter values from this “.var” list. The postprocessor
operates on such collections of results.

The general idea of describing the postprocessor operations is to define a list of new,
computed “outputs” that can be displayed, printed or stored in a file. The postprocessor’s
specification is thus a sequence of new output definitions (the postprocessor is invoked by
the “.pproc” operation in the “standard” SPICE-PAC’s driver):

.pproc(output1,output2,...)

where each output definition is an expression composed of arithmetic operators, constants
and “#variant:column” result identifiers, with “#variant” denoting a variant of results (i.e.,
results corresponding to a particular combination of parameter values) and “:column” de-
noting a particular output variable of the results “#variant”. There also is a “composition”
operator “ ” (underscore) which combines two (real) output variables into a single com-
plex variable, as required in frequency-domain calculations. This operator has the highest
priority, so it binds stronger than any other arithmetic operator.

Normalized AC sensitivities with respect to RR and CC in the following simple RC
circuit:

MUN–CS Technical Report #8903 26

VV 1 0 AC=1

RR 1 2 1K

CC 2 0 1NF

.AC 1K,10K,100K

.PRINT AC VR(2) VI(2)

.END/EXT

.VAR RR

.VAR CC

.END

can thus be obtained by repeated analyses with consecutive perturbations of RR and CC
and then postprocessing:

.var{1,2}=({1000,1D-9},{1050,1D-9},{950,1D-9},{1D3,0.95D-9},{1D3,1.05D-9})

.ac

.pproc(10.0*(#3:1_#3:2-#2:1_#2:2)/(#1:1_#1:2),

10.0*(#5:1_#5:2 #4:1_#4:2)/(#1:1_#1:2))

(observe that the perturbations of RR have been reversed to obtain the effect of sensitivity
with respect to conductance rather than resistance), which produces the following results
(each complex expression is equivalent to two consecutive “outputs”; so “#1” and “#2”
are the real and imaginary parts of a (complex) sensitivity with respect to RR, etc.):

FREQ #1 #2 #3 #4

1.00d+03 3.92d-05 6.28d-03 3.92d-05 6.28d-03

1.00d+04 3.93d-03 6.26d-02 3.93d-03 6.26d-02

1.00d+05 2.83d-01 4.51d-01 2.83d-01 4.51d-01

The results are practically the same as the “exact” results obtained for the small signal
AC sensitivities.

There are several implementation restrictions in the present version of the postprocessor,
e.g., the maximum number of operators, constants and arguments, or the maximum number
of defined outputs, however, all these restrictions can easily be changed by appropriate
modifications of the postprocessor’s code (“t1post.f” file in the standard distribution).

R e f e r e n c e s

[AllZ] P.E. Allen, W.M. Zuberek, “Simulation of mixed, analog-digital circuits with SPICE-
like simulators” (paper submitted for publication).

[Cohen] E. Cohen, “Program reference for SPICE 2”; Memorandum UCB/ERL M592,
University of California, Berkeley CA 94720, 1976.

[Goer] R. Goering, “A full range of solutions emerge to handle mixed-mode simulation”;
Computer Design, vol.27, no.3, pp.57-65, 1988.

MUN–CS Technical Report #8903 27

[deMan] H. de Man, G. Arnout, P. Reynaert, “Mixed-mode simulation techniques and
their implementation in DIANA”; in: “Computer Design Aids for VLSI Circuits”, P.
Antognetti, D.O. Pederson, H. de Man (eds.), Sijthoff and Noordhoff 1981.

[McCal] W.J. McCalla, “Fundamentals of computer-aided circuit simulation”; Kluwer Aca-
demic Publ. 1988.

[Peder] D.O. Pederson, “Computer aids in integrated circuit design”; in: “Computer De-
sign Aids for VLSI Circuits”, P. Antognetti, D.O. Pederson, H. de Man (eds), Sijthoff
and Noordhoff 1981.

[Poiv] Ch. Poivey, “Methodes d’optimisation globale pour la CAO de circuits integres;
interface avec le simulateur SPICE-PAC” (Global optimization methods for CAD of
integrated circuits; an interface to the SPICE-PAC simulation package); These de
Docteur Ingenieur, l’Universite Blaise Pascal, serie D.I., no.203, Clermont-Ferrant,
France, 1987.

[Vlach] J. Vlach, K. Singhal, “Computer methods for circuit analysis and design”; Van
Nostrand Reinhold 1983.

[Vlad] A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Pederson, A.L. Sangiovanni-Vin-
centelli, “SPICE Version 2G - User’s Guide ”; Department of Electrical Engineering
and Computer Sciences, University of California, Berkeley CA 94720, 1981.

[Zlib] W.M. Zuberek, “SPICE-PAC and libraries of standard modules”; Proc. Canadian
Conf. on VLSI (CCVLSI-84), Edmonton, Canada, 1984.

[Zopt] W.M. Zuberek, “Reverse and indirect communication in interfacing circuit simula-
tion with optimization”; Proc. CIPS Congress 86, Vancouver, Canada, pp.103-108,
1986.

[Zpar] W.M. Zuberek, “Parameterized subcircuits in the SPICE-PAC package of simulation
subroutines”; Proc. Canadian Conference on VLSI (CCVLSI-87), Winnipeg, Canada,
pp.117-122, 1987.

[Zsour] M.S. Zuberek, W.M. Zuberek, “Enhanced controlled sources as device models in
the SPICE-PAC simulation package”; Proc. 30-th Midwest Symp. on Circuits and
Systems, Syracuse NY, pp.603-606, North-Holland 1988.

[Ztdom] W.M. Zuberek, “Dynamic control of time-domain analysis in the SPICE-PAC
simulation package”; Proc. 22-nd Asilomar Conf. on Circuits, Signals and Computers,
Pacific Grove CA (in print).

[Zvar] M.S. Zuberek, W.M. Zuberek, “Aggregate circuit variables in the SPICE-PAC sim-
ulation package”; Proc. 31-st Midwest Symp. on Circuits and Systems, St. Louis MO
(in print).

MUN–CS Technical Report #8903 28

APPENDIX A

SPICE-PAC main (or interfacing) subroutines

SPICEA initializes the package and reads circuit description,
SPICEB defines circuit variables,
SPICEC sets internal structures and performs initial processing,
SPICED defines parameters for DC analysis,
SPICEE defines execution-time limit,
SPICEF defines frequencies for AC, NOISE and DISTORTION analyses,
SPICEG defines parameters for DISTORTION analysis,
SPICEH defines parameters for FOURIER analysis,
SPICEI defines initial conditions (as node and/or device voltages),
SPICEJ sets and resets internal flags,
SPICEK defines parameters for DC TRANSFER FUNCTION analysis,
SPICEL activates definitions of parameters and outputs,
SPICEM defines the temperature for subsequent analyses,
SPICEN defines parameters for NOISE analysis,
SPICEO defines outputs for different analyses,
SPICEP determines internal pointers for circuit element names,
SPICEQ defines output variables,
SPICER performs DC, TRANSIENT, AC, NOISE, DISTORTION,

FOURIER, DC TRANSFER FUNCTION and AC sensitivity analyses,
and DC OP-POINT solution,

SPICES performs DC SENSITIVITY analysis,
SPICET defines parameters for TRANSIENT analysis,
SPICEU updates circuit variables,
SPICEV retrieves actual values of circuit variables,
SPICEW retrieves SPICE-PAC execution times,
SPICEX defines parameters and outputs using symbolic form,
SPICEY retrieves the names of output variables, circuit elements and

circuit variables.

MUN–CS Technical Report #8903 29

APPENDIX B

SPICE-PAC’s parameters of circuit elements

Nonlinear capacitors and inductors:

#n coefficient “n” of the polynomial function (n=0,1,...)

Transmission lines:

ZO characteristic impedance
TD transmission delay
ICV1 initial voltage at the input port for the TRANSIENT analysis
ICI1 initial current at the input port for the TRANSIENT analysis
ICV2 initial voltage at the output port for the TRANSIENT analysis
ICI2 initial current at the output port for the TRANSIENT analysis

Dependent (nonlinear) voltage and current sources:

#n coefficient “n” of the polynomial function (n=0,1,...)

Independent (voltage and current) source parameters:

DC DC voltage/current
ACM magnitude of AC voltage/current
ACP phase of AC voltage/current
#n parameter “n” of time-dependent source function (n=0,1,...)

Diode parameters:

AREA area factor
IQVD initial voltage for the OP-POINT solution
ICVD initial voltage for the TRANSIENT analysis

Diode model parameters:

IS saturation current
RS ohmic resistance
N emission coefficient
TT transit time
CJO zero-bias junction capacitance
VJ junction potential

MUN–CS Technical Report #8903 30

M grading coefficient
EG energy gap
XTI saturation current temperature exponent
KF flicker noise coefficient
AF flicker noise exponent
FC forward-bias nonideal junction capacitance coefficient
BV reverse breakdown voltage
IBV current at breakdown voltage

Diode noise components:

RS ohmic resistance
ID diode current
FN flicker noise

BJT parameters:

AREA area factor
IQVBE initial VBE voltage for the OP-POINT solution
ICVBE initial VBE voltage for the TRANSIENT analysis
IQVCE initial VCE voltage for the OP-POINT solution
ICVCE initial VCE voltage for the TRANSIENT analysis

BJT model parameters:

IS saturation current
BF ideal forward current gain
NF forward current emission coefficient
VAF forward Early voltage
IKF forward knee current
ISE base-emitter leakage saturation current
NE nonideal low-current base-emitter emission coefficient
BR ideal reverse current gain
NR reverse current emission coefficient
VAR reverse Early voltage
IKR reverse knee current
ISC base-collector leakage saturation current
NC nonideal low-current base-collector emission coefficient
RB base ohmic resistance
IRB current at which base resistance decreases halfway
RBM minimum base resistance at high currents
RE emitter ohmic resistance
RC collector ohmic resistance

MUN–CS Technical Report #8903 31

CJE zero-bias base-emitter junction capacitance
VJE base-emitter built-in potential
MJE base-emitter junction exponential factor
TF forward transit time
XTF coefficient for bias dependence of forward transit time
VTF voltage for bias dependence of forward transit time
ITF high-current parameter for effect on forward transit time
PTF excess phase at frequency 1/(2*PI*TF) Hz
CJC zero-bias base-collector junction capacitance
TR reverse transit time
CJS collector-substrate capacitance
VJS substrate junction built-in potential
MJS substrate junction exponential factor
XTB forward and reverse current gain temperature coefficient
EG energy gap
XTI saturation current temperature exponent
KF flicker noise coefficient
AF flicker noise exponent
FC forward-bias nonideal junction capacitance coefficient

BJT noise components:

RB base ohmic resistance
RC collector ohmic resistance
RE emitter ohmic resistance
IB base current
IC collector current
FN flicker noise

JFET parameters:

AREA area factor
IQVDS initial VDS voltage for the OP-POINT solution
ICVDS initial VDS voltage for the TRANSIENT analysis
IQVGS initial VGS voltage for the OP-POINT solution
ICVGS initial VGS voltage for the TRANSIENT analysis

JFET model parameters:

VTO threshold voltage
BETA transconductance parameter
LAMBDA channel length modulation parameter
RD drain ohmic resistance

MUN–CS Technical Report #8903 32

RS source ohmic resistance
CGS zero-bias gate-source junction capacitance
CGD zero-bias gate-drain junction capacitance
PB gate junction potential
IS gate junction saturation current
KF flicker noise coefficient
AF flicker noise exponent
FC forward-bias nonideal junction capacitance coefficient

JFET noise components:

RD drain ohmic resistance
RS source ohmic resistance
ID drain current
FN flicker noise

MOSFET parameters:

W channel width
L channel length
AD area of the drain diffusion
AS area of the source diffusion
PD perimeter of the drain junction
PS perimeter of the source junction
NRD number of squares of the drain diffusion
NRS number of squares of the source diffusion
IQVDS initial VDS voltage for the OP-POINT solution
ICVDS initial VDS voltage for the TRANSIENT analysis
IQVGS initial VGS voltage for the OP-POINT solution
ICVGS initial VGS voltage for the TRANSIENT analysis
IQVBS initial VBS voltage for the OP-POINT solution
ICVBS initial VBS voltage for the TRANSIENT analysis

MOSFET model parameters:

VTO zero-bias threshold voltage
KP intrinsic transconductance parameter
GAMMA bulk threshold parameter
PHI surface potential at strong inversion
LAMBDA channel length modulation parameter
RD drain ohmic resistance
RS source ohmic resistance
CBD zero-bias bulk-drain junction capacitance

MUN–CS Technical Report #8903 33

CBS zero-bias bulk-source junction capacitance
IS bulk junction saturation current
PB bulk junction potential
CGSO gate-source overlap capacitance
CGDO gate-drain overlap capacitance
CGBO gate-bulk overlap capacitance
RSH drain and source diffusion sheet resistance
CJ zero-bias bulk junction bottom capacitance
MJ bulk junction bottom grading coefficient
CJSW zero-bias bulk junction sidewall capacitance
MJSW bulk junction sidewall grading coefficient
JS bulk junction reverse saturation current
TOX oxide thickness
NSUB effective substrate doping
NSS effective surface state density
NFS effective fast surface state density
TPG type of gate material
XJ metalurgical junction depth
LD lateral difussion coefficient
UO surface mobility
UCRIT critical field for mobility degradation
UEXP critical field exponent in mobility degradation
UTRA transverse field coefficient (mobility)
VMAX maximum drift velocity of carriers
NEFF total channel charge (fixed and mobile) coefficient
XQC coefficient of channel charge share attributed to drain
KF flicker noise coefficient
AF flicker noise exponent
FC forward-bias nonideal junction capacitance coefficient
DELTA width effect on threshold voltage
THETA mobility modulation
ETA static feedback
KAPPA saturation field factor

MOSFET noise components:

RD drain ohmic resistance
RS source ohmic resistance
ID drain current
FN flicker noise

