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Abstract

In exploration seismology, mapping the Earth’s interior structure in more detail is

of great interest. The rocks’ microstructures, such as cracks, play an essential rule

in oil and gas exploration and production. We study elastic nonlinearity because

the microstructures are the main reason for this phenomenon. Nonlinearity is also

related to the velocity change due to perturbations in the stress filed within the rocks.

Many studies have observed the nonlinearity in field data as well as experimental data.

However, the exact underlying mechanism of this phenomenon is not well understood.

In this study, we provide some numerical examples of wave-perturbed cracked rocks

and study the effects of crack aperture size, change of velocity inside crack, and crack

orientation on the medium velocity change to better understand this phenomenon.

Similar to a few other studies, we study the travel-time delay in a small wave caused

by the propagation of a stronger wave. We show that there is a strong dependency

between the crack parameters and the travel-time delay.
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Chapter 1

Introduction

1.1 Motivation and challenges

Mapping the Earth’s interior is of great interest in different areas (e.g., oil and gas,

mining, and construction). Our primary interest here is unconventional reservoirs in

the context of oil and gas exploration. The rocks’ microstructures (e.g., fractures)

play an essential role in unconventional reservoirs. The most significant impact of

fractures is that they affect the fluid flow through a reservoir. Thus, fracture charac-

terization is vital for enhanced oil recovery from the discovery through the production

stage. There are a few ways of fracture characterization such as S-wave splitting (e.g.,

Vetri et al., 2003), amplitude variation with offset and azimuth (e.g., Rüger, 1998;

Rusmanugroho and McMechan, 2010, 2012) and fracture scattering (e.g., Fang et al.,

2014; Zheng et al., 2013). In general, all of these methods give some information

about the fracture orientation and density. For example, Zheng et al. (2013) propose

a method to determine the fracture orientation, spacing and compliance by analyzing

the double scattering of waves by fractures. However, we use a different method, with

the potential to have more sensitivity to changes in fracture orientations to improve
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our understanding of fractured rocks.

In addition to the elastic moduli of the rocks, the strain caused by stress is a

contributing factor to the seismic wave velocities because the applied stress can change

the rocks’ properties and hence the seismic velocities. Velocity perturbations caused

by applied load or pressure are a common way to measure nonlinear elasticity in rocks

(e.g., Guyer and Johnson, 2009). There is evidence that it is fractures that change

during this applied stress. However, it is not clear exactly how they change nor the

precise mechanism that causes these changes to result in changes in the velocity (i.e.,

nonlinear elastic signals). In this study, we use numerical modelling to study these

effects. Numerical modelling not only enables us to understand the theory better but

also enables us to compare with experimental results. In the following sections of this

chapter, we provide a literature review of the critical topics used in this study.

1.2 Nonlinearity

The first topic that we discuss is nonlinearity. Linear elasticity, as opposed to nonlin-

ear elasticity, is based on the two main assumptions: infinitesimal strain and that the

stress scales linearly with respect to the strain in Hooke’s law. Therefore, the term

nonlinearity, in our context, refers to the nonlinear relation between the stress and

strain provided by Hooke’s law (see, e.g., Helbig, 1998; Johnson and Rasolofosaon,

1996). There are two types of nonlinearity (Helbig, 1998; Rasolofosaon and Yin, 1996):

material (physical), and geometric (kinematic) nonlinearity. The material nonlinear-

ity is associated with the intrinsic properties of the material (i.e., microstructures at

the grain size or below). It is described by a third rank (or sixth order) elastic stiffness

or compliance tensor (Johnson and Rasolofosaon, 1996). The geometrical nonlinearity

is due to the full definition of the Lagrangian strain tensor in which the term that
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contains the multiplication of displacements’ derivatives is neglected in the linear the-

ory by assuming infinitesimal strain (Helbig, 1998). Johnson and Rasolofosaon (1996)

and Rasolofosaon and Yin (1996) compare rocks and intact homogeneous materials

in their experiments and conclude that the material nonlinearity dominates the geo-

metrical nonlinearity. Guyer and Johnson (1999) explain that the bond system in a

material controls the elastic behaviour of that material. The bond system in rocks

consists of mechanical defects (e.g., cracks) and grain joints. This is why rocks, which

are considered to be nonlinear mesoscopic elastic materials, show a strong nonlinear

response compared to atomic elastic materials (e.g., aluminum and glass).

As described above, the nonlinear elasticity theory describes the elastic tensor of

material via the stress-strain relation (Hooke’s law). Also, the seismic velocities are

derived from the components of the elastic tensor. Therefore, we are able to study

the nonlinear elasticity through the material velocity changes. Introducing stress

causes strain in the medium that affects the mechanical defects and grain joints,

which changes the elastic tensor, hence, changing the velocity of the medium. The

nonlinearity is induced primarily by the clapping (opening and closing) and frictional

contacts of the defects (e.g., Gao et al., 2019). This phenomenon is referred to as

contact acoustic nonlinearity (CAN).

Nonlinearity is observed in the field in many studies (e.g., Brenguier et al., 2008;

Olivier et al., 2019). Brenguier et al. (2008) show that the seismic velocity of ambient

noise changes after an earthquake. There are a few possible mechanisms that could

cause these velocity changes as summarized by Xu and Song (2009); these include

stress-induced changes of fault zone properties, fault rupture and healing, damage in

the shallow crust, and rapid changes in near-surface groundwater or fluid activities in

the shallow crust. In Brenguier et al. (2008), they explain that the velocity change is

due to damage in the Earth. This conclusion is based on the measured change in the
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stress in the subsurface and the observed recovery of the velocities to their pre-stress

values modelled as part of a relaxation process after the induced stress.

Similar to Brenguier et al. (2008), Olivier et al. (2019) use seismic ambient noise to

measure the velocity change prior to a volcanic eruption. They first observe a velocity

increase, which they relate to the closing of the microcracks as the pressure of magma

increases. Later they observe that the velocity decreases. They explain that, as the

pressure increases, damage in the materials occurs, which weakens the material.

Moving to experimental results, dynamic acousto-elastic testing (DAET) can be

used for the study of nonlinearity (e.g., Rivière et al., 2013). In these kinds of ex-

periments, a sample is perturbed by an elastic low-frequency wave, which is called

the pump, while a high-frequency wave called the probe is sent into the sample to

sense dynamic changes (e.g., velocity changes due to introducing stress or strain) in

the sample by the pump (e.g., Haupert et al., 2019). A similar approach is used to

capture the nonlinearity in the experiments that we follow most closely (Gallot et al.,

2015; TenCate et al., 2016).

TenCate et al. (2016) show the effect of crack orientation on the nonlinear interac-

tion of P- and S-waves. In their experiments, the S-wave pump perturbs the cracked

medium, and the P-wave probe senses the perturbation by changes in its arrival time

in a setup similar to DAET. These experiments show that the nonlinearity is a feature

of the rocks (as mentioned above, when discussing nonlinear mesoscopic materials).

Also, when the particle motions of the S-wave are parallel to the bedding planes, the

travel-time perturbation of the probe signal is smaller than when the particle motions

are perpendicular to the bedding plane. In other words, the former setup results in a

smaller velocity change in the medium. This explanation can be used to indicate the

direction of fractures in a reservoir.

Having discussed the nonlinear theory, we now need to introduce the effective
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medium theory and its applications. This is because we have many cracks in the

medium, and we need to know how to compute a change in velocity from a change in

their properties. In the following section, we introduce the theory and why we need

such a theory as well as our choice of method.

1.3 Effective medium theory

Fractures are a crucial part of rocks in the study of unconventional hydrocarbon

reservoirs. Although their volume might be a small portion of the rock, they control

the porosity and permeability of that rock. The crucial parameters of fractures that

control the porosity and permeability are the fracture density, the fracture orientation

and the fracture aperture (e.g., Ali, 2011, p. 11). In addition to these properties,

the existence of fractures changes the elastic properties of a rock, hence, changes

the elastic tensor describing that rock. Understanding these effects is important to

better understand the properties of the Earth. Wave propagation in the subsurface

with a set of fractures produces velocity anisotropy, which we can use for fracture

characterization (Guo et al., 2019). Since the size of the fractures is extremely small

compared to the seismic wavelength, it is difficult or even almost impossible to detect

an individual fracture’s effect on the seismic response. This is why we use an effective

medium theory (EMT) to sense the behaviour of an equivalent anisotropic averaged

(also known as up-scaled) medium that represents the fractured medium.

As mentioned above, the existence of cracks contributes to the elastic stiffness

tensor describing the medium. One can divide this contribution into two parts: indi-

vidual contribution of cracks and the crack interactions with each other. The T-matrix

method (Jakobsen et al., 2003a,b) can be used when the crack density is not small.

This theory takes into account the interactions of points located in different cracks
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(shielding) as well as the interaction between all points in a single crack (amplifica-

tion), which provides physically-based predictions (Hu and McMechan, 2009).

The non-interaction approximation (NIA) is used to obtain the effective stiffness

tensor of a fractured rock, assuming these cracks do not interact, which simplifies the

calculations. In our case, where the crack density is very small, the contribution of

cracks’ interactions is negligible (e.g., Hu and McMechan, 2009). Most of the popular

methods of obtaining effective elastic tensors use the NIA (see, e.g., Zhao et al., 2016).

The calculation of the effective stiffness tensor for a fractured medium within the

NIA can be classified in two ways: direct, and indirect (e.g., Hu and McMechan, 2009;

Zhao, 2014, p. 22). In the direct methods, the stiffness tensor is estimated directly. In

contrast, in the indirect methods, first, we calculate the effective compliance tensor,

from which the effective stiffness tensor can be obtained by inverting the compliance

tensor. There are a few effective medium theories (see, e.g., Hu and McMechan, 2009;

Zhao, 2014, p. 22) that we can use. The two most popular and widely used methods

of NIA are (Fang et al., 2017) the Hudson’s method of averaging (Hudson, 1980, 1994,

1981) and the averaging method based on the linear slip (LS) theory of Schoenberg

(Schoenberg, 1980; Schoenberg and Douma, 1988; Schoenberg and Sayers, 1995).

Using scattering theory, Hudson (1980) and Hudson (1981) provide the effective

stiffness tensor of an isotropic medium with penny-shaped ellipsoidal cracks embedded

in the medium. Schoenberg (1980) and Schoenberg and Douma (1988) provide the

effective compliance tensor of an isotropic medium embedded with fractures that

are modelled as thin layers (i.e., planes of weakness) with LS boundary conditions.

Hudson (1980) represents a direct method for estimating the stiffness tensor, while

Schoenberg (1980) represents an indirect method for estimating the compliance tensor.

Grechka and Kachanov (2006) show that both methods predict a similar elastic

response when the crack density is small. The accuracy of Hudson’s theory decreases
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when the crack density is large, but Schoenberg’s theory remains sufficiently accurate

(Grechka and Kachanov, 2006). However, one should be careful not to use NIA based

(e.g., Schoenberg’s theory) methods in high crack density media. Although these

methods might provide good predictions, they are un-physical because they break

the dilute crack assumption of the NIA in most Earth materials (Hu and McMechan,

2009).

Considering the above discussions, we choose Schoenberg’s EMT for our study

because it uses the displacement discontinuity in the formulation of the method, which

is directly related to the clapping of the cracks, which we are going to investigate in

this study because we believe this clapping to be a key component of the nonlinear

response.

Using nonlinear theory and effective medium theory together can help us better

understand fractured media. In addition to these theories, we need a tool to use these

methods together. Numerical modelling is the tool that is needed for our goal to study

fractured media. In the following section, we talk about the numerical modelling and

why we need such a tool as well as our choice of method of numerical modelling.

1.4 Numerical modelling

Numerical modelling techniques allow us to study the details of a theory helping us

decode the complicated mechanism behind that theory, which is not always possible

in experimental studies. In this study, we use numerical modelling to study wave

propagation. There are three main categories for seismic wave propagation modelling

(e.g., Carcione et al., 2002; Wang, 2015, p. 36): first, ray-tracing methods, which are

based on the Eikonal and transport equations. Second, the integral equation methods,

in which the wavefield is the superposition of waves originating from a point source
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using Huygens principle and using Green’s functions to set up an integral system of

equations. The third and the last methods are the direct or wave equation methods in

which the Newtonian mechanics and elastic (or acoustic) theory are used to solve the

wave equation on a discretized medium on a certain number of mesh points. Finite

difference method (FDM), finite element method (FEM), pseudo spectral method

(PSM) and spectral element method (SEM) are some of the methods in this category.

In FDM, the Taylor expansion is used to solve the wave equation on structured grid

points. There are regular FDM (e.g., Kelly et al., 1976) and staggered grid FDM

(e.g., Graves, 1996; Virieux, 1986). FEM is based on a weak or a variational form

of the wave equation and uses unstructured grid points allowing us to handle more

complex geometries than FDM. FEM is applied to the study of wave propagation in

sedimentary basins (e.g., Bao et al., 1998), although it is not as popular as FDM in

seismic modelling. PSM is a higher-order method that allows us to get the required

accuracy using a few grid points per wavelength. It is based on polynomial (e.g.,

Chebyshev or Legendre) and harmonic (i.e., Fourier) basis functions and similar to

FDM is difficult to set up for complex geometries. This method is commonly used to

study wave propagation in the whole earth (e.g., Wang et al., 2001). The SEM works

similar to the FEM. It combines the accuracy of PSM with the flexibility of FEM,

which allows us to get better results than the other methods (e.g., Komatitsch and

Tromp, 1999; Komatitsch et al., 1999).

We use the SEM to do our simulations, and give details on the method in the

following chapter. Now that we have all the tools needed, we can study fractured

media and increase our understanding of the nonlinear theory.
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1.5 Similar studies and thesis outline

There are some numerical modelling studies that help us better understand the non-

linearity phenomenon (e.g., Guo et al., 2019; Pecorari, 2015). Both of these studies

investigate the nonlinearity through the clapping cracks using different approaches.

However, our approach is different and is similar to the study done by Rusmanugroho

et al. (2020) in which they mimic the experiments done by TenCate et al. (2016) as we

do in this study with a different approach. They observe a similar trend with TenCate

et al. (2016) in the travel-time delay in a cracked medium while comparing different

cracks orientations. There are three significant differences between Rusmanugroho

et al. (2020) and our study. First, we use SEM in 2D, and they use FDM in 3D.

Second, we use the linear wave equation, but they use the nonlinear wave equation

for wave propagation modelling. The last difference is that the linear slip is imple-

mented in the FDM code in their study, while in our study, we use a different method

as is discussed later in the thesis. The difference is in how we calculate the displace-

ment discontinuity. Aside from the differences, both studies give insights about the

relation between cracks’ properties and the P-wave velocity change (or P-wave travel-

time delay) in a perturbed cracked medium, which helps us to better understand the

microstructures in the rock.

In the following chapter, Chapter 2, we provide the theories that are used, such as

wave propagation within an elastic media, spectral element modelling, and the linear

slip effective medium theory. After that, in Chapter 3, we discuss a few methods

of effective P-wave velocity calculations and introduce our procedure for calculating

the travel-time delays. We then present the results of our modelling in Chapter 4.

Discussion, conclusions and future work are presented in Chapter 5. In the end, some

derivations and code validations are provided in appendices A and B, respectively.
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Chapter 2

Methodology

In this chapter, first, we provide the formulation of seismic wave propagation in three

spatial dimensions and discuss the formulation of Hooke’s law and its properties for an

isotropic medium. Next, we explain the numerical modelling techniques and provide

some details of the spectral element method. Then, we introduce the linear slip

effective medium theory and its formulation in detail. After that, we provide the

two-dimensional formulations of the effective medium theory from our generalized

three-dimensional problem. In the end, we provide more details of the linear slip

through the crack compliances and then show how to average a quantity on a surface.

2.1 Wave Equation

Before introducing the equations that describe seismic wave propagation in the general

case, we will briefly discuss stress and strain. The stress tensor (σij), as well as the

strain tensor (εij), has nine components in which each component acts in one direction

and on one plane. The stress and strain for an elastic medium are related by Hooke’s
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law,

σij = cijklεkl, (i, j, k, l = 1, 2, 3), (2.1)

where cijkl is the stiffness tensor containing the constant elastic moduli describing the

properties of the medium with 81 components. We use the summation convention

where we sum from 1-3 over repeated indices. Stress and strain are symmetric tensors

which means σij = σji and εij = εji which drops from 9 to 6 independent components

for each tensor (the number of equations in (2.1) decreases from 9 to 6 independent

equations),


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 −→

σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

 ,

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 −→

ε1

1
2ε6

1
2ε5

1
2ε6 ε2

1
2ε4

1
2ε5

1
2ε4 ε3

 . (2.2)

As mentioned above, the stress and strain tensors are symmetric, therefore cijkl =

cjikl and cijkl = cijlk, which reduces the number of independent components to 36.

The stiffness tensor can be represented by a 6×6 matrix (cαβ) with Voigt notation

(Thomsen, 1986),

ij kl : 11 22 33 23, 32 13, 31 12, 21

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

α β 1 2 3 4 5 6

. (2.3)
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The stiffness matrix components are (Nye, 1985),

cijkl = cαβ when α and β are 1, 2 or 3,

2cijkl = cαβ when one either α or β are 4, 5 or 6,

4cijkl = cαβ when both α and β are 4, 5 or 6.

(2.4)

Based on the strain energy definition we have cijkl = cklij (see, e.g., Slawinski, 2010,

pp. 106-107), and the number of independent components in an anisotropic medium

(general case) is 21 elastic constants (Stein and Wysession, 2009). The number of

independent elastic constants is reduced more with more symmetry of the medium.

The most symmetric medium (i.e., symmetry in all directions) is an isotropic

medium in which the material has only two independent elastic moduli, called Lamé’s

constants, λ and µ. µ is the shear modulus, which is a measure of resistance to

shear stress, and λ has no apparent physical meaning. There is another symmetry

called transversely isotropic (TI) in which a medium has a rotational-symmetry axis

along one direction. Symmetry axes in TI medium can be vertical (VTI), horizontal

(HTI) and tilted (TTI) in which tilted means that the symmetry axis is not along any

of the three basic coordinate axes. In VTI or HTI medium, we have twelve elastic

constants in which five of them are independent. There are also five independent

elastic constants in a TTI medium (Ikelle and Amundsen, 2005; Slawinski, 2010).

As mentioned above, in the general case (anisotropic medium) there are 36 non-

zero elastic constants with 21 independent components; for the isotropic case there

are 12 non-zero elastic constants with only two independent components,


λ = c11 − 2c44

µ = c44

, (2.5)
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and we have the following elastic tensor for an isotropic medium,



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ



. (2.6)

The stress tensor describes the forces that act on a deformable continuous medium.

Now that we have the stress and the strain relation, we introduce the equation of mo-

tion, which relates the stress to the displacement (or the variation in the displacement

described by the strain tensor).

The first-order system of partial differential equations (PDEs) for the equations of

dynamic elasticity, which is called the velocity-stress formulation is (see, e.g., Tessmer,

1995),

ρυ̇x = ∂σxx
∂x

+ ∂σxy
∂y

+ ∂σxz
∂z

+ fx,

ρυ̇y = ∂σxy
∂x

+ ∂σyy
∂y

+ ∂σyz
∂z

+ fy,

ρυ̇z = ∂σxz
∂x

+ ∂σyz
∂y

+ ∂σzz
∂z

+ fz,

(2.7)

where ρ is the density, fi is the source, and υi is the velocity. A dot above a variable

denotes differentiation with respect to time.

To solve Equation (2.7), we need to relate σ and υ using Equation (2.1) by defining

the time derivative of the strain tensor,

ε̇ij = 1
2
(
∂υi

∂xj
+ ∂υj

∂xi

)
. (2.8)
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For an isotropic medium, using Equations (2.1), (2.7) and (2.8) we have,

υ̇x = b(∂σxx

∂x
+ ∂σxy

∂y
+ ∂σxz

∂z
+ fx

)
,

υ̇y = b(∂σxy

∂x
+ ∂σyy

∂y
+ ∂σyz

∂z
+ fy

)
,

υ̇z = b(∂σxz

∂x
+ ∂σyz

∂y
+ ∂σzz

∂z
+ fz

)
,

(2.9)

and
σ̇xx = (λ+ 2µ)(∂υx

∂x
) + λ(∂υy

∂y
+ ∂υz

∂z
),

σ̇yy = (λ+ 2µ)(∂υy

∂y
) + λ(∂υx

∂x
+ ∂υz

∂z
),

σ̇zz = (λ+ 2µ)(∂υz

∂z
) + λ(∂υx

∂x
+ ∂υy

∂y
),

σ̇xy = µ(∂υx

∂y
+ ∂υy

∂x
),

σ̇xz = µ(∂υx

∂z
+ ∂υz

∂x
),

σ̇yz = µ(∂υy

∂z
+ ∂υz

∂y
),

(2.10)

where b = 1/ρ is the buoyancy.

So far, we have formulated the wave equation for seismic wave propagation in an

isotropic medium in three spatial dimensions, which is the first step of our elastic

modelling problem. Having this formulation, we introduce a variety of numerical

modelling techniques to numerically solve the wave equation in the following section.

2.2 Numerical Methods

PDEs such as the elastic wave equation described in the previous section, are known

for describing many natural laws. Since the PDEs in which we are usually interested

do not have exact solutions, we seek approximate solutions with numerical methods

such as the FDM, the FEM and the SEM. In this section, we are going to introduce

these methods focusing on the formulation of the SEM method.

FDM needs a large number of grid points to achieve sufficient accuracy for our
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purposes. Also, more complex geometries are more challenging to handle in the FDM

than in the FEM and the SEM, even with a large number of grid points. This is

because we use structured meshes in the FDM but unstructured meshes in the FEM

and SEM. Because the SEM uses high-order basis functions, it gives more accurate

results than the FEM when both have the same number of grid points (Komatitsch

et al., 1999). This means that SEM maintains the flexibility of FEM with improved

accuracy (Komatitsch and Tromp, 2002).

2.2.1 FDM

The first numerical method that we are going to describe is the FDM. In the FDM, the

derivatives at each grid point are calculated from the neighbouring grid points based

on Taylor’s theorem. Based on the PDEs’ properties, one divides the spatial and/or

temporal domain into a finite mesh (grids), then by applying Taylor’s theorem and

replacing the partial derivatives by their approximations, we construct an approximate

solution to our PDE. The 1D (n− 1)-st order Taylor’s expansion of u at x0 (Causon

and Mingham, 2010) is,

u(x0 + h) = u(x0) + hux(x0) + h2uxx(x0)
2! + ...+ hn−1un−1(x0)

(n− 1)! +O(hn), (2.11)

where un(x0) is the n-th derivative with respect to x at x = x0, h is the grid spacing

in FDM and O(hn) is the error term in the Taylor approximation. From (2.11), we

derive the first order forward (from x0 to x0 + h) finite difference approximation,

ux(x0) ≈ u(x0 + h)− u(x0)
h

: = Dxu. (2.12)

A similar approach is then used to compute higher-order derivatives.
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2.2.2 FEM and SEM

The SEM and the FEM are based on the weak formulation (i.e., PDE is trans-

formed into an integral equation) of the wave equation, Equation (2.7). In traditional

FEM, we use the same low-degree polynomials to describe the geometry of an ele-

ment and to represent functions, such as the displacement field and test function (a

time-independent generic weighting function) on an element. In SEM, we also use

a low-degree polynomial to describe the shape of an element, but a higher-degree

polynomial to represent functions on those elements (Komatitsch and Tromp, 2002).

Equation (2.7), the wave equation, can be written in the following compact form,

ρ
∂2ui
∂t

= ∂σij
∂j

+ fi,

ρüi = σij, j + fi, (i and j = 1, 2, 3),

ρü = ∇ · σ + f ,

(2.13)

where the comma denotes a spatial derivative in the direction given index following

the comma, and the bold symbol denotes a vector (here three dimensional). The

stress is also related to the displacement gradient by Hooke’s law,

σ(∇u) = c(x) : ∇u(x, t), (2.14)

where the colon represents the contracted product of two tensors, such that c=a:b

is equivalent to cij = aijklbkl (see, e.g., Komatitsch, 1997; Komatitsch and Vilotte,

1998). Therefore, Equations (2.1) and (2.14) are equivalent. The former is written

in a component form using the index summation notation, and the latter is written

in tensor form using the double dot product (double contraction over the last two

indices of the first tensor and the first two indices of the second tensor) after using

time-integrated of Equation (2.8).
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As mentioned above, the SEM, like the FEM, is based on an integral or weak

formulation. In order to get the weak formulation, we multiply the wave equation

(the last equation in Equation (2.13)) with an arbitrary time-independent vector w,

called the test function, which has to be smooth, meaning that it has to have at least

one continuous derivative, and then integrate over the spatial domain or volume, Ω,

so, ∫
Ω

w ρ ü dx =
∫

Ω
w∇ · σ dx +

∫
Ω

w f dx. (2.15)

Using integration by parts and denoting the boundary of Ω by Γ, we obtain,

∫
Ω

w ρ ü dx =
∫

Γ
w∇ · σ dx−

∫
Ω
∇wσ dx +

∫
Ω

w f dx. (2.16)

One can apply different boundary conditions and source functions in (2.16) (see,

e.g., Komatitsch and Tromp, 1999, 2002). Considering continuous fields, here for the

sake of simplicity we apply a free surface boundary condition, which is also called a

Neumann boundary condition (NBC) in which the stress is zero at the boundaries

(e.g., Martin et al., 2008; Meza-Fajardo et al., 2008; Schuberth, 2003); therefore we

have, ∫
Ω

w ρ ü dx +
∫

Ω
∇wσ dx =

∫
Ω

w f dx. (2.17)

Now we need to discretize the physical domain Ω into ne elements, Ωe, which

are non-overlapping subdomains that cover the entire domain. We perform Equation

(2.17) on each element of the domain independently,

∫
Ωe

w ρ ü dx = −
∫

Ωe
∇wσ dx +

∫
Ωe

w f dx, (2.18)

where e = 1, 2, ..., ne.

We solve the problem on the elements; therefore, we need to map each element from
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the global or physical coordinate into the local or reference coordinate. The general

mapping function between the Cartesian points x = (x, y, z) within a hexahedral

element Ωe and the reference cube points ξ = (ξ, η, ζ) is of the form,

xe(ξ) =
na∑
a=1

Na(ξ)xea, (2.19)

where the reference domain is a standard interval Λ = [−1, 1] for the vector ξ. The

shape functions Na determine the geometry of the element and are nd products (nd

is the number of dimensions) of Lagrangian polynomials. The degree of Lagrangian

polynomials is usually 1 (= 2 nodes per dimension) or 2 (= 3 nodes per dimension),

depending on the model. The n+ 1 Lagrange polynomials of degree n are defined in

terms of n+ 1 control points, ξi, as,

`ni (ξ) =
n∏
j=0
j 6=i

ξ − ξj
ξi − ξj

, (2.20)

where the control points are in the interval Λ. The definition of Lagrange polynomials

(Equation (2.20)) has an important characteristic; each polynomial `i is one at the ξi

and 0 at all other nodes of the element,

`ni (ξj) = δij, (2.21)

where δij is the Kronecker delta.

Here we define the Jacobian (J ), which is used for the transformation of integrals

from the global coordinate system to the local coordinate system as,

dx dy dz = J e dξ dη dζ. (2.22)
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The 3× 3 Jacobi matrix (J) and its determinant are defined as,

Je = ∂xe(ξ)
∂(ξ) ,

=
na∑
a=1

∂Na(ξ)
∂(ξ) xea,

J e = det Je,

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x(ξ)
∂(ξ)

∂x(ξ)
∂(η)

∂x(ξ)
∂(ζ)

∂y(ξ)
∂(ξ)

∂y(ξ)
∂(η)

∂y(ξ)
∂(ζ)

∂z(ξ)
∂(ξ)

∂z(ξ)
∂(η)

∂z(ξ)
∂(ζ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.23)

In what follows, we omit the superscript e, which denotes an element.

To solve the problem on each mesh point, we approximate the functions of Equa-

tion (2.18) by discrete functions using an interpolation scheme on a few discrete points

on each element. Therefore, we need several functions F (e.g., F can be displacement

or a test function) at the grid points in each element. For interpolation, we use the

Lagrange polynomials (usually of degree 4 to 10), which are defined on the Gauss-

Lobatto-Legendre (GLL) points which are the roots of (1−ξ2)P ′n(ξ) = 0, where P ′n(ξ)

is the derivative of the Legendre polynomials of degree n. Functions F on an element

are interpolated via,

F (x(ξ)) ≈
ni,nj ,nk∑
i,j,k=0

F (x(ξi, ηj, ζk))`i(ξ)`j(η)`k(ζ),

≈
ni,nj ,nk∑
i,j,k=0

F ijk`i(ξ)`j(η)`k(ζ),
(2.24)

where F ijk is the value of the function F at the GLL point x(ξi, ηj, ζk) and ni denotes

the polynomial degree. We have omitted the superscript n on the Lagrange polyno-

mials. Using the definition of the gradient of a function, ∇F =
3∑
l=1

x̂l∂lF , evaluated
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at GLL point x(ξα, ηβ, ζγ) we have,

∇F (x(ξα, ηβ, ζγ)) ≈
3∑
l=1

x̂l
[
(∂lξ)αβγ

ni∑
i=0

F iβγ `′i(ξα)

+ (∂lη)αβγ
nj∑
j=0

Fαjγ `′j(ηβ)

+ (∂lζ)αβγ
nk∑
k=0

Fαβk `′k(ζγ)
]
,

(2.25)

where x̂l denote unit vectors along the l-coordinate axis and, prime denotes derivatives

of the Lagrange polynomials. The matrix ∂ξ/∂x is obtained by inverting the Jacobian

matrix defined in Equation (2.23).

Integration over an element is thus transformed into a finite weighted sum using

GLL quadrature of integration by,

∫
Λ
F (x)dx =

∫ 1

−1

∫ 1

−1

∫ 1

−1
F (x(ξ, η, ζ)) J(ξ, η, ζ) dξ dη dζ

≈
ni,nj ,nk∑
i,j,k=0

wiwjwk F
ijk J ijk,

(2.26)

where wi are positive GLL quadrature weights.

We expand the displacement field u and the test vector w in terms of Lagrange

polynomials using Equation (2.24),

u(x(ξ, η, ζ), t) ≈
3∑
l=1

x̂l
ni,nj ,nk∑
i,j,k=0

uijkl `i(ξ)`j(η)`k(ζ), (2.27)

w(x(ξ, η, ζ)) =
3∑
l=1

x̂l
np,nq ,nr∑
p,q,r=0

ωpqrl `p(ξ)`q(η)`r(ζ). (2.28)

Substituting Equations (2.28) and (2.27) into (2.18) using quadrature equation,

Equation (2.26), we obtain the elemental mass and stiffness matrices on the local

domain. We need to assemble the local matrices into a global matrix in which we
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have to sum the contribution of local elements on the common points (points which

are at the boundaries and are common between elements). Therefore for the global

system we have,

MÜ + KU = F, (2.29)

where U is the displacement vector of the global system containing the displacement

at all the grid points in the global mesh. M, K and F are the global diagonal mass, the

global stiffness and the global force matrices. Using GLL points leads to a diagonal

mass matrix and therefore simplifies the scheme. Finally, we use the FDM in Equation

(2.29) for the time derivative. In these methods, one should consider two factors: the

number of grid points per wavelength (i.e., numerical dispersion condition) and the

Courant-Friedrichs-Lewy (CFL) stability condition. The first one is a measure of

how well the mesh samples the wavefield and the second one ensures that you have

a stable simulation by giving a maximum time step for the explicit time integration

scheme. Both of these factors reflect the quality of the mesh and are related to the grid

spacing and velocity of the medium and time step of the simulation (e.g., Komatitsch

and Tromp, 2002; Martin et al., 2008).

The numerical modelling technique (i.e., the SEM) that we described above will be

used to model the wavefield in a cracked medium. From this, we can extract quantities

such as stresses, strains and displacements on each mesh point within the medium,

which we need for our calculations. We then need to introduce an effective medium

theory to simplify a cracked medium or, in other words, to estimate the average effect

of cracks in the medium rather than having to sum the individual contribution of each

crack.
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2.3 Effective Medium Theory

Effective medium theories tell us how to average small-scale structures (e.g., cracks)

in order to get an effective stiffness tensor, which is used to calculate effective P- and

S-wave velocities. In this study, we use the effective medium theory presented by

Schoenberg and Sayers (1995) in which the fractures are modelled in a rock using a

total compliance tensor, sijkl (i.e., the inverse of stiffness tensor, cijkl), as the sum of

background and fracture compliance tensors. For a cracked solid,

〈εij〉 = sbijkl〈σkl〉+ 1
2V

∑
q

∫
Sq

([ui]nj + [uj]ni)dS, (2.30)

where sbijkl is the compliance tensor of the unfractured background, Sq is the surface of

the qth fracture in the volume, V , ni are the unit normals to the fracture and [ui] are

the crack opening and closing displacements known as displacement discontinuities.

The symbol 〈·〉 denotes the average over volume.

Considering planar and parallel fractures in a medium, we apply the following

assumption, known as linear slip theory (Schoenberg, 1980) in which the displacement

discontinuity is linearly related to the average stress tensor,

1
V

∑
q

∫
Sq

[ui]dS ≡ Zij〈σjk〉nk, (2.31)

where Zij are the fracture compliance components which are by definition positive

values. If we consider the strain resulting from the fractures to be sfijkl〈σkl〉, we
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obtain the following equation by substitution of Equation (2.31) into Equation (2.30),

sfijkl〈σkl〉 = 1
2(Zir〈σrs〉nsnj + Zjr〈σrs〉nsni)

= 1
2(Zirnsnj + Zjrnsni)

δrkδsl + δrlδsk
2 〈σkl〉

= 1
4(Ziknlnj + Zjknlni + Zilnknj + Zjlnkni)〈σkl〉

. (2.32)

Considering fractures that are invariant with respect to a rotation about an axis

normal to the fracture (TI system as described in Section 2.1) we use the following

equation to reduce the compliance tensor components to only two: ZN and ZT the

normal and the tangential compliance (e.g., Schoenberg and Sayers, 1995),

Zij = ZNninj + ZT (δij − ninj). (2.33)

By substituting Equation (2.33) into Equation (2.32) for the fracture compliance

tensor we have,

sfijkl = ZT
4 (δiknlnj + δjknlni + δilnknj + δjlnkni) + (ZN − ZT )ninjnknl. (2.34)

For example, consider a VTI medium in which the fractures are parallel to the

xy plane with the symmetry axis parallel to the z axis (i.e., n = [0, 0, 1]), Equation

(2.34) can be written in following matrix form using Equation (2.4) for the excess (or

crack) compliance tensor (see, e.g., Schoenberg and Sayers, 1995),
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sfijkl =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 ZN 0 0 0

0 0 0 ZT 0 0

0 0 0 0 ZT 0

0 0 0 0 0 0



. (2.35)

Finally for the compliance tensor in a cracked medium we have,

sijkl = sbijkl + sfijkl, (2.36)

from which we obtain the stiffness tensor by taking the inverse of the compliance

tensor,

C = S−1. (2.37)

In the following section, we reformulate this section in 2D in which we model the

problem in the remainder of the thesis.

2.4 2D stress and strain relationship

In this study, we do our simulations in two dimensions. Therefore we simplify the

three-dimensional problem to our 2D problem, which is based on plane strain condi-
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tions. As mentioned before in an isotropic medium, we have the following relation,



σ11

σ22

σ33

σ23

σ13

σ12



=



c11 c12 c13 0 0 0

c21 c22 c23 0 0 0

c31 c32 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66





ε11

ε22

ε33

ε23

ε13

ε12



. (2.38)

In plane strain, the length of the third dimension is much larger than the other

two dimensions. The strains associated with the third dimension (here, assuming our

third dimension is the dimension related to the cartesian coordinate of 3) are set to

zero,

ε33 = ε13 = ε23 = 0. (2.39)

Substituting Equation (2.39) into Equation (2.38) yields,


σ11

σ22

σ12

 =


c11 c12 0

c21 c22 0

0 0 c66




ε11

ε22

ε12

 , (2.40)

and,

σ33 = c31ε11 + c32ε22. (2.41)

We get the inverse of Equation (2.40) to get the compliance matrix as follows,


ε11

ε22

ε12

 =


s11 s12 0

s21 s22 0

0 0 s66




σ11

σ22

σ12

 . (2.42)
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Equation (2.42) is the stress and strain relation in terms of the compliance matrix

for a 2D plane strain formulation. In order to get the effective compliance matrix in

a cracked material, we sum the background compliance components with the crack

compliance component using Equation (2.34). For example for a VTI medium, the

total or effective compliance matrix is,

S =


st11 st12 0

st21 st22 0

0 0 st33

 =


sb11 sb12 0

sb21 sb22 + ZN 0

0 0 sb66 + ZT

 , (2.43)

from which we can get the total or effective stiffness matrix C by Equation (2.37).

Then we can get the effective P-wave speed of the medium,

V eff
p =

√
ct22
ρ
. (2.44)

This equation is derived from the stiffness matrix where the associated component

(here ct22) is related to the P-wave velocity of the medium along the 2-direction.

Now that we have introduced the crack compliances and displacement discontinu-

ity, we discuss them in more detail in the following section.

2.5 Crack compliance tensor calculations

In the linear slip theory on a fracture boundary, the traction is continuous, but the

displacement is allowed to be discontinuous. In this case, the displacement discon-

tinuity is linearly related to the traction by a fracture compliance matrix, Z (e.g.,
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Coates and Schoenberg, 1995; Kachanov, 1992),

∆u = Zσ · n, (2.45)

or in a component form,

∆ui = Zijσjknk, (2.46)

where ∆u is the displacement discontinuity (not the Laplacian), and σ · n is the

traction acting across the fracture with n being the unit normal to the fracture as

shown in Figure 2.1 for our case defining as n = (0, 1).

Figure 2.1: n is the unit normal to the crack’s surface. 1 and 2 are defined for the
cartesian coordinates.

In our 2D case, we have two displacement discontinuities in directions 1 and 2 (1

and 2 are defined in Figure 2.1). Therefore we can write,

∆u1 = Z1jσjknk,

∆u2 = Z2jσjknk.
(2.47)
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By expanding we can write,

∆u1 = Z11σ1knk + Z12σ2knk + Z13σ3knk,

∆u2 = Z21σ1kn12 + Z22σ2knk + Z23σ3knk.
(2.48)

Assuming rotationally invariant fracture sets, we can simplify the fracture com-

pliance matrix using Equation (2.33), from which we get,

if : i 6= j ⇒ Zij = 0. (2.49)

Therefore the fracture compliance matrix has only two components: normal and tan-

gential (i.e., ii; 11 and 22). This leads the fracture behaviour to be invariant with

respect to rotation about an axis normal to the fracture. Having this, Equation (2.48)

can be written as,
∆u1 = Z11σ11n1 + Z11σ12n2,

∆u2 = Z22σ21n1 + Z22σ22n2.
(2.50)

Substituting Equation (2.33) into Equation (2.50) and setting n to be the outward

unit normal (n = [0, 1]) we get,

∆u1 = ZTσ12,

∆u2 = ZNσ22,
(2.51)

from which we can calculate the crack compliance components from the displacement

discontinuity and stress components in which one should be careful not to divide by

zero. We calculate ui and σij as part of the SEM calculations. Then we calculate the

displacement discontinuity on a crack by,

∆u = utopcrack − ubotcrack, (2.52)
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where the subscript crack indicates the displacement is taken from the crack boundary.

The superscripts top and bot represent the top boundary and bottom boundary of a

crack inside a medium, respectively. From this, ∆u is an indication of opening and

closing of the crack.

In the general description from Coates and Schoenberg (1995), Equation (2.45) is

implemented as a boundary condition across a fault in the modelling code where the

crack compliance components are defined in the medium. Therefore the displacement

discontinuity is calculated on the boundaries during the wave propagation as is done

by Rusmanugroho et al. (2020). However, in this study, we use the above procedure for

calculation of the crack compliance components, and hence the displacement discon-

tinuity. We model the crack as a low-velocity zone and do not explicitly incorporate

the linear slip theory into the modelling code.

We now have all the necessary information. However, we need to introduce how

to average the quantities on a surface as this is used in one of the ways we calculate

the effective P-wave velocity.

2.6 Averaging surface

In Section 2.3, we introduced the formulation of linear slip effective medium theory

(e.g., Equations (2.30) and (2.31)) in which we need the average stress and strain

components to get the effective stiffness tensor from which we calculate the effective

P-wave velocity of the medium. In this part, we explain how we average the stress and

strain components. First, we need to understand the Trapezoidal rule for integration

in order to average since we use this rule to get the average of the components in the

medium.
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2.6.1 Trapezoidal rule

The trapezoidal rule is generally used to integrate functions, but here we use it to

compute an area. This is more complicated with spectral element meshes than with

finite-difference meshes because these meshes are not rectilinear. It first divides the

area into trapezoids. The area of a trapezoid is the area of the base times its average

height. The base of a trapezoid has length ∆x and its sides have heights yi−1 and yi. If

∆x is small enough, then the trapezoid i has the approximate area of ∆x(yi−1 + yi)
2 .

When we add the areas of all the trapezoids under the curve, we get,

Area = ∆x
{
yo+y1

2 + y1+y2
2 + y2+y3

2 + ...+ yn−1+yn

2

}
= ∆x

(
yo

2 + y1 + y2 + ...+ yn−1 + yn

2

)
.

(2.53)

2.6.2 Averaging using boundaries of the surface

As mentioned above, we need the average components of stress and strain, and these

volume averages can be written as, (e.g., Hashin, 1963; Kachanov, 1992),

〈εij〉 = 1
2V

∫
S
(uinj + ujni)dS, (2.54)

where ni is the unit normal to the boundary of the surface, and ui is the displacement

which can be written as,

ui = εikxk, (2.55)

and

〈σij〉 = 1
2V

∫
S
(Tixj + Tjxi)dS, (2.56)
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where xi is the cartesian coordinate of points on the boundary (with the origin at the

centre of the averaging volume) and T is the traction defined as,

Ti = σiknk. (2.57)

For a surface average we then have,

〈εij〉 = 1
2S

∫
l
(uinj + ujni)dl,

〈σij〉 = 1
2S

∫
l
(Tixj + Tjxi)dl.

(2.58)

To compute the average stress and strain, we first plug Equations (2.55) and

(2.57) into (2.58). Then considering Figure 2.2 that shows our surface of interest with

4 boundaries, we expand the equation into each element and for each boundary with

ni being a component of outward normal. This gives (details of the steps are shown

in Appendix A.1):

Figure 2.2: Averaging surface with 4 boundaries.

33



〈ε11〉 = 1
S

[ ∫
l2
−(ε11x1 + ε12x2)dl2 +

∫
l4

(ε11x1 + ε12x2)dl4
]
,

〈ε22〉 = 1
S

[ ∫
l1

(ε22x2 + ε21x1)dl1 −
∫
l3

(ε22x2 − ε21x1)dl3
]
,

〈ε12〉 = 1
2S

[ ∫
l
(ε11x1 + ε12x2)dl1 −

∫
l2

(ε21x1 + ε22x2)dl2−∫
l3

(ε11x1 + ε12x2)dl3 +
∫
l4

(ε21x1 + ε22x2)dl4
]
,

(2.59)

〈σ11〉 = 1
S

[ ∫
l
σ12x1dl1 −

∫
l2
σ11x1dl2 −

∫
l3
σ12x1dl3 +

∫
l4
σ11x1dl4

]
,

〈σ22〉 = 1
S

[ ∫
l1
σ22x2dl1 −

∫
l2
σ21x2dl2 −

∫
l3
σ22x2dl3 +

∫
l4
σ21x2dl4

]
,

〈σ12〉 = 1
2S

[ ∫
l
(σ12x2 + σ22x1)dl1 −

∫
l2

(σ11x2 + σ21x1)dl2−∫
l3

(σ12x2 + σ22x1)dl3 +
∫
l4

(σ11x2 + σ21x1)dl4
]
.

(2.60)

Equations (2.59) and (2.60) are used to calculate the average strains and stresses

on a surface of interest, respectively. Applying the Trapezoidal rule on each integral

(i.e., for each boundary) and doing summation of all four boundaries gives the average

value for each element of the stress or strain on the surface of interest.

So far, we have introduced all the necessary theories. In this study, we have

implemented all the theories discussed except for the implementation of the spectral

element method for which we use an open-source code. More details are provided in

the next chapter.
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Chapter 3

Estimating travel-time

perturbations

Having set up all of the necessary theories in the last chapter, we now implement

these theories and discuss some of the implementation details as well as some results

in this chapter. Since the goal of this study is to better understand fractured media

by studying P-wave travel-time delay perturbations, we show the whole procedure

of P-wave travel-time delay calculations. First, we explain the wavefield modelling

procedure. Next, we provide three ways to calculate the effective P-wave velocity

of the medium and then we choose one and justify our choice. After that, we show

how to calculate the P-wave travel-time delay caused by the pump perturbation. The

following steps provide a general procedure with the output of each step being the

input of the following step:

1) Model the pump wavefield, which gives the stress and displacement components

on the mesh points.

2) Calculate the effective P-wave velocity.
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3) Calculate the P-wave travel-time delay.

These steps are discussed in more detail in the following sections.

3.1 Wavefield simulations

The first step is to model the wavefield through the rock. As mentioned earlier, we

choose SEM as our numerical method for wave propagation simulations. We use

the open-source code SPECFEM2D (available at: https://geodynamics.org/cig/

software/specfem2d/) to do our simulations (e.g., Komatitsch and Vilotte, 1998).

The source code is able to use unstructured meshes generated by an external soft-

ware like Trelis (CUBIT) (available at: https://www.csimsoft.com/trelis) (e.g.,

Martin et al., 2008) which is the software we use in our study. The first step in our

simulations is to generate an unstructured mesh. After that, we use the open-source

code MeshAssist (available at: https://github.com/homnath/MeshAssist.git) de-

veloped by Gharti et al. (2017) to convert the output format of Trelis to the input

format of SPECFEM2D. We need to check the quality of the mesh, which is done

using the build function in the SPECFEM2D package. Skewness (i.e., deformation of

the element angles) of the whole mesh gives one measure of mesh quality and should

be less or equal to about 0.75 based on the information provided in the package (see

also Martin et al., 2008). We repeat the meshing process until we get a good quality

mesh. Another criterion that we should consider is to check that the mesh will ap-

propriately sample the wavefield based on the medium and source parameters. This

is also a part of the functionality of the build function in the package. Therefore,

after we make the mesh and set input the simulation parameters shown in Table 3.1

as well as the source frequency, the code allows us to check how the mesh samples

the wavefield based on a default threshold. The defined threshold value is around
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4.5 points per S-wavelength in elastic regions and 5.5 per P-wavelength so that the

frequency content of the wave is accurately preserved. After this, we need to choose

a time step for our calculations to satisfy the CFL condition (CFL value below 0.5).

Table 3.1: Modelling Parameters

Host rock Crack

Vp(m/s) 2954 2806.3

Vs(m/s) 1829 1691.8

ρ(kg/m3) 2285 2227.9

As shown in Figure 3.1, our 2D model is 15 cm × 15 cm. An elliptical horizontal

crack with a major radius of 0.5 cm and a minor radius of 75 µm is embedded at the

centre of the model. The model has 149473 elements. We use 143 three-cycle sine

wave sources at the left of the model to act as a plane wave. The frequency of our

sources is 50 kHz, and the time step for our calculations is 0.4 ns. The values of the

physical properties of the model are given in Table 3.1. These parameters are chosen

to be similar to the parameters used by Rusmanugroho et al. (2020).
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Figure 3.1: Our rock model with unstructured mesh. The crack and the meshing
size are exaggerated for visualization purpose. The picture is plotted using ParaView
software (available at: https://www.paraview.org).

Figure 3.2 shows a wavefield snapshot of the z component of the stress. We

present the wavefield to show that our sources first propagate P-waves and then S-

waves and are not pure S-wave sources. In TenCate et al. (2016) and Rusmanugroho

et al. (2020), the S-wave source (pump) perturbs the medium, and the P-wave source

(probe) senses the perturbation by its passage through the medium in a perpendicular

direction to the pump direction. Despite those studies, we do not send a probe to

sense the perturbation explicitly. However, we use the effective P-wave velocity to

send an "imaginary" probe through the medium. Note that the sources are shifted

down to make sure the embedded crack, which is at the centre of the rock, is not

aligned with the place that the S-wave produces a near-zero amplitude.
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Figure 3.2: A wavefield snapshot of the z component of the stress.

Now that we have set up all of the necessary parameters, we can run the simu-

lations. The simulations give us the strains and the stresses on each element as well

as the displacements on the provided receivers’ positions. These quantities are all

that we need for our purpose. Therefore we can continue to calculate the effective P-

wave velocity. Before discussing that calculation, we mention a few major differences

between our study and a similar study done by Rusmanugroho et al. (2020).

Rusmanugroho et al. (2020) do the simulations in 3D using FDM, where they

implement the linear slip theory into the modelling code. By contrast, here we do

the simulations in 2D using SEM and use the linear slip theory after the wavefield

modelling when we calculate the effective P-wave velocity. Also, they implement the

nonlinear wave equation, while the linear wave equation is implemented in the SEM

open-source code. We implement and compare a few different ways of calculating the

effective P-wave velocity, as well as the P-wave travel-time delay calculation method.

Note that the procedure for the P-wave velocity calculations is slightly different from

Rusmanugroho et al. (2020)’s study. The main difference is that we calculate the

displacement discontinuity by the subtraction of the bottom boundary from the top
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boundary of the crack, whereas they use the displacement discontinuity coming from

the implementation of linear slip into the FDM code. The travel-time calculations are

similar in both studies, but the difference is that we calculate the travel-time of the

P-wave probe directly from the velocity field using a simple ray-tracing method while

they propagate the P-wave probe into the medium. More details of our methods and

implementations are provided in the following sections.

3.2 Effective P-wave velocity calculations

In this section, we compare three methods of effective P-wave velocity calculation in

a medium. We expect that the effective P-wave velocity perturbation of the medium

to be small and negative (see, e.g., Rusmanugroho et al., 2020). It should be small

because the crack is small compared to the background, and it should be negative

because, in the definition, we have positive crack compliances (see, Section 2.3), which

results in negative velocity perturbations (i.e., the perturbed velocity is smaller than

the background velocity). Based on this, we choose one method to continue for

further analysis. To do so, we use the model and simulation parameters provided in

the previous section.

3.2.1 Effective P-wave velocity calculations using averaging

on a surface

Two of the three methods of effective P-wave velocity calculations use the method of

averaging quantities on an arbitrary surface. The first is to use the stress and strain

relationship from Hooke’s law, and the second is using the displacement discontinuity

and hence the crack compliance. In the following sections, we introduce each of these

methods in more detail.
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3.2.1.1 Stress-strain relationship

Based on Equation (2.43), which comes from the effective medium theory, introducing

a horizontal crack in the medium only affects two specific components of the compli-

ance matrix; st22 and st33. Knowing this, we can use the plain strain relation of Hooke’s

law in 2D, Equation (2.42), to directly get those components. So we have,

st22 = ε22 − (st21 σ11)
σ22

, (3.1)

and

st33 = ε12

σ12
. (3.2)

Using these equations, we can calculate the total compliance matrix because the

other components are equal to the background components. The notation a indicates

regular averaging, which is the summation of a on all points divided by the number

of mesh points. We then calculate the effective P-wave velocity using Equation (2.44)

after inverting the compliance matrix to get the stiffness matrix. Therefore using

these explanations for this method, the steps are as follows:

1) Average the stresses and strains on a surface of interest (regular averaging).

2) Calculate the total (i.e., effective) compliance components using Equations (3.1)

and (3.2) and the other components using parameters in Table 3.1.

3) Invert the total compliance matrix to get the total stiffness matrix.

4) Use Equation (2.44) to calculate the effective P-wave velocity.

Plots (a) and (b) in Figure 3.3 show the numerator and denominator (σ22 = σzz)

of Equation (3.1) for two different averaging surfaces. The corresponding recovered

effective P-wave velocity of the medium (obtained by dividing the numerator (blue)
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by the denominator (red)) are shown in plots (c) and (d). The velocity jumps are

related to dividing by a near-zero value. The effective P-wave velocity perturbations

start at about the time that the first P-wave passes the crack.

Figure 3.3: (a) and (b) are the normalized average z component of the stress and the
numerator of Equation (3.1) for averaging surface of 5 cm× 5 cm and 15 cm× 15 cm
respectively. The corresponding effective P-wave velocity plots are shown in (c) and
(d) respectively.

This method is easy to implement since we only need the average stress and strain

components on the mesh. However, the magnitude of the velocity perturbations in

this method is not realistic. We conclude this because we have embedded a small crack

in the medium, and the velocity perturbations are large compared to the background

value, the values observed in the lab (TenCate et al., 2016) and the values calculated

in other ways (Rusmanugroho et al., 2020). If we use the average velocity of the

medium based on the surface of the crack and background, we expect an average

velocity of about 2953.9 m/s while we have much lower velocities in Figure 3.3.

3.2.1.2 Using the crack compliance matrix

In the previous method, we only use the stress and strain relation, to directly get the

average (or total) compliance tensor of the medium. Here, we use the displacement
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discontinuities and the stress components to get the excess (or fractured) compliance

matrix, and then we add this to the background (i.e., without fractures) compliance

matrix to get the total compliance matrix. In this method, first, we use Equation

(2.60) and the trapezoidal rule of integration to get the average stress components

on a surface of interest using boundaries of that surface (see, Section 2.6). To do

so, we interpolate the mesh to have a structured mesh on the boundary. Next, we

calculate the displacement discontinuities using Equation (2.52). We compute the

displacement discontinuities by subtracting the bottom boundary of the crack from

the top boundary. Then using Equation (2.51), we calculate the crack compliance

components. After this, we use Equation (2.43) to obtain the total compliance matrix

of the medium. Finally, by getting the inverse of the compliance matrix, we get

the stiffness matrix from which we can calculate the effective P-wave velocity using

Equation (2.44). These steps are summarized as:

1) Interpolate the stress quantities from the unstructured mesh to a structured mesh.

2) Use Equation (2.60) and the trapezoidal rule of integration to get the average

stress components.

3) Use the trapezoidal rule of integration to sum the displacement components on the

crack boundaries and then calculate the displacement discontinuity using Equation

(2.52) and then average it on the surface.

4) Calculate the crack compliance components using Equation (2.51).

5) Use Equation (2.43) to obtain the total compliance matrix of the medium.

6) Invert the total compliance matrix to get the total stiffness matrix.

7) Use Equation (2.44) to calculate the effective P-wave velocity.
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Note that items 4) and 5) are only valid for horizontal cracks (n=[0,1]). Slight modi-

fications are needed for cracks in other orientations.

Figure 3.4: (a), (b) and (c) are the normalized average z component of the stress and
the z component of the displacement discontinuity for averaging surfaces of 4λ× 4λ,
8λ × 8λ and 16λ × 16λ respectively. The λ = 5.908 mm is the wavelength a P-wave
with frequency of 500 kHz. The corresponding effective P-wave velocity plots are
shown in (d), (e) and (f) respectively.

As mentioned before, the components of the crack compliance matrix, Z, are

positive. We can easily conclude that in Equation (2.51), the stress and displacement

discontinuity should have the same sign to satisfy this condition. By looking at the

plots (a), (b) and (c) in Figure 3.4 that represent plots for three different averaging

surfaces, we see that the displacement discontinuity and the stress components are

not in phase which leads to negative crack compliances (see Figure 3.5) which is not

correct. This is why we get the positive velocity perturbations seen in plots (d), (e),

and (f), which correspond to plots (a), (b), and (c), respectively. These plots show

that the calculations depend strongly on the choice of averaging surface. As with the

previous method, the velocity jumps are related to dividing by a near-zero number.

Note that the discontinuities in the average stress (red line) in the plot (c) at times

about 67 µs and 97 µs are related to when the wave reaches the right boundary of
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the averaging surface for the first time and the second time when it is reflected back

from the free surface boundary respectively.

Figure 3.5: Crack normal compliance, ZN . This plot corresponds to plots (b) and (e)
in Figure 3.4.

As an example, Figure 3.5 shows the crack normal compliance plot which corre-

sponds to plots (b) and (e) in Figure 3.4. The shape of the oscillations of ZN is similar

to a cotangent function, which is a cosine function over a sine function. This comes

from dividing the displacement discontinuity by the stress, both of which are like sine

or cosine functions. The other feature is that the effective VP plot (Figure 3.4 (e)) is

the inverse of this normal crack compliance (tangent function). This is because we

take the inverse of the compliance matrix to get the stiffness matrix and then use

the same component related to the P-wave velocity polarized along the z direction

when we calculate the effective VP . In summary, this method results in un-physical

negative crack compliances or positive velocity perturbations, which are not observed

experimentally nor expected since the crack has a lower velocity than the surrounding

material. This suggests that we need to have another method to solve the problem,

which we are going to explain in the following section.
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3.2.2 Effective P-wave velocity calculations using quantities

on the crack boundaries

In the previous method, we had the problem of getting negative crack compliance.

To solve the problem, we go back to the linear slip theory, where the displacement

discontinuity is linearly related to the stress on the boundary of two elastic media

(see, Section 2.5). In the previous section, Section 3.2.1.2, we used the average of the

stress on a surface, while here, in the third method, we use the stress on the crack

boundaries (boundaries between two elastic media). The other procedures are exactly

as with the second method.

The reason behind this is that assuming a static perturbation (equivalent to a dy-

namic perturbation with a very low frequency), which the linear slip effective medium

theory is based on, results in the stress being the same at different points in the

medium. Because we use a dynamic perturbation, there will be a time or phase shift

between the displacement discontinuity and applied stress, which causes the negative

crack compliances we saw in the previous section. Assuming low-frequency sources

(large wavelength with respect to the crack aperture), we use the average stress on the

crack boundaries. Therefore the variations in stress and strain are slow enough that

we can assume we are in the static case at each time instant and then use the static

theory for our dynamic perturbations (see also Rusmanugroho et al., 2020). There-

fore, because the relationship between the stress and displacement discontinuity is

defined on the boundary of two elastic media, it makes sense to apply the method

on the boundary of the crack, rather than on a fictitious boundary as done in the

previous method. The steps are as follows:

1) Use the trapezoidal rule of integration to sum the stress components on the top

crack boundary. We use the top boundary because we assume the stress is almost

46



the same as the bottom boundary due to the long wavelength source perturbations.

2) Use the trapezoidal rule of integration to sum the displacement components on the

crack boundaries and then calculate the displacement discontinuity using Equation

(2.52)

3) Calculate the crack compliance components using Equation (2.51).

4) Use Equation (2.43) to obtain the total compliance matrix of the medium.

5) Invert the total compliance matrix to get the total stiffness matrix.

6) Use Equation (2.44) to calculate the effective P-wave velocity.

The steps are the same as the previous method except for the first two steps, where

we have replaced our arbitrary boundary used previously with the boundary of the

crack.

Figure 3.6: The normalized average z component of the stress and the z component
of the displacement discontinuity are shown in plot (a). The effective P-wave velocity
is shown in (b).

Figure 3.6 shows that the problem of getting negative crack compliances (equiv-

alent to getting positive velocity perturbations) is solved with this method. After
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using this method, the problem of shifting curves of displacement discontinuity and

stress with respect to each other is solved, and now they almost fall on each other in

plot (a). Similar to before, the velocity jumps in plot (b) are related to the division

over a near-zero value. Also, the velocity perturbations are in agreement with other

results now, as we expected based on the surface average velocity of the medium (i.e.,

the average velocity of about 2953.9 m/s). From these plots, we see that the effective

P-wave velocity oscillations are twice in one period of the source wave or in other

words, the frequency of the effective P-wave oscillations is twice the frequency of the

source.

Since we get reasonable results from this method, we choose this method for further

analysis. In the next section, we explain how to calculate the travel-time delay of the

medium as this is the other necessary calculation to obtain our results.

3.2.3 Travel-time delay calculations

After calculating the effective P-wave velocity, we calculate the travel-time delay in

our model to see how changing the effective P-wave velocities affects the P-wave

travel-time through the medium. We calculate the effective P-wave velocity using the

method explained in the previous section. Using these velocities as a function of time,

we can calculate the travel time of a P-wave along the ray shown in blue in Figure

3.7. The P-wave travels through the medium with the velocity of the medium at a

particular time step and moves forward until we get to the other side of the medium

(P-wave passes through the whole medium). By summing up the travel-time from

each time step, we get the total travel-time. Therefore in each time step the P-wave

moves by a distance of hi = δti × V eff
pi

where V eff
pi

is the velocity associated with

that time step, δti. We continue until the summation over all of the his is equal

to 15 cm, which is the size of the rock. Then we sum all the time steps to get the
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total travel-time. In the end, we subtract the travel-time of a medium without any

perturbations (or no crack) from this value to get the travel-time delay caused by the

sources’ perturbation in the medium. This procedure is repeated again by shifting

the time that we initiate the propagation of the "imaginary" P-wave probe to mimic

the experimental results.

Figure 3.7: We calculate travel-time of a straight ray from the star to triangle shown
by blue arrow in our model (black rectangle). V eff

pi
is the effective P-wave velocity of

the medium at time step δti.

Now that we have explained all the procedures for our study, in the next chapter

we vary the parameters in the medium and calculate the effective P-wave velocity

and the travel-time delay of the P-wave to better understand the behaviour of the

medium with these parameter changes.
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Chapter 4

Results

In this chapter, we provide the results of this study. We change three model parame-

ters: the crack aperture, the crack velocities and the crack angle (vertical/horizontal).

We then calculate the effective P-wave velocity and the P-wave travel-time delays, us-

ing the methods described in Chapter 3.

4.1 Crack aperture

The first parameter that we change is the crack aperture. We vary the minor axis

of the elliptical crack using the values 0.15 mm, 0.3 mm and 0.6 mm. As we see in

Figure 4.1, the effective P-wave velocity change is larger with larger crack apertures.
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Figure 4.1: Effective P-wave velocity of the medium with crack aperture of 0.15 mm,
0.3 mm and 0.6 mm shown by the blue, green and red lines respectively.

Figure 4.2 shows the corresponding travel-time delay plot for the velocities shown

in Figure 4.1. It shows that the larger the crack aperture, the higher the P-wave

travel-time delay. In order to produce this plot, we repeat the procedure explained

in Section 3.2.3 once for each point on this plot. In other words, we start the pump

wave, then wait until the transmission delay (x-axis of Figure 4.2) has elapsed before

sending our "imaginary" P-wave. We then use the velocity shown in Figure 4.1 at the

appropriate times to compute the travel-time delay for this transmission time. Then

we change the transmission time (move to the next point in Figure 4.2) and repeat

the procedure.
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Figure 4.2: P-wave travel-time delay caused by the Pump wave for a crack model
with minor radius of 0.15 mm, 0.3 mm and 0.6 mm shown by the blue, green and red
lines respectively.

Going into more detail, we see that in the case of a crack aperture of 0.3 mm

the delay starts around 2.8 ns and reaches a maximum of 8.6 ns with a difference of

5.8 ns, while in the case of crack aperture of 0.6 mm the delay starts around 5.5 ns

and reaches a maximum of 17.3 ns with a difference of 11.8 ns. For the crack aperture

of 0.15 mm, the minimum starts from 1.4 ns and reaches a maximum of 4.3 ns with a

difference of 2.9 ns. We conclude that the maximum delay is almost proportional to

the crack aperture, as shown in Figure 4.3. As stated in Kachanov (1992), the crack

compliance tensor depends on a few parameters, including crack size and shape and on

elastic properties of the matrix. Since the crack compliance is related to our velocity

change and hence the travel-time delay, we provide Figure 4.3 (and later Figure 4.8)

to see how changing a crack parameter changes the travel-time delay.
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Figure 4.3: A linear fit between the increasing the fracture aperture and the maximum
delay.

For better understanding the travel-time delay plots, we show Figure 4.4. The

data is from the crack aperture of 0.15 mm in Figure 4.2. By low-pass filtering the

data, we see the trend of the data, which is shown by the black curve in the plot.

The trend shows that the delay is increasing and reaches its maximum around the

time that the S-wave reaches the crack (≈38 µs). To see the frequency content of the

data, we choose a few bandpass filters with pass bands that include the frequency

of our pump source (50 kHz). In Figure 4.5, we zoom in on the bandpass filtered

data. These data show that the data contain oscillations at near, but not exactly

the source frequency. This is because of the effective P-wave velocity, which is not

oscillating at precisely the source frequency as well as the non-symmetrical shapes

of those oscillations (see, Figure 4.1). However, since it is quite close to the source

frequency, we explain this results from the pump opening and closing the fracture,

and the probe sensing these oscillations hence the travel-time delay follows the trough

and peak (opening and closing) of the sine wave sources (see TenCate et al., 2016).
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Figure 4.4: P-wave travel-time delay for crack aperture of 0.15 mm and the filters
applied to the data.

Figure 4.5: Bandpass filters of Figure 4.4 are shown with a closer view.

In the next section, we change the crack velocities using the model with the crack

aperture of 0.15 mm.
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4.2 Crack velocities and density

In this section, we change the crack velocities relative to the background velocities

and compare the effective P-wave velocity and P-wave travel-time delays.

Table 4.1: Crack velocities’ parameters as a percentage of the background velocities.
The density values do not follow the same rule as the velocities.

Crack (background %)

Background 90% 85% 80%

Vp(m/s) 2954 2658.6 2510.9 2363.2

Vs(m/s) 1829 1646.1 1554.7 1463.2

ρ(kg/m3) 2285 2170.8 2113.6 2056.5

Figure 4.6 shows the effective P-wave velocity of the medium with three different

crack velocities provided in Table 4.1. The results show that as expected, the effective

P-wave velocity change is larger, with a larger difference between the background and

crack velocities.

Figure 4.6: Effective P-wave velocity of the medium with crack velocities of 90%,
85% and 80% of the background velocities shown by the blue, green and red lines
respectively.

We show the P-wave travel-time delay results in Figure 4.7. The results show

that the larger the difference between crack velocities and background velocities, the
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higher the P-wave travel-time delay.

Figure 4.7: P-wave travel-time delay of the medium with crack velocities of 90%, 85%
and 80% of the background velocities showing by blue, green and red line respectively.

Figure 4.8: A good linear fit between increasing the crack and background velocity
difference and the maximum delay.

Figure 4.8 shows that the maximum delay also follows a linear rate with the change

of the velocities inside the crack. In the next section, we change the crack orientation

to see how this affects the results.
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4.3 Vertical crack

Up to this point, all of our experiments have involved a horizontal crack; in this

section, we use a vertical crack. Based on Section 2.3, if we use a vertical crack, we

have a different unit normal to the fracture, which is now n = (1, 0, 0). The medium

is HTI, as opposed to before, when it was VTI. We have to add the crack normal

compliance, ZN to sb11 instead of sb22 in Equation (2.43), and Equation (2.51) is also

different. We use the same model parameters as provided in Table 3.1 and crack

aperture of 0.15 mm. Practically within the code, to avoid re-meshing the domain,

we simulate this by moving the source from the left-hand side of the model to the

top. In this case, Equations (2.43) and (2.51) are the same because the crack normal

has not changed. The only change is that we now use ct11 instead of ct22 in Equation

(2.44) to calculate the effective P-wave velocity in the direction of perpendicular to

the crack normal or along the 1-direction.

Figure 4.9: Effective P-wave velocity of the medium with vertical crack.

Figure 4.9 shows the effective P-wave velocity of the medium with a vertical crack.

The results show minimal perturbations in the velocity compared to the one with

horizontal crack in Figure 3.6 (b). Similarly, we get very small P-wave travel-time

delay perturbations in Figure 4.10 for the vertical crack compared to the horizontal

crack simulation results in Figure 4.4. Numerically, the reason behind the small
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velocity perturbations is that now the normal crack compliance contributes to the

P-wave velocity polarized along the direction (z or 2), but we calculate the effective

P-wave velocity along the other direction (x or 1), which is the probe path. The

probe direction is parallel to the crack as opposed to before when the probe direction

was perpendicular to the crack. More on the side of the experimental point of view

is discussed in the following chapter when we compare the results with other studies.

Also, the trend shows that the delay is increasing and reaches its maximum around

the time that the P-wave reaches the crack (≈24 µs). This is because in this setup,

the generated P-wave contributes to the opening and closing of the crack (our sources

are not pure S-waves). However, if we rotate the crack in this source setup, this will

not be the case because the P-wave particle motions will not be perpendicular to the

crack surface.

Figure 4.10: P-wave travel-time delay of the medium with vertical crack.
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Chapter 5

Discussion, conclusions and future

work

Rocks’ microstructures such as cracks play a vital role in the observed nonlinearity,

which is generally observed as a velocity change due to the changes in an applied force

on a rock (e.g., Guyer and Johnson, 2009). TenCate et al. (2016) show some laboratory

experiments in which they measure this velocity change phenomenon by perturbing

the rock. Following these experiments, Rusmanugroho et al. (2020) use numerical

modelling to better understand the phenomenon observed in the experimental study.

In this study, we have shown some numerical examples to better understand the sorts

of experiments used in Rusmanugroho et al. (2020)’s study. However, there are a few

major differences, as stated in the previous chapters.

In this study, we have used the spectral element method as our numerical method

for wave propagation simulations in a 2D problem. This choice allowed us to make

unstructured mesh hence more realistic cracks shapes. We then needed to use an

effective medium theory to average the medium. As mentioned by Rusmanugroho

et al. (2020), the effective medium is often used for a static perturbation but is also

59



applicable in dynamic perturbations if the wavelength of the perturbation is larger

than the crack aperture. Therefore, we used the linear slip effective medium to cal-

culate the effective compliance tensor of the medium from which we calculated the

effective velocity of the medium. After that, we calculated the P-wave travel-time

delay using the effective P-wave velocity of the medium. In Chapter 3, we provided

a detailed procedure for computing the P-wave travel-time delay. All the necessary

steps are discussed with a few potential methods for performing the effective P-wave

velocity calculations in that chapter. We discuss the results provided in Chapter 4

and compare them with other studies in the next few paragraphs.

In the first set of examples, we have shown the effect of the crack aperture on the

effective P-wave velocity as well as the resulting travel-time delays. These examples

show that with increasing the crack aperture, we have more velocity perturbations,

and hence it produces higher travel-time delay. This is reasonable because the larger

the crack aperture, the bigger the crack, so the larger the total displacement discon-

tinuity. These results can be compared to the results of Rusmanugroho et al. (2020),

where there are more cracks in the medium there is a larger travel-time delay in the

medium than a single crack (i.e., to some extent more cracks are affecting the results

in the same manner as fewer cracks with bigger aperture). This is related to the

concept of the crack density in the medium. However, we cannot compare the ampli-

tude of the results because of the methodological differences, but we can compare the

trend, which is similar in both studies.

In the second set of examples in the results section, we tested the effect of crack

filling velocity. The results show that the higher the difference between the background

and the crack filling velocities, the higher the P-wave velocity perturbations and hence

the higher the effective P-wave travel-time delay. We can explain this by the fact that

the average velocity in a medium is smaller when we put a material (here a crack)
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with a lower velocity. Also, a higher travel-time is expected by lowering the crack

velocity because the wave travels slower in a crack with lower velocity.

In our final results, we showed the effect of crack orientation on the results. We see

agreements with the experimental results of TenCate et al. (2016) and the numerical

results of Rusmanugroho et al. (2020). Although we cannot compare the amplitude

of the results with both studies for reasons such as the number of cracks and the

dimensions, we see a decrease in the travel-time delay when the particle motion of the

perturbing S-wave is parallel to the crack surface or bedding plane. When the particle

motions are perpendicular to the crack surface or bedding plane, the amplitude of the

travel-time delay is larger. This can be explained by displacement discontinuities,

which are an indicator of the opening and closing of the crack. It is evident that

with particle motions parallel to the crack surface or bedding plane, we have smaller

opening and closing compared to when the particle motions are perpendicular to the

bedding plane.

In all examples, we have seen that the displacement discontinuity or the clapping

cracks play an essential rule in the travel-time delay observations. This supports

that cracks are the major cause of the velocity change or the nonlinearity, as stated

in other studies (e.g., Guyer and Johnson, 2009). Also, our results show that we

are able to predict the cracks’ orientations (horizontal or vertical) by comparing the

P-wave travel-time delay results. Moreover, we are able to qualitatively predict the

crack density in the medium; larger delay corresponds to larger crack density. It is

hard to quantitatively estimate fracture clapping details by studying the oscillations

associated with the travel-time delay in our results. This is because our results contain

a wide range of frequencies, making it difficult to conclude. However, this is an

interesting point to study more in the future. In general, our results show that the

intact rock (without any defects or homogenous and isotropic rock) does not show
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any velocity change, but in a cracked medium, we see perturbations in the P-wave

velocity of the medium initiating when the wave reaches the crack. This agrees with

Guyer and Johnson (1999), where they explain that the nonlinearity seen in real rocks

is due to their small-scale structures (i.e., the rocks’ bond system contains mechanical

defects). Gardner et al. (1974) also state that the closing of cracks with pressure

causes velocity perturbations in the rock. This result agrees with other studies done

in the field in which they state that the stress change is one of the reasons for velocity

change (e.g., Brenguier et al., 2008; Minato et al., 2012; Olivier et al., 2019). Although

we have agreements with other studies, we suggest more studies to reach a clearer

understanding of the phenomenon, as discussed below.

The first one is to solve one of our limitations in this study by implementing the

linear slip theory into the SEM code. This allows us to have a better prediction

of the displacement discontinuity and hence the clapping of the crack and make it

more practical when placing a large number of cracks in the medium. The second

suggestion is to modify the sources to be pure S-wave or P-wave sources. However,

this is not something with high priority because if we consider the real situation

of wave propagation in the Earth, it is the same as our sources that first the P-

wave and then the S-wave propagates through the medium. A third possible study

could be making a more realistic medium with more cracks and different orientations.

Another important suggestion would be implementing the nonlinear wave equation in

the SEM code so we can better predict the velocity change by taking the nonlinear

parameters into account. It is worth mentioning that in our study using linear wave

equation modelling, we see similar trends to those seen in the Rusmanugroho et al.

(2020)’s study where they use nonlinear wave equation modelling. This leads us to

conclude that the cracks are really completely dominating the results, with only a

minor effect from the intrinsic nonlinearity of the material. One could also further
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explore how much of this travel-time delay phenomenon is related to the nonlinear

parameters as opposed to the linear parameters (compliances). In the end, it is worth

mentioning that Rusmanugroho et al. (2020)’s study has not some of our limitations.

Therefore one may use their method in which the nonlinear parameters and linear

slip are implemented and included in the method for a better prediction of clapping

crack and velocity change. However, it is fair to say that for getting results that are

close to the experimental results of TenCate et al. (2016), more realistic crack shapes

are needed. Therefore, our method is recommended if someone wants to have more

realistic crack shapes and work on a 2D problem.
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Appendix A

Some derivations

In this appendix, we show how to derive Equations (2.59) and (2.60) for averaging

the stress and strain on a surface based on boundary elements by expanding Equation

(2.58) from Section 2.6.2.

A.1 Formula for averaging surface

After plugging Equations (2.55), (2.57) into (2.58) we have,

〈εij〉 = 1
2S

∫
l
(εikxknj + εjkxkni)dl,

〈σij〉 = 1
2S

∫
l
(σiknkxj + σjknkxi)dl.

(A.1)
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Expanding Equation (A.1) into each element gives,

〈ε11〉 = 1
2S

∫
l
(ε1kxkn1 + ε1kxkn1)dl

= 1
S

∫
l
(ε1kxkn1)dl,

〈ε22〉 = 1
2S

∫
l
(ε2kxkn2 + ε2kxkn2)dl

= 1
S

∫
l
(ε2kxkn2)dl,

〈ε12〉 = 1
2S

∫
l
(ε1kxkn2 + ε2kxkn1)dl,

(A.2)

and,
〈σ11〉 = 1

2S

∫
l
(σ1knkx1 + σ1knkx1)dl

= 1
S

∫
l
(σ1knkx1)dl,

〈σ22〉 = 1
2S

∫
l
(σ2knkx2 + σ2knkx2)dl

= 1
S

∫
l
(σ2knkx2)dl,

〈σ12〉 = 1
2S

∫
l
(σ1knkx2 + σ2knkx1)dl.

(A.3)

Based on Figure 2.2, which shows our surface of interest with four boundaries, we

could write Equation A.3 for each surface boundary as follows,

〈ε11〉 = 1
S

[ ∫
l1

(ε11x1n1 + (ε12x2n1)dl1 +
∫
l2

(ε11x1n1 + ε12x2n1)dl2+∫
l3

(ε11x1n1 + ε12x2n1)dl3 +
∫
l4

(ε11x1n1 + ε12x2n1)dl4
]
,

〈ε22〉 = 1
S

[ ∫
l1

(ε21x1n2 + ε22x2n2)dl1 +
∫
l2

(ε21x1n2 + ε22x2n2)dl2+∫
l3

(ε21x1n2 + ε22x2n2)dl3 +
∫
l4

(ε21x1n2 + ε22x2n2)dl4
]
,

〈ε12〉 = 1
2S

[ ∫
l1

(ε11x1n2 + ε12x2n2 + ε21x1n1 + ε22x2n1)dl1+∫
l2

(ε11x1n2 + ε12x2n2 + ε21x1n1 + ε22x2n1)dl2+∫
l3

(ε11x1n2 + ε12x2n2 + ε21x1n1 + ε22x2n1)dl3+∫
l4

(ε11x1n2 + ε12x2n2 + ε21x1n1 + ε22x2n1)dl4
]
,

(A.4)
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and,

〈σ11〉 = 1
S

[ ∫
l1

(σ11n1x1 + σ12n2x1)dl1 +
∫
l2

(σ11n1x1 + σ12n2x1)dl2+∫
l3

(σ11n1x1 + σ12n2x1)dl3 +
∫
l4

(σ11n1x1 + σ12n2x1)dl4
]
,

〈σ22〉 = 1
S

[ ∫
l1

(σ21n1x2 + σ22n2x2)dl1 +
∫
l2

(σ21n1x2 + σ22n2x2)dl2+∫
l3

(σ21n1x2 + σ22n2x2)dl3 +
∫
l4

(σ21n1x2 + σ22n2x2)dl4
]
,

〈σ12〉 = 1
2S

[ ∫
l1

(σ11n1x2 + σ12n2x2 + σ21n1x1 + σ22n2x1+)dl1+∫
l2

(σ11n1x2 + σ12n2x2 + σ21n1x1 + σ22n2x1+)dl2+∫
l3

(σ11n1x2 + σ12n2x2 + σ21n1x1 + σ22n2x1+)dl3+∫
l4

(σ11n1x2 + σ12n2x2 + σ21n1x1 + σ22n2x1+)dl4
]
.

(A.5)

After we substitute the elements of n we get the final Equations (2.59) and (2.60).
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Appendix B

Code validations

In this appendix, we validate the accuracy of the codes we use in our study. In the

following sections, three main codes are validated: the SEM, the effective P-wave

velocity, and the travel-time delay codes.

B.1 Wave simulation based on SEM

We validate the open-source code, SPECFEM2D, by two methods. First, we compare

the radiation patterns of a diffraction point in an elastic medium and compare it with

analytical solutions. Then, we compare the P-wave reflection coefficients from the

numerical examples with analytical solutions.

B.1.1 Radiation Patterns

In this section, we provide the analytical solutions of radiation patterns in an elastic

medium and then compare it with our numerical simulations. Figure B.1 shows all

types of waves and their conversion possibilities. Note that there is no conversion

between the SH-wave to the other two and vice versa.
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Figure B.1: All possible types of diffraction waves are shown. The first wave is the
incident wave, and the second wave is the diffracted wave (i.e., columns and rows
correspond to the incident and diffracted P-, SV- and SH-waves, respectively). The
arrows indicate the first displacement of the incident wave. Also, there is no conversion
between the SH-wave to the P- and SV-waves and vice versa. The plot is adopted
from Tarantola (1986).

The analytical solutions are shown in Figures B.2a, B.2b and B.2c for P-wave ve-

locity, S-wave velocity and density (ρ) perturbations, respectively. The corresponding

numerical examples are shown in Figures B.2d, B.2e and B.2f, respectively. In our

case, P-wave is the incident wave. Therefore, we only consider the left columns of

the analytical solutions to compare with our numerical scattered wavefields (see, also

Figure B.1). We see that the numerical results are in agreement with the analytical

solutions.

(a) Diffracted waves with a
P-wave velocity perturbation

(b) Diffracted waves with
an S-wave velocity perturba-
tion

(c) Diffracted waves with a
ρ perturbation
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(d) P-wave velocity diffrac-
tor of a 500 m/s difference
from the background

(e) S-wave velocity diffrac-
tor of a 500 m/s difference
from the background

(f) ρ diffractor of a
500 kg/m3 difference from
the background

Figure B.2: (a), (b), and (c) are the analytical solutions of the radiation patterns
for the P-wave, S-wave and density (ρ) perturbations in a medium, respectively. The
incident and diffracted waves are as in Figure B.1. The arrows indicate the first
displacement of the diffracted waves. These plots are also adopted from Tarantola
(1986). The corresponding numerical scattered wavefields for P-wave incidents are
shown in (d), (e), and (f).

B.1.2 Reflection coefficients

In this section, the P-wave reflection coefficients of a reflection boundary in a two-

layered medium are presented. The size of the medium is 3 km × 1 km. The elastic

properties of the top layer are VP = 2000 m/s, VS = 750 m/s and ρ = 2000 kg/m3,

and for the bottom layer are VP = 4000 m/s, VS = 1500 m/s and ρ = 2500 kg/m3.

The analytical solutions are calculated from the Zeoppritz equations (e.g., Aki and

Richards, 2002). For the numerical simulations, we have the same model with 500000

elements using 116 receivers with 25 m spacing at the surface. Figure B.3 shows

that the agreement between the analytical solutions and the numerical simulations is

increased by getting closer to the assumption of incident plane wave used by Zeoppritz.

This happens when we increase the first layer depth and also when we increase the

frequency of our sources.
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(a) (b) (c)

Figure B.3: P-wave reflection coefficients are improved by increasing the frequency
and the top layer thickness. The error between the Zeoppritz equations and Un =√
Ux

2 + Uz
2 from the numerical simulations, at 10.6◦, is (a) 13.8%, (b) 11.3%, and

(c) 4.3%. Error decreases by approaching the plane wave source assumption used by
Zeoppritz, which, in our case, is increasing the depth of the interface or increasing the
frequency.

B.2 Effective P-wave calculations

From Figures 3.4 and 3.6, we see that when the displacement discontinuity is equal

to zero, there are no velocity perturbations, and we get the effective velocity equal

to the background P-wave velocity. This shows the accuracy of our code using the

crack compliance matrix method. For another method, using the stress and strain

relationship, we see that when the wave does not hit the crack, the effective velocity

of the medium is the same as the background velocity (see Figure 3.3). This also

indicates the validity of the employed code.

B.3 Travel-time delay calculations

In this section, we check the validity of the travel-time delay code. Figure B.4a shows

a medium with a constant effective velocity of 3000 m/s, which has the same velocity

as its un-cracked medium. Figure B.4b shows its corresponding travel-time delay,

which is expected to be zero. Our results show a very small number close to zero.
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(a) Constant effective velocity (b) Corresponding travel-time delay of
the medium shown in (a)

Figure B.4: The constant effective velocity is the same as the velocity of a medium
without any crack; therefore, zero travel-time delay is expected.
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