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Abstract

High-fidelity Large-Eddy Simulation (LES) of fluid flow over complex terrain has long

been a challenging computational problem. Complex terrain leads to increased velocity

gradients, turbulence production, and complex turbulent wakes. Body-fitted grids need a

high resolution to deal with additional effects of highly skewed cells that follow a terrain

of steep slope. Immersed boundary methods need special techniques like wall models to

numerically resolve the associated drag force. In flow over complex terrain, the charac-

teristic scale decreases locally which makes it a challenging endeavour for LES to mimic

the turbulent energy cascade, particularly when steep terrain produce vortices and streaky

structures that sustain turbulence away from the surface.

This thesis presents the canopy stress method in which the terrain is immersed into the

fluid, cutting the cells of a Cartesian grid, where the effects of terrain are treated by the

form drag and the skin friction drag. Heat transfer analysis of flow in pipes and porous

media is considered to study the sensitivity of canopy drag coefficients. A scale-adaptive

methodology is proposed to model the subgrid-scale terrain effects. The analysis of wind

tunnel measurements over mountains and forests shows that the scale-adaptive model dy-

namically adjusts the dissipation rate by the scale of energetic eddies near complex terrain.

In regions without terrain effects, where subgrid turbulence is locally isotropic, the model

also provides accurate dissipation rate. These results suggest that combining the rotation

tensor and the vortex stretching vector with the strain tensor through the second-invariant

of the square of the velocity gradient tensor is a novel approach to improve the fidelity of

LES over complex terrain in which the dissipation becomes scale-aware; i.e. the rate of

turbulence dissipation is adjusted with the changes in the characteristic scales. The nu-

merical analysis of four distinct flow regimes (e.g., Chapters 3-6) illustrates the accuracy,

simplicity, and cost-effectiveness of the proposed LES methodology.
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Lay Summary

This thesis is an integrated, article-based thesis that presents four numerical investiga-

tions aimed at understanding the numerical modelling of atmospheric boundary layer flow

over complex terrain. Our approach is based on the LES method that solves the Navier-

Stokes equation to resolve the large-scale flow, while a subgrid-scale model incorporates

the effects of the unresolved small-scale motion to the resolved motion. This thesis consists

of the following four peer-reviewed articles that are either published or currently under re-

view. The materials of two articles (5-th and 6-th article) have been used in the 1-st article.

Those two articles are not considered as chapters of the thesis.

Articles included in the thesis as chapters

1. Bhuiyan, M. A. S., Hossain, M. A. & Alam, J. M. (2016), A computational model

of thermal monitoring at a leakage in pipelines. International Journal of Heat and

Mass Transfer 92, 330-338.

2. Bhuiyan M.A.S., Alam J.M. (2018), Large Eddy Simulation of Turbulent Flow Over

a Hill Using a Canopy Stress Model. In: Kilgour D., Kunze H., Makarov R., Mel-

nik R., Wang X. (eds) Recent Advances in Mathematical and Statistical Methods.

AMMCS 2017. Springer Proceedings in Mathematics & Statistics, vol 259. Springer,

Cham

3. Bhuiyan M.A.S., Alam J.M. (2020), Subgrid-scale transport and coherent structures

in turbulent flow over a forest-like canopy. submitted manuscript

4. Bhuiyan M.A.S., Alam J.M. (2020), Scale-adaptive subgrid models for large eddy

simulation over complex terrain. submitted manuscript
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Additional published articles

5. Bhuiyan M.A.S., Alam JM, Biswas MR. Effects of Pressure Stress Work and Vis-

cous Dissipation in Mixed Convection Flow Along a Vertical Flat Plate. Journal of

Mathematics and System Science. 2013 Mar 1;3(3):115.

6. Bhuiyan M.A.S. and Hossain, MA and Alam, JM (2015) A computational model of

temperature monitoring at a leakage in a leak detection system of a pipeline. Pro-

ceedings of the 25th Canadian Congress of Applied Mechanics., pages=643-647

Table 1 outlines the contributions made by co-authors of each article. My primary role

includes the preparation of each manuscript and the analysis of the corresponding results.

However, the research ideas of each paper were initially planned by my supervisor, Dr.

Jahrul Alam. I have adapted the assigned research questions to my background, knowledge,

and interests. Therefore, the investigations and the research results contained in each paper

were led by myself while my supervisor edited each manuscript as necessary, and cross-

checked all computer codes.

The scientific development of four main articles consists of theory, modelling, and ap-

plications, which improve the fidelity of LES over complex terrain. Since I plan to get a

deep knowledge on the software development aspect of the proposed research, I have con-

sidered wind-tunnel measurements to assess the performance of the computational models

for a range of applications such as convective heat transfer, pipeline leak detection, turbu-

lence modelling, atmospheric boundary layer flows over mountains and forests. The overall

research results of the thesis indicate that the canopy stress method is a cost-effective model

of complex terrain in the context of LES. Besides, the proposed subgrid model is found to

be more appropriate than those commonly used, which typically treats the turbulent char-

acteristics of wind flows as random statistical processes.
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Chapter 1

Introduction

1.1 Atmospheric boundary layer

The bottom layer of the atmosphere that is in contact with the surface of the Earth is called

the planetary boundary layer (PBL) or atmospheric boundary layer (ABL). The character-

istics of the ABL are usually turbulent, which differ from traditional turbulent boundary

layers over flat plates. The nature of the ABL varies in time and space, exhibiting a marked

diurnal cycle. During the daytime, a layer of vigorous turbulent mixing is formed, which

grows up to a height above which an entrainment zone of intermittent turbulence persists.

During the nighttime, the bottom of the ABL remains in contact with the radiatively cooled

surface, which means that the potential temperature increases with height. The bottom

layer that is about 10% of the ABL depth is called the surface layer (see the classical text,

Garratt, 1992).

Let us consider that wind flows along the x-direction in the surface layer, where z is

the direction pointing upward from the Earth’s surface. According to matched asymptotic

expansions of atmospheric boundary layers, the mean wind flow near the Earth’s surface is

1



CHAPTER 1. INTRODUCTION 2

given by

u(z) =
u∗

k
ln

(︃
z

z0

)︃
, (1.1)

where u∗, k, and z0 are the friction velocity, the von Karmann constant, and a scale for

surface roughness, respectively. In other words, the velocity profile next to the Earth’s

surface is not primarily influenced by the molecular viscosity of the air (Garratt, 1992).

The first layer of this earth’s surface is called a canopy layer where forest or hill presents.

In the canopy layer, the similarity law, Eq (1.1).

In the region further away from the Earth’s surface, above the surface layer, the mean

wind flow is given by the “velocity defect law”:

u(z)− Ug =
u∗

k
ln

(︃
zf

u∗

)︃
+ 4u∗, (1.2)

where f = 2Ω sinϕ is the Coriolis parameter at a latitude of ϕ and Ug is the geostrophic

wind in the x-direction. The continuity of the velocities given by Equations (1.1-1.2) im-

plies that Ug = (u∗/k) ln(u∗/fz0)−4u∗. For typical values of k = 0.41, f = 9.34×10−5/s,

u∗ = 0.45 m/s, we get approximate values of Ug = 20 m/s and Ug = 12.5 m/s for

z0 = 10−5 m and z0 = 10−2 m, respectively.

The height of the atmospheric boundary layer (Habl) can be estimated by matching the

wind flow in the outer layer, e.g. in Equation (1.2), to the geostrophic wind Ug, which leads

to

Habl =
u∗

f
e−4k.

It is useful to note that the geostrophic wind satisfies,

−fVg =
1

ρ

∂p

∂x
, −fUg =

1

ρ

∂p

∂y
(1.3)

leads to

k

√︁
U2
g + V 2

g

u∗
cos θ − ln

(︃
u∗

fz0

)︃
= A, k

√︁
U2
g + V 2

g

u∗
sin θ = B, (1.4)
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where A and B are two similarity coefficients of atmospheric Ekman layer flows, Ug, Vg

are velocities and θ is a deflection angle.

1.2 The ABL over complex terrain

About 31% of the Earth’s surface is covered by forests, and 3% of the remaining part is

covered by cities or urban areas (Swanston et al., 2016). The complex terrain consisting

of forest and urban topography plays an important role in the dynamics of the atmospheric

boundary layer (ABL). For instance, the forest canopy is a storage of CO2 (e.g., Belcher

et al., 2012); however, urban regions contribute to CO2 emission. The numerical study

of ABL flow over complex terrain is useful for designing mega-cities, developing wind

energy, controlling forest fires or greenhouse gases, etc.

To compromise the limitation of computing resources, the traditional Reynolds-Averaged

Navier-Stokes (RANS) model characterizes atmospheric turbulence as a random phenomenon

by numerically resolving only the mean flow. As the computational power increases, the

Large Eddy Simulation (LES) method can be used at higher grid resolutions illustrating

how turbulence characteristics of the atmospheric boundary layer depart from being a typ-

ical random statistical process (Senocak et al., 2007; Kröniger et al., 2018b; Huq et al.,

2019). The ansatz of the LES method is that resolving the energetic large-scale features of

atmospheric turbulence allows a subgrid model to capture the effects of small-scale turbu-

lence.

As can be seen from Figure 1.1 (left image), the grid consists of extremely skewed

cells as the grid lines follow the shape of the terrain. Additional refinements of the grid

in the vertical direction can deteriorate the discretization error in the vicinity of the ter-

rain (Lundquist et al., 2010, 2012). Using a grid that is depicted in Figure 1.1, (right

image), requires additional developments to satisfy boundary conditions on the terrain sur-
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(a) (b)

Figure 1.1: (a) A mesh that follows the shape of the terrain, where the obstacle surface

is adequately resolved, but cells are highly skewed; (b) a mesh in which the terrain is

immersed without affecting the cells, but the terrain is not adequately resolved. The illus-

tration is adapted to the present context by following Figure 13 of Chow et al. (2019)

face. For instance, accurate knowledge of the aerodynamic characteristics of the terrain is

essential to capture the mean wind profile Equation (1.1). Due to the interactions of atmo-

spheric turbulence with surface mounted obstacles, such as buildings, mountains, forests,

etc., the characteristic length scale of turbulence rapidly decreases in the surface layer, i.e.,

very close to the Earth’s surface. In other words, the size of the turbulence producing ed-

dies can fall below the cutoff scale as the terrain is approached, which breaks down the

assumptions upon which the subgrid model is defined. Thus, the LES study of ABL flows,

while improving, remains an active and challenging area of research.

1.3 Objectives

A terrain imposes shear on the airflow aloft, which not only affects the turbulence mixing

just above the terrain but also influences the velocity defect u(z) − Ug in the outer region
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Figure 1.2: Experimental data for mean-velocity profiles of a turbulent boundary layer flow

over a flat plate at three Reynolds numbers, Re. The log-linear plot is adapted from the

experimental data reported by Kundu et al. (2012), where U+ = ū/u∗ is plotted against

z+ = zu∗/ν for ν = 9.75× 10−7 and u∗ = 0.2030 m/s.

through the Reynolds stresses. For instance, Figure 1.2 demonstrates the mean velocity of

a turbulent boundary layer flow over a flat surface. One notices that the mean velocities for

three Reynolds numbers Re = 5.6× 104, 1.07 × 105, and 1.56 × 105 have collapsed well

within the logarithmic layer, z+ ≥ 30, according to Equation (1.1). Moreover, the velocity

varies linearly with the distance from the wall in the viscous layer (z+ ≤ 5). Here, z+ =

zu∗/ν denotes the dimensionless distance from the wall. Clearly, an extremely fine mesh

is required (at least in the vertical direction) to reproduce the wind flow Equation (1.1). For

LES of atmospheric boundary layer flows, the first off-wall grid point is usually at z+ > 5.

Thus, special types of boundary conditions (called wall-models) are required. When forest-

and mountain-like roughness elements alter the flow, it is necessary to obtain more accurate

information about the aerodynamic properties in order to prescribe the mean velocity over

complex terrain.

The first objective of this thesis is to research how to numerically model the effects of
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complex terrain in the context of large-eddy simulation in which the grid is not sufficiently

fine to explicitly resolve the terrain effects at all scales. The following are the summary

questions of first objective:

• Can we reproduce the near-wall dynamics adequately with a skin-friction model

when a fluid passes through a porous zone?

• Can we simulate high Reynolds number flow through a porous zone using the volume-

averaged Navier-Stokes equation?.

The second objective is to develop a computational framework for the algorithms and mod-

els studied through this thesis in which the eddy-viscosity model is examined in the context

of atmospheric boundary layer profile over complex terrain. The following are the summary

questions of second objective:

• In LES, can we derive aerodynamic conditions so that the impacts of an isolated hill

on a turbulent flow can be simulated by representing the hill as a porous zone?

• Can we combine the low-pass filtering of LES with the volume-averaged Navier-

Stokes equations to simulate turbulent flow over complex terrain?

• What are the best approaches to model subgrid turbulence when the terrain is repre-

sented by a canopy stress?.

Finally, there are two primary challenges of complex terrain. One is due to the boundary

conditions, which requires resolving the terrain geometry with a suitable grid. The other

is the mathematical modelling of scale-adaptive subgrid turbulence in which the vortical

motion dominates over the straining motion due to the influence of the terrain.

To maintain consistency of the thesis, the published papers are re-set as chapters from

the journal-specific format. Chapter 2 outlines the overall methodology extending recent
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developments in Computational Fluid Dynamics (CFD) to the field of atmospheric turbu-

lence modelling. Chapters 3-6 have organized the findings of the two research directions

stated above, which are either published or submitted for publication. Chapter 7 summa-

rizes the overall research accomplishments.



Chapter 2

Methodology

2.1 Canopy flows

A fluid flow through a forest is often called a ‘canopy flow’ (e.g., Figures 2.1a, 2.1b).

Forest canopies play a vital role in the global carbon cycle by absorbing CO2. For instance,

according to the United States Department of Agriculture, forests store 750 million metric

tons of CO2, which is about 10% of the United States CO2 emissions in 2017 (Swanston

et al., 2016). Trees collect CO2 from the atmosphere and convert it into carbon, thus storing

CO2 for hundreds of years. So, trees provide a part of the solution to climate change by

reducing greenhouse gas emissions. The carbon cycle is significantly influenced by the

fluid flow around trees and the associated transport mechanism.

The mean wind profile of the atmospheric boundary layer (see Figure 1.2) as well as

the stress,

τij = −pδij +
µ

2

(︃
∂ui

∂xj

+
∂uj

∂xi

)︃
(2.1)

are altered by the tree-like surface roughness (e.g. Figures 2.1a, 2.1b), which are primarily

due to the fundamental changes in the turbulence stress in the region that overlaps between

the obstacle-free fluid and the fluid passing through the canopy (Raupach & Shaw, 1982).

8
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(a) Vegetation Canopy. (b) Forest Canopy.

Figure 2.1: The technical difference of the bottom boundary condition is illustrated concep-

tually with respect to a turbulent flow over (a) vegetation- and (b) forest-canopies. Clearly,

the nature of the flow modifications differs between these two types of canopy, where a

single similarity law may not provide bulk aerodynamic coefficients. Pictures are obtained

from Google’s image database.

The fluid flow through the canopy as well as in the roughness sublayer aloft the canopy

has been studied most intensively in the context of vegetation, urban canopies, and gravel

beds (Finnigan, 2000). A primary focus of the past work was to formulate an effective

model that accurately represents the vegetation- and forest-type canopies within a given

turbulence modelling framework (Finnigan et al., 2009). More recent work suggests that

coherent flow structures transfer a substantial part of the momentum and energy in canopy

flows (e.g., Bailey & Stoll, 2016).

Past work on the canopy flows suggests that the spatio-temporal variations of velocity

and pressure due to vegetation- and forest-canopies (e.g., Figures 2.1a, 2.1b) can be incor-

porated in the Navier-Stokes equations by considering an average flow with respect to a

representative elementary volume V such that

⟨ui⟩f =
1

Vf

∫︂∫︂∫︂
V
uidV, (2.2)

where Vf denotes the volume of fluid occupied by the volume V and ui denotes either

velocity or pressure. In the presence of a canopy, the volume-averaging operator does
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not commute with spatial-differentiation operators. Thus, applying the volume-averaging

operation onto the Navier-Stokes equation introduces two additional terms

fi = − 1

V

N∑︂
n=1

∫︂∫︂
Sn

pnidS +
µ

V

∫︂∫︂
Sn

∂u

∂n
dS, (2.3)

representing the stress, Equation (2.1) i.e. the pressure and the velocity gradients on the

surfaces of a total of N obstacles. Other terms arising from the commutation effects of

volume-averaging with differentiation vanish due to no-slip boundary conditions. On the

right-hand side of Equation (2.3), the last and the second last terms represent boundary

conditions for pressure and viscous stress, i.e. the effects of skin friction and pressure drag,

respectively (Wilson & Shaw, 1977; Lage et al., 2002). Clearly, the volume-averaging

method accurately resolves the stress Equation (2.1) and provides the correct boundary

conditions of both the mass-flux (i.e. no-slip) and the stress.

2.2 The terrain following method

To represent no-slip boundary conditions for mountains, terrain-following coordinates (e.g.

Figure 1.1a) are a commonly used technique in regional and mesoscale weather prediction

models (e.g., Pielke & Mahrer, 1975; Mahrer & Pielke, 1976). In this approach, the σ-

coordinate system is defined by

σ = S
z − zG
S − zG

, (2.4)

where S is a constant, and zG is a function of x and y. The surface z = zG(x, y) is

represented by the computational grid points on the flat plane σ = 0, which makes the

no-slip boundary condition straightforward. However, this technique introduces additional

computational issues, particularly for turbulence modelling. First, the treatment of the

pressure gradient generates errors on the σ surface (Bao et al., 2018). Second, turbulence

fluxes are represented separately in the vertical and horizontal directions; however, the
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subgrid-scale flux terms in the terrain-following system produce additional fluxes in the

vertical direction due to coordinate transformation, which violates the hypothesis dealing

with subgrid-scale turbulence (e.g., Mahrer & Pielke, 1978; Lundquist et al., 2012). Finally,

for complex terrain having a steep slope, it was formally documented by Lundquist et al.

(2010) that increasing vertical resolution introduces numerical errors and instabilities (see

also Lundquist et al., 2012; Bao et al., 2018). A steep terrain also causes flow separations

leading to turbulence production away from the terrain, which requires a very fine mesh to

be used with the LES method (Bao et al., 2018; Arthur et al., 2019). The present thesis

aims at studying the canopy stress method for large-eddy simulations of turbulent flow over

complex terrain.

2.3 The canopy stress method

The canopy stress method is similar to the immersed boundary (IB) method for dealing

with solid bodies immersed in a fluid. Lundquist et al. (2010) provides technical details of

the IB method for simulating air circulations over a mountain in which horizontal scales

are larger than the vertical scales. The IB method was pioneered by Peskin (2002) in

which the solution is interpolated on grid points around the immersed boundary so that the

no-slip conditions are satisfied. The IB method lacks the desired generality in resolving

the boundary layer profile, as well as the stress experienced by the surface. Numerical

simulation of this scientific challenge using the IB method is not a trivial task, particularly

for complex terrain (see Anderson & Meneveau, 2011; Anderson, 2013). The IB method

usually requires an increased spatial resolution in the near-wall region, and thus, an LES

method based on the IB method is limited to relatively low Reynolds numbers.

Brown et al. (2001) pioneered the canopy stress method for improved treatment of the

lower boundary conditions in the LES of atmospheric boundary layer flows. Usually, the
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canopy stress method considers an “ad-hoc” subgrid-scale stress term

τi3 = −
∫︂ z

0

Cd cos
3

(︃
πz′

2hc

)︃
|u|uidz

′ (2.5)

which is assumed to vanish for z > hc. The stress given by Equation (2.5) accounts for the

interaction between surface layer eddies and the complex terrain to the total stress given by

Equation (2.1). The main hypothesis of the canopy stress method is that the interactions

of vegetation, forest, buildings, or mountains with the near-surface atmospheric turbulence

can be formally represented through an appropriate mathematical expression of the stress

experienced by a canopy.

The canopy stress method developed through this thesis is an extension of the method

studied by Wang & Takle (1995) for the RANS model of turbulent flows around hills. In

similar studies, the canopy stress method was considered to circumvent errors associated

with turbulence modelling over rough surfaces (Brown et al., 2001; Senocak et al., 2007;

Arthur et al., 2019). Clearly, the advancement of the canopy stress method has led to much-

improved flow profiles through improved boundary conditions. In the present work, we

consider the hypothesis of the canopy stress method to develop mathematical formulations

of the boundary conditions of the stress Equation (2.1) on complex terrain and its subgrid-

scale variation aloft the complex terrain i.e., in the surface layer to avoid ‘ad-hoc’ damping

of turbulent eddy viscosity.

2.4 Large-eddy simulation (LES)

The ansatz for the LES of complex turbulent flows is that the motion characterized by scales

smaller than the grid spacing ∆ can be represented with a subgrid model by solving the

Navier-Stokes equation to resolve the large-scale motion (‘large eddy’). Thus, one filters

the velocity field ui = ⟨u⟩i + u′
i and solves the following form of the filtered momentum
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equations,
∂⟨u⟩i
∂t

+
∂⟨u⟩i⟨u⟩j

∂xj

= − ∂p

∂xi

− ∂τij
∂xj

, (2.6)

where τij accounts for both the subgrid-scale and the resolved portion of the viscous stress

denoted by the last term in Equation (2.1). A common and practical subgrid model is

proposed by Smagorinsky (1963) in which the deviatoric part of the subgrid-scale tensor

τij is expressed in terms of the filtered rate of strain such that τ smg
ij = −2ντSij , where the

turbulent eddy viscosity is given by

ντ (x, t) = c2s∆
2
√︁
2SijSij and Sij =

1

2

(︃
∂⟨u⟩i
∂xj

+
∂⟨u⟩j
∂xi

)︃
. (2.7)

Although a constant value of cs = 0.16 was suggested theoretically by Lilly (1967) for

isotropic turbulence, there is no clear approach for selecting cs so that the subgrid model

mimics energy transfer from the resolved scales to the subgrid ones in complex turbulent

flows such as over complex terrain.

The box-filter

G(x− r) =

⎧⎪⎨⎪⎩
1
∆

if |x− r| ≤ ∆
2

0 otherwise
(2.8)

is commonly used in LES such that ⟨u⟩x =
∫︁∞
−∞ G(x − r)urdr. In comparison to the

volume-averaging Equation (2.3), we see that applying the box-filter is equivalent to the

volume-averaging if V in Equation (2.3) is chosen the same as the box in Equation (2.8).

The volume-averaging method for canopy flows was combined with the LES method

based on box-filtering (e.g., see Raupach & Shaw, 1982; Finnigan, 2000; Finnigan et al.,

2009). In other words, combining the canopy model with the LES method, one resolves

most of the transient features of canopy flows while parameterizing the small-scale mo-

tion (Finnigan, 2000). To capture the forest induced turbulence with the LES method, an

extremely fine grid is needed. For instance, Kröniger et al. (2018b) employs 13 billion grid

points for large-eddy simulation of the turbulent flow over a forest.
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2.5 Summary of accomplishments

Large-eddy simulation of atmospheric boundary layer flow over complex terrain benefits

a wide range of applications such as air pollution modelling, wind energy developments,

among others. If we have a mesh so that the bottom topography and a major fraction of the

turbulent kinetic energy are both resolved adequately, LES results usually exhibit a very

good agreement with measurements conducted in wind tunnels or in an actual field.

In the present thesis, I have developed a canopy stress method that resolves the bound-

ary conditions for both the mass flux and the stress, adopting the following formulation of

the canopy stress, τ cij:
∂τ cij
∂xj

= − µ

K
ui −

Cfρ|u|√
K

ui, (2.9)

where Cf is either 0 or 1 and K is a parameter characterizing the drag force. I have consid-

ered the method of vortex identifier to develop a scheme that models the effects of complex

terrain on the subgrid-scale turbulence.

To verify these two theoretical developments, I have designed a three-dimensional com-

puter code that solves the Navier-Stokes equation using the multigrid method in which

Pressure-Implicit with Splitting of Operator (PISO) method is considered for time integra-

tion. I have utilized the Message Passing Interface (MPI) methodology to implement the

multigrid algorithm within a parallel programming framework. More explanations are in

Chapter 3 - 6 . For the results in Chapter 3, I have employed two powerful software li-

braries, PETSc and libMesh, to develop necessary computer codes. For the work presented

in Chapters 4-6, I have considered the object-oriented design of the OpenFOAM code,

which is a widely used software library in the field of Computational Fluid Dynamics.



Chapter 3

A numerical study of convective heat

transfer problems

Citation

Bhuiyan, M. A. S., Hossain, M. A. & Alam, J. M. 2016: A computational model of thermal

monitoring at a leakage in pipelines. International Journal of Heat and Mass Transfer 92,

330-338.

3.1 Abstract

Monitoring the surrounding pipeline temperature through fibre optic sensors is an efficient

method of detecting leakage of fluids such as oil and gas, from pipelines. This article

presents a computational model of temperature monitoring in such a leak detection sys-

tem (LDS). A longitudinal cross section of an idealized pipe-in-pipe flow-line has been

simulated, where a localized thermal source is placed on the lower boundary of the com-

putational domain. The heat transfer rates and temperature profiles of the localized heat

15
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source have been investigated because a detailed understanding of the excess temperature

surrounding a pipeline is essential in designing efficient leak detection systems based on the

active thermometry method. The excess temperature profiles from a localized heat source

are studied for various physical conditions. More effective results of the rate of heat trans-

fer have been discussed, which are suggestive for controlling leakages in the pipelines. The

present investigation would be useful for leak detection systems.

3.2 Introduction

Heat transfer analysis in the vicinity of leakages in buried or above ground pipelines is

an important research topic for developing leak detection methodology based on optical

fibre thermometry. Leakages from pipelines usually produce local thermal anomalies at the

vicinity of the pipeline which can be measured using modern fibre optic sensor technolo-

gies from a central station located several kilometers away from the site of the leakage.

Such a technology involves installing an optical fibre cable parallel to the pipeline over its

entire length, which measures the temperature profile in the vicinity of the pipeline. In a

state-of-the-art pipe-in-pipe (PIP) system, the flow line is insulated – as depicted schemati-

cally in Figure 3.1 (insulation). One may idealize such a flow line by an axial cross section

(see Figure 3.1 (insulation)) so that the complete leakage phenomena may be modelled

based on pressure and temperature anomalies in the vicinity of the pipeline. An effective

computational model of natural convection heat transfer and fluid flow from a localized

source in a porous medium can be used to investigate how the various physical conditions

of an insulator may affect the surrounding thermal and pressure anomalies in case a leak

occurs. Such a model would also provide useful feedback for optimizing the cost of insu-

lation in a PIP system. For instance, in the Arctic offshore, oil companies transport oil/gas

at a temperature that is relatively higher than that of the surrounding ocean in the vicinity
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Figure 3.1: Schematic diagram at a leakage of a pipe.

of the pipeline. Clearly, the natural convection heat transfer is the dominant phenomenon

that requires further investigation in the context of leakage monitoring in pipelines.

Considering the insulation as a porous medium, a number of numerical (e.g., Bagchi &

Kulacki, 2011; Prasad & Kulacki, 1984; Prasad & Kulacki, 1987; Sivasankaran et al., 2011)

as well as experimental (e.g., Elder, 1967) studies are available; most such studies adopted

a uniformly heated bottom wall. Note that studies employing a discrete or localized heat

source on the boundary are limited (e.g., Bagchi & Kulacki, 2011; EI-Khatib & Prasad,

1987) and (Sivasankaran et al., 2011)). Recently, Oztop et al. (2012) reported that both the

local inclination angle of the pipeline and the sinusoidal heating at the bottom wall have a

significant impact on heat transfer. EI-Khatib & Prasad (1987) mentioned that an increase

of the stable wall thermal gradient may keep the upper surface thermal energy independent

of the Rayleigh number. Saeid & Pop (2004) observed an increase in the heat transfer rate

with an increase of the length of the heat source. Cotter & Michael (1993) investigated the

geometrical constraint on the natural convection heat transfer in recently produced crude

oil. However, the leakage size in a pipeline is typically unknown and non-uniform, and de-

tailed characteristics of the aspect ratio effect on LDS are not fully understood (de Sousal

et al., 2013; dos Santos, 2013; Pregelj & Drab, 1997; Rajeev et al., 2013). Nevertheless,

in our recent summary, Bhuiyan et al. (2015), and in this article, we present the primary

results of a novel computational model that can efficiently analyze various physical condi-

tions, and estimate necessary parameters in order to optimize a leakage or scour detection
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technique. Moreover, we discuss various controlling or prevention methodologies for leaks

in pipelines based on a physical, as well as mechanical, background.

3.3 Formulation of the problem

A fluid saturated porous medium with a localized heat source (see Figure 3.1 (domain)) has

been considered for the present numerical simulations. The flow is presumed to be laminar,

incompressible, and in local thermodynamic equilibrium. The two vertical and upper walls

are thermally insulated. The excess temperature vanishes on the lower boundary except

over a length of Lh m, where a localized heat source is applied. The present mathematical

model is similar to that of Sivasankaran et al. (2011) except the momentum and energy

equations have been extended:
∂u

∂x
+

∂v

∂y
= 0, (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(︃
∂2u

∂x2
+

∂2u

∂y2

)︃
+ [βρg (θ − θ0) sinα− ν

K
ϵu], (3.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(︃
∂2v

∂x2
+

∂2v

∂y2

)︃
+ [βρg (θ − θ0) cosα− ν

K
ϵv], (3.3)

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ [

∂θ̄

∂y
v] = κ

(︃
∂2θ

∂x2
+

∂2θ

∂y2

)︃
. (3.4)

Here, u and v are the velocity (m/s) components in the horizontal and vertical directions,

respectively, (x, y) are reference coordinates, p is the pressure (pa), ν is the kinematic

viscosity (m2/s), θ is the excess temperature (K), θ0 is the temperature (K) at a reference

state, α is the angle in degrees (o) between the horizontal domain and the horizontal axis,

K is the permeability (m2) of the medium, g is the acceleration (m2/s) due to gravity,
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κ is the thermal diffusivity (m2/s), β is the thermal expansion coefficient (1/K), ∂θ̄
∂y

is a

prescribed vertical rate of variation of θ, t is time (s), L is the horizontal length (m) of

the domain, H is the vertical length (m) of the domain, L/H is the aspect ratio, ϵ is the

porosity and ρ is the fluid density (
kg

m3
). The boundary conditions are, ∂u

∂x
= 0, ∂v

∂x
= 0,

∂θ
∂x

= 0 at x = ±L/2, and ∂v
∂y

= 0, ∂u
∂y

= 0, ∂θ
∂y

= 0 at y = H, and u = 0, v =

0, θ = θ0 +∆θ if x ∈ [−Lh/2, Lh/2] and y = 0; elswhere θ = θ0. The dimensionless

parameters are the Prandtl number, Pr = ν
κ

, the Rayleigh number, Ra = βL3g∆θ
νκ

, the Darcy

number, Da = K
L2 , and the Nusselt number (heat transfer at a bottom boundary (surface)),

Nu = − 1
L

∫︁ L/2

−L/2
∂θ
∂y

(x, y = 0) dx.

3.4 Numerical Method and validation

To solve the governing Equations (3.1 - 3.4), the spatial discretization is done with a

weighted residual collocation method that is based on the Deslauriers-Dubuc interpolat-

ing scaling functions of degree 6 (Cohen et al., 1993; Daubechies & Bates, 1993) and

(Deslauriers & Dubuc, 1989). For all reported simulations, we have used a uniformly re-

fined mesh. The time integration is second order accurate and fully implicit. The scheme is

free from artificial dissipation, which means that a larger ∆t can be used without damping

the solution artificially. Instead of solving for each variable (e.g., u, v and θ) sequentially at

each time step, a Newton-Krylov method is used to solve the nonlinear system that models

the multiphysics dependence between the heat, mass, and momentum transfer phenom-

ena (Ipsen & Meyer, 1998; Kelly, 1995; Kumar & Mehra, 2007; Mallat, 2009; Ortega &

Rheinboldt, 1970; Saad & Schultz, 1986) and (van der Vorst, 2003). In other words, the

numerical method is designed to resolve the multiphysical character of the heat transfer

problem. Theoretical details of this method are given by Alam (2011, 2015) and Alam

& Lin (2008); a complete verification of this method for several aspects of heat transfer
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Ra 103 104 105

Present D.& T. Rel. err. Present D.& T. Rel. err. Present D.& T. Rel. err.

θmin -0.023537 -0.024823 5.1 -0.064457 -0.071289 9.5 -0.167264 -0.166316 0.56

θmax 1.0 1.0 0 1.0 1.0 0 1.0 1.0 0

umin -0.118739 - - -0.176090 - - -0.179622 - -

umax 0.118872 0.118887 0.12 0.176103 0.174844 0.72 0.179622 0.179054 0.31

vmin -0.030134 -0.030470 1.1 -0.037337 -0.039291 4.9 -0.085519 -0.079265 7.8

vmax 0.122229 0.125594 2.6 0.227591 0.228250 0.28 0.329467 0.322483 2.1

ωmin -1.958676 - - -3.659784 - - -5.345363 - -

ωmax 1.957423 2.06900 5.3 3.659917 3.951325 7.3 5.345340 5.921375 9.7

Nu 0.1533277 0.148605 3.1 0.2373662 0.295132 1.9 0.3684891 0.643594 42

Table 3.1: Comparison of present numerical values with the benchmark results of Dubois

& Touzani (2009)(D.& T.) for localized heat source.

applications can be found from Alam et al. (2014). This numerical model is often referred

to as AWCM++, which has also been verified for several other applications. Since the

present article does not contribute toward the development of this numerical scheme, we

focus primarily on the simulation results without the details of the numerical method.

To assess the numerical model development in the present study, we have carried out

comparisons with previous benchmark dimensionless simulations that have the same phys-

ical point of view but a different application. We have accomplished the simulation of fluid

flows in an insulator in different cases and positions of the domain, and our code has been

collated with earlier verified results for both the localized heat source (Dubois & Touzani,

2009) and the whole bottom boundary heat source (Elder, 1967; Prasad & Kulacki, 1987;

Sivasankaran et al., 2011).

For high energy transportation computation with a stable linear thermal gradient, our

numerical values have been justified with previous standard numerical simulation for the
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Ra Prasad and Kulacki Present Deviation %

50 1.360 1.300361 1.75735294

100 2.290 2.139687 6.56388646

200 3.296 3.145969 4.58131068

500 4.640 4.117779 11.2547629

Table 3.2: Comparison of the rate of convective heat transfer (Nu) for different buoyancy

driven flow rate (Ra) with the benchmark results of Prasad & Kulacki (1987) with aspect

ratio 1.

same boundary conditions: localized heat source at bottom boundary while the other bound-

aries are open. The values of the heat transfer rates, which have been obtained with respect

to the moderate buoyancy driven flow, are shown in Table 3.2 and Figure 3.2. Although

the convective heat transfer for Ra=500 is calculated for this study to be approxiately 11%

greater than that investigated by Prasad & Kulacki (1987), there is good agreement with

the results that have been calculated by Bagchi & Kulacki (2011) who mentioned that this

disagreement is on order of the inertial effects for high energy transportation. Hence, the

insulator that we have considered for simulation is relevant for this localized heat transfer

and temperature monitoring study. For the whole bottom boundary heating conditions,

our outcomes are in good agreement with the previous investigations shown in Table 3.3.

Since we have studied numerical simulations, we show that our numerical data are in good

agreement with the data that have a well match with the laboratory values of Elder (1967)

in Table 3.4. However, inverse mesh spacing is considered as 25.7 that of comparing with

an earlier study of 25 due to computational convenience. Moreover, numerical errors are

propagated through a computation. Even though there is a slight difference between the nu-

merical data, the physical points of view are the same in the two studies; there is a balance
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Figure 3.2: Nu-versus-Ra relation for the localized heat source, with aspect ratio 2.

Ra de V. Davis(1983) Ho and Lin(1997) Shu and Wee(2002) S.Sivasankaran(2011) Present

103 1.117 1.118 1.118 1.117 1.118

104 2.238 2.248 2.244 2.247 2.243

105 4.509 4.528 4.518 4.521 4.523

106 8.817 8.824 8.822 8.806 8.823

Table 3.3: Comparison of the rate of heat transfer with the benchmark results of

Sivasankaran et al. (2011) and others.

between the buoyancy forces and the viscous forces. Moreover, while the local heat source

is producing heat at the leaks in the insulator, it is enraptured in the immediate vicinity of

the heated surface by the vertical advection, which is influential in the outer portion of the

boundary layer at the localized heated surface.

3.5 Results and discussion

In the present numerical simulations, the improved localized heat transfer model at a leak-

age of a monitoring pipe has been established using improved numerical code. For nondi-

mensional comparision, we use the parameter Ra that represents the ratio of the buoyancy

force to thermal diffusivity. Moreover, the film coefficient hc (Wm−2K−1) is used for defin-
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Ra experimental data of Elder (1967) present numerical data

50 1.30 1.3003

60 1.62 1.5290

70 1.87 1.8486

80 2.08 1.8983

90 2.27 1.9795

100 2.42 2.1396

Table 3.4: Comparison of the present numerical values of the rate of convective heat trans-

fer, Nu with the laboratory values of Elder (1967) for buoyancy driven flow, (Ra > 40).

ing the type of fluid: gas or liquid, and the flow properties: velocity, viscosity and other

fluid flow and the dependence of temperature. The present idealized paper is more consis-

tent with Zhao et al. (2013)[ e.g., a domain (7 m×1 m)]. The initial temperature was set to

293.15 K. The heat transfer rate and the temperature profiles from the localized heat source

are very important because in the active thermometry method, the leak detection system

collects signals from the excess temperature part in the pipeline. These excess temperature

profiles are produced from the localized heat source in an insulator due to leakage in the

pipe. More effective results for the rate of heat transfer have been discussed, which are

suggestive for preventing mechanical effects: controlling leaks, in the pipelines.

3.5.1 Excess temperature variation

Since the heat source is introduced near x = 0 on the bottom boundary, the buoyancy force

is imbalanced with the thermal diffusivity, and the localized heat profile would signal a leak

through the fibre optic cable. Figure 3.3 presents a horizontal profile of temperature along

a horizontal line at y = 0.5 m, where we placed the sensor cable, for a particular test, for
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Figure 3.3: Excess temperature profiles for a fixed horizontal line at y = 0.5 m at different

distances in the horizontal insulated domain for film coefficient hc = 30.15 Wm−2K−1

(solid line), hc = 60.75 Wm−2K−1 (dot-dashed line), hc = 90.50 Wm−2K−1 (dashed line)

while K = 10−5 m2.

three values of the film coefficient. Clearly, the temperature maximum at x = 0 decreases

with an increase of the film coefficient hc (Wm−2K−1). Equation (3.4) shows that this is an

effect of the presence of the thermal gradient, which we have also confirmed by removing

the thermal gradient term in Equation (3.4). Clearly, the horizontal convection introduced

by the thermal gradient has a significant impact on the strength of the signal received by

the sensor. Spatial heterogeneity of the excess temperature profile is localized above the

heating source because the buoyancy force is imbalanced by the thermal diffusivity.

However, at the other part of the domain, the buoyancy force is balanced by the iner-

tial forces, as well as by the thermal diffusivity. The excess temperature is stationary at

the 4.5 m difference from the upstream boundary of the domain at 12000 s, which is de-

picted in Figure 3.3. These excess temperature profiles are generated between the 4.5 m

to 5.5 m distance from the upstream boundary. However, this temperature is not always

excess enough to give a signal to the sensor due to the balance between the buoyancy force

and the thermal diffusivity. Necessary thermal diffusion compared to the buoyancy force



CHAPTER 3. A NUMERICAL STUDY OF CONVECTIVE HEAT TRANSFER PROBLEMS 25

−4 −2 0 2 4
0

0.5

1

1.5

X

Y

(a)

−4 −2 0 2 4
0

0.5

1

1.5

X

Y

(b)

Figure 3.4: Stable stream lines for hc = 30.15 Wm−2K−1 and localized heat source of

sizes: (a) 1 m and (b) 2 m.

may cause the excess temperature at the leakage, and as a result of sending signals in the

active thermal monitoring system. Hence, it is clear that the balance between the buoyancy

force and the thermal diffusivity is another important factor in LDS. However, these two

physical parameters depend on the other physical as well as the mechanical parameters:

size and position of the localized heat source, sizes of the insulator domain, permeability

and different positions of the domain, etc., hence, now a discussion about the mentioned

parameters that will prevent excess temperature as well as a leak in pipelines.

3.5.2 Proposals for controlling excess temperature

We have placed our localized heat source at the center of the bottom wall. Our main

motivation in this section is to make a balance between the buoyancy force and the thermal

diffusivity in the insulator so that we can minimize the excess temperature. Beyond this

balance condition, the excess temperature will send and give signals to the sensor that this

location requires repair.

Flow responses for different sizes, Lh = 1 m, Lh = 2 m are exemplified in Fig-

ures 3.4a and 3.4b for a fixed value of permeability of the insulator, K = 1.4 × 10−5m2.

Flows have been simulated at single and double heat sources for different values of hc.
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Figure 3.5: Comparison between the rate of heat transfer, Nu and hc for different localized

heat source of sizes Lh = 1 m , Lh = 2 m and Lh = 2.5 m.

From the comparison of Figures 3.4a and 3.4b, it is clear that buoyancy force is then

balanced by the heat source: there is a stationary circular flow in the middle of the do-

main from the heat source of size Lh = 1 m with high values of hc = 30.15 Wm−2K−1.

However, the same patterns have appeared for a heat source of size Lh = 2 m with

hc = 10.05 Wm−2K−1. Not only hc, but also the time step is a factor in this case. We

have used a time step of ∆t = 30 s for hc = 30.15 Wm−2K−1 and ∆t = 18 s for

hc = 10.05 Wm−2K−1 in order to improve the numerical stability and for faster con-

vergence. It is evident that the length of the localized heat source and hc have an inverse

relation.

Moreover, the effects of the size of localized heat source on the convective heat transfer

are shown in Figure 3.5. The influences have been revealed for different values of hc in

the case of aspect ratio 5 and K = 1.4 × 10−5 m2. These show that the heat transfer rates

are very high for lower values of hc with other constant parameters. Moreover, increasing

the size of the heat source increases the rate of heat transfer because there is a significant

dissipation near the longer heater. Finally, the heat transfer rates and temperature profiles

disclose that the heat transfer rates increase with the increase of the size of the domain.

The buoyancy conditions comparing unit thermal diffusivity are different from the

above due to the changing of the horizontal size of the domain, which is shown in Fig-

ures 3.6a and 3.6b. Flow becomes stationary and bi-circular at the core, just above the
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Figure 3.6: (a) Stable streamlines for a horizontal insulator size of 10 m and hc =

10.05 Wm−2K−1, (b) Stable streamlines for a horizontal insulator size of 8 m and hc =

24.35 Wm−2K−1.

localized heat source for lower values of hc = 10.05 Wm−2K−1 with the permeability of

insulator K = 1.4× 10−5 m2 in the case of the horizontal size 10 m of the insulator. While

the same patterns occur for high values of hc = 24.35 Wm−2K−1 with smaller horizon-

tal domain size 8 m as well as the same permeability and localized heat source of length

Lh = 1 m. We expect this physical behaviour because even though we have reduced the

geometrical shape and the horizontal size of the domain, we have increased hc. The two

vortices are located at the same place of the insulator above the center position of the heat

source. It can be concluded that there is a proportional relation between the hc and the

size of the horizontal domain. The horizontal domain size and the rate of convective heat

transfer are shown in Figure 3.7 for the different values of hc as well as smaller values of

K = 1.4×10−5 m2. Figure 3.7 shows that the rate of convective heat transfer is established

to be higher for smaller horizontal size of the domain and for fixed hc = 60.75 Wm−2K−1.

Interestingly, more convective heat transfer is depicted for smaller values of hc. This shows

that the influence of the horizontal size is significant in favor of heat dissipation from the

heat source to the insulation medium. By the above controlling process of physical param-

eters, size of localized heat source and domain, we could control about 10% of heat transfer

at the leaks.
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Figure 3.7: Nu-versus-hc relation for different horizontal size of domain.

The permeability of the medium is important in temperature monitoring because heat

transfer is different for various permeabilities of the medium. In our simulations, we use the

parameter, K, to see the effects of permeability in comparison with the size of the insulator.

The streamlines are shown in Figures 3.8a, 3.8b and 3.8c, high to low permeability of

the medium. The flow structure is circular at near to the heat source for low values of

K = 10−5 m2, Figure 3.8a and get chunk at the adiabatic wall and then travels towards

the cold wall. The fluid moves along the colder places before filling the entire domain

at the core of the enclosure. There is a stable thermal stratification in the center of the

cavity. In order to get stronger intensity of the convection, we have increased the values of

K = 10−3 m2; as a result, the thermal flow field is controlled by the convective heat transfer

which is shown in Figure 3.8b for hc = 60.75 Wm−2K−1, dynamically. The interesting

changes can be seen in Figure 3.8c for further enhancement of K = 10−1 m2 with the

same geometrical and physical parameters of the enclosure. For particular values of hc, the

Nusselt number, Nu, is an increasing function of K. The increase of the Nusselt number

is significant for higher values of K = 10−1 m2, while there is a monotonic behaviour

for the K values of 10−3 to 10−5 in case of 30.15 ≤ hc ≤ 90.50 Wm−2K−1, aspect

ratio 5 and localized heat source of size 1 m which are shown in Figure 3.8d. There is an

inverse relation between the temperature and the values of K which is depicted in Figure

3.8f. In contemplation of the physical view, greater permeability of a medium has lower

temperature and heat transfer rates due to the constant size of the insulation domain. The
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temperature variation increases for the increment of hc which is depicted in Figure 3.8e.

However, for the lower values of hc, temperature variation is slightly different far from

the localized heat source. At the bottom wall, heat transfer phenomena are almost the

same for both the increasing values of K and hc with the same size heat source and the

horizontal position of the domain. A stronger convective flow triumphs at the cavity and

the center of the rotation moves toward the adiabatic wall, while a strong velocity boundary

layer is produced near the heat source, which indicates that strong convective heat transfer

is continuing in the domain. From the above discussion of convective heat transfer at

the center of the domain from the localized heat source, we could summarize that, for

the discussed conditions of physical and mechanical parameters, there is no possibility of

excess temperature sending signals to the leak monitoring system. Note that our dynamical

controlling suggestions for permeability are based on both the convective heat transfer and

the temperature properties.

Different positions of the monitoring pipe such as in a hilly place, underground, or in

an ocean, may create temperature variation. In our simulations, the balance conditions

of the buoyancy force and thermal diffusion are different for different positions of the in-

sulator. To see the different position effects and collecting relative conditions for excess

temperature from the localized heat source, we consider our domain in different angles

α = 300, 450, 600 and a vertical position 900 with the horizontal ground. Since we have

changed the geometrical structure and angle of the domain, we kept a fixed length of the

localized heat source of size Lh = 1 m along with the permeability, K = 1.4 × 10−5 m2.

The flow patterns are very interesting for 30.15 ≤ hc ≤ 90.50 Wm−2K−1. The heat

transfer intensity increases by not only changing angles of the pipeline, but also due to the

increase of the buoyancy effects compared to the thermal diffusion. The elongated domain

is influenced by the buoyancy force and the center of the circular flow moves toward the

heat source. The flow structure is influenced by the convective heat flow. Owing to the
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Figure 3.8: Stable thermal stratification at the core of the domain for permeability (a)

K = 10−5 m2, (b) K = 10−3 m and (c) K = 10−1 m with hc = 60.75 Wm−2K−1. (d) Nu-

versus-hc relation for different permeabilities. (e) Profiles of vertical temperature variation

at the center of the domain for different values of hc with K = 10−1 m2, (f) Profiles of

vertical temperature variation at the center of the domain for different values of K with

hc = 30.15 Wm−2K−1.
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Figure 3.9: Stable stratified fluid flow for hc = 30.15Wm−2K−1: (a) α = 300, (b) α = 450,

(c) α = 600 and (d) α = 900.

buoyant plume over the heated segment, the lower layers are stratified and the temperature

field exhibits as proportional to the temperature gradient at the core. There is a circular

flow above the heat source for 30.15 ≤ hc ≤ 90.50 Wm−2K−1 and α = 900. In addition,

a steady plume-like flow is generated above the two sides of the cavity. This incidence

occurs because of the smaller size of the localized heat source of size Lh = 1 m. The flow

patterns are almost same in the case of the same value of hc and K, which is shown in Fig-

ure 3.9a, 3.9b and 3.9c. In spite of increasing stable thermal gradient, we have increased

the values of hc and, the center of the circular flow is, again, coming toward the center of

the cavity. These effects also show the convection effects of the opposite to the adiabatic

wall. Interestingly, as the values of hc increase, there is a strong convection strength, gen-

erated by the internal energy source, which is the similar influence of the stable thermal

gradient. For different positions of the domain, it is difficult to make any uniform preven-

tive suggestions at the leaks in the leak monitoring system. However, different angles give

different suggestions as stated above.
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Figure 3.10: The influence of a stable thermal gradient for aspect ratio 5, Lh = 1 m,

∆t = 0.5s, K = 1.4 × 10−5 m2 : (a) α = 300, hc = 60.75 Wm−2K−1 (b) α = 450, hc =

60.75 Wm−2K−1 (c) α = 600, hc = 60.75 Wm−2K−1 (d) α = 900, hc = 60.75 Wm−2K−1

(e) α = 300, hc = 90.50 Wm−2K−1 (f) α = 450, hc = 90.50 Wm−2K−1 (g) α = 600,

hc = 90.50 Wm−2K−1 (h) α = 900, hc = 90.50 Wm−2K−1.
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Figure 3.11: Streamlines are showing for aspect ratio 5, heat source of size 1 m, ∆t = 0.5 s,

K = 1.4 × 10−5 m2: (a) hc = 30.15 Wm−2K−1 (c) hc = 60.75 Wm−2K−1 (e) hc =

90.50 Wm−2K−1 in presence of the stable thermal gradient and (b) hc = 30.15 Wm−2K−1

(d) hc = 60.75 Wm−2K−1 (f) hc = 90.50 Wm−2K−1 in absence of the stable thermal

gradient.
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hc 30.15 Wm−2K−1 60.75 Wm−2K−1 90.50 Wm−2K−1

free insulation free insulation free insulation

θmin -0.024823 0.0 -0.071289 -0.026982 -0.166316 -0.087873

θmax 1.0 1.0 1.0 1.0 1.0 1.0

umin - -0.018980 - -0.024157 - -0.025832

umax 0.118887 0.018980 0.174844 0.024157 0.179054 0.025882

vmin -0.030470 -0.004270 -0.039291 -0.003571 -0.079265 -0.004128

vmax 0.125594 0.018504 0.228250 0.020808 0.322483 0.024490

ωmin - -0.581109 - -0.773036 - -0.826610

ωmax 2.06900 0.581109 3.951325 0.773036 5.921375 0.826610

Nu 0.148605 0.458228 0.295132 0.914497 0.643594 1.005724

Table 3.5: Comparison of present numerical values in the free and the insulation (K =

1.4× 10−4 m2) medium in presence of stable thermal gradient.

A stable thermal gradient is also important to make a balance between the buoyancy

force and thermal diffusion in the domain. To see the influence of the linear thermal gradi-

ent, we used a horizontal (α = 00) domain in both the free and porous compounds with a

localized heat source at the bottom wall. In the free medium case, our numerical data are in

good agreement with earlier benchmark research which is detailed in section 3.4. Now, we

calculate velocity, temperature, vorticity as well as heat transfer and Nusselts number Nu

at the bottom boundary for the same geometrical conditions: aspect ratio 5, angle α = 00.

The simulated data are given in Table 3.5 and the corresponding streamlines are shown in

Figures 3.11a, 3.11c, 3.11e to see the effect of the thermal gradient in the porous medium.

Although the maximum and minimum values of the velocity, temperature and vorticity are

decreased, the bottom wall convective heat transfer rates are increased. For the high val-

ues of hc, 30.15 ≤ hc ≤ 90.50 Wm−2K−1 with the geometrical variables, aspect ratio 5,

horizontal heat source of size 1 m, K = 1.4× 10−5 m2, the larger domain is influenced by
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hc 30.15 Wm−2K−1 60.75 Wm−2K−1 90.50 Wm−2K−1

free insulation free insulation free insulation

θmin -0.024823 0.0 -0.071289 -0.0 -0.166316 -0.0000003

θmax 1.0 1.0 1.0 1.0 1.0 1.0

umin - -0.018335 -0.176090 - - -0.028433

umax 0.118887 0.018335 0.174844 0.023060 0.179054 0.028433

vmin -0.030470 -0.004119 -0.039291 -0.003008 - 0.079265 -0.005618

vmax 0.125594 0.021491 0.228250 0.027352 0.322483 0.034069

ωmin - -0.568370 - -0.769580 - -0.909850

ωmax 2.06900 0.568370 3.951325 0.769580 5.921375 0.909850

Nu 0.148605 0.015912 0.295132 0.231089 0.643594 0.729783

Table 3.6: Comparison of present numerical values in the free and the insulation (K =

1.4× 10−5 m2) medium in absence of stable thermal gradient.

the convective flow so that the streamlines move toward the upper wall in the presence of

the stable thermal gradient. However, the streamlines in Figures 3.11b, 3.11d, and 3.11f in-

dicate that the conduction temperature field at the center of the domain is perturbed for

hc = 30.15 Wm−2K−1 in the absence of a stable thermal gradient. As a result, there is a

circulatory flow at the center of both parts of the domain. Moreover, for the high values of

hc = 90.50Wm−2K−1, the flow becomes stronger, and there is an interesting phenomenon,

the bi-circular buoyant convective flow has been raised to a tricircular flow structure, which

is far above the heat source. The related numerical values are shown in Table 3.6 for cal-

culative illustrations. Hence, the horizontal convection introduced by the stable thermal

gradient has a significant impact on the strength of the signal received by the sensor, and a

great role in making leak preventative suggestions.
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3.6 Conclusion

Our aim has been to find the excess temperature profiles for a localized heat source at leaks

in a monitoring pipeline. From these excess temperature profiles, a sensor cable collects

the signal and sends these to the main monitor. As a result, it is easy to find the leak and

fix it. Moreover, we also summarize some suggestions to control this excess temperature

by dint of the condition of equivalence of the buoyancy force and thermal diffusivity at the

insulator. Not only the size of the localized heat source but also the size of the domain, as

well as the permeability of the insulator at a leakage or scour in the pipeline, are the cause

of excess temperature. Due to the different angles of the enclosure, the lower layers are

observed to be stratified and the temperature fields exhibit as proportional to the tempera-

ture gradient. By giving suggestive conditions for these parameters, we could prevent the

leakage in a pipeline. The horizontal convection introduced by the thermal gradient has a

significant impact on the strength of the signal received by the sensor. Potential false signals

are still under investigation. The above suggestive conditions, on physical and mechanical

parameters at the monitoring pipe, may give us more flexibility and minimize the cost of

the leak detection system. We need to see the larger intensity of localized heat sources,

which may create irregular flow behaviours or turbulent flow at the localized heat source,

and leak detection system in the monitoring pipe which are called for future investigation.
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4.1 Abstract

Mathematical modelling of a turbulent flow over hilly terrains is an important topic in

both mesoscale weather prediction and boundary layer meteorology. In comparison to the

classical terrain-following coordinate approach, the immersed boundary technique on a
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Cartesian grid simplifies the implementation of the boundary condition on the surface of

the hill, and this approach also mitigates discretization errors which would occur due to

the terrain-following coordinate transformation. In the present research, we have extended

a canopy stress model to formulate the boundary condition on the surface of a hill and

considered the large eddy simulation method to predict the interaction between the near-

surface coherent structures and a smooth hill. In addition to the canopy stress model,

the turbulent stress has also been varied dynamically as the surface is approached, where

the canopy stress model is derived based on the experimental observation that the drag

coefficient becomes independent of the Reynolds number (Re) when Re is sufficiently

large. The proposed model has been tested by simulating a neutrally stratified atmospheric

boundary layer over a periodic array of smooth hills. The agreement among the results

of the present simulation, a dynamically similar experiment, and an equivalent numerical

model suggests the potential benefits of the proposed method of simulating turbulent flow

over hilly terrains.

4.2 Introduction

An accurate mathematical modelling of subgrid-scale turbulence for Atmospheric Bound-

ary Layer (ABL) flows over a complex terrain is an important research topic. Atmospheric

modelling areas, such as mesoscale weather prediction, boundary layer meteorology, ex-

change of energy between the surface and the atmosphere are influenced by complex ter-

rains (i.e., a hilly surface). To improve our understanding of terrain-induced turbulence, a

widely used Computational Fluid Dynamics (CFD) technique is the large eddy simulation

(LES) methodology in which the large eddies are computed directly, and the subgrid scale

(SGS) eddies are modelled. However, in the presence of a complex terrain, LES must be

supplemented with an accurate stress boundary condition on the surface of hills, without
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which an extremely refined mesh is necessary to capture the viscous layer over the hilly

surface (Lundquist et al., 2010). In this article, we investigate the canopy stress method

for modelling the subgrid-scale effects of surface topography and validate results of LES

for the ABL flow over a hill using wind tunnel measurements. In LES the eddy-viscosity

ντ is obtained from the resolved rate of strain, which is known as the Smagorinsky model.

A better result may be obtained by dynamically adapting ντ to the distance from the ter-

rain (e.g., Nicoud & Ducros, 1999). Since turbulent eddies are affected by the length scale

of uneven surface topography, an implementation of the standard Dynamic Smagorinsky

model for ABL flows over a complex terrain is a challenging endeavour (see (Goodfriend

et al., 2016; Lundquist et al., 2010)). In Nicoud & Ducros (1999), ντ was obtained from

both the rate of strain and the rate of rotation. In other words, the Smagorinsky model can

be modified by considering the rate of rotation. This approach, known as the wall adaptive

eddy viscosity (WALE) model, adapts ντ dynamically with the local distance from the sur-

face topography (see Nicoud & Ducros, 1999) for details). One of our arguments in this

research is that neither the Dynamic Smagorinsky model nor the WALE model correctly

accounts for the terrain-induced SGS stress experienced by eddies passing over a complex

terrain. In this article, we consider the LES of a turbulent flow over a hill in which a canopy

stress method accounts for the terrain-induced SGS stress in addition to the standard SGS

stress computed by the WALE model. To validate the results of such an LES, we consider

experimental data from a reference (e.g., Ishihara et al., 2001)) providing wind tunnel mea-

surements of a flow over a smooth hill, which is an important aspect of this article.

Canopy stress methods for LES of forest canopies can be found in Belcher et al. (2008).

However, in Brown et al. (2001) the canopy stress formulation of the pressure drag was

examined to simulate flow over ridges of varying heights. Alam (2011) considered the

canopy formulation of the viscous stress experienced by mesoscale eddies passing over an

Agnesi hill. In the present work, a canopy stress formulation of both the viscous stress
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and the pressure drag has been verified along with the WALE model, where ντ is dynam-

ically adjusted the vertical distance from the hill. As discussed by Brown et al. (2001), a

goal of the canopy stress method is to bypass the computational workload of the terrain

following mesh that would resolve the viscous layer (see also (Dupont et al., 2008; Good-

friend et al., 2016; Liu et al., 2016)). For a complex terrain, resolving the viscous layer

by an adaptive mesh produces inaccurate turbulence statistics (Goodfriend et al., 2016).

Mahrer (1984) illustrates that such errors are due to the terrain following mesh, and the

error deteriorates if the mesh is refined in order to resolve the terrain. Such errors may be

minimized with an immersed boundary method (Lundquist et al., 2010) or by employing

a mixed model based on an explicitly filtered LES. Nevertheless, the present validation of

the canopy stress method against wind tunnel measurement is a significant improvement of

the LES methodology for complex terrain.

The governing equations for LES, subgrid-scale WALE model, and the canopy stress

method are discussed in Section 4.3. Numerical methods are briefly outlined in Section 4.4.

The LES results and verification with wind tunnel measurements are outlined in Sec-

tion 4.5, where the LES results have also been compared with that of another reference

numerical model.

4.3 Mathematical model

To simulate a neutrally stratified atmospheric boundary layer over a smooth hill, we solve

the filtered Navier-Stokes equations (e.g., Goodfriend et al., 2016),

∂ui

∂xi

= 0, (4.1)

∂ui

∂t
+

∂(uiuj)

∂xj

= − ∂p

∂xi

− ∂τij
∂xj

+ fs, (4.2)
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where τij is the usual SGS stress (force per unit area divided by density), which can be

calculated by the WALE model and fs denotes the divergence of SGS stress exerted by the

hill, which can be calculated by the canopy stress method.

Here, ui is the filtered velocity field in the xi direction, p is the pressure (divided by

density), ξ(x, y, z, t) is an indicator function representing the terrain.

4.3.1 Canopy stress parameterization

To parameterize the stress experienced by the hill, we assume that the hill can be modelled

as a porous canopy. In Equation (4.2), the canopy stress term fs vanishes on all grid points

which are not in the canopy region (or hill). Thus, we define an indicator function such

that ξ(x, y, z) = 1 if the point (x, y, z) is inside the canopy, and ξ(x, y, z) = 0 if (x, y, z)

is outside the canopy. Let us consider

fs = fdsξ (x, y, z) ui + fdfξ (x, y, z) |ui|ui, (4.3)

where, on the right-hand side of Equation (4.3), the first term represents the viscous stress

experienced by an eddy passing over a hill (Alam, 2011), and the second term represents

the pressure loss experienced by an eddy passing through a porous canopy (Belcher et al.,

2008). There are several empirical methods to determine the coefficients fds and fdf .

4.3.1.1 Skin friction drag

The skin friction drag is generated in the viscous boundary layer, which develops due to

the viscous stress as the air flows over a solid body. To parameterize the viscous stress,

let us model the porous canopy as a collection of smooth spheres of radii d and the void

fraction ϵ. Similar to the model considered in Bhuiyan et al. (2015, 2016), a mathematical

formulation of the viscous stress in Equation (4.3) is

fds = −150 ν (1− ϵ)2

d2 ϵ3
. (4.4)
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Using ϵ = 0.02, d = ∆x
2

= 4.5 m , and the kinematic viscosity ν = 0.06345 m2s−1, we get

fds = −1, 128.5 s−1.

4.3.1.2 Pressure drag

A detailed discussion of the pressure drag associated with a forest canopy is given by Belcher

et al. (2008). Here, we model the hill as a canopy of spheres and consider the formulation

of fdf that is applied for a forest canopy. Based on the canopy region formed by spheres,

fdf = −1.75(1− ϵ)

d ϵ3
, (4.5)

which takes a value of ρfdf = 47, 638.89 m−1 for ϵ = 0.02, d = ∆x
2

= 4.5 m.

For clarity, the canopy stress parameterization of the last term in Equation (4.2) can be

written as

fs = −150 ν (1− ϵ)2

d2 ϵ3
ξ (x, y, z, t) ui −

1.75(1− ϵ)

d ϵ3
ξ (x, y, z, t) |ui|ui. (4.6)

In addition to modelling a component of the SGS stress by Equation (4.6), the WALE

formulation of the SGS stress τij is examined in the present work.

4.3.2 Subgrid scale model for τij

In LES the Smagorinsky model filters all eddies of a scale that is smaller than the grid size

such that

τij −
1

3
τkkδij = 2ντSij and ντ = (Cs∆)2|S|,

where Cs is the Smagorinsky constant, ∆ = (∆x∆y∆z)1/3 is the LES filter width, |S| =√︁
2SijSij , and the strain rate tensor is

Sij =
1

2

(︃
∂ui

∂xj

+
∂uj

∂xi

)︃
.
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Note that the velocity gradient tensor is

∂ui

∂xj

= Sij +
1

2

(︃
∂ui

∂xj

− ∂uj

∂xi

)︃
and the rate of rotation tensor 1

2

(︂
∂ui

∂xj
− ∂uj

∂xi

)︂
is not considered by the Smagorinsky model.

In Nicoud & Ducros (1999), it was shown that the inaccurate near-wall scaling of SGS

dissipation with respect to classical Smagorinsky model can be improved by the WALE

formulation of the eddy viscosity

ντ = (Cs∆)2
(Sd

ijS
d
ij)

3/2

(Sd
ijS

d
ij)

5/4 + (SijSij)5/2

where we engage both the rate of strain and the rate of rotation through the velocity gradient

tensor such that

Sd
ij =

1

2

[︄(︃
∂ui

∂xj

)︃2

+

(︃
∂uj

∂xi

)︃2
]︄
− 1

3
δij

(︃
∂uk

∂xk

)︃2

.

Based on numerical tests with the WALE model, Cs = 0.325 was adopted for the simula-

tions reported in this research.

4.4 Computational Methods

An implementation of the canopy stress method is given by Alam (2011). In the present

work, the canopy stress method has been implemented within the Open source Field Op-

eration and Manipulation (OpenFOAM) code, which is an object-oriented C++ library for

solving the Navier-Stokes equation. A finite volume discretization of LES Equations (4.1-

4.2) has been implemented through the OpenFOAM library. OpenFOAM is released with

a Navier-Stokes solver, buoyantBoussinesqPimpleFoam, which has been modified

into a new solver, topographyFOAM for the purpose of testing the canopy stress method

presented in this research. Our implementation of the canopy stress method has been tested
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with OpenFOAM 3.0.x and OpenFOAM 4.x. We have compared the results with two meth-

ods of time integration, such as the Crank-Nicolson method and the second order backward

Euler method. Results obtained by the backward Euler method have been reported. For

coupling the pressure with the velocity, i.e., for solving the continuity Equation (4.1), we

have adopted the ‘Pressure Implicit with a Splitting of Operators (PISO)’ algorithm. It is

worth mentioning that the mesh is decomposed among multiple processors based on the

message passing interface (MPI) routines implemented through the OpenFOAM library.

The boundary conditions in both horizontal directions are periodic, which mimics a

simulation for a periodic array of hills. In the vertical direction, a standard wall boundary

condition is considered at z = 0, and the boundary at z = zmax is considered a plane of

symmetry, where the vertical gradient of all quantities are zero.

4.5 Verification

We have considered two sets of reference data for the validation of modelling a turbulent

flow past a hill based on the canopy stress method. One of them is the result of a wind tunnel

measurement conducted by Ishihara et al. (2001) and the other is the result of another LES

conducted by Liu et al. (2016).

4.5.1 Periodic array of a smooth hill

To mimic the Large Eddy Simulation of a neutrally stratified boundary layer flow over a

periodic array of smooth hills, let us consider the surface with a Gaussian shape defined by

Equation (4.7),

zs = h exp

(︃
−(x− c1)

2

L2
− (y − c2)

2

L2

)︃
, (4.7)
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Figure 4.1: (left) Vertical slice of the grid is shown. (right) The vertical cross-section of

the hill compared with Figure 6 of Liu et al. (2016). Two hill equations are scaled by the

vertical height of the hill and the shapes are similar.

where (c1, c2) is the center of the hill.

Using h = 30 m and L = 50 m in Equation (4.7), the hill height is 30 m and the hill

half-length (the distance from the centre to a point whose height is half the hill height) is

42 m. The computational domain is given by Lx × Ly × Lz = 600 m × 600 m × 510 m,

and the mesh contains Nx × Ny × Nz = 64 × 64 × 88 finite volume cells, where Nx, Ny,

and Nz denote the number of cells in x, y, and z directions, respectively. Note that the cells

are of uniform size, ∆x = ∆y = 9.375 m, in the horizontal directions, but stretched in

the vertical direction with ∆zmin = 0.96 m near the boundary at z = 0, which is increased

gradually to ∆zmax = 10.625 m until half the model height is reached, and is left constant

in the top half of the domain. A vertical cross section of the mesh is shown in Figure 4.1

(left). The shapes of the hills defined by Equation (4.7) and that considered in Liu et al.

(2016) have been compared in Figure 4.1 (right), where the shape is normalized by hill

height h in both cases.

The flow is driven by a pressure gradient dp
dx

that is adjusted dynamically so that the

mean velocity in the stream-wise direction is about 7 ms−1. The kinematic viscosity is

varied from ν = 5 × 10−2 ms−2 to ν = 10−5 ms−2 for testing the result. Note that

the time step ∆t = 0.01 sec., considered in our simulation, is larger than the time step

∆t = 0.0001 sec., considered in the LES of Liu et al. (2016).
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Table 4.1: Velocity differences at the different locations of the three-dimensional hill

(Equation 4.7) along with the absolute and relative differences in the numerical (Liu et al.,

2016) and experimental (Ishihara et al., 2001)) analysis:

Location Velocity Difference

x/h y/h z/h Present(u/ur) (Liu et al., 2016) (u/ur) Absolute Relative

Numerical

10 10 1.04 0.4183 0.3842 0.0296 8.49 %

10 10 1.2020 1.0304 0.8445 0.1919 20.53 %

10 10 1.5455 1.0045 0.8617 0.1424 14.85 %

10 10 2.2323 0.9800 0.8596 0.1204 13.08 %

10 10 3.0909 0.9697 0.8813 0.0884 9.55 %

10 10 4.00 0.9719 0.9026 0.0693 7.39 %

x/h y/h z/h Present(u/ur) (Ishihara et al., 2001) (u/ur) Absolute Relative

Experimental

10 10 1.04 0.4183 0.8449 0.4226 67.54 %

10 10 1.2020 1.0304 0.8449 0.1859 19.83 %

10 10 1.5455 1.0045 0.8678 0.1367 14.60 %

10 10 2.2323 0.9800 0.8657 0.1143 12.38 %

10 10 3.0909 0.9697 0.8755 0.0942 10.21 %

10 10 4.00 0.9719 0.9210 0.0509 5.37 %

A comparison concerning experimental data of Ishihara et al. (2001) for the vertical

distribution of the stream-wise velocity u(z)/ur, is presented at the bottom panel of Table

4.1. Similarly, a comparison with respect to the LES results of Liu et al. (2016) is presented

in the top panel of Table 4.1 (numerical). We can see an excellent agreement between our

LES results with the results of wind-tunnel measurements, and similarly for the reference

LES. The relative errors reported in Table 4.1 indicate that the hill can be modelled ac-

curately if the canopy stress method is incorporated in LES. The large error at the point

(10, 10, 1.04) for the experimental case in Table 4.1 is due to the fact that the size of the hill
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Figure 4.2: Comparison with the previous results of the LES simulations of a different

turbulent stress model of Liu et al. (2016) and experimental results of Ishihara et al. (2001)

for (left) normalized mean velocity and (right) normalized standard deviations σ.

Figure 4.3: A time series of the turbulent kinetic energy (TKE) which represents the

strength of eddies passing a fixed point above the hill.

in the wind-tunnel measurement was O(mm), which is O(10 m) in our simulation. With

such a scale gap, the LES resolution needs to be high enough to capture the scales that are

equivalent to what was captured in the experiment.

A graphical comparison of the mean velocity distribution u(z)/ur along five vertical

lines located at five stream-wise positions is presented in Figure 4.2(left). The standard de-

viation σ(z)/u2
r of the time averaged stream-wise velocity is presented in Figure 4.2(right).

Figure 4.3 presents a time series of the turbulent kinetic energy (TKE), where TKE is the

sum of the variances of stream-wise, span-wise, and vertical velocities.
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4.6 Conclusions

A goal of the research is to validate a mathematical model of representing mountains/hills

in LES. As mentioned in the introduction, LES aims to employ a relatively coarse mesh to

capture the large eddies, where small eddies can be filtered with an SGS model, such as

the Smagorinsky model or the WALE model. Due to such a criterion of LES, accurately

capturing the effects of mountains is a challenging endeavour. In this investigation, we

show that the canopy stress method is an accurate model for representing a hill without

requiring a complex mesh around the hill. However, the accuracy of our methodology as

it is reported in this article must be interpreted carefully. The agreement between the LES

results and the experimental results encourage further investigations in this direction. In

particular, there is a gap in the literature dealing with the LES of atmospheric boundary

layer flows over mountains or complex terrain. There is a growing interest in the canopy

stress method (Alam, 2011; Belcher et al., 2008; Brown et al., 2001) and similar methods

dealing with complex terrains (Liu et al., 2016; Lundquist et al., 2010). Our results encour-

age further investigation of the canopy stress method for simulating atmospheric turbulence

over complex terrain. Such work is currently underway.
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5.1 Abstract

Numerical studies of turbulent airflow through forests have a profound impact on environ-

mental sustainability. In this research, we develop a large-eddy simulation (LES) model

of the forest canopy in which the canopy stress between the wind and the forest morphol-

ogy has been represented by the Forchheimer expression. A subgrid-scale closure for the

forest canopy is derived so that subgrid-scale dissipation is adjusted as the dynamics of
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energetic eddies changes by the interaction of the forest morphology. We demonstrate that

the aerodynamic response of the tree morphology is linked to the porosity of the forest

cover. Wind-tunnel measurements of turbulent flow over a model canopy are considered

to verify the present LES results. The coherent structure and the statistics of small-scale

energy-containing motion in a forest are analyzed. Sweeps and ejections of the spatially

intermittent coherent structures in forests and their role in transporting momentum, energy,

and scalars are discussed. The sensitivity of the turbulence intensities in a forest canopy is

analyzed with respect to three subgrid-scale closure schemes.

keyword

forest canopy; turbulence; subgrid-scale closure; canopy stress.

5.2 Introduction

The aggregate effect of vertical obstacles (e.g., trees, buildings, etc.) in the bottom 10%

of the atmospheric boundary layer (ABL) is interesting in many applications, including

weather and the climate system. The Earth Observatory Report of NASA indicates that

up to 70 m deep forest interacts with near-surface atmospheric turbulence in the Pacific

Northwest of North America (see Figure 5.1). Turbulence and other fluid mechanics re-

lated perturbations of trees might lead to inaccurate and biased tower (e.g., Belcher et al.,

2012). Turbulent flow through scaled-models of forests was investigated with wind-tunnel

experiments (e.g., Brunet et al., 1994; Středová et al., 2012; Miri et al., 2017) and Large

Eddy Simulations (LES) (e.g., Finnigan, 2000; Dupont & Brunet, 2008, 2009; Finnigan

et al., 2009; Yan et al., 2017). The aerodynamic performance and windbreaks of trees,

vegetation, fences, or other materials and how such canopies protect farmland or control
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Figure 5.1: A regional forest map is showing the height of 90% of the trees in the Pacific

Northwest of North America. The height of the forest canopy in this region varies by up to

70 meters.

soil erosion have also received sustained attention in Meteorology, Wind Engineering, and

similar areas (Philips et al., 2013; Park et al., 2015). According to LES investigations,

conducted by Finnigan (2000); Finnigan et al. (2009) and Dupont & Brunet (2009), the

small-scale coherent turbulence in forests is characterized by three-dimensional vortex in-

teractions and most important in transporting momentum and scalars.

In this article, we deploy the LES approach to study the statistics of small-scale coherent

motion in flow through forests. LES was introduced by Deardorff (1970, 1973, 1974, 1980)

in which the role of the large-scale eddies in cascading turbulence kinetic energy (TKE) is

resolved, and that of the small-scale eddies is modelled by the eddy-viscosity (Smagorin-

sky, 1963; Lilly, 1967)

νsgs = (Cs∆LES)
2D(u), (5.1)

where D = (2SijSij)
1/2, Sij = (1/2)(∂ui/∂xj + ∂ui/∂xj) is the resolved rate of strain,

and Cs is the Smagorinsky constant. A constant value of Cs = π−1(3Ck/2)
−3/4 proposed

by Lilly (1967) (Ck is the Kolmogorov constant) does not work well in complex turbulent
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flows, particularly in fluid-solid interaction problems. It remains unclear how to choose

Cs in LES of canopy flows; however, past studies suggest that a better representation of

near-surface turbulence (Senocak et al., 2007) in LES may further reveal the underlying

fluid mechanics of a forest canopy (Belcher et al., 2012; Bailey & Stoll, 2016; Yan et al.,

2017). In the past three decades, there has been sustained attention to model the role of

tree density and morphology in turbulent transfers (Brunet et al., 1994; Miri et al., 2017;

Kröniger et al., 2018a; Li & Wang, 2018). Nevertheless, the impact of the subgrid-scale

(SGS) model (5.1) on coherent structures in the forest received relatively less attention in

the literature (Finnigan et al., 2009; Dupont & Brunet, 2009; Yan et al., 2017).

The SGS closure assumption in standard Smagorinsky-Lily model or Deardorff’s TKE

model is based on the homogeneity of subgrid-scale dissipation.

Homogeneity refers to the invariance of certain features of the flow in different scales of

motion. In the bulk of the ABL, small turbulent eddies act mainly as passive motions; how-

ever, they dominate the turbulent energy cascade in the vicinity of a forest- or vegetation-

like roughness (Belcher et al., 2012) or in the entrainment zone of the ABL (Moeng &

Sullivan, 2015). As the forest is approached from aloft, anisotropy in energetic eddies in-

creases and the energetic scale falls below the cut-off scale ∆LES. As a result, classical mod-

els of rough-surfaces (e.g., Schumann, 1975; Moeng, 1984) provide inaccurate Reynolds

stresses without resolving the small-scale energetic eddies in the forest (Yan et al., 2017).

A constant value of the SGS model constant Cs is not appropriate in complex turbulent

flows. To address these issues for a vegetation-like canopy, Yan et al. (2017) examined the

dynamic Lagrangian model that re-calculates Cs to account for the transition of scales in

the vegetation canopy. Finnigan et al. (2009) adapted Deardorff’s TKE model to mimic the

energy cascade in a vegetation canopy. Sullivan et al. (2003) attributed the inaccuracy of

the results to the fact that the subgrid stress is a significant fraction of the total stress and

the departure from the classical inertial-range turbulence in surface layer and roughness
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layer.

In this work, we derive the SGS eddy-viscosity (5.1) using the second invariant of

the square of the velocity gradient tensor and determine its surface value using a classical

surface model. This formulation does not require any re-adjustments of Cs, however – in

a way – it drains energy to produce a desired spectral slope in the roughness layer above

a forest. Of particular interests are the local dynamical characteristics of SGS production

and destruction in the canopy layer of a horizontally uniform forest flow and the roughness

sublayer above it (Finnigan, 2000; Finnigan et al., 2009; Bailey & Stoll, 2016).

This work also considers two of the other dynamic modelling approaches, which were

previously used for canopy flows. One of them is the dynamic Lagrangian model (SGS-s)

that solves two transport equations (Meneveau et al., 1996; Yan et al., 2017). The La-

grangian approach attributes the SGS stress at a given point x of a forest to the history of

the flow along the trajectory leading to x (Meneveau et al., 1996; Porté-Agel et al., 2000;

Basu & Porté-Agel, 2006; Yan et al., 2017). The other model (SGS-k) is adapted from

the Deardorff’s TKE model, and it solves the transport equation for SGS TKE. A goal of

solving the equation for TKE is to address the deficiency of the local balance assumption

between the SGS energy production and dissipation in classical dynamic SGS models (Mo-

eng & Sullivan, 2015).

We consider a wind-tunnel study of a model canopy (e.g., (Brunet et al., 1994)), which

is an idealization of the forest-aerodynamics to down-scale the turbulent transport processes

at the biosphere-atmosphere interface. The wind-tunnel measurements help determine nec-

essary physical parameters to link the windbreak performance of a forest to the flow re-

sponses of individual trees of a forest (e.g., (Miri et al., 2017)). To assess the results of

wall-adaptive SGS closure (SGS-w), we consider the statistical properties of turbulence in

the forest canopy (e.g., Raupach et al., 1996; Finnigan et al., 2009). We combine the LES

results with wind-tunnel measurements to demonstrate how the coherent structures in the
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canopy layer are responsible at transporting momentum and scalars (e.g., Finnigan, 2000;

Yan et al., 2017).

5.3 Materials and methods

5.3.1 Aerodynamic response to forest morphology

We employ the filtering technique presented by Finnigan et al. (2009). A volume average is

applied to the Navier-Stokes equation (NSE), which results in the drag force fi representing

the pressure and the viscous forces on obstacles in the forest (e.g., Finnigan et al., 2009)).

A box-filter is applied to NSE, which results the sub-filter scale kinematic stress τij =

⟨ũiũj⟩ − ⟨ũi⟩⟨ũj⟩, where ũi = ⟨ui⟩ + u′
i is the total (resolved+subgrid) velocity in the

xi direction. It is reasonable to assume that the volume averaging and the box-filtering

commutes except in the canopy region if ∆LES is the characteristic length scale for both the

volume averaging and the box-filtering. For simplicity, we may drop the symbol ‘⟨·⟩’ from

the filtered variable, unless it is explicitly needed.

The finite volume method acts as an implicit box-filtering kernel, which removes all

scales of motion beyond the cutoff scale ∆LES(=
3
√
∆x∆y∆z). We solve the filtered NSE

for the atmospheric boundary layer flow, where a forest canopy extends from the surface to

a depth of h. The filtered equations are (the summation convention is assumed in the rest

of the article)
∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ0

∂⟨P ⟩
∂xi

− ∂p

∂xi

− ∂τij
∂xj

− fi, (5.2)

and
∂ui

∂xi

= 0. (5.3)

In the literature, forest or vegetation canopies are represented by relating the pressure drop

to the canopy stress experienced by the fluid passing through the forest or vegetation zone.
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For the Darcy-Forchheimer model of a porous zone (e.g., Lage et al., 2002)

∂p

∂xi

= −
(︃
µ

K
+

Cdρ|u|√
K

)︃
ui (5.4)

where K is the porosity and Cd is a constant. It was reported that (e.g., Finnigan et al.,

2009) the volume-averaged pressure drag – the last term in Equation (5.4) – is about three

times larger than the viscous drag – the second last term in Equation (5.4). Moreover, typ-

ical numerical resolutions of LES are insufficient to capture the viscous drag experienced

by an individual plant. Thus, it is reasonable to assume that the total kinematic drag of the

canopy is proportional to the product of a one-sided plant area density A ∼ K−1/2 and the

square of the resolved velocity (Dwyer et al., 1997). For all simulations reported in this

work, the canopy drag force fi in Equation (5.2) is expressed as fi = CdA|u|ui, where

|u| = √
uiui.

At the bottom boundary, a common approach to model the rough wall is to impose the

stress boundary condition through the logarithmic law-of-the wall, i.e.,

⟨τ LES
w ⟩ = −

[︃
κ

ln(z1/z0)

]︃2
(⟨u2

1⟩+ ⟨u2
2⟩) (5.5)

where κ is the von Karman constant (0.41) and z1 is the first off-wall grid point.

5.3.2 Lagrangian dynamic SGS closure (SGS-s)

To address excessive disspation of the classical Smagorinsky-Lilly model Equation (5.1)

the Lagrangian dynamic model applies the Garmeno identity Lij = Tij − τij , where Tij

is modelled with Equation (5.1) in the context of the second test filter at scale 2∆LES (or

larger) (Meneveau et al., 1996). To capture the Lagrangian history of small-scale tur-

bulence, two additional transport equations for Ilm and Imm are solved from which the

Smagorinsky constant is dynamically calculated by Cs =
√︁

Ilm/Imm. For a technical
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detail of expressing Ilm and Imm in terms of Lij , readers are directed to Meneveau et al.

(1996).

5.3.3 Deardorff’s TKE model for canopy flows (SGS-k)

In this model, the eddy-viscosity is re-defined,

νsgs = Csksgs∆LES, (5.6)

by solving the TKE equation

∂ksgs

∂t
+

∂ujksgs

∂xj

= −τijSij − Cϵ
ksgs

∆LES

+
∂

∂xj

(︃
νsgs

∂ksgs

∂xj

)︃
. (5.7)

Here, the determination of Cs and Cϵ requires the test-filtering approach adopted in the

classical dynamic Smagorinsky model. SGS-k is popular in simulations of atmospheric

boundary-layer flows (Moeng, 1984; Shaw & Schumann, 1992; Mason & Thomson, 1992).

5.3.4 Wall-adaptive SGS closure (SGS-w)

Here, we present an elegant approach that adapts the eddy-viscosity νsgs in and above the

forest to account for the energetic scale of turbulence that falls below the cutoff scale ∆LES.

Suppose that S is any (rank two) tensor. The Caley-Hamilton theorem (e.g., Nicoud &

Ducros, 1999) states that

S3 − I1S2 + I2S − I3I = 0 (5.8)

where three invariants of S are I1 = Trace(S), I2 = (1/2)[(Sij − Sji)
2 − (Sij + Sji)

2],

I3 = Det(S), and I is the rank two isotropic tensor. It is now clear that the eddy-viscosity

of the classical Smagorinsky-Lilly model Equation (5.1) was formulated using the second

invariant, I2 = −2SijSij of the resolved strain tensor Sij . Whenever the resolved flow
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takes some simple structure that is not likely to occur if the flow were locally turbulent and

three-dimensional, the second invariant of the resolved strain tensor Sij remains O(1) (e.g.,

Nicoud & Ducros, 1999), which dictates one to dynamically adjust Cs (e.g. SGS-s or SGS-

k). In Equation (5.8) Nicoud & Ducros (1999) suggests that S may be replaced with the

square of the velocity gradient tensor, (∂ui/∂xj)(∂ui/∂xj). Here, we follow Nicoud et al.

(2011) and build a SGS closure for canopy flows using the second invariant of the following

tensor

Sd
ij = SikSkj +RikRkj −

1

3
[SmnSmn −RmnRmn] , (5.9)

where the rotation tensor, Rij =
(︂

∂ui

∂xj
− ∂uj

∂xi

)︂
is the anti-symmetric part of the velocity

gradient tensor ∂ui/∂xj . It can be seen that the trace of Sd
ij vanishes and its second invariant

(I2) is proportional to Sd
ijSd

ij . In regions (say the viscous layer) where flow transitions

to a pure shear flow, one can show that SijSij = RijRij = 4S13 and SijSijRijRij =

−(1/2)SijSijRijRij and as a result, Sd
ijSd

ij vanishes if the flow transitions to a laminar

shear flow.

Thus, a promising approach to define the wall-adaptive eddy viscosity for canopy flows

is

νsgs = C2
w∆

2
LES

(Sd
ijSd

ij)
3/2

(SijSij)5/2 + (Sd
ijSd

ij)
5/4

. (5.10)

Note that a fixed value of Cw can be used in SGS-w model.

For completeness, the numerical scheme for solving LES equations is briefly outlined

in the following section.

5.3.5 Numerical procedure

The equations are discretized by a collocated finite-volume method. The finite volume inte-

gration of the filtered Navier-Stokes equation over a control volume (CV) can be expressed
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in the generic form∫︂
CV

⎛⎝ t+∆t∫︂
t

∂ui

∂t
dt

⎞⎠ dV =

∫︂
CV

⎛⎝ t+∆t∫︂
t

n ·F(ui)

⎞⎠+

∫︂
CV

t+∆t∫︂
t

f(ui)dV dt, (5.11)

where F denotes convective and diffusive flux terms and f(ui) denotes other terms. The

convective flux terms are discretized with a second-order upwind scheme to avoid non-

physical oscillation. The diffusive flux terms are discretized with a central stencil. The

temporal integration can be generalized through a weighting parameter θ ∈ [0, 1] – often

called the θ-method:
t+∆t∫︂
t

n ·F(ρϕ)dt =
[︁
θn ·Fn+1(ρϕ) + (1− θ)n ·Fn(ρϕ))

]︁
. (5.12)

For a pedagogical reason, the pressure correction approach – the Pressure Implicit Splitting

Operator (PISO) method – is briefly described below in the following steps.

1. Velocity prediction: Using the pressure from the most recent time step, the velocity

field is estimated by the Crank-Nicholson method such that

ρ

∆t
(u∗

i − un
i ) = α [F(u∗

i ) +F(un
i )]−∇ip

n + fi. (5.13)

The velocity u∗
i is corrected in the following step to satisfy the continuity equation.

2. First pressure correction: The velocity u∗∗
i is corrected using the new pressure p∗ by

solving
ρ

∆t
(u∗∗

i − un
i ) = F(u∗

i )−∇ip
∗ + fi. (5.14)

Taking the divergence of Equation (5.14), we get the following Poisson equation

∇2
i p

∗ = ∆iF(u∗
i ) + ∆ifi +

ρ

∆t
∆iu

n
i . (5.15)

Equation (5.15) is solved for p∗ using a multigrid algorithm. It can be seen that

the velocity correction u∗∗ does not require the inversion of any matrix. A second

correction was suggested by Issa (1986).
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3. Second pressure correction: The strategy of this step is similar to the previous step,

where the velocity correction u∗∗∗
i is obtained from

ρ

∆t
(u∗∗∗

i − un
i ) = F(u∗∗

i )−∇ip
∗∗ + fi, (5.16)

and the corrected pressure is found from

∇2
i p

∗∗ = ∆iF(u∗∗
i ) + ∆ifi +

ρ

∆t
∆iu

n
i . (5.17)

One may continue with more correction steps if necessary for a particular problem.

We have observed that two steps are sufficient for the present case to satisfy the

continuity equation with a tolerance of 10−8.

5.4 Comparison with wind-tunnel results

5.4.1 Experimental setup

A wind-tunnel model of the canopy was designed with cylindrical stalks of diameter 0.00025 m

and length 0.05 m. The stalks were arranged on a uniform square grid of side 0.005 m (Brunet

et al., 1994). Briefly, the working section of the wind tunnel was 11 m long, 1.8 m wide,

and 0.65 m high. The entering flow was tripped by a fence and was passed over a 3 m

section of the rough surface formed by road gravel to let the boundary layer develop before

the flow had encountered the 5.15 m long section of the canopy. In this setting, a neutrally-

stratified ABL flow over a homogeneous plant canopy was simulated in the dimensionless

domain 110h×38h×h, where the estimated canopy height is h = 0.047 m. With respect to

the canopy height h and the mean velocity Uh at z = h, the Reynolds number Re = Uhh/ν

for the wind-tunnel study was 9.6× 103.
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5.4.2 Numerical setup

The canopy height in the present LES is h = 50 m, which is about 1 064 times larger than

that of the wind-tunnel study mentioned above. The computational domain 1 440× 720×

500 m3 takes the dimensionless form 28.8h×14.4h×10h m3 that is the domain considered

by the LES study of Finnigan et al. (2009) (e.g., run A1). The domain was discretized into

256 × 128 × 123 cells, where the mesh is uniform in both the horizontal directions (with

∆x = ∆y = 5.625 m). The vertical mesh is stretched from ∆z = 1.6 m to ∆z =

5.5 m, which captures the mean flow near the bottom boundary. The flow is driven with

a streamwise pressure gradient that is adjusted dynamically to yield a prescribed volume-

averaged a streamwise speed of Ub. The results with Ub = 4 m/s yields a mean wind that

agrees better with the wind-tunnel measurements. The Reynolds number (Ubh/ν) for LES

is Re = 1.3× 107, which is 1 354 times larger than that in the wind tunnel experiment.

The value of Cd would decrease as Re increases (e.g., Brunet et al., 1994). The normal-

ized form of the canopy drag force in Equation (5.2) is fih/U
2
b = hCdA|u|ui. Finnigan

et al. (2009) observed that hCdA = 0.236 yields a mean wind that agrees well with the

wind-tunnel measurements of mean wind.

5.4.3 Comparison with wind-tunnel results

Using the wall-adaptive SGS closure (i.e. SGS-w), we expect that the SGS stresses are

dynamically adjusted to an asymptotic limit as the ground is approached through a for-

est. Since the eddies dominate the transport of mass, momentum, and energy in the region

above the forest, a reproduction of mean flow, Figure 5.2 justifies the parameterization of

subgrid-scale processes without requiring any adjustment of the Smagorinsky parameter

Cs. Figure 5.2a compares the LES prediction of the vertical wind profile with the wind-

tunnel data of Brunet et al. (1994) and the LES result of Finnigan et al. (2009). The nor-
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(a) Mean U(z)/u∗ (b) Reynolds stress τR13/u
2
∗

Figure 5.2: (a) The result of the present LES (−−) is compared with wind-tunnel data

(−o−), a reference LES (−×−), and a model profile of wind speed in the canopy layer −⋄

−. (b) Vertical profile of τR13/u
2
∗, present LES (−−), wind-tunnel data (−o−), a reference

LES (−×−)
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malized mean velocity profiles are strictly in agreement for z ≤ 3h and above. Both of the

LES results deviate slightly from the wind-tunnel result. Figure 5.2b compares the vertical

profiles of the normalized Reynolds stress τR13, where the deviation among the LES results

and the wind-tunnel data for z > h is primarily due to the differences in the outer bound-

ary conditions (see relevant discussion in Finnigan et al. (2009)). Note that an imposed

pressure gradient drives both the present LES and the reference LES.

The primary source of momentum within a canopy layer is due to the geostrophic wind,

which is supplied by the steady entrainment of momentum flux. We can use the classical

turbulent boundary layer theory to examine the mean momentum influx into the canopy-

layer. It has been argued for a considerable time that the boundary layer similarity needs

to be modified to reflect changes due to the roughness of a canopy. Consider the rate of

energy dissipation per unit mass above the ground (z ≥ 0): ϵ(z) = −u′w′∂ū/∂z. The

total dissipation per surface area below a height h and above a lower height z0 is given by∫︁ h

z0
ϵ(z)dz = (u3

∗/κ) ln(h/z0), where κ is the von Karman constant and z0 is the roughness

length. This suggests that a portion of the momentum flux is ultimately dissipated into heat

in the region below h. As a result, the wind profile exhibits a strong shear in the region of

the canopy top. Near the ground, the logarithmic profile breaks down, and the wind speed

decreases exponentially with height. In Figure 5.2a, the LES prediction of the wind profile

below the inflection point z/h = 1 is reasonably well approximated by e−α(1−z/h) with

α = 1.60. This exponential profile is in good agreement with the wind-tunnel measurement

of Brunet et al. (1994).
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5.5 Results and Discussion

5.5.1 Wall-adaptive SGS closure vs Lagrangian dynamic and Dear-

dorff’s TKE model

The Lagrangian dynamic model solves two additional transport equations, while Dear-

dorff’s TKE model solves one additional transport equation. Moreover, the success of both

models requires a very fine mesh in the surface-layer (and canopy-layer). To overcome the

drawbacks of these models would require a major rework. In the following simulations, we

want to test whether the SGS-w model eliminates the need to solving additional transport

equations. Here, we study the velocity and pressure fields saved at the final time step of

the LES run discussed in Section 5.4.2. The saved result is used as the initial condition

for three new individual runs in which only the SGS closure is changed with respect to

each other. The results in the following sections indicate that the influences of stretched

vortices (e.g., Chung & Pullin, 2009) can be modelled in canopy flows by engaging the

rotation tensor Rij into the eddy-viscosity of the SGS-w closure.

5.5.2 Coherent structures in canopy flows

Canopy flows are a specific type of rough-wall boundary-layer flow in which the veloc-

ity profile is inflected within the upper region of the roughness-layer (i.e. canopy-layer),

thereby separating high-momentum fluid aloft the canopy from drag-retarded fluid under-

neath. The inflection of the velocity makes canopy flows inviscidly unstable to distur-

bances in which roll-up occurs rapidly as a result of the growth of low-wavenumber dis-

turbances (Bailey & Stoll, 2016). As is observed from the present LES investigation, the

breakdown of vortex rolls into smaller turbulent eddies and the generation of vortex sheets

by neighboring structures sustain a self-similar eddying motion. Such turbulence structures
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near a canopy play a significant role in transferring a substantial part of the momentum and

are also characterized by a high level of coherence and intermittency (Finnigan, 2000).

Similar to the findings of Miri et al. (2017), the results of the present LES study indi-

cate that wind inside a forest canopy is linked to the morphology of canopy elements and

their aerodynamic response to airflow. Here, the aerodynamic characteristic of the trees is

represented by the dimensionless number hCdA that accounts for shear and inflection of

the wind. In contrast to the wind-tunnel studies (Brunet et al., 1994; Miri et al., 2017), the

three-dimensional flow structures can be visualized with our LES study, which is useful to

get a further insight into the flow through a forest. Similar to mixing-layers and free shear

flows, the inflection of the wind in a canopy flow is also connected to Kelvin-Helmholtz

instabilities that are subsequently transformed into three-dimensional secondary instabili-

ties. These instabilities are mainly because of the nonlinear advection that has the effect

of passing energy from large to small scale (i.e. Richardson’s picture of turbulence). The

breakdown of coherent flow structures is responsible for the turbulent transfer of momen-

tum (through sweeps and ejections) between the forest and the atmosphere. Although the

turbulent transport by coherent structures is a qualtitative characterization of the flow, the

phenomena describe flow structures that are robust in the sense that they appear again and

again more or less in the same form. Nonetheless, these coherent flow structures are far

from passive, and they contribute significantly to the production of turbulent energy (see

Dupont & Brunet, 2009)).

In the above discussion regarding the breakdown of coherent structures and their role

of energy transfer between a neutrally stratified ABL flow and a canopy flow, the coher-

ent structures can be defined as a three-dimensional connected fluid region whose den-

sity surface is represented by a function of the velocity gradient tensor. A classical re-

sult of continuum mechanics is that the coefficients of the characteristic equation λ3 −

Trace[∂ui/∂xj]λ
2 +Qλ − Det[∂ui/∂xj] = 0 are tensorial invariants of the velocity gradi-
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ent tensor ∂ui/∂xj , where the second invariant is defined by

Q =
1

2

[︄(︃
∂ui

∂xj

− ∂uj

∂xi

)︃2

−
(︃
∂ui

∂xj

+
∂uj

∂xi

)︃2
]︄
. (5.18)

Such representation of coherent structures by the second invariant of the velocity gradient

tensor is called the Q-criterion, where Q > 0 provides the relative dominance of the rotation

rate Rij over the strain rate, Sij , where the rotation tensor measures the vorticity field. The

fluid region whose density surface is given by Q > 0 indicates the rotation of turbulent

eddies, and that of Q < 0 indicates the deformation of turbulent eddies.

Figures 5.3(a, b, c) demonstrate the isosurface of Q = 0.2U2/h2 colored by the span-

wise component of the vorticity, where the red and blue colors denote positive and negative

vorticity, respectively. One notes that the vorticity of the mean ABL flow points toward

the spanwise direction; i.e., ωy = ∂u/∂z − ∂w/∂x, and that associated with turbulence

is random. In turbulent flows over a smooth flat surface, these spanwise rolls are likely

to deform into inclined arched or hairpin-like structures – the precise transition of which

is flow-dependent (e.g., Bailey & Stoll, 2016). To characterize the cores of these coher-

ent structures by a local rotation rate larger than the strain rate, the positive values of the

Q variable were colored by values of ωy. One notes that Reynolds shear-stress can be

expressed in terms of velocity fluctuations in the direction of principal rate of strain, i.e.

τR13 = (1/2)[(w′
∗)

2 − (u′
∗)

2]. Here, the subscript ∗ indicates that the co-ordinate system is

rotated along the principal axes of the strain tensor. The negative ωy is due to the Reynolds

stress associated with large fluctuations of w′
∗.

5.5.3 The role of subgrid-scale coherent structures in flow through a

forest

Using the LES of turbulent channel flow, Chung & Pullin (2009) observed that the produc-

tion of near-wall Reynolds stress due to the winding of streamwise momentum by near-wall
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(a) Q, SGS-w

(c) Q, SGS-k (d) Q, SGS-s

Figure 5.3: A visualization of the coherent structures in a canopy flow. Isosurfaces of the

Q-criterion superimposed by values of spanwise vorticity. a SGS-w, wall-adaptive SGS

model, b SGS-k, dynamic K-equation SGS model, and c SGS-s, scale-dependent dynamic

Lagrangian SGS model

attached vortices contributes to the stretched-vortex SGS model. This result is a primary

motivation for the SGS-w model that accounts for the stretching of spanwise rolls through

the tensorial invariant.

Figure 5.3 compares the second invariant of the velocity gradient tensor (Q-criterion)

among three SGS models. The most widely used of the eddy-viscosity closures (i.e.,

Smagorinsky model) assumes that an equilibrium exists between kinetic energy flux across

scales, i.e., between the small- and the large-scales of turbulence. In a turbulent flow
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through forests such equilibrium conditions are not established, and the rate of energy

dissipation is inhomogeneously distributed in space and time as a consequence of the spa-

tial intermittency of turbulence and the interaction between eddies and trees. As discussed

above, a large Reynolds stress due to the fluctuations w′
∗ associated with the stretching

of spanwise rolls results in sweeps of high-momentum fluid into the forest. To correctly

account for the rate of energy passed from the mean flow to turbulence in the forest, the

SGS-k model considers the turbulent kinetic energy budget (Deardorff, 1973; Schumann,

1975), whereas the SGS-s model adopts the Lagrangian dynamics and the scale-invariance

of energy cascading eddies (Meneveau et al., 1996). Both of the models are based on the

second invariant of the strain tensor Sij (Nicoud & Ducros, 1999). Nicoud et al. (2011)

showed that an SGS closure based on the second invariant of the traceless symmetric part

of the square velocity gradient tensor Sd
ij accounts for the subgrid-scale turbulence in shear

flows. The main features of the coherent structures are captured by the SGS-w model nei-

ther by solving the transport equation for the turbulence kinetic energy (e.g. SGS-k model)

nor by requiring costly test-filtering operations (e.g. SGS-s model). It is also apparent that

SGS-w is automatically scale-adaptive.

The impact of the subgrid scale turbulence can also be viewed in the richness of the

flow structures and their existence beyond the canopy layer. As can be seen, the (wall-

adaptive) SGS-w model is able to accommodate more resolved turbulence compared to the

other two dynamic models. From the visualization of the flow structures in Figure 5.3, one

claims that these coherent structures originate from the breakdown of ‘hairpin-like’ vortex

tubes. These hairpin vortices are usually stretched and oriented 45o to the mean flow, and

they are a prime candidate to generate positive values of the Reynolds stress τR13. They are

ideally aligned with the maximum strain rate. When they are stretched by the mean flow,

the energy associated with the vortex tube is intensified. In Figure 5.4, the Reynolds stress

(τR13) is presented by the isosurface of −u′w′/u2
∗ = 0.9 colored by the spanwise vorticity



CHAPTER 5. SUBGRID-SCALE TRANSPORT IN FOREST-LIKE CANOPY 68

τR13, SGS-w

Figure 5.4: A visualization of the Reynolds stress τR13 for the flow through a forest.

ωy. This result indeed shows the mechanism in forest flows, exchanging energy from the

mean flow to the turbulence.

5.5.4 Windbreak performance of tree canopy

A canopy is crucial to controlling aeolian erosion that has resulted in significant environ-

mental problems due to changes in climate and vegetation cover. LES may be a convenient

tool to assess morphologic and aerodynamic responses of live plants to a range of wind

speeds, which is better than wind tunnel experiments. In LES, one can incorporate the

inertial resistance of the tree canopy as a porous zone that is immersed into a fluid (see

Finnigan et al., 2009). Thus, the aerodynamic porosity of the canopy becomes an influ-

ential parameter to model the windbreak experienced by a tree canopy. The porosity can

be estimated as the ratio between airflow that passes through the canopy pores and airflow

that diverges over the canopy. Following Finnigan et al. (2009), the aerodynamic force of a

windbreak (e.g., fi in Equation 5.2) is the product of the dimensionless drag coefficient Cd,

a one-sided plant area density A, and the square of the resolved velocity ui. To analyze

the windbreak effectiveness with LES, the plant morphology is represented by Cd, and the
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(a) (b)

Figure 5.5: (a) A contour plot of the wind speed reduction, Rc = 1 − u(x, y, z)/U(z),

colored by the mean streamwise velocity U . (b) A contour plot of Rc(x, z) defined by

Equation (5.19).

aerodynamic response to the canopy is represented by A.

To evaluate the windbreak efficiency of a tree canopy (in reducing the wind velocity),

one considers the wind speed reduction coefficient (see Miri et al., 2017)

Rc(x, z) = 1− u(x, z)

U(z)
(5.19)

where u(x, z) is the resolved streamwise velocity on the centerline vertical plane and

U(z) = (u∗/κ) ln(z/z0) is the wind speed satisfying Monin-Obukhov similarity theory.

In wind tunnel measurements conducted by Miri et al. (2017), Rc(x, z) was measured at

various streamwise locations. Figure 5.5a demonstrates the contour plots of Rc colored

by the magnitude of streamwise velocity. The vertical distribution of Rc(x, z) on the ver-

tical mid-plane aligned with the streamwise direction is demonstrated in Figure 5.5b. As

can be seen, the windbreak of the canopy is influenced by turbulence. Nevertheless, an

instantaneous windbreak is largely uniform in the vicinity of the bottom boundary.
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5.5.5 Turbulence above a canopy layer

It is often assumed that the statistical theory of coherent structures in a simple wall-bounded

turbulent flow describes most of the phenomena exploited by turbulent flows over a canopy

and multiscale rough surfaces (Adrian, 2007). In such a flow, the coherent structures de-

picted in Figure 5.3 are responsible for carrying Reynolds stresses and for transporting

mean momentum. To illustrate the role Reynolds stresses play in producing and dissipat-

ing TKE, the vertical distribution of the TKE is presented in Figure 5.6. The kinematic

Reynolds stress, τRij = −u′
iu

′
j , is obtained by taking a time average in the last 5 hours,

treating this as an ensemble of large statistical samples distributed in the three-dimensional

space. The TKE defined by τRii was averaged over the horizontal domain. Figure 5.6a

presents the vertical profiles of the diagonal components of the Reynolds stress, where

σu = τR11, σv = τR22, and σw = τR33 are the variances of the velocity fluctuations and their

sum (i.e. TKE) represents turbulence intensity. The results are compared between the three

models: SGS-w, SGS-k, and SGS-s. It is seen that the longitudinal velocity fluctuations are

the largest because the shear production in a neutrally stable atmospheric boundary layer

initially feeds the energy into the u-component. The energy is subsequently distributed

into the lateral components v and w. As expected, these three models accurately predict

the overall behavior of the Reynolds stress. A variation of 18% in the prediction of tur-

bulence intensity concerning SGS-w and SGS-k suggests the sensitivity of SGS closure

schemes.

For a fixed Cs, equating νsgs defined by Equation (5.1) to that given by Equation (5.10),

we see that the parameter Cw represents the contribution of the ratio of straining to stretch-

ing of vortices into subgrid dissipation. For decaying isotropic turbulence in unbounded

domains, Nicoud & Ducros (1999) reported that Cw = 0.5 approximately with respect to a

fixed value of Cs = 0.18. In the canopy sublayer, which is the bottom region of the surface
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layer, subgrid-scale turbulence can be dominated by vortex-stretching associated with the

shear of the mean streamwise velocity (e.g. Chung & Pullin, 2009). Here, we have studied

the sensitivity of the parameter Cw for the SGS-w model, and the findings are summarized

in Figure 5.7. The plots in Figure 5.7a, b demonstrate that the subgrid-scale dissipation of

TKE is relatively insensitive to Cw in the canopy sublayer, which is consistent with the

construction principle of the SGS-w model. For 150 m < z < 350 m, Figure 5.7b indicates

that a reduction of Cw from 0.525 to 0.125 is associated with the relative dominance of

vortex-stretching in the forward cascade of TKE. It seems that Cw = 0.325 is favourable

throughout the boundary layer.

5.5.6 Quadrant analysis

While flow visualization (e.g., Q-criterion or λ2-criterion) can identify coherent structures,

the quadrant analysis technique based on the instantaneous product −u′w′ is a quantita-

tive approach that detects coherent structures contributing to Reynolds stresses in turbulent

boundary layers. This technique is applied to determine the most significant possible con-

tributions to −u′w′ and turbulent kinetic energy, as well as statistical properties of strong

“ejection-like” (u′ < 0, w′ > 0; Q2) and “sweep-like” (u′ > 0, w′ < 0; Q4) bursting

phenomena of boundary layer turbulence. Zhou et al. (1999) extracted coherent structures

from the direct numerical simulation of channel flow by linear stochastic estimation of

“ejection-like” near-wall events. Using the Haar wavelet transform, Watanabe (2004) ob-

served that the sweep-ejection cycle has a dominant contribution to the Reynolds stress.

Finnigan et al. (2009) observed that the conjunction of Q2 and Q4 events produces the lo-

cation of the coherent scalar microfront and that the sweep-ejection cycle is also associated

with the breaking of symmetry inflows over a vegetation canopy.

In Figures 5.8a-c, the time series of u′ (=u− ū) and w′ (=w − w̄) are presented, where
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(a) Wall-adaptive (SGS-w) (b) Dynamic K-equation (SGS-k)

(c) dynamic Lagrangian (SGS-s)

Figure 5.6: A comparison of the Reynolds stresses, σu, σv, σw, and TKE among three SGS

models. (a) SGS-w, (b) SGS-k, and (c) SGS-s.
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(a) mean-square deviation (b) turbulence kinetic energy, TKE

Figure 5.7: The sensitivity of the model parameter Cw with respect to mean-square devia-

tion from mean for each component of the velocity (a) and turbulence kinetic energy, TKE

(b).

u and w are resolved velocity components computed at a height of z/h = 1 on the vertical

mid-planes of the computational domain. The nature of the time series of the velocity fluc-

tuations concerning three the SGS models is consistent with the flow structures depicted in

Figure 5.6. In a coordinate system (x∗, y∗, z∗) rotated counterclockwise in the xz plane, the

(kinematic) Reynolds stress can be expressed as τR13 = (1/2)(u′∗u′∗ − w′∗w′∗). So, a high

Reynolds stress is associated with large fluctuations of w (albeit in the rotated coordinate).

Figures 5.8d-f illustrate the probability density of the streamwise and wall-normal velocity

fluctuations (u′ and w′). The rate (τR13S13) of mixing by the Reynolds stress in the forest

edge – due to the passing of energy from the mean flow to the turbulence – is enhanced

by resolved shear S13. Figures 5.8g-i demonstrate the scattered plots of the velocity fluc-

tuations on the u′-w′ plane, which characterizes the sweep (Q4) and ejection (Q2) events.

The dissimilarity of the sweep-ejection cycles among the three models is noticeable. The

Reynolds stresses and TKE comparison of three SGS models suggest that ejection (Q2) is

more dominant than the sweep (Q4).



CHAPTER 5. SUBGRID-SCALE TRANSPORT IN FOREST-LIKE CANOPY 74

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

SGS-w SGS-k SGS-s

Figure 5.8: Time variation of velocity fluctuation in the streamwise (u′) and vertical (w′) di-

rections. bottom row: scattered plot of u′ vs w′; top row: time series plots of u′ and w′, and

middle row: Probability Density Function of u′ and w′. left column: wall-adaptive SGS-

w model, middle column: Deardorff’s TKE model, SGS-k, and right column: dynamic

Lagrangian SGS-w model
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5.6 Conclusion

In this study, we present a systematic analysis of the wall-adaptive large-eddy simulation

framework as a potential methodology to study the aerodynamics response of forests in

transporting momentum and energy. The LES code employs the three-dimensional Forch-

heimer expression to model the canopy stress experienced by trees in a forest. Besides, the

sensitivity of three SGS closures has been examined in the context of the wind tunnel exper-

iment of Brunet et al. (1994) and the LES investigation of Finnigan et al. (2009). Based on

the coherent flow structures extracted by the Q-criterion, the Deardorff’s TKE model (SGS-

k) seems to indicate less mixing in the forest than both the wall-adaptive model (SGS-w)

and the Lagrangian dynamic model (SGS-s). This observation is supported by the esti-

mates of the Reynolds stresses. While the latter two models (SGS-w and SGS-s) seem

qualitatively equivalent, it is obvious that turbulence mixing and interaction in the forest

is better represented with the wall-adaptive model – i.e. it requires neither tweaking of

model parameters nor solving additional transport equations. Moreover, the wall-adaptive

model doesn’t need to configure extra equation libraries like the other two methods. The

resolution requirement of the wall-adaptive model has not been assessed in the present in-

vestigation. In LES, eliminating the need for resolving energetic eddies in the forest canopy

would require a significant rework. Despite the substantial investigations of canopy flows

by Raupach et al. (1996); Finnigan et al. (2009) and others, it is worth mentioning that there

are many questions regarding the role of small-scale three-dimensional coherent structures

in high Reynolds number canopy flows (e.g., Bailey & Stoll, 2016)).

For the future work, performing LES of stratified turbulence in forests with a surface

model that accounts for the subgrid dissipation associated with the inflection of velocity

could be considered. Analyzing the spectral content of the velocity gradient tensor to build

an SGS closure for canopy turbulence and considering local backscatter in such models
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is another potential avenue in studying stratified turbulence in a forest canopy. An ulti-

mate goal would be to fully understand the creation of coherent structures and their role in

turbulent transport in forest canopy flows.
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Abstract

Recent advancements of computational power allow grid resolutions that are necessary

for large-eddy simulations of the atmospheric boundary layer flow over complex terrain.

These simulations often need a nested grid that is locally refined in regions of interest, such

as near the terrain. In large-eddy simulations with nested grids, energy can be accumulated

at grid refinement interfaces. In this work, a subgrid-scale model is presented in which the

eddy-viscosity is adapted dynamically as the characteristic length scales decrease near the

terrain. The performance of the terrain-adaptive subgrid-scale model is tested with respect
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to tunnel measurements around a single hill.
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Complex terrain; turbulence; subgrid-scale closure; canopy stress.

6.1 Introduction

Mountainous regions cover approximately a quarter of the Earth’s land surface, which may

propagate atmospheric responses toward high altitudes through the atmospheric boundary

layer (ABL). Thus, turbulent flows over mountains were thoroughly investigated by sev-

eral field measurements of wind over mountains (e.g., Mason & Thomson, 1992; Bradley,

1980; Jenkins et al., 1981; Mason & King, 1985; Berg et al., 2011). The large-eddy simula-

tion (LES) of mountain-induced turbulence requires a fine computational grid so that both

the turbulent kinetic energy (TKE) and the mountain topography are sufficiently resolved

in order for minimizing the effects of subgrid-scale (SGS) turbulence modelling (see Chow

et al., 2019). Grid cells become highly skewed if a steep terrain is resolved with the clas-

sical terrain-following co-ordinate system (see Figure 1.1), which is inappropriate to filter

large-scale streaky structures that appear near the Earth’s surface, thereby leading to sev-

eral computational inconveniences for LES (Lundquist et al., 2010, 2012). Moreover, the

skewed grid in the terrain-following system is prone to discretization errors that deteriorate

at fine grid resolutions (Mahrer, 1984). An appropriate scheme is needed to dampen such

numerical errors; otherwise, LES can be limited to turbulent flows over mountains with

shallow slopes only (Brasseur & Wei, 2010; Anderson & Meneveau, 2011; Arthur et al.,

2019).

In this research, we present an LES methodology in which the terrain effects are re-
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solved with a Cartesian grid, where the mountains are represented through the canopy

stress method (e.g., Brown et al., 2001). In other words, a mountain is treated as a ‘pseudo-

canopy,’ and the overall stress experienced on the surface of the mountain is incorporated

into the momentum equation through an additional component of the resolved stress. A

vital advantage of the present method is that it is independent of the spatial discretization

and can be implemented into an existing code that solves the Navier-Stokes equations. The

canopy stress method is similar to the classical immersed boundary (IB) method but differs

from the IB method by treating the stress boundary conditions. The IB method interpo-

lates the solution on grid points adjacent to the solid surface so that the no-slip boundary

condition is satisfied, and requires a fine near-wall resolution to capture the viscous layer,

thereby limiting the use of LES to moderate Reynolds numbers, Re (see Anderson, 2013).

The best approach is to bypass the viscous layer and use a ‘wall-model’ in the near-wall

region which provides good approximations to wall shear stress (e.g., Piomelli & Balaras,

2002). In recent years, various wall-modelling strategies have been applied successfully

in a number of complex engineering flow configurations. Using the IB method, Bao et al.

(2018) examined a wall-model for LES over mountains in which the logarithmic wind pro-

file along the wall-normal direction was reconstructed on the IB nodes. A good agreement

was observed by Bao et al. (2018) in the results between wall-modelled IB method and the

terrain-following method for flow over Askervein Hill (having a moderate slope). It was

also observed that the results are quite sensitive to the boundary layer separation on the

lee side of the hill (Bao et al., 2018). For instance, the flow separation from the surface

of a mountain on the lee side may occur under the influence of an adverse pressure gradi-

ent leading to a sharp increase of the drag force. IB methods have difficulty in correctly

interpolating these effects on the IB nodes.

In past years, much attention was given to methods that improve the SGS turbulence

modelling schemes in the atmospheric boundary layer (Mason & Thomson, 1992; Senocak
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et al., 2007; Goodfriend et al., 2015). Without careful adjustments of the SGS turbulence

models, some numerical “overshooting” persists in the predicted wind speed in the surface-

layer (Senocak et al., 2007). Among the relevant modifications of SGS turbulence models

are the blending of eddy viscosity (Mason & Thomson, 1992), hybrid RANS-LES formula-

tion that combines the benefits of LES with Reynolds Averaged Navier-Stokes simulation

(RANS) (Gopalan et al., 2013), the treatment of the buffer layer with a pseudo canopy

model (Brown et al., 2001; Senocak et al., 2007; Arthur et al., 2019), etc.

The present research illustrates an SGS turbulence model in which the subgrid-scale

energy dissipation rate is determined dynamically by considering a cornerstone principle

of modern turbulence theory that the kinetic energy can be cascaded from large to small

scales by the coherent structures via vortex stretching mechanisms (Farge et al., 1999;

Chung & Pullin, 2009; Bose & Park, 2018). This is physically more realistic than the

traditional models (i.e. based on the strain rate only) because a stretched vortex is smaller

in size than the smallest resolved eddies, which transfers energy to the subgrid-scale flow

regime. A grid resolution leaving stretched vortices under-resolved may not provide a

sufficiently accurate local dissipation rate using the strain tensor alone (see Piomelli &

Balaras, 2002; Chung & Pullin, 2009). It is also interesting to note from the Q-criterion

that the maximum pressure on a local fluid element can be due to the dominant role of

vorticity over strain, where the second invariant of the velocity gradient tensor denotes

the Q-criterion. Following the classical model (e.g., Smagorinsky, 1963) and dimensional

reasoning, this research employs the second invariant of the square of the velocity gradient

tensor to incorporate the role of the stretched vortices in formulating the eddy viscosity,

particularly in regions near to complex terrain. Another advantage of this model is that the

rate of energy dissipation is also dynamically adjusted appropriately in regions with pure

shear or inflection (Nicoud et al., 2011; Trias et al., 2015). Exploiting the vortex stretching

mechanism in the subgrid-scale modelling is useful in the flow regime with intermittent
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flow separation that occurs on the lee side of mountains. To the best of authors’ knowledge,

such an SGS turbulence model was not fully exploited in the studies of ABL flow over

complex terrain.

In Section 6.2, we discuss how to incorporate subgrid-scale flow features in LES, where

a mountainous topography is immersed into the fluid through a Cartesian mesh. In Sec-

tion 6.3, the numerical assessment of the proposed LES methodology is briefly discussed

where wind tunnel measurements and a reference LES data obtained through the commer-

cial code ANSYS are considered to evaluate the present approach. Finally, Section 6.4

summarizes the findings of the present study.

6.2 Governing equations and SGS models

Using the analogy between the volume-averaged Navier-Stokes equations for canopy flows

(Shaw & Schumann, 1992; Finnigan et al., 2009) and the filtered equations of large-eddy

simulation (Piomelli & Balaras, 2002; Chung & Pullin, 2009), let us consider the filtered

equations of mass and momentum, respectively, such that

∂ūi

∂xi

= 0, (6.1)

∂ūi

∂t
+

∂(ūiūj)

∂xj

= − 1

ρ0

(︃
∂p̄

∂xi

+ δi1
∂P0

∂x1

)︃
− ∂τij

∂xj

+
∂τ cij
∂xj

. (6.2)

Here, (x1, x2, x3) = (x, y, z) denote the Cartesian coordinate with x and z axes along the

streamwise and wall-normal directions, respectively. The filtered velocity along the j-th

direction is ūj , ρ0 is a reference density, P0(x) is a mean pressure, and p̄ is the filtered

pressure. In LES, the residual stress tensor τij = uiuj − ūiūj appears due to box-filtering

of the inertial force. In volume averaging, the canopy stress tensor τ cij is due to the pressure

gradient force and the viscous stress (see Finnigan et al., 2009; Brown et al., 2001).
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6.2.1 The canopy stress method

Applying the volume averaging operation onto the Reynolds-averaged Navier-Stokes equa-

tions, Wang & Takle (1995) provides a detailed analysis of the canopy stress concerning

boundary layer and turbulence kinetic energy budget for porous obstacles in which the

following form of the canopy stress

∂τ cij
∂xj

=
ν

∆V

k=k0∑︂
k=1

∫︂∫︂
Sk

∂ūi

∂n
dS − 1

∆V

k=k0∑︂
k=1

∫︂∫︂∫︂
Sk

p̄nidS (6.3)

was derived, where Sk denotes the surface of the k-th obstacle. The volume averaging

method leads to the canopy stress tensor that models the dynamics of the ‘air-solid’ two-

phase flow by that of a continuous phase in which solid bodies (e.g., mountains) are mod-

elled as a porous zone embedded within the fluid. The theory of volume averaging was

rigorously analyzed for the RANS modelling of turbulent flow through porous media; for

instance, see Whitaker (1999) and De Lemos (2012). In LES, Equation (6.3) appears

through the application of low-pass filtering of the stress tensor (in Navier-Stokes equa-

tions) because the ‘box’ of the filtering operation contains both solid and fluid. Thus, we

can treat the complex terrain as a canopy or porous zone of height zs(x, y), which is im-

mersed in the fluid.

Brown et al. (2001) and Senocak et al. (2007) assumed a porous layer of fixed thickness

hc above the bottom boundary in which τ cij varies only in the vertical direction, and replaced

Equation (6.3) with the following expression:

∂τ ci3
∂z

=

⎧⎪⎨⎪⎩ −Cd cos
2(πz)/(2hc)|u|ui for 0 ≤ z ≤ hc

0 otherwise

where Cd is a drag coefficient in m−1 units. In this approach, the gradient of canopy stress,

∂τ ci3/∂z, models the effects of rough surfaces in large-eddy simulation because of the grid

resolution and the cut-off scale of low-pass filtering does not account for the dominant role
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of viscous stresses near the Earth’s surface (Arthur et al., 2019). In other words, the canopy

stress model becomes equivalent to wall-stress models of LES of wall-bounded turbulence.

In low-pass filtering of LES, a role of the residual stress tensor τij is to pass all wavenum-

bers smaller than a cut-off wavenumber 2π/∆. In the volume averaging, the canopy stress

tensor τ cij passes all wavenumbers smaller than 2π/d where d < ∆. Thus, the surface in-

tegrals in Equation (6.3) are estimated to incorporate the dynamical interaction of scales

between d and ∆. For RANS modelling of turbulent flows through a porous medium,

De Lemos (2012) outlined a generalized formulation for Equation (6.3) in the following

form

∂τ cij
∂xj

=
ν

K
ui +

Cd√
K
|u|ui. (6.4)

In Equation (6.4), K and Cd are defined from a fluid mechanical perspective that the canopy

stress accounts for the pressure drop and viscous loss experienced by fluid while flowing

through a packed-bed (see Lage et al., 2002; De Lemos, 2012), where

K =
d2ϕ

150(1− ϕ)2
, F =

1.75d

150(1− ϕ)
, and Cd =

F√
K
.

To utilize the model (6.4) in LES over complex terrain, let us assume that the terrain forms

a canopy that is a collection of obstacles having a characteristic length scale of d which

represents the ratio of the volume of solids to the surface area of solids, where ϕ is the ratio

of the void volume to the total volume under the canopy z = zs(x, y). It is worth men-

tioning that 1/d represents the plant area density (m2/m3) in models of forest/vegetation

canopy (see Finnigan et al., 2009). In the literature, various choices for K and Cd were

extensively verified in the context of a wide range of engineering applications so that the

most accurate stress experienced by a rough surface or porous zone can be obtained (Lage

et al., 2002).
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6.2.2 Subgrid scale closure schemes

In LES of atmospheric boundary layer flow over complex terrain, there exist two flow

regimes. The region is closed proximity of the terrain, and the characteristic length scale

is constrained by the Earth’s surface, where a significant fraction of the energy-containing

eddies belong to the subgrid-scale motion. In contrast, most of the turbulent kinetic energy

in the region away from the surface is resolved, where a subgrid-scale model of the form

τij −
1

3
τkkδij = 2ντSij, (6.5)

is usually adequate to represent the role of subgrid-scale motion. For instance, the classical

Smagorinsky (1963) model adopts ντ = C2
s∆

2(2SijSij)
1/2 for which a constant value of

Cs ≈ 0.17 was suggested by Lilly (1967). It is established that this model is insufficient

for atmospheric boundary layer flows due to the co-existence of the two flow regimes men-

tioned above. For a pedagogical reason, it is convenient to discuss two of the commonly

used models.

6.2.2.1 Turbulence kinetic energy (TKE) based model

In this model (hereinafter SGS-k), the following transport equation (see Moeng, 1984;

Shaw & Schumann, 1992; Moeng & Sullivan, 2015)

∂ksgs

∂t
+

∂ujksgs

∂xj

= −τijSij − Cϵ

k3/2
sgs

∆LES

+
∂

∂xj

(︁
u′′
jksgs + u′′

jp
′′
)︁
− fcksgs (6.6)

is solved where ksgs = (1/2)(u2
i − ū2

i ). The terms on the right-hand side of Equation (6.6)

represent local shear production, molecular dissipation, transport by turbulence and pres-

sure, and additional dissipation due to the canopy stress discussed in the previous section.

The last term is a modification of the TKE, which accounts for additional components of

subgrid-scale stress arising from the volume averaging operations (e.g. Equation 4.49 of

Lage et al., 2002). Similar modification of the TKE equation was considered for LES
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over vegetation/forest canopies (see Shaw & Schumann, 1992). The second last term in

Equation (6.6) is usually approximated by

u′′
jksgs + u′′

jp
′′ = νsgs

∂ksgs

∂xj

,

where the eddy viscosity is νsgs = Cs

√
ksgs∆les. Under the assumption that all SGS motions

lie within the inertial subrange and that the energy spectrum has a −5/3 spectral slope,

commonly used values of the parameters for ABL applications are Cs = 0.1 and Cϵ = 0.93.

6.2.2.2 TKE based SGS dynamic closure scheme (SGS-d)

Since the local dissipation rate −τijSij is always positive (e.g., Moeng, 1984; Moeng &

Sullivan, 2015; Arthur et al., 2019), the SGS-k model can exhibit artificial dissipation of

TKE, particularly in the shear-dominated region closed to a terrain. It is easy to check with

perturbation analysis that |Sij| = O(1) as z → 0, which implies a higher dissipation of

TKE in the vicinity of the terrain. To compensate this additional dissipation, it is necessary

to blend the eddy viscosity νsgs as z → 0. For instance, a comprehensive discussion regard-

ing the blending of νsgs is provided by Kurowski & Teixeira (2018) concerning heat transfer

mechanisms in atmospheric boundary layer flows.

In the present study, we consider a dynamic modelling approach (hereinafter SGS-

d) to approximate values of the parameters Cs and Cϵ necessary for the SGS-k model.

Briefly, the turbulent kinetic energy k̃sgs at the test filter level is obtained from the trace of

Lij = ˜̄︃uiūj− ˜̄ui ˜̄uj and Cs is determined in a similar manner that is adopted for the dynamic

Smagorinsky model such that

Cs =
1

2

LijMij

MijMij

,
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where Mij = −
(︃
2∆LESk̃

1/2
sgs S̃ij −∆LES

˜︂
k
1/2
sgs Sij

)︃
. The other parameter is calculated from

Cϵ = ν

[︄
˜︂∂ūi

∂xj

∂ūj

∂xi

− ∂ ˜̄ui

∂xj

∂ ˜̄uj

∂xi

]︄
/

⎡⎣ k̃1/2
sgs

2∆LES

−
˜︃
k
1/2
sgs

∆LES

⎤⎦ .

6.2.3 Terrain-adaptive turbulence models

The discussion regarding SGS-k/d models motivates a method in which νsgs is dynamically

adapted without requiring any ‘ad-hoc’ adjustment of the model parameters such as Cs

and Cϵ. Such a model can be derived from one of the formulations (hereinafter SGS-

w) of detecting coherent structures (Trias et al., 2015). Here, the idea is that a turbulent

flow consists of a coherent component within a random background, where the coherent

structures play a significant role in cascading turbulent kinetic energy. Coherent structures

can impose a strain onto the random background leading to stretching of vorticity, a scale

that falls below the resolved scale. Indeed, the structure-function model is based on this

hypothesis (see Nicoud & Ducros, 1999).

For completeness, let us form the tensor Gij = (∂ui/∂xk)(∂uk/∂xj). The trace-less

symmetric part of Gij is given by Sd
ij = (1/2)[Gij + Gji] − (1/3)Gkkδij . It is easy to

check that Q = −(1/2)Gii, where the Q-criterion i.e. Q = (1/2)(RijRij − SijSij) is the

second invariant of the velocity gradient tensor ∂ui/∂xj = (1/2)(Rij + Sij). Moreover,

using the Caley-Hamilton theorem (see Nicoud & Ducros, 1999), one finds that −2SijSij

and −2Sd
ijSd

ij are second invariants of Sij and Sd
ij , respectively. By analogy with the classi-

cal Smagorinsky (1963) model, we consider the following formulation of the eddy viscosity

νw
sgs = C2

s∆
2
les

(Sd
ijSd

ij)
(3/2)

(SijSij)(5/2) + (Sd
ijSd

ij)
(5/4)

. (6.7)

It can be shown that Sd
ijSd

ij vanishes as the velocity field develops strong shear. In other

words, νw
sgs vanishes like O(z3) as z → 0 in the atmospheric boundary layer. Thus, the
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proposed formulation (6.7) of νsgs does not require a blending function for adjustment of

turbulence dissipation in the shear dominated region.

6.3 Results and Discussion

6.3.1 Result analysis

To illustrate statistics of the LES field ⟨ui⟩, the expected value ⟨ūi⟩ was determined from

N flow realizations such that

⟨ūi⟩ =
1

N

N∑︂
k=1

⟨ui⟩(k) and τRij =
1

N

N∑︂
k=1

(︁
⟨ui⟩(k) − ⟨ūi⟩

)︁ (︁
⟨uj⟩(k) − ⟨ūj⟩

)︁
,

where τRij is the resolved portion of the Reynolds stress tensor, N is the number of time

steps during the last 18 000 seconds of the model time. We have employed an adaptive time

integration scheme in which the time step was dynamically adjusted so that the Courant

number is bounded by 1.5. It was confirmed that the numerical results were not signifi-

cantly influenced by the Courant number between 1 and 1.5, and the choice of values aim

to speed up the calculation.

To analyze the results, we have assumed that the random nature of turbulence can be fil-

tered from the expected coherent motion according to Taylor (1938)’s hypothesis of frozen

turbulence. Thus, statistics of the LES fields are derived by treating that the transient flow

at a fixed point represents the pattern of turbulent motion around that point (Taylor, 1938).

In this view, the ensemble average over a large number of time steps is considered as a

low-pass filtering operation that separates the randomness from the resolved field.
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6.3.2 Simulation setup and summary

Figure 6.1 illustrates a staggered array of 17 hill-shaped obstacles that mimic the terrain of

a mountainous region. The surface of each hill is defined by

zs(x, y) = h exp

(︃
−(x− cx)

2

2σ2
x

− (y − cy)
2

2σ2
y

)︃
. (6.8)

Here, the x-axis is along the stream-wise direction, and the z-axis is anti-parallel to the

direction of gravity. The length of the hill at z = h/2 is given by Lx = 1.1774σx and

Ly = 1.1774σy, and the centre of the hill is at (cx, cy). The slope of such a hill is defined

as the average slope of the top half of the hill, h/2Lx (or h/2Ly). The region beneath the

surface zs(x, y) is treated as a canopy. It is worth mentioning that zs(x, y) can be defined

according to the desired topography of a specific application; for instance, zs(x, y) may be

obtained from the scanned image of a real topography.

Figure 6.1: The sketch of an idealized mountainous topography consisting of 17 hills of

height h = 100 m.

The list of 7 test cases (A-G) is given in Table 6.1. For each of these cases, the compu-

tational domain Lx × Ly × Lz is decomposed into nx × ny × nz finite volume cells. The

grid was stretched in the vertical direction so that the ratio of the cells in the top-most layer

to that in the bottom-most layer is 3.5. The stretching aims to capture the mean vertical

profile of the streamwise velocity approximately.
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CASE h Lx × Ly × Lz nx × ny × nz ub SGS model u∗

A 0.04 m 7 m× 7 m× 1.1 m 256× 256× 64 5.8 m/s SGS-w/cyclic

B 100 m 8400 m× 2400 m× 1000 m 256× 74× 48 10 m/s SGS-d/inflow 0.2399

C 100 m 8400 m× 2400 m× 1000 m 256× 74× 48 10 m/s SGS-w/inflow 0.4057

D 100 m 8400 m× 2400 m× 1000 m 512× 148× 168 10 m/s SGS-d/cyclic 0.5020

E 100 m 8400 m× 2400 m× 1000 m 512× 148× 168 10 m/s SGS-k/cyclic 0.2676

F 100 m 8400 m× 2400 m× 1000 m 512× 148× 168 10 m/s SGS-w/cyclic 0.5413

G 100 m 8400 m× 2400 m× 1000 m 768× 222× 252 10 m/s SGS-w/cyclic 0.5724

Table 6.1: Representative parameters for three numerical simulations

To test whether the second invariant of the tensor Sd
ij leads to a turbulent eddy viscosity

νsgs through Equation (6.7) so that a proper rate of energy dissipation is achieved in the

vicinity of a complex terrain, we have estimated the friction velocity of each of the test

cases, which are presented in the last column of Table 6.1. Here, the friction velocity u∗ is

calculated by averaging the maximum absolute values of the stress τ sgs
ij on the surface, i.e.

τ sgs
13 and τ sgs

23 . It can be seen that all of the cases provide approximately the same value of u∗

except that the relative error of the classical TKE based subgrid-scale models is about 52%.

CASE-CFG indicates that u∗ approaches to a constant value of 0.5724 m/s at CASE-G.

However, a comparison between CASE-BE and CASE-CFG indicates that u∗ is under-

predicted by the classical TKE-1.5 model (i.e. SGS-k); however, the dynamic procedure

of the SGS-d model improves the predicted value of the shear stress. In other words,

the role of coherent structures near a complex terrain in the energy cascade mechanism is

resolved by the proposed subgrid model (6.7). It can be said that the coherent structure-

based model(SGS-w) is less expensive than the traditional TKE-based models (SGS-k/d)

because the former neither solves any additional transport equations nor employs costly

test filtering operations.
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6.3.3 Comparison with reference data: experiment and LES

We consider two sets of reference data for the turbulent flow over an isolated hill, i.e.

CASE-A. One is a wind tunnel measurement conducted by Ishihara et al. (2001), and the

other is a traditional LES conducted by Liu et al. (2016) using the commercial code, AN-

SYS. The experiment was done in a wind tunnel of size 7 m × 1.1 m × 0.9 m, where the

wind speed outside the boundary layer was maintained at 5.8 m/s (Ishihara et al., 2001).

Measured boundary layer height was approximately 0.36 m near the centre of the test sec-

tion in the absence of the hill. The hill was placed at the center of the domain, and the wind

speed was measured in several locations.

Following the studies of Ishihara et al. (2001) and Liu et al. (2016), we consider a

computational domain of Lx × Ly × Lz = 7 m × 7 m × 1.2 m, which is discretized into

256 × 256 × 64 finite volume cells. Here, the computational domain is larger than the

wind tunnel in the spanwise direction. The hill surface is defined by Equation (6.8) with

parameters h = 0.4 m and σx = σy = 0.425, which was placed at the center of the domain.

Thus, the simulated hill is geometrically similar to the hill used in the experiment. The

computational cells have the same size (∆x = ∆y = 0.027 m) in the horizontal directions,

but stretched in the vertical direction with ∆zmin = 0.012 m near the boundary at z = 0,

which is increased gradually to ∆zmax = 0.6 m until half the domain height is reached, and

is left constant in the top half of the domain. The simulation was initialized with the wind

profile over flat terrain reported by Ishihara et al. (2001), where u∗ = 0.21 m/s and z0 =

10−5 m, and was driven by a pressure gradient that is adjusted every time step so that a mean

streamwise velocity of ub = 5.8 m/s is reached such that ub = (1/Lz)
∫︁ Lz

0
u∗/κ ln(z/z0)dz.

The Reynolds number of the simulated flow is Re(= ubh/ν) ≈ 1.5× 105.

Figure 6.2(a) compares the mean streamwise velocity on five vertical locations. We can

see that the result of the present LES has an excellent agreement with that of the experiment.
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(a)

(b) (c)

Figure 6.2: A comparison of the present LES result against the wind tunnel measurement

and the corresponding result of another reference LES. The vertical distribution of the

velocity field was recorded on five vertical lines passing through (2.5, 3.5, 0), (3.0, 3.5, 0),

(4.0, 3.5, 0), and (4.5, 3.5, 0) in dimensionless units. (a) Mean streamwise velocity ux/ub.

(b) Mean vertical velocity, uz/ub. (c) Streamwise component of the velocity variance.
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In particular, the velocity on the vertical line passing through the crest of the hill shows an

excellent agreement, which means that the speedup of wind is accurately predicted. On the

lee side, the effect of the flow separation is poorly resolved in the LES conducted by Liu

et al. (2016). This discrepancy is associated with the difference in subgrid-scale models

used in each of the two LES results. Figures 6.2(b, c) demonstrates the mean vertical ve-

locity and the variance of streamwise velocity, i.e. τR11.

6.3.4 Speedup of mean wind over complex terrain

Bao et al. (2018) analyzed the measurements of wind flow over the Askervein Hill, which

is a relatively isolated hill located along the west coast of South Uist Island, Scotland. The

field campaign for the Askervein Hill provides data for wind speed and turbulence, which

was extensively analyzed by several authors. One of the observations from the Askervein

flow dataset is the fractional speedup of wind above the hill. Although a direct comparison

with the Askervein flow dataset was not conducted in the present work, we have attempted

to gain a preliminary understanding of our LES method in predicting the speedup of wind

over mountainous terrain. It is also worth mentioning that the topography depicted in

Figure 6.1 is a collection of isolated hills imitating a mountainous region. The fractional

wind speedup ratio

∆U(x, y, z) =
U − Uref

Uref

is a dimensionless measure of the flow over mountains, where Uref is a reference wind

speed. In wind engineering applications, ∆U is a standard metric for the siting of wind

turbines. Figure 6.3 presents the vertical profiles of ∆U(z) along vertical lines passing

through four points (X, Y, Z) such as (1 200, 3 000, 0), (1 200, 3 600, 0), (1 200, 4 200, 0),

and (1 200, 4 800, 0). The points for which X = 3000 and X = 3600, the lines pass

through the crest of two hills and the other two lines are on the lee side of two single hills.
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Figure 6.3: Vertical profiles of the fractional wind speedup ratio on the streamwise mid-

plane along four vertical lines

The results show a wind speedup of about 15% above the hilltop. It can be seen that the

mountainous canopy influences the atmospheric boundary layer flow up to a roughness

height of about 5h.

6.3.5 Turbulence

Assessment of turbulence statistics from LES can be complicated because large eddies are

implicitly filtered by the numerical discretization. Moreover, the numerical study presented

in this article is conducted over an idealized mountainous terrain, which is not directly

associated with any field measurements. Thus, turbulent quantities have been compared

among three subgrid-scale models in order to test the efficiency of the turbulence modelling

strategy, which is based on a method of vortex identification. It is worth mentioning that

the second invariant of the velocity gradient tensor provides a measure of coherent flow

structures – known as Q-criterion.

In CASE-D-G, where the streamwise momentum equation is forced to maintain the
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budget of box-averaged kinetic energy, we consider turbulence forcing mechanism to simu-

late sheared turbulence in a doubly periodic three-dimensional box (8 400, 2 400, 1 000) km3.

Here, we have adjusted the forcing term in Equation (6.2) at each time step so that the

box-averaged kinetic energy is fixed to (1/2)ρ0u
2
b . In studies of homogeneous isotropic

turbulence, forcing is usually applied in the Fourier space. One may also apply a stochas-

tic forcing of the velocity field in the physical space. However, stochastic forcing would

usually add additional randomness into the flow, and thus, the variability of turbulent quan-

tities may be changed. Here, applying the momentum forcing, we adopt the hypothesis

that small scales of turbulence are independent of the details of large-scale motions, which

play a passive role in the rate of energy transfer from the large to the small scales. In the

resulting study, we have analyzed the results in which there exist shreds of evidence of the

existence of a family of self-sustaining motions in the atmospheric boundary layer over

complex terrain.

Figure 6.4 presents vertical profiles of σu (i.e. τR11) on four vertical lines (see the caption

for locations), where the plots for P1 and P3 refer to crests of two hills, and that for P2

and P4 refer to valleys between two hills. The discrepancies in the values of σu near

the crest are about 33% for two models: SGS-w (CASE-E) and SGS-k (CASE-F). From

Table 6.1, we see that the friction velocity u∗ predicted by the SGS-k model differs from

that predicted by the SGS-w model. Note that a primary function of the subgrid-scale

model is to extract energy from the resolved scales at the rate of −τijSij . The additional

loss of wall shear stress ρu2
∗ in the TKE-1.5 model (SGS-k) is because it adopts an overly

dissipative eddy viscosity, which is derived from the strain rate tensor Sij . In contrast,

the proposed formulation of the eddy viscosity, Equation (6.7) seems to account for the

turbulence dissipation relatively accurately.
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SGS-w SGS-k

Figure 6.4: Comparison of the resolved stress on four vertical lines passing through

P1(3 000, 1 200, 0), P2(3 600, 1 200, 0), P3(4 200, 1 200, 0), and P4(4 800, 1 200, 0)

6.3.6 Spectral analysis

To analyze subgrid-scale modelling of atmospheric turbulence over complex terrain, tem-

poral spectra of wind components at various altitudes near the surface are discussed in

this section. In the present analysis, turbulence over complex terrain is primarily shear-

generated; i.e.,the mean wind varies as a function of the vertical coordinate z. Thus, as-

suming that fully developed turbulence is statistically stationary, the Fourier transform of

the auto-correlation function Ruu(τ) = u(t)u(t+ τ) is computed; i.e.

Suu(k) =
1

2π

∫︂ ∞

−∞
e−ikτRuu(τ)dτ. (6.9)

Since Ruu(τ) is real and symmetric, setting τ = 0 and applying inverse Fourier transform

in Equation (6.9), we get

u2 =

∫︂ ∞

−∞
Suu(k)dk, (6.10)

which shows that Suu(k)dk is the energy in a frequency band dk centered at k. Also,

Taylor (1938)’s hypothesis implies that the average rate at which the characteristic length
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scale lrms of large eddies varies on a time scale (τ0) is lrms = urmsτ0. In other words, observed

(or simulated) time series of the velocity provides the turbulence energy in a wavenumber

band.

Figure 6.5 demonstrates streamwise velocity spectra for time series collected at 8 lo-

cations. For each of these locations, data were saved at z = 110 m and z = 210 m.

It can be seen that energy is concentrated within a narrow band of high frequencies (or

wavenumbers) at z = 110 m, i.e.,at 10 m above the hill crests. Notice that the spectrum is

not affected significantly for the change of locations along the streamwise direction at the

height of z = 210 m. This observation is consistent with the velocity deficit depicted in

Figure 6.3. One finds that the plots in Figure 6.5 as an indication of homogeneity of the

fluctuations in the streamwise velocity. So, Equation (6.10) estimates the variance of the

fluctuations by the integral of the power spectral density. The sensitivity of the velocity

spectra with respect to subgrid-scale models is presented in Figure 6.6. Overall, it can be

seen that the power spectra display a −5/3 slope in the inertial subrange, as predicted by

Kolmogorov’s hypothesis.

6.4 Conclusion

In this study, we present a terrain-adaptive subgrid-scale modelling approach for the large-

eddy simulation of atmospheric boundary layer flow over complex terrain. First, we present

a canopy stress method for modelling the effects of complex terrain. Using the theory of

turbulent flow through porous media, the canopy stress method estimates the parasitic drag

experienced by the wind flow over a mountain. This is a cost-effective method because

it does not require traditional costly mesh generation techniques. The results show that

the canopy stress method predicts the wind flow over the hill as accurately as the classical

method predicts the same flow. A comparison with wind tunnel data indicates the promise
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(a) Crest, low (b) Crest, high

(c) Valley, low (d) Valley, high

(e) Crest, low (f) Crest, high

(g) Valley, low (h) Valley, high

Figure 6.5: Spectra of streamwise velocity captured at several positions are compared with

the power-law of k−5/3
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Figure 6.6: Comparison of streamwise velocity spectra among three SGS models

of the canopy model. Second, we present a turbulent eddy viscosity model in which a

tensor has been formulated so that the eddy viscosity is dynamically adjusted in regions

where fluid flow is dominated by strong shear. In comparison to the classical TKE-1.5

model used in the field of atmospheric modelling, we find that the dynamic modelling

strategy is much less dissipative than the models based on strain rate tensor. We have

analyzed vertical profiles of wind speed-up and turbulence statistics as well as velocity

spectra. The comparison between the proposed model and the classical model shows about

a 33% discrepancy in the dissipation of TKE as well as a 53% discrepancy in the shear

stress prediction.

For future work, we expect to analyze other methods of vortex identification i.e., other

than the Q-criterion in the proposed mode (6.7). It is important to note that the TKE-

1.5 model is widely used in atmospheric modelling; however, the adjustment of νsgs or

the model parameter Cs remains an active research topic. Atmospheric stratification is an

important phenomenon that alters boundary layer scaling laws, which becomes more com-

plicated in the presence of complex terrain. This work is currently underway. For LES of

stratified turbulence over complex terrain, the canopy stress method may provide improved

boundary conditions. The ultimate goal is to provide a cost-effective methodology to model

mountains and subgrid-scale turbulence for numerical weather prediction models.



Chapter 7

Summary and future research directions

This chapter summarizes the investigations of the thesis as well as the individual contribu-

tions of the work in each of the preceding Chapters.

7.1 Summary of findings

In chapter 3, I have developed a numerical model to study a leak detection system that is

based on heat transfer analysis. More specifically, the fluid flow through a porous material

in the pipe-in-a-pipeline system is simulated to evaluate the canopy-stress formulation of

the flow through porous media. Solving the Navier-Stokes equation in porous media, I

have analyzed the dimensionless scaling laws of the heat transfer and fluid flows in a leak

detection system. The results indicate that monitoring the excess temperature in a leak is

a potential approach that may avoid false alerming of a leak detection system. Finally,

dimensional analysis of the canopy-stress method illustrates how to choose the necessary

parameters in other applications.

In Chapter 4, I have developed a large-eddy simulation model of wind flow past isolated

hills, where I have extended the canopy stress method formulated in Chapter 3. While

99
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the form drag depends on the shape of the object, the canopy stress method relates the

form drag coefficient with the skin friction coefficient through a single parameter K [m−2].

To validate this model, I have considered wind tunnel experiments as well as simulations

with the commercial code ANSYS for wind flows over isolated hills. The results show

that incorporating the canopy stress terms in the Navier-Stokes equation provides accurate

estimates of the wall-shear stress as a boundary conditions for turbulent flows over single

hills. A qualitative comparison with the standard immersed boundary method indicates that

the canopy stress method is relatively simple and efficient for the boundary conditions on

hills of varying slopes.

In Chapter 5, I have investigated aerodynamic responses to subgrid models for co-

herent flow structures in a forest-like canopy. More specifically, I have considered three

approaches of subgrid-scale models. The SGS-k model solves a transport equation for the

turbulence kinetic energy to determine the turbulence eddy viscosity. This is the most com-

monly used approach for canopy flows. The SGS-s model assumes that the parameter of

the Smagorinsky model can be determined dynamically by solving the Lagrangian trans-

port of two relvant properties, which solves two additional equations. The SGS-s model is

typically used in engneering applications; however, its performance for canopy flows is not

well established. Finally, I propose the SGS-w model for canopy flows in which a vortex

identifier is considered to characterize turbulence energy cascade. In comparison with wind

tunnel measurements as well as with the results from two representative models (SGS-k and

SGS-s), it is found that the coherent vorticies play a major role in the subgrid-scale energy

cascade.

Finally, the core idea of Chapter 6 is that a scanned image of an actual terrain can

be represented by the canopy stress method. I have presented a systematic analysis of

the subgrid-scale turbulence, where the results indicate that traditional TKE based model

responsible for about 30% additional dissipation compared to the more modern models
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that are based on vortex identification. Spectrum analysis of TKE shows that the energy is

concentrated within a narrow band of high frequencies near the top of the complex terrain

while the energy spectrum exhibits a power-law of −5/3 in the inertial range near the

valley.

7.2 Contributions

I have applied canopy stress term in NSE and tested three SGS model for complex terrain.

Specifically, used TKE based SGS model and wall adaptive SGS model. Before applying

this numerical model to complex terrain, I have analyzed the stress term in engineering

and atmospheric cases. After validating the stress terms and model, we validated the NSE

model for turbulent flow over the hill. This technique is suitable for simulation over a

steep hill which is a big scientific challenge for flow over complex terrain. Besides, I have

analyzed the methodology by choosing different drag coefficients, where wall-shear stress

uses as boundary conditions.

7.3 Future Work

The leak detection model can be advanced to analyze data from a field test or experiment.

By applying the statistical method of an inverse problem, this leak detection model can

be extended to find the exact source of the leakage in the pipeline. Locating the accurate

source of the leakage is a scientific challenge in the pipeline monitoring system in the oil

and gas industry. Similarly, the developed NSE model for an isolated hill can be extended

to see the buoyancy effects in ABL. The base code for canopy flows is prepared in such a

way that one can easily apply the temperature effects by adding temperature terms. More-

over, the developed NSE model for canopy together with the wall adaptive SGS model can
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also be used for analyzing temperature properties through a forest canopy. In addition, by

adding the pollutant model together with the canopy stress model, one can simulate the

turbulent pollutant dispersion. Finally, the developed NSE model can be used to simulate

the flow over complex terrain by implementing proper parameterizations of mountain and

vegetation surface. Moreover, the buoyancy effects can be applied in this model to see the

temperature properties in the forested or complex terrain. The complex terrain code has

developed in such a way that one can implement the buoyancy effects in the code base

but need more testing for numerical errors. The final model is working in such a way that

the mountain is immersed into the fluid through a Cartesian grid. The numerical model is

working in a way that the mountain grid deployed into the Cartesian grid point directly. If

one can scan the 3D real terrain coordinate data from Google terrain maps, they can easily

use this canopy stress model to simulate flow over that region. For instance, one could

collect Google terrain maps data for St.John’s, Canada then do simulation of the flow a

over mountain/hill in St.John’s with certain conditions. Moreover, one can use ArcGIS or

ArcGoogle tool to collect any region from any Google terrain map. Besides, if one knows

the STL file format of any region in the mountainous region in the world, he can transfer

that data into topography data and can apply the developed model for complex terrain.
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