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al Report #9601 1MODELING USING TIMED PETRI NETS {MODEL DESCRIPTION AND REPRESENTATIONA b s t r a 
 tA 
olle
tion of software tools, TPN{tools, for analysis of timed Petri nets, de-veloped over years of extensions, modi�
ations and redesigns, 
ontains severaltools for stru
tural and rea
hability analysis of net models. As both stru
turaland rea
hability analyses impose 
ertain restri
tions on the 
lass of analyzednets, a simulation tool, TPNsim, has re
ently been added to the 
olle
tion. Allthese tools use the same (internal) representation of nets, so the integration ofdi�erent tools is quite straightforward.This report des
ribes the spe
i�
ation of timed Petri net models used by TPN{tools. It dis
usses the stru
ture of spe
i�
ations (i.e., the `input language'),provides several examples of net des
riptions, and dis
usses the internal repre-sentation of net models used by the tools. Presented model des
riptions arerather `low{level', and it is expe
ted that a more 
onvenient graphi
al user in-terfa
e will be developed (or adopted) at some later time.

A 
 k n o w l e d g e m e n tSoftware tools for analysis of timed Petri net models were developed over manyyears, using dire
t and indire
t 
ontributions of many 
olleagues and students.All these 
ontributions, rather diÆ
ult to tra
e and identify be
ause of 
ountlesssoftware modi�
ations, redesigns and extensions, are appre
iated and gratefullya
knowledged.
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hni
al Report #9601 2INTRODUCTIONPetri nets have been proposed as a simple and 
onvenient formalism for modeling systemsthat exhibit parallel and 
on
urrent a
tivities [Ag79, Pe81, Re85, Mu89℄. These a
tivitiesare represented by the so 
alled tokens whi
h 
an move within a (stati
) graph{like stru
tureof the net. More formally, a marked (pla
e/transition) Petri net M 
ontains two basi

omponents, the stru
ture N whi
h is a bipartite dire
ted graph (i.e., a graph with twotypes of nodes, 
alled pla
es and transitions), and an initial marking fun
tion m0, whi
hassigns nonnegative numbers of tokens to pla
es of the net, M = (N ;m0), N = (P; T;A),m0 : P ! f0; 1; :::g. The dire
ted ar
s 
onne
t pla
es with transitions and transitions withpla
es, A � T�P[P�T . Pla
e/transition Petri net models are also 
alled `
ondition/event'systems as pla
es usually represent 
onditions (in the most general sense), while transitions{ events. If a nonzero number of tokens is assigned to a pla
e, the pla
e is `marked', whi
hmeans that the 
ondition represented by it is satis�ed. If all pla
es 
onne
ted by dire
tedar
s to a transition are marked, the transition is `enabled' and 
an �re. Firing a transitionis an instantaneous event whi
h removes (simultaneously) a single token from ea
h of theinput pla
es of the transition and adds a single token to ea
h of the transition's outputpla
es. This 
reates a new marking fun
tion of a net, a new set of enabled transitions, andso on. The set of all possible marking fun
tions whi
h 
an be derived in su
h a way is 
alledthe set of rea
hable markings (or the forward marking 
lass) of a net. This set 
an be �niteor in�nite; if it is �nite, the net is bounded.An important extension of the basi
 net model is addition of inhibitor ar
s [AF73, Va82℄.Inhibitor ar
s (whi
h 
onne
t pla
es with transitions) provide a `test if zero' 
onditionwhi
h is nonexistent in the basi
 Petri net. Nets with inhibitor ar
s are usually 
alledinhibitor nets. In inhibitor nets, a transition is enabled only if all pla
es 
onne
ted toit by dire
ted ar
s are marked and all pla
es 
onne
ted by inhibitor ar
s are empty (i.e.,not marked). Formally, the set of inhibitor ar
s B is an additional element of the netstru
ture, N = (P; T;A;B), and usually the same pla
e 
annot be 
onne
ted by a dire
tedand inhibitor ar
 with the same transition, so A \B = �.A pla
e is shared if it is 
onne
ted to more than one transition. A shared pla
e is guardedif for every pair of transitions sharing it there exists another pla
e whi
h is 
onne
ted by adire
ted ar
 to one of these two transitions and by an inhibitor ar
 to the other transition;
onsequently, if a pla
e is guarded, at most one of the transitions sharing it 
an be enabledby any marking fun
tion.If all shared pla
es of a net are guarded, the net is 
on
i
t{free, otherwise the net
ontains 
on
i
ts. The simplest 
ase of 
on
i
ts is known as a free{
hoi
e (or generalizedfree{
hoi
e) stru
ture; a shared pla
e is (generalized) free{
hoi
e if all transitions sharingit are 
onne
ted with the same pla
es by dire
ted as well as inhibitor ar
s (i.e., all sharingtransitions have identi
al input and inhibitor sets). An inhibitor net is free{
hoi
e if allshared pla
es are either guarded or free{
hoi
e. The transitions sharing a free{
hoi
e pla
e
onstitute a free{
hoi
e 
lass of transitions. For ea
h marking fun
tion, and ea
h free{
hoi
e
lass of transitions, either all transitions in a 
lass are enabled or none of them is. It isassumed that the sele
tion of transitions for �ring within ea
h free{
hoi
e 
lass is a randompro
ess whi
h 
an be des
ribed by `
hoi
e probabilities' assigned to (free{
hoi
e) transitions.Moreover, it is usually assumed that the random variables des
ribing 
hoi
e probabilities in
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al Report #9601 3di�erent free{
hoi
e 
lasses are independent.Another popular extension of the basi
 model is to allow multiple ar
s between pla
esand transitions. A transition is enabled in su
h nets only if the number of tokens is atleast equal to the number of dire
ted ar
s between a pla
e and a transition. Formally thisextension 
an be des
ribed by a `weight fun
tion' w whi
h maps the set of dire
ted ar
sA into the set of positive numbers, N = (P; T;A;B;w), w : A ! f1; 2; :::g. It should beobserved that inhibitor ar
s 
ould be in
luded in the same des
ription as ar
s with theweight equal to zero, but it appears that separating the set of inhibitor ar
s from the set ofdire
ted ar
s is a more 
onvenient approa
h.In (ordinary) nets the tokens are indistinguishable, so their distribution 
an 
onvenientlybe des
ribed by a marking fun
tion whi
h maps the set of pla
es into the set on nonneg-ative integer numbers. In 
olored Petri nets [Je87℄, tokens have attributes 
alled 
olors.Token 
olors 
an be quite 
omplex, for example, they 
an des
ribe the values of (simple orstru
tured) variables or the 
ontents of message pa
kets. Token 
olors 
an be modi�ed by(�ring) transitions and also a transition 
an have several di�erent o

urren
es (or variants)of �ring.The basi
 idea of 
olored nets is to `fold' an ordinary Petri net. The original set ofpla
es is partitioned into a set of disjoint 
lasses, and ea
h 
lass is repla
ed by a single pla
ewith token 
olors indi
ating whi
h of the original pla
es the tokens belong to. Similarly,the original set of transitions is partitioned into a set of disjoint 
lasses, and ea
h 
lass isrepla
ed by a single transition with o

urren
es indi
ating whi
h of the original transitionsthe �ring 
orresponds to.Any partition of pla
es and transitions will result in a 
olored net. One of the extremepartitions will 
ombine all original pla
es into one pla
e, and all original transitions into onetransition; this will 
reate a very simple net (one pla
e and one transition only) but withquite 
ompli
ated rules des
ribing the use of 
olors. The other extreme partition will 
reateone{element 
lasses of pla
es and transitions, so the 
olored net will be isomorphi
 to theoriginal net, with only one 
olor. To be useful in pra
ti
e, 
olored nets must 
onstitute areasonable balan
e between these two extreme 
ases.In order to study performan
e aspe
ts of Petri net models, the duration of a
tivitiesmust also be taken into a

ount and in
luded into model spe
i�
ations. Several types ofPetri nets `with time' have been proposed by assigning `�ring times' to the transitions orpla
es of a net. In timed nets, �ring times are asso
iates with transitions, and transition�rings are `real{time' events, i.e., tokens are removed from input pla
es at the beginningof the �ring period, and they are deposited to the output pla
es at the end of this period(sometimes this is also 
alled a `three{phase' �ring me
hanism as opposed to `one{phase'instantaneous �rings of transitions). All �rings of enabled transitions are initiated in thesame instants of time in whi
h the transitions be
ome enabled (although some enabledtransition 
annot initiate their �ring; for example, all transitions in a free{
hoi
e 
lass 
anbe enabled, but only one 
an �re). If, during the �ring period of a transition, the transitionbe
omes enabled again, a new, independent �ring 
an be initiated, whi
h will `overlap' withthe other �ring(s). There is no limit on the number of simultaneous �rings of the sametransition (sometimes this is 
alled `in�nite �ring semanti
s'). Similarly, if a transition isenabled `several times' (i.e., it remains enabled after initiating a �ring), it may start severalindependent �rings in the same time instant.
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ontinue until their terminations. Sometimes, how-ever, an initiated �ring should be dis
ontinued, as in the 
ase of modeling pro
esses withpreemptions; if a lower{priority job is exe
uting on a pro
essor, and a higher{priority jobneeds the same pro
essor for its exe
ution, the exe
ution of the lower{priority job mustbe suspended, and the pro
essor allo
ated to the higher{priority job to allow its exe
u-tion. The preempted job 
an 
ontinue only when the higher{priority job is �nished (andno other higher{priority job is waiting). Another extension to the basi
 model in needed to`interrupt' �ring transitions; a spe
ial type of inhibitor ar
s, 
alled interrupt ar
s, 
an beused for this purpose. If, during the �ring period of a transition, any pla
e 
onne
ted withthis transition by an interrupt ar
 (i.e., the pla
e is 
alled an interrupting pla
e) re
eivesa token, the �ring dis
ontinues, and the tokens removed from the transition's input pla
esat the beginning of �ring, are returned to these pla
es (if there are several �rings of thetransition, the least re
ent one is dis
ontinued; if there are several interrupting tokens, the
orresponding number of least re
ent �rings is dis
ontinued). Moreover, a marked inter-rupting pla
e disables transition's �rings in the same way as inhibitor ar
s do. Formally,the set of interrupt ar
s, C, is added to the stru
ture of the net as a subset of the set ofinhibitor ar
s, so N = (P; T;A;B;C;w), C � B. It should be noted that an e�e
t similarto an `interruption' of a �ring transition 
an be obtained by using a more 
ompli
ated netwith an inhibitor ar
 (Example 1 illustrates the idea), so interrupt ar
s are not a ne
essaryextension; it is rather a 
onvenient addition that simpli�es the modeling pro
ess.In timed nets, the �ring times of some transitions may be equal to zero, whi
h meansthat the �rings are instantaneous; all su
h transitions are 
alled immediate (while the otherare 
alled timed). Sin
e the immediate transitions have no tangible e�e
ts on the (timed)behavior of the model, it is 
onvenient to `split' the set of transitions into two parts, theset of immediate and the set of timed transitions, and to �re �rst the (enabled) immediatetransitions, and then (still in the same time instant), when no more immediate transitionsare enabled, to start the �rings of (enabled) timed transitions. It should be noted that su
ha 
onvention e�e
tively introdu
es the priority of immediate transitions over the timed ones,so the 
on
i
ts of immediate and timed transitions should be avoided. Also, the free{
hoi
e
lasses of transitions must be `uniform', i.e., all transitions in ea
h free{
hoi
e 
lass mustbe either immediate or timed.The �ring times of transitions 
an be either deterministi
 or sto
hasti
 (i.e., des
ribedby some probability distribution fun
tion); in the �rst 
ase, the 
orresponding timed netsare referred to as D{nets, in the se
ond, for the (negative) exponential distribution of �ringtimes, the nets are referred to as M{nets (Markovian nets). In both 
ases, the 
on
epts ofstate and state transitions have been formally de�ned and used in the derivation of di�erentperforman
e 
hara
teristi
s of the model [Zu91℄.Analysis of net models 
an be based on their behavior (i.e., the set of rea
hable states)or on the stru
ture of the net; the former is 
alled rea
hability analysis while the latter{ stru
tural analysis. Invariant analysis seems to be the most popular example of thestru
tural approa
h. Stru
tural methods eliminate the derivation of the state spa
e, so theyavoid the `state explosion' problem of rea
hability analysis, but they 
annot provide as mu
hinformation as the rea
hability approa
h does. Quite often, however, all the detailed resultsof rea
hability analysis are not really needed, and more syntheti
 performan
e measures,that 
an be provided by stru
tural methods, are quite satisfa
tory.
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al Report #9601 5Both rea
hability and stru
tural analyses are based on quite detailed net 
hara
teriza-tions. Consequently, only very simple models 
an be analyzed manually; for more realisti
models, software tools for analysis of net models are needed. It is, therefore, not surprisingthat many di�erent tools have been developed for analysis of a variety of net types [Fe93℄.A 
olle
tion of software tools developed for analysis timed Petri net models, TPN{tools,uses the same internal representation of models and a 
ommon `language' for the des
rip-tion of modeling nets. This report des
ribes the stru
ture of model spe
i�
ations (i.e., the`input language'), provides several examples of net des
riptions, and dis
usses the internalrepresentation of net models. TPN DESCRIPTIONSNet des
riptions are `transition oriented', i.e., nets are spe
i�ed as 
olle
tions of transi-tions, and ea
h transition 
ontains all parameters asso
iated with it.The syntax of model des
riptions, in the BNF notation, is as follows:<model-des
r> ::= <
olor-list> <net-
lass> <net-des
r> <imarking><
olor-list> ::= <
olors> | <empty><net-
lass> ::= <
lass> | <empty><net-des
r> ::= <net-header> ( <transitions> )<net-header> ::= Mnet | Dnet | net<transitions> ::= <transition> | <transitions> ; <transition><transition> ::= <t-header> = <input-output-list>| <t-header> <o

urren
e-list><t-header> ::= <t-indent> <type> <time> <prob><o

urren
e-list> ::= <o

urren
e> | <o

urren
e-list> , <o

urren
e><o

urren
e> ::= { <o-header> = <input-output-list> }<o-header> ::= <o-name> <type> <time> <prob><t-ident> ::= # <integer> | # <name><o-name> ::= <name> | <empty><type> ::= :D | :M | :X | <empty><time> ::= * <rational> | <empty><prob> ::= , <rational> | , <integer> / <integer> | , <ref> | <empty><rational> ::= <integer> | <integer> . <integer><ref> ::= [ <pla
e_id> ℄ | [ <pla
e_id> : <
olor> ℄<input-output-list> ::= <input-list> | <input-list> / <output-list><input-list> ::= <ar
> | <input-list> , <ar
><output-list> ::= <ar
> | <output-list> , <ar
><ar
> ::= <pla
e-id> | <pla
e-id> - <
olor> | <pla
e-id> : <weight> <
olor><pla
e-id> ::= <integer> | <name><weight> ::= <integer><
olor> ::= <name> | <empty><name> ::= <letter> | <name> <letter> | <name> <digit> | <name> _The type of the net 
an be indi
ated in the net header or in the 
lass dire
tive:<
lass> ::= 
lass = D ; | 
lass = M ;
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al Report #9601 6The type of a transition or an o

urren
e (M{timed, D{timed) 
an also be indi
ated bythe type elements; su
h a spe
i�
ation overrides the net type. The spe
i�
ation X indi
atesthe type opposite to the one indi
ated for the net.For o

urren
es without type, time, or prob elements, the values of type, time andprob spe
i�ed for the transition are used. Transitions and o

urren
es with empty timeelements denote immediate transitions and o

urren
es, i.e., transitions and o

urren
eswith time equal to 0.Probability element prob spe
i�es the free-
hoi
e probabilities of o

urren
es or relativefrequen
ies of 
on
i
ting o

urren
es. Empty element prob is equivalent to probabilityequal to 1. The form <integer>/<integer> is provided as a 
onvenient way of spe
ifyingfra
tional values.Marking{dependent relative frequen
ies are indi
ated by pla
e/
olor referen
es ref ofthe prob element. During 
on
i
t resolution, the number of (
olored) tokens in the pla
eindi
ated by ref is used as the relative frequen
y of transition/o

urren
e �rings. Usuallyref is one of the transition/o

urren
e's input pla
es.Ar
s without weight are equivalent to ar
s with weight equal to 1. Inhibitor ar
s arespe
i�ed as ar
s with weight equal to 0, and interrupt ar
s are indi
ated by the \-" symbolfollowing the pla
e identi�er.All 
olors used in net des
riptions must be de
lared in the list of 
olors. This list mustpre
ede the net des
ription:<
olors> ::= 
olor ( <
olor-list> ) ;<
olor-list> ::= <
olor> | <
olor-list> , <
olor><
olor> ::= <name>The initial marking fun
tion is spe
i�ed as a list of marked pla
es:<imarking> ::= mark ( <marking-list> ) ;<marking-list> ::= <marked-pla
e> | <marking-list> , <marked-pla
e><marked-pla
e> ::= <pla
e> | <pla
e> : <
ount> <
olor><
ount> ::= <integer><
olor> ::= <name> | <empty>Marked pla
es without the 
ount element are equivalent to pla
es with the value of
ount equal to 1.Example 1. A Petri net model of a simple proto
ol with a timeout me
hanism is shownin Fig.1.The token in p1 represents a message to be sent from a `sender' (p1) to a `re
eiver'(p3) and 
on�rmed by an a
knowledgement sent ba
k to the sender. The message is sentby �ring t1, after whi
h a single token is deposited in p2 (the message) and in p5 (thetimeout). Enabled t2 and t6 
an start their �rings 
on
urrently; �ring time of t2 representsthe `
ommuni
ation delay' of sending a message, and that of t6, the timeout time. Whenthe �ring of t2 is �nished, a token is deposited in p3, the re
eiver. p3 is a free-
hoi
e pla
e,so t3 and t4 are enabled simultaneously, but only one of them 
an �re; the random 
hoi
eis 
hara
terized by `
hoi
e probabilities' assigned to t3 and t4. t3 represents (in a simpli�ed



MUN{CS Te
hni
al Report #9601 7
t1

t2
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t5

t4

t7

t6

p1

p2

p3

p4

p6

p5

t8

p7Fig.1. A simple proto
ol with a timeout.way) the loss or distortion of the message or its a
knowledgement; it t3 is sele
ted for �ring(a

ording to its free{
hoi
e probability), the token is removed from p3 as well as from themodel (t3 is a `token sink'). In su
h a 
ase the timeout transition t6 �nishes its �ring withno token in p7, so the inhibitor ar
 (p7; t7) enables t7, and its �ring regenerates the losttoken in p1, so the message 
an be `retransmitted'. If the message is re
eived 
orre
tly, t4is sele
ted for �ring rather than t3, and after another `
ommuni
ation delay' (modeled byt5) tokens are deposited in p7 and p1 (so another message 
an be sent to the re
eiver). Thetoken in p7 waits until the timeout transition t6 �nishes its �ring, and then removes thetimeout token by �ring t8 (t7 is disabled in this 
ase by the inhibitor ar
).Note: The transition t4 may seem redundant in this model but in fa
t it is requireddue to the restri
tion that all free{
hoi
e 
lasses of transitions must be uniform, i.e., ea
hfree{
hoi
e 
lass must 
ontain either immediate or timed transitions, but not both.All immediate transitions (i.e., transitions with zero �ring time) are represented by(thin) bars, while timed transitions are represented by (bla
k) re
tangles. The �ring timesof timed transitions are sele
ted in su
h a way that the timeout time (t6) is greater than thesum of the delays of sending a message (t2) and an a
knowledgement (t5). In the followingdes
ription, the immediate transitions are indi
ated by the default zero �ring times:Dnet(#1=1/2,5;#2*5=2/3;#3,1/10=3;#4,9/10=3/4;#5*5=4/1,7;#6*15=5/6;#7=6,7:0/1;#8=6,7)mark(1);The timeout me
hanism shown in Fig.1 
an be simpli�ed by using an interrupt ar
, asshown in Fig.2 (interrupt ar
s are indi
ated by bla
k dots instead of the arrowheads). After
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al Report #9601 8�ring t1, a token deposited in p5 immediately starts the �ring of the `timeout' transition t6(the interrupt ar
 (p6; t6) inhibits new �rings only when p6 is marked). If the token rea
hingp3 is `lost' (by �ring t3), the timeout transition �nishes its �ring and regenerates the losttoken in t1, so another 
y
le of sending a message 
an begin. If the message is re
eived
orre
tly (i.e., t4 is 
hosen for �ring), the a
knowledgement token enables and �res t5 and,after a `
ommuni
ation delay', deposits tokens in p1 and in p6. A token in p6 dis
ontinuesthe �ring of t6, so the timeout token removed from p5 at the beginning of t6's �ring isreturned to p5, and subsequently removed by �ring the immediate transition t7.
t1

t2

t3

t5

t4

t6
p1

p2

p3

p4p6

p5

t7

Fig.2. A timeout model with an interrupt ar
.Dnet(#1=1/2,5;#2*5=2/3;#3,1/10=3;#4,9/10=3/4;#5*5=4/1,6;#6*15=5,6-/1;#7=5,6)mark(1);Example 2. A 
olored Petri net model of `�ve dining philosophers' is shown in Fig.3.The philosophers are represented by token 
olors A, B, C, D and E, while forks by 
olorsm, n, o, p and q.
p1

p2

p3think eat

Fig.3. A 
olored net model of `dining philosophers'.
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hni
al Report #9601 9The net shown in Fig.3 outlines a model of a single philosopher, so the use of 
oloredtokens is essential for this model. The use of 
olors and the 
on
i
ts 
reated by sharingforks 
an be des
ribed by the following `
onne
tivity matrix', in whi
h rows 
orrespond totoken 
olors assigned to pla
es, and 
olumns { to transition o

urren
es; the elements \+1"represent ar
s from transition o

urren
es to pla
es while elements \-1", ar
s form pla
esto transition o

urren
es (the values of the elements are the weights assigned to ar
s, inthis 
ase they are equal to 1). The elements of the matrix are sets rather than expressions,so the `loops' (e.g. pla
e p3 and transition eat in Fig.3) 
an also be represented:think eatU V W X Y U V W X Yp1:A +1 -1B +1 -1C +1 -1D +1 -1E +1 -1p2:A -1 +1B -1 +1C -1 +1D -1 +1E -1 +1p3:m -1,+1 -1,+1n -1,+1 -1,+1o -1,+1 -1,+1p -1,+1 -1,+1q -1,+1 -1,+1For example, the last 
olumn des
ribes the o

urren
e Y of transition eat. The o

ur-ren
e is enabled (elements \-1") by a single token of 
olor E in pla
e p1 (philosopher E),one token of 
olor p and one of 
olor q in pla
e p3 (E's `right' and `left' forks). Firing thiso

urren
e removes these tokens from p1 and p3 and when the eating is �nished (the �ringtime of this o

urren
e), one token of 
olor E is deposited in p2 (philosopher E is going tothink), and single tokens of 
olor p and q are returned to p3 (the two forks are returned).It should be observed that the name of the o

urren
e, Y, is rather irrelevant; sin
e thiso

urren
e models the behavior of philosopher E, it 
ould be named E as well.The following model des
ription is a rather straightforward trans
ription of this 
onne
-tivity matrix (
olumn by 
olumn); it is assumed that the thinking times as well as eatingtimes of all philosophers are exponentially distributed (M{timed model) with the averagevalues equal to 5 and 2, respe
tively:
olor(A,B,C,D,E,m,n,o,p,q);Mnet(#think*5{U=2:1A/1:1A},{V=2:1B/1:1B},{W=2:1C/1:1C},{X=2:1D/1:1D},{Y=2:1E/1:1E};
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al Report #9601 10#eat*2{U,1=1:1A,3:1q,3:1m/2:1A,3:1q,3:1m},{V,1=1:1B,3:1n,3:1m/2:1B,3:1n,3:1m},{W,1=1:1C,3:1n,3:1o/2:1C,3:1n,3:1o},{X,1=1:1D,3:1o,3:1p/2:1D,3:1o,3:1p},{Y,1=1:1E,3:1q,3:1p/2:1E,3:1q,3:1p})mark(1:1A,1:1B,1:1C,2:1D,2:1E,3:1m,3:1n,3:1o,3:1p,3:1q);Example 3. The net shown in Fig.4 is a simple illustration of `marking{dependent'
on
i
t resolutions. The net represents an intera
tive system exe
uting two 
lasses of jobs,say 
lass{A and 
lass{B jobs, with random sele
tion of jobs from a 
ommon pool of jobswaiting for exe
ution. No priorities and no queueing is assumed, so the probability ofsele
ting a 
lass{A job is determined by the ratio of the number of waiting 
lass{A jobs tothe total number of waiting jobs.
t1

p2 p3

t2

p1

t3

p4 p5
t4Fig.4. A model of a pro
essor exe
uting two 
lasses of jobs.In the model, p1 represents the (idle) pro
essor. Exe
ution of 
lass{A jobs is representedby t2, and 
lass-B jobs { by t3. t1 models the `thinking time' for 
lass{A jobs, and t4 {the same for 
lass{B jobs. p2 is the pool of waiting 
lass{A jobs, p4 { the pool of waiting
lass{B jobs. t2 and t3 are in 
on
i
t be
ause of sharing p1, and the relative frequen
ies oft2 and t3 �rings 
an be determined by the numbers of tokens in p2 and p4, respe
tively.The des
ription of the model is as follows:Mnet(#1*5=3/2;#2*3,[2℄=1,2/1,3;#3*2,[4℄=1,4/1,5;#4*8=5/4)mark(1,2,3:2,4:3,5:2);
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hni
al Report #9601 11PNN DESCRIPTIONSAnother approa
h to net des
ription was proposed in Petri Net Newsletter [BVV88℄;although it 
an be used for 
olored nets as well, the presented version is for non-
olored netsonly (for 
olor nets, the attributes should be extended to 
over token 
olors and transitiono

urren
es):<net-des
r> ::= pnnet <net-header>;<pla
e-de
l><trans-de
l><ar
-de
l><marking-de
l>end;<net-header> ::= <name> | <name> : <net-type><net-type> ::= M | D<pla
e-de
l> ::= pla
es <pde
l-list> ;<pde
l-list> ::= <pde
l> | <pde
l-list> ; <pde
l><pde
l> ::= <p-list> <pla
e-attr><p-list> ::= <p-ident> | <p-list> , <p-ident><p-ident> ::= <name> | <integer><pla
e-attr> ::= <empty><trans-de
l> ::= transitions <tde
l-list> ;<tde
l-list> ::= <tde
l> | <tde
l-list> ; <tde
l><tde
l> ::= <t-list> <trans-attr><t-list> ::= <t-ident> | <t-list> , <t-ident><t-ident> ::= <name> | # <integer><trans-attr> ::= <empty> | : <time> | : <prob> | : <time> <prob><time> ::= <number><prob> ::= ( <number> ) | [ <p-ident> ℄<ar
-de
l> ::= ar
s <ade
l-list><ade
l-list> ::= <ade
l> | <ade
l-list> ; <ade
l><ade
l> ::= <ar
-list> <ar
-attr><ar
-list> ::= <ar
s> | <ar
-list> , <ar
s><ar
s> ::= ( <p-list> ; <t-list> ) | ( <t-list> ; <p-list> )<ar
-attr> ::= <empty> | <integer> | -<marking-de
l> ::= marking <mark-list><mark-list> ::= <mark> | <mark-list> ; <mark><mark> ::= <p-list> | <p-list> : <
ount><
ount> ::= <integer>The attributes (pla
e attributes, transition attributes, ar
 attributes) are asso
iated withthe 
orresponding lists of pla
es, transitions or ar
s rather than a single pla
e, transition orar
; elements of these lists are separated by 
ommas. Lists with attributes are de
larations,whi
h are separated by semi
olons. De
larations are grouped in se
tions whi
h begin witha keyword (pla
es, transitions, ar
s).Attributes of pla
es are not used in this version of PNN des
riptions.The �ring times (attribute time) and free{
hoi
e probabilities (attribute prob) 
an thusbe asso
iated with lists of transitions. Similarly the weights of ar
s.Ar
s are des
ribed by a pair of lists, a list of pla
es and a list of transitions. If both lists
ontain more than one element, all possible 
ombinations of list elements are spe
i�ed.
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ription of the net shown in Fig.1 
an be as follows:pnnet timeout:D;pla
es 1,2,3,4,5,6,7;transitions #1,#7,#8;#2:5.0;#3:(0.1);#4:(0.9);#5:5.0;#6:15.0;ar
s (1;#1),(#1;2,5);(2;#2),(#2;3);(3;#3);(3;#4),(#4;4);(4;#5),(#5;1,7);(5;#6),(#6;6);(6;#7);(7;#7):0;(#7;1);(6,7;#8);marking 1;end;and that of Fig.4, as follows:pnnet 
onfli
t:M;pla
es 1,2,3,4,5;transitions #1:5.0;#2:3.0[2℄;#3:2.0[4℄;#4:8.0;ar
s (3;#1),(#1;2);(1,2;#2),(#2;1,3);(1,4;#3),(#3;1,5);(5;#4),(#4;4);marking 1,2; 3:2; 4:3; 5:2;end;INTERNAL REPRESENTATIONInternally, a (marked) Petri net is represented by three linked lists:� a list of pla
e des
riptors,� a list of transition des
riptors, and� a list representation of the initial marking fun
tion.Ea
h pla
e des
riptor 
ontains an identi�er of the pla
e and a pointer to a list of 
olorsasso
iated with the pla
e:
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hni
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t p_list {p_list *next;int pid; /* pla
e identifier */
_list *
list; /* list of 
olors */};For pla
es identi�ed by names, the names are stored in a separate list (of names) andpla
es are identi�ed by unique (negative) numbers. The same me
hanism is used for o

ur-ren
e names, transition names, et
.Ea
h 
olor des
riptor 
ontains a global 
olor identi�er (unique in the set of 
oloredpla
es), a (lo
al) 
olor number, a link to the \home" pla
e and a list of o

urren
es whi
hshare this 
olored pla
e (this list is used for analysis of free{
hoi
e and 
on
i
t 
lasses);for simulation, there is also a 
ounter of tokens entering the pla
e, the 
urrent numberof (
olored) tokens and its referen
e time (i.e., the time of the most re
ent 
hange of thenumber of tokens), and the total (
umulative) waiting time of all tokens of this 
olor:stru
t 
_list {
_list *next;p_list *pnode; /* "home" pla
e */int 
id; /* global 
olor identifier */int num; /* lo
al 
olor number */int value; /* 
urrent marking (for simulation) */int 
ount; /* token 
ount (for simulation) */double total; /* total waiting time (for simulation) */double rtime; /* referen
e time (for simulation) */f_list *flist; /* list of output o

urren
es */f_list *xlist; /* list of interrupted o

urren
es */};The lists of o

urren
es flist and xlist are built of simple des
riptors whi
h 
ontainlinks to the o

urren
e des
riptors and the weights of the 
onne
ting ar
s:stru
t f_list {f_list *next;o_list *onode; /* o

urren
e des
riptor */int val; /* ar
 weight */};Ea
h transition des
riptor 
ontains an identi�er of the transition and a list of o

ur-ren
es:stru
t t_list {t_list *next;int tid; /* transition identifier */o_list *olist; /* list of o

urren
es */};Ea
h o

urren
e des
riptor 
ontains a global o

urren
e identi�er (unique in the net), a(lo
al) o

urren
e number, a link to the \home" transition des
riptor, free-
hoi
e or 
on
i
t
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lass identi�er, the type of o

urren
e (
hara
terizing the timing information), the (average)�ring time, the free-
hoi
e probability or the relative frequen
y of �rings (for the resolutionof 
on
i
ts), a link to a 
olor in the pla
e list for marking{dependent 
on
i
t resolutions, andtwo linked lists of ar
 des
riptors, one for in
oming ar
s and the other for outgoing ar
s;moreover, all 
on
i
ting o

urren
es are linked by the 
onf �eld; �nally, for simulation,there is a 
ount of the number of �rings and the total (
umulative) �ring time:stru
t o_list {o_list *next;o_list *
onf; /* 
onfli
t link */t_list *tnode; /* "home" transition */int oid; /* global o

urren
e identifier */int num; /* lo
al o

urren
e number */int 
lass; /* free-
hoi
e 
lass identifier */int type; /* firing type (D, M, X) */double time; /* average firing time */double prob; /* free-
hoi
e probability or frequen
y */
_list *mark; /* link for marking-dependent 
onfli
ts */int 
ount; /* firing 
ount (for simulation) */double total; /* 
umulative firing time (simulation) */m_list *input; /* input list */m_list *output; /* output list */};Ea
h ar
 des
riptor 
ontains a link to a (
olored) pla
e and the weight of the ar
 betweena (
olored) pla
e and an o

urren
e (or an o

urren
e and a pla
e):stru
t m_list {m_list *next;
_list *
node; /* 
olor des
riptor */int val; /* ar
 weight */};For inhibitor ar
s the value of val is equal to zero; for interrupt ar
s it is negative.The initial marking fun
tion is represented by a list of m_list des
riptors in whi
h valrepresents the number of tokens, and the 
olor is indi
ated by the 
node link.The list of transitions is ordered with respe
t to transition identi�ers; the o

urren
elists are ordered with respe
t to o

urren
e identi�ers; ea
h pla
e list is ordered with respe
tto pla
e identi�ers; and ea
h 
olor list is ordered with respe
t to 
olor identi�ers (globaland lo
al identi�ers are 
onsistent with respe
t to ordering).A global 
ag Net type indi
ates whether the net is M-timed (by the value `M') orD-timed (by the value `D').A fragment of internal representation of the model shown in Fig.3 is presented in Fig.5where only o

urren
e W is shown in greater detail, and many links are ignored in order tosimplify the illustration.



MUN{CS Te
hni
al Report #9601 15
U

V
W

X
Y

th
in

k
ea

t

U
V

W
X

Y

p1
p2

p3

A
B

C
D

E
A

B
C

D
E

m
n

o
p

q

lis
t o

f
pl

ac
es

lis
t o

f
tr

an
si

tio
nsFig.5. An outline of internal representation of the model shown in Fig.3(only o
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e W is shown in greater detail and many links are ignored).
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hni
al Report #9601 16CONCLUDING REMARKSA simple language for textual des
ription of timed 
olored Petri net models is presented.It provides 
ompa
t and quite 
exible des
riptions of models. The des
riptions are straight-forward for pro
essing as they are stru
tured in a way similar to the internal representationof models. A (simpli�ed) implementation of an alternative approa
h to spe
i�
ation of netmodels is also in
luded. Implementations of other des
ription methods 
an easily be addedin the future.Presented spe
i�
ation languages are rather `low{level' whi
h means that the model de-s
ription is at a rather detailed level. It is anti
ipated that a more 
onvenient graphi
al userinterfa
e, of the type used by GreatSPN [Ch92℄ or DSPNexpress [Li92℄, will be developed(or adopted) at some later time.For 
olored net models, the 
urrent version of model spe
i�
ations requires all o

ur-ren
es to be des
ribed expli
itly. A more 
onvenient (and 
exible) approa
h allows to usesymboli
 variables and implied rather than expli
it o

urren
es. All su
h features 
an easilybe added to the TPN{tools 
olle
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