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ABSTRACT 

Energetic demands, nutritional needs, and the scale of foraging collectively influence 

terrestrial herbivore feeding decisions to meet nitrogen (N) intake requirements. I 

measured moose (Alces alces) selection for distributions of browse N content and 

biomass at three scales. Additionally, I measured snowshoe hare (Lepus americanus) 

preference for browse N content under varying energetic and nutritional demands using 

cafeteria experiments. I predicted that both herbivores would select for N content; this 

selection would be stronger for moose at smaller scales and for hares under greater 

nutritional demands and weaker for moose at larger scales and for hares under greater 

energetic demands. Moose responses did not support my scalar predictions, but I 

uncovered individual-level selection trade-offs. The hare experiments supported my 

energetic and nutritional demand predictions. Collectively, nutrient availability within 

terrestrial systems may influence herbivore movement and behaviours, although 

individuals remain flexible in how they respond to and attain limiting nutrients. 
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CHAPTER 1: GENERAL INTRODUCTION 

1.1 Herbivory from the elemental perspective 

Herbivores are specialised to fuel reproduction and growth with primary producers, 

converting and assimilating the carbon-heavy (C) food source into their more nitrogenous 

(N) and phosphorous (P) tissues (Figure 1.1; Elser et al. 2000; Boersma et al. 2008; 

Rizzuto et al. 2019). To do so, herbivores have digestive adaptations: large flat teeth, 

rumens, enlarged cecums, and elongated intestines (Barboza et al. 2009). Additionally, 

they display complex behavioural adaptations and must, with some flexibility, consume 

large quantities of the mismatched food (Fagan et al. 2002; Sterner and Elser 2002; 

Parker et al. 2009) while selecting for food of higher N and P compositions, i.e. quality 

(Figure 1.1; Ball et al. 2000; Schatz and McCauley 2007; Nie et al. 2015). Herbivore 

food intake represents the removal of plant biomass and thus availability of leaf litter 

(Hawlena et al. 2012), as well as the productivity of herbivore populations (DeMott et al. 

1998; McArt et al. 2009; Felton et al. 2018) and thus resources for predators. Therefore, 

the flexibility of intake and food choices by herbivores is an ‘ecologically relevant trait’ 

(Hawlena and Schmitz 2010) that influences productivity at all trophic levels (Schmitz et 

al. 2018). 

1.2 Herbivore feeding preferences 

Plants are abundant in most terrestrial ecosystems, but vary in terms of quality at 

many levels of biological organization; herbivores respond to this variation. For example, 

seasonally-driven temporal variation in forage quality across landscapes or regions 
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predicts large herbivore migrations (Hebblewhite et al. 2008). Within an individual plant, 

herbivores may select certain plant organs and reject others (Bryant and Kuropat 1980). 

Generalist browsers often prefer some species over others (Rodgers and Sinclair 1997), 

and within a species, may select for individuals on the basis of age class (Bryant et al. 

1985) or even genotype (Laitinen et al. 2002). Studies most often test foraging 

hypotheses by measuring herbivore feeding across plant species. Less is known regarding 

how quality variation within a plant species may affect herbivore fitness or forage choice. 

In systems with constant external influences such as predation risk, herbivore 

foraging choices are primarily driven by forage properties. While feeding preferences by 

herbivores can be explained by various plant chemical components including plant 

secondary compounds (PSCs; Bryant et al. 1985; Schmitz et al. 1992), fibre (Hodges and 

Sinclair 2003), sodium (Worker et al. 2015), calcium (Nie et al. 2015), and protein 

content (a correlate to N; Felton et al. 2009), ecosystems are often N and P-limited 

(White 1993; Elser et al. 2000) and herbivores are generally found to select for N and P. 

For example, Daphnia pulex forage more in areas with algae of higher P composition 

(Schatz and McCauley 2007) and N fertilization of forest increases usage by moose 

(Alces alces) and snowshoe hare (Lepus americanus; Ball et al. 2000). In fact, terrestrial 

herbivores are thought to be N-limited along with their ecosystems, and show higher 

fitness in areas with greater N-availability (e.g. McArt et al. 2009). Measuring herbivore 

responses to plant elemental compositions, like N and P, quantifies the ecologically 

relevant trait of feeding choice. Elements are common across trophic levels and between 

the abiotic-biotic divide (Sterner and Elser 2002). If mammalian herbivores show 
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interspecific selection on the basis of N and P and intraspecific selection for plants of N 

and P treatments (e.g. Schmitz et al. 1992), then they should favour, within a single 

species, those of naturally higher N and P content. 

1.3 A consideration for scale 

Herbivores make feeding decisions according to the scale of forage selection. 

Starting at the first order of selection, a species’ geographic range, resource selection by 

individuals refines to the home range level, or second order selection, and within-home 

range level, or third order selection (Johnson 1980). Herbivores continue to make choices 

between patches and bites of forage (Bailey et al. 1996). At the finer scales of foraging, a 

herbivore makes more frequent choices dependent on the information available at the 

given scale (Senft et al. 1987; Rettie and Messier 2000). It is therefore assumed, that 

coarser factors that mainly influence forage biomass impact selection at larger scales 

while finer factors that pertain to forage quality affect selection at smaller extents (Senft 

et al. 1987; Bailey et al. 1996; van Beest et al. 2010). For example, Wilmshurst et al. 

(1999) found that wildebeest large-scale movements correspond with an energy-

maximizing strategy based on grass height, but at the smaller extent, wildebeest selected 

areas based on grass greenness and not height. As a result, predictions of herbivore 

feeding choices must be scale specific, and foraging patterns of a species should be 

measured at multiple scales. If elemental measures of forage are to aid nutritional ecology 

and foraging theory, they should have some predictive power at multiple scales.  
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1.4 A consideration for physiological influences 

Within a scale of foraging, herbivores individuals vary in feeding choices as a 

reflection of physiological processes, needs, and limitations. Most notably, conspecifics 

can differ in metabolic rate due to their external environment, life stage, season, and body 

condition (Kooijman 2009). Metabolisms increase in endotherms experiencing 

temperatures outside their thermal neutral zone (Chappel and Hudson 1978; Sheriff et al. 

2009), reproducing mammalian females (Speakman and McQueenie 1996), and animals 

with larger body masses (Peck et al. 2005; Speakman 2005). As animals feed to maintain 

bodily functions and production, their feeding behaviours should reflect their energetic 

demands (Hillebrand et al. 2009; Sperfeld et al. 2017). For example, lactating mice (Mus 

musculus) show 311% higher feeding rates than non-reproducing female mice (Speakman 

and McQueenie 1996). We should expect that herbivores become less preferential 

towards plant qualities when feeding under heightened energetic demands because of 

increased intake requirements limit the herbivore in how selective they can be (Barboza 

et al. 2009). Increased cortisol production from stress may also increase metabolic rates 

of animals (DuRant et al. 2007). Predation-induced stress, with metabolic rate the 

mechanism, is hypothesized to cause an increase in selection for energy-dense, digestible 

carbohydrates or C by herbivores (D. Hawlena and Schmitz 2010).  

Foragers must maintain the intake of various plant components or currencies 

when feeding (Felton et al. 2018) and if a herbivore experiences a deficit of a particular 

currency, it should modify its feeding choices to increase the intake of such currency 

(Barboza et al. 2009; Hillebrand et al. 2009; Wagner et al. 2013). Individuals of one 
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region or locality can be limited in a given dietary compound more than conspecifics of 

another location. For example, McArt et al. (2009) found that two regions of Alaska, 

USA had a 23% difference in available protein for moose and modelled that moose from 

the region of higher protein availability gained more lean mass over the growing season. 

System nutrient and mineral availability likely influences the feeding decisions of 

herbivores (Wagner et al. 2013). Conspecifics likely interact with their plant communities 

differently based on energetic and dietary demands. 

1.5 The boreal system 

The boreal system is ideal for testing hypotheses of herbivore intraspecific 

feeding choices under scalar, energetic, and nutritional constraints using resource 

elemental measures (C, N, P). The boreal forest has a short growing season, long winters, 

and low nutrient availability. As the planet’s largest terrestrial biome, the boreal covers 

11% of Earth’s terrestrial surface (Bonan and Shugart 1989) and is responsible for 22% 

of global forest carbon sinks (Pan et al. 2011). The low ambient temperatures, soil 

temperatures, and solar angles cause low plant growth rates. Few plant species, 

particularly trees, can prosper under the restricted growing conditions and low nutrient 

availability of the boreal, causing low plant diversity (Bonan and Shugart 1989) and 

likely more intraspecific choice by herbivores. 

Herbivores, like the moose and snowshoe hare, respond to the low food quality by 

selecting plant species, individuals, or patches with higher protein or N concentrations 

(Ball et al. 2000; Seccombe-Hett and Turkington 2008; Wam et al. 2018). Indeed, N and 



6 

 

protein have been hypothesized to be primary limiting agents for both moose and 

snowshoe hares (Sinclair and Smith 1984; Schwarts et al. 1987; McArt et al. 2009), and 

these two species have been subject to many foraging studies or models (Sinclair et al. 

1982; Moen et al. 1997; Rodgers and Sinclair 1997). Unlike many boreal herbivores, 

moose and snowshoe hares do not hibernate during the cold winters to endure the food 

shortages (Humphries et al. 2017) and summertime foraging must balance the loss of 

body condition during winter (Whittaker and Thomas 1982; Moen et al. 1997); Moose 

must maintain high feeding intake rates (Belovsky 1984; Schwarts et al. 1987), which can 

cause areas of high moose density to become over-browsed (McInnes et al. 1992; Ellis 

and Leroux 2017). Snowshoe hares have high and variable metabolisms (Sheriff et al. 

2009) and carry only a few days’ worth of fat and protein reserves, requiring them to 

make frequent feeding decisions to sustain a body homeostasis (Whittaker and Thomas 

1982). Snowshoe hares, like moose, can reduce plant density via foraging but for smaller 

understory plants or seedlings (Olnes and Kielland 2016). The moose and snowshoe hare, 

who remove plant biomass at different rates are both constrained by food quantity and 

quality, but moose are particularly limited by intake rate and hares by food composition 

(Figure 1.1). 

1.6 Thesis Overview 

In this thesis I test if moose and snowshoe hares exhibit intraspecific selection for 

forage elemental measures at four different scales. At the landscape, home range, and 

patch extents, I measure moose selection for white birch (Betula papyrifera) quantity C 

(g/m2), to proxy biomass, and nitrogen composition (%), to proxy quality, achieved using 
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moose collar data and stoichiometric distribution models (StDMs) which predict plant 

stoichiometry from remotely sensed landscape variables (Leroux et al. 2017). 

Specifically, using moose, I test the hypothesis that large herbivore selection for forage 

quantity should decrease and selection for forage quality should increase as the scale of 

foraging refines. At the bite-level, using snowshoe hare cafeteria experiments, I measure 

snowshoe hare consumption between two offerings of black spruce (Picea mariana) of 

differing N and P compositions. The spruce offerings were from the snowshoe hare 

trapping grid used to capture study individuals. Here, I also account for traits known to 

affect the energetic and nutritional demands of mammals. I test the hypotheses that 

individuals under high energetic demands should be less preferential to forage N and P, 

while those under higher N and P demands should be more selective for forage N and P. 

My thesis tests scalar, nutritional, and energetic effects on herbivore diet choice, using 

the unifying currency of elements, bridging nutritional ecology, or animal behavioural 

and physiological responses to ecosystem-level processes, and ecological stoichiometry, 

or the internal regulation by organisms to maintain stoichiometric. 
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Figure 1.1. A snowshoe hare (A) and a moose (B) foraging in the boreal forest. Here, as 

the snowshoe hare, whose body is approximately 11.2% nitrogen (i.e. N; Rizzuto et al. 

2019), chooses its bite, it selects the browse of higher nitrogen (N) composition. The 

moose chooses to forage in a patch with browse of relatively high nitrogen composition, 

and its feeding decisions balance the carbon and nitrogen losses from protein synthesis, 

respiration, and excretion. 
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CHAPTER 2: QUANTITY-QUALITY TRADE-OFFS REVEALED USING A 

MULTISCALE TEST FOR HERBIVORE RESOURCE SELECTION ON 

ELEMENTAL LANDSCAPES 

2.1 Abstract: 

Herbivores consider the variation of forage qualities (nutritional content and digestibility) 

as well as quantities (biomass) when foraging. Such selection patterns may change based 

on the scale of foraging, particularly in the case of ungulates that forage at many scales. 

To test selection for quality and quantity in free-ranging herbivores across scales, 

however, we must first develop landscape-wide quantitative estimates of both forage 

quantity and quality. Stoichiometric distribution models (StDMs) provide an opportunity 

to address scalar hypotheses because they predict the elemental measures and 

stoichiometry of resources at landscape extents. Here, we use StDMs to predict elemental 

measures of understory white birch quality (% nitrogen) and quantity (g carbon/m2) 

across two boreal landscapes. We analysed GPS collared moose (n = 14) selection for 

forage quantity and quality at the landscape, home range, and patch extents using both 

individual and pooled resource selection analyses. Based on existing literature, we 

predicted that as the spatial extent of foraging decreased from the landscape to the patch, 

selection for white birch quantity would decrease and selection for quality would 

increase. Counter to our prediction, pooled-models showed selection for our estimates of 

quantity and quality to be neutral with low explanatory power and no scalar trends. At the 

individual-level, however, we found evidence for quality and quantity trade-offs, most 

notably at the home range scale where resource selection models explain the largest 
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amount of variation in selection. Furthermore, individuals did not follow the same trade-

off tactic, with some preferring forage quantity over quality and vice-versa. Such 

individual trade-offs show that moose may be flexible in attaining a limiting nutrient. 

Furthermore, our findings suggest that herbivores may respond to forage elemental 

compositions and quantities, giving tools like StDMs merit towards animal ecology 

applications. The integration of StDMs and animal movement data represents a promising 

avenue for progress in the field of zoogeochemistry. 
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2.2 Introduction 

Finite energy and material within ecosystems forces constraints upon all trophic levels. 

Heterotrophs are left to optimize their energy intake with strategic foraging and evolved 

digestive tracts (Werner and Hall 1974; Pyke, Pulliam, & Charnov, 1977). For 

herbivores, digestion of plant material proves challenging because, while producers 

consist mostly of carbon-based compounds, consumers consist of proportionally more 

nitrogenous and phosphorous compounds. Thus, primary consumers must eat relatively 

large amounts of producer matter to meet their body composition requirements (Barboza, 

Parker, & Hume, 2009; Fagan et al., 2002; Sterner & Elser, 2002). Additionally, access to 

plant matter of higher digestibility and assimilation efficiency can contribute to higher 

animal growth rates, survival, and reproductive outputs (McArt et al., 2009; Parker, 

Barboza, & Gillingham, 2009; Wam, Felton, Stolter, Nybakken, & Hjeljord, 2018). As a 

result, herbivores have evolved strategies to forage based on both plant qualities (i.e., 

digestive efficiency or palatability) and quantities (i.e., biomass or abundance; Parker et 

al. 2009). However, growing conditions can influence the fine-scaled, nutritional 

compositions of plants, limiting our ability to measure and map plant quality across 

landscapes. Large herbivores forage at multiple spatial scales, from the landscape to the 

bite-level (Johnson, 1980; Senft et al., 1987), and likely respond differently to plant 

quantities and/or qualities across scales, collectively influencing their ecosystem effects 

(Estes et al., 2011; Schmitz et al., 2018). 

Herbivores display foraging tactics that consider plant qualities along with 

quantities because both can be limited, but the strategy for food acquisition may depend 
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on the scale of foraging (Cruz-rivera & Hay, 2000; Hebblewhite, Merrill, & McDermid, 

2008; Van der Wal et al., 2000; Wilmshurst, Fryxell, Farm, Sinclair, & Henschel, 1999). 

In terrestrial landscapes, plant biomasses and nutritional contents may depend on 

environmental factors such as habitat type (Sardans, Rivas-Ubach, & Peñuelas, 2011), 

soil nutrients (Fan et al., 2015; Sardans et al., 2011), elevation (Yang, Huang, Zhang, & 

Cornelissen, 2015), or slope (Leroux et al., 2017), creating a heterogeneous distribution 

of plant quantities and qualities. When the two forage properties do not positively 

correlate across a landscape, herbivores should adopt one of multiple strategies: either 

balancing selection between quantity and quality; or selecting one over the other. An 

individual’s tactic for quantity and quality selection is likely to depend on scale because 

information available for decision-making increases in resolution with reducing scales of 

foraging (Rettie & Messier, 2000; Senft et al., 1987). The scalar hypothesis predicts that 

coarser factors influence larger scaled foraging decisions, and such factors are often those 

that affect forage quantities, such as climate, water bodies, and plant biomass (Bailey et 

al., 1996; Wilmshurst et al., 1999). Additionally, finer factors that influence smaller 

scaled foraging decisions, e.g., patch use or bite choice, are often quality-related 

indicators, like plant morphology, palatability, nutrient content, and secondary 

compounds (Bailey et al., 1996; Senft et al., 1987; Verheyden-Tixier et al., 2008; 

Wilmshurst et al., 1999). Thus, herbivores are likely to show selection for plant quantities 

at the larger scales of foraging, and are more likely to exhibit selection for plant quality 

as the scale of foraging reduces (van Beest, Mysterud, Loe, & Milner, 2010).  
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Testing selection for plant qualities across multiple scales of foraging remains 

challenging in many systems because measuring plant quality at larger spatial extents 

may not always be feasible. Plant biomass has been estimated or measured across larger 

spatial extents in various ecosystems (Fortin, Fryxell, O’Brodovich, & Frandsen, 2003; 

Lone et al., 2014), often for forestry purposes (Foroughbakhch, Reyes, Alvarado-

Vázquez, Hernández-Piñero, & Rocha-Estrada, 2005). Unlike measures of quantity, 

which use units of mass or abundance, measures of quality are less comparable because 

they use contents or concentrations of different internal components such as energy 

(Fryxell, 1991), protein (Felton et al., 2009), fertilization (Ball, Danell, & Sunesson, 

2000; Nie et al., 2015), lignin (Fahey & Hussein, 1999), or secondary compounds 

(Behmer, Simpson, & Raubenheimer, 2009). Meanwhile, Weisberg and Bugmann (2003) 

highlight the need for an “accurate database of the spatial heterogeneity of available 

forage of varying quality, over the same fine scales as are modeled” (p. 4) as a way to 

measure quality in the context of foraging strategies for ungulates. However, due to 

landscape data limitations, studies remotely measuring ungulate responses to spatial 

distributions of forage usually default to plant species categorizations as estimates of 

forage quality and subsequently disregard intraspecific variation in quality (for example 

van Beest et al. 2010). While using browse species is not an incorrect way to capture 

quality variation, it limits which foraging scales a study can investigate, findings may not 

be comparable across systems, and model responses to categorical variables cannot be 

directly compared to those of continuous variables. 
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Plant elemental compositions offer the opportunity to describe both interspecific 

and intraspecific variation of forage quality in a continuous manner. Plant nitrogen 

content is a common elemental measure to correlate with forage quality because nitrogen 

is a limited nutrient in terrestrial ecosystems, required for protein synthesis, and needed 

in higher proportion by animals relative to plants (Fagan et al. 2002; Sterner and Elser 

2002). Elements are a base unit for all living organisms, and heterotrophs rearrange 

element components they consume into compounds they require. Thus, the direct 

nutritional driver behind foraging may best observed by measuring selection for nitrogen 

content rather than composite currencies or nutritional compounds (Felton, Wam, Stolter, 

Mathisen, & Wallgren, 2018). However, studies which measure herbivore responses to 

plant nitrogen contents often do so with small-bodied herbivores (Schatz & McCauley, 

2007), use smaller scales of observation (Nie et al., 2015), or are otherwise restricted to 

experimental conditions (Ball et al. 2000; but see Moore et al. 2010, Champagne et al. 

2018). Certain technological developments, such as high-resolution airborne imaging 

spectroscopy, have made landscape-wide mapping of nitrogen content possible, but only 

in ecosystems where the forage is aerially visible (Schweiger et al. 2015). Recently 

developed methods, termed Stoichiometric Distribution Models (StDMs; sensu Leroux et 

al. 2017) present a solution by modeling understory plant elemental quantities and 

compositions across landscapes, allowing for variation in both forage quantities and 

qualities to be predicted across landscapes.  

Here, we used StDMs to investigate selection strategies of forage quantity and 

quality, across multiple spatial extents for a large, wide-ranging, understory browsing 
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mammal. We studied a moose (Alces alces) - white birch (Betula papyrifera) system on 

the island of Newfoundland, Canada, and measured individual moose resource selection 

in relation to understory white birch availability at the landscape, home range, and patch-

scales. Our landscape-wide estimates of available forage for white birch quantities and 

qualities derive from the continuous elemental predictions of the StDMs. Our objective 

was not to create highly predictive, cross-season moose resource selection models, but to 

test the relationship between moose habitat selection patterns and distributions of browse 

in terms of browse elemental predictors for quantity and quality across multiple foraging 

scales. To do so, we measured moose resource selection during the short temporal 

window of the early growing season in Newfoundland as this was the temporal window 

of the StDM predictions.  We predicted that if moose show selection for white birch 

quantity and quality, their selection for quantity would be highest at the landscape extent 

and decrease when refined to home range and then patch extents, while the reverse would 

be true for white birch quality selection (van Beest et al., 2010). We also predicted that 

quantity-quality trade-offs may occur, but the direction of such trade-offs would depend 

on the scale of foraging; at no scale should there be negative selection for both plant 

quantity and quality (Figure 2.1). Collectively, this study represents an opportunity to test 

the foraging strategies of an ungulate species under non-experimental conditions by 

linking the biogeochemical landscape to herbivore movements. 
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2.3 Methods  

2.3.1 Study Region and Moose Collaring 

This study took place on the northern peninsula of the island of Newfoundland, 

Canada (Figure 2.2). Dominant tree species of this region include black spruce (Picea 

mariana), balsam fir (Abies balsamea), and white birch, which is the primary forage for 

moose during the early summer months (Dodds, 1960). We collared 14 adult moose 

(male = 4; female = 10) in this region between 2011 and 2015 with GPS collars set to 

take locations every two hours. Each individual was collared for the duration of one year 

(2011 n=5; 2013 n=1; 2014 n=5; 2015 n=3; Table A1). The 14 moose collars were 

deployed in two areas approximately 300 km apart within the island of Newfoundland: 

Plum Point study area (PP; n = 7) and Old Man’s Pond (OMP; n = 7; Figure 2.2). Three 

additional moose were collared in a third study area (Leroux et al., 2017), but we did not 

use these data because there were too few moose individuals to test our predictions. The 

boundaries of each study area were delineated using minimum convex polygons (MCPs) 

at 95% around all of their respective moose fixed locations. MCPs returned total areas of 

514 km² and 393 km² for the PP and OMP study areas respectively (Figure 2.2).  

2.3.2 Forage quantity and quality measures  

We used spatial predictions from StDMs (i.e., Stoichiometric Distribution 

Models), a method for predicting resource elemental compositions and quantities across a 

landscape, to represent forage resources in this study (Leroux et al., 2017). We clipped 

white birch leaves from the browsing heights (0.3-2.0 m) of 1-6 individuals at 10 m 

radius plots (n = 106) across the Plum Point study area. Sampling was constrained to a 
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small temporal window (June 30 and July 7 2015) representing green-up time to 

minimize temporal variation in foliar elemental composition due to senescence. At each 

plot, we measured densities of three size classes of white birch by height (0.3-0.5 m; 

0.51-1 m; 1.01-2 m). We estimated biomass for each age class by measuring standing 

stocks (all leaves between heights 0.3- 2.0 m) from a sample of trees and then used these 

estimates to calculate total white birch biomass for each plot (Leroux et al., 2017). 

Ground-collected samples were then sent to the Agriculture and Food Laboratory at 

University of Guelph (Guelph, Ontario, Canada) and analysed for carbon, nitrogen, and 

phosphorus compositions (%). Using the biomass estimates and measured elemental 

compositions, we calculated elemental quantities (g/m²) for each plot. Lastly, the carbon, 

nitrogen, and phosphorous quantities (g/m²) and compositions (%) of newly developed 

understory white birch growth (June 1st - July 16th) were fit to six landscape predictors 

across the two study areas of our moose collar data (Leroux et al., 2017). Landscape 

predictors included three abiotic features- normalized aspect, slope, and elevation- and 

three biotic features- landcover, stand height, and dominant tree species (see Table A1 for 

StDM covariate details). Because our plant data derives from StDMs fit for the specific 

temporal window of early summer, we subset all collar data to only include fixes from 

that same temporal window (June 1st to July 16th).  There was a mismatch of year 

between some individual moose GPS collar data and forage data from StDMs (1-4 years, 

mean = 1.93). The six-explanatory landscape variables that predicted forage elemental 

measures in the StDMs are fairly static in this system relative to the 4-year window of 

mismatch. We assume the relative StDM predictions to remain consistent within this 4-
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year window (i.e., areas with high quantity of white birch in year t will also have high 

quantity in year t+1), but also assume moose response findings to be conservative given 

inter-annual climatic variation. Leroux et al. (2017) further explains the details of plant 

sampling, elemental measure calculations, and model fitting.  

We used final StDM spatial predations of reasonably strong fits (R2). To represent 

forage quantity, we used StDM predictive surfaces of white birch carbon quantity (log 

g/m2; R2 = 0.28) because carbon is the most abundant element in plant matter. To 

estimate forage quality, we used StDM predictive surfaces of white birch nitrogen 

composition (%; R2 = 0.31) and assume nitrogen concentration to positively correlate 

with browse quality (Ball et al., 2000; Mattson, Jr., 1980; McArt et al., 2009). While this 

method does not account for plant secondary metabolite (PSM) concentrations, moose 

have been found to be nitrogen-constrained (McArt et al., 2009). Betula species favour 

using carbon-based PSMs (Palo, 1984), have also been experimentally shown to be 

nitrogen-limited, and display most PSMs at higher concentrations under greater UV 

exposure rather than greater nitrogen fertilizer (Keski-Saari, Pusenius, & Julkunen-Tiitto, 

2005). Since plants often acquire fibre and lose nutritional content as they gain biomass 

during the growing season, (Hebblewhite et al., 2008), we also tested for negative 

correlations (Pearson’s r) between our white birch quantities and qualities which could be 

driven by static, landscape variation in plant age.  

2.3.3 Defining the scales of foraging 

To test if moose selection for quantity or quality of forage changes depending on 

the scale of foraging, we examined moose resource selection at the landscape, home 
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range, and patch extents, or second, third, and 3.5th order selection according to the 

Johnson (1980) framework. We used the R statistical program for all analyses (version 

3.5.1; R Core Team 2018). We designated each study area, either Plum Point or Old 

Man’s Pond, to be the ‘landscape’ for its moose individuals. We calculated ‘home range’ 

extents for each individual with MCPs at 95% around all GPS fixes within the time 

window of this study (June 1st-July 16th) using the R package “adehabitatHR” (Calenge, 

2006). Lastly, we defined our highest resolution of forage landscape data, 30 m x 30 m 

pixels, to be ‘patches’, or the immediate area around a sample or GPS fix point. We did 

not collect plant data in waterbodies, wetlands, roads, etc. and did not use StDMs to 

predict forage values in these habitats (Leroux et al. 2017). Therefore, we also cleaned 

moose GPS data to remove points that did not have predicted StDM values, and the same 

was done for all additional sample points created to test resource selection at each scale. 

We used two types of resource selection analyses and the same predictive StDM 

landscape layers to test selection at all three scales (Figure 2.1; Figure A1). 

2.3.4 Forage selection: landscape extent 

At the landscape, our study’s largest spatial extent, foraging decisions include 

where an animal places its home range (Boyce, 2006; Johnson, 1980). To test if home 

ranges differ in the availability of forage quantities and qualities compared to the 

landscape, we used a resource selection function (RSF), a model which compares used 

and available locations of an organism and can be fit with logistic regression by assuming 

the exponential function:  

𝑤(𝑥) = 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑘𝑥𝑘) 
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with xj representing resource variables j = 1, 2…k and βl representing model coefficients l 

= 0, 1 …k (McLoughlin, Morris, Fortin, Vander Wal, & Contasti, 2010). 

We defined available points to be within study areas, or ‘landscapes’ (i.e., PP and 

OMP), and used points to be within home ranges (Dupke et al. 2017; Figure A1). We 

sampled available points from study areas randomly at 22 points per km². We sampled 

using points from home ranges in a uniform grid at 70 points per km², using the 

“spsample” function in the “sp” R package (Bivand, Pebesma, & Gomez-Rubio, 2013). 

At each point, we extracted the values for white birch quantity carbon (log g/m²) and 

nitrogen composition (%) from our predictive StDM landscape layers. We employed an 

RSF to compare used and available moose points with explanatory variables being carbon 

quantity and nitrogen composition and their interaction term. The logistic regression was 

fit, using the “glm” function (family = binomial, link = logit) in the R statistical program 

for each study area and its respective seven home ranges and once with data from both 

study areas and all 14 home ranges. 

2.3.5 Forage selection: home range extent 

Our next, finer-scale of foraging was the home range. At this scale, we sought to 

investigate if areas used by a moose differ to the availability of forage quantities and 

qualities of its total home range (Johnson, 1980). To do so, we defined available points to 

be within home ranges, using the same method completed to sample used points in the 

landscape-scale analysis. We defined used points to be collar fixes (Dupke et al. 2017; 

Figure A1). At each point, we extracted the white birch carbon quantity and nitrogen 

composition measures from our predictive StDM landscape layers. We fit the RSF using 
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a logistic regression with the ‘glm’ function in the R statistical program for each of the 

14-individual moose and once with all individual data from both study areas pooled 

together. Explanatory variables were carbon quantity and nitrogen composition and their 

interaction term, like in the landscape scale. 

2.3.6 Forage selection: patch extent 

The last, and most restricted extent of foraging we investigated was the patch in 

which foraging decisions include the animal’s choice of a patch (i.e., 30 m x 30 m pixel) 

over those available at the time of selection (Charnov, 1976). Here, we adopt an 

integrated step selection analysis (iSSA) to ask if moose select patches of certain forage 

quantities or qualities over others (Avgar, Potts, Lewis, & Boyce, 2016). The iSSA pairs 

each used location to a set number of random locations the moose could have viably 

visited instead based on the distributions of the individual’s total step lengths and turn 

angles (Avgar et al., 2016). This technique of sampling from the animal’s natural range 

of movement speeds, or step lengths, and trajectories, or turn angles, allows for a more 

precise estimation of fine scale resources available to that animal at a given location.  

We performed iSSA with the ‘amt’ R package (Signer, Fieberg, & Avgar, 2019). 

First, we transformed the used fixes into 2-hour steps (straight line distances between 

consecutive locations). Prior cleaning of the data created some temporal gaps in between 

GPS fixes, so we eliminated any steps that had a time difference greater than two hours. 

A gamma distribution of step lengths (the log transformed value represents the scale 

parameter) and a von Mises distribution of cosine-transformed turn angles were used to 

describe movement behaviour (speed and directionality respectively) of individuals. 
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From each start point, 10 available step locations were calculated by randomly extracting 

step lengths and turn angles from such distributions. We then extracted the white birch 

carbon quantity and nitrogen composition measures from our predictive StDM landscape 

layers at all step end locations. Used points were paired to the generated available points 

in the conditional logistic regressions. Explanatory variables for the model included the 

quantity carbon values, nitrogen compositions, step lengths, turn angles and all 

combinations of interaction terms. We fit the conditional logistic regression model, using 

the ‘clogit’ function in the R ‘survival’ package, for each of the 14-individual moose and 

once with all individual data from both study areas pooled together (Therneau & 

Grambsch, 2000). 

 

2.4 Results 

2.4.1 Descriptive results 

The mean predicted quantity carbon of white birch forage from the PP (514 km2) 

and OMP (393 km2) study areas were 0.23 g/m2 and 0.35 g/m2 respectively. The 

maximum quantity carbon was 4.09 g/m2 in PP and 3.53 g/m2 in OMP while minimum 

values were 0.024 g/m2 for PP and 0.021 g/m2 for OMP. The mean white birch nitrogen 

concentration in PP was 2.82% and 2.74% in OMP. Maximum nitrogen content values 

were 3.61% and 3.78% and minimum nitrogen contents were 1.89% and 1.59% for the 

PP and OMP study areas respectively. The average size of a moose individual’s home 

range for our study’s time frame (June 1st-July 16th) was 12.36 km2 for PP individuals 

and 11.07 km2 for OMP individuals (Table A3).  
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We used selection coefficients from our resource selection analyses to assess the 

direction and strength of moose selection for white birch quantities and qualities and 

pseudo R2 to assess the strength of our selection analyses. R2s from the patch extent 

iSSAs cannot be directly compared to landscape and home range RSFs because of the 

different model types used (i.e. conditional logistic regression vs. logistic regression). 

Positive coefficients represent positive selection for the resource, negative coefficients 

represent avoidance of a resource, and near-zero coefficients represent neither selection 

for nor against a resource. Interaction coefficients represent selection trade-offs between 

quantity and quality with positive interactions representing a preference for forage 

quantity over quality and negative interactions representing the reverse. Collectively, we 

found differing directions and magnitudes of selection for birch quantity and quality, with 

models showing a wide range of explanatory powers depending on the spatial extent 

(landscape- home range- patch) and sample-level (individual or pooled). 

2.4.2 Landscape Extent 

Selection coefficients for quantity carbon were -0.02 in PP, and -1.03 in OMP. 

Selection coefficients for nitrogen composition were -1.00 in PP and 2.01 in OMP. Our 

RSFs explained 1.6% and 3.2% of the variation for PP and OMP respectively. The 

pooled model, using data from both study areas had virtually no explanatory power (R2 = 

0.007) and selection coefficients for quantity carbon and nitrogen composition were -1.66 

and 1.32 respectively (Table 2.1).  
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2.4.3 Home Range Extent 

At the home range-level is where moose individuals showed the strongest 

selection. Individuals showed a large range of selection for both forage properties, with 

carbon selection coefficients ranging from -10.8 to 17.0 and nitrogen selection 

coefficients ranging from -13.4 to 8.6 (Figure 2.3, Table 2.1). Up to 18% of variation was 

explained in individual models, but some individual models had no explanatory power 

(pseudo R² 0.009-0.18; Table 2.1). No individuals negatively selected nor positively 

selected for both quantity carbon and nitrogen composition; highly positive selection for 

one component is paired with a negative selection of its counterpart and vice versa 

(Figure 2.4). For individual models, pseudo R2s did not relate to the number of available 

points for individual RSFs (t = -0.77; p = 0.46). The pooled-sample model shows weaker 

selection (Cβ = 1.84, Nβ = -0.88) and virtually no explanatory power (R2 = 0.006; Table 

2.1).  

2.4.4 Patch Extent 

Selection coefficients from the patch-scale iSSAs ranged from -5.22 to 7.77 and -

6.32 to 11.87 for white birch quantity carbon and nitrogen composition respectively 

(Figure 2.3; Table 2.1; Coefficients for step length, turn angle, and their interactions with 

white birch carbon and nitrogen in Table A4). Individual models explained from zero to 

3.9% of selection (pseudo R2; Table 2.1). Similar to the home range-scale, most 

individuals did not show simultaneous negative or positive selection for both birch 

characteristics, but with a somewhat smaller range of coefficient values (Figure 2.4). For 

individual models, pseudo R2s did not significantly relate to the number of available 
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points for individual RSFs (t = -1.95; p = 0.075). The pooled-sample model shows little 

to no selection (Cβ = 1.11, Nβ = -0.42) and no explanatory power (R2 = 0.001; Table 

2.1).  

2.4.5 Interaction Coefficients and Comparison of Scales 

The large range of individual coefficients for both carbon and nitrogen measures 

create a lack of trend between scale and quantity-quality selection in the pooled models 

(Figure 2.3). Within a scale, individual models with the strongest selection trade-offs 

(|interaction β-coefficient|) often had higher explanatory power (Figure 2.4). Based on the 

interaction coefficients (positive values representing selection for quantity in avoidance 

of quality), trade-off tactics of individuals did not tend to change between the home range 

and patch extents: carbon-nitrogen interaction coefficients typically converged towards 

zero with only two individuals switching their trade-off strategy (Figure 2.5). We did not 

find repeated cases of negative correlations between predicted white birch quantity 

carbon and nitrogen composition from study areas and home ranges (Pearson’s r; Table 

A2). These home range white birch correlation values did not have any significant effect 

on the respective individual model interaction coefficients (linear model weighted by 

standard error; t = -0.523, p = 0.605).  

 

2.5 Discussion 

Herbivore foraging strategies reflect the physiological challenge of converting carbon-

heavy matter into more phosphorous and nitrogenous tissues: the tendency to select for 

plant compositions of higher N and P or plant quantities (Nie et al., 2015). We tested 
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moose resource selection of forage nitrogen content and forage abundance at multiple 

scales using elemental measures of white birch nitrogen composition (%) and quantity 

carbon (log g/m²) respectively. We found support for our prediction that negative 

selection for both carbon quantity and nitrogen contents would not occur at any scale, but 

likewise found no instances of individuals selecting positively for both measures, which 

we predicted would occur at all scales (Figure 2.4). Unlike findings by van Beest et al. 

(2010), there was no distinct trend between forage selection strategy and scale (Figure 

2.3). Instead we found considerable individual variation: at the home range-scale, 

individual moose favoured either quantity or quality at the expense of the other, with both 

trade-off directions expressed at similar magnitudes (Figure 2.4). Such individual 

variation should not be overlooked given moose have significant effects on plant biomass 

and productivity (Ellis & Leroux, 2017), and intraspecific diversity in functional traits 

can influence total ecosystem processes (Raffard, Santoul, Cucherousset, & Blanchet, 

2019). 

At the home range-scale, we found the strongest selection of white birch nitrogen 

concentration and biomass (quantity carbon), showing both negative and positive 

responses for either by individual moose (R² < 0.18). Consequently, we find evidence 

that moose display distinct quantity-quality trade-offs within their home ranges (Figure 

2.4). Such trade-offs support use of birch nitrogen composition as an estimate of forage 

quality, as has been done in other studies (Ball et al., 2000; Schweiger et al., 2015). 

Naturally higher nitrogen contents in browse must increase the digestibility and nutrient 

acquisitions in the digestively-constrained moose (Belovsky, 1978), so as to offset their 
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need for prioritizing foraging in areas with high browse abundances. To confirm that 

trade-offs in forage selection were not due to growing trade-offs within white birch (i.e. 

as birch grows it becomes less nitrogenous), we tested for correlation between birch 

carbon quantity and nitrogen composition across each home range and study area. There 

were few cases of negative correlations between white birch quantity and quality within 

home ranges, and furthermore, any correlations between white birch StDM predcitions 

did not influence moose selection trade-offs . Possibly, a lack of positive correlation 

between white birch quantities and nitrogen compositions is sufficient to limit moose and 

force trade-off foraging strategies. StDMs predict resource elemental compositions, not 

the allocations of such elements, like PSMs. While nitrogen is most commonly allocated 

to protein building in plants, tannins can interact with protein- limiting available 

nitrogen- (McArt et al., 2009), and PSM production by Betula can be induced by UV 

exposure, not necessarily nutrient availability (Keski-Saari et al., 2005). Thus, 

environmental driven production of PSMs in white birch could add a layer of complexity 

to our landscapes of quality. This could potentially explain the diversity of individual 

selection patterns but would require further plant sampling and landscape modelling to 

properly investigate. 

We found no selection responses at the landscape-scale, while patch-scale models 

produced coefficients slightly more equivocal than the home range models. Contrary to 

our prediction that the landscape-scale models would result in the highest selection 

coefficients for birch quantity, neither white birch nitrogen contents nor carbon quantities 

explained moose home range placement. Other studies have found that moose display 
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landscape-level selection for forage quantity as predicted, but when using coarser 

measures of forage availability (Dussault et al., 2005; Herfindal et al., 2009). Though we 

predicted that nitrogen composition selection coefficients would be highest at the patch-

scale, we observed similar individual selection patterns for nitrogen and quantities with 

less explanatory power, as for the home range models (Figure 2.4). Most individuals 

maintained their trade-off strategy from the home range to the patch-scale, similar to 

trade-offs in roe deer (Capreolus capreolus) found by Dupke et al. (2017), but the trade-

offs become more equivocal at the patch-scale (Figure 2.5). This could imply that once a 

moose selects an area within a home range to forage, the differences between patches 

may be less important than maintaining high daily forage intake (Belovsky, 1984; Parker 

et al., 2009). Moose often over-browse forest habitats in Newfoundland (Mclaren, 

Roberts, Djan-Chekar, & Lewis, 2004), reflecting their hyperabundance. Alternatively, 

selection may bypass our defined patch-scale, but occur within the patch. A study by 

Astrom, Lundberg, & Danell (1990) found moose food choice to be better explained at 

the tree-level than at the stand-level, and Danell, Edenius, & Lundberg (1991) found 

moose tree handling time to increase with tree size, suggesting tree-level foraging 

decisions. 

Individuals varied the directionality of their quantity and quality selection, 

overriding any potential sample-wide trend between spatial extent and selection (Figure 

2.4). Other studies have found herbivory quantity-quality trade-offs, where all individuals 

practice a similar trade-off tactic (Durant, Fritz, & Duncan, 2004; Van der Wal et al., 

2000; Wilmshurst et al., 1999). We find a unique situation in which individuals display 



37 

 

opposing trade-offs, from prioritizing forage quantity over quality, to equal priority for 

quality over quantity, and many that select for neither. Detecting opposing strategies 

would not have been possible had our models not been performed at the individual-level. 

If moose are indeed plastic in their trade-off strategy, quantity-quality functional 

responses remain possible (Leclerc et al., 2016); alternatively, if moose individuals are 

consistent then fitness should be influenced by trade-off decisions (Parker et al., 2009; 

Wam et al., 2018). 

Despite having only two predictor variables, we explained anywhere from 0 to 

18% of the variation in individual RSFs within forested areas. Rather than use multiple 

acting landscape variables, such as forest type or aspect ratio, directly in RSAs to infer 

foraging strategies (Zweifel-Schielly, Kreuzer, Ewald, & Suter, 2009), we linked these 

features to plant compositions and biomass first, creating more deterministic, and 

nutritionally-linked resource selection analyses (RSAs; Leroux et al., 2017). Our intent 

was not to create highly explanatory RSAs, but rather test how moose select for two 

specific forage characteristics at multiple scales during a critical window of plant growth 

in forest patches. Unexplained variation in RSAs could have developed from differences 

between sexes, study areas, years (Barboza et al., 2009), the effects of carbon-based 

PSMs (Palo, 1984), or tannin-bound nitrogen (Keski-Saari et al., 2005). Despite these 

constraints, we still were able to detect moose selection for plant nitrogen and biomass, 

suggesting that our findings are conservative estimates. As remote sensing accuracy and 

precision increases globally and landscape plant biogeochemical models increase in 

predictive power, such RSAs should improve predictability as well. Additionally, we can 
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link individual, seasonal, and availability-dependent differences (Barboza et al., 2009) in 

selection of plant carbon and nitrogen to the carbon and nitrogen cycles. Large terrestrial 

animals are known to have large-scale presence-absence or density-driven effects on 

plant communities (Estes et al., 2011), yet they are often not incorporated into carbon 

cycle models (Schmitz et al. 2018). Moose browsing and effects on litter nutritional 

composition have been shown to negatively impact ecosystem net primary productivity 

(Ellis & Leroux, 2017; Schmitz et al., 2014). The individuals of this study that chose to 

forage in areas of higher birch carbon quantities rather than areas of higher nitrogenous 

birch could be the individuals which have, directly, the largest negative effect on plant 

productivity (Kolstad et al., 2018). We also interpret our observed trade-off as evidence 

that moose strive to meet certain nitrogen intake amounts either through browse amounts 

or nitrogen contents. Feeding trial work has estimated the daily nitrogen requirements for 

body maintenance in moose to be 0.627 ± 0.073 g/kg BW/day, and daily requirements are 

to be higher during the reproductive and growing season (Schwarts, Regelin, & 

Franzmann, 1987). Daily nitrogen intake not only equals the nitrogen removal from 

primary producers, it also positively correlates to fecal nitrogen content (Howery & 

Pfister, 1990), which could be integrated into nitrogen cycling models. With moose being 

a dominant browser across the boreal biome, their foraging behaviours can have broad 

implications towards boreal carbon and nitrogen cycles. 

Connecting ecological theory across scales and systems has remained a problem 

in ecology, especially in the case of species distributions and food webs (Levin, 1992). 

Scale presents particular challenges for ungulate foraging, because such species react to 



39 

 

plant distributions from the bite-level to the regional-level, making a case for tools like 

StDMs that capture the heterogeneity of plant qualities across landscapes (Leroux et al., 

2017; Weisberg & Bugmann, 2003). Elements remain one of the common currencies 

between trophic levels and systems (Sterner and Elser 2002). Therefore, studying food 

selection with elemental measures aligns with Levin’s (1992) assertion that community 

ecology developments “must revolve around attempts to discover patterns that can be 

quantified within systems, and compared across systems” (p. 1947). Ungulates can 

rapidly change plant communities, nutrient cycles, and whole ecosystems through 

herbivory and fecal deposition (Didion, Kupferschmid, & Bugmann, 2009; Hobbs, 2018). 

In our study we found that some moose in a population make individually varying trade-

offs between both forage quantity and quality, implying that moose are nutritionally 

limited but flexible in their intake tactics. With the current accessibility of remote sensing 

data and wildlife monitoring technology, we have the opportunity to make inferences 

about animal responses to fine-scaled, biogeochemical processes and link these processes 

to ecosystem models. 
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Table 2.1. The number of Used (U) and Available (A) points and summaries (intercepts 

(Int.), β-coefficients, and standard errors (SE)) and evaluations (pseudo R²) for pooled 

and individual models measuring moose selection for white birch quantity carbon (Qty C; 

log g/m²) and nitrogen compositions (% N). The landscape (LN) and within-home range 

(HR) scales used logistic regressions and conditional logistic regressions were used for 

the patch (Pt) scale. 

Scale Model U A Int. Qty C % N Qty C x %N R² 

    
 

β SE β SE β SE 
 

LN Pooled 8433 20000 -4.74 -1.66 0.17 1.32 0.11 0.55 0.06 0.007 

LN PP 4084 9345 1.61 -0.02 0.26 -1 0.19 -0.06 0.09 0.016 

LN OMP 4349 10655 -6.53 -1.03 0.25 2.01 0.15 0.37 0.09 0.032 

HR Pooled 3242 8433 1.76 1.84 0.31 -0.88 0.2 -0.6 0.11 0.006 

HR PP2 171 1105 2.63 0.29 1.42 -2 1.1 -0.29 0.53 0.026 

HR PP3 310 522 13.79 4.61 1.41 -5.5 0.91 -1.71 0.54 0.18 

HR PP4 230 978 21.05 9.05 2.26 -8.35 2.08 -3.35 0.83 0.012 

HR PP5 124 971 2.74 7.16 2.78 -1.36 1.99 -2.39 0.98 0.083 

HR PP6 210 100 -23.15 -7.46 2.97 8.65 2.34 2.69 1.09 0.076 

HR PP8 67 128 -4.74 -2.55 4.3 1.99 3.02 1.2 1.66 0.04 

HR PP9 240 280 -11.79 -8.41 3.35 4.2 1.99 3.01 1.14 0.048 

HR OMP4 285 1148 -5.73 -0.31 1.3 1.25 0.75 -0.09 0.44 0.028 

HR OMP5 251 531 38.86 17.01 3.67 -13.34 2.46 -5.67 1.28 0.07 

HR OMP7 343 523 -0.92 0.27 1.03 0.11 0.43 -0.19 0.38 0.009 

HR OMP11 267 671 1.86 2.38 1.32 -0.99 0.79 -0.82 0.43 0.009 

HR OMP12 235 371 4.42 7.31 1.96 -1.48 0.91 -2.24 0.63 0.061 

HR OMP13 361 936 -14.64 -3.7 1.45 4.71 1.02 1.24 0.51 0.051 

HR OMP15 148 169 -16.61 -10.8 3.35 5.45 2.21 3.6 1.21 0.123 

Pt Pooled 2140 19242 - 1.11 0.49 -0.14 0.42 -0.32 0.17 0.001 

Pt PP2 90 712 - 7.77 4.712 -1.33 3.59 -2.76 1.65 0.019 

Pt PP3 221 1930 - 4.69 1.83 -1.51 1.92 -1.69 0.7 0.013 

Pt PP4 145 1314 - -4.09 3.73 4.16 4.45 1.79 1.46 0.009 

Pt PP5 74 649 - 7.49 4.07 1.11 3.8 -2.21 1.38 0.016 
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Pt PP6 150 1383 - -2.4 3.82 11.87 4.06 0.37 1.33 0.022 

Pt PP8 31 225 - -4.1 7.87 0.21 7.28 1.43 3 0.039 

Pt PP9 160 1470 - -1.38 3.49 -0.3 3.14 0.55 1.15 0.01 

Pt OMP4 182 1632 - 3.57 2.6 0.54 2.1 -1.17 0.84 0.005 

Pt OMP5 145 1310 - 4.69 4.75 -6.32 4.13 -1.77 1.66 0.006 

Pt OMP7 250 2362 - -2.14 1.35 -1.97 1.42 0.86 0.48 0.008 

Pt OMP11 167 1505 - 0.45 2.11 1.11 2.1 -0.02 0.64 0.009 

Pt OMP12 152 1305 - 3.45 2.53 -0.81 1.85 -0.93 0.82 0.008 

Pt OMP13 295 2772 - -0.37 1.7 3.44 1.8 0.26 0.58 0.009 

Pt OMP15 78 673 - -5.22 4.79 2.63 4.14 1.44 1.78 0.017 
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Figure 2.1. A) Conceptual diagram of resource grain from the perspective of different 

spatial extents. Landscapes are composed of a coarse patchwork of forage quantities, 

within which are home ranges with a finer-scaled gradient of quantities and patches of 

forage varying in both quantity and quality. B) According to literature, at the landscape 

extent, herbivores should most often positively select for quantity, while at the patch 

extent, they should most often positively select for quality. At the home range extent, 

either quantity or quality could be selected for. At no scale should moose negatively 

select for both quantity and quality.   
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Figure 2.2. The island of Newfoundland in relation to eastern North America, with the 

boundaries of our study areas shown. Within each study area, we show their 

stoichiometric distribution model outputs for white birch forage nitrogen concentrations 

and carbon quantities and the MCPs of each study area’s study moose home ranges. 

White areas are areas where we have no inference for certain habitat types like wetlands 

or water bodies.  
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Figure 2.3. Selection coefficients, positive coefficients representing positive resource 

selection, for white birch carbon quantities (log g/m²) and nitrogen compositions (%) 

from all three scales of foraging modelled. Individuals’ coefficients are linked between 

the patch and home-range scales, and to the coefficient values of their respective study 

areas (PP=triangles, OMP=circles) with lines shaded by the absolute mean of quantity 

carbon and nitrogen composition coefficients from the individual’s home range-scale 

models (|Cβ + Nβ|/2 ). Darker shades represent individuals whose coefficients were, on 

average, further from zero at the home range-scale. The black line in each panel shows 

the coefficients from models using all individuals pooled.  
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Figure 2.4. Selection coefficients with standard errors for white birch carbon quantity 

and white birch nitrogen composition from all scales of foraging modelled in this study, 

landscape, home range, and patch, plotted against one another. Axis scales are equal 

across panels, coefficients are scaled in size by their pseudo R², and individuals are 

distinguished by their study area. 
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Figure 2.5. White birch quantity carbon and nitrogen composition interaction coefficients 

from home range (RSFs) and patch (iSSAs) individual moose selection models. Selection 

coefficients are linked between scales by individual and shaded by study area.  Positive 

CxN coefficients represent individuals who selected positively for quantity carbon and 

negatively for nitrogen compositions, while negative CxN coefficients represent the 

opposite scenario. 
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CHAPTER 3: SNOWSHOE HARE INTRASPECIFIC FORAGE CHOICE UNDER 

ENERGETIC AND NUTRIENT CONSTRAINTS 

3.1 Abstract 

Herbivores should prefer browse of higher nitrogen (N) and phosphorus (P) contents, but 

energetic and nutritional constraints may affect feeding choices. Here, we test the 

prediction that snowshoe hares (Lepus americanus) prefer black spruce (Picea mariana) 

of higher N and P compositions, and that this preference would be dampened in 

individuals with heightened energetic demands, and greater in individuals with 

heightened nutrient demands. We measured black spruce N and P contents at 36 locations 

across a 500 m x 500 m snowshoe hare live-trapping grid on the island of Newfoundland, 

and found a moderately strong correlation between N and P compositions (r = 0.66). We 

then offered two choices of spruce to hare individuals from the trapping during the 

autumn of 2018, from areas with highest (N = 1.3; P = 0.74) and lowest (N = 0.19; P = 

0.11) N and P compositions in 24-hour cafeteria-style experiments (n = 22). We proxied 

energetic demands with coat colour (%) and low ambient temperature (°C), and 

nutritional demands with the spruce N and P from individual origins on the trapping grid. 

We ran nine competing models that tested energetic and nutritional influences on total 

consumption and preference. Hares slightly preferred feeding on high-ranked spruce, as 

predicted (p < 0.1). Less insulative coats increased consumption rates and reduced 

preference for high ranked spruce. Colder ambient temperatures correlated with a 

preference for low rank spruce (p < 0.05), but not consumption rate (p = 0.77). Hares 

from areas of the grid with low spruce N, or low N availability, were more selective 
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towards high ranked spruce (p < 0.05), meanwhile origin P had no effect (p = 0.18). 

Collectively, we find support for all three of our predictions, linking foraging ecology to 

energetic and nutrient demands under an ecological stoichiometry framework. 
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3.2 Introduction 

Herbivory is a process whereby primary consumers transform carbon-heavy primary 

producer matter into nitrogenous- and phosphorous-rich animal matter (Elser et al. 2000; 

Boersma et al. 2008; González et al. 2018). Under this notion, the adaptive herbivory 

strategy should be to prefer plants of higher nitrogen (N) and phosphorus (P) content. 

Indeed, food quality has been found to impact herbivore growth and fitness (DeMott et al. 

1998; McArt et al. 2009; Parker et al. 2009; Felton et al. 2018). Daphnia pulex show 

preference to forage of lower C:P ratios (Schatz and McCauley 2007), giant pandas 

(Ailuropoda melanoleuca) match their seasonal migrations with changes in N, P, and 

calcium contents in bamboo across the landscape (Nie et al. 2015), and ungulates browse 

more in areas with plants of higher nitrogen contents (Ball et al. 2000; Schweiger et al. 

2015; Chapter 2). While selection for elemental nutrients is observed in mammalian 

herbivores, it is most often only used to explain preferences across species, age classes, 

or distinct plant parts. Less often are experimental designs used to investigate the 

potential differences in selection over smaller ranges of quality, such as natural variation 

within a single species (Chapter 3). 

Plant species are now recognized to be plastic in their elemental compositions in 

response to microclimates and growing conditions (Sterner and Elser 2002). Soil 

elemental composition has been found to strongly correlate with tree foliar elemental 

compositions (Fan et al. 2015). Further, a new tool called Stoichiometric Distribution 

Models (StDMs) has been developed to predict intraspecific elemental variation of 

understory forage across a landscape based on multiple remotely sensed environmental 
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and geographical covariates such as slope, elevation, and landcover (Leroux et al. 2017). 

With biogeographical features found to influence plant elemental compositions, a given 

browse species may vary in nutrient content at the scale of herbivore species, population, 

and individual ranges. If herbivores are to show preferences when offered variation in 

nutritional contents across species, then they should also be able to show intraspecific 

preference for nutritional content within a plant species with variable elemental 

composition. Such a response may be strongest toward a highly plastic plant species that 

shows similar amounts of nutritional variation to that across multiple species. 

Intraspecific selection should also be strong when foraging within a low-quality species 

because choosing poorly poses a ‘higher risk’. Intraspecific selection likely becomes 

exaggerated within systems of low plant diversity and nutrient availability; as herbivores 

navigate a community of few, lower-quality browse species, they should make more 

within-species foraging decisions.  

Intraspecific preferences are not constant, however; energetic and nutritional 

states influence animal feeding behaviours. Through consumption, animals must acquire 

enough energy for body maintenance and production (Hillebrand et al. 2009; Sperfeld et 

al. 2017), but energy requirements change with environmental conditions, life stages, 

seasons, and body conditions (Kooijman 2009). For example, endothermic animals that 

do not hibernate nor migrate lower their metabolisms during winter to reduce food intake 

requirements and survive the winter food shortages (Chappel and Hudson 1978; Moen 

1978). These animals do so by growing insulative winter pelage to reduce heat loss 

(Sheriff et al. 2009) or by reducing daily energy expenditure (Humphries et al. 2005). 
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Additionally, metabolisms rise when ambient temperatures range outside the endotherm’s 

thermal neutral zone (Chappel and Hudson 1978; Hillebrand et al. 2009; Sheriff et al. 

2009). Animals have thus evolved flexible food intake rates in response to temporally 

variable energetic demands. For example, lactating mice (Mus musculus) have 203% 

higher energy demands than non-reproducing females, and throughout the lactation 

period have up to 311% higher consumption rates than non-lactating females (Speakman 

and McQueenie 1996). Because plant digestible carbohydrates are a quick source of 

energy and consuming large quantities of forage requires more time, herbivores under 

high energetic demands should be less selective for plant N and P and more selective for 

digestible carbohydrates or carbon in general (Barboza et al. 2009). Contrarily, when a 

consumer’s demand for a particular ‘currency’ is greater than the supply or availability, it 

should be more selective for that given currency (Barboza et al. 2009; Hillebrand et al. 

2009; Wagner et al. 2013). For instance, a common deficiency among herbivores is 

sodium, so many herbivores seek out salt deposits (Worker et al. 2015). Additionally, 

herbivores that are fed an unnaturally high protein diets may become fibre limited and 

select more fibrous forage (Hodges and Sinclair 2003). Broadening this framework: 

herbivores originating from habitats of low N and P availability are likely to be more 

nutritionally limited and thus more selective for plants N and P than conspecifics from 

habitats of high N and P availability (Wagner et al. 2013). 

Ecological characteristics of the boreal forest merit the testing of intraspecific 

selection by herbivores on the elemental level within its systems. The boreal forest, one 

of the planet’s largest biomes, has relatively low plant diversity and is nutritionally 
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limited compared to warmer climates. The widespread and cyclical keystone herbivore of 

the North American boreal, the snowshoe hare (Lepus americanus), is consumed by the 

majority of predators in all seasons (Humphries et al. 2017; Krebs et al. 2018). Instead of 

relying on shelter or hibernation (Humphries et al. 2017), to survive winter, hares grow 

dense coats every autumn and reduce activity to lower energetic requirements (Sheriff et 

al. 2009). Hares with winter coats have been found to have lower resting metabolic rates 

across a wide range of ambient temperatures (-20 to 10 ˚C; Sheriff et al. 2009). Within a 

population, individuals can differ in when they begin growing winter pelts (Zimova et al. 

2016), so on a given day, individuals with different levels of insulation will experience 

the same ambient temperatures. In general, the snowshoe hare has a high and variable 

metabolism with low body fat storage (Sheriff et al. 2009), making it a very energetically 

sensitive consumer (Whittaker and Thomas 1982). Hares are also nutritionally limited 

and found to subsidise their diets with geophagy (Worker et al. 2015) and even carnivory 

(Peers et al. 2018). Over recent decades the hare has been subject to dietary studies 

attempting to investigate the chemical basis of their food choices (Sinclair and Smith 

1984; Ellsworth et al. 2013).  

Frequent investigations have shown the general preference ranking of browse 

species for hares (Bryant and Kuropat 1980; Rodgers and Sinclair 1997). These 

preferences are often attributed to hare selection for protein and energy content (Rodgers 

and Sinclair 1997; Ellsworth et al. 2013), and avoidance of secondary metabolites 

(Bryant et al. 1985). However, findings on snowshoe hare diet selection can be more 

complex. In multiple cases, feeding strategies appear to balance intake rates of fibre and 
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protein (Hodges and Sinclair 2003) or protein and secondary compounds (Schmitz et al. 

1992), and findings on avoidance of secondary compounds confound one another 

(Sinclair and Smith 1984; Bryant et al. 1985). Sinclair and Smith (1984) originally 

speculated that the inconsistent results across snowshoe hare feeding studies were 

perhaps due to specific differences in defence chemicals across “species, growth stages, 

or even individuals”.  Investigating the preference of snowshoe hare feeding within a 

single browse species could potentially clarify drivers of interspecific choice. Hares 

prefer browse of older age classes when selecting from one species (Bryant et al. 1985), 

and reject certain plant parts such as the green foliar buds of white birch (Betula 

papyrifera), green alder (Alnus viridis), and balsam poplar (Populus balsamifera; Bryant 

and Kuropat 1980). While these are cases of intraspecific preferences by snowshoe hares, 

preference for intraspecific nutritional variation due to natural growing conditions 

remains underexplored. Laitinen et al. (2002) is one example in which 5 clones of Betula 

pendula were grown in two distinct habitats — mineral and peat soil — then offered to 

mountain hares (Lepus timidus), a congeneric of the snowshoe hare. Peat-grown birches 

had more resin than mineral-grown individuals, but hare preference was mostly explained 

by clone or genotype. Effects of growing conditions may be stronger in lower-quality 

browse species and should be validated with nutritional measures of browse. 

Here, we investigate the consumption choices of snowshoe hares for naturally-

occurring elemental variation in a single, low-quality, browse species in Newfoundland, 

Canada. We measured the elemental nutrient compositions (N and P) of black spruce 

(Picea mariana), a low-quality (i.e., high relative foliar C:N) but abundant browse, across 
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a snowshoe hare trapping grid. Then, we conducted cafeteria style experiments on 

individual hares during a 3-week period autumn season under naturally varying ambient 

temperatures. Hares were in the process of growing winter coats, with some more 

delayed than others. We provided two choices of spruce from areas on our grid with 

spruce of highest or lowest N and P compositions. For each cafeteria experiment, we 

measured the hare’s consumption rates of both spruce offerings, stage of winter coat 

development, the low ambient temperature it was exposed to, and the spruce N and P 

compositions from its origin area. We used this experiment and the known biology of the 

snowshoe hare to test three hypotheses:  

H1. The Intraspecific Choice Hypothesis: within a plant species, herbivores prefer 

individuals with higher compositions of limiting elements.  

H2. The Energetic Demand Hypothesis: heightened energetic demands increase an 

herbivore’s daily intake requirement and demand for digestible carbon, reducing its 

display of predictions by H1.  

H3. The Nutrient Demand Hypothesis: heightened nutrient demands increase an 

herbivore’s display of predictions by H1. 

We predicted that hares would generally prefer black spruce of higher quality, or N and P 

(H1). Hares with less-developed winter coats (Sheriff et al. 2009) or those experiencing 

colder temperatures (Sinclair et al. 1982) would consume more total spruce and show a 

lower preference for spruce N and P (H2; Barboza et al. 2009), while hares whose 

‘origins’ or home ranges on the grid with lower spruce N and P compositions would 
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show a stronger preference for spruce N and P (H3; Hillebrand et al. 2009; Wagner et al. 

2013).  

3.3 Methods 

3.3.1 Trapping grid and plant-snowshoe hare sampling 

We carried out this work on a snowshoe hare trapping grid located on the eastern coast of 

the island of Newfoundland, Canada. During October and November, the seasonal 

window of this study, the area experiences daily mean temperatures of 7.4˚C (SD = 1.4) 

and 2.3˚C (SD = 1.3) and an average monthly precipitation of 93.1 mm and 80.9 mm 

respectively (Environment Canada 2019). Our trapping grid is in a forest with seeded and 

now mature white spruce (Picea glauca), and naturally occurring black spruce (Picea 

mariana) and white birch (Betula papyrifera). The trapping grid was 500 m by 500 m and 

contained 50 tomahawk traps arranged approximately 75 m apart on six transects with 

traps spaced 55 and 37 m apart at the ends of transects to connect the trapping lines 

(Figure 3.1). Between late-June and early-August of 2017, we sampled black spruce, the 

most abundant browse species on the grid, from an 11.3 m radius around each trap 

location. To control for effects of age class on elemental compositions, we only sampled 

from black spruce that were 0-2 m in height. Starting in the NW corner of the sample 

radius, we moved clockwise and collected the foliar and leaf-stem material of one 

individual per intercardinal direction (NW, NE, SE, and SW), until we had collected an 

approximate wet weight of 10-20 grams, and froze samples at -20˚C until elemental 

analysis. In addition, we measured two habitat variables at each trap location: the 
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diameter breast height (DBH) of five dominant trees and the canopy closure of each 

intercardinal direction using a spherical crown densiometer. In October of 2018, prior to 

our experiments, we trapped the entire grid twice to create a sample of known hare 

individuals and then proceeded to trap portions of the grid to capture hares for cafeteria 

experiments. Throughout all trapping, we gave hares unique ear tags upon first capture 

and recorded the trap location for every individual capture to learn the geographic origin 

of individuals. We recorded the weight (nearest 20 g), sex, right hind foot measure (mm), 

age class (adult or juvenile; according to guidelines by Keith et al. 1968) for every 

individual capture. 

3.3.2 Spruce elemental analysis 

Here, we defined black spruce quality as nitrogen (N) and phosphorus (P) compositions 

(%). Black spruce samples (~10 g each) from our trapping grid were processed by the 

Agriculture Food Lab (AFL) at the University of Guelph. Nitrogen compositions were 

determined using an Elementar Vario Macro Cube, and phosphorus compositions were 

determined using a microwave acid digestion CEM MARSxpress microwave system and 

brought to volume using Nanopure water. The clear extract supernatant was further 

diluted by 10 to accurately fall within calibration range and reduce high level analyte 

concentration entering the inductively coupled plasma mass spectrometry detector (ICP-

MS). 
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3.3.3 Cafeteria Offerings 

Using the results from AFL, we regressed N and P compositions to canopy cover and 

DBH to validate that spatial variation in spruce N and P could be explained by habitat 

features characteristic of plant growing conditions. For cafeteria offerings, we aimed to 

clip from multiple, adjacent trap locations of black spruce of highest and lowest quality to 

increase the likelihood that other trees not originally sampled in these areas would show 

similar trends. Because spruce N and P compositions did not perfectly correlate across 

the grid (r = 0.66; Figure 3.1) we used N as our primary predictor of quality given it is 

regularly considered the limiting element of terrestrial systems (White 1993). For our 

final clipping locations, we chose three adjacent sampled trap locations that had the 

highest and lowest spruce N compositions according to the lab analyses (Figure 3.1). 

During the fall of 2018 we harvested black spruce from within 18 m of the six 

sample locations as offerings for cafeteria experiments. We clipped twigs (< 0.3 m from 

terminal end) from low branches (< 1.5 m) of adult trees (> 2 m). We clipped from adult 

trees instead of trees under 2 m because otherwise we would exhaust available browse to 

clip and adult spruce are more palatable to hares. For example, a diet of strictly juvenile 

white spruce (Picea glauca), a congeneric of black spruce, causes hares to lose weight at 

nearly double the rate than a diet of adult white spruce (Rodgers and Sinclair 1997). We 

assumed adult trees would have similar relative nutritional rankings as the juveniles (< 2 

m) originally sampled (i.e. areas with higher N compositions in juveniles are also areas 

with higher N compositions in adults). Spruce from the three trap locations of highest N 

composition were categorized as the ‘high nutritional rank’ offering, while spruce from 
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the three trap locations of lowest N composition were categorized as the ‘low nutritional 

rank’ offering. We bagged spruce from each clipping location separately and then mixed 

bags together thoroughly by nutritional rank. From mixed bags, we subsampled 17 wet 

grams from different branches throughout the bag and then sent these to AFL for the 

same lab analysis as done on original samples to confirm nutrient ranking (see Appendix 

C for results and discussion on subsampling). Spruce clippings were kept refrigerated at 

0-5˚C for the duration of the study. To select final browse for cafeteria experiments we 

eliminated any twigs or parts of twigs more than 5 mm in diameter or devoid of needles, 

and ensured all twigs were less than or equal to 10 cm in length to fit inside feeding bins. 

We repeated the clipping and subsampling process when cafeteria experiments exhausted 

the spruce offerings. 

3.3.4 Cafeteria Experiments 

All details of animal handling and experimentation were approved by Memorial 

University’s animal use ethics committee (AUP 18-02-EV). During November of 2018, 

we kept individual hares from our trapping grid temporarily captive for 24 hours in 

enclosures 100 cm wide, 90 cm high, and 120 cm deep. We placed enclosures in a 

forested area on the trapping grid at least 10 meters apart from one another. Enclosures 

had roofs to protect hares from precipitation and control for vertical cover or predation 

risk, a secured box for shelter, a water pail, and two baskets, one per side, for spruce 

offerings. We paired each enclosure with a camera trap, triggered by movement (30 

second delays) to later ensure that hares used the entire enclosure and did not display a 

preference to a certain side. We had six enclosures total, and because a night in between 
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experimental days was needed to capture new study individuals, we could run a 

maximum of 6 cafeteria experiments per 48 hours. 

To capture individuals for experiments, we set approximately 16 traps on two 

transects overnight (< 12 hours) with bait of apple, alfalfa cubes, and timothy feed. 

Access to high-protein timothy has been found to lower hare preference for protein or N 

and increase their preference for fibre (Hodges and Sinclair 2003). Thus, if the high-

protein timothy that hares fed on during capture did have an effect on our cafeteria 

experiments, literature suggests it would not favour our predictions. We rotated the use of 

our trap lines to minimize repeated trapping of the same individuals. Upon checking 

traps, we weighed each hare, reserving only those greater than 1300 g in mass for 

experiments (Keith et al. 1968). If individuals from the most recent cafeteria experiments 

(< 4 nights prior) were caught, they were considered ineligible for that day’s experiments 

and released. Hares from cafeteria experiments conducted more than four nights prior, if 

caught, had to show recovery from experimentally-induced weight loss (within 5% of 

original weight), a common repercussion of single species feeding (Rodgers and Sinclair 

1997), to be eligible. We retained up to six eligible hares and transported them to the 

enclosures. The final recordings for each individual before experiment start were ID, sex, 

coat colour (% of total pelt that was white), and total mass to the nearest 20 g. 

Individual hares were put into our enclosures containing water ad libitum and 

approximately 130.0 g piles of both the high- and low-nutritional content spruce samples 

in secured baskets on opposite sides, assigned randomly, of the enclosure (1 m apart). We 

noted the exact experiment start time and left hares alone in their enclosures. Camera 
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traps recorded ambient air temperature throughout the experiments (˚C). After 24 hours, 

we removed hares from their enclosures, terminating the experiments, and noted the exact 

end time. Hares were temporarily kept post-experiment to recover by feeding on timothy 

pellets and apple. We then weighed hares to the nearest 20 g, fitted each with a VHF 

collar to monitor survival, and returned them to the site of their capture. Post release of 

hares, we collected and weighed the remaining twigs to the nearest 0.1 g from each 

spruce offering. 

3.3.5 Statistical analyses 

Before experiments, we measured the starting mass (s) of each spruce pile in cafeteria 

experiments and post experiments, we measured remaining mass (r) of each pile. We 

calculated the total consumption (Ti = s – r) of the two ranks of spruce offered as either h 

for the high nutrient (Th) or l for low nutrient (Tl). All statistical tests had the response 

variable of total consumption of a pile T, the binary explanatory variable of spruce rank 

to indicate if total consumption was Th or Tl and test the Intraspecific Choice Hypothesis, 

and the Experiment ID as a random variable to pair consumption of the two spruce 

choices within an experiment. Additional variables used to test the Energetic Demand 

Hypothesis included the coat colour (% white pelt) of the individual and the low ambient 

temperature (˚C) during the experiment. To proxy nutritional states of hares and test the 

Nutrient Demand Hypothesis, we calculated ‘origin’ N and P values for each individual 

by averaging the mean N and P values for all trap locations where the individual was 

caught during the study period (October-November). To ensure the trap locations which 

were not originally sampled (no spruce < 2 m) had spruce elemental estimates, we 
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interpolated results from sampled locations across the grid using ArcGIS Spatial Analyst 

(Childs 2004). We tested for correlations (Pearson’s r) between the energetic variables, 

coat colour and temperature, and the nutrient variables, origin N and origin P, to confirm 

that tests for each hypothesis were independent and not impacted by our trapping 

patterns, e.g., we trapped hares from areas with lowest origin N on the warmest days. 

We conducted all data cleaning and statistical analyses in the R statistical program 

(Version 3.5.1; Team 2018). We compared nine linear mixed models with second-order 

Akaike Information Criterion (AICc) using the ‘aictab’ function from the AICcmodavg R 

package (Mazerolle 2017). The models we compared included the Base (spruce rank 

only) as a direct test of the Intraspecific Choice Hypothesis, the Energetic (coat colour 

and low temperature) as a test of the Energetic Demand Hypothesis, and the Nutrient 

(origin N and P) as a test of the Nutrient Demand Hypothesis. In addition, we ran models 

for each variable independently, Coat Colour (coat colour), Temperature (low 

temperature), Nitrogen (origin N) and Phosphorus (origin P) to test each component of 

the hypotheses separately as well as a Full model with all competing variables and the 

intercept only or Null model (Table 3.1).  

3.4. Results 

3.4.1 Trapping Grid Elemental and Habitat Measures 

Of the 50 sampling locations on our trapping grid, 36 had black spruce present. From this 

sample, the mean nitrogen concentration was 1.01 ± 0.18% and the mean phosphorus 

concentration was 0.14 ± 0.036%. The maximum N and P compositions were 1.41 % and 
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0.20 % respectively, while minimum N and P compositions were 0.68% and 0.09% 

respectively. N and P compositions had a Pearson’s correlation coefficient of 0.66 and, 

when regressed (P response to N) against one another, showed a significant relationship 

(t-value = 5.08 ± 0.025, p > 0.001; Figure 3.1). The mean canopy closure and DBH for all 

50 trap locations were 77.84 ± 28.05% and 9.16 ± 2.28 cm respectively. Combined, 

canopy closure and DBH explained 35.5% of the grid’s spruce N variation and 25.1% of 

spruce P variation (multiple R2), with canopy closure having a significant effect towards 

both (N t-value = 3.094, p < 0.01; P t-value = 3.041, p = 0.0046) and DBH being 

insignificant towards both (N t-value = 0.931, p < 0.01; P t-value = -.402, p = 0.69; 

Figure B1). The sites where we clipped high-nutrient ranked spruce for cafeteria 

experiments originally showed N compositions ranging from 1.17% – 1.39%, and P 

compositions from 0.169% –0.197%. Sites where we clipped low-nutrient ranked spruce 

showed N compositions ranging from 0.71 % – 0.76 %, and P compositions from 0.101 

% – 0.113 % (Figure 3.1). 

3.4.2 Captive Cafeteria Experiments 

We conducted a total of 22 cafeteria experiments from November 5th to November 20th of 

2018 on 20 individuals (M = 7; F = 13), two of which were tested twice. Low 

temperatures during experiments ranged from -4˚C to 2˚C. There were no meaningful 

correlations (-0.16 < r < 0.19) between energetic variables and nutritional variables, 

implying our trapping patterns did not affect the independence of our hypothesis tests. 

Camera trap records of each experiment showed that hares regularly used all areas of the 

enclosures and ate primarily during the dark hours (18:00- 06:00). The side of spruce 
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rank piles, relative to enclosure entrance, did not show to have an influence on hare 

consumption (t = -1.048, p = 0.31). All hares appeared to sort through spruce piles, 

spreading twigs around within a 0.25 m radius of the baskets, when feeding. We also 

observed that hares tended to reject the last 3-5 mm of spruce terminal ends, as these tips 

of twigs frequently remained post experiment. Hares ate on average 127.8 g (SD = 32.0) 

of spruce total during experiments, 69.2 g (SD = 23.3) from high ranked spruce and 58.6 

g (SD = 20.3) from low ranked spruce.  

When testing which models best explained total consumption using AICc 

comparisons, we found the top ranked models to be the Nitrogen model followed by the 

Coat Colour (ΔAICc = 0.970) and Energetic (ΔAICc = 0.973) models, which explained 

23%, 21%, and 30% of feeding variation respectively (Marginal R2; Table 2). The models 

with a ΔAICc greater than 2.00 and less than 4.00, in order of increasing ΔAICc, were the 

Temperature, Base, Full, and Null models (Table 3.2). The Nutrient and Phosphorus 

models received less support according to AICc comparison (ΔAICc > 4). Hares appear 

to slightly, but not significantly prefer higher ranked spruce over lower ranked spruce 

(Base model; β = 10.67 ± 6.19, p < 0.10), with rank alone explaining 6% (marginal R2) of 

feeding variation, but the Base model was not a top-ranked model (Table 3.2; Figure 3.3). 

Coat colour, or percent winter pelt, was negatively correlated with total consumption of a 

spruce offering (Coat Colour model; Coat β = -31.11 ± 13.15, p < 0.05; Table 3.3; Figure 

3.4). The interaction between coat colour and spruce rank was positive (Coat Colour 

model; β = 11.18 ± 19.50), but insignificant (p = 0.57) implying no effect on spruce 

choice. Low temperature did not have a significant effect on total consumption of spruce 
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offerings (Energetic model; β = -0.3.22 ± 2.32), but it did positively correlated with a 

hare’s preference for high ranked spruce (Energetic model; Temp*Rank β = 8.03 ± 3.21, 

p < 0.05; Table 3.3; Figure 3.5). The top ranked, Nitrogen model, found origin N to 

negatively correlate with preference for high ranked spruce (N*Rank β = -146.73 ± 60.74 

p < 0.05; Table 3.3; Figure 3.5). All covariates combined in the Full model collectively 

had an R2 of 0.47, but this model was not top ranked. The Nutrient and Phosphorus 

models failed to rank above the Null model (Table 3.2; Table B1). 

3.5 Discussion 

When faced with a choice, herbivores should browse the most digestible and high-quality 

food. While many studies confirm this notion, they do so by measuring consumer 

responses to variation between plant species (Sinclair and Smith 1984), parts (Bryant and 

Kuropat 1980), or age classes (Bryant et al. 1985). Studying intraspecific choice can 

inform the mechanisms behind interspecific choice as well as management practices, like 

single species seeding for forest regeneration (Heroy et al. 2018). During the autumn of 

2018 in eastern Newfoundland, Canada, we tested if snowshoe hares could differentiate 

between black spruce with different nutrient compositions, or the Intraspecific Choice 

Hypothesis, using individual cafeteria-style experiments. Specifically, we measured and 

mapped N and P compositions for black spruce across our hare trapping grid and offered 

spruce from areas of highest and lowest N and P in cafeteria experiments. We also tested 

if heightened energetic demands would increase hare consumption rates and dampen 

intraspecific preference, and if, conversely, heightened nutrient demands would increase 

intraspecific preference. Our findings support the Intraspecific Choice Hypothesis 
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predictions because hares consumed more spruce of the higher nutritional rank. We found 

partial support for the Energetic Demand Hypothesis: winter coat development negatively 

correlated with total spruce consumption and reduced preference, and temperature 

positively correlated to preference for high ranked spruce. We also found support for the 

Nutrient Demand Hypothesis: origin N content negatively correlated with preference for 

high ranked spruce. Our study integrates ecological stoichiometry with foraging ecology, 

testing energetic and nutrient constraints on plant-herbivore interactions (Sperfeld et al. 

2017). 

When offered two options of black spruce, hares preferred amounts of those 

clipped from areas of the grid with higher N and P compositions, supporting the 

predictions of the Intraspecific Choice Hypothesis (Figure 3.3). Spruce rank alone 

explained some variation of feeding (marginal R2 = 0.06; Base model), but not as much 

as models that incorporated energetic and nutritional variables in addition. These other 

models continue to find an effect of spruce rank, but also when interacting with energetic 

(i.e., temperature) and nutritional (i.e., origin N) covariates. Evidence of intraspecific 

browse preferences have been observed in other herbivores. Lambs (Ovis aries) prefer 

aspen (Populus tremuloides) of higher protein content from natural conditions in feeding 

trials (Heroy et al. 2018). Even a species thought to only use assimilation and respiration 

processes to maintain stoichiometric homeostasis, Daphnia pulex, seek out patches of 

lower C:P within a single algal species (Schatz and McCauley 2007). In the case of the 

snowshoe hare, we find intraspecific selection for quality and further, that this preference 

may be plastic and affected by energetic and nutritional demands. 
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We found support for all aspects of the Energetic Demand Hypothesis when 

considering winter coat development as a proxy for energy requirements, and partial 

support when considering ambient temperature with the mechanism unknown. The first 

part of the Energetic Demands Hypothesis posits that higher energetic needs translates to 

higher intake rates by the herbivore; for this we found partial support. Ambient 

temperature did not affect consumption rates as predicted (Sinclair et al. 1982), while 

pelage did. Specifically, our findings predict that hares with 50% more winter coat will 

eat approximately 31.1 g less total spruce per day (Figure 3.4; Coat model). We propose 

that one potential mechanism of this finding could be metabolic change. When 

experiencing temperatures near or around freezing (-4 to 4 ˚C), hares with fully 

developed winter coats have lower resting metabolic rates than those with fall pelage 

(Sheriff et al. 2009). While Sheriff et al. (2009) uncovered this binary metabolic 

difference, the relationship between coat colour and metabolism may be continuous 

according to our results, if feeding rate indicates metabolic rate. While winter pelage is an 

adaptation to high seasonality, temperature did not have a significant relationship to total 

daily intake of spruce, implying temperature did not affect energetic requirements. 

Sinclair et al. (1982) found this relationship between temperature and daily intake by 

hares using a temperature range of -20˚C to 10˚C and a very high-quality feed (20% 

crude protein). We suspect our range of ambient low temperatures (-4˚C to 2˚C) was too 

narrow and our food was too low-quality (4.25% - 8.81% crude protein; N×6.25; Mariotti 

et al. 2008) to find a similar effect.  
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Part two of the Energetic Demand Hypothesis states that energetically driven 

higher intake rates require more time feeding and lowers the herbivore’s selective ability 

to be choosy. Findings from the Energetic, Coat, and Temperature models collectively 

support for the second component of the Energetic Demand Hypothesis. We found no 

meaningful interaction between coat colour and rank, but do not receive this as counter 

support of the hypothesis because, unlike in other models, rank was no longer significant 

when accounting for coat colour. Only accepting a negative interaction between coat 

colour and rank as support for the Energetic Demand Hypothesis would risk making a 

type II error. The hypothesis also predicts that higher energetic demands increase 

consumer requirements for energy and digestible carbon. We did find a negative 

interaction between temperature and rank (Figure 3.5), implying hares experiencing 

colder temperatures preferred low ranked spruce. Here, higher intake requirements must 

not be the mechanism of this effect, as we originally predicted, because temperature had 

no effect on total consumption. The mechanism may be a higher requirement for 

digestible carbon, and thus an appeared avoidance of protein or nitrogen (Hawlena and 

Schmitz 2010; Sperfeld et al. 2017).  

We predicted, by the Nutrient Demand Hypothesis, that hares from areas with low 

N and P availability would display a stronger preference for the high ranked spruce; 

effects of origin N supported this prediction (Figure 3.5). The Nitrogen Model was the 

top ranked model according to AICc comparison and explained 23% of feeding variation. 

Lack of correlations between origin N and the energetic covariates negates the possibility 

that this effect of origin N was due to correlated energetic variables. Despite correlation 
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between spruce N and P across the trapping grid (r = 0.66), we found hares from areas 

with spruce lower in N had greater preference for high ranked spruce, but origin P had no 

effect on spruce preference. We see two primary, non-exclusive explanations for this 

difference. The first being that spruce N may be a better indicator of general growing 

conditions for other plant species that are available to hares, and thus a better predictor of 

nutrient availability. We did find evidence for this explanation when testing if the habitat 

covariates that incorporated other tree species, DBH and canopy closure, could explain 

black spruce N and P compositions across the grid. Together, DBH and canopy closure 

explained 10% more variation of spruce N than spruce P. The second potential 

explanation is that terrestrial systems are historically understood to be more limited by N 

than P (White 1993) and this notion may extend to the system’s herbivores, like the 

snowshoe hare, making N availability a better predictor of terrestrial herbivore nutrient 

deficiency (McArt et al. 2009). There exist many other drivers of nutritional limits on 

herbivores, such as seasons, disturbances, and drought, and therefore there are many 

other contexts to test between N and P limitations in terrestrial, free-ranging herbivores. 

Collectively, we find evidence that the nutrient availability within an herbivore’s home 

range may be limiting enough as to affect foraging strategies; a herbivore of one habitat 

quality may select plants and nutrients differently than its conspecific from another 

habitat.  

Combined, spruce rank, coat colour, temperature, origin N, and origin P explained 

47% of snowshoe hare feeding responses during cafeteria experiments. We suspect that 

there was substantial variation within spruce rank due to inter and intraindividual 
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differences which may account for a large portion of the feeding variation. Within 

individuals, plants allocate more N and P to their leaves than stems (Tang et al. 2018; 

Zhang et al. 2018), but we could not control for exact ratios of leaf to stem tissue. 

Laitinen et al. (2002), which tested hare preference for clones of Betula pendula, found 

tree genotype to explain much variation of feeding. Genotype may affect allocation of 

secondary compounds (Laitinen et al. 2002), interacting with nutrient contents, but most 

variation of secondary compound allocation and its effects is studied under an 

interspecific contexts (Sinclair and Smith 1984; Schmitz et al. 1992; Rodgers and Sinclair 

1997). Experimental manipulation of plants to create intraspecific quality treatments 

would likely reduce feeding variability, but be less representative of natural conditions. 

If herbivores display intraspecific feeding preferences, then variation of quality 

within a plant species may be significant enough to affect herbivore fitness (Parker et al. 

2009; Wam et al. 2018). We find support for all three of our hypotheses, and mainly that 

snowshoe hares may be sensitive to the natural gradients of plant intraspecific quality 

across areas as small as their home ranges. The availability of nitrogen, not phosphorus, 

within home ranges may also influence individual nutrient demands and feeding choices- 

evidence that terrestrial herbivores are ultimately nitrogen-limited (White 1993). Lastly, 

herbivores are not only nutritionally constrained because heighted energetic demands 

increased feeding rates and dampened preferences. Individuals that expend more energy 

interact with plant communities differently. Collectively, this study posits the links 

between herbivore metabolisms, nutritional states, and feeding patterns, explained under 

the unifying, ecological stoichiometry framework. 
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Table 3.1. All the linear mixed models (paired by experiment) compared with AICs to 

explain the total grams consumed from a spruce offering per 24-hour cafeteria 

experiment (22 experiments, 44 observations). Bolded models incorporate all fixed 

effects relative to each hypothesis.  

Model Name Fixed Effects 

Null None 

Base Rank 

Coat Colour Coat*Rank 

Temperature Temp*Rank 

Energetic Coat*Rank + Temp*Rank 

Nitrogen Origin N*Rank 

Phosphorus Origin P*Rank 

Nutrient Origin N*Rank + Origin P*Rank 

Full Coat*Rank + Temp*Rank + Origin N*Rank + Origin P*Rank 
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Table 3.2. AICc comparisons of linear mixed models (paired by experiment) predicting 

snowshoe hare consumption of black spruce pile when offered in pairs, of high and low 

nutrient rank, during cafeteria experiments (n = 44). All models incorporate spruce pile 

nutrient rank as a fixed effect. Models ranked within 2 ΔAICc of the top model are 

bolded.  

Model K AICc ΔAICc AICc weight Log Likelihood 

Nitrogen 6 400.138 0.00 0.307 -192.934 

Coat Colour 6 401.107 0.970 0.189 -193.419 

Energetic 8 401.111 0.973 0.188 -190.498 

Temperature 6 402.980 2.842 0.074 -194.355 

Base 4 403.012 2.874 0.073 -196.993 

Full 12 403.130 2.992 0.069 -184.533 

Null 3 403.372 3.235 0.061 -198.386 

Nutrient 8 405.516 5.378 0.021 -192.701 

Phosphorus 6 405.7697 5.559 0.019 -195.713 
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Table 3.3. Coefficients, standard errors, and marginal R2s of the top five AICc-ranked linear mixed models for black spruce 

consumption in order of AICc rank. The models are linear mixed models paired by experiment and all incorporate spruce pile 

nutrient rank as a fixed effect. 

Model Rank (R) Coat Temp N Coat*R Temp*R N*R R2 

Nitrogen 
154.64*** - - 12.40 - - -146.73** 

0.23 
(59.85) - - (45.86) - - (60.74) 

Coat Colour 
6.09 -31.12** - - 11.18 - - 

0.21 
(9.64) (13.15) - - (19.50) - - 

Energetic 
7.31 -38.01*** -3.22 - 28.36 8.03** - 

0.31 
(8.85) (13.28) (2.32) - (18.38) (3.22) - 

Temp 
17*** - -0.73 - - 6.17** - 

0.17 
(6.56) - (2.36) - - (3.14) - 

Base 
10.67* - - - - - - 

0.06 
(6.19) - - - - - - 

*p<0.1;   **p<0.05;   ***p<0.01
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Figure 3.1. Interpolated maps of the trapping grid’s black spruce A) nitrogen and B) 

phosphorus compositions. Each sample location also represents a snowshoe hare trap. 

Spruce was sampled during the summer of 2017 for N and P analysis at sites where the 

species was present (circles and stars) and these results were then used to interpolate the 

whole grid and give values to locations which did not have spruce within their sample 

plots (crosses). Areas of highest and lowest nitrogen compositions were offered (stars) in 

cafeteria experiments during the fall of 2018. Spruce N and P compositions from sampled 

locations plotted against one another, with their linear relationship shown (C).
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Figure 3.2. Overhead diagram (A) and photograph (B) of a cafeteria enclosure. 

 

Figure 3.3. A) Overall trend of snowshoe consumption (g) of browse piles (44 

observations) when offered two nutritional ranks of black spruce during 24-hour cafeteria 

experiments (2018; n = 22) and B) the trends of individual experiments pairing offered 

spruce ranks. 
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Figure 3.4. The mass (g) of black spruce consumed from each spruce offering by 

individual snowshoe hares during 24-hour, autumn-timed (2018), captive cafeteria 

experiments (n = 22) in relation to the coat colour (% white) of the hare. Marginal R2 = 

0.19. Equation of the linear relationship and 0.95 confidence interval (grey band) are 

shown.
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Figure 3.5. Snowshoe hares preference for high ranked spruce (g; calculated by: high 

rank consumption – low rank consumption) during 24-hour cafeteria experiments (n = 

22) in relation to spruce N compositions of a hare’s origin area (A) and the low ambient 

temperature during experiment (B). Preference was calculated to visualize the interaction 

coefficents between Origin N and Rank (A) and Low Temperature and Rank (B) in the 

Nitrogen and Temperature models. The lines representing no preference between spruce 

ranks (dashed) and linear regressions between preference and explanatory variables 

(solid) are shown. R2  = 0.21 (A) and 0.15 (B). Equations of each linear regression and 

0.95 confidence intervals are shown are shown.
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CHAPTER 4: SUMMARY AND CONCLUSIONS 

4.1 Background 

Herbivory represents energy and nutrients removed from living materials of primary 

producers and made available to consumers, influencing productivity at all trophic levels 

(Elser et al. 2000; Boersma et al. 2008; González et al. 2018). Nutritional ecology links 

herbivore behaviour and physiology with ecosystem-level processes (Simpson and 

Raubenheimer 2012). Nutritional Geometry (hereafter NG; Raubenheimer et al. 2009) 

and Ecological Stoichiometry (hereafter ES; Sterner and Elser 2002) are some of the 

frameworks developed to help nutritional ecology unify scale, time, and the various 

levels of biological organization. NG studies foraging as an organism’s intake regulation 

of multiple currencies in order to maintain a nutritional homeostasis (Raubenheimer et al. 

2012). ES generally focuses on the internal regulation by organisms to maintain 

stoichiometric homeostasis or body carbon (C), nitrogen (N), and phosphorus (P) 

compositions (Sterner and Elser 2002). These frameworks have been considered to help 

unify nutritional ecology and make it more “nutritionally, organismally, and ecologically 

explicit” (Raubenheimer et al. 2009). According to Raubenheimer et al. 2009, a 

framework is nutritionally explicit if it identifies the roles and interactions of food 

components, is organismally explicit if it explains the physiology, morphology, and life 

history of the herbivore, and is ecologically explicit if it uncovers the effects of animal 

phenotypes on ecological communities. Here, I discuss the value of borrowing from ES – 

elemental currencies – and integrating them with NG in the context of terrestrial 

herbivory. 
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 NG and ES are suitable to describe and predict herbivory processes because they 

consider multiple currencies (Raubenheimer et al. 2009). Plants are generally less 

digestible, more chemically defended, and variable in elemental composition compared to 

animal tissue (Elser et al. 2000). Herbivores must navigate varying food qualities, 

balance the intake of amino acids dissimilar to their own, consume appropriate amounts 

of fibre, and avoid plant secondary compounds (PSCs; Barboza et al. 2009; Felton et al. 

2018). The various composites within plant matter collectively affect its quality to an 

herbivore, and food quality influences herbivore fitness (Parker et al. 2009; Wam et al. 

2018). Thus, it is critical that a framework for herbivore nutritional ecology incorporate 

multiple currencies, like NS and ES do, in order to be nutritionally explicit. The 

framework must also be ecologically explicit because as the ‘trophic bottleneck’ (Elser et 

al. 2000; Boersma et al. 2008; González et al. 2018), herbivore actions cascade in both 

trophic directions. NG and ES contrast here, with NG typically focusing on the 

organismal level, and ES on currency flows between system and trophic levels (Cherif et 

al. 2017; Sperfeld et al. 2017). Distinct to ES, also, is the use of elemental currencies, 

which are common between organisms, species, trophic levels, and systems (Sterner and 

Elser 2002). 

4.2 In Defence of Elemental Currencies 

Elemental currencies, despite being simple, do represent some herbivore nutritional 

requirements. A common association is N and protein. ‘Crude protein’ content has 

historically been proxied by measuring N and multiplying it by the Jones conversion 

factor of 6.25 (Mariotti et al. 2008). This has become a justified estimate for plant crude 
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protein because N from other compounds including nucleic acids, nitrates, and 

phospholipids, are often assumed to be negligent in plants. However, this conversion 

factor can cause protein estimates to have a 15 to 20% error (Mariotti et al. 2008) and 

does not account for diversity and quality of amino acids (Barboza et al. 2009). Given 

these constraints, many foraging studies still use crude protein as an estimate for plant 

quality (Felton et al. 2009; Ellsworth et al. 2013; Heroy et al. 2018). Studying foraging in 

terms of crude protein can decouple the link between foraging decisions and ecosystem N 

for readers unfamiliar with the Jones conversion factor while not being an accurate 

assessment of amino acid concentrations in food. Terrestrial systems have long been 

understood to be N limited (White 1993), and this limitation is reflected in terrestrial 

herbivores (McArt et al. 2009; Chapter 2).  

More complex is the use of C as a nutritional indicator. C compositions of food 

should correlate with Gross Energy content, the measure of all C oxidized when burned 

inside a bomb calorimeter (Barboza et al. 2009). However, C content, nor Gross Energy, 

does not differentiate between carbohydrate sources within food, which have particularly 

large implications for herbivore nutrition (Raubenheimer et al. 2009). Starch, the storage 

carbohydrate in plants, is a polysaccharide composed of alpha-oriented glucose. It is 

digestible to animals. The polysaccharide of alpha-glucose’s isomer, beta-glucose, is 

cellulose, the structural carbohydrate in plants. Unlike starch, animal enzymes cannot 

digest cellulose, and thus, it is elemental orientations that determine the nutritional value 

of a large percentage of plant matter. Herein lies the major strength of NG compared to 

ES: a consideration for molecular properties. To be more encompassing of C nutritional 
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properties, some ES studies and theory differentiate between digestible C and non-

digestible C (Felton et al. 2009; Hawlena and Schmitz 2010). This may be the best 

compromise between making ES more nutritionally explicit while maintaining the 

common currency of elements. 

 While elemental measures cannot represent every aspect of nutrition in plant 

resources, they allow ES to be ecologically explicit– arguably its biggest strength. 

Elements are the common currency across trophic levels, and so the ES framework has 

been used to link otherwise un-coupled processes (Sterner and Elser 2002). For example, 

predation-induced stress on herbivores has been found to influence their feeding and 

digestive patterns, linking predator activity to plant and detritivore productivity via 

physiological processes (Hawlena and Schmitz 2010; Hawlena et al. 2012; Leroux and 

Schmitz 2015). 

Lastly, herbivore elemental intakes may be linked to universal internal 

physiological processes, such as protein synthesis and respiration. The Growth Rate 

Hypothesis states that growing organisms have lower C:P ratios due to the abundance of 

P-dense ribosomes required for protein synthesis (Elser et al. 1996). ES and NG notions 

of homeostasis have also been integrated with the Dynamic Energy Budget (DEB; 

Kooijman 2009), which models how organisms use N and C for many scales of 

physiological processes in response to body maintenance and production demands 

(Sperfeld et al. 2017). This integrative approach has potential to link animal nutrition to 

ecosystem functioning. I tested the feeding responses of snowshoe hares (Lepus 

americanus) and found that under greater energetic demand, hares increased food intake 
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and become less discriminating about plant N and P contents (Energetic Demand 

Hypothesis; Chapter 3). Further, I concluded that the nutritional state of hares, proxied by 

the N availability of their origin habitat, affects their preferential to N and P contents 

(Nutrient Demand Hypothesis; Chapter 3). In a collaboration during my MSc, we found 

that snowshoe hares also vary in their body composition, but the drivers and implications 

of such variation are yet to be determined (Rizzuto et al. 2019). Herbivores individuals 

vary in both stoichiometric foraging decisions and body stoichiometry, with a potential 

driver being nutritional and energetic states (Hillebrand et al. 2009; D. Hawlena and 

Schmitz 2010). I conclude, based on my work on the snowshoe hare that herbivores 

conspecifics may interact with plant communities when under varying energetic and 

nutritional demands. 

4.3 Scale 

In addition to being nutritionally, organismally, and ecologically explicit, I offer that a 

unifying framework of nutritional ecology must explain feeding patterns at many scales 

(Levin 1992). Foraging is traditionally described as orders of selection, with first-order 

selection being the geographical range of a species, second-order being the home ranges 

within landscapes, and third-order being selection within home ranges (Johnson 1980). 

These orders of selection refine, further, to the choices between different patches and 

bites (Bailey et al. 1996). The ecological impacts of herbivory depend on the scale of 

forage selection. For example, the bite a browser chooses to eat will affect the total 

biomass removed from a plant individual (Vivas et al. 1991), affecting that plant’s 

fitness, and therefore the natural selection of the plant population with repetition of this 
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particular choice (Table 4.1). Alternatively, at the regional scale, herbivore population 

migration in relation to food availability (Hebblewhite et al. 2008) influences the types 

and amounts of nutrients moved across the region (Moore et al. 2007; Doughty et al. 

2016). Criteria for forage selection are hypothesized to vary by foraging scale too (Table 

4.1). Coarser-scale factors like climate, plant biomasses, and water availability, should 

influence the foraging at larger extents, while finer-scale factors like plant quality (Senft 

et al. 1987) should influence the smaller extents of foraging. A framework must offer 

means to capture this complexity of influences. 

 Herbivores exhibit responses to elemental compositions while foraging at the bite 

and patch scales. Using cafeteria experiments, a method of providing multiple foods with 

known properties to a consumer, I found snowshoe hares to differentiate between varying 

N and P levels within a single browse at the bite-level (Chapter 3). The results have 

implications at larger scales because the browse choices came from the natural variation 

of a species across the home ranges of my sample population. If hares respond to N and P 

at the bite-level, then N and P should affect their daily movements and home ranges. 

Similarly, Ball et al. (2000) fertilized forest stands (50 × 50 m) with N and found hares 

(Lepus timidus) and moose (Alces alces) to use and forage in the treated plots more than 

control plots, suggesting that terrestrial herbivores respond to N and P at the patch-level. 

Studying the nutritional ecology of free-ranging herbivores proves more 

challenging at the home range and landscape extents, but methodological developments 

using the ES offer promising solutions. Most field studies on large herbivore foraging at 

home range and landscape extents first measure responses to categorical landcover data, 
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such as habitat type, then link the responses to strategies of nutritional gain through 

inference (Zweifel-Schielly et al. 2009; van Beest et al. 2010). Improving nutritional 

inferences from movement of large herbivores requires continuous landscape layers of 

plant qualities (Weisberg and Bugmann 2003). Elemental landscapes can fill this need, 

and animal have been found to respond to them. For example, Nie et al. 2015 studied the 

foraging of the giant panda (Ailuropoda melanoleuca) with ground collected elemental 

measures of bamboo and was able to attribute panda range shifts to intake of calcium, P, 

and N. I compared moose foraging strategies at three different spatial scales, abled by 

continuous elemental resource landscapes predicted by Stoichiometric Distribution 

Models (StDMs; sensu Leroux et al. 2017). I found that just two elemental measures of 

white birch explained from none to 18% of individual moose within-home range 

selection; elemental landscapes are applicable to movement and foraging ecology 

(Chapter 2). Continuous nutritional landscapes can be achieved by methods other than 

StDMs. In ecosystems where forage is aerially visible, high-resolution airborne imaging 

spectroscopy can map plant nitrogen contents (Schweiger et al. 2015). StDMs have the 

advantage of using ground collected plant samples (Leroux et al. 2017), making them a 

viable option in forested landscapes and be consumer-specific by measuring specific 

plant parts. Collectively, the ES framework provides means to study nutritional ecology 

of herbivores from the bite to the landscape-level. 

4.4 More than elemental ratios 

Elemental currencies can be measured in various units, and so the ES framework allows 

for a small set of currencies to test a variety of foraging hypotheses. Traditionally, ES has 
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focused on how the variation of organismal elemental ratios, particularly C:N, C:P and 

N:P ratios explains ecosystem functioning and dynamics (Sterner and Elser 2002). Aside 

from ratios, we can describe plant resources as elemental quantities (e.g. grams) or 

concentrations (%), each representing the resource differently. Elemental quantities and 

concentrations are the two components used to calculate elemental ratios. For instance, 

quantity C can equate total energy within a space (Barboza et al. 2009), while N 

composition often represents plant quality (Ball et al. 2000; Van der Wal et al. 2000; 

Moore et al. 2010; Champagne et al. 2018) because it correlates with protein content 

(Mariotti et al. 2008). Elemental compositions pose opportunity to answer foraging 

ecology questions, while elemental quantities have broad implications in areas of 

nutritional ecology, energetics, and ecosystem ecology, but neither alone adequately can 

address the impacts of PSCs made by plants to deter herbivory. 

Elemental compositions may offer a more precise estimate of plant quality than 

elemental ratios under certain circumstances. N compositions do not necessarily correlate 

with C:N ratios because both C, in its many forms, and N contribute to a plant’s C:N ratio 

(Jasienski and Bazzaz 1999). I tested assumptions of ungulate selection for plant 

quantities and qualities across scales (Chapter 2). I used StDM outputs of white birch C 

quantities (g/m2) as a proxy for forage biomass. By using N composition (%), instead of 

C:N ratios, as my estimate for birch quality, I was able to directly compare moose 

selection for independent measures of quantity and quality and uncover divergent, 

individual quantity-quality trade-offs. Such trade-offs show that while plants are variable 

in a limited resource, like N, their consumers may be plastic in how they attain the 
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resource. In this case, some moose prioritise foraging in areas with greater concentrations 

of N, while some prioritize areas of high forage biomass. 

The daily intake of C, N and P by herbivores represents both their requirements 

for body homeostasis and what is removed from plant communities. Herbivores consume 

plants of varying C and N content, digest and assimilate what is required for their body 

maintenance and production, and return some portion of C and N back into their 

environment via respiration and excretion (Sperfeld et al. 2017). Thus, measuring 

herbivore resource intake in terms of elemental quantities links not only behaviours to 

metabolic requirements, but also ecosystem nutrient cycling. Daily elemental 

requirements can be estimated using feeding trials, in which an animal is provided food 

of a known elemental composition and its daily intake rate is measured. Feeding trials 

can control for environmental effects such as temperature, seasons, and reproductive 

stage, and determine homeostasis requirements at various energetic and nutrient states 

(Sperfeld et al. 2017). If hares feed to attain a certain amount of the limited N in their 

environment (White 1993), then results of my 3nd chapter find hares on average require 

1.28 g of N per captive day during autumn. During this season, snowshoe hares grow 

winter coats as an evolved strategy for reducing their metabolism in the winter (Sheriff et 

al. 2009), but timing of winter coat growth varies within a population. I found that, on a 

given day, hares with fully developed winter coats on average require 62.24 g less spruce 

per day than hares with no winter pelage, or 0.62 g less N. At larger extents, when we 

cannot measure intake rate but rather resource selection by an animal, patches of plant 

elemental quantities can represent the total available resource. Landscapes of resource 
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elemental quantities could eventually be incorporated into carrying capacity estimates 

and wildlife density predictions (Leroux et al. 2017). Measuring how herbivores move 

through patches of resource elemental quantities could help predict herbivore impacts on 

zoogeochemistry and how herbivores move elements across and within ecosystems 

(Schmitz et al. 2018). 

Some may argue that elemental currencies cannot proxy plant quality because 

they lack consideration for plant chemical defences. There are numerous examples of 

herbivore selection against PSCs (Felton et al. 2018; Heroy et al. 2018; Wam et al. 2018). 

PSCs take many forms and can have negative effects on herbivores unequipped with 

detoxification mechanisms (Freeland and Janzen 1974). Furthermore, PSC concentrations 

can change according to growing conditions, like UV radiation (Keski-Saari et al. 2005), 

so herbivores should avoid PSCs not just by interspecific selection, but intraspecific 

selection as well (Laitinen et al. 2002). ES based foraging studies cannot infer responses 

to PSCs because elemental composition analyses do not differentiate between sources of 

elements. At most, we can assume if PSCs are overwhelmingly carbon-based compounds 

(e.g. phenols (Worker et al. 2015) or tannins (Wam et al. 2018)), like in plants in systems 

of low-nutrient availability (Bryant et al. 1982), then C:N ratios should negatively 

correlate with quality. However, making this assumption prevents any inference on PSC 

consumption or selection. Moreover, some species produce nitrogen containing PSCs 

such as toxic “uncommon” amino acids (Freeland and Janzen 1974; Bell 1976), or non-

protein amino acids (Huang et al. 2011). Even more frustrating is tannin-bound N, in 
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which tannins do not consist of N but reduce the absorption rate of plant protein post-

consumption (Sinclair et al. 1988; McArt et al. 2009). 

I propose that the ES framework must expand its currency to adequately address 

PSCs in herbivore foraging ecology contexts. In systems where plants either produce N-

containing PSCs or N-bindings tannins, a potential solution would be to categorize N 

contents as either available (i.e., protein) or non-available N (i.e., tannin-bound; Felton et 

al. 2009). The ratio of available N to non-available N would therefore correlate with 

quality and account for PSCs. This solution maintains the ecological explicitness of 

elemental currencies, but would require more precise chemical analyses of plants than 

PSCs or N alone. A second solution, though less ecologically explicit, is to measure 

N:PSC ratios of plants. This method could recycle data from studies that measured 

herbivore responses to N (or protein) and PCS. The idea of N:PSC ratios is not new. 

Schmitz et al. (1992) tested optimal foraging predictions that the effectiveness of PSCs is 

conditional on a plant’s nutritional content. These predictions assume that herbivores 

maximize nutrient intake and that PSCs are not necessarily toxic but reduce the 

digestibility of proteins. Schmitz et al. (1992) offered snowshoe hares the option of the 

defended Populus balsamifera and the less defended Salix glauca under various 

manipulations and found the defences of P. balsamifera to be less effective when of 

higher nutrient content. Since then, many studies have uncovered cases of herbivores 

balancing nutrient and PSC intake, but do not make predictions or measure in terms of 

N:PSC ratios explicitly (Rodgers and Sinclair 1997; Seccombe-Hett and Turkington 

2008). For example, Behmer et al. (2009) found that when a food had lower protein 
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content, locusts (Locusta migratoria) were deterred more by the presence of tannins. 

Overall, there is substantial evidence that N:PSC ratios can represent plant quality and 

that herbivores aim to maintain a minimum N:PSC intake. 

4.5 Conclusion 

Herbivores regulate the intake of key nutrients, fibre, energy, and toxins to maintain body 

homeostasis under varying physiological demands and their foraging behaviours reflect 

this continuous regulation. The feeding choices and intakes of herbivores contribute to 

the functioning of ecosystems, determining what nutrients is removed from primary 

producers and moved up trophic levels. Integrating elemental currencies and notions of 

ES with herbivore foraging creates direct links between animal behaviours, physiological 

pathways, and homeostasis with ecosystem nutrient cycles. Elemental currencies can be 

represented as ratios, quantities, and compositions, offering a diverse set of tools to 

measure food availability and quality. While elemental currencies cannot explain all 

aspects of terrestrial herbivory, they can be expanded on to include effects of 

carbohydrate varieties and PSCs. I highlight that any unifying framework for nutritional 

ecology must also describe feeding processes at multiple scales of foraging– a strength of 

ES and elemental currencies. 

My work demonstrates, at multiple scales, that mammalian herbivores respond to 

plant stoichiometry. From the landscape to the patch, I measured moose resource 

selection across elemental landscapes using StDMs (Chapter 2), and, at the bite-level, 

snowshoe hare preferences for plant elemental quality using cafeteria experiments 
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(Chapter 3). Both studies found herbivores to select for limited elemental nutrients, but 

variably. Moose appear to make individual quantity-quality trade-offs when selecting for 

white birch within their home ranges, with some prioritizing quality over quantity and 

vice-versa. Snowshoe hares overall prefer black spruce of higher nutritional content. This 

preference is exaggerated in hares originating from low-quality localities, or those with 

higher nutritional demands, and reduced in hares bearing less insulative coats and 

experiencing lower temperatures, or those with higher energetic demands. Moose remove 

formidable amounts of browse from plants daily (Schmitz et al. 2014; Ellis and Leroux 

2017), and snowshoe hare densities largely influence predator abundances (Humphries et 

al. 2017; Krebs et al. 2018); both species are key players in boreal functioning, thus their 

fitness and feeding habits are too.  

My thesis contributes to the growing ES-nutritional ecology framework by 

providing evidence that herbivores do respond to elemental currencies of forage, both 

compositions and quantities, from the home range to the bite level, and that some feeding 

variation can be explained by the elemental availabilities within individual home ranges 

and energetic demands. Herbivores are stoichiometrically constrained, but remain 

flexible in how they attain a limiting element. Overall, ES and its notions can and have 

contributed to unifying nutritional ecology of terrestrial herbivores across scales while 

being ‘nutritionally, organismally, and ecologically explicit’. 
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Table 4.1. As the scale of foraging increases from the bite to the landscape or region, a 

herbivore makes fewer decisions per unit of time and considers forage quantity or 

biomass more and forage qualities less, reflected in the selection criteria associated with 

each scale. At larger scales of selection, herbivores act on larger levels of plant biological 

organization. Therefore, the ecological impacts from herbivore foraging depend on scale. 

In addition, factors influencing herbivore feeding choices are not consistent across scales. 

To test hypotheses regarding such mechanisms, we must measure forage components and 

herbivore responses at multiple scales, but no method can accommodate all scales.  

Scale 
Selection 

Criteria 

Level of 

Plant 

Selection 

Ecological 

Impacts 

Herbivore 

Influences 
Methods 

Bite 
N, P, PSCs, 

Size 

Organ, 

Individual 

Plant natural 

selection 

Homeostasis, 

Metabolism, 

Life stage 

Feeding trials, 

Cafeteria 

experiments 

Patch 
N, P, PSCs, 

Biomass 
Population 

Abundances, 

Community, 

Reproduction 

Daily Intake, 

Life stage, 

Forage 

selection, 

Predation risk 

Direct     

Observation, 

Browse surveys, 

iSSAs*, 

Patch treatment, 

StDMs* 

Home 

range 

Biomass, N, 

P, Habitat, 

Topography, 

Water 

Community 

Succession, 

Productivity, 

Nutrient 

movement 

Intake rate, 

Predation risk, 

Movement rate 

RSFs*, 

StDMs*, 

Airborne 

imaging 

spectroscopy 

Landscape 

or Region 

Climate, 

Water, 

Biomass, 

NDVI 

Ecosystem, 

Biome 

Species 

distributions, 

Nutrient 

cycling 

Intake rate, 

Migration, 

Reproduction 

RSFs*, 

StDMs*, 

Airborne 

imaging 

spectroscopy 

*Acronyms: iSSA = Integrated step selection analysis; StDM = Stoichiometric 

distribution model; RSF = Resource selection function. 
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APPENDIX A. CHAPTER 2 SUPPLEMENTARY FIGURES AND TABLES 

A.1 Supplementary Tables 

Table A1. Explanatory covariates used in the stoichiometric distribution models to 

predict the white birch quantity carbon and nitrogen composition values, the type of data 

each covariate provided, and the description of each covariate’s calculation or categories. 

Predictor Variable Data Type Description/Categories 

Normalised aspect Continuous Direction of slope  

Slope Continuous Tangent of surface angle to horizontal  

Elevation Continuous Height above sea level  

Landcover Categorical 2 categories: Coniferous and other (deciduous or mixed wood) 

Stand Height Categorical 4 categories: 0-6.5m; 6.6-9.5m; 9.6-12.5m; 12.6-21.5m. 

Dominant Tree 

Species 
Categorical 

3 categories: 75% balsam fir; 50-75% balsam fir with remainder 

black spruce and/or white birch; 50-75 black spruce or white 

spruce with remainder balsam fir white birch, or tamarack. 
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Table A2. Descriptive statistics (means, medians, standard deviations), and the correlation (Pearson’s r) for white birch carbon 

quantity (log g/m²) and nitrogen composition (%), from each designated study area and home range. For every moose 

individual, we provide its sex and collar year.  

MCP Sex Year Area (km²) Quantity Carbon % Nitrogen  C x N correlation 
 

  
 

Mean Median SD Mean Median SD Pearson’s r 

PP and OMP - - 907 -1.65 -1.67 0.89 2.78 -1.67 0.28 -0.01 

PP - - 514 -1.92 -2.19 0.89 2.82 -2.19 0.27 0.11 

OMP - - 393 -1.41 -1.53 0.82 2.74 -1.53 0.28 -0.04 

PP2 F 2013 26.27 -1.7 -1.7 0.72 2.77 2.73 0.28 0.03 

PP3 M 2011 10.64 -1.87 -1.89 0.7 2.66 2.68 0.29 -0.37 

PP4 F 2011 16.28 -2.46 -2.59 0.5 2.78 2.79 0.15 -0.16 

PP5 F 2011 22.97 -2.27 -2.31 0.63 2.71 2.72 0.23 0.49 

PP6 F 2015 2.12 -1.99 -2.22 0.72 2.63 2.67 0.18 0.59 

PP8 F 2011 3.13 -2.08 -2.24 0.7 2.61 2.63 0.15 0.09 

PP9 M 2011 5.13 -1.82 -1.65 0.7 3 3 0.14 0.12 

OMP4 F 2014 20.28 -1.37 -1.57 0.61 2.79 2.8 0.27 0.13 

OMP5 F 2015 10.69 -1.79 -1.76 0.54 2.85 2.86 0.13 0.43 

OMP7 M 2014 9.18 -0.8 -0.82 0.83 2.75 2.77 0.26 0.13 

OMP11 F 2014 12.06 -1.34 -1.31 0.66 3.04 2.98 0.26 -0.44 



120 

 

OMP12 F 2014 6.68 -1.19 -1.37 0.66 3.03 3 0.26 -0.28 

OMP13 F 2015 15.08 -1.74 -1.71 0.96 2.82 2.82 0.18 -0.08 

OMP15 M 2014 3.51 -1.36 -1.44 0.83 2.68 2.71 0.19 0.08 

 

Table A3. Summaries (β-coefficients and standard errors) of additional terms in the patch-scale integrated step selection 

functions which are fit with conditional logistic regressions. Terms include step lengths (SL), turn angles (TA), and their 

interactions between the other, and with carbon quantities (C), nitrogen concentrations (N). For each moose individual we also 

provide its mean step length (SL; meters) and mean turn angle (TA; degrees) from used steps. 

    
SL TA C x SL N x SL C x TA N x TA SL x TA 

ID SL TA R² β SE β SE β SE β SE β SE β SE β SE 

Pooled 189.14 0.81 0.001 0.22 0.18 -0.8 0.35 -0.04 0.02 -0.11 0.06 0.09 0.04 0.28 0.12 0.04 0.02 

PP2 187.32 14.64 0.019 0.98 0.9 -0.23 2.16 -0.14 0.15 -0.49 0.33 0 0.33 -0.15 0.78 0.19 0.11 

PP3 199.48 -1.95 0.013 0.92 0.59 -1.72 1.11 -0.06 0.12 -0.39 0.29 0.6 0.21 1.16 0.51 -0.04 0.08 

PP4 247.88 2.6 0.009 -1.27 1.12 0.37 2.53 -0.11 0.18 0.34 0.43 0.55 0.41 0.65 0.99 -0.13 0.08 

PP5 227.14 -14.82 0.016 2.02 1.86 0.8 3.63 -0.23 0.16 -0.8 0.64 -0.33 0.29 -0.67 1.16 0.12 0.13 

PP6 61.79 -18.45 0.022 6.41 2.31 9.85 3.81 0.15 0.16 -2.24 0.75 0.91 0.26 -2.85 1.21 -0.18 0.11 
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PP8 177.39 18.05 0.039 0.32 2.99 12.48 5.97 0.15 0.19 0.07 1.15 -0.14 0.41 -4.44 2.15 -0.21 0.19 

PP9 126.3 5.72 0.01 0.21 1.67 -3.02 2.73 0.01 0.07 -0.08 0.55 0.1 0.12 1 0.89 0.09 0.09 

OMP4 224.63 4.78 0.005 1 0.79 -2.56 1.78 -0.04 0.13 -0.38 0.27 0.2 0.26 0.85 0.59 0.08 0.07 

OMP5 198.72 -2.28 0.006 -0.72 1.5 -3.25 2.8 0.1 0.16 0.32 0.49 -0.43 0.26 0.86 0.94 -0.01 0.09 

OMP7 231.82 9.8 0.008 -0.6 0.66 -1.58 1.34 -0.03 0.07 0.21 0.24 0.26 0.13 0.47 0.47 0.13 0.07 

OMP11 287.33 -5.62 0.009 -0.02 0.82 -5.55 1.66 -0.07 0.13 -0.03 0.3 0.01 0.24 1.68 0.57 0.09 0.09 

OMP12 117.77 1.45 0.008 0.05 0.98 3.23 1.77 -0.04 0.1 -0.03 0.33 0.05 0.19 -1 0.59 -0.02 0.08 

OMP13 209.32 -12.63 0.009 0.77 0.72 -3.29 1.44 -0.09 0.05 -0.34 0.24 0.15 0.09 1.15 0.47 0.08 0.06 

OMP15 151.04 9.99 0.017 -0.29 1.15 -1.11 2.37 0.12 0.2 0.18 0.42 0.41 0.36 0.66 0.89 -0.01 0.12 
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A.2 Supplementary Figures 

 

Figure A1. A diagram mapping the analysis pathway to testing the predictions of Figure 

1, Panel B, using collar data and Stoichiometric Distribution Models (StDMs). Green 

boxes represent StDM steps. Blue boxes represent steps that created the data which were 

directly incorporated into the resource selection analyses (RSAs). Solid lines represent 

the sequence of direct steps in the total analysis, and dashed lines represent non-

sequential input of steps. We used moose GPS data to calculate home ranges and 

landscapes, from within we sampled forage for stoichiometric measurements to then 

model and extrapolate across the respective landscapes. The forage measures for quantity 

and quality are extracted from GPS data and GPS data derived spatial extents (i.e. 

landscapes or home ranges) and locations (i.e. projected locations). Lastly, we ran models 

using appropriate data for each scale of foraging. 
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APPENDIX B CHAPTER 3 SUPPLEMENTARY FIGURES AND TABLES 

B.1 Supplementary Tables 

Table B1. Results from linear mixed models which ranked below the top ranked models 

(ΔAIC > 2; see table 3.3 for top ranked models). Models attempt to predict snowshoe 

hare consumption of black spruce when offered in pairs of high and low nutrient rank 

during cafeteria experiments (n = 44). 

Covariate Null Phosphorus Nutrient Full 

Rank 
- 63.17*  

(36.33) 

156.37** 

(60.88) 

148.71*** 

(51.84) 

Coat 
- - 

- 
-37.61*** 

(11.67 

Temp 
- - 

- 
-3.34 

(2.07) 

Origin N 
- - -5.17 

(63.53) 

-4.76 

(53.28) 

Origin P 
- 88.86 

(200.52) 

103.66 

(261.04) 

67.43 

(223.29) 

Coat*Rank 
- - 

- 
25.78 

(15.79) 

Temp*Rank 
- - 

- 
8.17*** 

(2.80) 

Origin N*Rank 
- - -155.75* 

(84.60) 

-132.35* 

(72.11) 

Origin P*Rank 
- -392.53 

(267.98) 

53.19 

(347.64) 

-77.28 

(302.21) 

Constant 
63.91*** 

(3.33) 

46.69* 

(27.18) 

49.78 

(45.72) 

66.18* 

(38.30) 

Marg. R2 0.00 0.11 0.23 0.47 

Cond. R2 0.01 0.21 0.31 0.52 

*p<0.1;   **p<0.05;   ***p<0.01 
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B.2 Supplementary Figures 

 

Figure B1. Black spruce N (A and B) and P (C and D) compositions sampled at 36 sites 

across the trapping grid plotted against site mean tree Diameter Breast Height (DBH; A 

and C) and canopy closure (B and C). Linear regressions are shown for the significant 

effect, canopy closure, for both N and P compositions. Collectively, DBH and canopy 

closure explained 36.0% and 25.1% of spruce N and P variation respectively.  
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APPENDIX C CHAPTER 3 SPRUCE OFFERING SUBSAMPLING 

C.1 Subsampling 

During the summer of 2017 black spruce (Picea mariana) was sampled at every trap 

location on our trapping grid with black spruce < 2 m and analysed samples for N and P 

composition (see methods). From this analysis, we designated 3 areas as being ‘high 

nutritionally ranked’ (highest %N and %P) or ‘low nutritionally ranked’ (lowest %N and 

%P). During the fall of 2018, we clipped black spruce (Picea mariana) from all six 

locations, and pooled clippings across locations into bags according to presumed 

nutritional rank. These ranks of spruce then became the two offerings for snowshoe hare 

cafeteria experiments (n = 22). We tested whether clippings taken for autumn cafeteria 

experiments followed similar trends to the original summertime samples. To do this, we 

subsampled approximately 17 wet grams from each bag of pooled spruce (n = 11), and 

sent samples to the Agriculture Food Lab (AFL) at the University of Guelph for 

elemental analysis (see methods). 

C.2 Predictions 

We anticipated that autumn subsamples would have lower and more variable N and P 

compositions than original summer sampling because plants become more lignified and 

C-heavy throughout the growing season. We predicted that the subsamples would 

maintain the trend of original rank- subsamples from of high rank area clippings would 

have higher N and P than subsamples from low rank area clippings. 
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C.3 Results 

The median C, N, and P compositions for predicted high ranked spruce subsamples were 

52.23% (SD = 0.42), 0.98% (SD = 0.073), and 0.11% (SD = 0.017) respectively (S1). For 

predicted low ranked spruce, we measured C, N and P compositions of 52.52% (SD = 

0.51), 0.99% (SD = 0.026), and 0.099% (SD = 0.018) respectively (S1). Predicted ranks 

were not significantly different in C (p = 0.77), N (p = 0.93), or P (p = 0.16) 

compositions. N and P compositions of subsamples did correlate (r = 0.69; S2). 

Compared to original samples from the summer of 2017, for which we based rank 

designations, the autumn subsamples did not show as much variation in N and P 

compositions- subsamples did not have as high nor as low N and P compositions as 

originally high-ranked or low-ranked samples (S3). 

C.4 Discussion 

Despite strong evidence that hares selected preferentially for high-N and P browse over 

low N and P browse in the cafeteria experiments, truthing our rank categories with 

subsampling was inconclusive. We cannot be certain why subsampling did not show the 

expected rank-trend, but we think the most likely explanation is a methodological one. 

Original summer sampling took approximately 10-20 g of newly grown browse from 

multiple juvenile (< 2 m) trees within plots to control for variation from tree and branch 

age. To clip enough spruce for autumn-timed cafeteria experiments, we clipped > 1000 g 

of browse at a time and subsampled after we pooled and mixed clippings. This could 

have caused subsamples to be from fewer individual trees than original sampling and 
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inter-individual effects as adult trees have more browse and likely more variability in 

browse quality.  

 After we reviewed the subsample results, we decided to test how frequently a 

subsample would yield high-rank spruce that was indeed higher in N and P. We randomly 

drew a high and a low ranked subsample 100 times using the sample function in base R 

and calculated the percentage of times the high-ranked subsample was higher in N and 

higher in P than the low-ranked subsample. We repeated this process 100 times and then 

created a distribution of percentages of times the subsamples were correctly ranked (S4). 

On average 45.97, 44.74, and 9.29% of the random draws yielded high-ranked 

subsamples that were higher, lower, and equal in P compositions than the low-ranked 

subsample respectively. Similarly, on average 45.02, 45.41, and 9.57% of the random 

draws yielded high-ranked subsamples that were higher, lower, and equal in N 

compositions than the low-ranked subsamples respectively. The 97.5th percentiles of the 

distribution of frequencies that yielded correctly assigned spruce ranks were 54.4% by 

way of N results, and 55.5% by P results (S4). In comparison, hares consumed more from 

the high ranked spruce in 59% of cafeteria experiments (S4) and much of the variation in 

their choice was explained by additional energetic and nutritional factors. If the 

subsamples were representative of cafeteria experiment offerings and hares selected for N 

and P compositions in accordance, our results were very improbably (< 1%). Therefore, 

we believe the subsamples were not representative of the cafeteria offerings. 

We do not think the subsample results are evidence that the assignments of 

quality rank in cafeteria experiments were incorrect, but rather that both ranks 
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encapsulated a large range of quality and results of the Intraspecific Choice Hypothesis; 

ultimately indicating that our findings are likely conservative. Indeed, rank only 

explained 6% of preference. In the future, this variation can be described better by taking 

more subsamples from cafeteria offerings. 
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C.5 Supplementary Figures 

 

Figure C1. Carbon (A), Nitrogen (B), and Phosphorus (C) compositions of subsamples 

(n = 11) of black spruce (Picea Mariana) offerings for snowshoe hare cafeteria 

experiments during the autumn of 2018. Spruce offerings were clipped from areas of the 

trapping grid where original sampling from the summer of 2017 found either high N and 

P (high nutritional rank) or low N and P (low nutritional rank). We predicted that fall 

offerings would show a similar trend to the summer samples and that spruce from high 

ranked areas would have higher N and P compositions, and lower C compositions, than 

low ranked areas.  
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Figure C2. P versus N compositions of subsamples (n = 11) of black spruce (Picea 

mariana) offerings in snowshoe hare cafeteria experiments during the autumn of 2018. 

Subsample N and P compositions correlated (r = 0.69). When plotted against each other 

with the linear regression shown, high rank subsamples (solid), fell above the line of best 

fit (lower N:P), while low rank subsamples (open) mostly fell below (higher N:P). 
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Figure C3. The original measures of black spruce (Picea Mariana) N and P 

compositions across the trapping grid (Figure 2 panel C) from sampling during the 

summer of 2017 (n = 36; circles) for which we choose areas of highest N and P (dark 

shade) and lowest N and P (light shade) to supply the ‘high nutritional rank’ and ‘low 

nutritional rank’ spruce respectively in cafeteria experiments during the autumn of 2018. 

N and P compositions of subsamples from offerings from the autumn of 2018 for 

experiments are also shown (n = 11; triangles). The shade of subsample values indicates 

whether it was taken from clippings of the ‘high rank’ areas (dark) or ‘low rank’ areas 

(light). 
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Figure C4. Results from 100 sets of 100 random draws of pairs of a high and low-ranked 

spruce subsample. From each draw set, we calculated the percentage of times in which 

the high-ranked subsample was indeed higher in N or P and then plotted the densities of 

this distribution across all 100 sets. Solid lines represent the 97.5 percentiles of each 

distribution and dashed lines represent the percentage of cafeteria experiments using 

spruce offerings that supplied the subsamples in which hares consumed more of the high-

ranked spruce (59%). 


