TECHNICAL REPORT #9601

MODELING USING TIMED PETRI NETS —
MODEL DESCRIPTION AND REPRESENTATION

by

W.M. Zuberek

Department of Computer Science
Memorial University of Newfoundland
St. John’s, Canada A1B 3X5

August 1996

Department of Computer Science
Memorial University of Newfoundland
St. John’s, Canada A1B 3X5
tel: (709) 737-8627
fax: (709) 737-2009

Copyright (©) 1996 by W.M. Zuberek.
All rights reserved.

The Natural Sciences and Engineering Research Council of Canada
partially supported this research through Research Grant A8222.

MUN-CS Technical Report #9601

MODELING USING TIMED PETRI NETS —
MODEL DESCRIPTION AND REPRESENTATION

Abstract

A collection of software tools, TPN—tools, for analysis of timed Petri nets, de-
veloped over years of extensions, modifications and redesigns, contains several
tools for structural and reachability analysis of net models. As both structural
and reachability analyses impose certain restrictions on the class of analyzed
nets, a simulation tool, TPNsim, has recently been added to the collection. All
these tools use the same (internal) representation of nets, so the integration of
different tools is quite straightforward.

This report describes the specification of timed Petri net models used by TPN—
tools. It discusses the structure of specifications (i.e., the ‘input language’),
provides several examples of net descriptions, and discusses the internal repre-
sentation of net models used by the tools. Presented model descriptions are
rather ‘low—level’, and it is expected that a more convenient graphical user in-
terface will be developed (or adopted) at some later time.

Acknowledgement

Software tools for analysis of timed Petri net models were developed over many
years, using direct and indirect contributions of many colleagues and students.
All these contributions, rather difficult to trace and identify because of countless
software modifications, redesigns and extensions, are appreciated and gratefully
acknowledged.

MUN-CS Technical Report #9601 2

INTRODUCTION

Petri nets have been proposed as a simple and convenient formalism for modeling systems
that exhibit parallel and concurrent activities [Ag79, Pe81, Re85, Mu89]. These activities
are represented by the so called tokens which can move within a (static) graph-like structure
of the net. More formally, a marked (place/transition) Petri net M contains two basic
components, the structure N' which is a bipartite directed graph (i.e., a graph with two
types of nodes, called places and transitions), and an initial marking function mg, which
assigns nonnegative numbers of tokens to places of the net, M = (N, mg), N = (P, T, A),
mo : P — {0,1,...}. The directed arcs connect places with transitions and transitions with
places, A C T'x PUP xT. Place/transition Petri net models are also called ‘condition/event’
systems as places usually represent conditions (in the most general sense), while transitions
— events. If a nonzero number of tokens is assigned to a place, the place is ‘marked’, which
means that the condition represented by it is satisfied. If all places connected by directed
arcs to a transition are marked, the transition is ‘enabled’ and can fire. Firing a transition
is an instantaneous event which removes (simultaneously) a single token from each of the
input places of the transition and adds a single token to each of the transition’s output
places. This creates a new marking function of a net, a new set of enabled transitions, and
so on. The set of all possible marking functions which can be derived in such a way is called
the set of reachable markings (or the forward marking class) of a net. This set can be finite
or infinite; if it is finite, the net is bounded.

An important extension of the basic net model is addition of inhibitor arcs [AF73, Va82].
Inhibitor arcs (which connect places with transitions) provide a ‘test if zero’ condition
which is nonexistent in the basic Petri net. Nets with inhibitor arcs are usually called
inhibitor nets. In inhibitor nets, a transition is enabled only if all places connected to
it by directed arcs are marked and all places connected by inhibitor arcs are empty (i.e.,
not marked). Formally, the set of inhibitor arcs B is an additional element of the net
structure, N' = (P, T, A, B), and usually the same place cannot be connected by a directed
and inhibitor arc with the same transition, so AN B = ®.

A place is shared if it is connected to more than one transition. A shared place is guarded
if for every pair of transitions sharing it there exists another place which is connected by a
directed arc to one of these two transitions and by an inhibitor arc to the other transition;
consequently, if a place is guarded, at most one of the transitions sharing it can be enabled
by any marking function.

If all shared places of a net are guarded, the net is conflict—free, otherwise the net
contains conflicts. The simplest case of conflicts is known as a free—choice (or generalized
free—choice) structure; a shared place is (generalized) free—choice if all transitions sharing
it are connected with the same places by directed as well as inhibitor arcs (i.e., all sharing
transitions have identical input and inhibitor sets). An inhibitor net is free—choice if all
shared places are either guarded or free—choice. The transitions sharing a free-choice place
constitute a free—choice class of transitions. For each marking function, and each free—choice
class of transitions, either all transitions in a class are enabled or none of them is. It is
assumed that the selection of transitions for firing within each free—choice class is a random
process which can be described by ‘choice probabilities’ assigned to (free—choice) transitions.
Moreover, it is usually assumed that the random variables describing choice probabilities in

MUN-CS Technical Report #9601 3

different free—choice classes are independent.

Another popular extension of the basic model is to allow multiple arcs between places
and transitions. A transition is enabled in such nets only if the number of tokens is at
least equal to the number of directed arcs between a place and a transition. Formally this
extension can be described by a ‘weight function” w which maps the set of directed arcs
A into the set of positive numbers, N' = (P,T, A, B,w), w : A — {1,2,...}. It should be
observed that inhibitor arcs could be included in the same description as arcs with the
weight equal to zero, but it appears that separating the set of inhibitor arcs from the set of
directed arcs is a more convenient approach.

In (ordinary) nets the tokens are indistinguishable, so their distribution can conveniently
be described by a marking function which maps the set of places into the set on nonneg-
ative integer numbers. In colored Petri nets [Je87], tokens have attributes called colors.
Token colors can be quite complex, for example, they can describe the values of (simple or
structured) variables or the contents of message packets. Token colors can be modified by
(firing) transitions and also a transition can have several different occurrences (or variants)
of firing.

The basic idea of colored nets is to ‘fold’ an ordinary Petri net. The original set of
places is partitioned into a set of disjoint classes, and each class is replaced by a single place
with token colors indicating which of the original places the tokens belong to. Similarly,
the original set of transitions is partitioned into a set of disjoint classes, and each class is
replaced by a single transition with occurrences indicating which of the original transitions
the firing corresponds to.

Any partition of places and transitions will result in a colored net. One of the extreme
partitions will combine all original places into one place, and all original transitions into one
transition; this will create a very simple net (one place and one transition only) but with
quite complicated rules describing the use of colors. The other extreme partition will create
one—element classes of places and transitions, so the colored net will be isomorphic to the
original net, with only one color. To be useful in practice, colored nets must constitute a
reasonable balance between these two extreme cases.

In order to study performance aspects of Petri net models, the duration of activities
must also be taken into account and included into model specifications. Several types of
Petri nets ‘with time’ have been proposed by assigning ‘firing times’ to the transitions or
places of a net. In timed nets, firing times are associates with transitions, and transition
firings are ‘real-time’ events, i.e., tokens are removed from input places at the beginning
of the firing period, and they are deposited to the output places at the end of this period
(sometimes this is also called a ‘three-phase’ firing mechanism as opposed to ‘one-phase’
instantaneous firings of transitions). All firings of enabled transitions are initiated in the
same instants of time in which the transitions become enabled (although some enabled
transition cannot initiate their firing; for example, all transitions in a free-choice class can
be enabled, but only one can fire). If, during the firing period of a transition, the transition
becomes enabled again, a new, independent firing can be initiated, which will ‘overlap’ with
the other firing(s). There is no limit on the number of simultaneous firings of the same
transition (sometimes this is called ‘infinite firing semantics’). Similarly, if a transition is
enabled ‘several times’ (i.e., it remains enabled after initiating a firing), it may start several
independent firings in the same time instant.

MUN-CS Technical Report #9601 4

In timed nets, the initiated firings continue until their terminations. Sometimes, how-
ever, an initiated firing should be discontinued, as in the case of modeling processes with
preemptions; if a lower—priority job is executing on a processor, and a higher—priority job
needs the same processor for its execution, the execution of the lower—priority job must
be suspended, and the processor allocated to the higher—priority job to allow its execu-
tion. The preempted job can continue only when the higher—priority job is finished (and
no other higher-priority job is waiting). Another extension to the basic model in needed to
‘interrupt’ firing transitions; a special type of inhibitor arcs, called interrupt arcs, can be
used for this purpose. If, during the firing period of a transition, any place connected with
this transition by an interrupt arc (i.e., the place is called an interrupting place) receives
a token, the firing discontinues, and the tokens removed from the transition’s input places
at the beginning of firing, are returned to these places (if there are several firings of the
transition, the least recent one is discontinued; if there are several interrupting tokens, the
corresponding number of least recent firings is discontinued). Moreover, a marked inter-
rupting place disables transition’s firings in the same way as inhibitor arcs do. Formally,
the set of interrupt arcs, C, is added to the structure of the net as a subset of the set of
inhibitor arcs, so N' = (P, T, A, B,C,w), C C B. It should be noted that an effect similar
to an ‘interruption’ of a firing transition can be obtained by using a more complicated net
with an inhibitor arc (Example 1 illustrates the idea), so interrupt arcs are not a necessary
extension; it is rather a convenient addition that simplifies the modeling process.

In timed nets, the firing times of some transitions may be equal to zero, which means
that the firings are instantaneous; all such transitions are called immediate (while the other
are called timed). Since the immediate transitions have no tangible effects on the (timed)
behavior of the model, it is convenient to ‘split’ the set of transitions into two parts, the
set of immediate and the set of timed transitions, and to fire first the (enabled) immediate
transitions, and then (still in the same time instant), when no more immediate transitions
are enabled, to start the firings of (enabled) timed transitions. It should be noted that such
a convention effectively introduces the priority of immediate transitions over the timed ones,
so the conflicts of immediate and timed transitions should be avoided. Also, the free—choice
classes of transitions must be ‘uniform’, i.e., all transitions in each free—choice class must
be either immediate or timed.

The firing times of transitions can be either deterministic or stochastic (i.e., described
by some probability distribution function); in the first case, the corresponding timed nets
are referred to as D—nets, in the second, for the (negative) exponential distribution of firing
times, the nets are referred to as M—nets (Markovian nets). In both cases, the concepts of
state and state transitions have been formally defined and used in the derivation of different
performance characteristics of the model [Zu91].

Analysis of net models can be based on their behavior (i.e., the set of reachable states)
or on the structure of the net; the former is called reachability analysis while the latter
— structural analysis. Invariant analysis seems to be the most popular example of the
structural approach. Structural methods eliminate the derivation of the state space, so they
avoid the ‘state explosion’ problem of reachability analysis, but they cannot provide as much
information as the reachability approach does. Quite often, however, all the detailed results
of reachability analysis are not really needed, and more synthetic performance measures,
that can be provided by structural methods, are quite satisfactory.

MUN-CS Technical Report #9601 5

Both reachability and structural analyses are based on quite detailed net characteriza-
tions. Consequently, only very simple models can be analyzed manually; for more realistic
models, software tools for analysis of net models are needed. It is, therefore, not surprising
that many different tools have been developed for analysis of a variety of net types [Fe93].
A collection of software tools developed for analysis timed Petri net models, TPN—tools,
uses the same internal representation of models and a common ‘language’ for the descrip-
tion of modeling nets. This report describes the structure of model specifications (i.e., the
‘input language’), provides several examples of net descriptions, and discusses the internal
representation of net models.

TPN DESCRIPTIONS

Net descriptions are ‘transition oriented’, i.e., nets are specified as collections of transi-
tions, and each transition contains all parameters associated with it.

The syntax of model descriptions, in the BNF notation, is as follows:

<model-descr> ::= <color-list> <net-class> <net-descr> <imarking>
<color-list> ::= <colors> | <empty>
<net-class> ::= <class> | <empty>
<net-descr> ::= <net-header> (<transitions>)
<net-header> ::= Mnet | Dnet | net
<transitions> ::= <transition> | <transitions> ; <transition>
<transition> ::= <t-header> = <input-output-list>
| <t-header> <occurrence-list>
<t-header> ::= <t-indent> <type> <time> <prob>
<occurrence-list> ::= <occurrence> | <occurrence-list> , <occurrence>
<occurrence> ::= { <o-header> = <input-output-list> }
<o-header> ::= <o-name> <type> <time> <prob>
<t-ident> ::= # <integer> | # <name>
<o-name> ::= <name> | <empty>
<type> ::= :D | :M | :X | <empty>
<time> ::= * <rational> | <empty>
<prob> ::= , <rational> | , <integer> / <integer> | , <ref> | <empty>
<rational> ::= <integer> | <integer> . <integer>
<ref> ::= [<place_id>] | [<place_id> : <color>]
<input-output-list> ::= <input-list> | <input-list> / <output-list>
<input-list> ::= <arc> | <input-list> , <arc>
<output-list> ::= <arc> | <output-list> , <arc>
<arc> ::= <place-id> | <place-id> - <color> | <place-id> : <weight> <color>
<place-id> ::= <integer> | <name>
<weight> ::= <integer>
<color> ::= <name> | <empty>
<name> ::= <letter> | <name> <letter> | <name> <digit> | <name> _

The type of the net can be indicated in the net header or in the class directive:

<class> ::= class =D ; | class = M ;

MUN-CS Technical Report #9601 6

The type of a transition or an occurrence (M—timed, D—timed) can also be indicated by
the type elements; such a specification overrides the net type. The specification X indicates
the type opposite to the one indicated for the net.

For occurrences without type, time, or prob elements, the values of type, time and
prob specified for the transition are used. Transitions and occurrences with empty time
elements denote immediate transitions and occurrences, i.e., transitions and occurrences
with time equal to 0.

Probability element prob specifies the free-choice probabilities of occurrences or relative
frequencies of conflicting occurrences. Empty element prob is equivalent to probability
equal to 1. The form <integer>/<integer> is provided as a convenient way of specifying
fractional values.

Marking—dependent relative frequencies are indicated by place/color references ref of
the prob element. During conflict resolution, the number of (colored) tokens in the place
indicated by ref is used as the relative frequency of transition/occurrence firings. Usually
ref is one of the transition/occurrence’s input places.

Arcs without weight are equivalent to arcs with weight equal to 1. Inhibitor arcs are
specified as arcs with weight equal to 0, and interrupt arcs are indicated by the “-” symbol
following the place identifier.

All colors used in net descriptions must be declared in the list of colors. This list must
precede the net description:

<colors> ::= color (<color-list>) ;
<color-list> ::= <color> | <color-list> , <color>
<color> ::= <name>

The initial marking function is specified as a list of marked places:

<imarking> ::= mark (<marking-list>) ;

<marking-list> ::= <marked-place> | <marking-list> , <marked-place>
<marked-place> ::= <place> | <place> : <count> <color>

<count> ::= <integer>

<color> ::= <name> | <empty>

Marked places without the count element are equivalent to places with the value of
count equal to 1.

Example 1. A Petri net model of a simple protocol with a timeout mechanism is shown
in Fig.1.

The token in p; represents a message to be sent from a ‘sender’ (p;) to a ‘receiver’
(p3) and confirmed by an acknowledgement sent back to the sender. The message is sent
by firing ¢1, after which a single token is deposited in py (the message) and in ps (the
timeout). Enabled t5 and t can start their firings concurrently; firing time of ¢5 represents
the ‘communication delay’ of sending a message, and that of tg, the timeout time. When
the firing of 5 is finished, a token is deposited in p3, the receiver. ps3 is a free-choice place,
so t3 and t4 are enabled simultaneously, but only one of them can fire; the random choice
is characterized by ‘choice probabilities’ assigned to t3 and t4. t3 represents (in a simplified

MUN-CS Technical Report #9601 7

Fig.1. A simple protocol with a timeout.

way) the loss or distortion of the message or its acknowledgement; it ¢3 is selected for firing
(according to its free—choice probability), the token is removed from p3 as well as from the
model (t3 is a ‘token sink’). In such a case the timeout transition tg finishes its firing with
no token in p7, so the inhibitor arc (p7,t7) enables ¢7, and its firing regenerates the lost
token in pi, so the message can be ‘retransmitted’. If the message is received correctly, ¢4
is selected for firing rather than ¢3, and after another ‘communication delay’ (modeled by
t5) tokens are deposited in p7 and p; (so another message can be sent to the receiver). The
token in p7 waits until the timeout transition ¢g finishes its firing, and then removes the
timeout token by firing ¢g (¢7 is disabled in this case by the inhibitor arc).

Note: The transition ¢4 may seem redundant in this model but in fact it is required
due to the restriction that all free—choice classes of transitions must be uniform, i.e., each
free—choice class must contain either immediate or timed transitions, but not both.

All immediate transitions (i.e., transitions with zero firing time) are represented by
(thin) bars, while timed transitions are represented by (black) rectangles. The firing times
of timed transitions are selected in such a way that the timeout time (#4) is greater than the
sum of the delays of sending a message (¢2) and an acknowledgement (¢5). In the following
description, the immediate transitions are indicated by the default zero firing times:

Dnet (#1=1/2,5;
#2x5=2/3;
#3,1/10=3;
#4,9/10=3/4;
#5%5=4/1,7;
#6%15=5/6;
#7=6,7:0/1;
#8=6,7)

mark(1);

The timeout mechanism shown in Fig.1 can be simplified by using an interrupt arc, as
shown in Fig.2 (interrupt arcs are indicated by black dots instead of the arrowheads). After

MUN-CS Technical Report #9601 8

firing £, a token deposited in p5 immediately starts the firing of the ‘timeout’ transition #g
(the interrupt arc (pg, t) inhibits new firings only when pg is marked). If the token reaching
ps is ‘lost’ (by firing t3), the timeout transition finishes its firing and regenerates the lost
token in %1, so another cycle of sending a message can begin. If the message is received
correctly (i.e., 4 is chosen for firing), the acknowledgement token enables and fires ¢5 and,
after a ‘communication delay’, deposits tokens in p; and in pg. A token in pg discontinues
the firing of t5, so the timeout token removed from ps at the beginning of ¢g’s firing is
returned to ps, and subsequently removed by firing the immediate transition 7.

t2

Fig.2. A timeout model with an interrupt arc.

Dnet (#1=1/2,5;
#2%5=2/3;
#3,1/10=3;
#4,9/10=3/4;
#5x5=4/1,6;
#6%15=5,6-/1;
#7=5,6)

mark(1);

Example 2. A colored Petri net model of ‘five dining philosophers’ is shown in Fig.3.
The philosophers are represented by token colors A, B, C, D and E, while forks by colors
m, n, o, p and q.

pl

think

Fig.3. A colored net model of ‘dining philosophers’.

MUN-CS Technical Report #9601 9

The net shown in Fig.3 outlines a model of a single philosopher, so the use of colored
tokens is essential for this model. The use of colors and the conflicts created by sharing
forks can be described by the following ‘connectivity matrix’, in which rows correspond to
token colors assigned to places, and columns — to transition occurrences; the elements “+1”
represent arcs from transition occurrences to places while elements “-1”, arcs form places
to transition occurrences (the values of the elements are the weights assigned to arcs, in
this case they are equal to 1). The elements of the matrix are sets rather than expressions,
so the ‘loops’ (e.g. place p3 and transition eat in Fig.3) can also be represented:

think eat
U v W X Y U A% W X Y
pr:A | +1 -1
B +1 -1
C +1 -1
D +1 -1
E +1 -1
pQZA -1 +1
B -1 +1
C -1 +1
D -1 +1
E -1 +1
p3:m -1,+1 -1,+1
n -1,+1 -1,+1
o} -1,+1 -1,+1
P -1,+1 -1,+1
q -1,+1 -1,+1

For example, the last column describes the occurrence Y of transition eat. The occur-
rence is enabled (elements “-~1”) by a single token of color E in place p; (philosopher E),
one token of color p and one of color q in place ps (E’s ‘right’ and ‘left’ forks). Firing this
occurrence removes these tokens from p; and p3 and when the eating is finished (the firing
time of this occurrence), one token of color E is deposited in ps (philosopher E is going to
think), and single tokens of color p and q are returned to ps (the two forks are returned).
It should be observed that the name of the occurrence, Y, is rather irrelevant; since this
occurrence models the behavior of philosopher E, it could be named E as well.

The following model description is a rather straightforward transcription of this connec-
tivity matrix (column by column); it is assumed that the thinking times as well as eating
times of all philosophers are exponentially distributed (M—timed model) with the average
values equal to 5 and 2, respectively:

color(A,B,C,D,E,m,n,0,p,q);

Mnet (#think*5{U=2:1A/1:1A},
{V=2:1B/1:1B},
{W=2:1C/1:1C},
{X=2:1D/1:1D},
{Y=2:1E/1:1E};

MUN-CS Technical Report #9601 10

#eat*2{U,1=1:1A4,3:1q,3:1m/2:14,3:1q,3:1m},
{V,1=1:1B,3:1n,3:1m/2:1B,3:1n,3:1m},
{W,1=1:1C,3:1n,3:10/2:1C,3:1n,3:10},
{X,1=1:1D,3:10,3:1p/2:1D,3:10,3:1p},
{Y,1=1:1E,3:1q,3:1p/2:1E,3:1q,3:1p})

mark(1:1A,1:1B,1:1C,2:1D,2:1E,3:1m,3:1n,3:10,3:1p,3:1q);

Example 3. The net shown in Fig.4 is a simple illustration of ‘marking—dependent’
conflict resolutions. The net represents an interactive system executing two classes of jobs,
say class—A and class—B jobs, with random selection of jobs from a common pool of jobs
waiting for execution. No priorities and no queueing is assumed, so the probability of
selecting a class—A job is determined by the ratio of the number of waiting class—A jobs to
the total number of waiting jobs.

t1

o
-

<

Fig.4. A model of a processor executing two classes of jobs.

-

In the model, py represents the (idle) processor. Execution of class—A jobs is represented
by to, and class-B jobs — by t3. t; models the ‘thinking time’ for class—A jobs, and t4 —
the same for class—B jobs. ps is the pool of waiting class—A jobs, ps — the pool of waiting
class—B jobs. t9 and t3 are in conflict because of sharing py, and the relative frequencies of
to and t3 firings can be determined by the numbers of tokens in po and py4, respectively.

The description of the model is as follows:

Mnet (#1%5=3/2;
#2x3,[2]1=1,2/1,3;
#3x2,[4]1=1,4/1,5;
#4%8=5/4)

mark(1,2,3:2,4:3,5:2);

MUN-CS Technical Report #9601 11

PNN DESCRIPTIONS

Another approach to net description was proposed in Petri Net Newsletter [BVVS8S];
although it can be used for colored nets as well, the presented version is for non-colored nets
only (for color nets, the attributes should be extended to cover token colors and transition
occurrences):

<net-descr> ::= pnnet <net-header>;
<place-decl>
<trans-decl>
<arc-decl>
<marking-decl>
end;

<net-header> ::= <name> | <name> : <net-type>

<net-type> ::= M | D

<place-decl> ::= places <pdecl-list> ;

<pdecl-list> ::= <pdecl> | <pdecl-list> ; <pdecl>
<pdecl> ::= <p-list> <place-attr>

<p-list> ::= <p-ident> | <p-list> , <p-ident>
<p-ident> ::= <name> | <integer>

<place-attr> ::= <empty>

<trans-decl> ::= transitions <tdecl-list> ;
<tdecl-list> ::= <tdecl> | <tdecl-list> ; <tdecl>
<tdecl> ::= <t-list> <trans-attr>

<t-list> ::= <t-ident> | <t-list> , <t-ident>
<t-ident> ::= <name> | # <integer>

<trans-attr> ::= <empty> | : <time> | : <prob> | : <time> <prob>
<time> ::= <number>

<prob> ::= (<number>) | [<p-ident>]
<arc-decl> ::= arcs <adecl-list>

<adecl-list> ::= <adecl> | <adecl-list> ; <adecl>
<adecl> ::= <arc-list> <arc-attr>

<arc-list> ::= <arcs> | <arc-list> , <arcs>
<arcs> ::= (<p-list> ; <t-1list>) | (<t-list> ; <p-list>)
<arc-attr> ::= <empty> | <integer> | -
<marking-decl> ::= marking <mark-list>
<mark-list> ::= <mark> | <mark-list> ; <mark>
<mark> ::= <p-list> | <p-list> : <count>

<count> ::= <integer>

The attributes (place attributes, transition attributes, arc attributes) are associated with
the corresponding lists of places, transitions or arcs rather than a single place, transition or
arc; elements of these lists are separated by commas. Lists with attributes are declarations,
which are separated by semicolons. Declarations are grouped in sections which begin with
a keyword (places, transitions, arcs).

Attributes of places are not used in this version of PNN descriptions.

The firing times (attribute time) and free—choice probabilities (attribute prob) can thus
be associated with lists of transitions. Similarly the weights of arcs.

Arcs are described by a pair of lists, a list of places and a list of transitions. If both lists
contain more than one element, all possible combinations of list elements are specified.

MUN-CS Technical Report #9601 12

Example. The description of the net shown in Fig.1 can be as follows:

pnnet timeout:D;

places 1,2,3,4,5,6,7;

transitions #1,#7,#8;
#2:5.0;
#3:(0.1);
#4:(0.9);
#5:5.0;
#6:15.0;

arcs (1;#1),(#1;2,5);
(2;#2), (#2;3);
(3;#3);
(3;#4), (#4;4) ;
(4;#5), (#5;1,7);
(5;#6), (#6;6) ;
(6;#7) 5 (T;#7):0; (#7;1);
(6,7;#8);

marking 1;

end;

and that of Fig.4, as follows:

pnnet conflict:M;

places 1,2,3,4,5;

transitions #1:5.0;
#2:3.0[2];
#3:2.0[4];
#4:8.0;

arcs (3;#1), (#1;2);
(1,2;#2),(#2;1,3);
(1,4;#3),(#3;1,5);
(5;#4) , (#4;4);

marking 1,2; 3:2; 4:3; 5:2;

end;

INTERNAL REPRESENTATION

Internally, a (marked) Petri net is represented by three linked lists:
e a list of place descriptors,
e a list of transition descriptors, and

e a list representation of the initial marking function.

Each place descriptor contains an identifier of the place and a pointer to a list of colors
associated with the place:

MUN-CS Technical Report #9601 13

struct p_list {

p-list *next ;
int pid; /* place identifier */
c_list *clist; /* list of colors */

};

For places identified by names, the names are stored in a separate list (of names) and
places are identified by unique (negative) numbers. The same mechanism is used for occur-
rence names, transition names, etc.

Each color descriptor contains a global color identifier (unique in the set of colored
places), a (local) color number, a link to the “home” place and a list of occurrences which
share this colored place (this list is used for analysis of free—choice and conflict classes);
for simulation, there is also a counter of tokens entering the place, the current number
of (colored) tokens and its reference time (i.e., the time of the most recent change of the
number of tokens), and the total (cumulative) waiting time of all tokens of this color:

struct c_list {

c_list *next;

p_list xpnode; /* "home" place */

int cid; /* global color identifier */

int num; /* local color number */

int value; /* current marking (for simulation) */
int count; /* token count (for simulation) */

double total; /* total waiting time (for simulation) */
double rtime; /* reference time (for simulation) */
f_list xflist; /* list of output occurrences */

f_list xx1ist; /* list of interrupted occurrences */

};

The lists of occurrences flist and x1list are built of simple descriptors which contain
links to the occurrence descriptors and the weights of the connecting arcs:

struct f_list {

f_list *next;
o_list xonode; /* occurrence descriptor */
int val; /* arc weight */

};

Each transition descriptor contains an identifier of the transition and a list of occur-
rences:

struct t_list {

t_list *next;
int tid; /* transition identifier */
o_list *olist; /* list of occurrences */

};

Each occurrence descriptor contains a global occurrence identifier (unique in the net), a
(local) occurrence number, a link to the “home” transition descriptor, free-choice or conflict

MUN-CS Technical Report #9601 14

class identifier, the type of occurrence (characterizing the timing information), the (average)
firing time, the free-choice probability or the relative frequency of firings (for the resolution
of conflicts), a link to a color in the place list for marking-dependent conflict resolutions, and
two linked lists of arc descriptors, one for incoming arcs and the other for outgoing arcs;
moreover, all conflicting occurrences are linked by the conf field; finally, for simulation,
there is a count of the number of firings and the total (cumulative) firing time:

struct o_list {

o_list *next;

o_list *conf; /* conflict link */

t_list *tnode; /* "home" transition */

int oid; /* global occurrence identifier */

int num; /* local occurrence number */

int class; /* free-choice class identifier */

int type; /* firing type (D, M, X) */

double time; /* average firing time */

double prob; /* free-choice probability or frequency */
c_list *mark ; /* link for marking-dependent conflicts */
int count; /* firing count (for simulation) */

double total; /* cumulative firing time (simulation) */
m_list xinput; /* input list */

m_list xoutput; /* output list */

};

Each arc descriptor contains a link to a (colored) place and the weight of the arc between
a (colored) place and an occurrence (or an occurrence and a place):

struct m_list {

m_list *next;
c_list xcnode; /* color descriptor */
int val; /* arc weight */

};

For inhibitor arcs the value of val is equal to zero; for interrupt arcs it is negative.

The initial marking function is represented by a list of m_list descriptors in which val
represents the number of tokens, and the color is indicated by the cnode link.

The list of transitions is ordered with respect to transition identifiers; the occurrence
lists are ordered with respect to occurrence identifiers; each place list is ordered with respect
to place identifiers; and each color list is ordered with respect to color identifiers (global
and local identifiers are consistent with respect to ordering).

A global flag Net_type indicates whether the net is M-timed (by the value ‘M’) or
D-timed (by the value ‘D’).

A fragment of internal representation of the model shown in Fig.3 is presented in Fig.5
where only occurrence W is shown in greater detail, and many links are ignored in order to
simplify the illustration.

MUN-CS Technical Report #9601

%
Q'ﬁ“ el

-
L

(/)’

Fe) m»‘c GHD GHE o‘

)

o o
ZU o \/ oy O X [2 2% O ZU o\ o\ OX [2 2\ @)

eat

RA
p2 @
o

-
Lo

[2 o=

e
(@]
[2
o
o
@D

i

om
°
e < '
<
= —
= o
1%
gT
= 1%
.- 53
Sc B8
B =70
25

Fig.5. An outline of internal representation of the model shown in Fig.3

(only occurrence W is shown in greater detail and many links are ignored).

15

MUN-CS Technical Report #9601 16

CONCLUDING REMARKS

A simple language for textual description of timed colored Petri net models is presented.
It provides compact and quite flexible descriptions of models. The descriptions are straight-
forward for processing as they are structured in a way similar to the internal representation
of models. A (simplified) implementation of an alternative approach to specification of net
models is also included. Implementations of other description methods can easily be added
in the future.

Presented specification languages are rather ‘low—level’ which means that the model de-
scription is at a rather detailed level. It is anticipated that a more convenient graphical user
interface, of the type used by GreatSPN [Ch92] or DSPNexpress [Li92], will be developed
(or adopted) at some later time.

For colored net models, the current version of model specifications requires all occur-
rences to be described explicitly. A more convenient (and flexible) approach allows to use
symbolic variables and implied rather than explicit occurrences. All such features can easily
be added to the TPN—tools collection.

References

[AgT9] Agerwala, T., “Putting Petri nets to work”; IEEE Computer Magazine, vol.12,
no.12, pp.85-94, 1979.

[AFT73] Agerwala, T., Flynn, M., “Comments on capabilities, limitations and ‘correctness’
of Petri nets”; Proc. of the First Annual Symp. on Computer Architecture, pp.81-86,
1973.

[BVVS88| Berthelot, G., Vautherin, J., Vidal-Naquet, G., “A syntax for the description of
Petri nets”; Petri Net Newsletter, no. 29, Gesellschaft fuer Informatik, pp.4-15, 1988.

[Ch92] Chiola, G., “GreatSPN 1.5 software architecture”; in: “Computer Performance
Evaluation — Modeling Techniques and Tools”, Balbo, G., Serazzi, G. (eds.), pp.121-
136, Elsevier 1992.

[Fe93] Feldbrugge, F., “Petri net tool overview 1992”; in: “Advances in Petri Nets 1993”
(Lecture Notes in Computer Science 674), Rozenberg, G., (ed.), pp.169-209, Springer
Verlag 1993.

[Je87] Jensen, K., “Coloured Petri nets”; in: “Advanced Course on Petri Nets 1986”
(Lecture Notes in Computer Science 254), G. Rozenberg (ed.), pp.248-299, Springer
Verlag 1987.

[Li92] Lindemann, Ch., “DSPNexpress: a software package for the efficient solution of
deterministic and stochastic Petri nets”; in: “Computer Performance Evaluation —
Modeling Techniques and Tools”, Balbo, G., Serazzi, G. (eds.), pp.9-20, Elsevier 1992.

[Mu89] Murata, T., “Petri nets: properties, analysis and applications”; Proceedings of
IEEE, vol.77, no.4, pp.541-580, 1989.

MUN-CS Technical Report #9601 17

[Pe81] Peterson, J.L., “Petri net theory and the modeling of systems”, Prentice—Hall 1981.

[Re85] Reisig, W., “Petri nets - an introduction” (EATCS Monographs on Theoretical
Computer Science 4); Springer Verlag 1985.

[Va82] Valk, R., “Test on zero in Petri nets”; in: “Applications and Theory of Petri
Nets” (Informatik—Fachberichte 52), Girault, C., Reisig, W. (eds.), pp.193-197, Springer
Verlag 1982.

[Zu91] Zuberek, W.M., “Timed Petri nets — definitions, properties and applications”; Mi-
croelectronics and Reliability (Special Issue on Petri Nets and Related Graph Models),
vol.31, no.4, pp.627-644, 1991 (available through anonymous ftp at ftp.cs.mun.ca
as /pub/publications/91-MaR.ps.Z).

