-	
2	Sehrsweeney M, Wilson DR, Bain M, Boutin S, Lane JE, McAdam AG, Dantzer B (2019) The
3	effects of stress and glucocorticoids on vocalizations: a test in North American red squirrels.
4	Behavioral Ecology, 30: 1030–1040. doi: 10.1093/beheco/arz044
5	
6	Title: Is stress state reflected in vocalizations? An experimental test in North American
7	red squirrels
8	
9	Short title: Effects of stress and glucocorticoids on vocalizations
10	
11	Matt Sehrsweeney ^a , David R. Wilson ^b , Maggie Bain ^c , Stan Boutin ^d , Jeffrey E. Lane ^e ,
12	Andrew G. McAdam ^c , and Ben Dantzer ^{a,f}
13	
14	^a Department of Psychology, University of Michigan, 530 Church St, Ann Arbor, MI
15	48109, USA, ^b Department of Psychology, Memorial University of Newfoundland, 232
16	Elizabeth Avenue St., John's, NL A1B 3X9, Canada, ^c Department of Integrative Biology,
17	University of Guelph, 50 Stone Rd East, Guelph, ON N1G 2W1 Canada, dDepartment of
18	Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, CW 405
19	Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada, ^e Department of
20	Biology, University of Saskatchewan, 110 Science Pl, Saskatoon, SK S7N 5C8, Canada,
21	and ^f Department of Ecology and Evolutionary Biology, 1105 North University Ave,
22	University of Michigan, Ann Arbor, MI 48109, USA

1 Citation:

- 23
- 24 Address correspondence to Matt Sehrsweeney. E-mail: sehrmatt@umich.edu, who is now
- 25 at School for Environment and Sustainability, University of Michigan, Ann Arbor, MI,
- 26 USA
- 27

28 Abstract

29 Acoustic signaling is an important means by which animals communicate both 30 stable and labile characteristics. Although it is widely appreciated that vocalizations can 31 convey information on labile state, such as fear and aggression, fewer studies have 32 experimentally examined the acoustic expression of stress state. The transmission of such 33 public information about physiological state could have broad implications, potentially 34 influencing the behavior and life history traits of neighbors. North American red squirrels 35 (Tamiasciurus hudsonicus) produce vocalizations known as rattles that advertise 36 territorial ownership. We examined the influence of changes in physiological stress state 37 on rattle acoustic structure through the application of a stressor (trapping and handling 38 the squirrels) and by provisioning squirrels with exogenous glucocorticoids (GCs). We 39 characterized the acoustic structure of rattles emitted by these squirrels by measuring 40 rattle duration, mean frequency, and entropy. We found evidence that rattles do indeed 41 exhibit a "stress signature." When squirrels were trapped and handled, they produced 42 rattles that were longer in duration with a higher frequency and increased entropy. 43 However, squirrels that were administered exogenous GCs had similar rattle duration, 44 frequency, and entropy as squirrels that were fed control treatments and unfed squirrels. 45 Our results indicate that short-term stress does affect the acoustic structure of 46 vocalizations, but elevated circulating GC levels do not mediate such changes.

48 Introduction

49	Acoustic communication is a critical means by which information is transferred
50	within and among animal species. Vocalizations can convey stable information on
51	various characteristics of signalers, such as individual identity (Beer, 1970; Beecher,
52	1989; Blumstein and Munos, 2005), body weight and size (Clutton-Brock and Albon,
53	1979; Fitch, 1997; Bee et al., 1999; Reby and McComb, 2001; Blumstein and Munos,
54	2005; Koren and Geffen, 2009), sex (Ey et al., 2007; Blumstein and Munos, 2005), and
55	social rank (Clark, 1993; Koren et al., 2008; Muller et al., 2004; Terleph et al., 2016;
56	Yosida and Okanoya, 2009), and they are often encoded with several layers of
57	information, for example, rank, sex, and individual identity (Koren and Geffen 2009).
58	Communicating this information is consequential for both signalers and receivers,
59	serving a wide array of functions, from attracting mates (Andersson 1994) to reducing
60	conflict and maintaining affiliations in social groups (Masataka and Symes, 1986;
61	Digweed, et al., 2007; Soltis et al., 2005a).
62	Vocalizations can also contain information on labile traits, such as short-term
63	stress state or the changes in glucocorticoids (GCs) that are released in response to an
64	acute environmental challenge. Here we differentiate short-term stressors as discrete
65	events that stimulate an increase in GCs that lasts just minutes, from chronic stressors,
66	that stimulate a continued release in GCs over the course of days or longer.
67	Glucocorticoids, a class of steroid hormones secreted by the adrenal glands, are released
68	shortly after a stressful event, and perform an array of functions in mediating an
69	organism's physiological stress response, including enhancing the effects of the first

70	wave of response from hormones such as epinephrine and norepinephrine (Sapolsky et
71	al., 2000). Stress is known to influence the acoustic structure of vocalizations in a number
72	of species (Manser, 2001; Wilson and Evans, 2012; Sacchi et al., 2002; Slocombe et al.,
73	2009). Motivation-structural rules make predictions about the characteristics of
74	vocalizations produced in high-stress contexts: hostile vocalizations tend to be lower in
75	frequency and noisier (highly entropic), and fearful vocalizations tend to be higher in
76	frequency and more tonal (Morton 1977). Although some studies have found empirical
77	support for these rules, others have found inconsistencies. For example, vocalizations
78	associated with fear often fail to consistently conform to these motivation-structural rules,
79	and are often highly entropic (Morton 1977; August and Anderson 1987). The effects of
80	short-term stress on vocalization structure are thus difficult to generalize.
81	Although many studies have examined the structure of vocalizations produced in
82	high stress situations, they have concentrated primarily on vocalizations produced in just
83	a few contexts, and most of them have been observational (Morton, 1977; Biben et al.,
84	1986; Zuberbuhler, 2009). Most studies have focused on social contexts, including calls
85	produced by victims in agonistic encounters between social group members (Morton,
86	1977), alarm calls (Zuberbuhler, 2009), separation between mothers and their young, and
87	between social group members (Biben et al., 1986; Ehret, 2005; Bayart et al. 1990;
88	Rendall, 2003). Other research has centered on begging calls (Sacchi et al., 2002; Perez et
89	al., 2016) and distress screams produced by individuals in imminent danger of predation
90	or of being seized by a predator, which likely function to solicit intervention from another

animal capable of interfering in social species (Hogstedt, 1982; Lingle et al., 2007;

92 Blumstein et al., 2008).

93 Very few studies have experimentally examined the influence of stress or changes 94 in glucocorticoids on vocalization structure. One notable exception is Perez et al. (2012), 95 who assessed the effects of GCs on the acoustic structure of zebra finch (Taeniopygia 96 guttata) vocalizations. Their experiment included two stress treatments: social isolation, 97 and treatment with exogenous GCs, and they found that both types of stress significantly 98 altered vocalization features. Compared to untreated individuals, zebra finches in both 99 treatment groups emitted vocalizations of higher frequency than those in the control 100 group (Perez et al., 2012).

101 The literature on the influence of stress on vocalizations skews heavily towards 102 group-living species and focuses primarily on just a few contexts in which stress occurs; 103 far less is known about the relationship between stress and vocalization structure in 104 solitary species, despite the fact that many regularly produce vocalizations in short term 105 stress inducing situations (Hogstedt, 1982). Furthermore, few studies have experimentally 106 examined this relationship, leaving a gap in our understanding of the mechanism by 107 which stress may influence acoustic structure. We examined how a short-term stress 108 (resulting from trapping and handling) and administration of exogenous GCs affected the 109 territorial vocalizations of solitary, territorial North American red squirrels (Tamiasciurus 110 hudsonicus).

111 Red squirrels defend discrete territories throughout the year, and produce
112 vocalizations called "rattles" that advertise territorial ownership (Smith, 1968), which

113	deters intruders (Siracusa et al., 2017). At the center of each territory is a "midden," a
114	network of underground tunnels that serves as storage space for white spruce (Picea
115	glauca) cones that compose 50-80% of a squirrel's annual diet (Donald et al. 2011;
116	Fletcher et al., 2013). Overwinter survivorship without a midden is near zero (Larsen and
117	Boutin, 1994). Successful defense of a territory against pilferage from the midden,
118	therefore, represents an important component of overwinter survival for a red squirrel.
119	Red squirrel rattles contain stable information on individual identity (Digweed et
120	al. 2012; Wilson et al., 2015), and receivers discern encoded kinship information, though
121	this may be context-dependent (Wilson et al., 2015; Shonfield et al., 2017). In a playback
122	experiment, focal squirrels only differentiated between the rattles of kin and non-kin
123	when the playback rattles used were emitted by squirrels that had just been live-trapped
124	and handled (henceforth, "post-trap rattles") (Shonfield et al., 2017). This stress-related
125	context dependency of kin discrimination indicated that possible differences in acoustic
126	structure of stressed and non-stressed squirrels warranted examination.
127	To test this directly, we conducted a two-part study to examine the relationship
128	between stress state and rattle acoustic structure. In the first experiment, we recorded
129	rattles of wild red squirrels after they were live-trapped and handled and compared these
130	to rattles recorded opportunistically, without provocation, from squirrels moving freely
131	around their territories. Previous studies verified this method of inducing stress: squirrels
132	exhibit a substantial increase in circulating GC levels minutes after entering a trap and
133	during handling (Bosson et al., 2012; van Kesteren et al., 2018 PREPRINT).

134	To identify if elevated circulating GCs are part of the mechanism by which a short
135	term stressor (such as capture and handling) alters rattle acoustic structure, we conducted
136	a second experiment where we treated squirrels with GCs (dissolved in a small amount of
137	food) and compared their rattles to those of squirrels in a control group (provided with
138	the same amount of food but without GCs) and an unmanipulated group (provided with
139	no food or GCs). A previous study showed that in GC-treated squirrels, plasma GCs rose
140	quickly after treatment and then slowly declined over the ensuing 12 hours (van Kesteren
141	et al., 2018 PREPRINT).
142	We first predicted that if rattles do encode information about stress state, and
143	recording settings are consistent across conditions, post-trap rattles would be structurally
144	distinct from opportunistic rattles. Based on the results of Perez et al.'s (2012) zebra finch
145	experiments, we predicted that post-trap rattles would be higher in frequency. We then
146	predicted that if GCs are the mechanism by which short term stress alters rattle acoustic
147	structure, rattles emitted shortly after treatment with exogenous GCs would exhibit the
148	same structural distinctions as post-trap rattles when compared with rattles produced
149	prior to treatment and rattles produced by positive control and negative control squirrels
150	over the same period of time. We expected these structural distinctions to be graded,
151	peaking shortly after treatment and then declining as a function of time since
152	consumption of treatment mirroring the peak and decline of circulating GC levels
153	following treatment.
154	

155 Methods

156 *Study Site and Species*

157 This study was part of the Kluane Red Squirrel Project, a long-term study of a 158 wild population of red squirrels that has been tracked continuously since 1987 (McAdam 159 et al., 2007), within Champagne and Aishihik First Nations traditional territory in the southwestern Yukon, Canada (61° N, 138° W). The habitat is an open boreal forest 160 161 dominated by white spruce trees (Picea glacua; Krebs et al. 2001). All squirrels were 162 marked individually with ear tags with distinct alphanumeric combinations (Monel #1; 163 National Band and Tag, Newport, KY, USA), and wires in unique color combinations were threaded through the ear tags to allow for individual identification from a distance. 164 165 We live trapped squirrels periodically to track female reproductive state and territorial 166 ownership using tomahawk traps (Tomahawk Live Trap Company, Tomahawk, WI, 167 USA) baited with peanut butter (McAdam et al. 2007).

168

169 Trap-Induced Stress Experiment Field Methods

We collected rattles from squirrels across four study areas between April and August in six separate years from 2005 and 2017 (Table 1). In the capture-induced stress experiment, we compared the structure of rattles collected opportunistically to rattles collected shortly after a squirrel was trapped, handled, and released ("trap rattles"). We collected rattles for this experiment using a Marantz digital recorder (model PMD 660; 44.1 kHz sampling rate; 16-bit amplitude encoding; WAVE format) and a shotgun audio recorder (Sennheiser, model ME66 with K6 power supply; 40-20,000 Hz frequency 177 response (± 2.5 dB); super-cardioid polar pattern). To collect opportunistic rattles, we 178 stood on a squirrel's midden at a distance of no greater than 5 m from the squirrel until it 179 produced a rattle. To collect trap rattles, we trapped and handled a squirrel on its midden, 180 then recorded its first rattle upon release from a handling bag (within a minute of release). 181 Trapping and handling is part of ongoing research activity; it was not done explicitly for 182 this study. Human presence was controlled for: the same person that trapped and handled 183 the squirrel also recorded the rattle at a distance no greater than 5 m from the squirrel; 184 thus, only one person was present for the recording in both treatment conditions. Red 185 squirrels rattle spontaneously and in response to detection of conspecifics (Smith 1978), but we cannot rule out the possibility that the rattles were elicited by the person 186 187 recording. However, even if squirrels were rattling in response to the presence of a 188 person, because the stimulus was the same in both conditions (only 1 person was 189 present), any differences in call structure could not reflect differences in the stimulus, and 190 thus the simplest explanation is that any differences in call structure reflect the difference 191 in physiological stress state prior to the arrival of the stimulus. We did not record the 192 exact amount of time a squirrel spent inside of a trap, but squirrels were in traps for no 193 more than 120 min before they were released and a rattle was collected. As would be 194 expected, squirrels exhibit a substantial increase in circulating GC levels minutes after 195 entering a trap and during handling (Bosson et al., 2012; van Kesteren et al., 2018) 196 PREPRINT).

In total, 351 rattles from 235 unique individuals (308 opportunistic rattles from
205 squirrels, 39 post-trap rattles from 30 squirrels) were recorded and analyzed in the

years 2005, 2006, 2009, 2015, and 2016. Of the 235 squirrels, 127 were male and 108
were female (Table 1). These rattles were part of a long-term dataset of rattles compiled
by prior researchers with the Kluane Red Squirrel Project.

202

203 Exogenous GC Treatment Experiment Field Methods

204 In the second experiment, we assessed the influence of experimental increases in 205 circulating GCs on rattle acoustic structure. We sought to track graded changes in rattle 206 acoustic structure over an extended period of time induced by the GC treatment instead of 207 a simpler pre/post treatment analysis. We compared the rattles of squirrels in three 208 treatment groups, using an established protocol for oral administration of GCs. In the 209 experimental group (n = 16), individuals were fed 8 g of peanut butter (all natural, no 210 sugar, salt, or other additives) mixed with 2 g of wheat germ and 8 mg of cortisol 211 (hydrocortisone, Sigma H004). This treatment causes a significant increase in circulating 212 GCs, peaking 90-120 minutes post-treatment (Dantzer et al 2013; van Kesteren et al., 213 2018 PREPRINT). Individuals in the positive control group (n = 16) were fed the same 214 amount of peanut butter and wheat germ, with no cortisol added. Each squirrel in these 215 two treatment groups was treated for one day (see details below). Lastly, we had an 216 unmanipulated group of squirrels that were not fed or manipulated in any way (n = 23). 217 Our experimental, positive control group and our negative control group (the latter of 218 which live on a nearby study area) were comprised exclusively of male squirrels. 219 However, no sex differences are known to exist in rattle acoustic structure (Wilson et al., 220 2015).

221 The morning of treatment, between 0730 and 1000 h, for each squirrel in the GC 222 treated and positive control groups, we placed one treatment in a bucket hanging in a tree 223 near the center of its midden. Pilferage from buckets was extremely low (van Kesteren et 224 al., 2018 PREPRINT), ensuring that treatments were eaten by the target squirrel, and not 225 neighboring conspecifics or heterospecifics. We recorded the time each treatment was placed in each bucket and checked the buckets throughout the morning at a minimum of 226 227 once every hour and maximum of every 45 min in order to determine the one-hour time 228 frame in which the squirrel consumed its treatment. Peanut butter treatments were 229 delivered to the focal individuals' buckets in paper cups; consumption of treatment was 230 confirmed by finding an empty paper cup in their bucket. As a part of another study 231 (Dantzer et al. 2013), we have been providing squirrels with supplemental peanut butter 232 for >10 years and have never observed squirrels caching peanut butter. All treatments 233 were consumed between 0830 and 1130. Eight squirrels (Positive Control n = 4; GC, n =234 4) did not consume their treatments by 11:30; these treatments were removed from the 235 bucket and the squirrels were excluded from analyses. Two individuals (GCs n = 2) 236 consumed their treatment over a period of several hours instead of consuming it within a 237 one-hour time block. Because we sought to simulate short-term stress induced by a rapid 238 elevation of circulating GC levels, these squirrels were excluded from analysis as well. 239 Our final sample size was GC (n = 10), positive control (n = 12), and negative control (n = 12) 240 = 23).

12

We recorded rattles using stationary Zoom H2N Audio Recorders (Zoom
Corporation, Tokyo, Japan) that were covered with windscreens and attached to 1.5 m

243 stakes in the center of each squirrel's midden. Because they are not weather-proof, we 244 placed an umbrella 30 cm above each audio recorder to protect it from harsh weather 245 conditions. We set the audio recorders in 44.1kHz/16bit WAVE format and recorded in 246 2-channel surround mode. We deployed the audio recorders between 1700 and 2200 h on 247 the day before treatment so that they would collect "pre-treatment" rattles the following morning, prior to treatment. They recorded continuously until nightfall on the day of 248 249 treatment, recording rattles of the target squirrel, neighboring individuals, and other 250 ambient noise. Rattles recorded in the evening prior to treatment were excluded from 251 analysis; thus, all rattles analyzed in this experiment were recorded on the day of 252 treatment, between approximately 0600 and 2330 h. We chose this recording period 253 because this recording window should have captured rattles at natural GC levels (pretreatment rattles), during the post-treatment spike in circulating GC levels, and the 254 255 ensuing decline. This is based upon our previous study showing that when squirrels are 256 fed exogenous GCs, plasma cortisol concentrations spike within 90-120 minutes of 257 treatment and decline over the ensuing 12 h (van Kesteren et al., 2018 PREPRINT). 258 In order to analyze rattles recorded on stationary zoom recorders, we used 259 Kaleidoscope software (version 4.3.2; Wildlife Acoustics, Inc., Maynard, MA, USA) to 260 detect rattles in the recordings. Detection settings were: frequency range: 2000-13000 Hz; signal duration: 0.4–15 s; maximum intersyllable silence: 0.5 s; fast Fourier 261 262 transform size: 512 points (corresponding to a temporal resolution of 6.33 ms and a 263 frequency resolution of 86 Hz); distance setting: 2 (this value ensures that all detections 264 are retained). Previous research using our same population, recording apparatus, and

rattle extraction technique, and ground-truthed by comparing the results to those obtained by a human observing the squirrels being recorded, showed that our method detects 100%

of a focal squirrel's rattles (see Siracusa et al., submitted), but also detects non-rattles andthe rattles of neighbors.

269 We used a previously developed a technique for distinguishing focal squirrel 270 rattles from non-rattles and neighbor rattles (Siracusa et al., in press). We first 271 automatically analyzed the acoustic structure of every detection using the R package 272 'Seewave' (version 2.0.5; Sueur et al. 2008). Structural features included duration, root-273 mean-square amplitude, pulse rate, duty cycle, peak frequency, first energy quartile, 274 skewness, centroid, and spectral flatness (see detailed definitions in Sueur et al. 2008 and 275 Siracusa et al., in press). We analyzed a more complex suite of rattle characteristics here 276 because these features encode the most information about individual identity (Digweed et 277 al., 2012). Second, we used SPSS (software, version 24, IBM Corporation, Armonk, New 278 York, USA) to apply a previously established linear discriminant function analysis model 279 to the structural measurements of each detection. The model, which was developed 280 during the same ground-truthing experiment described above, labeled each detection as 281 'focal rattle,' 'neighbor rattle,' or 'non-rattle,' and assigned a probability that the detection 282 was a focal rattle. Third, we used Kaleidoscope to review spectrograms of all detections 283 labeled 'focal rattle' that have an estimated probability of being a focal rattle of at least 284 0.999. During this step, we removed any non-rattles that were included erroneously as 285 focal rattles.

14

265

286	Our final dataset included 714 rattles from 45 focal squirrels (GC-treated = 232
287	rattles from 10 squirrels, control = 367 rattles from 12 squirrels, and unmanipulated =
288	115 rattles from 23 squirrels). Based on a cross-validated assessment of the accuracy of
289	our approach (see details in Siracusa et al, in press), 52% of all focal rattles should have
290	been identified correctly as focal rattles (i.e., 48% incorrectly classified as coming from a
291	neighbour, and, therefore, excluded; false negative error rate = 48%), and 6% of the
292	rattles labeled as focal rattles (after manually removing the non-rattles) should actually
293	have been neighbor rattles (<i>i.e.</i> , false error rate of 6%). Therefore, although our final
294	dataset included only half of all rattles produced by our focal squirrels during their 24-h
295	trials, the vast majority of rattles that were included in the dataset were from the focal
296	individual.
297	
298	Acoustic Analysis
299	We used Avisoft SASLab Pro software version 5.0 (Avisoft, 2015) to analyze the
300	acoustic structure of rattles recorded in both experiments. The rattles were loaded into
301	Avisoft, and for each rattle we generated a spectrogram (FFT size: 512, Window:
302	Hamming, Temporal Resolution: 1.45 ms, Frequency Resolution: 86 Hz, Overlap:
303	87.5%) and the program extracted the acoustic parameters of interest (described below)
304	using an existing protocol for rattle acoustic analysis. We oversaw this process manually,
305	checking that each call was recognized and analyzed in its entirety by AviSoft, and that
306	
	none were cut off - if the program did not recognize the call in its entirety, we would

308	acoustic parameters: rattle duration, mean frequency (the frequency below which lies
309	50% of the energy of the signal, as measured from an averaged power spectrum of the
310	entire signal), and entropy, a measure of noisiness of a signal. Because rattles are
311	broadband and noisy signals, meaning that the majority of the energy in a call is
312	dispersed across the frequency domain, mean frequency is a more appropriate measure of
313	the frequency of the call than peak frequency. AviSoft measures Weiner Entropy
314	(spectral flatness), calculated by dividing the geometric mean of the power spectrum by
315	the arithmetic mean of the power spectrum, which ranges from 0 (pure tone) to 1 (white
316	noise). We limited analysis to these three acoustic variables because in our review of the
317	literature, these variables appeared to be most commonly influenced by arousal (Manser,
318	2001; Rendall, 2003; Facchini et al., 2005; Soltis et al., 2005b; Slocombe et al., 2009;
319	Esch, 2009; Zimmerman, 2009). These measurements were made using the 'automatic
320	parameter measurements' feature of SASLab Pro to eliminate human bias in the
321	measurements (settings: threshold -13 dB, hold time of 150 ms).
322	Because high frequencies attenuate more readily than low frequencies, entropy
323	and mean frequency could, in theory, covary with recording distance. In the capture-
324	induced stress experiment, a constant recording distance of approximately 5 meters was
325	maintained for all recordings. In the GC induced stress experiment, in which rattles were
326	recorded on stationary zoom microphones, to ensure that recording distance did not vary
327	with time or treatment, we measured the signal-to-noise ratio of a subset of 140 rattles
328	and found no significant relationships between rattle amplitude (a proxy for recording
329	distance) and time of day (linear regression: $t = -1.33$, $df = 6.6$, $p = 0.19$) or treatment

330 (linear regression: t = -1.66, df = 24.9, p = 0.11). This indicates that any variation in rattle 331 entropy throughout the day or among the treatments was not due to focal squirrels being 332 closer to or further from the microphone.

17

333 *Statistical Analyses*

334 For statistical analyses, we used R (version 3.5.1; R Developmental Core Team, 335 2018) with the package lme4 (version 1.17; Bates et al., 2015) to fit linear mixed-effects 336 models and lmerTest version 3.0 (Kuznetsova et al.; 2017) to assess the significance of 337 these models. For the capture-induced stress experiment, we included rattle collection 338 method (post-trap or opportunistic) as a fixed effect. We included squirrel ID as a random effect because we analyzed multiple rattles from the same squirrels across multiple years. 339 340 Wilson et al. (2015) found no effects of age, sex, or Julian date on the acoustic 341 structure of rattles recorded from this same population. To confirm this finding, we ran 342 separate linear mixed effects models with each variable included as a fixed effect, and 343 found no significant relationship between any of these variables and any of the three 344 acoustic structural features. Age had no relationship with acoustic structure in either 345 stressed (*duration*: t = -0.08, df = 36.9, p = 0.94; mean frequency: t = -0.54, df = 34.5, p = -0.54, df = -0.54346 0.59; *entropy*: t = -1.26, df = 36.9, p = 0.21) or unstressed (*duration*: t = -0.04, df = 51.5, 347 p = 0.97; mean frequency: t = -0.66, df = 152.14, p = 0.51; entropy: t = -1.01, df = 138.4, p = 0.31) squirrels. The same was true for sex – neither stressed (*duration*: t = <0.001, df 348 349 = 36.81, p = 0.99; mean frequency: t = 0.48, df = 33.7, p = 0.96; entropy: t = 0.34, df = 0.34, 350 36.6, p = 0.74) nor unstressed (*duration*: t = 0.93, df = 162.2, p = 0.36; mean frequency: t = 0.08, df = 154.7, p = 0.94; *entropy*: t = -0.91, df = 176.5, p = 0.36) squirrels showed 351

352any such relationship. And the same was true for Julian date, in both stressed (*duration:* t353= -0.05, df = 34.55, p = 0.81; mean frequency: t = 0.78, df = 35.11, p = 0.55; entropy: t =3541.05, df = 34.23, p = 0.59) and unstressed squirrels (*duration:* t = 0.10, df = 161.22, p =3550.81; mean frequency: t = -0.03, df = 162.33, p = 0.37; entropy: t = 0.85, df = 161.58, p =3560.45).

357 We also found no year effects for any of the acoustic parameters measured – we 358 conducted LMMs for each acoustic variable, and found no effect of year on any variable 359 in both stressed (*duration*: $F_{2, 36.0} = 0.71$, p = 0.50; mean frequency: $F_{2, 36.2} = 2.20$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, p = 0.50; mean frequency: $F_{2, 36.2} = 0.71$, p = 0.71, 360 0.08; *entropy*: $F_{2,37.1} = 3.20$, p = 0.10) and unstressed (*duration*: $F_{3,260.5} = 1.76$, p = 0.16; *mean frequency*: $F_{3, 261.8} = 2.58$, p = 0.09; *entropy*: $F_{3, 262.3} = 2.21$, p = 0.09) squirrels. 361 362 To examine the effects of administration of exogenous GCs on the acoustic 363 structure of rattles, we fit three separate linear mixed-effects models – one for each of the 364 three acoustic response variables (duration, mean frequency, entropy). Each model 365 included an interaction between treatment group and time since treatment consumption 366 (both linear and quadratic terms) as fixed effects, and squirrel ID (n = 44) as a random 367 effect. In order to include the rattles of unmanipulated squirrels in this model, we found 368 the average time at which the GC-treated and control (fed) squirrels consumed their 369 treatment (1015 h) and set that as time of treatment consumption for all unmanipulated 370 squirrels (i.e. unfed squirrels). For example, a rattle emitted at 1030 h would have a "time 371 since treatment" value of 900 s, and a rattle emitted at 1000 h would have a time since 372 treatment value of -900 s. Time since treatment consumption was standardized (mean

(time of day) = 0, SD = 1). In both experiments, Q-Q plots were generated to test for
normality, and residuals were found to be normally distributed.

375 We did not compare the rattles of GC-treated squirrels directly with the rattles of 376 trap-stressed squirrels for two primary reasons. The first is that for the GC-treated 377 squirrels, because we checked for consumption of treatment only every hour, we have far 378 less precision in determining which rattles occurred at peak circulating GC levels (90-120 379 min post treatment). Thus, it was impossible to compare the post-trap rattles produced at 380 peak stress levels with rattles produced at peak GC levels. The second reason is that the 381 rattles in the post-trap stress experiment were recorded with a different, slightly higher 382 quality recording unit than those recorded in the GC treatment experiment, making direct 383 comparisons across recordings inappropriate.

384 If elevated plasma GCs alter rattle acoustic structure, we expected that the effects 385 of the GC treatment on rattle acoustic structure would be strongest within 90-120 minutes 386 of treatment consumption, the time frame in which circulating GCs should be highest 387 using this treatment paradigm (Breuner et al., 1998; van Kesteren et al., 2018 388 PREPRINT). Thus, we included a non-linear (quadratic) term for time since treatment 389 consumption and its interaction with treatment because we expected that the effects of the 390 treatment would exhibit a non-linear relationship, peaking within 90-120 minutes of 391 treatment and then declining throughout the remainder of the day. 392 393 **Results:**

394 *Effects of capture-induced stress on rattle acoustic structure*

395	Capture-induced stress caused pronounced differences in rattle acoustic structure:
396	post-trap rattles were longer, higher in frequency, and noisier than rattles collected
397	opportunistically. Thus, there was indeed a clear stress signature. The average duration of
398	post-trap rattles (4.77 \pm 2.25 (SD) s) was significantly longer than that of opportunistic
399	rattles (2.93 ± 1.28 s), a 63% increase (t = 3.78, df = 209.41, p < 0.001, Fig. 1A). The
400	average mean frequency of post-trap rattles (7269.53 \pm 1180.76 hz) was slightly but
401	significantly higher than that of opportunistic rattles (6971.753 \pm 1007.37 hz), a 4.3%
402	increase (t =2.82, df = 218.01, $p = 0.005$, Fig. 1B). And finally, the average entropy of
403	post-trap rattles (0.754 \pm 0.035) was slightly but significantly higher than that of
404	opportunistic rattles (0.712 \pm 0.047), a 5.9% increase (t = 4.14, df =78.52, p < 0.001, Fig.
405	1C).
406	Effects of administration of glucocorticoids on rattle acoustic structure
407	Administration of exogenous GCs did not produce the same effects on rattle
408	acoustic structure as capture-induced stress – the rattle acoustic features of GC treated
409	squirrels did not follow the predicted pattern of peaking after treatment and then
410	declining as a function of time since treatment (Tables 2-4, Fig. 2). There was, however,
411	a significant linear interaction between treatment and the amount of time elapsed since

412 treatment consumption on rattle duration ($F_{2, 677.4} = 3.78$, p = 0.02). This effect was

413 largely driven by the increases in rattle duration observed in negative control group

414 squirrels (Fig. 2A): rattles from negative control group squirrels increased in length

415 throughout the day compared to those treated with GCs (b = 0.33, t = 2.67, p = 0.01,

416 Table 2, Fig. 2A). Rattle durations of squirrels treated with GCs did not change

417 differentially over the course of the day when compared with rattle durations of squirrels 418 fed peanut butter only (b = 0.07, t = 0.73, p = 0.47, Table 2, Fig. 2A).

There were no treatment effects on rattle mean frequency ($F_{2,2} = 0.60$, p = 0.63, 419 420 Table 3) or entropy ($F_{2.56} = 0.47$, p = 0.63, Table 4) and the effects of the treatments on 421 rattle mean frequency or entropy did not depend upon the amount of time that had 422 elapsed since treatment consumption, as indicated by the lack of interactions between 423 treatment and time elapsed since treatment consumption (both linear and quadratic 424 terms). However, the mean frequency of rattles from squirrels recorded in all three 425 treatment groups increased throughout the day ($F_{1,683,3} = 4.77$, p = 0.03). Overall, there 426 were no significant non-linear effects of time since treatment consumption or its 427 interaction with treatment on rattle duration, frequency, or entropy (Tables 2-4).

428

429 Discussion:

430 Our study shows that short-term stress, in this case induced by live-capture and 431 handling, significantly influences the acoustic structure of territorial vocalizations in red squirrels. Squirrels experiencing capture-induced stress produced rattles that were longer 432 433 in duration, higher in frequency, and noisier (higher entropy) than rattles produced by 434 positive control squirrels. However, we were unable to reproduce these same effects on 435 acoustic structure by experimentally increasing circulating GCs, despite the fact that GCs 436 increase in response to trapping and handling (Bosson et al., 2012; van Kesteren et al., 437 2018 PREPRINT). Indeed, the rattles of squirrels treated with GCs did not exhibit the

438 expected structural distinctions from the rattles of positive control or negative control439 squirrels over the treatment period.

440 The only significant differences in rattle acoustic structure between treatment 441 groups in the GC treatment experiment was that in unmanipulated squirrels, rattles increased in duration throughout the day, whereas the rattles of GC-treated and control 442 443 (fed) squirrels did not significantly vary throughout the day. This may indicate that 444 supplemental feeding suppresses a normally-occurring pattern in rattle structure - rattles 445 may normally increase in duration throughout the day. Differences in study grids may 446 also explain this difference: squirrels in the GC-treated and positive control groups were 447 on a different study grid than those in the negative control group. The study grid on 448 which the GC-treated and control (fed) squirrels lived has historically higher squirrel 449 population densities than the study grids on which the negative control squirrels lived; it 450 is thus possible that at lower population densities, squirrels produce longer rattles. Both 451 of these possible explanations, however, would need to be examined directly. 452 The effects of short-term stress (trapping and handling) on rattle acoustic structure 453 that we observed (longer duration, higher mean frequency, and higher entropy) are 454 largely congruent with such trends in acoustic structure in relation to stress in many 455 species. Chimpanzee screams, for example, increase in duration with the severity of an

456 agonistic encounter (Slocombe et al., 2009). In dog barks (Canis lupus familiaris,

457 Tokuda, 2002), human infant cries (Facchini et al., 2005), baboon grunts (*Papio*

458 *hamadrayas*, Rendall, 2003), and meerkat alarm calls (Suricata suricatta, Manser, 2001),

459 noisiness (entropy) increases with short-term stress. In many species, an increase in short-

term stress is associated with an increase in pitch related characteristics. For example,
during capture-release events, female bottlenose dolphins with dependent calves produce
whistles of elevated frequency (Tursiops truncatus, Esch, 2009). The same pattern is
observed in adult female African elephants (Loxondota africana, Soltis et al., 2005b), tree
shrews (Tupaia belangeri, Schehka and Zimmerman, 2009), and zebra finches (Perez et
al., 2012): short-term stress is associated with an increase in vocalization pitch. In giant
panda cubs (Ailuropoda melanoleuca), increased stress is associated with all of the trends
in acoustic structure that we observed in post-trap rattles: longer duration, higher
frequency, and increased noise (Zimmerman, 2009).
Our results resemble those of Perez et al. (2012), who investigated how an
environmental stressor (social isolation) and treatment with exogenous GCs affected
vocalization structure in zebra finches. In their study, social isolation induced
vocalizations of increased duration and pitch, and reduced overall vocal activity.
However, oral administration of GCs only resulted in vocalizations with increased pitch,
but no other effects were observed (Perez et al. 2012). The results from Perez et al.
(2012) and our study suggest that short-term stressors alter vocalization structure but any
increases in GCs caused by the short-term stressor are not solely responsible for these
changes.
Our findings and these of Dener et al. (2012) suggest that the accustic structure of

Our findings and those of Perez et al. (2012) suggest that the acoustic structure of
vocalizations can be altered by short-term stress, but the relationship between circulating
GC levels and acoustic structure of vocalizations is not straightforward. Glucocorticoid
treatment and capture-induced stress result in comparable concentrations of plasma GCs

482 (van Kesteren et al., 2018 PREPRINT), indicating that our GC treatment regime fairly 483 accurately simulates the increase in plasma GCs experienced as a result of capture. Thus, 484 other hormones or neurochemicals may be implicated in modulation of the acoustic 485 structure of vocalizations. For example, in rat pups, several classes of dopamine receptor 486 agonists reduced the production of stress-induced ultrasonic vocalizations caused by 487 isolation; this is a sign of reduced separation anxiety (Dastur et al., 1999). It is also 488 possible that the acoustic structure of vocalizations has a non-monotonic dose response 489 relationship with GCs. There is precedent for such a relationship: in white crowned 490 sparrows, moderate doses of corticosterone induced elevated physical activity, whereas 491 high levels did not (Breuner et al., 1998). We only provisioned squirrels with one dosage 492 of GCs and so were unable to address whether lower or higher dosages of GCs would 493 alter rattle acoustic structure. Together, this suggests the importance of considering 494 additional mechanisms that may underlie the observed changes in vocalization acoustic 495 structure.

Because treatment with exogenous GCs induced none of the expected changes to
rattle acoustic structure, it is possible that the acoustic changes observed in the rattles of
trapped squirrels were produced by an effect of trapping besides increases in GCs.
Because rattles function to advertise territorial ownership, it is possible that a squirrel that
has been in a trap and unable to defend its territory for up to two hours, upon release,
compensates by producing rattles that are longer and noisier. This hypothesis, however,
would require explicit tests.

503	It is also worth considering here the possible influence of energetic state on rattle
504	acoustic structure. The two manipulated groups (GC-fed and positive control) were
505	provisioned with 10 g of a peanut butter/wheat germ mixture, and it is conceivable that
506	this energetic boost impacted rattle structure. A red squirrel's daily energetic expenditure
507	ranges from approximately 177 kJ/day to 660 kJ/day, depending on season and
508	reproductive state; during mid-summer, when our experiment was conducted, a male
509	squirrel's daily energetic expenditure likely falls near the middle of that range (Fletcher
510	et al 2012). 10 g of natural peanut butter and wheat germ contains approximately 240 kJ;
511	thus, peanut butter treatments constituted a significant portion of a squirrel's daily energy
512	requirements. A significant body of literature has examined the effects of energetic state
513	on vocalizations. Most notably, studies on songbirds have found that birds provisioned
514	with supplemental food in the evening produce longer and more complex dawn choruses
515	the following morning (Cuthill and McDonald 1990; Berg et al., 2005; Barnett and
516	Briskie, 2007).
517	It is thus conceivable that the energetic boost provided by peanut butter treatments

517 It is thus conceivable that the energetic boost provided by peanut butter treatments 518 interfered with any effects of GCs on acoustic structure. However, given the lack of 519 significant differences in the rattles of squirrels in any of the three treatment groups, we 520 consider this possibility unlikely.

521 Our findings constitute further evidence that territorial vocalizations such as 522 rattles contain more information than territorial ownership. In red squirrels, not only do 523 rattles have the capacity to communicate stable information about the signaler's 524 individual identity and potential kin relationships (Digweed et al. 2012; Wilson et al.

525	2015; Shonfield et al. 2017), but also labile information, such as short-term stress. In
526	some cases, it is possible that this stable and labile information may interact – the stress
527	state of the signaler might modify the ability of conspecifics to discriminate whether they
528	are kin or non-kin, as proposed by Shonfield et al., (2017). This layering of stable and
529	labile encoded information in vocalizations may not be uncommon, appearing across a
530	number of animal taxa (Seyfarth and Cheney, 2003; Rendall, 2003; Blumstein and
531	Munos, 2005; Soltis, 2005a; Koren and Geffen, 2009; Terleph et al., 2016).
532	There are several hypotheses on the functional significance of these tendencies in
533	vocalizations associated with high-stress contexts. In social species, the unpredictability
534	hypothesis states that calls that contain more non-linearities are more difficult to
535	habituate to, and thus noisy alarm calls are more likely to capture the attention of a
536	conspecific in the event of a predatory or otherwise dangerous event (Blumstein and
537	Recapet, 2009). Another hypothesis holds that screams produced when an animal is in
538	imminent danger of predation serve to either startle and distract the predator, or solicit
539	intervention from another animal, either a social group member, or a "pirate" predator
540	that may attempt to steal the prey and unintentionally free it (Hogstedt, 1982). In the case
541	of red squirrels, one hypothesis that can be envisaged is that honestly communicating
542	stress to neighbors may advertise a willingness to aggressively defend one's territory.
543	Another possibility is that instead of honestly depicting a willingness to defend a
544	territory, vocal cues of stress might inadvertently reveal that the caller faces some other
545	challenge and might, therefore, be less capable of defending their territory. These two
546	hypotheses, however, would need to be tested directly – for example, a playback study

could test whether the rattles of stressed squirrels are more or less likely to deter
territorial intrusions from neighboring squirrels than rattles of unstressed squirrels. If
stress-influenced rattles are more likely to deter intruders, and if their production predicts
an attack or further escalation by the signaler, then stressed rattles would be considered
aggressive signals (Searcy and Beecher, 2009); if the opposite was the case, they would
be considered index signals (Smith and Harper, 1995).

553 Though research on stress-induced changes to vocalizations has focused primarily 554 on group-living species, the encoding of labile information such as short-term stress in 555 vocalizations may have consequences in a population of solitary, territorial animals as 556 well, perhaps enabling neighbors to eavesdrop on the physiological state of the signaler 557 and adjust their own behavior or reproduction accordingly. Eavesdropping by 558 conspecifics, or the acquisition of public information, may have important ecological 559 consequences (Valone, 2007; Dall et al., 2010). For example, in many species, including 560 red squirrels (Fisher et al., 2017; Lane et al., 2018), breeding earlier than other 561 individuals in your population may be advantageous. Cues about the physiological state 562 of a signaler contained in territorial vocalizations may provide an important source of 563 information about when other individuals in the population are breeding – in red 564 squirrels, the strongest level of selection for postnatal growth rate and birth date is the 565 social neighborhood (Fisher et al., 2017). As such, labile information contained in 566 vocalizations, such as stress state, may have broader ecological consequences by serving 567 as public information and modifying the timing of reproduction in seasonally breeding 568 species.

27

569	Overall, our results indicate that red squirrel territorial vocalizations may contain
570	labile information on physiological state, in addition to the previously documented stable
571	information about territorial ownership and individual identity. This study represents one
572	of only very few experimental tests of effects of stress on acoustic structure in any
573	species. Future studies could explore the possible interactions between stable and labile
574	information encoded in these calls, and the ways in which these layers of encoded
575	information might influence behavioral or reproductive dynamics.
576	

577	References
578	Andersson M. 1994. Sexual Selection. Princeton, NJ: Princeton University Press.
579	
580 581	August PV, Anderson JGT 1987. Mammal sounds and motivation-structural rules: A test of the hypothesis. <i>J Mammal</i> . 68:1–9.
582	
583 584	Barnett, C. A., & Briskie, J. V. 2007. Energetic state and the performance of dawn chorus in silvereyes (Zosterops lateralis). <i>Behav Ecol Sociobiol</i> , 61, 579–587.
585	
586 587	Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. <i>J Stat Soft</i> . 67: 1-48.
588	
589 590 591	Bayart F, Hayashi KT, Faull KF, Barchas, JD, Levine S. 1990. Influence of maternal proximity on behavioral and physiological responses to separation in infant rhesus monkeys (<i>Macaca mulatta</i>). <i>Behav Neurosci</i> . 104: 98–107
592	
593 594 595	Bee MA, Perrill SA, Owen PC. 1999. Size assessment in simulated territorial encounters between Male Green Frogs (<i>Rama clamitans</i>). <i>Behav Ecol Sociobiol</i> 45: 177-184.
596	
597 598	Beecher MD. 1989. Signaling systems for individual recognition: an information theory approach. <i>Anim Behav.</i> 38: 248–261.
599	
600 601 602	Beer CG. 1970. On the responses of laughing gull chicks (<i>Larus atricilla</i>) to the calls of adults II. Age changes and responses to different types of call. <i>Anim Behav.</i> 18: 661–677.
603	
604 605 606 607	Berg, M. L., Beintema, N. H., Welbergen, J. A., & Komdeur, J. 2005. Singing as a Handicap: The Effects of Food Availability and Weather on Song Output in the Australian Reed Warbler Acrocephalus australis. Oikos 36: 102–109.
608 609 610 611	Biben M, Symes D, & Masataka N. 1986. Temporal and structural analysis of affiliative vocal exchanges in squirrel monkeys (<i>Saimiri sciureus</i>). <i>Behaviour</i> . 98: 259-273.

612 613 614	Blumstein DT, & Munos O. 2005. Individual, age and sex-specific information is contained in yellow-bellied marmot alarm calls. <i>Anim Behav.</i> 69: 353–361.
615 616 617	Blumstein D, Richardson D, Cooley L. Winternitz J, Daniel J. 2008. The structure, meaning and function of yellow-bellied marmot pup screams. <i>Anim Behav.</i> 76: 1055–1064.
618	
619 620 621	Blumstein DT, Récapet C. 2009. The sound of arousal: the addition of novel non- linearities increases responsiveness in marmot alarm calls. <i>Ethol.</i> 115: 1074– 1081.
622	
623 624	Bosson CO, Islam Z, Boonstra R. 2012. The impact of live trapping and trap model on the stress profiles of North American red squirrels. <i>J Zool.</i> 288: 159-169.
625	
626 627 628	Breuner C, Greenberg A, Wingfield J. 1998. Noninvasive corticosterone treatment rapidly increases activity in Gambel's White Crowned Sparrows (<i>Zonotrichia</i> <i>leucophrys gambelii</i>). <i>Gen Comp Endocrinol</i> . 111: 386-394.
629	
630 631	Clark AP. 1993. Rank differences in the production of vocalizations by wild chimpanzees as a function of social context. <i>Am J Primatol.</i> 31: 159-197.
632	
633 634	Clutton-Brock TH, Albon SD. Roaring of red deer and evolution of honest advertisement. <i>Behaviour</i> 69: 145-170.
635	
636 637	Cuthill I.C., Macdonald W.A. (1990). Experimental manipulation of the dawn and dusk chorus in the blackbird (<i>Turdus merula</i>). <i>Behav Ecol Sociobiol</i> , 26: 209-216.
638	
639 640 641	Dantzer B, Newman AEM, Boonstra R, Palme R, Boutin S, Humphries MM, Mcadam, AG 2013. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. <i>Science</i> 340: 1215–1218.
642	
643 644 645	Dastur FN, McGregor IS, Brown RE. 1999. Dopaminergic modulation of rat pup ultrasonic vocalizations. <i>Eur J Pharmacol.</i> 382: 53–67.
0-0	

646 647 648 649	Digweed S, Fedigan L, Rendall D. 2007. Who cares who calls? Selective responses to the lost calls of socially dominant group members in the white-faced capuchin (<i>Cebus Capucinus</i>). <i>Am J Primatol.</i> 69: 829-835.
650 651 652	Digweed S, Rendall D, Imbeau T. 2012. Who's your neighbor? Acoustic cues to individual identity in red squirrel <i>(Tamiasciurus hudsonicus)</i> rattle calls. <i>Curr Zool.</i> 58: 758–764.
653	
654 655	Donald JL, Boutin S, Steele MA. 2011. Intraspecific cache pilferage by larder- hoarding red squirrels (<i>Tamiasciurus hudsonicus</i>). <i>J Mammal</i> . 92: 1013–1020.
656	
657 658	Ehret G. 2005. Infant rodent ultrasounds - a gate to the understanding of sound communication. <i>Behav Genet.</i> 35: 19–29.
659	
660 661	Esch HC, Sayigh LS, Blum, JE, Wells RS. 2009. Whistles as potential indicators of stress in bottlenose dolphins (<i>Tursiops truncatus</i>). <i>J Mammal</i> . 90: 638–650.
662	
663 664	Ey E, Hammerschmidt K, Seyfarth RM, Fischer, J. 2007. Age and sex-related variations in clear calls of <i>Papio ursinus</i> . <i>Int J Primatol</i> . 28: 947-960.
665	
666 667 668	Facchini A, Bellieni CV, Marchettini N, Pulselli FM, Tiezi EBP. 2005.Relating pain intensity of newborns to onset of nonlinear phenomena in cry recordings. <i>Phys</i> <i>Lett A</i> . 338: 332–337.
669	
670 671 672	Fisher D, Boutin S, Dantzer B, Humphries M, Lane J, McAdam A. Multilevel and sex- specific selection on competitive traits in North American red squirrels. <i>Evolution</i> . 71:1841-1854.
673	
674 675	Fitch WTS. 1997. Vocal tract length and formant frequency dispersion correlate with body size in rhesus macaques. <i>J Acoust Soc Am</i> . 102: 1213–1222.
676	
677 678 679 680	 Fitch WT, Neubauer J, Herzel H. 2002. Calls out of chaos: the adaptive significance of nonlinear phenomena in mammalian vocal production. <i>Anim Behav.</i> 63: 407–418.
000	

681 682 683	Fletcher QE, Landry-Cuerrier M, Boutin S, Mcadam AG, Speakman JR, Humphries, MM. 2013. Reproductive timing and reliance on hoarded capital resources by lactating red squirrels. <i>Oecologia</i> 173: 1203–1215.
684 685 686 687	Fletcher, QE, Speakman, JR, Boutin, S, Mcadam, AG, Sarah, B, & Humphries, MM. 2012. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. <i>Funct Ecol.</i> 26: 277-287.
688	
689 690	Smith MJ, Harper DCG. 1995. Animal Signals: Models and Terminology. <i>J Theor Biol</i> .177: 305–311.
691	
692 693	Hogstedt G. 1982. Adaptation unto death: function of fear screams. <i>Am Nat.</i> 121: 562–570.
694	
695 696	Koren, L., & Geffen, E. 2009. Complex call in male rock hyrax (<i>Procavia capensis</i>): A multi-information distributing channel. <i>Behav. Ecol. Sociobiol.</i> 63: 581–590.
697	
698 699	Koren L., Mokady O, Geffen E. 2008. Social status and cortisol levels in singing rock hyraxes. <i>Horm Behav.</i> 54: 212–216.
700	
701 702	Krebs CJ, Boutin SA, Boonstra, R. 2001. Ecosystem dynamics of the boreal forest: the Kluane project. New York, NY: Oxford University Press.
703	
704 705 706	Kuztensova A, Brockhoff P, Christianson HB. 2017. ImerTest Package: Tests in Linear Mixed Effects Models. J Stat Soft. 82: 1-26.
707 708 709 710	Lane JE, McAdam AG, McFarlane SE, Williams CT, Humphries MM, Coltman DW, Gorrell JC and Boutin S. 2018. Phenological shifts in North American red squirrels: disentangling the roles of phenotypic plasticity and microevolution. J Evol Biol. 31: 820-821.
711 712 713 714	Larsen KW, Boutin S. 1994. Movements, survival, and settlement of red squirrel (<i>Tamiasciurus hudsonicus</i>) offspring. <i>Ecology</i> . 75: 214-223.
715 716 717	Lingle S, Rendall D, Pellis SM. 2007. Altruism and recognition in the antipredator defense of deer: 1. Species and individual variation in fawn distress calls. <i>Anim</i> <i>Behav.</i> , 73: 897–905.

718 719	Manser MB. 2001. The acoustic structure of suricates' alarm calls varies with predator type and the level of response urgency. <i>Proc R Soc Lond [Biol]</i> . 268: 2315–24.
720	
721 722	Marler P. 1961. The Logical Analysis of Animal Communication. <i>J Theor Biol.</i> 1: 295–317.
723	
724 725	Masataka N, Symmes D. 1986. Effect of separation distance on isolation call structure in squirrel monkeys (<i>Saimiri sciureus</i>). <i>Am J Primatol</i> . 10: 271–278.
726	
727 728 729	Mcadam A, Boutin S, Sykes A, Humphries M. Life histories of female red squirrels and their contributions to population growth and lifetime fitness. <i>Ecoscience</i> . 14: 362-369.
730	
731 732	Morton ES. 1977. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. <i>Am Nat.</i> 111: 855-869.
733	
734 735	Muller, M.N., & Wrangham, R.W. 2004. Dominance, aggression and testosterone in wild chimpanzees: A test of the "challenge hypothesis." <i>Anim. Behav.</i> 67: 113–123.
736	
737 738	Nader N, Chrousos GP, Kino T. 2010 Interactions of the circadian clock system and the HPA axis. <i>Trends Endocrinol Metab.</i> 21: 277–286.
739	
740 741 742	Perez EC, Elie JE, Soulage CO, Soula HA, Mathevon N, Vignal C. 2012. The acoustic expression of stress in a songbird: does corticosterone drive isolation-induced modifications of zebra finch calls? <i>Horm Behav.</i> 61: 573–581.
743	
744 745 746	Perez EC, Mariette MM, Cochard P, Soulage CO. 2016. Corticosterone triggers high- pitched nestlings' begging calls and affects parental behavior in the wild zebra finch. <i>Behav Ecol.</i> 27: 1665–167.
747	
748 749	Porges W. 1995. Cardiac vagal tone: A physiological index of stress. <i>Neurosci Biobehav. Rev.</i> 2: 225–233.
750	
751 752	R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
753	

754 755	Reby D, McComb K. 2003. Anatomical constraints generate honesty: acoustic cues to age and weight in the roars of red deer stags. <i>Anim Behav.</i> 65: 519–530.
756	
757 758	Rendall D. 2003. Acoustic correlates of caller identity and affect intensity in the vowel- like grunt vocalizations of baboons. <i>J Acoust Soc Am</i> . 113: 3390–3402
759	
760 761	Searcy WA, Beecher MD. 2009. Song as an aggressive signal in songbirds. <i>Anim Behav.</i> 78: 1281–1292.
762	
763 764 765	Sacchi R, Saino N, Galeotti P. 2002. Features of begging calls reveal general condition and need of food of barn swallow <i>(Hirundo rustica)</i> nestlings. <i>Behav Ecol.</i> 13: 268.
766 767 768	Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory and preparative actions. <i>Endocr. Rev</i> , 21: 55:89.
769	
770	
771 772	Sueur J, Aubin T, Simonis C. 2008. Seewave, a free modular tool for sound analysis and synthesis. <i>Bioacoustics</i> . 18: 213-226.
773	
774 775 776	Schehka S, Zimmermann E. 2009. Acoustic features to arousal and identity in disturbance calls of tree shrews (<i>Tupaia belangeri</i>). <i>Behav Brain Res.</i> 203: 223–231.
777	
778 779	Schmidt K, Dall S, Van Gils J. 2010. The ecology of information: an overview on the ecological significance of making informed decisions. <i>Oikos</i> 119: 304-316.
780	
781 782	Seyfarth RM, Cheney DL. 2003. Signalers and Receivers in Animal Communication. <i>Annu Rev Psychol.</i> 54: 145–173.
783	
784 785 786 787	Shonfield J, Gorrell JC, Coltman, DW, Boutin S. 2017. Using playback of territorial calls to investigate mechanisms of kin discrimination in red squirrels. <i>Behav Ecol.</i> 28: 1–9.
101	

788 789 790	Siracusa E, Morandini M, Boutin S, Humphries MM, Dantzer B, Lane JE, McAdam AG. 2017. Red squirrel territorial vocalizations deter intrusions by conspecific rivals. <i>Behaviour</i> . 154: 1259-1273.
791	
792 793 794 795	Siracusa ER, Wilson DR, Studd EK, Boutin S, Humphries MM, Dantzer B, Lane JE, McAdam A.G. Red squirrels mitigate costs of territory defence through social plasticity, <i>Anim Behav</i> , in press (accepted January 11, 2019 ANBEH-D-18- 00328)
796	
797 798 799	Slocombe KE, Townsend SW, Zuberbühler K. 2009. Wild chimpanzees (<i>Pan troglodytes schweinfurthii</i>) distinguish between different scream types: Evidence from a playback study. <i>Animal Cogn.</i> 12: 441–449.
800	
801 802	Smith CC. 1968. The Adaptive Nature of Social Organization in the Genus of Three Squirrels <i>Tamiasciurus</i> . <i>Ecol Monograph</i> . 38: 31-64.
803	
804 805	Smith CC. 1978 Structure and function of the vocalizations of tree squirrels (Tamiasciurus hudsonicus). J Mammal. 59: 793-80.
806	
807 808	Soltis J, Leong K, Savage A. 2005 African elephant vocal communication I: antiphonal calling behaviour among affiliated females. <i>Anim Behav.</i> 70: 579-587.
809	
810 811 812	Soltis J, Leong K, Savage A. 2005. African elephant vocal communication II: Rumble variation reflects the individual identity and emotional state of callers. <i>Anim Behav</i> .70: 589–599.
813	
814 815	Stoeger AS, Baotic A, Li D, Charlton BD. 2012. Acoustic features indicate arousal in infant giant panda vocalisations. <i>Ethol.</i> 118: 896–905.
816	
817 818 819	Studd EK, Boutin S, McAdam AG, Humphries MM. 2016. Nest attendance of lactating red squirrels (<i>Tamiasciurus hudsonicus</i>): Influences of biological and environmental correlates. <i>J Mammal.</i> 97: 806–814.
820	
821 822 823	Terleph TA, Malaivijitnond S, Reichard UH. 2016. Age related decline in female lar gibbon great call performance suggests that call features correlate with physical condition. <i>BMC Evol. Biol.</i> 16: 1–13.
824	

825 826	Hothorn T, Bretz F, Westfall P. 2008. Simultaneous Inference in General Parametric Models. <i>Biom J.</i> 50: 346-363.
827	
828	van Kesteren F, Delehanty B, Westrick SE, Palme R, Boonstra R, Lane JE, Boutin S,
829 830 831 832	McAdam AG, Dantzer B. Experimental increases in glucocorticoids alter function of the HPA axis in wild red squirrels without negatively impacting survival and reproduction. BioRxiv [Preprint] April 26 2018 [cited February 13 2019]. Available from doi: https://doi.org/10.1101/309278
833	
834 835	Valone T. 2007. From Eavesdropping on Performance to Copying the Behavior of Others: A Review of Public Information Use. <i>Behav Ecol Sociobiol</i> . 62: 1-14.
836	
837 838 839	Wilson DR, Evans CS 2012. Fowl communicate the size, speed and proximity of avian stimuli through graded structure in referential alarm calls. <i>Anim Behav.</i> 83: 535–544.
840	
841 842 843	Wilson DR, Goble AR, Boutin S, Humphries MM, Coltman DW, Gorrell JC, Shonfield J, McAdam AG. 2015. Red squirrels use territorial vocalizations for kin discrimination. <i>Anim Behav.</i> 107: 79–85.
844	
845 846	Yosida S, Okanoya K. 2009. Naked mole-rat is sensitive to social hierarchy encoded in antiphonal vocalization. <i>Ethol.</i> 113: 113-131.
847	
848 849	Zuberbuhler K. 2009. Survivor Signals: The biology and psychology of animal alarm calling. <i>Adv. Study Behav.</i> 40: 277–322.
850 851	

852 Tables and Figures

853 Table 1: Number of rattles collected by year, study grid, collection method, and date range. In parentheses,

rattles are split up by sex - (male, female). For some squirrels, more than one rattle was collected.

Year	Grid: AG	Grid: KL	Grid: SU	Grid: JO	Collection Method	Date Range
2005	0	2 (2,0)	3 (1,2)	0	Opportunistic:1 Post-trap: 4	Jun 7 - Jul 31 2005
2006	0	113 (66,47)	93 (43,50)	0	Opportunistic: 204 Post-trap: 2	Jun 13 - Jul 14 2006
2009	30 (15,15)	53 (26,27)	8 (6,2)	0	Opportunistic: 54 Post-trap: 37	Mar 26 - Jul 26 2009
2016	24 (12,12)	25 (14,11)	0	0	Opportunistic: 49 Post-trap: 0	Jun 6 - Aug 2 2016
2017	0	93 (93,0)	22 (22,0)	599 (599,0)	Zoom mic: 714 - Unmanipulated: 115 - Control: 367 - GC: 232	Jun 2 - Aug 14 2017

879 Table 2: Compared to the rattles of GC-treated squirrels, the duration of rattles of unmanipulated squirrels880 increases linearly as a function of time since consumption of treatment. No other effects of treatment were

881 found. Output shown is from a linear mixed-effects model that assessed the influence of administration of

882 GCs on rattle duration compared to those fed supplemental food (control) or those that were unmanipulated 883 (not fed or treated with GCs), including time since treatment as both a linear and quadratic term. Individual

(not fed or treated with GCs), including time since treatment as both a linear and quadratic term. Individual
identity was included as a random effect. GC treatment is in the intercept. Sample size: 714 rattles (GC

treated: n = 232, control-treated: n = 367, unmanipulated: n = 115). Bolded terms are significant.

886

Fixed Effect	b	SE	df	t	P-value
Intercept	2.63	0.34	0.74	7.64	0.14
Time since treatment	0.07	0.07	683.0	0.90	0.37
Control treatment	0.07	0.21	31.35	0.32	0.75
Unmanipulated treatment	0.32	0.44	0.9	0.72	0.61
Time since treatment ²	-0.02	0.08	683.7	-0.30	0.76
Time since treatment x control	0.07	0.09	681.04	0.73	0.47
Time since treatment x unmanipulated	0.33	0.12	692.2	2.67	0.01
Time since treatment ² x control	-0.06	0.09	686.4	-0.68	0.50
Time since treatment ² x unmanipulated	0.17	0.13	701.4	1.29	0.20

- **Table 3:** No effects of treatment on rattle mean frequency were found, however, mean frequency did
- 890 increase as a function of time since treatment consumption. Output shown is from a linear mixed-effects
- model that assessed the influence of administration of GCs on rattle mean frequency (Hz) compared tothose fed supplemental food (control) or those that were unmanipulated (not fed or treated with GCs),
- including time since treatment as both a linear and quadratic term. Individual identity was included as a
- random effect. Sample size: 714 rattles (GC treated: n = 232, control-treated: n = 367, unmanipulated: n =
- 895 115). Bolded terms are significant.
- 896

Fixed Effect	b	SE	df	t	P-value
Intercept	9184.42	211.67	0.52	43.4	0.09
Time since treatment	175.50	77.15	681.7	2.28	0.02
Control treatment	5.73	281.57	43.15	0.02	0.98
Unmanipulated treatment	-268.48	291.95	0.7	-0.92	0.57
Time since treatment ²	-75.89	78.46	682.3	-0.97	0.33
Time since treatment x control	-147.53	95.56	680.7	-1.54	0.12
Time since treatment x unmanipulated	-64.04	129.60	693.1	-0.49	0.62
Time since treatment ² x control	-114.80	95.99	683.4	-1.20	0.23
Time since treatment ² x unmanipulated	21.40	136.18	677.0	0.16	0.88

- **Table 4:** No effects of treatment were found on rattle entropy. Output shown is from a linear mixed-effects
- 900 model that assessed the influence of administration of GCs on rattle entropy compared to those fed
- 901 supplemental food (control) or those that were unmanipulated (not fed or treated with GCs), including time

902 since treatment as both a linear and quadratic term. Individual identity was included as a random effect. GC

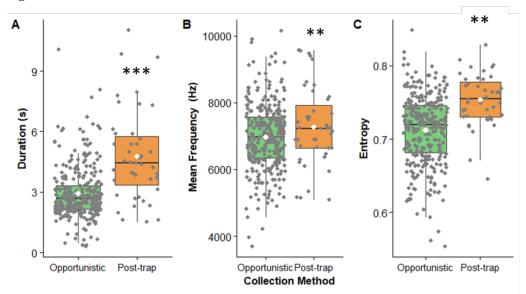
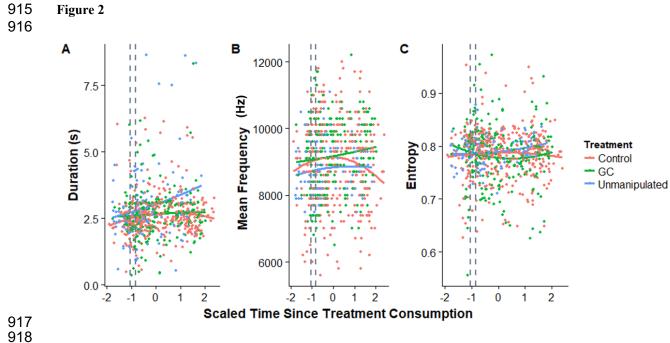
903 treatment is in the intercept. Bolded terms are significant. Sample size: 714 rattles (GC treated: n = 232,

905

Fixed Effect	b	SE	df	t	P-value
Intercept	7.86e-1	9.27e-3	4.70e+1	84.82	<2e-16
Time since treatment	-8.09e-4	3.14e-3	6.80e+2	-0.26	0.80
Control treatment	-4.03e-3	1.26e-2	4.36e+1	-0.32	0.75
Unmanipulated treatment	7.49e-3	1.26e-2	6.63e+1	0.59	0.56
Time since treatment ²	1.06e-3	3.20e-3	6.81e+2	0.33	0.74
Time since treatment x control	6.11e-4	3.90e-3	6.79e+2	0.16	0.88
Time since treatment x unmanipulated	3.86e-3	5.31e-3	7.04e+2	0.73	0.47
Time since treatment ² x control	-3.09e-3	3.91e-3	6.81e+2	-0.79	0.43
Time since treatment ² x unmanipulated	-1.10e-4	5.56e-3	7.02e+2	-0.02	0.98

⁹⁰⁴ control-treated: n = 367, unmanipulated: n = 115). Bolded terms are significant.

908 Figure 1

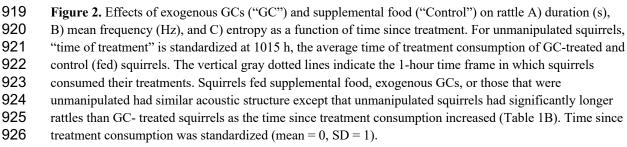


Figure 1. Effects of short-term stress (live-trapping and handling) on rattle A) duration (s), B) mean
 frequency (Hz), and entropy. Post-trap rattles were collected within a minute of the squirrel exiting a trap

and rattles collected opportunistically were collected from unprovoked squirrels. Post-trap rattles weresignificantly longer, higher in frequency, and higher in entropy. The black lines denote median, the white

914 diamonds denote mean. * = p<0.05, ** = p<0.01, ** = p<0.001.

