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Conceptual and statistical problems with the use of the Shannon-Weiner 17 

entropy index in bioacoustic analyses 18 

Information theory and its indices were developed for human communication to 19 

predict the amount of information transferred in a message. One such index, the 20 

Shannon-Weiner index (SWI), has often been used to analyze information from other fields in 21 

which its application may not be appropriate. In ecoacoustics, the SWI is used to 22 

compare acoustic diversity (i.e., a measure derived by integrating the richness and 23 

abundance of animal sounds) among locations. In animal communication, the SWI is 24 

used to quantify repertoire complexity (i.e., a measure derived by integrating the 25 

number and abundance of sound types produced by individuals or species) as an 26 

approach to understanding signal evolution. We discuss problems associated with 27 

using the SWI in ecoacoustics and animal communication. Specifically, we discuss 28 

conceptual and statistical problems associated with the SWI, and then illustrate these 29 

problems using hypothetical data. In ecoacoustics, the SWI’s assumptions of random 30 

variables and independent samples are often violated. In animal communication, the 31 

SWI fails to distinguish among repertoires in which the number of sound types and 32 

the abundance of each sound type differ. We also show that other methods do capture 33 

these differences. We conclude that the SWI does not adequately represent acoustic 34 

diversity or repertoire complexity due to the multiple conceptual and statistical issues 35 

associated with its use. We recommend other analytical methods to more fully 36 

describe these biological systems, including goodness of fit, Morisita similarity 37 

index, and Markov chain analysis. These methods provide more information for 38 

future comparisons, and permit researchers to test hypotheses more directly. 39 

Keywords: ecoacoustics; bioacoustics; repertoire; Shannon-Weiner entropy index; 40 

statistical analysis; soundscape  41 



Introduction 42 

The Shannon-Weiner entropy index (SWI) was developed to measure the amount of 43 

information transferred in a message over telephone lines (Shannon and Weaver 1949). 44 

This index estimates the uncertainty in the information code of a message (Pielou 1966; 45 

Krebs 1999), but does not estimate the number of information codes (Jost 2006), the 46 

specific codes included in the message, or the order in which the codes are produced 47 

(Palmero et al. 2014). Since its origin, the SWI, which is also called first-order entropy 48 

(McCowan et al. 1999, 2002), has been used extensively in community ecology and 49 

population genetics (e.g., Meirmans and Van Tienderen 2004; Forster et al. 2006; Sherwin 50 

2010; Peakall and Smouse 2012). However, its use in those fields has been criticized 51 

because it: (1) condenses two unrelated variables into a single metric (e.g., species 52 

composition and the abundance of individuals in each species; Allen et al. 2009; Barrantes 53 

and Sandoval 2009); (2) is very sensitive to small samples (Peet 1975; Green 1979); and (3) 54 

does not adequately reflect rare species or alleles (Chao and Shen 2003). More recently, 55 

and despite its inappropriate use in other fields, the SWI has also been applied to the fields 56 

of ecoacoustics and animal communication. 57 

In the field of ecoacoustics (Sueur and Farina 2015), and similar areas such as 58 

soundscape ecology (Farina et al. 2011; Krause 2016), the use of the SWI is becoming 59 

widespread (Pieretti et al. 2011; Depraetere et al. 2012). The main goal of ecoacoustics, as 60 

stated by Sueur and Farina (2015), is to be an "applied discipline that studies sound along a 61 

broad range of spatial and temporal scales in order to tackle biodiversity and other 62 

ecological questions". Within this broad goal, a common approach is to relate the acoustic 63 

environment to species richness and the abundance of individuals within each species 64 



(Pijanowski et al. 2011; Depraetere et al. 2012; Sueur et al. 2012). For example, Depraetere 65 

et al. (2012) tried to determine the relation between sound recordings and species richness 66 

and abundance. They asked: "(i) do the indices match with results provided by a classical 67 

bird inventory?... and (iii) could the indices highlight expected biodiversity differences 68 

between different habitats?" Research in this field uses autonomous audio recorders to 69 

monitor the acoustic environment over long periods of time (e.g., hundreds or thousands of 70 

recording hours; Blumstein et al. 2011; Mennill et al. 2012; Sueur et al. 2012). The large 71 

acoustic datasets are then analyzed using different data extraction procedures that usually 72 

involve automatic detection of animal signals (Sueur et al. 2012). After the data are 73 

extracted, some studies estimate the diversity of the acoustic environment (i.e., the number 74 

of species detected and the frequency of occurrence of each species' signals) by integrating 75 

all of the data into a single measure using information theory indices, such as the SWI 76 

(Sueur et al. 2012; Gasc et al. 2013). However, the SWI does not directly reflect species 77 

richness, the abundance of individuals within each species, or species composition, so a 78 

large portion of the original information is lost. 79 

Animal communication is another field in which the use of the SWI is becoming 80 

widespread. Over the last seven decades, the field has amassed large literatures that 81 

describe how information is encoded in acoustic signals through structural variation, 82 

sequence level variation (e.g., number of signals or signaling rate), and syntactical rules 83 

(Gerhardt and Huber 2002; Marler 2004). Much of this effort has centered on identifying 84 

the fundamental units of communication (Bradbury and Vehrencamp 2011). Traditionally, 85 

information encoding mechanisms were analyzed by identifying and counting the number 86 

of different sound units (e.g., syllables or elements) produced by each individual animal or 87 

species, and by then examining the order in which those units were produced (Botero et al. 88 



2008; Vargas-Castro et al. 2012; Sandoval et al. 2014). Recently, the SWI has replaced 89 

these more traditional measures (McCowan et al. 1999; Aubin et al. 2004; Palmero et al. 90 

2014). In spectacled warblers (Sylvia conspicillata) and bottlenose dolphins (Tursiops 91 

truncatus), for example, the SWI was used to calculate the entropy or complexity of their 92 

communication systems. The index incorporated the occurrence of different types of 93 

syllables, as well as the probabilities of their occurrence (McCowan et al. 1999; Palmero et 94 

al. 2014). 95 

Another problem in both fields is that multiple terms are used interchangeably (e.g., 96 

diversity, complexity, entropy, richness, composition, and randomness). This results in a 97 

confusing terminology that reduces the comparative scope of these studies. For instance, 98 

the SWI is often used to quantify different things, such as diversity, complexity, and 99 

entropy. As an example, ‘diversity’ is often labeled as ‘complexity’ or ‘entropy’ in sound 100 

analyses, though each of these terms has a different meaning. Diversity is an integrated 101 

measure of the number of sound types and the abundance of each sound type that are 102 

produced by an individual, population, or species. Song complexity, which sometimes is 103 

used interchangeably with richness and composition, is an integrated measure of the 104 

number of different elements or syllables produced in each song (Buchanan and Catchpole 105 

1997; Palmero et al. 2014) and the entropy order and versatility of the internal song 106 

structure (Hamao 2008). Song entropy, which sometimes is interchanged for randomness, 107 

is a measurement of song organization (first-order of entropy according to McCowan et al. 108 

1999; Palmero et al. 2014), where higher SWI values indicate higher entropy and a more 109 

even distribution of sounds among sound types. 110 

Our objectives in this paper are: (1) to describe general conceptual and statistical 111 

problems inherent to the use of the SWI in ecoacoustics; and (2) to highlight the 112 



disadvantages of using information theory indices in studies of animal communication by 113 

analyzing hypothetical acoustic repertoires using the SWI and other alternative statistical 114 

techniques. 115 

 116 

Case Studies  117 

Ecoacoustics 118 

In ecoacoustics, investigators use the SWI to estimate biological diversity because the SWI 119 

combines sound richness and the abundance of sounds in each sound type into a single 120 

metric. Sound richness is determined by the number of unique sound types or the number 121 

of unique species that are detected in audio recordings, whereas sound abundance is 122 

determined by how often each sound type or species is detected over time. 123 

A fundamental assumption of the SWI is that it measures the uncertainty of 124 

occurrence of a random variable, such as the probability that a particular letter will appear 125 

next in a string of text (Pielou 1966). However, animal sounds are not produced at random 126 

(Staicer et al. 1996). Rather, they exhibit diel and seasonal patterns (Staicer et al. 1996), 127 

respond predictably to non-random biotic and abiotic interference (Slabbekoorn 2004), and 128 

change in response to non-random intraspecific and interspecific social interactions 129 

(Bradbury and Vehrencamp 2011). This non-randomness in the context of ecoacoustics 130 

violates a fundamental assumption of the SWI (Pielou 1966; Krebs 1999). 131 

 The SWI includes in its formula the proportional contribution of each sound type to 132 

the total number of sounds in the sample: 133 

SWI = −&((!)(log(!)
"

!#$
 134 



where s is the number of sound types or species, and pi is the proportion of the total sample 135 

belonging to ith sound type or species. In this formula, pi is multiplied by logpi  because, in 136 

order to estimate the total complexity or diversity of sound types or species, it is necessary 137 

to average the potential contributions of each sound type or species (Ulanowicz 1997). A 138 

second problem with the SWI is that its value increases in a nonlinear fashion as the 139 

number of sound types or species in the sample increases (Wolda 1981; Krebs 1999; Jost 140 

2006). As an example, Jost (2006) showed that a community with eight equally common 141 

species had a SWI value of H' = 2.0, whereas a community with 16 equally common 142 

species had a SWI value of H' = 3.0. In this example, the community with 16 equally 143 

common species has twice as many species and twice as much diversity as the community 144 

with eight equally common species, but the ratio of the two SWI values is only 3:2. 145 

Additionally, a common practice when using the SWI is to covert H' values into evenness 146 

values using the eH' formula. This formula provides the total number of species, assuming 147 

equal abundances, based on the H' value. But, for this example, the formula eH' yields 7.4 148 

species when H' = 2.0 and 20 species when H' = 3. In both cases, the estimated number of 149 

species differs from the real number (8 and 16 equally abundant species, respectively). This 150 

nonlinear relationship between diversity and SWI values reduces the utility of the SWI in 151 

comparative studies because the SWI values are not directly proportional to species 152 

richness, species abundance, or diversity. 153 

A third problem is that communities with different values of richness and 154 

abundance can produce the same SWI value. Consider two communities that each contain 155 

80 individuals. One community includes ten individuals from each of eight species, 156 

whereas the other includes 35 individuals of one species, six individuals from each of two 157 

species, five individuals from each of five species, and one individual from each of eight 158 



species. Despite their obvious differences in species richness and abundance, these two 159 

communities yield the same SWI value (Table 1). This is because the SWI penalizes rare 160 

species (Chao and Shen 2003) and does not fully capture other important aspects of a 161 

community, such as richness and abundance (Allen et al. 2009; Barrantes and Sandoval 162 

2009), thus limiting its utility in comparing communities. In contrast, the Morisita Index 163 

considers species abundance and richness, and thus can distinguish among communities 164 

with similar diversity, but which differ in these other community metrics. In this example, 165 

the similarity of the two communities, according to the Morisita Index, is 66%, a value that 166 

better reflects the differences in the species richness and abundance of the two 167 

communities. Diversity (as defined by SWI) is only one parameter of a community, but, on 168 

its own, often provides little information. Thus, communities should be characterized by 169 

direct measures of abundance, richness, and composition, in addition to diversity or 170 

diversity indices, such as the Morisita index (used here), NESS (normalized expected 171 

species shared) index (Grassle and Smith 1976), their generalized versions (Chao et al. 172 

2008), and Bray-Curtis (Bloom 1981) that preserve variation in each of these fundamental 173 

characteristics. It is important to mention here (although it is not the goal of this paper) that 174 

the Morisita index has been criticized because its calculation is affected by species 175 

abundance (see Ricklefs and Lau 1980; Bloom 1981; Chao et al. 2006, 2008 for discussion 176 

about this topic). However, this characteristic makes this index robust when individual 177 

repertoires are not completely sampled because the most common sounds are present in the 178 

sampling effort (Chao et al. 2006). 179 

 A fourth problem when using the SWI in ecoacoustic studies is that it does not 180 

provide an error estimation (e.g., log-likelihood or residual sum of squares). Rather, the 181 

SWI is a single value derived from the number of sound types or species and the abundance 182 



of each sound type or species at a given location. Therefore, SWI values cannot be adjusted 183 

to a particular probability distribution, which reduces their utility in comparative studies. 184 

The lack of an error term also makes it difficult to calculate an effect size, which is the 185 

basic measurement used in meta-analysis (Arnqvist and Wooster 1995). Some investigators 186 

suggest that multiple recordings be obtained from the same location (or that a single 187 

recording be subdivided into multiple smaller recordings), and that the jackknife or 188 

bootstrapping approach be used to estimate confidence intervals around the mean SWI 189 

value (Adams and McCune 1979). Although confidence intervals are useful, they are not 190 

the same as measures of error because confidence intervals are based on observed variation, 191 

whereas error terms are based on how much observed values differ from expected values 192 

derived from a theoretical distribution. 193 

 194 

Animal communication 195 

We analyzed repertoire complexity (i.e., number of song types and abundance of each song 196 

type per individual) using four simulated data sets. We chose this method because it 197 

provides precise control over sample size, repertoire complexity, and repertoire size. 198 

 We created the four data sets such that each of them contained different repertoire 199 

complexities: (1) a data set in which individuals’ repertoires contained the same two song 200 

types at various ratios (Table S1), (2) a data set in which individuals’ repertoires contained 201 

the same eight song types at various ratios (Table S2), (3) a data set in which individuals’ 202 

repertoires contained the same 20 song types at various ratios (Table S3), and (4) a data set 203 

in which individuals’ repertoires contained between 2 and 16 song types, and in which the 204 

number of songs of each song type varied among individuals (Table S4). This last data set 205 

is representative of several avian species in which conspecifics have different repertoire 206 



sizes (e.g., Botero et al. 2008; Sandoval et al. 2014). The first three data sets contained 100 207 

songs from each of 20 individuals, and the fourth data set contained 100 songs from each of 208 

30 individuals (Tables S1-S4). These data sets were selected to illustrate species with small, 209 

medium, and large song repertoires, and to illustrate the inability of the SWI to distinguish 210 

among individuals with different pattern of song production. 211 

 In each of the first three data sets, we divided the 20 individuals into two groups of 212 

10. For the first group (individuals 1-10; Tables S1-S3), we controlled the distributions of 213 

songs among song types, so that they ranged from an individual having all songs 214 

represented in the same proportion (i.e., individual 1; Tables S1-S3) to an individual having 215 

an extremely uneven distribution of songs among song types (i.e., individual 2). For the 216 

second group (individuals 11-20; Tables S1-S3), we used the ‘random’ function in Excel 217 

(version 2007 for Windows; Microsoft Corporation, Redmond, WA, USA) to randomly 218 

create each individual’s distribution of songs among the available song types. In the fourth 219 

data set, we varied the number of song types included in each individual’s repertoire from 2 220 

to 16 (Table S4). We also created distributions in which songs were distributed evenly 221 

among song types for 15 individuals (ev2-ev16; Table S4), and in which they were 222 

distributed extremely unevenly among song types for the other 15 individuals (sk2-sk16). 223 

This fourth data set was selected to illustrate how differences in song richness and 224 

abundance can produce similar measures of diversity, complexity, or randomness, as 225 

quantified by the SWI. In all four data sets, we assigned songs to song types in a random 226 

order, even though their probabilities of being assigned to each song type were often quite 227 

different. 228 

 Following the approach used in recent studies of repertoire complexity (Aubin et al. 229 

2004; Kershenbaum 2013; Palmero et al. 2014), we used the SWI to compare repertoire 230 



complexities among individuals from the same data set. We calculated the SWI value (H’) 231 

for each individual based on the natural logarithm, and estimated its 95% confidence 232 

interval using a bootstrap approach with 9999 random permutations. For each permutation, 233 

one of the 100 songs of a given individual was selected at random and excluded before re-234 

calculating H’. 235 

SWI values are difficult to interpret because they do not denote the original 236 

biological units that were used to create them. We therefore exponentiated our SWI values 237 

by calculating e to the power of H’ to obtain biologically meaningful units (in this case, 238 

song types), as recommended by Jost (2006). However, because most studies present only 239 

the original SWI values, we report both the original (H’) and the converted values (Hc’). 240 

In addition to the SWI, we used three other statistical tests to compare individuals 241 

within a data set and to show that these methods provide a better characterization of 242 

interindividual differences than the SWI alone. First, for data sets 1–3, we used a chi-square 243 

goodness-of-fit test to determine if the distribution of song types varied between the 20 244 

individuals. For this test, we expect that individuals that have a similar abundance of each 245 

song type would also have similar SWI values. Second, we used a Morisita index of 246 

similarity to determine whether song repertoires (richness and abundance) were similar 247 

(values near 1) or different (values near 0) among individuals. The Morisita index 248 

incorporates repertoire size (richness) and the abundance of each song type, and its results 249 

are presented using a cluster analysis. We tested for differences among the clusters of 250 

individuals using one-way analysis of similarity (ANOSIM). Statistical differences 251 

obtained with this analysis indicate that richness and abundance differ between groups of 252 

individuals, and that individuals within groups have similar composition. In ANOSIM, 253 

there is no set rule for defining groups, rather, groups are usually defined a priori based on 254 



knowledge on the working system (e.g., individuals 1–5 are from one population, while 255 

individuals 6–12 are from a different population, and so on). In our datasets, there was no a 256 

priori knowledge about grouping structure, so we determined the grouping structure 257 

through post hoc inspection of the cluster trees. Third, we conducted a Markov chain 258 

analysis for each individual in the second data set to illustrate the potential use of this 259 

technique to describe repertoire entropy (sometimes also called repertoire randomness) 260 

characteristics that can also be analyzed using a second-order SWI (e.g., McCowan et al. 261 

1999; Dayou et al. 2011; Palmero et al. 2014). Markov chain analysis reports the 262 

probability that the sample was drawn from an individual in which all possible transitions 263 

between song types are equally probable (i.e., the choice of song type does not depend on 264 

which song type was sung last). All statistical analyses were conducted using PAST 2.17 265 

(Hammer et al. 2001). 266 

 267 

Results first scenario  268 

In this case, the entropy of the repertoire ranged from H' = 0.06 (Hc’ = 1.05 song types) for 269 

individual i18 to H' = 0.69 (Hc’ = 2.00 song types) for individual i1 (Fig. 1a). Overall, the 270 

distribution of each individual’s 100 songs between the two song types differed 271 

significantly among the 20 individuals (χ2 = 566.77, df = 19, p < 0.001). Individuals i6 and 272 

i7 had exactly the same SWI values for their repertoires (Fig. 1a), yet they differed the most 273 

in the proportion of each song type according to the Morisita index of similarity (Fig. 1b, 274 

S1). The cluster tree showed three groups of individuals (Fig. 1b), with individuals in each 275 

cluster being significantly more similar to each other than to individuals from other clusters 276 

(ANOSIM using Morisita scores: R = 0.85, p = 0.001). 277 

 278 



Results second scenario 279 

For this scenario, the entropy of the repertoire ranged from H' = 0.39 (Hc’ = 1.48 song 280 

types) for individual i10 to H’ = 2.08 (Hc’ = 8.00 song types) for individual i1 (Fig. 2a). 281 

Overall, the distribution of each individual’s 100 songs among the 8 song types differed 282 

significantly among the 20 individuals (χ2 = 874.42, df = 133, p < 0.001). Individuals i3, i4, 283 

and i5 had exactly the same SWI values for their repertoires (Fig. 2a), yet the abundance of 284 

each song type in their repertoires varied by up to 20% according to the Morisita index of 285 

similarity (Fig. 2b). For individuals whose repertoires were created randomly, and whose 286 

entropy values were similar (i.e., had overlapping 95% confidence intervals in Fig. 2a), 287 

repertoire similarities varied from only 2 to 12% according to the Morisita index (Fig. 2b, 288 

S2). The cluster tree showed four groups of individuals (Fig. 2b), with individuals in each 289 

group being significantly more similar to each other than to individuals from other groups 290 

(ANOSIM using Morisita scores: R = 0.74, p < 0.001). 291 

The SWI quantifies the randomness of the distribution of items (e.g., songs) among 292 

categories (e.g., song types). It was not designed to quantify the randomness of the order in 293 

which items from different categories appear (e.g., AABB versus ABAB), though it has 294 

often been used for this purpose. Our Markov chain analysis showed that 11 individuals 295 

produced songs in a random order (Table 1; all p > 0.1), and that 9 individuals did not 296 

(Table 1; all p < 0.001). Furthermore, some individuals that produced their song repertoire 297 

in a random order had SWI values that were indistinguishable from those of individuals that 298 

produced their song repertoire in a non-random order. For example, individuals i14 and i16 299 

had the same SWI values, yet i14 produced its songs in a non-random order, while i16 300 

produced its songs in a random order (Table 1; Fig. 2a). Thus, the SWI does not reliably 301 



distinguish individuals that produce their songs in a random order from those that produce 302 

their songs in a non-random order.  303 

 304 

Results third scenario 305 

The entropy of the repertoire ranged from H' = 1.05 (Hc’ = 2.86 song types) for individual 306 

i10 to H’ = 3.00 (Hc’ = 20.01 song types) for individual i1 (Fig. 3a). The distribution of 307 

each individual’s 100 songs among the 20 song types differed significantly among the 20 308 

individuals (χ2 = 1133.60, df = 361, p < 0.001). Individual i5 and i3 had the same entropy 309 

value (i.e., H’ = 2.54; Hc’ = 12.63 song types; Fig. 3a), yet the abundance of each song type 310 

in their repertoires was quite different (approximately 40% according to the Morisita index 311 

of similarity; Fig. 3b, S3). In contrast, individuals i5 (H’ = 2.53; Hc’ = 12.55 song types) 312 

and i9 (H’ = 2.15; Hc’ = 8.58 song types) had markedly different entropy values (Fig. 3a), 313 

yet the abundance of each song type in their repertoires was more similar (30% according 314 

to the Morisita index of similarity; Fig. 3b). The cluster tree showed three groups of 315 

individuals (Fig. 3b), with individuals in each group being more similar to each other than 316 

to individuals from other groups (ANOSIM using Morisita scores: R = 0.88, p < 0.001). 317 

 318 

Results fourth scenario 319 

Among the 15 individuals that had songs assigned to song types according to a skewed 320 

distribution, the entropy of the repertoire ranged from H' = 0.06 (Hc’ = 1.06 song types) for 321 

individual sk2 to H’ = 0.83 (Hc’ = 2.29 song types) for individual sk16 (Fig. 4a). Among 322 

the 15 individuals that had their songs distributed evenly among song types, repertoire 323 

entropy ranged from H' = 0.69 (Hc’ = 2.00 song types) for individual ev2 to H’ = 2.77 (Hc’ 324 

= 15.96 song types) for individual e16 (Fig. 4a). Individuals with nine or more song types 325 



in their repertoire and a skewed distribution of songs had entropy values that were 326 

statistically indistinguishable from those of individual ev2 (based on overlapping 95% 327 

confidence intervals), whose songs were distributed evenly among only 2 song types (Fig. 328 

4a, S4). According to the Morisita index of similarity, increasing repertoire size had the 329 

smallest effect on repertoire similarity when repertoires were large and songs were evenly 330 

distributed among song types (Fig. 4b). The cluster tree showed three groups of individuals 331 

(Fig. 4b), with individuals from the same group being significantly more similar to each 332 

other than to individuals from other groups (ANOSIM using Morisita scores: R = 0.16, p = 333 

0.04). 334 

 335 

DISCUSSION 336 

Ecoacoustics is a developing field that bridges diverse areas of investigation, including 337 

biodiversity, urban development, changes in landuse (e.g., mining, forestry, and 338 

agriculture), and conservation (Truax and Barrett 2011; Farina and Pieretti 2012; Sueur et 339 

al. 2012). As a complex and flourishing field, a diverse set of methods has been developed 340 

to compare biological communities based on the sounds recorded at different locations. 341 

One method that has become popular for analyzing those data in recent years is the SWI. 342 

However, as we have argued here, the SWI has several inherent problems that undermine 343 

its validity in studies of ecoacoustics. For example, when presented on its own, the SWI 344 

fails to adequately describe biological communities because it does not consider the 345 

specific species in a community, but, rather, reduces the number of species and the number 346 

of individuals in each species to a single number. As a result, communities with different 347 

species compositions, different number of species, and different distributions of individuals 348 

among species can all have the same SWI value, despite their obvious differences. The 349 



absence of error terms around the SWI values precludes the calculation of effect size, 350 

which is the basic measurement used in meta-analysis (Arnqvist and Wooster 1995). This 351 

makes it difficult to include results of the SWI in meta-analyses, which are very valuable 352 

for evaluating general patterns and for resolving the complex interactions that occur among 353 

animal species and other abiotic factors (e.g., noise, habitat structures, or urban 354 

development). Therefore, in ecoacoustics, we encourage researchers to use or develop 355 

analyses that provide error terms, such as likelihood or odd ratios. 356 

 Several descriptive and statistical methods can be used to analyze the complexity or 357 

diversity of an animal’s acoustic repertoire (Botero et al. 2008; Sandoval et al. 2014). The 358 

chosen method depends on the question to be answered and the complexity or diversity of 359 

the repertoire in terms of syntax, number of sound types, and the distribution of sounds 360 

among sound types. The SWI conveniently reduces each individual’s repertoire or the 361 

repertoire of the entire community to a single value, but that value does not indicate the 362 

specific sound types in the repertoire, the sound type richness, the distribution of sounds 363 

among sound types, or the order in which sound types are produced. Therefore, when used 364 

by itself, the SWI may not reveal fundamental differences among individuals or 365 

communities. For example, it would not distinguish between an individual that sings song 366 

types a and b at a 1:3 ratio and an individual that sings those same song types at a 3:1 ratio. 367 

Furthermore, differences in SWI values can be difficult to interpret because they could 368 

simply reflect the random error created by incomplete sampling of each individual’s 369 

repertoire; meaningful comparisons can only be made by computing and comparing 370 

confidence intervals for each SWI value, as advocated by Adams and McCune (1979) and 371 

as demonstrated in our examples (Figs. 1-4). However, even this method is not ideal 372 

because the 95% confidence intervals are very wide, especially when song types are 373 



distributed unevenly among song types (Fig. 4a). The confidence intervals also tend to 374 

increase with increasing repertoire size (Fig. 4a). Consequently, there is a low probability 375 

that the SWI will distinguish between repertoires of unequal complexity, especially when 376 

songs are distributed unevenly among song types, and especially for individuals with larger 377 

repertoires. 378 

 We recommend that a combination of techniques be used when describing and 379 

comparing biological communities in studies of ecoacoustics, or vocal repertoires in studies 380 

of animal communication. Beginning by reporting the specific sound types or species 381 

detected, the number of sound types or species detected, and the population-level 382 

distribution of sounds or individuals among sound types/species. Then run a chi-square 383 

goodness of fit test to test if the distribution of sounds/individuals among sound 384 

types/species varies among individuals/locations. If it does, then a Morisita index can be 385 

used to quantify similarity among individuals/locations, and an ANOSIM can be used to 386 

test for differences among any set of groups that were known a priori (e.g., two different 387 

populations of the same species). For studies of animal communication, a Markov chain 388 

analysis can also be used to test the randomness or complexity of songs. This could be 389 

conducted on the entire population, or, if the contingency table analysis was significant, 390 

then perhaps on each individual separately. 391 

 In conclusion, the SWI provides only a poor representation of complexity inherent 392 

to the fields of ecoacoustics and animal communication. In ecoacoustics, it is important to 393 

preserve information about the number of species, species composition, and the distribution 394 

of individuals among species, since these parameters result from different and unrelated 395 

processes (Barrantes and Sandoval 2009). Yet, communities that differ greatly in these 396 

parameters can yield identical SWI values. This issue is especially important when dealing 397 



with changes in species composition or conservation because not all species have the same 398 

ecological role or the same conservation problems. In animal communication, the SWI is 399 

also an oversimplification of biological complexity because it reduces the complexity of an 400 

individual’s vocal repertoire to a single value that does not reliably reflect repertoire size, 401 

repertoire composition, the distribution of sounds among sound types, or the animal’s 402 

syntactical rules. Other statistical methods, such as the contingency table analysis, Morisita 403 

index of similarity, and Markov chain analysis, are more informative and more conducive 404 

for comparisons among studies. 405 

 406 

Acknowledgements, we thank B. McCowan and Robert E. Ulanowicz for valuable comments that 407 

improved a previous draft of this paper. LS and GB also thanks to Vicerrectoría de Investigacíon, 408 

Universidad de Costa Rica all the support for this project. 409 

 410 

References 411 

Adams JE, McCune ED. 1979. Application of the generalized jack-knife to Shannon’s 412 

measure of information used as an index of diversity. In: Grassle KF, Patil GP, Smith 413 

W, Taillie C, editors. Ecological diversity in theory and practice. Maryland: 414 

International Cooperative Publishing House; p. 117–131. 415 

Allen B, Kon M, Bar-Yam Y. 2009. A new phylogenetic diversity measure generalizing the 416 

Shannon index and its application to phyllostomid bats. American Naturalist. 174: 417 

236–243. 418 

Arnqvist G, Wooster D. 1995. Meta-analysis: synthesizing research findings in ecology and 419 

evolution. Trends in Ecology and Evolution. 10:236–240. 420 



Aubin T, Mathevon N, Silva MLD, Vielliard JM, Sebe F. 2004. How a simple and 421 

stereotyped acoustic signal transmits individual information: the song of the White-422 

browed Warbler Basileuterus leucoblepharus. Anais da Academia brasileira de 423 

Ciencias. 76:335–344. 424 

Barrantes G, Sandoval L. 2009. Conceptual and statistical problems associated with the use 425 

of diversity indices in ecology. Revista de Biología Tropical. 57:451–460. 426 

Bloom SA. 1981. Similarity indices in community studies: potential pitfalls. Marine 427 

Ecology Progress Series. 5:125–128. 428 

Blumstein DT, Mennill DJ, Clemins P, Girod L, Yao K, Patricelli G, Deppe JL, Krakauer 429 

AH, Clark C, Cortopassi KA, Hanser SF, McCowan B, Ali AM, Kirscehl ANG. 430 

2011. Acoustic monitoring in terrestrial environments using microphone arrays: 431 

applications, technological considerations, and prospectus. Journal of Applied 432 

Ecology. 48:758–767. 433 

Botero CA, Mudge AE, Koltz AM, Hochachka WM, Vehrencamp SL. 2008. How reliable 434 

are the methods for estimating repertoire size? Ethology. 114:1227–1238. 435 

Bradbury JW, Vehrencamp SL. 2011. Principles of animal communication: 2nd edn. 436 

Sunderland, MA: Sinauer Associates. 437 

Buchanan KL, Catchpole CK. 1997. Female choice in the sedge warbler Acrocephalus 438 

schoenobaenus multiple cues from song and territory quality. Proceedings of the 439 

Royal Society of London B. 264:521–526. 440 

Chao A, Shen TJ. 2003. Nonparametric estimation of Shannon's index of diversity when 441 

there are unseen species in sample. Environmental and Ecological Statistics. 10:429–442 

443. 443 



Chao A, Chazdon RL, Colwell RK, Shen, TJ. 2006. Abundance-based similarity indices 444 

and their estimation when there are unseen species in samples. Biometrics. 62:361–445 

371. 446 

Chao, A., Jost L, Chiang SC, Jiang YH, Chazdon RL. 2008. A two-stage probabilistic 447 

approach to multiple-community similarity indices. Biometrics. 64:1178–1186. 448 

  449 

Dayou J, Han NC, Mun HC, Ahmad AH. 2011. Classification and identification of frog 450 

sound based on entropy approach. IPCBEE. 3:184–187. 451 

Depraetere M, Pavoine S, Jiguet F, Gasc A, Duvail S, Sueur J. 2012. Monitoring animal 452 

diversity using acoustic indices: implementation in a temperate woodland. Ecological 453 

Indicators. 13:46–54. 454 

Farina A, Pieretti N. 2012. The soundscape ecology: a new frontier of landscape research 455 

and its application to islands and coastal systems. Journal of Marine and Island 456 

Cultures. 1:21–26. 457 

Farina A, Pieretti N, Piccioli L. 2011. The soundscape methodology for long–term bird 458 

monitoring: a Mediterranean Europe case–study. Ecological Informatics. 6:354–363. 459 

Forster RM, Créach V, Sabbe K, Vyverman W, Stal LJ. 2006. Biodiversity–ecosystem 460 

function relationship in microphytobenthic diatoms of the Westerschelde estuary. 461 

Marine Ecology Progress Series. 311:191–201. 462 

Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S. 463 

2013. Assessing biodiversity with sound: do acoustic diversity indices reflect 464 

phylogenetic and functional diversities of bird communities? Ecological Indicators. 465 

25:279–287. 466 



Gerhardt HC, Huber F. 2002. Acoustic communication in insects and anurans: common 467 

problems and diverse solutions. Chicago, Il: University of Chicago Press. 468 

Green RH. 1979. Sampling design and statistical methods for environmental biologists. 469 

New York, NY: Wiley. 470 

Hamao S. 2008. Syntactical complexity of songs in the black–browed reed warbler 471 

Acrocephalus bistrigiceps. Ornithological Science. 7:173–177. 472 

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software 473 

package for education and data analysis. Palaeontologia Electronica. 4:9. 474 

http://palaeo–electronica.org/2001_1/past/issue1_01.htm 475 

Jost L. 2006. Entropy and diversity. Oikos. 113:363–375. 476 

Kershenbaum A. 2013. Entropy rate as a measure of animal vocal complexity. 477 

Bioacoustics. 23:195–208. 478 

Krebs CJ. 1999. Ecological methodology., Menlo Park, CA: Benjamin Cummings. 479 

Krause B. 2016. Wild soundscape, discovering the voice of the natural world. 2nd. edn. 480 

New Haven, CT: Yale University Press. 481 

Marler P. 2004. Science and birdsong: the good old days. In: Marler P, Slabbekoorn H, 482 

editors. Nature´s music, the science of bird song. San Diego: Elsevier Academic 483 

Press; p. 1–38. 484 

McCowan B, Hanser SF, Doyle LR. 1999. Quantitative tools for comparing animal 485 

communication systems: information theory applied to bottlenose dolphin whistle 486 

repertoires. Animal Behaviour. 57:409–419. 487 

McCowan B, Doyle LR, Hanser SF. 2002. Using information theory to assess the diversity, 488 

complexity, and development of communicative repertoires. Journal of Comparative 489 

Psychology. 116:166–172. 490 



Meirmans PG, Van Tienderen PH. 2004. GENOTYPE and GENODIVE: two programs for 491 

the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes. 492 

4:792–794. 493 

Mennill DJ, Battiston M, Wilson DR, Foote JR, Doucet SM. 2012. Field test of an 494 

affordable, portable, wireless microphone array for spatial monitoring of animal 495 

ecology and behaviour. Methods in Ecology and Evolution. 3:704–712. 496 

Palmero AM, Espelosín J, Laiolo P, Illera JC. 2014. Information theory reveals that 497 

individual birds do not alter song complexity when varying song length. Animal 498 

Behaviour. 87:153–163. 499 

Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic 500 

software for teaching and research—an update. Bioinformatics. 28:2537–2539. 501 

Peet RK. 1975. Relative diversity indices. Ecology. 56:496–498. 502 

Pielou EC. 1966. The measurement of diversity in different types of biological collections. 503 

Journal of Theoretical Biology. 13:131–144. 504 

Pieretti N, Farina A, Morri D. 2011. A new methodology to infer the singing activity of an 505 

avian community: the acoustic complexity index (ACI). Ecological Indicators. 506 

11:868–873. 507 

Pijanowski BC, Villanueva–Rivera LJ, Dumyahn SL, Farina A, Krause BL, Napoletano 508 

BM, Gage SH, Pieretti N. 2011. Soundscape ecology: the science of sound in the 509 

landscape. BioScience. 61:203–216. 510 

Ricklefs RE, Lau M. 1980. Bias and dispersion of overlap indices: results of some Monte 511 

Carlo simulations. Ecology. 61:1019–1024. 512 



Sandoval L, Méndez C, Mennill DJ. 2014. Individual distinctiveness in the fine structural 513 

features and repertoire characteristics of the songs of white–eared ground–sparrows. 514 

Ethology. 120:275–286. 515 

Shannon CE, Weaver W. 1949. The Mathematical Theory of Communication. Chicago: Il, 516 

University of Illinois. 517 

Sherwin WB. 2010. Entropy and information approaches to genetic diversity and its 518 

expression: genomic geography. Entropy. 12:1765–1798. 519 

Slabbekoorn H. 2004. Singing in the wild: the ecology of birdsong. In: Marler P, 520 

Slabbekoorn H, editors. Nature´s music, the science of bird song. San Diego: Elsevier 521 

Academic Press; p. 178–205. 522 

Staicer CA, Spector DA, Horn AG. 1996. The dawn chorus and other diel patterns in 523 

acoustic signaling. In: Kroodsma DE, Miller EH, editors. Ecology and evolution of 524 

acoustic communication in birds. Ithaca: Comstock Publising Associates; p. 426–453. 525 

Sueur J, Farina A. 2015. Ecoacoustics: the ecological investigation and interpretation of 526 

environmental sound. Biosemiotics 8:493–502. 527 

Sueur J, Gasc A, Grandcolas P, Pavoine S. 2012. Global estimation of animal diversity 528 

using automatic acoustic sensors. In: Le Galliard JF, Guarini JM, Gaill F, editors. 529 

Sensors for ecology: towards integrated knowledge of ecosystems. Paris: CNRS; p. 530 

99–117. 531 

Truax B, Barrett GW. 2011. Soundscape in a context of acoustic and landscape ecology. 532 

Landscape Ecology. 26:1201–1207. 533 

Ulanowicz RE. 1997. Ecology, the Ascendent Perspective. New York: NY, Columbia 534 

University Press. 535 



Vargas–Castro LE, Sánchez NV, Barrantes G. 2012. Repertoire size and syllable sharing in 536 

the song of the clay–colored thrush (Turdus grayi). Wilson Journal of Ornithology. 537 

124:446–453. 538 

Wolda H. 1981. Similarity Indices, sample size and diversity. Oecologia. 50:296–302. 539 

  540 



Table 1. Shannon-Weiner index of diversity (H') values for two populations with the same 541 

numbers of individuals, but different numbers of species. 542 

 543 

Individuals Species H' Number of individual per species 

80 8 2 N1 = 10, N2 = 10, N3= 10, N4=10, N5 = 10, N6 = 
10, N7 = 10, N8 = 10 

80 16 2 
N1 = 35, N2 = 6, N3 = 6, N4 = 5, N5 = 5, N6 = 5, 

N7 = 5, N8 = 5, N9 = 1, N10 = 1, N11 = 1, N12 = 1, 
N13 = 1, N14 = 1, N15 = 1, N16 = 1 

 544 

  545 



Table 2. Results of Markov chain analyses for 20 individuals with eight song types in each 546 
individual’ repertoire. Shannon-Wiener entropy values (H') are also shown.  547 

Individual χ2  p H' 548 

i01 693.6 <0.001 2.08  549 

i02 518.8 <0.001 1.88  550 

i03 566.4 <0.001 1.95  551 

i04 566.4 <0.001 1.95  552 

i05 566.4 <0.001 1.95  553 

i06 598.1 <0.001 1.92  554 

i07 553.6 <0.001 1.48  555 

i08 303.5 <0.001 1.55  556 

i09 13.45 1 0.99  557 

i10 0.57 1 0.39  558 

i11 61.92 0.1 2.04  559 

i12 58.16 0.27 2.06  560 

i13 44.38 0.66 2.03  561 

i14 67 0.04 2.06  562 

i15 41.52 0.76 2 563 

i16 51.29 0.38 2.06  564 

i17 37.19 0.89 2.03  565 

i18 41.7 0.76 2.02  566 

i19 48.26 0.5 2.04  567 

i20 39.28 0.83 2.05  568 

  569 



 570 
 571 

Figure 1. Analysis of 20 individuals with two song types in each individual’s repertoire. (a) 572 
Results of the Shannon-Wiener entropy index. Error bars show 95% confidence intervals derived 573 
from bootstrapping. Individuals with overlapping error bars do not differ significantly in 574 
repertoire complexity. (b) Results of the Morisita similarity index. Groups used for the ANOSIM 575 
analysis (see methods) are denoted by different font type. Similarity is measured as the distance 576 
between the two individuals from their closest common node (represented by the similarity scale 577 
bar). Individuals separated only by a vertical line are identical to each other.  578 

  579 

among the 20 individuals (2 = 566.77, df = 19, p < 0.001). Individuals i2 and i3 had exactly 
the same SWI values for their repertoires (Figure 1(a)), yet they di"ered the most in the pro-
portion of each song type according to the Morisita index of similarity (Figures 1(b) and S1).  
#e cluster tree showed three groups of individuals (Figure 1(b)), with individuals in each 
cluster being signi$cantly more similar to each other than to individuals from other clusters 
(ANOSIM using Morisita scores: R = 0.85, p = 0.001).

Figure 1. Analysis of 20 individuals with 2 song types in each individual’s repertoire. (a) Results of the 
Shannon-Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. 
Individuals with overlapping error bars do not differ significantly in repertoire complexity. (b) Results 
of the Morisita similarity index. Groups used for the ANOSIM analysis (see methods) are denoted by 
different font type. Similarity is measured as the distance between the two individuals from their closest 
common node (represented by the similarity scale bar). Individuals separated only by a vertical line are 
identical to each other.
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 580 
 581 

Figure 2. Analysis of 20 individuals with eight songs in each individual’s repertoire. (a) Results of 582 
the Shannon-Wiener entropy index. Error bars show 95% confidence intervals derived from 583 
bootstrapping. Individuals with overlapping error bars do not differ significantly in repertoire 584 
complexity. (b) Results of the Morisita similarity index. Groups used for the ANOSIM analysis 585 
(see methods) are denoted by different font type. Similarity is measured as the distance 586 
between the two individuals from their closest common node (represented by the similarity scale 587 
bar). Individuals separated only by a vertical line are identical to each other.  588 

  589 
to Hƍ = 0.83 (H ′

c = 2.29 song types) for individual sk16 (Figure 4(a)). Among the 15 individuals 
that had their songs distributed evenly among song types, repertoire entropy ranged from 
Hƍ = 0.69 (H ′

c = 2.00 song types) for individual ev2 to Hƍ = 2.77 (H ′

c = 15.96 song types) for 
individual ev16 (Figure 4(a)). Individuals with nine or more song types in their repertoire 
and a skewed distribution of songs had entropy values that were statistically indistinguishable 
from those of individual ev2 (based on overlapping 95% con"dence intervals), whose songs 
were distributed evenly among only two song types (Figures 4(a) and S4). According to the 
Morisita index of similarity, increasing repertoire size had the smallest e#ect on repertoire 

Figure 2. Analysis of 20 individuals with 8 songs in each individual’s repertoire. (a) Results of the Shannon-
Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. Individuals 
with overlapping error bars do not differ significantly in repertoire complexity. (b) Results of the Morisita 
similarity index. Groups used for the ANOSIM analysis (see methods) are denoted by different font type. 
Similarity is measured as the distance between the two individuals from their closest common node 
(represented by the similarity scale bar). Individuals separated only by a vertical line are identical to 
each other.
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 590 
 591 

Figure 3. Analysis of 20 individuals with 20 songs in each individual’s repertoire. (a) Results of 592 
the Shannon- Wiener entropy index. Error bars show 95% confidence intervals derived from 593 
bootstrapping. Individuals with overlapping error bars do not differ significantly in repertoire 594 
complexity. (b) Results of the Morisita similarity index. Groups used for the ANOSIM analysis 595 
(see methods) are denoted by different font type. Similarity is measured as the distance 596 
between the two individuals from their closest common node (represented by the similarity scale 597 
bar). Individuals separated only by a vertical line are identical to each other.  598 

  599 

Several descriptive and statistical methods can be used to analyse the complexity or 
diversity of an animal’s acoustic repertoire (Botero et al. 2008; Sandoval et al. 2014). !e 
chosen method depends on the question to be answered and the complexity or diversity of 
the repertoire in terms of syntax, number of sound types, and the distribution of sounds 
among sound types. !e SWI conveniently reduces each individual’s repertoire or the reper-
toire of the entire community to a single value, but that value does not indicate the speci"c 
sound types in the repertoire, the sound-type richness, the distribution of sounds among 
sound types, or the order in which sound types are produced. !erefore, when used by itself, 

Figure 3. Analysis of 20 individuals with 20 songs in each individual’s repertoire. (a) Results of the Shannon-
Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. Individuals with 
overlapping error bars do not differ significantly in repertoire complexity. (b) Results of the Morisita similarity 
index. Groups used for the ANOSIM analysis (see methods) are denoted by different font type. Similarity is 
measured as the distance between the two individuals from their closest common node (represented by 
the similarity scale bar). Individuals separated only by a vertical line are identical to each other.
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 600 
 601 

Figure 4. Analysis of 30 individuals with 2 to 16 song types in each individual’s repertoire. (a) 602 
Results of the Shannon-Wiener entropy index. Error bars show 95% confidence intervals derived 603 
from bootstrapping. Individuals with overlapping error bars do not differ significantly in 604 
repertoire complexity. (b) Results of the Morisita similarity index. Groups used for the ANOSIM 605 
analysis (see methods) are denoted by different fonts. Similarity is measured as the distance 606 
between the two individuals from their closest common node (represented by the similarity scale 607 
bar). Individuals separated only by a vertical line are identical to each other. Individuals whose 608 
songs were distributed evenly among song types are represented by circles (panel a) or the 609 
prefix ‘ev’ (panel b), whereas individuals whose songs were distributed among song types 610 
according to a skewed distribution are represented by triangles (panel a) or the prefix ‘sk’ 611 
(panels b, c).  612 

  613 

the SWI may not reveal fundamental di!erences among individuals or communities. For 
example, it would not distinguish between an individual that sings song types a and b at 
a 1:3 ratio and an individual that sings those same song types at a 3:1 ratio. Furthermore, 
di!erences in SWI values can be di"cult to interpret because they could simply re#ect the 
random error created by incomplete sampling of each individual’s repertoire; meaningful 
comparisons can only be made by computing and comparing con$dence intervals for each 

Figure 4. Analysis of 30 individuals with 2–16 song types in each individual’s repertoire. (a) Results of the 
Shannon-Wiener entropy index. Error bars show 95% confidence intervals derived from bootstrapping. 
Individuals with overlapping error bars do not differ significantly in repertoire complexity. (b) Results of 
the Morisita similarity index. Groups used for the ANOSIM analysis (see methods) are denoted by different 
fonts. Similarity is measured as the distance between the two individuals from their closest common node 
(represented by the similarity scale bar). Individuals separated only by a vertical line are identical to each 
other. Individuals whose songs were distributed evenly among song types are represented by circles 
(panel a) or the prefix ‘ev’ (panel b), whereas individuals whose songs were distributed among song types 
according to a skewed distribution are represented by triangles (panel a) or the prefix ‘sk’ (panels b, c).
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 614 
Figure S1. Relationship between Morisita index of similarity and the differences in the Shannon-615 
Wiener entropy index values for 20 individuals with two song types in each individual’s repertoire. 616 
Dots represent all pairwise comparisons. Morisita index values near 1 indicate that repertoires are 617 
similar, whereas index values near 0 indicate that repertoires are different. 618 
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 620 
 621 
Figure S2. Relationship between Morisita index of similarity and the differences in the Shannon-622 
Wiener entropy index values for 20 individuals with eight song types in each individual’s 623 
repertoire. Dots represent all pairwise comparisons. Morisita index values near 1 indicate that 624 
repertoires are similar, whereas index values near 0 indicate that repertoires are different. 625 
 626 
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 628 
Figure S3. Relationship between Morisita index of similarity and the differences in the Shannon-629 
Wiener entropy index values for 20 individuals with 20 song types in each individual’s repertoire. 630 
Dots represent all pairwise comparisons. Morisita index values near 1 indicate that repertoires are 631 
similar, whereas index values near 0 indicate that repertoires are different. 632 
 633 
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 635 
 636 
Figure S4. Relationship between Morisita index of similarity and the differences in the Shannon-637 
Wiener entropy index values for 30 individuals with 2 to 16 song types in each individual’s 638 
repertoire. Dots represent all pairwise comparisons. Morisita index values near 1 indicate that 639 
repertoires are similar, whereas index values near 0 indicate that repertoires are different. 640 
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Table S1. Data used under the first scenario of repertoire complexity, where each individual has two song types in its repertoire. The 
individuals in each of the three groups used for the ANOSIM analysis (see methods) are: group 1 (i5, i7, i8, i10 and i20), group 2 (i1, 
i2, i3, i11, i13, i14, i16, and i19), and group 3 (i4, i6, i9, i12, i15, i17, and i18). 
 

 Individuals 
Sound type i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 
a 50 1 30 70 40 10 20 97 6 96 51 54 42 46 25 59 69 34 61 77 
b 50 99 70 30 60 90 80 3 94 4 49 46 58 54 75 41 31 66 39 23 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

 
  



Table S2. Data used under the second scenario of repertoire complexity, where each individual has eight song types in its repertoire. 
The individuals in each of the three groups used for the ANOSIM analysis (see methods) are: group 1 (i2, i3, i6, i18, and i19), group 2 
(i1, i11, i12, i13, i14, i15, i16, i17, and i20), and group 3 (i4, i5, i7, i8, i9, and i10). 
 
 

 Individuals 
Sound type i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 
a 13 1 5 15 20 1 2 1 3 2 16 12 9 9 7 11 8 9 9 9 
b 13 1 5 15 20 1 2 1 3 2 10 13 14 13 15 12 10 14 8 12 
c 13 1 5 15 5 1 2 1 4 16 14 13 14 16 16 12 15 5 9 17 
d 13 1 15 20 5 1 2 1 18 16 14 7 18 16 17 17 7 16 14 13 
e 12 1 15 20 5 1 2 24 18 16 9 15 16 11 12 9 13 10 13 13 
f 12 1 15 5 15 1 30 24 18 16 19 12 14 15 7 16 17 13 13 13 
g 12 1 20 5 15 47 30 24 18 16 8 15 7 10 6 9 18 15 16 7 
h 12 93 20 5 15 47 30 24 18 16 10 13 8 10 20 14 12 18 18 16 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

 
  



Table S3. Data used under the third scenario of repertoire complexity, where each individual has twenty song types in its repertoire. 
The individuals in each of the three groups used for the ANOSIM analysis (see methods) are: group 1 (i3, i4, and i6), group 2 (i5, i7, 
i8, i9, and i10), and group 3 (i1, i2, i11, i12, i13, i14, i15, i16, i17, i18, i19 and i20). 
 
 

 Individuals 
Sound type i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 
a 5 1 5 1 13 26 2 3 3 20 4 7 10 2 6 6 5 2 3 5 
b 5 1 5 1 5 7 5 2 3 20 7 6 5 5 7 5 4 3 8 5 
c 5 1 5 1 13 9 2 3 3 20 3 2 4 5 5 3 4 9 5 1 
d 5 1 5 1 5 3 5 4 3 20 4 4 5 6 3 4 4 5 5 5 
e 5 1 5 1 13 2 2 3 3 2 8 4 6 6 5 3 2 5 5 7 
f 5 1 1 1 1 5 5 4 3 2 4 7 3 4 1 4 6 3 3 6 
g 5 1 1 1 13 6 2 4 3 2 9 4 3 4 4 7 4 4 6 10 
h 5 1 1 1 5 1 5 6 3 2 4 8 7 4 7 2 7 4 3 2 
i 5 1 1 1 5 2 10 4 3 1 4 6 7 4 6 2 4 8 6 3 
j 5 1 1 1 1 7 15 2 3 1 7 7 5 3 3 6 1 3 2 5 
k 5 1 1 13 13 4 18 3 7 1 7 5 3 4 9 8 9 8 11 6 
l 5 1 1 13 1 2 3 7 7 1 9 2 2 8 6 6 4 6 2 6 
m 5 1 1 13 1 1 2 33 7 1 2 7 8 4 9 8 2 5 6 6 
n 5 1 1 13 1 3 1 3 7 1 5 5 3 6 5 4 5 3 7 7 
o 5 1 1 13 1 2 1 4 7 1 3 4 3 3 6 6 8 5 5 5 
p 5 1 13 5 5 2 4 2 7 1 6 2 2 7 3 5 10 7 2 8 
q 5 1 13 5 1 2 3 2 7 1 2 2 8 8 3 8 4 4 3 4 
r 5 1 13 5 1 5 2 3 7 1 2 4 4 7 6 3 8 4 5 4 
s 5 1 13 5 1 6 6 5 7 1 6 6 2 3 3 2 3 5 6 1 
t 5 81 13 5 1 5 7 3 7 1 4 8 10 7 3 8 6 7 7 4 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 

 



Table S4. Data used under the fourth scenario of repertoire coomplexity. * ev = even distribution of the sound types. sk = skewed 
distribution of the sound types. 
 

 Individuals* 
Sound 
type ev2 sk2 ev3 sk3 ev4 sk4 ev5 sk5 ev6 sk6 ev7 sk7 ev8 sk8 ev9 sk9 ev10 sk10 ev11 sk11 ev12 sk12 ev13 sk13 ev14 sk14 ev15 sk15 ev16 sk16 

a 50 1 33 1 25 1 20 1 16 1 14 1 13 1 11 1 10 1 9 1 8 1 7 1 7 1 6 1 6 1 
b 50 99 33 1 25 1 20 1 16 1 14 1 13 1 11 1 10 1 9 1 8 1 7 1 7 1 6 1 6 1 
c 0 0 34 98 25 1 20 1 17 1 14 1 13 1 11 1 10 1 9 1 8 1 7 1 7 1 6 1 6 1 
d 0 0 0 0 25 97 20 1 17 1 14 1 13 1 11 1 10 1 9 1 8 1 7 1 7 1 6 1 6 1 
e 0 0 0 0 0 0 20 96 17 1 14 1 12 1 11 1 10 1 9 1 8 1 8 1 7 1 6 1 6 1 
f 0 0 0 0 0 0 0 0 17 95 15 1 12 1 11 1 10 1 9 1 8 1 8 1 7 1 7 1 6 1 
g 0 0 0 0 0 0 0 0 0 0 15 94 12 1 11 1 10 1 9 1 8 1 8 1 7 1 7 1 6 1 
h 0 0 0 0 0 0 0 0 0 0 0 0 12 93 11 1 10 1 9 1 8 1 8 1 7 1 7 1 6 1 
i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 92 10 1 9 1 9 1 8 1 7 1 7 1 6 1 
j 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 91 9 1 9 1 8 1 7 1 7 1 6 1 
k 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 90 9 1 8 1 7 1 7 1 6 1 
l 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 89 8 0 7 1 7 1 6 1 
m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 88 8 1 7 1 7 1 
n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 87 7 1 7 1 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 86 7 1 
p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 85 
Total 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100 100 

 
 
 


