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Abstract 

Recent efforts to shift towards ecosystem approaches to fisheries management require 

multi-species analyses across dynamic food webs and an understanding of trophic 

dynamics. My research analyzed the marine food web dynamics of Newfoundland and 

Labrador using stomach contents data and stable isotope ratios from fishes and 

invertebrates. A key facet of trophic ecology is the role a species fills in the food web. 

My first chapter quantified realized isotopic niches, a proxy for trophic niche, of 

representative dominant species using Bayesian ellipses and assess the potential 

competitive interactions that could prevent population recovery of groundfish species. 

Also essential in trophic ecology is the assessment of nutrient flow through an ecosystem. 

To understand the origin for the spatially varying isotopic niches, isotope mixing models 

were created in my second chapter to assess the strength of the interactions between all 

fish species and prey species and assess the key pathways of nutrient flow to the upper 

food web. Considering bioenergetic transfer through a system requires consideration of 

productivity resulting from growth and reproduction. This productivity analysis lends 

itself to the study of size spectra and the question of whether they may be used to assess 

community recovery. To do so, in my third chapter the empirical size structure I derived 

from the ecosystem surveys was compared to a theoretical pristine size structure derived 

through a combination of nitrogen stable isotopes and macroecological principles. Strong 

regionality was observed in isotopic signatures, with more trophic niche overlap, 

increased connectance and shorter food chain length in the less diverse, northern sites. 

Ontogenetic variation was observed in the isotopic niches and in the reconstructed diets. 
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These trophic considerations may contribute to the observed differential recovery rates of 

fish stocks, illustrating the importance of considering competition and diet composition. 

The interactions of recovering groundfish species and economically important 

invertebrate species (i.e. shrimp and snow crab) were also highlighted. Although the 

Newfoundland and Labrador marine ecosystems were still far from fully recovered, 

recovery and continued sustainability of fish communities could be facilitated through 

balanced harvesting (though presently mostly theoretical) to limit the damaging impacts 

of fishery exploitation. 
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Chapter 1: Introduction and Overview 

Fish Populations in a Changing Ecosystem 

Understanding the interaction between environmental conditions and fisheries 

exploitation on marine communities represents one of the pressing modern issues within 

the field of fisheries ecology. Environmental factors which have been shown to influence 

fish productivity via recruitment, growth and survivability include primary production 

(e.g. Runge 1988, Cushing 1990, Trites et al. 1999, Mackinson et al. 2009), salinity 

(Mann & Drinkwater 1994, Dutil & Brander 2003, Hidalgo et al. 2015), and temperature 

(e.g. Pepin 1991, Pörter et al. 2001, Mieszkowska et al. 2009, Gislason et al. 2010, 

Rountrey et al. 2014). Primary production alone is influenced by a number of additional 

factors such as wind conditions (Sakshaug & Slagstad 1992, Albert et al. 2010), UV 

radiation (Smith & Baker 1982, Prézelin et al. 1994, Lotze et al. 2002), ocean 

acidification (Koch et al. 2012, Beardall et al. 2014), carbon dioxide levels (Riebesell et 

al. 1993, Gao et al. 2012), and nutrient availability (Barber & Chavez 1991, Cullen et al. 

1992, Bonnet et al. 2008). Together these factors are thought to impact fish production and 

thereby fisheries yields. Whether these impacts positively or negatively impact fish populations 

depends not only on the factor but their interactions with the local environment (e.g. Brander 

2007,  Sherman et al. 2009).   

In addition to environmental factors negatively influencing fish communities, 

exploitation has damaged marine communities. Industrialized fisheries have been shown 

to reduce the biomass of a community by up to 80% within the first couple of decades of 

exploitation (Myers & Worm 2003). This exploitation may further impact marine 
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communities by altering species distributions, marine ecosystem size structure and prey 

availability (Blanchard et al. 2003, Jennings & Collingridge 2015, Hiddink et al. 2016, 

Poloczanska et al. 2016). These anthropogenic impacts on the ocean often direct an 

ecosystem towards ecological extinction (Petersen 1903, Jackson et al. 2001). Recent 

estimates suggest that 93% of global fish stocks are fully exploited or overexploited 

(FAO 2018, Link & Watson 2019). Numerous marine ecosystems are still recovering 

from prior overfishing despite protective efforts (Hutchings 2000, Clark & Frid 2001, 

Lotze et al. 2005, Palumbi et al. 2008, Neubauer et al. 2013). Protective efforts include 

trawling moratoria such as those observed on the Grand Bank of Newfoundland (Schrank 

2005), marine reserves such as those in New Zealand (Babcock et al. 1999, Willis et al. 

2003), and international regulations such as the Common Fisheries Policy in the North 

Sea or the Sino-Japanese joing fishery management in the East China Sea (Golden & 

Garrod 1996, Keyuan 2003, Griffin 2010). One of the pressing questions within fisheries 

management becomes: how reversible are the impacts of fisheries? And how does 

environmental changes such as those induced by climate change influence potential 

recovery of these ecosystems?  

In the northwest Atlantic Ocean environmental factors such as variation in 

temperatures and food availability are thought to have contributed to increased 

groundfish, most notably Atlantic cod (Gadus morhua), natural mortality rates. In 

combination with excess fishing, this increased mortality led to the collapse of multiple 

stocks and fisheries in the early 1990s (deYoung & Rose 1993, Bundy 2001, Robichaud 

& Rose 2004, Rose 2005).  Since fisheries moratoria were established in Atlantic Canada 
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in the early 1990s, diverse population responses have been observed in adjacent stocks: 

some stocks have responded positively to fishery closures while other stocks have not. 

For example, Atlantic cod stocks in southern Newfoundland (Northwest Atlantic Fishery 

Organization Division 3Ps) exhibited historical population growth rates with no 

unexplained mortality or reduced body condition (Rose 2003, Fisheries Resource 

Conservation Council 2011, DFO 2019a), while those on the adjacent northern Grand 

Bank (3L) and the continental shelf north to Labrador (3K & 2J) have exhibited some 

population growth but not full recovery (Lilly et al. 2008, DFO 2018a). The stocks in 

these regions have not follow the trends predicted by traditional single-species models. 

Therefore, new approaches are required to assess the dynamics of populations and 

assemblages in a wider ecosystem context that includes environmental drivers and/or 

species interactions that vary spatially which have generally not been included in single-

species analyses (Bavington 2010, DFO 2018a, Rose & Walters 2019). 

Within Newfoundland and Labrador fisheries ecosystems, spatial and abundance 

changes have occurred in many fished and non-fished species (Gomes et al. 1995, Windle 

et al. 2012). For example, the Atlantic cod offshore spawning stock biomass was 

estimated at 1.6 million t in 1962 but had declined to approximately 22,000 t by 1992  

(e.g. Hutchings & Myers 1994, Atkinson et al. 1997, Rose 2007, DFO 2018a). At the 

same time, increases in northern shrimp (Pandalus borealis; Lilly et al. 2000, Parsons 

2007, DFO 2018b) and snow crab biomasses (Chionoecetes opilio; Dawe et al. 2012, 

Mullowney et al. 2012) were observed. With the decline of groundfish populations, a 

regime shift from a groundfish dominated community to an invertebrate dominated 
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community was observed (Lilly et al. 2000, Windle et al. 2012, Shrank 2013). As a result 

of this expansion of shrimp and crab biomasses, new fisheries emerged to take advantage 

of these resources. Recent catches (2017) of shrimp of approximately 87,300 t within 

Newfoundland, were markedly increased from 21,735 t in 1991, while crab catches at 

approximately 25,000 t, are up from 16,093 t in 1992 (Newfoundland Statistics Agency 

1994, Lilly et al. 2000, Davis & Korneski 2012, DFO 2018b, Mullowney et al. 2019). It 

should also be noted that both shrimp and crab populations are presently in decline, with 

shrimp catches having peaked in 2008/09 at 85.725 t for the region (DFO 2018b) and 

crab catches peaking in 2009 at 53,500 t (Mullowney et al. 2014, DFO 2017).  

 

Recovering Groundfish Species 

The potential for recovery of these groundfish, notably Atlantic cod, stocks has received 

substantial attention in Newfoundland and Labrador (e.g. Hutchings & Rangeley 2011, 

Schrank & Roy 2013, Rose & Rowe 2015), raising the pressing question: Can these 

populations recover? Several changes may continue to negatively affect recovering 

groundfish populations. Firstly, increased predation from seal populations (harp [Phoca 

groenlandica], hooded [Cystophora cristata], grey [Halichoerus grypus], harbor [Phoca 

vitulina], ringed [Phoca hispida], and bearded [Erignathus barbatus] seals) has been 

proposed as a limiting factor resulting from increased seal population sizes (Steele et al. 

1992, Stenson et al 1997, Shelton & Healey 1999, Bundy 2001, Bundy & Fanning 2005). 

This hypothesis, however, has been questioned by recent research demonstrating that low 

food quality is more of a driving factor preventing groundfish recovery than seal 
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predation (Buren et al. 2014). Previous work in this region has indicated that shrimp, 

crab, and capelin make up a large portion of the Atlantic cod diet (e.g. Methven & Piatt 

1989, Lilly et al. 2000, Krumsick & Rose 2012). Since the collapse, capelin have 

experienced a southward distribution and decline in abundance in the Newfoundland and 

Labrador region (Lilly 1994, Carscadden & Nakashima 1997, Rose & O’Driscoll 2002, 

Murphy et al. 2018) while crab and shrimp have increased in abundance yet are exploited 

by present fishing activities (Lilly et al. 2000, Worm & Myers 2003, Davis & Korneski 

2012, DFO 2018b, Mullowney et al. 2019). It is therefore likely that cod’s interactions 

with prey species have changed over time to accommodate these changes in their 

environment such that relatively lower quality prey such as shrimp and crab are 

consumed more frequently at the cost of reducing the high energy value capelin 

consumption. Furthermore, since the multiple groundfish stock collapses there have been 

life history changes in numerous groundfish species including reduced growth rates, 

earlier maturation and poor condition which futher hinder recovery (Olsen et al. 2004, 

Baulier et al. 2006, Shelton et al. 2006, Fudge & Rose 2008k, Lilly et al. 2008). With 

these changes in predation and life history characteristics in addition to human 

exploitation of the important prey species, the question arises of can the ecosystem 

naturally revert to its pre-1990 state? Alternatively, should we anticipate that the 

ecosystem can persist in a new state of functionality as a permanent regime shift (i.e. a 

persistent change in the structure and function of an ecosystem)?  

Although Atlantic cod receives the most attention from researchers, other groundfish 

species have shown comparable changes to their life histories and their role within the 
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food web in response to prior overexploitation. Seals consume a variety of groundfish 

species, notably American plaice (Hippoglossoides platessoides) and Greenland halibut 

(Reinhardtius hippoglossoides), as well as pelagic species, namely capelin, often in 

greater quantities than Atlantic cod (Lawson et al. 1998, Hammill & Stenson 2000). 

Evidence of comparable fisheries-induced evolution, including ages and sizes at maturity, 

as well as changes in size spectra and condition have also been documented for a variety 

of local groundfish species around the time of the moratoria in the early 1990s (e.g. 

Bowering 1989, Bowering & Brodie 1991, Haedrich & Barnes 1997, Barot et al. 2005, 

Hutchings & Baum 2005, Halliday & Pinhorn 2009). Though recent attention has been in 

regards to Atlantic cod consumption of crab (Neis 1992, Davis 2015, Greenham 2019), a 

number of other fish species, including thorny skate (Amblyraja radiata) and American 

plaice, are also known to consume crab and shrimp with regular frequency in this region 

(e.g. Templeman 1982, Albikovskaya & Gerasimova 1993, Hutchings 2002, Link et al. 

2002, Dwyer et al. 2010). Atlantic cod are therefore not the only species within the 

ecosystem known to consume these economically important species and thus there 

becomes potential competition for the same prey resources with other fish species as well 

as with fisheries.   

 

Socio-economic Considerations for Population Recovery 

In addition to changes in biological factors and fishing effort for numerous species, socio-

economic considerations have also changed with time. Following the collapse of 

groundfish stocks, government policies supported the growth of the shellfish industry 
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including investing $140 million into processing plant construction and improving 

harvesting capacity (Hamilton & Butler 2001). Currently shrimp prices are $1.65 per 

pound and snow crab $5.22 per pound, while grade A Atlantic cod is $0.63 per pound 

(FFAW 2019). In contrast, in 1991, before the moratorium was declared, the price of 

shrimp was $0.92 per pound, snow crab $0.61 per pound, and Atlantic cod $0.32 per 

pound (Newfoundland Statistics Agency 1994). Although the price per pound has 

increased for all commercially exploited species, the clear species of economic 

importance are the crustaceans and molluscs whose value have increased four- to five-

fold (Newfoundland Statistics Agency 1994, DFO 2019b). In contrast, groundfish have 

only increased threefold primarily driven by the expansion of the Greenland halibut 

(Reinhardtius hippoglossoides) fishery. These price differences, combined with large-

scale changes towards the dominance of shellfish in Newfoundland fisheries, have led to 

shifts in overall fisheries values. Shellfish now represent 84% of the landed value of 

capture fisheries resources in Newfoundland and Labrador while prior to the groundfish 

stock collapses it only represented 34%. Conversely, groundfish now represent 13% of 

the landed value while they previously represented approximately 58% (Mather 2013, 

DFO 2019b). With capital having migrated between marine resource commodities, 

harvesters have expressed anxiety at the potential shift of the fishery back towards a less 

valuable resource (Davis, 2014). We are thus observing in this region a divide between 

the advocates of Atlantic cod recovery and the dissenters who prefer the status quo (“cod 

is God” vs “sod the cod”; see Gary et al. 2008, Davies & Rangeley 2010).  
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Impacts on predator populations may have ecosystem-wide top-down effects 

(Hairston et al. 1960, Oksanen et al. 1981, Carpenter & Kitchell 1988). This is especially 

important within the waters of Newfoundland and Labrador, where Atlantic cod and 

other predatory fishes consume species that yield the majority of high-value fisheries 

landings (including crab and shrimp) (Worm & Myers 2003, Windle et al. 2012, Schrank 

& Roy 2013, Mullowney et al. 2014). Therefore, analyzing food web interactions and 

parameterizing food web models involving these key species are critical to understanding 

and predicting potential trade-offs in fisheries yields that may be largely driven by rates 

of predation. Such analyses and model construction are the foundations of my PhD 

research. 

 

The Stable Isotope Approach to Community Ecology 

Modern single-species models have not been able to accurately predict the behaviour of 

commercially important species due to a lack of consideration of effects on non-target 

species and trophic interactions (Pikitch et al. 2004, Worm et al. 2009, Hillborn 2011). 

Therefore, a shift towards a multispecies ecosystem-based approach to fisheries 

management presents as a means to observe and assess fisheries sustainability (Link 

2010). While this approach is not necessarily new (in fact it has traditionally been used 

for millennia by native Oceania fishermen [Johannes 1982]), single-species population 

assessment models were historically favored for their relative simplicity, reduced cost, 

and being less demanding of data (Katsanevakis et al. 2011). In order to shift towards the 

more complex community based fisheries management and eventually ecosystem based 
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management with the inclusion of abiotic factors, research is required to understand a 

target species’ role within the ecosystem, how its dynamics affect local communities, and 

how a species is affected by changes in environmental conditions. 

Knowledge of diet and consumption by dominant predatory species is a key input to 

ecosystem approaches to fisheries management as such species interactions are one of the 

main factors regulating fish populations (Hollowed et al. 2000, Pitcher & Heymans 2002, 

Link & Garrison 2002a, Bundy & Fanning 2005, Naiman & Latterell 2005). Stomach 

content data have historically been used extensively to describe trophic dynamics through 

time (e.g. Livingston 1989, Hanson & Chouinard 2002, Pinnegar et al. 2015, Buckley et 

al. 2016). Stable isotope analysis provides a complement to stomach content analysis. 

While stomach contents may provide a snapshot of the exact species consumed at a given 

moment, stable isotopes provide a means to resolve food webs on the scale of months 

(Fry 1988, Lorrain et al. 2002, MacNeil et al. 2006, Olson et al. 2010). For example, 

stable nitrogen isotope signatures are typically enriched among consumers with 

enrichment at a single feeding instance by approximately 3 ‰ for fish species. This 

facilitates approximation of trophic level at which the animal has fed (Minagawa & Wada 

1984, Ambrose & DeNiro 1986, Vander Zanden et al. 1997). This enrichment results 

from the preferential removal of the lighter amine groups during deamination (Macko et 

al. 1987).  

Photosynthesis also generates distinct carbon signatures between phytoplankton and 

inshore benthic carbon sources, allowing for dietary analysis to determine benthic or 

pelagic origin of prey (DeNiro & Epstein 1978, Petersen & Fry 1987, Hobson 1987, 
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France 1995, Hecky & Hesslein 1995). The exact cause of this variation is largely 

uncertain (Kelly 2000), but a number of factors may contribute including whether the 

carbon source fixes carbon dioxide or bicarbonate (Maberly et al. 1992), whether the 

plant uses the C3 or C4 pathway of carbon fixation (O’Leary 1981, Reinfelder et al. 

2000), slower diffusion of carbon dioxide in water counteracting enzymatic 

discrimination (O’Leary 1988), and cell size and geometry (Popp et al. 1998). However, 

given the depths which were sampled in the presented study (between 285 and 425 m), 

benthic primary production is less likely to be driving the benthic food web. Instead, it is 

detrital matter that would be the base of the benthic food web, which is anticipated to 

have a high carbon isotopic signature as well as a mid-range nitrogen signature 

(Schlacher & Wooldridge 1996, Wooler et al. 2003, Tewfik et al. 2005). Carbon has also 

been determined to exhibit little to no fractionation, with measured fractionation 

coefficients typically ranging between 0 and 1 ‰ for muscle tissue (DeNiro & Epstein 

1977, Macko et al. 1982, Tieszen et al. 1983, Fry & Sherr 1984, Pinnegar & Polunin 

1999). Used in combination, these nitrogen and carbon isotopic values characterize the 

isotopic niche that individuals occupy within the community; the isotopic niche is 

thought to act as a proxy for the trophic niche (Bearhop et al. 2004, Newsome et al. 

2007). 

 

Scope of the Present Research 

This project focuses on the northeast shelf of Newfoundland and southern shelf of 

Labrador contained within NAFO subdivisions 2J and 3KL, representing the 
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management for the formerly dominant “northern cod” stock of Atlantic cod (Templeman 

1979, Rose et al. 2000, Smedbol & Wroblewski 2002). The Atlantic cod in these 

subdivisions are managed as a single stock without consideration of spatial variation in 

their interactions with other species. To address this potential limitation, instead of 

centering this study around management units, I focused on a more biologically relevant 

spatial resolution: the three major offshore Atlantic cod migration pathways within this 

region known as the Hawke Channel, the Notre Dame Channel, and the Bonavista 

Corridor (Rose 1993; Fig. 1.1). These corridors represent areas where the colder waters 

of the Labrador Current are undercut by the relatively warmer waters of the north-west 

Atlantic waters (Colbourne et al. 2013). The bottom substrate is dominated by sands, 

clay, and ground moraine (Fillon 1976, Warren 1976, Mullowney et al . 2012). The 

northern-most region, the Hawke Channel, is characterized by low species diversity, low 

growth rates, and high mortality reported for multiple groundfish  species (Colbourne et 

al. 2013, Anderson & Rose 2000). The Hawke Channel was once considered an 

important offshore spawning location for numerous groundfish including Atlantic cod 

and American plaice (Fitzpatrick & Miller 1979, Templeman 1981, Hutchings et al. 

1994). In 2003 this region was closed to trawling and other bottom-impact fisheries 

following concerns for local Atlantic cod and snow crab (Chionoecetes opilio) 

populations (Fisheries Resource Conservation Council 2001, Kincaid & Rose 2014). The 

declines in Atlantic cod also co-occurred with increases in shrimp biomass (Lilly et al. 

2000). The southern-most region, the Bonavista Corridor, is the most biodiverse of the 

three regions. Atlantic cod were observed to concentrate in this region as the stock  
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Fig. 1.1 Map of the Newfoundland and Labrador shelf, with NAFO regions indicated, 

that served as the study area for this research. Three channels, which serve as warm-water 

cod migration corridors and the basis for division of this region for these studies, are 

noted. The dotted line represents the 300 m depth contour of the Newfoundland and 

Labrador Shelf.  

 

declined (DeYoung & Rose 1993, Rose & Kulka 1999) and has been proposed to be a 

key region for the recovery of the northern cod stock complex (Rose & Rowe 2018). 
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The organisms in the shelf communities analyzed in this study live in a complex 

dynamic ecosystem (Levin 1998, Pedersen et al. 2017). The shift towards an ecosystem 

approach towards fisheries management does not require a complete understanding of all 

aspects of the ecosystem nor every anthropogenic impact, but expanding our 

understanding on the impacts of our actions on multiple fish communities will help to 

limit ecosystem damage (Rice 2005). Therefore, understanding what the future holds for 

these communities depends, in part, on further understanding of their present structure 

and dynamics. Many studies have focused on temporal changes observed within 

recovering ecosystems (i.e. Pedersen et al. 2017, Moyes & Magurran 2018). The present 

research utilizes this technique by highlighting the spatial changes observed in trophic 

structure.  

One of the ways in which an organism will indirectly interact with their surrounding 

ecosystem is through potential competitive interactions. A trophic niche is a subset of the 

ecological niche, defined as an animal’s place within the biotic environment (Elton 1927) 

or an n-dimensional hypervolume of environmental resources (Hutchinson 1957), and 

addresses the overall role which a species plays within the ecosystem, specifically in 

regards to how they respond to resources and competitors (Leibold 1995).  This trophic 

niche can be approximated using carbon and nitrogen stable isotopes (Bearhop et al. 

2004). This isotopic niche is not exactly the same as the trophic niche as a number of 

factors will cause additional variation in the former such as variable isotopic fractionation 

and tissue turnover rates (Jackson et al. 2011).  The two niches, however, are tightly 

correlated and as such are still useful for trophic ecology. Given the importance of 
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trophic niches, my first chapter estimates the core isotopic niche and a variety of Layman 

metrics (Layman et al. 2007) to analyze the relative positions of seven abundant fish 

species within isotope space and quantify niche overlap and potential competition. 

Bayesian ellipses, a representation of standard deviation in bivariate space such as 

isotope biplots, have been used with stable isotope data to determine these core isotopic 

niches (Newsome et al. 2007, Jackson et al. 2011). In theory, this area of biplot space 

encompassed by the calculated ellipse will contain the majority of the individuals and as 

such describe the foraging behavior of that group. I then analyze the “roles” filled by 

these species within size classes to highlight ontogenetic variation across the three 

regions to highlight how these roles change among varying diet and ecosystem 

diversities. This chapter reveals the importance of size-based analyses in explaining the 

role the organisms fill within the ecosystem. It also provides insights into the potential 

role of competition in explaining slow groundfish population recovery rates, a 

mechanism proposed as a reason for the lack of Atlantic cod recovery in other regions 

(Bundy & Fanning 2005).   

Analyzing the isotopic niche that species fill, however, is not sufficient to determine 

the trophic dynamics and predatory interactions occuring within a given ecosystem. 

Carbon and nitrogen stable isotopes can provide further insights through the 

parameterization of isotope mixing models where isotopic signatures are used to 

determine approximate dietary contributions for a given predator (Schwarcz 1991, 

Phillips 2001). Exact proportions of prey based on isotopic signatures may be determined 

in cases where three or fewer prey sources are present, otherwise these proportions are 
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determined though iterative determination of contribution combinations with input 

likelihoods based on stomach content priors (Stock et al. 2018). My second chapter 

therefore applies isotope mixing models to data derived from Newfoundland and 

Labrador shelf regions to quantify trophic interactions in order to better understand 

energy flow and determine key prey species. In these analyses, considering the trophic 

interactions of a few predators is insufficient to characterize ecosystem functioning so I 

present results on a wide variety of predators and prey informed both by isotopic 

signatures and stomach contents. Due to potential regional variation in the role organisms 

fill within the ecosystem, I investigated which species were important to the community 

as a whole. I also focused more closely on three economically important species to assess 

main channels of energy flow with particular interest in their interactions with shrimp and 

crab. The relative importance of the pelagic and benthic communities was also assessed 

to emphasize how the magnitude of the two basic food chain pathways will vary 

spatially.  

Given the expectation that understanding species interactions is required to inform 

any shift towards ecosystem-based fisheries management, fisheries ecology also requires 

means of assessing community recovery from prior overexploitation. Using a 

combination of predator-prey mass ratios derived from stable isotope values relative to a 

reference species, primary productivity estimates obtained from published literature, and 

a range of trophic efficiencies (Kerr 1974, Andersen et al. 2009), my third research 

chapter derived an estimate of a hypothetical pristine size structure for three 

Newfoundland and Labrador fisheries ecosystems, based on methods first described by 
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Jennings & Blanchard (2004). This chapter provides an indication of the community 

carrying capacity and, using empirically derived size spectra, determines the distance 

from the hypothetical pristine state. The derived biomass densities serve as an overall 

indicator of how far the ecosystem is from a truly recovered state despite fishing 

moratoria. The descending slope of the empirical biomass spectra relative to theoretical 

ones also provide an indicator of overall community health. Traditionally, reference 

points have been set using historical biomass estimates determined during time periods 

that are thought to represent a recovered community. However, these time periods are 

either based during times when strong fishing pressures had already impacted the 

community (Pedersen et al. 2017) or are based on time periods when fishing was less 

intensive but was based purely on reported catch data rather than systematic population 

estimates (Rosenberg et al. 2005). The theoretical spectra in this chapter were generated 

in the spirit of using biological characteristics to assess fish productivity and hypothetical 

population size (e.g. Myers et al. 2001) and thus provides a new way of assessing these 

reference points by determining what could hypothetically exist in the absence of fishing. 

Given the development of this ecosystem indicator, future scientists and managers could 

use this technique to derive ecosystem-level targets for fisheries ecosystem management. 

In summary, my dissertation research applies and extends knowledge of stable 

isotope ecology to address modern concerns related to population and ecosystem 

dynamics within the Newfoundland and Labrador region. Through our assessment of 

essentially “who eats whom,” we are able to study nutrient flow through the system and 

identify key species within the food web. Furthermore, the study of competitive 



 

17 
 

interactions and food web complexity contribute to our understanding of factors 

facilitating (or hindering) the recovery of fish communities. By assessing the 

characteristics of the community size structure, we can add new information with which 

managers can make recommendations to facilitate community recovery. However, body 

size is not the only consideration when assessing recovery. Interspecies relationships, 

such as trophic relationships and competition, are required in order to prevent the new 

generation of management procedures from causing even wider damage to these fish 

communities. While target fish populations are naturally the focus of any management 

recommendations, it is important to consider the role filled by such target species relative 

to the community as a whole. Though it will likely take decades (Fung et al. 2013), with 

cautious management and multi-species community-level considerations, community 

recovery as well as individual stock recovery to productive and sustainable levels should 

be possible.  

 

References 

Albert A, Echevin V, Lévy M, Aumont O. 2010. Impact of nearshore wind stress curl on 

coastal circulation and primary productivity in the Peru upwelling system. J Geophys 

Res 115(C12). Doi: 10.1029/2010JC006569. 

Albikovskaya LK, Gerasimova OV. 1992. Food and feeding patterns of cod (Gadus 

morhua L.) and beaked redfish (Sebastes mentella Travin) on Flemish Cap. NAFO 

Sci Coun Stu 19: 31-39. 

Ambrose SH, DeNiro, M.J. 1986. The isotopic ecology of East African mammals. 

Oecologia 69: 395-406. 

Andersen KH, Beyer JE, Lundberg P. 2009. Trophic and individual efficiencies of size-

structured communities. P Roy Soc B- Biol Sci 276: 109-114.  

https://doi.org/10.1029/2010JC006569


 

18 
 

Anderson JT, Rose GA. 2000. Offshore spawning and year-class strength of northern cod 

(2J3KL) during the fishing moratorium, 1994-1996. CSAS Res Doc 2000/100. 

Atkinson DB, Rose GA, Murphy EF, Bishop CA. 1997. Distribution changes and 

abundance of northern cod (Gadus morhua), 1981-1993. Can J Fish Aquat Sci 54 

(Suppl. 1): 132-138. 

Babcock RC, Kelly S, Shears NT, Walker JW, Willis TJ. 1999. Changes in community 

structure in temperate marine reserves. Mar Ecol Prog Ser 189: 125-134.  

Barber RT, Chavez FP. 1991. Regulation of primary productivity rate in the equatorial 

Pacific. Limnol Oceanogr 36(8): 1803-1815. 

Barot S, Heino M, Morgan MJ, Dieckmann U. 2005. Maturation of Newfoundland 

American plaice (Hippoglossoides platessoides): long-term trends in maturation 

reaction norms despite low fishing mortality? ICES J Mar Sci 62(1): 56-64. 

Baulier L, Heino M, Lilly GR, Dieckmann U. 2006. Body condition and evolution of 

maturation of Atlantic cod in Newfoundland. ICES CM 2006/J:19.  

Bavington D. 2010. From hunting fish to managing populations: Fisheries science and the 

destruction of Newfoundland cod fisheries. Sci Cult 19(4): 509-528. 

Beardall J, Stojkovic S, Gao K. 2014. Interactive effects of nutrient supply and other 

environmental factors on the sensitivity of marine primary producers to ultraviolet 

radiation: implications for the impacts of global change. Aquat Biol 22: 5-23. 

Bearhop S, Adams CE, Waldron S, Fuller RA, MacLead H. 2004. Determining trophic 

niche width: a novel approach using stable isotope analysis. J Anim Ecol 73(5): 1007-

1012. 

Blanchard JL, Dulvy NK, Jennings S, Ellis JR, Pinnegar JK, Tidd A, Kell LT. 2003. Do 

climate and fishing influence size-based indicators of Celtic Sea fish community 

structure? ICES J Mar Sci 62(3): 405-411. 

Bonnet S, Guieu C, Bruyant F, Prášil O, van Wambeke F, Raimbault P, Moutin T, Grob 

C, Gorbunov MY, Zehr JP, et al. 2008. Nutrient limitation of primary productivity in 

the Southeast Pacific (BIOSOPE cruise). Biogeosciences, European Geosciences 

Union 5(1): 215-225. 

Bowering WR. 1989. Witch flounder distribution off southern Newfoundland, and 

changes in age, growth, and sexual maturity patterns with commercial exploitation. T 

Am Fish Soc 118(6): 659-669. 



 

19 
 

Bowering WR, Brodie WB. 1991. Distribution of commercial flatfishes in the 

Newfoundland-Labrador region of the Canadian Northwest Atlantic and changes in 

certain biological parameters since exploitation. Neth J Sea Res 27(3-4): 407-422. 

Brander KM. 2007. Global fish production and climate change. Proc Natl Acad 104(50): 

19709-19714. 

Buckley TW, Ortiz I, Kotwicki S, Aydin K. 2016. Summer diet composition of walleye 

Pollock and predator-prey relationships with copepods and euphausiids in the eastern 

Bering Sea, 1987-2011. Deep-Sea Res II 134: 302-311. 

Bundy A. 2001. Fishing on ecosystems: the interplay of fishing and predation in 

Newfoundland-Labrador. Can J Fish Aquat Sci 58: 1153-1167.  

Bundy A, Fanning LP. 2005. Can Atlantic cod (Gadus morhua) recover? Exploring 

trophic explanations for non-recovery of the cod stock on the eastern Scotian Shelf, 

Canada. Can J Fish Aquat Sci 62: 1474-1489. 

Buren AD, Koen-Alonso M, Stenson GB. 2014. The role of harp seals, fisheries and food 

availability in driving the dynamics of northern cod. Mar Ecol Prog Ser 511: 265-284. 

Carpenter SR, Kitchell JF. 1988. Consumer control of lake productivity. BioScience 

38(11): 764-769. 

Carscadden JE, Nakashima BS. 1997. Abundance and changes in distribution, biology, 

and behavior of capelin in response to cooler waters of the 1990s. In: Forage Fishes in 

Marine Ecosystems. Proceedings of the International Symposium on the Role of 

Forage Fishes in Marine Ecosystems. University of Alaska, Fairbanks; p. 457-468. 

Clark RA, Frid CLJ. 2001. Long-term changes in the North Sea ecosystem. Environ Rev 

9(3): 131-187.  

Colbourne E, Craig J, Fitzpatrick C, Senciall D, Stead P, Bailey W. 2013. An assessment 

of the physical oceanographic environment on the Newfoundland and Labrador Shelf 

in NAFO Subareas 2 and 3 during 2012. NAFO SCR Doc. 13/018. 

Cullen JJ, Yang X, MacIntyre HL. 1992. Nutrient limitation of marine photosynethesis. 

In: Falkowksi PG, Woodhead AD, Vivirito K (eds.) Primary Productivity and 

Biogeochemical Cycles in the Sea. Environmental Science Research 43. Springer, 

Boston, MA.  

Cushing DH. 1990. Plankton production and year-class strength in fish populations: an 

update of the match/mismatch hypothesis. Adv Mar Biol 26: 249-293.   

Davies RWD, Rangeley R. 2010. Banking on cod: Exploring economic incentives for 

recovering Grand Banks and North Sea cod fisheries. Mar Policy 34(1): 92-98. 



 

20 
 

Davis R. 2014. A cod forsaken place?: Fishing in an altered state in Newfoundland. 

Anthropol Quart 87(3): 695-726. 

Davis R. 2015. ‘All in’: Snow crab, capitalization, and the future of small-scale fisheries 

in Newfoundland. Mar Policy 61: 323-330. 

Davis R, Korneski K. 2012. In a pinch: Snow crab and the politics of crisis in 

Newfoundland. Labour 69: 119-145. 

Dawe EG, Koen-Alonso M, Chabot D, Stansbury D, Mullowney D. 2012. Trophic 

interactions between key predatory fishes and crustaceans: comparison of two 

Northwest Atlantic systems during a period of ecosystem change. Mar Ecol Prog Ser 

469: 222-248. 

DeNiro MJ, Epstein S. 1977. Mechanism of carbon isotope fractionation associated with 

lipid synthesis. Science 197, 261-263.  

DeNiro MJ, Epstein S. 1978. Influence of diet on the distribution of carbon isotopes in 

animals. Geochim Cosmochim Ac 42: 495-506.  

deYoung B, Rose GA. 1993. On recruitment and distribution of Atlantic cod (Gadus 

morhua) off Newfoundland. Can J Fish Aquat Sci 50: 2729-2741. 

DFO 2017. Assessment of Newfoundland and Labrador (divisions 2HJ3KLNOP4R) 

snow crab. DFO Can Sci Advis Sec Sci Advis Rep 2017/023.  

DFO. 2018a. Stock assessment of northern cod (NAFO divisions 2J3KL) in 2018. DFO 

CSAS Sci Adv Rep 2018/038. 

 

DFO. 2018b. An assessment of Northern Shrimp (Pandalus borealis) in Shrimp Fishing 

Areas 4-6 in 2017. DFO Can Sci Advis Sec Sci Advis Rep 2018/018. 

 

DFO. 2019a. Stock Assessment of Subdivision 3Ps cod. DFO CSAS Sci Adv 2019/009. 

DFO. 2019b. Landings and landed value by species. Fisheries and Oceans Canada; [last 

accessed 2019 Sept 13]. http://www.nfl.dfo-
mpo.gc.ca/publications/reports_rapports/Land_Inshore_Debarquer_cotiere_2019_eng.htm 

Dutil J-D, Brander K. 2003. Comparing productivity of North Atlantic cod (Gadus 

morhua) stocks and limits to growth production. Fish Oceanogr 12(4-5): 502-512. 

Dwyer KS, Buren A, Koen-Alonso M. 2010. Greenland halibut diet in the Northwest 

Atlantic from 1978 to 2003 as an indicator of ecosystem change. J Sea Res 64: 436-

445. 

Elton CS. 1927. Animal Ecology. University of Chicago Press, Chicago.  

 

http://www.nfl.dfo-mpo.gc.ca/publications/reports_rapports/Land_Inshore_Debarquer_cotiere_2019_eng.htm
http://www.nfl.dfo-mpo.gc.ca/publications/reports_rapports/Land_Inshore_Debarquer_cotiere_2019_eng.htm


 

21 
 

FAO. 2018. The state of world fisheries and aquaculture 2018: Meeting the sustainable 

development goals. Rome. Licence: CC BY-NC-SA 3.0 IGO.  

 

Fillon RH. 1976. Hamilton Bank, Labrador Shelf: postglacial sediment dynamics and 

paleo-oceanography. Mar Geol 20(1): 7-25. 

 

Fisheries Resource Conservation Council. 2001. 2001/2002 conservation requirements 

for 2J3KL cod. Report to the Minister of Fisheries and Oceans. FRCC 2001.R.5. 

 

Fisheries Resource Conservation Council. 2011. Towards recovered and sustainable 

groundfish fisheries in eastern Canada: A report to the Minister of Fisheries and 

Oceans. ICES Document FRCC.11.R1. 

 

 FFAW. 2019. St. John’s (NL): Fish, Food and Allied Workers Union; [accessed 2019 

Aug 23]. http://ffaw.nf.ca/. 

 

Fitzpatrick C, Miller RJ. 1979. Review of spawning times and locations for some 

commercial finfish on the Newfoundland and Labrador coasts. Fish Mar Serv Tech 

Rep 905.  

 

France RL. 1995. Differentiation between littoral and pelagic food webs in lakes using 

stable carbon isotopes. Limnol Oceanogr 40: 1310-1313. 

Frank KT, Carscadden JE, Simon JE. 1996. Recent excursions of capelin (Mallotus 

villosus) to the Scotian Shelf and Flemish Cap during anomalous hydrographic 

conditions. Can J Fish Aquat Sci 53: 1473-1486.  

Fry B. 1988. Food web structure on Georges Bank from stable C, N, and S isotopic 

compositions. Limnol Oceanogr 33: 1182-1190. 

Fry B, Sherr EB. 1984. δ13C measurements as indicators of carbon flow in marine and 

freshwater ecosystems. Contr Mar Sci 27: 13-47.  

Fudge SB, Rose GA. 2008. Life history co-variation in a fishery depleted Atlantic cod 

stock. Fish Res 92: 107-113.  

Fung T, Farnsworth KD, Shephard S, Reid DG, Rossberg AG. 2013. Why the size 

structure of marine communities can require decades to recover from fishing. Mar 

Ecol Prog Ser 484: 155-171. 

Gao K, Xu J, Gao G, Li Y, Hutchins DA, Huang B, Wang L, Zheng Y, Jin P, Cai X, 

Häder D-P, et al. 2012. Rising CO2 and increased light exposure synergistically 

reduce marine primary productivity. Nature Climate Change 2: 519-523.  



 

22 
 

Gao K, Helbling EW, Häder D-P, Hutchins DA. 2012. Responses of marine primary 

producers to interactions between ocean acidification, solar radiation, and warming. 

Mar Ecol Prog Ser 470: 167-189. 

Gislason H, Daan N, Rice JC, Pope JG. 2010. Size, growth, temperature and the natural 

mortality of marine fish. Fish Fish 11(2): 149-158.  

Gomes MC, Haedrich RL, Villagarcia MG. 1995. Spatial and temporal changes in the 

groundfish assemblages on the north-east Newfoundland/Labrador Shelf, north-west 

Atlantic, 1978-1991. Fish Oceanogr 4(2): 85-101. 

Gray T, Hatchard J, Daw T, Stead S. 2008. New cod war of words: ‘Cod is God’ versus 

‘sod the cod’- Two opposed discourses on the North Sea Cod Recovery Programme. 

Fish Res 93(1-2): 1-7. 

Greenham K. 2019 Mar 4. Hope and worry amongst Newfoundland’s northeast coast 

harvesters for snow crab’s future. The Telegram. 

Griffin L. 2010. The limits to good governance and the state of exception: A case study 

of North Sea Fisheries. Geoforum 41(2): 282-292.  

Haedrich RL, Barnes SM. 1997. Changes over time of the size structure in an exploited 

shelf fish community. Fish Res 31(3): 229-239. 

Hairston NG, Smith FE, Slobodkin LB. 1960. Community structure, population control, 

and competition. Am Nat 94(879): 421-425. 

Halliday RG, Pinhorn AT. 2009. The roles of fishing and environmental change in the 

decline of Northwest Atlantic groundfish populations in the early 1990s. Fish Res 

97(3): 163-182. 

Hammill MO, Stenson GB. 2000. Estimated prey consumption by harp seals (Phoca 

groenlandica), hooded seals (Crystophora cristata), grey seals (Halichoerus grypus) 

and harbour seals (Phoca vitulina) in Atlantic Canada. J Northw Atl Fish Sci 26: 1-

23. 

Hamilton LC, Butler MJ. 2001. Outport adaptations: social indicators through 

Newfoundland’s cod crisis. Hum Ecol Rev 8(2): 1-11. 

Hanson JM, Chouinard GA. 2002. Diet of Atlantic cod in the southern Gulf of St. 

Lawrence as an index of ecosystem change, 1959-2000. J Fish Biol 60: 902-922. 

Hecky RE, Hesslein RH. 1995. Contributions of benthic algae to lake food webs as 

revealed by stable isotope analysis. J N Am Benthol Soc 14(4): 631-653. 

 



 

23 
 

Hidalgo M, Reglero P, Álvarez-Berastegui D, Torres AP, Álvarez I, Rodriguez JM, 

Carbonell A, Balbín R, Alemany F. 2015. Hidden persistence of salinity and 

productivity gradients shaping pelagic diversity in highly dynamic marine 

ecosystems. Mar Environ Res 104: 47-50. 

Hiddink JG, Moranta J, Balestrini S, Sciberras M, Cendrier M, Bowyer R, Kaiser MJ, 

Sköld M, Jonsson P, Bastardie F, et al. 2016. Bottom trawling affects fish condition 

through changes in the ratio of prey availability to density of competitors. J Appl Ecol 

53(5): 1500-1510. 

Hillborn R. 2011. Future directions in ecosystem based fisheries management: A personal 

perspective. Fish Res 108: 235-239. 

Hobson KA. 1987. Use of stable-carbon isotope analysis to estimate marine and 

terrestrial protein content in gull diets. Can J Zool 65: 1210-1213. 

Holden M, Garrod D. 1996. The Common Fisheries Policy: origin, evaluation and future. 

Fishing New Books Ltd. Oxford, UK.  

Hollowed AB, Bax N, Beamish R, Collie J, Fogarty M, Livingston P, Pope J, Rice JC. 

2000. Are multispecies models an improvement on single-species models for 

measuring fishing impacts on marine ecosystems? ICES J Mar Sci 57: 707-719. 

Hutchings JA. 2000. Collapse and recovery of marine fishes. Nature 406: 882-885.  

Hutchings JA. 2002. Ecology and Biodiversity of Commerically Unexploited Marine 

Fishes in the Northwest Atlantic. Final Report, Dalhousie University, Halifax, Nova 

Scotia.  

 

Hutchings JA, Baum JK. 2005. Measuring marine fish biodiversity: temporal changes in 

abundance, life history and demography. Philos T R Soc B 360(1454): 315-338. 

Hutchings JA, Myers RA, Lilly GR. 1994. Geographic variation in the spawning of 

Atlantic cod, Gadus morhua, in the Northwest Atlantic. Can J Fish Aquat Sci 50: 

2457-2467. 

Hutchings JA, Rangeley RW. 2011. Correlates of recovery for Canadian Atlantic cod 

(Gadus morhua). Can J Zool 89: 386-400. 

Hutchinson G.E. 1957. Concluding remarks. Cold Spring Harbour Symposium on Quant 

Biol 22: 415-427. 

Jackson AL, Inger R, Parnell AC, Bearhop S. 2011. Comparing isotopic niche widths 

among and within communities: SIBER- Stable isotope Bayesian ellipses in R. J 

Anim Ecol 80(3): 595-602.  

 



 

24 
 

Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury 

RH, Cooke R, Erlandson J, Estes JA, et al. 2001. Historical overfishing and the recent 

collapse of coastal ecosystems. Science 293(5530): 629-637. 

 

Jennings S, Blanchard JL. 2004. Fish abundance with no fishing: predictions based on 

macroecological theory. J Anim Ecol 73: 632-642. 

Jennings S, Collingridge K. 2015. Predicting consumer biomass, size-structure, 

production, catch potential, responses to fishing and associated uncertainties in the 

world’s marine ecosystems. PLoS One 10(7): e0133794. 

Johannes RE. 1982. Traditional conservation methods and protected marine areas in 

Oceania. Ambio 11: 258-261. 

Katsanevakis S, Stelzenmüller V, South A, Sørensen TK, Jones PJS, Kerr S, Badalamenti 

F, Anagnostou C, Breen P, Chust G, et al. 2011. Ecosystem-based marine spatial 

management: Review of concepts, policies, tools and critical issues. Ocean Coast 

Manage 54(11): 807-820. 

Kerr SR. 1974. Theory of size distribution in ecological communities. J Fish Res Board 

Can 31: 1859-1862. 

Keyuan Z. 2003. Sino-Japanese joint fishery management in the East China Sea. Mar 

Policy 27(2): 125-142.  

Kincaid KB, Rose GA. 2014. Why fishers want a closed area in their fishing grounds: 

Exploring perceptiosn and attitudes to sustainable fisheries and conservation 10 years 

post closure in Labrador, Canada. Mar Policy 46: 84-90. 

Koch M, Bowes G, Ross C, Zhang X-H. 2012. Climate change and ocean acidification 

effects on seagrasses and marine macroalgae. Global Change Biol 19(1): 103-132. 

Lawson JW, Anderson JT, Dalley EL, Stenson GB. 1998. Selective foraging by harp 

seals Phoca groenlandica in nearshore and offshore waters of Newfoundland, 1993 

and 1994. Mar Ecol Prog Ser 163: 1-10. 

Layman CA, Arrington DA, Montaña CG, Post DM. 2007. Can stable isotope ratios 

provide for community-wide measures of trophic structure? Ecology 88(1): 42-48.  

Leibold MA. 1995. The niche concept revisited: Mechanistic models and community 

context. Ecology 76(5): 1371-1382. 

Levin SA. 1998. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 

1: 431-436. 



 

25 
 

Lilly GR. 1994. Predation by Atlantic cod on capelin on the southern Labrador and 

Northeast Newfoundland shelves during a period of changing spatial distributions. 

ICES mar Sci Symp 198: 600-611. 

Lilly GR, Parsons DG, Kulka DW. 2000. Was he increase in shrimp biomass on the 

northeast Newfoundland shelf a consequence of a release in predation pressure from 

cod? J Northw Atl Fish Sci 27: 45-61. 

Lilly GR, Wieland K, Rothschild BJ, Sundby S, Drinkwater KF, Brander K, Ottersen G, 

Carscadden JE, Stenson GB, Chouinard JE, et al. 2008. Decline and recovery of 

Atlantic cod (Gadus morhua) stocks throughout the North Atlantic. Resiliency of 

Gadid Stocks to Fishing and Climate Change AK-2G-08-01. 

Link JS. 2010. Ecosystem-based fisheries management: confronting tradeoffs. Cambridge 

University Press.  

Link JS, Bolles K, Milliken CG. 2002. The feeding ecology of flatfish in the Northwest 

Atlantic. J Northw Fish Sci 30: 1-17. 

Link JS, Garrison LP. 2002. Changes in piscivory associated with fishing induced 

changes to the finfish community on Georges Bank. Fish Res 55(1): 71-86. 

Link JS, Watson RA. 2019. Global ecosystem overfishing: Clear delineation within real 

limits to production. Science Advances 5(6): eaav0474. 

Livingston PA. 1989. Interannual trends in Pacific cod, Gadus macrocephalus, predation 

on three commercially important crab species in the eastern Bering Sea. Fish Bull 

87(4): 807-827. 

Lorrain A, Paulet Y-M, Chauvaud L, Savoye N, Donval A, Saout C. 2002. Differential 

𝛿13𝐶 and 𝛿15𝑁 signatures among scallop tissues: implications for ecology and 

physiology. J Exp Mar Biol Ecol 275 (1): 47-61.  

Lotze HK, Reise K, Worm B, van Beusekom J, Busch M, Ehlers A, Heinrich D, 

Hoffmann RC, Holm P, Jensen C, et al. 2005. Human transformations of the Wadden 

Sea through time: a synthesis. Helgoland Mar Res 59: 84-95.  

Lotze HK, Worm B, Molis M, Wahl M. 2002. Effects of UV radiation and consumers on 

recruitment and succession of a marine microbenthic community. Mar Ecol Prog Ser 

243: 57-66. 

Maberly SC, Raven JA, Johnston AM. 1992. Discrimination between C12  and C13  by 

marine plants. Oecologia 91: 481-492. 

 



 

26 
 

Mackinson S, Daskalov G, Heymans JJ, Neira S, Arancibia H, Zetina-Rejón, Jiang H, 

Cheng HQ, Coll M, Arreguin-Sanchez F, et al. 2009. Which forcing factors fit? Using 

ecosystem models to investigage the relative influence of fishing and changes in 

primary productivity on the dynamics of marine ecosystems. Ecol Model 220(21): 

2972-2987.  

Macko SA, Fogel-Estep ML, Engel MH, Hare PE. 1987. Isotopic fractionation of 

nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem Geol 

65: 79-92.  

Macko SA, Lee WY, Parkere PL. 1982. Nitrogen and carbon fractionation by two species 

of marine amphipods: laboratory and field studies. J Exp Mar Biol Ecol 63: 145-149.  

MacNeil MA, Drouillard KG, Fisk AT. 2006. Variable uptake and elimination of stable 

nitrogen isotopes between tissues in fish. Can J Fish Aquat Sci 63: 345-353. 

Mann KH & Drinkwater KF. 1994. Environmental influences of fish and shellfish 

production in the Northwest Atlantic. Environ Rev 2(1): 16-32. 

Mather C. 2013. From cod to shellfish and back again? The new resource geography and 

Newfoundland’s fish economy. Appl Geogr 45: 402-409. 

Methven DA, Piatt JF. 1989. Seasonal and annual variation in the diet of Atlantic cod 

(Gadus morhua) in relation to the abundance of capelin (Mallotus villosus) off eastern 

Newfoundland, Canada.  

Mieszkowska N, Genner MJ, Hawkings SJ, Sims DW. 2009. Effects of climate change 

and commercial fishing on Atlantic Cod Gadus morhua. Adv Mar Biol 56: 213-273. 

Minagawa M, Wada E. 1984. Stepwise enrichment of 𝑁15  along food chains: Further 

evidence and the relation between 𝛿15𝑁 and animal age. Geochem Cosmochim Ac 

48(5): 1135-1140. 

Moyes F, Magurran AE. 2018. Change in the dominance structure of two marine-fish 

assemblages over three decades. J Fish Biol 94(1): 96-102. 

Mullowney DRJ, Morris CJ, Dawe EG, Skanes KR. 2012. Impacts of a bottom trawling 

exclusion zone on snow crab abundance and fish harvester behavior in the Labrador 

Sea, Canada. Mar Policy 36(3): 567-575. 

Mullowney DRJ, Dawe EG, Colbourne EB, Rose GA. 2014. A review of factors 

contributing to the decline of Newfoundland and Labrador snow crab (Chionocetes 

opilio). Rev Fish Biol Fish 24(2): 239-257. 



 

27 
 

Mullowney D, Baker K, Coffey W, Pedersen E, Colbourne E, Koen-Alonso M, Wells N. 

2019. An assessment of Newfoundland and Labrador snow crab (Chionocetes opilio) 

in 2017. Can Sci Advi Sec Res Doc 2019/003.  

Murphy HM, Pepin P, Robert D. 2018. Re-visiting the drivers of capelin recruitment in 

Newfoundland since 1991. Fish Res 200: 1-10.  

Myers RA, MacKenzie BR, Bowen KG, Barrowman NJ. 2001. What is the carrying 

capacity for fish in the ocean? A meta-analysis of population dynamics of Northern 

cod. Can J Fish Aquat Sci 58(7): 1464-1476. 

Myers RA, Worm B. 2003. Rapid worldwide depletion of predatory fish communities. 

Nature 423: 280-283. 

Naiman RJ, Latterell JJ. 2005. Principles for linking fish habitat to fisheries management 

and conservation. J Fish Biol 67: 166-185. 

Neis B. Fishers’ ecological knowledge and stock assessment in Newfoundland. Nfld Stud 

8: 155-178. 

Neubauer P, Jensen OP, Hutchings JA, Baum JK. 2013. Resilience and recovery of 

overexploited marine populations. Science 340(6130): 347-349. 

Newfoundland Statistics Agency. 1994. Historical statistics of Newfoundland and 

Labrador. St. John’s, Government of Newfoundland & Labrador. Section K: 

Fisheries; p. 116-126. 

Newsome SD, Martínez del Rio C, Bearhop S, Phillips DL. 2007. A niche for isotope 

ecology. Frontiers Ecol Environ 5: 429-436. 

Oksanen L, Fretwell SD, Arruda J, Niemala P. 1981. Exploitation ecosystems in 

grandients of primary productivity. Am Nat 118(2): 240-261. 

O’Leary MH. 1981. Carbon isotope fractions in plants. Phytochemistry 20: 553-567. 

O’Leary MH. 1988. Carbon isotopes in photosynthesis. BioScience 38: 328-336.   

Olsen EM, Heino M, Lilly GR, Morgan MJ, Brattey J, Ernande B, Dieckmann, U. 2004. 

Maturation trends indicative of rapid evolution preceded the collapse of northern cod. 

Nature 428: 932-935. 

Olson RJ, Popp BN, Graham BS, Lόpz-Ibarra, G.A., Galván-Magaña F, Lennert-Cody 

CE, Bocanegra-Castillo N, Wallsgrove NJ, Gier E, Alatoree-Ramírez V, et al. 2010. 

Food-web inferences of stable isotope spatial patterns in copepods and yellowfin tuna 

in the pelagic eastern Pacific Ocean. Prog Oceanogr 86: 124-138. 



 

28 
 

Palumbi SR, McLeod KL, Grünbaum D. 2008. Ecosystems in action: Lessons from 

marine ecology about recovery, resistance, and reversibility. Bioscience 58(1): 33-42. 

Parsons DG. 2005. Interactions between northern shrimp, Pandalus borealis 

(Pandalidae), and its key predators within the eastern Newfoundland and Labrador 

marine ecosystem. Mar Biol Res 1(1): 59-67. 

Pedersen EJ, Thompson PL, Ball TRA, Fortin M-J, Gouhier TC, Link H, Moritz C, 

Nenzen H, Stanley RRE, Taranu ZE et al. 2017. Signatures of the collapse and 

incipient recovery of an overexploited marine ecosystem. Roy Soc Open Sci. 4(7): 

170215. 

 

Pepin P. 1991. Effect of temperature and size on development, mortality, and survival 

rates of the pelagic early life history stages of marine fish. Can J Fish Aquat Sci 

48(3): 503-518. 

 

Petersen BJ, Fry B. 1987. Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18: 

293-320. 

Petersen CGJ. 1903. What is over-fishing? J Mar Biol Ass UK 6(4): 587-595. 

Phillips D.L. 2001. Mixing models in analyses of diet using multiple stable isotopes: a 

critique. Oecologia 127: 166-170. 

Pikitch EK, Santora, C., Babcock EA, Bakun A, Bonfil R, Conover DO, Dayton P, 

Doukakis P, Fluharty D, Heneman B, et al. 2004. Ecosystem-based fishery 

management. Science 305: 346-347. 

Pinnegar JK, Goñi N, Trenkel VM, Arrizabalaga H, Melle W, Keating J, Óskarsson G. 

2015. A new compilation of stomach content data for commercially important pelagic 

fish species in the northeast Atlantic. Earth Syst Sci Data 7(1): 19-28. 

Pitcher TJ, Heymans JJ. 2002. Ecosystem models of Newfoundland for the time periods 

1995, 1985, 1900 and 1450. Fisheries Centre Research Reports 10(5).  

Poloczanska ES, Burrows MT, Brown CJ, Molinos JG, Halpern BS, Hoegh-Guldberg O, 

Kappel CV, Moore PJ, Richardson AJ, Schoeman DS, et al. 2016. Responses of 

marine organisms to climate change across oceans. Front Mar Sci 3. 

Popp BN, Laws EA, Bidigare RR, Dore JE, Hanson KL, Wakeham SG. 1998. Effect of 

phytoplankton cell geometry on carbon isotopic fractionation. Geochim Cosmochim 

Ac 62(1): 69-77. 

 



 

29 
 

Pörter HO, Berdal B, Blust R, Brix O, Colosimo A, De Wachter B, Giuliani A, Johansen 

T, Fischer T, Knust R, et al. 2001. Climate induced temperature effects on growth 

performance, fecundity and recruitment in marine fish: developing a hypothesis for 

cause and effect relationships in Atlantic cod (Gadus morhua) and common eelpout 

(Zoarces viviparous). Continent Shelf Res 21(18-19): 1975-1997. 

Prézelin BB, Boucher NP, Schofield O. 1994. Evaluation of field studies of UVB 

radiation effects on Antarctic marine primary productivity. In: Stratospheric ozone 

depletion/UV-B radiation in the biosphere. Springer, Berlin, Heidelberg: 181-194. 

Rice JC. (Ed.) 2005. Ecosystem effect on fishing: impacts, metrics, and management 

strategies. ICES Coop Res Rep 272. 

Riebesell U, Wolf-Gladrow DA, Smetacek V. 1993. Carbon dioxide limitation of marine 

phytoplankton growth rates. Nature 361(6409): 249-251. 

Ripple WJ, Estes JA, Schmitz OJ, Constant V, Kaylor MJ, Lenz A, Motley JL, Self KE, 

Taylor DS, Wolf C. 2016. What is a trophic cascade? Trends Ecol Evol 31(11): 842-

849. 

Robichaud D, Rose GA. 2004. Migratory behavior and range in Atlantic cod: inference 

from a century of tagging. Fish Fish 5: 185-214. 

Rose GA. 1993 Cod spawning on a migration highway in the north-west Atlantic. Nature 

366: 458-461 

Rose GA. 2003. Monitoring coastal northern cod: towards an optimal survey of Smith 

Sound, Newfoundland. ICES J Mar Sci, 60: 453-462. 

Rose GA. 2005. On distributional responses of North Atlantic fish to climate change. 

ICES J Mar Sci, 62: 1360-1374. 

Rose GA. 2007. Cod: The Ecological History of the North Atlantic Fisheries. Breakwater 

Books, St. John’s, Canada. 

Rose GA, DeYoung B, Kulka DW, Goddard SV, Fletcher GL. 2000. Distribution shifts 

and overfishing the northern cod: a view from the ocean. Can J Fish Aquat Sci 57: 

644-664 

Rose GA, Kulka DW. 1999. Hyperaggregation of fish and fisheries: how catch-per-unit-

effort increased as the northern cod (Gadus morhua) declined. Can J Fish Aquat Sci 

56 (Suppl. 1): 118-127. 

Rose GA, O’Driscoll RL. 2002. Capelin are good for cod: can the northern stock rebuild 

without them? ICES J Mar Sci 59: 1018-1026. 



 

30 
 

Rose GA, Rowe S. 2018. Does redistribution or local growth underpin rebuilding of 

Canada’s northern cod? Can J Fish Aquat Sci 75(6): 825-835. 

Rose GA, Walters CJ. 2019. The state of Canada’s iconic northern cod: a second opinion. 

Fish Res 219: 105314. 

Rosenberg AA, Bolster WJ, Alexandre KE, Leavenworth WB, Cooper AB, McKenzie 

MG. 2005. The history of ocean resources: modeling cod biomass using historical 

records. Front Ecol Environ 3(2): 78-84. 

Rountrey AN, Coulson PG, Meeuwig JJ, Meekan M. 2014. Water temperature and fish 

growth: otoliths predict growth patterns of a marine fish in a changing climate. 20(8): 

2450-2458. 

Runge JA. 1988. Should we expect a relationship between primary production and 

fisheries? The role of copepod dynamics as a filter of trophic variability. 

Hydrobiologia 167/168: 61-71. 

Sakshaug E, Slagstad D. 1992. Sea ice and wind: Effects on primary productivity in the 

Barents Sea. Atmosphere-Ocean 30(4): 579-591.  

Schlacher TA, Wooldridge TH. 1996. Origin and trophic importance of detritus- evidence 

from stable isotope in the benthos of a small, temperate estuary. Oecologia 106: 382-

388.  

Schrank WE. 2005. The Newfoundland Fishery: ten years after the moratorium. Mar 

Policy 29(5): 407-420. 

Schrank WE, Roy N. 2013. The Newfoundland fishery and economy twenty years after 

the Northern Cod Moratorium. Mar Resour Econ 28(4): 397-413. 

Schwarcz HP. 1991. Some theoretical aspects of isotope paleodiet studies. J Archaeol Sci 

18: 261-275. 

Shelton PA, Healey BP. 1999. Should depensation be dismissed as a possible explanation 

for the lack of recoveyr of the northern cod (Gadus morhua) stock? Can J Fish Aquat 

Sci 56: 1521-1524.  

Shelton PA, Sinclair AF, Chouinard GA, Mohn RK, Duplisea DE. 2006. Fishing under 

low productivity conditions is further delaying recovery of Northwest Atlantic cod 

(Gadus morhua). Can J Fish Aquat Sci 36: 235-238. 

Sherman K, Belkin IM, Friedland KD, O’Reilly J, Hyde K. 2009. Accelerated warming 

and emergent trends in fisheries biomass yields of the world’s large marine 

ecosystems. J Human Environ 38(4): 215-224. 



 

31 
 

Smedbol RK, Wroblewski JS. 2002. Metapopulation theory and northern cod population 

structure: interdependency of subpopulations in recovery of a groundfish population. 

Fish Res 55(1-3): 161-174. 

Smith RC, Baker KS. 1982. Assessment of the influence of enhanced UV-B on marine 

primary productivity. The Role of Solar Ultraviolet Radiation in Marine Ecosystems. 

Springer, Boston, MA: 509-537. 

Steele DH, Andersen R, Green JM. 1992. The managed commercial annihilation of 

northern cod. Newfoundland Labrador Stud 8(1): 34-68. 

Stenson GB, Hammill MO, Lawson JW. 1997. Predation by harp seals in Atlantic 

Canada: Preliminary consumption estimates for arctic cod, capelin and Atlantic cod. J 

Northw Atl Fish Sci 22: 137-154. 

Stock BC, Jackson AL, Ward EJ, Parnell AC, Phillips DL, Semmens BX. 2018. 

Analyzing mixing systems using a new generation of Bayesian tracer mixing models. 

PeerJ 6: e5096; DOI 10.7717/peerj.5096.  

Templeman W. 1979. Migration and intermingling of stocks of Atlantic cod, Gadus 

morhua, of the Newfoundland and adjacent areas from tagging in 1962-66. ICNAF 

Res Bull 14: 6-50  

Templeman W. 1981. Vertebral numbers in Atlantic cod, Gauds morhua, of the 

Newfoundland and adjacent areas, 1947-71, and their use for delineating stocks. J 

Northw Atl Fish Sci 2: 21-45. 

Templeman W. 1982. Stomach contents of the thorny skate, Raja radiata, from the 

Northwest Atlantic. J Northw Atl Fish Sci 3: 123-126. 

Tewfik A, Rasmussen JB, McCann KS. 2005. Anthropogenic enrichment alters marine 

benthic food web. Ecology 86(10): 27265-2736.  

Trites A, Livingston P, Mackinson S, Vasconcellos M, Springer A, Pauly D. 1999. 

Ecosystem considerations and the limations of ecosystem models in fisheries 

management: insights into the Bering Sea. In: Proceedings of Ecosystem 

Considerations in Fisheries Management. 16th  Lowell Wakefield Fisheries 

Symposium and Americna Fisheries Society Joint Meeting. Alaska College Sea Grant 

Program. AK-SG-99-01, Anchorage, Alaska, USA: 609-619. 

Vander Zanden MJ, Caban G, Rasmussen JB. 1997. Comparing trophic position of 

freshwater fish calculated using stable nitrogen isotope ratios (δ N15 ) and literature 

dietary data. Can J Fish Aquat Sci 54(4): 1142-1158. 

Warren JS. 1976. The morphology of two transferse channels of the northeast 

Newfoundland shelf. Atl Geol 12(1): 19-32. 



 

32 
 

Willis TJ, Millar RB, Babcock RC. 2003. Protection of exploited fish in temperate 

regions: high density and biomass of snapper Pagrus auratus (Sparidae) in northern 

New Zealand marine reserves. J Appl Ecol 40(2): 214-227. 

Windle MJS, Rose GA, Devillers R, Fortin M-J. 2012. Spatio-temporal variations in 

invertebrate-cod-environment relations on the Newfoundland-Labrador Shelf, 1995-

2009. Mar Ecol Prog Ser 469: 263-278. 

Wooler M, Smallwood B, Jacobson M, Fogel M. 2003. Carbon and nitrogen stable 

isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and 

Belize: implications for trophic level studies. Hydrobiologia 499: 13-23.  

Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton 

EA, Hutchings JA, Jennings S, et al. 2009. Rebuilding global fisheries. Science 325: 

578-585. 

Worm B, Myers RA. 2003. Meta-analysis of cod-shrimp interactions reveals top-down 

control in oceanic food webs. Ecology 84(1): 162-173. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

Co-authorship Statement 

I am the primary author of all three research papers in this thesis. This work concentrated 

on utilizing biological samples obtained during ecosystem surveys as part of research 

programs of the Centre for Fisheries Ecosystems Research (CFER). All analyses were 

conducted with input from Dr. Jonathan A. D. Fisher. Furthermore, I conducted a 

substantial amount of the laboratory work presented in this thesis to derive stomach 

contents quantities, archive, and prepare stale isotope samples. Finally, I conceived and 

wrote all manuscripts with generous amounts of analytical and editorial comments from 

Dr. Jonathan A.D. Fisher, who co-authors all three manuscripts produced from this thesis. 

 

Publication and submission status: 

Chapter I (Krumsick and Fisher) is published in PLoS One 14.4: e0215747 as an open-

access peer-reviewed article: 

https//journals.plos.org/plosone/article/comments?id=10.1371/journal.pone.0215747 

Chapter II (Krumsick and Fisher) is presently in preparation for Oecologia. 

Chapter III (Krumsick and Fisher) is published in Marine Ecology Progress Series 634: 

123-137 as an original peer-reviewed article:  

https://www.int-res.com/abstracts/meps/v635/p123-137/ 

 

 

 

 

https://www.int-res.com/abstracts/meps/v635/p123-137/


 

34 
 

Chapter 2: Spatial and ontogenetic variation in isotopic niche among recovering fish 

communities revealed by Bayesian modeling. 

 

Abstract  

Exploitation and changing ocean conditions have resulted in altered species interactions 

and varied population dynamics within marine fish communities off northeast 

Newfoundland and southern Labrador, Canada. To understand contemporary species 

interactions, I quantified the isotopic niches, niche overlap, and ontogenetic niche change 

among seven dominant fish species using stable isotope analyses. Analyses used fishes 

from three regions differing in fish and prey diversities. Differences in fish and diet 

composition diversity among regions were found using Simpson’s inverse diversity 

index. The regions of lowest diversities had higher instances of niche overlap and higher 

percentage of niche overlap area. The region of highest diversity had the widest spread of 

niches with greater distances from the community centroid. Ontogenetic shifts were 

observed such that larger individuals shifted towards the community centroid with the 

exception of Atlantic cod. Atlantic cod in particular was found to consistently be the top 

predator of the analyzed species. Our results reveal: (a) overlap in isotopic niches and 

spread within niche space was correlated with fish and diet diversity; (b) ontogenetic 

shifts are important when considering a species’ niche and quantifying spatial variation in 

community niche profiles.  
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Introduction 

Knowledge of diet and consumption by dominant predatory species is a key input to 

ecosystem approaches to fisheries management as species interactions are one of the 

main factors regulating fish populations (Hallowed et al. 2000, Link & Garrison 2002, 

Bundy & Fanning 2005, Naiman & Latterell 2005, Lilly 2008). In fisheries ecosystems of 

Newfoundland and Labrador, since the collapse of groundfish stocks in the early 1990s 

(Lilly 2008), numerous changes have been observed including rising ocean temperatures 

(Rice 2002, Colbourne et al. 2016), a southward shift in Atlantic cod (Gadus morhua) 

and capelin (Mallotus villosus) distributions (deYoung & Rose 1993, Frank et al. 1996, 

Rose & O’Driscoll 2002), and observed declines in Atlantic cod stocks followed by 

increases in snow crab (Chionocetes opilio) and northern shrimp (Pandalus sp.) 

populations (Lilly et al 2000, Parsons & Lear 2001, Rose 2005, Windle et al 2012, 

Pedersen et al 2017). Therefore quantifying spatio-temporal variation in feeding 

interactions and trophic structure studies is required to understand ecosystem functioning 

and predict future changes within this region.  

The trophic niche is an essential component of a species’ ecological niche resulting 

from predatory and competitive interactions (Leibold 1995). Trophic niches often vary 

throughout ontogeny as, for example, increased gape size allows for increased prey 

breadth (Werner & Gilliam 1984, Woodward & Hildrew 2002). In many cases body size, 

rather than species identity, predicts trophic position (Arim et al. 2009, Romanuk et al. 

2010). Stable isotope analyses have been proposed as a means to describe the trophic 

niche of species and communities by representing isotope data in multivariate space. 
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Such portrayals are comparable to the n-dimensional space of an ecological niche 

(Bearhop et al. 2004, Newsome et al. 2007). However, the isotopic niche includes a 

combination of biotic and abiotic processes and thus is not the same as the trophic niche 

which result from the trophic interactions of an organism (Newsome et al. 2007, Jackson 

et al. 2011).The two measures are correlated as consumer-resource interactions are often 

a primary driver of isotopic niche (Bearhop et al. 2004, Araújo et al. 2007) 

While stomach contents analyses have historically been used to describe diets, stable 

isotope analysis provides an alternative means of assessing energy flow through an 

ecosystem that integrates diet data over longer periods (Fry 1988, Lorrain et al. 2002).  

The stable nitrogen isotope signature (𝛿15𝑁) typically becomes enriched by 3.4 ‰ for 

fish species with each consumption due to preferential removal of lighter amine groups 

during deamination, allowing for approximation of tophic level (Macko et al. 1982, 

Minagawa & Wada 1984, Vander Zanden et al. 1997). The stable carbon isotope 

signature (𝛿13𝐶) provides an indication of the initial carbon source (pelagic or benthic in 

origin) and enriches at less than 1 ‰ with fractionation frequently considered negligible 

(DeNiro & Epstein 1978, Hecky & Hesslein 1995, Vander Zanden & Rassmussen 2001).  

Four metrics relevant to quantification of community trophic structure using stable 

isotopes are presented below (Layman et al. 2007, Jackson et al 2011): Bayesian ellipses 

overlap, mean distance to centroid, mean distance to nearest neighbour, and standard 

deviation of distance to nearest neighbour. These metrics, in addition to providing details 

on trophic interactions, provide the foundation from which more complex food web 
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dynamics models may be constructed (e.g. Abrantes et al. 2013, Marchese et al. 2014, 

Albo-Puigserver et al. 2016). 

The coastal shelf ecosystems of Newfoundland and Labrador are considered 

recovering fish communities following overexploitation by fisheries and changing 

climate and ecosystem conditions (Rice 2002, Buren et al. 2014, Pedersen et al. 2015). 

The recovery dynamics, however, appear to vary among regions partially due to food 

limitations in the northern regions (Lilly 1994, Rose & O’Driscoll 2002, Mullowney & 

Rose 2014). This requires understanding feeding interactions within recovering fish 

communities and characterizing spatial differences among regions.  

Towards this end, we use the four previously mentioned metrics of isotopic niche to 

analyze community trophic structure in recovering marine ecosystems. The specific 

objectives of this study are to: (a) determine the influence of species richness and 

diversity (both fish communities and their prey) on the community trophic structure 

among regions, and (b) assess the impact of ontogenetic variation on isotopic niche 

metrics.  

 

Materials & Methods 

Study Area 

The study was conducted as part of ecosystem surveys by the Center for Fisheries 

Ecosystems Research (CFER) aboard the RV Celtic Explorer in May 2013 and 2015 on 

the offshore shelves from southern Labrador and eastern Newfoundland, corresponding 

to Northwest Atlantic Fishery Organization (NAFO) subdivisions 2J and 3KL (Fig 2.1; 
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for survey details, see Rose & Rowe 2015). These surveys were conducted in accordance 

with the Fishery (General) Regulations of Canada. As per section 52, experimental 

licenses were obtained from Fisheries and Oceans Canada (license numbers NL-1596-13 

and NL-2927-15). The subdivisions 2J and 3KL together represent the management unit 

for the ‘northern cod’ stock of Atlantic cod (Gadus morhua). This region is dominated by 

the southward Labrador Current flowing along the shelf with sea surface temperatures 

steadily increasing with decreasing latitude (Petrie & Anderson 1983, Mason et al. 1999, 

Han et al. 2008). Three major channels in these regions had previously been identified as 

important for onshore-offshore cod migration: the Hawke Channel, the Notre Dame 

Channel, and the Bonavista Corridor (Rose 1993). Given their potential importance, these 

trenches served as the focal regions for sampling cod and all other fish species within this 

study.  

In both years a number of sets, defined as the catch obtained from a single trawl, were 

done in all three regions, though the Bonavista Corridor was more extensively surveyed. 

The trawl data for the fish species relative biomass composition were collected in May 

2013 using a Campelen 1800 trawl (Table 2.1; Fig 2.1). While other trawl gear types 

were also used during this survey, the Campelen 1800 trawl sets from 2013 were chosen 

to represent the catch data as it was the only gear deployed in all three regions, allowing 

for regional comparisons. Samples for isotope analysis were collected during May, 2015, 

utilizing a combination of Campelen 1800 and mid-water trawls (Table 2.2; Fig 2.1). The 

variety of gear used for the opportunistic sampling of stomachs and samples for isotope 
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Fig 2.1 Map of Newfoundland and southern Labrador with sampling locations. The 

sampling locations are indicated for the 2013 (open symbols) and 2015 (closed symbols) 

locations within the Hawke Channel (HC, triangles), Notre Dame Channel (NDC, 

circles), and Bonavista Corridor (BC, squares). The inset map outlines the study domain 

in eastern Canada. The relevant NAFO subdivisions 2J, 3K, and 3L boundaries are also 

indicated. Dashed lines represent 300 m depth contours. The bathymetry map is 

reproduced from GEBCO world map 2014 (www.gebco.net) and NAFO subdivisions 

reproduced from NAFO (www.nafo.int).  

 

 

http://www.gebco.net/
http://www.nafo.int/
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Table 2.1 Set details and diversity indices for 2013 Celtic Explorer data. Most abundant 

species (numbers, biomass) represents lists of the most frequently observed species 

pooled among sets within each region. Mean species richness and Simspon’s reciprocal 

were generated based on all trawl sets with regions.   

 

Region Number 
of Sets 

Most Abundant 
Species 
(Numbers) 

Most Abundant 
Species 
(Biomass) 

Mean Species 
Richness (± 
SD) 

Mean 
Simpson’s 
Reciprocal 
(± SD) 

Hawke 
Channel 

4 Redfish (26 – 
88%) 

Atlantic Cod  
(21 - 53%),  
Redfish (9 - 69%) 
 

10.750  (± 
2.754) 

2.269        
(± 0.992) 

Notre 
Dame 

Channel 

3 Atlantic Cod             
(4 - 65%),  

Redfish (24 - 
83%) 
 

Atlantic Cod  
(20 - 95%),  

Redfish (3 - 62%) 

10.667  (± 
2.081) 

1.679        
(± 0.352) 

Bonavista 
Corridor 

22 American Plaice  
(0 - 43%),  
Atlantic Cod  
(3 - 89%),  

Greenland Halibut  
(0 - 50%),  
Redfish (0 - 72%)  

Atlantic Cod  
(1 - 99%),  
Greenland 
Halibut  

(0 - 60%),  
Redfish (0 - 96%) 

13.212  (± 
2.992) 

3.588        
(± 1.341) 

 

 

Table 2.2 Set details and diversity indices for 2015 Celtic Explorer stomach data. Mean 

diet species richness and Simpson’s reciprocal evenness data based on pooled fish 

samples within regions.  

 

Region Number of 

Sets 

Number of 

Stomachs 

Analyzed 

Mean Diet 

Species Richness 

(± SD) 

Mean Diet 

Simpson’s 

Reciprocal (± 

SD) 

Hawke Channel 17 146 1.578 (± 0.846) 1.326 (± 0.515) 

 

Notre Dame 

Channel 

17 122 1.465 (± 0.731) 1.199 (± 0.384) 

     

Bonavista 

Corridor 

20 129  1.934 (± 1.149) 1.590 (± 0.835)  
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analysis resulted from multiple projects being conducted aboard the survey. Given the 

short period between the two surveys in addition to low frequency trends in community 

composition across this region during this time period (Pedersen et al. 2017), the 

community composition is unlikely to have shifted substantially between the two years.  

 

Sample collection 

All fish caught were sorted by species and their biomass was recorded. Sampled fish 

were swiftly killed with a sharp blow on the head.  In 2015, fish selected for isotope 

analysis had their lengths measured for the following fish species, representing the most 

abundant species by sampled biomass (either over 5% of the caught fish species by  

biomass or by numbers): American plaice (Hippoglossoides platessoides, labelled 

‘Plaice’ in figures), Atlantic cod (Gadus morhua, labelled ‘Cod’ in figures), capelin 

(Mallotus villosus), Greenland halibut (Reinhardtius hippoglossoides, labelled ‘Turbot’ in 

figures), lanternfish (Notoscopelus sp.), redfish (Sebastes sp.), and thorny skate 

(Amblyraja radiata, labelled ‘Skate’ in figures). We aimed to analyze twenty-one 

samples per species per region with as even a spread of sizes as possible. For species with 

little variation in size (capelin and lanternfish), only nine specimens were collected 

within each region. Based on the species’ observed length distributions, sampled 

individuals were classified as small, medium, or large, by dividing the observed range of 

sizes into three length categories of equal width (Table 2.3; Table 2.S1). These categories 

are recognized to be arbitrary, but as the exact timing of potential ontogenetic shifts was 

unknown, this division accounted for variation across the range of observed sizes. From  
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Table 2.3 Definition of small, medium and large size categories for each species. Size 

category definitions were consistent across regions. See Fig 2.S1 for visual representation 

of species sizes. 

 

Species Small size range 

(cm) 

Medium size 

range (cm) 

Large size range 

(cm) 

American Plaice 7.0 – 22.6 22.7 – 38.3 38.4 – 54.0 

Atlantic Cod 13.0 – 45.9 46.0 – 80.0  80.1 – 113.0 

Capelin 11.0 – 13.6 13.7 – 16.2 16.3 – 18.8 

Greenland 

Halibut 

10.0 – 27.4 27.5 – 45.0 45.1 – 62.5 

Lanternfish 12.9 – 14.5  14.6 – 15.6 15.7 – 17.4 

Redfish 4.0 – 18.6 18.7 – 33.2 33.3 – 48.0 

Thorny Skate 10.2 – 33.9 34.0 – 58.3 58.4 – 80.0  

 

most fish, a transverse sample of dorsal muscle tissue directly posterior to the head was 

collected, placed in 1.5 ml centrifuge vials and frozen at -20 ºC. Frozen stomach samples 

were also collected from these fish at sea. Stomachs from fish that showed signs of 

regurgitation or stomach eversion were not collected due to the potential of biasing 

stomach content results. The remaining fish with small, difficult to sample stomachs were 

individually labelled bagged, frozen whole at sea and later dissected in the laboratory for 

their muscle tissue and stomachs. Stomach content analyses identified and quantified the 

stomach contents to the lowest taxon feasible. Slow-dissolving features of prey, including 

otoliths, exoskeletons, and squid beaks were commonly used as prey identifiers. The 

mass and a count estimate of these prey were recorded with their identity.  

Muscle tissue samples were oven dried at 75°C for 48 hours and homogenized using 

an amalgamator. The homogenized samples were weighed and analyzed at Cornell 

University Stable Isotope Laboratory (Ithaca, NY, USA). Approximately 1 mg of sample 

was placed into 7×7 mm tin capsules, then flash combusted using a Carlo-Erba NC2500 
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elemental analyzer coupled on-line to a Finnigan MAT Delta Plus mass spectrometer for 

analyses of the resulting carbon dioxide and nitrogen gases. 

 

Species Richness and Diversity 

Two indices were used to describe the three analyzed regions. Both indices were applied 

to each survey set separately and averaged within region. Species richness is a count of 

the number of fish species present within a given set. The Inverse Simpson index 

(Simpson 1945), defined as follows: 

𝜆 = 1  ∑ (𝑛𝑖 𝑁⁄ )2𝑆
𝑖=1⁄                  (1) 

Where 𝑛𝑖  is the total number of a given species i in a set, N is the total number of all 

species in a set, and S is the total number of fish species within a given set. This λ 

represents a probability that two randomly chosen individuals will be of different species, 

such that higher values represent higher diversities.  

The analysis of species richness and diversity were undertaken using data from the May, 

2013, ecosystem survey aboard the same vessel and covering the same areas as the 2015 

survey (Fig 2.1). These data were used to characterize richness and diversity (both fish in 

the community and diet) due to superior data on species at the level of individuals beyond 

the large demersal species specifically targeted in 2015. Only fish species were analyzed 

for species richness and diversity while invertebrates were also included for diet diversity 

measurements within each fish stomach. While trawl data may provide representation for 

larger species and individuals, smaller fish may be underrepresented. Stomach content 

analysis has been proposed for assessing abundance of species that may not be 
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adequately represented in trawl data (Fahrig et al. 1993, Cook & Bundy 2012). Therefore, 

to assess the differences in potential prey available across regions, the contents of a total 

of 397 (303 of which contained prey) stomachs from all seven species analyzed in the 

2015 survey were analyzed. Species richness and an ANOVA was used to test differences 

between regions with response variables of species richness or Inverse Simpson’s 

Diversity and the categorical predictor variables of region and predator species.  

 

Stable Isotope Calculation 

Nitrogen and carbon ratios were expressed in delta (δ) notation, being the parts per 

thousand deviation from the standard material: Pee Dee belemnite limestone for carbon 

and atmospheric nitrogen for nitrogen as follows: 

𝛿15𝑁 𝑜𝑟 𝛿13𝐶 = ((
_𝑅𝑠𝑎𝑚𝑝𝑙𝑒_

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1) × 1000     (2) 

𝑅 =  𝐶13 𝐶12⁄  𝑜𝑟 𝑁15 𝑁14⁄                   (3) 

Lipids were not removed to avoid the potential influence of derived products on isotopic 

signatures (Pinnegar & Polunin 1999). Therefore, following analysis, the 𝛿13C values 

were normalized for lipid bias as recommended by (Post et al. 2007), as follows: 

         𝛿13𝐶𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝛿13𝐶𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 − 3.32 + 0.99 × 𝐶: 𝑁               (4) 

As the majority of fish samples were close to a C:N ratio of 3.3 as would be expected for 

muscle tissue of marine fish (Ricklefs & Travis 1980), this adjustment was only 

particularly relevant for lipid rich fish such as capelin, lanternfish and Greenland halibut. 
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Regional and ontogenetic variation was assessed using an ANCOVA on the following 

GLM: 

𝛿15𝑁 𝑜𝑟 𝛿13𝐶 = Region ∗ Length                 (5) 

With region being a categorical variable (n = 3) and length as a continuous variable. This 

analysis was conducted for each species separately.  

 

Bayesian Ellipses 

The remaining isotope analyses were conducted in two ways: (a) using size-pooled data 

as has frequently been done in such analyses and (b) splitting each species into three size 

categories to assess the influence of ontogenetic variation on metrics of niche overlap. 

The first of the Layman metrics was the Bayesian ellipse overlap, representing the core 

isotopic niche space occupied by a species. The construction of Bayesian ellipses, 

corrected for low sample size, was conducted in the R package SIBER (Jackson et al. 

2011). Analyses were conducted among species, not among size groups within species. 

The standard Bayesian ellipses represent the core isotopic niche space and represent 

bivariate standard deviation. The overlap between ellipses in isotopic space reflects 

overlap in the isotopic niches (Jackson et al. 2011). The proportion of overlapping 

ellipses is a count of the number of instances in which two Bayesian ellipses overlap in 

isotope biplot space over the total number of potential overlaps. The percent overlap is 

given by the percent of the overlapping area over the total area covered by the two 

ellipses. A mean of these overlapping areas was calculated for each region. An increased 

overlapping area represents increased isotopic niche overlap between the two species.  
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Mean Distance to Centroid and Nearest Neighbour 

For the purposes of this study, the community centroid was considered as the mean 

carbon and nitrogen values of the centers of each species’ ellipse (sizes pooled). The 

distance to the centroid is therefore defined as the distance between the centers of each 

ellipse to the community centroid within each region (Layman et al. 2007). This provides 

an indication of the degree of trophic diversity within a food web such that high mean 

distances indicate a wide variety of isotopic niches and low distances indicate a limited 

diversity of niches. The mean of these distances to the centroid was then calculated for 

each region. The distance to the nearest neighbour is calculated by analyzing the distance 

in biplot space between the center of a given ellipse and the center of each other ellipse of 

different species and selecting the shortest distance (Ricklefs & Travis 1980). The mean 

of the distance represents the overall density of species packing in trophic niche space 

such that high values indicate wider spread within biplot space while lower values 

indicate higher density of niches and trophic redundancy. The standard deviation of the 

distance provide a measure of evenness of species packing in biplot space such that high 

values indicate skewed spreads of isotopic niches and low values indicate even spread of 

niches. The mean and standard deviation of the shortest distance to the neighbouring 

ellipses was then calculated for these measured shortest distances. A general linear model 

was constructed with response variables of either mean distance to the centroid or the 

mean nearest neighbour and the categorical predictor variable of region (n=3). 

Bootstrapping was conducted on the mean and standard deviation distance to nearest 

neighbour to determine the credible interval around the calculated metrics. 
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Results 

Species Richness and Diversity 

No differences in the mean tow duration were observed among the three regions analyzed 

in the 2013 survey, allowing for comparison of the three regions (p = 0.28 from a one-

way ANOVA). The Inverse Simpson’s Index based on fishes sampled, was found to vary 

significantly among regions (p = 0.05) with Bonavista Corridor being the most diverse 

and the Notre Dame Channel the least diverse (Table 2.1). The sets in the northern two 

regions were dominated by one or two fish species (Atlantic cod and redfish) based on 

percentage of total catch while sets in the Bonavista Corridor were characterized by a 

more even representation of fish abundances among species (Table 2.1). In contrast, 

mean fish species richness within survey sets did not differ significantly among the three 

regions (p = 0.25) (Table 2.1). 

The Simpson’s Inverse diversity of the stomach contents was higher in the Bonavista 

Corridor than the other two regions (p < 0.01; Table 2.2), as was previously observed in 

these regions (Krumsick & Rose, 2012). Similarly, prey species richness was 

significantly higher in the Bonavista Corridor than the two northern regions (p < 0.01). 

These trends were consistent across all species except the nearly-exclusively 

planktivorous lanternfish and capelin. A summary of these stomach content analyses are 

included in Fig. 2.S2 and 2.S3. 

 

 

 



 

48 
 

Stable Isotopes 

Significant ontogenetic change in nitrogen signatures were observed in five of seven 

fishes examined (Figs 2.2-2.3). Nitrogen signatures increased with length for American  

plaice (p < 0.01), Atlantic cod (p < 0.01), Greenland halibut (p < 0.01), lanternfish (p < 

0.01) and redfish (p < 0.01). As these species increased in size the nitrogen isotopic value 

increased indicating that larger individuals were feeding at a higher trophic level. Among 

regions, Atlantic cod (p < 0.01) and Greenland halibut (p < 0.01) were found to show 

significantly lower nitrogen signatures in the northern regions while American plaice (p =  

0.01) and redfish (p  < 0.01) exhibited higher values in the north (Fig 2.2). Capelin and  

 

Fig. 2.2 Nitrogen isotopic values across 

the seven species and three size classes 

(small, medium, large). Lines were fitted 

using local polynomial regression (α = 

0.5) and the line type indicates region 

(solid: Bonavista Corridor; dashed: Notre 

Dame Channel; dotted: Hawke Channel). 

Error bars represent the standard error 

(except for Notre Dame thorny skate due 

to low sample size). For definitions of 

size categories, refer to Table 2.3. 
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Fig. 2.3 Carbon isotopic values across 

the seven species and three size classes 

(small, medium, large). Lines were fitted 

using local regression (α = 0.5) and the 

line type indicates region (solid: 

Bonavista Corridor; dashed: Notre Dame 

Channel; dotted: Hawke Channel). Error 

bars represent the standard error (except 

for Notre Dame thorny skate due to low 

sample size). For definitions of size 

categories, refer to Table 2.3. 

 

 

 

 

 

 

 

thorny skate nitrogen signatures did not vary with length or region.  

Carbon isotopic values generally increased with size for six of the seven species 

analyzed (Fig 2.3). With increasing size American plaice (p < 0.01), Atlantic cod (p < 

0.01), Greenland halibut (p < 0.01), and redfish (p < 0.01) shifted from a zooplankton-

dominated diet to a mixed pelagic/benthic based diet, while thorny skate (p < 0.01) 

shifted from a benthos-dominated diet towards a mixed pelagic/benthic diet. Atlantic cod 

(p = 0.02), Greenland halibut (p = 0.01) and lanternfish (p = 0.03) showed regional 

variation with their carbon signatures. Capelin carbon isotopic values did not vary with 

length or region. 
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Bayesian Ellipses  

The proportions of overlapping Bayesian ellipses tended to increase with decreasing 

species diversity as did the percent overlap of these ellipses (Figs 2.4-2.7, Table 2.4). The 

Bonavista Corridor had the greatest spread of core isotopic niches in biplot space. 

However, in other regions, where prey diversity decreased, these core isotopic niches 

overlapped more and trended towards the center of the biplot, suggesting increased 

competition for less diverse prey resources (Table 2.4). Finally, the pooled and size-

category separated analyses illustrated that while pooling all sizes within species together 

provided a general idea of the isotopic niche a species filled within the community, 

pooling increases perceived overlap in all cases (Table 2.4).  

 

Mean Distance to Centroid 

Region appeared to be important to explaining the distance of some species/size 

combination from the community centroid (Table 2.5), particularly Atlantic cod (p = 

0.01) and capelin (p = 0.03). Species in the Hawke Channel were closer to the community 

centroid in almost all cases compared to those in the Bonavista Corridor. The Notre 

Dame Channel samples often exhibited erratic behavior that did not consistently follow 

trends of diversity, though overall the community tended to be closer to the centroid in 

regions with lower prey diversity. As species increased in size, capelin (p = 0.04), 

Greenland halibut (p < 0.01), lanternfish (p = 0.03), and redfish (p < 0.01) tended to 

gravitate towards the community centroid. Atlantic cod (p < 0.01) were found to stray 

away from the centroid with increased size. 
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Fig. 2.4 Representation of Bayesian 

ellipses within stable isotope biplot 

space for the seven species with all 

size classes combined. The 𝛿15N axis 

represents the relative trophic level 

with lower trophic levels towards the 

bottom and higher trophic levels 

towards the top. The 𝛿13C axis 

represents the relative contributions of 

the base of the food web to the upper 

food web with pelagic contributions to 

the left and benthic/detrital 

contributions to the right. Individual 

panels represent: (a) Bonavista 

Corridor, (b) Notre Dame Channel, 

and (c) Hawke Channel. The star 

represents the community centroid 

within each region.  
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Fig. 2.5 Representation of Bayesian ellipses within stable isotope biplot space for the 

seven species within the Bonavista Corridor separated by size class. The 𝛿15N axis 

represents the relative trophic level with lower trophic levels towards the bottom and 

higher trophic levels towards the top. The 𝛿13C axis represents the relative contributions 

of the base of the food web to the upper food web with pelagic contributions to the left 

and benthic/detrital contributions to the right 
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Fig. 2.6 Representation of Bayesian ellipses within stable isotope biplot space for the 

seven species within the Notre Dame Channel separated by size class. The 𝛿15N axis 

represents the relative trophic level with lower trophic levels towards the bottom and 

higher trophic levels towards the top. The 𝛿13C axis represents the relative contributions 

of the base of the food web to the upper food web with pelagic contributions to the left 

and benthic/detrital contributions to the right 

 



 

54 
 

 

Fig. 2.7 Representation of Bayesian ellipses within stable isotope biplot space for the 

seven species within the Hawke Channel separated by size class. The 𝛿15N axis 

represents the relative trophic level with lower trophic levels towards the bottom and 

higher trophic levels towards the top. The 𝛿13C axis represents the relative contributions 

of the base of the food web to the upper food web with pelagic contributions to the left 

and benthic/detrital contributions to the right 
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Table 2.4 The proportion of observed overlapped Bayesian ellipses, mean % overlap area 

of ellipses (± SE) and mean and standard deviation for distance to nearest neighbour 

(DNN; ± bootstrap CI).  Includes analysis for the exclusion (Fig 2.4) and inclusion of size 

categories (Figs 2.5-2.7). 

 

Region Sizes Separated Sizes Pooled 
Proportion 

of overlaps 

Mean 

% 

overlap 

Mean 

DNN 

Standard 

Deviation 

DNN 

Proportion 

of overlaps 

Mean 

% 

overlap 

Mean 

DNN 

Standard 

Deviation 

DNN 

Hawke 

Channel 

0.23 2.07 

(± 

0.47) 

0.46 

(± 

0.02) 

0.37 (± 

0.04) 

0.36 4.01 

(± 

2.22) 

0.58 

(± 

0.12) 

0.37 (± 

0.16) 

Notre 

Dame 

Channel 

0.19 1.88 

(± 

0.55) 

0.58 

(± 

0.04) 

0.39 (± 

0.20) 

0.24 1.47 

(± 

1.00) 

0.81 

(± 

0.16) 

0.42 (± 

0.16) 

Bonavist

a 

Corridor 

0.16 1.52 

(± 

0.38) 

0.58 

(± 

0.04) 

0.47 (± 

0.06) 

0.27 0.84 

(± 

0.36) 

0.90 

(± 

0.16) 

0.47 (± 

0.14) 

 

Table 2.5 Mean distance to the centroid (± SE) by region for size-pooled (Fig 2.4) and 

size-divided ellipses (Figs 2.5-2.7). HC standing for Hawke Channel, NDC for Notre 

Dame Channel, and BC for Bonavista Corridor. 

 

Region Small Medium Large Pooled 

HC 1.22 (± 

0.40) 

1.14 (± 

0.43) 

1.06 (± 

0.46) 

1.09 (± 0.17) 

NDC 1.42 (± 

0.53)  

1.20 (± 

0.45) 

1.31 (± 

0.49) 

1.26 (± 0.19) 

BC 1.46 (± 

0.20) 

1.22 (± 

0.28) 

1.07 (± 

0.41) 

1.21 (± 0.25) 

 

Mean Distance and Standard Deviation to Nearest Neighbour  

The Hawke Channel fish species showed the closest proximity to their nearest neighbour 

and had the lowest standard deviation, indicating that individuals were more tightly 

packed within the isotope space, associated with increased trophic redundancy and/or 

competition (Table 2.4). The Bonavista Corridor showed a higher distance to the nearest 

neighbor and highest standard deviation, indicating the widest spread in niche space. In 
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comparison to these regions, the Notre Dame Channel had the highest mean distance to 

nearest neighbour. The mean distances to the nearest neighbour generally decreased when 

considering within species sizes separated rather than pooled (similar to Bayesian 

overlap; Table 2.4). This similarity indicates that not incorporating size variation within 

species tends to inflate average distances among species (Table 2.4).  

 

Discussion 

To understand interactions within recovering fish communities in Newfoundland and 

Labrador, I investigated how regional variation in fish and prey diversity, and fish size, 

influence four stable isotope metrics of community trophic structure. Trends in fish and 

prey diversity followed trends in the four metrics, indicating the potential importance of 

diversity in determining a species’ isotopic niche. Our study further quantified the 

importance of considering ontogenetic shifts in Bayesian ellipse analyses of community 

trophic structure.  

Ontogenetic shifts in diet were found in nearly all species studied. Species that 

exhibited increased trophic levels with size, such as Atlantic cod and redfish, were found 

to incorporate more fish into otherwise invertebrate-dominated diets (Fig 2.S2). Pelagic 

feeders, such as redfish and Greenland halibut, incorporated more benthically derived 

prey into their diets with increasing size, frequently switching from diets dominated by 

zooplankton to incorporate more shrimp and small fish. Similarly, benthic feeders, such 

as thorny skate, showed more pelagically derived prey as demonstrated by decreases in 

carbon signature, shifting from a benthic invertebrate dominated diet to incorporate more 
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zooplankton. These observations are often consistent with trends observed in the stomach 

contents of these fish species (Fig 2.S2). Capelin, which did not vary with size in their 

carbon or nitrogen isotopes, demonstrated no change in their diet associated with size, 

consuming nearly entirely zooplankton at all observed sizes. 

Numerous studies report ontogenetic shifts within a given species (e.g. Quevedo et al. 

2009, Matley et al. 2013, Albo-Puigserver et al. 2015), yet few assess the importance of 

ontogenetic shifts on community structure (e.g. Zhao et al. 2014). The vast majority of 

previous analyses that utilize stable isotopes and Bayesian ellipses group individuals 

together without intraspecific size considerations. If a species exhibits altered isotopic 

niches with ontogeny they would experience variable niche overlaps with different 

species (Nakazawa 2015). While pooling the size categories by species may provide a 

general idea of the trophic role filled by the organism, such an approach will overlook 

complexities in ontogenetic niche shifts and niche overlap across the life stages of the 

species. This pooling also leads to higher estimates of both proportions of niche overlap 

and mean percentage niche overlap vs. analyses that consider categories of fish size 

categories (Table 2.4). 

An additional result of this study is that, with the exception of Atlantic cod, with 

increased size a species’ core isotopic niches trended towards a community centroid. 

With increasing body size gape size increases, expanding the range of feeding 

opportunities (Werner & Gilliam 1984, Woodward & Hildrew 2002). Increased size 

additionally allows for more efficient predation and generalized feeding, as much as the 

local food web allows, resulting in a trend towards to the centroid. These trends are also 
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frequently associated with increases in the nitrogen signature, indicating an increased 

trophic level at which the predators feed with increased size. Atlantic cod, however, 

represents the top opportunistic fish predator sampled within this ecosystem and as such 

fills its own unique ecological niche (Popova 1962, Link et al. 2009). It is important to 

note that both the 2013 and 2015 ecosystem surveys often targeted aggregations of 

dominant cod and/or redfish (Rose & Rowe 2015). The diversity indices therefore may 

reflect the ecosystem as less diverse than what would expect from random sampling. This 

sampling pattern, however, was consistent across all sets. The variation observed in the 

diversity indices among regions therefore likely reflect underlying ecosystem variation.  

Regional variation and related fish/prey diversity were related to isotopic niches in 

biplot space. The northern regions of this study (Hawke and Notre Dame Channels) 

exhibited reduced richness and evenness in both predator occurrences and predator diets. 

As such we would anticipate that species would be less capable of avoiding niche overlap 

as observed in the present study with an increased number and percent of overlap ellipse 

areas in northern regions. This would explain why the distance to the community centroid 

and mean/standard deviation of the distance to the nearest neighbor decreased between 

the Bonavista Corridor and the Hawke Channel and the degree of overlap of the Bayesian 

ellipses increased. The only species that were found to increase their trophic level in the 

northern regions was American Plaice, which was found to consume more demersal fish 

and crab in place of shrimp, and redfish, which was found to consume more shrimp and 

crab and less zooplankton. Species that demonstrated a decrease in trophic level, such as 

turbot, were found to consume fewer fish and more invertebrate prey (Fig 2.S3).  
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Of particular interest to the Newfoundland and Labrador area are the variable 

observed recovery rates of Atlantic cod across regions. The Bonavista Corridor exhibited 

notable recovery rates, while the northern regions have experienced slower recovery rates 

as well as reduced growth and condition from their depletion during the late 1980’s and 

early 1990’s (Lilly et al. 2008, Rose & Rowe 2015, Morgan et al 2018, DFO 2018). The 

cod in the Notre Dame and Hawke Channels have been shown to frequently intermix and 

are genetically indistinguishable, yet the southern fish populations show minimal overlap 

with the northern populations and are genetically distinguishable (Bentzen et al. 1996, 

Taggart 1997). Thus while the northern cod is managed as a stock complex (DFO 2018), 

it contains a number of partially isolated subcomponents (Templeman 1979, Smedbol & 

Wroblewski 2002). Recovery of these subpopulations could therefore come from two 

potential sources: recolonization from other subpopulations or resurgence of the local 

subpopulation (Smedbol & Wroblewski 2002, Rose & Rowe 2018). In either case (or 

some combination of the two mechanisms), the subpopulations exhibit variability in the 

isotopic niche and presumably trophic niches.  

Numerous other biological explanations have been provided for the variable recovery 

rates among these populations, including decreases in prey availability (particularly 

capelin) and increased predation (Rose & O’Driscoll 2002, Sherwood et al. 2007, Buren 

et al. 2014, Mullowney & Rose 2014, Skern-Mauritzen et al. 2016). Our results suggest 

another potential component: spatial variation in trophic overlap as evidence of higher 

potential competitive interactions in northern regions. In the Bonavista Corridor, Atlantic 

cod occupies a unique niche space at the upper part of the food web with no overlap in 
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their core isotopic niche with any of the analyzed species (Figs 2.4-2.7). While still a top 

predator in the Notre Dame and Hawke Channels, Atlantic cod trophic level decreases. In 

the Hawke Channel in particular more ellipse overlap with other species is observed, 

particularly between juvenile cod and other species. In the Hawke and Notre Dame 

Channels, prior analyses from the years 1997 to 2011, consistent with the results of this 

study, have revealed that the diet of cod is heavily dominated by shrimp (55 - 99 % of 

diet by weight) while fish species in the Bonavista Corridor make up a more substantial 

portion of the stomach contents (15 - 71% by weight) with overall higher fullness indices 

(Sherwood et al. 2007, Krumsick & Rose 2012). In all regions, as the cod increased in 

size they deviated away from the centroid and thereby reduced trophic overlap and 

potential competition with other species. It should be noted that competition could not be 

concluded as this would require knowledge of the relative abundance of prey items, 

which I did not have data to assess, but the results nonetheless have implications for the 

possibility of competition. The sizes that are most affected by this overlap would be 

primarily the small cod, which would include the juveniles and young adults. This 

feeding at a lower trophic level in small quantities relative to body mass (Krumsick & 

Rose 2012) with increased isotopic niche overlap with other species together would 

represent an ontogenetic bottleneck which could limit the success of cod populations in 

the northern regions. Although competitive interactions are likely not the sole explanation 

for observed variability in recovery rates, it seems a potential factor.  

Our results also illustrate how Atlantic cod fill a unique role within the fish 

community. While overlaps do occur with other species at smaller sizes in areas with 
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reduced prey diversity, these fish appear to occupy a unique ecological niche. The other 

analyzed species typically exhibited much more substantial overlap in their Bayesian 

ellipses and presumably also in competition pressures. This unique position occupied by 

cod within the food web as a dominant fish predator could account for the cod’s success 

and abundance within this ecosystem prior to human exploitation.  

There are survey spatial design issues that require consideration. For example, there is 

little spatial overlapv between the 2013 and 2015 survey in the Hawke and the Notre 

Dame Channels. However, given the consistent trends in diversity of the catch trends 

with the stomach data (Tables 2.1-2.2), the issue of spatial overlap is unlikely to have a 

significant impact on our results. In both years, the number of sets deployed in the 

Bonavista Corridor exceeded those in either the Hawke Channel or the Notre Dame 

Channel. Due to this limited number of sets, many of the isotope sample sizes were 

smaller, particularly in these northern regions. As the sampling was entirely 

opportunistic, sufficient sample sizes for certain size classes of some species (such as 

capelin) were simply not available. In cases where sample sizes were lower, two 

competing processes could influence our results, as demonstrated clearly with the case 

example of thorny skate. One could anticipate an increase in the size of the standard 

ellipses as the mathematical result of reducing sample size, as appears to be the case with 

large thorny skate in the Bonavista Corridor such that it occupies a large plot area (Fig 

2.5). However, with decreased sample sizes could also underrepresent potential diet 

variability resulting in smaller ellipse areas, as is likely the case with thorny skate in the 

Notre Dame Channel where the ellipse appears almost as a straight line (Fig 2.6). 
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Consideration of these errors presented here as examples serve to further support our 

hypotheses, as thorny skate overlap in the Bonavista Corridor would be overestimated 

and underestimated in the Notre Dame Channel. 

Historically worldwide there has been little ecosystem focus in fisheries assessment 

and management decisions (Slocombe 1993). Single-species approaches have often failed 

and the state of many ocean ecosystems continued to decline (Slocombe 1993, Pikitch et 

al. 2004). Ecosystems, however, are complex adaptive systems such that understanding 

of the interconnection of components is essential in order to assess how species 

interactions and population dynamics will change (Levin 1998). Therefore investigating 

the interactions of various components of an ecosystem is essential for ecosystem 

approaches within fisheries assessment and management (Fowler 1999, Rice 2000). 

Understanding multispecies trophic niche structure and how isotopic niches are 

associated with ontogenetic shifts may help reveal a species’ ecological role and what 

competitive pressures it may experience.  

Knowledge of the present state of the ecosystem allows for the establishment of a 

baseline by which we can assess future potential environmental changes on isotopic 

niches. In the recovering and dynamic ecosystem we are presently observing in 

Newfoundland and Labrador, prey identities and quality are changing (Davoren & 

Montevecchi 2003, Dwyer et al. 2010, Dawe et al. 2012). These studies predict an overall 

decreased prey field such that increased competition is likely to occur for a lower 

diversity of lower quality prey species. Should trends continue in this fashion, we would 

anticipate the regions occupied by Bayesian ellipses would trend towards increased 



 

63 
 

interspecies overlap, as was observed in northern regions where recovery has not been 

observed (Rose & Rowe 2015, DFO 2018). However, should ecosystem recovery occur 

approaching an unexploited ecosystem state with increased prey diversity, we might 

anticipate this trend to be reversed such that core isotopic niches within biplot space 

exhibit greater spread and decreased overlap with the isotopic niches of other species.  

The regional differences characterized in this study follow trends observed in other 

marine ecosystems. The observed decrease in species packing with decreasing latitude as 

well as an increased overlap in Bayesian ellipses have been observed in other temperate 

to polar environments (Saporiti et al. 2015, Linnebjerg et al. 2016). Furthermore, tropical 

and sub-tropical study regions frequently showed lower degrees of trophic overlap (e.g. 

Heithaus et al. 2013, Tilley et al. 2013, Albo-Puigserver et al. 2015), though there are 

exceptions (Brosset et al. 2016, Frisch et al. 2016). These studies did not connect any 

observed geographic variation to species richness or diversity but rather to factors such as 

latitude or salinity gradients (e.g. Saporiti et al. 2015, Brosset et al. 2016).  

I have shown that niche overlap and potential competitive interactions, as revealed by 

each species respective position in isotope biplot space, are associated with the 

biodiversity of available prey. With fewer options available, more overlap in biplot space 

was observed. With greater prey diversity species spread to fill the available 

isotopic/trophic niches. However, these trends are also counteracted by the fact that in 

warmer waters in addition to more available prey species there will also be more 

predatory species that could potentially be competition. To further understand and 

establish a baseline for the present trophic structure of this marine ecosystem we require a 
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more detailed understanding of predator-prey interactions that underlie these results, 

providing inspiration for future work presently underway.  
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Supplementary Information 

Table 2.S1: Isotope sample sizes by region and size category with stomach sample sizes 

containing prey in parentheses.  

 Region Small Medium Large 

American 

Plaice 

HC 4 (4) 10 (20) 7 (2) 

NDC 5 (0) 12 (2) 4 (0) 

BC 7 (4) 7 (7) 7 (2) 

Atlantic 

Cod 

HC 7 (3) 8 (3) 6 (2) 

NDC 7 (4) 9 (8) 4 (3) 

BC 7 (6) 7 (7) 7 (3) 

Capelin HC 0 3 (2) 5 (4) 

NDC 0 5 (14) 4 (17) 

BC 3 (3) 3 (6) 3 (5) 

Greenland 

Halibut 

HC 8 (10) 7 (7) 6 (2) 

NDC 8 (13) 7 (2) 1 

BC 5 (3)  9 (3) 7 (9) 

Lanternfish HC 3 (7) 3 (15) 4 (8) 

NDC 3 (3) 4 (3) 2 (2) 

BC 3 (5) 3 (4) 3 (3) 

Redfish HC 5 (1) 8 (13) 8 (2) 

NDC 7 (9) 7 (2) 7 (3) 

BC 7 (3) 7 (3) 7 (1) 

Thorny 

Skate 

HC 8 (5) 9 (6) 1 (1) 

NDC 0 3 (0) 0 

BC 7 (9) 11 (14) 3 (3) 
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Fig. 2.S1 Visual representation of 

size class definitions (small, medium, 

large) within and among species 

analyzed.  
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Fig. 2.S2 Proportion represented by the Index of Relative Importance (IRI) of eight major 

prey groups by size category. Individual stomach contents were pooled by species and 

size category. The IRI is defined as IRI = (%N + %B)/FO, where %N is the percent by 

number, the %B the percent by biomass, and FO the frequency of occurrence (Stevens et 

al. 1982). Blue colours represent pelagic prey while grey colours represent benthic prey.  
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Fig. 2.S3 Proportion represented by the Index of Relative Importance (IRI) of eight major 

prey groups by region. Individual stomach contents were pooled by species and region. 

The IRI is defined as IRI = (%N + %B)/FO, where %N is the percent by number, the %B 

the percent by biomass, and FO the frequency of occurrence (Stevens et al. 1982).  Blue 

colours represent pelagic prey while grey colours represent benthic prey. 
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Chapter 3: Regional Spatial Variation in Food Web Structure and Functioning 

Among Newfoundland and Labrador Fish Assemblages. 

 

Abstract 

Recently spatial heterogeneity associated with ecosystem diversity was reported from 

isotopic niche analysis for the offshore Newfoundland and Labrador shelf ecosystem. In 

order to assess the underlying processes driving these trends, we quantified species 

interactions using stable isotope mixing models. Representative samples of each species 

caught in trawls and plankton tows were collected for stomach content and stable isotope 

(δ15N and δ13C ) analyses to parameterize isotope mixing models. Regional variation, 

highlighted by the diets of three economically important species, was observed such that 

the southern region showed higher consumption of fishes, brittlestars and copepods while 

higher consumption of shrimp characterized northern regions. Food web metrics 

indicated that the low-diversity northern regions had higher connectance and shorter food 

chain length. The benthic portion of the community increased relative to the size of the 

pelagic portions in these northern regions. Regional variation in prey consumption 

contributes to differential competition among predators and associated differences in fish 

community recovery.  

 

Introduction 

The collapse of demersal fish stocks off Newfoundland and Labrador brought about 

ecosystem changes by reducing the influence of dominant top predators (Lilly et al. 
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2000). One impact of this change was influencing interactions among species through 

predation and indirect effects (Windle et al. 2012). Now, more than two decades after 

stock collapses and associated fisheries moratoria the ecosystem has still not fully 

recovered (Pedersen et al. 2017, Chapter 4). Factors influencing this trajectory include 

continued fishing (Shelton et al. 2006), depensation (Shelton and Healey 1999), climate 

change (Sguotti et al. 2019), and life history changes (Olsen et al. 2004). However, 

Newfoundland and Labrador marine ecosystems also exhibit spatial heterogeneity in their 

structure and function with northern communities displaying lower fish species diversity 

(Krumsick & Rose 2012, Chapter 2), and lower recovery of marine fish community size-

structure (Chapter 4). Considering these findings, it is important to quantify the extent to 

which spatial variability in diets on relevant timescales is related to these patterns.  

Given interest in the application of ecosystem-based analyses to fisheries 

management, understanding food-web interactions and their contribution to species and 

community dynamics has become essential (Pikitch et al. 2004, Crowder et al. 2008, 

Fulton et al. 2014). Quantifying trophic interactions has relied on various methodologies 

and tools including stomach content analysis (Hynes 1950, Hyslop 1980), fatty acid 

analyses (Kharlamenko et al. 1995, Kiyashko et al. 1998, Parrish et al. 2000), 

pyrosequencing of prey DNA from stomach contents or faeces (Symondson 2002, King 

et al. 2008, Deagle et al. 2009), and stable isotope analyses (Post 2002). 

Stable isotope analysis constitutes the primary technique that has been used to 

supplement traditional stomach content analysis for assessing energy flow through an 

ecosystem over longer periods (Fry 2006, Lorrain et al. 2002). Studies of stable isotopes 
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in ecology provide information on the origins and consequent assimilation of organic 

matter which provide insight into the food web as a whole (Peterson et al. 1985, Owens 

1987, Peterson & Fry 1987, Bunn & Boon 1993). The stable nitrogen isotope signature 

(δ15N) typically becomes enriched by approximately 3 ‰ for fish species with each 

consumption due to preferential removal of lighter amine groups during deamination, 

allowing for approximation of trophic level (Macko et al. 1982, Minagawa & Wada 

1984, Vander Zanden et al. 1997). The stable carbon isotope signature (δ13C) provides an 

indication of the initial carbon source (pelagic or benthic/detrital in origin) and enriches 

at typically less than 1 ‰ with fractionation frequently considered negligible (DeNiro 

and Epstein 1978, Hecky & Hesslein 1995, Vander Zanden et al. 2001). Together these 

two isotope values can be used to determine isotopic niches which are thought to be 

proxies of trophic niches (Bearhop et al. 2004, Newsome et al. 2007, Chapter 2). With 

additional input of prey isotopic values, fractionation coefficient estimates, and prey 

elemental composition, the approximate proportions of the predator diet can be estimated 

through the use of isotope mixing models (Schwarcz 1991, Phillips 2001). The isotope 

mixing model used herein is designed to quantify the relative contributions of the 

pelagic/benthic food chains, to provide an indication of relative trophic positions, and to 

measure the trophic relationships between key organisms.  

Three of the economically important groundfish species found along the 

Newfoundland and Labrador shelves are Atlantic cod (Gadus morhua), redfish (Sebastes 

sp.) and Greenland halibut (Reinhardtius hippoglossoides). Between 2013 and 2017 these 

three species represented 78.1% of the landed value of groundfish species in the 
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Newfoundland-Labrador region (DFO 2019).  Given their relative importance to the 

fisheries in this region, several historical studies of their diets have been conducted using 

stomach contents analysis. The demersal Atlantic cod are thought to be primarily 

generalist feeders but do show preferences towards high-lipid forage fish such as capelin 

(e.g. Minet & Perodou 1978, Lilly 1991, Link & Garrison 2002, Krumsick & Rose 2012). 

The mostly pelagic redfish has been reported to feed primarily on pelagic invertebrates 

such as hyperiid amphipods, copepods, euphausiids, and northern shrimp (e.g. Lambert 

1960, Pedersen & Riget 1993, González et al. 2000, Pérez-Rodríguez & Saborido-Rey 

2012). The Greenland halibut, or turbot, is primarily a bottom fish but is thought to be an 

active mid-water predator. As such, their diet consists has been reported to consist of a 

wide variety of pelagic and demersal prey, particularly capelin, shrimp, squid, and 

zooplankton (e.g. Chumakov & Podrazhanskaya 1986, Bowering & Lilly 1992, Dawe et 

al. 1998, Dwyer et al. 2010). All of these diets have been reported to have changed along 

with the large-scale ecosystem changes that were observed in this region in the early 

1990s (Rose & O’Drsicoll 2002, Dwyer et al. 2010, Pérez-Rodríguez & Saborido-Rey 

2012). 

Given the utility of stable isotope analyses to contribute new information on the 

structure of food webs and trophic dynamics among ecosystems, our objectives are 

threefold: (1) to construct simplified marine food webs based on results from stable 

isotope mixing models supplemented by information from stomach contents data for 

three regions within the northeast coast of Newfoundland and Labrador and then compare 

food web metrics among regions; (2) to analyze in greater detail spatial variation in the 
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diets of the three abundant and economically important species: Atlantic cod, redfish and 

Greenland halibut, and; (3) to discuss the isotope mixing model results in the context of 

recently reported spatial variation in marine fish ontogenetic niche overlap and size-

spectrum recovery among regions.  

 

Materials and Methods 

Study Area 

Sampling was undertaken within marine research surveys conducted by the Center for 

Fisheries Ecosystems Research (CFER) aboard the RV Celtic Explorer in May 2015 on 

the offshore shelves from southern Labrador and eastern Newfoundland, corresponding 

to Northwest Atlantic Fishery Organization (NAFO) subdivisions 2J, 3K, and 3L (Fig. 

3.1). These subdivisions together represent the management unit for the ‘Northern’ 

Atlantic cod stock (Templeman 1979, Rose et al. 2000, Smedbol & Wroblewski 2002). 

Three major trenches or corridors within this region had previously been identified as 

important onshore-offshore cod migration pathways: Hawke Channel, Notre Dame 

Channel, and the Bonavista Corridor (Rose 1993) which were selected as the focal 

research regions. The following analyses were conducted within each region separately in 

order to quantify spatial variation.  

 

Sample Collection 

The collection of samples used for this study was reviewed and approved by the 

Memorial University Animal Care Committee under the guidelines set by the Canadian  
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Fig. 3.1 Map of Newfoundland and southern Labrador with sampling locations. The trawl 

locations are indicated with open symbols and plankton tow locations with closed 

symbols for the Hawke Channel (HC, triangles), Notre Dame Channel (NDC, circles), 

and Bonavista Corridor (BC, squares).  The inset map outlines the study domain in 

eastern Canada. The relevant NAFO subdivisions 2J, 3K, and 3L boundaries are also 

indicated. Dashed lines represent 300 m depth contours. The bathymetry map is 

reproduced from GEBCO world map 2014 (www.gebco.net) and NAFO subdivisions 

reproduced from NAFO (www.nafo.int). 

 

 

 

 

http://www.gebco.net/
http://www.nafo.int/
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Council of Animal Care. Samples were collected using a combination of Campelen 1800 

and mid-water trawls (Chapter 2). All sets were deloyed between the hours of 7 am and 

10 pm. In order to sample zooplankton, bongo nets (33 μm mesh and 60 cm diameter) 

were deployed obliquely within the surface layer for 10 minutes and at a speed of 2 

knots. All fish caught in the trawl sets were sorted by species and standard lengths were 

recorded. The total biomass of each species was also assessed. In cases where a species 

was particularly abundant, subsampling was initiated involving 100 randomly sampled 

individuals. Dorsal muscle tissue samples were taken from all fish species with equal 

representation from the observed size ranges for each species. I sampled up to seven 

specimens within three length classes (small, medium, and large) for each species with 

the exception of species protected by the Species at Risk Act (Table 3.S1). For species 

with little variation in size (such as capelin and lanternfish), only nine specimens were 

collected within each region. From most fish, a transverse sample of dorsal muscle tissue 

directly posterior to the head was collected at-sea, placed in a 1.5 ml centrifuge vial and 

frozen at -20 ºC for stable isotope analyses. Stomachs were also collected at sea and 

preserved frozen. Stomachs from fish that showed signs of regurgitation or stomach 

eversion were not collected due to the potential of biasing stomach content results. The 

remaining fish with small, difficult to sample stomachs were individually 

labelled, bagged whole, and preserved frozen for dissection in the laboratory for their 

muscle tissue and stomachs.  
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While more species were caught and analyzed for their isotopic signatures (Table 

3.S1), nine species represented the most abundant fish species: American plaice 

(Hippoglossoides platessoides), Atlantic cod (Gadus morhua), Atlantic herring (Clupea 

harengus harengus), capelin (Mallotus villosus), checker eelpout (Lycodes vahlii), 

Greenland halibut (Reinhardtius hippoglossoides), lanternfish (Notoscopelus sp.), redfish 

(Sebastes sp.), and thorny skate (Amblyraja radiata). Based on the species’ observed 

length distributions, sampled individuals were classified as small, medium, or large, by 

dividing the observed range of sizes into three length categories of equal width (Table 

3.S2). These categories are recognized to be arbitrary, but as the exact timing of potential 

ontogenetic shifts was unknown, this division accounted for variation across the range of 

observed sizes. Of these, Atlantic cod, Greenland halibut, and redfish were selected to 

portray regional variability given their abundances and economic importance.  

In addition to the fish samples, a variety of invertebrates were collected (Table 3.S1). 

Invertebrates were also sorted by species and measurements such as carapace width in 

crabs and carapace length in shrimp were obtained for up to 100 randomly sampled 

individuals. A sample of up to twenty-one of each invertebrate per region were frozen 

whole, with the exception of large snow crab, each of which was sampled by removing 

one leg.  Zooplankton were collected from each plankton tow passed through through a 

140 micron sieve and were preserved frozen for further taxonomical identification in the 

laboratory. 
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Stomach Content Analysis 

Stomach samples were analyzed using a dissecting microscope and contents were 

identified to the lowest feasible taxonomic level. Individual weights and numbers of each 

prey taxa were quantified. From these measurements, in combination with their 

frequency of occurrence, the index of relative importance (IRI) was calculated for each 

prey taxa as follows:  

𝐼𝑅𝐼 =
%𝑁 + %𝐵

𝐹𝑂
 

Where %N is the percent contribution of a given taxon to stomach content by numbers, 

%B is its percent contribution by weight, and FO is the frequency of occurrence, defined 

as the number of stomachs in which the prey taxon was detected over the total number of 

stomachs (Stevens et al. 1982). The percent IRI is presented as a percentage of the 

summation of the IRIs of all prey observed and were calculated for each predator species 

and region combination. 

 

Stable Isotope Analysis 

Muscle tissue samples were oven dried at 75°C for 48 hours and homogenized using an 

amalgamator. The homogenized samples were weighed, packaged in an airtight container 

with desiccant packages and shipped to the Cornell University Stable Isotope Laboratory 

(Ithaca, NY, USA) for analysis. Approximately 1 mg of sample was placed into 7×7 mm 

tin capsules, then flash combusted using a Carlo-Erba NC2500 elemental analyzer 

coupled on-line to a Finnigan MAT Delta Plus mass spectrometer for analyses of the 

resulting carbon dioxide and nitrogen gases. 
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Nitrogen and carbon ratios were expressed in delta (δ) notation, being the parts per 

thousand deviation from the standard material, Pee Dee belemnite limestone for carbon 

and atmospheric nitrogen for nitrogen, as follows: 

𝛿15𝑁 𝑜𝑟 𝛿13𝐶 = ((
_𝑅𝑠𝑎𝑚𝑝𝑙𝑒_

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1) × 1000     (2) 

𝑅 =  𝐶13 𝐶12⁄  𝑜𝑟 𝑁15 𝑁14⁄       (3) 

Lipids were not removed to avoid the potential influence of derived products on isotopic 

signatures (Pinnegar & Polunin 1999, Sotiropoulos et al. 2004, Logan et al. 2008). 

Therefore, following analysis, the 𝛿13C values were normalized for lipid bias as 

recommended by Ricklefs & Travis (1980) and Post et al. (2007), as follows: 

𝛿13𝐶𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝛿13𝐶𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 − 3.32 + 0.99 × 𝐶: 𝑁   (4) 

As the majority of fish samples were close to a C:N ratio of 3.3 as would be expected for 

muscle tissue of marine fish (Ricklefs & Travis 1980), this adjustment was only 

particularly relevant for lipid rich fish such as capelin, lanternfish and Greenland halibut. 

 

Isotope Mixing Model 

Although stomach contents provide detailed information on the diet composition of 

species, it represents the diet on the scale of hours to days (Eliott & Persson 1978, Jobling 

1981, Temming & Herrmann 2003). In order to assess longer-term prey consumption and 

food web connections on the scale of months, we analyzed the diets of every caught 

predatory fish species using isotope mixing models. These models approximate the 

contributions of different prey while assessing their locations in isotope space relative to 
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adjusted predator values. These techniques are partly informed by priors, in our case 

stomach content data. Species or functional groups were further divided into four 

categories based on descriptions provided by Sherwood & Rose (2005) and Scott & Scott 

(1988) (Table 3.S1): benthic invertebrates, pelagic invertebrates, demersal fish, and 

pelagic fish. Some species, such as copepod species, were not found to differ in their 

isotopic signature and therefore were pooled together as a single functional group.  

A fractionation coefficient, or discrimination factor, is the change in the isotopic 

signature from prey to predator that occurs due to partitioning upon consumption and 

assimilation of respective elements. Determining the exact fractionation coefficients 

between the predator and each individual food source is often recommended for each 

element (Caut et al. 2009). Such determination of prey-specific fractionation coefficients, 

however, was not possible in the present study. Historically a nitrogen fractionation of 

3.4 has been used in ecological studies of fish populations and 0 for carbon, as if 

fractionation was assumed to be negligible (DeNiro & Epstein 1978, Fry & Sherr 1984, 

Minagawa & Wada 1984). However, these carbon estimates may have been 

underestimated and nitrogen overestimated (Barnes et al. 2007). As a result, two 

approaches were taken to estimate these discrimination factors. The coefficient was first 

estimated from the combination of stomach content analysis and the associated isotopic 

values of prey per Sherwood and Rose (2005). The bounds of values were 1.4 - 4.4 for 

nitrogen and -0.5 – 2 for carbon, as determined by biologically feasible fractionation 

coefficients (Hansson et al. 1997, Vander Zanden et al. 2001, Post 2002, McCutchan et 

al. 2003, Barnes et al. 2007, Caut et al. 2009, Hussey et al. 2010, Varela et al. 2011). For 
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estimated coefficients outside these bounds, the fractionation was estimated to be 3.4 for 

nitrogen and 0.4 for carbon (Post 2002). 

Potential prey items to input into the mixing model were selected through a 

combination of the results of these stomach contents and published reports of North 

Atlantic diets (Table 3.S3). For species with particularly diverse diets, such as Atlantic 

cod and thorny skate, prey that represented over 5% of the weight and/or numbers were 

analyzed separately and all other reported prey items were combined into four functional 

groups (Table 3.S1): pelagic invertebrates, benthic invertebrates, pelagic fish and 

demersal fish. To acknowledge that any predator is gape-limited, only prey that were less 

than 24% of the predator’s body mass were included in the model (Barnes et al. 2010). 

As not all individual weights were obtained, length-weight relations were used to 

determine approximate body masses for both predators and potential prey (Table 3.S4). 

For individual invertebrates which did not have size information, average species sizes 

were used. 

The stable isotope mixing model to determine the percentage of the diets represented 

by key prey species was implemented using the MixSIAR package in R (Stock et al. 

2018). Three basic equations were utilized in the Bayesian isotope mixing model to 

determine the proportions of the diet occupied by each prey type (Phillips & Koch 2002): 

(𝛿13𝐶1 − 𝛿13𝐶𝑀)[𝐶]1𝑓1,𝐵 + (𝛿13𝐶2 − 𝛿13𝐶𝑀)[𝐶]2𝑓𝑦,𝐵 + ⋯        (5) 

+ (𝛿13𝐶𝑛 − 𝛿13𝐶𝑀)[𝐶]𝑛𝑓𝑛,𝐵 = 0 

 (𝛿15𝑁1 − 𝛿15𝑁𝑀)[𝑁]1𝑓1,𝐵 + (𝛿15𝑁2 − 𝛿15𝑁𝑀)[𝑁]2𝑓2,𝐵 + ⋯   (6) 

+(𝛿15𝑁𝑛 − 𝛿15𝑁𝑀)[𝑁]𝑛𝑓𝑛,𝐵 = 0 



 

88 
 

    𝑓1,𝐵 + 𝑓2,𝐵 + ⋯ + 𝑓𝑛,𝐵 = 1        (7) 

Where 𝛿13𝐶𝑛/𝛿15𝑁𝑛 represent the tissue isotopic values for a given prey item, 

𝛿13𝐶𝑀/𝛿15𝑁𝑀 the tissue isotopic values for the predator, [𝐶]𝑛 the carbon concentration of 

a given prey, [𝑁]𝑛 the nitrogen concentration of a given prey, and 𝑓𝑛,𝐵 the proportion of 

the predator’s diet represented by the given prey species. Size category (small, medium, 

or large) was included as a fixed variable for species-region combinations that 

demonstrated ontogenetic variation. Region- and species-specific IRIs calculated within 

this study were provided as a prior to these mixing models (Moore and Semmens, 2008). 

Some species-region combinations did not contain stomach data due to a high percentage 

of empty stomachs. In these few cases, an average IRI from other available regions was 

used.  For cases where there are three or fewer potential prey sources, this model is able 

to provide exact contributions to the predator’s diet of each prey. For greater than three 

potential prey sources, fifty thousand repetitions of the mixing model were run to 

determine the approximate proportion of the diet each prey taxon occupies.  

 

Food Web Metrics 

Several food web metrics were calculated to characterize the three constructed food 

webs. The total number of “nodes” or functional groups represents the network size. The 

“connectance” of the food web is the fraction of all possible predatory links that are 

realized and the ratio of trophic links within the food web over the square of the network 

size (Martinez 1992, Warren 1994). For each species, a number of metrics were 

calculated to determine the importance of each prey. The “number of links per node” 
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represents the number of predators feeding on that prey. The “average percent of predator 

diets” is the mean percentage of a given prey within the linked predator diets. The 

“relative link strength” is calculated as the sum of all the diet proportions contributed by 

a given prey taxon over the total summation of diet proportions for all food web links 

within a given region. Ellipses enclosing benthic invertebrates, demersal fish, pelagic 

invertebrates and pelagic fish in isotopic biplot space were estimated using the Khachiyan 

algorithm for the computation of minimum volume enclosing ellipsoids (Khachiyan 

1979). 

From the outcomes of the isotope mixing models and these food web metrics, I 

constructed simplified food webs for the predatory fish species. Within isotope biplot 

space, all of the species were plotted with species showing ontogenetic variability in their 

isotopic signatures represented as a maximum of three points. Links between predatory 

species and their respective prey, identified through our stomach content analyses and 

reported predation in the literature, were plotted with the line width proportional to the 

importance to the predator’s diet. The proportion of the total linkage strength for each 

prey item as determined by summing all of the linkage strengths from the prey item and 

dividing by the sum of all linkage strengths determined within the food web. A circle was 

drawn over the respective prey items in biplot space whose radius was proportional to the 

size of these total linkage strengths to indicate the relative importance of prey species as 

conduits of energy flow into the upper food web.  
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Results 

Index of Relative Importance 

Stomach content data from all fish species were collected to use as priors for the stable 

isotope mixing model. From the stomach contents alone, half of the percent IRIs of the 

three focus fish are made up of shrimp, snow crab, hyperiids, and capelin (Table 3.1, 

Table 3.S5). Shrimp consumption increased with latitude, representing an average of 

19.2% IRI in the Bonavista corridor and increasing to 33.4% in the Hawke Channel. 

Gammarids were also a common prey item of Hawke Channel fish, representing an 

average of 13.3% IRI. Pelagic invertebrates were found to be a dominant prey item in the 

Notre Dame Channel representing 58.6% IRI, particularly hyperiids and copepods 

representing an average 26.0% and 31.5% IRI. The Bonavista Corridor was noted to have 

increased incidence of crab (8.5% IRI), polychaetes (16.7%), and pelagic fish 

(particularly capelin; 4.3%). 

 

Simplified Food Web Model 

The most nitrogen depleted values were observed in the pelagic algae and benthic plant 

material (Fig 3.2) and the highest trophic level species was the Atlantic cod. While the 

pelagic components of the ecosystem fell within a relatively small range of 𝛿13C values, 

the benthic community was found to exhibit a wide spread of 𝛿13C values (Fig 3.2). 

Within the benthic component of the food web invertebrates, particularly echinoderms, 

exhibited a larger range of carbon values than the fish species. 
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Table 3.1 Diet composition of three highlighted predatory fish species presented as a 

percent index of relative importance (IRI) divided by region. A fractionation coefficient 

was estimated from this stomach contents data to use in the isotope mixing model. 
 

Species Fractionation 

Coefficient 

Region Prey species  

Atlantic 

Cod 

3.9 / -0.4 HC Shrimp (72.2%), Demersal Fish 

(25.3%), Other Benthic Invertebrates 

(2.5%)  

NDC Shrimp (98.4%), Snow Crab (0.4%), 

Hyperiid (0.3%), Demersal Fish 

(0.3%), Benthic Invertebrates (0.3%), 

Euphausiid (0.2%), Polychaete (0.1%) 

BC Snow Crab (43.9%), Benthic 

Invertebrates (38.7%), Shrimp 

(11.9%), Polychaete (1.6%), Demersal 

Fish (1.6%), Checker Eelpout (1.0%), 

Hyperiid (0.8%), Pelagic Fish (0.5%) 

Greenland 

Halibut 

3.4 / 0.4 HC Shrimp (73.1%), Gammarid (10.7%), 

Demersal Fish (8.0%), Benthic 

Invertebrates (3.9%), Copepod (1.7%), 

Capelin (0.4%), Pelagic Invertebrates 

(0.4%) 

NDC Hyperiid (99.7%), Gammarid (0.1%), 

Shrimp (0.1%) 

BC Capelin (82.9%), Shrimp (10.1%), 

Hyperiid (2.7%), Checker Eelpout 

(1.3%), Copepod (1.2%), Benthic 

Invertebrates (1.2%), Redfish (0.4%), 

Gammarid (0.3%) 

Redfish 3.4 / 0.4 HC Shrimp (76.3%), Copepod (14.7%), 

Hyperiid (5.5%), Euphausiid (2.0%), 

Capelin (1.0%), Benthic Invertebrates 

(0.4%) 

NDC Shrimp (81.5%), Copepod (11.1%), 

Mysid (3.9%), Capelin (2.3%), 

Euphausiid (1.2%) 

BC Shrimp (77.4%), Hyperiid (12.3%), 

Copepod (8.0%), Euphausiid (1.0%), 

Capelin (0.9%), Mysid (0.3%), 

Benthic Invertebrates (0.1%) 
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Table 3.2 Three food web metrics calculated for the food webs in each region.  

Region Network 

Size 

Links 

per 

Species 

Connectance 

Hawke 

Channel 

42 4.40 0.105 

Notre 

Dame 

Channel 

31 
 

3.94 0.127 

Bonavista 

Corridor 

43 3.93 0.091 

 

The food web for the Newfoundland and Labrador shelf regions, even when 

simplified, displayed numerous linkages (Fig. 3.3). Each ecosystem consisted of between 

31 and 43 observed trophic “nodes” with the Notre Dame Channel likely lower due to 

less intensive sampling (Table 3.3). However we also observed at the highest latitude 

system an ~10% increase in the number of links per prey species (Table 3.2), which is 

associated with the increased connectance in the two northern regions. Strong latitudinal 

increases were observed in the linkage strength of shrimp, more than doubling from 

0.105 to 0.264 and PPD increasing from 21.2 to 38.1, and squid, which was only found to 

be a major part of some species diets in the Hawke Channel. Meanwhile, prey such as 

copepods (LS increasing from 0.135 to 0.216, PPD from 14.8 to 24), brittle stars (LS 

increasing from 0.021 to 0.050, PPD from 4.8 to 12) and fish species were more 

frequently consumed in the southern regions (Fig 3.3). The Notre Dame Channel also 

saw a spikes in prey items from the center of the biplot space such as hyperiids (LS of 

0.297, PPD of 37.3) and bivalves (LS of 0.098, PPD of 27.7). 
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Fig. 3.2 Stable carbon and nitrogen isotope values (mean ±SE) of pelagic (blue oval) and 

benthic (peach) components of the food webs in (A) the Hawke Channel, (B) the Notre 

Dame Channel, and (C) the Bonavista Corridor. In cases where a species demonstrated 

ontogenetic variation in their isotopic signatures, these species are represented by three 

points connected by linear lines. Species abbreviations are defined in Table 3.S1. 
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(A) Hawke Channel
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(B) Notre Dame Channel 
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(C) Bonavisata Corridor

 

Fig. 3.3 Simplified food web with line widths indicating the strength of the predatory 

interaction for (A) the Hawke Channel, (B) the Notre Dame Channel and (C) the 

Bonavista Corridor. Circles represent the relative link strength from the given prey 

species. Species from which a number of size classes were obtained will appear up to 

three times (for small, medium, and large size categories). Taxa abbreviations are defined 

in Table 3.S1.  
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Table 3.3 Food web link characteristics for the three focus regions. #L (Number of 

Links) represents the number of predators preying on that species/group. LS represents 

relative link strength which is calculated as the sum of all the diet proportions contributed 

by a given prey taxon over the total summation of diet proportions for all food web links 

within a given region. For each prey species, the percent of each linked predator diet 

represented by that prey was averaged as PPD (average percent of predator diet). 

 

Prey 

Species 

Bonavista Corridor Notre Dame 

Channel 

Hawke Channel 

#L LS PPD #L LS PPD #L LS PPD 

American 

Plaice 

3 0.001 1.4 4 0.001 1.7 0 0 0 

Arctic Cod 9 0.002 3.2 0 0 0 0 0 0 

Atlantic Cod 8 0.001 1.0 0 0 0 0 0 0 

Atlantic 
Herring 

14 0.008 1.2 0 0 0 0 0 0 

Bivalve 20 0.034 10.1 13 0.098 27.7 19 0.041 10.7 

Brittle Star 13 0.050 14.8 12 0.006 1.4 17 0.021 4.8 

Capelin 31 0.014 7.6 14 0.030 6.2 14 0.010 3.9 

Checker 

Eelpout 

3 0.004 0.3 0 0 0 0 0 0 

Copepod 33 0.216 31.9 24 0.065 6.9 34 0.135 14.8 

Euphausiid 31 0.056 10.7 23 0.052 7.8 29 0.063 8.0 

Gammarid 34 0.079 11.7 21 0.057 8.6 31 0.079 10.9 

Gastropod 16 0.023 6.9 0 0 0 12 0.012 3.7 

Greenland 

Halibut 

6 0.001 2.1 0 0 0 0 0 0 

Hyperiid 32 0.137 25.1 22 0.297 37.3 24 0.102 17.4 

Isopod 0 0 0 0 0 0 11 0.016 7.4 

Marlinspike 6 0.001 2.0 0 0 0 0 0 0 

Myctophiid 13 0.001 2.5 0 0 0 0 0 0 

Mysid 30 0.062 13.2 23 0.052 10.6 35 0.060 6.1 

Polychaete 30 0.117 17.2 18 0.071 11.4 26 0.121 18.3 

Shrimp 30 0.105 21.2 20 0.230 28.9 28 0.264 38.1 

Snow Crab 13 0.011 10.1 13 0.004 2.1 14 0.023 7.5 

Squid 0 0 0 0 0 0.2 10 0.009 3.7 

Thorny 

Skate 

3 0.001 2.1 0 0 0 0 0 0 

Toad Crab 16 0.036 8.7 11 0.034 6.9 15 0.025 5.3 
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Trends Among Three Focus Species 

While a variety of predatory fishes were analyzed as part of this study, I chose to focus 

on three abundant and economically important species. For details on additional abundant 

species, refer to Figs 3.S1-3.S6. 

Within Atlantic cod diets, in the BC, 75% consisted of shrimp, snow crab, 

polychaetes, hyperiids and benthic invertebrates; in the NDC: shrimp and hyperiids; in 

HC: shrimp, snow crab, euphausiids, and pelagic invertebrates (Fig 3.4). Across all three 

regions shrimp made up a quite substantial portion of cod diets increasing in the northern 

regions. With increasing size we observe the contribution of zooplankton to the  

 

 

 

Fig. 3.4 Atlantic cod diet composition as determined from isotope mixing models divided 

by size category (S for small, M for medium, L for large) and region (BC for Bonavista 

Corridor, NDC for Notre Dame Channel, HC for Hawke Channel).  
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diet decreases and is replaced with benthic prey. Furthermore, snow crab, another 

economically important species in the region, was observed to make up quite a 

substantial portion of the diet in the Bonavista Corridor and dominate cod diets within the 

Hawke Channel (Fig 3.4). Demersal and pelagic fish make up a small portion of the diet 

in the Bonavista Corridor that was found to decrease in the other two regions. 

Greenland halibut is another economically important species that currently provides 

the highest groundfish landings value in the Newfoundland and Labrador region. In the 

Bonavista Corridor the diet of this fish was comprised mostly of copepods with generous 

contributions from hyperiids and capelin (Fig 3.5). The Notre Dame Channel saw a shift 

from a copepod-dominated diet to one comprised primarily of hyperiids. Once again,  

 

 

Fig 3.5 Greenland halibut diet composition as determined from isotope mixing models 

divided by size category (S for small, M for medium, L for large) and region (BC for 

Bonavista Corridor, NDC for Notre Dame Channel, HC for Hawke Channel). 



 

102 
 

shrimp dominated the Hawke Channel diets. With increasing size we observed a decrease 

in zooplankton consumption. 

Redfish diets were relatively less complex in comparison to the previous two diets, 

consisting of mostly zooplankton and shrimp (Fig 3.6). The relative proportions of these 

two contributions were found to vary across regions with a steadily increasing 

contribution of shrimp with increasing latitude. Increases in shrimp consumption was also 

observed with ontogeny across all regions. 

 

 

 

Fig. 3.6 Redfish diet composition as determined from isotope mixing models divided by 

size category (S for small, M for medium, L for large) and region (BC for Bonavista 

Corridor, NDC for Notre Dame Channel, HC for Hawke Channel). 
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Discussion 

I report the results of within- and among-region variation in the Newfoundland and 

Labrador shelf marine ecosystem analyzed using isotope mixing models to examine 

whether regional variation in community overlap (Chapter 2) and differential size-based 

community recovery rates (Chapter 4) may be explained by differences in energy and 

nutrient flows through ecosystems recovering from overexploitation (Pedersen et al. 

2017).  

Stable isotope ecology has proven to be an effective means of assessing such flows as 

it directly attempts to track the path of rarer heavier atoms through the food web (Fry 

2006, Parnell et al. 2013, Phillips et al. 2014). In addition to helping to identify and 

quantify key trophic interactions within the ecosystem, particularly robust to spatial 

variation in the importance of shrimp among regions, stable isotopes also provided 

insights into the underlying processes that are governing these ecosystems by resolving 

the relative importance of the pelagic and benthic components of the community. To 

demonstrate the importance of considering this regional variability in species 

interactions, I highlighted the regional variation in reconstructed diets observed in three 

economically important groundfish species.  

While in the invertebrates we observe extremes in the carbon values, indicating a 

strongly pelagic or a strongly benthic signature, the fish species tended towards a central 

carbon isotope value. This tendency towards centrality tends to became more pronounced 

with increasing size, suggesting a balance between the exploitation of pelagic and benthic 

productivity. The balanced acquisition of pelagic and demersal productivity has recently 
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been hypothesized to explain the dominance of large benthic demersal fishes over large 

pelagic fishes in boreal and temperate regions (van Denderen et al. 2018). Whether this 

energy acquisition hypothesis also influences ecosystem recovery is a related question 

with potential implications for differential ecosystem recovery pathways. For example, 

recoveries of community size-structure are strongest in the Bonavista Corridor compared 

to the other two regions (Chapter 4). Given both this hypothesis and our reported 

patterns, further examinations of benthic-pelagic prey contributions to predator diets 

should be included in analyses of differential recovery of marine ecosystems.   

Many of the known detritivore invertebrates have been noted to have relatively 

enriched carbon signatures. This finding is consistent with the results found in other 

studies (Hobson et al. 2002, Nadon & Himmelman 2006). I was not able to obtain 

isotopic values for the detritus, but we may infer this food source would possess a more 

enriched nitrogen and carbon signature compared to the benthic plant material in order to 

account for the wide range of values in the benthic portion of the community (Schlacher 

& Wooldridge 1996, Wooler et al. 2003, Tewfik et al. 2005).  

To further explain benthic and pelagic differences in prey consumption among 

regions, each region was characterized by a few key prey species as revealed by the link 

strength between predators and prey in the food web models. The diets in the Bonavista 

Corridor are known to be the most diverse of these three regions from previous published 

research (Krumsick & Rose 2012, Chapter 2). This study further demonstrated that 

groundfish in this region show increased consumption of a variety of fish species (many 

of them pelagic forage fish), copepods, and brittle stars. With the exception of the 
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increased copepod and brittle star consumption, these observations result in overall 

higher trophic level of the top-level predators and facilitate strong contributions of both 

the pelagic and benthic portions of the food webs towards generalist feeders. The Notre 

Dame Channel was characterized by important prey species found in the middle of the 

food web: bivalves and hyperiids. Extreme carbon values were observed in this region 

among copepods and echinoderms. I presently lack an explanation for these extreme 

values. The stable isotope and the stomach content data, however, consistently 

demonstrated the importance of zooplankton and infauna to the diets of fish in this 

region. Finally, the Hawke channel food web was dominated by the consumption of 

shrimp, although squid consumption was also found to be relatively higher in this region 

even if it only comprised a small portion of the diet. Although squid population estimates 

for the northern regions have not been published, squid catches and abundance estimates 

were low in 2015 (Hendrickson & Showell 2016). The vast majority of species in this 

region were found to at least have shrimp in their stomach contents if not representing the 

majority of the contents, consistent with numerous other groundfish diet studies in this 

region (e.g. Bowering et al. 1983, Parsons 2007, Krumsick & Rose 2012). 

Three abundant fish species of socioeconomic importance were analyzed in greater 

detail due to recent debates regarding their population status and interactions with other 

fisheries. The biomass of these predators is often greater in the southern region studies 

than the north (Healey 2010, DFO 2011, DFO 2018, Rose & Rowe 2018) and represented 

the most abundant species caught in our bottom trawls (Chapter 2, Chapter 4). I observed 

that shrimp and/or crab often comprised a substantial portion of the diet with the 
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proportion increasing with ontogeny (Figs 3.4-3.6). Additionally, as northern regions 

show less diversity in diet and fish communities (Chapter 2), shrimp and crab become 

increasingly important channels of nutrient flow through the food web. Shrimp and crab 

currently represent the two most economically dominant fisheries within the 

Newfoundland and Labrador region, with landed values of $222 million and $295 

million, respectively. These values greatly exceed the recent landed values of Atlantic 

cod ($23 million), redfish ($11 million), and turbot ($57 million) (DFLR 2018). Thus, 

while shrimp and crab are presently the two most lucrative fisheries they also represent 

major prey for these groundfish species (e.g. Lilly et al. 2000, Worm & Myers 2003, 

Mullowney et al. 2014), the impact of which depends on the respective species- and size-

specific predator population sizes. Given these food-web links, demersal fish recovery 

would therefore likely negatively impact the present shellfish industries.   

A number of food web metrics were presented in order to better quantify these 

communities. The network size was found to be similar in the Hawke Channel and the 

Bonavista Corridor, though lower in the Notre Dame Channel. It remains unclear whether 

this reduced network size in the Notre Dame Channel was a relic of less sampling effort 

or a result of an underlying biological process. Analysis of stomach contents indicated 

that a number of benthic invertebrates were not sampled with our trawl gear, suggesting 

that the Notre Dame Channel likely has a larger network size. Inclusion of these 

unsampled nodes (a total of 6), however, does not increase the network size to those 

observed in the Hawke Channel or Bonavista Corridor. I observed that between the 

Bonavista Corridor and the northern regions there was a distinct increase in the 
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connectance. This increase is associated with decreased food chain lengths (Williams et 

al. 2002). Food webs also tend to be shorter in systems characterized by high predator-

prey mass ratios (PPMR) (Jennings & Warr 2003). The observation that fish consumption 

tends to be reduced in the northern regions while zooplankton and shrimp become a much 

more prominent part of the diet would explain these observations, and the finding that 

PPMR is much higher in the Hawke Channel than other regions (Chapter 4). The links 

per prey species were found to be greater in the northern regions. Given these regions 

show lower diversity, predators would be expected to be more likely to prey upon 

common species. This metric therefore confirms that food web complexity decreases with 

latitude. This food web metric, however, has been called into question as it has been 

noted to incorrectly characterize ecological trends when varying number of nodes are 

present between food webs (Havens 1992). Despite this caveat, we observe the largest 

difference between the two regions with comparable network size, indicating an 

underlying ecological process may be responsible for the observations.  

Numerous limitations exist when constructing these isotope mixing models. Firstly, 

an assumption was made that all potential prey species are represented within the model. 

The survey gear types utilized naturally limited the species and the size ranges used in 

this study, and as such there are undoubtedly going to be some gaps that are not 

represented by the available samples. A striking example of this is the absence of detritus 

in the analysis. As I did not have access to a grab sample, the detritus that undoubtedly 

makes up a major component within the food web needed to be left out. We could infer 

the approximate position within biplot space based on the positions of the detritivores, 
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but given the wide range of carbon and nitrogen isotope values among these detritivores 

we cannot conclusively state the exact range of detrital isotopic values. Other key 

components to the food web that are missing are the birds and marine mammals that 

could not be sampled given the presented methods. To account for such omissions, I 

present a simplified food web based on the species and prey that were caught as opposed 

to a complete food web that would account for such key components.  

Most taxa that were identified in the stomachs had representative isotopic values from 

the trawl data. While all of the major taxa present within the stomachs (representing > 5% 

of the Atlantic cod stomach contents by weight), minor invertebrate taxa were sometimes 

not represented in the isotopic signature. The Bonavista Corridor was missing sea 

cucumbers (3.4% of cod stomach content biomass); Notre Dame Channel was missing 

gastropods, crabs (Cancer sp.), tunicates, bryozoans and sea urchins (all at less than 0.1% 

of cod and Greenland halibut stomach content biomass); and Hawke Channel was 

missing sipunculids (0.1% of American Plaice stomach content biomass) and bryozoans 

(0.01% of cod stomach content biomass). Given the limitations of trawl sampling on 

invertebrate communities, it is not unexpected to be missing taxa. The only fish species 

that was found in a stomach that was not observed in the trawl catches were grenadiers in 

the Notre Dame Channel (0.3% of stomach content biomass). With the exception of 

gastropods, all of the before mentioned taxa would have been grouped in either “other 

benthic invertebrates” or “other demersal fish” categories. Since these underrepresented 

species occurred infrequently in limited quantities, it appears unlikely that their omission 

would impact the results of the isotope mixing model. I also chose not to sample these 
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taxa from the stomachs themselves as digestion has been shown to influence isotopic 

compositions (Hwang et al. 2007, Guelinckx et al. 2008). The stomach contents were also 

used in combination with those from other published studies as a means of determining 

potential prey as inputs for the stable isotope mixing model. However, this choice in 

methods does lend itself to uncertainty regarding the detectability of different prey (Baker 

et al. 2013). For example, prey types will have variable evacuation rates which could bias 

the results of stomach contents analysis (Rindorf & Lewy 2004). Combining this analysis 

with stable isotope analysis helps to resolve this bias. An alternative means of detection 

within the stomach would be to use stomach content DNA to determine prey diversity 

(Barnett et al. 2010, Carreon-Martinez et al. 2011). However, such methods are also 

subject to errors in the detectability of prey and as such should be used in combination 

with other methods (Hosseini et al. 2008).  

The isotope mixing models are also known to be highly sensitive to discrimination 

factors (Bond & Diamond 2011). Yet the measurement of these factors can often be 

difficult for this kind of study. While extensive lab testing is often encouraged to 

determine these contributions (Gannes et al. 1997), many factors will influence the exact 

value of these factors within a given tissue type, including temperature (Barnes et al. 

2007), feeding rate (Barnes et al. 2007), isotopic values of the prey (Caut et al. 2008, 

Caut et al. 2009), protein and fat content of the prey (McCutchan et al. 2003, Robbins et 

al. 2005) and approximate trophic position (Hussey et al., 2014). In light of this wide 

range of uncertainty, I initially attempted to estimate a discrimination factor based on our 

observed stomach content information and isotope values of the prey. However, this 
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estimation sometimes produced unreasonable results likely due to the low sample sizes of 

stomachs for some species with a sometimes high percentage of empty stomachs. In these 

cases I used the measure provided by Post (2002) as an approximation with full 

knowledge that this estimate is likely a simplification of reality, yet robust enough to 

provide an interpretable outcome.  

The number of potential prey sources were often quite high for many of the species 

analyzed. Previous work in this region identified over 100 different prey species within 

cod stomachs (Krumsick & Rose 2012). This number of potential prey sources is 

naturally beyond what the model can realistically handle. Group categories were created 

to account for minor contributions to the diets within stomach data in the present study 

and previously published studies. For species with particularly varied diets, this resulted 

in 14 prey categories as inputs into the model (Phillips et al. 2014). Although this 

situation is less than ideal, as over 7 prey categories are to be used with caution (Stock et 

al. 2018), I could not reasonably conclude that additional prey should be placed within 

the group categories given the prior information I have on this system.  This assumption 

may lend itself to the results being slightly underdetermined, yet even so, given the entry 

of the priors, clear and interpretable results arose from the study. 

Despite these uncertainties in the measures of the diet composition, the proportions 

represented by each prey item provide an indication of the relative importance of each 

prey item (Phillips et al. 2014). The isotope mixing models for more than 3 prey sources 

are based on probabilities of each prey item being selected and as such often have high 

variation as the resulting proportions are an average of 10,000 runs of the model. 
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Therefore, instead of focusing on determining the exactly proportions of each prey, I 

focused on determining key prey items for the food web as well as spatial variation in 

these trends. The use of stomach content information used as a prior helped to direct the 

measure of dietary proportions towards this end.  

The Newfoundland and Labrador marine ecosystems are still in a state of recovery 

following overexploitation beginning decades ago (Lilly et al. 2008). Despite significant 

progress towards recovery, many groundfish populations have not yet reached the 

reference point for commercial exploitation (Pedersen et al. 2017, DFO 2018, Rose and 

Rowe 2018, Chapter 4), a process that can be limited by interspecific interactions (Fung 

et al. 2013). Through consideration of species interactions I have highlighted interactions 

between current and recovering fisheries to illustrate likely ecological and economic 

impacts of groundfish recoveries. As groundfish populations gradually approach a state 

where exploitation may resume in a sustainable manner, ecosystem and trophic dynamic 

considerations such as those presented should be considered in management decisions in 

order to facilitate ecosystem productivity and recovery. Such information gaps as 

trophodynamics and how they vary spatially are essentials inputs to ecosystem-based 

models that interact with other gaps such as essential fish habitat and population 

dynamics to help build an ecosystem framework of management (Slocomb 1993, Molina-

Ureña & Ault 2007, Long et al. 2015). 
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Supplementary Information 

Table 3.S1 Definitions of species abbreviations 

Species 

Abbreviation 

Scientific Name Common Name Classification 

Category 

AC Gadus morhua Atlantic Cod Demersal Fish 

AH Clupea harrengus harrengus Atlantic Herring Pelagic Fish 

AL Aspidophoroides 

monopterygius 

Alligatorfish Demersal Fish 

AM Gammaridae Gammarid 

Amphipod 

Pelagic Invert 

AP Hippoglossoides platessoides American Plaice Demersal Fish 

AR Boreogadus saida Arctic Cod Pelagic Fish 

AW Chaetognatha Arrow Worm Pelagic Invert 

BA Notolepis rissoi White Barracudina Pelagic Fish 

BG Benthosema glaciale Glacier Lanternfish Pelagic Fish 

BK Gorgonocephalus arcticus Basket Star Benthic Invert 

BP - Benthic Plants Benthic Plant 

BS Ophiopholus aculeata Brittle Star Benthic Invert 

BV Bivalva Bivalve Benthic Invert 

CA Mallotus villosus Capelin Pelagic Fish 

CE Lycodes vahlii Checkered Eelpout Demersal Fish 

CO Copepoda Copepod Pelagic Invert 

EU Euphausiacea Euphausiid Pelagic Invert 

FL Eumesogrammus pracisus Fourline 

Snakeblenny 

Demersal Fish 

GA Buccinum undatum Whelk Benthic Invert 

GH Reinhardtius hippoglossoides Greenland Halibut / 

Turbot 

Pelagic Fish 

HA Macruronus novaezelandiae Blue Hake Demersal Fish 

HO Holothuroidea Sea Cucumber Benthic Invert 

HS Artediellus atlanticus Hookear Sculpin Demersal Fish 

HY Hyperiidea Hyperiid Amphipod Pelagic Invert 

IS Isopoda Isopod Benthic Invert 

LH Urophycis chesteri Longfin Hake Demersal Fish 

MD Mysidae Mysid Pelagic Invert 

MG Nezumia bairdi Marlinspike 

Grenadier 

Demersal Fish 

MS Triglops murrayi Moustache Sculpin Demersal Fish 

MY Notoscopelus sp. Krøyer’s 

Lanternfish 

Pelagic Fish 

NU Nudibranchia Nudibranch  Benthic Invert 
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OS Ostracoda Ostracod  Pelagic Invert 

PO Polychaeta Polychaete Benthic Invert 

PP - Pelagic Algae  Pelagic Plant 

PR Agonus decagonus Atlantic Poacher Demersal Fish 

PY Pantopoda Pycnogonid Benthic Invert 

RG Macrourus berglax Roughhead 

Grenadier 

Demersal Fish 

RF Sebastes sp. Redfish Pelagic Fish 

SA Actiniaria Sea Anemone  Benthic Invert 

SB Lumpenus lumpretaeformis Snakeblenny Demersal Fish 

SC Chionocetes opilio Snow Crab Benthic Invert 

SF Asteroidea Sea Star Benthic Invert 

SH Pandalus sp., Sabinea sarsii Shrimp Benthic Invert 

SI Sipuncula Sipunculid Benthic Invert 

SQ Decapodiformes Squid Pelagic Invert 

SS Raja senta Smooth Skate Demersal Fish 

SU Strongylocentrotus 

droebachiensis 

Sea Urchin Benthic Invert 

TC Hyas sp.  Toad Crab Benthic Invert 

TR Gaidropsarus ensis Three-beard 

Rockling 

Demersal Fish 

TS Raja radiata Thorny Skate Demersal Fish 

WF Glyptocephalus cynoglossus Witch Flounder Demersal Fish 
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Table 3.S2  Definition of small, medium and large size categories for the most abundant 

nine fish species. Size category definitions were consistent across regions.  

 

Species Small size range 

(cm) 

Medium size 

range (cm) 

Large size range 

(cm) 

American Plaice 7.0 – 22.6 22.7 – 38.3 38.4 – 54.0 

Atlantic Cod 13.0 – 45.9 46.0 – 80.0 80.1 – 113.0 

Atlantic Herring 27.1 – 30.9 31.0 – 34.7 34.8 – 38.5 

Capelin 11.0 – 13.6 13.7 – 16.2 16.3 – 18.8 

Checker Eelpout 8.0 – 20.9 21.0 – 33.9 34.0 – 47.0 

Greenland 

Halibut 

10.0 – 27.4 27.5 – 45.0 45.1 – 62.5 

Lanternfish 12.9 – 14.5  14.6 – 15.6 15.7 – 17.4 

Redfish 4.0 – 18.6 18.7 – 33.2 33.3 – 48.0 

Thorny Skate 10.2 – 33.9 34.0 – 58.3 58.4 – 80.0  
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Table 3.S3 List of prey species/groups included in the isotope mixing model for each 

predatory fish species as determined from our stomach contents analyses and the 

presented studies from other researchers.  

Species Scientific Name Prey 

Species/Groups 

Diet Studies 

Alligatorfish Aspidophoroides 

monopterygius 

Copepods, 

Euphausiids, 

Gammarids, 

Hyperiids, Isopods, 

Mysids, 

Polychaetes 

Hutchings, 2002; Arbour et 

al., 2010 

American 

Plaice 

Hippoglossoides 

platessoides 

Bivalve, Brittlestar, 

Capelin, Copepod, 

Gammarid, 

Gastropod, 

Hookear Sculpin, 

Hyperiid, Mysid, 

Polychaete, 

Redfish, Shrimp, 

Snow Crab, Toad 

Crab 

Powles, 1965; Pitt, 1973; 

Canalejo et al., 1989; Keats, 

1991; Zamarro, 1992; Martell 

and McClelland, 1994; Link 

et al., 2002; 

Arctic Cod Boreogadus 

saida 

Americna Plaice, 

Brittlestars, 

Copepods, 

Euphausiids, 

Gammarids, 

Hyperiids, Mysids, 

Redfish, Shrimp 

Bohn and McElroy, 1976; 

Ajiad and Gjøsæter, 1990; 

Hobson and Welch, 1992; 

Hop et al., 1997; Christiansen 

et al., 2012; McNicholl et al., 

2016;  

Atlantic Cod Gadus morhua Atlantic Herring, 

Capelin, Checkered 

Eelpout, 

Euphausiid, 

Hyperiid, Mysid, 

Polychaete, 

Redfish, Shrimp, 

Snow Crab, 

Benthic 

Invertebrates, 

Pelagic 

Invertebrates, 

Demersal Fish, 

Pelagic Fish.  

Popova, 1962; Templeman, 

1966; Turuk, 1968; Staneck, 

1973; Staneck, 1975; Turuk, 

1976; Minet and Perodou, 

1978; Turuk and Postolaky, 

1980; Lilly and Fleming, 

1981; Bowering et al., 1983; 

Lilly and Rice, 1983; Lilly, 

1984; Lilly and Osborne, 

1984; Lilly, 1986; Methven 

and Piatt, 1989; Lilly, 1991; 

Gerasimova et al., 1992; 

Lilly, 1994; Casas and Paz, 

1996; Gerasimova and 

Kiseleva, 1998; DeBlois and 
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Rose, 1996; Hanson and 

Chouinard, 2002; Link and 

Garrison, 2002; Krumsick 

and Rose, 2012; Pérez-

Rodríguez and Saborido-Rey, 

2012 

Atlantic 

Herring 

Clupea 

harrengus 

harrengus 

Arrow Worms, 

Copepods, 

Euphausiids, 

Hyperiids, Mysids, 

Shrimp 

Legaré and MacIellan, 1960; 

De Silva, 1973; Dalpadado et 

al., 2000; Langøy et al., 2012 

Atlantic 

Hookear 

Sculpin 

Artediellus 

atlanticus 

Bivalves, 

Copepods,  

Euphausiids,  

Gammarids,  

Mysids, 

Polychaetes 

Scott & Scott (1988) 

Atlantic 

Poacher 

Agonus 

decagonus 

Bivalves, 

Brittlestars, 

Copepods, 

Gammarids, 

Mysids, 

Polychaetes 

Scott & Scott (1988) 

Capelin Mallotus villosus Arrow Worms, 

Copepods, 

Euphausiid, 

Gammarid, 

Gastropod, 

Hyperiid, Mysid, 

Polychaete, Shrimp 

Vesin et al., 1981; O’Driscoll 

et al., 2001; Hedeholm et al., 

2012; Dalpadado and 

Mowbray, 2013 

Checkered 

Eelpout 

Lycodes vahlii Bivalves, 

Brittlestars, 

Copepods, 

Gammarids, 

Hyperiids, 

Polychaetes, 

Shrimp 

Albert, 1993 

Fourline 

Snakeblenny 

Eumesogrammus 

pracisus 

Euphausiids, 

Gammarids, 

Mysids, 

Polychaetes, 

Shrimp 

Hutchings, 2002 

Glacier 

Lanternfish 

Benthosema 

glaciale 

Arrow Worms, 

Copepods, 

Scott & Scott (1988) 
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Euphausiids, 

Gammarids, 

Hyperiids, Mysids, 

Shrimp 

Greenland 

Halibut 

Reinhardtius 

hippoglossoides 

Atlantic Cod, 

Atlantic Herring, 

Capelin, Copepods, 

Checkered Eelpout, 

Gammarids, 

Hyperiid, Redfish, 

Shrimp, Squid, 

Benthic 

Invertebrates, 

Pelagic 

Invertebrates, 

Demersal Fish,  

Pelagic Fish 

Chumakov and 

Podrazhanskaya, 1986; 

Bowering and Lilly, 1992; 

Rodríguez-Marín and 

Punzón, 1995; Orr and 

Bowering, 1997; Dawe et al., 

1998; Hovde et al., 2002; 

Link et al., 2002; Dwyer et 

al., 2010 

Krøyer 

Lanternfish 

Notoscopelus sp. Arrow Worm, 

Copepod, 

Euphausiids, 

Gammarids, 

Hyperiids, Mysid, 

Shrimp 

Gjøsæter, 1981; 

Podrazhanskaya, 1993; 

García-Seoane et al., 2013; 

Bernal et al., 2015 

Longfin 

Hake 

Urophycis 

chesteri 

Copepods, 

Euphausiids, 

Gammarids,  

Hyperiids, 

Lanternfish, 

Shrimp 

Wenner, 1983; Methven and 

McKelvie, 1986; Pérez-

Rodríguez et al., 2011 

Marlinspike Nezumia bairdi Bivalves, 

Copepods, 

Euphausiids, 

Gammarids, 

Hyperiids, Mysids, 

Polychaetes, 

Shrimp, Toad Crab 

Savvatimsky, 1989; Pérez-

Rodríguez et al., 2011 

Moustache 

Sculpin 

Triglops murrayi Copepods, 

Euphausiids, 

Gammarids, 

Mysids, 

Polychaetes, 

Shrimp, Toad Crab 

Musick and Able, 1969; 

Atkinson and Percy, 1992 

Redfish Sebastes sp.  Brittlestars, 

Capelin, Copepods, 

Steele, 1957; Lambert, 1960; 

Yanulov 1962; Canalejo et 
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Euphausiids, 

Hyperiids, 

Lanternfishes, 

Mysids, Redfish, 

Shrimp, White 

Barracudina, 

Benthic 

Invertebrates, 

Pelagic 

Invertebrates, 

Demersal Fish, 

Pelagic Fish 

al., 1989; Albikovskaya and 

Gerasimova, 1993; Pedersen 

and Riget, 1993; González et 

al., 2000; Savenkoff et al., 

2006; Pérez-Rodríguez and 

Saborido-Rey, 2012 

Smooth 

Skate 

Raja senta Euphausiids, 

Gammarids, 

Mysids, 

Polychaetes, 

Redfish, Shrimp, 

Snow Crab, Toad 

Crab 

McEachran et al., 1976 

Snakeblenny Lumpenus 

lumpretaeformis 

Bivalves, 

Copepods, 

Euphausiids, 

Gammarids, 

Mysids, 

Polychaetes, Sea 

Stars, Shrimp, 

Toad Crab 

Demontigny et al., 2012 

Thorny 

Skate 

Raja radiata Capelin, Copepods, 

Euphausiids, 

Gammarids, 

Polychaetes, 

Redfish, Shrimp, 

Snakeblennies, 

Snow Crab, Squid, 

Benthic 

Invertebrates, 

Pelagic 

Invertebrates, 

Demersal Fish, 

Pelagic Fish 

McEachran et al., 1976; 

Templeman et al., 1982; 

Pedersen, 1995; Garrison, 

2000; Skjæraasen and 

Bergstad, 2000 

Threebeard 

Rockling 

Gaidropsarus 

ensis 

Arrow Worms, 

Bivalves, 

Euphausiids, 

Gammarids, 

Houston and Haedrich, 1986; 

Keats and Steele, 1990; 

Lampart-Kałużniacka and 

Heese, 2015 
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Hyperiids, Mysids, 

Polychaetes, 

Shrimp 

White 

Barracudina 

Notolepis rissoi Copepods, Capelin, 

Euphausiids, 

Hyperiids, Mysids, 

Shrimp 

Hutchings, 2002 

Witch 

Flounder 

Glyptocephalus 

cynoglossus 

Bivalves, 

Euphausiids, 

Gammarids, 

Gastropods, 

Polychaetes, 

Mysids  

Scott, 1976; Link et al., 2002 
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Table 3.S4 Length-Weight Relationships of Representative Fish Species of 

Newfoundland and Labrador 

Species Length-Weight Relation Reference 

Alligatorfish 𝑊 = 0.0029 ∗ 𝐿3 Alpoim et al., 2002 

American Plaice 𝑊 = 0.0036 ∗ 𝐿3.305 Paz and Román, 1997 

Arctic Cod 𝑊 = 0.0119 ∗ 𝐿2.76 Crawford and Jorgenson, 

1996 

Atlantic Cod 𝑊 = 0.0081 ∗ 𝐿3.044 Árnason et al., 2009 

Atlantic Herring 𝑊 = 0.0097 ∗ 𝐿2.96 Wigley et al. 2003 

Atlantic Hookear Sculpin 𝑊 = 0.02 ∗ 𝐿2.85 Greenstreet et al., 2012 

Atlantic Poacher 𝑊 = 0.0043 ∗ 𝐿2.98 Alpoim et al., 2002 

Capelin 𝑊 = 0.0042 ∗ 𝐿3.11 Alpoim et al., 2002 

Checker Eelpout 𝑊 = 0.0017 ∗ 𝐿3.27 Alpoim et al., 2002 

Glacier Lanternfish 𝑊 = 0.0054 ∗ 𝐿3.08 Alpoim et al., 2002 

Greenland Halibut 𝑊 = 0.005 ∗ 𝐿3.1804 Román and Paz, 1997 

Krøyer Lanternfish 𝑊 = 0.0054 ∗ 𝐿3.08 Alpoim et al., 2002 

Longfin Hake 𝑊 = 0.0104 ∗ 𝐿2.8226 Paz and Román, 1997 

Marlin-spike  𝑊 = 0.0254 ∗ 𝐿2.89 Alpoim et al., 2002 

Moustache Sculpin 𝑊 = 0.0032 ∗ 𝐿3.46 Alpoim et al., 2002 

Redfish 𝑊 = 0.0247 ∗ 𝐿2.9364 Paz and Román, 1997 

Roughhead Grenadier 𝑊 = 0.1851 ∗ 𝐿2.7542 Paz and Román, 1997 

Smooth Skate 𝑊 = 0.02 ∗ 𝐿2.85 Paz and Román, 1997 

Snakeblenny 𝑊 = 0.0164 ∗ 𝐿2.09 Alpoim et al., 2002 

Thorny Skate 𝑊 = 0.0436 ∗ 𝐿2.8611 Paz and Román, 1997 

Three-beard Rockling 𝑊 = 0.007 ∗ 𝐿2.977 Alpoim et al., 2002 

White Barracudina 𝑊 = 0.0003 ∗ 𝐿3.58 Alpoim et al., 2002 

Witch Flounder 𝑊 = 0.0008 ∗ 𝐿3.497 Bowering and Stansbury, 

1984 
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Table 3.S5 Fractionation coefficients and prey groups analyzed for the isotope mixing 

models of the remaining species. Percent IRI is presented in parentheses 

Species Fractionation 

Coefficient 

Region Prey species analyzed 

Alligatorfish 4.2 / 0.1 HC Gammarid (87.9%), Euphausiid 

(12.1%) 

BC Copepod (72.4%), Polychaete (26.3%) 

American 

Plaice 

3.4 / 0.4 HC Polychaete (65.8%), Brittlestar 

(17.8%), Toad Crab (6.3%), Hookear 

Sculpin (5.2%), Gammarid (2.3%), 

Shrimp (1.2%), Mysid (0.8%), 

Bivalve (0.3%), Copepod (0.3%) 

NDC Toad Crab (67.8%), Polychaete 

(24.8%), Gammarid (7.4%) 

BC Shrimp (44.9%), Bivalve (29.7%), 

Polychaete (18.3%), Gastropod 

(3.5%), Redfish (2.2%), Snow Crab 

(0.7%), Gammarid (0.6%) 

Arctic Cod 3.4 / 0.5 HC Copepod (43.8%), Shrimp (40.4%), 

Gammarid (15.8%) 

NDC Copepod (85.0%), Hyperiid (12.9%), 

Shrimp (1.6%), Euphausiid (0.4%), 

Gammarid (0.1%) 

BC Hyperiid (61.0%), Copepod (38.3%), 

Shrimp (0.4%), Gammarid (0.2%), 

Mysid (0.1%) 

Atlantic 

Herring 

3.3 / 0.3 HC No food-containing stomachs. 

NDC Hyperiid (94.2%), Euphausiid (4.1%), 

Copepod (1.5%), Shrimp (0.2%) 

BC Hyperiid (100%) 

Atlantic 

Poacher 

3.9 / 0.4 HC Gammarid (73.4%), Shrimp (15.1%), 

Polychaete (11.6%) 

BC Gammarid (79.3%), Copepod 

(15.1%), Mysid (5.2%), Euphausiid 

(0.4%) 

Capelin 3.4 / 0.4 HC Copepod (75.0%), Mysid (14.8%),  

Hyperiid (9.5%), Euphausiid (0.4%), 

Polychaete (0.2%) 

NDC Copepod (80.8%), Hyperiid (18.6%), 

Mysid (0.2%), Shrimp (0.2%), 

Euphausiid (0.1%), Gammarid (0.1%), 

Gastropod (0.1%) 
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BC Copepod (88.4%), Hyperiid (9.6%), 

Euphausiid (1.3%), Mysid (0.5%), 

Shrimp (0.2%) 

Checkered 

Eelpout 

3.4 / 0.4 HC Polychaete (69.1%), Brittlestar 

(24.1%), Copepod (3.3%), Shrimp 

(2.4%), Bivalve (0.6%), Gammarid 

(0.6%) 

BC Polychaete (79.7%), Copepod (7.1%), 

Hyperiid (7.0%), Gammarid (6.1%) 

Fourline 

Snakeblenny 

2.9 / -0.2 BC Polychaete (100%) 

Glacial 

Lanternfish 

3.4 / 0.4 HC Copepod (74.0%), Gammarid 

(13.0%), Shrimp (13.0%) 

NDC Copepod (98.7%), Mysid (0.8%), 

Hyperiid (0.3%), Shrimp (0.3%) 

Hookear 

Sculpin 

3.0 / 0.9 HC Bivalve (72.4%), Copepod (27.7%) 

NDC Polychaete (66.7%), Copepod 

(16.7%), Gammarid (16.7%) 

BC Copepod (63.0%), Gammarid 

(19.5%), Polychaete (9.5%), Mysid 

(4.9%), Euphausiid (3.1%) 

Krøyer’s 

Lanternfish 

2.7 / 0.9 HC Copepod (55.2%), Shrimp (23.1%), 

Hyperiid (18.7%), Euphausiid (1.7%), 

Mysid (1.3%), Gammarid (0.1%) 

NDC Copepod (49.3%), Shrimp (36.2%), 

Hyperiid (13.8%), Mysid (0.8%) 

BC Copepod (69.2%), Hyperiid (25.2%), 

Mysid (3.3%), Euphausiid (2.3%), 

Arrow Worm (0.1%) 

Marlinspike 3.1 / 0.0 HC Toad Crab (42.9%), Copepod 

(30.4%), Shrimp (17.0%), Hyperiid 

(9.8%) 

BC Mysid (48.8%), Bivalve (29.0%), 

Polychaete (17.3%), Gammarid 

(3.5%), Shrimp (1.4%) 

Moustache 

Sculpin 

2.8 / 0.4 HC Shrimp (65.5%), Polychaete (12.3%), 

Toad Crab (9.6%), Copepod (6.3%), 

Gammarid (6.3%) 

NDC Hyperiid (70.0%), Gammarid 

(15.4%), Toad crab (8.4%), 

Polychaete (6.1%) 

BC Shrimp (32.5%), Mysid (22.5%), 

Copepod (22.5%), Gammarid (22.5%) 
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Roughhead 

Grenadier 

3.0 / 0.4 HC Copepod (46.2%), Gammarid 

(23.7%), Polychaete (21.4%), Shrimp 

(4.9%), Brittle Star (1.3%), Snow 

Crab (0.9%), Euphausiid (0.8%), 

Mysid (0.6%) 

Smooth 

Skate 

1.4 / 0.5 HC Shrimp (49.5%), Euphausiid (43.1%), 

Polychaete (4.0%), Gammarid (3.3%) 

BC Shrimp (72.1%), Toad Crab (27.9%) 

Snakeblenny 4.1 / 0.4 HC No prey-containing stomachs 

BC Toad Crab (100%) 

Thorny 

Skate 

2.5 / 0.2 HC Shrimp (75.2%), Polychaete (10.1%), 

Snow Crab (9.0%), Euphausiid 

(1.3%), Gammarid (1.3%), Benthic 

Invertebrates (1.3%), Copepod 

(0.9%), Squid (0.5%), Capelin (0.1%), 

Demersal Fish (0.1%), Pelagic 

Invertebrates (0.1%) 

NDC No prey-containing stomachs 

BC Shrimp (29.0%), Euphausiid (27.2%), 

Polychaete (11.2%), Capelin (7.0%), 

Snow Crab (7.0%), Pelagic 

Invertebrate (6.3%), Gammarid 

(5.3%), Benthic Invertebrates (2.7%), 

Snakeblenny (1.7%), Demersal Fish 

(1.4%), Copepod (1.0%), Redfish 

(0.2%), Squid (0.1%) 

Threebeard 

Rockling 

3.4 / 0.5 HC No prey-containing stomachs 

BC Shrimp (72.9%), Hyperiid (8.4%), 

Polychaete (7.3%), Mysid (4.5%), 

Euphausiid (3.4%), Gammarid (3.4%) 

White 

Barracudina 

3.4 / 0.4 HC Shrimp (71.8%), Copepod (19.8%), 

Euphausiid (4.9%), Capelin (1.9%), 

Hyperiid (1.2%), Gammarid (0.2%), 

Mysid (0.2%) 

NDC Shrimp (61.8%), Copepod (34.3%), 

Hyperiid (1.8%), Mysid (1.6%), 

Euphausiid (0.4%) 

BC Copepod (80.1%), Shrimp (18.6%), 

Euphausiid (1.1%), Hyperiid (0.3%) 

Witch 

Flounder 

3.4 / -0.1 HC No prey-containing stomachs 

NDC 
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BC Polychaete (79.3%), Gammarid 

(13.2%), Euphausiid (5.2%), Bivalve 

(1.2%), Mysid (1.1%) 

 

 

 

Table 3.S6 Isotope sample sizes by region and size category with food-containing 

stomach sample sizes. 

 Region Small Medium Large Stomach 

Samples 

American 

Plaice 

HC 4 10 7 26 

NDC 5 12 4 2 

BC 7 7 7 13 

Atlantic 

Cod 

HC 7 8 6 8 

NDC 7 9 4 15 

BC 7 7 7 16 

Atlantic 

Herring 

HC 0 2 0 0 

NDC 4 3 1 18 

BC 1 3 5 4 

Capelin HC 0 3 5 6 

NDC 0 5 4 31 

BC 3 3 3 14 

Checker 

Eelpout 

HC 3 3 3 9 

NDC 0 0 0 0 

BC 3 4 3 10 

Greenland 

Halibut 

HC 8 7 6 19 

NDC 8 7 1 15 

BC 5 9 7 15 

Lanternfish HC 3 3 4 30 

NDC 3 4 2 8 

BC 3 3 3 12 

Redfish HC 5 8 8 16 

NDC 7 7 7 14 

BC 7 7 7 7 

Thorny 

Skate 

HC 8 9 1 12 

NDC 0 3 0 0 

BC 7 11 3 26 
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Fig. 3.S1 American Plaice diet composition as determined from isotope mixing models 

divided by size category and region. 

 

 

 

Fig. 3.S2 Atlantic Herring diet composition as determined from isotope mixing models 

divided by size category and region. 
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Fig. 3.S3 Capelin diet composition as determined from isotope mixing models divided by 

size category and region. 

 

 

 

Fig. 3.S4 Eelpout diet composition as determined from isotope mixing models divided by 

size category and region. 
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Fig 3.S5 Lanternfish diet composition as determined from isotope mixing models divided 

by size category and region. 

 

 

Fig 3.S6 Thorny Skate diet composition as determined from isotope mixing models 

divided by size category and region. Functional group categories are designated by two 

letter abbreviations: PI for pelagic invertebrates, BI for benthic invertebrates, PF for 

pelagic fish, DF for demersal fish. 
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Chapter 4: Community size spectra provide indicators within recovering fisheries 

ecosystems on the Newfoundland and Labrador shelf. 

 

Abstract 

Species- and size-selective overexploitation often have ecosystem-wide impacts that are 

evident in community size-spectra. To both derive potential ecosystem targets for 

community rebuilding and assess contemporary indicators relative to these targets, I 

constructed theoretical size-spectra to predict pristine biomass densities using a 

combination of species- and size-specific nitrogen stable isotope signatures and a range 

of trophic efficiencies and primary productivity estimates within and among three sub-

regions of the Newfoundland and Labrador shelf. Theoretical size-spectra were compared 

to empirically-derived size spectra using trawl survey data. The descending slopes of the 

empirically determined size spectra were between 1.25 and 2.42 times steeper than the 

theoretical slopes. The percentage of the theoretical distribution represented by the 

empirical size structure ranged between 1.1 and 29.4%, with the closest and furthest 

estimates associated with smallest and largest sized fishes, respectively, and strongly 

influenced by estimates of trophic efficiency and primary productivity. Regional 

variation was also observed with southern regions reaching 1.3 – 32.3% of the theoretical 

biomass density and the northernmost region only 0 – 8.3%. Importantly, the descending 

slopes varied depending on fish size, with biomass density of larger sizes decreasing 

faster than smaller sizes. Variations among sub-regions and fish guilds Ire also observed. 

These analyses provide a means to derive potential ecosystem targets and indicators 

through which recovery of fish communities can be monitored and assessed.  
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Introduction 

Both biomass densities and the abundances of organisms have been observed to decrease 

with increasing body size (White et al. 2007), a relationship that is the foundation for size 

spectra modeling (Sheldon et al. 1972). These models treat organisms solely on the basis 

of size, thereby concealing taxonomic identity (Petchey & Belgrano 2010), and have been 

used extensively to model size-structured marine ecosystems (Blanchard et al. 2017). 

Since growth is dependent on food intake, size-structured models are considered a subset 

of physiologically structured models (De Roos & Persson 2001). The expanding field of 

size-structure models helps explain community organization (Shin et al. 2005, Hartvig et 

al. 2011, Blanchard et al. 2017) and community responses to anthropogenic influences, 

including climate change, species invasions, and exploitation (Jennings & Blanchard 

2004, Andersen & Rice 2010, Petchey & Belgrano 2010, Woodward et al 2010, 

Engelhard et al. 2014, Jacobsen et al. 2014). As management of marine fisheries moves 

towards community and ecosystem approaches (Mangel & Levin 2005), it is necessary to 

evaluate community and ecosystem indicators relative to new or established conservation 

targets (Shin et al. 2005, Jennings & Dulvy 2005). 

Fishing pressure and climate change represent two of the greatest anthropogenic 

pressures facing marine communities (Jackson et al. 2001, Tremblay-Boyer et al. 2011). 

Larger individuals and species are often selectively captured by commercial fishing, 

reducing predation pressure and leaving remaining individuals to exhibit increases in 

biomass to fill the opened ecological niches (Anderson & Rice 2010). This can result in 

observed decreases in the species-specific maximum length (Hixon et al. 2014), mean 
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length in a community (Fisher et al. 2010; Shin et al. 2005), and a steeper descending 

slope of community size spectra (Pimm & Hyman 1987, Jennings & Blanchard 2004, 

Daan et al. 2005, Shin et al. 2010). Quantifying such changes within ecosystems having a 

long history of exploitation from a size-spectrum perspective requires both quantifying 

the current state and identifying a baseline reference state (Jennings & Blanchard 2004). 

In the 1980s and early 1990s, demersal fisheries in the Newfoundland and Labrador 

region experienced high levels of exploitation during poor environmental conditions 

leading to stock collapses and subsequent declaration of fisheries moratoria on Atlantic 

cod (Gadus morhua), and other co-occurring species (Lilly et al. 2008). The loss of this 

top predator was associated with ecosystem-wide changes (Lilly et al. 2000, Rice 2002, 

Frank et al. 2006, Pedersen et al. 2017), including the size structure of shelf communities 

(Haedrich & Barnes 1997, Fisher et al. 2010). This marine ecosystem is presently 

recovering from overexploitation (Pedersen et al. 2017, DFO 2018), a process that from a 

size-structure perspective may take decades (Fung et al. 2013).  The earliest recorded 

accounts of exploitation of this ecosystem date to the late fifteenth century (Cell 1982, 

Rose 2007). Therefore, establishing a baseline to assess contemporary recovery based on 

historical data is challenging and has been attempted only for Atlantic cod populations in 

these systems (Myers et al. 2001, Rose 2004). Here I conduct analyses that provide 

complimentary community-level baselines and contemporary indicators of ecosystem 

recovery focusing on a broad base of size-classes and species.   

Using methods first proposed by Jennings & Blanchard (2004), I compiled data from 

three sub-regions within the Newfoundland and Labrador Shelf ecosystem to quantify the 
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current status of the marine fish communities in the context of ecosystem ‘recovery’ and 

its variation among sub-regions and body size classes. Jennings & Blanchard (2004) 

integrated predator-prey mass ratio (PPMR) data, estimates of primary productivity, and 

a range of ecologically reasonable trophic efficiency estimates, defined as the proportion 

of consumed energy that consumers convert to biomass in one trophic level, to provide 

theoretically expected biomass densities across a wide range of fish sizes within North 

Sea fish communities. However, Jennings & Blanchard (2004) also noted that it was 

uncertain whether the cessation of fishing would allow recovery to an unexploited 

community size structure and that question was beyond their North Sea analyses. 

Therefore, I sought to quantify the extent of community reversion towards a theoretical 

unexploited state over 25 years after the initial groundfish fisheries moratoria were 

established in Newfoundland. By similarly deriving theoretical biomass densities for the 

Newfoundland and Labrador Shelf communities, our study addresses the questions: How 

far is the current biomass of fish communities from a theoretical unexploited biomass? 

Furthermore, do empirical community-level signatures of prior overexploitation remain 

evident over two decades later? Separate analyses were conducted among the three 

regions and within three size categories of fishes to further partition the community-wide 

impacts of past exploitation. The three sub-regions are known to differ in prey species 

richness and trophic overlap (Chapter 2).  
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MATERIALS & METHODS 

Study Area 

The study was conducted as part of acoustic-trawl surveys conducted by the Center for 

Fisheries Ecosystems Research (CFER) aboard the RV Celtic Explorer in May 2013 and 

2015 on the offshore shelves from southern Labrador and eastern Newfoundland, in 

Northwest Atlantic Fishery Organization (NAFO) subdivisions 2J, 3K, and 3L (Rose & 

Rowe 2018, Fig 4.1). Combined these subdivisions represent the management unit for the 

‘Northern cod’ stock of Atlantic cod (Templeman 1979, Rose et al. 2000, Smedbol & 

Wroblewski 2002). Set locations were chosen based on information obtained from 

acoustic signals for cod and other species. Sets in the absence of cod acoustic signals 

were also undertaken to compliment these targeted sets. Sets averaged 11-13 fish species 

per set (Chapter 2) with no significant differences in the number of fish species per set 

between cod targeted sets and other sets (one-way ANOVA: HC p = 0.760, NDC p = 

0.760, BC p = 0.371). Three major trenches or corridors within these regions had 

previously been identified as important onshore-offshore cod migration pathways: Hawke 

Channel, Notre Dame Channel, and the Bonavista Corridor (Rose 1993). Given their 

potential importance, these trenches served as the focal regions for sampling. The 

following analyses were therefore conducted for each region separately then pooled for 

the entire region in order to both assess spatial variation in size spectra and to define 

trends for the entire region. Data for the fish species relative biomass composition and 

numbers were collected in May 2013 using a Campelen 1800 trawl (Walsh & McCallum  
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Fig. 4.1 Map of Newfoundland and southern Labrador with sampling locations. The 

sampling locations are indicated for the 2013 (open symbols) and 2015 (closed symbols) 

locations within the Hawke Channel (HC, triangles), Notre Dame Channel (NDC, 

circles), and Bonavista Corridor (BC, squares). The inset map outlines the study domain 

in eastern Canada. The relevant NAFO subdivisions 2J, 3K, and 3L boundaries are also 

indicated. Dashed lines represent 300 m depth contours. The bathymetry map is 

reproduced from GEBCO world map 2014 (www.gebco.net) and NAFO subdivisions 

reproduced from NAFO (www.nafo.int).  

 

http://www.gebco.net/
http://www.nafo.int/
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1997). Samples for nitrogen isotope analysis were collected during May, 2015, utilizing a 

combination of Campelen 1800, and mid-water trawl (Table 4.S1). Though sets ranged in 

duration from 5 to 20 minutes as determined by the chief scientist, all tows were 

conducted at a constant speed of 3.5 knots. The area sampled was therefore calculated 

from this distance towed in combination data provided by Marport sensors attached to the 

trawl to determine mouth width.  

 

Sample collection and preparation 

During both years, all fish caught were sorted by species and standard lengths were 

recorded. The total biomass of each species was also assessed. In cases where a species 

was particularly abundant, subsampling was initiated involving 100 randomly sampled 

individuals. In 2015 tissue samples were taken from all fish species with equal 

representation from the observed size ranges for each species. From most fish, a 

transverse sample of dorsal muscle tissue directly posterior to the head was collected at-

sea, placed in a 1.5 ml centrifuge vial and frozen at -20 ºC.  Frozen stomach samples 

were also collected from these fish at-sea.  Remaining fish with small, difficult to sample 

stomachs were individually labelled and bagged, frozen whole at-sea and later dissected 

in the laboratory for their muscle tissue and stomachs.  

Muscle tissue samples were oven dried at 75°C for 48 hours and homogenized using 

an amalgamator. The dry, homogenized samples were shipped to the Cornell University 

Stable Isotope Laboratory (Ithaca, New York, USA) for weighing and analysis. 

Approximately 1 mg of the powdered sample was placed into 7x7 mm tin capsules.  
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These samples were flash combusted using a Carlo-Erba NC2500 elemental analyzer 

coupled on-line to a Finnigan MAT Delta Plus mass spectrometer for analyses of the 

nitrogen gases. 

 

Empirical size spectra 

Analyses for this study were conducted in R version 3.5.3 (R Core Team 2019). A visual 

representation of the analytical methods and inputs is presented in Fig 4.S1. Fish length 

data from the 2013 samples were converted to mass of individual fish mostly through 

species-specific length-weight relationships (Table 4.S2). For the 2248 measured 

weights, there was ~1:1 correspondence with species-specific length-weight relationships 

(Fig 4.S2). However, when the weight of an individual fish was recorded, empirical 

weights (g) were used. Species-specific biomasses were also adjusted by dividing by the 

catchability, assumed to be 0.25 (Jennings et al. 2002), unless published species- and 

size-specific estimates were available (available for 53% of species sampled; Table 4.S2). 

To generate the size spectra, I followed recommendations provided by Edwards et al. 

(2017), although the prescribed Maximum Likelihood Estimate approach was found to 

depart from the empirical data (Fig 4.S3). Fish masses were binned into log2 mass 

categories (M). The total observed biomass at M was converted to density (g/m²) by 

dividing by the swept area of the trawl (distance trawled x wing spread). Data collected 

from each set were treated in this manner and the mean binned biomass density obtained 

among sets was used to account for varying set durations. These biomass densities were 

divided by the width of the log2 mass category to create a mean binned normalized 
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biomass density (B). Size spectra were then plotted as log10B as a function of log10M, 

starting at 64 g, to determine the scaling coefficient between the two variables. Separate 

analyses were conducted across each sub-region as well as pooled including all three sub-

regions.  

I further assessed variation in size-spectra slopes among size categories and fish 

guilds. As per Daan et al. (2005), empirical size spectra were analyzed as described 

above but for three separate size groups: small: M < 4 kg, medium: M 4 - 8 kg, and large: 

M > 8 kg. Five separate size spectra were created for guilds of fish (flatfishes, pelagics, 

gadoids, elasmobranchs, and demersal mesopredators; Table 4.1) to assess whether the 

size spectra slopes observed in guilds differed systematically from the community slope. 

Guild-specific size spectra were calculated within the size categories identified above, but 

pooled across regions.  

 

Quantification of unexploited size spectra  

The nitrogen ratios from analyzed fish tissue samples were expressed in delta (δ) 

notation, representing the parts per thousand deviation from the standard material (i.e. 

atmospheric nitrogen). The calculation for delta is as follows: 

𝛿15𝑁 = ((
_𝑅𝑠𝑎𝑚𝑝𝑙𝑒_

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1) × 1000      (1) 

𝑅 =  𝑁15 𝑁14⁄         (2) 

The 𝛿15𝑁 estimates were then converted to trophic level estimates using the equation: 

𝑇𝐿 =  (
(𝛿15𝑁− 𝛿15𝑁𝑟𝑒𝑓)

3.4
) + 2      (3) 
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Table 4.1 Fish species categorized within five guilds with percentage of sampled 

biomass during the 2013 survey presented next to each species name. Numbers of 

individuals in each size category for each guild are also displayed. 
Guild Species included (Percent of subgroup biomass) Size Number  

Flatfishes Greenland Halibut (Reinhardtius hippoglossoides, 
81.7%), American Plaice (Hippoglossoides 
platessoides, 14.4%), Witch Flounder 
(Glyptocephalus cynoglossus, 4.0%). 

< 4 kg 1512 

4 – 8 kg 0 

> 8 kg 0 

Pelagics White Barracudina (Notolepis rissoi, 36.0%), 
Myctophiid (Notoscopelus sp. and Benthosema 
glaciale, 34.5%), Atlantic Herring (Clupea 
harrengus harrengus, 18.2%), Capelin (Mallotus 

villosus, 9.2%), Stout Sawpalate (Serrivomer 
beani, 1.8%), Viperfish (Chauliodus sloani, 0.1%), 
Atlantic Argentine (Argentina silus, < 0.1%), 
Anglerfish (Oneirodes macrosteus,< 0.1%), 
Lightless Loosejaw (Malacosteus niger, < 0.1%).   

< 4 kg 478 

4 – 8 kg 0 

> 8 kg 0 

Gadoids Atlantic Cod (Gadus morhua, 99.9%), White Hake 
(Urophycis tenuis, 0.1%), Arctic Cod (Boreogadus 
saida,  < 0.1%), Longfin Hake (Urophycis 
chesteri, < 0.1%), Threebeard Rockling 

(Gaidropsarus ensis, < 0.1%). 

< 4 kg 2728 

4 – 8 kg 393 

> 8 kg 28 

Elasmobranchs Thorny Skate (Raja radiata, 99.9%), Smooth 
Skate (Raja senta, 0.1%). 

< 4 kg 91 

4 – 8 kg 12 

> 8 kg 2 

Demersal 

mesopredators 
Redfish (Sebastes sp., 91.1%), Checker Eelpout 
(Lycodes vahlii, 3.2%), Atlantic Wolffish 
(Anarhichas lupus, 2.0%), Atlantic Hookear 
Sculpin (Artediellus atlanticus, 0.8%), Marlin-
spike (Nezumia bairdi, 0.7%), Nothern Wolffish 
(Anarhichas denticulatus, 0.6%), Atlantic 
Lumpfish (Cyclopterus lumpus, 0.3%), Moustache 

Sculpin (Triglops murrayi, 0.2%), Bigeye Sculpin 
(Triglops nybelini, 0.1%), Spotted Wolffish 
(Anarhichas minor, 0.1%), Alligatorfish 
(Aspidophoroides monopterygius, < 0.1%), 
Atlantic Poacher (Agonus decagonus, < 0.1%), 
Daubed Shanny (Lumpenus maculatus, < 0.1%), 
Fourline Snakeblenny (Eumesogrammus pracisus, 

< 0.1%) Sea Tadpole (Careproctus reinhardti, < 
0.1%), Shorthorn Sculpin (Myoxocephalus 
scorpius, < 0.1%), Snakeblenny (Lumpenus 
lumpretaeformis, < 0.1%), Wolf Eelpout 
(Lycenchelys verrilli, < 0.1%), Wrymouth 
(Cryptacanthodes maculatus, < 0.1%).  

< 4 kg 2292 

4 – 8 kg 2 

> 8 kg 0 
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The previous equation assumes a fractionation coefficient of 3.4 (Post 2002). The 

𝛿15𝑁𝑟𝑒𝑓 represents the nitrogen signature of a species close to the base of the food chain, 

in our case the herbivorous copepod Calanus finmarchicus (Dakin 1908, Marshall & Orr 

1955, Nejstgaard et al. 1997). A linear relationship was determined between the trophic 

level and the logged mass of the fish (M). The predator-prey body size ratio was 

determined from this linear relation by the relation 𝑃𝑃𝑀𝑅 = 10
1

𝑏 where b is the slope of 

the regression line fitted between the trophic level and logged mass (Jennings & 

Blanchard 2004). 

The intercept of the theoretical unexploited size spectrum was estimated using 

primary productivity estimates obtained from the literature (Table 4.S3). A value of 336 

𝑔 𝐶 𝑚−2𝑦−1 (midway between extremes among estimates; Table 4.S3) was used to 

define the theoretical size structure with error bars derived from the highest (540 

𝑔 𝐶 𝑚−2𝑦−1) and lowest (132 𝑔 𝐶 𝑚−2𝑦−1) and lowest published estimates. The primary 

production does not influence the magnitude of the descending slope but rather the 

intercept of the theoretical distribution. Primary productivity estimates were converted to 

annual wet weight (grams) produced per square meter following Greenstreet et al. (1997).  

The relationship between trophic level (TL) and log2 mass category (M) was derived 

from the PPMR relationship determined previously where TL = a + b log M. The 

production at trophic level that the ecosystem could sustain given this primary production 

was calculated as 𝑃𝑇𝐿 = 𝑃𝑃 ∗ 𝑇𝐸(𝑇𝐿−1), analyzed for three values of trophic efficiency 

(TE = 0.1, 0.125, and 0.15), consistent with marine ecosystems in other parts of the world 

(Ware 2000, Jennings & Blanchard 2004). The production (P) at a given trophic level 
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was converted to biomass (B) at trophic level through the relationship 𝑃: 𝐵 = 2 𝑀−0.25 

(Banse & Mosher 1980). In order to compare to the empirical size distribution, the 

theoretical distribution was normalized by dividing the biomass estimates by the width of 

the same log2 size categories. The descending slope of the theoretical size distribution 

was calculated from the linear relationship of the normalized theoretical biomass density 

(B) and log2 body mass category (M). These analyses were conducted at a community 

level and for each of the three sub-regions.  

 

Statistical analyses 

Differences in the slope of both the empirical and theoretical biomass density (B) against 

body mass (M) between regions was determined using an ANCOVA with body mass and 

region as explanatory variables. To test for linearity between the empirical biomass 

density and body mass, Ramsey’s RESET test for functional form was implemented 

(Ramsey 1969).  Differences in the slope of the regression between trophic level and 

logged body mass and region was also assessed with an ANCOVA. Furthermore, an 

ANCOVA was used to determine whether the slope between size categories differed in 

the regression of trophic level and logged body mass. The mean trophic level for fish 

within the same size range was compared among regions using an ANCOVA predicting 

trophic level from region and fish mass.  
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Results 

Species composition 

A total of 38 fish species were recorded during the 2013 survey (Table 4.1). The Hawke 

Channel was dominated by redfish (50% by biomass; 50% by numbers) and Atlantic cod 

(29%; 8%). Similarly, the Notre Dame Channel was dominated by Atlantic cod (60%; 

34%) and redfish (28%; 41%), while the Bonavista Corridor biomass was nearly 

exclusively composed of Atlantic cod (82%; 29%) with redfish (7%; 37%) making a 

minor contribution. For the entire study area, the contributions of cod was 78% by 

biomass and 31% by numbers and redfish was 15% and 36%, respectively, with other 

notable species being Greenland halibut (4%, 7%) and American plaice (1%, 9%). In 

both 2013 and 2015, the Bonavista Corridor was more extensively surveyed resulting in 

larger sample sizes (Table 4.1, Table 4.S4). In 2013 there were no fish larger than 8 kg 

collected in the Hawke Channel or the Notre Dame Channel region, although one was 

caught in the Hawke Channel in 2015. The two species whose observed body sizes 

exceed 8 kg were Atlantic cod and thorny skate.  

 

Body Size and Trophic Level Relation 

The derived trophic level at which fish fed was found to increase nearly linearly with log 

body mass (p < 0.001; Fig 4.2). For the entire area, the increase in trophic level with size 

was described by the linear function TL = 0.37 log (M) + 3.07. The slope of this 

relationship represented a species-averaged PPMR of 521:1. When divided by regions, 

the PPMR was 64:1 within the Notre Dame Channel, lower than either the Bonavista  
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Fig. 4.2 Regression analysis of the increase in trophic level with logged body mass to 

determine predator-prey mass ratios (PPMR) for each region.  
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Corridor (966:1) or the Hawke Channel (2110:1) (p = 0.003), indicating that fish in the 

Hawke channel appear to be feeding on smaller prey. There is insufficient evidence to 

say that the slope of the linear regression between trophic level and logged body mass 

varied among small, medium, and large body size categories (p = 0.27). 

 

Theoretical Size Structure 

The slopes of the theoretical size spectra ranged from -0.43 to -0.74 with lower trophic 

efficiencies yielding steeper slopes (Fig 4.3, Table 4.2). The descending slopes of the 

Hawke  

Channel and the Bonavista Corridor were comparable while the Notre Dame Channel  

showed a steeper decline in biomass with increasing body size due to lower PPMR (p < 

0.001; Table 4.2).   

 

Empirical size spectra 

As expected, the biomass of fishes declined with increasing body mass (p < 0.001; Fig 

4.3). In the empirical community, and assuming a linear relationship, biomass for the 

entire pooled regions was observed to scale as 𝑀−0.69 (Table 4.3). Slopes within sub-

regions (pooled sizes) ranged from -0.69 to -1.04, though these slopes did not differ 

significantly (p = 0.603; Table 4.3). In most cases the relationships were not linear 

(testing for non-linearity yielded p = 0.01 for Bonavista Corridor and p = 0.04 for Notre 

Dame Channel) as residuals were not randomly distributed; Hawke Channel was the  
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Fig. 4.3 Comparison of theoretical size structure (solid lines) at three levels of trophic 

efficiency and the empirical size structure regression (dotted line). Points represent the 

values from the empirical size spectra. The top theoretical line represents the highest 

trophic efficiency and the bottom the lowest trophic efficiency. The gray bars represent 

the range of annual primary productivity measured for this area for each theoretical line.   

 

 

exception (p = 0.50). The steepest empirical slopes were observed in the Hawke and 

Notre Dame Channels and the shallowest slopes in the Bonavista Corridor (Table 4.3). 
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Variation among size categories and guilds 

Variation among guilds underlies the overall community size structure. Based purely on 

biomass, the gadoids (predominantly Atlantic cod, Gadus morhua) represent the 

dominant guild in this community representing 77.7% of the fish biomass (pelagics  

Table 4.2 Descending slopes of theoretical unexploited size spectra for three levels of 

ecotrophic efficiency across the whole sampled region ‘Total Area’ and within sub-

regions.  

Area Trophic Efficiency 

0.1 0.125 0.15 

Total Area -0.55  -0.52  -0.49  

Hawke 

Channel 

-0.48  -0.46  -0.43  

Notre 

Dame 

Channel 

-0.74  -0.68  -0.64  

Bonavista 

Corridor 

-0.54  -0.50  -0.48  

 

 

Table 4.3 Descending slopes of empirical size spectra partitioned regions and fish guilds. 

Values in parentheses represent the r² of empirical size spectra.  

Subset Descending Slope 

Total Area -0.69 (0.59) 

Hawke 

Channel 

-1.04 (0.87) 

Notre Dame 

Channel 

-0.98 (0.65) 

Bonavista 

Corridor 

-0.69 (0.59) 

Pelagics -2.52   (0.83) 

Gadoids -1.02 (0.55) 

Flatfish -0.75 (0.61) 

Elasmobranchs -0.34 (0.15) 

Demersal 

mesopredators 

-1.47 (0.83) 
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represented 0.2%, flatfish 6.2%, elasmobranchs 0.8% and demersal mesopredators 

15.1%). As such, gadoids were an important group in defining the community trends. 

Within this group Atlantic cod has received the most attention in this region. In the 

Bonavista Corridor, Atlantic cod represented 78.6% of the fish biomass and 39.6% by 

numbers in the trawl. These values decreased to 75.8% (biomass) and 16.1% (numbers) 

in the Notre Dame Channel and 28% (biomass) and 4.6% (numbers) in the Hawke 

Channel. The steepest slope was observed among the pelagics, which consisted primarily 

of barracudina (Notolepis rissoi) and myctophids (Notoscopelus sp. and Benthosema 

glaciale) (Table 4.3). The shallowest slopes were observed elasmobranchs, primarily 

thorny skate (Amblyraja radiata), which likely results from a relative deficit of data from 

small sample sizes. Flatfish, primarily American plaice (Hippoglossoides platessoides) 

and Greenland halibut (Rheinhardtius hippoglossoides), demersal mesopredators, 

primarily checkered Eelpout (Lycodes vahli) and redfish (Sebastes sp.), and gadoids also 

exhibited slopes steeper than that for the whole community (Fig 4.S4). 

 

Theoretical vs Empirical Comparison 

For all regions, the empirical biomass densities were typically a fraction of the 

unexploited ecosystem biomass densities (Table 4.4; Fig 4.4). For example, in the 

scenario of TE = 0.1, the combined size classes and regions within the empirical size  
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Table 4.4 Comparison of theoretical biomass density estimates across three trophic 

efficiencies with the biomass density estimate from the 2013 survey. The ‘±’ values 

represent the range of primary productivity estimates investigated. Percent columns 

indicate the percent of the theoretical biomass densities at three TE values represented by 

the 2013 empirical biomass densities (presented in the final column).  

Region Body 

Mass 

Class 

TE = 0.1 TE = 0.125 TE = 0.15 2013 

Biomass 

Density 

(g/m²) 

Biomass 
Density 
(g/m²) 

Percent 
(%) 

Biomass 
Density 
(g/m²) 

Percent 
(%) 

Biomass 
Density 
(g/m²) 

Percent 
(%) 

All 

Regions 
All 
Sizes 

77.2 ± 
47.0 

28.2 164.9 ± 
100.1 

13.2 306.8 ± 
186.2 

7.1 21.8 

< 4 
kg 

28.8 ± 
17.6  

60.3 59.2 ± 
36.0  

29.4 106.7 ± 
64.7 

16.3 17.4 

4 – 8 
kg 

25.6 ± 
15.5   

13.2 55.3 ± 
33.6 

6.4 104.0 ± 
63.1  

3.6 3.8 

>8 kg 22.8 ± 
13.9     

2.6 50.4 ± 
30.6  

1.1 96.1 ± 
58.4  

0.6 0.6 

Hawke 

Channel 
All 
Sizes 

84.5 ± 
51.3   

6.2 179.21 ± 
108.8  

2.9 331.5 ± 
201.3 

1.6 5.2 

< 4 
kg 

29.3 ± 
17.8   

17.4 61.4 ± 
37.8  

8.3 114.3 ± 
71.7  

4.5 5.1 

4 – 8 
kg 

28.7 ± 
17.4   

0.3 60.2 ± 
36.1  

0.2 108.8 ± 
63.9  

0 0.1 

>8 kg 26.5 ± 
16.1  

0 57.7 ± 
35.0  

0 108.4  ± 
65.6  

0 0 

Notre 

Dame 

Channel 

All 
Sizes 

50.0± 
30.4   

9.6 110.2 ± 
66.9  

4.4 210.9 ± 
128.1 

2.3 4.8 

< 4 
kg 

22.8 ± 
13.8   

20.6 47.5 ± 
28.8  

9.9 86.7 ± 
52.7  

5.4 4.7 

4 – 8 
kg 

15.0 ± 
9.1     

0.4 34.2 ± 
20.8  

0.2 67.0 ± 
40.7  

0.1 0.1 

> 8 
kg 

12.2 ± 
7.4     

0 28.5 ± 
17.3  

0 57.2 ± 
34.7  

0 0 

Bonavista 

Corridor 
All 
Sizes 

90.5 ± 
54.9 

30.1 190.5 ± 
115.7  

14.3 350.2 ± 
212.6  

7.8 27.2 

< 4 
kg 

32.6 ± 
19.8 

65.7 66.2 ± 
40.2  

32.3 118.1 ± 
71.7  

18.1 21.4 

4 – 8 
kg 

30.3 ± 
18.4   

17.8 64.6 ± 
39.2  

8.8 116.7 ± 
69.7  

4.3 5.8 

> 8 
kg 

27.6 ± 
16.8     

2.9 59.7 ± 
36.2  

1.3 112.3 ± 
68.2 

0.7 0.8 
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Fig. 4.4 Measured average biomass density as a percentage of the theoretical pristine 

biomass density by size class (S = small, M = medium, L = Large) and among pooled 

size classes “All” calculated for three levels of trophic efficiency (0.1, 0.125, 0.15) within 

the pooled regions (A), Hawke Channel (B), Notre Dame Channel (C), and Bonavista 

Corridor (D). Error bars represent the range of primary productivity estimates for this 

region.  
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spectrum represented only 27% (range 16.8-68.7%) of the theoretical biomass (Fig 4.4A). 

The only scenario where the empirical biomass fell within the range of the theoretical 

biomass was for the Bonavista Corridor when the lowest trophic efficiency and primary 

productivity were used (Fig 4.4D). Consistently across regions with increasing body 

masses the percentage of the theoretical biomass represented by the 2013 empirical 

biomass distribution decreased such that at the largest size category for the empirical 

distribution was between 0% (NDC and HC, where no large fish were sampled) and 

14.4% (BC assuming TE = 0.1 and low primary productivity) of the theoretical 

distribution (Table 4.4, Fig 4.4). The mean trophic level at approximately 4.04 was not 

found to vary with region (p = 0.18) and did not differ significantly between the empirical 

and the theoretical analyses (p = 0.29). 

 

Discussion 

Quantifying the magnitude and timelines of marine fish community recoveries is 

challenged by appropriate characterization of baseline community conditions within 

long-exploited systems and changing ocean conditions (Pauly, 1995). Frequently, 

however, researchers establish biomass baselines using historical biomass estimates or 

data from nearby unexploited environments (e.g. Friedlander & DeMartini 2002, Sandin 

et al. 2008). Yet such baselines may still contain the remnants of anthropogenic effects 

such as human-induced climate change, pollution, etc. Historical baselines may 

furthermore represent ecosystems states are already fully exploited or even overexploited. 

Indicators at the community level of organization have been shown to be reliable and 
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robust to sampling variability and ecosystem differences, yet sensitive to ecosystem 

changes and are therefore useful for management (Fulton et al., 2005). The empirical 

descending slopes and the biomass densities relative to a theoretical pristine size structure 

may function as ecological indicators (Jennings & Blanchard 2004, Shin et al. 2005). I 

therefore sought to approximate a theoretical pristine ecosystem size structure and 

respective biomasses based on ecological principles in order to provide an indicator of 

ecosystem recovery. The authors acknowledge that the present study represents only one 

year of data with no seasonality in the interest of avoiding potential temporal 

confounding variables. Though inspired by Jennings & Blanchard (2004), our work 

expands to include modern recommended approaches towards size spectra analysis as 

prescribed by Edwards et al. (2017), enhanced data on catchabilities, uncertainties around 

input parameter values (including primary productivity), and consideration of different 

fish guilds and size groupings to analyze a recovering ecosystem. 

One of our most striking findings is the apparent distances between the contemporary 

biomass densities of small, medium, large, or pooled size classes and the theoretical 

biomass densities within and among regions of the Newfoundland and Labrador 

continental shelf (Figs 4.3-4.4). The only cases where the empirical spectrum was within 

range of the theoretical size spectra was for small fish in the situation where primary 

productivity and trophic efficiency were both assumed to be low. Since the moratoria on 

groundfish fishing (some of which were first initiated in1992), this region represents a 

recovering ecosystem following overexploitation, providing a system in which to address 

the unresolved question of whether and when cessation of fishing allows a community to 
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recover towards the unexploited abundance-body mass structure (Jennings & Blanchard 

2004, Fung et al. 2013).  

Important regional variations were also observed across both the empirical and 

theoretical size spectra. The Bonavista Corridor, the southern-most and most biodiverse 

of the regions analyzed (Chapter 2), was characterized by empirical spectra closest to the 

theoretical. This result aligns with observed recovery rates of Atlantic cod in these 

regions. It has been observed that the recovery rates in the Bonavista Corridor have 

proceeded faster than the recovery rates in either the Notre Dame Channel or the Hawke 

Channel (Lilly et al. 2008, Rose & Rowe 2015, DFO 2018). The Hawke Channel had the 

highest PPMR of all the regions studied, resulting in the shallowest descending slopes of 

the theoretical spectra. Such higher PPMRs are associated with shorter food chains such 

as one might expect from a predominantly invertebrate diet with relatively reduced food 

chain length (Jennings & Warr 2003).Although a wide range of PPMR is observed, they 

lie within the range of biologically feasible values (Nakazawa et al. 2011, Tsai et al. 

2016). While the study area is treated as a single management unit for Atlantic cod (DFO 

2018, 2019), a great deal of community heterogeneity is evident in this region. This 

regional heterogeneity in PPMR is consistent with complementary studies investigating 

stomach contents, trophic interactions, and isotopic niches (Krumsick & Rose 2012, 

Chapter 1 & 2). In light of the observed differences between these three focus regions, 

these regions are treated in this study as three separate ecosystems. These regions are not 

isolated from each other and migration, to a small extent, between these regions has been 

documented for Atlantic cod (Templeman 1979, Smedbol & Wroblewski 2002) and 
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Greenland halibut (Bowering, 1984). Yet despite this assumption, clear differences are 

observed among communities within sub-regions and as such they should not be 

considered functionally identical.  

There are some potential limitations to the choice of samples and analyses. The 

present study utilized major Atlantic cod migration routes as a means of dividing the 

region based on biological characteristics, but this is by no means the only way these 

areas could be characterized. However, the sampled sub-regions are known to be 

representative of the broader stock distributions for dominant species as these species are 

known to aggregate along and within these offshore channels to spawn and escape cold, 

shallow shelf waters in spring (Fitzpatrick & Miller 1979). The spatio-temporal and 

taxonomic breadth of sampling may be seen as another potential limitation. The sampling 

extent assumes that the surveyed region is representative of the wider area. Further, this 

study represents only one year of fish size data with no characterization of potential 

seasonality in isotopic signatures, fish lengths, or species composition. A multi-year 

study of how these size spectra have changed with time (e.g. Daan et al [2005]) could 

provide further understanding of this ecosystem but was beyond the scope of this study. 

Furthermore, future analyses could assess whether these trends persist across seasons. 

Such consideration of temporal variability would be helpful to compare spatial vs. 

temporal variability within ecosystems with the potential for changes in prey dominance 

throughout the year. 

As with Jennings & Blanchard (2004), invertebrates were not included in this study. 

Although invertebrates are an essential part of the ecosystem, the only species that I had 
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reliable body mass data for were Pandalus shrimp and snow crab. However all caught 

invertebrate species were smaller than the 64 g cutoff point presented (with the exception 

of jellies, sea anemones, and large snow crab). Despite our attempts to account for the 

lack of representation of smaller body sizes through the use of catchability estimates, our 

data of these smaller sizes were underrepresented and as such excluded from the analysis 

to avoid a potential bias. The present study also assumes a linear relationship between 

logged body mass and trophic level and as such a constant PPMR across sizes. Other 

studies, however, have indicated that PPMR would decrease with increased body mass 

(Barnes et al. 2010). I investigated this potential by fitting a number of potential functions 

to the plot and found that the fit was not improved over a simple linear function. As the 

PPMR could not be proven to be non-linear, I therefore also assumed a constant trophic 

efficiency through the relationship 𝑇𝐸 = 𝑃𝑃𝑀𝑅𝛽+0.75, where β is the descending slope 

of the size spectrum (Barnes et al. 2010). The size spectra presented in this study also do 

not take into account asymptotic size of the species nor other species-specific factors 

which could influence size spectra such as variable assimilation efficiencies, daily intake, 

and search volume (Andersen & Beyer 2006, Persson & de Roos 2007). Finally, our 

analyses assume that size is the primary determinant of trophic level (Cohen et al. 1993, 

Romanuk et al. 2010), productivity (Banse & Mosher 1980, Schwinghamer et al 1986, 

Andersen et al. 2009), and biomass within the ecosystem (Kerr 1974, Blanchard et al. 

2017, Edwards et al. 2017). 

Our analyses also highlight the influence of trophic efficiencies and primary 

productivity estimates on theoretical size spectra. The trophic efficiency, combined with 
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the observed regional variation in PPMR, determined the rate of decline of theoretical 

size spectra. These descending slopes are vital to understanding anthropogenic influence 

on community size spectra, as steeper slopes indicate a heavier impact on communities 

(Shin et al. 2005, Blanchard et al. 2017). Trophic efficiency alone is difficult to estimate, 

being influenced by season (Gaedke & Straile 1994), water visibility (Irigoien et al. 

2014), water temperature (Calbet et al. 2014), habitat complexity (Grabowski & Powers 

2004), biodiversity (Gamfeldt et al., 2005), and predator and prey size diversity (Maxwell 

et al. 2010; García-Comas et al. 2016). Under unfavorable environmental conditions, we 

would anticipate a decrease in the trophic efficiency as more energy is invested into 

survival instead of productivity which in turn would also result in a steepening of the 

descending slope of the size spectra. A range of trophic efficiencies were presented to 

account for this uncertainty. The primary productivity determined the intercept of the 

theoretical size spectra. A range of estimates are provided corresponding with estimated 

annual primary production for these regions to control for potential seasonal variability. 

In addition to uncertainty in the measurement of this parameter, it is expected to vary 

from year to year as it is influenced by nutrient availability (Howarth 1988), water 

temperature (Taucher & Oschlies 2011), and vertical mixing (Neale et al. 1998). The 

range of primary productivities used may not represent a pristine historical environment 

but rather a modern estimate of primary production by which we can assess the impacts 

of long-term exploitation on fish communities. I therefore assumed that the primary 

production of the exploited ecosystem would not vary substantially from that of a 

theoretical unexploited one. The model also makes the assumption that fish production is 
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related to primary production, a relationship first proposed by Hrbáček (1969). From this 

relationship I obtained estimates of potential fish production to obtain our biomass 

estimates. This approach is naturally a simplification of reality as it does assume a high 

ecotrophic efficiency, a value which I do not presently have accurate estimations for 

though previous work has assumed a value of 0.95 for most species (Bundy et al. 2000). 

Most size-based studies assume a single rate of decline of B with M for the entire 

community (Macpherson et al. 2002, Jennings & Blanchard 2004, Fock & Czudaj 2018), 

though there are exceptions (e.g. Daan et al. 2005). Newfoundland and Labrador size 

spectra, however, appear to exhibit different rates of decline for different sized fishes. 

The rate is lower and even comparable at smaller sizes, reaching a turning point and 

increasing rapidly between 1.4 and 5.5 kg. With this trend, the proportion of the 

theoretical biomass represented by the empirical distribution decreased with increasing 

size, consistent with other studies (Jennings & Blanchard 2004, Petchey & Belgrano 

2010). Several factors contribute to the observed departure. Given that Altantic cod is the 

main contributing species for these larger size categories (96% by mass and 97% by 

numbers sampled in categories > 3.5 kg), this turning point occurs between the ages of 8 

and 10 (Cadigan 2016). The cod at the observed turning point would therefore have been 

from a mid-2000s year class. A time delay is expected for communities to recover (Frank 

et al. 2011, Fung et al. 2013) and therefore this point may represent signs of recovery of 

fish populations. Furthermore, with fewer larger predators to consume the middle size-

range fish, their biomass might be expected to be relatively higher due to a release from 

predation (Andersen & Rice 2010). The rapid decline in larger individuals and the small 
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percentage of the theoretical biomass represented by the observed biomass density is 

problematic as not all biomass can be considered equal in regard to recovery. The larger, 

older individuals are essential to rebuilding the overexploited fish stocks due to 

substantial contribution of large females to stock productivity (Longhurst 1998, Hixon et 

al. 2014), yet the size classes that could contribute most to recruitment and the recovery 

of fish stocks are the ones that are furthest away from the theoretical pristine distributions 

(Xu et al. 2013).  

Among fish guilds, all (except the elasmobranchs) exhibit steeper slopes than the 

theoretical size-spectra (Tables 4.2-4.3). The gadoids, dominated by Atlantic cod (99% of 

gadoid biomass), was found to be a primary driver of the observed patterns of the 

community size structure, as it contributed the greatest proportion of sampled fish 

abundances and a wide range of sizes. Recent stock assessments for the spawning stock 

biomass of northern cod found the stocks to be at approximately 37% of the Limit 

Reference Point (DFO 2018). The steepest slope observed was the pelagic, driven by 

their high biomass in the smallest size class, then serving as forage fish prey for upper 

trophic predators. Flatfish and demersal mesopredator fish were found to exhibit slopes 

of intermediate magnitude. The vast majority of the demersal mesopredators were 

relatively small species (87.6% of the demersal mesopredator fish from the 2013 survey 

being less than 0.5 kg) with wolffish, redfish, and grenadiers rarely reaching larger sizes 

in this region (Templeman 1986, Power & Orr 2001, González-Costas 2010). The 

observed drop may therefore represent fewer species and fewer larger individuals. 

Similar to Atlantic cod, flatfishes have shown declines in abundance, being a fraction of 
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their historical levels (Healey et al. 2010, Morgan et al. 2013, DFO 2019). The observed 

size spectra are associated with  reduced size structure and spawning stock biomass 

compared to historical flatfish populations as well as size structures in other regions, 

potentially arising from poor recruitment and high bycatch mortality (Morgan et al. 2013; 

DFO 2019).  The only other guild that showed representation in various size categories 

were the skates as part of the elasmobranch guild. These fish were not as plentiful in 

numbers resulting in fairly scattered empirical size distributions with a flat slope.  

Our consistent finding of low percentage of the theoretical biomass represented by the 

empirical spectra and low representation by the largest size classes is not unique to the 

Newfoundland and Labrador fish communities. Jennings and Blanchard (2004) found 

their North Sea empirical slopes to be seven to fifteen times greater than the theoretical; 

our study found the slopes to be only two to nine times greater. Their unexploited 

biomass densities, being between 0.8 and 9.2% of the theoretical biomass density (for TE 

of 0.125), were typically lower than those observed in this study. Other studies around 

the world found similarly small proportions of empirical biomass in exploited ecosystems 

compared to their own unimpacted biomass estimates, despite methodological differences 

(e.g. 1.5% in Friedlander & DeMartini 2002; 10% in Christensen et al. 2003; 5.3 – 21.5% 

in Myers & Worm 2003; 5% in Tang et al. 2003; 0.8 – 33.3 % in McClanahan et al. 

2007; 25% in Sandin et al. 2008). Although the definition of un-impacted biomass varies 

among these studies as differing baseline determination methods were used, the 

overarching results of exploitation on fish communities are consistent. Our community 

analyses further illustrate that these differences between the observed state of community 



 

174 
 

size spectra and a pristine state can persist even following decades of fisheries moratoria. 

The combination of empirical size spectra and theoretical ones provide a basis from 

which we can establish indicators for this ecosystem. Many studies attempt to measure 

ecosystem recovery based on a previous ecological state, despite the fact that this state 

may already have been heavily impacted by human activity (e.g. Neubauer et al. 2013, 

Pedersen et al. 2017). Theoretical size-spectra, such as those presented in this study, seek 

to represent an ecosystem prior to anthropogenic interference (Hunter 1996), thereby 

providing a range of community reference points with which to direct and evaluate 

community rebuilding goals (Jennings & Dulvy 2005, Shin et al. 2005). Furthermore, 

these benchmarks may be used to set target biomass densities for recovering 

communities. Aiming for desired biomass densities targets at a set proportion of these 

theoretical densities may be helpful towards facilitating ecosystem recovery. The present 

study is not prescriptive in defining such targets as they require contributions from 

society, but these results illustrate the wide range of potential targets. Upon setting these 

targets, analysis of the present empirical size spectra slopes and biomass density 

estimates provide an indication of the distance to the desired target state from which 

managers can assess the effectiveness of population and ecosystem based management 

decisions.  

Given the variables present within the model, factors that would promote recovery 

and increased observed biomass densities include:  
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(a) Increasing primary productivity to increase the intercept of the size spectra. This 

would also require that the extra production was consumed and depends on the 

nature of the links between members of the food web.  

(b) Decrease PPMR to decrease the descending slope of the size spectra. In order to 

achieve this, diversity and size of prey would need to be increased to account for a 

range of sizes and availability of higher quality prey. The importance of prey 

diversity has been previously demonstrated for this system (Krohn et al. 1997, 

Sherwood et al. 2007). This point could feasibly be addressed by controlling 

fishing on key prey species thereby increasing the available diversity of prey.  

(c) Increase trophic efficiency thereby decreasing the descending slope. This stage 

could be facilitated through, for example, increases of lipid-rich prey and/or prey 

which are more effectively digested. The recent “capelin hypothesis” limiting 

Atlantic cod recovery, stating that cod has not recovered due to a lack of capelin 

consumption and thereby relatively poor feeding, is more-or-less based on 

altering (b) and (c) (Rose & O’Driscoll 2002; Buren et al. 2014; Mullowney & 

Rose 2014).   

(d) Modify future fishing practices such that larger fish are not preferentially 

removed. This removal steepens the descending slope via the larger, more 

productive individuals which are essential for population recovery (Birkeland & 

Dayton 2005, Hixon et al. 2013). We could feasibly modify of future fishing 

practices in order to increase the descending slopes of the size spectra.  



 

176 
 

The Newfoundland and Labrador fish communities are presently in a state recovering 

from overfishing in combination with changing ocean conditions which occurred in the 

late 1980s and early 1990s (Rice 2002, Pedersen et al. 2017). This combination resulted 

in a decrease in productivity of the ecosystem that exacerbated the effects of 

overexploitation and has since contributed to the observed lack of community recovery 

(Parsons & Lear 2001, Hillborn & Litzinger 2009). The removal of large fishes and 

subsequent expansion of lower trophic level populations led to ecosystem changes (Frank 

et al. 2006) and the addition of new invertebrate fisheries (Shrank 2005, Mather 2013). 

Contrary to recent portrayals of this ecosystem as one undergoing ‘incipient recovery’ 

relative to data collected in 1981 (Pedersen et al. 2017), our study shows that some sub-

areas and size components have exhibited little recovery at the community level 

associated with continued low productivity. While a single species may recover relatively 

quickly, our results support that a damaged community may take decades to recover 

community and size-based characteristics (Frank et al. 2011, Fung et al. 2013). 

Conventional targeted fishing methods have resulted in selective removal of specific 

components of the ecosystem that have community-wide impacts (Pauly et al. 1998, 

Smith et al. 2011, Garcia et al. 2012, Essington et al. 2015). These impacts are 

exacerbated through the common practice of serial addition of low-trophic-level fisheries 

(Essington et al. 2006). Instead of heavily removing top predators, balanced harvesting 

has been proposed such that moderate removal of fish will take place across body sizes 

within the community and thereby ideally reduce damage to fish communities and allow 

for greater sustainable biomass yields (Garcia et al. 2012, Law et al. 2012, Rochet & 
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Benoît 2012). Such balanced harvesting reduces the impacts of fishing mortalities such 

that productivities approach more natural levels as well as improves ecosystem resistance 

to disturbances (Law et al. 2012). Furthermore, these practices function to protect the 

larger and more productive individuals (Birkeland & Dayton 2005, Hixon et al. 2013), an 

outcome that may also be facilitated through the use of properly selected marine 

protected areas (e.g. Barrett et al. 2007, Sherwood & Grabowski 2016, Kincaid & Rose, 

2017). Though largely theoretical at this point (e.g. Garcia et al. 2012, Law et al. 2012, 

Law & Plank 2018), such balanced harvesting techniques have been partially 

implemented, unintentionally, on a small scale within several fisheries (Plank et al. 2014, 

Borges et al. 2016, Breen et al. 2016, Kolding et al. 2016, Plank et al. 2017). Although 

this approach to ecosystem based management has been criticized as unrealistic in their 

simplification of reality and the expected amount of micromanagement required for 

perfect implementation (Froese et al. 2015, Andersen et al. 2016, Reid et al. 2016), others 

argue it is still a viable solution if implemented properly (Borges et al. 2016, Howell et 

al. 2016, Reid et al. 2016, Plank et al. 2017). Discard bans have been proposed as a 

means to implement balanced harvesting, based on the idea that species with higher 

productivity will be more likely to be caught (Garcia et al. 2011, Borges et al. 2016), 

though this approach could have negative impacts for species with conservation concerns 

(Heath et al, 2014). As a moderate alternative, it has been recommended to gradually 

reduce fisheries discards to a level that would facilitate ecosystem stability (Fondo et al, 

2015). In regard to first steps forwards towards a balanced harvesting approach, 

diversifying the catch, not only by species but also sizes caught, would distribute the 



 

178 
 

impact of fishing. In order to facilitate this shift, the implementation of a flexibly métier-

based approach shows potential (Reid et al. 2016). This extra catch, however, has at 

present no market value. To facilitate cooperation of fishing fleets, either a market would 

need to be made for the unwanted bycatch (either through use as fish meal or through 

creative uses of presently unmarketable organisms) or a strong incentive would need to 

be provided to comply. By increasing the combinations of vessels and gear 

configurations to increase diversity of overall catches in addition to adequate reporting of 

catches, cooperation of fishing fleets, at least partial retention of discard, and an adaptive 

approach to reduce stress on species of concern (such as wolffish which are protected by 

the Canadian Species at Risk Act), we may approach a theoretical pristine ecosystem 

state and thereby limit damaging anthropogenic influences.  
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Supplementary information 

Table 4.S1 Identities and numbers of species sampled for stable isotope analysis in the 

2015 survey by region and gear type.  

Region Gear Species sampled (Number of individuals) 

HC Campelen 
1800 

American Plaice (21), Alligatorfish (9), Arctic Cod (5), Atlantic 

Cod (21), Atlantic Herring (2), Atlantic Hookear Sculpin (3), 

Atlantic Poacher (3), Blue Hake (1), Capelin (8), Checker 

Eelpout (9), Greenland Halibut (21), Marlin-spike (6), 

Moustache Sculpin (3), Myctophiid (Benthosema, 3), 

Myctophiid (Notoscopelus; 9), Redfish (21), Roughhead 

Grenadier (9), Smooth Skate (8), Snakeblenny (1), Thorny 

Skate (18), Threebeard Rockling (1), White Barracudina (3), 

Witch Flounder (3) 

NDC Campelen 
1800 

American Plaice (16), Arctic Cod (15), Atlantic Cod (6), 

Atlantic Herring (1), Atlantic Hookear Sculpin (1), Capelin (1), 

Greenland Halibut (9), Moustache Sculpin (3), Redfish (12), 

Thorny Skate (2), White Barracudina (2), Witch Flounder (2) 
Mid-
water 
Trawl 

American Plaice (5), Arctic Cod (2), Atlantic Cod (14), Atlantic 

Herring (8), Capelin (8), Greenland Halibut (7), Myctophiid 

(Benthosema, 3),  Myctophiid (Notoscopelus; 9), Redfish (9), 

Thorny Skate (1), White Barracudina (1), Witch Flounder (1) 

BC Campelen 
1800 

American Plaice (21), Alligatorfish (9), Arctic Cod (17), 

Atlantic Cod (21), Atlantic Herring (9), Atlantic Hookear 

Sculpin (3), Atlantic Poacher (9), Capelin (9), Checker Eelpout 

(10), Fourline Snakeblenny (2), Greenland Halibut (21), 

Longfin Hake (1), Marlin-spike (9), Moustache Sculpin (3), 

Myctophiid (Notoscopelus; 9), Redfish (22), Smooth Skate (1), 

Snakeblenny (1), Thorny Skate (21), Threebeard Rockling (5), 
White Barracudina (4), Witch Flounder (13) 
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Table 4.S2 Catchabilities and length-weight relations for all analyzed species. In cases 

where weights of individual fish were obtained, those were used and no length-weight 

relation was required. The first reference is for the length-weight relation (unless all 

individuals were weighed, in which case relation from the literature was required) and the 

second reference is for the catchability.  

Species Scientific Name Length-
Weight 
Relation 

Catchability References 

Alligatorfish Aspidophoroides 

monopterygius 

𝑊
= 0.0029 ∗ 𝐿3 

0.25 Alpoim et al., 
2002; Jennings 
et al., 2002 

American 
Plaice 

Hippoglossoides 

platessoides 

𝑊
= 0.0036
∗ 𝐿3.305 

See Fraser et al., 2007 Paz & Román, 
1997 

Anglerfish Oneirodes 

macrosteus 

All Individuals 
Weighed 

0.021 Walker et al., 
2017 

Arctic Cod Boreogadus 

saida 

All Individuals 
Weighed 

4.8585

∗
𝑒(−4.575+0.0783∗𝐿)

1 + 𝑒(−4.575+0.0783∗𝐿)
 

Harley & 
Meyers, 2001 

Argentine Argentina silus All Individuals 
Weighed 

0.0658 Harley et al., 
2001 

Atlantic Cod Gadus morhua 𝑊
= 0.0081
∗ 𝐿3.044 

7.2277

∗
𝑒(−5.04+0.138∗𝐿)

1 + 𝑒(−5.04+0.138∗𝐿)
 

Árnason et al., 
2009; Harley 
& Meyers, 
2001 

Atlantic 
Halibut 

Hippoglossus 
hippoglossus 

All Individuals 
Weighed 

4.3368

∗
𝑒(−4.41+0.109∗𝐿)

1 + 𝑒(−4.41+0.109∗𝐿)
 

Harley & 
Meyers, 2001 

Atlantic 
Herring 

Clupea 

harrengus 

harrengus 

𝑊
= 0.0097
∗ 𝐿2.96 

See Walker et al., 2017 Wigley et al. 
2003 

Atlantic 
Hookear 
Sculpin 

Artediellus 

atlanticus 

𝑊
= 0.02 ∗ 𝐿2.85 

0.25 Greenstreet et 
al., 2012; 
Jennings et al., 
2002 

Atlantic 
Lumpfish 

Cyclopterus 

lumpus 

All Individuals 
Weighed 

0.25 Jennings et al., 
2002 

Atlantic 
Poacher 

Agonus 

decagonus 

𝑊
= 0.0043
∗ 𝐿2.98 

0.25 Alpoim et al., 
2002; Jennings 
et al., 2002 

Atlantic 
Wolffish 

Anarhichas 

lupus 

𝑊
= 0.0053
∗ 𝐿3.077 

0.4067 Templeman, 
1986; Harley 
et al., 2001 
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Capelin Mallotus villosus 𝑊
= 0.0042
∗ 𝐿3.11 

0.08 Alpoim et al., 
2002; 
O’Driscoll et 
al., 2002 

Checker 
Eelpout 

Lycodes vahlii 𝑊
= 0.0017
∗ 𝐿3.27 

0.471183 Alpoim et al., 
2002; Walker 
et al., 2017 

Daubed 
Shanny 

Lumpenus 

maculatus 

𝑊
= 0.0091
∗ 𝐿2.335 

0.25 Greenstreet et 
al., 2012; 
Jennings et al., 
2002 

Greenland 
Halibut 

Reinhardtius 

hippoglossoides 

𝑊
= 0.005
∗ 𝐿3.1804 

4.3368

∗
𝑒(−4.41+0.109∗𝐿)

1 + 𝑒(−4.41+0.109∗𝐿)
 

Román & Paz, 
1997; Harley 
& Meyers, 
2001 

Lightless 
Loosejaw 

Malacosteus 

niger 

All Individuals 
Weighed 

0.25 Jennings et al., 
2002 

Longfin 
Hake 

Urophycis 

chesteri 

𝑊
= 0.0104
∗ 𝐿2.8226 

0.303 Paz & Román, 
1997; Harley 
et al., 2001 

Marlin-spike  Nezumia bairdi 𝑊
= 0.0254
∗ 𝐿2.89 

0.25 Alpoim et al., 
2002; Jennings 
et al., 2002 

Moustache 

Sculpin 

Triglops murrayi 𝑊
= 0.0032
∗ 𝐿3.46 

0.25 Alpoim et al., 
2002; Jennings 
et al., 2002 

Myctophiid Notoscopelus sp. 

& Benthosema 

glaciale 

𝑊
= 0.0054
∗ 𝐿3.08 

0.25 Alpoim et al., 
2002; Jennings 
et al., 2002 

Northern 

Wolffish 

Anarhichas 

denticulatus 

𝑊
= 0.017
∗ 𝐿2.92 

0.4067 Alpoim et al., 
2002; Harley 
et al., 2001 

Redfish Sebastes sp. 𝑊
= 0.0247
∗ 𝐿2.9364 

See Walker et al., 2017 Paz & Román, 
1997 

Roughhead 
Grenadier 

Macrourus 
berglax 

𝑊
= 0.1851
∗ 𝐿2.7542 

0.25 Paz & Román, 
1997; Jennings 
et al., 2002 

Sea Tadpole Careproctus 

reinhardti 

All Individuals 
Weighed 

0.25 Jennings et al., 
2002 

Shorthorn 
Sculpin 

Myoxocephalus 

scorpius 

𝑊
= 0.0138
∗ 𝐿3.06 

0.4933 Fishbase.org; 
Harley et al., 
2001 
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Smooth 
Skate 

Raja senta 𝑊
= 0.02 ∗ 𝐿2.85 

0.0799 Paz & Román, 
1997; Harley 
et al., 2001 

Spotted 
Wolffish 

Anarhichas 

minor 

𝑊
= 0.0053
∗ 𝐿3.1719 

0.4067 Paz & Román, 
1997; Harley 
et al., 2001 

Snakeblenny Lumpenus 

lumpretaeformis 

𝑊
= 0.0164
∗ 𝐿2.09 

0.25 Alpoim et al., 
2002; Jennings 
et al., 2002 

Stout 
Sawpalate 

Serrivomer 

beani 

All Individuals 
Weighed 

0.25 Jennings et al., 
2002 

Thorny 
Skate 

Raja radiata 𝑊
= 0.0436
∗ 𝐿2.8611 

0.0799 Paz & Román, 
1997; Harley 
et al., 2001 

Three-beard 
Rockling 

Gaidropsarus 

ensis 

𝑊
= 0.007
∗ 𝐿2.977 

8.7398

∗
𝑒(−3.47+0.0916∗𝐿)

1 + 𝑒(−3.47+0.0916∗𝐿)
 

Alpoim et al., 
2002; Harley 
& Meyers, 
2001 

White 
Barracudina 

Notolepis rissoi 𝑊
= 0.0003
∗ 𝐿3.58 

0.25 Alpoim et al., 
2002; Jennings 
et al., 2002 

White Hake Urophycis tenuis 𝑊
= 0.0043
∗ 𝐿3.153 

0.333 Beacham & 
Nepsezy, 
1980; Harley 
et al., 2001 

Witch 
Flounder 

Glyptocephalus 

cynoglossus 

𝑊
= 0.0008
∗ 𝐿3.497 

4.3368

∗
𝑒(−4.41+0.109∗𝐿)

1 + 𝑒(−4.41+0.109∗𝐿)
 

Bowering & 
Stansbury, 
1984; Harley 
& Meyers, 
2001 

Wolf 
Eelpout 

Lycenchelys 

verrilli 

All Individuals 
Weighed 

0.25 Jennings et al., 
2002 

Wrymouth Cryptacanthodes 

maculatus 

All Individuals 
Weighed 

0.25 Jennings et al., 
2002 

Viperfish Chauliodus 

sloani 

All Individuals 
Weighed 

0.25 Jennings et al., 
2002 
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Table 4.S3 Primary productivity estimates for the Newfoundland and Labrador shelf 

communities. 

Region Years  Annual Primary 

Productivity 

Estimate 

(𝒈 𝑪 𝒎−𝟐𝒚−𝟏) 

Study 

Newfoundland-

Labrador Shelf 

1979-1986 540 Longhurst et al., 

1995 

Grand Banks 1980-1981 186-194 Prasad & Haedrich 

Newfoundland-

Labrador Shelf 

1980-1993 156 - 482 Bundy et al., 2000 

Newfoundland-

Labrador Shelf 

1993 150 - 300 Aquarone & Adams, 

2008 

Newfoundland-

Labrador Shelf 

1998-2002 132 - 190 Conti & Scardi, 2010 

Newfoundland-

Labrador Shelf 

2001 440 Pepin & Mailet, 2002 

Newfoundland-

Labrador Shelf 

2006-2010 241 Guijarro et al., 2016 

 

 

 

 

 

 

 

 

 

 



 

197 
 

Table 4.S4 Sample sizes by year within size categories. Fishes sampled in 2013 were 

measured for the biomass composition and fish sampled in 2015 were sampled for stable 

isotope analysis.  

Year Region Size Number of Fish 

2013 Hawke Channel < 4 kg 654 

4 – 8 kg 2 

> 8 kg 0 

Notre Dame 

Channel 

< 4 kg 708 

4 – 8 kg 1 

> 8 kg 0 

Bonavista Corridor < 4 kg 5741 

4 – 8 kg 404 

> 8 kg 27 

2015 Hawke Channel < 4 kg 179 

4 – 8 kg 10 

> 8 kg 1 

Notre Dame 

Channel 

< 4 kg 113 

4 – 8 kg 5 

> 8 kg 0 

Bonavista Corridor < 4 kg 213 

4 – 8 kg 7 

> 8 kg 1 
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Fig. 4.S1 Flow chart of the methods used in this study. Green boxes represent values that 

were measured by the authors, purple boxes represent values obtained from the 

literature, blue boxes represent calculations conducted by the authors, and black 

boxes represent the outputs of the model.  
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Fig. 4.S2 Comparison of measured weights to those derived from published species-

specific length-weight relationships for individuals which were weighed in the field. 

Although deviations exist, a linear relationship with a slope of 1 is observed, 

indicating the relationships are overall adequate approximations.     



 

200 
 

 

Fig. 4.S3 Maximum Likelihood Estimate method for estimating power-law distributions 

(lines overlying the empirical data from three regions and pooled regions) based on 

code provided in Edwards et al. (2017). The differences between MLE methods and 

empirical data demonstrate that, as indicated by Vidondo et al. (1997), power-law 

distributions are not appropriate for all data sets.  
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Fig 4.S4 Individual size spectra for each fish guild (● for all fish, ○ for cod, + for flatfish, 

Δ for pelagics, ◊ for elasmobranchs, and x for demersal mesopredators). Dashed lines 

represent significant deviations from the community spectrum and solid lines 

represent non-significant differences in slope.  
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Chapter 5: Conclusion 

Summary 

The focus of this research was to use knowledge of stable isotope ecology to address new 

questions regarding the current state of Newfoundland and Labrador’s marine 

ecosystems. These results contribute to increasing our understanding of modern 

ecosystem dynamics as well as provide information that could fuel the next generation of 

ecosystem-based models and management decisions. The Newfoundland marine 

ecosystem is dynamic with numerous factors influencing species assemblages including 

current oceanographic regimes (Rose et al. 1995, Han 2006), anthropogenic activities 

(Gomes et al. 1995, Hamilton et al. 2004), climate change (Halliday & Pinhorn 2009), 

and population variation driven by trophic cascades (Lilly et al 2000, Bundy 2001, 

Carscadden et al. 2001). Understanding of present and past ecosystem dynamics are 

therefore essential for understanding the impacts that these factors may have in regard to 

future potential ecosystem changes (Drinkwater 2005, Denman et al. 2011, Jackson et al. 

2011).  

To begin the investigation into the local food webs, I began by quantifying isotopic 

niche overlap within important, recovering Northwest Atlantic marine fish communities 

through analyses of 𝛿15𝑁 and 𝛿13𝐶 muscle tissue signatures from seven abundant fish 

species. The specific objectives of this study are to: (a) determine the influence of species 

richness and diversity (both fish communities and their prey) on the community trophic 

structure among three regions, and (b) assess community-level trophic niche overlap 
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metrics, including the influences of ontogenetic variation on these metrics. Key results 

from this study include: 

 Fish and prey diversity were found to decrease with latitude, indicating 

environmental heterogeneity across the study region.  

 With decreasing prey diversity, increased overlap in trophic niche was observed. 

In addition, with this decreased diversity we observed decreased distances to the 

community centroid and mean distance to nearest neighbor within isotope biplot 

isotope space.  

 Except for Atlantic cod, all analyzed species trended towards the community 

centroid with ontogeny presumably as they become more effective predators due 

to such factors as increased gape size and increased ability to pursue prey.  

 Although most studies analyze a species by combining life stages, our results 

reveal the importance of considering variable trophic niches filled over the size 

range within species. Consideration of these ontogeny-driven trophic niche 

changes reveals differences in community niche overlaps and potential 

competitive interactions. This has not been revealed previously using stable 

isotope Bayesian ellipses.  

 Atlantic cod was clearly a top predator in this ecosystem, although the extent to 

which its trophic niche overlapped varied spatially as a function of prey diversity. 

This observation could hint at a contributing factor to variable cod recovery rates 

within this region: competition for food resources.  
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By determining the isotopic niche occupied by various predatory fish species in 

chapter 2, I was able to approximate the trophic niche these species occupy. However, 

while Bayesian ellipses may provide an indication of potential competition, it is not 

sufficient to determine such an interaction as variable fractionation coefficients and 

potential prey combinations could result in an observed isotopic signature. The relative 

diet proportions of different prey species was therefore investigated to determine whether 

the observed Bayesian overlap was based on common diets and if so what major nutrient 

pathways exist within these ecosystems.  

I then proceeded to investigate specific species interactions and the underlying 

function of the food web. Toward this end, I measured the stable isotopic values of all 

species (except protected species and species which were difficult to obtain isotope 

values such as scyphozoans) caught in trawls and plankton tows. My purpose was 

threefold: (a) to construct simplified marine food webs based on the results from stable 

isotope mixing models supplemented by stomach contents data to determine how they 

vary spatially, (b) analyze spatial variation in the diets of abundant and economically 

important species in the study regions, and (c) discuss how these results relate to spatial 

variation in ontogenetic niche overlap and size-spectra recovery. Among the major results 

of this chapter were: 

 Key prey species in the Bonavista Corridor were found to be copepods, hyperiids, 

and polychaetes. Fish prey were also more common in this region than the other 

two regions. In the Notre Dame Channel, hyperiids, bivalves, and shrimp were 
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found to be key prey species. In the Hawke Channel, shrimp was frequently a 

dominant prey item in predator diets with notable contributions of polychaetes.  

 Northern regions, known to have lower diversity, showed increased connectance 

and shorter food chain lengths in association with the observed increased 

contribution of benthic invertebrates, particularly northern shrimp.  

 The benthic portion of the food web was found to increase relative to the pelagic 

portions of the food web with latitude which has been attributed to heavily 

impacted marine communities.  

 Atlantic cod diet was found to be highly varied in the Bonavista Corridor, but 

quickly became dominated by shrimp and crab in the northern regions. Greenland 

halibut were found to consumed primarily zooplankton species with significant 

contributions of capelin in both the Bonavista Corridor and the Notre Dame 

Channel which was replaced with shrimp and gammarids in the Hawke channel. 

Redfish diet was found to consist of shrimp and pelagic invertebrates, though the 

proportion of shrimp increased with both size and latitude.  

Using isotope mixing models I was able to ascertain details of nutrient flow through the 

ecosystem. Knowledge of such key species interactions is paramount for understanding 

ecosystem functioning and for shifting toward ecosystem-based management. However, 

in order to assess ecosystem recovery, we need to establish community-based indicators, 

which provided the foundations for chapter 4. 

My final chapter is based on deriving ecosystem indicators for modern Newfoundland 

and Labrador shelf fish community rebuilding through the construction of theoretical 
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size-spectra constructed from predator-prey body mass ratios, primary productivity 

estimates, and a range of trophic efficiencies. These theoretical ‘pristine’ size spectra are 

then compared to empirical size spectra to evaluate the present state of the community. 

My purpose was threefold: (a) to assess how much biomass at size we should observe in 

an ideal theoretical situation, (b) to determine how far the current biomass density 

estimates are from a theoretical unexploited size structure, and (c) to determine if the 

influence of overexploitation on the community size structure remain evident over two 

decades after the implementation of fisheries moratoria. Among the major findings were: 

 The descending slopes of the empirical size spectra remain between 1.25 and 2.42 

times steeper than the theoretical ones with biomass densities of larger size 

classes decreasing faster than smaller size classes. 

 The empirical size structure represented a small portion of the theoretical one, 

ranging between from 0 to 32.3% for medium trophic efficiencies.  

 The empirical size structure in northern regions with the lowest observed recovery 

rates were the furthest from the theoretical size spectra.  

 While most prior indicators for recovery have been established based on recorded 

historical levels, the presented community-level indicators illustrate the current 

gap between current size spectra and what could theoretically be observed.  

 Balanced harvesting is a potential approach that could decrease the pressure on 

larger individuals and overall increase the descending slope of the empirical size 

spectrum. 
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While these estimates are not designed to be used as targets, which include the 

socioeconomic considerations, the presented distributions and indicators provide a novel 

means to provide community-based information to guide management decisions.  

Although the size-based approach provides a convenient means by which we can 

monitor the ecosystem and potentially advise management plans, we cannot ignore the 

fact that species identity is still important (Petchey & Belgrano 2010, Rudolf et al. 2014, 

Griffin & Silliman 2018). The ecosystem would not benefit from the preferential removal 

of certain species at certain sizes simply to accommodate economic convenience. 

Accomodations need to take into account such factors as relative biomass and rate of 

reproduction of the species as well as special consideration for species at risk. 

Furthermore, we need to consider the interactions with other species and potential 

ontogenetic variation (Werner & Gilliam 1984, van Leeuwen et al. 2014). The first two 

chapters of this thesis provided insights into some of the complexities of such species 

interactions.  

Species do not exist in isolation and as such should not be treated as a single species. 

I provided insights that a given fish species are not always fulfilling the same role within 

the ecosystem. The isotopic niche that a species fills will likely change over their lifetime 

as well as spatially as a result of spatial heterogeneity of prey availability. I demonstrate 

that a large portion of this variability is dependent on the ecosystem, diet diversity, and 

the relative proportion of the benthic and pelagic portions of the food web. The 

combination of all these elements may naturally be overwhelming, and as such, it may be 

difficult to implement ecosystem approaches toward management (Slocombe 1993, Tallis 
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et al. 2010). While the development and perfect implementation of policies based on the 

previously mentioned ecosystem considerations would be the ideal situation, this 

approach has been criticized as too ambitious to instantly apply (summarized in 

Murawski 2007, Patrick & Link 2015). Instead, stock assessment recommendations could 

be gradually modified to incorporate increasing amounts of ecosystem considerations 

such as species interactions and community size spectra. Such steps towards improving 

our approaches towards ecosystem health will help to facilitate ecosystem recovery from 

overexploitation.  

While discussing ecosystem recovery, a question often arises: how do we designate a 

system as recovered? Prior studies point to a time within living memory when the 

populations were at the least more productive (e.g. Neubauer et al. 2013, Rose & Rowe 

2015, Pedersen et al. 2017). This bias has resulted in what has been termed the “shifting 

baseline syndrome” such that each generation of fisheries scientists accepts the baseline 

stock sizes to be those at the start of their careers (Pauly 1995, Pinnegar & Engelhard 

2008). However, even these benchmarks are substantially lower than population biomass 

estimates prior to extensive fishing pressures (Steele & Schumacher 2000, Rose 2004). 

Considering the fisheries-induced evolution observed in many stocks (Kuparinen & 

Merilä 2007, Enberg et al. 2009, Heino et al. 2015) as well as shifted focus of fishing 

efforts (Pauly et al. 1998, Tromeur & Loeuille 2018), do we try to return to a historical 

state or attempt to adapt to the present state? The present research works under the 

assumption that fisheries-induced evolution has made it unlikely for fish populations to 

return to a prior state of life history characteristics and therefore seeks to assess trophic 
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interactions and size spectra based on the current state of the ecosystem. Naturally, the 

prevention of further fisheries-induced evolution should be a priority, one that may be 

helped with the implementation of the balanced harvesting approach promoted in this 

research (Law & Planck 2018). However, it should be noted that complex ecosystems 

will often exhibit multiple stable states (e.g. Lewontin 1969, May 1997, Beisner et al. 

2003, Conversi et al. 2015) and therefore the current state could be temporary. Continued 

ecosystem survey and adaptive management to assess shifts in community biomass, 

trophic interactions, and life history parameters of its members is therefore required to 

best account for future ecosystem changes and climate change (Pershing et al. 2015).  

 

Limitations of Presented Analyses 

The use of stable isotopes as a tool for the study of food web dynamics has been 

increasing almost exponentially since their use in ecology was first discovered (Crawford 

et al. 2008, Phillips et al. 2014). Given their recent popularity, stable isotopes have 

developed an image of being a sort of “magic” tool for resolving diet information. 

Nevertheless, while undoubtedly a useful tool, stable isotope analyses, as with other 

methodologies used to analyze trophodynamics, do of course come with numerous 

limitations but can be most useful when applied concurrently with other methodologies 

such as stomach content analysis and fatty acid analysis (Gannes et al. 1997).  

 Firstly, a number of biological and non-biological processes (Newsome et al. 

2007, Jackson et al. 2011) determines the stable isotope values of a predator. The focus of 

most studies using stable isotopes is to determine the trophic linkages and is thought to be 



 

210 
 

the primary determining factor of a predator’s isotopic value (Bearhop et al. 2004). Yet 

many other factors will lead to variability surrounding this measure. The fractionation 

coefficients alone are responsive to a number of different factors including prey identity 

(Vander Zanden & Rassmussen 2001, Hussey et al. 2014), temperature (Barnes et al. 

2007, Sweeting et al. 2007), feeding rate (Barnes et al. 2007), growth (Cerling et al. 

2007), prey isotope values (Caut et al. 2008, Caut et al. 2009), protein and fat content of 

the prey (McCutchan et al. 2003, Robbins et al. 2005), and tissue type (Pinnegar & 

Polunin 1999, MacNeil et al. 2004, Sweeting et al. 2007). To account for this limitation, I 

initially attempted to determine predator-species dependent fractionation coefficients 

estimated from the stomach content information obtained. This approach, however, did 

not produce reasonable fractionation estimates for many of the species likely due to low 

stomach sample sizes and that stomachs represent only a snapshot in time while stable 

isotopes represent the diet over the span of months (Fry 1988, Lorrain et al. 2002, 

MacNeil et al. 2006, Olson et al. 2010). In these cases, a published estimate was used in 

chapters 2 and 3. Although I did account for variation in the carbon and nitrogen content 

among prey items, this introduces an additional assumption that the prey are digested to 

approximately equal extent. As muscle tissue was used as a measure of the isotopic value, 

these measures do not take into account tissue-specific isotopic variation. Furthermore, 

some prey, such as the various zooplankton taxa, were ground whole for the isotopic 

analysis due to the impossibility of extracting muscle tissue.  

Many studies extract lipids prior to isotope analysis (e.g. Hobson & Clark 1992, Post 

et al. 2000) using a methanol-chloroform solution (Folch et al. 1957) as 𝛿13C will 
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fractionate during lipid synthesis (DeNiro & Epstein 1977) and lipid content will vary 

substantially among species (Post 2000). However, such lipid removal has been shown to 

create derived products which will alter the 𝛿15N signature in ways that are often difficult 

to predict (Pinnegar & Polunin, 1999; Sotiropoulos et al., 2004; Logan et al., 2008), 

resulting in us using a mathematical correction to correct for the 𝛿13C based on variable 

lipid content (Ricklefs & Travis 1980, Post et al. 2007). The correction, however, 

assumes a mathematical relation that may be a simplification of reality and result in a 

potential bias in the isotopic values used in this thesis when comparing to other studies 

that opted for lipid removal or no lipid correction at all. 

In addition to the assumptions associated with stable isotope analysis, a number of 

assumptions were made regarding parameter estimates used in this research. In addition 

to the fractionation coefficients previously mentioned, such parameters as primary 

productivity and trophic efficiency could not be actively measured or estimated from the 

data that was collected. Although estimates for these values were often taken from the 

literature, given time and resources more accurate estimates for the local ecosystems 

would have been optimal.  

Another primary limitation of this research was the scope of the sampling. The 

samples were collected opportunistically on ecosystem surveys conducted by CFER 

aboard the RV Celtic Explorer. The regions were chosen in the interest of not interfering 

with other presently unpublished work conducted by previous members of our group on 

the Grand Banks and south coast of Newfoundland. However, because of these regional 

restrictions, there were only two years of data that could be used. However, one year did 
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not adequately sample potential invertebrate prey and the other year lacked trawl catch 

data due to reasons beyond my control. As a result, only two years of data were usable in 

the present research. Furthermore, only the spring season was represented. Although the 

Department of Fisheries and Oceans does conduct their own survey in this region during 

the fall, the exact details of the sampling procedures that are undergone during these 

surveys are not released publicly and personal communication has brought into question 

the potential comparability of the surveys. As sampling was opportunistic within the 

scope of the CFER surveys, there was little to no opportunity for potential additional 

sampling. Additional samples from a grab sampler and additional plankton tows would 

have provided additional information on potential prey, making the estimates of the prey 

isotopic values more precise. Furthermore, more diligent measurement of invertebrate 

prey such that we would be able to obtain a mass for each individual would allow us to 

incorporate invertebrates into the community size spectra. The trawl samples were 

additional collected with a Campellen trawl with additional contributions from a 

midwater trawl for the collection of stable isotope samples. This gear is more efficient at 

capturing smaller members of the species presented in this study (Walsh & McCallum 

1996). Furthermore, given that tow duration was not constant, there is the possibility that 

the trawl simply did not collect larger individuals with higher swimming endurance. A 

simple analysis of the maps presented in this thesis reveal that the sampling effort was 

also not evenly spread across the region. The Bonavista Corridor was the primary region 

of focus for a number of cod-focused publications resulting from the ecosystem surveys 

(Rose & Rowe 2015, Rose & Rowe 2018). As the other regions were of relatively less 
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interest, the sampling was reduced. Additionally, given the focus on cod recovery on 

these surveys, there was a distinct focus on the three major trenches thought to be 

important to spring cod migration (Rose, 1993) with little to no coverage of the banks 

existing in between (the Funk Island Bank and the Hamilton Bank). The trenches are 

thought to provide warm water refuges for fish in this region (Rose 1993, Colbourne et 

al. 2013) and therefore the benthic ecosystem dynamics are likely to be quite different on 

these banks.  

In any study of foodwebs, it is important to consider the members at the base of the 

foodweb in order to resolve of the rest of the community. Frequently in studies involving 

stable isotope ecology, a reference species is provided of a known trophic level, typically 

a known herbivorous species (e.g. Carscallen et al. 2012) or a large, sessile organisms 

such as a bivalve (e.g. Lake et al. 2001, Jennings & Warr 2003) or a gastropod (Post et al. 

2000). The copepod species Calanus finmarchicus was selected as a baseline species as it 

was a lower food web species of known trophic level, was sampled in all regions, and has 

been recommended as a potential baseline species in other food webs (Hansen et al. 

2012). However, the use of this species is not without its assumptions. During 

phytoplankton blooms, 𝛿13C and 𝛿15N of phytoplankton have been reported to increase 

which in turn will increase the isotopic values in zookplankton (Goering et al. 1990, 

Ostrom et al. 1997, Tamelander et al. 2009). Given this potential uncertainty in regards to 

the chosen baseline organism, I chose to avoid assigning definitive trophic levels to 

organisms where possible but instead assigned relative trophic levels. Should an alternate 

robust organism of known trophic level and present in all three regions be identified, this 
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information in combination with discrimination factors may be used to assign distinct 

trophic levels to the presented biplots. One exception to this avoidance of defining 

definitive trophic levels, however, is during the fourth chapter where the trophic level or 

each fish was determined to estimate the relationship between trophic level and body 

mass. However, in this case the trophic level itself was not as important as the predator-

prey mass ratio derived from it, which would not have been affected by the potential 

variability of the reference species.  

Throughout this thesis, efforts were made to try to reduce the potential negative 

impacts that the beforementioned limitations could potentially have on the research. 

Despite not having a means to measure many of the parameter estimates, I was able to 

estimate some of them through alternative means (such as estimation of the fractionation 

coefficient from the collected stomach content data). While not exact, these values were 

valuable to study as an alternative of using a generic fractionation coefficient such as 

those proposed in Post 2002 and Caut et al. (2009). Alternatively, a range of potential 

values were used based on other local studies or those conducted in comparable 

ecosystems. This range of values should cover the range of biologically viable estimates 

for the local marine ecosystems. Although the spatial coverage was confined to the major 

trenches defined by Rose (1993) and to two field sampling seasons, efforts were made to 

collect the highest quality of data despite these limitations in the interest of thoroughly 

describing the observed communities. For example, lengths from each individual of every 

fish species (or at least 100 when they were particularly abundant) were collected and 

representative isotope samples taken from every caught species. What these studies lack 
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in spatial and temporal coverage they make up for in coverage of the analyzed 

communities. A number of assumptions are made when using stable isotope analysis as a 

tool. However, by complementing the stable isotope analyses with stomach contents data, 

the impacts of these limitations were reduced.  

 

Future Directions 

Expanded spatial coverage within this region would solidify the results of this thesis. 

The present research focuses purely on offshore communities. Complementary studies 

focusing on inshore communities are therefore a logical next step to this research. In 

addition, the present work is centered on the northeast shelf of Newfoundland and does 

not consider the southern shelves, the Grand Banks, and the Flemish Cap. The regional 

focus of this research was initially meant to complement to presently unpublished stable 

isotope research which was conducted by our lab within these more southerly regions in 

2012, at least in regard to the isotope mixing model which was the focus of chapter 3. 

However, as this complementary research has not been published, comparisons with 

these regions remains a potential future research direction. 

A number of assumptions and estimations were made throughout this dissertation 

based on optimal available data. The third chapter alone uses a wide variety of published 

estimates to inform the model including annual primary productivity, catchabilities, 

trophic efficiencies, fractionation coefficients, and relative trophic level of a reference 

species (in this case a Calanus copepod). To account for uncertainty in some of these 

measures, I provided a range of viable estimates based on values found in published 
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literature. Ideally, more precise, localized estimates would be obtained to ensure a more 

accurate representation of reality. Trophic efficiency, for example, has been documented 

to vary with size (Barnes et al. 2010) while my results assume a static trophic efficiency 

resulting from a constant PPMR. The specific numbers may change with estimates that 

are more precise but the overall trends and conclusions are likely to remain.  

In addition to greater spatial coverage, an analysis of temporal variation would further 

our understanding of the dynamics of these communities. Many of the analyzed species 

are known to be highly migratory and the fish community composition represented in the 

spring surveys may differ from that in the fall. Although I do not anticipate that 

overarching trends would differ substantially between seasons, further analysis would test 

this hypothesis and indicate how robust our results are for characterizing this region. In 

addition to differing community composition there is also the potential variation in the 

diets of representative species. While this study focuses on the spring and winter diets, it 

is quite likely that the summer and fall diets would vary slightly. Seasonal variation in the 

baseline isotopic values, as noted earlier, are also likely to vary with season (Goering et 

al. 1990, Ostrom et al. 1997, Tamelander et al. 2009). Year to year variation is also 

probable. Not only might we anticipate the diets of these fish species to vary (e.g. 

Krumsick & Rose 2012) but also some evidence exists of long-term shifts in the 𝛿15N 

beginning at the base of the foodweb (Sherwood et al. 2011). Continued measures of 

baseline 𝛿15N would help to monitor these changes and allow for better comparison 

between years and with other studies.  
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As mentioned at the beginning of this chapter, many factors will influence marine 

ecosystem dynamics including current oceanographic regimes and climate change. This 

thesis sought to describe the biotic factors such as species interactions and fishing 

impacts but was unable to address these abiotic influences on these fish populations. 

Climate change, which includes increasing ocean temperatures and ocean acidification, in 

particular is a recent topic of particular concern (e.g. McGinn 2002, Roessing et al. 2004, 

Fabry et al. 2008, Belkin 2009, Han et al. 2018). These changes may influence 

community composition and biodiversity by inducing changes in species’ distributions 

(Perry et al. 2005, Harley et al. 2006, Pörtner & Knust 2007), invasive ability 

(Stachowicz et al. 2002, Occhipinti-Ambrogi 2007, Canning-Clode et al. 2011), mortality 

rates (Harvell et al. 2002, Hays et al. 2005, Pershing et al. 2015), sensory ability (Munday 

et al. 2009, Simpson et al. 2011), and productivity (Lawrence & Soame 2004, Blanchard 

et al. 2012). The interaction these abiotic changes will have on fish and invertebrate 

communities remains a clear and pressing issue in light of the climate change and 

continued studies to promote the understanding of how climate change will influence 

species interactions and size spectra. Steps in this direction have been implemented using 

a recent Ecopath model (Tam & Bundy, 2019), but studies such as those presented in this 

thesis are still necessary for future generations of bioenergetic models.  

The material presented in this thesis is designed to help fuel future generations of 

ecosystem-based management recommendations. The approaches towards this end that 

are recommended are presented purely from a scientific perspective. Although the 

science is a key input in determining management, there are undoubtedly numerous other 
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factors, namely socioeconomic and political concerns that are considered in the context 

of ecosystem based fisheries management (Haedrich & Hamilton 2000, Schrank 2005, 

Dudley 2008, Khan & Neis, 2010). For example, while balanced harvesting from a 

theoretical perspective may be an appealing approach towards recovery, it does not 

accommodate concerns of usage of extra catch with little to no market value and the 

amount of benefit for the cost of implementation (Charles et al. 2015, Burgess et al. 2015, 

Reid et al. 2016). Despite the limitations described in the previous chapter, the presented 

complications with the implementation of balanced harvesting are not meant to 

undermine potential usefulness but rather point out challenges which we may hopefully 

overcome. These challenges include economic concerns, enforcement, and how to even 

effective implementation (see Burgess et al. 2015, Charles et al. 2016, Garcia et al. 2016, 

Reid et al. 2016). While it can’t be denied that these socioeconomic, political, and 

technical concerns should have a place in management decisions, it should be reiterated 

that implementing unsustainable solutions on long-term scales or policies that cause 

widespread damage to the ecosystem will only result in future problems and stock 

collapses. Yet if we use caution and an ecosystem approach is taken to also consider 

populations that may not be of economic importance, there is hope that the presently 

damaged post-exploitation ecosystem may recover to become the productive region it 

once was considered.  
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Appendices 

Appendix 1: Ecosystem survey set details 

Table A1: Set details for the CE 2013 trip. Measurements without recorded data are noted 

by a “-“. 

Set 

Number 

Region Gear Duration 

(minutes) 

Speed 

(knots) 

Date Depth 

(m)  

Bottom 

Temp. 

(ºC) 

Weight 

of 

Catch 

(kg) 

Number 

of 

Lengthed 

Fish 

Targeted 

(T)/ Non-

Targeted 

(N) 

8 Hawke 

Channel 

Campelen 

1800 

16 3.5 04/29 260 3.5 201.3 149 N 

9 Hawke 

Channel 

Campelen 

1800 

15 3.5 04/30 298 3 304.6 164 N 

10 Hawke 

Channel 

Campelen 

1800 

7 3.5 04/30 459 -- 60.0 173 T 

11 Hawke 

Channel 

Campelen 

1800 

15 3.5 04/30 305 3.6 201.5 170 T 

12 Notre 

Dame 

Channel 

Campelen 

1800 

16 3.5 05/01 369 3.8 1007.8 247 N 

13 Notre 

Dame 

Channel 

Campelen 

1800 

16 3.5 05/03 347 3.5 126.1 165 T 

14 Notre 

Dame 

Channel 

Campelen 

1800 

18 3.5 05/03 317 3.2 262.3 296 T 

15 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/03 320 3.3 90.0 215 N 

16 Bonavista 

Corridor 

Campelen 

1800 

6 3.5 05/03 378 3.5 72.2 123 T 

17 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/03 320 3.6 107.6 53 T 

18 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/04 315 -- 255.5 237 N 

19 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/04 308 4.1 344.4 274 T 

 

20 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/04 302 4.0 1066.1 464 T 

21 Bonavista 

Corridor 

Campelen 

1800 

24 3.5 05/05 340 4.0 995.4 490 N 

22 Bonavista 

Corridor 

Campelen 

1800 

7 3.5 05/05 340 4.0 152.1 203 T 

23 Bonavista 

Corridor 

Campelen 

1800 

7 3.5 05/05 300 4.1 308.6 128 T 

24 Bonavista 

Corridor 

Campelen 

1800 

10 3.5 05/05 302 -- 1244.1 415 T 

25 Bonavista 

Corridor 

Campelen 

1800 

6 3.5 05/06 332 3.2 38.6 105 T 

26 Bonavista 

Corridor 

Campelen 

1800 

7 3.5 05/06 335 3.5 887.0 348 T 

27 Bonavista 

Corridor 

Campelen 

1800 

7 3.5 05/06 333 2.8 65.1 190 T 

28 Bonavista 

Corridor 

Campelen 

1800 

5 3.5 05/07 302 4.0 86.6 0 T 

29 Bonavista 

Corridor 

Campelen 

1800 

5 3.5 05/07 308 4.0 189.3 123 T 

30 Bonavista 

Corridor 

Campelen 

1800 

17 3.5 05/08 307 3.6 1391.9 785 T 
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31 Bonavista 

Corridor 

Campelen 

1800 

21 3.5 05/08 307 3.3 1076.6 391 N 

32 Bonavista 

Corridor 

Campelen 

1800 

5 3.5 05/09 308 3.8 336.5 89 T 

33 Bonavista 

Corridor 

Campelen 

1800 

4 3.5 05/09 308 3.8 362.1 179 T 

34 Bonavista 

Corridor 

Campelen 

1800 

6 3.5 05/10 319 3.3 390.6 475 T 

35 Bonavista 

Corridor 

Campelen 

1800 

14 3.5 05/10 332 3.2 220.3 127 T 

36 Bonavista 

Corridor 

Campelen 

1800 

5 3.5 05/11 342 3.8 504.7 410 T 

37 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/12 339 3.3 241.5 354 N 
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Table A2: Set details for the CE 2015 trip. Measurements without recorded data are noted 

by a “-“. 

Set 

Number 

Region Gear Duration 

(minutes) 

Speed 

(knots) 

Date Depth 

(m) 

Bottom 

Temperature  

(ºC) 

Number 

of 

Isotope 

Samples 

Number 

of Multi-

species 

Stomachs 

1 Bonavista 

Corridor 

Campelen 

1800 

5 3.5 05/06 280 -- 4 17 

2 Bonavista 

Corridor 

Campelen 

1800 

19 3.5 05/07 302 2.8 10 32 

3 Bonavista 

Corridor 

Campelen 

1800 

17 3.5 05/07 307 2.8 9 29 

4 Bonavista 

Corridor 

Campelen 

1800 

7 3.5 05/08 327 3.2 39 28 

5 Bonavista 

Corridor 

Campelen 

1800 

9 3.5 05/08 320 3.1 23 21 

6 Bonavista 

Corridor 

Campelen 

1800 

8 3.5 05/08 420 3.4 22 21 

7 Bonavista 

Corridor 

Campelen 

1800 

6 3.5 05/08 470 3.5 24 20 

8 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/09 311 3.1 1 0 

9 Bonavista 

Corridor 

Campelen 

1800 

16 3.5 05/09 316 3.1 26 18 

10 Bonavista 

Corridor 

Campelen 

1800 

7 3.5 05/10 300 2.9 14 4 

11 Bonavista 

Corridor 

Campelen 

1800 

10 3.5 05/11 303 2.6 19 14 

12 Bonavista 

Corridor 

Campelen 

1800 

31 3.5 05/11 275 2.1 9 7 

13 Bonavista 

Corridor 

Campelen 

1800 

6 3.5 05/11 322 2.7 11 5 

14 Bonavista 

Corridor 

Campelen 

1800 

6 3.5 05/11 327 2.7 9 6 

15 Bonavista 

Corridor 

Campelen 

1800 

5 3.5 05/12 344 2.8 18 13 

17 Bonavista 

Corridor 

Campelen 

1800 

18 3.5 05/12 285 3.4 22 7 

18 Bonavista 

Corridor 

Campelen 

1800 

11 3.5 05/13 337 2.6 11 8 

19 Bonavista 

Corridor 

Campelen 

1800 

29 3.5 05/14 270 2.2 14 10 

20 Bonavista 

Corridor 

Campelen 

1800 

5 3.5 05/14 267 2.1 7 3 

21 Notre 

Dame 

Channel 

Campelen 

1800 

43 3.5 05/14 394 2.7 0 15 

22 Notre 

Dame 

Channel 

Campelen 

1800 

18 3.5 05/15 405 3.9 0 8 

23 Notre 

Dame 

Channel 

Campelen 

1800 

10 3.5 05/17 286 2.6 0 2 

24 Notre 

Dame 

Channel 

Campelen 

1800 

16 3.5 05/18 244 2.4 47 28 

25 Notre 

Dame 

Channel 

Campelen 

1800 

5 3.5 05/18 250 2.3 6 0 

26 Notre 

Dame 

Channel 

Campelen 

1800 

14 3.5 05/19 362 2.3 6 0 
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27 Notre 

Dame 

Channel 

Campelen 

1800 

5 3.5 05/19 375 3.1 42 8 

28 Hawke 

Channel 

Campelen 

1800 

6 3.5 05/21 306 3.1 16 0 

29 Hawke 

Channel 

Campelen 

1800 

5 3.5 05/21 279 1.9 11 0 

30 Hawke 

Channel 

Campelen 

1800 

6 3.5 05/21 351 2.3 21 2 

31 Hawke 

Channel 

Campelen 

1800 

6 3.5 05/22 471 3.4 16 55 

32 Hawke 

Channel 

Campelen 

1800 

6 3.5 05/22 313 2.8 22 15 

33 Hawke 

Channel 

Campelen 

1800 

6 3.5 05/23 311 3.3 17 42 

34 Hawke 

Channel 

Campelen 

1800 

6 3.5 05/23 217 0.7 14 16 

35 Hawke 

Channel 

Campelen 

1800 

5 3.5 05/24 402 2.9 29 44 

36 Hawke 

Channel 

Campelen 

1800 

8 3.5 05/24 464 3.0 40 1 

37 Hawke 

Channel 

Campelen 

1800 

1 3.5 05/24 413 3.4 6 11 

38 Hawke 

Channel 

Campelen 

1800 

1 3.5 05/24 406 3.4 17 38 

39 Hawke 

Channel 

Campelen 

1800 

1 3.5 05/24 424 3.6 7 8 

40 Hawke 

Channel 

Campelen 

1800 

5 3.5 05/25 268 -- 9 0 

41 Hawke 

Channel 

Campelen 

1800 

11 3.5 05/25 350 3.1 1 1 

42 Hawke 

Channel 

Campelen 

1800 

42 3.5 05/25 336 2.7 4 0 

43 Hawke 

Channel 

Campelen 

1800 

43 3.5 05/25 350 2.7 5 0 

44 Hawke 

Channel 

Campelen 

1800 

44 3.5 05/26 447 3.3 19 23 

46 Notre 

Dame 

Channel 

Mid-Water Unspecified 3.5 05/28 300 -- 14 61 

47 Notre 

Dame 

Channel 

Mid-Water Unspecified 3.5 05/28 310 -- 3 0 

48 Notre 

Dame 

Channel 

Mid-Water 60 3.5 05/28 325 -- 27 28 

49 Notre 

Dame 

Channel 

Mid-Water 30 3.5 05/29 310 -- 10 23 

50 Notre 

Dame 

Channel 

Mid-Water 30 3.5 05/29 375 -- 4 9 

51 Notre 

Dame 

Channel 

Mid-Water 40 3.5 05/29 260 -- 1 8 

52 Notre 

Dame 

Channel 

Mid-Water 34 3.5 05/29 260 -- 2 0 

53 Notre 

Dame 

Channel 

Mid-Water 40 3.5 05/29 300 -- 6 19 

54 Notre 

Dame 

Channel 

Mid-Water 30 3.5 05/29 314 -- 5 11 
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56 Notre 

Dame 

Channel 

Mid-Water 60 3.5 05/30 312 -- 1 0 

57 Notre 

Dame 

Channel 

Mid-Water 60 3.5 05/30 310 -- 5 0 

58 Notre 

Dame 

Channel 

Mid-Water 90 3.5 05/30 304 -- 5 12 
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Appendix 2: Carbon and Nitrogen Stable Isotope Data 

Table A3. Carbon and nitrogen concentrations and stable isotope values used within this 

thesis divided by region, length and size category when applicable.  

Species Region Length 
(cm) 

Size 
Category 

𝛿13C 𝛿15N [C] [N] 

Algae HC  -24.40 5.21 19.71 4.33 

NDC  -25.75 7.18 15.17 2.83 

-23.51 6.62 11.71 2.41 
-23.96 4.83 10.92 1.94 

BC  -20.84 6.08 32.26 6.48 

-21.28 4.00 28.48 7.97 

Alligatorfish HC 11.2 M -18.98 13.34 38.85 10.43 
12.2 M -18.40 14.39 47.47 11.69 

12.5 M -19.00 14.68 49.34 13.21 

13.3 M -18.83 14.28 49.36 11.69 

13.9 M -18.82 14.05 48.41 13.29 
14.0 M -18.96 13.93 48.79 13.28 

14.7 L -18.47 14.57 39.15 10.30 

15.5 L -17.93 14.14 31.87 9.92 
16.3 L -19.14 14.24 46.04 13.48 

BC 6.7 S -19.83 13.04 35.71 13.04 

8.2 S -19.33 13.07 38.39 9.80 

10.3 M -18.95 13.51 37.51 10.05 

11.2 M -19.37 13.27 40.03 13.27 

13.6 M -18.26 13.86 47.66 12.15 

15.5 L -18.46 14.19 45.75 13.75 

16.5 L -19.88 14.42 56.19 14.42 

19.4 L -18.91 13.86 49.46 13.94 

American 

Plaice 
 
 
 
 
 
 

 
 
 
 
 
 
 

HC 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

13.5 S -19.38 12.93 47.98 14.75 

19.4 S -20.43 13.16 46.85 14.58 

19.8 S -19.75 12.36 48.27 14.78 

20.2 S -19.28 11.83 48.40 15.03 
23.5 M -19.79 12.76 46.75 14.33 

25.1 M -19.02 13.45 51.75 16.12 

26.8 M -19.01 13.19 47.84 15.03 
27.2 M -19.62 13.83 46.70 14.41 

28.7 M -19.36 12.78 48.47 15.11 

30.1 M -19.31 13.27 48.19 14.89 
31.4 M -19.77 13.91 44.74 14.12 

33.3 M -19.69 14.18 46.45 14.62 

34.9 M -19.28 14.08 48.10 14.73 
36.0 M -19.34 13.07 46.82 15.02 
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American 

Plaice 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

HC 39.6 L -18.86 14.30 45.63 14.04 

40.2 L -19.08 14.00 46.96 14.50 

41.0 L -19.57 13.41 47.89 15.05 
41.8 L -19.16 14.04 47.57 14.22 

41.8 L -19.56 13.68 47.70 14.96 

42.9 L -19.63 13.29 45.20 14.63 

45.8 L -19.57 13.71 50.13 12.89 
NDC 14.8 S -19.42 12.73 47.66 14.71 

16.2 S -19.22 13.01 46.60 14.26 

17.5 S -19.59 12.04 47.81 14.63 
18.2 S -19.28 12.60 47.58 14.65 

20.5 S -19.37 11.90 47.35 14.53 

22.8 M -19.20 12.95 45.05 14.02 
23.8 M -19.77 12.52 46.33 14.42 

25.1 M -19.83 12.98 48.72 14.84 

28.1 M -19.12 13.49 47.86 14.84 
29.6 M -19.25 12.58 47.64 14.81 

30.8 M -19.50 13.32 48.37 15.08 

31.3 M -20.27 13.55 45.44 14.09 
31.6 M -19.12 13.04 46.33 14.58 

32.5 M -18.74 14.18 47.94 14.97 

33.7 M -18.98 13.44 47.12 14.58 

35.4 M -19.46 13.63 45.78 14.15 
35.9 M -19.42 13.19 46.45 14.43 

38.8 L -18.83 12.71 47.43 14.87 

39.3 L -19.20 13.52 46.93 14.66 
43.6 L -18.57 14.29 48.32 14.98 

46.1 L -18.48 12.99 48.24 14.63 
BC 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

12.5 S -20.11 12.04 47.02 14.20 

13.0 S -20.02 13.52 45.28 13.95 

14.4 S -18.33 12.80 47.63 13.74 

16.0 S -19.75 12.01 47.82 14.59 

17.5 S -19.58 12.04 47.75 14.33 

19.7 S -19.96 12.05 47.66 14.62 

21.0 S -19.64 12.34 47.41 14.69 

26.5 M -19.92 12.82 48.06 14.81 

26.8 M -20.43 14.03 48.95 15.08 

27.5 M -19.59 12.51 46.78 14.54 

28.5 M -19.83 12.85 47.56 14.59 

29.5 M -19.69 13.79 48.45 14.93 

30.5 M -19.85 13.70 50.61 15.48 

31.5 M -19.74 13.39 47.29 14.65 

38.5 L -18.26 12.03 47.42 14.38 
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American 

Plaice 

BC 40.2 L -18.49 12.62 46.18 14.39 

41.0 L -18.64 12.25 48.24 14.87 

42.5 L -19.62 13.16 49.27 14.86 

44.0 L -19.66 13.53 47.70 14.92 

44.1 L -20.05 13.68 48.53 13.87 

46.5 L -18.35 12.53 47.17 14.51 

Anemone HC 

 

-19.91 11.29 42.62 10.60 
-20.74 11.03 37.91 10.10 

-20.72 10.26 36.54 8.92 
NDC 

 

-18.78 13.02 33.72 10.56 
-18.39 12.12 39.69 10.97 

-19.93 11.42 38.63 10.30 

-19.35 11.17 27.11 7.75 
BC 

 
-20.52 10.53 27.90 6.77 

-20.65 10.54 37.54 9.98 

Arctic Cod 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

HC 11.0 S -20.79 11.70 46.86 13.75 

15.6 M -20.81 12.51 47.27 14.08 
16.7 L -21.05 12.21 48.34 14.35 

17.5 L -20.65 12.49 47.27 14.42 

19.7 L -20.73 12.24 47.55 14.34 
NDC 8.6 S -20.99 11.62 45.70 13.66 

9.4 S -20.74 12.17 48.55 14.72 

9.4 S -20.91 11.76 47.23 14.04 

9.5 S -20.87 11.49 48.42 14.39 
9.8 S -20.82 11.77 45.83 13.64 

9.9 S -21.13 11.96 48.25 14.15 

10.4 S -21.28 11.87 46.97 14.04 
10.5 S -20.93 12.15 45.96 13.86 

10.6 S -21.18 11.68 47.77 14.30 

10.6 S -20.81 11.58 45.33 13.87 
10.7 S -21.11 11.92 48.91 14.79 

10.8 S -21.03 12.17 47.90 14.66 

10.8 S -20.95 11.80 47.31 13.84 
10.9 S -21.17 11.99 47.66 14.20 

10.9 S -20.92 11.60 46.72 13.95 

11.5 S -21.15 12.31 47.36 14.34 
12.0 M -20.99 11.77 46.75 14.06 

BC 
 
 

 
 
 
 

7.4 S -21.44 11.40 47.50 13.98 

7.5 S -20.93 12.16 47.73 13.99 

8.4 S -21.27 11.49 46.54 13.81 

8.6 S -21.60 10.97 46.20 14.11 

8.7 S -21.21 11.75 46.13 13.80 

9.5 S -20.91 11.94 48.88 14.68 

9.6 S -21.32 11.64 46.26 13.69 
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Arctic Cod BC 10.0 S -21.15 11.47 45.47 13.57 

10.0 S -21.25 11.62 46.38 13.77 

10.3 S -21.10 11.55 46.39 13.58 

10.5 S -21.10 11.70 43.49 12.98 

11.0 S -21.35 12.37 44.49 13.52 

11.1 S -21.66 12.27 46.55 14.15 

11.2 S -20.97 11.59 47.29 13.92 

11.4 S -21.41 12.35 47.69 14.53 

11.5 S -21.28 11.97 47.58 14.16 

12.0 M -21.31 11.44 46.31 13.84 

Arrow Worm BC 
 

-22.99 7.61 49.29 8.93 

-21.53 7.72 29.82 8.33 

Atlantic Cod 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

HC 14 S -20.97 13.07 46.35 13.64 

22 S -20.44 13.12 47.48 14.50 

24 S -19.76 13.55 47.05 14.45 
28 S -19.87 14.83 46.99 14.29 
32 S -19.46 14.52 47.60 14.68 
35 S -19.17 13.67 47.12 14.44 
39 S -19.66 14.66 48.45 14.81 

44 S -19.55 14.89 46.46 14.12 

50 M -19.33 14.52 47.20 14.43 

53 M -19.02 14.92 45.72 14.20 

60 M -19.25 14.85 46.94 14.60 

64 M -19.42 14.60 46.73 14.40 

67 M -18.90 14.54 45.69 14.19 

71 M -18.96 14.88 50.71 15.85 
76 M -18.89 15.08 47.64 14.50 

80 L -18.91 14.82 46.83 14.61 
82 L -18.65 14.91 45.05 13.96 

84 L -19.12 14.75 46.18 14.67 
86 L -18.72 15.01 47.36 14.57 

89 L -19.43 14.90 45.64 14.24 
104 L -18.66 16.12 47.08 14.65 

NDC 
 

 
 
 
 
 
 
 
 

 
 

25 S -20.59 13.72 46.79 14.13 
29 S -20.10 14.47 47.48 14.11 
30 S -19.77 13.91 45.92 14.12 
33 S -20.43 14.38 48.25 14.50 

38 S -20.19 14.22 47.43 14.20 
42 S -19.80 14.14 47.06 14.43 

44 S -19.78 14.15 47.93 14.75 

46 M -20.00 13.99 47.86 14.67 
50 M -20.17 14.47 47.74 14.64 

54 M -19.43 15.34 41.63 12.75 

59 M -19.51 14.50 46.31 14.55 
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Atlantic Cod NDC 62 M -19.91 14.53 46.97 14.44 

65 M -19.22 15.46 47.49 14.60 

69 M -18.73 15.22 46.69 14.51 
74 M -19.26 14.78 46.52 14.64 

77 M -19.20 14.99 44.63 14.48 

81 L -19.16 15.07 45.84 14.75 

85 L -19.30 15.27 46.50 14.96 
88 L -18.59 16.46 45.87 14.16 

91 L -19.31 15.53 47.31 14.51 
BC 21 S -20.26 14.79 46.35 13.89 

27 S -20.60 14.50 47.22 14.61 

29 S -19.88 14.98 47.06 14.17 

32 S -20.07 14.10 47.60 14.39 

37 S -20.01 14.48 47.15 14.31 

41 S -19.58 14.93 47.19 14.19 

45 S -19.64 14.70 46.60 14.14 

47 M -19.40 14.56 47.62 14.45 

52 M -19.40 14.71 46.94 14.64 

57 M -18.86 16.86 46.55 14.31 

62 M -19.47 14.40 47.31 14.67 

67 M -19.01 15.56 47.98 14.65 

71 M -19.75 15.43 47.29 14.53 

77 M -19.33 15.09 47.52 14.81 

80 L -19.12 14.83 48.27 15.07 

84 L -18.78 15.44 47.81 14.86 

86 L -19.14 14.79 46.17 14.10 

89 L -18.96 16.37 46.74 14.69 

92 L -19.25 15.69 49.11 15.17 

93 L -18.81 15.74 47.77 14.61 

98 L -18.92 16.05 47.09 14.71 

Atlantic 
Herring 
 
 

 
 
 
 
 
 
 

 
 

HC 31.0 M -20.87 12.66 52.23 12.37 

32.6 M -20.52 12.73 53.21 11.14 
NDC 20.3 S -21.15 11.49 47.95 14.40 

27.1 M -20.92 11.99 52.31 13.64 

28.7 M -21.00 11.82 48.50 14.56 
29.4 M -21.35 12.67 48.63 14.39 

30.8 M -21.02 11.87 49.36 14.23 

32.0 M -20.84 12.62 48.48 14.44 

32.2 M -20.40 12.24 46.10 14.01 
33.5 L -20.86 12.24 54.10 11.50 

35.2 L -20.76 12.53 52.44 12.65 
BC 

 
30.0 M -21.10 12.31 47.56 14.58 

31.8 M -20.94 12.10 47.08 14.77 
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Atlantic 

Herring 

BC 32.3 M -21.10 12.52 52.46 12.68 

32.5 M -20.70 12.01 47.22 14.53 

36.5 L -19.95 12.42 50.56 12.42 

37.0 L -20.63 12.72 52.44 12.72 

37.2 L -20.85 12.59 54.67 12.59 

38.0 L -21.07 12.67 54.13 12.67 

38.5 L -21.36 12.42 53.56 12.42 

Atlantic 
Poacher 

HC 12.1 M -19.07 13.80 49.12 13.69 

14.4 M -19.42 13.27 49.42 13.66 

22.4 L -18.90 14.14 57.45 10.29 
BC 6.2 S -19.27 12.82 37.20 10.71 

10.1 S -19.25 14.00 48.44 13.38 

10.4 S -19.15 13.73 45.39 13.05 

10.6 S -19.25 13.88 43.88 12.24 

15.5 M -18.77 14.35 52.13 9.88 

16.1 M -19.37 13.97 50.78 12.90 

19.0 L -19.16 14.61 48.94 9.90 

20.2 L -19.31 14.14 50.78 13.03 

20.9 L -19.62 14.21 48.28 12.99 

Basketstar HC  -14.65 8.89 20.96 2.97 
BC 

 

-15.08 9.00 21.23 2.99 

-14.64 9.91 20.47 2.93 

-13.47 8.73 18.92 2.73 

Blue Hake HC 31.2 M -20.14 12.38 50.22 14.40 
Brachiopod  BC 

 
-10.68 11.20 18.01 3.19 

-7.63 10.87 16.55 2.15 

Brittlestar HC 

 

-10.39 7.03 17.88 2.53 

-11.63 8.30 19.53 2.82 

-10.99 6.61 17.54 2.79 
NDC  -9.71 6.97 17.61 2.16 
BC 

 

-7.96 7.49 14.54 1.49 

-19.39 11.78 44.13 12.17 

-7.84 7.44 15.13 1.48 

Capelin 
 
 
 
 
 

 
 
 
 
 
 

HC 14.9 M -21.12 11.52 47.72 13.87 
15.6 M -21.10 12.00 48.21 14.01 

15.8 M -20.35 11.26 57.54 10.34 

16.6 L -20.79 11.53 50.58 11.70 

16.7 L -20.82 11.40 45.42 13.79 
16.9 L -20.65 12.50 46.30 13.25 

17.0 L -20.69 12.16 48.25 13.82 

17.3 L -20.79 11.61 49.20 13.92 
NDC 

 

 

14.3 M -20.62 12.02 49.14 13.08 

14.4 M -21.37 11.26 49.37 12.74 

15.0 M -21.00 12.14 49.06 13.75 
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Capelin NDC 16.0 M -21.27 11.08 48.42 13.22 

16.7 L -21.32 11.73 47.74 14.02 

17.5 L -20.62 12.52 49.15 14.26 
17.9 L -21.11 11.72 48.31 13.79 

18.1 L -20.10 12.36 46.63 10.85 

18.8 L -20.86 12.08 47.67 14.15 
BC 11.0 S -21.58 12.15 48.31 13.74 

11.6 S -21.94 11.08 40.04 11.61 

13.6 S -21.14 12.18 46.77 13.56 

14.5 M -21.03 11.58 47.13 13.90 

15.5 M -20.94 11.66 50.01 13.58 

16.4 M -21.11 11.51 49.11 13.03 

17.0 L -20.80 12.02 48.59 14.19 

17.3 L -20.89 11.69 46.96 13.89 

17.7 L -20.64 11.42 52.03 11.86 

Checker 
Eelpout 

HC 10.4 S -19.82 12.42 46.75 13.84 
15.1 S -19.78 11.97 45.90 13.73 

19.9 S -20.00 11.65 49.96 13.17 

21.9 S -19.26 12.94 48.00 14.59 
26.7 M -18.83 12.50 48.16 15.07 

30.8 M -18.86 12.77 47.14 14.56 

33.0 M -18.50 13.27 48.51 14.43 

38.6 L -18.70 13.33 46.00 14.24 
42.5 L -18.60 13.23 47.98 14.68 

BC 11.5 S -18.75 13.52 44.63 13.38 

16.5 S -19.25 13.34 48.00 14.76 

19.3 S -19.19 13.08 43.87 13.45 

23.4 M -18.91 13.08 47.94 14.95 

28.0 M -18.54 13.95 48.88 15.27 

28.5 M -18.13 13.05 47.60 14.59 

32.0 M -18.76 13.70 48.92 14.46 

37.0 L -17.97 13.61 48.68 14.76 

45.5 L -17.76 13.58 46.98 14.46 

47.0 L -18.03 13.33 47.83 14.81 

Clam (Mya 
sp.) 

HC 

 

-17.55 11.07 32.86 8.15 
-17.08 10.81 32.60 7.91 

-18.76 12.56 28.84 6.88 
BC 

 
-17.94 13.64 48.44 14.60 

-15.54 11.93 32.81 6.81 

Cockle NDC  -17.95 9.56 32.00 8.80 
Copepod 
(Calanus sp.)  
 

 

HC  -22.15 4.17 38.41 7.56 
NDC 

 

-26.03 6.56 59.61 3.32 

-26.07 5.39 51.06 2.70 

-26.10 6.70 50.23 2.99 
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Copepod BC  -18.88 5.89 54.32 6.71 

Copepod 
(non-Calanus) 

NDC 

 

-26.04 4.87 38.18 2.77 

-25.94 5.25 42.91 3.51 
-26.20 5.68 44.70 3.56 

BC 

 

-21.71 5.56 43.23 9.05 

-21.37 6.32 49.10 8.97 

-20.79 7.19 42.84 7.16 

Euphausiid HC 

 

-20.61 9.86 46.97 10.32 

-19.91 9.14 56.75 8.40 
-21.53 9.47 46.33 10.01 

NDC 

 

-21.05 9.66 45.10 10.72 

-21.17 9.02 46.13 10.65 
-21.61 8.17 47.27 10.19 

BC 

 

-20.85 8.97 49.81 10.36 

-20.55 10.12 45.54 11.46 

-21.44 9.92 45.35 9.94 
Four-line 

Snakeblenny 
BC 17.0 M -18.26 15.21 48.02 14.42 

22.7 M -17.84 14.80 47.51 14.86 

Gammarid HC  -16.39 11.96 35.10 8.09 
BC 

 

-15.14 11.91 29.91 6.39 

-16.57 11.88 38.16 7.79 

-17.97 5.65 28.40 6.61 

Greenland 
Halibut 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

HC 11.0 S -22.01 11.71 45.91 13.80 

13.5 S -21.72 11.54 46.03 14.30 

17.5 S -20.86 11.87 46.77 14.21 
19.0 S -21.07 11.74 49.18 14.10 

21.0 S -21.13 11.76 45.90 13.15 

22.5 S -20.74 12.05 48.96 14.36 
25.5 S -20.46 12.05 48.00 14.38 

26.5 S -20.51 12.24 50.27 13.71 

29.5 M -20.39 12.25 48.04 14.26 
31.5 M -20.41 12.37 48.18 13.02 

33.5 M -20.19 12.84 50.60 13.07 

35.5 M -20.34 12.29 53.16 12.25 
37.0 M -20.28 12.75 53.45 12.83 

40.0 M -20.10 13.14 56.72 11.27 

43.0 M -20.30 12.63 54.42 11.84 
45.0 M -19.80 12.80 54.70 10.11 

46.0 L -19.30 12.21 59.04 8.99 

47.5 L -19.9353 12.66 53.55 11.41 

49.5 L -19.50 12.70 57.16 9.05 
50.0 L -19.96 12.28 52.51 12.50 

56.0 L -20.04 12.74 51.63 12.09 
NDC 

 
10.0 S -22.23 11.68 45.41 13.83 
13.0 S -22.07 11.63 47.21 14.08 
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Greenland 

Halibut 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

NDC 14.5 S -21.87 11.20 47.13 14.17 

16.0 S -22.02 11.39 46.74 13.91 

19.5 S -21.41 11.12 47.74 14.15 
21.5 S -20.64 12.23 49.85 12.23 

23.0 S -21.56 11.53 48.65 13.96 

25.5 S -21.04 11.82 49.11 11.51 

30.0 M -21.68 11.60 50.28 13.12 
31.0 M -20.27 12.85 56.94 10.78 

31.5 M -20.85 12.74 51.87 13.03 

32.5 M -20.53 11.98 57.14 10.40 
33.0 M -19.98 13.23 53.76 11.95 

36.0 M -21.44 11.73 51.79 12.61 

38.0 M -20.27 13.02 54.33 10.85 
51.5 L -20.07 12.82 55.85 10.94 

BC 12.5 S -21.70 11.77 46.23 13.80 

19.0 S -21.76 11.98 50.21 12.87 

20.0 S -21.68 11.75 49.65 13.63 

21.0 S -21.25 12.70 54.16 15.59 

23.5 S -21.19 11.46 46.76 13.68 

30.0 M -20.57 12.38 50.57 13.04 

31.4 M -20.12 11.96 48.96 13.63 

33.2 M -20.76 12.32 50.41 13.15 

34.5 M -20.62 12.42 52.81 12.32 

35.0 M -20.57 12.59 52.94 12.55 

37.0 M -19.61 13.22 51.18 11.22 

39.0 M -20.08 11.95 51.14 12.61 

41.5 M -19.82 13.39 54.30 11.79 

42.1 M -20.74 12.91 50.99 12.16 

46.0 L -20.05 12.60 51.98 11.44 

48.3 L -20.04 12.39 52.08 12.24 

49.0 L -19.97 12.84 53.23 11.93 

49.5 L -19.92 13.45 34.37 7.90 

49.5 L -20.39 12.87 53.15 12.46 

53.0 L -20.50 12.65 51.85 13.25 

62.5 L -19.61 13.57 43.57 9.02 

Hookear 

Sculpin 

HC 6.2 M -18.80 12.72 46.20 13.70 

8.8 M -18.51 13.13 44.48 13.26 

11.7 M -18.81 14.06 47.26 14.54 
NDC 3.7 M -18.36 11.32 39.02 10.60 
BC 5.2 M -18.42 12.81 41.70 12.55 

7.5 M -18.43 13.25 43.72 13.25 

10.1 M -18.29 13.19 47.24 14.40 

Hyperiid HC  -21.42 9.33 39.04 8.49 
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Hyperiid NDC 

 

-21.02 8.62 37.88 8.32 

-21.40 8.71 38.50 8.29 

-20.53 8.29 43.78 6.88 
-20.38 8.48 46.64 7.69 

BC 

 

-20.94 8.97 48.16 8.25 

-20.97 9.03 27.74 6.80 

-22.86 8.98 40.93 8.54 

-21.08 9.70 37.48 8.31 

Isopod HC  -18.36 14.83 54.07 11.07 
Kelp HC 

 

-18.13 3.33 37.71 2.06 

-19.82 6.14 26.35 2.11 

-15.63 1.17 36.07 1.62 
NDC 

 

-20.58 6.46 37.13 4.76 

-18.11 2.35 36.67 2.26 

-16.55 3.49 32.30 3.58 
BC 

 
-17.45 4.63 38.42 1.80 

-17.14 5.76 38.32 3.83 

Lanternfish 
(Benthosema 
glaciale) 
 
 

HC 4.6 M -20.55 10.89 52.52 12.10 
6.3 M -20.71 10.42 58.70 10.27 

7.2 M -20.55 11.16 54.39 10.71 
NDC 4.5 M -20.24 10.68 58.45 10.66 

6.4 M -20.26 10.99 57.21 9.88 

8.4 M -20.18 11.55 56.22 10.82 
Lanternfish 
(Notoscopelus 
sp.) 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

HC 13.4 S -20.45 10.88 56.40 11.10 
14.0 S -20.45 11.08 49.41 12.01 

14.5 S -20.15 11.44 51.98 13.15 

14.7 M -20.39 11.61 50.40 11.69 
15.3 M -20.29 12.00 48.93 13.74 

15.9 L -20.07 12.56 50.19 13.51 

16.4 L -20.19 12.12 50.32 13.20 
16.7 L -19.53 12.00 54.69 12.12 

17.4 L -20.11 12.34 49.26 13.20 
NDC 12.9 S -19.18 11.89 54.33 8.16 

14.1 S -19.29 11.42 59.78 8.88 
14.6 M -19.78 11.40 57.94 8.76 

14.7 M -20.61 11.61 56.44 11.83 

14.9 M -19.78 11.98 56.04 9.65 
15.0 M -19.00 11.72 59.59 7.95 

15.1 M -18.97 12.09 61.88 8.96 

15.7 L -20.06 11.91 59.42 10.36 
16.5 L -19.74 12.34 57.59 11.53 

BC 
 
 

13.7 S -20.37 11.78 55.22 11.97 

14.0 S -19.86 11.85 57.66 10.16 

14.2 S -19.68 11.81 58.43 9.30 
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Lanternfish 

(Notoscopelus 
sp.) 

BC 14.5 S -20.32 11.24 54.63 12.45 

14.8 M -19.83 12.18 52.70 12.44 

15.1 M -20.13 11.81 54.86 12.98 

15.5 M -19.83 11.91 55.55 10.45 

16.0 L -20.12 12.05 50.84 12.75 

16.5 L -19.20 12.15 55.69 9.34 

Longfin Hake BC 11.8 M -18.84 10.20 42.68 10.62 

Marlinspike 
 
 

 
 
 
 
 
 
 

 

HC 28.4 L -19.73 13.48 46.05 14.31 

30.5 L -19.64 13.66 48.79 14.64 

30.5 L -19.74 13.63 48.58 14.99 
34.5 L -19.66 13.53 47.77 14.80 

35.5 L -19.44 13.74 48.30 14.96 

38.0 L -19.38 13.50 47.45 14.80 
BC 8.6 S -20.63 11.10 48.89 13.05 

17.5 S -19.45 13.17 47.17 14.15 

24.5 M -19.12 13.73 48.53 15.04 

28.0 M -18.99 13.73 48.29 14.91 

28.3 M -19.45 13.65 48.63 14.17 

28.9 M -19.18 13.74 46.71 14.64 

29.2 M -18.70 13.97 48.93 15.03 

35.0 L -18.81 13.97 48.65 14.95 

38.0 L -18.66 14.31 47.69 14.75 

Moustache 
Sculpin 

HC 9.9 M -19.86 12.58 47.18 14.32 
12.1 M -20.39 13.11 48.57 14.00 

15.2 M -19.08 14.00 48.59 14.83 
NDC 10.6 M -19.56 14.11 48.33 14.59 

12.7 M -19.70 14.08 48.67 14.72 
13.7 M -19.76 14.40 51.74 13.87 

BC 10.0 M -20.52 13.15 49.27 13.85 

11.2 M -19.56 13.92 46.43 13.93 

12.3 M -19.41 13.84 46.05 13.66 

Mysid HC  -22.37 4.62 37.57 8.06 
NDC  -21.93 7.75 38.69 8.98 
BC 

 

-21.57 7.35 41.06 10.04 

-21.49 7.44 37.45 8.84 
Nudibranch HC  -16.60 16.04 31.19 6.74 
Ostracod  NDC  -17.23 6.93 53.73 5.34 
Polychaete 
 
 

 
 
 
 

HC 
 

-19.38 8.17 43.82 9.79 

NDC 

 

-17.93 12.50 38.62 11.71 

-17.21 13.92 44.75 12.00 
-18.17 12.29 34.85 10.25 

BC 
 

-18.51 11.77 37.87 11.30 

-17.13 12.97 34.22 8.18 
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Polychaete BC -17.78 12.19 42.55 11.92 

-16.66 12.72 37.11 8.61 

Pycnogonid HC 

 

-18.70 10.77 42.69 10.81 

-19.97 11.47 41.20 10.54 
-19.96 10.43 37.22 8.79 

BC 
 

-20.46 10.36 22.06 5.96 

-19.51 11.15 41.18 10.34 

Redfish 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

HC 6.0 S -21.59 11.05 46.63 14.03 
10.1 S -20.40 11.89 50.11 13.60 

12.0 S -20.70 12.13 50.17 13.31 

12.7 S -20.82 12.06 48.23 12.46 

17.0 S -20.71 11.38 48.54 14.30 
19.0 M -20.59 12.53 50.07 13.88 

19.7 M -20.83 11.36 48.13 14.51 

20.0 M -20.56 11.42 47.34 14.32 
23.6 M -19.93 12.81 48.83 14.87 

26.1 M -20.57 12.01 52.14 12.25 

26.9 M -20.44 12.39 48.65 14.99 
28.7 M -19.82 12.57 47.65 14.75 

30.0 M -20.01 12.96 47.53 14.66 

33.6 L -19.77 12.45 47.15 14.32 
34.6 L -19.94 12.32 47.53 14.03 

35.5 L -20.11 12.50 48.25 15.09 

36.9 L -19.60 13.22 48.59 14.62 
38.8 L -20.00 12.50 48.37 14.80 

40.7 L -19.60 13.15 49.79 14.50 

43.6 L -19.10 13.70 47.96 14.94 

47.8 L -20.78 11.89 48.25 13.93 
NDC 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

6.3 S -21.94 10.63 46.49 13.56 

8.2 S -21.36 10.84 48.89 13.41 

8.8 S -20.89 11.34 48.24 13.29 
10.2 S -20.68 11.93 47.99 13.27 

15.6 S -20.42 12.45 49.08 15.01 

16.0 S -20.55 11.94 48.20 14.65 
18.2 S -20.16 11.95 47.76 13.82 

19.9 M -20.22 11.63 48.68 14.56 

22.0 M -20.41 12.07 50.93 14.75 
28.2 M -20.00 13.02 48.63 14.37 

28.3 M -20.28 12.07 47.26 14.59 

30.3 M -19.88 13.00 47.76 14.77 
31.4 M -20.38 12.14 48.14 14.00 

32.2 M -20.15 11.78 47.57 14.74 

33.3 L -20.01 12.72 47.42 14.68 

34.8 L -19.80 12.19 44.42 14.00 



 

245 
 

Redfish NDC 36.3 L -19.77 12.25 47.97 14.28 

39.5 L -19.35 13.64 48.05 14.83 

41.7 L -19.48 13.75 46.37 13.83 
44.1 L -19.19 14.02 47.96 14.80 

45.4 L -18.95 14.19 48.54 15.01 
BC 7.0 S -21.55 10.37 45.85 13.47 

7.0 S -21.50 10.57 45.34 13.56 

10.3 S -20.54 11.53 45.81 13.75 

12.5 S -20.50 11.84 50.52 13.66 

13.2 S -20.63 11.72 48.41 13.46 

13.5 S -20.72 11.62 47.45 14.05 

16.5 S -20.26 12.08 48.09 14.67 

20.0 M -20.57 11.55 49.09 13.79 

20.1 M -20.64 11.55 50.05 13.69 

21.3 M -20.57 11.31 48.39 14.55 

22.5 M -20.32 12.28 46.31 13.97 

23.5 M -20.11 12.82 46.59 13.97 

26.0 M -19.97 11.92 48.29 14.02 

31.5 M -20.09 12.35 47.90 14.27 

34.0 L -20.07 11.80 45.83 14.20 

34.5 L -20.11 12.55 48.05 14.20 

36.0 L -20.18 12.38 49.99 13.26 

36.0 L -19.99 11.99 48.28 13.80 

36.0 L -20.04 12.39 47.39 14.28 

37.8 L -20.20 12.21 48.28 13.55 

40.4 L -19.62 13.71 49.09 13.69 

42.0 L -19.48 13.34 47.70 14.56 

Roughhead 
Grenadier 

HC 8.5 S -20.30 11.74 45.36 12.97 

12.2 S -19.56 13.43 45.16 13.89 
16.0 S -19.39 13.91 46.20 13.78 

24.0 M -19.56 13.88 47.86 14.82 

28.1 M -19.28 13.97 48.43 15.23 
31.1 M -19.37 13.63 46.67 14.73 

34.1 L -18.84 14.19 46.00 14.61 

39.0 L -18.45 14.21 46.61 14.21 

43.8 L -19.03 14.28 47.55 14.55 
Sea Cucumber BC 

 

-17.86 9.07 29.45 9.07 

-16.62 8.42 21.15 3.67 

-17.52 9.08 21.49 4.01 

-16.49 7.71 19.91 3.37 

Sea Star 

 
 
 

HC 

 
 
  

-14.44 6.70 21.61 3.19 

-11.68 10.98 17.80 2.23 

-13.35 16.03 28.46 5.75 

-11.78 10.18 17.49 1.96 
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Sea Star HC -10.82 14.64 17.40 1.83 

-15.35 10.04 23.85 3.56 

-13.81 11.86 22.31 4.15 
-13.69 12.18 23.00 4.38 

NDC 

 

-12.37 9.40 19.36 2.84 

-12.71 10.12 18.73 2.56 
BC 

 

-14.70 10.42 17.55 2.68 

-12.51 11.34 20.40 3.28 

-14.63 10.17 19.18 2.59 

-12.84 15.42 28.25 5.51 

-12.83 10.06 19.64 3.13 

-12.65 15.11 29.56 5.69 

Sea Urchin HC 

 

-16.27 7.92 28.76 4.83 
-20.24 8.01 36.92 7.66 

-19.11 5.74 14.30 1.64 
Shrimp 
(Sabinea 
sarsii) 
 
 

HC 

 

-17.51 13.28 45.67 13.74 
-17.34 14.35 44.56 13.40 

-18.12 12.87 45.79 12.92 
NDC 

 

-17.07 13.19 45.75 14.25 
-17.48 13.33 43.04 13.03 

BC 

 

-17.01 13.34 44.37 13.55 

-16.95 13.94 45.60 14.24 

-17.00 13.36 43.79 13.73 

Shrimp 
(Pandalus sp.)  

HC 

 

-19.19 10.63 44.32 13.84 

-19.29 10.46 46.87 14.39 
-19.44 10.78 44.93 13.84 

-19.53 10.41 44.04 13.93 

-19.30 11.10 44.03 13.12 
-19.41 11.01 42.56 13.10 

-19.92 10.73 47.56 14.43 

-19.55 10.86 46.28 13.74 

-19.42 10.23 44.49 13.63 
NDC 

 

-19.41 10.68 45.91 13.65 

-19.39 10.70 45.99 14.34 

-19.64 10.70 44.77 13.79 
-19.85 10.26 45.84 14.07 

-19.92 10.82 46.71 14.13 

-19.81 10.78 47.64 14.39 
-19.86 10.04 46.14 14.14 

-19.58 11.16 47.13 14.65 

-20.38 10.05 45.28 13.74 
BC 

 

-18.78 11.84 47.45 14.33 

-18.94 11.10 45.80 14.08 

-18.92 11.73 50.93 15.27 
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Sipunculid BC 

 

-22.14 8.51 4.88 1.03 

-21.23 9.00 5.60 1.29 

-21.83 8.87 6.74 1.57 

Smooth Skate HC 30.0 S -18.53 11.57 42.55 15.04 

31.2 S -19.23 11.48 44.89 15.62 

33.0 S -19.16 12.09 43.22 15.19 

35.7 S -19.30 11.45 3.76 15.78 
37.6 S -19.25 12.23 45.55 16.04 

41.5 M -19.31 12.00 45.31 16.82 

51.6 L -19.03 12.51 45.33 16.65 

52.8 L -19.02 13.07 43.85 16.40 
BC 56.0 L -18.64 12.92 44.76 16.69 

Snakeblenny HC 21.7 M -18.70 13.12 51.12 15.06 
BC 22.3 M -18.29 14.11 50.87 14.35 

15.1 M -18.09 13.87 49.39 14.41 
Snow Crab HC 1.0 S -15.56 10.62 26.09 5.37 

1.8 S -13.25 9.69 21.25 3.90 
2.4 S -18.94 10.92 35.59 8.34 

3.1 M -19.25 11.26 39.95 11.89 

3.4 M -18.45 11.59 37.97 10.83 
3.7 M -19.01 11.38 40.75 11.58 

8.1 L -18.42 11.95 44.55 13.39 

9.0 L -18.32 12.47 46.11 13.87 
10.3 L -18.08 12.18 43.89 13.45 

NDC 1.0 S -16.69 9.24 28.16 6.20 

1.0 S -14.66 9.01 22.60 4.22 

1.4 S -14.73 8.43 19.91 3.54 
2.0 S -12.42 9.26 24.16 4.89 

2.1 S -13.23 9.60 25.18 5.19 

6.2 M -17.99 13.17 48.12 14.25 
10.3 L -17.61 12.14 46.81 14.12 

BC 1.1 S -14.35 9.01 25.65 5.25 

1.4 S -14.09 10.40 27.61 5.65 

1.7 S -13.18 9.26 24.91 5.13 

2.2 S -16.09 8.93 28.29 5.89 

2.4 S -17.70 11.06 34.06 8.75 

2.9 S -18.62 11.09 37.68 10.95 

3.1 M -18.34 12.02 42.34 12.67 

6.0 M -20.15 12.21 43.85 27.27 

8.3 L -17.76 12.36 44.84 13.71 

Squid 
 
 

 

HC 

 

-20.66 11.04 44.77 12.16 

-19.06 11.49 42.88 12.31 
NDC 

  

-21.55 10.36 45.32 11.93 
-20.47 12.17 47.21 12.73 
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Squid NDC -21.35 11.26 47.80 12.60 
BC 

 

-20.57 11.33 49.72 15.13 

-21.22 11.74 48.41 9.53 

-21.25 10.92 47.15 12.43 

Thorny Skate 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

HC 10.2 S -18.54 13.94 43.16 14.02 

11.6 S -18.60 13.46 45.34 13.95 
12.3 S -18.67 14.26 44.48 13.99 

13.5 S -18.04 14.75 44.47 14.05 

16.2 S -18.64 13.01 41.13 14.19 

22.5 S -18.58 12.50 45.04 16.48 
28.2 S -18.99 13.08 45.48 16.21 

29.6 S -18.43 13.00 44.57 16.36 

39.5 M -19.23 12.55 45.09 16.25 
42.5 M -18.94 12.71 43.99 16.35 

43.2 M -18.65 13.67 45.80 16.73 

47.2 M -18.44 13.12 43.87 15.37 
47.4 M -18.51 13.74 43.28 16.11 

48.2 M -18.77 13.40 41.98 15.75 

49.8 M -19.47 13.19 45.33 15.87 
50.0 M -18.88 13.62 43.61 16.32 

51.3 M -18.48 13.52 45.56 16.64 

58.4 L -19.24 13.26 42.40 14.75 
NDC 31.3 S -18.87 13.18 43.80 16.38 

42.5 M -18.36 14.75 46.25 17.02 

51.7 M -18.56 14.09 44.10 16.51 
BC 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

13.6 S -17.75 14.81 43.25 14.06 

21.0 S -18.10 12.89 49.11 17.40 

21.2 S -18.34 12.14 41.82 14.89 

25.2 S -18.58 12.48 42.09 16.67 

27.0 S -18.61 12.62 44.22 15.93 

30.1 S -18.65 13.07 44.38 16.44 

32.5 S -18.72 13.78 44.68 16.32 

34.5 M -18.91 13.14 44.59 16.24 

36.0 M -18.69 13.05 44.42 16.86 

37.0 M -18.68 13.34 44.89 16.09 

39.0 M -18.51 13.84 42.51 15.37 

44.5 M -18.73 13.52 45.02 16.79 

45.0 M -19.16 13.42 44.42 16.86 

51.2 M -18.58 13.60 43.89 16.28 

54.7 M -18.61 14.43 44.46 16.76 

55.3 M -19.00 13.71 44.66 16.87 

57.0 M -18.84 13.57 41.49 15.21 

57.0 M -18.03 14.71 44.41 16.49 

60.0 L -18.39 13.93 44.65 16.90 
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Thorny Skate BC 63.0 L -18.79 14.48 42.46 15.20 

64.0 L -20.39 12.57 51.92 12.71 

Threebeard 
Rockling 

HC 32.9 M -19.18 13.89 47.18 14.13 

BC 16.5 M -19.84 13.13 47.53 14.46 

12.9 M -19.83 13.02 44.61 13.57 

20.5 M -19.66 13.09 47.71 14.94 

23.7 M -18.55 14.71 47.76 14.75 

26.9 M -18.64 14.30 46.91 14.33 

Toad Crab HC 0.7 S -15.58 9.75 21.61 4.05 
1.3 L -15.53 10.75 22.84 4.78 

1.8 L -14.63 8.40 23.92 4.59 
NDC 0.3 S -18.94 10.30 27.45 5.52 

1.5 L -15.35 9.41 23.26 4.63 
BC 0.9 M -16.67 9.49 26.66 4.94 

1.5 L -15.00 9.55 23.53 4.57 

1.7 L -16.08 9.52 27.97 6.22 

Whelk HC 

 

-19.52 14.12 43.64 12.20 

-18.61 9.64 44.51 10.66 

-18.18 12.64 43.86 12.45 
BC 

 

-18.01 10.42 46.68 10.75 

-18.22 10.38 43.17 11.75 

-18.89 10.83 46.19 11.16 

White 
Barracudina 

HC 24.7 M -20.44 11.07 49.96 12.77 

26.7 M -20.12 11.59 58.70 10.48 

28.8 M -20.15 11.16 58.50 10.42 
NDC 25.4 M -21.39 8.78 39.58 11.90 

27.0 M -20.25 12.09 56.65 9.59 

27.8 M -20.07 11.50 56.84 10.95 
BC 25.0 M -19.86 11.49 56.47 8.65 

27.0 M -20.89 10.85 56.02 11.84 

27.2 M -19.64 11.58 61.71 9.09 

28.6 M -20.63 10.42 51.58 9.16 

Witch 
Flounder 
 

 
 
 
 
 
 
 

 
 

HC 41.1 L -16.80 13.18 48.00 14.94 

41.4 L -17.05 13.22 48.22 14.84 

45.2 L -17.14 13.16 48.59 14.84 
NDC 26.0 M -18.27 12.50 48.77 14.72 

40.3 L -17.21 13.58 46.80 14.43 

45.6 L -17.12 13.63 47.01 14.57 
BC 

 

 
 
 
 

8.5 S -19.72 12.18 42.74 12.52 

14.2 S -19.28 12.25 47.38 14.20 

14.7 S -18.60 12.21 46.97 14.12 

17.2 S -19.06 12.92 47.29 13.37 

22.2 S -18.48 12.67 47.74 14.06 

22.5 M -18.52 12.77 47.97 14.73 
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Witch 

Flounder 

BC 22.7 M -17.71 12.06 47.34 14.33 

28.0 M -18.62 14.23 47.87 14.80 

31.7 M -17.77 13.01 37.26 11.48 

40.2 L -17.32 13.52 47.15 14.28 

46.0 L -17.12 13.44 1.27 0.38 

48.0 L -17.23 13.79 47.58 14.19 

49.9 L -17.10 13.38 47.60 14.60 

 


