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Abstract

Age-based fish stock assessment models use available data to provide fisheries man-

agers with estimates of population processes and to determine sustainable harvest

rates. However, the data to inform these models is often complex and ignoring or

oversimplifying these complexities can result in unsustainable or sub-optimal harvest-

ing advice. This thesis improves age-based stock assessment models by accounting for

important variability in the data. I first simulation tested nine methods that aim to

account for the commonly used length-stratified age sampling design when estimat-

ing growth parameters. My results showed that commonly used methods had poor

accuracy and the empirical proportion approach was optimal. Secondly, I developed

a state-space stock assessment model for American plaice that allowed for errors in

the underlying population processes and provided improvements in the retrospective

plots. This research improved our understanding of American plaice population dy-

namics and growth and is a step forward in fitting more realistic integrated age-based

stock assessment models.
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Chapter 1

Introduction

1.1 Age-based stock assessment models

Commercial fishing is an essential Canadian economic activity and is most often

managed via estimates of population processes (e.g. abundance, fishing mortality

rates, biomass) that are predicted from fish stock assessment models. These statis-

tical models use available data to produce estimates of stock size and harvest rates,

and are also used to determine sustainable harvest rates and lower bounds on stock

size (i.e. limit reference points) that management actions should avoid with high

probability. Stock assessment models range in complexity based on the availability

of data, from simple catch-only models that rely on commercial landings data (e.g.

MacCall 2009), to integrated state-space models that incorporate survey, catch-at-age

composition, tagging and landings data (e.g. Cadigan 2015). When age composition

data are available, age-based methods are preferred, as the information provided by

the growth, size and structure of the stock can greatly influence how the fishery is

managed (Haddon 2010).

Two fundamental equations serve as the foundation for age-based fish stock as-

sessment models: the cohort equation and the catch equation. First, let a denote age

in the model, where the range of model ages is a = 1, ...A and A is the maximum

model age. Similarly, let y denote a year, and the model years range from y = 1, ..., Y .

The cohort equation is

Na,y = Na−1,y−1 exp −Za−1,y−1 , (1.1)

1
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where Na,y is the cohort abundance at age a and year y, Za,y = Ma,y + Fa,y is the

total mortality rate, described by the sum of the natural mortality rate Ma,y (i.e.

all mortality other than fishing mortality) and the fishing mortality rate Fa,y
1. The

numbers caught by the fishery at each age and year (i.e. Ca,y) are given by the catch

equation, (Baranov 1918),

Ca,y =
Fa,y
Za,y

Na,y(1− exp −Za,y). (1.2)

A basic requirement for all models described below is commercial catch-at-age

data, which are not directly observed but based on landings estimates from the various

fishing fleets and sub-sampling of their catches for age and length measurements (see,

e.g., Hilborn & Walters 2013). Catches are sub-sampled for ageing because in practice

it is often too expensive or unrealistic to age all fish in the catch. Data-related

issues, including ignoring the variability in the catch-at-age estimates, are discussed

in Section 1.4.

Early research found that catch-at-age data alone are often not enough to ef-

fectively estimate model parameters (e.g. Doubleday 1976, Pope & Shepherd 1982)

and auxiliary information (e.g. survey abundance indices) needs to be included in

the model formulation to resolve this issue. Auxiliary data are most often derived

from two sources: fishery independent and fishery dependent data. Fishery depen-

dent data are typically collected from commercial landings, fisheries logbooks and

on-board commercial observers and are used to derive estimates of fishing effort,

abundance indices and biological characteristics of the population (e.g. length, stom-

ach contents). Fishery independent data are typically collected via standardized

methods (e.g. stratified sampling) through governmental and/or scientific programs,

1If it is difficult to age fish at older ages or it is unreasonable to assume that all fish die
out at the oldest age, a plus group is often used to model the fish of the oldest ages, i.e.,
Ny,A+ = Ny−1,A+−1 exp−Zy−1,A+−1 +Ny−1,A+ exp−Zy−1,A+ , where A+ represents the oldest ages
grouped together. For simplicity, I present model formulations that do not make the assumption of
a plus group.
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most often through research survey sampling and tagging programs. Fishery indepen-

dent data are often used to derive indicators of population abundance and biological

characteristics of the population as they are considered more informative (i.e. with

less bias and uncertainty) than fishery dependent data.

In the following sections, I describe the evolution of age-based stock assessment

models, beginning with the simple models that rely only on commercial catch-at-age

data, to more complex integrated models that also incorporate various sources of

auxiliary data.

Virtual population analysis

Historically, the most commonly implemented age-based stock assessment model was

virtual population analysis (VPA), which was popularized by Gulland (1965) and

based on the earlier work of Fry (1949). VPA follows from the logic that if the

catch-at-age data are assumed to be known without error in year y, then we have a

minimum estimate of how many fish were alive in year y − 1; that is, there has to

be at least as many in the stock as were caught. If Ma,y is also assumed known, we

can back-calculate from the cohort equation (1.1) to obtain an abundance estimate

at the youngest age. This backwards method requires initial estimates of abundance

at the oldest age, derived from the rearranged catch equation (1.2),

NA,y =
CA,y

FA,y

ZA,y
(1− exp −ZA,y)

. (1.3)

Here, (1.3) requires an independent estimate of FA,y, called the terminal F. Ca,y

represents fish of age a caught up until the end of time period y, and Na+1,y+1

represents the stock size available to the fishery in the beginning of year y+ 1. Thus

both Ca,y and Na+1,y+1 reference the same time period and can be combined to obtain
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the ratio of the population abundance to the catch (i.e., by combining 1.1 and 1.2),

Na+1,y+1

Ca,y
=

Za,y exp −Za,y

Fa,y(1− exp −Za,y)
. (1.4)

For a = A − 1, NA,y, CA−1,y−1 and MA−1,y−1 are known, and (1.4) can be solved for

FA−1,y−1. Then, FA−1,y−1 and NA,y can be substituted into the cohort equation (1.1)

to estimate NA−1,y−1. This process is repeated until the youngest age is reached.

Equation (1.4) is nonlinear in Fa,y, thus an iterative procedure is required to

solve the related equations. At the time of Gulland (1965)’s publication this was

very computationally intensive and VPA was rarely implemented in practice. Pope

(1972) proposed a simplification, often called cohort analysis, that greatly increased

the applicability of VPA. This method assumes that the entire catch is taken exactly

midway through the year via the discrete approximation,

expMa,y/2 =
Za,y(1− exp −Fa,y)

Fa,y(1− exp −Za,y)
,

where Ma,y is assumed constant and known across all ages and years. As in Gulland’s

VPA, Pope’s method calculates terminal abundance from (1.3) and still requires

an external estimate of the terminal F (see Xiao & Wang (2007) for a review and

derivations of Pope’s equations), but with the cohort equation now given by

Na,y = Na+1,y+1 expMa,y + Ca,y exp −Ma,y/2,

and Fa,y given by

Fa,y = log
( Na,y

Na+1,y+1

−Ma,y

)
.

Thus, the abundance estimates and fishing mortality rates can be calculated directly

without the need for an iterative procedure.
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Murphy (1965) developed a similar method to Gulland’s VPA using a “forward”

solution that starts from the abundance at the youngest ages and moves forward

in time. Early research comparing the two methods found that estimates of fishing

mortality rates from the backwards method converged to their true values, whereas

those from the forwards method did not (Jones 1961, Tomlinson 1970). For brevity, I

omit the details and refer the reader to Megrey (1989), who gives an excellent review

of age-based stock assessment models, including Murphy’s forward method.

The parameters to estimate in the VPA model are the numbers at the oldest age

NA,y (or equivalently FA,y) and the numbers in the last year Na,Y . The number of

parameters to estimate are identical or greater than the number of data points and a

major concern surrounding these methods is that there are infinitely many “solutions”

that depend entirely on the choice of terminal F (see, e.g. Megrey 1989). To reduce

the number of parameters to estimate F-constraints on the oldest age (e.g. FA,y =

ave(Fa1,y−Fa2,y)) can be used to provide values for the NA,y’s (see, e.g. Gavaris 1988).

For large F’s, the NA,y’s are typically very small and the models are not sensitive to

the F-constraints used. This is not the case for the Na,Y ’s since these numbers (i.e.

the survivors) are not small. However, F constraints have been used for some of the

ages in the last year to further reduce the number of unknown parameters (e.g. if

A = 15, then F15,y = ave(F10,y − F12,y) and in the last year F14,Y = ave(F9,Y − F11,Y )

and F13Y = ave(F8,Y −F10,Y )) with partial recruitment (i.e. the age pattern in fishing

mortality rates) used as guidance on reasonable F-constraints (see, e.g. R. Rideout

& Brattey 2017). However, the method of F-constraints cannot be used when there

are zeros in the catch.

Another approach to reducing the number of parameters to estimate in the VPA

method is via the separability assumption. This method is somewhat linked to look-

ing at the fish partial recruitment, since the partial recruitment (i.e.Fa,y/maxa(Fa,y))
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is expected to change smoothly over ages and years. The separability assumption

is often attributed to Doubleday (1976), however Megrey (1989) credits Agger et al.

(1971)’s earlier paper with the first recorded implementation. The separability as-

sumption treats the fishing mortality rate as the product of an age-dependent fisheries

selectivity sa (i.e. the how susceptible a fish of age a is to the fishing gear) and an

age-independent fishing intensity fy,

Fa,y = fysa, (1.5)

which effectively reduces the number of parameters to be estimated. To ensure that

fishing mortality rates are well-defined, a normalization constant is required. Most

commonly, sa = 1 for some age that is assumed to be fully exploited by the fishery.

Pope & Shepherd (1982) were the first to incorporate the separability assumption

in VPA by combining (1.5) and the log of the catch equation (1.2),

log
[Ca+1,y+1

Ca,y

]
= log

[exp −Za,yfy+1sa+1Za,y(1− exp −Za+1,y+1)

fysaZa+1,y+1(1− exp −Za,y)

]
+ εCR,

where εCR ∼ N(0, 2σ2
CR). Parameters are estimated using a sequential two stage

least squares algorithm, which I do not detail here, but refer to Megrey (1989) for a

detailed explanation. Research soon showed that catch-at-age data were not enough

to reliably estimate stock abundance as estimates of fishing mortality rates and stock

abundance are highly negatively correlated (Deriso et al. 1985). Incorporating aux-

iliary information to help identify fishing mortality rates was the next step forward.

Many “ad hoc” methods were proposed in the early implementation of auxiliary in-

formation and Pope & Shepherd (1985) provide a thorough study of these methods.

Two VPA software packages that incorporate auxiliary information and are still in

use today are described briefly below.
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Gavaris (1988) popularized the adaptive-framework (ADAPT), which supple-

ments the catch-at-age data with at least one stock size (e.g. biomass, catch-per-

unit-effort) or fishing mortality rate index. Most often, standardized catch-per-unit

effort data from surveys and/or commercial data are used. Estimates of the terminal

abundance and fishing mortality at each age and year are found by minimizing the

sum of the squared differences of the predicted and observed auxiliary index. The

ADAPT software has been available since the late 1980’s (Lassen & Medley 2001)

and has enabled the straight-forward implementation of the ADAPT-VPA method

for many stocks worldwide, including American plaice (Hippoglossoides platessoides)

on the Grand Bank of Newfoundland (Wheeland et al. 2018) and Georges Bank and

North Atlantic haddock (Melanogrammus aeglefinus, Brooks 2017, DFO 2017) today.

Extended survivor analysis (XSA) is an approach that was developed to avoid the

issue of “ad hoc” tuning and to allow for errors in the terminal abundance (Cotter

et al. 2004). XSA treats the catch-at-age data as exact and can only allow for

age dis-aggregated auxiliary indices (Darby & Flatman 1994, Shepherd 1999). The

model is iteratively tuned to the auxiliary data and does not require optimization to

solve the system of equations. The XSA software package was once one of the most

commonly used stock assessment tools in Europe (ICES 2010), but more realistic

model formulations (e.g. SAM, detailed later) are now being implemented in its place.

However, XSA is still the main assessment tool for many stocks today, including sole

(Solea solea) on the Eastern English Channel (ICES 2019b) and western English

Channel/southern Celtic Seas cod (Gadus morhua, ICES 2019a).

Statistical catch-at-age

Doubleday (1976) has been credited with formulating the first stochastic age-based

stock assessment model, which predicts numbers at age forward in time starting at the
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youngest age. Let r be the age that a fish is available to the fishery (i.e. recruitment),

then the cohort equation (1.1) is expressed in terms of fish born in the same year,

called the year-class (i.e. y − r). For age a fish in year y, the cohort model is

Na,y = Nr,(y−a+r) exp −
∑a−r

j=1 Za−j,y−j . (1.6)

Thus, the abundance at age a in year y can be derived from the recruitment abun-

dance and subsequent mortality rates. Doubleday combined the year-class equation

(1.6), the catch equation (1.2), and the separability assumption (1.5),

log(Ca,y) = log
[ fysa
fysa +Ma,y

(1−exp −fysa+Ma,y)Nr,y−a+r exp −
∑a−r

j=1 fy−jsa−j+Ma−j,y−j

]
+εa,y,

where ε is assumed to be independent and normally distributed with mean zero and

constant variance. As previously defined, Zay = fysa +May, where fy and sa are pa-

rameters to estimate and May is assumed to be known. To estimate parameters, this

method minimizes the sum of squares between the observed catch-at-age log(Ca,y),

and the predicted catch at age log(Ĉa,y), i.e.,

SSRC =
Y∑
y=1

A∑
a=1

[
log(Ĉa,y)− log(Ca,y)

]2
.

Doubleday applied an iterative linear approximation and estimation to obtain the

least squares estimates and required a second equation to generate realistic starting

values (see Megrey 1989, for details).

The catch-at-age data do not contain enough information to precisely estimate

fishing mortality rates (Doubleday 1976, Pope & Shepherd 1982), and Paloheimo

(1980) developed a solution to this problem by incorporating auxiliary information

via fishery-dependent data. Paloheimo (1980) made the simplifying assumption that
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fishing mortality is proportional to yearly fishing effort, i.e.,

Fy = qEy, (1.7)

where q is the catchability coefficient, assumed constant across years and Ey is the

observed or measured fishing effort. Paloheimo also greatly simplified calculations and

increased the ease of applicability of his method by proposing the approximation,

log
(1− exp−Za,y

Za,y

)
≈ −Za,y

2
. (1.8)

The model then combines the catch equation (1.2), the year-class equation (1.6),

fishing effort (1.7), and the simplification (1.8),

log
(Ca,y
Ey

)
= log

[
−Ma,y + qsaEy

2
qNr,y−a+r exp−

∑a−r
j=1 −(Ma,y+qsa−jEy−j)

]
+ εa,y, (1.9)

where ε are assumed independent and normally distributed with mean zero and con-

stant variance. If all ages are assumed to be fully recruited, i.e. sa = 1 for all

ages, then (1.9) reduces to a simple linear equation and the parameters are estimated

by minimizing the sum of squares between the log observed catch-per-unit-effort

log(Ca,y/Ea,y), and the log predicted catch-per-unit-effort log(Ĉa,y/Ea,y), i.e.,

SSRC/R =
Y∑
y=1

A∑
a=1

[
log
( Ĉa,y
Ea,y

)
− log

(Ca,y
Ea,y

)]2

.

When catchability is not assumed constant, the estimation is performed as in Dou-

bleday’s method, described briefly in section 1.1.1.

Deriso et al. (1985) developed the first statistical catch-at-age software package

that was based on the method of Doubleday (1976) but was more flexible in its options
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for model formulations. Models were informed by auxiliary fishery-independent and

-dependent data, including fishing effort and fecundity data, and there were options

to select blocks of years and ages over which to estimate parameters. The package is

no longer in use today, however two more up-to-date packages are described briefly

below.

The age-structured assessment program (ASAP) was developed in the late 1990’s

and has a user-friendly interface that allows for easy model implementation (Legault

& Restrepo 1998). The model is informed by total catch in weight, catch proportions

in numbers, and auxiliary data via survey or commercial catch-per-unit-effort, which

can all be specified per fleet (i.e. an aggregate of commercial fishing vessels). Model

parameters are estimated in a maximum likelihood setting via AD Model Builder

(ADMB; Fournier et al. 2012), a statistical application that uses automatic differ-

entiation to provide the function optimizer with exact derivatives (Maunder et al.

2009). In recent years ASAP has mainly been applied in the management of US

fisheries, including Atlantic mackerel (Scomber scombrus, NEFSC 2018) and Gulf of

Maine cod (Gadus morhua, Palmer 2017).

The assessment method for Alaska (AMAK) is a software package that is informed

by total landings, catch-at-age data, and research vessel survey biomass or abundance

indices, although unlike many of the previously described software packages, AMAK

can allow for sparse or missing data. Parameters are estimated in a likelihood set-

ting via the ADMB package, however AMAK does not have a user-friendly interface

and requires a working knowledge of ADMB and C++. AMAK is currently used for

a variety of Northern stocks, including Aleutian Island pollock (Gadus chalcogram-

mus, Barbeaux & Paulson 2018) and the Atka mackerel stock in the Bering Sea and

Aleutian Islands (Pleurogrammus monopterygius, Lowe & Paulson 2018).
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Integrated models

Integrated models were introduced in the early 1980’s by Fournier & Archibald

(1982) and were the first attempt to incorporate errors in the model formulation

that were not arbitrary. I present Fournier & Archibald (1982)’s original formulation

however, as intended by the authors, it is very straightforward to fit variations of

this model (e.g. changing the stock-recruit relationship or separability assumption).

Fournier and Archibald began with a basic model that fit the landings data Oy and

proportions at age Sa,y separately in order to correctly account for errors associated

with both data sources. The simplest model assumed ∼ log(Oy) = log(Cy) + εO,

where Cy are the true unobserved landings, εO are assumed independent and normally

distributed and Sa,y are a random sample of the landings data with no ageing errors

(observation equation is given below). There is not yet a link between the observed

data and the underlying population processes, and Fournier and Archibald made the

link via the assumption that catch at age are described by

Ca,y = CyPa,y, (1.10)

where Pa,y are the true unobserved proportion at age of fish in the catch. A separable

fishing mortality is assumed (1.5), with sa not estimated directly for each age, but

by the parameters b1, b2 describing the shape of the selectivity curve. Fournier and

Archibald argue that separability is more realistically described as a function of age,

sa = b1aw + b2a
2
w,
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where the age index a is rescaled by

aw =
−1 + 2(1− wa−1)

(1− wA−1)
,

for 0 < w < 1. Combining (1.10) and the catch-ratio model as in Doubleday (1976)

gives

log

(
CyPa,y

Cy+1Pa+1,y+1

)
= log

(
Fa,yZa+1,y+1(1− exp−Za,y)

exp−Za,y Fa+1,y+1Za,y(1− exp−Za+1,y+1)

)
(1.11)

Fournier and Archibald also incorporated auxiliary information in the model by mak-

ing the assumption that yearly fishing mortality is proportional to fishing effort as in

(1.7),

log(Fa,y) = b1aw + b2a
2
w + log(qEy) + εFy, (1.12)

where εFy are assumed to be independent and normally distributed. Fecundity data

can add additional information to the model, and are included via a Ricker spawner-

recruit function,

log(Rr,y+r) = log(αSPy exp−γSP (y)) + εRy, (1.13)

where SPy is the reproductive potential of the population in year y, α and γ are

parameters to be estimated and εFy are assumed to be independent and normally

distributed.

Parameters are estimated in a maximum likelihood setting by minimizing the

negative log-likelihood equation (nll), given by the corresponding contributions from

the catch-at-age, fishing effort and fecundity data. The catch contribution to the nll
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describes the catch proportions at age and landings (minus the constant terms), i.e.,

nllC =
∑
a

∑
y

Sa,y logPa,y −
Y∑
i=1

1

2

( logOy − logCy
σc

)2

− n log σc, (1.14)

where n is the number of years of fishery observations. At the time of Fournier

and Archibald’s paper, this equation was impractical to solve and they proposed the

simplifying transformation,

βa,y = log
[Pa,yCy

Oy

]
.

It followed then that

(
logOy − logCy

)2
= log

( A∑
a=1

expβa,y
)2

, (1.15)

and

Pa,y =
expβa,y∑A
a=1 expβa,y

. (1.16)

Substituting (1.15) and (1.16) into (1.14) gives the catch contribution to the nll,

nllC =
∑
a

∑
y

Sa,y

[
βa,y− log

( A∑
a=1

expβa,y
)
−LC

Y∑
i=1

1

2
log
( A∑
a=1

expβa,y
)2]
−m log σc,

where m is the greatest integer less than or equal to the number of age groups divided

by two and LC = 1/σ2
c is a penalty weight that determines the penalty for deviating

from the observed catch relationship. These penalties weights are required because

the age structure and effort data do not contain enough information to effectively

estimate parameters (Fournier & Archibald 1982). The contribution to the nll from

the effort data is

nllF = −LF
Y∑
i=1

1

2
ε2yF ,
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where similarly to above, LF = 1/σ2
F . The contribution from the fecundity data is,

nllR = −LR
Y−r∑
i=1

1

2
ε2yR,

with LR = 1/σ2
R. Thus, the full maximum likelihood equation is composed of three

parts,

nll = nllC + nllF + nllR.

It is straightforward to incorporate aging errors and/or additional data sources, and

I refer the reader to Fournier & Archibald (1982) for more details.

A popular integrated stock assessment model software package (MULTIFAN-CL)

was developed by Fournier et al. (1998, 1990) and can allow for size-based, age-

structured, and even spatial-structured stock assessment model formulations. MUL-

TIFAN is informed by commercial landings, length and/or weight proportions at age

and fishery effort data and allows for region-specific recruitment, fleet-specific selec-

tivity, and time-varying catchability (Hampton & Fournier 2001). Parameters are

estimated in a ”robust” likelihood setting to reduce the impact of outliers in the age

composition data and are estimated via the ADMB package (see Fournier & Archibald

1982, for details). It has been noted that due to the complexity of the available model

formulations, MULTIFAN is one of the more difficult stock assessment software pack-

ages to implement correctly (Dichmont et al. 2016). MULTIFAN is used today for

many highly migratory fish stocks, including skip jack tuna (Katsuwonus pelamis)

on the western and central Pacific ocean (Vincent & Hampton 2019).

In the early 2000’s, a software package (CASAL) was designed to provide more

consistent stock assessment advice for New Zealand fish stocks (Bull et al. 2005).

CASAL model formulations can be size- or age-structured and can incorporate var-

ious types of data, including commercial catch-at-age, survey research biomass or
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abundance indices and tagging data. CASAL is very flexible in its design and has

provisions to account for multiple sub-stocks, multiple commercial fleets and can al-

low for the population to be structured by sex, maturity or growth. Parameters are

estimated in a likelihood setting using a quasi-Newton optimizer from the ADOL-C

project Betadiff package (Naumann & Schenk 2012). A majority of New Zealand

fish stocks are managed using CASAL, including bluenose (Hyperoglyphe antarctica),

gemfish (Rexea solandri) and black cardinal fish (Epigonus telescopus, FNZ 2019).

Stock Synthesis (SS) can fit generalized age- and length-based models (Methot Jr

& Wetzel 2013) and unlike the software packages previously described, it is designed

to not be critically dependent on one particular data type (ICES 2010). SS is very

flexible and can range in application from data-limited situations to high-resolution

spatial stock assessments. Parameters are estimated in a likelihood setting and are

implemented via the ADMB package. SS has been used for stock assessments around

the world, including short fin mako shark (Isurus oxyrinchus, ISC 2018b), blue shark

(Prionace glauca) in the North Pacific Ocean (ISC 2017) and swordfish (Xiphias

gladius) in the Western and Central North Pacific ocean (ISC 2018a).

State-space models

The theory underlying age-based state-space stock assessment models is not recent

(Gudmundsson 1994, Sullivan 1992), however it was not until advances in computing

power and technology that the application of state-space models was conceivable in

practice as these models require integration over complex joint likelihood functions.

In contrast to integrated models that treat the population processes as deterministic,

state-space models allow for errors in the underlying population dynamics. There are

two main components to a state-space model: the process model and the observation

model.
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The process model describes how the state of the unobserved fish stock abundance

(i.e., the cohort equation (1.1)) and Fa,y at a given time depend on previous states,

αy = T (αy−1) + νy,

where α are the unobserved states and T is the transition function that describes the

underlying population processes,

log(N1,y) = log(R1,y) + ν1,y,

log(Na,y) = log(Na−1,y−1)− Za−1,y−1 + νa,y,

(1.17)

and νa,y are process errors that are typically assumed independent and normally

distributed. Abundance at the earliest age R1,y can take on many forms (e.g. Ricker,

Beverton-Holt), with the simplest being a random walk. Let Fy = (F1,y, F2,y, ..., FA,y),

then the fishing mortality rates are given by

log(Fy) = log(Fy−1) + γy,

where γy ∼ N(0,Σ) is the covariance matrix that can take on many forms (see, e.g.

Nielsen & Berg 2014). In contrast to the previous methods, Fa,y is now describing

the unobserved process of fishing mortality, independent of Ca,y that describes the

actual catch.

The observation model describes how the catch-at-age data and the auxiliary data

depend on the underlying population processes,

xy = O(αy) + εy.
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Here, O(αy) typically contains the catch equation (1.2) and an equation describing

the research survey indices,

log(Ia,y) = log(qa,y) + log(Na,y) + εIa,y,

log(Ca,y) = log(
Fa,y
Za,y

Na,y(1− exp −Za,y)) + εCa,y,

where εIa,y, εCa,y are the survey and catch errors, often assumed independent and

normally distributed. The joint likelihood function of the unobserved states and

observed states summarizes the state-space model,

L(θ,α,x) =
Y∏
y=2

[
φ(αy − T (αy−1),

∑
ν

)
] Y∏
y=1

[
φ(xy −O(αy),

∑
ε

)
]

where θ are the parameters to be estimated and
∑

ν ,
∑

ε are the covariance matrices

for the process and observation errors.

There are two approaches to conducting inferences via the joint likelihood func-

tion: the Bayesian approach and the frequentist approach. The frequentist approach

considers θ as an unknown fixed parameter. The random effects are integrated out

and estimation is performed via the marginal likelihood,

LM(θ,x) =

∫
L(θ,α,x)dα.

Although this integration was historically computationally difficult and time-consuming,

the ADMB application implemented in R via the TMB package (Kristensen et al.

2015) can now efficiently integrate complex joint likelihood functions and has greatly

increased the applicability of the frequentist approach in stock assessment modeling.
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The Bayesian approach considers θ as a random variable, with prior knowledge

about θ represented by π(θ) ,

p(θ,x|α) =
L(θ,α,x)π(θ)∫∫
L(θ,α,x)dxdθ

. (1.18)

Simulation-based approximation methods are used to estimate model parameters,

most commonly via variants of Markov chain Monte Carlo (see, e.g. Knape & De Valpine

2012, Team et al. 2016).

The state-space assessment model package (SAM) is currently the only software

package that can fit state-space stock assessment models and is quickly become a

favored tool for ICES stock assessments (Chouinard & Millar 2019). The model is

informed by commercial catch-at-age and research survey indices, with assumptions

for natural mortality, mean weights at age and proportion at age mature also required.

The models can be fit and run online (Stockassessment.org) for certain stocks, or

implemented via the R package ”stockassessment”. Stocks that are managed today

via the SAM package, include North Sea, eastern English Channel and Skagerrak

cod (Gadus morhua) and sole (Solea solea) in the Skagerrak, Kattegat, the Belts and

Western Baltic sea (ICES 2019c).

Future of age-based stock assessment models

Most commercial fisheries that are managed using age-based stock assessment mod-

els ignore environmental effects, predation and the underlying spatial structure of

the stock (Skern-Mauritzen et al. 2016). Historically, age-based models did not

include these complexities as there was insufficient data and computational power

with which to effectively estimate all parameters that more complex models required

(Quinn 2003). However, advances in technology and data collection methods have
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increased the availability of data to inform stock assessment models. The flexibil-

ity of state-space models is an ideal foundation from which to build more complex

and realistic models and are increasingly the favored approach for stock assessment

scientists (Aeberhard et al. 2018). Below, I describe the most recent advances in

age-based state-space stock assessment models.

The definition of the ecosystem approach to fisheries management can vary wildly

based on the management body and region (see, e.g., Ballesteros et al. 2017, Dolan

et al. 2015), however all approaches are based on the simple underlying principle that

ecosystem factors (e.g. species, environment) are intrinsically linked to other compo-

nents (Harvey et al. 2016). When the interest is explicitly on fisheries with trophic

interactions between the fish species, the term ecosystem based fisheries management

(EBFM) is most often used (Dolan et al. 2015). EBFM has produced a wide range

of models that range in complexity and ease of application. Whole ecosystem models

that allow for interactions at all trophic levels have been developed (e.g. Ecosim,

Christensen & Walters 2000), however these methods are simulation-based and more

suited to the conceptual understanding of the ecosystem processes (Weijerman et al.

2016). Models that are an intermediate step between single-species models and full

ecosystem models are better suited for management as they can estimate model pa-

rameters from the data (Plagányi et al. 2014). In the state-space framework, the

effect of seal predation on cod has been incorporated into a single-species age-based

model, with parameters estimated using the Bayesian approach (Cook et al. 2015,

Holmes & Fryer 2011, Trijoulet et al. 2019, 2017). In the frequentist approach, Al-

bertsen et al. (2017) improved single-species age-based stock assessment model fit

by incorporating species correlation in cohort survival. These state-space models are

a valuable first step to incorporating important ecosystem information in age-based

stock assessment models.
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The majority of the stock assessment methods described in the previous sections

treat the stock as a spatially-aggregated closed population (i.e. no immigration or

emigration within the management boundaries) with biological factors (e.g., mortal-

ity, growth) and fishing effort assumed homogeneous across the stock region. This

is a major simplification and there is strong evidence that changes in the abundance

of a fish stock can lead to major changes in the spatial distribution, and thereby

availability of the fish to surveys and the commercial fishery (Ciannelli et al. 2013).

Historically, it was often unfeasible or too expensive to collect spatially-explicit data,

however, recent advances in technology and data collection methods have increased

the availability and spatial resolution of stock assessment data. The last decade has

also seen the implementation of spatially-driven management decisions, most notably

marine protected areas (closures of specific areas to fishing) in many regions around

the world (Berger et al., 2017). Marine protected areas can create spatial structure

in fishing effort that cannot be accounted for by spatially-aggregated models (Field

et al., 2006). Thus, although there is a greater availability of spatial stock assessment

data and management decisions are more spatially driven than ever before, the tran-

sition to spatial stock assessment models has lagged. To the best of my knowledge,

there are currently no spatial age-based state-space stock assessment models used

for management in Canada and this should be a research topic of high priority if

we are to ensure the sustainability of capture fisheries, especially those managed via

spatially-derived decisions.

Almost all age-based stock assessment models are informed by pre-processed data.

For example, catch-at-age data are derived from landings estimates from the various

fishing fleets and sub-sampling of their catches for age and length measurements (see,

e.g., Hilborn & Walters 2013) and commercial catch-per-unit-effort data are often

standardized using generalized linear models (Gavaris 1988). The goal of integrated
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stock assessment models is to correctly allow for the variability in all data sources

in a likelihood framework. This approach often requires stock assessment modelers

to make subjective decisions on the relative influence of each data set through data-

weighting (see, e.g., Francis 2011, 2017). In “traditional” integrated models (i.e.,

not state-space) the weights aim to account for both measurement and process er-

ror, however in the state-space framework the process errors are explicitly accounted

for (i.e. (1.17)). Thus, state-space models may provide an integrated framework

that does not require subjective data-weighting since the process error is accounted

for and measurement error can be included directly in the corresponding likelihood

components. I do note that self-weighting in integrated state-space models requires

further simulation and validation testing. Cadigan (2015) developed an integrated

state-space stock assessment model for northern cod that did not require subjec-

tive data-weighting and is a promising step forward for integrated state-space stock

assessment models.

1.2 Data and gaps

Throughout this text, I have touched on some of the complexities related to the most

common fishery independent and dependent data sources (i.e., relative abundance

indices, age/length composition and landings data) that inform age-based stock as-

sessment models. Much of these data are not directly measured but are instead

summary statistics. Historically almost all associated observation error was ignored

or mis-specified (e.g., catch-at-age data in VPA), however newer model formulations

can incorporate some data aggregation information (e.g. SAM can input standard

errors for abundance indices).
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Relative abundance indices

The standardization of research vessel and catch and effort data for input into stock

assessment models has been well-studied. Historically, there were two main ap-

proaches to estimating relative abundance indices from both research vessel and catch

and effort data: design-based estimators and model-based estimators. Design-based

estimators estimate population abundance under the assumption that the random-

ness can be attributed to the sampling design, whereas model-based estimators as-

sume that there is an underlying stochastic data-generating process (Smith 1990).

Model-based estimators can account for underlying factors that design-based estima-

tors cannot, e.g., differences in survey catchability (Helser et al. 2004) and time of

the day and average depth of tow (Chen et al. 2004, Cotter & Pilling 2007). More

recently, spatial models that assume that population densities at nearby sites are

more similar than those that are further apart have been shown to produce more

precise abundance indices than both the model- and design- based methods (Shelton

et al. 2014, Thorson et al. 2016, 2015).

Commonly, only a subset of fish caught in a survey tow are aged as it is expensive

and time-consuming to age every fish in the catch (Doubleday 1976). In this case, age-

based indices are not independent in terms of sampling design and this can create

complex correlations in the availability of the fish to the survey trawl. If all fish

are measured for length it may be more appropriate to model separate likelihood

functions for the length-based indices and age-length measurements combined with a

stochastic growth model. If only a subset of the survey catch is measured for length

and age then it may be better to model the aggregated survey indices separately from

the length and age composition samples combined with a stochastic growth model.

In both cases a stochastic growth model will be necessary in order to correct for the
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length-selectivity of the survey trawl when estimating the distribution of length-at-

age.

Landings data

Estimates of commercial landings can be derived from port-side sampling, fisher

logbooks and observer records, however the precision and reliability of the estimates

are rarely known (Cotter & Pilling 2007). The reliability of the landings estimates

may vary throughout the time series for a multitude of reasons, including changes

in observer coverage and/or mis-reporting from other countries. Unreported catch

and discard rates also create discrepancies between estimated landings and actual

at-sea removals, which can subsequently bias stock size estimates (Beare et al. 2005).

Historically the landings data were not directly used in the stock assessment model or

were treated as known (see, e.g., Francis 2017), however some state-space approaches

have aimed to account for variability in the landings data. Cadigan (2015) used a

censored-likelihood approach to account for underreporting in the landings data, and

a formulation of the SAM software package can estimate a catch multiplier to allow

estimation of bias in the reported landings (see, e.g., ICES 2011).

Composition data

Composition data represent the age or length distribution of the stock and are typi-

cally estimated from sub-sampling of research vessel or commercial data. These data

are vital to age based stock assessment models and provide information on cohort

strength and selectivity of the stock (Maunder & Piner 2014). In age-based assess-

ment models catch-at-age data are a common source of composition data and are

most often estimated from age-length keys (ALK) and length frequencies (LF). In

a sampled commercial haul, all fish are measured for length, but only a subset are



24

selected to be aged, typically in a length-stratified age sampling design. The ALK

can be calculated via the forward method (i.e. the probability of age given length,

Fridriksson 1934), the inverse method (i.e. the probability of length given age, Clark

1981, Kimura & Chikuni 1987) or the mixed method (i.e. combination of both in

a maximum likelihood framework, Hoenig et al. 2002). For brevity, I omit the de-

tails on the three methods but refer to Ailloud & Hoenig (2019) for an excellent

description. The ALK is then applied to the unaged catch at length sample (LF)

and the corresponding catch-at-age-by-length are summed over lengths to produce

catch-at-age estimates (Ogle 2016).

Complex fishery sampling designs can lead to a lack of independence (i.e. over-

dispersion) in the data due to size- or age-based fish behaviour (e.g. schooling,

Pennington & Volstad 1994) and recent research has focused on how to best fit

composition data within the stock assessment model. Francis (2014) argued that the

commonly used multinomial likehood was poorly suited for compositionn data due

to over-dispersion and concluded that the logistic-normal multinomial distribution

showed great promise for composition data. Cadigan (2015) used a related approach,

the multiplicative logistic-normal multinomial distribution, when fitting a state-space

model for northern cod. More recently, Thorson et al. (2017) advocated for the

Dirichelet-multinomial as an alternative to the multinomial, however Francis (2014)

had previously noted the restrictiveness of the variance-covariance structure that only

allows for negative correlations. Thus, how to best fit composition data within the

stock assessment model remains a current topic of research.

1.3 Overview and Objectives

In this thesis, I address two of the data issues described above with a specific ap-

plication to American plaice (Hippoglossoides platessoides) on the Grand Bank of
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Newfoundland. A brief overview of the management of American plaice and avail-

able data is given below, followed by a discussion on the two issues that are addressed

in this thesis.

American plaice

American plaice supported an important commercial fishery historically on the Grand

Bank of Newfoundland (Northwest Atlantic Fisheries Organization (NAFO) Divisions

3LNO), at times accounting for over ten percent of Canadian groundfish landings

(Morgan et al. 2011). The first stock assessment for American plaice was published

in the early 1970’s and set the total allowable catch (TAC) at 60,000 tons (Pitt,

1984). From 1973 to the late 1980’s, the TAC ranged between 33,585 tons and

60,000 tons. The stock collapsed in the mid-nineties, and although the TAC has

been set to zero tons since, the stock has yet to recover to pre-collapse levels. The

current stock assessment model is an ADAPT-VPA that was introduced in the late

90’s and is informed by survey abundance indices, catch-at-age data and biological

data (Wheeland et al. 2018).

Relative abundance indices

There are currently three sources of fishery independent abundance indices for Amer-

ican plaice: the Canadian fall, Canadian spring and Spanish research vessel surveys.

All surveys are stratified by depth and span different time periods: the fall survey

has been conducted since 1981, the spring since 1971, and the Spanish survey since

1995. The spatial coverage varies across the three surveys and also within surveys.

For example, the fall survey only covered the 3L region until 1990 when the 3NO

regions were added. The Spanish survey covers the 3NO region, unlike the Canadian
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surveys which covers 3LNO. For all surveys, the relative abundance indices are cal-

culated from sub-samples of ages using a design-based method that accounts for the

depth-stratified sampling design, (Smith & Somerton 1981).

Landings data

Landings data for American plaice have been collected since the early 1960’s from

both offshore and inshore fisheries via port and observer sampling (Stevenson 1983).

There is considerable uncertainty about the landings data for American plaice in

both the early and later years of the data (Wheeland et al. 2018). In the early years,

sources of uncertainty include landings estimated for “unspecified flounder” by some

countries (see, e.g., Pitt 1972) and an increase in foreign catch outside the 200 mile

economic exclusive zone in the mid-80’s (Brodie 1986). More recently, the loss of

availability of scientific observer data in the NAFO Regulatory area has resulted in

various methods being applied to obtain landings estimates, including effort ratios

and daily catch records (Dwyer et al., 2016).

Composition data

Historically, catch-at-age data for American plaice were derived from stratification

of the commercial landings (typically via area, time and gear) where the stratified

sample was measured for weights and lengths and subsequent length-stratified sub-

samples were selected to be aged (Gavaris & Gavaris 1983). Since the 1994 closure

of the directed commercial fishery various sources have been used to derive ages

and lengths. From 1994-2000, ALKs were most commonly derived from the spring

research survey vessels and applied to LFs from the Spanish and Portuguese fisheries.

From 2001 onwards, ALKs were derived from the spring research survey vessels and
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applied to LFs derived from the Canadian, Spanish and Portuguese fisheries by-catch

of American plaice.

Objectives

This work is presented through two scientific papers that are detailed in the following

chapters.

In Chapter 2, I present our first paper, where I improve our understanding of

growth parameters through an extensive simulation study and application to Amer-

ican plaice. It was noted in Section 1.3 that when a subset of fish are caught in a

survey tow to be aged then it may be more appropriate to model separate likelihood

functions for the length-based indices and age-length measurements combined with a

stochastic growth model. Aging only a subset of fish while all fish are measured for

length is commonly referred to as length-stratified age sampling. In Chapter 2, I will

improve our understanding and treatment of the estimation of growth parameters

under this length-stratified age sampling design by collating and simulation test-

ing nine methods found in the fisheries science and statistical literature to determine

which method provides the most reliable growth model parameter estimates based on

length-stratified age samples via simulated data. The optimal methods will then be

applied to a case study for American plaice. This work will be a key component to fit-

ting more realistic growth models that account for the length-stratified age sampling

design and can be combined with length-based indices and age-length measurements

to fit integrated stock assessment models with separate likelihood functions.

In Chapter 3, I present our second paper, where I develop an age-based state-space

stock assessment model for American plaice that provides a better quantification of

uncertainty. The current stock assessment model for American plaice is a virtual

population analysis that treats the catch-at-age data as known without error. The
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catch-at-age data are partially derived from landings estimates and there are consid-

erable uncertainties about the landings data for this stock. I will develop an age-based

state-space stock assessment model for Grand Bank American plaice that allows for

uncertainties about the landings data and also in the underlying population pro-

cesses (i.e., Na,y, Fa,y). Model fit will be assessed via a detailed examination of model

residuals for evidence of patterns indicating model misspecification and through ret-

rospective model fitting. This work will provide a more realistic stock assessment

model for American plaice on the Grand Bank of Newfoundland.



Chapter 2

Estimation of growth parameters based on length-stratified

age samples

2.1 Introduction

Modeling and estimation of the relationship between fish length and age (i.e. growth)

is an important component of fisheries science. Growth models are used in many ways,

including the derivation of life history invariants (Charnov 1993, Jensen 1996), estima-

tion of important population parameters such as selectivity and mortality (Hoggarth

2006, Hilborn & Walters 2013), and the classification of functional groups in ecosys-

tems models (e.g. Shackell et al. 2010). Growth models are especially important in

age-based fish stock assessments, where the estimates from these models are used

in conjunction with a length-weight relationship in biomass calculations (Quinn &

Deriso 1999), to convert length-based to age-based selectivity, and to estimate length

compositions (Francis 2016). Stock assessment scientists must decide if growth will be

estimated inside the stock assessment model via integrated stock assessment models

(Maunder & Piner 2014, Methot Jr & Wetzel 2013), or outside the stock assessment

model, where the fixed growth parameter estimates are used as data inputs for the as-

sessment. Alternatively, empirical lengths and weights at age derived from individual

fish measurements can also be applied instead of growth model estimates; however,

this method requires high quality data across all assessment model years, which are

often not available. Thus, reliable methods to estimate growth model parameters are

29
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vital, as unreliable management decisions and conclusions can be drawn about the

health of a fish stock if the growth estimates are incorrect (Smith et al. 1993).

The most widely used growth model in fisheries science is the von Bertalanffy

model (vonB; Von Bertalanffy 1938), which assumes that the growth rate decreases

linearly as size increases. The vonB parameters are estimated from samples of age

and length measurements. Usually many more fish are measured for length than age

because determining age is often time-consuming and expensive (Doubleday 1981)

whereas lengths are much simpler to measure. A subsample of fish are selected for

ageing. A popular sampling design for this is length-stratified age sampling (LSAS)

which is a two-phase stratified sampling (TPSS) design. In the first sampling phase

length is measured for the entire random sample of fish, and the fish are classified

into length bins, or strata (e.g. one centimeter, five centimeters). In the second

sampling phase, a small and prespecified number of fish are randomly selected to be

aged from each length stratum. The rationale for this design is to reduce the num-

ber of ages to measure but maintain the representativeness of the data by ensuring

enough age measurements in all the length intervals along the growth curve. This

is an example of response-selective stratified sampling (RSSS) since length is the re-

sponse and age is the descriptive covariate. There are many well-studied factors that

can bias vonB parameter estimates, including selectivity, (e.g. Schueller et al. 2014,

Taylor et al. 2005, Troynikov 1999), age measurement error (Cope & Punt 2007),

and between-individual variability (see Kimura 2008, Sainsbury 1980, Vincenzi et al.

2016); however, bias from LSAS has not been sufficiently studied.

Although RSSS has been intensively studied, especially during the last two or

three decades in the statistical literature (see, e.g. Breslow et al. 2009, Hsieh et al.

1985, Neyman 1938, Scott & Wild 2011), the application of the resulting statistical

theories and methods to LSAS in fisheries science is inadequate. For example, popular
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and easy-to-use approaches such as the weighted likelihood and calibrated weighted

likelihood methods (detailed later; see Kalbfleisch & Lawless 1988, Saegusa & Wellner

2013) in RSSS are seldom applied in fisheries studies, and the few studies that do

address LSAS have various theoretical or empirical issues to resolve. In the latter

regard, Candy et al. (2007) accounted for LSAS with an approach for a different kind

of RSSS, the variable probability sampling design, which still needs some theoretical

and/or simulation validation. Another approach estimates mean length at each age,

adjusted for LSAS through weights, called the bias-corrected mean length-at-age

(BC) estimates (e.g. Bettoli & Miranda 2001). The BC estimates are treated as

observed data and used to estimate growth model parameters using the nonlinear

least squares method (e.g. see Brattey et al. 2018, Echave et al. 2012); however,

the effect of using the BC estimates and not the individual observations on growth

parameter estimates still requires further investigation. In addition, it is not possible

to estimate between-individual variation in size-at-age with the BC approach, which

is an important limitation of the method for some stock assessment models that

require estimates of the stock distribution of size-at-age. Piner et al. (2016) and Lee

et al. (2017) used length, instead of age, as the covariate by conditioning on length to

circumvent the complexity with RSSS, since given length, the sub-sampling for aging

is random in LSAS. However, here we show that this conditional method is both

theoretically problematic and practically unreliable. On the other hand, theories and

approaches proposed from statistical studies need some further development because

they do not take into full account the specific complexities of fisheries surveys. For

example, in LSAS, the number of length strata (100-200) is far more than that typical

in the statistical literature on RSSS (about 10), and in LSAS, there are always some

strata that are theoretically probable but practically empty, which is often neglected

in statistical studies.
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Zheng & Cadigan (2019) addressed some of these additional complexities in fish-

eries survey LSAS by proposing two new approaches. The first, a full-data likelihood

function for LSAS, correctly accounted for the first phase data (i.e. only length), the

fully observed second phase data (i.e. length and age), and the sampling scheme. The

second approach improved on the method of Candy et al. (2007) which they referred

to as the empirical proportion likelihood approach. Their simulation study indicated

that these two new approaches perform as well as the standard full information likeli-

hood approach, and better than the other existing approaches in RSSS. An important

goal of this chapter is to formally compare the new approaches of Zheng & Cadigan

(2019) with the existing methods for LSAS in the fisheries literature to determine

one or two optimal LSAS vonB parameter estimation procedures. However in their

simulation study, Zheng & Cadigan (2019) assumed that a simple parametric model

for the age distribution of the population is known, which is usually not the case for

fish stocks. Often the age distribution of a fish stock can be complex with multiple

modes, and the age distribution changes from year to year as more abundant cohorts

grow older. Another goal of this chapter is to address this deficiency.

Zheng & Cadigan (2019) concluded that for efficient and consistent parameter

estimation when data are collected using LSAS, information from the following three

components must be included: the first phase length data, the second phase length

and age data (i.e. the subsample from phase 1), and the sampling scheme used to

select fish for ageing. In this chapter we guide our estimating method comparison in

light of these three components.We present the estimation performance of the vonB

parameter estimates using nine estimation methods from the fisheries science and sta-

tistical literature. As a practical application, the two best performing methods were

used to fit the vonB growth model for American plaice (Hippoglossoides platessoides

) in Northwest Atlantic Fisheries Organization (NAFO) Divisions 3LNO.
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2.2 Materials and Methods

Suppose we have N randomly selected fish with lengths and ages (li, ai) for i =

1, 2, ..., N , generated from the distribution f(l, a|θ), where θ is a vector of all unknown

parameters. The individuals are divided into K mutually exclusive and exhaustive

length strata, S1, S2..., SK . We measure all N fish for length in the first phase sample,

but only a subsample of size n is measured for age in the second phase. Thus, the

full age and length information (li, ai) is only collected for a subset of the N fish.

The probability that a fish with length l falls into the kth stratum (i.e. l ∈ Sk, k =

1, 2, ..., K) is given by

Qk(θ) = P{(l,a) ∈ Sk|θ} =

∫
l∈Sk

∫
a

f(l, a|θ) da dl. (2.1)

We denote the number of fish in a length stratum by Nk, where N =
∑K

k=1 Nk.

In each stratum, we specify a maximum number of fish to be sampled for age, mk.

The true sample size nk for this stratum is

nk =


Nk, if Nk < mk

mk, if Nk ≥ mk,

(2.2)

which is a random number. This is called length-stratified age sampling (LSAS).

In fisheries surveys, it is rare to sample the target mk fish in strata for smaller

and larger lengths. Fisheries survey gears may allow most smaller fish to escape, and

it is uncommon to catch many fish of the oldest ages. As a result, the distribution of

fish length is often highly right-skewed, and in this case the nk’s are random variables

due to gear selectivity and mortality.

For LSAS (2.2), the density function for the second phase length-at-age data is



34

not f(l, a|θ) anymore, but given by (see Appendix A for derivation)

f(l, a|LSAS,θ) =
f(l, a|θ)

Qk(θ)
Qk(LSAS,θ), (2.3)

where Qk(LSAS,θ) is the probability for a second phase individual to be in length

stratum Sk. Intuitively, Qk(LSAS,θ) is related to the distribution of the random

variable nk. For instance, given nk for each stratum, a second phase individual is

twice as likely to be in a stratum with nk = 2 than in a stratum with nk = 1; if nk was

to change for a stratum, then Qk(LSAS,θ) for the second phase stratum would also

change. Zheng & Cadigan (2019) derived the exact formula for Qk(LSAS,θ), which

not only validates the above observation about the relationship between Qk(LSAS,θ)

and the distribution of nk, but also indicates that Qk(LSAS,θ) is indeed a function

of the target parameters θ, and hence should not be neglected in θ estimation. Their

simulation study further confirmed that approaches neglecting Qk(LSAS,θ) give

fairly poor θ estimates.

In the special case where the probability that Nk < mk is negligible for each

stratum, then nk = mk with probability 1 for each stratum. Namely, the nk’s are fixed

numbers instead of random variables, and Qk(LSAS,θ) = mk∑
mk

. This probability

does not involve target parameters θ and hence can be neglected for the purpose of

θ estimation. Some approaches (e.g. Hausman & Wise 1982) basically assume that

the nk’s are always equal to mk’s, and hence neglect the Qk(LSAS,θ) term in (2.3).

From the point of view of the three essential components for consistent and ef-

ficient parameter estimation, namely, the N first phase length data, the n second

phase length-at-age data, and the sampling design, neglecting Qk(LSAS,θ) is an

incorrect incorporation of the sampling design, and hence leads to poorer estimation
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results. Zheng & Cadigan (2019) suggested that all the deficiencies in RSSS esti-

mation approaches to LSAS are due to insufficient or incorrect incorporation of one

or more of these components. For the methods that we investigate in this chapter,

the first phase information can be incorporated via the number of fish in each length

bin (Nk) or the length of each fish. Incorporation of the sampling scheme indicates

whether some measure has been taken to eliminate or alleviate the bias in the data

introduced by LSAS. In the remainder of this chapter, we will categorize and analyze

the existing LSAS estimation approaches in light of whether they incorporate these

three components correctly and sufficiently.

Model and Likelihoods

Length-at-age is commonly described by the vonB growth model (e.g. Francis 2016,

Quist et al. 2012), as it gives a good approximation of growth for many fish species

(e.g. Chen et al. 1992, Quinn & Deriso 1999). The vonB model can be written as

l(a) = L∞
(
1− e−k(a−a0)

)
+ ε, (2.4)

where l(a) is the length of an age a fish, L∞ is the theoretical length at which the

growth rate stops, k is the growth coefficient, and a0 is the theoretical age at which

length is zero. We assume the error term is given by ε ∼ N(0, σ2
a), where σa = µa CV ,

CV is the coefficient of variation, and µa = L∞
(
1− e−k(a−a0)

)
. We assume this error

term jointly represents the between-individual variation (or process error) resulting

from individual growth parameter variability, plus the measurement error in length,

as in Piner et al. (2016). Note that it is straight-froward to apply the estimation

methods we investigate to other growth models (e.g. the Gompertz model).

Model (2.4) in fact states that the distribution of length l conditional on a,
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Table 2.1: Log-likelihood functions used to estimate vonB population parameters,

dbin represents the binomial probability mass function, pbin the cumulative binomial

probability mass function, crl is the continuation ratio logit transformation, and equil.

is the equilbrium approximation in equation 2.8.

Method Likelihood P(a) First phase Sampling scheme

Random
∑

l

∑
a nl,a · log

(
P (l|a)P (a)

)
Crl No No

Piner
∑

l

∑
a nl,a · log

(
P (l|a)P̂ (a)

P (l)

)
Equil. No Incorrect; neglects θ in P (l)

PF
∑

l

∑
a nl,a · log

(
P (l|a)P (a)

Qk
Qk(LSAS)

)
Crl No Yes

HT
∑

l

∑
a nl,a · πk(l) log

(
P (l|a)P (a)

)
Crl Nk Yes, through weights

CW
∑

l

∑
a nl,a · wi log

(
P (l|a)P (a)

)
Crl Nk, l Yes, through weights

Candy
∑

l

∑
a nl,a · log

(
P (l|a)∑

k

nk(l)
Nk(l)

Q′k(a)

)
n/a Nk Yes, ignores empty strata

EP
∑

l

∑
a nl,a · log

(
P (l|a)P (a)∑Kobs

k′=1

nk(l)′
Nk(l)′

Qk′+
∑Ktotal

k′=Kobs+1
Qk′

)
Crl Nk Yes, through EP density

Note BC and WBC methods are not listed as they are not likelihood approaches

f(l|a) ∼ N(µa, σ
2
a). In practice, real length and age data are truncated to be in-

tegers, so the corresponding probability mass function (pmf) can be approximated

as

P (l|a) =
N(l, µa, σ

2
a)∑

lN(l, µa, σ2
a)
.

To fit five of the methods described below (see Table 2.1), the population distribu-

tion of age, P (a), is required. In practice, the age distribution of a fish stock may be

complicated and will change substantially over time because of the highly variable

nature of fish recruitment. Simple models will usually not be reliable. In prelimi-

nary simulations (see Section 2.2) we tested many common probability distributions

for P (a), including the Poisson, Gamma and G-Normal mixture distributions as in

Dey et al. (2019), but none of them performed well, as the randomly generated age

distributions for our simulations (described in Section 2.2) varied from year to year.

Hence, we decided to estimate the probability mass function P(a) at all ages directly.



37

We used the continuation ratio-logit transformation (e.g. Agresti 2003, Berg & Kris-

tensen 2012, Cadigan 2015) which maps P (a) for a = 1, ..., Amax with the constraints

P (a) ≥ 0 and
∑
P (a) = 1, into λ(a) for a = 1, ..., Amax − 1 with no constraints,

which are much easier to estimate. Thus,

P (a) =


exp(λ(a))∏a

i=1

(
1+exp(λ(i))

) , a = 1, ..., Amax

1∏Amax−1
i=1

(
1+exp(λ(i))

) , a = Amax,

(2.5)

where Amax is the maximum age group for age groups a = 1, ..., Amax and λ(a) ∈

(−∞,∞) for a = 1, . . . , Amax − 1. The inverse transformation of (3.6) is

λ(a) = log

[
P (a)

P (a+ 1) + ...+ P (Amax)

]
, a = 1, ..., Amax − 1. (2.6)

When implementing the various methods discussed in the following sections, P (a)

should be replaced by the functions of λ(a)’s in (3.6), and λ(a)’s are estimated to-

gether with the other model parameters.

Random method

Often in practice, because users are either not aware of, or don’t understand the

significance of, how their age-length data were collected, the LSAS design is inadver-

tently ignored and the second phase length and age sample are treated as a random

sample from the population when estimating vonB parameters. We used this ap-

proach to demonstrate how biased and unreliable growth model parameter estimates

can be obtained when this approach is applied to LSAS data. The most common way

to implement this method fits the second phase length and age data to (2.4), and the

vonB parameters are estimated using nls with age treated as a fixed covariate. The
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random likelihood method described in Table 2.1 will give identical parameter esti-

mates to the nls method when the distribution of age does not depend on the vonB

parameters of interest. This method ignores both the first phase information and the

sampling scheme, since it treats the second phase sample as a random sample.

Weighted methods

One of the most common approaches for statistical inference in RSSS is by weighing

the likelihood function for the second phase data with information from the first

phase sample (see Breslow et al. 2009, Kalbfleisch & Lawless 1988, Saegusa & Wellner

2013). These weighting methods are relatively easy to implement and can provide

unbiased parameter estimating equations. The commonly used Horvitz-Thompson

(HT) weight, πk(l) =
Nk(l)

nk(l)
, where k(l) represents length l in stratum k, incorporates

the first phase information and the sampling scheme through the fraction sampled

for ageing (π−1
k(l); see Table 2.1 for all likelihood functions). Note that Nk(l) contains

some of the first phase length information. For example, if fish are measured by

centimeter and one centimeter length bins are used for age sampling then Nk(l)’s

provide all the first phase length information. If 5-cm length bins are used then the

Nk(l)’s only provide partial first phase length information. The HT approach may not

be efficient since the HT estimator may have large standard errors when the sampling

units are not proportional to their inclusion probabilities (e.g. Thompson 2012). To

adjust for this inefficiency, the calibrated-weighted (CW) method, first proposed by

Deville & Särndal (1992), further adjusts the HT weights with first and/or higher

order moments of the first phase length data (see Appendix B for details),

wi = (1− λcli)
Nk(l)

nk(l)

. (2.7)
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Both the HT and CW methods incorporate some of the first phase information and

the sampling scheme through their respective weights.

Conditional-on-length method

Piner et al. (2016) applied a conditional-on-length method based on the conditional

probability

P (a|l) =
P (l ∩ a)

P (l)

=
P (l|a)P (a)∑
a P (l|a)P (a)

,

to estimate the vonB parameters with data collected through LSAS. The rationale is

that the conditional distribution of age given length does not depend on the length-

stratified sampling design. The corresponding log-likelihood in Piner et al. (2016)

is
∑

l

∑
a nl,a log

(
P (a|l)

)
. Note that P (a, l) = P (a|l)P (l). The corresponding log-

likelihood should be
∑

l

∑
a nl,a log

(
P (a|l)

)
+
∑

l

∑
a nl,a log

(
P (l)

)
. If P (l) does not

include model parameters θ it can be neglected when applying the maximum like-

lihood approach. However, P (l) as defined by Equation (2.4) must involve model

parameters, and hence the second term involving P (l) in the log-likelihood should be

included. Therefore, the sampling scheme was incorrectly specified in the method of

Piner et al. (2016), since it neglected the second term, P (l). In addition, this method

did not include any first phase length information. Piner et al. (2016) also used an

equilibrium approximation for the distribution of ages,

P̂ (a) =
e−Za∑
a e
−Za , (2.8)
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where Z is the total mortality rate, defined as the sum of the natural mortality

rate (M ) and fishing mortality rate (F ), Z=M+F . This approximation is based on

an assumption of constant recruitment of age 1 fish. We note that this is the only

method that requires an external estimate of M, as the other methods estimated

P (a) within the model (when required, see Table 2.1) using continuation ratio logits.

This assumption for M is a large simplification as in reality natural mortality may

not be time or location invariant. We investigate if the equilibrium approximation

(2.8), which will often not be appropriate to describe the age distribution, is a useful

assumption for estimating vonB parameters.

Conditional-on-age method

Candy et al. (2007) accounted for LSAS in vonB parameter estimation by treating

the sampling scheme as variable probability sampling (VPS). VPS differs from LSAS

in that instead of fixing the stratum subsample size, the sub-sampling probability of

an individual is predetermined. For a discussion on the feasibility of using VPS for a

sample collected through LSAS, we refer to Zheng & Cadigan (2019) and Candy et al.

(2007). Candy’s method differed from the traditional VPS estimation by substitut-

ing the observed proportions,
nk(l)

Nk(l)
, which are independent of age, for the sampling

probabilities. Candy et al. (2007) used the conditional probability given age to avoid

the difficulty with the age distribution. The log-likelihood function for this approach

is shown in Table 2.1. The conditional probability of being in the kth stratum is

given by

Q′k(a;θ) = Pr{l ∈ Sk|a} =

∫
l∈Sk

f(l|a) dl. (2.9)

Candy’s approach incorporated the first phase information through the observed

proportions,
nk(l)

Nk(l)
. We consider conditioning on age further in the Discussion.
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Improved conditional-on-age and full likelihood methods

Zheng & Cadigan (2019) proposed two likelihood approaches for parameter estimation

in LSAS: the full-data likelihood method and the empirical proportion method (EP).

Both the full-data and EP methods suggest incorporating the first phase data through

the marginal density function of length, f(l) =
∑

a f(l|a)P (a). However, the first

phase density functions can only be correctly evaluated if there exists an appropriate

age distribution for integrating a out of f(l, a|θ). In a preliminary analysis, we tried

to infer the age-distribution from the LSAS data, however the initial results were not

promising, and we did not pursue it further. Due to the lack of an effective method

for estimating the age distribution for the simulated populations in this study, we

estimated the vonB parameters using only the density functions for the second phase

age and length data, which we call the EP method and the partial full-data (PF)

method.

The EP approach improved on Candy’s method by taking into account the sce-

narios where no fish are observed in a stratum (i.e. Nk = 0, see Table 2.1) and does

not use the conditional-on-age approach (i.e. uses (2.1)). We discuss the drawbacks

of using the probability of length conditional on age in the Discussion. The EP joint

density function for l and a is

fEP (l, a|LSAS;θ) =

nk(l)

Nk(l)
f(l, a|θ)∑Kobs

k′=1

nk′(l)
Nk′(l)

Qk′ +
∑Ktotal

k′=Kobs+1 Qk′
, (2.10)

where 1, ..., Kobs are the strata with observed data, and Kobs + 1, ..., Ktotal are the

strata without data.

The PF method incorporates the sampling scheme correctly (see Zheng & Cadigan

(2019) for full derivation) and the joint density function for l and a with l ∈ Sk is
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fPF(l, a|LSAS;θ) =
f(l, a|θ)

Qk

×[∑mk−1
i=1 i · dbin(i, N,Qk)

]
+mk [1− pbin(mk − 1, N,Qk)]∑K

k′=1

{ [∑mk′−1
i=1 i · dbin(i, N,Qk′)

]
+mk′ [1− pbin(mk′ − 1, N,Qk′)]

} , (2.11)

where dbin represents the binomial probability mass function, pbin the cumulative

binomial probability mass function and mk is the maximum sample size for full ob-

servation in stratum k. For the EP method, the first phase information was included

through the empirical proportions and the sampling scheme was incorporated through

the EP density function. The PF method correctly incorporated the sampling scheme,

but only included first phase information via the total sample size N. Note that the

total sample size provides very little information about the overall sampling scheme;

for example the difference between N = 1000 in (2.11) and N = 2000 is negligible.

Mean length-at-age

We also studied fitting the vonB model to mean length-at-age (e.g. Echave et al. 2012)

that were adjusted to account for bias due to the LSAS. This approach is commonly

used in practice. The bias-corrected mean length-at-age (BC) estimate is

L̄a =

∑
kNk(na,k/nk)lk∑
kNk(na,k/nk)

(2.12)

where lk is the midpoint of length bin k, na,k is the number of age a fish in length

bin k, and Nk is the total number of fish sampled in length bin k in the first sam-

pling phase. We use the BC estimates with (2.4), and estimate vonB growth model

parameters using non-linear least squares (nls), both weighted by the number of fish

at each age (WBC), and unweighted. This nls method includes both the sampling
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scheme and the first phase information through the weights in (2.12), but not the

individual data. An important disadvantage of this approach is that estimates of σ2
a

will not fully reflect between-individual variability.

Simulation study

Population simulations were similar to the approach described in Piner et al. (2016)

where I: 1) generated a fish population using a wide range of life history parameters

(see below), 2) simulated commercial fishery length-stratified age sampling, and 3)

estimated growth parameters from the sample using the nine methods previously de-

scribed (see Table 2.2 for details on distributions and models used in simulations).

Simulations were designed to be typical of a fish stock and simulation settings were

designed independently of the various growth model estimation methods I studied.

Hence, the simulation procedure should not favor any of the estimation methods a

priori. In this chapter, all the lengths are in centimeters and ages are in years. Re-

cruitment for each year was modeled using the Beverton-Holt spawner-recruit model,

parametrized in terms of steepness, h (e.g. Punt & Cope 2017). Length-at-age was

simulated using a vonB model and weight at age was generated using a simple iso-

metric growth model (Quinn & Deriso 1999). Maturity at age was assumed to follow

a logistic model (e.g. Jennings et al. 2009), with age at 50% maturity, A50, fixed at

log(3)/k, as in Jensen (1996), and age at 95% maturity A95 fixed at four years from

A50. The growth rate k was generated based on the life-history invariant k = M/1.65

(Charnov 1993). The simulation procedure is illustrated in Figure 1.

Starting from an unfished recruitment R0 = exp(9), we simulated population dy-

namics for 61 years with these models and parameter specifications. For each year a
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Figure 2.1: Diagram of steps used in population simulations; LSAS is length-stratified

age sampling.

new fishing mortality and variation in recruitment were drawn from their correspond-

ing distributions; all other population values were generated once per simulation run.

The population in the 61st year was our first phase sample on which LSAS was con-

ducted. The first phase sample size N was not fixed. Length bin sizes were chosen

at one, two, three and five centimeters as they represented sizes that were frequently

observed in practice (e.g. Monnahan et al. 2016). We estimated vonB growth pa-

rameters with length at age zero fixed at three centimeters, to compare with the

results from Piner et al. (2016), and also estimated vonB parameters with a0 esti-

mated freely, as in practice this parameter is usually not fixed. For growth parameter
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Table 2.2: Distributions and models used to generate population simulations; min =

0.10 and max = 0.50 for the uniform distribution; truncNorm is the truncated normal

distribution with min = 0, max = ∞, to prevent generating negative values; when

a0 was estimated freely, a0 was used, otherwise L0 was used.

Parameter Distribution Mean SD
Natural mortality (M ) Uniform 0.30 0.11
Fishing mortality (F ) TruncNorm 0.20 0.08
Steepness (h) Normal 0.75 0.07
Log recruitment deviation (σRec) TruncNorm 0.60 0.15
Asymptotic length (L∞) Normal 50 8
Growth coefficient error (ε) Normal 0 0.10(1.65/M )
CV length-at-age TruncNorm 0.10 0.04
Log unfished recruitment (log(R0)) Fixed 9.0 -
Length at age 0 (L0) Fixed 3 -
Age at length 0 (a0) Fixed -0.07 -

Model

Recruitment R(y) = SSB(y−1)

1−
(

5h−1
4h

)(
1−SSB(y−1)

SSBeq

)
Weight w(l(a)) = 0.20 · l(a)3

Maturity m(a) =
(

1 + e
(− log(19)(a−A50))

A95−A50

)−1

Numbers at age N(y, a) = N(y − 1, a− 1)e−(M+F (y))

Numbers in first year N(1, a) = R0

(
e−a·M

)
Spawning stock biomass SSB(y) =

∑A
a=1w(l(a)) ·m(a) ·N(y, a)

estimation using Piner’s method, we estimated F as the median F across years within

each simulation run, with M fixed at the true population value (see Table 2.2) for

distributions used to derive population parameters), as this method performed well

overall in Piner et al. (2016), and in practice F is often estimated from the data while

M is fixed at a known value. All other methods did not require an estimate of M.

The purpose of LSAS is to (i) control the number of costly age measurements while

(ii) obtaining length-at-age data evenly spread along the growth curve. Therefore,

we assume that the target stratum sample size mk is proportional to the length bin

size so that the total target sample size
∑

kmk does not change with bin size (for
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(i)), and that mk is independent of k (for (ii), i.e. target mk will be the same,

no matter the distribution of length-at-age). To be specific, mk = 10 · binsize, for

binsize = 1, 2, 3, 5. This choice of target stratum sample size is similar to sampling

strategies used in real fisheries survey sampling (e.g. American plaice data used in

Section 2.2). To demonstrate the effect of a change in the second phase sampling

fraction (i.e. N and mk) on the performance of the estimation approaches, we also

conducted a simulation experiment with mk = 50 and R0 = exp(9), and with mk = 50

and R0 = 5× exp(9) for bin size equal to 1 cm and a0 freely estimated.

This data generation and parameter estimation were repeated 1000 times. The

estimation performance was measured using the relative root mean squared error

(RRMSE),

RMSE =

√∑1000
i=1 (estimatei − truei)2

1000
, RRMSE =

RMSE

|true*|
· 100,

and relative bias,

Bias =

∑1000
i=1 (estimatei − truei)

1000
, RelBias =

Bias

|true*|
· 100.

Here, truei denotes the parameter value in the ith simulation, and true* denotes the

mean value of the parameter distribution. The parameters for L∞, CV and k were

randomly drawn from their corresponding distributions, and thus varied across iter-

ations. For the life history invariant, k, 0.30/1.65 was used for true*, as 0.30 was the

mean of the simulated natural mortality used in the calculation of k.

The estimation was performed in R using Template Model Builder (TMB) (Kris-

tensen et al. 2015), an R package for fast evaluation of the negative log-likelihood
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function and its gradients, which were then provided to the R function nlminb() for

likelihood maximization.

American plaice growth

The two best fitting methods were used to estimate the vonB growth parameters

using a dataset collected by the Department of Fisheries and Oceans Canada (DFO)

in Northwest Atlantic Fisheries Organization (NAFO) Divisions 3L, 3N and 3O. We

fit the data for the latest year available to us, 2014. The growth models were fit for

female plaice only, since male and female plaice follow different growth curves. The

actual sampling was conducted at various sites evenly spread across each division to

ensure the spatial representativeness of the data, but with an overall sampling goal

(mk) in each division of about 25 age measurements per 2 cm length stratum by sex,

if length was greater than or equal to 10 cm, and about 15 age measurements per

stratum without distinguishing sex if length was less than 10 cm. For simplicity we

assume that there is no spatial variation in size-at-age of these fish, and therefore can

neglect the spatial structure of the sampling scheme and regard the whole sample in

each division as a LSAS sample (see Appendix C).

The sampling in each division was treated as independent, so the likelihood func-

tion for the data is given by

L3LNO = L3LL3NL3O, (2.13)

where L3L, L3N and L3O are the likelihoods of each division. To compare the two

best fitting methods with the methods that are commonly applied in practice, we also

estimated vonB parameters using the BC method, both weighted and unweighted,

and the random method.
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2.3 Results

Results for simulation study

The random and Piner methods performed the worst overall. These methods ignored

or misspecified both the sampling scheme and the first phase sample. When a0 was

fixed, Piner’s method had the largest RRMSEs for all parameter estimates and for

all length bin sizes (see Table 2.3). The RRMSE for k for Piner’s method was much

larger than the RRMSE for k for any other method when a0 was fixed. For example,

for the one centimeter length bin, the RRMSE for Piner’s method was over 100%-

all other methods had RRMSEs for k that were below 25% for that bin size. When

a0 was freely estimated, the RRMSEs for k using Piner’s method were again much

larger than the RRMSEs for k for all other methods (see Table 2.4). In terms of

relative bias, Piner’s method had the largest bias for k, no matter the bin size and

whether or not a0 was estimated freely. Overall, the relative bias of CV estimate was

larger for the random method than for any other method.

The bias-corrected mean length-at-age methods, both weighted (WBC) and un-

weighted (BC), performed slightly better than the random and Piner methods, with

RRMSEs that ranged between 5% and 23% for L∞ and k, for all length bin sizes

and whether or not a0 was estimated freely. The RRMSEs for a0 were always greater

than 100%. The relative bias for the BC and WBC methods were larger than for

any of the other methods that included the first phase length information and the

sampling scheme (i.e. Horvitz-Thompson (HT), calibrated-weighted (CW), Candy

and empirical proportion (EP)).

The partial-full (PF), HT, and CW methods were the next best fitting methods.

The PF method had the smallest RRMSEs among all the methods that did not in-

clude the first phase sampling (i.e. Piner and random), with the RRMSEs decreasing
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Table 2.3: RRMSEs (relative root mean squared error) and RelBias (relative bias)

for vonB parameter estimates from 1000 simulations with length at age 0 fixed at 3

cm, for various length bin sizes. The abbreviations for the methods are: PF (partial-

full), BC (bias-corrected mean length-at age), WBC (weighted BC), HT (Horvitz-

Thompson weighted), CW (calibrated weighted) and EP (empirical proportion).

Method Random Piner PF BC WBC HT CW Candy EP
RRMSE 1 centimeter
L∞ 21.3 >100 3.5 11.0 5.2 2.7 2.7 1.7 1.6
k 23.1 >100 5.7 15.1 6.0 3.2 3.2 2.6 2.4
CV 27.0 34.5 3.9 - - 5.0 5.0 4.1 3.9

2 centimeters
L∞ 21.6 >100 3.3 11.2 5.2 3.2 3.2 1.7 1.6
k 23.3 >100 5.7 15.3 6.2 4.0 4.0 2.6 2.5
CV 24.1 35.4 4.0 - - 5.4 5.4 3.9 3.8

3 centimeters
L∞ 21.9 >100 3.3 11.0 5.3 3.6 3.6 1.7 1.6
k 23.6 >100 5.3 15.3 6.1 4.3 4.3 2.6 2.6
CV 21.5 33.9 4.1 - - 5.7 5.7 3.8 3.8

5 centimeters
L∞ 23.2 >100 2.9 11.5 5.5 3.7 3.7 1.8 1.7
k 23.8 >100 4.8 15.9 7.2 4.7 4.7 2.8 2.8
CV 20.6 35.5 4.3 - - 5.8 5.8 4.0 4.0
RelBias 1 centimeter
L∞ 17.7 -0.5 0.9 7.9 3.3 0.0 0.0 0.1 -0.4
k -18.9 >100 -1.2 -9.4 -1.5 0.1 0.1 -0.3 0.4
CV 25.7 -7.0 1.1 - - 2.6 2.6 3.0 2.7

2 centimeters
L∞ 18.0 -4.0 0.5 8.1 3.3 0.0 0.0 0.0 -0.3
k -19.1 >100 -0.5 -9.7 -1.5 0.2 0.2 -0.1 0.3
CV 21.9 -7.6 1.0 - - 2.5 2.5 2.6 2.4

3 centimeters
L∞ 18.3 -7.5 0.5 8.1 3.4 0.2 0.2 -0.0 -0.3
k -19.3 >100 -0.5 -9.8 -1.6 0.0 0.0 0.0 0.3
CV 18.4 -7.8 1.0 - - 2.3 2.3 2.4 2.2

5 centimeters
L∞ 18.9 >100 0.2 8.6 3.6 0.1 0.2 -0.1 -0.3
k -19.3 >100 -0.2 -10.3 -1.7 0.0 0.0 0.0 0.2
CV 14.3 -8.4 1.3 - - 2.4 2.3 2.2 2.1
Note >100 are results that are greater than 100%
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Table 2.4: RRMSEs (relative root mean squared error) and RelBias (relative bias)

for vonB parameter estimates from 1000 simulations with a0 estimated freely, for

various length bin sizes. The abbreviations for the methods are: PF (partial-full), BC

(bias-corrected mean length-at age), WBC (weighted BC), HT (Horvitz-Thompson

weighted), CW (calibrated weighted) and EP (empirical proportion).

Method Random Piner PF BC WBC HT CW Candy EP
RRMSE 1 centimeter
L∞ 15.3 16.4 4.2 13.0 7.1 3.5 3.5 2.3 2.2
k 18.0 >100 11.3 21.9 10.9 5.4 5.4 4.4 4.2
CV 28.0 15.8 5.4 - - 5.6 5.6 6.1 5.8
a0 >100 >100 >100 >100 >100 43.7 43.7 39.4 37.2

2 centimeters
L∞ 14.8 >100 4.0 12.7 7.0 4.0 4.0 2.1 2.1
k 17.0 >100 9.5 22.0 10.9 5.8 5.8 4.2 4.2
CV 23.3 31.9 5.0 - - 6.2 6.2 5.1 5.0
a0 >100 >100 >100 >100 >100 56.7 56.7 46.2 44.6

3 centimeters
L∞ 14.2 16.3 3.7 12.9 7.2 4.8 4.8 2.1 2.1
k 15.7 >100 8.6 22.3 11.0 6.1 6.2 4.2 4.2
CV 20.1 16.3 4.4 - - 6.2 6.2 4.6 4.5
a0 >100 >100 92.0 >100 241.3 62.0 61.8 46.8 47.0

5 centimeters
L∞ 13.9 50.9 3.6 13.6 7.3 5.2 5.3 2.1 2.1
k 13.9 >100 8.1 23.0 12.1 7.1 7.1 4.5 4.5
CV 15.8 41.6 4.3 - - 6.4 6.4 4.2 4.2
a0 >100 >100 80.3 >100 >100 66.9 66.5 49.0 48.8
RelBias 1 centimeter
L∞ 13.4 -1.3 0.3 8.9 5.1 0.4 0.4 0.0 -0.8
k -14.6 >100 1.6 -13.7 -6.6 -0.4 -0.4 -0.5 0.9
CV 27.0 1.0 -0.1 - - 3.6 3.6 4.4 4.0
a0 10.3 >-100 39.4 >-100 >-100 -5.9 -5.9 -6.9 2.6

2 centimeters
L∞ 12.9 >100 0.5 9.0 5.1 0.5 0.5 -0.1 -0.6
k -13.4 >100 0.2 -13.8 -6.6 -0.4 -0.4 -0.1 0.7
CV 20.8 2.4 0.8 - - 3.4 3.4 3.4 3.1
a0 38.9 >-100 11.3 >-100 >-100 -6.0 -6.2 -1.8 3.8

3 centimeters
L∞ 12.2 -1.0 0.5 9.1 5.1 0.5 0.4 -0.3 -0.6
k -12.0 >100 -0.0 -14.0 -6.7 -0.3 -0.3 0.2 0.8
CV 16.4 0.4 1.2 - - 3.2 3.2 3.0 2.8
a0 65.1 >-100 3.7 >-100 >-100 -4.4 -4.1 2.4 6.3

5 centimeters
L∞ 11.6 1.2 0.3 9.5 5.2 0.7 0.7 -0.2 -0.4
k -10.0 >100 0.1 -14.7 -6.7 -0.2 -0.2 0.3 0.7
CV 10.0 2.8 1.4 - - 3.3 3.3 2.5 2.3
a0 79.4 >-100 1.7 >-100 >-100 -4.5 -4.3 1.9 4.4
Note >±100 are results that are greater than 100%
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as the length bin size increased. When a0 was fixed, the HT and CW methods had

identical RRMSEs, no matter the bin sizes - these RRMSEs increased slightly as the

bin size increased, ranging between 3% and 6%. Overall, the relative bias when a0

was fixed for both the HT and CW methods was small for all parameter estimates

and length bin sizes. When a0 was freely estimated, the CW and HT methods had

almost identical RRMSE values for all parameter estimates and all length bin sizes,

with the largest RRMSEs seen for a0.

Table 2.5: RRMSEs (relative root mean squared error) and RelBias (relative bias)

for vonB parameter estimates from 1000 simulations with a0 estimated freely for 1cm

bin sizes, target stratum sample size mk = 50, and simulated population size (N) or

five times simulated population size (5N ). The abbreviations for the methods are:

PF (partial-full), BC (bias-corrected mean length-at age), WBC (weighted BC), HT

(Horvitz-Thompson weighted), CW (calibrated weighted) and EP (empirical propor-

tion).

Method Random Piner PF BC WBC HT CW Candy EP
RRMSE N ; 1 centimeter; mk= 50
L∞ 9.4 11.0 2.2 7.1 2.6 1.9 1.9 1.3 1.3
k 12.5 23.6 5.0 15.3 4.0 2.7 2.7 2.3 2.2
CV 24.3 7.5 3.2 - - 5.0 5.0 5.4 5.3
a0 >100 >100 68.0 >100 >100 29.9 29.9 25.5 25.0
RRMSE 5N ; 1 centimeter; mk= 50
L∞ 14.9 11.1 2.1 9.4 3.3 1.7 1.7 1.2 1.3
k 18.1 25.6 5.4 20.8 5.5 2.6 2.6 2.0 2.0
CV 28.0 7.4 3.0 - - 4.8 4.8 5.2 5.2
a0 >100 >100 73.7 >100 >-100 27.8 27.8 22.1 21.9
RelBias N ; 1 centimeter; mk= 50
L∞ 7.9 0.8 0.2 3.5 1.7 0.2 0.2 -0.1 -0.5
k -8.7 0.8 0.1 -4.8 -1.2 -0.3 -0.3 -0.2 0.4
CV 23.5 3.8 1.6 - - 3.8 3.8 4.0 3.9
a0 14.6 -31.1 11.1 >-100 >-100 -5.5 -5.5 -4.5 -0.6
RelBias 5N ; 1 centimeter; mk= 50
L∞ 13.3 0.4 0.2 6.5 2.4 0.0 0.0 -0.5 -0.7
k -14.9 2.2 -0.0 -12.8 -2.8 -0.1 -0.1 0.3 0.7
CV 27.2 2.8 1.2 - - 3.5 3.5 4.0 4.0
a0 18.5 -31.6 14.6 >-100 >-100 -2.5 -2.5 -0.6 1.9
Note >±100 are results that are greater than 100%
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Out of all nine methods, EP and Candy’s methods performed the best. When a0

was fixed, the RRMSEs for the EP method were slightly smaller than the RRMSEs

for Candy’s method for all length bin sizes, with the difference in the RRMSEs

decreasing as the bin size increased. Overall, the RRMSEs for both methods when a0

was fixed were below 4%. When a0 was freely estimated, the RRMSEs were smaller

for all parameter estimates for the EP method for the one centimeter length bin, with

the differences between the RRMSEs decreasing as the bin size increased. In terms of

relative bias, Candy’s method had slightly smaller relative bias for L∞ and k than for

the EP method, for all length bin sizes and whether or not a0 was estimated freely.

The relative bias for CV was slightly smaller for the EP method than for Candy’s

method, for all length bin sizes and whether or not a0 was estimated freely.

In Table 2.5, when R0 remained at exp(9), but mk increased to 50 from 10 in Table

2.4, the performance of all the approaches including the random method improved

with reduced RRMSEs and relative biases. When both R0 and mk increased by 5

times those in Table 2.4, namely R0 increase to 5×exp(9) and mk to 50, the RRMSEs

and relative biases of the random method did not improve, but the RRMSEs and

relative bias of all the other approaches decreased.

Table 2.6: Parameter estimates and standard errors (SEs) for vonB model parameters

for female American plaice data in NAFO Divisions 3LNO in 2014. The abbreviations

for the methods are BC (bias-corrected mean length-at age), WBC (weighted BC)

and EP (empirical proportion)

Method L∞ SE k SE CV SE a0 SE
Random 88.552 4.942 0.058 0.005 0.123 0.003 -0.097 0.092
BC 109.589 13.200 0.040 0.008 - - -0.603 0.364
WBC 89.472 7.620 0.055 0.008 - - -0.025 0.246
Candy 80.712 4.522 0.062 0.005 0.124 0.003 -0.223 0.106
EP 75.791 3.427 0.066 0.005 0.117 0.003 -0.425 0.112
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American plaice growth

We estimated the vonB parameters for female American plaice in Division 3LNO

in 2014 using the two best performing EP and Candy’s methods. These methods

produced smaller estimates for L∞ and larger estimates for k than the random and

BC methods (see Table 2.6). The EP method had the smallest standard error for L∞,

at 3.43. The standard errors for k and CV were identical for Candy’s, EP and the

random method. The BC methods had the largest estimates for L∞, at 109.59 for the

unweighted method, and 89.47 for the weighted method, with the largest standard

errors overall for all parameter estimates.

In Figure 2.2 it may seem curious that the vonB growth curves estimated using

Candy’s and the EP methods do not capture the central trend in the data, and as

such may seem biased. However, it is the LSAS data that are ’biased’ in a random

sample sense. Figure 2.3 shows the population (N ) lengths-at-age for one of our

simulated runs and Figure 2.4 shows the sub-sample (n) from that population. The

predicted vonB growth curves using the second phase fully observed lengths and ages

are also shown on each plot. It is clear from Figure 2.4 that the sub-sample is over-

sampling larger older fish and shorter younger fish, which is not representative of

the population. Figure 2.3 shows that the EP and Candy’s methods are in fact best

fitting as they capture the real trend in the population and not the LSAS bias in the

sample. This LSAS bias in the data must be considered when assessing the validity

of model assumption, and Zheng & Cadigan (2019) describe the method to compute

residual diagnostics.
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Figure 2.2: Estimated vonB growth model for female American plaice data in Di-

visions 3LNO in 2014. The points have added transparency to better represent the

density of the observations. The various fits are: blue line (random), green line (EP),

yellow line (Candy), purple line (bias-corrected mean length-at age (BC)) and orange

line (WBC).

2.4 Discussion

Overall, our simulations showed that ignoring the first phase sampling information

and misspecifying or ignoring the sampling scheme had large impacts on the accuracy

of Von Bertalanffy (vonB) parameter estimates based on length-stratified age samples

(LSAS). Both the Piner and random methods had large relative root mean squared
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Figure 2.3: Plot of simulated population N with estimated vonB growth model from

sub-sample n. The points have added transparency to better represent the density of

the observations. The various fits are: blue line (random), green line (EP), yellow line

(Candy), purple line (bias-corrected mean length-at age (BC)), orange line (WBC)

and red line (population growth model)

error (RRMSE) for all length bin sizes. Incorporating the sampling scheme correctly,

as in the partial-full (PF) method, reduced the RRMSE significantly.

The empirical proportion (EP) method performed better than the methods that

did not include the first phase information (i.e. random, Piner), and the methods

that used the bias-corrected mean length-at-age estimates both weighted (WBC) and

unweighted (BC). The latter point is important because the bias-corrected methods
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Figure 2.4: Plot of simulated sub-population n with estimated vonB growth model

from sub-sample. The points have added transparency to better represent the den-

sity of the observations. The various fits are: blue line (random), green line (EP),

yellow line (Candy), purple line (bias-corrected mean length-at age (BC)), orange

line (WBC) and red line (population growth model).

are actively used in fisheries stock assessments to model growth (see, e.g. Brattey

et al. 2018). The EP method also performed slightly better than Candy’s method,

and substantially better than the PF method that did not include first phase sampling

information. In this simulation study the first phase samples were very large so that

the strata with nonnegligible occupation probability Qk were mostly nonempty, which

reduced the improvement of the EP approach over Candy’s method. It would be
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interesting to investigate the magnitude of the difference in the RRMSEs when the

first phase sample sizes are lower and as a result some of the length strata are empty

because we expect the EP method will perform substantially better than Candy’s

approach in this situation. The full-data likelihood method proposed by Zheng and

Cadigan (2019) seems less practically useful than Candy’s or the EP method because

of its performance and the strong assumptions (i.e. an effective estimation of age-

distribution) required for the full-data likelihood method.

For almost all methods, when a0 was freely estimated, the corresponding RRMSEs

for a0 increased as the bin size increased. This was not surprising because in our

simulations the abundance of small fish sampled decreased with length bin size, so

increasing the length bin size reduced the likelihood that a smaller fish was selected.

Thus, for wider bins there were fewer fish sampled that were close to length zero,

which provided less information with which to estimate a0. As a result, when the bin

size increased, the estimates of a0 were less precise, which was reflected in the larger

RRMSEs.

Theoretically, we expect Piner’s approach to perform better than the random

method, since it incorporated some information about the sampling scheme. Piner

et al. (2016) also suggested that when the mortality rate Z was properly specified,

their method performed better than the random approach for LSAS in terms of

relative bias and the distribution of relative bias. Our simulations showed that the

relative bias for Piner’s method was consistently larger for k and for a0. Our results

also indicate that overall, Piner’s method performed the worst in terms of RRMSE

for all parameter estimates, length bin sizes, and whether or not a0 was estimated

freely, even though an approximately true mortality rate value was used for the Piner

estimation. A primary reason for the poor performance of Piner’s method was that

it adopted an inappropriate model (2.8) for the age distribution. In comparison,
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some of the other approaches, including the random method, used the estimated

age distribution or conditioned on age, and hence were not influenced by this issue.

Thus, mis-specifying the age distribution had a large impact on the RRMSE. Unless

there is strong evidence for a specific age distribution for a population, we would not

recommend specifying the age distribution outside the model.

The estimation methods in this chapter did not explicitly differentiate between

individual variation in growth and length measurement error. All sources of error in

the models were treated as one (i.e. confounded), and this is an idealized approach,

because in reality there may be various sources of variability. Individuals may have

L∞ and k values that differ from the population mean parameters (Sainsbury 1980,

Shelton et al. 2013). As well, age measurement error can occur in practice when

conducting age readings on otoliths, and can lead to incorrect estimates of growth

model parameters (e.g. Cope & Punt 2007, Dey et al. 2019). Not accounting for

these sources of error can lead to biased estimates of L∞ and k. Future research

should assess the estimation performance of the methods in this chapter when age

measurement errors are present.

We also note that although Candy’s method performed well, there are two draw-

backs to using the probability of length conditional on age. First, it is impossible to

address age measurement errors with a structural errors in variables (SEV) approach

(e.g. Carroll et al. 2006, Cope & Punt 2007, Dey et al. 2019). As noted above, the

effect of ignoring age measurement errors is well known and can lead to incorrect

estimates of growth parameters, and in particular under-estimation of L∞ and over-

estimation of k because of the well known bias-attenuation problem with covariate

measurement errors. Such biases will tend to lead to over-estimation of Fmsy and

under-estimation of Bmsy, and consequently suboptimal and possibly unsustainable

harvest advice. Second, Candy’s method cannot use the first phase length data with
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the likelihood function as constructed in Zheng & Cadigan (2019). Due to these

drawbacks, we suggest that the EP method may be easier to implement and more

flexible in practice. Also due to these considerations, we tried to incorporate P (a)

in all the approaches except Candy, even though under the current simulation setup

conditioning-on-age approach gives the same growth parameter estimates for random,

HT and CW approaches since P (a) involves no growth model parameters.

Increasing sample size leads to improved estimates if an estimator is unbiased.

However the performance of a biased estimator may not improve with sample size.

With LSAS, if the first phase stratum sample sizes Nk(l) and target second phase

stratum sample size mk are all increased by 5 times for example, the bias in the

data introduced by LSAS is not alleviated, and the performance of the estimation

approaches neglecting LSAS do not improve. This is why when both R0 and mk

increased by 5 times in Table 2.5 compared to Table 2.4, the performance of the

random method did not improve as the other approaches did. Note that when the

bin size equals 1cm, Piner’s method is in fact the conditional approach discussed in

Hausman & Wise (1982), Breslow & Cain (1988), Pfeffermann & Sverchkov (1999)

and Scott & Wild (2011), which gives some account for the sampling strategy; hence,

its performance also improved in this case. On the other hand, when the first phase

sample size remained unchanged (equivalently R0 remained at exp(9)), but mk in-

creased from 10 to 50, many strata became fully sampled or close to fully sampled for

aging, the bias in LSAS data was alleviated, and the performance of random method

also improved in Table 2.5. In the extreme case, when all first phase fish are selected

for aging, then the data become a simple random sample from the population, and

the random method will work well in this case.
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The bias from mis-specifying the three components (i.e. first phase sample, second

phase sample and sampling design) is not limited to data collected for growth param-

eter estimation. The stratified sampling design is often used to select sub-samples

of fish to estimate important biological parameters such as length-at-maturity or

length-fecundity relationships (Quinn & Deriso 1999). We suggest that the three

components should not be neglected for any samples collected using stratified sam-

pling and that parameter estimates will be biased if the sampling design is ignored.

Further work should be done to investigate the magnitude of these biases for similarly

collected data.

In conclusion, we demonstrate the importance of incorporating the first phase

length information and the sampling design when estimating growth parameters with

length-stratified age samples. Correctly accounting for the sampling scheme can

greatly reduce the RRMSE for all parameter estimates. Incorporating the informa-

tion from the first phase sample in combination with the sampling scheme reduced the

RRMSE. We also showed that improperly modeling the age distribution can lead to

large mis-specifications of growth parameter estimates, and using the LSAS bias cor-

rected mean length-at-age can also produce less reliable parameter estimates. These

growth parameter estimates are often incorporated into stock assessments to assess

the overall health of a fish population. If the parameter estimates are incorrect, then

we may be under or over-estimating the health of a fish stock, which can lead to

incorrect management and stock advice.
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Chapter 3

A state-space stock assessment model for American plaice on

the Grand Bank of Newfoundland

3.1 Introduction

American plaice (hippoglossoides platessoides) on the Grand Bank of Newfoundland

(NAFO Divisions 3LNO) supported an important commercial fishery historically,

accounting for over ten percent of the Canadian groundfish fishery in the 1950’s

(Morgan et al. 2011). The population size declined rapidly in the 1980’s due mostly

to overfishing and, although there has been no directed commercial fishing since

1994, there has since been little improvement in the state of the population (see, e.g.

Wheeland et al. 2018). The major factor that has been attributed to the lack of

recovery is overfishing, which has occurred mainly through bycatch in the yellowtail

flounder, skate, redfish, and Greenland halibut fisheries (Shelton & Morgan 2005). It

has also been suggested that an increase in the natural mortality rate due to changing

ocean temperatures may also be contributing to the lack of recovery (COSEWIC

2009).

The current stock assessment model for American plaice relies on the use of com-

mercial catch-at-age data. When these data are available, the most commonly applied

stock assessment models are virtual population analysis, statistical catch-at-age, and,

more recently, integrated and/or state-space models. Virtual population analysis as-

sumes that the catch-at-age data are known without error (Megrey 1989), whereas

statistical catch-at-age models allow for errors in the catch-at-age data, although
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these models commonly assume that the fisheries’ selectivity pattern is constant over

blocks of years (Hilborn & Walters 2013). Integrated models were first introduced in

the early 1980’s (Fournier & Archibald 1982) and aim to use as much data as possible

in as raw a form as possible, while state-space models include both random errors

in the underlying population dynamics model (i.e. for population abundance and

fishing mortality rates) and measurement errors in the data (see, e.g. Albertsen et al.

2016, Cadigan 2015, Nielsen & Berg 2014). Advances in computing power and tech-

nology have led to an increase in the application of both integrated models (Maunder

& Punt 2013) and state-space models (Aeberhard et al. 2018) in recent years as the

availability and resolution of data has increased and it is now possible to efficiently

integrate out random effects from complex joint likelihood functions.

The current stock assessment model for Grand Bank American plaice is a virtual

population analysis that was introduced in the late 90’s. This model is informed

by catch-at-age data that are derived in part from landings estimates and does not

account for the considerable uncertainty about the landings data (Wheeland et al.

2018). Sources of uncertainty include landings estimated from “unspecified flounder”

by some countries in the earliest years of available data (see e.g. Pitt, 1972) and an

increase in foreign catch outside the 200 mile economic exclusive zone in the mid-80’s

(e.g. Brodie, 1986). More recently, the loss of availability of scientific observer data in

the NAFO Regulatory area has resulted in various methods applied to obtain landings

estimates, including effort ratios and daily catch records (Dwyer et al., 2016). As a

result, there may be large errors in the landings data and a stock assessment model

that incorporates uncertainty in these data may therefore provide a better assessment

of the stock.
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Another issue that has been noted in the current assessment for American plaice

are consistent directional changes in estimates of stock size as years of data are re-

moved from the assessment model, called retrospective patterns (Mohn 1999). Ret-

rospective patterns are caused by changes in the accuracy of the data over time

and/or spatial and time-varying population processes that are unaccounted for or

mis-specified in the model (see, e.g., Legault 2009). Systematic retrospective pat-

terns can lead to incorrect management advice as important population processes

(e.g. biomass and fishing mortality) may be over- or under-estimated and can re-

sult in unsustainable or sub-optimal harvesting advice (Szuwalski et al. 2017). To

promote sustainable management advice for American plaice on the Grand Bank of

Newfoundland, a stock assessment model that reduces or eliminates retrospective

patterns is valuable. In this chapter, we develop an aged-based state-space stock

assessment model for Grand Bank American plaice that allows for under-reporting in

the landings data, accounts for the uncertainties in the catch-at-age data and reduces

the problem of retrospective patterns.

3.2 Materials and Methods

There are two components to a state-space stock assessment model: the process model

and the observation model. For our application to Grand Bank American plaice, the

process model describes how the state of the unobserved fish stock abundance and

fishing mortality rates at a given time depend on previous states. The observation

model describes how the survey and commercial data depend on the unobserved

states (see, e.g. Aeberhard et al. 2018).
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Process model

The model runs for the years y = 1960, ..., 2017 for ages a = 1, ..., 15+, where 15+

represents the oldest ages grouped together from ages 15 onwards, called the plus

group. For simplicity, we will refer to model ages a = 1, ..., A+, and years y = 1, ..., Y .

The process model describes how the abundance at age a in year y (i.e. Ny,a) and

the fishing mortality, change over time. The Ny,a for all ages and years are treated

as random effects, with the cohort abundance model modelled as

log(Ny,a) = log(Ny−1,a−1)− Zy−1,a−1 + γy,a,

log(Ny,A+) = log
[
Ny−1,A+−1 exp−Zy−1,A+−1 +Ny−1,A+ exp−Zy−1,A+

]
+ γy,a,

(3.1)

where Zy,a = My,a + Fy,a is the total mortality rate given by the sum of the natural

mortality rate, My,a (i.e. all mortality unrelated to fishing) and F. Here, My,a is

assumed to be known and fixed at 0.50 for ages 1-3, 0.30 for age 4 and 0.20 for all

ages 5 and above, except during 1989 to 1996, where it is fixed at 0.53 for all ages 5

and above, as recommended by Morgan & Brodie (2001), 0.83 for ages 1-3 and 0.63

for age 4. Fy,a is set to zero for ages 1-4, as there is no reported catch at these ages.

The γy,a are the process errors, assumed to be independent and normally distributed

with variance σ2
pe to be estimated. The numbers at the first ages Ny,1 are modelled

as

log(Ny,1) = µRy + δRy , (3.2)

where µRy = µR1 for y ≤ 1993 and µRy = µR2 for y > 1993, and µR1 , µR2 ∈ (−∞,∞),

chosen to account for the large differences in recruitment between the two time periods

and are fixed effect parameters to be estimated. The deviations from the mean

recruitment δRy are assumed to follow a normal distribution with AR(1) correlation

across years, with the AR parameters σ2
R and φR to be estimated, as we expect
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recruitment to be more alike in years that are closer together. The fishing mortality

rates are modelled similarly,

log(Fy,a) = µFy,a + δFy,a , (3.3)

where µFy,a is the mean fishing mortality rate and δFy,a is the deviation from the

mean at each age and year. A separate µFy,a is estimated for ages 5, 6, 7, 8, 9 and

10+ (where 10+ represents ages 10 − 15+) for two blocks: 1960-1994 and 1995-2017

(i.e. twelve fixed effect F parameters). The age blocking of the µFy,a ’s were chosen

via model building to reflect overall fishery selectivity patterns, and the year blocks

were chosen to account for the closure of the commercial fishery in 1994. The δFy,a ’s

are treated as random effects and are assumed to follow a normal distribution, with

the deviations at the first age, δFy,5 assumed to have AR(1) correlation across years,

independent from ages 6− 15+, with parameters σ2
F5
, φF5 to be estimated. We treat

the δFy,a ’s separately for age 5 fish as preliminary analyses indicated that trends in

F’s differed at age 5 compared to older ages. The F-deviations at ages 6 − 15+

were treated as a correlated AR(1) process across ages and years, with parameters

σ2
F6+

, φFA6+
, φFY 6+

to be estimated. We fit an AR(1) process across ages and years

for age 6 − 15+ fish as fish that are closer in age and time are expected to have

F-deviations that are more similar than those that are further apart.

Observation model

The observation model includes data from the commercial fishery and scientific re-

search trawl surveys. There are two basic types of fishery information: total landed

weight, and the size (length, weight) and age composition of the landings. Both these

sources of information are used to derive annual fishery catch numbers-at-age. In the
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integrated assessment model philosophy, these data sources should enter into the

assessment model fitting via separate observation models (i.e. one likelihood compo-

nent for the age composition and one for the landings). We particularly want to focus

our model estimation to include uncertainty in landings. Therefore, for pragmatic

reasons, we used landings information (1960-2017) and the catch proportions-at-age

(ages 5 − 15+ during 1960-2017) as independent data sources for model estimation.

Stock size age-based indices are derived from the Canadian fall and spring research

surveys in NAFO Divs. 3LNO (see Dwyer et al. 2016, for details) and the Spanish

research survey in the portions of NAFO Divs. 3NO outside of the Canadian Exclu-

sive Economic Zone (EEZ) (González-Troncoso et al. 2017) were also used in model

estimation. Indices were for ages 1− 15+ for all surveys, for years 1990-2017 for the

fall survey (2004 and 2014 omitted due to poor survey coverage), 1985-2016 for the

spring survey (2006 and 2015 omitted due to poor survey coverage) and 1997-2016

for the Spanish survey. The Baranov catch equation is used to model commercial

catch as a function of N,F and Z,

Cy,a =
Fy,a
Zy,a

(1− exp−Zy,a)Ny,a. (3.4)

Model predicted catch proportion at age (Pa = Ca/
∑

aCa) were fit to observed

proportions, as described in the next section. Commercial average weights-at-age

(Wy,a) were calculated by Rivard’s method (Rivard, 1980) and are used to calculate

model predicted landings each year, Ly =
∑

aWy,aCy,a.

Age composition data

We fit the age composition data using the continuation-ratio logit (crl) transfor-

mation (see, e.g., Agresti 2003, Berg & Kristensen 2012, Cadigan 2015). A direct ob-

servation model for the matrix of observed catch proportions each year is complicated
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because Poa ≥ 0 and
∑
Poa = 1. We use the crl which maps Pa for a = 1, ..., Amax

into Xa ∈ (−∞,∞) for a = 1, ..., Amax − 1. The unconstrained crls are derived from

the multiplicative logistic transformation,

Xa = log

[
Pa

Pa+1 + ...+ PAmax

]
, a = 5, ..., Amax − 1. (3.5)

where Amax is the plus group. The inverse transformation of (3.5) is

P (a) =


exp(X(a))∏a

i=1

(
1+exp(Xi)

) , a = 5, ..., Amax − 1

1∏Amax−1
i=1

(
1+exp(Xi)

) , a = Amax,

(3.6)

The crls for the observed catch proportions-at-age data (i.e. Xoy,a) are calculated

from (3.5) and the observation equation (i.e. negative loglikelihood, nll) for the crls

is

nll(Xoy,a|θ) =
Y∑
y=1

A−1∑
a=1

log
[
φ
(Xoy,a −Xy,a

σCa

)]
, (3.7)

where φ is the probability distribution function (pdf) for a N(0, 1) random variable

and φCA
, φCY

are AR(1) age and year correlation parameters to be estimated, as we

expect the crl errors to be similar for fish that are closer in age and time. We fit

two variance parameters (σ2
C5, σ

2
C6+; one for age 5 fish, and one for ages 6+ fish) as

preliminary data analysis indicated that the error variance differed at age 5 (see Fig.

E.6), the youngest commercially caught age.

Landings data

Dwyer et al. (2016) reported uncertainties about the reliability of the landings data

for Grand Bank American plaice. To account for this, we treat reported landings as

a lower bound for true landings (i.e. not all catches are reported). We assume that
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Table 3.1: Distributions and models used to generate population simulations; min =

0.10 and max = 0.50 for the uniform distribution; truncNorm is the truncated normal

distribution with min = 0, max = ∞, to prevent generating negative values; when

a0 was estimated freely, a0 was used, otherwise L0 was used.

Period UB Comments
1960-1976 2xRC ”Unspecified flounder” by some countries, see, for example, (Pitt 1972)
1977-1982 1.2xRC Landings by primarily Canada (>95%) after establishment of 200 mile EEZ
1983-1993 1.5xRC increased foreign catch outside 200 miles; Various estimates used for catch;

Issues with unspecified flounder records and discarding
1994-2010 1.2xRC No directed fishing in 1994 (bycatch quota), 0 TAC 1995 onwards;

Catches defined from various sources with those considered most reliable by
Scientific Council used for totals

2011-2017 1.5xRC Loss of availability of scientific observer data in the NAFO Regulatory area
and surveillance estimates. Varying methods applies to obtain catch estimates
including effort ratios (Dwyer et al. 2016), daily catch records, and
NAFO CESAG estimates

there is an upper bound for landings that varies with the reliability of data (see Table

3.1 for details).

We assume the true landings could be accurately estimated with a CV of 2%. Let

Bly and Buy denote the lower and upper bounds and σC = 0.02. The observation

equation for the landings bounds data is

nll(L1, . . . , LY | {Bly, Buy; y = 1, . . . Y } |) =
Y∑
y=1

log

[
Φ

{
logBuy/Ly)

σC

}
− Φ

{
log(Bly/Ly)

σC

}]
(3.8)

where L1, . . . , LY are the model predicted landings. We fixed σC at 0.02 to ensure

that the estimates of landings are between the bounds for most years.

Survey data

The model-predicted catch for survey s is

Is,y,a = qs,aNy,a exp−fs,yZy,a (3.9)
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where f represents the fraction of the year the survey takes place (0.460 for the

Canadian spring and Spanish surveys and 0.875 for the Canadian fall survey), and

qs,a are the survey catchabilities that are free parameters to be estimated. The q

parameters are fit by survey with a separate q estimated for ages 1-9 and grouped

for ages 10+, as preliminary model fitting resulted in similar q parameters at the

oldest ages and this reduced the number of parameters to be estimated. For the

spring and fall surveys, fish of ages 1-4 are given a separate q for each gear period

due to issues in conversion from the Engel to the Campelen survey trawl (Dwyer

et al. 2016). Diagnostic model fitting found little difference in the q estimates for

the Spanish survey for the two gear types at the youngest ages, therefore only one q

was estimated at each age. The indices are assumed to follow a normal distribution

with mean Is,y,a and standard deviation σs,a = cvs · Is,y,a , where cvs represents a

separate coefficient of variation (CV) parameter for each survey, to be estimated.

The cvs parameters are pooled by ages 1, 2-5, 6-9, and 10-15 for the fall and Spanish

surveys, and by ages 1, 2, 3-5, 6-9, and 10-15 for the spring survey, as diagnostic

model runs suggested differing coefficients of variation at these ages (see Fig. F.5).

The observation equation for the survey data is

nll(Is,y,a|θ) =
∑
y

∑
a

log
[
φ
(Is,y,a − EIs,y,a

σs,a

)]
. (3.10)

We treated each survey as from an AR(1) process across ages with independent

parameters φs to be estimated. A constant CV variance model for I is approximately

the same as assuming log(I) has constant variance; however, an advantage of our

approach is that we can use observed zero indices directly in the model whereas

in other assessment packages these index zeros are typically excluded which is not

appropriate when there are many zeros.
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Table 3.2: State-space model fixed effect parameters

Type Parameters
Process error variance σ2

pe

Mean recruitment µR1 for y ≤ 1993, µR2 for y > 1993
Mean logF µFy,a for ages 5, 6, 7, 8, 9, 10+; two blocks 1960-1994/1995-2017
Variance and year-correlation of logF devs at age 5 σ2

F5
, φF5

Variance, age- and year-correlation of logF devs at ages 6-15+ σ2
F6+

, φFA6+
, φFY 6+

Catch age composition variance and correlation σ2
C5, σ

2
C6+, φCA

, φCY

Canadian Spring Survey (s) qs,1E, . . . , qs,4E, qs,1C , . . . , qs,4C , qs,5, . . . , qs,9, qs,10+

Canadian Fall Survey (f ) qf,1E, . . . , qf,4E, qf,1C , . . . , qf,4C , qf,5, . . . , qf,9, qf,10+

Spanish Survey (ss) qss,1, . . . , qss,9, qss,10+

Canadian Spring Survey CV grouped ages 1, 2, 3-5, 6-9, 10-15
Canadian Fall Survey CV grouped ages 1, 2-5, 6-9, 10-15
Spanish Survey CV grouped ages 1, 2-5, 6-9, 10-15
Survey residual correlations for s = Canadian spring, fall Spanish surveys

Estimation

The fixed-effect parameters to estimate (i.e. θ) are listed in Table 3.2. The unobserved

states (i.e. δFy,a , Ny,a) are integrated out of the joint likelihood functions and the

estimation θ is based on maximizing the marginal likelihood L(θ),

L(θ) =

∫∫∫
Ψ

fθ(D|Ψ)gθ(Ψ)∂Ψ (3.11)

where Ψ is the vector of all random effects, fθ(D|Ψ) is the joint probability density

function of the data (i.e. log fθ(D|Ψ) is the sum of the observation equations 3.7,

3.8 and 3.10) and gθ(Ψ) is the joint probability density function for the random

effects. The TMB (Kristensen et al. 2015) package in R is used to integrate the

marginal likelihood (1.8), which is performed via the Laplace approximation (see

Skaug & Fournier 2006, for details). The nlminb package in R is used to minimize

the negative log likelihood function provided by TMB.

The model fit was assessed by examining the model residuals and retrospective

plots. The survey and continuation-ratio logit residual observation model were ad-

justed to account for observed variance heterogeneity and correlation during model
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building runs. Retrospective models were fit for years 2005-2017, with each retro-

spective model fit using one less year of data (i.e. model for year 2005 used data

up to 2005) and predicted abundance, biomass, spawning stock biomass and aver-

age F’s were plotted and examined for systematic patterns. Ideally, no discernable

directional patterns will be present in the retrospective plots.

Biomass-at-age was calculated by multiplying predicted numbers at age (i.e. Ny,a)

and stock weights-at-age, which were estimated externally. A spatiotemporal biphasic

von Bertalanffy growth model (see Kumar et al., 2019) was applied to length-at-

age data obtained from the spring research survey data. The combined 3LNO stock

weights were estimated by weighting the stock weights for each division by the average

index at age during 1975-2017. Stock weights prior to 1975 were fixed at the mean

values for 1975-77. Estimates of maturity-at-age were taken from Wheeland et al.

(2018).

Simulation and sensitivity testing

A full simulation study is beyond the scope of this chapter; however, we conducted

a simple self-simulation test and jittered start test to examine the reliability of the

model estimates (Cadigan 2015, Nielsen & Berg 2014). The self-simulation test ran-

domly generates survey indices and continuation-ratio logit catch proportions from

the model predictions and assumed distributions detailed above. Process errors and

random effects are treated as fixed and the model is re-fitted to the simulated data.

This process is repeated 1000 times and estimates of SSB, average fishing mortality

rates (ages 9-14) and recruitment are stored. We calculated the relative difference of

the estimates for each year (i.e. (simulation SSBy – data-based SSBy)/ data-based

SSBy) for comparison. The jittered start test re-fits the model with random noise

added to the starting parameter values, generated from N(0, 0.25µ̂), where µ̂ is the
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model predicted parameter of interest. The model is re-optimized 50 times and the

negative log-likelihood is stored for each iteration. Ideally, we expect an identical

model fit from the jittered starting parameter values. We also examined the model

sensitivity to our assumptions about M, upper catch bounds and survey catchability,

q. We re-fit the model with M’s fixed at 0.20 for all ages and years (M2), M’s fixed

at the original model formulation plus 0.20 (M3), with upper catch bounds fixed at

half the original model formulation upper bounds (M4), and with q estimated freely

at the oldest ages (M5).

3.3 Results

The state space model (SSM) fit the data well with no patterns present in the sur-

vey or continuation-ratio logit residual plots (see Appendix D). In 2017 recruitment,

abundance and spawning stock biomass (SSB) were estimated near the lowest histor-

ical levels (Fig. 3.1). The model predicted landings were estimated within the upper

and lower bounds, with the predicted landings closest to the upper bound in the early

80’s, and again in most years since 2006 (Fig. 3.2) and closest to the lower bound

in the early 1990’s. At ages 1-4, the catchability pattern (Fig. 3.3) for the fall and

spring surveys was lower for the Engels than the Campelen trawl. The differences

were most pronounced for ages three and four, with the catchability estimates for

the Campelen trawl almost twice as large as for the Engels trawl. For ages 1-5, the

process errors (Fig. 3.4) were close to zero until the mid-nineties. The process errors

were similar for ages 7-9 and again for ages 13-15. There were little retrospective

patterns (Fig. 3.5), with SSB slightly overestimated and average fishing mortality

for ages 9-14 (aveF) slightly underestimated.

In comparison to the most recent stock assessment model for Grand Bank Amer-

ican plaice (which we refer to as the VPA), the overall trends in SSB and aveF were
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Figure 3.1: Model estimated population abundance, spawning stock biomass, average

fishing mortality rates (ages 9-14) for American plaice in NAFO Divisions 3LNO. The

gray shaded regions represent 95% confidence intervals.

Figure 3.2: Model estimated log catch numbers for ages 5-15+ (solid line) for Amer-

ican plaice in NAFO Divisions 3LNO, the shaded grey represents the region between

the log lower catch bounds and the log upper catch bounds.
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Figure 3.3: Survey catchability patterns for Canadian fall, spring and Spanish surveys

for American plaice in NAFO Divisions 3LNO. A separate catchability parameter is

estimated for two gear types (Engel and Campelen) for the spring and fall surveys

for ages 1-4.

similar (Fig. 3.6 and Fig. 3.7). Noticeable differences included the SSM predictions

of historic SSB (i.e. years 1960-1972) that were larger (but with high uncertainty)

than the historic SSB predictions from the VPA. The VPA model also predicted a

higher aveF in the early 1990’s, at approximately 1.1, with the SSM prediction at

approximately 0.75 for the same period. From 2005-2009, the estimates for aveF from

the SSM were often twice as large as the estimates from the VPA. The retrospective

patterns for the SSM were reduced for SSB and greatly reduced for aveF (Fig. 3.8)

compared to the VPA.
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Table 3.3: Model estimates of variance parameters and some population parameters

with percent coefficient of variation. (M1 is base model, M2 is base model with

natural mortality=0.20, M3 is base model with natural mortality increased by 0.20,

M4 is base model with upper catch bounds set to half the base model upper bounds,

M5 is base model with catchability freely estimated).

SSM M2 M3 M4 M5

nll = 4516 nll = 4534 nll = 4489 nll = 4546 nll = 4479
AIC=9192 AIC=9228 AIC=9137 AIC=9253 AIC=9148
BIC=9595 BIC=9631 BIC=9541 BIC=9656 BIC=9627

Est CV Est CV Est CV Est CV Est CV
σF5 1.09 40 1.37 39 0.97 34 1.09 38 0.43 62
σF6+ 0.81 22 0.86 20 0.94 24 0.83 22 0.52 39
σpe 0.21 6 0.22 6 0.20 6 0.21 6 0.20 6
σR 0.70 14 0.98 14 0.65 13 0.67 14 0.64 13
cvFall1 0.69 20 0.68 18 0.71 20 0.69 20 0.71 19
cvFall2−5 0.33 10 0.33 10 0.34 10 0.33 10 0.34 10
cvFall6−9 0.25 10 0.26 10 0.25 10 0.25 10 0.26 10
cvFall10−15 0.43 9 0.44 9 0.42 9 0.43 9 0.42 9
cvSpan1 2.12 47 2.05 46 2.18 48 2.12 47 2.09 46
cvSpan2−5 1.05 22 1.03 21 1.04 21 1.04 21 1.03 21
cvSpan6−9 0.55 14 0.54 14 0.54 14 0.54 14 0.53 14
cvSpan10−15 0.47 12 0.45 11 0.46 12 0.46 12 0.46 12
cvSpr1 1.60 33 1.55 32 1.48 31 1.61 33 1.46 30
cvSpr2 0.82 21 0.80 20 0.75 19 0.82 21 0.75 19
cvSpr3−5 0.47 15 0.45 15 0.44 14 0.48 15 0.44 14
cvSpr6−9 0.29 12 0.28 12 0.27 11 0.29 12 0.27 11
cvSpr10−15 0.38 11 0.36 11 0.35 10 0.38 11 0.35 11
φFA6+ 0.99 1 0.99 1 0.99 1 0.99 1 1.00 2
φFY 5 0.95 5 0.96 4 0.91 7 0.94 6 0.74 41
φFY 6+ 0.94 3 0.95 2 0.94 4 0.92 4 0.87 11
φFR 0.33 45 0.66 16 0.31 47 0.30 49 0.28 52
φFall 0.57 9 0.59 9 0.58 9 0.56 9 0.59 9
φSpan 0.72 6 0.71 6 0.71 6 0.71 6 0.72 6
φSpr 0.88 3 0.87 3 0.86 3 0.88 3 0.86 3
φCY 0.25 29 0.28 27 0.24 30 0.24 31 0.43 23
φCA 0.81 4 0.81 4 0.80 4 0.80 4 0.86 3
F2017 0.08 19 0.12 16 0.02 20 0.07 18 0.02 26
SSB2017 13.63 18 9.59 15 48.01 18 13.88 17 49.19 25
FV PA 0.06 - - - - - - - - -
SSBV PA 18.24 - - - - - - - - -
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Figure 3.4: Model predicted process errors at age for American plaice in NAFO

Divisions 3LNO.

The self-simulation study lower 10% and upper 90% intervals for both SSB and

aveF covered zero (Fig. 3.9), indicating that the simulated samples produced esti-

mates that were similar to the SSM estimates. In the earliest years (1960-1972), the

range of relative differences for aveF was mostly positive, with the converse seen for

SSB. Results from the sensitivity tests (Table 3.3) showed that the SSM had the sec-

ond lowest BIC overall with M3 (natural mortality rates increased by 0.20) having the

lowest BIC. The jittered-start test did not converge for 6% of the simulations, with

77% of the converged models producing negative log-likelihoods that were identical

to the original formulation.
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Figure 3.5: Retrospective estimates from 2008-2017 for total abundance, spawning

stock biomass, average fishing mortality rates (ages 9-14) and recruitment for years

1960-2017 for American plaice in NAFO Divisions 3LNO.

Figure 3.6: Model (SSM) and VPA estimated spawning stock biomass for years

1960-2017 for American plaice in NAFO Divisions 3LNO. The gray shaded regions

represent 95% confidence intervals.
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Figure 3.7: Model (SSM) and VPA estimated average fishing mortality rates (ages

9-14) for years 1960-2017 for American plaice in NAFO Divisions 3LNO. The gray

shaded regions represent 95% confidence intervals.

Figure 3.8: Model (SSM) and VPA retrospective estimates from 2013-2017 of average

fishing mortality rates (ages 9-14) and of spawning stock biomass for years 2014-2017

for American plaice in NAFO Divisions 3LNO.



84

Figure 3.9: Relative difference from model and self-simulated sample for spawning

stock biomass and average fishing mortality rates (ages 9-14). The solid grey line in

the median of the estimates and shaded grey regions represent the lower 10% and

upper 90% bounds.

3.4 Discussion

Overall, our state-space model (SSM) that accounted for uncertainties in the landings

data and allowed for process errors fit the data well, with no obvious patterns in the

survey and continuation ratio logit residual plots. The retrospective patterns were

reduced for spawning stock biomass (SSB) and greatly reduced for average fishing

mortality for ages 9-14 (aveF) compared to the most recent stock assessment model

(VPA).

The sensitivity runs that reduced M to 0.20 for all ages and years (M2), halved

the catch upper bounds (M4), and freely estimated the survey catchabilities (q, M5)

all had larger BICs than the SSM. The run that increased the base assumption of M

by 0.20 (M3) had a slightly lower BIC than the SSM and this may suggest that the

values we used for M’s may be too low. Previous research found evidence that M’s
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during 1989 to 1996 (Morgan & Brodie 2001) had increased to 0.53 and the current

VPA model and our SSM include this increase. However, since the closure of the

commercial fishery, estimates of total mortality rates have remained high for some

periods (e.g. Fig. 3.1 for years 2000-2006), and this may suggest that M is higher

than 0.20 in recent years. Preliminary work also suggests that M has increased since

the closure of the commercial fishery (COSEWIC 2009, Morgan et al. 2011). Thus,

research that improves our understanding of M for this species should be of high

priority.

The SSM retrospective analyses indicated very little systematic patterns, which

is a key improvement compared to the VPA model. Including process error in the

population dynamics model helped account for underlying time-varying population

processes that were not accounted for in the VPA, thereby reducing retrospective

patterns. There is still evidence of slight retrospective patterns, and this may be

caused by underlying spatial or time-varying process that are mis-specified in the

observation model since process errors can only account for mis-specifications in the

process equations.

The estimate for survey catchability q is defined as the value required to scale

swept-area abundance to the population abundance (see, e.g., Dickson 1993, Fraser

et al. 2007). An estimate of q less than one implies that fewer fish are caught than

occupied the area of the trawl, and a value greater than one implies that more fish

are caught than occupied the area. Herding behavior of flatfishes in the presence

of survey trawls underestimates the width used in area swept calculations and can

result in q estimates that are greater than one (Bryan et al. 2014). Therefore, larger

q estimates are not unrealistic for American plaice; however, the q estimates from

the SSM are very large, with the maximum estimated at 9.1, which is smaller than
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the maximum q estimate from the VPA at 13.61 (Table 26, Wheeland et al. 2018).

Thus, additional research is required to better understand why the survey swept area

abundance estimates are so much higher than the stock assessment model estimates.

A difference to note between the SSM and the VPA is that the SSM assumes

that the survey indices are from a normal distribution with a constant coefficient

of variation whereas the VPA assumes that the log of the survey indices are from

a lognormal distribution. The lognormal distribution does not allow for zeros in

the survey data, however this assumption may not be appropriate when there are

many zeros in the data or when zeros are “true” zeros (i.e. no fish available to be

caught). The assumption of normality with a constant coefficient of variation avoids

the problem of dropping zeros altogether. Although the methods are theoretically

similar, future research is needed to compare the performance of the two.

Our new SSM is an improvement to the current stock assessment model that is

used to inform the management of American plaice on the Grand Bank of Newfound-

land as it allows for errors in the landings data and reduces the retrospective patterns.

Our results also suggest that the current values used for natural mortality rates may

be too low as our diagnostic model fitting found the best model fit when M was

increased by 0.2. Specification of M is an important problem in fish stock assessment

(Brodziak et al. 2011). We suggest that M assumptions should be rigourously exam-

ined, e.g. via M profile plots, to provide a better understanding of model behavior

for various assumptions about M. Not only will this allow for a deeper understanding

of the role of M in the stock assessment model, but it can provide motivation for

research (e.g. Miller & Hyun 2018) into more realistic values of M for future stock

assessment models.

1Note that the survey index from the NAFO assessment is in millions and the catch is in thou-
sands; to get the qs on the same scale as the SSM we multiplied the NAFO q estimate by 1000
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Chapter 4

Summary and Papers

The overarching goal of this thesis was to improve age-based stock assessment models

with an application to American plaice on the Grand Bank of Newfoundland. In

Chapter 1, I reviewed age-based stock assessment models from their first appearance

in the fisheries literature up to today and touched on current data-related issues both

generally and with a specific focus on American plaice.

In Chapter 2, I collated the methods found in the fisheries science and statistical

literature that aim to account for the length-stratified age sampling design when

estimating growth parameters. Nine methods were studied and a thorough simulation

study was conducted to determine the best performing method. My results showed

that the most commonly used methods in fisheries science (i.e. bias-corrected and

weighted bias-corrected) had poor accuracy and the empirical proportion approach

was optimal. This approach was applied to Grand Bank American plaice.

In Chapter 3, I developed an age-based state-space stock assessment model (SSM)

for Grand Bank American plaice. This model allowed for errors in the underlying

population processes and in the catch-at-age data. This is a more realistic formulation

than the current assessment model (VPA) as there is considerable uncertainty about

the landings data for this stock and the catch-at-age data are derived in part from

landings estimates. The SSM provided similar estimates of population productivity as

the VPA model but with improvements in the retrospective plots. The retrospective

91
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patterns for spawning stock biomass were reduced and greatly reduced for average

fishing mortality rates in comparison to the VPA.

This research not only improved our understanding of Grand Bank American

plaice population dynamics and growth but is also a step forward in fitting more

realistic integrated age-based stock assessment models. In future work, growth mod-

els that account for the length-stratified age sampling design can be combined with

length-based indices and age-length measurements to fit integrated stock assessment

models with separate likelihood functions. These future models that allow for vari-

ability in all data sources and avoid subjective data-weighting will have potentially

far reaching impacts as they can provide a more reliable assessment from which fish-

eries managers can make decisions (Punt et al. 2020). Secondly, our state-space stock

assessment model for American plaice that fit a separate likelihood for the landings

data and catch proportions can be a useful template for researchers interested in

fitting integrated age-based state-space models to similar stocks. Allowing for impor-

tant variability in the data can greatly reduced the retrospective patterns, and this

has the potential to increase the confidence in the assessment output that is being

provided to fisheries managers.

4.1 Paper 1



ARTICLE

Estimation of growth parameters based on length-stratified
age samples
Andrea M.J. Perreault, Nan Zheng, and Noel G. Cadigan

Abstract: Response-selective stratified sampling (RSSS) has been well studied in the statistical literature; however, the applica-
tion of the resulting statistical theories and methods to a specific case of RSSS in fisheries studies, namely length-stratified age
sampling (LSAS), is inadequate. We review nine estimation approaches for RSSS found in the statistical and fisheries science
literature in terms of three sampling components: the first phase length composition sample, the second phase age composition
sample, and the sampling scheme. We compare the performance in terms of RRMSE (relative root mean squared error) for von
Bertalanffy (vonB) growth model parameter estimation using an extensive simulation study. We further demonstrate methods
by applying the two best-performing and the most popular methods to estimate the vonB model parameters for American plaice
(Hippoglossoides platessoides) in NAFO Divisions 3LNO. Our simulations demonstrated that mis-specifying one or more of the three
sampling components increases the RRMSEs, and this effect is magnified when the age distribution is incorrectly specified. The
optimal approach for data based on LSAS is the empirical proportion approach, and we recommend this method for growth
parameter estimation based on LSAS data.

Résumé : L’échantillonnage stratifié à sélectivité basée sur la réponse (ESSR) est un sujet bien étudié dans la documentation
statistique, mais l’application des théories et méthodes statistiques en découlant à un cas précis d’ESSR dans les études sur
les pêches, à savoir l’échantillonnage d’âges stratifié selon la longueur (EASL), est inadéquate. Nous passons en revue neuf
approches d’estimation pour l’ESSR relevées dans la documentation statistique et sur les sciences halieutiques au vu de trois
composants de l’échantillonnage, soit l’échantillon de la composition des longueurs de la première phase, l’échantillon de la
composition des âges de la deuxième phase et le plan d’échantillonnage. Nous en comparons la performance à la lumière de
l’erreur quadratique moyenne relative (EQMR) pour l’estimation des paramètres du modèle de croissance de von Bertalanffy
(vonB) en utilisant une vaste étude de simulation. Nous faisons en outre la démonstration de méthodes en appliquant les deux
méthodes les plus performantes et les méthodes les plus populaires pour estimer les paramètres du modèle vonB pour la plie
canadienne (Hippoglossoides platessoides) dans les divisions 3LNO de l’OPANO. Nos simulations démontrent que la définition
erronée d’au moins un des trois composants de l’échantillonnage accroît les EQMR, et cet effet est amplifié si la répartition des
âges est définie incorrectement. L’approche optimale pour des données basées sur l’EASL est l’approche des proportions
empiriques, et nous recommandons cette méthode pour l’estimation des paramètres de croissance basée sur des données
d’EASL. [Traduit par la Rédaction]

Introduction
Modeling and estimation of the relationship between fish

length and age (i.e., growth) is an important component of fisher-
ies science. Growth models are used in many ways, including the
derivation of life history invariants (Charnov 1993; Jensen 1996),
estimation of important population parameters such as selectiv-
ity and mortality (Hoggarth 2006; Hilborn and Walters 2013), and
the classification of functional groups in ecosystems models (e.g.,
Shackell et al. 2010). Growth models are especially important in
age-based fish stock assessments, where the estimates from these
models are used in conjunction with a length–weight relationship
in biomass calculations (Quinn and Deriso 1999), to convert
length-based to age-based selectivity, and to estimate length com-
positions (Francis 2016). Stock assessment scientists must decide
whether growth will be estimated inside the stock assessment
model via integrated stock assessment models (Methot and
Wetzel 2013; Maunder and Piner 2015) or outside the stock assess-
ment model, where the fixed growth parameter estimates are
used as data inputs for the assessment. Alternatively, empirical

lengths and weights at age derived from individual fish measure-
ments can also be applied instead of growth model estimates;
however, this method requires high-quality data across all assess-
ment model years, which are often not available. Thus, reliable
methods to estimate growth model parameters are vital, as unre-
liable management decisions and conclusions can be drawn about
the health of a fish stock if the growth estimates are incorrect
(Smith et al. 1993).

The most widely used growth model in fisheries science is the
von Bertalanffy model (vonB; von Bertalanffy 1938), which as-
sumes that the growth rate decreases linearly as size increases.
The vonB parameters are estimated from samples of age and
length measurements. Usually, many more fish are measured for
length than age because determining age is often time-consuming
and expensive (Doubleday 1981), whereas lengths are much sim-
pler to measure. A subsample of fish is selected for ageing. A
popular sampling design for this is length-stratified age sampling
(LSAS), which is a two-phase stratified sampling design. In the first
sampling phase, length is measured for the entire random sample
of fish, and the fish are classified into length bins, or strata
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(e.g., 1 cm, 5 cm). In the second sampling phase, a small and
prespecified number of fish are randomly selected to be aged from
each length stratum. The rationale for this design is to reduce the
number of ages to measure but maintain the representativeness
of the data by ensuring enough age measurements in all the
length intervals along the growth curve. This is an example of
response-selective stratified sampling (RSSS), since length is the
response and age is the descriptive covariate. There are many
well-studied factors that can bias vonB parameter estimates, in-
cluding selectivity (e.g., Troynikov 1999; Taylor et al. 2005;
Schueller et al. 2014), age measurement error (Cope and Punt
2007), and between-individual variability (see Sainsbury 1980;
Kimura 2008; Vincenzi et al. 2016); however, bias from LSAS has
not been sufficiently studied.

Although RSSS has been intensively studied, especially during
the last two or three decades in the statistical literature (see, e.g.,
Neyman 1938; Hsieh et al. 1985; Breslow et al. 2009; Scott and Wild
2011), the application of the resulting statistical theories and
methods to LSAS in fisheries science is inadequate. For example,
popular and easy-to-use approaches such as the weighted likeli-
hood and calibrated weighted likelihood methods (detailed later;
see Kalbfleisch and Lawless 1988; Saegusa and Wellner 2013) in
RSSS are seldom applied in fisheries studies, and the few studies
to address LSAS have various theoretical or empirical issues to
resolve. In the latter regard, Candy et al. (2007) accounted for LSAS
with an approach for a different kind of RSSS, the variable prob-
ability sampling design, which still needs some theoretical and
(or) simulation validation. Another approach estimates mean
length at each age, adjusted for LSAS through weights, called the
bias-corrected mean length-at-age (BC) estimates (e.g., Bettoli and
Miranda 2001). The BC estimates are treated as observed data and
used to estimate growth model parameters using the nonlinear
least squares method (nls; e.g., see Echave et al. 2012; Brattey et al.
2018); however, the effect of using the BC estimates and not the
individual observations on growth parameter estimates still re-
quires further investigation. In addition, it is not possible to esti-
mate between-individual variation in size-at-age with the BC
approach, which is an important limitation of the method for
some stock assessment models that require estimates of the stock
distribution of size-at-age. Piner et al. (2016) and Lee et al. (2017)
used length, instead of age, as the covariate by conditioning on
length to circumvent the complexity with RSSS, since given
length, the subsampling for ageing is random in LSAS. However,
in this paper we show this conditional method is both theoreti-
cally problematic and practically unreliable. On the other hand,
the theories and approaches proposed from statistical studies
need some further development because they do not fully account
for the specific complexities of fisheries surveys. For example, in
LSAS, the number of length strata (100–200) is far more than that
typical in the statistical literature on RSSS (�10), and in LSAS,
there are always some strata that are theoretically probable but
practically empty, which is mostly neglected in statistical studies.

Zheng and Cadigan (2019) addressed these additional complex-
ities in fisheries surveys by proposing the full-data likelihood
function for LSAS, and they also improved the method of Candy
et al. (2007), which they referred to as the empirical proportion
likelihood approach. Their simulation study indicated that these
two new approaches perform as well as the standard full informa-
tion likelihood approach and better than the other existing ap-
proaches in RSSS. An important goal of this paper is to compare
the new approaches of Zheng and Cadigan (2019) with the existing
methods for LSAS in the fisheries literature to determine one or
two optimal LSAS vonB parameter estimation procedures. Zheng
and Cadigan (2019) assumed that an appropriate model for the age
distribution of the population is known, which is usually not the
case for fish stocks, as seen from our simulation study. Another
goal of this paper is to address this deficiency. Zheng and Cadigan
(2019) concluded that for efficient and consistent parameter esti-

mation when data are collected using LSAS, information from the
following three components must be included: the partially ob-
served (i.e., only length) first phase data, the fully observed (i.e.,
length and age) second phase data, and the sampling scheme. In
this paper, we guide our estimating method comparison in light
of these three components.

In the rest of this paper, we present the estimation performance
of the vonB parameter estimates using nine estimation methods
from the fisheries science and statistical literature. As a practical
application, the two best-performing methods were used to fit
the vonB growth model for American plaice (Hippoglossoides
platessoides) in Northwest Atlantic Fisheries Organization (NAFO)
Divisions 3LNO.

Materials and methods
Suppose we have N randomly selected fish with lengths and

ages (li, ai) for i = 1, 2, ..., N, generated from the joint distribution
f(l, a | �), where � is a vector of all unknown parameters. The
individuals are divided into K mutually exclusive and exhaustive
length strata, S1, S2, ..., SK. We measure all N fish for length in the
first phase sample, but only a subsample of size n is measured for
age in the second phase. Thus, the full age and length information
(li, ai) is only collected for a subset of the N fish. The probability
that a fish with length l falls into the kth stratum (i.e., l � Sk,
k � 1, 2, …, K) is given by

(1) Q k(�) � P[(l, a) � Sk | �] � �
l�Sk

�
a
f(l, a | �)da dl

We denote the number of fish in a stratum by Nk, where
N � �k�1

K Nk. In each stratum, we specify a maximum number of
fish to be sampled for age, mk. The true sample size nk for this
stratum is

(2) nk � �Nk, if Nk � mk

mk, if Nk ≥ mk

which is a random number. This is called LSAS. In fisheries sur-
veys, it is rare to sample the target mk fish in strata for smaller and
larger lengths. Fisheries survey gears may allow most smaller fish
to escape, and it is uncommon to catch many fish of the oldest
ages. As a result, the distribution of fish length is often highly
right-skewed, and in this case the nk values are random variables.

For LSAS (eq. 2), the density function for the second phase
length-at-age data is not f(l, a | �) anymore, but given by (see
Appendix A for derivation)

(3) f(l, a | LSAS, �) �
f(l, a | �)

Q k(�)
Q k(LSAS, �)

where Q k(LSAS, �) is the probability for a second phase individual
to be in length stratum Sk. Intuitively, Q k(LSAS, �) is related to the
distribution of the random variable nk. For instance, given nk for
each stratum, a second phase individual is twice as likely to be in
a stratum with nk = 2 than in a stratum with nk = 1; if nk was to
change for a stratum, then Q k(LSAS, �) for the second phase stra-
tum would also change. Zheng and Cadigan (2019) derived the
exact formula for Q k(LSAS, �), which not only validates the above
observation about the relationship between Q k(LSAS, �) and the
distribution of nk, but also indicates that Q k(LSAS, �) is indeed a
function of the target parameters � and hence should not be
neglected for � estimation. Their simulation study further con-
firmed that approaches neglecting Q k(LSAS, �) give fairly poor �
estimates.
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In the special case where the probability that Nk < mk is negligi-
ble for each stratum, then nk = mk with probability 1 for each
stratum. Namely, the nk values are fixed numbers instead of ran-
dom variables, and Q k�LSAS, �� � mk / �mk. This probability does
not involve target parameters � and hence can be neglected for
the purpose of � estimation. Some approaches (e.g., Hausman and
Wise 1982) basically assume that the nk values are always equal to
mk values and hence neglect the Q k(LSAS, �) term in eq. 3.

From the point of view of the three essential components for
consistent and efficient parameter estimation, namely the N first
phase length data, the n second phase length-at-age data, and the
sampling design, neglecting Q k(LSAS, �) is an incorrect incorpora-
tion of the sampling design and hence leads to poorer estimation
results. Zheng and Cadigan (2019) suggested that all the deficien-
cies in RSSS estimation approaches to LSAS are due to insufficient
or incorrect incorporation of one or more of these components.
For the methods that we investigate in this paper, the first phase
information can be incorporated via the number of fish in each
length bin (Nk) or the length of each fish. Incorporation of the
sampling scheme indicates whether some measure has been
taken to eliminate or alleviate the bias in the data introduced by
LSAS. In the remainder of this paper, we will categorize and ana-
lyze the existing LSAS estimation approaches in light of whether
they incorporate these three components correctly and suffi-
ciently.

Model and likelihoods
Length-at-age is commonly described by the vonB growth model

(e.g., Francis 2016; Quist et al. 2012), as it gives a good approxima-
tion of growth for many fish species (e.g., Chen et al. 1992; Quinn
and Deriso 1999). The vonB model can be written as

(4) l(a) � L∞[1 � e�k(a�a0)] � �

where l(a) is the length of an age a fish, L∞ is the theoretical length
at which the growth rate stops, k is the growth coefficient, and a0
is the theoretical age at which length is zero. We assume the error
term is given by � � N�0, �a

2�, where �a = �aCV, CV is the coefficient
of variation, and �a � L∞�1 � e�k�a�a0�	. We assume this error term
jointly represents the between-individual variation (or process
error) resulting from individual growth parameter variability,
plus the measurement error in length, as in Piner et al. (2016).
Note that it is straightforward to apply the estimation methods we
investigate to other growth models (e.g., the Gompertz model).

Equation 4 in fact states that the distribution of length l condi-
tional on a, f�l 	a� � N��a, �a

2�. In practice, real length and age data

are discrete integers, so the corresponding probability mass func-
tion (pmf) can be approximated as

P(l | a) �
N�l, �a, �a

2�

� l
N�l, �a, �a

2�

To fit five of the methods described below (see Table 1), the popu-
lation distribution of age, P(a), is required. In practice, the age
distribution of a fish stock may be complicated and will change
substantially over time because of the highly variable nature of
fish recruitment. Simple models will usually not be reliable. In
preliminary simulations (see section below on Simulation study),
we tested many common probability distributions for P(a), includ-
ing the Poisson, Gamma, and G-Normal mixture distributions as
in Dey et al. (2019), but none of them performed well, as the
randomly generated age distributions for our simulations (de-
scribed in section on Simulation study) varied from year to year.
Hence, we decided to estimate the pmf P(a) at all ages directly. We
used the continuation ratio-logit transformation (e.g., Cadigan
2016; Berg and Kristensen 2012; Agresti 2003), which maps P(a) for
a = 1, …, Amax with the constraints P(a) ≥ 0 and �P(a) = 1, into 
(a)
for a = 1, …, Amax − 1 with no constraints, which are much easier to
estimate. Thus,

(5) P(a) � � e
(a)

�i�1
a {1 � e
(i)}

a � 1, …, Amax

1

�i�1
Amax�1{1 � e
(i)}

a � Amax

where Amax is the maximum age group for age groups a = 1, …,
Amax, and 
�a� � ��∞, ∞� for a = 1, …, Amax − 1. The inverse trans-
formation of eq. 5 is

(6) 
(a) � log
 P(a)
P(a � 1) � … � P(Amax)

�, a � 1, …, Amax � 1

When implementing the various methods discussed in the follow-
ing sections, P(a) should be replaced by the functions of 
(a) values
in eq. 5, and 
(a) values are estimated together with the other
model parameters.

Random method
Often in practice, because users are either not aware of, or do

not understand the significance of, how their age–length data

Table 1. Log-likelihood functions used to estimate von Bertalanffy (vonB) population parameters.

Method Likelihood P(a) First phase Sampling scheme

Random � l �anl,a·log�P�l 	a�P�a�	 Crl No No
Piner � l �anl,a·log
P�l 	a�P̂�a�

P�l� � Equil. No Incorrect; neglects � in P(l)

PF � l �anl,a·log
P�l 	a�P�a�
Q k

Q k�LSAS�� Crl No Yes

HT � l �anl,a·�k� l�·log�P�l 	a�P�a�	 Crl Nk Yes, through weights
CW � l �anl,a·wi·log�P�l 	a�P�a�	 Crl Nk, l Yes, through weights
Candy � l �anl,a·log
 P�l 	a�

�k�nk� l�/Nk� l�	Q k
′ �a�� NA Nk Yes, ignores empty strata

EP � l �anl,a·log� P�l 	a�P�a�

�k ′�1
Kobs �nk� l�′/Nk� l�′	Q k ′��k ′�Kobs�1

Ktotal Q k ′� Crl Nk Yes, through EP density

Note: PF, partial-full; HT, Horvitz–Thompson; CW, calibrated-weighted; EP, empirical proportion; Crl, continuation ratio logit
transformation; and Equil., equilbrium approximation in eq. 8. Bias-corrected mean length-at age (BC) and weighted BC (WBC) methods
are not listed, as they are not likelihood approaches. NA, not applicable.
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were collected, the LSAS design is inadvertently ignored and the
second phase length and age sample are treated as a random
sample from the population when estimating vonB parameters.
We used this approach to demonstrate how biased and unreliable
growth model parameter estimates can be when this approach is
applied to LSAS data. The most common way to implement this
method fits the second phase length and age data to eq. 4, and the
vonB parameters are estimated using nls with age treated as a
fixed covariate. The random likelihood method described in
Table 1 will give identical parameter estimates to the nls method
when the distribution of age does not depend on the vonB param-
eters of interest. This method ignores both the first phase infor-
mation and the sampling scheme, since it treats the second phase
sample as a random sample.

Weighted methods
One of the most common approaches for statistical inference in

RSSS is by weighing the likelihood function for the second phase
data with information from the first phase sample (see Kalbfleisch
and Lawless 1988; Breslow et al. 2009; Saegusa and Wellner 2013).
These weighted methods are relatively easy to implement and
can provide unbiased parameter estimating equations. The
commonly used Horvitz–Thompson (HT) weight, �k(l) = Nk(l) / nk(l),
where k(l) represents length l in stratum k, incorporates the first
phase information and the sampling scheme through the fraction
sampled for ageing (�k� l�

�1 ; see Table 1 for all likelihood functions).
Note that Nk(l) contains some of the first phase length information.
For example, if fish are measured by centimetre and 1 cm length
bins are used for age sampling, then Nk(l) values provide all the
first phase length information. If 5 cm length bins are used, then
the Nk(l) values only provide partial first phase length information.
The HT approach may not be efficient since the HT estimator may
have large standard errors when the sampling units are not pro-
portional to their inclusion probabilities (e.g., Thompson 2012). To
adjust for this inefficiency, the calibrated-weighted (CW) method,
first proposed by Deville and Särndal (1992), further adjusts the HT
weights with first- and (or) higher-order moments of the first
phase length data (see Appendix B for details):

(7) wi � (1 � 
cli)
Nk( l)

nk( l)

Both the HT and CW methods incorporate some of the first phase
information and the sampling scheme through their respective
weights.

Conditional-on-length method
Piner et al. (2016) applied a conditional-on-length method based

on the conditional probability

P(a | l) �
P(l | a)P(a)

�a
P(l | a)P(a)

to estimate the vonB parameters with data collected through
LSAS. The rationale is that the conditional distribution of age
given length does not depend on the length-stratified sampling
design. The corresponding log-likelihood in Piner et al. (2016) is
�l �a nl,a·log[P(a | l)]. Note that P(a, l) = P(a | l) P(l). The corresponding
log-likelihood should be �l �a nl,a·log[P(a | l)] + �l �a nl,a·log[P(l)]. If
P(l) does not include model parameters �, it can be neglected when
applying the maximum likelihood approach. However, P(l) as de-
fined by eq. 4 must involve model parameters, and hence the
second term involving P(l) in the log-likelihood should be in-
cluded. Therefore, the sampling scheme was incorrectly specified
in the method of Piner et al. (2016), since it neglected the second

term, P(l). In addition, this method did not include any first phase
length information. Piner et al. (2016) also used an equilibrium
approximation for the distribution of ages

(8) P̂(a) �
e�Za

�a
e�Za

where Z is the total mortality rate, defined as the sum of the
natural mortality rate (M) and fishing mortality rate (F): Z = M + F.
This approximation is based on an assumption of constant recruit-
ment of age 1 fish. We note that this is the only method that
requires an external estimate of M, as the other methods esti-
mated P(a) within the model (when required; see Table 1) using
continuation ratio-logits. This assumption for M is a large simpli-
fication, as in reality, natural mortality may not be time- or
location-invariant. We investigate whether the equilibrium ap-
proximation (eq. 8), which will often not be appropriate to de-
scribe the age distribution, is a useful assumption for estimating
vonB parameters.

Conditional-on-age method
Candy et al. (2007) accounted for LSAS in vonB parameter esti-

mation by treating the sampling scheme as variable probability
sampling (VPS). VPS differs from LSAS in that instead of fixing the
stratum subsample size, the subsampling probability of an indi-
vidual is predetermined. For a discussion on the feasibility of
using VPS for a sample collected through LSAS, we refer to Zheng
and Cadigan (2019) and Candy et al. (2007). Candy’s method dif-
fered from the traditional VPS estimation by substituting the ob-
served proportions, nk(l) / Nk(l), which are independent of age, for
the sampling probabilities. Candy et al. (2007) used the condi-
tional probability given age to avoid the difficulty with the age
distribution. The log-likelihood function for this approach is
shown in Table 1. The conditional probability of being in the kth
stratum is given by

(9) Q k
′ (a; �) � Pr(l � Sk | a) � �

l�Sk

f(l | a)dl

Candy’s approach incorporated the first phase information
through the observed proportions, nk(l) / Nk(l). We consider condi-
tioning on age further in the Discussion.

Improved conditional-on-age and full likelihood methods
Zheng and Cadigan (2019) proposed two likelihood approaches

for parameter estimation in LSAS: the full-data likelihood method
and the empirical proportion method (EP). Both the full-data and
EP methods suggest incorporating the first phase data through
the marginal density function of length: f(l) = �a f(l | a)P(a). How-
ever, the first phase density functions can only be correctly
evaluated if there exists an appropriate age distribution for
integrating a out of f(l, a | �). In a preliminary analysis, we tried to
infer the age distribution from the LSAS data; however, the initial
results were not promising, and we did not pursue it further.
Owing to the lack of an effective method for estimating the age
distribution for the simulated populations in this study, we esti-
mated the vonB parameters using only the density functions for
the second phase age and length data, which we call the EP
method and the partial full-data (PF) method.

The EP approach improved on Candy’s method by accounting
for the scenarios where no fish are observed in a stratum (i.e., Nk =
0; see Table 1) and does not use the conditional-on-age approach
(i.e., uses eq. 1). We discuss the drawbacks of using the probability
of length conditional on age in the Discussion. The EP joint den-
sity function for l and a is
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(10) fEP(l, a | LSAS; �) �
[nk( l)/Nk( l)]f(l, a | �)

�k ′�1

Kobs
[nk ′( l)/Nk ′( l)]Q k ′ � �k ′�Kobs�1

Ktotal
Q k ′

where 1, …, Kobs are the strata with observed data, and Kobs + 1, …, Ktotal are the strata without data.
The PF method incorporates the sampling scheme correctly (see Zheng and Cadigan 2019 for full derivation), and the joint density

function for l and a with l � Sk is

(11) fPF(l, a | LSAS; �) �
f(l, a | �)

Q k
×

��i�1

mk�1
i ·dbin(i, N, Q k)	 � mk�1 � pbin(mk � 1, N, Q k)	

�k ′�1

K 
���i�1

mk ′�1
i ·dbin(i, N, Q k ′)	 � mk ′�1 � pbin(mk ′ � 1, N, Q k ′)	�

where dbin represents the binomial probability mass function,
pbin is the cumulative binomial pmf, and mk is the maximum
sample size for full observation in stratum k. For the EP method,
the first phase information was included through the empirical
proportions, and the sampling scheme was incorporated through
the EP density function. The PF method correctly incorporated the
sampling scheme, but only included first phase information via
the total sample size N. Note that the total sample size provides
very little information about the overall sampling scheme; for
example, the difference between N = 1000 in eq. 11 and N = 2000 is
negligible.

Mean length-at-age
We also studied fitting the vonB model to mean length-at-age

(e.g., Echave et al. 2012) that was adjusted to account for bias due
to the LSAS. This approach is commonly used in practice. The
bias-corrected mean length-at-age (BC) estimate is

(12) L̄a �
�k

Nk(na,k/nk)lk

�k
Nk(na,k/nk)

where lk is the midpoint of length bin k, na,k is the number of age
a fish in length bin k, and Nk is the total number of fish sampled in

length bin k in the first sampling phase. We use the BC estimates
with eq. 4 and estimate vonB growth model parameters using nls,
both weighted by the number of fish at each age (WBC) and un-
weighted. This nls method includes both the sampling scheme
and the first phase information through the weights in eq. 12, but
not the individual data. An important disadvantage of this ap-
proach is that estimates of �a

2 will not fully reflect between-
individual variability.

Simulation study
Population simulations were similar to the approach described

in Piner et al. (2016) (see Table 2 for details on distributions and
models used in simulations). In this paper, all the lengths are in
centimetres and ages are in years. Recruitment for each year was
modeled using the Beverton–Holt spawner–recruit model, param-
etrized in terms of steepness, h (e.g., Punt and Cope 2019). Length-
at-age was simulated using a vonB model, and weight at age was
generated using a simple isometric growth model (Quinn and
Deriso 1999). Maturity-at-age was assumed to follow a logistic
model (e.g., Jennings et al. 2009), with age at 50% maturity, A50,
fixed at log(3)/k, as in Jensen (1996), and age at 95% maturity A95
fixed at 4 years from A50. The growth rate k was generated based
on the life-history-invariant k = M / 1.65 (Charnov 1993). The simu-
lation procedure is illustrated in Fig. 1. Starting from an unfished
recruitment R0 = e9, we simulated population dynamics for

Table 2. Distributions and models used to generate population simulations.

Parameter Distribution Mean SD

Natural mortality (M) Uniform 0.30 0.11
Fishing mortality (F) TruncNorm 0.20 0.08
Steepness (h) Normal 0.75 0.07
Log recruitment deviation (�Rec) TruncNorm 0.60 0.15
Asymptotic length (L∞) Normal 50 8
Growth coefficient error (�) Normal 0 0.10(1.65/M)
CV length-at-age TruncNorm 0.10 0.04
Log unfished recruitment [log(R0)] Fixed 9.0 —
Length at age 0 (L0) Fixed 3 —
Age at length 0 (a0) Fixed −0.07 —

Parameter Model

Recruitment R�y� �
SSB�y � 1�

1 � �5h � 1
4h �
1 �

SSB�y � 1�
SSBeq

�
Weight w[l(a)] = 0.20·l(a)3

Maturity
m(a) � 
1 � e

[�log(19)(a�A50)]

A95�A50 ��1

Numbers at age N(y, a) = N(y − 1, a − 1)e−[M+F(y)]

Numbers in first year N(1, a) = R0(e−a·M)
Spawning stock biomass SSB�y� � �

a�1

A

w�l�a�	·m�a�·N�y,a�

Note: Minimum = 0.10 and maximum = 0.50 for the uniform distribution; TruncNorm is the truncated normal distribution with
minimum = 0, maximum = ∞ to prevent generating negative values. When a0 was estimated freely, a0 was used; otherwise L0 was used.
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61 years with these models and parameter specifications. For each
year a new fishing mortality and variation in recruitment were
drawn from their corresponding distributions; all other popula-
tion values were generated once per simulation run. The popula-
tion in the 61st year was our first phase sample on which LSAS was
conducted. The first phase sample size N was not fixed. Length bin
sizes were chosen at 1, 2, 3, and 5 cm, as they represented sizes
that were frequently observed in practice (e.g., Monnahan et al.
2016). We estimated vonB growth parameters with length at age
zero fixed at 3 cm, to compare with the results from Piner et al.
(2016), and also estimated vonB parameters with a0 estimated
freely, as in practice this parameter is usually not fixed. For
growth parameter estimation using Piner’s method, we estimated
F as the median F across years within each simulation run, with M
fixed at the true population value (see Table 2 for distributions
used to derive population parameters), as this method performed
well overall in Piner et al. (2016), and in practice F is often esti-
mated from the data while M is fixed at a known value. All other
methods did not require an estimate of M.

The purpose of LSAS is to (i) control the number of costly
age measurements while (ii) obtaining length-at-age data evenly
spread along the growth curve. Therefore, we assume that the
target stratum sample size mk is proportional to the length bin

size so that the total target sample size �k mk does not change with
bin size (for (i)), and that mk is independent of k (for (ii); i.e., target
mk will be the same, no matter the distribution of length-at-age).
To be specific, mk = 10 × bin size, for bin sizes = 1, 2, 3, 5. This choice
of target stratum sample size is similar to sampling strategies
used in real fisheries survey sampling (e.g., American plaice data
used in section below on American plaice growth). To demon-
strate the effect of a change in the second phase sampling fraction
(i.e., N and mk) on the performance of the estimation approaches,
we also conducted a simulation experiment with mk = 50 and R0 =
e9 and with mk = 50 and R0 = 5 × e9 for bin size equal to 1 cm and a0

freely estimated.
This data generation and parameter estimation were repeated

1000 times. The estimation performance was measured using the
relative root mean squared error (RRMSE)

RMSE � ��i�1

1000
(esti � truei)

2

1000
, RRMSE �

RMSE

| true∗ |
× 100

and relative bias (RB)

Bias �
�i�1

1000
(estimatei � truei)

1000
, RB �

Bias

| true∗ |
× 100

Here, truei denotes the parameter value in the ith simulation, and
true* denotes the mean value of the parameter distribution. The
parameters for L∞, CV, and k were randomly drawn from their
corresponding distributions and thus varied across iterations. For
the life-history-invariant k, 0.30/1.65 was used for true*, as 0.30 was
the mean of the simulated natural mortality used in the calcula-
tion of k.

The estimation was performed in R using Template Model
Builder (TMB) (Kristensen et al. 2016), an R package for fast evalu-
ation of the negative log-likelihood function and its gradients,
which were then provided to the R function nlminb() for likeli-
hood maximization.

American plaice growth
The two best-fitting methods were used to estimate the vonB

growth parameters using a dataset collected by Fisheries and
Oceans Canada (DFO) in Northwest Atlantic Fisheries Organiza-
tion (NAFO) Divisions 3L, 3N, and 3O. We fit the data for the latest
year available to us, 2014. The growth models were fit for female
plaice only, since male and female plaice follow different growth
curves. The actual sampling was conducted at various sites evenly
spread across each division to ensure the spatial representative-
ness of the data, but with an overall sampling goal (mk) in each
division of about 25 age measurements per 2 cm length stratum
by sex if length was greater than or equal to 10 cm and about
15 age measurements per stratum without distinguishing sex if
length was less than 10 cm. For simplicity we assume that there is
no spatial variation in size-at-age of these fish and therefore can
neglect the spatial structure of the sampling scheme and regard
the whole sample in each division as a LSAS sample (see Appendix
C). Spatiotemporal variation in size-at-age is investigated and re-
ported elsewhere.

The sampling in each division was treated as independent, so
the likelihood function for the data are given by

(13) L3LNO � L3LL3NL3O

where L3L, L3N, and L3O are the likelihoods of each division. To
compare the two best-fitting methods with the methods that are
commonly applied in practice, we also estimated vonB parame-

Fig. 1. Diagram of steps used in population simulations; LSAS is
length-stratified age sampling.
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ters using the BC method, both weighted and unweighted, and
the random method.

Results

Results for simulation study
The random and Piner methods performed the worst overall.

These methods ignored or mis-specified both the sampling
scheme and the first phase sample. When a0 was fixed, Piner’s
method had the largest RRMSEs for all parameter estimates and
for all length bin sizes (see Table 3). The RRMSE for k for Piner’s
method was much larger than the RRMSE for k for any other
method when a0 was fixed. For example, for the 1 cm length bin,
the RRMSE for Piner’s method was over 100%; all other methods
had RRMSEs for k that were below 25% for that bin size. When a0
was freely estimated, the RRMSEs for k using Piner’s method were
again much larger than the RRMSEs for k for all other methods
(see Table 4). In terms of relative bias, Piner’s method had the
largest bias for k, no matter the bin size and whether or not a0 was
estimated freely. Overall, the relative bias of CV estimate was
larger for the random method than for any other method.

The bias-corrected mean length-at-age methods, both weighted
(WBC) and unweighted (BC), performed slightly better than the
random and Piner methods, with RRMSEs that ranged between 5%
and 23% for L∞ and k, for all length bin sizes and whether or not a0
was estimated freely. The RRMSEs for a0 were always greater than
100%. The relative bias for the BC and WBC methods were larger
than for any of the other methods that included the first phase

length information and the sampling scheme (i.e., HT, CW,
Candy, and EP).

The PF, HT, and CW methods were the next best-fitting meth-
ods. The PF method had the smallest RRMSEs among all the meth-
ods that did not include the first phase sampling (i.e., Piner and
random), with the RRMSEs decreasing as the length bin size in-
creased. When a0 was fixed, the HT and CW methods had identical
RRMSEs, no matter the bin sizes — these RRMSEs increased
slightly as the bin size increased, ranging between 3% and 6%.
Overall, the relative bias when a0 was fixed for both the HT and
CW methods was small for all parameter estimates and length bin
sizes. When a0 was freely estimated, the CW and HT methods had
almost identical RRMSE values for all parameter estimates and all
length bin sizes, with the largest RRMSEs seen for a0.

Out of all nine methods, EP and Candy’s methods performed
the best. When a0 was fixed, the RRMSEs for the EP method were
slightly smaller than the RRMSEs for Candy’s method for all
length bin sizes, with the difference in the RRMSEs decreasing as
the bin size increased. Overall, the RRMSEs for both methods
when a0 was fixed were below 4%. When a0 was freely estimated,

Table 3. RRMSEs (relative root mean squared errors) and RelBias
(relative bias) for vonB parameter estimates from 1000 simulations
with length at age 0 fixed at 3 cm, for various length bin sizes.

Method Random Piner PF BC WBC HT CW Candy EP

RRMSE
1 cm

L∞ 21.3 >100 3.5 11.0 5.2 2.7 2.7 1.7 1.6
k 23.1 >100 5.7 15.1 6.0 3.2 3.2 2.6 2.4
CV 27.0 34.5 3.9 — — 5.0 5.0 4.1 3.9

2 cm
L∞ 21.6 >100 3.3 11.2 5.2 3.2 3.2 1.7 1.6
k 23.3 >100 5.7 15.3 6.2 4.0 4.0 2.6 2.5
CV 24.1 35.4 4.0 — — 5.4 5.4 3.9 3.8

3 cm
L∞ 21.9 >100 3.3 11.0 5.3 3.6 3.6 1.7 1.6
k 23.6 >100 5.3 15.3 6.1 4.3 4.3 2.6 2.6
CV 21.5 33.9 4.1 — — 5.7 5.7 3.8 3.8

5 cm
L∞ 23.2 >100 2.9 11.5 5.5 3.7 3.7 1.8 1.7
k 23.8 >100 4.8 15.9 7.2 4.7 4.7 2.8 2.8
CV 20.6 35.5 4.3 — — 5.8 5.8 4.0 4.0

RelBias
1 cm

L∞ 17.7 −0.5 0.9 7.9 3.3 0.0 0.0 0.1 −0.4
k −18.9 >100 −1.2 −9.4 −1.5 0.1 0.1 −0.3 0.4
CV 25.7 −7.0 1.1 — — 2.6 2.6 3.0 2.7

2 cm
L∞ 18.0 −4.0 0.5 8.1 3.3 0.0 0.0 0.0 −0.3
k −19.1 >100 −0.5 −9.7 −1.5 0.2 0.2 −0.1 0.3
CV 21.9 −7.6 1.0 — — 2.5 2.5 2.6 2.4

3 cm
L∞ 18.3 −7.5 0.5 8.1 3.4 0.2 0.2 −0.0 −0.3
k −19.3 >100 −0.5 −9.8 −1.6 0.0 0.0 0.0 0.3
CV 18.4 −7.8 1.0 — — 2.3 2.3 2.4 2.2

5 cm
L∞ 18.9 >100 0.2 8.6 3.6 0.1 0.2 −0.1 −0.3
k −19.3 >100 −0.2 −10.3 −1.7 0.0 0.0 0.0 0.2
CV 14.3 −8.4 1.3 — — 2.4 2.3 2.2 2.1

Note: >100 are results that are greater than 100%.

Table 4. RRMSEs (relative root mean squared errors) and RelBias
(relative bias) for vonB parameter estimates from 1000 simulations
with a0 estimated freely, for various length bin sizes.

Method Random Piner PF BC WBC HT CW Candy EP

RRMSE
1 cm

L∞ 15.3 16.4 4.2 13.0 7.1 3.5 3.5 2.3 2.2
k 18.0 >100 11.3 21.9 10.9 5.4 5.4 4.4 4.2
CV 28.0 15.8 5.4 — — 5.6 5.6 6.1 5.8
a0 >100 >100 >100 >100 >100 43.7 43.7 39.4 37.2

2 cm
L∞ 14.8 >100 4.0 12.7 7.0 4.0 4.0 2.1 2.1
k 17.0 >100 9.5 22.0 10.9 5.8 5.8 4.2 4.2
CV 23.3 31.9 5.0 — — 6.2 6.2 5.1 5.0
a0 >100 >100 >100 >100 >100 56.7 56.7 46.2 44.6

3 cm
L∞ 14.2 16.3 3.7 12.9 7.2 4.8 4.8 2.1 2.1
k 15.7 >100 8.6 22.3 11.0 6.1 6.2 4.2 4.2
CV 20.1 16.3 4.4 — — 6.2 6.2 4.6 4.5
a0 >100 >100 92.0 >100 241.3 62.0 61.8 46.8 47.0

5 cm
L∞ 13.9 50.9 3.6 13.6 7.3 5.2 5.3 2.1 2.1
k 13.9 >100 8.1 23.0 12.1 7.1 7.1 4.5 4.5
CV 15.8 41.6 4.3 — — 6.4 6.4 4.2 4.2
a0 >100 >100 80.3 >100 >100 66.9 66.5 49.0 48.8

RelBias
1 cm

L∞ 13.4 −1.3 0.3 8.9 5.1 0.4 0.4 0.0 −0.8
k −14.6 >100 1.6 −13.7 −6.6 −0.4 −0.4 −0.5 0.9
CV 27.0 1.0 −0.1 — — 3.6 3.6 4.4 4.0
a0 10.3 > −100 39.4 > −100 > −100 −5.9 −5.9 −6.9 2.6

2 cm
L∞ 12.9 >100 0.5 9.0 5.1 0.5 0.5 −0.1 −0.6
k −13.4 >100 0.2 −13.8 −6.6 −0.4 −0.4 −0.1 0.7
CV 20.8 2.4 0.8 — — 3.4 3.4 3.4 3.1
a0 38.9 > −100 11.3 > −100 > −100 −6.0 −6.2 −1.8 3.8

3 cm
L∞ 12.2 −1.0 0.5 9.1 5.1 0.5 0.4 −0.3 −0.6
k −12.0 >100 −0.0 −14.0 −6.7 −0.3 −0.3 0.2 0.8
CV 16.4 0.4 1.2 — — 3.2 3.2 3.0 2.8
a0 65.1 > −100 3.7 > −100 > −100 −4.4 −4.1 2.4 6.3

5 cm
L∞ 11.6 1.2 0.3 9.5 5.2 0.7 0.7 −0.2 −0.4
k −10.0 >100 0.1 −14.7 −6.7 −0.2 −0.2 0.3 0.7
CV 10.0 2.8 1.4 — — 3.3 3.3 2.5 2.3
a0 79.4 > −100 1.7 > −100 > −100 −4.5 −4.3 1.9 4.4

Note: >±100 are results that are greater than 100%.
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the RRMSEs were smaller for all parameter estimates for the EP
method for the 1 cm length bin, with the differences between the
RRMSEs decreasing as the bin size increased. In terms of relative
bias, Candy’s method had slightly smaller relative bias for L∞ and
k than for the EP method, for all length bin sizes and whether or
not a0 was estimated freely. The relative bias for CV was slightly
smaller for the EP method than for Candy’s method, for all length
bin sizes and whether or not a0 was estimated freely.

In Table 5, when R0 remained at e9, but mk increased to 50 from
10 in Table 4, the performance of all the approaches including the
random method improved with reduced RRMSEs and relative bi-
ases. When both R0 and mk increased by five times those in Table 4,
namely R0 increase to 5 × e9 and mk to 50, the RRMSEs and relative
biases of the random method did not improve, but the RRMSEs
and relative bias of all the other approaches decreased.

American plaice growth
We estimated the vonB parameters for female American plaice

in Divisions 3LNO in 2014 using the two best-performing EP and
Candy’s methods. These methods produced smaller estimates for
L∞ and larger estimates for k than the random and BC methods
(see Table 6). The EP method had the smallest standard error for
L∞, at 3.43. The standard errors for k and CV were identical for
Candy’s, EP, and the random method. The BC methods had the
largest estimates for L∞, at 109.59 for the unweighted method and
89.47 for the weighted method, with the largest standard errors
overall for all parameter estimates.

In Fig. 2, it may seem curious that the vonB growth curves
estimated using Candy’s and the EP methods do not capture the
central trend in the data and as such may seem biased. However,
it is the LSAS data that are “biased” in a random sample sense.
Figure 3 shows the population (N) lengths-at-age for one of our
simulated runs and Fig. 4 shows the subsample (n) from that pop-
ulation. The predicted vonB growth curves using the second phase
fully observed lengths and ages are also shown on each plot. It is
clear from Fig. 4 that the subsample is over-sampling larger, older
fish and shorter, younger fish, which is not representative of the
population. Figure 3 shows that the EP and Candy’s methods are

in fact best-fitting, as they capture the real trend in the population
and not the LSAS bias in the sample. This LSAS bias in the data
must be considered when assessing the validity of model assump-
tion, and Zheng and Cadigan (2019) describe the method to com-
pute residual diagnostics.

Discussion
Overall, our simulations showed that ignoring the first phase

sampling information and mis-specifying or ignoring the sam-
pling scheme had large impacts on the accuracy of von Bertalanffy
(vonB) parameter estimates based on length-stratified age samples
(LSAS). Both the Piner and random methods had large relative root
mean squared error (RRMSE) for all length bin sizes. Incorporat-
ing the sampling scheme correctly, as in the partial-full (PF)
method, reduced the RRMSE significantly.

The empirical proportion (EP) method performed better than
the methods that did not include the first phase information (i.e.,
random, Piner), and the methods that used the bias-corrected
mean length-at-age estimates, both weighted (WBC) and un-
weighted (BC). The latter point is important because the bias-
corrected methods are actively used in fisheries stock assessments
to model growth (see, e.g., Brattey et al. 2018). The EP method also
performed slightly better than Candy’s method and substantially
better than the PF method that did not include first phase sam-
pling information. In this simulation study, the first phase sam-
ples were very large so that the strata with nonnegligible
occupation probability Q k were mostly nonempty, which reduced
the improvement of the EP approach over Candy’s method. It
would be interesting to investigate the magnitude of the differ-
ence in the RRMSEs when the first phase sample sizes are lower,
and as a result some of the length strata are empty because we
expect the EP method will perform substantially better than
Candy’s approach in this situation. The full-data likelihood
method proposed by Zheng and Cadigan (2019) seems less practi-
cally useful than Candy’s or the EP method because of its perfor-
mance and the strong assumptions (i.e., an effective estimation of
age distribution) required for the full-data likelihood method.

For almost all methods, when a0 was freely estimated, the cor-
responding RRMSEs for a0 increased as the bin size increased. This
was not surprising because in our simulations the abundance of
small fish sampled decreased with length bin size, so increasing
the length bin size reduced the likelihood that a smaller fish was
selected. Thus, for wider bins there were fewer fish sampled that
were close to length zero, which provided less information with
which to estimate a0. As a result, when the bin size increased, the
estimates of a0 were less precise, which was reflected in the larger
RRMSEs.

Theoretically, we expect Piner’s approach to perform better
than the random method, since it incorporated some information
about the sampling scheme. Piner et al. (2016) also suggested that
when the mortality rate Z was properly specified, their method
performed better than the random approach for LSAS in terms of
relative bias and the distribution of relative bias. Our simulations
showed that the relative bias for Piner’s method was consistently
larger for k and for a0. Our results also indicate that overall, Piner’s
method performed the worst in terms of RRMSE for all parameter

Table 5. RRMSEs (relative root mean squared errors) and RelBias
(relative bias) for vonB parameter estimates from 1000 simulations
with a0 estimated freely for 1 cm bin sizes, target stratum sample size
mk = 50, and simulated population size (N) or five times simulated
population size (5N).

Method Random Piner PF BC WBC HT CW Candy EP

RRMSE
N; 1 cm; mk = 50

L∞ 9.4 11.0 2.2 7.1 2.6 1.9 1.9 1.3 1.3
k 12.5 23.6 5.0 15.3 4.0 2.7 2.7 2.3 2.2
CV 24.3 7.5 3.2 — — 5.0 5.0 5.4 5.3
a0 >100 >100 68.0 >100 >100 29.9 29.9 25.5 25.0

5N; 1 cm; mk = 50
L∞ 14.9 11.1 2.1 9.4 3.3 1.7 1.7 1.2 1.3
k 18.1 25.6 5.4 20.8 5.5 2.6 2.6 2.0 2.0
CV 28.0 7.4 3.0 — — 4.8 4.8 5.2 5.2
a0 >100 >100 73.7 >100 > −100 27.8 27.8 22.1 21.9

RelBias
N; 1 cm; mk = 50

L∞ 7.9 0.8 0.2 3.5 1.7 0.2 0.2 −0.1 −0.5
k −8.7 0.8 0.1 −4.8 −1.2 −0.3 −0.3 −0.2 0.4
CV 23.5 3.8 1.6 — — 3.8 3.8 4.0 3.9
a0 14.6 −31.1 11.1 > −100 > −100 −5.5 −5.5 −4.5 −0.6

5N; 1 cm; mk = 50
L∞ 13.3 0.4 0.2 6.5 2.4 0.0 0.0 −0.5 −0.7
k −14.9 2.2 −0.0 −12.8 −2.8 −0.1 −0.1 0.3 0.7
CV 27.2 2.8 1.2 — — 3.5 3.5 4.0 4.0
a0 18.5 −31.6 14.6 > −100 > −100 −2.5 −2.5 −0.6 1.9

Note: >±100 are results that are greater than 100%.

Table 6. Parameter estimates and standard errors (SEs) for vonB
model parameters for female American plaice data in NAFO Divisions
3LNO in 2014.

Method L∞ (SE) k (SE) CV (SE) a0 (SE)

Random 88.552 (4.942) 0.058 (0.005) 0.123 (0.003) −0.097 (0.092)
BC 109.589 (13.200) 0.040 (0.008) — −0.603 (0.364)
WBC 89.472 (7.620) 0.055 (0.008) — −0.025 (0.246)
Candy 80.712 (4.522) 0.062 (0.005) 0.124 (0.003) −0.223 (0.106)
EP 75.791 (3.427) 0.066 (0.005) 0.117 (0.003) −0.425 (0.112)
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estimates, length bin sizes, and whether or not a0 was estimated
freely, even though an approximately true mortality rate value
was used for the Piner estimation. A primary reason for the poor
performance of Piner’s method was that it adopted an inappropri-
ate model (eq. 8) for the age distribution. In comparison, some of
the other approaches, including the random method, used the esti-
mated age distribution or was conditioned on age and hence were
not influenced by this issue. Thus, mis-specifying the age distribu-
tion had a large impact on the RRMSE. Unless there is strong evi-

dence for a specific age distribution for a population, we would not
recommend specifying the age distribution outside the model.

The estimation methods in this paper did not explicitly differ-
entiate between individual variation in growth and length mea-
surement error. All sources of error in the models were treated as
one (i.e., confounded), and this is an idealized approach, because
in reality there may be various sources of variability. Individuals
may have L∞ and k values that differ from the population mean
parameters (Sainsbury 1980; Shelton et al. 2013). As well, age mea-

Fig. 2. Estimated von Bertalanffy (vonB) growth model for female American plaice data in Divisions 3LNO in 2014. The points have added
transparency to better represent the density of the observations. The various fits are as follows: blue line (random), green line (empirical
proportion (EP)), yellow line (Candy), purple line (bias-corrected mean length-at age (BC)) and orange line (weighted BC (WBC)). [Colour online.]

Fig. 3. Plot of simulated population N with estimated vonB growth model from subsample n. The points have added transparency to better
represent the density of the observations. The various fits are as follows: blue line (random), green line (EP), yellow line (Candy), purple line (BC),
orange line (WBC), and dashed red line (population growth model: True). [Colour online.]
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surement error can occur in practice when conducting age read-
ings on otoliths and can lead to incorrect estimates of growth
model parameters (e.g., Cope and Punt 2007; Dey et al. 2019). Not
accounting for these sources of error can lead to biased estimates
of L∞ and k. Future research should assess the estimation perfor-
mance of the methods in this paper when age measurement er-
rors are present.

We also note that although Candy’s method performed well,
there are two drawbacks to using the probability of length condi-
tional on age. First, it is impossible to address age measurement
errors with a structural-errors in variables (SEV) approach (e.g.,
Carroll et al. 2006; Cope and Punt 2007; Dey et al. 2019). As noted
above, the effect of ignoring age measurement errors is well
known and can lead to incorrect estimates of growth parameters
and in particular underestimation of L∞ and overestimation of k
because of the well-known bias-attenuation problem with covari-
ate measurement errors. Such biases will tend to lead to overesti-
mation of Fmsy and underestimation of Bmsy and consequently
suboptimal and possibly unsustainable harvest advice. Second,
Candy’s method cannot use the first phase length data with the
likelihood function as constructed in Zheng and Cadigan (2019).
Because of these drawbacks, we suggest that the EP method may
be easier to implement and more flexible in practice. Also because
of these considerations, we tried to incorporate P(a) in all the
approaches except Candy, even though under the current simula-
tion setup, conditional-on-age approach gives the same growth
parameter estimates for random, HT, and CW approaches, since
P(a) involves no growth model parameters.

Increasing sample size leads to improved estimates if an esti-
mator is unbiased. However, the performance of a biased estima-
tor may not improve with sample size. With LSAS, if the first
phase stratum sample sizes Nk(l) and target second phase stratum
sample size mk are all increased by five times for example, the bias
in the data introduced by LSAS is not alleviated, and the perfor-
mance of the estimation approaches neglecting LSAS do not im-
prove. This is why when both R0 and mk increased by five times in
Table 5 compared with Table 4, the performance of the random
method did not improve as the other approaches did. Note that

when the bin size equals 1 cm, Piner’s method is in fact the con-
ditional approach discussed in Hausman and Wise (1982), Breslow
and Cain (1988), Pfeffermann and Sverchkov (1999), and Scott and
Wild (2011), which gives some account for the sampling strategy;
hence, its performance also improved in this case. On the other
hand, when the first phase sample size remained unchanged
(equivalently R0 remained at e9), but mk increased from 10 to 50,
many strata became fully sampled or close to fully sampled for
ageing, the bias in LSAS data was alleviated, and the performance
of random method also improved in Table 5. In the extreme case,
when all first phase fish are selected for ageing, then the data
become a simple random sample from the population, and the
random method will work well in this case.

The bias from mis-specifying the three components (i.e., first
phase sample, second phase sample, and sampling design) is not
limited to data collected for growth parameter estimation. The
stratified sampling design is often used to select subsamples of
fish to estimate important biological parameters such as length-
at-maturity or length–fecundity relationships (Quinn and Deriso
1999). We suggest that the three components should not be ne-
glected for any samples collected using stratified sampling and
that parameter estimates will be biased if the sampling design is
ignored. Further work should be done to investigate the magni-
tude of these biases for similarly collected data.

In conclusion, we demonstrate the importance of incorporating
the first phase length information and the sampling design when
estimating growth parameters with length-stratified age samples.
Correctly accounting for the sampling scheme can greatly reduce
the RRMSE for all parameter estimates. Incorporating the infor-
mation from the first phase sample in combination with the
sampling scheme reduced the RRMSE. We also showed that
improperly modeling the age distribution can lead to large mis-
specifications of growth parameter estimates, and using the LSAS
bias-corrected mean length-at-age can also produce less reliable
parameter estimates. These growth parameter estimates are often
incorporated into stock assessments to assess the overall health of
a fish population. If the parameter estimates are incorrect, then

Fig. 4. Plot of simulated subpopulation n with estimated vonB growth model from subsample. The points have added transparency to better
represent the density of the observations. The various fits are as follows: blue line (random), green line (EP), yellow line (Candy), purple line
(BC), orange line (WBC), and dashed red line (population growth model: True). [Colour online.]
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we may be under- or overestimating the health of a fish stock,
which can lead to incorrect management and stock advice.
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Appendix A
Without loss of generality, we assume that l � Sk. It follows

from conditional probability that

f(l, a | LSAS, �) � � k
[ f(l, a | l � Sk; LSAS, �)Q k(LSAS, �)]

� f(l, a | l � Sk; LSAS, �)Q k(LSAS, �)

where Q k(LSAS, �) is the probability for a second phase individual
to be in length stratum Sk. Since the subsampling in each stratum
is random, f�l, a 	 l � Sk; LSAS, �� � f�l, a 	 l � Sk; ��, we can write

Perreault et al. 449
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f(l, a | LSAS, �) � f(l, a | l � Sk; �)Q k(LSAS, �)

�
f(l, a | �)

Q k(�)
Q k(LSAS, �)

Appendix B
For the calibrated weighted (CW) method, weights are defined

as wi = gi[Nk(l) / nk(l)] for i = 1, …, N, where k(l) represents length l in
stratum k, such that the difference between wi and Nk(l) / nk(l) is
minimized subject to some constraints. To calibrate the first-
order moment (the mean), we calculate the weights wi by mini-
mizing the 
2 distance G(wi, di) = (wi – di)2 / 2di, subject to

�
i�1

N

�iwili � �
i�1

N

li

Here, �i is a binary indicator of whether or not the ith subject is
fully observed. These new calibrated weights can be found using
the method of Lagrange multipliers and can easily be imple-
mented using eq. 9 from Breslow et al. (2009). From that equation
it follows that

gi � 1 � 
cli

where


c �
�i�1

n Nk( l)

nk( l)
li � �i�1

N
li

�i�1

n
li
2

then

wi � (1 � 
cli)
Nk( l)

nk( l)

Appendix C
Assume that from a model M, we generated a random sample A

with the individuals enumerated as a1, a2, …, aN. In an arbitrary
length stratum k, there are Nk individuals of sample A that are
denoted as ak,1, ak,2, …, ak,Nk

. Now we make a random permutation
of sample A, which gives sample B with individuals b1, b2, …, bN,
and the Nk individuals in stratum k are now denoted as bk,1,
bk,2, …, bk,Nk

. The individuals in sample B are allocated into Ns sur-
vey stations, and length-stratified random sampling is conducted
in each stratum with different rules. The final result is to obtain nk
individuals in stratum k for age measurement. Owing to the ran-
dom permutation between A and B, despite the complicated sam-
pling design, this is in fact a random sample of size nk from
ak,1, ak,2, …, ak,Nk

for any stratum k, then all the inference ap-
proaches and conclusions of this paper can be applied. Therefore,
we can treat the final length-at-age data from sample B (or equiv-
alently from sample A, since A and B have identical set of individ-
uals) as from standard LSAS defined by eq. 2. Equivalent to A,
sample B is also a random sample generated from model M. We
reach the conclusion that for any random sample generated from
model M, we can neglect the complicated station-wise sampling
design and treat the final data as from standard LSAS.
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Abstract 18 

The current stock assessment model for American plaice (Hippoglossoides platessoides) on the Grand 19 

Bank of Newfoundland is a virtual population analysis (VPA). This model does not account for the considerable 20 

uncertainty about the landings data for this stock. Retrospective patterns have also been noted in the current 21 

assessment with overestimation of spawning stock biomass (SSB) and underestimation of fishing mortality (F).  In 22 

this work, we develop an aged-based state-space stock assessment model (SSM) for Grand Bank (NAFO Divisions 23 

3LNO) American plaice that accounts for the uncertainties in the landings data and reduces the problem of 24 

retrospective patterns. Our SSM fit the data well, with overall trends in SSB and average F (ages 9-14) similar to 25 

those estimated from the current VPA. The retrospective patterns for the SSM were reduced for SSB and greatly 26 

reduced for average F which should lead to the provision of better scientific advice for the management of this 27 
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stock. This model is also a valuable first step in improving our understanding of the stock of American plaice as the 28 

flexibility of state-space models are an ideal foundation from which to build more complex and realistic models.  29 

Introduction 30 

American plaice (Hippoglossoides platessoides) on the Grand Bank of Newfoundland (NAFO Divisions 31 

3LNO) supported an important commercial fishery historically, accounting for over ten percent of the Canadian 32 

groundfish fishery in the 1950’s (DFO, 2011). The population size declined rapidly in the 1980’s due mostly to 33 

overfishing and, although there has been no directed commercial fishing since 1994, there has since been little 34 

improvement in the state of the population (see e.g. Wheeland, 2018). The major factor that has been attributed to 35 

the lack of recovery is overfishing, which has occurred mainly through bycatch in the yellowtail flounder, skate, 36 

redfish, and Greenland halibut fisheries (Shelton and Morgan, 2005). It has also been suggested that an increase in 37 

the natural mortality rate due to changing ocean temperatures may also be contributing to the lack of recovery 38 

(Rideout et al., 2008). 39 

The current stock assessment model for American plaice relies on the use of commercial catch-at-age data. 40 

When these data are available, the most commonly applied stock assessment models are virtual population analysis, 41 

statistical catch-at-age, and, more recently, integrated and/or state-space models. Virtual population analysis 42 

assumes that the catch-at-age data are known without error (Megrey, 1989), whereas statistical catch-at-age models 43 

allow for errors in the catch-at-age data, although these models commonly assume that the fisheries’ selectivity 44 

pattern is constant over blocks of years (Hilbon and Walters, 1992). Integrated models were first introduced in the 45 

early 1980’s (Fournier and Archibald, 1982) and aim to use as much data as possible in as raw a form as possible, 46 

while state-space models include both random errors in the underlying population dynamics model (i.e. for 47 

population abundance and fishing mortality rates) and measurement errors in the data (see e.g. Nielsen and Berg, 48 

2014; Cadigan, 2015; Albertsen et al., 2016). Advances in computing power and technology have led to an increase 49 

in the application of both integrated models (Maunder and Punt, 2013) and state-space models (Aeberhard et al., 50 

2018) as the availability and resolution of data has increased and it is now possible to efficiently integrate out 51 

random effects from complex joint likelihood functions. 52 

The current stock assessment model for Grand Bank American plaice is a virtual population analysis that 53 

was introduced in the late 90's. This model is informed by catch-at-age data that are derived in part from landings 54 

estimates and does not account for the considerable uncertainty about the landings data (Wheeland et al., 2018). 55 
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Sources of uncertainty include landings estimated from “unspecified flounder” by some countries in the earliest 56 

years of available data (see e.g. Pitt, 1972) and an increase in foreign catch outside the 200 mile economic exclusive 57 

zone in the mid-80’s (e.g. Brodie, 1986). More recently, the loss of availability of scientific observer data in the 58 

NAFO Regulatory area has resulted in various methods applied to obtain landings estimates, including effort ratios 59 

and daily catch records (Dwyer et al., 2016).  As a result, there may be large errors in the landings data and a stock 60 

assessment model that incorporates uncertainty in these data may therefore provide a better assessment of the stock.  61 

Another issue that has been noted in the current assessment for American plaice are retrospective patterns, 62 

which are consistent directional changes in estimates of stock size as years of data are removed from the assessment 63 

model (Mohn, 1999). Retrospective patterns are caused by changes in the accuracy of the data over time and/or 64 

spatial and time-varying population processes that are unaccounted for or mis-specified in the model (see e.g. 65 

Legault, 2009). Systematic retrospective patterns can lead to poor management advice as important population 66 

processes (e.g. biomass and fishing mortality) may be over- or under-estimated and can result in unsustainable or 67 

sub-optimal harvesting advice (Szuwalski et al., 2017). To promote sustainable management advice for American 68 

plaice on the Grand Bank of Newfoundland, a stock assessment model that reduces or eliminates retrospective 69 

patterns is valuable. In this paper, we develop an aged-based state-space stock assessment model for Grand Bank 70 

American plaice that accounts for uncertainties in the landings data and reduces the problem of retrospective 71 

patterns.  72 

Materials and Methods 73 

There are two components to a state-space stock assessment model: the process model and the observation 74 

model. For our application to Grand Bank American plaice, the process model describes how the state of the 75 

unobserved fish stock abundance and fishing mortality rates at a given time depend on previous states. The 76 

observation model describes how the survey and commercial data depend on the unobserved states (see e.g. 77 

Aeberhard et al., 2018). 78 

Process Model 79 

The model runs for the years 𝑦 = 1960, . . . ,2017 for ages 𝑎 = 1, . . . , 15+, where 15+ represents the oldest 80 

ages grouped together from ages 15 onwards, called the plus group. For simplicity, we will refer to model ages 𝑎 =81 

1, . . . , 𝐴+, and years 𝑦 = 1, . . . , 𝑌. The process model describes how the abundance at age a in year 𝑦 (i.e. 𝑁𝑦,𝑎) and 82 
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the fishing mortality,
,y aF  change over time. The 𝑁𝑦,𝑎 for all ages and years are treated as random effects, with the 83 

cohort abundance model modelled as  84 

 
log (𝑁𝑦,𝑎) = log (𝑁𝑦−1,𝑎−1) − 𝑍𝑦−1,𝑎−1 + 𝛾𝑦,𝑎

log(𝑁𝑦,𝐴+) = log[𝑁𝑦−1,𝐴+−1exp
−𝑍

𝑦−1,𝐴+−1 + 𝑁𝑦−1,𝐴+exp
−𝑍

𝑦−1,𝐴+ ] + 𝛾𝑦,𝑎,
 (1.1) 85 

where 𝑍𝑦,𝑎 = 𝑀𝑦,𝑎 + 𝐹𝑦,𝑎 is the total mortality rate given by the sum of the natural mortality rate, 𝑀𝑦,𝑎 (i.e. all 86 

mortality unrelated to fishing) and 𝐹𝑦,𝑎 . Here,
,y aM  is assumed to be known and fixed at 0.50 for ages 1-3, 0.30 for 87 

age 4 and 0.20 for all ages 5 and above, except during 1989 to 1996, where it is fixed at 0.53 for all ages 5 and 88 

above, as recommended by Morgan and Brodie (2001), 0.83 for ages 1-3 and 0.63 for age 4. We note that this 89 

formulation for
,y aM  is identical to the formulation for the most recent stock assessment model for Grand Bank 90 

American plaice. 
,y aF is set to zero for ages 1-4, as there is no reported catch at these ages. The 𝛾𝑦,𝑎 are the process 91 

errors, assumed to be independent and normally distributed with variance 𝜎𝑝𝑒
2  to be estimated. The numbers at the 92 

first ages 𝑁𝑦,1 are modelled as 93 

 log(𝑁𝑦,1) = 𝜇𝑅𝑦
+ 𝛿𝑅𝑦

,       (1.2) 94 

where 𝜇𝑅𝑦
= 𝜇𝑅1

 for y ≤ 1993  and 𝜇𝑅𝑦
= 𝜇𝑅2

 for y > 1993, and the two mean recruitment parameters 𝜇𝑅1
, 𝜇𝑅2

∈95 

(−∞, ∞) account for the large differences in recruitment between the two time periods and are fixed effect 96 

parameters to be estimated. The deviations from the mean recruitment 𝛿𝑅𝑦
are assumed to follow a normal 97 

distribution with AR(1) correlation across years, with the AR parameters 𝜎𝑅
2 and 𝜙𝑅 to be estimated, as we expect 98 

recruitment to be more alike in years that are closer together. 99 

The fishing mortality rates are modelled similarly, 100 

 log(𝐹𝑦,𝑎) = 𝜇𝐹𝑦,𝑎
+ 𝛿𝐹𝑦,𝑎

,         (1.3) 101 

where 𝜇𝐹𝑦,𝑎
 is the mean fishing mortality rate and 𝛿𝐹𝑦,𝑎

  is the deviation from the mean at each age and year. A 102 

separate 𝜇𝐹𝑦,𝑎
 is estimated for ages 5, 6, 7, 8, 9 and 10+ (where 10+ represents ages 10-15+) for two blocks: 1960-103 

1994 and 1995-2017 (i.e. twelve fixed effect F parameters). The age blocking of the 𝜇𝐹𝑦,𝑎
’s were chosen via model 104 

building to reflect overall fishery selectivity patterns, and the year blocks were chosen to account for the closure of 105 

the commercial fishery in 1994. The 𝛿𝐹𝑦,𝑎
′𝑠 are treated as random effects and are assumed to follow a normal 106 
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distribution, with the deviations at the first age, 𝛿𝐹𝑦,5
 assumed to have AR(1) correlation across years, independent 107 

from ages 6-15+, with parameters 𝜎𝐹5
2  , 𝜙𝐹5

to be estimated. We treat the 𝛿𝐹𝑦,𝑎
′𝑠 separately for age 5 fish as 108 

preliminary analyses indicated that trends in F’s differed at age 5 compared to older ages. The F-deviations at ages 109 

6-15+ were treated as a correlated AR(1) process across ages and years, with parameters 𝜎𝐹6+
2  , 𝜙𝐹

𝐴6+ , 𝜙𝐹
𝑌6+ to be 110 

estimated. We fit an AR(1) process across ages and years for age  6-15+ fish as fish that are closer in age and time 111 

are expected to have F-deviations that are more similar than those that are further apart. 112 

Observation model 113 

The observation model includes data from the commercial fishery and scientific research trawl surveys.  114 

There are two basic types of fishery information: total landed weight, and the size (length, weight) and age 115 

composition of the landings. Both these sources of information are used to derive annual fishery catch numbers-at-116 

age. In the integrated assessment model philosophy, these data sources should enter into the assessment model 117 

fitting via separate observation models. We particularly want to focus our model estimation to include uncertainty in 118 

landings. Therefore, for pragmatic reasons, we used landings information (1960-2017) and the catch proportions-at-119 

age (ages 5-15+ during 1960-2017) as independent data sources for model estimation. Stock size age-based indices 120 

are derived from the Canadian fall and spring research surveys in NAFO Divs. 3LNO (see Dwyer et al., 2014 for 121 

details) and the Spanish research survey in the portions of NAFO Divs. 3NO outside of the Canadian Exclusive 122 

Economic Zone (EEZ) (González-Troncoso1 et al., 2017) were also used in model estimation. Indices were for ages 123 

1-15+ for all surveys, for years 1990-2017 for the fall survey (2004 and 2014 omitted due to poor survey coverage), 124 

1985-2016 for the spring survey (2006 and 2015 omitted due to poor survey coverage) and 1997-2016 for the 125 

Spanish survey. The Baranov catch equation is used to model commercial catch as a function of 𝑁, 𝐹and 𝑍, 126 

 𝐶𝑦,𝑎 =
𝐹𝑦,𝑎

𝑍𝑦,𝑎
(1 − exp−𝑍𝑦,𝑎)𝑁𝑦,𝑎 . (1.4) 127 

Model predicted catch proportion at age (𝑃𝑎 = 𝐶𝑎/ ∑ 𝐶𝑎𝑎 ) were fit to observed proportions, as described in the next 128 

section. Commercial average weights-at-age (𝑊𝑦,𝑎) were calculated by Rivard’s method (Rivard, 1980) and are used 129 

to calculate model predicted landings each year, 𝐿𝑦 = ∑ 𝑊𝑦,𝑎𝐶𝑦,𝑎𝑎 . 130 

Age composition data 131 

We fit the age composition data using the continuation-ratio logit (crl) transformation (see e.g. Cadigan, 132 

2015; Berg and Kristensen, 2012; Agresti, 2003). A direct observation model for the matrix of observed catch 133 
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proportions each year is complicated because 𝑃𝑜𝑎 ≥ 0 and ∑𝑃𝑜𝑎 = 1. We use the crl which maps 𝑃𝑎 for 𝑎 =134 

1, . . . , 𝐴𝑚𝑎𝑥 into  𝑋𝑎 ∈ (−∞, ∞) for  𝑎 = 1, . . . , 𝐴𝑚𝑎𝑥 − 1. The unconstrained crls are derived from the multiplicative 135 

logistic transformation, 136 

𝑋𝑎 = log [
𝑃𝑎

𝑃𝑎+1+...+𝑃𝐴𝑚𝑎𝑥

] , 𝑎 = 5, . . . , 𝐴𝑚𝑎𝑥 − 1.                                      (1.5) 137 

where 𝐴𝑚𝑎𝑥 is the plus group. The inverse transformation of (1.5) is 138 

 𝑃𝑎 = {

exp(𝑋𝑎)

∏ (1+exp(𝑋𝑖))
𝑎
𝑖=1

, 𝑎 = 5, . . . , 𝐴𝑚𝑎𝑥 − 1

1

∏ (1+exp(𝑋𝑖))
𝐴𝑚𝑎𝑥−1
𝑖=1

, 𝑎 = 𝐴𝑚𝑎𝑥 .
                         (1.6) 139 

The crls for the observed catch proportions-at-age data (i.e. 𝑋𝑜𝑦,𝑎) are calculated from (1.5) and the observation 140 

model we use is based on assuming the model residuals (𝑋𝑜𝑦,𝑎 − 𝑋𝑦,𝑎) have a normal distribution with AR(1) 141 

correlation across ages and years with parameters 𝜙𝐶𝐴
, 𝜙𝐶𝑌

 to be estimated, as we expect the crl errors to be similar 142 

for fish that are closer in age and time. We fit two variance parameters (𝜎𝐶5
2  , 𝜎𝐶6+

2 ; one for age 5 fish, and one for 143 

ages 6+ fish) as preliminary data analysis indicated that the error variance differed at age 5, the youngest 144 

commercially caught age.  145 

Landings data 146 

Dwyer et al. (2016) reported uncertainties about the reliability of the landings data for Grand Bank 147 

American plaice. To account for this, we treat reported landings as a lower bound for true landings (i.e. not all 148 

catches are reported). We assume that there is an upper bound for landings that varies with the reliability of data (see 149 

Table 1 for details). We assume the true landings could be accurately estimated with a CV of 2%. Let Bly and Buy 150 

denote the lower and upper bounds and 𝜎𝐶 = 0.02. The observation equation (i.e. negative loglikelihood, nll) for the 151 

landings bounds data is 152 

nll(𝐿1, … , 𝐿𝑌|{𝐵𝑙𝑦 , 𝐵𝑢𝑦; 𝑦 = 1, … 𝑌}|) = ∑ log [𝛷 {
log (𝐵𝑢𝑦/𝐿𝑦)

𝜎𝐶
} − 𝛷 {

log (𝐵𝑙𝑦/𝐿𝑦)

𝜎𝐶
}]𝑌

𝑦=1 ,                        (1.7)                                   153 

where 𝐿1, … , 𝐿𝑌 are the model predicted landings. We fixed 𝜎L at a small value to ensure that the estimates of 154 

landings are between the bounds for most years.   155 

Survey data 156 

The model-predicted catch for survey s is  157 

 𝐼𝑠,𝑦,𝑎 = 𝑞𝑠,𝑎𝑁𝑦,𝑎exp−𝑓𝑠,𝑦𝑍𝑦,𝑎  (1.8) 158 
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where 𝑓 represents the fraction of the year the survey takes place (0.460 for the Canadian spring and Spanish 159 

surveys and 0.875 for the Canadian fall survey), and 𝑞𝑠,𝑎 are the survey catchabilities that are free parameters to be 160 

estimated. The q parameters are fit by survey with a separate q estimated for ages 1-9 and grouped for ages 10+, as 161 

preliminary model fitting resulted in similar q parameters at the oldest ages and this reduced the number of 162 

parameters to be estimated. For the spring and fall surveys, fish of ages 1-4 are given a separate q for each gear 163 

period due to issues in conversion from the Engel to the Campelen survey trawl (Dywer et. al., 2016). Diagnostic 164 

model fitting found little difference in the q estimates for the Spanish survey for the two gear types at the youngest 165 

ages, therefore only one q was estimated at each age. The indices are assumed to follow a normal distribution, with 166 

mean 𝐼𝑠,𝑦,𝑎 and standard deviation 𝜎𝑠,𝑎 =  cv𝑠 ∙ 𝐼𝑠,𝑦,𝑎 , where cv𝑠 represents a separate coefficient of variation (CV) 167 

parameter for each survey, to be estimated. The cv𝑠  parameters are pooled by ages 1, 2-5, 6-9, and 10-15 for the fall 168 

and Spanish surveys, and by ages 1, 2, 3-5, 6-9, and 10-15 for the spring survey, as diagnostic model runs suggested 169 

differing coefficients of variation at these ages. We treated each survey as from an AR(1) process across ages with 170 

independent parameter𝑠 𝜙𝑠 to be estimated. A constant CV variance model for I is approximately the same as 171 

assuming log(I) has constant variance; however, an advantage of our approach is that we can use observed zero 172 

indices directly in the model whereas in other assessment packages these index zeros are typically excluded which is 173 

not appropriate when there are many zeros.  174 

Estimation 175 

The unobserved states (i.e. 𝛿𝐹𝑦,𝑎
, 𝑁𝑦,𝑎) are integrated out and the estimation of all fixed effect parameters 176 

(𝜃) is based on maximizing the marginal likelihood 𝐿(𝜃),   177 

 𝐿(𝜃) = ∭ 𝑓𝜃(𝐷|𝛹)𝑔𝜃(𝛹)𝜕𝛹
𝛹

 (1.9) 178 

where 𝛹 is the vector of all random effects, 𝑓𝜃(𝐷|𝛹) is the joint probability density function of the data (D) and 179 

𝑔𝜃(𝛹)is the joint probability density function for the random effects. The TMB (Kristensen et al., 2016) package in 180 

R is used to integrate the marginal likelihood (1.8), which is performed via the Laplace approximation (see Skaug 181 

and Fournier, 2006 for details). 182 

The model fit was assessed by examining the model residuals and retrospective plots. The survey and continuation-183 

ratio logit residual observation model were adjusted to account for observed variance heterogeneity and correlation 184 

during model building runs. Retrospective models were fit for years 2005-2017, with each retrospective model fit 185 
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using one less year of data (i.e. model for year 2005 used data up to 2005) and predicted abundance, biomass, 186 

spawning stock biomass and average F’s were plotted and examined for systematic patterns. Ideally, no discernable 187 

directional patterns will be present in the retrospective plots.  188 

Biomass-at-age was calculated by multiplying predicted numbers at age (i.e. 𝑁𝑦,𝑎) and stock weights-at-189 

age, which were estimated externally. A spatiotemporal biphasic Von Bertalanffy growth model (see Kumar et al., 190 

2019) was applied to length-at-age data obtained from the spring research survey data. The combined 3LNO stock 191 

weights were estimated by weighting the stock weights for each division by the average index at age during 1975-192 

2017. Stock weights prior to 1975 were fixed at the mean values for 1975-77. Estimated of maturity-at-age were 193 

taken from Wheeland et al. (2018).  194 

Simulation and sensitivity testing  195 

A full simulation study is beyond the scope of this paper; however, we conducted a simple self-simulation 196 

test and jittered start test to examine the reliability of the model estimates (see e.g. Cadigan, 2015; Nielsen and Berg, 197 

2014). The self-simulation test randomly generates survey indices and continuation-ratio logit catch proportions 198 

from the model predictions and assumed distributions detailed above. Process errors and random effects are treated 199 

as fixed and the model is re-fitted to the simulated data. This process is repeated 1000 times and estimates of SSB, 200 

average fishing mortality rates (ages 9-14) and recruitment are stored. We calculated the relative difference of the 201 

estimates for each year (i.e. (simulation SSBy – data-based SSBy)/ data-based SSBy) for comparison. The jittered 202 

start test re-fits the model with random noise added to the starting parameter values, generated from 𝑁(0,0.25 ∙ 𝜇̂), 203 

where 𝜇̂ is the model predicted parameter of interest. The model is re-optimized 50 times and the negative log-204 

likelihood is stored for each iteration. Ideally, we expect an identical model fit from the jittered starting parameter 205 

values. We also examined the model sensitivity to our assumptions about M, upper catch bounds and survey 206 

catchability, q. We re-fit the model with M’s fixed at 0.20 for all ages and years (M2), M’s fixed at the original 207 

model formulation plus 0.20 (M3), with upper catch bounds fixed at half the original model formulation upper 208 

bounds (M4), and with q estimated freely at the oldest ages (M5).  209 

Results  210 

 The state space model (SSM) fit the data well with no patterns present in the survey or continuation-ratio 211 

logit residual plots (omitted for brevity). In 2017 recruitment, abundance and spawning stock biomass (SSB) were 212 



9 
 

estimated near the lowest historical levels (Fig. 1). The model predicted landings were estimated within the upper 213 

and lower bounds, with the predicted landings closest to the upper bound in the early 80’s, and again in most years 214 

since 2006 (Fig. 2) and closest to the lower bound in the early 1990’s. At ages 1-4, the catchability pattern (Fig. 3) 215 

for the fall and spring surveys was lower for the Engels than the Campelen trawl. The differences were most 216 

pronounced for ages three and four, with the catchability estimates for the Campelen trawl almost twice as large as 217 

for the Engels trawl. For ages 1-5, the process errors (Fig. 4) were close to zero until the mid-nineties. Overall, there 218 

were no noticeable trends in the process errors at the older ages. There were little retrospective patterns (Fig. 5), 219 

with SSB slightly overestimated and average fishing mortality for ages 9-14 (aveF) slightly underestimated.  220 

In comparison to the most recent stock assessment model for Grand Bank American plaice (which we refer 221 

to as the VPA), the overall trends in SSB and aveF were similar (Figs. 6 and 7). Noticeable differences included the 222 

SSM predictions of historic SSB (i.e. years 1960-1972) that were larger (but with high uncertainty) than the historic 223 

SSB predictions from the VPA. The VPA model also predicted a higher aveF in the early 1990’s, at approximately 224 

1.1, with the SSM prediction at approximately 0.75 for the same period. From 2005-2009, the estimates for aveF 225 

from the SSM were often twice as large as the estimates from the VPA. The retrospective patterns for the SSM were 226 

reduced for SSB and greatly reduced for aveF (Fig. 8) compared to the VPA.  227 

The self-simulation study lower 10% and upper 90% intervals for both SSB and aveF covered zero (Fig. 9), 228 

indicating that the simulated samples produced estimates that were similar to the SSM estimates. In the earliest years 229 

(1960-1972), the range of relative differences for aveF was mostly positive, with the converse seen for SSB. Results 230 

from the sensitivity tests (Table 2) showed that the SSM had the second lowest BIC overall with M3 (natural 231 

mortality rates increased by 0.20) having the lowest BIC. The jittered-start test did not converge for 6% of the 232 

simulations, with 77% of the converged models producing negative log-likelihoods that were identical to the 233 

original formulation. 234 

Discussion 235 

 Overall, our state-space model (SSM) that accounted for uncertainties in the landings data and allowed for 236 

process errors fit the data well, with no obvious patterns in the survey and continuation ratio logit residual plots. The 237 

retrospective patterns were reduced for spawning stock biomass (SSB) and greatly reduced for average fishing 238 

mortality for ages 9-14 (aveF) compared to the most recent stock assessment model (VPA). 239 
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The sensitivity runs that reduced M to 0.20 for all ages and years (M2), halved the catch upper bounds 240 

(M4), and freely estimated the survey catchabilities (q, M5) all had larger BICs than the SSM. The run that 241 

increased the base assumption of M by 0.20 (M3) had a slightly lower BIC than the SSM and this may suggest that 242 

the values we used for M’s may be too low. Previous research found evidence that M’s during 1989 to 1996 243 

(Morgan and Brodie, 2001) had increased to 0.53 and the current VPA model and our SSM include this increase. 244 

However, since the closure of the commercial fishery, estimates of total mortality rates have remained high for some 245 

periods (e.g. Fig. 7 for years 2000-2006), and this may suggest that M is higher than 0.20 in recent years. 246 

Preliminary work also suggests that M has increased since the closure of the commercial fishery (Rideout et al., 247 

2008; Morgan et al., 2011). Thus, research that improves our understanding of M for this species should be of high 248 

priority.  249 

The SSM retrospective analyses indicated very little systematic patterns, which is a key improvement 250 

compared to the VPA model. Including process error in the population dynamics model helped account for 251 

underlying time-varying population processes that were not accounted for in the VPA, thereby reducing 252 

retrospective patterns. There is still evidence of slight retrospective patterns, and this may be caused by underlying 253 

spatial or time-varying process that are mis-specified in the observation model since process errors can only account 254 

for mis-specifications in the process equations.  255 

The estimate for survey catchability q is defined as the value required to scale swept-area abundance to the 256 

population abundance (see e.g. Dickson, 1993;.Fraser, 2007). An estimate of q less than one implies that fewer fish 257 

are caught than occupied the area of the trawl, and a value greater than one implies that more fish are caught than 258 

occupied the area. Herding behavior of flatfishes in the presence of survey trawls underestimates the width used in 259 

area swept calculations and can result in q estimates that are greater than one (Bryan et al., 2013).  Therefore, larger 260 

q estimates are not unrealistic for American plaice; however, the q estimates from the SSM are very large, with the 261 

maximum estimated at 9.1. Thus, additional research is required to better understand why the survey swept area 262 

abundance estimates are so much higher than the stock assessment model estimates.  263 

A difference to note between the SSM and the VPA is that the SSM assumes that the survey indices are 264 

from a normal distribution with a constant coefficient of variation whereas the VPA assumes that the log of the 265 

survey indices are from a lognormal distribution. The lognormal distribution does not allow for zeros in the survey 266 

data, however this assumption may not be appropriate when there are many zeros in the data or when zeros are 267 
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“true” zeros (i.e. no fish available to be caught). The assumption of normality with a constant coefficient of variation 268 

avoids the problem of dropping zeros altogether. Although the methods are theoretically similar, future research is 269 

needed to compare the performance of the two. 270 

Our new SSM is an improvement to the VPA current stock assessment model that is used to inform the 271 

management of American plaice on the Grand Bank of Newfoundland as it allows for errors in the landings data and 272 

reduces the retrospective patterns. This model is also a valuable first step in improving our understanding of the 273 

stock as the flexibility of state-space models are an ideal foundation from which to build more complex and realistic 274 

models.  275 

Acknowledgements 276 

Research funding was provided by the Ocean Frontier Institute, through an award from the Canada First 277 

Research Excellence Fund. Research funding to NC was also provided by the Ocean Choice International Industry 278 

Research Chair program at the Marine Institute of Memorial University of Newfoundland. Funding to AP was also 279 

provided by a Natural Sciences and Engineering Research Council of Canada Master’s Graduate Scholarship. Many 280 

thanks are also extended to Dr. Anders Nielsen, Danish Technical University, for advice on more computationally 281 

efficient ways to implement our model in TMB. 282 

References 283 

Aeberhard, W.H., J. Mills-Flemming, A. Nielsen. 2018. A review of state-space models for fisheries 284 

science. Annual Review of Statistics and its Application, 5: 215-23. http://dx.doi.org/10.1146/annurev-statistics-285 

031017-100427 286 

 Agresti, A. 2003. Categorical data analysis. Vol. 482. John Wiley & Sons. 287 

http://dx.doi.org/10.1002/0471249688 288 

Albertsen, C.M., A. Nielsen and U.H. Thygesen. 2016. Choosing the observational likelihood in state-space 289 

stock assessment models. Canadian Journal of Fisheries and Aquatic Sciences, 74(5):779-789. 290 

http://dx.doi.org/10.1139/cjfas-2015-0532 291 

Berg, C. W. and K. Kristensen. 2012. Spatial age-length key modelling using continuation ratio logits. 292 

Fisheries Research, 129: 119–126. http://dx.doi.org/10.1016/j.fishres.2012.06.016 293 



12 
 

Brodie, W.B. MS 1986. An assessment of the American plaice stock on the Grand Bank (NAFO Divisions 294 

3LNO). NAFO SCR Doc., No. 86, Serial No, 41. 295 

Bryan, D. R., K.L. Bosley, A.C. Hicks, M.A. Haltuch and W.W. Wakefield. 2014. Quantitative video 296 

analysis of flatfish herding behavior and impact on effective area swept of a survey trawl. Fisheries Research, 154: 297 

120-126. https://doi.org/10.1016/j.fishres.2014.02.007 298 

Cadigan, N. G. 2015. A state-space stock assessment model for northern cod, including under-reported 299 

catches and variable natural mortality rates. Canadian Journal of Fisheries and Aquatic Sciences, 73(2): 296-308. 300 

http://dx.doi.org/10.1139/cjfas-2015-0047 301 

DFO. MS 2011. Recovery potential assessment of American plaice (Hippoglossoides platessoides) in 302 

Newfoundland and Labrador. DFO Can. Sci. Advis. Sec., Sci. Advis. Rep. 2011/030. 303 

Dickson, W. 1993. Estimation of the capture efficiency of trawl gear. I: development of a theoretical 304 

model. Fisheries Research, 16(3): 239-253. http://dx.doi.org/10.1016/0165-7836(93)90096-P 305 

Dwyer K., R. Rideout, D. Ings, D. Power, M. Morgan, B. Brodie and P.B. Healy. MS 2016. Assessment of 306 

American plaice in Div. 3LNO. NAFO SCS Doc. No. 16, Serial No. 030. 307 

Dwyer K., M. Morgan, B. Brodie, D. Maddock Parsons, R. Rideout, P.B. Healy and D. Ings. MS 2014. 308 

Survey indices and STATLANT 21A bycatch information for American plaice in NAFO Div. 3LNO. NAFO SCR 309 

Doc. No. 14, Serial No. 031. 310 

Fournier, D., and C.P. Archibald. 1982. A general theory for analyzing catch at age data. Canadian Journal 311 

of Fisheries and Aquatic Sciences, 39(8): 1195-1207. https://doi.org/10.1139/f82-157  312 

Fraser, H.M., S.P. Greenstreet, and G.J. Piet. 2007. Taking account of catchability in groundfish survey 313 

trawls: implications for estimating demersal fish biomass. ICES Journal of Marine Science, 64:(9). 1800-1819. 314 

http://dx.doi.org/10.1093/icesjms/fsm145 315 

González-Troncoso, D., A. Gago1, A. Nogueira and E. Román. MS 2017. Results for Greenland halibut, 316 

American plaice and Atlantic cod of the Spanish survey in NAFO Div. 3NO for the period 1997-2016. NAFO SCR 317 

Doc. No. 17, Serial No. 018. 318 

Hilborn, R. and C.J. Walters. 1992. Quantitative fisheries stock assessment: choice, dynamics and 319 

uncertainty. Reviews in Fish Biology and Fisheries, 2(2): 177-178. http://dx.doi.org/10.1007/978-1-4615-3598-0 320 



13 
 

Kristensen, K., A. Nielsen, C.W. Berg, H. Skaug and B.M. Bell. 2016. TMB: Automatic differentiation and 321 

Laplace approximation. Journal of Statistical Software, 70: 1–26. http://dx.doi.org/10.18637/jss.v070.i05 322 

Kumar, R., N.G. Cadigan, N. Zheng, D. Varkey, and M.J. Morgan. 2019. A spatial and state-space survey-323 

based assessment model applied to the Grand Bank, Newfoundland and Labrador stock of American plaice. 324 

Submitted to journal. 325 

Legault C.M., Chair. MS 2009. Report of the Retrospective Working Group, January 14-16, 2008, Woods 326 

Hole, Massachusetts. Northeast Fish Sci Cent Ref Doc. 09-01 30. 327 

 Maunder, M.N., and A.E. Punt. 2013. A review of integrated analysis in fisheries stock assessment. 328 

Fisheries Research, 142: 61-74. https://doi.org/10.1016/j.fishres.2012.07.025  329 

Megrey, B.A. MS 1989. Review and comparison of age-structured stock assessment models. In Amer. Fish. 330 

Symp. 6: 8-48. 331 

Mohn, R. 1999. The retrospective problem in sequential population analysis: An investigation using cod 332 

fishery and simulated data. ICES Journal of Marine Science, 56(4): 473-488. 333 

http://dx.doi.org/10.1006/jmsc.1999.0481  334 

Morgan, M.J., and W.B. Brodie. MS 2001. An exploration of virtual population analyses for Divisions 335 

3LNO American plaice. NAFO SCR Doc., No. 1, Serial No. 4. 336 

Morgan, M.J., J. Bailey, B.P. Healey, D. Maddock Parsons, and R. Rideout. MS 2011. Recovery potential 337 

assessment of American Plaice (Hippoglossoides platessoides) in Newfoundland and Labrador. DFO Can. Sci. 338 

Advis. Sec. Res. Doc. 2011/047.  339 

NAFO. MS 2017. Report of the NAFO Joint Commission-Scientific Council Working Group on Catch 340 

Reporting and NAFO Ad hoc Joint Commission-Scientific Council Catch Data Advisory Group (CDAG) Meeting. 341 

NAFO COM-SC. 17-08. 342 

Nielsen, A., and C.W. Berg. 2014. Estimation of time-varying selectivity in stock assessments using state-343 

space models. Fisheries Research, 158: 96-101. http://dx.doi.org/10.1016/j.fishres.2014.01.014 344 



14 
 

Pitt, T.K. MS 1972. Nominal catches of American plaice in Divisions 3L and 3N for the years 1960-1970. 345 

ICNAF Res. Doc, 72/90. 346 

Rideout, R.M., M.J. Morgan and C. Busby. MS 2008. COSEWIC Status Report on American plaice 347 

Hippoglossoides platessoides.. 348 

Rivard, D. MS 1980. Back-calculating production from cohort analysis, with discussion on surplus 349 

production for two redfish stocks. CAFSAC Res. Doc., 80/23. 350 

Shelton, P.A. and M.J. Morgan. 2005. Is by-catch mortality preventing the rebuilding of cod (Gadus 351 

morhua) and American plaice (Hippoglossoides platessoides) stocks on the Grand Bank. Journal of Northwest 352 

Atlantic Fisheries Science. 36: 1-17. http://dx.doi.org/10.2960/J.v36.m544 353 

Skaug, H.J. and D.A. Fournier. 2006. Automatic approximation of the marginal likelihood in non-Gaussian 354 

hierarchical models. Computational Statistics & Data Analysis, 51(2): 699-709. 355 

http://dx.doi.org/10.1016/j.csda.2006.03.005 356 

Szuwalski, C.S., J.N. Ianelli and A.E. Punt. 2017. Reducing retrospective patterns in stock assessment and 357 

impacts on management performance. ICES Journal of Marine Science, 75(2): 596-609. 358 

http://dx.doi.org/10.1093/icesjms/fsx159 359 

Wheeland, L., K. Dwyer, M. Morgan, R. Rideout and R. Rogers. MS 2018. Assessment of American plaice 360 

in Div. 3LNO. NAFO SCS Doc. No. 18, Serial No. 039. 361 

Zheng, N. and N. Cadigan. 2019. Likelihood methods for basic stratified sampling, with application 362 

to Von Bertalanffy growth model estimation. Open Journal of Statistics, 9: 623-642. 363 

https://doi.org/10.4236/ojs.2019.96040 364 

 365 



1 
 

 Table 1. Upper catch bounds (UB) for estimated landings with associated justification for bounds; RC is reported 1 

catch. Discussion on catch uncertainties can be found in Wheeland et al. 2018, and references therein 2 

Period UB Comments 

1960-1976 2xRC "Unspecified flounder" by some countries, see, for example, (Pitt, 1972). 

1977-1982 1.2xRC Landings by primarily Canada (>95%) after establishment of 200 mile EEZ 

1983-1993 1.5xRC increased foreign catch outside 200 miles; Various estimates used for catch; Issues with 

unspecified flounder records and discarding 

1994-2010 1.2xRC No directed fishing in 1994 (bycatch quota), 0 TAC 1995 onwards; Catches defined 

from various sources with those considered most reliable by Scientific Council used for 

totals 

2011-2017 1.5xRC Loss of availability of scientific observer data in the NAFO Regulatory area and 

surveillance estimates. Varying methods applies to obtain catch estimates including 

effort ratios (Dwyer et al., 2016), daily catch records, and NAFO CESAG estimates 

(NAFO, 2017) 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 
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Table 2. Model estimates of variance parameters and some population parameters with percent coefficient of 16 

variation. (M1 is base model, M2 is base model with natural mortality=0.20, M3 is base model with natural 17 

mortality increased by 0.20, M4 is base model with upper catch bounds set to half the base model upper bounds, M5 18 

is base model with catchability freely estimated) 19 

 20 

 SSM M2 M3 M4 M5 

nll = 4516 

AIC=9192 

BIC=9595 

nll = 4534 

AIC=9228 

BIC=9631 

nll = 4489 

AIC=9137 

BIC=9541 

nll = 4546 

AIC=9253 

BIC=9656 

nll = 4479 

AIC=9148 

BIC=9627  
Est CV Est CV Est CV Est CV Est CV 

𝜎𝐹5 1.09 40 1.37 39 0.97 34 1.09 38 0.43 62 

𝜎𝐹6+ 0.81 22 0.86 20 0.94 24 0.83 22 0.52 39 

𝜎pe 0.21 6 0.22 6 0.20 6 0.21 6 0.20 6 

𝜎R 0.70 14 0.98 14 0.65 13 0.67 14 0.64 13 

cvFall 1 0.69 20 0.68 18 0.71 20 0.69 20 0.71 19 

cvFall 2-5 0.33 10 0.33 10 0.34 10 0.33 10 0.34 10 

cvFall 6-9 0.25 10 0.26 10 0.25 10 0.25 10 0.26 10 

cvFall 10-15 0.43 9 0.44 9 0.42 9 0.43 9 0.42 9 

cvSpan. 1 2.12 47 2.05 46 2.18 48 2.12 47 2.09 46 

cvSpan. 2-5 1.05 22 1.03 21 1.04 21 1.04 21 1.03 21 

cvSpan. 6-9 0.55 14 0.54 14 0.54 14 0.54 14 0.53 14 

cvSpan. 10-15 0.47 12 0.45 11 0.46 12 0.46 12 0.46 12 

cvSpr. 1 1.60 33 1.55 32 1.48 31 1.61 33 1.46 30 

cvSpr. 2 0.82 21 0.80 20 0.75 19 0.82 21 0.75 19 

cvSpr. 3-5 0.47 15 0.45 15 0.44 14 0.48 15 0.44 14 

cvSpr. 6-9 0.29 12 0.28 12 0.27 11 0.29 12 0.27 11 

cvSpr. 10-15 0.38 11 0.36 11 0.35 10 0.38 11 0.35 11 

𝜑𝐹
𝐴6+

 0.99 1 0.99 1 0.99 1 0.99 1 1.00 2 

𝜑𝐹5 0.95 5 0.96 4 0.91 7 0.94 6 0.74 41 

𝜑𝐹
𝑌6+

 0.94 3 0.95 2 0.94 4 0.92 4 0.87 11 

𝜑R 0.33 45 0.66 16 0.31 47 0.30 49 0.28 52 

𝜑Fall 0.57 9 0.59 9 0.58 9 0.56 9 0.59 9 

𝜑Span. 0.72 6 0.71 6 0.71 6 0.71 6 0.72 6 

𝜑Spr. 0.88 3 0.87 3 0.86 3 0.88 3 0.86 3 

𝜑𝐶𝑌  0.25 29 0.28 27 0.24 30 0.24 31 0.43 23 

𝜑𝐶𝐴  0.81 4 0.81 4 0.80 4 0.80 4 0.86 3 

F2017 0.08 19 0.12 16 0.02 20 0.07 18 0.02 26 

SSB2017 13.63 18 9.59  15 48.01 18 13.88 17 49.19 25 

F𝑉𝑃𝐴 0.06 - - - - - - - - - 

SSB𝑉𝑃𝐴 18.24 - - - - - - - - - 

 21 
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Figure 1. 25 
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Figure 2. 27 
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Figure 3.  30 
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Figure 5.  34 
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Figure 7.  47 
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Figure 9. 60 
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Figure 1. Model estimated population abundance, spawning stock biomass (SSB), average fishing mortality rate 80 

(ages 9-14) and recruitment. 81 

Figure 2. Model estimated log catch numbers for ages 5-15+ (solid line), the shaded grey represents the region 82 

between the log lower catch bounds and the log upper catch bounds. 83 

Figure 3. Survey catchability patterns for the fall, spring and Spanish surveys. A separate catchability parameter is 84 

estimated for two gear types (Engel and Campelen) for the spring and fall surveys for ages 1-4. 85 

Figure 4. Model estimated process errors for ages 1-14 for years 1960-2016. 86 

Figure 5. Retrospective estimates from 2008-2017 for total abundance, spawning stock biomass, average fishing 87 

mortality rates (ages 9-14) and recruitment for years 1960-2017. 88 

Figure 6. Model (SSM) and VPA estimated spawning stock biomass for years 1960-2017. 89 

Figure 7. Model (SSM) and VPA estimated average fishing mortality rates (ages 9-14) for years 1960-2017. 90 

Figure 8. Model (SSM) and VPA retrospective estimates from 2013-2017 of average fishing mortality rates (ages 9-91 

14) and of spawning stock biomass for years 2014-2017. 92 

Figure 9. Relative difference from model (SSM) and self-simulated sample for spawning stock biomass and average 93 

fishing mortality rates (ages 9-14). The solid grey line in the median of the estimates and shaded grey regions 94 

represent the lower 10% and upper 90% bounds.  95 
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Appendix A

Derivation of density function for second phase length-at-age

data

Without loss of generality, we assume that l ∈ Sk. It follows from conditional prob-

ability that,

f(l, a|LSAS,θ) =
∑
k

[f(l, a|l ∈ Sk;LSAS,θ)Qk(LSAS,θ)]

= f(l, a|l ∈ Sk;LSAS,θ)Qk(LSAS,θ),

where Qk(LSAS,θ) is the probability for a second phase individual to be in length

stratum Sk. Since the subsampling in each stratum is random, f(l, a|l ∈ Sk;LSAS,θ) =

f(l, a|l ∈ Sk;θ), so we can write,

f(l, a|LSAS,θ) = f(l, a|l ∈ Sk;θ)Qk(LSAS,θ)

=
f(l, a|θ)

Qk(θ)
Qk(LSAS,θ).
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Appendix B

Horvitz-Thompson weights

For the calibrated weighted (CW) method, weights are defined as wi = gi
Nk(l)

nk(l)
for

i = 1, ..., N , where k(l) represents length l in stratum k, such that the difference

between wi and
Nk(l)

nk(l)
is minimized subject to some constraints. To calibrate the first

order moment (the mean), the weights wi are found by minimizing the chi-square

distance G(wi, di) = (wi−di)2
2di

, subject to

N∑
i=1

γiwili =
N∑
i=1

li.

Here, γi is a binary indicator of whether or not the ith subject is fully observed. These

new calibrated weights can be found using the method of Lagrange multipliers, and

can easily be implemented using equation (9) from Breslow et al. (2009). From that

equation it follows that,

gi = 1− λcli,

where

λc =

∑n
i=1

Nk(l)

nk(l)
li −

∑N
i=1 li∑n

i=1 l
2
i

,

then

wi = (1− λcli)
Nk(l)

nk(l)

.
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Appendix C

Neglecting spatial structure of sampling scheme

Assume that from a model M, we generated a random sample A with the individuals

enumerated as a1, a2, . . . , aN . In an arbitrary length stratum k, there are Nk individ-

uals of sample A which are denoted as ak,1, ak,2, . . . , ak,Nk
. Now we make a random

permutation of sample A, which gives sample B with individuals b1, b2, . . . , bN , and

the Nk individuals in stratum k are now denoted as bk,1, bk,2, . . . , bk,Nk
. The individ-

uals in sample B are allocated into Ns survey stations, and length stratified random

sampling is conducted in each stratum with different rules. The final result is to

obtain nk individuals in stratum k for age measurement. Due to the random per-

mutation between A and B, despite the complicated sampling design, this is in fact

a random sample of size nk from ak,1, ak,2, . . . , ak,Nk
for any stratum k, then all the

inference approaches and conclusions of this chapter can be applied. Therefore, we

can treat the final length at age data from sample B (or equivalently from sample A,

since A and B have identical set of individuals) as from standard LSAS defined by

(2). Equivalent to A, sample B is also a random sample generated from model M.

We reach the conclusion that for any random sample generated from model M, we

can neglect the complicated station-wise sampling design, and treat the final data as

from standard LSAS.
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Appendix D

Supporting figures for state-space stock assessment model

for 3LNO American plaice

Figure D.1: Model predicted survey fits (red) and observed survey indices at age

(black) for ages 1-7 for Canadian fall, spring and Spanish surveys for American plaice

in NAFO Divisions 3LNO.
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Figure D.2: Model predicted survey fits (red) and observed survey indices at age

(black) for ages 8+ for Canadian fall, spring and Spanish surveys for American plaice

in NAFO Divisions 3LNO.
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Figure D.3: Standardized bubble plot of residuals at age for Canadian fall, spring

and Spanish surveys for American plaice in NAFO Divisions 3LNO. Red is positive,

blue is negative.
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Figure D.4: Standardized residuals for Canadian fall, spring and Spanish surveys for

American plaice in NAFO Divisions 3LNO.
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Figure D.5: Model predicted catch proportions at age (red) vs observed catch pro-

portion at age (black) for American plaice in NAFO Divisions 3LNO.
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Figure D.6: Standardized residuals for continuation ratio logits for American plaice

in NAFO Divisions 3LNO.
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Figure D.7: Bubble plot of standardized residuals for continuation ratio logits for

American plaice in NAFO Divisions 3LNO.

Figure D.8: Model predicted log fishing mortality rates for American plaice in NAFO

Divisions 3LNO.
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Figure D.9: Model predicted log fishing mortality deviations for American plaice in

NAFO Divisions 3LNO.

Figure D.10: Model predicted fishing mortality rates for American plaice in NAFO

Divisions 3LNO.



Appendix E

Data inputs for state-space stock assessment model for

3LNO American plaice

Figure E.1: Abundance data for ages 1-7 for Canadian fall, spring and Spanish surveys

for American plaice in NAFO Divisions 3LNO.
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Figure E.2: Abundance data for ages 8+ for Canadian fall, spring and Spanish surveys

for American plaice in NAFO Divisions 3LNO.
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Figure E.3: Standardized proportion by age across years for Canadian fall, spring

and Spanish surveys for American plaice in NAFO Divisions 3LNO. Red is positive,

blue is negative and black is zeros
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Figure E.4: Mean standardized survey indices for Canadian fall, spring and Spanish

surveys for American plaice in NAFO Divisions 3LNO. Red is fall, green is Spanish

and blue is spring survey.
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Figure E.5: Landings estimates for American plaice in NAFO Divisions 3LNO.

Figure E.6: Catch proportions at age for American plaice in NAFO Divisions 3LNO.
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Figure E.7: Proportion mature at age for American plaice in NAFO Divisions 3LNO.

Figure E.8: Stock weights at age for American plaice in NAFO Divisions 3LNO.
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Figure E.9: Catch weights at age for American plaice in NAFO Divisions 3LNO.



Appendix F

Exploratory model (EM) fitting

EM1

The process model is identical to the process model described in 3.2.1. The obser-

vation model differs from that described in 3.2.2 by: 1) one crl variance parameter

estimated for all ages, 2) one coefficient of variation parameter per survey and 3) no

correlations across survey and crls observations; N(0, cvsIs,a,y), LN(0, σC).

EM1
nll 4958
nparms 64
AIC 10044
BIC 10366
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Figure F.1: EM1 estimated population abundance, spawning stock biomass, average

fishing mortality rates (ages 9-14) and recruitment for American plaice in NAFO

Divisions 3LNO. The gray shaded regions represent 95% confidence intervals.
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Figure F.2: EM1 predicted survey fits (red) and observed survey indices at age (black)

for ages 1-7 for Canadian fall, spring and Spanish surveys for American plaice in

NAFO Divisions 3LNO.
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Figure F.3: EM1 predicted survey fits (red) and observed survey indices at age (black)

for ages 8+ for Canadian fall, spring and Spanish surveys for American plaice in

NAFO Divisions 3LNO.
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Figure F.4: EM1 standardized bubble plot of residuals at age for Canadian fall, spring

and Spanish surveys for American plaice in NAFO Divisions 3LNO. Red is positive,

blue is negative.
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Figure F.5: EM1 standardized residuals for Canadian fall, spring and Spanish surveys

for American plaice in NAFO Divisions 3LNO.
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Figure F.6: EM1 estimated log catch numbers for ages 5-15+ (solid line) for American

plaice in NAFO Divisions 3LNO, the shaded grey represents the region between the

log lower catch bounds and the log upper catch bounds.
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Figure F.7: EM1 predicted catch proportions at age (red) vs observed catch propor-

tion at age (black) for American plaice in NAFO Divisions 3LNO.
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Figure F.8: EM1 standardized residuals for continuation ratio logits for American

plaice in NAFO Divisions 3LNO.
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Figure F.9: EM1 bubble plot of standardized residuals for continuation ratio logits

for American plaice in NAFO Divisions 3LNO.

Figure F.10: EM1 predicted log fishing mortality rates for American plaice in NAFO

Divisions 3LNO.
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Figure F.11: EM1 predicted log fishing mortality deviations for American plaice in

NAFO Divisions 3LNO.
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Figure F.12: EM1 predicted fishing mortality rates for American plaice in NAFO

Divisions 3LNO.
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Figure F.13: EM1 predicted process errors at age for American plaice in NAFO

Divisions 3LNO.

Figure F.14: EM1 bubble plot of predicted process errors at age for American plaice

in NAFO Divisions 3LNO. Red is positive, blue is negative.
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Figure F.15: EM1 survey catchability patterns for Canadian fall, spring and Spanish

surveys for American plaice in NAFO Divisions 3LNO. A separate catchability pa-

rameter is estimated for two gear types (Engel and Campelen) for the spring and fall

surveys for ages 1-4.
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Figure F.16: EM1 (SSM) and VPA estimated spawning stock biomass for years

1960-2017 for American plaice in NAFO Divisions 3LNO. The gray shaded regions

represent 95% confidence intervals.

Figure F.17: EM1 (SSM) and VPA estimated average fishing mortality rates (ages

9-14) for years 1960-2017 for American plaice in NAFO Divisions 3LNO. The gray

shaded regions represent 95% confidence intervals.
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EM2

The process model is identical to the process model described in 3.2.1. The obser-

vation model differs from that described in 3.2.2 by: 1) one crl variance parameter

estimated for each age, 2) one variance parameter per age per survey and 3) no

correlations across survey and crls observations; N(0, cvsIs,a,y), LN(0, σC).

EM2
nll 4811
nparms 115
AIC 9853
BIC 10432

Figure F.18: EM2 estimated population abundance, spawning stock biomass (SSB),

average fishing mortality rate (ages 9-14) and recruitment for American plaice in

NAFO Divisions 3LNO. The gray shaded regions represent 95% confidence intervals.
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Figure F.19: EM2 predicted survey fits (red) and observed survey indices at age

(black) for ages 1-7 for Canadian fall, spring and Spanish surveys for American plaice

in NAFO Divisions 3LNO.
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Figure F.20: EM2 predicted survey fits (red) and observed survey indices at age

(black) for ages 8+ for Canadian fall, spring and Spanish surveys for American plaice

in NAFO Divisions 3LNO.
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Figure F.21: EM2 standardized bubble plot of residuals at age for Canadian fall,

spring and Spanish surveys for American plaice in NAFO Divisions 3LNO. Red is

positive, blue is negative.
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Figure F.22: EM2 standardized residuals for Canadian fall, spring and Spanish sur-

veys for American plaice in NAFO Divisions 3LNO.

Figure F.23: EM2 estimated log catch numbers for ages 5-15+ (solid line) for Amer-

ican plaice in NAFO Divisions 3LNO, the shaded grey represents the region between

the log lower catch bounds and the log upper catch bounds.
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Figure F.24: EM2 predicted catch proportions at age (red) vs observed catch pro-

portion at age (black) for American plaice in NAFO Divisions 3LNO.
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Figure F.25: EM2 standardized residuals for continuation ratio logits for American

plaice in NAFO Divisions 3LNO.
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Figure F.26: EM2 bubble plot of standardized residuals for continuation ratio logits

for American plaice in NAFO Divisions 3LNO.

Figure F.27: EM2 predicted log fishing mortality rates for American plaice in NAFO

Divisions 3LNO.
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Figure F.28: EM2 predicted log fishing mortality deviations for American plaice in

NAFO Divisions 3LNO.

Figure F.29: EM2 predicted fishing mortality rates for American plaice in NAFO

Divisions 3LNO.
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Figure F.30: EM2 predicted process errors at age for American plaice in NAFO

Divisions 3LNO.

Figure F.31: EM2 bubble plot of predicted process errors at age for American plaice

in NAFO Divisions 3LNO. Red is positive, blue is negative.
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Figure F.32: EM2 survey catchability patterns for Canadian fall, spring and Spanish

surveys for American plaice in NAFO Divisions 3LNO. A separate catchability pa-

rameter is estimated for two gear types (Engel and Campelen) for the spring and fall

surveys for ages 1-4.

Figure F.33: EM2 (SSM) and VPA estimated spawning stock biomass for years

1960-2017 for American plaice in NAFO Divisions 3LNO. The gray shaded regions

represent 95% confidence intervals.
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Figure F.34: EM2 (SSM) and VPA estimated average fishing mortality rates (ages

9-14) for years 1960-2017 for American plaice in NAFO Divisions 3LNO. The gray

shaded regions represent 95% confidence intervals.
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EM3

The process model is identical to the process model described in 3.2.1. The observa-

tion model differs from that described in 3.2.2 by: 1) no correlations across survey

and crls observations; N(0, cvsIs,a,y), LN(0, σC).

EM3
nll 4858
nparms 75
AIC 9867
BIC 10245

Figure F.35: EM3 estimated population abundance, spawning stock biomass (SSB),

average fishing mortality rate (ages 9-14) and recruitment for American plaice in

NAFO Divisions 3LNO. The gray shaded regions represent 95% confidence intervals.
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Figure F.36: EM3 predicted survey fits (red) and observed survey indices at age

(black) for ages 1-7 for Canadian fall, spring and Spanish surveys for American plaice

in NAFO Divisions 3LNO.
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Figure F.37: EM3 predicted survey fits (red) and observed survey indices at age

(black) for ages 8+ for Canadian fall, spring and Spanish surveys for American plaice

in NAFO Divisions 3LNO.
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Figure F.38: EM3 standardized bubble plot of residuals at age for Canadian fall,

spring and Spanish surveys for American plaice in NAFO Divisions 3LNO. Red is

positive, blue is negative.
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Figure F.39: EM3 standardized residuals for Canadian fall, spring and Spanish sur-

veys for American plaice in NAFO Divisions 3LNO.

Figure F.40: EM3 estimated log catch numbers for ages 5-15+ (solid line) for Amer-

ican plaice in NAFO Divisions 3LNO, the shaded grey represents the region between

the log lower catch bounds and the log upper catch bounds.
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Figure F.41: EM3 predicted catch proportions at age (red) vs observed catch pro-

portion at age (black) for American plaice in NAFO Divisions 3LNO.
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Figure F.42: EM3 standardized residuals for continuation ratio logits for American

plaice in NAFO Divisions 3LNO.
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Figure F.43: EM3 bubble plot of standardized residuals for continuation ratio logits

for American plaice in NAFO Divisions 3LNO.

Figure F.44: EM3 predicted log fishing mortality rates for American plaice in NAFO

Divisions 3LNO.
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Figure F.45: EM3 predicted log fishing mortality deviations for American plaice in

NAFO Divisions 3LNO.

Figure F.46: EM3 predicted fishing mortality rates for American plaice in NAFO

Divisions 3LNO.
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Figure F.47: EM3 predicted process errors at age for American plaice in NAFO

Divisions 3LNO.

Figure F.48: EM3 bubble plot of predicted process errors at age for American plaice

in NAFO Divisions 3LNO. Red is positive, blue is negative.
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Figure F.49: EM3 survey catchability patterns for Canadian fall, spring and Spanish

surveys for American plaice in NAFO Divisions 3LNO. A separate catchability pa-

rameter is estimated for two gear types (Engel and Campelen) for the spring and fall

surveys for ages 1-4.

Figure F.50: EM3 (SSM) and VPA estimated spawning stock biomass for years

1960-2017 for American plaice in NAFO Divisions 3LNO. The gray shaded regions

represent 95% confidence intervals.
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Figure F.51: EM3 (SSM) and VPA estimated average fishing mortality rates (ages

9-14) for years 1960-2017 for American plaice in NAFO Divisions 3LNO. The gray

shaded regions represent 95% confidence intervals.



Appendix G

SSM supporting code

#data cleanup

#required libraries

library(reshape2)

library(ggplot2)

library(tidyr)

library(FSA)

library(stringr)

library(dplyr)

#define variables

end.year <- 2017

end.year.m1<-end.year-1

assess.year = 1960:end.year

age=1:15

#to read data into R

cnames = c("Year", "Landings")

landings = read.table("./Data/landings.txt", header = F, col.names = cnames)

landings = subset(landings,Year<=end.year)

cnames = c(’Year’,paste(’Age’,1:20,sep=""))

SRV.matrix = read.table("Data/SpringSurvey.txt", header = F,

col.names = cnames)

SRV.matrix = subset(SRV.matrix,Year<=end.year)

cnames = c(’Year’,paste(’Age’,0:20,sep=""))

FRV.matrix = read.table(file=’Data/FallSurvey.txt’,header=F,col.names=cnames)

FRV.matrix = subset(FRV.matrix,Year<=end.year)

cnames = c(’Year’,paste(’Age’,1:24,sep=""))

SS.matrix = read.table(file=’Data/SpanishSurvey.txt’,header=F,col.names=cnames)

SS.matrix = subset(SS.matrix,Year<=end.year)
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cnames = c(’Year’,paste(’Age’,5:15,sep=""))

catch = read.table(file=’Data/catchage.txt’,header=F,col.names=cnames)

catch = subset(catch,Year<=end.year)

cnames = c(’Year’,paste(’Age’,5:15,sep=""))

mat.all = read.table(file=’Data/mat.txt’,header=F,col.names=cnames)

#to read in catch weights

cnames = c(’year’,paste(’age’,5:15,sep=""))

catch_wt = read.table(file=’Data/catch_wts.txt’,header=F, col.names =cnames)

c_wt = catch_wt[2:12]

#to read in Rajeev’s weights

weights = read.csv("./Data/stock_weights.csv", header = TRUE)

weight = as.data.frame(weights)

weight$index = weight$springWt_3LNO/1000

nyear = c(1960:2017)

nages = c(1:21)

#to filter years of interest

stock_wt_mat = weight %>% filter(year>1959, year<2018) %>%

select("year", "age","index") %>%

acast(year~age, value.var="index")

mean_sw_mat = stock_wt_mat

#to get mean value for first NAs

for(i in length(nages):1){

for(j in length(nyear):1){

if(is.na(mean_sw_mat[j,i])){mean_sw_mat[j,i]=mean(mean_sw_mat[(j+1):(j+3),i])

break}

}

}

#to set rest of NAs to mean value

for(i in length(nages):1){

for(j in length(nyear):1){

if(is.na(mean_sw_mat[j,i])){mean_sw_mat[j,i]=mean_sw_mat[j+1,i]}

}
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}

#to get plus group

sw_plus_mat = mean_sw_mat

#sw_plus_mat[,15] = rowMeans(mean_sw_mat[,15:21])

sw_plus_mat = sw_plus_mat[,1:15]

colnames(sw_plus_mat) = c(paste(’Age’,1:15,sep=""))

#subset for assessment

FRV.matrix = cbind(FRV.matrix[,c(1,3:16)], rowSums(FRV.matrix[,17:22]))

colnames(FRV.matrix) = c(’Year’,paste(’Age’,1:15,sep=""))

SRV.matrix = cbind(SRV.matrix[,c(1,2:15)],rowSums(SRV.matrix[,16:21]))

colnames(SRV.matrix) = c(’Year’,paste(’Age’,1:15,sep=""))

SS.matrix = cbind(SS.matrix[,c(1,2:15)],rowSums(SS.matrix[,16:25]))

colnames(SS.matrix) = c(’Year’,paste(’Age’,1:15,sep=""))

mat = subset(mat.all,mat.all[,1] %in% assess.year)

mat = mat[,2:12]

year = catch[,1]

catch = catch[,2:12]

#to make vector data frames

vec_func = function(mdat){

vdat = melt(mdat,id=c("Year"))

vdat$Age = as.numeric(substr(vdat$variable,4,5))

vdat$variable=NULL

vdat$index=vdat$value

vdat$value=NULL

return(vdat)

}

FRV.vec = vec_func(FRV.matrix)

FRV.vec$survey = ’Fall’

SRV.vec = vec_func(SRV.matrix)

SRV.vec$survey = ’Spring’

SS.vec = vec_func(SS.matrix)

SS.vec$survey = "Spanish"

indices = rbind(FRV.vec,SRV.vec,SS.vec)

temp = cbind(year,catch)

colnames(temp) = c(’Year’,colnames(catch))
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catch.vec = vec_func(temp)

#to convert to vectors

temp = cbind(nyear,c_wt)

colnames(temp) = c(’Year’,paste(’age’,5:15,sep=""))

cwt.vec = vec_func(temp)

temp = cbind.data.frame(nyear,sw_plus_mat)

colnames(temp) = c(’Year’,paste(’age’,1:15,sep=""))

stockwt.vec= vec_func(temp)

temp = cbind(year,mat)

colnames(temp) = c(’Year’,colnames(mat))

mat.vec = vec_func(temp)

#fs

indices$fs=NA

indices$fs[indices$survey=="Spring"] = 5.5/12

indices$fs[indices$survey=="Fall"] = 10.5/12

indices$fs[indices$survey=="Spanish"] = 5.5/12

iyear = as.numeric(factor(assess.year))-1

iage = as.numeric(factor(age))-1

indices$iyear = iyear[match(indices$Year,assess.year)]

indices$iage = iage[match(indices$Age,age)]

indices$isurvey = as.numeric(factor(indices$survey))-1

indices$surv_age = as.factor(paste(indices$survey,"_",str_pad(indices$Age , 2,

pad = "0"),sep=’’))

indices$isd = as.numeric(indices$surv_age)-1

indices$surv_year = as.factor(paste(indices$survey,"_",indices$Year,sep=’’))

indices$is_year = as.numeric(indices$surv_year)-1

#separate q for each survey and youngest ages (for trawl switch)

indices$qname = paste(indices$survey,":",indices$Age,sep=’’)

ind = indices$Age >=10

indices$qname[ind] = paste(indices$survey[ind],":10p",sep=’’)

ind = (indices$Age <= 4)&(indices$survey == ’Fall’)&(indices$Year<1995)

indices$qname[ind] = paste("Fall_Engel:", indices$Age[ind])

ind = (indices$Age <= 4)&(indices$survey == ’Spring’)&(indices$Year<=1995)

indices$qname[ind] = paste("Spring_Engel:", indices$Age[ind])
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indices$iq = as.numeric(as.factor(indices$qname))-1

A = length(age)

Y = length(assess.year)

Ns = length(unique(indices$is_year))

M_matrix = matrix(0.2,nrow=Y,ncol=A,byrow=T)

#M = 0.53 for all ages for years 1989-1996

M_matrix[,1:3] = rep(0.50)

M_matrix[,4] = rep(0.30)

M_matrix[30:37,] = M_matrix[30:37,] + 0.33

olandings = landings$Landings/1000

catcht = rowSums(catch)

p_ya = t(catch/catcht)

pya_sum = apply(p_ya, 2, rcumsum)

pya_sum = pya_sum[1:10,]

pi_ya = p_ya[1:10,]/(pya_sum)

x_ya = log(pi_ya/(1-pi_ya))

crl = t(x_ya)

#tmb formatted data

tmb.data = list(

M = M_matrix,

weight = as.matrix(sw_plus_mat),

mat = as.matrix(mat),

midy_weight = as.matrix(c_wt),

index = indices$index,

olandings = olandings,

iyear = indices$iyear,

iage = indices$iage,

isurvey = indices$isurvey,

isd = indices$isd ,

is_year = indices$is_year,

iq = indices$iq,

fs = indices$fs,

A = A,
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Y = Y,

Ns = Ns, #total number of survey years

isurvey1 = unlist(tapply(indices$isurvey,indices$is_year,unique)),

crl =crl

)

#give names for surveys and q

names(tmb.data$iq) = indices$qname

names(tmb.data$isd) = indices$surv_age

#to get log index and index in tmb.data

tmb.data$index = as.numeric(tmb.data$index)

tmb.data$landings_L = tmb.data$olandings

# high uncertainty

tmb.data$landings_U = 2*tmb.data$olandings

# low uncertainty

ind = (landings$Year>=1977)&(landings$Year<=1982) | (landings$Year>=1994)

&(landings$Year<=2010)

tmb.data$landings_U[ind] = 1.2*tmb.data$olandings[ind]

# moderate uncertainty

ind = (landings$Year>=1983)&(landings$Year<=1993) | (landings$Year>=2011)

tmb.data$landings_U[ind] = 1.5*tmb.data$olandings[ind]

# tmb.data$log_landings = log(tmb.data$olandings)

tmb.data$log_landings = rep(0,length(log(tmb.data$olandings)))

tmb.data$log_landings_L = log(tmb.data$landings_L)

tmb.data$log_landings_U = log(tmb.data$landings_U)

tmb.data$std_log_landings = 0.05

save(tmb.data,indices, file=’Data/tmb.RData’)

save(mat, catch, crl,catch.vec, mat.vec, stockwt.vec,cwt.vec, pi_ya, indices,

landings, M_matrix,p_ya, file = "Data/3LNO.Rdata" )

###to run model

library(Matrix)

library(TMB)

compile("./CPP/Fit1.cpp")

dyn.load(dynlib("./CPP/Fit1"))
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load("./Data/3LNO.RData")

load("./Data/tmb.RData")

setparm <- function(opt, rep){

start.parameters <- parameters

uname <- names(parameters)

names.par <- names(opt$par)

for(i in 1:length(uname)){

ind <- names.par==uname[i]

start.parameters[[i]] = opt$par[ind]

}

start.parameters$log_F_devt = t(rep$log_F_dev)

return(start.parameters)

}

No = c(50000,10290,10290,10290,10290,10290, 13110, 22860, 14140, 11880, 5890,

4157,3390,1236,3078)

n.survey.sd=length(unique(tmb.data$isd))

n.survey=3

Y=tmb.data$Y

A=tmb.data$A

#to set parm start values and bounds

parameters <- list(

log_R=c(10,10),

log_qparm=rep(0,length(unique(tmb.data$iq))),

log_cv_index=rep(log(0.3),n.survey.sd),

log_std_log_R=log(1),

log_F_mean=matrix(log(0.05),nrow=Y,ncol=A-4),

log_std_log_F = rep(log(0.2),A-4),

log_std_pe = matrix(log(0.2),nrow=Y-1,ncol=A-1),

log_std_crl = matrix(log(0.2),nrow=Y,ncol=A-5),

logit_ar_index_age = rep(0,n.survey),

logit_ar_logF = rep(0,3),

logit_ar_crl = c(0,0),

logit_ar_pe = rep(-10,2),

logit_ar_logRec = 0,

log_F_devt=t(matrix(log(0.001),nrow=Y,ncol=A-4,byrow=T)),

log_Nt=t(matrix(log(No),nrow=Y,ncol=A,byrow=T))

)



200

parameters.L <- list(

log_R=c(-10,-10),

log_qparm=rep(-Inf,length(unique(tmb.data$iq))),

log_cv_index=rep(log(0.001),n.survey.sd),

log_std_log_R=-10,

log_F_mean=matrix(-Inf,nrow=Y,ncol=A-4),

log_std_log_F = rep(log(0.001),A-4),

log_std_pe = matrix(log(0.001),nrow=Y-1,ncol=A-1),

log_std_crl = matrix(-10,nrow=Y,ncol=A-5),

logit_ar_index_age = rep(-10,n.survey),

logit_ar_logF = rep(-10,3),

logit_ar_crl = rep(-10,2),

logit_ar_pe = rep(-10,2),

logit_ar_logRec = -10

)

parameters.U <- list(

log_R=c(Inf,Inf),

log_qparm=rep(10,length(unique(tmb.data$iq))),

log_cv_index=rep(log(5),n.survey.sd),

log_std_log_R=Inf,

log_F_mean=matrix(Inf,nrow=Y,ncol=A-4),

log_std_log_F = rep(Inf,A-4),

log_std_pe = matrix(5,nrow=Y-1,ncol=A-1),

log_std_crl = matrix(5,nrow=Y,ncol=A-5),

logit_ar_index_age = rep(log(0.99/0.01),n.survey),

logit_ar_logF = c(log(0.99/0.01),log(0.99/0.01),log(0.99/0.01)),

logit_ar_crl = c(log(0.99/0.01),log(0.99/0.01)),

logit_ar_pe = c(log(0.99/0.01),log(0.99/0.01)),

logit_ar_logRec = log(0.99/0.01)

)

lower = unlist(parameters.L);

upper = unlist(parameters.U);

#parameter maps

mapF = matrix(NA,nrow=Y,ncol=A-4)

catch.year=landings$Year

agec = c(5:9,rep(’10+’,length = A-9))

#mapF = matrix(paste(’M_’,agec,sep=’’),nrow=length(catch.year),ncol=A-4,byrow=T)
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ind = catch.year<1995

mapF[ind,] = matrix(paste(’F_’,agec,’_pre_95’,sep=’’),

nrow=length(catch.year[ind]),ncol=A-4,byrow=T)

ind = catch.year>=1995

mapF[ind,] = matrix(paste(’F_’,agec,’_post_95’,sep=’’),

nrow=length(catch.year[ind]),ncol=A-4,byrow=T)

rownames(mapF) =catch.year

agec = c(1,rep(’2-5’,4),rep(’6-9’,4),rep(’10-15’,6))

n1 = paste(’Fall_’,agec,sep="")

agec = c(1,2,rep(’3-5’,3),rep(’6-9’,4),rep(’10-15’,6))

n3 = paste(’Sprg_’,agec,sep="")

agec = c(1,rep(’2-5’,4),rep(’6-9’,4),rep(’10-15’,6))

n2 = paste(’Span_’,agec,sep="")

map_index_cv = c(n1,n2,n3)

agec = c(5,rep(’6+’,length = A-6))

map_log_std_crl = matrix(paste(’std_crl_’,agec,sep=’’),nrow=Y,ncol=A-5,byrow=T)

map_std_pe = matrix(’std_pe’,nrow=Y-1,ncol=A-1)

map = list(

# logit_ar_index_age = factor(rep(NA,n.survey)),

logit_ar_logF = factor(c(’age’,’year1’,’year1+’)),

# logit_ar_crl = factor(c(NA,NA)),

logit_ar_pe = factor(c(NA,NA)),

# logit_ar_pe = factor(c(’EQ’,’EQ’)),

# logit_ar_pe = factor(c(NA,NA)),

log_F_mean = factor(mapF),

log_std_log_F = factor(c("5",rep("6+",A-5))),

log_cv_index = factor(map_index_cv),

log_std_crl = factor(map_log_std_crl),

log_std_pe = factor(map_std_pe)

)

tp=parameters.L;

#tp$logit_ar_index_age = NULL

tp$logit_ar_logF = rep(-10,3);

#tp$logit_ar_crl = NULL;

tp$logit_ar_pe = NULL;

tp$log_F_mean=rep(-Inf,length(unique(as.vector(mapF))));
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tp$log_std_log_F=rep(-Inf,length(unique(map$log_std_log_F)));

tp$log_cv_index=rep(-Inf,length(unique(map$log_cv_index)));

tp$log_std_crl=rep(log(0.02),length(unique(map$log_std_crl)));

tp$log_std_pe=rep(log(0.001),length(unique(map$log_std_pe)));

#tp$log_std_pe=NULL;

lower = unlist(tp);

tp=parameters.U;

#tp$logit_ar_index_age = NULL

tp$logit_ar_logF = rep(10,3);

#tp$logit_ar_crl = NULL;

tp$logit_ar_pe = NULL;

tp$log_F_mean=rep(Inf,length(unique(as.vector(mapF))));

tp$log_std_log_F=rep(log(3),length(unique(map$log_std_log_F)));

tp$log_cv_index=rep(log(5),length(unique(map$log_cv_index)));

tp$log_std_crl=rep(log(1),length(unique(map$log_std_crl)));

tp$log_std_pe=rep(log(10),length(unique(map$log_std_pe)));

#tp$log_std_pe=NULL;

upper = unlist(tp);

tmb.data$log_lowerM = log(tmb.data$landings_L)

tmb.data$log_upperM = log(tmb.data$landings_U)

tmb.data$use_pe <- 1;

tmb.data$std_log_landings= 0.02

obj <- MakeADFun(tmb.data,parameters,map=map,

random=c("log_F_devt","log_Nt"),

DLL = "Fit1",

control = list(trace=10,eval.max=2000,iter.max=300))

length(lower)

length(upper)

length(obj$par)

obj$gr(obj$par)

opt<-nlminb(obj$par,obj$fn,obj$gr,

upper=upper,lower=lower,

control = list(trace=10,eval.max=2000,iter.max=200))

opt<-nlminb(opt$par,obj$fn,obj$gr,

upper=upper,lower=lower,

control = list(trace=10,eval.max=2000,iter.max=200))



203

opt<-nlminb(opt$par,obj$fn,obj$gr,

upper=upper,lower=lower,

control = list(trace=10,eval.max=2000,iter.max=300))

rep = obj$report()

sd.rep <- sdreport(obj)

### code to get sd report including getting covariances of residuals

compile("./CPP/cov1.cpp")

dyn.load(dynlib("./CPP/cov1"))

sp = setparm(opt,rep)

sp$log_std_log_F = log(rep$std_log_F)

sp$log_F_mean = rep$log_F_mean

sp$log_cv_index <- log(rep$cv_index)

sp$logit_ar_index_age = rep$logit_ar_index_age

sp$logit_ar_logF <- rep$logit_ar_logF

sp$logit_ar_crl <- rep$logit_ar_crl

sp$logit_ar_pe <- rep$logit_ar_pe

sp$log_std_pe = log(rep$std_pe)

sp$log_Nt = t(rep$log_N)

sp$log_std_crl = log(rep$std_crl)

sp$resid_index = rep(0,length=length(tmb.data$index))

sp$resid_crl = matrix(0,nrow=tmb.data$Y,ncol=tmb.data$A-5)

map1 <- list(

log_R=factor(c(NA,NA)),

log_qparm=factor(rep(NA,length(unique(tmb.data$iq)))),

log_cv_index=factor(rep(NA,n.survey.sd)),

log_std_log_R=factor(NA),

log_F_mean=factor(matrix(NA,nrow=Y,ncol=A-4)),

log_std_log_F = factor(rep(NA,A-4)),

log_std_pe = factor(matrix(NA,nrow=Y-1,ncol=A-1)),

log_std_crl = factor(matrix(NA,nrow=Y,ncol=A-5)),

logit_ar_index_age = factor(rep(NA,n.survey)),

logit_ar_logF = factor(rep(NA,3)),

logit_ar_crl = factor(c(NA,NA)),

logit_ar_pe = factor(c(NA,NA)),

logit_ar_logRec = factor(NA),

log_F_devt=factor(t(matrix(NA,nrow=Y,ncol=A-4,byrow=T))),
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log_Nt=factor(t(matrix(No*NA,nrow=Y,ncol=A,byrow=T)))

)

obj1 <- MakeADFun(tmb.data,sp,map=map1,DLL = "cov1")

rep1 = obj1$report();

sd.rep1<-sdreport(obj1)

ind=names(sd.rep1$value)=="resid_index"

resid.cov = sd.rep1$cov[ind,ind]

ch.cov = chol(resid.cov)

rep$index_Zresid = qr.solve(t(ch.cov), rep$resid_index)

# qqplot(qqnorm(rep$index_Zresid))

# abline(a=0,b=1,col=’red’)

## stuff just to check;

# ind1 = tmb.data$is_year==46

# covi = resid.cov[ind1,ind1]

# sdi = sqrt(diag(covi))

# corri = diag(1/sdi)%*%covi%*%diag(1/sdi)

ind=names(sd.rep1$value)=="resid_crl"

resid.cov = sd.rep1$cov[ind,ind]

ch.cov = chol(resid.cov)

crl_Zresid = qr.solve(t(ch.cov), as.vector(rep$resid_crl))

rep$crl_Zresid = matrix(crl_Zresid,nrow=tmb.data$Y,ncol=tmb.data$A-5)

# qqplot(qqnorm(crl_Zresid))

# abline(a=0,b=1,col=’red’)

#

# ## stuff just to check;

# covi = resid.cov

# sdi = sqrt(diag(covi))

# corri = diag(1/sdi)%*%covi%*%diag(1/sdi)

#

# matrix(corri[1,],nrow=tmb.data$Y,ncol=tmb.data$A-5)

#
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# #}

save.image( file=’Data/Fit1.RData’)

###C++ code passed to TMB

#include <TMB.hpp>

#include "pnorm4.hpp" //Atomic functions for censored likelihoods

#include <iostream>

template <class Type>

Type trans(Type x){

return Type(2)*invlogit(x)-Type(1);

}

template<class Type>

Type cens(Type obs,Type ex, Type sd, Type upper){

return log(pnorm((log(upper)+(obs-ex))/sd)-pnorm((obs-ex)/sd));

}

template<class Type>

Type objective_function<Type>::operator() ()

{

//input data;

DATA_MATRIX(M);

DATA_MATRIX(weight);

DATA_MATRIX(mat);

DATA_MATRIX(midy_weight);

DATA_VECTOR(index);

DATA_VECTOR(olandings);

DATA_IVECTOR(iyear);

DATA_IVECTOR(iage);

DATA_IVECTOR(isurvey);

DATA_IVECTOR(isd);

DATA_IVECTOR(is_year);

DATA_IVECTOR(iq);

DATA_VECTOR(fs);

DATA_INTEGER(A);

DATA_INTEGER(Y);

DATA_INTEGER(Ns);

DATA_ARRAY(crl);

DATA_IVECTOR(isurvey1);

DATA_VECTOR(landings_L);

DATA_VECTOR(landings_U);
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DATA_VECTOR(log_landings);

DATA_VECTOR(log_landings_L);

DATA_VECTOR(log_landings_U);

DATA_SCALAR(std_log_landings);

DATA_VECTOR(log_lowerM);

DATA_VECTOR(log_upperM);

DATA_INTEGER(use_pe);

int n = index.size();

Type one = 1.0;

Type zero = 0.0;

//define fixed parameters;

PARAMETER_VECTOR(log_R);

PARAMETER_VECTOR(log_qparm);

PARAMETER_VECTOR(log_cv_index);

PARAMETER(log_std_log_R);

PARAMETER_MATRIX(log_F_mean);

PARAMETER_VECTOR(log_std_log_F);

PARAMETER_ARRAY(log_std_pe);

PARAMETER_ARRAY(log_std_crl);

PARAMETER_VECTOR(logit_ar_index_age);

PARAMETER_VECTOR(logit_ar_logF);

PARAMETER_VECTOR(logit_ar_crl);

PARAMETER_VECTOR(logit_ar_pe);

PARAMETER(logit_ar_logRec);

//define random effects

PARAMETER_ARRAY(log_F_devt);

PARAMETER_ARRAY(log_Nt);

array<Type> log_F_dev = log_F_devt.transpose();

array<Type> log_N = log_Nt.transpose();

// set bounds on parameters

Type std_log_R = exp(log_std_log_R);

vector <Type> std_log_F = exp(log_std_log_F);

vector<Type> cv_index = exp(log_cv_index);

// Type std_pe = exp(log_std_pe);

// Type std_crl = exp(log_std_crl);

Type ar_logF_age = invlogit(logit_ar_logF(0));

Type ar_logF1_year = invlogit(logit_ar_logF(1));
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Type ar_logF_year = invlogit(logit_ar_logF(2));

Type ar_crl_age = invlogit(logit_ar_crl(0));

Type ar_crl_year = invlogit(logit_ar_crl(1));

Type ar_pe_age = invlogit(logit_ar_pe(0));

Type ar_pe_year = invlogit(logit_ar_pe(1));

Type ar_logRec = invlogit(logit_ar_logRec);

vector<Type> ar_index_age = exp(logit_ar_index_age)/

(one + exp(logit_ar_index_age));

//containers

matrix<Type> N(Y,A);

array<Type> pe(Y-1,A-1);

vector<Type> log_Rec_dev(Y);

vector<Type> log_Rec(Y);

matrix<Type> EC(Y,A-4);

matrix<Type> ECW(Y,A-4);

vector<Type> C_tot(Y);

vector<Type> CW_tot(Y);

vector<Type> log_landings_pred(Y);

vector<Type> std_landings_resid(Y);

vector<Type> landings_resid(Y);

vector<Type> Elog_index(n);

vector<Type> Eindex(n);

vector<Type> resid_index(n);

vector<Type> std_resid_index(n);

vector<Type> log_q_vec = log_qparm(iq);

vector<Type> resid_rec(n);

matrix<Type> p_ya(A-4,Y);

matrix<Type> pya_sum(A-4,Y);

matrix<Type> pi_ya(A-4,Y);

matrix<Type> pred_crl(Y,A-5);

matrix<Type> resid_crl(Y,A-5);

matrix<Type> std_resid_crl(Y,A-5);

array<Type> std_crl(Y,A-5);

array<Type> std_pe(Y-1,A-1);

//SD report objects

matrix<Type> B_matrix(Y,A);

matrix<Type> SSB_matrix(Y,A-4);
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vector<Type> biomass(Y);

vector<Type> log_biomass(Y);

vector<Type> ssb(Y);

vector<Type> log_ssb(Y);

vector<Type> aveF_914(Y);

vector<Type> log_aveF_914(Y);

//initialize the negative log likelihood

Type nll = zero;

using namespace density;

//to model F (no fishing up to age 5)

matrix<Type> F(Y,A-4);

matrix<Type> Z(Y,A);

matrix<Type> log_F = log(F.array());

int i,j;

for(i = 0;i < Y;++i){

for(j = 0;j < A-5;++j){std_crl(i,j) = exp(log_std_crl(i,j));}

}

for(i = 0;i < Y-1;++i){

for(j = 0;j < A-1;++j){std_pe(i,j) = exp(log_std_pe(i,j));}

}

for(i = 0;i < Y;++i){

for(j = 0;j < A-4;++j){

log_F(i,j) = std_log_F(j)*log_F_dev(i,j) + log_F_mean(i,j);

F(i,j) = exp(log_F(i,j));

}

}

for(int i = 0;i < Y;++i){

for(int j = 0;j < A;++j){

if(j<4){Z(i,j) = M(i,j);}

if(j>=4){Z(i,j)= F(i,j-4)+M(i,j);}

}}

//compute process errors

for(int i = 1;i < Y;++i){

for(int j = 1;j < A-1;++j){

pe(i-1,j-1) = log_N(i,j) - log_N(i-1,j-1) + Z(i-1,j-1);

}



209

int j=A-1;

pe(i-1,j-1) = log_N(i,j) - log(exp(log_N(i-1,j-1)-Z(i-1,j-1))+

exp(log_N(i-1,j)-Z(i-1,j)));

}

//calculate recruitment deviations;

for(int i = 0;i < Y;++i){

if(i<=32){log_Rec_dev(i)= log_N(i,0) - log_R(0);}

if(i>32){log_Rec_dev(i)= log_N(i,0) - log_R(1);}

log_Rec(i) = log_N(i,0);

}

for(int i = 0;i < Y;++i){

for(int j = 0;j < A;++j){

N(i,j)=exp(log_N(i,j));}}

//Baranov catch equation predictions and residuals

for(int i = 0;i < Y;++i){

C_tot(i) = zero;

CW_tot(i) = zero;

for(int j = 0;j < A-4;++j){

EC(i,j) = N(i,j+4)*((one - exp(-one*Z(i,j+4)))*F(i,j)/Z(i,j+4));

ECW(i,j) = EC(i,j)*midy_weight(i,j);

C_tot(i) += EC(i,j);

CW_tot(i) += ECW(i,j);

} }

log_landings_pred = log(CW_tot);

landings_resid = log_landings - log_landings_pred;

std_landings_resid = landings_resid/std_log_landings;

//age composition catch

for(int i = 0;i < Y;++i){

for(int j = 0;j < A-4;++j){

p_ya(j,i) = EC(i,j)/C_tot(i);

}}

Type total;

for(int i = 0;i <Y;++i){

total=zero;

pya_sum(0,i) = one;

for(int j = 1;j < A-4;++j){
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total+=p_ya(j-1,i);

pya_sum(j,i) = (one-total);

}}

for(int i = 0;i <Y;++i){

for(int j = 0;j < A-4;++j){

pi_ya(j,i) = p_ya(j,i)/pya_sum(j,i);}}

for(int i = 0;i<Y;i++){

for(int j = 0;j<A-5;j++){

pred_crl(i,j)= log(pi_ya(j,i)/(one - pi_ya(j,i)));

resid_crl(i,j) = crl(i,j) - pred_crl(i,j);

std_resid_crl(i,j) = resid_crl(i,j)/std_crl(i,j);}}

//Survey index predictions, and residuals;

vector<Type> std_index_vec(n);

matrix<Type> mresid_index(Ns,A);

matrix<Type> msd_index(Ns,A);

int ia,iy,iy1,is;

for(i = 0;i < n;++i){

ia = iage(i);

iy = iyear(i);

is = isd(i);

iy1 = is_year(i);

Elog_index(i) = log_q_vec(i) + log_N(iy,ia) - fs(i)*Z(iy,ia);

Eindex(i) = exp(Elog_index(i));

std_index_vec(i) = cv_index(is)*Eindex(i);

resid_index(i) = index(i) - Eindex(i);

std_resid_index(i) = resid_index(i)/std_index_vec(i);

mresid_index(iy1,ia) = resid_index(i);

msd_index(iy1,ia) = std_index_vec(i);

}

//NEGATIVE LOGLIKELIHOODS

//Index OBSERVATION MODEL

vector<Type> del(A);

vector<Type> sd_del(A);
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for(i = 0;i < Ns;++i){

iy = isurvey1(i);

del = vector<Type>(mresid_index.row(i));

sd_del = vector<Type>(msd_index.row(i));

nll += VECSCALE(AR1(ar_index_age(iy)),sd_del)(del);

}

//Landings censored nll;

for(int i = 0;i < Y;++i){

nll-=censored_bounds(log_landings(i),log_landings_pred(i),std_log_landings,

-log_lowerM(i),log_upperM(i));

}

array<Type> temp(Y,A-5);

temp = resid_crl.array();

nll += VECSCALE(SEPARABLE(AR1(ar_crl_age),AR1(ar_crl_year)),std_crl)(temp);

//PROCESS MODEL

//Log recruitS;

nll += SCALE(AR1(ar_logRec),std_log_R)(log_Rec_dev);

//Log F

//yearxage correlation on second:last ages, RW first age;

vector<Type> delF1(35);

vector<Type> delF2(Y-35);

for(int j = 0;j < 35;++j){delF1(j) = log_F_dev(j,0);}

for(int j = 35;j < Y;++j){delF2(j-35) = log_F_dev(j,0);}

nll += AR1(ar_logF1_year)(delF1);

nll += AR1(ar_logF1_year)(delF2);

array<Type> log_F1_dev1(35,A-5);

array<Type> log_F1_dev2(Y-35,A-5);

for(int i = 1;i < A-4;++i){

for(int j = 0;j < 35;++j){log_F1_dev1(j,i-1) = log_F_dev(j,i);}

for(int j = 35;j < Y;++j){log_F1_dev2(j-35,i-1) = log_F_dev(j,i);}

}
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nll += SEPARABLE(AR1(ar_logF_age),AR1(ar_logF_year))(log_F1_dev1);

nll += SEPARABLE(AR1(ar_logF_age),AR1(ar_logF_year))(log_F1_dev2);

//Process error

if(use_pe==1){

nll += VECSCALE(SEPARABLE(AR1(ar_pe_age),AR1(ar_pe_year)),std_pe)(pe);

}

//Useful output

//Biomass and SSB

for(int i=0;i<Y;++i){

for(int j=0;j<A;++j){

B_matrix(i,j) = weight(i,j)*N(i,j);

}}

for(int i=0;i<Y;i++){

for(int j=0;j<A-4;++j){

SSB_matrix(i,j) = mat(i,j)*B_matrix(i,j+4);

}}

for(int i = 0;i < Y;++i){

biomass(i) = zero;

ssb(i) = zero;

for(int j = 0;j < A;++j){

biomass(i) += B_matrix(i,j);

if(j>=4){ssb(i) += SSB_matrix(i,j-4);}

}}

log_biomass = log(biomass);

log_ssb = log(ssb);

//pop size weighted ave F(9-14)

Type tni;

for(int i = 0;i < Y;++i){

aveF_914(i) = zero;

tni = zero;

for(int j =8 ;j < 14;++j){

aveF_914(i) += F(i,j-4)*N(i,j);

tni += N(i,j);

}

aveF_914(i) = aveF_914(i)/tni;
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}

log_aveF_914 = log(aveF_914);

REPORT(N);

REPORT(F);

REPORT(Z);

REPORT(B_matrix);

REPORT(SSB_matrix);

REPORT(biomass);

REPORT(ssb);

REPORT(aveF_914);

REPORT(log_Rec);

REPORT(C_tot);

REPORT(pred_crl);

REPORT(resid_crl);

REPORT(std_resid_crl);

REPORT(p_ya);

REPORT(pya_sum);

REPORT(pi_ya);

REPORT(CW_tot);

REPORT(EC);

REPORT(ECW);

REPORT(landings_resid);

REPORT(log_landings_pred);

REPORT(std_landings_resid);

REPORT(std_log_F);

REPORT(std_pe);

REPORT(std_crl);

REPORT(cv_index);

REPORT(std_index_vec);

REPORT(ar_crl_age);

REPORT(ar_crl_year);

REPORT(ar_logF_age);

REPORT(ar_logF_year);

REPORT(ar_index_age);

REPORT(ar_logRec);

REPORT(ar_pe_year);

REPORT(ar_pe_age);

REPORT(logit_ar_index_age);

REPORT(logit_ar_logF);
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REPORT(logit_ar_crl);

REPORT(logit_ar_pe);

REPORT(logit_ar_logRec);

REPORT(Elog_index);

REPORT(Eindex);

REPORT(resid_index);

REPORT(std_resid_index);

REPORT(mresid_index);

REPORT(msd_index);

REPORT(log_N);

REPORT(log_Rec_dev);

REPORT(log_R);

REPORT(log_F_mean);

REPORT(log_F_dev);

REPORT(log_F1_dev1);

REPORT(log_F1_dev2);

REPORT(delF1);

REPORT(delF2);

REPORT(log_F);

REPORT(pe);

REPORT(log_qparm);

ADREPORT(log_landings_pred);

ADREPORT(log_biomass);

ADREPORT(log_ssb);

ADREPORT(log_aveF_914);

ADREPORT(log_Rec);

ADREPORT(log_N);

ADREPORT(ECW);

ADREPORT(log_qparm);

ADREPORT(log_qparm);

ADREPORT(std_log_F);

ADREPORT(std_pe);

ADREPORT(std_log_R);

ADREPORT(cv_index);

ADREPORT(ar_logF_age);

ADREPORT(ar_logF1_year);

ADREPORT(ar_logF_year);

ADREPORT(ar_pe_year);
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ADREPORT(ar_pe_age);

ADREPORT(ar_logRec);

ADREPORT(ar_index_age);

ADREPORT(ar_crl_year);

ADREPORT(ar_crl_age);

ADREPORT(ssb);

ADREPORT(aveF_914);

return nll;

}

###C++ code for residuals

#include <TMB.hpp>

#include "pnorm4.hpp" //Atomic functions for censored likelihoods

#include <iostream>

template <class Type>

Type trans(Type x){

return Type(2)*invlogit(x)-Type(1);

}

template<class Type>

Type objective_function<Type>::operator() ()

{

//input data;

DATA_MATRIX(M);

DATA_MATRIX(weight);

DATA_MATRIX(mat);

DATA_MATRIX(midy_weight);

DATA_VECTOR(index);

DATA_VECTOR(olandings);

DATA_IVECTOR(iyear);

DATA_IVECTOR(iage);

DATA_IVECTOR(isurvey);

DATA_IVECTOR(isd);

DATA_IVECTOR(is_year);

DATA_IVECTOR(iq);

DATA_VECTOR(fs);

DATA_INTEGER(A);
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DATA_INTEGER(Y);

DATA_INTEGER(Ns);

DATA_ARRAY(crl);

DATA_IVECTOR(isurvey1);

DATA_VECTOR(landings_L);

DATA_VECTOR(landings_U);

DATA_VECTOR(log_landings);

DATA_VECTOR(log_landings_L);

DATA_VECTOR(log_landings_U);

DATA_SCALAR(std_log_landings);

DATA_VECTOR(log_lowerM);

DATA_VECTOR(log_upperM);

DATA_INTEGER(use_pe);

int n = index.size();

Type one = 1.0;

Type zero = 0.0;

//define fixed parameters;

PARAMETER_VECTOR(log_R);

PARAMETER_VECTOR(log_qparm);

PARAMETER_VECTOR(log_cv_index);

PARAMETER(log_std_log_R);

PARAMETER_MATRIX(log_F_mean);

PARAMETER_VECTOR(log_std_log_F);

PARAMETER_ARRAY(log_std_pe);

PARAMETER_ARRAY(log_std_crl);

PARAMETER_VECTOR(logit_ar_index_age);

PARAMETER_VECTOR(logit_ar_logF);

PARAMETER_VECTOR(logit_ar_crl);

PARAMETER_VECTOR(logit_ar_pe);

PARAMETER(logit_ar_logRec);

//define random effects

PARAMETER_ARRAY(log_F_devt);

PARAMETER_ARRAY(log_Nt);

PARAMETER_VECTOR(resid_index);

PARAMETER_MATRIX(resid_crl);

array<Type> log_F_dev = log_F_devt.transpose();

array<Type> log_N = log_Nt.transpose();

// set bounds on parameters
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Type std_log_R = exp(log_std_log_R);

vector <Type> std_log_F = exp(log_std_log_F);

vector<Type> cv_index = exp(log_cv_index);

// Type std_pe = exp(log_std_pe);

// Type std_crl = exp(log_std_crl);

Type ar_logF_age = invlogit(logit_ar_logF(0));

Type ar_logF1_year = invlogit(logit_ar_logF(1));

Type ar_logF_year = invlogit(logit_ar_logF(2));

Type ar_crl_age = invlogit(logit_ar_crl(0));

Type ar_crl_year = invlogit(logit_ar_crl(1));

Type ar_pe_age = invlogit(logit_ar_pe(0));

Type ar_pe_year = invlogit(logit_ar_pe(1));

Type ar_logRec = invlogit(logit_ar_logRec);

vector<Type> ar_index_age = exp(logit_ar_index_age)/

(one + exp(logit_ar_index_age));

//containers

matrix<Type> N(Y,A);

array<Type> pe(Y-1,A-1);

vector<Type> log_Rec_dev(Y);

vector<Type> log_Rec(Y);

matrix<Type> EC(Y,A-4);

matrix<Type> ECW(Y,A-4);

vector<Type> C_tot(Y);

vector<Type> CW_tot(Y);

vector<Type> log_landings_pred(Y);

vector<Type> std_landings_resid(Y);

vector<Type> landings_resid(Y);

vector<Type> Elog_index(n);

vector<Type> Eindex(n);

//vector<Type> resid_index(n);

vector<Type> std_resid_index(n);

vector<Type> log_q_vec = log_qparm(iq);

vector<Type> resid_rec(n);

matrix<Type> p_ya(A-4,Y);

matrix<Type> pya_sum(A-4,Y);

matrix<Type> pi_ya(A-4,Y);

matrix<Type> pred_crl(Y,A-5);
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//matrix<Type> resid_crl(Y,A-5);

matrix<Type> std_resid_crl(Y,A-5);

array<Type> std_crl(Y,A-5);

array<Type> std_pe(Y-1,A-1);

//SD report objects

matrix<Type> B_matrix(Y,A);

matrix<Type> SSB_matrix(Y,A-4);

vector<Type> biomass(Y);

vector<Type> log_biomass(Y);

vector<Type> ssb(Y);

vector<Type> log_ssb(Y);

vector<Type> aveF_914(Y);

vector<Type> log_aveF_914(Y);

//initialize the negative log likelihood

Type nll = zero;

using namespace density;

//to model F (no fishing up to age 5)

matrix<Type> F(Y,A-4);

matrix<Type> Z(Y,A);

matrix<Type> log_F = log(F.array());

int i,j;

for(i = 0;i < Y;++i){

for(j = 0;j < A-5;++j){std_crl(i,j) = exp(log_std_crl(i,j));}

}

for(i = 0;i < Y-1;++i){

for(j = 0;j < A-1;++j){std_pe(i,j) = exp(log_std_pe(i,j));}

}

for(i = 0;i < Y;++i){

for(j = 0;j < A-4;++j){

log_F(i,j) = std_log_F(j)*log_F_dev(i,j) + log_F_mean(i,j);

F(i,j) = exp(log_F(i,j));

}

}

for(int i = 0;i < Y;++i){

for(int j = 0;j < A;++j){

if(j<4){Z(i,j) = M(i,j);}

if(j>=4){Z(i,j)= F(i,j-4)+M(i,j);}
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}}

//compute process errors

for(int i = 1;i < Y;++i){

for(int j = 1;j < A-1;++j){

pe(i-1,j-1) = log_N(i,j) - log_N(i-1,j-1) + Z(i-1,j-1);

}

int j=A-1;

pe(i-1,j-1) = log_N(i,j) - log(exp(log_N(i-1,j-1)-Z(i-1,j-1))+

exp(log_N(i-1,j)-Z(i-1,j)));

}

//calculate recruitment deviations;

for(int i = 0;i < Y;++i){

if(i<=32){log_Rec_dev(i)= log_N(i,0) - log_R(0);}

if(i>32){log_Rec_dev(i)= log_N(i,0) - log_R(1);}

log_Rec(i) = log_N(i,0);

}

for(int i = 0;i < Y;++i){

for(int j = 0;j < A;++j){

N(i,j)=exp(log_N(i,j));}}

//Baranov catch equation predictions and residuals

for(int i = 0;i < Y;++i){

C_tot(i) = zero;

CW_tot(i) = zero;

for(int j = 0;j < A-4;++j){

EC(i,j) = N(i,j+4)*((one - exp(-one*Z(i,j+4)))*F(i,j)/Z(i,j+4));

ECW(i,j) = EC(i,j)*midy_weight(i,j);

C_tot(i) += EC(i,j);

CW_tot(i) += ECW(i,j);

} }

log_landings_pred = log(CW_tot);

landings_resid = log_landings - log_landings_pred;

std_landings_resid = landings_resid/std_log_landings;

//age composition catch

for(int i = 0;i < Y;++i){

for(int j = 0;j < A-4;++j){

p_ya(j,i) = EC(i,j)/C_tot(i);
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Type total;

for(int i = 0;i <Y;++i){

total=zero;

pya_sum(0,i) = one;

for(int j = 1;j < A-4;++j){

total+=p_ya(j-1,i);

pya_sum(j,i) = (one-total);

}}

for(int i = 0;i <Y;++i){

for(int j = 0;j < A-4;++j){

pi_ya(j,i) = p_ya(j,i)/pya_sum(j,i);}}

for(int i = 0;i<Y;i++){

for(int j = 0;j<A-5;j++){

pred_crl(i,j)= log(pi_ya(j,i)/(one - pi_ya(j,i)));

//resid_crl(i,j) = crl(i,j) - pred_crl(i,j);

std_resid_crl(i,j) = resid_crl(i,j)/std_crl(i,j);}}

//Survey index predictions, and residuals;

vector<Type> std_index_vec(n);

matrix<Type> mresid_index(Ns,A);

matrix<Type> msd_index(Ns,A);

int ia,iy,iy1,is;

for(i = 0;i < n;++i){

ia = iage(i);

iy = iyear(i);

is = isd(i);

iy1 = is_year(i);

Elog_index(i) = log_q_vec(i) + log_N(iy,ia) - fs(i)*Z(iy,ia);

Eindex(i) = exp(Elog_index(i));

std_index_vec(i) = cv_index(is)*Eindex(i);

//resid_index(i) = index(i) - Eindex(i);

std_resid_index(i) = resid_index(i)/std_index_vec(i);

mresid_index(iy1,ia) = resid_index(i);

msd_index(iy1,ia) = std_index_vec(i);
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}

//NEGATIVE LOGLIKELIHOODS

//Index OBSERVATION MODEL

vector<Type> del(A);

vector<Type> sd_del(A);

for(i = 0;i < Ns;++i){

iy = isurvey1(i);

del = vector<Type>(mresid_index.row(i));

sd_del = vector<Type>(msd_index.row(i));

nll += VECSCALE(AR1(ar_index_age(iy)),sd_del)(del);

}

array<Type> temp(Y,A-5);

temp = resid_crl.array();

nll += VECSCALE(SEPARABLE(AR1(ar_crl_age),AR1(ar_crl_year)),std_crl)(temp);

ADREPORT(resid_index);

ADREPORT(resid_crl);

return nll;

}


