
46 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

Petri Nets and Timed Petri Nets in Modeling and
Analysis of Concurrent Systems – An Overview

W lodek M. Zuberek

Abstract— Petri nets are formal models of systems which
exhibit concurrent activities. Communication networks,
multiprocessor systems, manufacturing systems and dis-
tributed databases are simple examples of such systems. As
formal models, Petri nets are bipartite directed graphs, in
which the two types of vertices represent, in a very gen-
eral sense, conditions and events. An event can occur only
when all conditions associated with it (represented by arcs
directed to the event) are satisfied. An occurrence of an
event usually satisfies some other conditions, indicated by
arcs directed from the event. So, an occurrence of one event
causes some other event to occur, and so on.

In order to study performance aspects of systems modeled
by Petri nets, the durations of modeled activities must also
be taken into account. This can be done in different ways,
resulting in different types of temporal nets. In timed Petri
nets, occurrence times are associated with events, and the
events occur in real–time (as opposed to instantaneous oc-
currences in other models). For timed nets with constant or
exponentially distributed occurrence times, the state graph
of a net is a Markov chain, in which the stationary prob-
abilities of states can be determined by standard methods.
These stationary probabilities are used for the derivation of
many performance characteristics of the model.

Analysis of net models based on exhaustive generation of
all possible states is called reachability analysis; it provides
detailed characterization of model’s behavior, but often re-
quires generation and analysis of huge state spaces (in some
models the number of states increases exponentially with
some model parameters, which is known as “state explo-
sion”). Structural analysis determines the properties of net
models on the basis of connections among model elements;
structural analysis is usually much simpler than reachability
analysis, but can be applied only to models satisfying certain
properties. If neither reachability nor structural analysis is
feasible, discrete–event simulation of timed nets can be used
to study the properties of net models.

This paper overviews basic concepts of Petri nets, intro-
duces timed Petri nets, and provides brief summaries of sev-
eral case studies of performance analysis which are discussed
in greater detail in other publications of the author.

Keywords—Petri nets, timed Petri nets, performance anal-
ysis, reachability analysis, structural analysis, net trans-
formations, multithreaded multiprocessors, distributed–
memory multiprocessors, event–driven simulation.

I. Introduction

PETRI nets have been proposed (by Carl Adam Petri
[49]) as a simple and convenient formalism for model-

ing systems that exhibit concurrent activities [2], [47], [48],
[54]. The popularity that Petri nets (and their numerous
extensions and modifications) have been gaining is due to
simple representation of concurrency and synchronization,

Part of the Record of Research Forum 2003 organized on Novem-
ber 13, 2003 on the occasion of the 25-th Anniversary of the Depart-
ment of Computer Science at Memorial University,

This work was supported in part by the Natural Sciences and En-
gineering Research Council of Canada through Grant RGPIN-8222.

Copyright c© 2003 by Department of Computer Science, Memorial
University, St.John’s, Canada A1B 3X5. All rights reserved.

i.e., those aspect of systems which cannot be expressed
easily in traditional formalisms, developed for analysis of
systems with sequential behavior.

Petri nets are bipartite directed graphs, in which the two
types of vertices, called places and transitions, represent,
in a very general sense, conditions and events (sometimes
Petri nets are also called condition–event systems). An
event can occur only when all conditions associated with
it (represented by arcs directed to the event) are satisfied.
An occurrence of an event usually satisfies some other con-
ditions, indicated by arcs directed from the event. In effect,
an occurrence of one event causes some other event(s) to
occur, and so on.

In order to study performance aspects of Petri net mod-
els, the durations of activities must also be taken into
account. Several types of Petri nets “with time” have
been proposed by assigning “occurrence times” (or “firing
times”) to the transitions or places of a net. In timed nets
[65], [70], [83], firing times are associated with transitions,
and transition firings are real–time events, i.e., tokens are
removed from input places at the beginning of the firing
period, and they are deposited to the output places at the
end of this period (sometimes this is also called a “three–
phase” firing mechanism). In stochastic (and generalized

stochastic) Petri nets [5], [7], [44] and their many variants
[4], [13], [18], (exponentially distributed) firing times are
associated with transitions, but the tokens remain (for the
occurrence time) in places, and the instantaneous occur-
rences occur at the end of occurrence times (so the “occur-
rence times” are actually “enabling times”). In time nets
[1], [43] there is an interval associated with a transition,
and the (instantaneous) occurrence must occur within this
interval of time.

In timed nets, all firings of enabled transitions are initi-
ated in the same instants of time in which the transitions
become enabled. If, during the firing period of a transition,
the transition becomes enabled again, a new, independent
firing can be initiated, which will overlap with the other
firing(s). There is no limit on the number of simultane-
ous firings of the same transition (sometimes this is called
“infinite firing semantics”).

The firing times of transitions can be either deterministic
or stochastic (i.e., described by a probability distribution
function); in the first case, the corresponding timed nets
are referred to as D–nets, in the second, for the (negative)
exponential distribution of firing times, the nets are re-
ferred to as M–nets (Markovian nets). In both cases, the
concepts of state and state transitions have been formally
defined and used in the derivation of different performance
characteristics of the models [78], [79], [83].

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 47

In (ordinary) nets the tokens are indistinguishable, so
their distribution can conveniently be described by a mark-
ing function which assigns nonnegative (integer) numbers
of tokens to places of the net. In colored Petri nets [35],
[36], [37] tokens have attributes called colors. Token col-
ors can be quite complex, for example, they can describe
the values of (simple or structured) variables or the con-
tents of message packets. Token colors can be modified by
(firing) transitions and also a transition can have several
different occurrences (or variants) of its firing for different
combinations of token colors.

The basic idea of colored nets is to “fold” an ordinary
Petri net into a simpler one. The original set of places
is partitioned into a set of disjoint classes, and each class
is replaced by a single place with token colors indicating
which of the original places the tokens belong to. Simi-
larly, the original set of transitions is partitioned into a
set of disjoint classes, and each class is replaced by a single
transition with occurrences indicating which of the original
transitions the firing corresponds to.

Any partition of places and transitions will result in a
colored net. One of the extreme partitions will combine all
original places into one place, and all original transitions
into one transition; this will create a very simple net (one
place and one transition only) but with a large number
of colors and quite complicated rules describing the use of
colors. The other extreme partition will create one–element
classes of places and transitions, so the colored net will be
isomorphic to the original net, with only one color. To be
useful in practice, colored nets must constitute a reasonable
balance between these two extreme cases.

Analysis of net models can be based on their behavior
(i.e., the set of reachable states) or on the structure of the
net; the former is called reachability analysis and the latter
– structural analysis. Invariant analysis seems to be the
most popular example of the structural approach. Struc-
tural methods eliminate the derivation of the state space,
so they avoid the “state explosion” problem of reachabil-
ity analysis, but they cannot provide as much information
as the reachability approach does. Quite often, however,
all the detailed results of reachability analysis are not re-
ally needed, and more synthetic performance measures, ob-
tained by structural methods, are quite satisfactory.

Both reachability and structural analyses are based on
quite detailed net characterizations. Consequently, only
very simple models can be analyzed unless software tools
for analysis of such models are available. It is, therefore,
not surprising that many different tools have been devel-
oped for analysis of a variety of net types. A collection
of software tools developed for analysis of timed Petri net
models, TPN–tools, uses the same internal representation
of different classes of net models, and a common language
for the description of modeling nets [86].

Timed Petri nets are discrete–event models which can be
continuos–time (M–timed nets) or discrete–time (D–timed
nets). Analysis of timed models by event–driven simulation
of their behavior is yet another approach to performance
analysis, which imposes very few restrictions on the class of

analyzed models [87], [94] (e.g., both continuos–time and
discrete–time elements can be used in the same model).
This paper first reviews basic concepts of Petri nets, then

introduces timed Petri nets, and, as an illustration of their
applications, summarizes a few case studies which are de-
scribed in greater detail in other publications of the author.
A brief information on activities of Petri net community
concludes the paper.

II. Basic Concepts of Petri Nets

Place/transition Petri nets are bipartite directed graphs
in which the two types of vertices are called places and
transitions. Place/transition nets are also known as condi-
tion/event systems.

A Petri net (sometimes also called net structure) N is a
triple N = (P, T,A) where:
• P is a finite set of places (which represent conditions);
• T is a finite set of transitions (which represent events),
P ∩ T = ∅;
• A is a set of directed arcs which connect places with
transitions and transitions with places, A ⊆ P × T ∪ T ×
P , also called the flow relation or causality relation (and
sometimes represented in two parts, a subset of P ×T and
a subset of T × P).
For each transition t ∈ T , and each place p ∈ P , the

input and output sets are defined as follows:

Inp(t) = {p ∈ P | (p, t) ∈ A},
Inp(p) = {t ∈ T | (t, p) ∈ A},
Out(t) = {p ∈ P | (t, p) ∈ A},
Out(p) = {t ∈ T | (p, t) ∈ A}.

A. Marked nets

The dynamic behavior of nets is represented by mark-
ings, which assign nonnegative numbers of tokens to the
places of a net. Under certain conditions these tokens can
“move” in the net, changing one marking into another.
A marked Petri net M is a pair M = (N ,m0), where

N is a net structure, N = (P, T,A), and m0 is the initial
marking function, m0 : P → {0, 1, ...} which assigns a non-
negative number of tokens to each place of the net. Marked
nets are also equivalently defined as M = (P, T,A,m0).
Example. Fig.2.1 shows a very simple model of the

producer–consumer bounded–buffer system. The cyclic
subnet (t1, p1, t2, p2) represents the producer process which
produces an item (t1) and stores it in the buffer (t2) pro-
vided there is space for it (condition p5). The cyclic sub-
net (t3, p3, t4, p4) represents the consumer process which
fetches an item from the buffer (t3) provided the buffer is
nonempty (condition p6) and consumes it (t4).

t1 t2 t3

p5

p6

p2

p1 p3

p4

t4

48 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

Fig.2.1. Producer–consumer bounded–buffer model.

The capacity of the buffer is represented by the total
(initial) marking of places p5 and p6, so it is 2 in this case.✷

Let any mapping m : P → {0, 1, ...} be called a marking

function in N = (P, T,A).

In marked nets, a condition represented by a place p is
satisfied at a marking m if m(p) > 0, and then p is said to
be marked by m. If all input places of a transition t are
marked, t is enabled:

t is enabled by m ⇔ ∀ p ∈ Inp(t) : m(p) > 0.

The set of all transitions enabled by a marking m is
denoted En(m).
If all (input) conditions of an event are satisfied (i.e., the

transition representing this event is enabled), the event can
occur. An occurrence of an event removes (simultaneously)
a single token from all input places of the transition repre-
senting this event, and (also simultaneously) adds a single
token to all output places of this transition. This creates
a new marking function. An occurrence of an event repre-
sented by t (i.e., t’s firing) is thus a transformation of the
(current) marking function m into a new marking function

m′ which is directly reachable from m by firing t, m
t
7→ m′:

∀ p ∈ P : m′(p) =

m(p) + 1, if p ∈ Out(t)− Inp(t);
m(p)− 1, if p ∈ Inp(t)−Out(t);
m(p), otherwise.

A marking mj is generally reachable (or just reachable)

from a marking mi in M, mi
∗
7→ mj , if mj is reachable from

mi by a sequence of directly reachable markings (general
reachability relation is the reflexive transitive closure of the
direct reachability relation).
The set of reachable markings, M(M), of a marked net

M is the set of all markings which are (generally) reachable
from the initial marking m0:

M(M) = {m | m0
∗
7→ m}.

A graph of reachable markings of M (not to be confused
with a reachability tree) is a directed, arc–labeled graph
R(M) = (V,E, ℓ) in which:
• V is a set of vertices which is equal to the set of reachable

markings M(M);
• E is a set of directed arcs which represent the direct

reachability relation onM(M), (mi,mj) ∈ E ⇔ mi 7→ mj ;
• ℓ is a labeling function which assigns subsets of transi-

tions to elements of E, ℓ : E → 2T :

∀ (mi,mj) ∈ E : ℓ(mi,mj) = {t ∈ T | mi
t
7→ mj}.

Example. The graph of reachable markings for the net
of Fig.2.1 is shown in Fig.2.2. It can be observed that the
graph is finite, strongly–connected (i.e., there is a directed
path between any two vertices of the graph), and each cycle
contains labels of all transitions from the set T . ✷

The set of reachable markings can be finite or infinite;
if it is finite, the net M is bounded, otherwise the net is
unbounded:

t1

[0,1,1,0,2,0]

t4

t3

t1t4

t3

[1,0,1,0,2,0]
[1,0,0,1,2,0]

t2t2

[0,1,1,0,1,1]

[1,0,1,0,0,2]

t1

t1t4

t1 t4 [0,1,1,0,0,2]

[1,0,0,1,1,1]

[1,0,0,1,0,2]
[0,1,0,1,0,2]

t4

t2

t3 t3

t2

[0,1,0,1,2,0]

t4
[1,0,1,0,1,1]

[0,1,0,1,1,1]
t1

Fig.2.2. Graph of reachable markings for the net of Fig.2.1.

M is bounded ⇔
∃ k > 0 ∀ m ∈ M(M) ∀ p ∈ P : m(p) ≤ k.

A marked net M is safe if it is bounded and the bound
k is equal to 1.
A marking mj dominates marking mi, mj ✄ mi, iff mj

is componentwise greater than or equal to mi, and mj is
not equal to mi (i.e., there exists at least one component
of mj which is greater than the corresponding component
of mi):

mj ✄mi ⇔ mj 6= mi ∧ (∀ p ∈ P : mj(p) ≥ mi(p)).

It can be shown that the set of reachable markings of a
marked net M is infinite iff there exist markings mi and
mj such thatmi is reachable fromm0, mj is reachable from
mi, and mj dominates mi.

Example. Fig.2.3 presents a simple model of the
producer–consumer unbounded–buffer system with p5 rep-
resenting the buffer. It should be observed that, in this
model, the producer process does not depend upon the
consumer process. The firing sequence (t1t2) transforms
the initial marking [0,1,1,0,0] into marking [0,1,1,0,1] which
dominates the initial marking, so the set of reachable mark-
ings is infinite; indeed, the firing sequence (t1t2) can be re-
peated any number of times, systematically increasing the
marking of place p5. ✷

p5

t1 t2

p2

p1

t3

p3

p4

t4

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 49

Fig.2.3. Producer–consumer unbounded–buffer model.

One of the most important properties of many concur-
rent systems is the absence of deadlocks; intuitively, a dead-
lock is a configuration in which the system cannot continue
its operation, it becomes dead.

A marking m in net N is dead if no transition is enabled
by m, i.e., if En(m) = ∅. A marked net M contains a
deadlock if its set of reachable markings contains a dead
marking:

M contains a deadlock ⇔ ∃ m ∈ M(M) : En(m) = ∅.

Example. Fig.2.4 shows a simple Petri net model of
resource allocation based on semaphores (with operations
P (s) for “dropping” the semaphore s, and V (s) for “rising”
the semaphore s). Each resource Ri has a semaphore si
controlling its allocation; when a process tries to acquire
the resource, it performs a P (si) operation; after using
the resource Ri, the process releases the acquired resource
performing operation V (si).

s1

s2

P(s1)

P(s2)

V(s1)

V(s2)

P(s2)

P(s1)

V(s1)

V(2)

Process−1 Process−2

Ex1 Ex2Do1 Do2

Fig.2.4. Resource allocation model.

Semaphores are modeled by places, which – for single
unit resources (e.g., input/output devices) – are initialized
(by the initial marking function) to one. Each operation
P (s) removes a token from s, so it uses an arc outgoing
from s, while each operation V (s) returns a token to s, so
it is represented by an arc directed to s.

Fig.2.4 shows two processes sharing two resources, R1

and R2, controlled by semaphores s1 and s2 (the model
can easily be extended to any number of processes and any
number of resources). The processes acquire the resources
in different order; process–1 first acquires the resource R1

(performing P (s1)), while process–2 first acquires resource
R2 (performing P (s2)).
A partial graph of reachable markings for this resource

allocation model is shown in Fig.2.5. The graph contains
a node with no outgoing arcs which represents a deadlock.
Indeed, if process–1 acquires R1, and process–2 acquires
R2, none of the processes can continue without continua-
tion of the other process (and eventual release of the needed
resource); such a “cycle” of processes waiting one for an-
other is a characteristic condition of a deadlock. It should

be observed that the deadlock occurs only for some se-
quences of operations, so, in a real system, the existence of
a deadlock may be quite difficult to detect during testing.
An extensive discussion of Petri net models of synchroniza-
tion mechanisms is given in [91]. ✷

P(s2)

P(s1)

P(s2)P(s1)

P(s2)

V(s1)

V(s2)

P(s1)

V(s1)

V(s2)

Ex1 Ex2

Do2Do1

P(s1)

V(s2)
P(s1)P(s2)

Fig.2.5. Partial graph of reachable markings for Fig.2.4.

A marked net M is conservative if the token count for
each reachable marking is the same:

M is conservative ⇔ ∀ m ∈ M(M) :
∑

p∈P m(p) =
∑

p∈P m0(p).

Conservative nets are (obviously) bounded.

A marked net M is live iff for any marking mi reachable
from the initial marking m0 and any transition t, there
exists a marking mj reachable from mi which enables t (so
t can occur):

M is live ⇔ ∀ mi ∈ M(M) ∀ t ∈ T ∃ mj ∈ M(M) :

mi
∗
7→ mj ∧ t ∈ En(mj).

Example. The marked net shown in Fig.2.1 is bounded,
live and conservative; the net shown in Fig.2.3 is un-
bounded, live and non–conservative, and the net shown in
Fig.2.4 is bounded, non–live (it contains a deadlock) and
non–conservative. ✷

A net which does not contain a deadlock is not neces-
sarily live; it may contain a livelock, i.e., a subset of tran-
sitions which can occur, but which exclude occurrences of
other transitions.

B. Inhibitor Nets

An important extension of the basic net model is addi-
tion of inhibitor arcs [3], [33], [64]. Inhibitor arcs (which
connect places with transitions) provide a “test if zero”
condition which does not exist in basic Petri nets; a transi-
tion is enabled only if all places connected to it by directed
arcs are marked and all places connected by inhibitor arcs
are unmarked. Nets with inhibitor arcs are usually called
inhibitor nets.

An inhibitor (marked) Petri net M is a pair, M =
(N ,m0) where N is a net structure with inhibitor arcs,
N = (P, T,A,B), where B is the set of inhibitor arcs,
B ⊆ P × T , A ∩ B = ∅. The set of places connected

50 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

by inhibitor arcs with transition t is called the inhibitor set
of t and is denoted Inh(t) = {p ∈ P | (p, t) ∈ B}.
In an inhibitor net N , a transition t is enabled by a

marking m iff:

t is enabled by m ⇔ (∀ p ∈ Inp(t) : m(p) > 0) ∧
(∀ p ∈ Inh(t) : m(p) = 0).

An occurrence (or firing) of a transition t does not affect
the marking of inhibitor places (if they are not in the t’s
output set).

Example. Fig.2.6 shows a Petri net model (in-
hibitor arcs have small circles instead of arrowheads) of
the readers–writers synchronization problem, in which m
reader processes and n writer processes access the same
data in such a way, that any number of reader processes
can access the data at the same time, but each writer pro-
cess must have exclusive access to this data to perform an
update operation. Moreover, writer processes have priority
over reader processes, which means that when any writer
process is ready to perform its write operation, no new
reader processes can be granted access to the data, but
reader processes which were granted their accesses some-
times earlier, continue their operation until completion,
and then the ready writer process can proceed to access
the data.

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12
t1

t2

t3

t4

t5

t6

t7

t8

t9

Readers Writers

Fig.2.6. Readers–writers model.

The cyclic reader processes are represented by the sub-
net (p1, t1, p2, t2, p3, t3, p4, t4). The initial marking of place
p1 represents the number of reader processes. t1 models
the granting of access to data, t2 represents accessing the
data, and t3 models release of the “access right”. The
subnet (p5, t5, p6, t6, p7, t7, p8, t8, p9, t9) models the cyclic
writer processes, in which t5 registers (in p11) that there
is a writer process ready to perform an update operation,
and then the inhibitor arc (p11, t1) blocks the granting of
accesses (t1) to subsequent reader processes. Each reader
process which is granted access to data is “counted” in p12;
the inhibitor arc (p12, t6) delays the writer process (or pro-
cesses) until all the reader processes complete their read
operations (t2), and release the “access rights” (by remov-
ing a token from p12). The write operation is performed
by one process at a time due to a single token in p10. ✷

It should be noted that nets with inhibitor arcs are more
powerful than nets without such arcs [3]. Consequently,
some results which are valid for nets without inhibitor arcs
do not apply to inhibitor nets (for example, the condition
on infinite set of reachable markings is not true for inhibitor
nets).

C. Structural Properties of Nets

A place is shared if it is connected to more than one
transition. A shared place is guarded if for every pair of
transitions sharing it there exists another place which is
connected by a directed arc to one of these two transitions
and by an inhibitor arc to the other transition:

p is guarded ⇔ ∀ ti, tj ∈ Out(p) ∃ pk ∈ P :
pk ∈ Inp(ti)∧pk ∈ Inh(tj)∨pk ∈ Inp(tj)∧pk ∈ Inh(ti).

If a place is guarded, at most one of the transitions shar-
ing it can be enabled by any marking function.
If all shared places of a net are guarded, the net is (struc-

turally) conflict–free, otherwise the net contains conflicts.
The simplest case of conflicts is known as a free–choice (or
generalized free–choice) structure; a shared place is (gener-
alized) free–choice if all transitions sharing it have identical
input and inhibitor sets:

p is free–choice ⇔ ∀ ti, tj ∈ Out(p) :
Inp(ti) = Inp(tj) ∧ Inh(pi) = Inh(tj).

An inhibitor net is free–choice if all shared places are
either guarded or free–choice. The transitions sharing a
free–choice place constitute a free–choice class of transi-
tions. For each marking function, and each free–choice
class of transitions, either all transitions in this class are
enabled or none of them is. It is assumed that the selec-
tion of transitions for firing within each free–choice class is
a random process which can be described by “choice prob-
abilities” assigned to (free–choice) transitions. Moreover,
it is usually assumed that the random variables describ-
ing choice probabilities in different free–choice classes are
independent.
All places which are not conflict–free and not free–choice,

are conflict places. Transitions sharing conflict places are
(directly or indirectly) potentially in conflict:

ti, tj are potentially in conflict ⇔ Inp(ti) ∩ Inp(tj) 6= ∅ ∨
(∃ tk ∈ T : Inp(ti) ∩ Inp(tk) 6= ∅ ∧

tk, tj are potentially in conflict).

A conflict class is the set of all transitions which are
potentially in conflict with each other:

Tk ⊆ T is a conflict class ⇔
∀ ti, tj ∈ Tk : ti, tj are potentially in conflict.

All conflict classes are disjoint. It is assumed that con-
flicts are resolved by random choices of occurrences among
the conflicting transitions. These random choice are inde-
pendent in different conflict classes.

Example. Transitions ti and tj , which are explic-
itly potentially in conflict, are shown in Fig.2.7(a), while
Fig.2.7(b) shows ti and tj which are implicitly potentially

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 51

in conflict. Whether or not transitions, which are poten-
tially in conflict, are actually in conflict depends upon the
marking; in Fig.2.7(a), if only pa and pb are marked, the
transition ti is conflict–free; if pc is also marked, ti is a
conflict transition.
Places s1 and s2 in Fig.2.4 are conflict places.
The net shown in Fig.2.6 is conflict–free because it does

not contain shared places. ✷

ti tj ti tjtk

(b)(a)

pdpa pb pcpcpbpa

Fig.2.7. Examples of conflicts.

Properties of nets based on structural properties are dis-
cussed in greater detail in [12], [23], [24], [47], [59], [63].

An important structural concept is known as place–
invariants.
Each net N = (P, T,A) can be represented by a connec-

tivity matrix (or incidence matrix)C : P×T → {−1, 0,+1}
in which places correspond to rows, transitions to columns,
and the entries are defined as:

∀ pi ∈ P ∀ tj ∈ T : C[i, j] =

−1,
if pi ∈ Inp(tj)−Out(tj),

+1,
if pi ∈ Out(tj)− Inp(tj),

0, otherwise.

If a marking mj is obtained from another marking mi

by firing a transition tk, then (in vector notation) mj =
mi +C[k], where C[k] denotes the k-th column of C, i.e.,
the column representing tk. Similarly, if mj is reached from
mi by a firing sequence (ti1ti2 ...tik), thenmj = mi+C[i1]+
C[i2] + ...+C[ik].
Connectivity matrices ignore inhibitor arcs and disregard

“selfloops”, that is, pairs of arcs (p, t) and (t, p); any firing
of a transition t cannot change the marking of p in such a
selfloop, so selfloops are neutral with respect to token count
of a net. A pure net is defined as a net without selfloops
[54].

A P–invariant (place-invariant, sometimes also called S–
invariant) of a netN is any integer positive (column) vector
I which is a solution of the matrix equation

CT × I = 0,

where CT denotes the transpose of matrix C. It follows
immediately from this definition that if I1 and I2 are P–
invariants of N , then also any linear (positive) combination
of I1 and I2 is a P–invariant of N .

A basic P–invariant of a net is defined as a P–invariant
which does not have simpler invariants. All basic P–
invariants I are binary vectors [54], I : P → {0, 1}.
It should be observed that in a pure net N , each P–

invariant I determines a PI -implied (invariant) subnet of

N , where PI = {p ∈ P | I[p] > 0} is sometimes called the
support of the invariant I; all nonzero elements of I select
rows of C, and each selected row i corresponds to a place
pi with all input (elements “+1”) and all output (elements
“–1”) arcs associated with it.

There are efficient algorithms to find all basic invariants
of a net [39], [42].

Example: For the net shown in Fig.2.1, the connectivity
matrix is:

C =

+1 −1 0 0
−1 +1 0 0
0 0 +1 −1
0 0 −1 +1
0 −1 +1 0
0 +1 −1 0

It can be observed that the sums of rows 1 and 2, 3 and
4, and 5 and 6 are all equal to (vector) zero, so the basic
P–invariants I for this net are [1,1,0,0,0,0], [0,0,1,1,0,0] and
[0,0,0,0,1,1]; these P–invariants imply simple cyclic subnets
(t1, p1, t2, p2), (t3, p3, t4, p4), and (t2, p6, t3, p5).

The connectivity matrix for the net shown in Fig.2.3 is:

C =

+1 −1 0 0
−1 +1 0 0
0 0 +1 −1
0 0 −1 +1
0 +1 −1 0

There are only two basic P–invariants, [1,1,0,0,0] and
[0,0,1,1,0]; p5 does not belong to any of the P–invariants
(p5 is an unbounded place). ✷

A net Ni = (Pi, Ti, Ai, Bi) is a Pi-implied subnet of a net
N = (P, T,A,B), Pi ⊂ P , iff:

(1) Ti = {t ∈ T | ∃ p ∈ Pi : (p, t) ∈ A ∨ (t, p) ∈ A},
(2) Ai = A ∩ (Pi × T ∪ T × Pi), and
(3) Bi = B ∩ (Pi × T).

Each Pi–implied subnet of N is described by the Pi sub-
set of rows of the connectivity matrix of N .

If a net is covered by simple P–invariants (i.e., if each
element of a net belongs to one of the basic P–invariant
implied subnets), the net is bounded. Moreover, if, in a
net without inhibitor arcs, all P–invariant implied subnets
are conflict–free and marked, the net is live.

A T–invariant (transition-invariant) of a net N is any
integer positive (column) vector J which is a solution of
the matrix equation

C× J = 0,

where C is the connectivity matrix of N . A basic T–
invariant is a T–invariant which does not contain simpler
T–invariants. If the transitions of N fire in numbers in-
dicated by the elements of a T–invariant (in some order;
the order is irrelevant), then the resulting marking is the

52 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

same as the original one. So, each T–invariant represents a
sequence of transition firings which create a cycle of reach-
able markings.

Example. There is only one basic T–invariant for the
net shown in Fig.2.1, J = [1, 1, 1, 1]. There is also one basic
T–invariant for the net shown in Fig.2.3, J = [1, 1, 1, 1].
The two basic T–invariants for the net shown in Fig.2.6
are J1=[1,1,1,1,0,0,0,0,0] and J2=[0,0,0,0,1,1,1,1,1]. ✷

D. Simplifications of Basic Petri Nets

There are two types of net simplifications, structural
simplifications and behavioral ones. In the first case, the
classes of simplified nets are known as marked graphs, state
machines, conflict–free nets, and free–choice nets. In the
second case, there are bounded nets, safe nets, and a few
other classes of nets.
A Petri net is a marked graph if each place has exactly

one input and one output transition. Marked graphs can
represent synchronization (by transitions with multiple in-
puts) but cannot represent decisions (represented by places
with multiple outputs). Nets shown in Fig.2.1 and Fig.2.3
are marked graphs.
Marked graphs are often used as models of simple cyclic

processes and their interactions (as in Fig.2.1). Their prop-
erties have been extensively studied in the literature [46],
[47], [48], [62].
A Petri net is a state machine if each transition has ex-

actly one input and one output place. State machines can
represent decisions (by places with multiple outputs) but
cannot model synchronization of activities. Since any fir-
ing of a transition in a state machine does not change the
number of tokens, state machines are conservative and thus
bounded.
State machines are especially useful as subnets covering

a net. If a net is covered by a family of state machines, it is
bounded. Some properties of state machines are discussed
in [47], [48], [54].
Conflict–free nets are discussed in greater detail in [41],

and free–choice nets, in [12], [19], [23]. More general con-
flicts are described in [30], [63].

E. Extensions of Basic Petri Nets

A popular extension of the basic model allows multiple
arcs connecting places and transitions. A transition is en-
abled in such nets only if the number of tokens is at least
equal to the number of directed arcs between a place and
a transition. Formally this extension can be described by
a “weight function” w which maps the set of directed arcs
A into the set of positive numbers, N = (P, T,A,B,w),
w : A → {1, 2, ...}. Sometimes inhibitor arcs also have
weights, in which case an inhibiting place can be associ-
ated with any number of tokens smaller than the weight of
the inhibitor arc to allow the transition to occur; in this pa-
per, however, all inhibitor arcs are assumed to have weights
equal to 1.
In a net with multiple arcs (or arc weights), a transition

t is enabled by a marking m if:

t is enabled by m ⇔ (∀ p ∈ Inp(t) : m(p) ≥ w(p, t)) ∧
(∀ p ∈ Inh(t) : m(p) = 0).

A transition t enabled by m can fire, transforming the
marking m into m′:

∀ p ∈ P : m′(p) =

m(p) + w(t, p),
if p ∈ Out(t)− Inp(t);

m(p)− w(p, t),
if p ∈ Inp(t)−Out(t);

m(p) + w(t, p)− w(p, t),
if p ∈ Out(t) ∩ Inp(t);

m(p), otherwise.

For nets with multiple arcs, the connectivity matrix con-
tains the values of the weight function w labeling the arcs
(instead of 0’s and 1’s), but otherwise the concepts are the
same as for basic nets.

A priority net can be defined as a Petri net with an ad-
ditional function which assigns a (numerical) level of prior-
ity to each transition. It is assumed that transitions with
higher priority levels have higher priorities in firing.
Priority nets can be systematically converted into equiv-

alent inhibitor nets [34].

Sometimes the definition of basic Petri nets includes
place capacities, which determine the maximum numbers
of tokens that can be assigned to places [54]; if an output
place of a transition contains the number of tokens equal to
its capacity, the transition cannot fire even if it is enabled.
In this sense, the basic place/transition nets introduced
earlier have infinite capacities.
Place capacities can easily be introduced in basic nets

(with infinite capacities) by using complementary places

with initial marking that complements the marking of the
original place to the required capacity of the place. Fig.2.9
illustrates the idea of complementary places.

ti

tj
tk

(a) (b)

ti

tj
tk

p
p

p’

Fig.2.9. Introducing capacity 3 of place p through
a complementary place p′.

F. Colored Petri Nets

In colored Petri nets [35], [36], tokens have attributes
called colors. Token colors can be modified by (firing) tran-
sitions and also transitions can have several different occur-
rences (or variants of firing) for different combinations of
colored tokens.
The basic idea of colored nets is to fold identical parts

of a place/transition Petri net, and use the colors of tokens
to indicate the parts the tokens belong to.
Each colored net can be systematically expanded to an

equivalent ordinary (i.e., non–colored) net.

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 53

Formal definition of colored nets uses a convenient con-
cept of multisets (or bags). A multiset is an extension
of a set that allows multiple occurrences of the same el-
ements; for any set A, a multiset m on A is a function,
m : A → {0, 1, ...} which indicates the numbers of ele-
ments a in m, a ∈ A. If the set A is ordered (e.g., by
subscripting its elements, A = {a1, a2, ..., an}), multisets
can be represented by vectors, m = [k1, k2, ..., kn], where
ki is the number of elements ai, ki = m(ai), i = 1, ..., n.

A colored Petri net N can be defined as N = (P, T,A,C, a)
where:
• (P, T,A) is a Petri net structure;
• C is a set of attributes called colors;
• a is an arc labeling function, a : A → Expr(C, V), which

assigns, to each arc of the net, an expression composed of
colors (C), free variables (V) on the set of colors, and con-
stants; expressions labeling the arcs determine the num-
bers and specific colors of tokens which are used for firing
the transitions; free variables used in these expressions can
represent any colors, but the same variable represents the
same color in all arc expressions associated with the same
transition; the selections of specific colors for free variables
are called bindings.
A marked colored net M is defined as a pair, M =

(N ,m0), where N is a colored net, and the initial mark-
ing function m0 assigns nonnegative numbers of (colored)
tokens to places of N , m0 : P → C → {0, 1, ...}.

Example. The initial marking, in Fig.2.10, assigns 6
tokens to p1 (one token of color a, two tokens of color b and
three tokens of color c), and 4 tokens to p2. Arc expressions
associated with transition t require (at least) two tokens of
(some) color x and one token of (some) color y in p1, and
(at least) one token of (the same) color x and two tokens
of color y in p2; if t fires, one token of color x and one of
color y will be deposited in p3.

tp1

p2

p3x+y

2x+y

x+2y

1a+2b+3c

2a+1b+1c

Fig.2.10. Occurrences in colored nets.

For the initial marking shown in Fig.2.10, there are two
possible bindings for x and y: (1) x = b, y = a, and (2)
x = c, y = a. After t’s firing, the marking of p3 becomes
1a + 1b for the first binding, or 1a + 1c for the second
binding. ✷
Colored nets are very convenient models of systems

which contain many similar components, for example mul-
tiprocessor or distributed systems, because the components
can be folded into a single subnet, significantly simplifying
the model (but not its analysis).

Example. Fig.2.11 shows a model of “five dining
philosophers”. All philosophers, represented by colors a,
b, c, d and e, follow the same cyclic behavior of think-
ing and eating. Place p3 represents the (available) forks,
in this case modeled by colors A, B, C, D and E. The

two functions, “lf(x)” and “rf(x)” assign the left and right
fork to each philosopher x, so, lf(a)=A, rf(a)=B, lf(b)=B,
rf(b)=C, and so on. ✷

p1

p2

p3

1a+1c+1d

1b+1e

think eat 1A+1B+1C+
1D+1E

x

x

y

y
lf(x)+rf(x)

lf(x)+rf(x)

Fig.2.11. Colored net model of “five dining philosophers”.

Colored Petri nets are quite convenient for modeling and
analysis of distributed algorithms [55]. The Dijkstra’s dis-
tributed termination detection algorithm [22] is used as an
illustration of modeling using colored Petri nets.

The algorithm assumes that the N processors,
P0, ..., PN−1, are connected in a ring, P0 → P1 → P2 →
P3, ..., PN−1 → P0, as shown in Fig.2.12(a), in which a to-
ken is transmitted from one processor to another checking
if all processors have terminated their tasks.

(a)

1 N−10 w w w

b

w

b b b

(b)

t1 t2

p2p1

t3

p3 p4

t4

w
b

w

t2

t1

p2

t4

p1

t3

(c)

t5

w b

b b

w

b b

w

Fig.2.12. Termination detection in a distributed system.

The token uses two colors, Black and White, to represent
two states of the distributed system: the White color corre-
sponds to the situation when all processors are found idle;
the Black color represents the situation where some activity
existed prior to the moment of checking, and, therefore, it
cannot be concluded that the system is idle. The two token
colors are distinguished, in Fig.2.12(a), by two connections
between processors, one for White tokens (labeled by “w”)

54 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

and the other for Black tokens (labeled by “b”); the Black
connection to P1 is never used.
Each processor indicates its state, idle or active, by its

color, White or Black, respectively. Whenever a proces-
sor induces any activity in the system by sending a data
message, it also sets its color to Black. Processor P0, when-
ever it becomes idle, initiates the termination detection by
sending a White token to P1. Each processor Pi, except of
P0, forwards the received token to Pi+1 changing its color
to Black if the processor is active, and preserving the to-
ken’s color if the processor is idle. The token returning to
P0 is thus White only if all processors are idle, and this
indicates the termination by the whole system; otherwise
another termination detection cycle is initiated.
The “token control” in processor P0 is shown in

Fig.2.12(b). Place p1 indicates that processor P0 is active.
Firing t1 represents the completion of the execution of pro-
cessor’s task(s), and then firing t2 sends a White “testing”
token to processor P1. When the “testing” token returns
as Black, firing t4 initiates another cycle of termination de-
tection. If the returning “testing” token is White, firing t3
indicates that the whole distributed system terminated is
job.
Fig.2.12(c) shows the token control for all processors ex-

cept of P0. Again, place p1 indicates that the processor is
active, and then if the received “testing” token is White,
it is forwarded as a Black token by firing t2; if the received
token is Black, it is forwarded as Black by firing t3. The ter-
mination of processor’s tasks is indicated by firing t1, after
which the “testing” token is forwarded without changing
its color, by firing t4 or t5, for White and Black colors,
respectively.
A colored Petri net of the whole distributed system is

shown in Fig.2.13; processor P0 is represented by the upper
part of the model (with t1, t2, t3 and t4 performing the
same operations as in Fig.2.12(b)), while the lower part
represents all remaining processors. The color attributes
of tokens are ordered pairs, 〈x, i〉, where x represents the
active (“a”) or idle (“b”) processors and also the color of
the “testing” token (“a” represents White, and “b” Black);
moreover, “c” (in processor P0) is used for the termination
testing; the second component, i, identifies the processor,
i = 0, 1, ..., N − 1, and “succ(i)” is the successor function.

t2 t3

p3 p4

t4

t1

p1

t4

p7t5

<x,y>

t6

<x,y>

<x,succ(y)>

p2

p5 p6

<b,0> <b,0>

<b,0>

<b,y>

<b,y> <b,y>

<a,0>

<b,N>

<c,0>

<c,0> <c,0><c,0>

<a,1>
<a,N>

<b,succ(y)>

<a,y> <a,y>

<a,y>

Fig.2.13. Colored net model of a distributed system
(as shown in Fig.2.12(a)).

Place p7 represents the ring connection for passing the
“testing” token. A White token is inserted into p7 by firing
t2, and then this token is modified by consecutive proces-
sors by either firing t5 if the processor is active (in which
case the color of the token is changed to Black), or by firing
t6 if the processor is idle.

The initial marking assigns one token 〈a, 0〉 to p1, and
N − 1 tokens, 〈a, 1〉, 〈a, 2〉, ..., 〈a,N − 1〉 to p5.

Since the information about the status of each processor
is represented by the color (“a”, “b” or “c”), Fig.2.13 can
be further simplified by merging places p1, p2 and p3 and
also p5 and p6, as shown in Fig.2.14.

t2

t4
t1

p1

<b,0>

<b,0>

<b,0>

t4

p7t5

<x,y>

<b,y>
<b,y>

t6

<b,y>

<x,y>

<x,succ(y)>

t3

p4

p5

<a,0>

<c,0>

<c,0>

<c,0>

<c,0>

<a,1>

<b,succ(y)>

<a,N>
<b,N>

<a,y>

<a,y>

<a,y>

Fig.2.14. Simplified colored net model of Fig.2.13.

III. Timed Petri Nets

In timed nets, firing times are associated with transi-
tions, and transition firings are “real–time” events, i.e., to-
kens are removed from input places at the beginning of the
firing period, and they are deposited to the output places
at the end of this period (sometimes this is also called a
“three–phase” firing mechanism as opposed to “one–phase”
instantaneous firings of transitions). All firings of enabled
transitions are initiated in the same instants of time in
which the transitions become enabled (although some en-
abled transition cannot initiate their firing; for example,
all transitions in a free–choice class can be enabled, but
only one can fire). If, during the firing period of a transi-
tion, the transition becomes enabled again (as a result of
completion of some other firing), a new, independent firing
can be initiated, which will overlap with the other firing(s).
There is no limit on the number of simultaneous firings of
the same transition (sometimes this is called “infinite firing
semantics”). Similarly, if a transition is enabled “several
times” (i.e., it remains enabled after initiating a firing),
it may start several independent firings in the same time
instant.

In timed nets, the initiated firings continue until their
terminations. Sometimes, however, an initiated firing
should be discontinued, as in the case of modeling processes
with preemptions; if a lower–priority job is executing on a

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 55

processor, and a higher–priority job needs the same pro-
cessor for its execution, the execution of the lower–priority
job must be suspended, and the processor allocated to the
higher–priority job to allow its execution without any de-
lay. The preempted job can continue only when the higher–
priority job is finished (and no other higher–priority job is
waiting). An extension to the basic model is needed to in-
terrupt firing transitions; a special type of inhibitor arcs,
called interrupt arcs, is used for this purpose. If, during
the firing period of a transition, any place connected with
this transition by an interrupt arc (such a place is called an
interrupting place) receives a token, the firing discontinues,
and the tokens removed from the transition’s input places
at the beginning of firing, are returned to these places (if
there are several firings of the transition, the least recent
one is discontinued; if there are several interrupting tokens,
the corresponding number of the least recent firings are dis-
continued). Interrupt arcs are “special” inhibitor arcs, so
they also disable transition’s firings in the same way as in-
hibitor arcs do. Formally, the set of interrupt arcs, D, is
added to the structure of the net as a subset of the set of
inhibitor arcs, so N = (P, T,A,B,D), D ⊆ B. It should
be noted that an effect similar to an interruption of a firing
transition can be obtained by using a more complicated net
with inhibitor arcs, so interrupt arcs are not a necessary ex-
tension; it is rather a convenient addition which simplifies
the modeling process.
The firing times of some transitions may be equal to zero,

which means that the firings are instantaneous; all such
transitions are called immediate (while the other are called
timed). Since the immediate transitions have no tangible
effects on the (timed) behavior of the model, in enhanced

timed Petri nets the set of transitions is split into two parts,
the set of immediate and the set of timed transitions, and
to fire first the (enabled) immediate transitions; only when
no more immediate transitions are enabled, the firings of
(enabled) timed transitions are initiated (still in the same
instant of time). It should be noted that such a convention
effectively introduces the priority of immediate transitions
over the timed ones, so the conflicts of immediate and timed
transitions should be avoided. Also, the free–choice and
conflict classes of transitions must be “uniform”, i.e., all
transitions in each such class must be either immediate or
timed.

A timed Petri net T is a triple, T = (M, c, f) where:

• M is a marked net, M = (N ,m0);
• c is the conflict–resolution function, c : T → [0, 1], which
assigns the probabilities of firings to transitions in free–
choice classes of transitions, and relative frequencies of fir-
ings to transitions in conflict classes;
• f is the firing–time function, f : T → R+, which assigns
the (average) firing times (or occurrence times) to transi-
tions of the net.

An enhanced timed net T is defined (similarly as before)
as T = (M, c, f), M = (N ,m0), N = (P, Ti, Tt, A,B,D),
and f : Tt → R+, where Ti is the set of immediate transi-
tions, Tt is the set of timed transitions, and T = Ti∪Tt. It

is also assumed that all free–choice and conflict classes of
transitions are “uniform”, i.e., they are either immediate
or timed, but not mixed.

The firing times of transitions can be constant (i.e., de-
terministic) or can be random variables with some proba-
bility distribution function; the (negative) exponential dis-
tribution is by far the most popular distribution for ran-
domly distributed firing times.

A. D–timed Petri Nets

In D–timed Petri nets [75], [77], [79], [80], [83], the fir-
ing times (or occurrence times) of transitions are constant,
as defined by the firing–time function f . The behavior of
(conflict–free) D–timed nets can be represented by timing
diagrams, which illustrate the firing periods of transitions.
Fig.3.1 shows such a diagram for the net of Fig.2.1, as-
suming that the firing time of t1 is equal to 2 time units,
f(t1) = 2, that the firing times of t2 and t3 are equal to 0.5
time units, f(t2) = f(t3) = 0.5, and that the firing time of
t4 is equal to 2.5 time units. Fig.3.1 shows only the initial
part of the diagram.
Formally, the behavior of a D–timed net can be described

by states and state transitions. In Fig.3.1, states corre-
spond to different configurations of the net, and state tran-
sitions occur when a firing of a transition terminates and
possibly some new firings are initiated.
A state s of a D–timed net can be described by three

functions [79], [83], s = (m,n, r), where m is a marking
function describing the distribution of tokens which are
not involved in the firings of transitions (the remaining
tokens), n is the firing–rank function which, for each tran-
sition of the net, indicates the number of its current firings,
n : T → {0, 1, ...}, and r is the remaining–firing–time func-
tion, which for each firing described by n specifies the time
remaining to the completion of the firing (at the time in-
stant in which the state begins).

Example. For the timing diagram in Fig.3.1, the first
state, s1 corresponds to the firing of transition t1, and is de-
scribed by (the state components m, n and r are separated
by semicolons):

s1 = [0, 0, 1, 0, 2, 0; 1, 0, 0, 0; 2.0, 0, 0, 0].

When the firing of t1 terminates, a token is deposited to p1,
and this enables t2 which immediately initiates its firing,
so the next state is:

s2 = [0, 0, 1, 0, 1, 0; 0, 1, 0, 0; 0, 0.5, 0, 0].

After 0.5 time units the state changes to:

s3 = [0, 0, 0, 0, 1, 0; 1, 0, 1, 0; 2.0, 0, 0.5, 0]

in which two transitions, t1 and t3 are occurring. t3 first
completes its firing, which enables t4, so the next state is:

s4 = [0, 0, 0, 0, 1, 0; 1, 0, 0, 1; 1.5, 0, 0.2.5]

56 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

t1

t2

t3

t4

1 2 3 4 5 6 7 8 9 100 11 12 13 14 15

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10

time

states

Fig.3.1. Timing diagram for the net shown in Fig.2.1
(f(t1) = 2, f(t2) = f(t3) = 0.5, f(t4) = 2.5).

and so on. The behavior of this model is cyclic, but there
are 33 states before the cycle of three states is reached.
The cycle time is determined by the subnet (t3, p3, t4, p4)
in Fig.2.1, and is equal to 3 time units. ✷

The set of all states that can be derived for a D–timed net
T is called the set of reachable states, S(T). This set can
be finite or infinite. It can be shown that if a marked net
M is bounded, then all its timed extensions T = (M, c, f)
have finite sets of reachable states. On the other hand, if
M is unbounded, than the set of reachable states can be
finite or infinite, depending upon the firing times associated
with transitions by the function f .

Example. For the unbounded net of Fig.2.3, with
f(t1) = 2, f(t2) = f(t3) = 0.5, and f(t4) = 1.5, the se-
quence of states is shown in the following table (the com-
ponent r of the state descriptions is not shown), in which
column h(si) shows the holding time of state si (i.e., the
time spent in state si), and column j indicates the next
state:

mi ni

i 1 2 3 4 5 1 2 3 4 h(si) j
1 0 0 1 0 0 1 0 0 0 2.0 2
2 0 0 1 0 0 0 1 0 0 0.5 3
3 0 0 0 0 0 1 0 1 0 0.5 4
4 0 0 0 0 0 1 0 0 1 1.5 2

The cycle time is equal to 2.5 time units and, in this
case, is determined by the subnet (t1, p1, t2, p2).

It should be observed that the condition of (timed)
boundedness for this net is that the consumer is not
“slower” than the producer, i.e., f(t1) + f(t2) ≥ f(t3) +
f(t4). ✷

A state graph of a D–timed net T is a vertex and arc
labeled directed graph G = (V,E, h, q) where:
• V is a set of vertices which is the set of reachable states

of T , S(T),
• E is a set of directed arcs, E ⊆ V×V , such that (si, sj) ∈

E if and only if sj is directly reachable from si,
• h is a vertex labeling function which assigns the holding

time h(s) to each vertex s = (m,n, r) of the graph, h(s) =
min(r(t) : t ∈ T ∧ n(t) > 0),

• q is the transition probability function, q : E → [0, 1].

The state graph of a D–timed net is an embedded Markov
chain, so the stationary probabilities of the states can be
obtained in the standard way [61]. Many performance char-
acteristics can be derived from the state graph of a net.

Example. A model of a very simple protocol with a
timeout mechanism is shown in Fig.3.2 (interrupt arcs have
blacks dots instead of arrowheads).

p1

p2

p3

p4

t1

t2

t3

t4

t5 t6

p

0.1

0.9

20

10

5

0

p5

0

0

Fig.3.2. Petri net model of a simple protocol.

The token in p1 represents a message which a sender
(p1) sends to a receiver (p3), and which is confirmed by an
acknowledgement sent back to the sender. The message is
sent by a firing of t1, after which a single token is deposited
in p2 (the message) and in p4 (the timeout). The firing
time of t2 represents the “transmission delay” of sending
a message, and firing time of t5, the timeout time. When
the firing of t2 is completed, a token is deposited in p3, the
receiver. p3 is a free–choice place, so t3 and t4 are enabled
simultaneously, but only one of them can fire; the random
choice is characterized by “choice probabilities” assigned
to t3 and t4 (0.1 and 0.9, respectively). t3 represents (in a
simplified way) the loss or distortion of the message or its
acknowledgement; if t3 is selected for firing (according to

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 57

its free–choice probability), the token is removed from p3
as well as from the model (t3 is a “token sink”). In such a
case, the timeout transition t5 will complete its firing with
no token in p5; the termination of t5’s firing regenerates the
lost token in p1, so the message can be retransmitted. If the
message is received correctly, t4 is selected for firing rather
than t3, and after another transmission delay (modeled by
t4), tokens are deposited in p5 and p1 (so another message
can be sent to the receiver). The token in p5 interrupts the
firing of t5, so the “timeout token” is returned to p4 and
immediately removed by firing t6.

The firing times of transitions must be selected in such a
way that the timeout time (f(t5)) is greater than the sum
of the delays of sending a message (f(t2)) and an acknowl-
edgement (f(t4)).
The set of reachable states for the net of Fig.3.2 is given

in the following table, which, for each state si, shows the
holding time h(si), the next state j and the transition prob-
ability qij :

mi ni

i 1 2 3 4 5 1 2 3 4 5 6 h(si) j qij
1 0 0 0 0 0 1 0 0 0 0 0 0.0 2 1.0
2 0 0 0 0 0 0 1 0 0 1 0 10.0 3 0.1

4 0.9
3 0 0 0 0 0 0 0 1 0 1 0 0.0 5 1.0
4 0 0 0 0 0 0 0 0 1 1 0 5.0 6 1.0
5 0 0 0 0 0 0 0 0 0 1 0 10.0 1 1.0
6 0 0 0 0 0 1 0 0 0 0 1 0.0 2 1.0

The state graph for the net of Fig.3.2 is shown in
Fig.3.3(a), in which the states with zero holding times
(e.g., firing of t1 or t3) are represented by ‘white’ circles.
The holding times of other states are shown as labels of
the states. Transition probabilities are also shown where
needed. The cycle time and other performance character-
istics can easily be derived from this graph.

0.9 0.1

10

5

10

(a) (b)

10

105

0.10.9

s1

s2

s3s4

s5s6

Fig.3.3. State graphs for the net shown in Fig.3.2;
original graph (a) and reduced graph (b).

It should be noted that only a small modification of the
net in Fig.3.2 is needed to represent a “sliding window”
protocol, i.e., a protocol with several messages in different
stages of transmission/acknowledgement or recovery. ✷
States with holding times equal to zero (sometimes called

vanishing states) do not contribute to the timed behavior
of the net, so all such states can be eliminated from the

state graph without any effect on the performance of the
model. Such simplified model is shown in Fig.3.3(b). The
vanishing states can be removed from the state graph, but
it is also possible to eliminate them earlier, during the gen-
eration of the state graph. This second approach is used in
enhanced nets [83], in which the set of transitions is divided
into two classes, timed and immediate transitions; immedi-
ate transitions fire in zero time (i.e., instantaneously), and
it is assumed that the immediate transitions have prior-
ity over timed ones (so, during all changes of states, first
one or more transitions complete their firings and deposit
tokens to their output places, then all possible firings of im-
mediate transitions occur, and finally, when no immediate
transitions are enabled, the firings of timed transitions are
initiated). Immediate transitions usually simplify the anal-
ysis by reducing, sometimes very significantly, the number
of states of net models.

p1

p2

p3

p4

t1

t2

t3

t4

t5 t6

p

0.1

0.920

10

5

p5 t7

p6

Fig.3.4. Enhanced Petri net model of a simple protocol.

Example. Fig.3.4 shows an enhanced version of the
model shown in Fig.3.2 (immediate transitions are usually
represented by “thin” bars while the timed ones by “thick”
bars); the additional (immediate) transition t7 and place
p6 may seem redundant, but actually they are needed to
make the free–choice class (t3, t7) uniform. The state graph
of this net is shown in Fig.3.3(b). ✷

In some cases the performance of a net model can be de-
rived from structural properties of nets, without the deriva-
tion of the state space (i.e., without the reachability anal-
ysis). In particular, if the net is covered by a set of simple
basic P–invariants, then its cycle time is determined by
the maximum cycle time of the subnets implied by the P–
invariants:

τ0 = max(τ1, ..., τk)

where, for each simple subnet Ni = (Pi, Ti, Ai), the cycle
time is:

τi =

∑

t∈Ti
f(t)

∑

p∈Pi
m0(p)

58 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

Example. For the net shown in Fig.2.1, and for f(t1) =
2, f(t2) = f(t3) = 0.5, f(t4) = 2.5, the cycle times of the
three subnets implied by basic invariants are:

τ1 = 2.5,
τ2 = 0.25,
τ3 = 3.0,

so the cycle time of the model τ0 = 3.0. ✷

Another approach, which sometimes can significantly
simplify the analysis, is based on net transformations that
preserve the behavior of the net. There is a variety of such
transformations [11], [120]. Two more specialized trans-
formations are shown in Fig.3.5. It should be noted that
these two transformations preserve the state graphs of the
original nets.

p

x y z

(a) (b)

p

x y

y−x

x
y z

x−y x−z

Fig.3.5. Simple net transformations; (a) y > x,
(b) x > y > z.

Fig.3.6 shows a sequence of net transformations applied
to the model of Fig.3.4. Fig.3.6(a) is the result of applying
the transformation of Fig.3.5(a) to transition t1; the fir-
ing time of t5 is adjusted by 10 (because of the firing time
of t2). Then the transformation shown in Fig.3.5(b) can
be applied to transition t2 in Fig.3.6(a), and the transfor-
mation shown in Fig.3.6(a) to transition t7. The resulting
model is shown in Fig.3.6(b). It can be observed that,
in Fig.3.6(b), any firing of t4 deposits tokens in p4 and
p5, enabling the immediate transition t6, which removes
the deposited tokens from the net; consequently, t6 and p5
with all incident arcs, and also arc (t4, p4), can be deleted
without any effect on the net’s behavior. The remaining
net is shown in Fig.3.6(c). The remaining transformation
simply deletes the immediate transitions and their places
since they are connected serially with timed transitions.
The final net shown in Fig.3.6(d) is very simple, and its
state graph is shown in Fig.3.3(b). ✷

An application of D–timed nets to modeling ATM LAN’s
is described in [53], while [71] analyzes LeLann’s dis-
tributed control protocol. An approach to analysis of un-
bounded timed nets is proposed in [81].

B. M–timed Petri Nets

In M–timed Petri nets (or Markovian timed nets) [73],
[76], [78], [83], the occurrence times (or firing times) of

p1 p3

t2

t4

0.1

0.9

10

5

t5

10

(d)

p1

p2

p3

t1

t2

t3

t4

0.1

0.9

10

5

p4

t5 t6

p5

10

(b)

p6

t7

p1

p2

p3

t1

t2

t3

t4

p

0.1

0.9

10

5

p4

t5 t6

p5

10

p

(a)

p6

t7

p

p1

p2

p3

t1

t2

t3

t4

0.1

0.9

10

5

p4t5

10

(c)

t7

p6

Fig.3.6. Transformations of the protocol model.

transitions are exponentially distributed random variables
with the average times described by the values f(t), t ∈ T .

Example. Fig.3.7 shows a very simple model of an
interactive computer system, in which p1 represents the
(idle) processor, t1 models a processor executing a job, p2
is the queue of jobs waiting for execution, t2 represents
the “thinking time” of users, and p3 is simply a termina-
tion of job execution (which immediately initiates thinking
phase). The initial marking function indicates one proces-
sor (m0(p1)) and three users ready to start their thinking
phases (p3).

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 59

p1

t1

t2

p2 p3

2

10

Fig.3.7. A simple model of an interactive system.

The three initial tokens in p3 initiate three independent
firings of t2, all exponentially distributed with parameter
0.1 (since the average firing time of t2, f(t2), is equal to 10
time units). When one of these firings completes, a token is
deposited in p2, and this immediately (p1 is marked) starts
a firing of t1, which is also exponentially distributed (with
the average time equal to 2 time units). If another firing of
t2 completes before the end of t1’s firing, the token will be
deposited in p2 waiting for its access to t1, and so on. One
of possible execution traces is shown as a timing diagram
in Fig.3.8.
It should be observed that, in the net shown in Fig.3.7,

the number of simultaneous firings of t2 is limited by the
initial marking of p2 and p3), while t1, with one token as-
signed to p1, can have at most a single firing at any instant
of time.

If the initial marking function assigns more than one
token to p1, the model changes to an interactive system
with several parallel processors, in which several jobs can
be executed at the same time.
More details about Petri net models of computer systems

are given in [73], [83], [93], [95], [102]. ✷

A state of an M–timed net can be described by a pair
of functions [83], s = (m,n), where m is a marking func-
tion describing the distribution of tokens which are not
involved in firings of transitions, m : P → {0, 1, ...},
and n is the firing–rank function which, for each transi-
tion of the net, indicates the number of its current firings,
n : T → {0, 1, ...}.

Example. For the net shown in Fig.3.7, the first state
corresponds to three firings of t2, so the first state is:

s1 = [1, 0, 0; 0, 3].

When one of t2’s firings terminates, a new firing of t1 is
initiated, so the next state is:

s2 = [0, 0, 0; 1, 2].

If, in s2, the firing of t1 ends before another firing of t2,
a token is deposited in p3, and this immediately initiates
another firing of t2, so the state is again s1. If, on the other
hand, another firing of t2 terminates before that of t1 (as

shown in Fig.3.8), a token is deposited in t2, and the state
becomes:

s3 = [0, 1, 0; 1, 1].

In s3 there are also two possibilities, either t1 first com-
pletes its firing, and then the next state is again s2, or the
remaining firing of t2 completes first, and then the state
becomes:

s4 = [0, 2, 0; 1, 0]

in which the only possibility is to complete the firing of t1,
i.e., to return to state s3. ✷

As before, the set of all states that can be derived for
an M–timed net T (i.e., the state space for T) is denoted
S(T).
A state graph of an M–timed net T is a directed arc–

labeled graph G = (V,E, ℓ) where:
• V is a set of vertices which is the set of reachable states
of T , S(T);
• E is a set of directed arcs, E ⊆ V×V , such that (si, sj) ∈
E if and only if sj is directly reachable from si;
• ℓ is the transition rate function, ℓ : E → R+.
State graphs of M–timed Petri nets are continuous–time

Markov chains, so the stationary probabilities of states can
be obtained using the standard techniques [61], and then
many performance measures can be easily derived from sta-
tionary probabilities.
The rate of transitions between the states depend upon

the probabilities of transitions, and these are composed of
two effects:
• the probability that a particular firing will complete first
(if there are more than one simultaneous firings); since all
firing times are exponentially distributed, the probability
that firing x will complete first is equal to the ratio of the
rate of firings x and the sum of all rates of simultaneous
firings;
• the probability of initiating new firings (if there are any
new free–choice or conflict firings involved).

Example. The state graph for the net of Fig.3.7 is
shown in Fig.3.9.
In the state s1 in Fig.3.9 (and Fig.3.8), there are three

simultaneous firings of transition t2. It does not matter
which one of these firings will complete first because they
are identical; so the rate of transitions to state s2 is equal
to 3 ∗ 0.1 = 0.3. In s2, either one of the remaining two
firings of t2 will complete first (as shown in Fig.3.8), or
the firing of t1 completes first; the probability that t1’s
firing will complete first is equal to 0.5/0.7 (the rate of t1’s
firings is equal to 0.5, and the rate of each t2’s firings is
equal to 0.1), so the probability that s2 will change into s1
is 5/7 and the rate of transitions from s2 to s1 is 0.5, the
rate of firing t1, while the rate of transitions from s2 to s3
is equal to 2 ∗ 0.1 = 0.2. The following table summarizes
the states and state transitions, with column h(si) showing
the holding time of the state si (i.e., the average time spent
in si), column j indicating the next state, and column qij

60 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

time

t1

t2

s1 s2 s3 s1s2 s2 s1 s2 s1 s2
states

0 1 2 3 4 5 6 7 8 9

Fig.3.8. A sequence of possible events in the net shown in Fig.3.7.

showing the probability of transitions from state si to state
sj (the transition rates shown in Fig.3.9 are simply the
ratios of qij over h(si)):

mi ni

i 1 2 3 1 2 h(si) j qij
1 1 0 0 0 3 3.333 2 1.000
2 0 0 0 1 2 1.429 1 0.714

3 0.286
3 0 1 0 1 1 1.667 2 0.833

4 0.167
4 0 2 0 1 0 2.000 3 1.000

The state graph in Fig.3.9 is the Markov chain represent-
ing the behavior of the model shown in Fig.3.7. ✷

0.3 0.2 0.1

0.5 0.5 0.5

s1 s2 s3 s4

Fig.3.9. State graph for the net shown in Fig.3.7.

The exponentially distributed firing times of transitions
can be combined into hypo- or hyper-exponential distri-
butions (and used for approximations of other distribu-
tions). Fig.3.10(a) shows a model of a two–stage hypo–
exponential server, and Fig.3.10(b) a two–stage hyper–
exponential server in which the two transitions form a free–
choice structure, with “choice probabilities” describing ran-
dom selections [83].

(a) (b)

Fig.3.10. A model of a hypo-exponential (a) and
hyper–exponential (b) server.

The models shown in Fig.3.10 can be used to refine the
model of Fig.3.7 if other than exponential distribution is
needed.

Fig.3.11 shown a different type of modification of the
model shown in Fig.3.7. In this case, there are two classes
of jobs (and users), say A and B; class A is represented by
subnet (t1, p3, t2, p2) and class B by subnet (t3, p5, t4, p4).
The processor is shared by both classes; either t2 can fire or
t3, but not both. Jobs of class A have priority in accessing
the processor; the inhibitor arc from p2 to t3 disables t3 if
there are any jobs of class A waiting in p2 (non-preemptive
priority scheduling).

p1

t1

t2

p2 p3

t3

t4

p4 p5

Fig.3.11. A system with two classes of jobs.

Detailed reachability analysis of the net shown in
Fig.3.11 is given in [78]. Simple models of other computer
systems are described in [74], [82], [83].
It should be noted that if the inhibitor arc in Fig.3.11

is replaced by an interrupt arc, the model will represent
preemptive scheduling of class A jobs, in which the execu-
tion of class B jobs will be interrupted (and preempted of
the processor) when any job of class A becomes ready for
execution.

Yet another modification of the basic model of Fig.3.7 is
shown in Fig.3.12; in this case the processor is assumed to
be unreliable, so it goes through “operative–inoperative”
cycle, with both “operative” and “inoperative” periods of
time that are exponentially distributed (but – most likely
– with different average values).

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 61

p1

t1

t2

p2 p3

t3

t4
p4 p5

Fig.3.12. A system with unreliable processor.

The “operative–inoperative” cycle is represented by the
subnet (t4, p4, t3, p5), in which the firing time of t4 repre-
sents the “operative” periods of time, and the firing time
of t3 – the “inoperative” periods of time; whenever t3 fires,
the “processor token” is removed form p1, so no job can be
executed during the firing periods of t3. The interrupt arc
from p4 to t1 is used for processor failures during execution
of (user) jobs; if a token is deposited into p4 during t1’s
firing, the firing is interrupted by the arc (p4, t1), the job
token is returned to p2, the processor token returns to p1,
from where it is removed by firing t3.

It should be observed that the net shown in Fig.3.12 is
structurally similar to the net shown in Fig.3.11 (with an
interrupt arc instead of the inhibitor arc); the model of
processor failures is thus similar to a higher priority jobs
that (conceptually) preempt the processor (for a failure and
its repair).

C. Timed Colored Petri Nets

Timed colored nets [82] are a straightforward combina-
tion of timed nets and colored nets.

A timed colored net T is defined as a triple, T =
(M, c, f), where:

• M is a marked colored net, M = (N ,m0),
• c is the conflict–resolution function which assigns the
choice probabilities to free–choice firings of transitions and
relative frequencies to conflict firings of transitions in N ,
c : T → VC → [0, 1], where VC is the set of bindings for the
set of colors C, and
• f is the firing–time function which assigns the (average)
firing time (or the occurrence time) to each occurrence of
each transition of N , f : T → VC → R+.

For the model of three dining philosophers (as shown in
Fig.2.11, but restricted to colors A, B, C, a, b and c), as-
suming that all eating and thinking times are exponentially
distributeds (with some rates), the set of reachable states
contains 13 states shown in the following table (this model
has two initial states, 1 and 2):

mi ni

i p1 p2 p3 eat think j
1 1c 1C 1a 1b 3, 4
2 1a 1B 1c 1b 5, 6
3 1B 1c 1a+1b 7, 2, 9
4 1b+1c 1C 1a 8, 9
5 1C 1a 1b+1c 7, 10, 1
6 1a+1b 1B 1c 10, 11
7 1B+1C 1a+1b+1c 5, 12, 2
8 1b 1B 1c 1a 12, 6
9 1c 1A 1b 1a 3, 13
10 1b 1C 1a 1c 12, 4
11 1a 1A 1b 1c 5, 13
12 1A 1b 1a+1c 7, 11, 9
13 1a+1c 1A 1b 1,2

The graph of reachable states is a Markov chain repre-
senting the model’s behavior, so its analysis is similar to
analysis of ordinary nets.

IV. Case Studies

A. Manufacturing Systems

Modeling and analysis of manufacturing systems is one of
the most popular applications of Petri nets [20], [21], [51],
[69], however, the use of Petri net models for performance
analysis of such systems has received little attention in the
past; deadlock detection and deadlock prevention seem to
be the dominant aspects of application of Petri nets to
manufacturing systems.

A large class of manufacturing systems can be repre-
sented as collections of manufacturing cells connected by
transportation (and possibly storage) systems. Simple ex-
amples of such systems are shown in Fig.4.1, where “A” is
a supply of unprocessed parts, and “D” is a storage for the
final products.

pD
pC

pC’

t2b

pA

t2a p2a t2 p2b

p2

pB

pB’

p3

p3a t3 p3b t3bt3a

p1

t1p1a p1bt1a t1b

Fig.4.1. Outlines of simple manufacturing systems.

A Petri net model of the system from Fig.4.1(a) is shown
in Fig.4.2. The three cells are represented by identical sub-
nets, each of which contains one timed transition, ti, which
models the total operations performed by the correspond-
ing cell; the two immediate transitions simply represent the
operations of bringing a new part to a cell and removing a
completed part from a cell. Places pi, if marked, indicate
that the corresponding cell is idle, and waiting for another
part.

62 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

p1

t1p1a p1bt1a t1b t2bt2a p2a t2 p2b

p2

pB

pB’

pA

pC

pC’

p3

p3a t3 p3b t3bt3a

pD

Fig.4.2. Petri net model of system outlined in Fig.4.1(a).

Place pA represents the source of unprocessed parts, and
it is assumed that there is always sufficient supply of these
parts; this is the reason that, in Fig.4.2, whenever a part is
taken from “A” (transition t1a), a part is also “returned” to
pA, so there is another part “ready”, when needed. Sim-
ilarly, it is assumed that storage “D” can always accept
another completed product. If these assumptions are not
realistic, the model needs to be expanded to take these
additional constraints into account.
The connections between the cells are represented by

buffers “B” and “C” with capacity 1; this capacity is in-
dicated by the initial markings of places pB and pC . If
a different capacity of these buffers is needed, the initial
marking of these two places needs to be changed accord-
ingly.

Fig.4.3 shows a Petri net model corresponding to the
outline from Fig.4.1(b). This model differs in two aspects
from that in Fig.4.2; the storage “A” is connected to both
stages “1” and “2” in Fig.4.3, and the connection with stage
“3” is different because of a different flow of parts in the
system.

pD
pC

pC’

t2b

pA

t2a p2a t2 p2b

p2

pB

pB’

p3

p3a t3 p3b t3bt3a

p1

t1p1a p1bt1a t1b

Fig.4.3. Petri net model of system outlined in Fig.4.1(b).

The models shown in Fig.4.2 and Fig.4.3 are composed
of simple cyclic subnets, so the structural approach can be
used for their analysis.
The net shown in Fig.4.2 has 5 simple P–invariants,

which imply subnets with the following subsets of transi-
tions (these subnets correspond to the cyclic subnets which
can easily be identified in Fig.4.2); three subnets corre-
sponding to the three cells, and two subnets corresponding
to the two buffers:

inv t1a t1 t1b t2a t2 t2b t3a t3 t3b
1 1 1 1 0 0 0 0 0 0
2 0 0 1 1 0 0 0 0 0
3 0 0 0 1 1 1 0 0 0
4 0 0 0 0 0 1 1 0 0
5 0 0 0 0 0 0 1 1 1

The cycle time is thus:

τ0 = max(τ1, τ2, τ3, τ4, τ5)

where τi, i = 1, .., 5, are cycle times of the subnets:

τ1 = f(t1a) + f(t1) + f(t1b),
τ2 = f(t1b) + f(t2a),
τ3 = f(t2a) + f(t2) + f(t2b),
τ4 = f(t2b) + f(t3a),
τ5 = f(t3a) + f(t3) + f(t3b).

The net shown in Fig.4.3 also has 5 simple P–invariants
with the following sets of transitions of the subnets implied
by these invariants:

inv t1a t1 t1b t2a t2 t2b t3a t3 t3b
1 1 1 1 0 0 0 0 0 0
2 0 0 1 0 0 0 1 0 0
3 0 0 0 1 1 1 0 0 0
4 0 0 0 0 0 1 1 0 0
5 0 0 0 0 0 0 1 1 1

The difference with respect to the previous model
(Fig.4.2) is only in subnet (2), for which the cycle time
now is:

τ2 = f(t1b) + f(t3a).

The times of storing and retrieving parts f(t1a), f(t1b),
etc., can be estimated on the basis of physical measure-
ments; the times f(t1), f(t2) and f(t3) are usually derived
from a more detailed analysis of the corresponding manu-
facturing cells.
Each manufacturing cell typically contains a number of

versatile machines, M1, ...,Mk, an input and output con-
veyor, and a robot which moves the manufactured or as-
sembled parts from one machine to another, and also from
the input conveyor to the first machine and from the last
machine to the output conveyor.
An outline of a simple manufacturing cell with 4 ma-

chines is shown in Fig.4.4.

M1

M3

In Out

M4
R

M2

Fig.4.4. An outline of a 4–machine manufacturing cell.

A sequence of operations performed (cyclically) by the
robot is called a schedule. It is known that there are m!
schedules for a cell withmmachines [58]. The best schedule
is the one which maximizes the throughput (or minimizes
the cycle time) of a cell. For a given cell, all schedules
can be systematically derived, as Petri net models, and
evaluated using P–invariants [88].

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 63

Fig.4.5 shows a Petri net model of the simplest, sequen-
tial schedule for a 4–machine cell.

t01

t1 p12

p11

p10

t12

p03

t2p21 p23

t23p22

p32 p34t3

p33

t50 p50

p43 p45t4

p44 t45t34

Fig.4.5. Net model of schedule 1234.

The model is composed of four sections modeling the ma-
chines of the cell, each section composed of a transition ti,
i = 1, 2, 3, 4, and two places, one representing the condition
that the part has been loaded, so the machine can begin
its operation, and the other indicating that the machine’s
operation has been completed, so the part can be moved
by the robot to another machine or the output conveyor.
The sequence of robot’s operations is described by the

following sequence of transitions:

ti robot’s operations

t01 pick a part from In, move to M1 and load
t12 unload M1, move to M2 and load
t23 unload M2, move to M3 and load
t34 unload M3, move to M4 and load
t45 unload M3, move to Out and drop
t50 move from Out to In

The model shown in Fig.4.5 contains several parallel
paths which can be simplified without affecting the perfor-
mance of the model [100], [120]; all places pii, i = 1, 2, 3, 4,
with their arcs can be removed, creating the simple cyclic
model shown in Fig.4.6.

t01

t1 p12p10

t12

p03

t2p21 p23

t23

p32 p34t3

t50 p50

p43 p45t4

t45t34

Fig.4.6. Simplified net model of schedule 1234.

The cycle time of the model shown in Fig.4.6 is simply:

τ
(1)
0 = f(t01) + f(t1) + f(t12) + f(t2) + f(t23) + f(t3)+

f(t34) + f(t4) + f(t45) + f(t50).

This cycle time can easily be expressed in terms of ele-
mentary operations (and their durations) performed by the
robot. Assuming that:

u denotes the (average) pickup time,
v – the (average) unload time,
w – the (average) load time,
x – the (average) drop time and
y – the average ‘travel’ time between two adjacent
machines (to simplify the description, it is as-
sumed that this time is the same for all adjacent
machines, and also the same for M4 to Out, Out
to In and In to M1 moves),

the operations associated with transitions have the follow-
ing (average) executions times:

ti f(ti)
t01 u+ w + y
t12 v + w + y
t23 v + w + y
t34 v + w + y
t45 v + x+ y
t50 y

The cycle time, assuming that the (average) operation
times of machines M1 to M4 are denoted by o1 to o4, is:

τ
(1)
0 = o1 + o2 + o3 + o4 + u+ 4v + 4w + x+ 6y.

A different schedule, with two concurrent activities, is
shown in Fig.4.7; the initial marking of place p32 indicates
that, when the next part is being picked from the input
conveyor, the previous part is loaded on machine M3 and
will be processed concurrently with the new part loaded on
machine M1.

t2 t3p21 p23 p32 p34

t01 t12 t23 t34

t30p03

p24 p30

t32p22 p33

t1 p12

p11

p10 p43 t4 p45

p44

t45

t52 p52

Fig.4.7. Net model of schedule 1243.

The sequence of robot’s operations, with their execution
times, is as follows:

ti f(ti)
t01 u+ w + y
t12 v + w + y
t32 y
t34 v + w + y
t45 v + x+ y
t52 3y
t23 v + w + y
t30 3y

Similarly as before, the model can be simplified by re-
moving places p11 and p44 and the arcs incident with them.
The resulting net is shown in Fig.4.8.

t2 t3p21 p23 p32 p34

t01 t12 t23 t34

t30p03

p24 p30

t32p22 p33

t1 p12p10 p43 t4 p45

t45

t52 p52

Fig.4.8. Simplified net model of schedule 1243.

The net in Fig.4.8 has 3 simple P–invariants with the
following sets of transitions of subnets implied by these P–
invariants:

inv. transitions

1 t01, t1, t12, t2, t23, t30
2 t23, t3, t34, t4, t45, t52
3 t01, t1, t12, t32, t34, t4, t45, t52, t23, t30

so the cycle time is:

64 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

τ
(2)
0 = max(τ

(2)
1 , τ

(2)
2 , τ

(2)
3)

where:

τ
(2)
1 = o1 + o2 + u+ 2v + 3w + 6y,

τ
(2)
2 = o3 + o4 + 3v + 2w + x+ 6y,

τ
(2)
3 = o1 + o4 + u+ 3v + 3w + x+ 12y.

The cycle time τ
(2)
0 is usually smaller that τ

(1)
0 but the

result of comparison depends upon the specific values of
parameters o1 to o4 and y.

The schedule with the maximum concurrency is shown
of Fig.4.9; in this case the three machines, M2, M3 and
M4, are loaded with (previous) parts when a new part is
picked and loaded on machine M1.

t2 t3p21 p23 p32 p34

t01 t12 t23 t34p33

t1 p12p10 p43 t4 p45

t45

p02 t31t20

t14

p14

p31p24p20 p42

p41

p53t42 t53

Fig.4.9. Net model of schedule 1432.

There is only one possible sequence of robot’s operations
for this model, and it is described by the following transi-
tions (and their execution times):

ti f(ti)
t01 u+ w + y
t14 3y
t45 v + x+ y
t53 2y
t34 v + w + y
t42 2y
t23 v + w + y
t31 2y
t12 v + w + y
t20 2y

The net shown in Fig.4.9 has 5 P–invariants which imply
subnets with the following sets of transitions:

inv. transitions

1 t01, t1, t12, t20
2 t12, t2, t23, t31
3 t23, t3, t23, t42
4 t34, t4, t45, t53
5 t01, t14, t45, t53, t34, t42, t23, t31, t12, t20

so the cycle time of this model is:

τ
(3)
0 = max(τ

(3)
1 , τ

(3)
2 , τ

(3)
3 , τ

(3)
4 , τ

(3)
5)

where:

τ
(3)
1 = o1 + u+ v + 2w + 4y,

τ
(3)
2 = o2 + 2v + 2w + 4y,

τ
(3)
3 = o3 + 2v + 2w + 4y,

τ
(3)
4 = o4 + 2v + w + x+ 4y,

τ
(3)
5 = u+ 4v + 4w + x+ 16y.

The derived cycle times of manufacturing cells can be
used in the model of manufacturing system, replacing the
operations times of the cells; in particular, if the model
shown in Fig.4.5 is representing cell “1” in Fig.4.1, the
model shown in Fig.4.7 – cell “2” in Fig.4.1, and model
shown in Fig.4.9 – cell “3”, the cycle time for the manu-
facturing system is equal:

τ0 = max(τ
(1)
0 , τ

(2)
0 , τ

(3)
0)

where the terms τ
(i)
0 , i = 1, 2, 3, are defined above.

The described approach first analyzes the performance
of the manufacturing system at the abstract level of cells
and storage elements, and then considers the cells one at
a time. For complex manufacturing systems, even more
structured approach can be used. Instead of dealing with
all the cells at the same time, an additional level of subsys-
tems can be introduced, and first the performance of the
system can be expressed in terms of subsystems, then the
performance of subsystems in terms of cells, and finally,
performance of cells in terms of individual machines and
their interconnections.
Such hierarchical approach can be used to model and

analyse a large class of manufacturing systems. The ap-
proach is based on stepwise refinement of timed Petri net
models, and structural analysis used for performance eval-
uation of derived models. The results are obtained in sym-
bolic form, which provides very efficient analysis of specific
configurations, described by sets of numerical parameters.
Hierarchical modeling by Petri nets is described in

greater detail in [88], [89], [90], [96], [99], [114]. Model-
ing and analysis of manufacturing cells is presented in [84],
[85], [103], [117], while performance analysis of other man-
ufacturing systems is discussed in [98], [100], [101].

B. Multithreaded Multiprocessors

In modern computer systems, the performance of mem-
ory is increasingly often becoming the factor limiting the
performance of the whole computer system. Due to con-
tinuous progress in manufacturing technologies, the per-
formance of processors has been doubling every 18 months
(the so–called Moore’s law [28]). However, the performance
of memory chips has been improving by only 10% per year
[56], creating a “performance gap” in matching processor’s
performance with the required memory bandwidth. In ef-
fect, it is becoming more and more often the case that the
performance of applications depends on the performance of
machine’s memory hierarchy [15].
Instruction–level multithreading, and in particular

block–multithreading [14], [17], [45] tolerates long–latency
memory accesses and synchronization delays by switch-
ing the threads rather than waiting for the completion of
a long–latency operation which, in a distributed–memory
system, can require thousands of processor cycles. Since
the threads are executed in the same address space, switch-
ing from one thread to another (which is called “context
switching”) can be performed very efficiently, in just a few

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 65

processor cycles, especially if different sets of (hardware)
registers are allocated to different threads.

Fig.4.10. Outline of a 16–processor system.

The distributed memory system is composed of a num-
ber of processors connected by an interconnection net-
work. Fig.4.10 outlines a 16–processor system with a two–
dimensional torus–like interconnection network, used as a
running example. Each node in Fig.4.10 is a multithreaded
processor.
Fig.4.11 shows a model of a multithreaded processor

(at the instruction execution level) as well as its connec-
tion with the interconnection network (using two switches,
Tsinp for messages coming from the network, and Tsout
for the messages outgoing to other nodes). The inter-
connection network is represented by transitions TnetN ,
TnetW , TnetE and TnetS, which model – for this particu-
lar interconnection network – connections to four neighbor-
ing nodes, north, west, east and south, respectively.
The interconnecting network is characterized by fwo pa-
rameters, the average number of hops, nh, between the
source and a target of a message, and the delay of a single
hop. The delays of messages forwarded in the intercon-
necting network are usually associated with the switches
that control the transfer of messages from one node to an-
other. It is assumed that these delays, denoted by ts, are
constant since they are rather insensitive to the length of
messages, at least for reasonably short messages [68]. The
delays introduced by the switches are represented by firing
times assigned to Tsout and Tsinp.
The processor shown in Fig.4.11 performs context

switching for each long–latency memory access (local or
remote); Petri net models of some other variants of multi-
threading are discussed in [93], [107], [111].
The execution of each instruction of the ‘running’ thread

is modeled by transition Trun, a timed transition with the
firing time representing one processor cycle. Place Proc
represents the (available) processor (if marked) and place
Ready – the queue of threads waiting for execution. The
initial marking of Ready represents the (average) number
of available threads, nt.
If the processor is available (i.e., Proc is marked) and

Ready is not empty, a thread is selected for execution by
firing the immediate transition Tsel. Execution of consec-
utive instructions of the selected thread is performed in
the loop Pnxt, Trun, Pend and Tnxt. Pend is a free–
choice place with the choice probabilities determined by
the runlength, ℓt, of the thread. In general, the free–choice
probability assigned to Tnxt is equal to (ℓt − 1)/ℓt, so if ℓt

is equal to 10, the probability of Tnxt is 0.9; if ℓt is equal
to 5, this probability is 0.8, and so on. The free–choice
probability of Tend is just 1/ℓt.
If Tend is chosen for firing rather than Tnxt, the execu-

tion of the thread ends, a request for a long–latency access
to (local or remote) memory is placed in Mem, and a to-
ken is also deposited in Pcsw. The timed transition Tcsw
represents the context switching and is associated with the
time required for the switching to a new thread, tcs. When
its firing is finished, another thread is selected for execution
(if it is available).
Mem is a free–choice place, with a random choice of

either accessing local memory (T loc) or remote memory
(Trem); in the first case, the request is directed to Lmem
where it waits for availability of Memory, and after access-
ing the memory, the thread returns to the pool of wait-
ing threads, Ready. Memory is a shared place with two
conflicting transitions, Trmem (for remote accesses) and
T lmem (for local accesses); the resolution of this conflict (if
both accesses are waiting) is based on marking–dependent
(relative) frequencies determined by the numbers of tokens
in Lmem and Rmem, respectively. The memory cycle
time, tm, is assigned to both T lmem and Trmem.
Requests for remote accesses are directed to Rem, and

then, after a sequential delay (the switch modeled by Sout
and Tsout), forwarded to Out, where a random selection is
made of one of the four adjacent nodes (transitions TnetN ,
..., TnetS). Similarly, the traffic incoming to the node
is collected from all neighboring nodes in Inp, and, after
a sequential delay (Sinp and Tsinp), forwarded to Dec.
Dec is a free–choice place with three transitions sharing
it: Tret, which represents the satisfied requests reaching
their “home” nodes; Tgo, which represents requests as well
as responses forwarded to another node (another “hop”
in the interconnection network); and T local, which repre-
sents remote requests accessing the memory at the desti-
nation node; these remote requests are queued in Rmem
and served by Trmem when the memory module Memory

becomes available.
Colors are used to fold the processors into a single model

shown in Fig.4.11. Since transitions TnetN , ..., TnetS
pass messages between processors of the system, they must
transform the colors of tokens. A more detailed description
of colors and their transformations is given in [116].
It is convenient to assume that all timing characteristics

are expressed in processor cycles (which is assumed to be
1 unit of time). The basic model parameters and their
typical values are as follows:

symbol parameter values

nt number of available threads 2,...,20
ℓt thread runlength 5,10,20
tcs context switching time 1,2,5
tm memory cycle time 10,20
ts switch delay 5,10

pℓ, pr probability of accesses to
local/remote memory 0.1, ..., 0.9

All timed transitions in Fig.4.11 have deterministic fir-

66 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

Ready

Trun Lmem

Trmem
Tlmem

Rmem

Tloc

Trem

Proc

Memory

TsoutSout

Tgo

Mem

Tret

Tsel Tend

Tnxt

Pnxt Pend

Rem

Tcsw Pcsw

Tmem

Dec

Sinp
Tsinp

InpOut

TnetN

TnetS

TnetE

TnetW

Fig.4.11. A colored net model of a multithreaded multiprocessor.

ing times associated with them. Although it is possible
to derive the state space for such a model, it should be
observed that even for a small number of processors (e.g.,
16), this space is very large. Therefore, event–driven sim-
ulation was used to obtain performance characteristics of
this model [87], [94]. An example of such characteristics,
presented in Fig.4.12, shows the utilization of each pro-
cessor as a function of the number of available threads,
nt (i.e., the initial marking of Ready), and the probabil-
ity of long–latency accesses to local memory, pℓ (i.e., the
free–choice probability of T loc), with fixed values of the
remaining modeling parameters.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization (16 proc)

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.4.12. Processor utilization in a 16–processor system;
tcs = 1, ℓt = tm = ts = 10.

Fig.4.12 shows that, for values of pℓ close to 1, the utiliza-
tion increases with the number of available threads nt, and
tends to the bound 0.91 which, in this case, is determined
by the ratio of ℓt/(ℓt + tcs) since the context switching
time, tcs, is the overhead of multithreading. For smaller
values of pℓ, the utilization of the processors “saturates”
very quickly and is practically insensitive to the number
of available threads. This is a clear indication that some
other component of the system is the bottleneck, i.e., that
it is utilized in practically 100 % limiting the performance
of the whole system.

It appears that for the analyzed 16–processor system, the
input switch becomes the bottleneck for pℓ < 0.75 [106], [?],
[115]. Indeed, Fig.4.13 shows the utilization of the input
switch (for the same values of modeling parameters as in
Fig.4.12); it should be noted that, for presentation reasons,
Fig.4.13 uses the probability of accessing remote memory,
pr, rather than pℓ used in Fig.4.12, so the “front part” of
Fig.4.13 corresponds to the “back part” of Fig.4.12.

Fig.4.13 shows that the input switch enters its satura-
tion quite quickly when the number of threads increases
or when the value of pr increases (i.e., the value of pℓ de-
creases). The “boundary” corresponding to pr = 0.25 is
clearly visible in Fig.4.13. The input switch is simply “too
slow” if the probability of accesses to remote memory can
be greater than 0.25.

Fig.4.14 shows the utilization of the processor for the
case when the switch delay is one half of that used in
Fig.4.12, i.e., ts = 5; the processor’s utilization is signif-

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 67

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

number of threads

Switch utilization (16 proc)

prob to access remote mem

sw
itc

h
ut

ili
za

tio
n

Switch delay: 10 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.4.13. Input switch utilization in a 16–processor system;
tcs = 1, ℓt = tm = ts = 10.

icantly better than in Fig.4.12, but the limiting effects of
the input switch can still be observed for small values of
pℓ.

0

5

10

15

20

0

0.2

0.4

0.6

0.8

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

number of threads

Processor utilization

prob to access local mem

pr
oc

es
so

r
ut

ili
za

tio
n

Switch delay: 5 units
Memory cycle: 10 units
Runlength: 10 units
Context swch: 1 unit

Fig.4.14. Processor utilization in a 16–processor system;
tcs = 1, ℓt = tm = 10, ts = 5.

For performance analysis of derived models, the inter-
connection network is characterized by the average number
of hops, nh, and the delay of switches, ts. Consequently,
different networks characterized by the same value of nh

(and the same delay ts) will yield the same performance
characteristics of the nodes. For example, Fig.4.15 shows a
hypercube network for a 16–processor system that can be
used instead of a 2–dimensional torus–like network shown
in Fig.4.10. Since each node in Fig.4.15 is connected to 4
neighbors (as is the case in Fig.4.10), the average numbers
of hops for the two networks are the same, and then the
performance characteristics for the two types of intercon-
nection networks are also identical.
One of the assumptions made to obtain the presented re-

sults was that accesses to memory are uniformly distributed
over the nodes of the system. If this assumption is not real-
istic and some sort of “locality” is present, the only change
that needs to be done is an adjustment of the value of nh;
for example, if the probability of accessing nodes decreases

Fig.4.15. Outline of a 16–processor system.

with the distance (i.e., nodes which are close are more likely
to be accessed that the distant ones), the average value of
nh should be decreased.
Moreover, models of systems with different numbers of

processors (e.g., 25, 36, etc.) require only minor adjust-
ment of a few model parameters (the free–choice probabili-
ties describing the traffic of messages in the interconnection
network); otherwise the models are as presented earlier.
Further discussion of multithreaded models and their

performance is given in [92], [93], [97], [104], [108], [109],
[110], [113], [116].

C. Performance–Equivalent Multiprocessors

Since 1990s there has been an increasing trend to use net-
works of workstations [8] as the high–performance platform
instead of expensive and specialized parallel supercomput-
ers [16], [50]. Among the driving forces that have enabled
such a transition has been the improvement and availability
of commodity high–performance workstation and networks.
These technologies are making networks of computers (PCs
and workstations) an appealing vehicle for parallel process-
ing and low–cost “commodity supercomputing” [9].
Multiprocessor systems are usually classified as shared–

memory or message–passing systems [31]. Shared–memory
systems are believed to be easier to program, but
distributed–memory systems scale in a better way; systems
with large numbers of processors are usually distributed–
memory systems [66].
Multiprocessor systems studied in this project are

distributed–memory systems, which execute transaction–
processing–like jobs. These jobs are composed of (possibly
cycles of) a processing phase followed by a communication
phase (to access information in a distributed database or
to exchange information with other jobs). For simplicity,
it is assumed that the information is distributed uniformly
over the nodes of the system, so all nodes are accessed
with the same probability. It is also assumed that the job
processing times are exponentially distributed, so they can
be characterized by a single parameter, the average pro-
cessing time (this assumption is not very important and is
made primarily to simplify job descriptions). Similarly, it
is assumed that the execution times of remote operations
requested by a job are also exponentially distributed, with
another parameter describing their average durations. It
appears that the specific values of the average processing
time and the average operation time are not as important
as their sum which specifies the “service demand” for pro-
cessors.
An outline of a single processor, with its local memory,

68 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

and two network interfaces, is shown in Fig.4.16. The out-
bound interface is used for outgoing traffic, i.e., requests to
remote nodes originating at this node as well as results of
remote operations requested from this node; the inbound
interface handles incoming traffic, i.e., results of remote op-
erations that ‘return’ to this node and remote requests of
operations performed at this node.
Fig.4.16 also shows two queues of jobs, the principal

queue of jobs waiting for execution, Ready Queue, and a
secondary queue of remote requests, Remote Queue; when-
ever the currently executing job requests an operation on
another node, the current job becomes suspended, and a
job from one of these queues is randomly selected for execu-
tion; this execution continues until the end of the operation
or until another remote operation is initiated. When a re-
mote operation is completed and its results are returned to
the ‘home’ node, the status of the suspended job changes to
‘ready’, and the job joins the queue of ready jobs, waiting
for another execution phase on the processor.

Interconnecting
Network

Processor

Ready
Queue

Outbound
Interface

Inbound
Interface

Remote
Queue

Fig.4.16. Outline of a single processor.

The average execution time of a job, until it makes a re-
quest for a remote operation, is one of the basic modeling
parameters denoted by te; the average time of performing a
remote operation is denoted by tr. The (average) number
of jobs available at each node, nj , is another modeling pa-
rameter. For very small values of nj , queueing effects can
be practically neglected, so the performance can be pre-
dicted by taking into account only the delays of system’s
components. On the other hand, for large values of nj , the
system can be considered in saturation, which means that
one of its components will be utilized in almost 100%, limit-
ing the utilization of other components as well as the whole
system. Identification of such limiting components (called
the bottlenecks [32]) and improving their performance is
the key to the improved performance of the entire system.
A timed Petri net model of a single node is shown in

Fig.4.17.
The execution of the ‘running’ job is modeled by Trun;

its execution time is exponentially distributed with the av-
erage value te. The execution of an operation requested by
another node is represented by Trem; its execution time is
also exponentially distributed, with the average value tr.

Inp

Sout
Tsout

to Inp

to Inp

to Inp

to Inp

Out

from Out

from Out

from Out

from Out

Sinp
Tsinp

Trun

Proc

Ready

Trem TretRem

Pnet

Tgo

Pdec

Fig.4.17. Job–level model of a node.

At the end of job execution (by Trun), a remote op-
eration is requested by depositing a token in Pnet, and
the current job becomes suspended; at the end of remote
operation (by Trem), the token deposited in Pnet repre-
sents the results of the operation which are returned to the
‘home’ node. If there is another job waiting for execution
(in Ready), or a request from another node (in Rem), the
execution is initiated concurrently with forwarding the to-
ken to the outgoing interface; after a sequential delay (the
outbound switch Sout) the request is forwarded to Out,
where a random selection is made of one of the four (in
this case) adjacent nodes (all nodes are selected with equal
probabilities). Similarly, the incoming traffic is collected
from all neighboring nodes in Inp, and, after a sequen-
tial delay (the inbound switch Sinp), forwarded to Pdec.
Pdec is a decision point with three possibilities: the Ready

Queue, which represents the results of remote operations
reaching their ‘home’ nodes; Out, which represents requests
as well as responses forwarded to another node (another
‘hop’ in the interconnecting network); and Remote Queue,
which represents remote operations reaching their destina-
tion node; these remote operations are executed when the
processor becomes available. The choice probabilities asso-
ciated with Pdec characterize the interconnecting network.
As in the case of multithreaded multiprocessors, the in-

terconnecting network is characterized by two parameters,
the average number of hops between the source and a target
of a message, nh, and the delay of a single hop, ts.
The utilizations of components in complex systems is

directly related to service demands for these components.
The service demand, di, for the component i is the prod-
uct of the rate of requests (sometimes also called the ‘visit
rate’), vi, and the (average) service time of this component,
si, i.e., di = vi ∗ si.
For the multiprocessor systems, the components and

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 69

their service demands are:
• processors with job service demands de,j , j = 1, ..., np;
• processors with remote service demands dr,j , j =
1, ..., np;
• inbound network switches with service demands di,j , j =
1, ..., np;
• outbound network switches with service demands do,j ,
j = 1, ..., np.
If all processors are the same, the steady–state service

demands at all nodes are identical, and the second sub-
scripts can be dropped.
For a single cycle of job processing (i.e., a job going

through the phases of execution, suspension, and then wait-
ing for another execution), the job service demand for the
processor is simply the average execution time te. The an-
alyzed cycle of job processing contains one request for a
remote operation (to be executed on one of remote nodes);
this is equivalent to an execution of a single request from
any one of the remaining (np− 1) nodes with the probabil-
ity 1/(np − 1) (due to the uniform distribution of requests
over the nodes of the system). The total service demand
for processor is thus te + tr.
The service demand for the inbound switch (in each pro-

cessor) is equal to 2 ∗nh ∗ ts; the factor 2 is due to sending
requests and then returning the results of remote opera-
tions. The service demand for the outbound switch is just
2 ∗ ts.
The service demands are thus:

dp = te + tr;
di = 2 ∗ nh ∗ ts;
do = 2 ∗ ts.

Two (multiprocessor) systems are equivalent with re-
spect to performance (or performance equivalent) if the
maximum service demands are the same and are associ-
ated with corresponding components of the systems. A
straightforward consequence of this definition is that com-
ponent utilizations in performance–equivalent systems are
the same; this is the essence of the concept of performance
equivalence.
Performance–equivalent systems can be used to simplify

the simulation–based performance analysis of distributed–
memory multiprocessor systems (as well as other systems
which have a similar structure). More specifically, since the
simulation time required for the analysis of multiprocessor
systems depends upon the number of processors, instead
of simulating a system containing np processors, a much
simpler performance–equivalent system can be used, sig-
nificantly reducing the required simulation time, and pro-
viding reasonably accurate results. For performance anal-
ysis of the 16–processor system (Fig.4.10), a 4–processor
system can be used with the same parameters te and tr,

and with the switch delay t
(4)
s adjusted to the value which

compensates for the difference in the values of nh between

the 16–processor, n
(16)
h , and 4–processor, n

(4)
h , systems, i.e.,

such that:

n
(16)
h ∗ t(16)s = n

(4)
h ∗ t(4)s .

Since n
(16)
h = 2 and n

(4)
h = 4/3 [111], performance–

equivalence is obtained im this case for t
(4)
s = 1.5 ∗ t

(16)
s .

Since the average number of hops in a 16–processor hy-
percube interconnecting network is the same as in 16–
processor two–dimensional torus–like network, the perfor-
mance characteristics of both networks are the same (al-
though these two interconnecting networks scale in differ-
ent ways).

Similarly, for a 64–processor system with a hypercube
interconnecting network, the average number of hops is
equal to 3 [111]; such a system is performance equivalent
to a 16–processor system with a two–dimensional torus–
like interconnecting network in which the switch delays
are 1.5 greater than those in the 64–processor system, and
also to a 4–processor system in which the switch delays
are 2.25 greater then those in the 64–processor system.
A 64–processor system with the hypercube interconnec-
tion network is performance–equivalent to a 64–processor
system with a two–dimensional torus-like network if the
switch delays of the latter network are 0.75 of the switch
delays of the hypercube system; on the other hand, the 64–
processor hypercube system is performance–equivalent to
a 64–processor system with a three-dimensional torus–like
interconnecting network with the same switch delays (since
the value of nh for such a network is also equal to 3), and
so on.

All performance results presented here as an illustration
of performance equivalence have been obtained by simulat-
ing the behavior of Petri net models of distributed–memory
multiprocessor systems. All temporal characteristics of the
models are expressed in “abstract time units” (with no ref-
erence to real units of time) which does not affect the re-
sults.

Fig.4.18 shows the utilization of processors in a 16–
processor system as a function of the number of available
jobs, nj , (i.e., the initial marking of Ready in Fig.4.17).

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

number of jobs

utilization of processors (16 t)

Fig.4.18. Processor utilization – 16 processors (2D torus);
te = 10, tr = 2, ts = 2.

For small number of jobs, the utilization increases quite
significantly with the number of jobs; it increases by about
50% by introducing the second available job, and it practi-
cally doubles when the number of available jobs increases
to 5. Further increases of the processor utilization, for more
than 5 or 6 jobs, are, however, rather insignificant.

70 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

The utilization of the processors in a performance–
equivalent 4–processor system is shown in Fig.4.19; perfor-
mance equivalence for the 4–processor system is obtained
by using the same values of parameters te and tr, and in-
creasing ts to 3 to compensate for the decreased value of

n
(4)
h .

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

number of jobs

utilization of processors (4 t)

Fig.4.19. Processor utilization – 4 processors (2D torus);
te = 10, tr = 2, ts = 3.

Fig.4.20 shows the utilization of processors in a 32-
processor system with a hypercube interconnecting net-
work which is performance-equivalent to a 16–processor
system connected by a two–dimensional torus–like network
(as in Fig.4.10); again, parameters te and tr are the same
as in Fig.4.18, while ts is reduced to compensate for the
increased value of nh.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

number of jobs

utilization of processors (32 h)

Fig.4.20. Processor utilization – 32 processors (hypercube);
te = 10, tr = 2, ts = 1.333.

The results shown in Fig.4.18, Fig.4.19 and Fig.4.20 are
practically the same.
Similarly, it can be shown [111] that the utilization of

processors does not depend upon specific values of te and tr,
but upon their sum (which determines the service demand
for the processor), and that the utilizations of components
do not depend upon the specific values of parameters but on
the ratio of the service demand for processors to the service
demand for the switches (this is the reason that abstract
time units can be used in specifying temporal properties of
the model). All temporal properties of the analyzed sys-
tems can thus be characterized by just one parameter, the
computation–to–communication ratio, rcomp/comm, which,
in this case is equal to (te + tr)/(2 ∗ nh ∗ ts); this ratio re-

mains the same for cases illustrated in Fig.4.18, Fig.4.19,
and Fig.4.20.
The utilization of processors as a function of the

number of available jobs, nj , and the computation–to–
communication ratio, rcomp/comm, is shown in Fig.4.21.

0
2

4
6

8
10

0

0.5

1

1.5

2

2.5

3
0

0.2

0.4

0.6

0.8

1

number of jobs

Processor utilization

comp/comm ratio

pr
oc

es
so

r
ut

ili
za

tio
n

Fig.4.21. Processor utilization – 16 processors (2D torus).

The utilization increases almost linearly with the val-
ues of rcomp/comm when rcomp/comm < 1, i.e., when the
communication is the system bottleneck; the utilization is
practically independent of rcomp/comm when rcomp/comm >
1, i.e., when the computation (i.e., the processors) be-
comes the system bottleneck. It should be observed that
Fig.4.18 to Fig.4.21 illustrate the crossection of Fig.4.21 at
rcomp/comm = 1.5.
The presented performance results for distributed–

memory multiprocessor systems indicate that significant
simulation–time reductions can be achieved by using sim-
pler models which are equivalent with respect to perfor-
mance to the original systems. Since the simulation time
of complex models usually increases superlinearly with the
size of the model, the gains in the simulation time also
increase more than linearly with the size of the (original)
model.
A slightly different approach to performance equivalence

is presented in [105] where instead of changing the delays of
switches, the net model is modified in such a way that the
value of nh is preserved at the level of the original system,
independently of the number of processors, so, again, much
simpler model can be simulated to reduce the simulation
time.
Results of other studies of the performance of distributed

systems are presented in [52], [72], [118], [119].

V. Concluding Remarks

Because of the complexity of real–life net models, high-
level Petri nets are becoming increasingly popular in practi-
cal applications of Petri nets [25], [57], [67]. Compositional-
ity of models, usually expressed by process algebras, often
with temporal enhancements for performance analysis, is

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 71

expected to provide elegant formal methods for complex
realistic applications [29], [38], [60].

Available literature on theoretical and applied aspects of
Petri nets is growing very quickly; a database of references
to Petri net publications is maintained by the University
of Hamburg, Germany:

http://www.informatik.uni-hamburg.de/TGI/pnbib

and general information on Petri nets, including available
tools for analysis of net models – by University of Aarhus,
Denmark:

http://www.daimi.au.dk/PetriNets

For more than 20 years, the “Annual Conference on Ap-
plications and Theory of Petri Nets” has been one of the
focal points for Petri net researchers; for many years its
proceedings have been published by Springer-Verlag in the
series “Lecture Notes in Computer Science” (vol. 2679,
2360, 2075, 1825, 1639, 1420, and so on). Springer-Verlag,
also in the series “Lecture Notes in Computer Science”,
has been publishing “Advances in Petri Nets”, initially an
annual collection of selected contributions to the area of
Petri nets, and recently, collections of contributions is spe-
cialized areas, such as communication systems, workflow
modeling, etc. The “Conference on Petri Nets and Per-
formance Models” (PNPM), organized every second year,
is another survey of recent developments in the area of
performance–related aspects of Petri net models. Several
other conferences have special tracks or special sessions
devoted to Petri nets; “IEEE Annual Conference on Sys-
tems, Man, and Cybernetics”, “International Conference
on Application of Concurrency to System Design”, “IEEE
Annual Conference on Emerging Technologies and Factory
Automation” and “Annual High–Performance Computing
Symposium” are good examples of such conferences. In
addition, workshops are being organized on specialized as-
pects of Petri nets, for example, “Workshop on Practical
Use of Colored Petri Nets and Design/CPN” or “Workshop
on Hardware Design and Petri Nets”.
Finally, there is an increasing number of monographs on

Petri nets and their applications, so the popular Peterson’s
book [48] and the Reisig’s monograph [54] are now sup-
plemented by several books on application of Petri nets to
manufacturing systems [20], [21], [51], [69], to workflow
management systems [26], on modeling using stochastic
Petri nets [6], [10], [27], [40], on colored Petri nets and
their applications [36], [37], [55], and also on properties of
some classes of Petri nets [19], [65].

References

[1] Aalst van der, W.M.P., “Interval timed colored Petri nets”; in:
Advances in Petri nets 1993 (Lecture Notes in Computer
Science 674), pp.126–147, Springer-Verlag 1993.

[2] Agerwala, T., “Putting Petri nets to work”; IEEE Computer
Magazine, vol.12, no.12, pp.85–94, 1979.

[3] Agerwala, T., Flynn, M., “Comments on capabilities, limitations
and ‘correctness’ of Petri nets”; Proc. of the First Annual Symp.
on Computer Architecture, pp.81–86, 1973.

[4] Ajmone Marsan, M., Balbo, G., Bobbio, A., Chiola, G., Conte,
G., Cumani, A., “The effect of execution policies on the seman-
tics and analysis of stochastic Petri nets”; IEEE Trans. on Soft-
ware Engineering, vol.15, no.7, pp.832-846, 1989.

[5] Ajmone Marsan, M., Balbo, G., Conte, G., “The early days of
GSPNs”; in: Performance Evaluation: Origins and Direc-
tions (Lecture Notes in Computer Science 1769), pp.505-512,
Springer-Verlag 2000.

[6] Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S.,
Franceschinis, G., Modeling with Generalized Stochastic
Petri Nets; J. Wiley & Sons 1995.

[7] Ajmone Marsan, M., Conte, G., Balbo, G., “A class of gener-
alized stochastic Petri nets for the performance evaluation of
multiprocessor systems”; ACM Trans. on Computer Systems,
vol.2, no.2, pp.93–122, 1984.

[8] Anderson, T., O. Culler, and D. Patterson, “A case for NOW
(Network of Workstations)”, IEEE Micro , vol.15, pp.54-64,
1995.

[9] Baker, M., and R. Buyya, “Cluster computing: the commod-
ity supercomputer”; Software Practice and Experience, vol.19,
pp.551-576, 1999.

[10] Bause, F., Kritzinger, P.S., Stochastic Petri Nets – and In-
troduction to the Theory, Vieweg Verlag 1996.

[11] Berthelot, G., “Transformations and decompositions of nets”; in:
Petri Nets: Central Models and Their Properties – Ad-
vances in Petri Nets 1986, vol.1 (Lecture Notes in Computer
Science 254), pp.359–376, Springer-Verlag 1987.

[12] Best, E., “Structural theory of Petri nets: the free–choice hia-
tus”; in: Advances in Petri Nets 1986 (Lecture Notes in
Petri Nets 254), pp.168–206, 1987.

[13] Bobbio, A., Puliafito, A., Telek, M., Trivedi, K.S., “Recent de-
velopments in non-Markovian stochastic Petri nets”; Journal of
Circuits, Systems, and Computers, vol.8, no.1, pp.119–158, 1998.

[14] Boothe, B. and Ranade, A., “Improved multithreading tech-
niques for hiding communication latency in multiprocessors”;
Proc. 19-th Annual Int. Symp. on Computer Architecture,
pp.214–223, 1992.

[15] Burger, D., Goodman, J.R., Kaegi, A., “Memory bandwidth
limitations of future microprocessors”; Proc. 23-rd Annual Int.
Symp. on Computer Architecture, Philadelphia, PA, pp.78-89,
1996.

[16] Buyya, R., High performance cluster computing: systems
and architectures, Prentice-Hall 1999.

[17] Byrd, G.T., Holliday, M.A., “Multithreaded processor architec-
ture”; IEEE Spectrum, vol.32, no.8, pp.38-46, 1995.

[18] Chiola, G., Ajmone Marsan, M., Balbo, G., Conte, G., “Gen-
eralized stochastic Petri nets: a definition at the net level and
its implications”; IEEE Trans. on Software Engineering, vol.19,
no.2, pp.89-107, 1993.

[19] Desel, J., Esparza, J., Free Choice Petri Nets (Cambridge
Tracts in Theoretical Computer Science 40); Cambridge Univer-
sity Press 1995.

[20] Desrochers, A.A., Al-Jaar, R.Y., Applications of Petri Nets
in Manufacturing Systems; IEEE Press 1995.

[21] DiCesare, F., Harhalakis, G., Proth, J.M., Silva, M., Vernadat,
F.B., Practice of Petri Nets in Manufacturing; Chapman
and Hall 1993.

[22] Dijkstra, E., Feijen, W., van Gasteren, A., “Derivation of a ter-
mination detection algorithm for distributed computations”; In-
formation Processing Letters, vol.16, no.5, pp.217–219, 1983.

[23] Esparza, J., Silva, M., “On the analysis and synthesis of free
choice systems”; in: Advances in Petri Nets 1990 (Lecture
Notes in Computer Science 483), pp.243–288, Springer-Verlag
1991.

[24] Ezpeleta, J., Couvreur, J.M., Silva, M., “A new technique for
finding a generating family of siphons, traps and ST-components
– application to colored Petri nets”; in: Advances in Petri
nets 1993 (Lecture Notes in Computer Science 674), pp.126–
147, Springer-Verlag 1993.

[25] Feldmann, K., Colombo, A.W., “Monitoring of flexible produc-
tion systems using high-level Petri net specifications”; Control
Engineering Practice, vol.7, no.12, pp.1449-1466, 1999.

[26] Girault, C., Valk, R., Petri Nets for Systems Engineering;
Springer-Verlag 2002.

[27] Haas, P.J., Stochastic Petri Nets; Springer-Verlag 2002.
[28] Hamilton, S., “Taking Moore’s law into the next century”; IEEE

Computer Magazine, vol.32, no.1, pp.43-48, 1999.
[29] Hillston, J., A Compositional Approach to Performance

Modeling; Cambridge University Press 1996.
[30] Holliday, M.A., Vernon, M.K., “Exact performance estimates for

multiprocessor memory and bus interference”; IEEE Trans. on
Computers, vol.36, no.1, pp.76–85, 1987.

72 PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW

[31] Hwang, K., Advanced computer architecture – paral-
lelism, scalability, programmability, McGraw-Hill 1993.

[32] Jain, R., The art of computer systems performance anal-
ysis, J. Wiley & Sons 1991.

[33] Janicki, R., Koutny, M., “Semantics of inhibitor nets”; Informa-
tion and Computation, vol.123, no.1, pp.1–16, 1995.

[34] Janicki, R., Koutny, M., “On causality semantics of nets with
priorities”; Fundamenta Informaticae, vol.38, no.3, pp.223–255,
1999.

[35] Jensen, K., “Coloured Petri nets”; in: Advanced Course on
Petri Nets 1986 (Lecture Notes in Computer Science 254),
pp.248–299, Springer-Verlag 1987.

[36] Jensen, K., Colored Petri Nets – Basic Concepts, Analy-
sis Methods and Practical Use, vol.1; Springer-Verlag 1992.

[37] Jensen, K., Colored Petri Nets – Basic Concepts, Analy-
sis Methods and Practical Use, vol.2; Springer-Verlag 1995.

[38] Koutny, M., “A compositional model of time Petri nets”; in:
Application and Theory of Petri Nets 2000 (Lecture Notes
in Computer Science 1825), pp.303–322, Springer-Verlag 2000.

[39] Krueckeberg, F., Jaxy, M., “Mathematical methods for calculat-
ing invariants in Petri nets”; in: Advances in Petri Nets 1987
(Lecture Notes in Computer Science 266), pp.104–131, Springer-
Verlag 1987.

[40] Lindemann, C., Performance Modeling with Determinis-
tic and Stochastic Petri Nets; Wiley and Sons 1998.

[41] Magott, J., “Performance evaluation of concurrent systems using
conflict–free and persistent Petri nets”; Information Processing
Letters, vol.26, no.1, pp.77–80, 1987.

[42] Martinez, J., Silva, M., “Simple and fast algorithm to obtain all
invariants of a generalized Petri net”; in: Applications and
Theory of Petri Nets (Informatik Fachberichte 52); pp.301–
310, Springer-Verlag 1982.

[43] Merlin, P.M., Farber, D.J., “Recoverability of communication
protocols – implications of a theoretical study”; IEEE Trans. on
Communications, vol.24, no.9, pp.1036–1049, 1976.

[44] M.K. Molloy, “Performance analysis using stochastic Petri nets”;
IEEE Trans. on Computers, vol.31, no.9, pp.913–917, 1982.

[45] Moore, S.W., Multithreaded Processor Design; Kluwer
Academic Publishers 1996.

[46] Murata, T., “Circuit theoretic analysis and synthesis of marked
graphs”; IEEE Trans. on Circuits and Systems, vol.24, no.7,
pp.400–405, 1977.

[47] Murata, T., “Petri nets: properties, analysis and applications”;
Proceedings of IEEE, vol.77, no.4, pp.541–580, 1989.

[48] Peterson, J.L., Petri Net Theory and the Modeling of Sys-
tems; Prentice–Hall 1981.

[49] Petri, C.A., “Kommunikation mit Automaten”; Ph.D. Disser-
tation, University of Bonn, Bonn, Germany 1962; also: Memo-
randum MAC-M-212, Project MAC, Massachusetts Institute of
Technology, Cambridge, MA.

[50] Phister, G., In search of clusters, Prentice-Hall 1998.
[51] Proth, J.M., Xie, X., Petri Nets; Wiley & Sons 1996.
[52] Rada, I., Zuberek, W.M., “Distributed generation of state space

for timed Petri nets”; High Performance Computing Symposium
(HPC’01), Seattle, WA, pp.219–227, 2001.

[53] Reid, M., Zuberek, W.M., “Timed Petri net models of ATM
LANs”; in: Applications of Petri Nets in Telecommuni-
cation Systems – Advances in Petri Nets (Lecture Notes in
Computer Science 1605), J. Billington, M. Diaz, G. Rozenberg
(eds.), pp.150–175, Springer-Verlag 1999.

[54] Reisig, W., Petri Nets - an Introduction (EATCS Mono-
graphs on Theoretical Computer Science 4); Springer-Verlag
1985.

[55] Reisig, W., Elements of Distributed Algorithms – Mod-
eling and Analysis with Petri Nets; Springer-Verlag 1999.

[56] Rixner, S., Dally, W.J., Kapasi, U.J., Mattson, P. and Ovens,
J.D., “Memory access scheduling”; Proc. 27-th Annual Int.
Symp. on Computer Architecture, Vancouver, Canada, pp.128-
138, 2000.

[57] Rokyta, P., Fengler, W., Hummel, T., “Electronic system design
automation using high level Petri nets”; in: Hardware Design
and Petri Nets, pp.193-204, Kluwer Academic Publ. 2000.

[58] Sethi, S.P., Sriskandarajah, C., Sorger, G., Blazewicz, J., Ku-
biak, W., “Sequencing of parts and robot moves in a robotic
cell”; Int. Journal of Flexible Manufacturing Systems, vol.4,
pp.331–358, 1992.

[59] Sifakis, J., “Structural properties of Petri nets”; in: Mathemat-
ical Foundations of Computer Science 1978 (Lecture Notes

in Computer Science 64), pp.474–483, Springer–Verlag 1978.
[60] Sifakis, J., “The compositional specification of timed systems –

a tutorial”; in: Computer Aided Verification (Lecture Notes
in Computer Science 1633), pp.2–7, Springer-Verlag 1999.

[61] Stewart, W.J., Introduction to the Numerical Solution of
Markov Chains; Princeton University Press 1994.

[62] Tamura, H., Abe, T., Shinoda, S., “Obtaining a marked graph
from a synchronic distance matrix”; Electronics and Commu-
nications in Japan; Part III – Fundamental Electronic Science;
vol.79, no.3, pp.53–63, 1996.

[63] Teruel, E., Silva, M., “Structure theory of equal conflict sys-
tems”; Theoretical Computer Science, vol.153, no.1-2, pp.271–
300, 1996.

[64] Valk, R., “Test on zero in Petri nets”; in: Applications and
Theory of Petri Nets (Informatik–Fachberichte 52), pp.193–
197, Springer-Verlag 1982.

[65] Wang, J., Timed Petri nets; Kluwer Academic Publ. 1998.
[66] Wilkinson, B., Computer architecture – design and per-

formance, Prentice Hall 1996.
[67] Wu, Z., “CEM/T net, a high level Petri net for FMS modeling”;

International Journal of Intelligent Control Systems, vol.3, no.3,
pp.377-387, 1999.

[68] Xu, Z., K. Hwang, “Modeling communication overhead: MPI
and MPL performance on the IBM SP2”, IEEE Parallel and
Distributed Technology, Vol.29. pp.9-23, 1996.

[69] Zhou, M-C., Petri Nets in Flexible and Agile Automation;
Kluwer Academic Publishers 1995.

[70] Zuberek, W.M., “Timed Petri nets and preliminary performance
evaluation”; Proc. 7-th Annual Symposium on Computer Archi-
tecture, pp.89–96, 1980.

[71] Zuberek, W.M., “Analysis of Le Lann’s distributed control pro-
tocol by Petri nets”; Proc. 2–nd European Workshop on The-
ory and Applications of Petri Nets (EWTAPN’81), Bad Honnef,
Germany, pp.555–568, 1981.

[72] Zuberek, W.M., “Application of timed Petri nets to analysis of
multiprocessor realizations of digital filters”; Proc. 25-th Mid-
west Symp. on Circuits and Systems, Houghton, MI, pp.134–139,
1982.

[73] Zuberek, W.M., “Augmented M–timed Petri nets, modeling and
performance evaluation of computer systems”; Transactions of
the Society for Computer Simulation, vol.2, no.2, pp.135–153,
1985.

[74] Zuberek, W.M., “Generalized M–timed Petri nets and perfor-
mance evaluation of computer systems”; INFOR Journal – Spe-
cial Issue on Computer Systems Performance Evaluation, vol.23,
no.3, pp.344–362, 1985.

[75] Zuberek, W.M., “Inhibitor D–timed Petri nets and performance
analysis of communication protocols”; INFOR Journal – Spe-
cial Issue on Communication System Performance, vol.24, no.3,
pp.231–249, 1986.

[76] Zuberek, W.M., “M–timed Petri nets and Markov chains in mod-
elling of computer systems”; Proc. 14-th ACM Computer Science
Conf. (CSC’86), Cincinnati, OH, pp.101–106, 1986.

[77] Zuberek, W.M., “Modified D–timed Petri nets, timeouts, and
modelling of communication protocols”; Proc. 6-th Int. Conf. on
Distributed Computer Systems, Cambridge, MA, pp.452–457,
1986.

[78] Zuberek, W.M., “M–timed Petri nets, priorities, preemptions,
and performance evaluation of systems”; in: “Advances in Petri
Nets 1985” (Lecture Notes in Computer Science 222), pp.478–
498, Springer–Verlag 1986.

[79] Zuberek, W.M., “D–timed Petri nets and modelling of timeouts
and protocols”; Transactions of the Society for Computer Sim-
ulation, vol.4, no.4, pp.331–357, 1987.

[80] Zuberek, W.M., “Preemptive D–timed Petri nets, timeouts,
modelling and analysis of communication protocols”; Proc.
IEEE Sixth Annual Conf. on Global Networks (INFOCOM’87),
San Francisco, CA, pp.721–730, 1987.

[81] Zuberek, W.M., “Performance evaluation using unbounded
timed Petri nets”; Proc. 3-rd Int. Workshop on Petri Nets and
Performance Models (PNPM’89), Kyoto, Japan, pp.180–186,
1989.

[82] Zuberek, W.M., “Performance evaluation using timed colored
Petri nets”; Proc. 33-rd Midwest Symp. on Circuit and Systems
(Special Session on Petri Net Models), Calgary, Alberta, pp.779–
782, 1990.

[83] Zuberek, W.M., “Timed Petri nets – definitions, properties and
applications”; Microelectronics and Reliability (Special Issue on

PETRI NETS AND TIMED PETRI NETS IN MODELING AND ANALYSIS OF CONCURRENT SYSTEMS – AN OVERVIEW 73

Petri Nets and Related Graph Models), vol.31, no.4, pp.627–644,
1991.

[84] Zuberek, W.M., “Schedules of flexible manufacturing cells and
their timed colored Petri net models”; Proc. IEEE Int. Conf.
on Systems, Man and Cybernetics (SMC’95), Vancouver, BC,
pp.2142–2147, 1995.

[85] Zuberek, W.M., “Composite schedules of manufacturing cells
and their timed Petri net models”; Proc. IEEE Int. Conf. on Sys-
tems, Man and Cybernetics (SMC’96), Beijing, China, pp.2990–
2995, 1996.

[86] Zuberek, W.M., “Modeling using timed Petri nets –
model description and representation”; Technical Re-
port #9601, Department of Computer Science, Memo-
rial University of Newfoundland, St. John’s, Canada
A1B 3X5, 1996 (available through anonymous ftp at
ftp.cs.mun.ca/pub/techreports/tr-9601.ps.Z).

[87] Zuberek, W.M., “Modeling using timed Petri nets – event-
driven simulation”; Technical Report #9602, Department of
Computer Science, Memorial University of Newfoundland, St.
John’s, Canada A1B 3X5, 1996 (available through anonymous
ftp at ftp.cs.mun.ca/pub/techreports/tr-9602.ps.Z).

[88] Zuberek, W.M., “Hierarchical derivation of schedules for man-
ufacturing cells”; Proc. 9-th Symp. on Information Control in
Manufacturing (INCOM-98), Nancy-Metz, France, pp.423–428,
1998.

[89] Zuberek, W.M., “Stepwise refinements of net models and their
place invariants”; Proc. 8-th Int. Workshop on Petri Nets and
Performance Models (PNPM’99), Zaragoza, Spain, pp.92–101,
1999.

[90] Zuberek, W.M., “Hierarchical derivation of Petri net models
of composite schedules for manufacturing cells”; Proc. IEEE
Int. Conf. on Systems, Man and Cybernetics (SMC’99), Tokyo,
Japan, vol.3, pp.775–780, 1999.

[91] Zuberek, W.M., “Petri net models of process synchronization
mechanisms”; Proc. IEEE Int. Conf. on Systems, Man, and Cy-
bernetics (SMC’99), Tokyo, Japan, vol.1, pp.841-847, 1999.

[92] Zuberek, W.M., “Approximate performance evaluation of mul-
tithreaded distributed memory architectures”; Proc. 15-th Per-
formance Engineering Workshop, Bristol, UK, pp.81–92, 1999.

[93] Zuberek, W.M., “Performance modeling of multithreaded dis-
tributed memory architectures”; in: Hardware Design and
Petri Nets, A. Yakovlev, K. Gomes (eds.), pp.311–331, Kluwer
Academic Publishers 2000.

[94] Zuberek, W.M., “Discrete–event simulation of timed Petri net
models”; Proc. 33-rd Annual Simulation Symposium; Washing-
ton, D.C., pp.91–98, 2000.

[95] Zuberek, W.M., “Performance comparison of fine-grain and
block multithreaded architectures”; Proc. High Performance
Computing Symposium (HPC’2000), Washington, DC, pp.383–
388, 2000.

[96] Zuberek, W.M., “Petri nets in hierarchical modeling of manu-
facturing systems”; Proc. IFAC Conf. on Control System Design
(CSD’2000), Bratislava, Slovakia, pp.287-292, 2000.

[97] Zuberek, W.M., “Analysis of pipeline stall effects in block multi-
threaded multiprocessors”; Proc. 16-th Performance Engineering
Workshop, Durham, UK, pp.187-198, 2000.

[98] Zuberek, W.M., “Timed Petri net models of cluster tools”; Proc.
IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC’2000),
Nashville, TN, vol.4, pp.3063-3068, 2000.

[99] Zuberek, W.M., “Hierarchical analysis of manufacturing systems
using Petri nets”; Proc. IEEE Int. Conf. on Systems, Man, and
Cybernetics (SMC’2000), Nashville, TN, vol.4, pp.3021-3026,
2000.

[100] Zuberek, W.M., “Timed Petri nets in modeling and analysis of
cluster tools”; IEEE Trans. on Robotics and Automation, vol.17,
no.5, pp.562–575, 2001.

[101] Zuberek, W.M., “Petri net modeling and performance analysis
of cluster tools with chamber revisiting”; Proc. IEEE Int. Conf.
on Emerging Technologies and Factory Automation (ETFA’01),
Juan-les-Pins, France, pp.105–112, 2001.

[102] Zuberek, W.M., “Performance analysis of enhanced fine-grain
multithreaded distributed-memory systems”; Proc. IEEE Conf.
on Systems, Man, and Cybernetics (SMC’01), Tucson, AZ,
pp.1101–1106, 2001.

[103] Zuberek, W.M., “Timed Petri net models of multi-robot cluster
tools”; Proc. IEEE Conf. on Systems, Man, and Cybernetics
(SMC’01), Tucson, AZ, pp.2729–2734, 2001.

[104] Zuberek, W.M., “Analysis of performance limitations in multi-

threaded multiprocessor architectures”; 2-nd Int. Conf. on Ap-
plication of Concurrency to System Design, Newcastle, UK,
pp.43-52, 2001.

[105] Zuberek, W.M., “Approximate simulation of distributed–
memory multithreaded multiprocessors”, Proc. 35-th Annual
Simulation Symposium, San Diego, CA, 107-114, 2002.

[106] Zuberek, W.M., “Analysis of performance bottlenecks in mul-
tithreaded multiprocessor systems”; Fundamenta Informaticae,
vol.50, no.2, pp.223-241, 2002.

[107] Zuberek, W.M., “Performance equivalence in the simulation
of multiprocessor systems”; International Journal of Simulation,
vol.3, no.1-2, pp.80-88, 2002.

[108] Zuberek, W.M., “Approximate simulation of distributed-
memory multithreaded multiprocessors”; Proc. 35-th Annual
Simulation Symposium, San Diego, CA, pp.107–114, 2002.

[109] Zuberek, W.M., “Performance balancing of fine-grain multi-
threaded distributed-memory multiprocessors”; Proc. High Per-
formance Computing Symposium (HPC’02), San Diego, CA,
pp.129-134, 2002.

[110] Zuberek, W.M., “Interconnecting networks and the perfor-
mance of multithreaded multiprocessors”; Proc. SSGRR Sum-
mer Conf. on Infrastructure for e-Business, e-Education, e-
Science and e-Medicine; L’Aquila, Italy, 2002.

[111] Zuberek, W.M., “Performance–equivalent multiprocessor sys-
tems”, Proc. ICALP’2003 Stochastic Petri Net Workshop, Eind-
hoven, The Netherlands, pp.123–136, 2003.

[112] Zuberek, W.M., “Structural methods in performance analysis
of discrete-event systems”; Proc. 9-th IEEE Int. Conf. on Meth-
ods and Models in Automation and Robotics, Miedzyzdroje,
Poland, 2003.

[113] Zuberek, W.M., “Performance analysis of fine–grain multipro-
cessors”; systems”; International Journal of Simulation, vol.4,
no.3-4, pp.12–20, 2003.

[114] Zuberek, W.M., Bluemke, I., “Hierarchies of place/transition
refinements in Petri nets”; Proc. 5-th IEEE Int. Conf. on Emerg-
ing Technologies and Factory Automation (ETFA’96), Kauai,
Hawaii, pp.355–360, 1996.

[115] Zuberek, W.M., Govindarajan, R., “Performance balancing in
multithreaded multiprocessor architectures”; Proc. 4-th Aus-
tralasian Conf. on Parallel and Real–Time Systems (PART’97),
Newcastle, Australia, pp.15–26, 1997.

[116] Zuberek, W.M., Govindarajan, R., Suciu, F., “Timed colored
Petri net models of distributed memory multithreaded multi-
processors”; Proc. Workshop on Practical Use of Colored Petri
Nets and Design/CPN (CPN’98), Aarhus, Denmark, pp.253–
270, 1998.

[117] Zuberek, W.M., Kubiak, W., “Timed Petri nets in modeling
and analysis of simple schedules for manufacturing cells”; Com-
puters and Mathematics with Applications, vol.37, no.12-12,
pp.191–206, 1999.

[118] Zuberek, W.M., Rada, I., “Space partitioning and speedup in
distributed generation of state spaces”; 15-th European Sim-
ulation Multiconference, Prague, Czech Republic, pp.554–559,
2001.

[119] Zuberek, W.M., Rada, I., “Modeling and analysis of distributed
state space generation for timed Petri nets”; 34-th Annual Sim-
ulation Symposium (SS-2001), Seattle, WA, pp.93–98, 2001.

[120] Zuberek, W.M., Zuberek, M.S., “Transformations of timed
Petri nets and performance analysis”; Proc. 33-rd Midwest
Symp. on Circuit and Systems (Special Session on Petri Net
Models), Calgary, Alberta, pp.774–778, 1990.

