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ABSTRACT

When HIV-I infectsCD4- T cells. its RNA genome is ~n~rsc;: transcribed imo doubk

stranded pro""iral DNA which lranslocates to the nucleus and integrates into the host c~lI

~<nome. This integrated proviral DNA can remain silen!. but uhimalely is the source of all

HIV-1 replication. Therefore. we hypothesize: that the size of the HIV-I proviral pool

detennines the rate ofdisease progression and is a useful prognostic indicator of the durability

of responsiveness to antiretroviral therapy. To tcst Ihis hypothesis. we dC\'doped a non

radioactive quamitalivc peR-based proviral load assay and measured the trequency ofC[).I- T

cells containing HIV·! proviral DNA in 78 HIV·I-infectcd individuals. OUf results show thai

HIV-l proviral load is a stable pool of virus that is unatTecled by current antiretrovirallherapies.

We round thal HIV·J·infected individuals with higher proviral loads displayed a lower mean

C04- T cell count a:ld signiticantly higher mean peak plasma virus 1000. When we separated

HIV-I-infecled indi,·iduals into groups based on whether or not they ~sponded to therapy. we

lound that non-responders had higher proviral loads than did responders. T3k~n logel~r_lh~

results indicate Utal the HIV-I proviral DNA pool has a strong inll~nce on I~ polemiallor

immune reconstitution and viral suppression in response to anliretroviral therapy. suggesting.

lhat HIV·I proviral load is much more imponant than originally bclie\"l~d_ Currem regimens of

amirelro,-iral therapy are not going (0 be sufficiem to eradicate HIV. and new thempies thai

targ!'!1 this pool ofHIV-\ pro\·iralload are n~ed.

The second aim of my study was 10 evaluale the elTects of the CCR5d.3:! HIV-I

coreceptor mutation on the rate of HIV-I disease progression. and to detennine whether the

slower rate of disease progression reported in CCR5.632 heterozygotes could be due to lower

levels of HIV·I proviral DNA. We found that the heterozygous indi,·iduals in our g.roup

displayed slower rates ofdiseasc progression than individuals homozygous for wild type CCR5.

However when we compared HIV.\ proviral load between groups ofCCR5~2 heterozygous

and CCR5wt homozygous individuals. we saw only a slight difference in mean proviral load.

This result indicales that the slower rates of disease progression obsc["\-ed in the CCR5A32

heterozygotes is not due to a decreased HIV-I proviral load.
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I. INTRODUCTION

In this chapter I provide a brief history of how AIDS. and sub~qumtly HIV·l.

wtrc discovered. followed by a description aCthe viral genome, strUCture. and lifc cycle.

I will Ihen review literature that is relevant to the work done in my MSc project. and

describe my hypotheses.

1.1 EtiologyofHIV

1.1.1 Epidemiology of HIV Infectton

[t has been estimated that there are new almost forty million HIV·infeclcd

individuals worldwide. Almost twelve million people have already died from AIDS.

h:aving over eight million orphans. In 1997 alone, there were almost six million new

infections and 2.3 million deaths, of which 460,000 were children under the age of

fifteen. Two thirds aCthe globe's HIV-infected population liYe in sub-Saharan Africa

and Southeast Asia where even the minimum antireltoviral therapy is simply too

expensive. 141 This bodes for an increasing number ofdeaths in the future.

These statistics paint a grim picture of the global status of HIV infection and

AIDS. However, the body of knowledge gathered about HIV over the last two decades is

quite astonishing. No single pathogen has ever received so much attention or inspired so

much research interest. Since its discovery in 1983, more than 80,000 scientific articles



have been published on the topic ofHIV. Together with the information about HIV came

answers to other basic questions in areas such as molecular immunology and human

virology.

1.1.2 Discovery or AIDS nd HI\'

In December 1981, The New England Journal ofMedicine published three articles

reporting the occurrence of Pnellmocyslis carinii, Kaposi's sarcoma, and multiple viral

infections in groups of young males who were all either homosexuals. drug users, or

both. IQ
•
1.u.102 These first cases drew attention because such manifestations usually only

occur in immune-compromised individuals or cancer patients receiving

immunosuppressive therapy. Immunologicaltcsting revealed that these men also had T

lymphopenia and depressed lymphocyte proliferation in ~ponse to mitogens and

antigens.I~~.2112 depressed cell-mediated immunity, vinually no helper T cells, and an

inversion of the T-helper to T-suppressor/cytotoxic cell ratio." The absence of a history

of recurrent infections or histologic evidence of Iymphoproliferative or other neoplastic

diseases suggested that these immune defects were acquired;2111 thus the term"Acquired

Immunodeficiency Syndrome" (AIDS). It was initially proposed that this syndrome was

related to some aspect of homosexual activity, but the same set of symptoms was noticed

shortly thereafter in other populations such as intravenous drug usersl7 and

hemophiliacs.n.61,11~ The discovery of three more groups of AIDS patients: blood

transfusion recipients;.u·lll adults from Central Africa;l2.lu.m and infants born to



mothers with AIDS.191.1~191 finally convinced the medical and research communities lhat

AIDS was caused by an infectious agent.n Since it was already known that T-hclpcr

cells were depressed or eliminated in AIDS. it was hypothesized that a T·lymphotropic

retrovirus could be the causative agent.~·62.6UO.17 Soon after. AIDS was shown to be

linked to such a retrovirus that is now termed the human immunodeficiency virus

(HIV),79,I¥',I~~,197 We now know that HIV is a lentivirus of the Retroviridae family and

that there are two main subtypes; HIV·! and HIV.2. which was later discovered in West

Africa,JO Both viruses lead to AIDS but the pathogenic course ofHIV·2 appears to be

1.1.3 Origin orHIV

Because of sequence similarities with primate lentiviruses. it has been suggested

for a long time that HIV-l and HIV-2 represent cross~species infections.11,lo.l.llJ.l99 The

primate reservoir of HIV-2 was quickly identified as the sooty mangabey.19.111.IU1,lo.l

while the origin of HIV-l remains unccnain. However. viruses that appear 10 be closely

related to HIV·1 have been isolated from the common chimpanzec.m.l71 In 1998 HIV-l

sequences representing what is believed to be the earliest known case of HIV infection

were delC(;(ed by PeR in stored plasma samples from 1959. Phylogenetic analysis of the

sequence led the investigators to believe that the virus was introduced into humans

sometime in the 1930s.ill In February of 1999. it was found that all HIV-l strains known

to infect man 4re clos~ly related to an SIVcpz lineage found in an African chimpanzee



subspecies called P. t. troglodytes. Since chimpanzees are commonly hunted for food in

West Africa. they arc a plausible source of such a speciesjump." The remainder of this

thesis is focused on HIY-l.

1.2 THE STRUCTURE Of HIV-l

1.2.1 Viral Proteins

As shown in Figure 1.1. HIV-I has a cone-shaped core composed of the viral Gag

capsid protein (CA, p24) containing two identical RNA strands closely associated with

Ih~ vir.J.1 reverse transcriplase (RT, p661pS I), and the nucleocapsid protein (NC. p7). The

viral protease (PR, p II) and integrase (IN. p31) arc also contained within the core. The

inner ponion of the viral membrane is surrounded by the matrix protein (MA. p17) which

provides the viral stNcture and maintains the integrity of the virion.au6 HIV Vifand Nef

proteins are closely associated with the core. lJ
•
m.211 Vpr may also t'C located inside the

virion but probably outside the con:. lJ7 Th~ surfa« of the virus is made up of trimers or

tetmmers of the envelope glycoprotein gpl60.6U6.167.laU:lS gpl60 consists of an external

surface envelope protein (SU. gp120) and a transmembrane protein (TM, gp41)1~7 which

tit together in a knob-and-socket-like stlUcture. l96 gpl20 contains the binding sites for

cellular receptors and the major neutralization domains.II.~6.1,~.19J Also contained within

the viral envelope is an array of host cell-derived membrane proteins. including

leukocyte-function associated antigen-I (IFA-I) and intercellular adhesion molecule-I



Figure 1.1. Schematit repruentalion or the HIV-I virion strutture. The HIV·I

"irion. indicating the approximate location of the deaved products of the Gag

polyprotcins. the Env glycoproteins, and the pol gene..encoded enzymes IN. RT. and PRo

The colors indicated cOrTCSpond to the precursor proteins shown in Figure 1..2. (Adapted

from Frankel7s)
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(ICAM·I) which have been suggested to playa role in HIV·j infection. IO
)

1.2.2 Viral Genome

Figure 1.2 shows the genome of HIV·I consisting of two identical copies of

single-stranded positive polarity RNA molecules approximately 9.8 kb in length. The

genome encodes nine open reading frames, three of which encode the Gag. Pol, and Env

polyproteins that are subsequently proteolyticly cleaved into individual proceins common

(0 all retrovi~. The Gag polyprotein gets cleaved into four structural proteins; matrix.

capsid. nucleocapsid, and p6. The two outer membrane structural components. gp120

and gp4l. are generated from the Env gpl60 polyprotein. Finally. the three Pol proteins.

protease. reverse transcriptase. and integrase, provide the essential enzymatic functions.

HIV-I also produces six additional accessory proteins by differential splicing and

cleavage: Ner. Tat. Rev. Vif. Vpr. and Vpu.7S

1.3 VIRAL LIFE CYCLE

The life cycle of HIV.I. as seen in Figure 1.3. is a comple;'( multi-step process

Ihat begins at the surface of the host cell where the viral envelope protein, gp120. binds to

the CD4 receplor and a coreceptor on the surface ofCW' T cells and macrophages. IJI

The binding ofSpl20 to CD4 induces a conformational change in the gp120 molecule

e;'(posing a glycine-rich region of gp41 often called the "fusion peptide". This



Figure 1.2. The "tV·1 Genome. Schematic representation oflhe HIV·I genome and

precursor prolein organization. The virus' 5'· and 3'· long tenninal repeats (lTR) are

shown. as well as the open reading frames. Adapted from Frankel."
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change is thought to bring the virus close enough to the plasma membrane to facilitate

fusion afthe viral envelope with the plasma membrane, and allow the HIV·! core to

enter the cell. to! Once inside the cell, the virus uncoalS in the cytoplasm and the viral

reverse transcripwe (Rl) makes multiple double-stranded DNA copies afthe viral RNA

genome. l66 The preintegration complex is lransponed to the host cell nucleus. probably

with the help of the viral Vpr, Ner, and p 17 matrix.)..I In the nucleus, me viral integrase

(IN) catalyzes a series ofreactions resulting in integration afthe viral genome into a host

chromosome. forming an integrated provirus. llG The HIV·I promoter is located within

the 5' untranslated region of the provirus and contains a number of regulatory elements

imponam for human RNA polymerase II transcription. including a binding site for NF

1(8.116 Once Ihe infected cell becomes activated. the provirus is transcribed wittl both

spliced and unspliced viral RNAs being produced. At first. only the smaller double

spliced mRNAs encoding for Tat. Nef. and Rev regulatory proteins get transported to the

cytoplasm. Later. single-spliced and unspliced genomic-length RNAs get u-ansponed

from the nucleus to the cytoplasm with the help of Rev.111 Once in the cytoplasm. the

viral mRNAs are translated producing larger Gag, Pol, and Env precursor proteins.

Cleav3ge of these precursor proteins by HIV protease (PR) generates the structural and

enzymatic proteins. The viral proteins localize to the plasma membrane where the core

particle is assembled and an immature virion begins to bud from the cell surface. As the

virus is released from the cell surface it undergoes its final maturation and becomes

infectious,ll'.1!9



"

104 IMMUNOPATHOGENESIS

From the time that AIDS was discovered in [981, it was clear that the condition

involved a loss of immune competence and susceptibility to opportunistic infections. The

hallmark arthis condition was depiction ofpcripheral blood CD4- T cells. I
' The most

obvious explanation "'as that HIV-I inf«ts CD4· T cells causing cell lysis, resulting in

depletion of helper T cells and the eventual collapse of the immune system. However.

this hYJXlthesis was immediately questioned because the proportion of infected cells did

not seem to explain the extensive decline in cell number.!OO AIDS and HIV infection arc

also associated with other immune abnormalities including polyclonal B cell activation

and lite production of autoantibodies, decreased cytol)lic activity of NK cells and Ag

specific CTL. reduced T helper cell function, impaired Ag-presenting activity, and

disruption of immunoregulatory cytokine production.1l2 Simple viral cytopathicity was

not sufficient to explain this broad effect on the immune syslem. Hence. it was suggested

th:lt immunopathogenesis might be responsible. Some of the models proposed include

(I) HIV-I-sp«ific CDS- crL that kill HIV-I-infected CD4- T cells;m (2) autoimmune

reactions;:'110 (3) immune suppression by HIV proteins;ln (4) activation of APe and/or T

cells;».101 and (5) apoptotic T cell death.70 Despite the vast amount of work that has been

done to test these hypotheses, no single mechanism has been shown 10 be broadly

responsible for the immunopathogenesis of AIDS.
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Figue I.J. Lire cycle or HIV-1. After HIV enters the host cell. viral reverse

Iranscripl3se makes a double-stranded DNA provirus from the viral RNA. This provirus

translocates 10 the nucleus and integrates into the host cell genomic DNA. where

depending on the activation slate of the cell, latent or active infection can result.
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1.5 DISEASE PROGRESSION

1.5.1 Primary HIV l.rKtion

The course of HIV·I infection involves lhrce distinct phases: primary infection, clinical

latency. and the symptomatic phase. HIV infected individuals generally fall into three

categories with respect to disease progression: typical progressors, rapid progressors. and

long-tenn nonprogressors. Primary infection in a typical progressor lasts approximately

J2 wecks.l9.~S.91 During this time. the virus reaches levels of up to one million copies of

HIV-\ RN A per milliliter of plasma. Interestingly, viral levels decrease 10· to IQOO-fold

during the first few months. coincident with the development of an HIV·\-specific CTt

response.l'l.~}.I1O The significance aflhis decrease in plasma viral load was emphasized

by studies showing that plasma HIV·I RNA concentralions during chronic infeclion

predict the rate of CD4- T cell decline and the risk of rapid progression to AIDS and

dl:'llh.I:lO. IJI Furthennore. plasma HlV-1 RNA conceAlrations during the first year after

seroconversion have been shown 10 independently predict disease progression.H.J1.uo

However, by this time the virus has already established a latent pool of replicalion

competent HIV·! proviral DNA incorporated into the genomic DNA of resling CD4" T

cells.91
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1.5.2 Clinically Latenl Period

As the levels of viremia decrease. the HIV·I·infe<:ted individual enters the

chronic phase of infection. which typically laslS for 8 to 10 years.'l.6I.1J.l Allhough once

believed Ihal viral replication was minimal or nonexistent during this period. the

demonstration of virus replication in lymphoid tissue indicated thai virus replication is

continuous throughout Ihe cmire course of infection. During the asymptomatic phase,

CD4" T cell counts decline slowly from approximately 500 to 200/~1, and virus load

increases in the blood,m Disruption oflymph node tissue architecture also occurs over

this period. leading to a decreased ability to trap \·irus,11l.171 Both CD4- and COg" HIV·

I-specitic cell-mediated immune responses can be detected.3l.2IO and a variety of

antibodies against HIV·I structural and regulatory proteins are generated during this

st:lge ofinf~tionY6.l17 However. inhibition ofthesc HIV·I·specific responses is usually

observed during the progression from early to intermediate stages ofdisease."

1.5.3 Advanced HIV-II.rmkNI

As an HIV·infccled individual progresses to the final stage of disease. CD4" T

cell counts fall to below 200/1,'" and viral load increases to levels similar to that of

primary infection. By this lime most of the lymphoid tissue has been replaced by fibrotic

tissue. '11
.
1
"r. During late stage AIDS the individual is prone to a variety ofopportunistic
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infections including Candida albicons. Epstein-Barr virus. cytomegalovirus. and herpes

viruses.I'lO

1.5.4 Rapid P...ogresson and Long-Term Nonproeressors

In the absence of effective treatment approximately 80-90"1. of HIV·I·infected

individuals appear as "typical progres50rs" with a median survival time of 10

years.I~.bll.lH The remaining 10-20% are either "rapid progressors" or "long-term

nonprogressors" (LTNPs). Papid progressors develop AIDS within 2 to 3 years aftcr

scroconversion.~o, Immune responses are usually defective .....ith low levels ofanli·HIV

antibodies lll
1.l

16 and severely impaired CDS- T cell-mediated suppression of viral

replication,1l0.ll' Virus load is usually very high in rapid progressors'i and HIV·I

isolated from rapid progressors appears more homogeneous than that isolated from

typical progressors.U

On the other hand, a small percentage of HIY-\-infected persons do not

experience clinical progression of H(V·( infection and maintain stable CD4- T cell

counts for many years without antiretroviral therapy. The criteria for nonprogression

typically include documented HIY-( infection for more than 7 years, stable CD4· T cell

counts higher than 600 cellsl~l. absence of symptoms, and no antiretroviral therapy.

Immune function is conserved in LTNPs with strong HIY-I-specific humoral and cell

mediated responses.11·2•. I~.20l
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t.5.!5 Markers of Distast Procrusio.

Due to the variations in the rate of disease progression and the need to evaluate

me efficacy ofexisting and newly developed antimrovil'31 therapies. HIV researchers are

inlerested in identifying immunological and virological parameters of disease

progression. Increased levels of circulating Ih-microglobulin1cs and CDS" HLA·DR"

CD38" T cell numbers, for example, have been associated with progression to AIDS."

However. CD4" T cell counts and plasma HIV-l RNA levels are the two best

independent predictors of the rate of disease progression.66.110 Decreased CD4" T cell

counts and increased viral load levels are associated with advanced KIV·I infection.

Over the last 3-4 years, research on AIDS predictors has focused on plasma KIV·! RNA

levels. Studies have even suggested that an elevated or increasing viral load is

considered to be the most accurate predictor of HIV disease progrcssion.~2.Ioi.uo.Ul

During primary HIV infection, concentrations of piasma HIV RNA can exceed 1.000.000

viral copies/ml (500,000 virions/ml). However, with the emergence of antiviral immune:

responses, mcsc high plasma concentrations decline precipitously, and after a period of

time, maintain a steady-state value.lll ·,m This steady-Slate concentration, which is set

during Ihe first year of infection, is a powerful predictor of the clinical outcome and

allows identification of HIV-I-infected individuals at risk for rapid disease

progression.117.lll Funher evidence for the predictive value of plasma viral load was

obtained in studies of LTNPs, who were shown to have up to 2o-fold lower HlV-\ RNA

levels man progressors.,,·110 Because of the results of studies such as these. RT-PCR-
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based methods of HIV·I RNA measurement were quickly adopted as standard care and

for evaluation of drug efficacy. III

1.6 HIV-I ANTIRETROVIRAL THERAPY

1.6.1 Reverse Transcriptase Inhibitors

HIV-I reverse transcriptase. protease, and integrase provide the essential

enzymatic functions for the viral life cycle. As early as 1987. antiretroviral drugs that

blocked reverse transcription by binding RT were being tested. The first of these

compounds 10 be approved was )'-azido-J'-deo:<ythymidine (AZT).1Sl Today, RT

inhibitors can be divided into two groups, depending on whether they are targeted against

the enzyme's active site or binds other areas of the protein. Nucleoside analog RT

inhibitors (NRTIs) are nucleoside derivatives that block reverse transcription by

competitively binding to the active site of RT. These include AZT, ddl. ddC, d4T. 3TC

and abacavir. Non-nucleoside RT inhibitors (NNRTls) such as nevirapine. delavirdine,

and efavirenz, binding to regions other than the active site and sterically block the

incorporation of incoming nucleosides.1o Various combinations of NRTls andlor

NNRTl's were used with significant benefit to the patient, but due to the high mutation

rate associated with HIV's error-prone RT, viruses containing mutations that conferred

resistance to these drugs were soon found in the blood of HIV·infected individuals. lJl
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1.6.2 Protease Inhibllon

In the mid 1990's HIV protease was targeted by resean:he~. HIV prOlease

inhibitors prevent cleavage of gag and gag·pol pm:ursors. thereby arresting maturation

:lnd blocking infectivity of nascent "irion5,119.119 There are currenlly five such drugs

available by prescription, amprenavir. indinavir, nelfinavir, saquinavir. and ritonavir.n.m

These protease: inhibitors rapidly and profoundly reduced viral load, as indicated by a

signilicant decline in plasma HIV RNA concentrations within a few days after the start of

treatmenl.ltJ6.~I~ Monotherapy with indinavir. nellinavir. or rilonavir reduces plasma HIV

RNA concentrations 100 to 1000 X in 4 10 12 weeks.a,1n The inclusion of these

compounds in the battery against HtV provided a more effective approach to the control

of HIV replication. RT inhibitors block viral replication at an early step in the viral life

cyde, just after viral entry, whereas the protease inhibilOfS exen their effects later in the

life cyde, during the steps involved in production of new virus. Therefore, it seemed

logical to give these drugs in combination, thus effectively targeting two different steps in

the viral life cycle, at the same time. As expected, combination therapy, or highly active

antiretroviral therapy (HAARn consisting of a protease inhibitor and two nucleoside

analogues causes suppression of HIV·I replication in infected persons to such an extent

that the virus can become undetectable for more than two years.9~,96 This sustained

reduction in viral replication improves immune function. delays disease progression, and

prolongs survival.HI6'J
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1.6.3 Inteerase Inhibitors

Given the apparent success ofRT and protease inhibitor combination therapy, it is

not surprising that basic scientists and pharmaceutical companies are now targeting the

third major enzyme involved in the HIV-I life cycle. The integrase enzyme facilitates

the integration of the viral genome into a host chromosome. fonning an integrated

provirus. 1
:!O Although none are currenlly available for prescription, numerous compounds

have been developed as potential imegrase inhibitors and a few are now being

tested. IIO. I.l6

1.7 LIl\'IITATIONS OF ANTIRETROVIRAL THERAPY

1.7.1 Drug Resistance

Unfortunately. the HIV-I reverse transcriptase lacks proof-reading activity,

making it highly error-prone and capable of mutating its genome as many as IO~_lOs

times per day.m This high mutation rate allows the generation of mutant viruses thai can

replicate even in the presence of multiple drugs. The existing theory is that a wild type

strain of virus usually dominates in the blood of an HIV-I·infected individual. but that

slower replicating viral mutants exist at low levels. When antiretroviral therapy is

initiated, the wild type viral replication is blocked. However, this selective pressure has

no effect on the mutant strains which can then dominate the .. iral population. These



21

viruses can also acquire additional mutations that increase their resistance. 117 Even worse

is the fact that pattems of drug resistance exist such that the acquisition of a point

mutation which confers resistance to one drug, may also confer a cross-resistance to

ilnother within the same class.~o Funhennore. it was shown recently that drug resistant

strains of HIV occur in the semen of HIV-l-infected men and are transmiuable even

whl:n HAART appears to be successful.3S·:!1~ This, ofcQurse, means that a newly infected

individual may already harbor a drug resistant simin of HIV. Thus. drug resistant strains

of HIV-l represent a difficult challenge for AIDS researchers. However, the idea of

diminuting virus all together is still a greater challenge.

1.7.2 Latent HIV-I Infection

The development of RT-PCR as a tool for measuring plasma HIV-I RNA

concentrations allowed HIV researchers to quickly evaluate the efficacy of newly

developed antiretroviral drugs and to study the dynamics of viral replication. In 1995,

two controversial papers in Nature reported that the half-life of Cree virus in the plasma of

an HIV-I-infected individual was no more than six hours, and that productively infected

cells also had a short half life of 1.6 daYS."ll5.2l~ In 1997, a mathematical model based on

the kinetics of viral decay seen shortly after initiation of HAART suggested that 2.3 - 3.1

years of a drug regimen that "completely inhibits virus replication" would be sufficient to

··eradicate" HIV infection. This hypothesis was based on the rapid reductions of free

HIV-I and the significant increases in CD4~ T cells in the blood of HIV·I·infected
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individuals shortly after the initiation ofHAART.1
7'I However. this hypothesis was based

on t......o flawed assumptions. First, it was assumed that the changes seen in the CD4· T

cells in the peripheral blood. which accounts for 2% of the body's T lymphocytes,

retlected changes occurring in the total pool ofT lymphocytes. This seems to have been

an obvious mistake, since it was already known thallhe frequency of HIV-J-infected

cells in unfractionatcd and sorted CD4- cell populations isolated from lymphoid tissues

was as much as lQ·fold higher than lhe frequency in peripheral blood. 17l The second

mistake that this group made was to assume that the early increase in peripheral blood

CD4 counts was due to newly produced naive T cells. This early increase was later

shown to be due to the redistribution of HIV·specific T cells that had prcviously

emigrated to peripheral sites of viral replication. such as the lymph nodes. lu Another

problem with the eradication hypothesis is that it required an ami viral drug regimen that

"completely inhibits virus replication:' Given the extent of viral mutation mentioned

above, such 3 regimen is at present unavailable.

By far the greatest challenge facing HIV researchers today is the question of how

to eliminate latently infected CD4· T cells that exist in the blood of HIV-\-infected

individuals. During acute infection. HIV-l preferentially infects activated C04- T cells

and reverse transcribes a double stranded DNA copy of its RNA genome. This provirai

DNA in transported to the nucleus of the cell where it integrates into the host cell

genomic DNA. These activated cells can immediately begin transcribing the provirus to

produce new virus panicles (reviewed by LevyIH). However. a small proportion of these

cells can revert to a resting memory state while still carrying the integrated
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provirusY.1I.n Since the necessary lI'aJlSCription factors aft not present in the resting

CD4- T cells, the stably integrated HIV provirus is not ltanscribed, but sits silently,

hidden from the immune system.16l Conuary to nrlier suggestions that these latently

infected cells have a short half· life of only 0.5 - 2 weeks,l7'J new evidence obtained in

1991 indicated that lhese cells constitute a long-lived pool ofreplication-compctcnt HIV.

Wong et 01 studied six patients who were receiving combination therapy and all had

plasma HIV·I RNA levels below SO copies per/mt fOf up to two years. They showed that

ill vitro activation of C04· T lymphocytes using immobilized antibodies [0 CDJ and

CD28 enabled the isolation of HI V·] from PBMC.m Similarly, Finzi eta/. showed by a

multi-step purification technique. that replication-competent virus could be routinely

recovered from resting CD4· T lymphocytes of 22 patients receiving HAART. They

reported that the frequency of these cells was low (0.2 10 16.4 per 10' cells) and

imerestingly, did not decrease with increasing time on therapy.T.! A third group report~

similar findings in 13 patients receiving HAART using a PeR-based method that

amplified only integral~ HIY·) DNA. Chun el 01. found that highly purifi~ CD4· T

cells from IJ/IJ HIY·I·infect~ individuals with undetectable plasma viremia, carri~

integrated proviral DNA and were capable of producing infectious viNS upon cellular

activation in vilro. l1 These findings suggest~ that latently infected resting CD4· T cells

are long-lived and that the time required for virus eradication, ifat all possible, would be

considerably longer than previously predicted.l1..28.71

The use of combination antiretroviral drug regimens has dramatically decreased

morbidity and monality in HIV·infett~ individuals, and causes sustained reductions in



"
plasma viral load.9J.96.109.169 However. reccnt work has shown that viral load levels can

rebound to pretreatment levels in as little as 21 days when treatment is halt~." The

soun::e of these newly produced virions is most likely the pool of latcntly infected CD4'

T cells carrying stably inll:grated HIV·I proviral DNA. Despite the earlier optimistic

predictions. it now appears that this proviral load is established early in HIV·! infection

and is a stable reservoir. unaffected by HAART. Ibanez et oJ. reported that no significant

change in integrated HIV·I DNA copy number was seen in a group of HI V- I-infected

individuals receiving 48 weeks of HAART.ll~ In a similar study, Bruislcn et 01. started

42 antiretroviral naive HIV-I-infected individuals on combination therapy and monitored

HIV·! RNA. and DNA levels over an 80 week period. Although HIV·I RNA levels

declined by as much as 1.910gllio HIV-I DNA load never decreased significanlly from

lxlseline values. 11 The final nail in the "eradication' coffin was driven in May of 1999.

when Finzi et at. reponed that the half·life of the latent reservoir of HIV·I-inf«:ted

resting CD4- T cells could actually be: as long as 43.9 months. The authors hypothesized

th:u if this reservoir consists of as few as 105 cells. eradication could take up to 60

years.ll

1.8 HYPOTHESIS I

Since proviral load is a stable pool that is unaffected by antiretroviral therapy, we

expect that this parameter will not be: useful for monitoring disease progression. nor will

it be a useful tool to measure the efficacy of HIV therapy. However, we propose that the
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higher the frequency ofCD4· T cells containing integrated HIV·! proviral DNA in the

blood of an HIV-I-infected individual, the faster the virus rebound after discontinuation

of HAART. and the higher me ~t point reached. We also believe that since the greatest

viral sequence diversification occun at the step just prior to proviral DNA integration, the

degree of HIV·) sequence diversity should be dim:tly proportional to the size of the

inlegral~ proviral pool. The greater the proviral load. the more sequence diversity

avail3ble for HIV-I and the easier it should be for the virus to mutate beyond both the

immune response and the pressure ofantiretroviraI therapy.

In short, we hypothesize that proviral load ultimately determines the ratc of

disease progression and is a useful prognostic indicator of the durability of

responsiveness to antiretroviraltherapy and the development ofdrug resistance.

To test this theory, we first had to develop a method to measure HIV-I proviral

load. The development and standardization of which are described in Chapter J. The

results obtained using this method and the analysis of the effects of proviral load on

disease progression and response: to therapy are found in Chapter 4.

... THE CCR51U2 CORECEPTOR MUTATION AND PROVIRAL LOAD

While the above work was under way. there was much interest within the HIV

research community in the recently identified HIV corcceptors and the eITects of

coreceptor mutations on disease progression. However, no mechanism had yet been

proven responsible for these proposed effects. In addition to the aforementioned project,
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we sct out to determine whelhcr decreased proYiral load might be the link between a

heterozygous CCRS coreceptor mutation and slower disease progression.

1.9.1 Background

It was known as early as 1981 thai C04- T cells were specifically depleted in

AIDS patients.19 Soon after HIV·! was identified as the cause of AIDS. it was shown

thaI monoclonal antibodies (mAbs) against CD4 could prevent HIV·\ replication in vitro.

thus suggesting a role for CD4 as the cellular receptor for HIV_I.~l.l!S This argument

was slrcngthened in 1986 when it was found that HIV·) surface glycoprotein gpl20

could fonn a complex with CD4.l~9 Transfection studies with the human CD4 gene

demonSlrated that human cells that were normally not infcctable by HIV-I. could be

rendered susceptible to HIV·\ infection after translcction with CD4. However, the idea

that there might be a second receptor involved in the mechanism ofHIY-\ infection came

about when human CD4 was transfected into murine fibroblast cells. As it turned out,

this was not sufficient to render the murine cells susceptible to HIV·\ entry. gpl20

binding to these cells was demonstrated, but virus entry did not occur. l
.40 However.

landau et oJ showed that when murine cells expressing human CD4 were fused with

human cells that did not express CD4, the resulling hybrids could bind to HIV-infei:led

cells. ll'l Thus. it was proposed that HIV-l needs a spedes-specific cell surface factor

othl:r than CD4 for efficient entry into human cellsY However, this 'coreceptor'

remained unidentified for over a d.:cade.
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I feel it is imponant at this point to clarify some tangled nomenclature that has

been used to denote HIV·( tropism. Due: to HIV's extraordinarily high mutation rates in

infected persons, with most variability occurring in env, HIV·! exists as a 'quasispedes'

that is continuously evolving within the host. It is important to nOlc that ALL primary

HIV-I isolates can replicate in primary T cells, i.c:. any freshly isolated strain ofHIV·1

will infect and replicate in freshly isolated POMe. However, once cultured in vitro,

isolates of HIV-I emerge that have selective tropisms based on the cell type in which

they were cultured. Some isolates replicate efficiently in continuous CD4' T cell lines.

but only poorly in primary macrophages. These so-called 'T-cell tropic' isolates replicate

T3pidly and can usually facilitate in vitro formation of multinucleated giant cells, or

syncytia, and thus have also been referred to as 'syncytium-inducing' (51) viruses. Due

to the obvious confusion and ambiguities. mese isolates are now more appropriately

referred to as 'X4' isolates for reasons that will be explained below. Interestingly, other

strains show the opposite selectivity, infecting primary macrophages much more

efficiently than continuous CD4· T cell lines. These, misleadingly labeled. 'M-tropic'

isolates, which replicate more slowly man X4 isolates in vitro and are non-syncytium

inducing (NSI), are now properly referred to as 'RS' isolates. Dual tropic virus strains

that replicate equally well in macrophage-monoctye and T cell lines are referred to as

R5X4 isolates (reviewed in 8, 60. and 158).
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1.9.2 Discovery of the HIV-. Cortc:tpton

Chemokines are specific immunological factors that have combined

chemoactraClani and cytokine propenies. They are 7()"9Q amino acids in length and can

now b.:: subdivided inlo fOUf groups, based on the chemokine receptor nomenclature

currently in use, which uses ce. cxc, XC. and CX3C followed by R (for recpctor).2-..

The a-chemokines. or CXCl chemokines, conlain a single amino acid between the first

and second cysteine residues. whereas the p-chemokines. or eeL chemokines have

ndjacent cysteine residues,l60 The pieces of the HIV·I coreceplor puzzle began 10 fall

into place in 1995 when Cocchi et al. showed that the ~-chemokines macrophage

inflammatory protein (MIPHa. MIP-I13. and RANTES (regulated upon activation

nannal T cell expressed and secreted), secreted rrom CDS" T cells, could inhibit the

replication or R5, but not X4, strains or HIV_I.J) At the same time. Paxton et af were

Iinding that the CD4' T cells rrom some HIV "exposed uninfected" (EU) individuals

were resistant to infection by R5 suains. 116 In 1996, Feng et af. devised an elegant

application or gene-transfer technology to identify the first HIV·\ coreceptor." They

used recombinant vaccinia viruses to express Env on one cell population and CD4 on

another. One or these cell populations also expressed vaccinia-encoded bacteriophage T7

RNA polymerase and the other contained the LacZ reporter gene linked to a T7 promoter,

thus allowing the production or ~.galactosidase in fused cells only. When murine cells

were transrected with a plasmid eDNA library from Hela cells in which the cDNAs were

linked to the T7 promoter and mixed with cells expressing Env rrom an X4 isolate,
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staining with X-gal allowed the detection of fused cells. Repeated experiments with a

subdivided library eventually resulted in the isolation of a single plasmid that was

capable of conferring tnc capacity for fusion. Subsequent sequencing identified a seven

transmembrane segment G·prolcin-coupled receptor, which the authors named !'usin. that

had already been cloned but was designated as an orphan receptor as its natural ligand

was nOI yet known. Expression of recombinant fusin rendered CD4.expressing non·

human cell typcs pennissive for both Em'-mediated fusion and productive infection by

X4 HIV-1. Although fusin functioned efficiently for X4 Enys. its expression did not

support the fusion of R5 Envs.

With the identification of fusin as the co~cplor for X4 H1V·! strains. the G

protein-coupled receptor superfamily became the primary focus in the search for the

cofactor for R5 isolates. Since it was already known that the ~chemokines RANTES,

MIP-1et. and MIP·113 inhibited HIV·l replication of R5 isolates, it was suggested that the

second receptor for R5 isolates might be: a l3-chemokine receptor. Coincidentally in

1996. a group studying chemokine biology reponed the cloning, sequencing, and

functional characterization ofa chemokine receptor that responded to RANTES, MIP·Ia.

and MIP·113 that they namedCCR-5. 19
! This finding started a frenzy in the HIV research

community that led to the simultaneous finding by five different groups that CCR-5 was

indeed the second receptor for entry of R5 isolates of HIV·I. 1.13.s,.",jQ For simplicity,

fusin was then referred to as CXCR4 and the confusing nomenclature ofM·rr-tropic and

NSI..JSI·isolates was later replaced with the more accurate designations of R5 and X4

isolates, based on coreccptor usage.'
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1.9.3 Discovery of tbe CCRSAJI Conceptor Mutatiolll

It had been suggested that host genetic detenninants influence susceptibility to

HIV·1 infection. but identification of the specific genes involved remained elusive.'

Naturally. it was hypothesized that genotypic differences in the coreceptors might explain

the apparent resistance to HIV·! infection s«n in a group of homosexual men who

remained seronegative despite numerous high-risk sexual encounters. In vilro assays

indicated that CD4- lymphocytes from two of these individuals were resistant to infection

by R5 HIV·\ isolates. but were readily infectable by X4 strains. This. along with the

finding thai activated POL from these individuals secreted high levels ofRANTES. MIP·

10.. and MIP-I~. suggested the possibility that overproduction of these CC chemokines

might be responsible for the non-infectability by RS stnins. 116 However, analysis ofboth

cDNA and genomic DNA from these two EU individuals showed Ihat bolh men were

homozygous for a mutant CCRS allele with a 32 base-pair deletion (632) in the region

corresponding 10 the second extracellular loop. This deletion causes a frame-shifi that

introduces a premature translation tenninalion site resulting in a nonfunctional truncated

protein that is not expressed on the cell surface. l16 The CCRS632 mutation has a gene

frequency of approximately 20-/. in populations of European descent It is also found al

frequenci,;-s of 2-S% throughout Europe, the Middle East. and the Indian subcontinent

Approximately 15-20% heterozygosity and 1% homozygosity is seen in Caucasian

populalions.1
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Approximately 15-20% heterozygosity and 1'1, homozygosity is seen in Caucasian

populations. I

Since it had already been established that initial infection involved transmi~ion

orR; isolates (reviewed in 67 and 154),lhese results indicated that the EU individuals

were missing the fusion coreccptor essential for infection by these isolates. 1be evidence

for the role of the .1.32 mutation in resistance to HIV·I infection is strengthened by the

f:let that amongst the thousands of HIv- I-infected individuals genotyped. there are only

fOUf reported cases of HIV-l infection in CCRSA32 homozygous individuals to

date.Q·IZ7·163~08 The identification of these fOUf individuals contradicted the idea that most

viruses transmilted through sexual contact use CCRS as a coreceptor, since CCRS.6.32

homozygous would not have any CCR5 on their cells and thus should not have been

infecled. However. it is possible that the original inf(Cting virus in Ihese individuals was

capable of using another ehemokine receptor. such as CCR3?~S One of these individuals

W:;l.S a hemophiliac who received blood products. so he may have been initially infected

intravenously with an X4 or dualll'Opic HIV-I isolate. ,,]

1.9.4 CCR56J2 HtttrozYlosity and Disease Progression

Although heterozygosity for the CCR5,6,32 coreceptor mutation offers no

protection from HIV-l infection,'l,11U26 there has been an ongoing debate regarding the

effeclS of Iteterozygosity on the rate ofdisease progression. Despite a few reports stating

that heterozygosity for the CCRSd32 coreceptor mutation has no effect on disease
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progression,3l.IS'l several studies han rqJOned an increased prevalence ofhetcrozygotes

in groups of LTNPS.H.lOO.N6..!IJ Heterozygosity has also been associated with increased

survival time,IO.H,m decreased viralloads,IO.51.112.lB.lll and higher CD4*llUl.l12 and

COB-XIIi T cell levels. However, as would be CXpe'Cled. these effects are lost when me

infecting virus is an X4 strain ofHIV.I. Ia.m

In 1997, Wuet al reported markedly reduced expression ofCCRS on T cells l'rom

CCR56,32 heterozygous HIV-I-infected individuals. which correlated with reduced

infeclability by RS strains ofHIV.l.m The authors suggested that the presence of only

one functional copy of the ced gene in lhe CD4' T cells of these individuals would result

in decreased cell surface cltpression of eCRS. and that this decreased coreceplor

expression could explain the delayed disease progression seen in Ihe heterozygotes.

Furthermore, biochemical studies subsequently showed thai mutant CCR5 produced by

the deleled gene could fonn heterocomplexes with wild type CCR5 and that this

interaction caused CCR5 to be retained in the endoplasmic reticulum resulting in

decreased cell surface expression.' In 1998, the importance of the CCRSI132 mutation

was confirmed when various other groups showed that CD4· T cells from heterozygous

individuals had decrea~d levels of cell surface CCR5 and reduced susceptibility to

infection with R5 isolates.l~~,m It was also shown that increased. expression ofCCR5 on

C04- T cells correlated with advanced disease. 16
'
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1.10 HYPOTHESIS 2

At this point it wascon~ivable thai decreased levels ofCeRS on CD4- T cells of

CCRS632 heterozygous HIV-I-infected individuals could indirectly account for their

delayed disease progression. However. the specific mechanism responsible for this effect

had not been identified. We hypothesized that if these decreased coreceptor levels also

existed in vivo. and resulted in similar decreased susceptibilities to infection by RS

viruses. then CCR56J2 hetcrozygOleS should have a reduced frequency of CD4- T cells

containing incorporated HIV-l DNA. In other words. heterozygotes should display

lower proviral loads in comparison with individuals homozygous for the wild type ccr5

gene (CCR5wt). We propose that the mechanism of delayed disease progression seen in

th~ heterozygotes can be explained by their lower proviral loads as decreased proviral

loads should facilitate a slower spread of HIV-I within the CD4· T cell population

resulting in a slower CD4- T cell decline and reduced rate ofdisease progression.

To test this hypothesis we perfonned PeR-based genOlyping for the CCRS.6.32

coreceptor mutation on approximately 100 HIV·I-infected individuals. We then

compared disease progression between CCR5wt homozygous and CCRS.6.32

heterozygous groups based on CD4· T cell and plasma HIV-I RNA levels to detennine

whether the heterozygotes in our cohort experienced slower rates of disease progression.

Finally we compared proviral load levels between the two groups. The results of these

analyses are summarized in Chapter S.



2. MATERIALS AND METHODS

In this chapll:r I will give a detailed description of the materials and methods used

to carry out the work done in my Master's project I will start by briefly describing my

study group. and then follow with an explanation of the methods used for HIV·I proviral

load measurement and CCR5 genotyping.

2.1 Study Participants.

Our cohort consists of more than 100 HIV·I·infected individuals attending the 51.

John·s General Hospital Infectious Diseases Clinic. HIV·I infection was detected by

HIV·I p24 enzyme-linked immunosorbent assay (ELISA) and confirmed by Western

Blot. Approximately 85 of these individuals make regular visits to the clinic and provide

blood samples for our studies. Most of the individuals in our cohon are believed to have

been infected through heterosexual transmission of a relatively homogeneous pool of

virus. Healthy HIV-negative volunteers were recruited from laboratory personnel and

sludents. All stages of HIV disease are represented within this cohon as plasma viral

load levels range from undetectable to over one million HlV RNA copies per ml, CD4· T

cdl counts from O·13OOIIlI, CDS· T cell counts from 150·300011l1 and duration of

infection ranges from less than six months to greater than 15 years. Plasma HIV-I RNA

kvds. C04" T cell counts and CDS" T cell counts were monitored as part of the standard

clinical care program. Levels of plasma HIV·) RNA were measured using the Amplicor
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HIV-l Monitor RT-PCR assay (Roche Diagnostic Systems, Mississauga. Onlario)

according to the manufacturers instructions. The sensitivjly of the assay at this time was

400 copies/mi. so samples containing no detectable HIV·\ RNA were assumed to be 400

copiesfml. All HIV-l RNA levels were lTanSfOfTTled to loglo values before analysis.

Peripheral blood CD4" and CDS' T cell levels were measured by standard now

cytometry (Becton Dickinson, Ontario) using commercially available monoclonal

antibodies (DAKO. Mississauga. Ontario). Antiretroviral drug therapy varies with some

subjects receiving none while others have received various combinations of 1-4 drugs.

Clinical status ranges from asymptomatic [0 AIDS. We have confidential access to all

relevant clinical and clinical laboratory information such as plasma viral load. CD4· and

CDS· T cell counts, as well as each individual's symptoms and treatment histories. All

subjects provided informed consent for panicipation in this study which was approved by

the MUN Faculty of Medicine Human Investigation Committee.

Whole blood was collected at the Infectious Diseases Clinic in two 10 mt

heparinized vacutainers by venipuncture with a 21·gauge needle. The blood was diluted

I: I with Phosphate·butTered saline (PBS, pH""7.2), layered over Ficoll.Hypaque density

gradient centrifugation buffer (Pharmacia Biotech Inc., Baie d--Urfe, Quebec) and spun at

400 x. g for 30 min. After centrifugation, the buffy layer at the interface containing the

peripheral blood mononuclear cells (PBMC) was collected and washed three times with
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lymphocyte culture medium (RPM I, FCS, HEPES, and PIS, all from Gibeo BRl.

Burlington. Ontario).

2.3 Purirication ofCD4+ Cells.

Isolated PBMC were washed once with CD4"ICD8~ separation buffer (PBS +

0.5% hovin,;: serum albumin [BSA]). CD4' T cells were positively selected by rotating

the PBMC in a 15 ml tube at 4°C for 45 min al a concentration of 3x 106 ccllslml with

ffit:tallic beads (10 beadslCD4' cell) coated with anli·CD4 antibody (Dynal Inc.• Lake

Success. New York). Then to isolate the CD4' T cells, the cellibead suspension was

p13co;:d in a rack containing a magnet on one side and allowed to stand for 2 min. The

beads and C04' cells fonn rosettes which are pulled to the side afme tube adjacent to the

magnet allowing the supernatant. containing C04' PBMe, 10 be removed. The beads

containing only CD4· cells were then washed twice with PBS and stored at ·70cC until

DNA extraclion was performed. This method is reported to yield >95% CD4' T

cells.7~.l~~

2.4 DN A Extraction from Cells.

CelVbead samples were removed from·70CC and thawed at room temperature for

no more than 5 min. I ml of DNAzol (Gibeo BRL, Burlington. Onlario) was added to

each tube using a I mt pipette and re-pipetted 5 times to homogenise. CelllbeadIDNAzol
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homogenates were immediately transferred to a 1.5 mt Eppendorl" rube and incubated for

2 min at room temperature. Tubes were then spun in a microc:entrifuge for 10 min at

12,000 x g in order to pellet the heads. Homogenates were transferred to a new 1.5 ml

tube with care not to transfer any beads. 0.5 mt of 99"/0 ethanol (Sigma·Aldrich Canada.

Oakville. Ontario) was added to each tube. inverted 20 limes. and incubated for 5 min at

room temper-1Iure. Tubes wefC spun again at 7500 x g for 2 min. and washed (Wict with

1)90/, ethanol. Ethanol was removed and the pellclS were air dried for approximately 10

min. DNA pellets were re·dissolved in 20·100 ~[ofTNE (Tris·NaCI·EDTA. pH"'"7.6;

Sigma-Aldrich Canada. Oakville. Ontario) and incubated at 56°C for 2·) hours to

dissolve. A "Mock" extraction using a tube containing no cells was included with every

set of ~xtractions in order to test for HIV DNA contamination of extraction materials.

DNA samples were stored at 4°C until needed. optical density was read at 260 nm to

determine DNA concentration on the same day as the sample was to be used as

~\'aporationduring storage can affect the concentration.

2.5 DNA ExtracCio. (rom Plasm••

A few of the earlier panicipants in our cohort had dropped out of the study before

we were able to get lTesh or frozen cell samples from them. However. plasma samples

from these individuals were avail.able to us. We were able to isolate genomic DNA from

these plasma samples using the "Nuclisens - Boom Method" from Organon Teknika

(Scarborough. Ontario). The source of this genomic DNA is assumed to be either from
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cells mat get accidentally taken up during Ficoll extraction. or possibly free DNA from

cells that may have been sheared during the lymphocyte separation. Conceivably, this

DNA was released into the plasma. but the plasma was collttted and frozen before the

DNA was degraded. This DNA was only used for the purpose ofCCR5 genotyping and

not for proviral load rneasuremenL

Plasma samples were thawed on ice and the supplied wash and lysis butTers fwm

the kit were pre-wanned:1I 37ee for 30 min. with mixing every 10 min. The remainder

of the procedure was done at room temperature unless otherwise specified. 200 IJ.I

plasma was combined with 900 IJ.I of lysis buffer, and vortexed for 10 sec. Tubes were

then incubated for 5 min. inverted 5X. and incubated for another 5 min. Samples were

spun at 10,000 x g for 30 sec to collect any homogenate from the lOp of the tube. 50 III of

a silica suspension was added 10 each tube. vortexed for 10 sec, and incubated for 10 min

wilh vortexing al 2 min inlervals. Tubes were spun at 10.000 x g for 30 sec and

supernatants removed with a 1 ml pipene. The pelleted silica was washed with 1 ml of

wash bulTer. vortexed, spun at 10.000 x g for 30 sec, and the wpematant removed. This

washing procedure was then repealed four times, once more with the wash bulTer. 2X

wilh 70% ethanol. and once with acetone. Pellets were dried with the caps open in a

S6'"C heating block for 10 min. Nucleic acids were eluted in 50 J.l1 of the supplied elulion

buffer with light vortexing for 5 sec and a 10 min incubation at 56°C. The silicalbuffer

suspension was spun at 10,000 x g for 2 min and 30-35 J.ll of supernatant containing the

nucleic acids (NA) was transferred to a new tube. NA samples were stored at -70"C.
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2.6 CCRS GenotypiClC.

Oligonucleolides nanking the putative deleted ~gion were used to amplify a

ponion of the eCRS gene by polymerase chain reaction (PeR) from genomic DNA

isolated from PBMe. The primers eeRie (S'-CAA ece GAA GGT en CAT TAC

ACC·)' and CCRSd (S'-CCT GTG eCT en err eTC ATT TeO-)') generate a 189

bp peR product from the wild-type gene and a i57 bp product from the CCR.132 mUlanl

gene.lI~ As a positive control, one DNA sample from each set of extractions was also run

in a separate reaction with ~globin primers ARP894.1 (14-33) LAI-N (S'-ACA CAA

eTa TGT TeA CTA GC-) ') and ARP894.2 (I 04-123) LAZ-C (5' -CAA en CAT eCA

CaT TeA-3') to give a 115 bp peR producl. u A lube without DNA was run as a

n~ative control with every set of samples. The PCR was performed in a 20 III ~action

containing 100 og of template, 0.2 IlM CCRS primers (Medicorp Inc., Montreal,

Quebec), 0.16 IlM ~·globin primers (AIDS Reagent Project, Hertfordshire, United

Kingdom), 1.5 mM Mg!', 0.2S mM dNTPs, and 1.25 units of Toq polymerase in IX PeR

reaction buffer (Gibco BRL, Burlington, Ontario). Amplification of plasma-derived

nucleic acids was done in 50 III reactions using S·lO III ofNA. Reactions were run for 5

cycles of 60 s at 94"C, 60 s at SS"C, and 90 s at 72"C followed by 3S cycles of 30 s at

94"C.]0 s at 60"C, and 45 sat 72"C using a PTC·100 thermal cycler (MJ Research, Inc.,

Fisher Scientific. Nepean, Ontario).



2.7 Rt~A Extraction.

TOlal RNA was exlracled from 5 x 10' cells using the TRlml method (Gibeo

BRL. Burlington, Ontario). Cells were pelleted at 400 x g, supernatant removed and I ml

of TRlzol was added. The mixlure was re-pipeued 5X to homogenise and incubated al

room temperalure for 5 min. 200 IJI of chlorofonn was added and the tubes shaken

vigorously by hand for 15 sec, Ihen incubated again at room lemperature for 3 minutes.

Tubes were then spun at 12,000 x g for 15 min at 4"C to allow phase separation. After

centrifugation. the upper aqueous layer was transferred to a new tube and 500 IJI of

isopropanol added to precipitate the RNA. Samples were incubated at room temperature

for 10 min and spun at 12,000 x g for 10 min aI4"C. Supernatants were removed and

RNA pellets washed with I ml of 75% ethanol with vonexing for 5~. Finally the

pellets were spun at 7,500 x g for 5 min at 4°C, supernatants removed and samples air

dried for 5-10 min. The RNA was redissolved in 20 IJI of DEPC-treated water with slow

re-pipeuing and healed at 600C for 10 min to allow complete solubilization. RNA

samples were stored al -70"C unlil needed.

2.8 Synthesis of First-Strand t:DNA.

First-strand cDNA was synthesised from lotal RNA using the "Firsl-Strand cDNA

Synlhesis" kit from Phannacia (Baie d=Urfe. Queb«). 5 IJg of lola1RNA was diluted in

20 IJI of DEPC-treated walerand healed at 65°C for 10 min followed by 5 min on icc. A
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13 III reaction mix was prepared coosisting of II loll of Bulk First-Strand reaction mix,

comaining the Moloney Murine Leukemia Virus reverse tnnscriptasc:, I ""I of 0.2 Iolgllol1

Not l-d(T)1lJ primer. and 11110(200 mM OlT. The heat-denatured RNA added to the

reaclion mix and reverse transcribed for I hr at )7°C. followed by 5 min at Moe to

inactivate RT. then stored al·700C.

2.9 Preparation of HIV DNA Standards.

HIV DNA standards of known copy number were prepared by spiking various

amounts of a pBR322 plasmid containing the full length HIV genome (interrupted in the

pol region for safety reasons) (Perkin Elmer, Mississauga, Ontario)" into SOO og of

genomic DNA from PBMe of HIV-negative donors diluted in TNE buffer (pH s 7.6).

Two sets of standards were prepared in order to accurately measure both high and low

copy number samples. A low set consisted of 0, 1,2.5, 10,25. SO. 75. and 100 copies of

HIV·! DNA/SOOng of lotal DNA and a high set consisted of O. SO. 100, 250. 500, and

1000 copies of HIV DNA/SOO ng of total DNA.

2.10 Amplification of HIV Provinl DNA.

HIV proviral DNA was amplified in duplicate reactions by quantitati"e multiple;\;

peR using a set of oligonucleotide primers that bind to a highly conserved region of the

HIV HXB2 gag gene (Los Alamos Database). The primers ARP872 HGI214N (S'-GGT



ACA TCA GGC CAT ATC ACC-3')and ARP873 HG1686C (5'·ACC GGTCTA CAT

AGT CTC-3') generate a 473 bp PCR product.:!lI} Primers ARP894.1 and ARP894.2

(sequence above) were used to co-amplify ailS bp ponion of the human ji-globin gene

in the same reaction as an internal positive control for DNA integrity and loading

consistency. Mock extractions and water controls were run as negative controls.

Whenever possible, sequential samples from the same individual were run en the same

day to minimise the effects of PeR variability. The PCR was done in a 50 IJI reaction

containing 500 ng of genomic DNA from CD4" cells of HIV-positive individuals (or

prepared HIV DNA standards) with 0.2 IJM gag primers (Medicorp Inc.• Montreal,

Quebec), 0.025 IJM ~"8Iobin primers (AIDS Reagent Project. Hertfordshire. United

Kingdom), 1.2 mM Mg~", 0.2 mM dNTPs, and 1.25 units of Taq in IX PCR reaction

buller (Gibco BRl, Burlington, Ontario). Reactions were run for 32 cycles (high copy

standards) or 35 cycles (low copy standards) with cycle #1 consisting of 1.5 min a194°C,

2 min at 55°C, and 3 min at 72°C. Remaining cycles were I min at 94°C, 2 min at 55°C,

and 3 min 3t 72°C with the final cycle including an extra 7 min at 72°C. In some cases.

nested PCR was performed on illOth of the original PeR reaction using a set of primers

internal to the above gag primers, ARP8021.1 HGI366N SKI45 (5'-AGT GGG GGG

ACA TCA AGC AGC CATGCA AAT-3') and ARP8021.2 HGI507C SK150 (5'-TGC

TAT GTC ACT TCC CCT TGG TIC TCT C·) ') (AIDS Reagen! Project, Hertfordshire,

United Kingdom) which generate a 142 bp product. III Reaction conditions for the nested

peR were the same as for the direct except that the Mi' concentration was reduced to



0.8 mM (optimal for the nested primers) and, ~·globin primers were omitted, and lhe

reaction was nan for 40 cycles.

2.11 Gel Electrophorab.

All PCR products were run at 100 V on 1-2% agarose (Gibeo BRL. Burlington.

Ontario) gels. For CCRS genotyping, 5 ~I of the 20 JlI reaction was nan for 50 min and

visualised by UV illumination with 0.5 j.1g/ml elhidium bromide (Sigma-Aldrich Canada.

Oakville, Ontario) in the gel only. For proviral PCR products, 7.5 III of the SO III reaction

was run for 30 min and visualised by uv illumination with O.S Ilg/ml ethidium bromide in

the gel and running buffer (0.5X TBE). Molecular weights of PCR products were

estimated by comparison wilh a 100 bp DNA ladder (Gibeo BRl. Burlington, Ontario).

All gels were visualised by exposure to ultraviolet light and the image captured using a

"Chemilmager" (Alpha Innotech Corporation, San leandro. California) and stored on

disk for later analysis.

2.12 Proviral Load [)eolerminatlon.

Gel images were opened using the "AlphaEase 3.24" (Alpha Innolech

Corporation. San leandro, California) software supplied with the "Chemilmager." With

this program a box of a desired size can be placed around each band on lhe gel. The

program then detennines the intensity of each selected band by measuring the average



intensity of the pixels within the box. To account for differences in background

nuorescence amongst various regions of the gel, the "AUTOBACKGRD" option

determines a separate background value for each selected box and subtracts that

background from the respective measured intensities of each band. Then within the

"alphaEase" program the band intensities corresponding to the HIV DNA standards can

be used to generate a standard curve representing 'band intensity' versus 'copy number'.

However this program does not give any statistics regarding the accuracy of the

regression line generated. So the measured band intensity values were exported to "Corel

Quattro Pro" (Corel Corporation, Ottawa, Canada) to construct a standard curve on which

a linear regression analysis was done to detennine how linear (i.e. useful) the standard

curve really is. In "Quanro Pro" then the points that represent the linear range of the

PCR program can be detennined. Only lines of best fit having R2 values greater than

0.90 and utilising at least 6 points are accepted. Then in "AlphaEase", only these points

are used to draw a standard curve from which the copy numbers of the samples can be

estimated. The HlV-1 DNA copy number is the average copy number of the duplicate

values for each sample. Proviral load is then convened to 'X' copies of HIV DNAlI05

CD4· cells based on the estimate that 144,560 human diploid cells contain l~g of

genomic DNA.S7



2.13 Southern Blot Analysis.

A 1% agarose gel containing PeR products from amplification of HIV proviral

DNA was placed in a shaking denaturation butTer (1.S M NaCI. 0.5 M NaOH (Sigma

Aldrich Canada, Oakville, Ontario» for)O min and mal in a neutralisation buffer (I M

Tris·HCl, pH=8.0, 1.5 M NaCI) for another 2 x. 45 min. PeR products were transferred

overnight onlo a nitrocellulose membrane (Hybond. Phannacia Biotech Inc.• Baie

d=Urle. Quebec) by capillary action. After the transfer the membrane was baked at 65°C

for 2 hr then pre-hybridised at 65°C for I hr in 5X SSPE. 5X Denhardt<:os solution, : %

SDS (Sigma·Aldrich Canada. Oakville, Ontario). and 0.1 mglml single-stranded salmon

sperm DNA (Pharmacia Biotech Inc.• Baie d"'Urfe, Quebec). The HIV·specific probe.

ARP8021.3 HGI40)P SKI02 (5'·GAG ACe ATC AAT GAG GAA GCT GCA GAA

TGG GAT-)') (AIDS Reagent Project, Henfordshire. United Kingdom)l:!1 was labelled

with radioactive J!p using a T4 kinase kit (Gibeo BRl, Burlington, Ontario) and the

membrane incubated at 37°C overnight in hybridisation buffer (same as pre:·hybridisation

buffer but without the sssONA). Next day the blot was subjected to a medium stringency

wash (2 x 5 min in 2X sse I 0.1% SDS at room temperature. 2 x 5 min in 0.2X SSC I

0.1% SDS at room temperature. and 2 x 15 min in 0.2X sse I 0.1% SDS at 42°C

(Sigma·Aldrich Canada, Oakville. Ontario), exposed to film and visualized using a

Phosphorlmager (Canberra Packard Canada, Montreal, Quebec).
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2.14 Statistical Analysis.

Analysis of variance. F·ttsts. t-tests, and advanced linear regression analyses were

all perfonned using the statistical analysis options included with "Corel Quattro Pro 7.0",

Correlation analyses were done with ~SPSS 7.S" (SPSS Inc .• Chicago, l11inois). and

contingency testing was performed using the "Instal 2.0" statistical analysis program

(GrophPad Software. Inc., San Diego, California). Depending upon the number of

individuals for which the necessary data was available. the sample sizes differ with each

'103Iysis.



J, DEVELOPMENT OF THE PROVIRAL LOAD ASSAY

In Chapter 2, I gave a dl:tailed description of the methods used throughout my

study. Since a significant proportion of the work done in this project focused on the

development of a method for measuring HIV-l proviral load. I have included here a

separate chapter describing development and standardisation of this method.

J,1 Background for the Method

The first objective of my study was to develop a PeR-based assay for measuring

HIV-1 proviral load. Numerous techniques have already been developed for this

purpose. but most of these involve complex molecular biology and/or the use of

radioisotopes.22.J9.90.lN.207.m We wanted to develop a simple quantitative PCR-based

method that did not require radioactive isotopes. Appropriate samples were available as

we were already collecting whole blood samples from HIV·I·infected individuals

attending the local infectious diseases clinic. PBMCs and CD4- T cells were isolated as

described in chapter 2, We chose the DNAzol method of DNA extraction because it had

previously been shown in our lab to pretipitate only large genomic DNA, By using this

method of extraction. we should avoid the problem of isolating and amplifying

un integrated cytoplasmic circular HIV·I DNA and distinguishing this from integrated

HIV·! DNA.



3.2 Optimization of HIV. t gtlg peR Arnplific.tion

Due to the high degree of sequence variation thai exists amongst dinkal isolates

from HIV-I-infected individuals. we selected a set ofPCR primers that amplify a highly

conserved 473 bp sequence located within the p24 capsid region of the HIV gag gene

(Fig.3.la). We then worked out Ihe optimal PCR conditions for the amplificalion of

HIV-I proviral DNA from positive controls and lest samples. The specificity of these

primers in our system was conlinned by Southem blot (Fig. J.lb).

3.3 Internal Controls

In order to properly compare proviral load in different samples. we had to ensure

that any differences in the intensity of the bands on the gel reflected real differences in

HIV·I DNA copy number. and not anifaclS of the assay or differences in the quality of

the DNA samples. Two samples with the exact same HIV-I DNA copy number could

result in two very different band inlensities if, for eumple. DNA concenuations were the

same but one sample was mostly fragmented DNA. In this case the absorbance reading

at 260 nm could be the same but the efficiency of amplification would be very different.

Another source of error could be simple pipening errors in reaction preparation or gel

loading. One way to control for these problems is to run separate PCR reaclions on all

samples with a housekeeping gene and assume that if there are no differences in Ihe

inlensitie$ of the control gene amplification. then the differences seen in the target gene



Figure 3.1. Specificity of HIV-I gllg peR primers. (a) Digital image of an agarose gel

showing the 473 bp peR product generated from amplification ofCD4" T cell genomic

DNA from 5 HIV·I·infected individuals (lanes 1·5),4 uninfected controls (lanes 6-9),

and an HIV·I plasmid positive control (lane 10). (b) Digital image ofa Southern blot

performed on the gel shown in panel (a).
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amplification are real. However, a bener way to perfonn accurate quantitative PeR is to

include an internal control. That is. to develop a system in which the target gene and the

housekeeping gene are amplified in the same reaction. This method allows the levels of

t3rget gene amplification to be compared more confidently. since any conditions affecting

the target gene amplification would also affect the housekeeping gene amplification and

would then be obvious upon comparison of the band intensities of the housekeeping gene.

OUT first idea was (0 add [0 the reactions, a separate eDNA template and PeR primers.

TOlal RNA was extracted from the }urkat T cells and used to synthesize first-strand

eDNA. which was then added 10 the reactions along with the TCR Vf38 and C~ primers

IV~8, S"-ATI TAC Tn AAC MC AAC OTICCO-3"; C~, S'-TIC TOA TOO CTC

AAA CAC-3 '). This system allowed the simultaneous amplification ofa 250 bp segment

of the rearranged TCR CpIVP8 gene which served as an internal control. Figure 3.2

shows PCR products from the amplificalion of genomic DNA from two of our study

subjects. with the Juritat cDNA included as an internal conuoL Lane I was negative for

the gag PCR product. whereas lane 2 shows a clear band at 473 bp. Since the 250 bp

band is visible in both lanes, we can conclude that reactions I and 2 both worked

eOiciently since the internal conuol was positive. Therefore, the difference in the amount

of gag DNA seen in these samples is likely 10 be real.

Although this internal control system allowed determination of whether

amplitication reactions worked efficiently in different tubes, there were some limitations

with this system. The major problem was that this internal control really gave no
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Figure 3.2. peR amplirtCition or HIV~1 with an Internal control. Digital image ofan

agarose gel showing simultaneous amplification ofHIV·1 gag (473 bp) and Jurkat TCR

V138 (250 bp) peR produet5. 100 copies ofan HIV·\ DNA plasmid was run as a positive

cOnlcol.



Figure 3.2

600 bp_

200 bp _

+

~ --
~---

... gag

... V~8

"



indication of the quality or quantity of larget genomic DNA added to the reaction, as the

amplification of gag and the intemal control was from two different templates.

Therefore. we derided to develop an internal control system in which the housekeeping

gene was amplified from the same template source as the target gene. The advantage of

this type of system ;s that it al!ows the comparison ofgag levels, while also monitoring

the integrity of the genomic DNA template. Similar studies had used various

housekeeping genes such as HLA-DQa and 13-globin as internal controls.~·m..m HLA·

DQa and TCR-Ca were tried, but simultaneous amplification of gag with these genes

resulted in the production of nonspecific bands, possibly due to cross-primer interactions.

Since ~-globin resulted in the cleanest peR products, we began to standardize optimal

conditions for amplification of gag with ~globin as the internal control. According to

Henegariu et aI., when standardizing quantitative multiplex peR, it is best to first

optimize the amplification of the target gene, then introduce the housekeeping gene

primers and optimize again. to. Since optimal conditions had already been worked out for

the gag amplification, various conditions were tested for amplification of gag and 13

globin together. Figure 3.3a shows a series of reactions, set up with a filted amount of

genomic DNA. gag primers. and decreasing concentntions ofl3-globin primers (0.125-

0.0 125 ~M). The aim of this experiment was to determine the optimal concentration of

13-globin primers to be used together with the gag primers. Interestingly. the higher the

\Concentration of13-globin primers, the lower the amount ofgag PeR product made. This

effect has been previously reported and is to be eltpected when co-amplifying segments

ofdifferent sizes. IOI Apparently, the reaction will preferentially amplify the smaller PeR
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product in the presence ofsimilar primer concentrations. In Figure 3.3b. the intensities of

the gag and ~·globin PeR producu are compared in order to detennine: the optimal j}-

globin primer concentration. To optimize the reaction. I chose the ~globin primer

concentration that allowed maximal gag amplification. with a clearly visible p-globin

band (Figure 3.3a, lane 9. 0.025 ~M).

Once optimal primer concentralions are eSlablished. it is also worthwhile to tCSt

dilTerent concentrations of Mg~· and dNTP's. in case these may not be optimal now for

the multiplex system. IOI A series ofreaclions were set up with Mg~· concentrations

ranging from 0.8 - 1.6 MM. with increments orO.2 MM. It was found that 1.2 mM was

still the optimal Mg2
- concentration (data not shown). In a similar experiment, a series of

reactions were set up with various concentnltions of dNTP's to determine whether the

amplification of both products simultaneously would require higher concentrations of

nucleotides. It was found that 0.2 mM dNTP concentrations were still the optimal

concenrration (data not shown).

3.4 Establishing the Linelr IUDle ohhe Proviral LOld PeR

For accurate quantitative PeR, it is critical that measurements are taken within the

linear range of the cycling program. To determine the linear range of our program, a

series of 16 PCR tubes were set up, and one removed at the end of every cycle from

cycles 25 - 40. Eight microlitrcs ofeach PCR product were then run on an agarose gel, a

digital photograph taken, and the band intensities measured using the "AlphaEase"
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Figur~ JJ. Optimization.r P-clobin primen i. HIV-. provlnl PeR. (a) Digital

image of peR products from amplification of subject DNA with decreasing

concentrations of ~-globin primers. (b) Graph comparing the band intensities orgag (-)

and 13-globin ( ) bands at different jl-globin primer concentrations. The P-globin primer

concentration ofO.025IJM (lane 9) was chosen for future work as this concentration gave

ma.ximal gag amplification with a clear p-globin band.
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software. Figure 3.4 shows a graph of the band intensities plotted against the

corresponding cycle numbers. The gag PCR bands as seen on the gel are shown below

their corresponding bar on the graph. From the graph, the PeR cycling program appears

to be linear between cycles 30 and 35. Linear regression performed on these points gave

an R~ value 01'0.96, indicating that the line lhrough lhese points is almost perfecdy linear.

Next. I determined Ihe dynamic range of the method. i.e. the range of copy numbers of

HIV-[ DNA thaI could be measured under these conditions. Various HIV-I DNA

standards of copy numbers ranging from 1 - 1000 and peR programs of cycles 28, 30.

32. and 35 were tested. The band intensities were measured and ploued on a graph.

Unfortunately, due to the broad range of proviral loads that existed within the study

group. I was not able to establish one set of standards or cycle number lhat would allow

me to measure proyiral load on all my samples.

3.5 Quantitative Proviral PeR Prolocol

Finally, to attain the required dynamic range needed. il was decided that all

samples would first be run with a low sel of standards (0, 1,2,5, 10,25,50.75, and 100

copies of HIV·I DNA) in a 35 cycle PeR program. Then any sample producing a band

intensity that was higher lIlan the highest standard in the linear range of the 35 cycle peR

would be re·run with a high set of standards (0, 50.100,250,500. and 1000 copies of

HIV DNA) for 32 cycles. Figure 3.5 shows 2 gels, panel (a) showing a set of samples

run along with the high copy standards, panel (b) showing more samples run with the [ow
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copy standards. Standards and samples wert always run in duplicate. The 473 bp gag

and 115 bp f!.-globin bands are clearly visible on both gels.
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Figure 3.4. Linear range analysis. Graph showing the amplification afthe gag product

with 25 - 40 peR cycles. Band intensity was quantitated and plotted against cycle

number to tiod the linear range oflhe peR program. The bands themselves are presented

below their corresponding bars showing image intensity. The increase in intensity is

linear between cyc:les 30 and 3S (R2 ~ 0.96).
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Figure 3.5. Representatin gel used to determine HIV·I provirallolld. Quantitative

proviral peR is done at 32 cycles with the 'high copy number HIV·I DNA standards' (a)

or 35 cycles with the 'low copy number HIV·\ DNA standards' (b) and band intensity

measured by digital image analysis. Copies of HIV proviral DNA are calculated based

on a standard curve generated from the band intensities oflhe standards.
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4. THE EFFECTS OF HIV-. PROVIRAL LOAD ON DISEASE PROGRESSION

AND RESPONSE TO THERAPY

As stated in Chapter I, we hypothesize that proviral load ultimately dctcnnines

the rate of disease progression and could be a useful prognostic indicator of the dunbility

of responsiveness 10 antiretroviral therapy. Conversdy, proviral load should also be

associated with the likelihood ofdeveloping drug resiSlance. In Ihis chapter. I present the

results of research testing this hypothesis.

4.1 Stability of HIV~I Pravlnl Load with Time

To measure the proportion ofCD4'T «lis conlaining incorporated HIV·I DNA.

\\'C isol:l!cd CD4-T cells from HIV·I-infccted individuals. extracted genomic DNA. and

detcnnined HIV-I copy number as described in Chapters 2 and 3. Proviral load levels for

the group ranged from 3 - 1270 copies ofHIY-. DNA 110' CD4- T cells (Table 4.1).

Samples where HIV·I proviral DNA was undetectable by direct PeR were all positive by

subsequent nested PeR. All samples were run in duplicate and the average proviral load

was reported. Samples were re·measured if duplicates differed by more than 5%. The

DNA content of any sample giving a weak ~·globin band was re·measured and the

proviral load test was repeated.

Pairwise analysis of serial samples from 46 HIV-I·infected individuals Olier a 6 •

12 month period showed no significant change in mean proviral load for the group; 63 ±
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Table 4.1. Peak proviral load measurements for each subject. Listed are the study

subject ID numbers with their respective 'peak proviral load' values that was used for

most analyses. The 'peak proviral load' is the highest proviral load recorded over the

period of study (6 - 12 months) for each subject. given as "X" copies of HIV·I DNA I

IOsCD4-Tcells.
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Table .. I. Pnk pr9"';[l1 toad ItCIJMR!It!II! ',r pstl ghim
Subject if Peak Provj@! load" Subject"

001 -40 06S
003 46 067
006 l ...
007 3 069
011 3 070
012 3 071
013 )2 072
GIS 80 07)
016 1270- 07S
017 28 076
OIS 110 077
020 92 078
011 218 081
016 8J 083
017 ) 084
018 3 08S
030 S2 090
0)1 3 091
035 3 091
036 68 O9S
039 87 096
040 39 098
041 3 101
042 170 103
043 3 IDS
O+l ) 106
045 128 108
046 23 109
OSO 6 110
OSI SO III
053 214 112
OS5 65 lIS
OS7 77 116
1)59 18 117
060 58 III
061 3 119
062 40 122
063 3 12)
~ ~ I~

7

""I'
"12

14'
103
l
l..

lSI
l

"S7

"32
218
4l
l,.
"22

""")
"l
l

"l
"7'
"J
lSi
l
l
)0

Subject 016 produced a band that was more intense than even the 1000 copy standard,
so half the nonnal amount of DNA was run and the measured copy number doubled.
•• The sensitivityorthe proviral!oad assay is 3 copies orHIV·1 DNA per 10' CD4~ T
cells.
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99 copies ofHIV·\ DNA/IcY CD4- T cells at the first timepoinl 8vailable compared to

6\ ± 190 after 6-12 months.

4.2 The Erreds of HIV-I Proviral Load on Disease PrOlrtsSion

Since plasma virus load gives a clear indication of the risk of disease

progression.lSo we analyzed the correlation between proviral load and plasma HIV·I

RNA kvels as one way 10 assess the relationship between HIV·! proviral load in CD4" T

cdls and disease progression. It was found that proviral load was positively correlated

with plasma HIV-I RNA levels (Figure 4.1, Pearson's 0.45, p < 0.001. n ~ 69). Since

plasma HIV·I RNA levels are a good markerofdiscase progression. these results support

a relationship between proviral load and disease progression.

To test the possibility that HIV-I proviral load may serve as a prognostic

indicator of disease progression, 64 HIV-I-infceted individuals were grouped on the basis

of either a low (<20 HIV-I DNA copies I lei' CD4+ T cells, n - 30) or high peak proviral

load (>20 HIV-I DNA copies I lOs CD4+ T cells, n" 34). When these two groups were

compared with respect to peak plasma HIV-l RNA, we found that the 'low proviral load'

group had a lower mean peak plasma virus load (12,900 ± 6600 copies of HIV·I

RNNml), than the 'high proviral load' group (67,600 ± 34,000 copies) (Figure 4.2a, p <

0.01). Another useful marker of HIV·! disease progression is CD4+ T cell decline.66.I'o

When we compared the two groups with resp~t 10 mean CD4- T cell count, we found

that the 'low proviral load' group also had a higher mean CD4+ T cell level than did the

'high proviral load' group (Figure 4.2b, 436 ±58/1.11 versus 307 ±321 111, P < O.OS).
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Figure 4.1. Relationship between proviral load and plasma viral load. Proviral load

is positively correlated with plasma HIV·I RNA levels (Pearson's 0.45, p < 0.001. n ==

69).
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Figure 4.2. Proviral load and disease progression. (a) The 'low proviral load' group

had a lower mean pnk plasma viral load (12.900 copies per ml) than did the 'high

proviral load' group (61,600 copies ptt mil, p < 0.01. (b) The 'low proviral load' group

(black) also had higher mean CD4· T cell levels (436 cells I )11) than did the 'high

proviral load' group (gray; 307 cells I )11), P < O.OS.
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These results clearly show that proviral load is associat«1 with plasma viral load and

CD4- T cell levels. suggesting that high proviral load is a good predictor of disease

progression.

.a.J The Effects or Proviral Load on Response 10 Therapy

To test the hypothesis that proviral load may be a predictor of response to

antiretroviral therapy, we grouped 50 individuals. receiving equally potent drug

treatment. on the basis of their response to therapy as indicated by changes in plasma

HIV·1 RNA levels. Subjects were designated as non-responders, if over 2 years of

therapy their plasma virus load was high (>5.00 lOglO copies of HIV-I RNA I ml) and

either remained high or increased (n "" 10). Subjects designated as responders had a

plasma virus load that was low (2.60 - 3.00 loglo) and stayed low or significantly

decreased (n = 40). Figure 4.3 shows that the responders had lower proviral loads with a

group mean of36 ± 7 HIY·I DNA copies II0s CD4· T cells compared to a group mean

of 130 ± 31 lor the non-responders (p = 0.02).

To further investigate the relationship between HIY-I proviral load and response

10 antiretroviral therapy. we examined CD4' T cell counts in 2 groups of individuals over

two years of antiretroviral therapy. The 'undetectable' group contained 10 HIV·I·

infected individuals who consistently had proviral loads of less than 3 copies of HIY·I

DNA I lOS CD4· T cells by our assay. The 'high proviral load' group consisted of II

individuals who all had proviral loads greater than 100 copies of HIV·I DNA I lOS CD4'
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T cells. Both groups wert rtteiving at least 2 reverse transcriptase inhibitors with the

majority (7 I 11) of the 'high proviral load' group also receiving a protease inhibitor

(Table 4.2), and all subjects had <500 CD4' T celis/ill at baseline. When the overall

change in CD4' T cell counts was compared between the two groups, the 'undetectable'

group experienced a mean increase in CD4 counts of 170 ± 33 I J.lI. whereas the 'high

proviral load' group actually had a mean decrease of S4 ± 41 I J.11 (Figure 4.4a. p <

0.001). In Figure 4.4b. changes in plasma HIV-l RNA were compared over the same

period of time. Interestingly. 9/ 10 of the individuals in the 'undetectable' group had a

decrease in plasma HlV·( RNA of at least I loglCh while only I f II ohhe 'high proviral

load' group showed such a decrease (Chi-square, p < 0.001). Therefore. changes in CD4"

T cell number and plasma viral load suggest that the size of the HIV·I proviral DNA pool

has a strong innuence on the pOlenlial for immune reconstitution and viral suppression in

response to antiretroviral therapy.
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Figure 4.3. HIV-l proviral load predicts response to utiretroviral therapy.

Responders. as defined on page 72, had lower proviral loads with a group mean of 36

copies of HIV-I DNA J lOS CD4- T celts, compared to 1]0 copies for the non-~ponckrs

(p·0.02).
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Table 4.2. Comparison of anllrclroviralthcrapy. Shown are the individual anti-HIV·

1 drug proli1es for the 'high proviral load' (upper panel) and 'undetectable' (lower panel)

groups over the two year p<riod of study. Nucleoside analog RT inhibitors (NRTls);

AZT (Zidovudine); D4T lStavudine); DOl (Didanosine); DOC (Zalcitabine); He

(Lamivudine); Non-nucleoside RT inhibitors (NNRTls); NEV (Nevi rapine); SUS

(Efavirenz): Protease Inhibitors; SAQ (Saquinavir); JND (Indinavir); RIT (Ritonavir).
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Figure 4.4. HIV·) proviral load and response to antlretrovlral therapy. (a) Subjects

with undetectable proviral load by our method showed a greater mean increase in CD4' T

cell COUniS when compared with a group with high proviral loads (+170 ± 33 VS. -54 ±4!

I }.II; p < 0.001) in response 10 therapy. (b) After initiation of antiretroviral therapy, a

greater proportion of the undetectable group experienced significant decreases in plasma

viral load than did the high proviral load group (90'10 VS. 9% respectively; Chi-square p <

0.001).
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S. THE EFFECTS OFTHE CCRS6J2 CORECEPTOR MUTATION

In recent years, there has been increasing interest in newly identified HIV

coreeeptors and also in mutations in these coreccptors that may be associated with slower

rates of HIV disease progression. Previous studies had shown that HIV-I-infccted

individuals heterozygous for the CCR56.32 coreceplor mUlalion experienced slower rates

of disease progression than individuals that were homozygous for the wild type

gene,IO,SI.5J.IOO,I'2.tn.206.2ll We hypothesized that CCR56.J2 hetcrozygotes should have

lower proviral loads in comparison with CCR5wt homozygous individuals. due to a

possible decrease in cell surface expression of eCRS caused by the mutation. and that

this could account for their slower rates of disease progression. In this Chapter I describe

the results obtained from this study.

5.1 CCRS Genotyping

To test our hypothesis, we perfonned PeR-based genotyping for the CCR56J2

coret:eptor mutation on 107 HIV·I·infected individuals by the method outlined in Figure

5.1. Briefly, genomic DNA is amplified by PCR using a set of primers that span the

putatiw deleted region. The primers are positioned so that amplification of the wild type

gene produces a 189 bp PCR product. Amplification of genomic DNA from individuals

homozygous for the wild type gene (CCR5wt) results in a single band at 189 bp (Figure

5.1, lane I), since both copies of the gene would give the same PeR product.
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Amplification of genomic DNA from a CCR5a32 heterozygous individual results in me

production of the 189 bp band, bUI also an additional band 157 bp in size (Figure 5.1.

lane 2), resulting from amplification of the gene lacking 32 bases within the amplified

region. These peR products are easily separated by size on a 1% agarose gel allowing

simple identification of heterozygous individuals. Amplification of DNA from a

CCR56.32 homozygous individual would produce a single band at 157 bp, however, none

were identified in my study.

Twenty·two of the 107 HIV·J·infected individuals typed were heterozygous for

the CCRSA32 mutation (Figure 5.2). The frequency of the heterozygous genotype

{black) in our group was 20.6%, which is consistent with that reported in other studies of

similar populations.s The remaining 79.4% were homozygous for the wild type CCR5

gene (gray). As mentioned earlier, no CCR5632 homozygotes were identified, which is

not surprising since homozygosity has been shown to confer a high degree of protection

from HIV-I infection. 1J6 Twenty-seven HIY-negative individuals were also typed and

18.5% (5 127) of these were found to be heterozygotes. The proportion ofhetcrozygotes

in the HIV-positive and negative groups was not significantly different.

5_2 CCRS6J2 Heterozygosity and Disease Progression

In order to lest whether lower proviral load could underlie slower disease

progression in CCRS632 helerozygotes, we first had to determine whether the

heterozygotes in our cohort progressed more slowly than homozygous wild type
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Figure 5.1. CCR5 genotyplnc. Genomic DNA is amplified using primers (green) that

span (he putative deleted region (red box). Homozygous wild type individuals (upper

lett) show a single band 3t 189 bp (lane I), whereas individuals heterozygous for the

CCR5632 mutation (upper right) show the 189 bp band. and a smaller band at 157 bp

(l3ne2).
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Figure 5.2. Frequency or the CCR5432 mutation. 107 HIV-positive individuals were

typed for the CCR5632 HIV-l coreceptor mutation. Twenty-two (20.6%) were

heterozygotes (black), which was not different from that ofthe HIV-negative individuals

lested(5127;18.So/.).
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individuals. Th~ best way to study rates of disease progression would of course be to use

a defined endpoint. wch as 'time to developing AIDS' or 'time to death'. However.

these parameters require mat we know the time of initial inf~tion. As is often the case in

similar studies, this information is not known for most of the subjects enrolled in our

study. Therefore. we relied on identified markers. such as CD4~ T cell counts, 10 study

disease progression. As mentioned in chapter 1. peripheral blood CD4- T cell decline is

a r~liable marker ofdisease progreuion. One common measure ofdisease progression in

HIV-\·infected individuals is the "nadir" CD4~ T cell count, which is defined as the

lowest recorded C04- T cell count for an HIV-infe<:ted individual. The idea is that since

C04- T c~11 decline is a marker of disease progression, then individuals that have had at

some point. a very low CD4 - T cell cour-t, have a more advanced disease status and

higher relative risk for progression. u6 One advantage to using this parameter is that it

does not require knowing the time of infection.

To study disease progression in our cohon, I defined a C04· T ~II count of200 I

~[ as an endpoint, since this value is used by the CDC to define AIDS. m I then

compared the proportion of CCR5A32 heterozygotes and CCRSwt homozygotes with

nadir CD4' T cell counts of less than 200 / "il. Figure 5.3 shows that 63J)o;. (51/81) of

the CCR5wt homozygotes (gray bar) had previously had a nadir C04· T cell count of

less than 200 / ~I, whereas only 33.3% (6 / 18) of the CCR5A32 heterozygotes (black

bar) met this criteria (Chi-square. p < 0.005). These results indicate that the CCR5A32

heterozygotes have slower rates ofCD4- T cell decline, and therefore have slower rates

of disease progression than the CCRSwt homozygotes.
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Figure 5.3. CCR5432 heterozygosity and C04+ T cellltvels. The proportion ofHIV·

infected individuals with nadir CD4- T cell counlS below 200 I III was compared between

CCR5wt homozygous and CCRS6J2 heterozygous groups. A lower proportion with

CD4· T cell counts below 200 I J.l1 occurred in the heterozygous group. 33.3% (6/ 18)

compared to 63.0'4 (S I I 81). P < 0.005.



Figur~ 5.3

70 -
3-
0 60
0
N
V 50·~

"8
40f-

3 30u
-5
i 20
E
~ 10
~

0

.CCRSwt .CCR5<132

..



8.

53 HIV-l Proviral Load ••d CCRS Genotype

Once the CCRS432 heterozygotes were identified and a slower rate of disease

progression confirmed in this group, I then wanted to lest the hypothesis that these

individuals had lower proviral loads than the CCR5wt homozygotes. Using the proviral

load data obtained from the work described in chapter 4, I compared mean proviral load

in the two groups. Figure 5.4 shows tflat the CCRSwt homozygous group had a slightly

higher mean proviral load of70 ± 21 copies of HIV-I DNA 110' C04- T cells than did

the CCRS632 hClerozygotcs who had a group mean of only 41 ± 14 copies. However.

this difference was nOI statistically signiticant (p • 0.26). Thus the slower disease

progression observed in the hetcrozygotes does not appear to be due to a major difference

in proviral load, in comparison to CCRSwt homozygotes.
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Figure SA. HIV Provir,alload and CCR5A32 heterozygosity. HIV proviral load was

compared between CCR5wt homozygous (gray) and CCR51.\32 heterozygous (black)

groups. The CCR5wt homozygous group had a slightly higher mean proviral load than

thl: heterozygous group, 70 ± 21 copies of HIV-I DNA I lOs C04' T cells compared to

41 ± 14 copies, but this difference was not statistically significant. p = 0.26.
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6. DISCUSSION AND CONCLUSIONS

6.1 The SiCnifte••ce orHIV-l Proviral Load

The first goal of this study was to determine whether the size of the pool of

incorporated HIV·\ proviral DNA in the peripheral blood CD4- T cells of an HIV·!·

infecled individual affects the durability of the response to antiretroviral therapy.

Therefore. we developed a non-radioactive PeR-based method for measuring the

frequency ofCD4" T cells containing HIV-l proviral DNA and measured this in 78 HIV

[-infected individuals. The proviral loads obtained using this method were comparable

h) those found by other groups using methods that measure only 'integrated HIV·!

proviral DNA' as opposed to 'total cellular HIV-I DNA' which includes the labile pool

of unintegrated HtV-1 proviral DNA in recently infected cclls. ll " All 78 individuals had

deteclable proviral loads, including lif1~ with undetectable plasma viral loads, thus

confirming the presence or a pool or latently inrected cells in the peripheral blood or

HIV·]·inrected individuals responding well to antiretroviraltherapy with respect to

plasma viral load.ll~",.ll.n.I1" In the individuals with detectable plasma virus loads.

proviral load levels correlated with plasma HIV·I RNA levels. In agreement with others.

we round that HIV·1 proviral load remained relatively stable over 6 - 12 months or

observation and was unaffected by antiretroviral therapy.ll~6."l.71.n.II" Due to the

stability or this pool, proviral load is unlikely to be or any relevance ror monitoring the

efficacy or currently available antiretroviral therapies. However, we provide evidence
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here suggesting that proviral load in an HIV·I·infected individual is an underlying

determinant of the rate of disease progression. When we separated OUf subjects into

groups based on a high versus low proviral load. the group with higher proviral loads

displayed a lower mean CD4· T cell count and significantly higher mean peak plasma

virus load. We believe that the higher proviral loads facilitate higher peak viral loads

indicating higher 'set points' of plasma viral load. Based on the work of Mellors er 0/.

this would link proviral load to rale of disease progression. uo

Latenlly infected CD4" T cells harboring incorporated HIV-I proviral DNA arc:

now believed 10 be the source of all new viral replication when antirttroviral therapy is

Slopped," We believe that this pool orJatent virus is not only the source of new virus but

thai the size of this pool may be a major detenninant of the long.tenn success of

antiretroviral therapy. When we separated HIY·j·infected individuals into groups based

on whether or not they responded to therapy, we found that non-responders had higher

proviral loads than did responders. These results corroborate the work of McDennott et

of who showed that responders had almost a S·fold lower mean HIY-I DNA copy

number than non-responders. I'" Based on. these results the authors concluded that HIY-I

DNA levels reflect therapeutic efficacy, whereas we assert that the lower proviral loads in

the responders group w~ aClUally the reason why they responded. Thus, a low proviral

load should predict a positive response to therapy. To funber investigate this possibility,

we took two extreme groups of patients and retrospectively analyzed changes in CD4- T

ccll counts and HIY·! plasma viral load over twO years ofantiretroviral therapy. We

found that the group of individuals with proviral loads of <3 copies of HIV-I DNA /105
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CD4· T cells had significanlly greater increases in CD4· T cell counlS than did the group

of individuals all with proviral loads> 100 copies of HIV·( DNA I loS CD4· T cells.

The low proviral load group also had a greater proponion of individuals experiencing a

significant decrease in plasma viral load over the same period. It was also noted that half

aCme HIV-I-infected individuals in the high proviral load group were also in the non

responder group afme previous analysis. These results suggest that in general. an HIV-

J·infected individual with a high proviral load is less likely to benefit from antiretroviral

therapy than one with a low proviral load.

If we consider the fact that the virus' sequence diversity is generated during

reverse transcription which lakes place just before the integration of the provirus,m it

seems that a larger pool of incorporated proviral DNA would necessarily harbour a

broader range of sequence diversity. This broad range of sequence diversity would

increase the likelihood of a resistance mutant arising that is capable of replicating in the

presence of HAART. This diversity would also be a stress on the existing immune

response which would face multiple mutations in both antibody and cytotoxic T cell

l:pitopes. Therefore. we believe that the level of HIV·I proviral load is also a good

prognostic indicator of the potential for immune reconstitution and viral suppression

achievable with antirctroviral therapy.

From these studies we conclude that the level of HIV·I proviral load in the

peripheral blood C04· T cells of HIV·\-infected individuals is relatively stable

throughout thot course of disease and is a useful prognostic indicator of the durability of

re!>ponse 10 antiretroviral therapy. We believe that the size of lhis pool of integrated
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HIV-I proviral DNA is a major determinant of the long-term success of antiretroviral

therapy and of the natural history ofdisease progression. Measuring the size of this pool

in the blood of HIV-I-infected individuals may help explain why some patients rapidly

fail amiretroviral therapy. It should also be infonnative to study the relationship between

proviral load levels and the frequency of, or time to emergence of a dominant drug

resistant HIV·! variant.

The major implication of this work is that the success of antiretroviral

combination therapy in reducing plasma virus load to undetectable levels will not easily

translate into viral eradication. The latent pool of HI V-I proviral DNA literally hiding in

the DNA arresting CD4- T cells is probably the main reason that HIV-l establishes a

persistent infection. Not only is this pool the source of new virus in the absence of

therapy. but the size ofmis pool can be a major dctmninant of whether. or how much an

individual will benefit from antiviral therapy. Unfortunately, the initial success of

HAART fueled the false hope that HIV-I could be eradicated from an individual by

antiretroviral drugs alone. The presence of a pool of latent provirus was already apparent

but practically ignored because of the drastic reductions in plasma virus load seen in

HIV-j-infccted individuals receiving HAART. We now know however, that the half-life

of these latently infected cells is much longer than originally believed,?1 and recent work

has shown that HIV·I transcriptioo persists in PBMCs ofHIV~I·infected individuals who

have had undetectable levels of plasma HIV·I RNA for 20 months or more.7i It was

recently proposed that HIV·I replication, in the presence of HAART, occurs in multiple

local bursts. associated with immune activation in response to antigens.'l Many
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investigators now agree that eradicating HIV-l by drugs alone will be a formidable task.

and that the long-term efficacy of drug combinations presently available has been

ovcrestimated.71.~~ Already a great deal of work has gone into the development of new

antiviral strategies that specifically target the latent pool of HIV-l proviral DNA. One

area receiving a great deal of attention is the idea of combining HAART with cytokine

therapy. A variety of cytokines, including interleukin Ol)-2, tumor necrosis factor

(TNF).a, and IL-6 can induce in vitro expression of HIV from latently infected. resting

CD4- T cells obtained from HIV-infected ;ndividuals.~s Thus, it has been proposed that

HIV might be deliberately purged from these cells by treating infected individuals

simultaneously with HAART and agents that activate cells to express HIV. The hope is

that after being activated, these latently infected cells might die from cytopathic effects

and/or immune e!Tector mechanisms, such as HIV·I·specific CTl, while at the same time

HAART would prevent new rounds of infection by any new virions released.J6.J7.IOS.l'lS

In one such study, Chun el of gave intennittentll-2 plus HAART to a group of HI V·I·

infected individuals and showed that this treatment decreased the size of the pool of

resting CD4- T cells containing replication competent HIV.2~ Two subjects enrolled in

the study underwent lymph node biopsies, and surprisingly, HIV could not be cultured

from these tissues. The authors detected low levels of HIV·l proviral DNA in these

cells, but suggested that this was "replication·incompetent provirus." A few weeks later,

these 2 individuals were taken offHAART, but within 3 weeks of the discontinuation of

therapy, their plasma HIV·I RNA levels rebounded. These results were explained by

suggesting that there must be reservoirs of virus that the IL-2 and HAART could not
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reach. However. I believe that the source aflhe new virus was the HIV·I proviral DNA

that they detected. but assumed was replication-incompetent. Our method of H(V·I

proviral load quantitation would be useful in the evaluation of such studies. as testing the

etTieaey of these new therapies will mtuire monitoring of HIV.I proviral load.

6.2 HIV-l Provinl LOld and the CCRSAJ2 Cor«eplor Mutalion

The second goal army study was to evaluate the effects of the CCRS.6.32 HIV·!

coreceptor mutation on the rate of HIV·I disease progression. and to detennine whether

the slower rate of disease progression reported in CCRStt.J2 heterozygotes could be due

to lower levels of HIV-I proviral DNA. Using the protocol described by Huang et aJ,ll~

we typed 107 HIV-I-infected individuals for the CCRSAJ2 mutation and identilied 22

heterozygotes (20.6%). The frequency of heterozygosity found in our cohort was

consistent with that reported for other groups of similar ethnic background.' We then

testc:d whether the CCRSA32 heterozygous individuals in our study group experienced

slower rates of disease progression than the CCRS wild type homozygous individuals.

Measuring rates ofdisease progression is a difficult task in itself that becomes even more

ditlicult when the exact dates when each individual was actually infected with HIV-I are

no! known. To circumvent this problem we made use of accepted markers of disease

progression, such as CD4· T cell levels. The "nadir CD4 count" or the lowest recorded

CD4- T cell count for an HIV-l-infected individual, is one parameter that is clearly

associated with disease progression in HIV-I infection. IS
' We compared nadir CD4
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counts between CCRSA32 heterozygous and CCRSwt homozygous HIV·J-infected

individuals and found that a significantly greater proportion of homozygotes had nadir

CD4 caunts below 200 I f.l\ when compared with heterozygolcs (63.00/. versus 33.W.

respeclivcly. p < 0.005). Since the rate ofCD4· T cell decline is a ~liablem~ afthe

r.lt~ of HIV-I disease progression.66.1SO we believe that these results indicate thaI., for the

most part. the heterozygous individuals in OUf group have slower rates of disease

progression than do the CCRSwt homozygous individuals.

The mechanism by which CCR5632 heterozygosity facilitates slower rates of

disease progression has not yet been defined. However, CD4' T cells from heterozygous

individuals have [ower levels of cell surface CCRS and are less susceptible to infetlion

with RS isolates of HIV-I in vitro. IH
•
1H We hypothesized that if these decreased

coreceptor levels also ex.ist in vivo, and similarly decrease susceptibility to HIV·I

infection, men CCRS~2 heterozygOles should have a rtduced frequency ofCD4- T cells

containing incorporated HIV·I DNA. We proposed mat me heterozygotes should display

lower proviral loads in comparison with CCRSwt homozygous individuals. Ifmis were

true, the decreased proviral loads should facilitate a slower spread of HIV-I within the

CD4- T cell population resulting in a slower CD4· T cell decline and reduced rate of

disease progression.

When we compared HIV-I proviral load between groups of CCRS~32

heterozygous and CCRSwt homozygous HIV-I-infected individuals, we saw only a slight

ditTerence in mean proviral load between the two groups. The mean proviral load for the

CCRS.1.32 heterozygous group was 41 copies of HIV-l DNA I IOJ CD4- T cells,
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compared to a group mean of 70 copies for the CCRSwt homozygous individuals (p 

0.26). This result does not support our hypothesis. Thus, we conclude that the slower

rates of disease progression observed in lhe CCRS432 heterozygotes is not due to a

decreased HIV·I proviral load. However, there an: many factors that could affect the

outcome afthis result. First ohll, although there were 107 HIV·I-infected individuals

typed for the CCRS632 mutation. proviral load data could only be obtained from 63

homozygotes and IS heterozygotes. With such a difference in sample sizes it is difficult

to obtain statistically significant results, and with so few heterozygotes, one or two high

proviral loads can have drastic effects on the outcome of the statistical analyses. This

was indeed true in our case, as subjects 073 and 103 had very high proviral loads of 103

and 207 copies respectively, much higher that the rest of the heterozygote5. Another

complicating factor is that we do not have proviral load data on some of the homozygotes

that died before we began measuring proviral load. In Chapter 4, I showed that high

proviral loads are predictive of faster rates of disease progression. Since most of the

individuals in our cohort are thought to have been infected for longer than 10 years, the

subjeets that have already exited our study by death probably had higher proviral loads,

and therefore progressed much faster. Had data from these individuals been included in

the above analysis, the results may have been different.

Despite the fact that we did not lind an association between CCRSA32

heterozygosity and HIV·I proviral load, this coreceptor mutation does appear to have an

effeet on disease progression. This finding has identified the HIV·I coreceptors as new

targets for antiretroviral therapy. The idea is that it might be possible to decrease the
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availability of these coreceptors on the cell surface of CD4+ T cells through the use of

small molecule inhibitors or gene therapy, thus mimicking the effects of the CCR5A32

mUlation. Given the limitations of current antiretroviral therapy mentioned in the earlier

pages of this chapter, it is not surprising that HIV researchers have acted quickly in

developing novel therapeutic strategies that target the coreceplors. Some of the ideas that

are being developed and tested include compounds such as T·20, a synthetic peptide

corresponding to a region nfthe transmembrane subunit oflhe HIV·\ envelope protein

that blocks virus-cell fusion and viral entry.l13 T-22 is a similar compound developed to

spedlically inhibit replication ofX4 strains ofHIV_1. 14J Another novel stralegy under

development is produclion of "inlrakines" which are modified versions of chemokines

like RANTES. Ihat have been structurally modified so Ihat they bind to CCRS

intracellularly and anchor the receptor in the endoplasmic reticulum. thus reducing its

expression al the cell surface.m Other chemokine analogs, such as aminooxypentane

RANTES. have been designed that block HIV-l entry by competitively binding to

chemokine receptors al the cell surface?'"

Finally, I would like to summarize the major results and findings of the work

performed during the course of my MSc project. In Chapter 3, I describe the

development ofa non~radioactive.PCR-based method for measuring HIV-I proviral load

and used this method to generate proviral load data from seventy-eight HIV-I-infected

individuals. This method would be useful for monitoring the efficacy of newly

developed HIV therapies designed to reduce the size of this pool of latent virus. In

Chapter 4. [confirmed that HIV-l proviral load is a stable pool of virus that is unaffected
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by current antiretroviral therapies. I also showed thai proviral load levels predict the rate

of disease progression and influence the degree of immune reconstitution and viral

suppression achievable with highly active antirelroviral therapy. Finally, in Chapter 5. I

used my proviral load dala to attempt to detennine the underlying mechanism of the

slower rates of disease progression reported in HIV·I-infected individuals that are

heterozygous for the CCR5A32 HIV-l cafeceplar mutation. The results of the work

showed that a decreased proviral load was not responsible for the slower rates of disease

progression seen in the CCR56.32 heterozygotes enrolled in our study.

6.3 Final Summation

[n conclusion. if I was asked to summarize in one sentence what the work of my

MSc project really meam,l would have to say, HIV proviral load is much more imponant

than it has previously been considered, and that finding ways to address HIV proviral

load should be the ultimate goal of antiretrovirallherapy in HIV infection.
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