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The stimulated Raman scattering (SRS), ar is ing from the 

interact ion be.tneen molecules of a medium and two strung l i g h t  f ie lds  - 
a resonant f ie ld  and a pumping f i e l d  - i s  studied theoretically. The 

transitions of mlecules between a given pa i r  o f  levels i s  assumed to 

be both Raman active and infrared active. A saniclassical approach, 

i n  which the densi.ty matrix method i s  used f o r  the quantum mechanical 

description for the medium, i s  employed. We expand the density matrix 

i n  various orders within which the zeroth-order i s  referred t o  as the 

solution of the equation of m t i o n  of the density matrix when only the 

resonant f i e l d  i s  applied. 

We obtain a se t  of equations i n  second order o f  the 

density matrix element fro. which the gain function can be 

derived. This set of equations i n  the spedal case o f  steady state i s  

accidentally similar t o  those obtained by Mollow i n  h i s  study o f  the 

p e r  spectrm of a strong driven two-level system. Ne have show that 

the SRS i n  the steady state under the resonant f i e l d  interaction, i s  

drast ical ly reduced I n  general. When the flopping frequency i s  larger 

than the relaxation constants ( 0  > T), we f ind there appears both weak 

posit ive and weak negative gains on both sides of the ordinary SRS 

components. 

Since we retain our second-order equations i n  a general form 

rather than the form for steady state, we are able t o  take account of 

the dependence on the transient zeroth solution. 8y employing the 



ii 

Laplace t r a n s f o n  technique w i th  the help of convolution products, we 

are able t o  solve for i n  the stat ionary f lopping state.  When 

the i n t e n s i t y  of the resonant f i e l d  i s  high, we have found theore t i ca l l y  

t h a t  both the Stokes and anti-Stokes component become doublets and 

equal ly displaced by the amount o f  the f lopping frequency, n, on the 

opposite sides o f  ordinary Stokes and anti-Stokes companents, respectively. 

The gain maxim are approximtely the order o f  n/4r times the ordinary 

gain of the Stokes component, where n l r  >> 1 i f  the f lopping exists.  

The gains are therefore large i n  comparison w i th  the ordinary gain f o r  

SRS i n  the steady state. 
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CHAPTER 1 

INTROWCTION 

1.1 Absorption, Emission and Scattering 

The e lec t r ic  dipole interact ion i s  normally the predominant 

feature when a mlecule i s  placed i n  the optical f i e l d  [ T I .  Various 

processes may take place i n  connection with th is  interaction: absorption, 

spontaneous emission, stimulated mission, spontaneous scattering, 

stimulated scattering, etc. The frequency and intensity o f  the l ight, 

the kind of mlecule and the type of medium are the factors that determine 

which of these processes w i l l  actually take place. I f  the molecule has 

a nonvanishing e lec t r ic  dipole m e n t  involving a pa i r  o f  the levels 

10, and [I,, l i g h t  absorption can take place. The frequency of the l i gh t  

f ie ld ,  %, i s  given as 

de = ( E , - E . ~ / ~  

where Eo and El are the energies f o r  the levels 10, and [I>, respectively. 

This l i g h t  f ield, hereafter, we shall ca l l  the 'resonant f ield". The 

mlecule absorbs the energy o f  the l i g h t  f i e l d  - i n  other words a photon - 
and i s  excited from the state ILb to  the state 11,. Even when the 

frequency aR i s  s l i gh t l y  detuned, such absorption can s t i l l  take place i f  

the difference which f a l l s  within the range which can be compensated by the 

kinetic energy o f  the molecule or lnolecular collision. On the other 

hand, i f  the molecule i s  or ig ina l ly  i n  an exctted state, i t may m l t  a 

photon and return t o  the ground state through spontaneous mission. 



The emission under the influence of the resonant f i e l d  i s  known 

as stinulated mission [21. The change o f  intensity, dlab, o f  an incident 

resonant l i gh t  f i e l d  due t o  the absorption and stimulated emission can be 

given by 

dIab = ( K-bf,) '2 ~(g,, 8,. d~ (1-2) 

f o r  a beam having incident intensity a t  frequency m10 passing 

through a slab o f  thickness d l .  I n  th is  equation. Ng and N1 are the 

populations of the levels 10, and 11,. respectively, v i s  the velocity o f  

l i g h t  i n  the medium, and B10 i s  the Einstein transit ion probability of 

absorption. I n  the dipole approximation. 

(1-3) 

where v10 i s  the dipole nanent between the levels 10, and 11,. It i s  

worth noticing that when the population inversion (t$ J No) i s  created, 

instead o f  net absorption, stimulated mission may take place. The 

stimulated mission fm a system with population inversion i s  one of  

the basic principles f o r  a laser. 

Besides absorption and mission, scattering i s  also a well- 

known effect. I n  a scattering process, i f  the f i e l d  i s  a resonant f ield, 

the scattering i s  known as resonant scattering. However, i n  l i gh t  

scattering i n  general, i t  does not require the frequency o f  the f i e l d  t o  

be resonant with the energy levels o f  the molecule. Consider a scaler 

representative of a l inear ly  polarized f i e l d  



with frequency oo which i s  not resonant with the levels o f  the molecules. 

The mpli tude cX i s  the complex conjugate o f  the amplitude E. The complex 

nature for the amplitudes accounts for the arbitrary phase. If th i s  l i g h t  

f ie ld  i s  weak, the scattering o f  t h i s  l i g h t  by a wlecu le  i n  a semi- 

classical theory 131, i s  attr ibuted t o  induced dipole moments 

~r & -~"--Y-$~~A,*+:~~J.-Y~~ 
JlAc4 =dJmY e 

and 

- b e t g  e - +  *+lt 
~ ~ " c  - 

The osc i l la t ion o f  the induced dipole moments give r i se  t o  scattered 

f ields a t  the frequencies wS = wo - wm and ma = wo + urn. 

Here, m m  and anu am the transit ion po lar i rab i l i t ies  which can be 

given by 

1 (1-6) 

These expressions imply that the transit ion between la> and In, due 

t o  the induced dipole mments I s  always connected through the t h i r d  

levels In which may be real or vir tual.  

I n  Eqs. (1-5) and (1-5a). when a = 1 and m = 0, we have the 

spontaneous Raman scattering a t  frequencies wo - lalO and uo + ulO. which 

are the Stokes and anti-Stokes components, respectively. Ranan s c a t t e r  

ing I s  inelast ic since the energy of the scattered photon i s  d i f fe rant  

fmm that of the incident f ield. However, the conservation of ~ n t u m  

and of energy f o r  the mlecule-photon system requires 



Ad,  =+,<d.-d,*) 

&%, = 4 tx - 4,: (1-7) 

for  the Stokes component. Here, 4 and lo are the propagation vectors of 

the Stokes component and the incident f ields; f10 i s  the propagation 

vector of an optical phonon associated with the vibrational levels IP 
and 11,. For the antidtokes components, the conservation l a m  reguire 

Ad, =6~3.+ 4.) 

44, =Ti  4.- %,> (1-8) 

where wa and fa are the frequency and propagation vector f o r  the anti-  

Stokes coonpnent. Ranan scattering m y  be viewed as a two-photw, pmcess. 

For instance, for the Stokes component, the molecule i s  pimped by the 

incident l i g h t  f r e l d  from 101 state t o  an intermediate state by absorbing 

a photon fm the incident f i e l d  whereupon the mlecu le  inwediate 

returns to an excited state 11, by emitting a photon a t  frequency us. 

This incident f i e l d  we w i l l  refer t o  as the "punping f i e l d "  hereafter. 

I n  Eq. (1-5). with L = m = 0, or 1, when the punping f i e l d  i s  

weak, we w i l l  only have Rayleigh scattering. The scattered f i e l d  has 

a frequency equal t o  that o f  the punping f ield. However, s t r i c t l y  

speaking, "elast icu l i gh t  scattering can occur only when the molecule i s  

stationary and not co l l i s ion broadened. Othenrise, a s l ight  shif t  andfor 

broadening i n  the frequency o f  the scattered f i e l d  due t o  the mlecular 

translational motion and the col l is ions w i l l  take place. 



It sems worthwhile, a t  th is  point of the discussion, t o  

note certain features o f  spectral l i ne  shapes. The spontaneous 

mission o f  an ensemble o f  molecules due t o  natural decay gives 

r ise  to the natural linewidth. The natural linewidth as well as 

co l l i s ion broadening can be given i n  a Lorentzian l i n e  shape and 

i s  thus n o m l l y  referred to as hmgeneous broadening. On the 

other hand, when the emission frequencies of dif ferent wlecules 

i n  the ensmble are dif ferent, the resultant spectral l i n e  i s  

effectively broadened. This i s  known as inhmgeneous broadening. 

I n  gases, Ooppler's broadening i s  an example. The DDppler l ine- 

width i s  about lo-' o f  the frequency emitted a t  roo. temperature. 

1.2 Level Saturation and Frequency Modulation due to a Stronq 

Resonant Field Radiation 

I n  the discussion o f  the interact ion between the optical f ie ld  

and the mlecules which i s  presented i n  the previous section, the 

populations i n  each level involved are not considered t o  be altered 

signif icantly from those i n  thermal equi l ibr im. When a strong l i gh t  

field, resonant with the energy difference between a pair o f  nolecular 

levels, i s  applied the effect o f  saturation and frequency modulation 

become important i n  understanding the nature of absorption, mission and 

scattering. These effects are well-lumwn observations i n  the micWwaVB 



regime [ 4 1  The saturation o f  absorption i n  the optical frequency 

regions was f i r s t  studied by Javan [51 i n  the investigation of the 

sharply-tuned laser l i g h t  through the amplifying medium o f  a second gas 

laser. The incident l i gh t  burns a "hole" i n  the Doppler p ro f i l e  and 

l im i t s  the output power o f  the second laser. This e f fec t  i s  also known 

as the "Lamb dip" [61. The "hole" or "dip" indicates the saturation of 

absorption by a group of molecules within a certain v e l o d w  range. 

I n  addition t o  the saturation o f  absorption i n  the in ter -  

action between the mlecules and the resonant f i e l d  i n  the steady state, 

the population difference and transit ion probabil i ty exh ib i t  the so- 

called " L b i  flopping frequency" or "Rabi frequency" i n  the transient 

regime. The "Rabi frequency" originates fran the investigation carried 

out by Rabi i n  1937 171 i n  connection with the study o f  Nuclear Magnetic 

Resonance. By solving the Bloch equations [El without the damping 

mechanism, Rabi showed that the mlecule undergoes "flopping" between 

two spin states when the resonance f i e l d  i s  applied. As a consequence, 

the ab i l i t y  of the mlecules t o  absorb radiation varies with the flopping 

frequency. On the other hand, the flopping frequency i s  equal t o  the 

nutation frequency o f  the spin. Since the spin nutation i s  governed by 

the Bloch equations, the spin may be called the Bloch vector. Later, 

Torrey [9] gave a detailed solution by using the Laplace transform 

technique and verified that the nutation i s  a transient e f fec t  and i t  

dies out due t o  the damping mechanism. I n  a density matrix fornalism, 

the equation of motion of the density matrix for  e two-level systm can 

be so arranged that the equation i s  coincident wlth the Bloch equations, 



which w i l l  be explained i n  detai l  i n  Chapter 2. Tang and Statz [lo] 

were the f i r s t  to suggest that the nutation should be observable i n  the 

optical region. This so-called "optical nutation" signal was shown by 

the t ine variat ion of absorption i n  SF6 1111. Brewer and Shenaker 1121 

have made a series o f  studies on th is  transient effect by using the 

Stark switching technique. Transient effects, other than optical 

nutation, such as self-induced transparency 1131 and photon echoes 114, 

151, are closely related to the flopping frequency. 

The resonance scattering o f  a high intensity laser f i e l d  has 

recently attracted much attention both theoretical ly 116-183 and 

experimentally 119-221. Two sa te l l i t e  l ines i n  the neighborhood of  the 

Rayleigh cmponent under the resonance scattering condition was f i r s t  

predicted by Mallow [I&]. By using the a tm ic  dipole w e n t  correlation 

function, he was able to show that two sa te l l i t e  lines, one upshifted 

and the other downshifted frm the incident frequency by the m u n t  

equal to the "Rabi frequency" 171, should be observed. Carlsten e t  al.  

1223 recently reported the results of their experinental investigation 

for near resonance scattering which showed the col l is ional redistr ibut ion 

and saturation. I n  the i r  observations, the miss ion spectrm s p l i t  in to  

three contponents - the Rayleigh scattering component a t  the frequency of 

incident laser l i g h t  and two displaced components on opposite sides of 

the Rayleigh cmponent. One of these two components i s  cal led resonance 

fluorescence while the other i s  a cmponent due t o  a three-photon process. 



1.3 Stimulated Raman Scatterinq 

The scattering o f  l i g h t  obtained by employing a high intensity 

laser beam as the pumping f ie ld  may exhibit  entirely dif ferent features 

from that of the spontaneous scattering. This scattering can be character. 

i red by i t s  marked punping power threshold, high beam collimation, narrnr 

spectral-line and high intensity, and i s  known as "stimulated scattering". 

Various kinds o f  stilnulated scattering such as the stimulated Raman 

scattering (SRS) [231, the stimulated Br i l lou in  scattering (SBS) C241, 

the stimulated Reyleigh wing scattering (SRWS) C251, the stinmulated 

t h e m 1  Rayleigh scattering (STRS) [26, 271, etc.. have been extensively 

studied. Anang these, the SRS i s  of present interest. 

Let us introduce the usual phenomenological relat ion f o r  SRS 

by C281 

dlidA)= ( ~ , - N , ~ ~ ~ [ + - $ : - ~ , ~ , ' + ~ L I L J I ) ~ . +  (1-9) 

which is, i n  fact, amlogous t o  the relationship i n  Eq. (1-2) for 

ordinary absorption and stimulated emission. I n  th is  equation, we have 

inserted a Lorentzian distr ibut ion for the intensity distr ibut ion for 

the scattered field. The half-width r i s  the relaxation constant of the 

dipole transit ion between two levels. The constant B10 i s  given as 



I n  Eq. (]-lo), rli:duced i s  the induced dipole w e n t  associated with the 

Raman scattering. According t o  Eq. (1-9). the intensity o f  the scattered 

f ie ld  i s  b u i l t  up as the pumping l i g h t  passing along i t s  path. This fact 

optimizes the observation of the SRS i n  the fotward as well as the back- 

ward directions 1291. The intensity o f  the pumping f i e l d  i n  the steady 

state regime i s  constant; El,, can thus be treated as a constant parameter. 

The f inal intensity of ISR after passing through an interaction distance 

where I, i s  the base intensity O f  the scattered f ie ld  a t  frequency 

Normally, the spontaneous scattering w i l l  contribute the base intensity. 

The function 6 i s  known as the gain function i n  the steady state, which 

can be derived as , 

= : ~ ~ , 1 $ ~ ~ ~ + ~ - ~ , , ~ + ~ . [ & ~ ~ ~ 5 ~ ~ 1 ~ i ~ ? ~ f  0 +i 4 (1-12) 

This equation i s  identical to the result  obtained by Elombergen by means 

of h is  nonlinear susceptibi l i ty theory [JO]. The gain function f o r  the 

"ordinary" SRS i s  posit ive for the Stokes components and negative for the 

anti-Stokes cmponents, since No > N1 a t  thermal equilibrium. The negative 

gain for the anti-Stokes cmponent indicates absorption a t  the frequency 

4. The observation of the inverse Rmnan effect [31] veri f ied t h i s  

negative gain a t  %. However, i t  i s  puzzling that the inverse Rmnan 

effect a t  the Stokes frequency was also observed [32]. Furthemre, 



stimulated anti-Stokes Rainan scattering was also observed and i s  explained 

as follows. I n  the presence of both the strong pumping f i e l d  and the 

Stokes f i e l d  i n  the medium, an interaction of two photons o f  the pumping 

f i e l d  and one photon of the Stokes f ie ld  may give r ise  t o  two photons a t  

the Stokes frequency and one photon a t  the anti-Stokes frequency. This 

mechanism i s  called "optical mixing'' [331. Based rm th is  mechanism. 

sinultaneous input o f  the strong laser l i g h t  a t  the Stokes frequency 

together with the pumping l i g h t  results i n  the coherent anti-Stokes 

Ramn scattering opening up a powerful spectroscopic method now known as 

CARS [341. 

1.4 Statewent o f  the Problem 

Due t o  the interact ion between the molecule and the strong 

resonant f ield, the population difference and the transit ion probability 

between the pair o f  levels w i l l  be altered frm that i n  the t h e m 1  

equilibrium i n  the steady state and may be flopping i n  the transient 

state. If th is  pair of levels i s  bman-active i n  addition t o  infrared- 

active, the SRS nuy be produced i n  the presence o f  both the strong 

resonant f i e l d  and the pumping field. The SRS under th is  circunstance 

may have an entirely different feature fran U o r d i ~ r y "  SRS due to the 

presence of the strong resonant f ield. I n  th is  thesis, a theoretical 

investigation o f  the Stimulated Raman scattering i n  the simultaneous 

presence of a strong resonant f ie ld  and the pumping f i e l d  i s  presented. 

It i s  expected that modulation of the scattered frequency by the flopping 

frequency w i l l  take place. I n  developing the theory, we adopt the non- 

l inear susceptibi l i ty theory by employing a semiclassical approach. 



I n  Chapter 2, we begin by f i r s t l y  presenting ( i )  the general 

feature of a quantum nethanical density matrix description o f  an ensemble 

of molecules, ( i i )  a classical description of l i gh t  f ields governed by 

Maxwell's equations, and ( i i i )  the cnnnections between the f i e l d  and the 

d i m  which lead to the obtaining of the gain function of stimulated 

scattering. Secrmdly, we specify the equation o f  motion o f  the density 

matrix f o r  a two-level schew t o  accwnt f o r  the influence of  the strong 

resonant f ie ld  and then we extend t h i s  equation in to  a three-level schene, 

which governs the SRS as well as the rautrat ion and laodulation due to 

the resonant f ield. It i s  very i qw r tan t  to notice that we exclude the 

interaction arising frm the resonant f ie ld  frm the perturbation due t o  

the external f ie lds  i n  w r  equation of the density matrix i n  the 

perturbation-series exeansion. By doing this, the contribution o f  the 

resonant f i e l d  can be clearly analyzed i n  the SRS process. I n  Part A o f  

Chapter 3, a discussion o f  the solutions leading t o  the nonlinear 

susceptibi l i ty associated with the present problem i s  given i n  detail. 

During the course o f  our study, Mullow I lEb l  obtained an equation i n  his 

study on stimulated emission and absorption near resonance f o r  a driven 

system, which i s  coincidently similar t o  the special case o f  the steady 

state of cur equation for pl( i ) (r) .  I n  order t o  account for the transient 

flopping effect, we retatn our equations i n  a generel for. rather than 

the special case o f  a steady state. I n  Part B o f  Chapter 3, we present 

the steady state results a t  the beginning and then we analyze the 

mcdulation o f  the flopping frequency on the SRS arising fro. ol($)(u) 
nodulated i n  stationary state. I n  our analysis, we propose t o  enploy the 
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CHAPTER 2 
I 

EOUATION OF MOTION OF THE DWSITY MATRIX FOR MOLECULES IN INTERACTION 

WITH A STRONG PUMPING FIELD AND A STRONG RESONANT FImD 

2.1 Density Matrix Description o f  the Mediun 

I n  the present study, the molecules under consideration are 

subject t o  the radiations of both a "resonant f ie ld"  and a "punping 

field". We employ a semi-classical approach i n  which the f ie lds  are 

described classical ly and the medium i s  treated q m N n  mhanica l ly .  

However. f o r  the quantm mechanical treatnent for  the mediun, the wave 

function description i s  inconvenient due t o  the lack o f  complete 

knwrledge of the dw ing .  We therefore adopt the formalism of the 

! density matrix whlch'har been widely used i n  the study o f  the molecular 

response t o  e lec t rmgnet ic  fields i n  the optical region as w l l  as i n  

the microwave or radiowave region by many other authors. 

I The density m t r i x  description Is derived through the wave 

fumtian with the general properties of quantum mechanics. The 

Hamiltonian of a wlecule without perturbation i s  Ho, and the wrrespond- 

ing Sch&inger's equation i s  

The state o f  the nwlecule i s  characterized by the wave function. +(O', 

which can be expressed i n  a complete set of orthonomal eigenstates. 

I- That is, 



Since Ho i s  not tine-dependent, the an's are independent o f  time. Thus 

we have the tine-independent Sch*dinger's equation f o r  the eigenstate, 

where En i s  the eigenvalue corresponding t o  the eigenstate In,. The 

state o f  the nolecule due t o  a Hamlltonian H, which includes a time- 

dependent interact ion V(t) as a perturbation, can be described by a wave 

function spanned over a l l  the eigenstates wlth time-dependent w- 

efficients, 

Y L ~ I  =z w)e*n%oZ (2-4) 

according t o  the Perturbation W r y .  Here, a,(t) i s  time-dependent. 

The wave function $(t) i s  normally referred t o  as a pure state which 

satisf ies the Schrcidinger's equation. 

(H.+\Ict))yct,=L-fiW*) (2-5) 
I 

The behaviour of the molecule under the Hanrlltonian Ho + V(t) can be 

; found if the wave function l ( t )  can be solved. However, it i s  not 

necessary t o  solve for I ( t )  expl ici t ly. By f o l lw tng  the f u n d m t a l  

P ~ i n ~ i l i l e  of quantum mchanics, the expectation r a l u  o f  an observable A 

1 can be writ ten i n  the form 



sfnee the efgenstaw 1.h f o m  a iiQwlete aFth0rWml setat. Upon t w m B i ~ 4  tk 

am scalpr ~70dllcts on the right-hand Df €9. (17). M have 

=z<;\ l y t % X $ & + ~ l h  I $ >  ( 2 4  Q 6 t In this ekaresalbn, we rewm'1za that I*(t)ry(t)l l s  s artrix operatar 

; f6P the pura a t e  ~ t t )  of tho lmlewle. iie give b81ow the form M this 

- . &r ix  rapreteottd by R. 

R = 1Wsacq'lg 

CI;', e-2%*,.C,;C 41 (2-91 

&re ulkI - (%-Et)/h. With this Shorthand Wattan, the ewctat-ion 
Value &As u n  thw hd WitaCm as 

Otfferentiat*l&R ufth WsWt to ti* t, ufth the helb 8P Eq. (2-5) aM1 

tha BrOhmaffaaliW af tho sim&statn, we a&n m r t l y  verify thrt the 

Wtrix PperetDr R BbC16 the rsl&fon 

udwe H r H,, + V(t) is the Hwtltoalan with perturbat1011 V ( t )  f o r  the 

Oalwula. The W r l r  altb elslants in the fbh 



--- thus be represented as 

R.1 - - - 
(2-13) 

I n  Eq. (2-131, the diagonal elements represent the populations o f  the 

levels concerned, and the off-diagonal e l w n t s  account f o r  the transit ion 

prnbabilities between the designated levels. This operator forn i s  

especially useful When an ensemble average o f  R i s  defined as the density 

, ~ t r i x ,  o, which satisfl'es the equation of m t i o n  

I I n  th is  expression. V(t) i n  H may represent the sun o f  a l l  the t ine- ' dependent perturbation terns rather than one tern. Following the method 

1 by Bloembergen and Shen t371, we divide the time perturbations in to  two 

Cla5SeS. One i s  the randan perturbations, the other I s  the coherent 

Perturbations. 
I 

I n  a gas systen, for instance, a mlecu le  i s  always subject 

to some random interactions due t o  i t s  envirument. For high pressure 

/ gases, the mlecu lar  col l is ions are the main source of interact ion i n  

I 



such a category. These randm perturbations on the equation o f  nurtion 

of the density matrix can be represented by phenmenological damping 

t e n s  1371. 

I n  Eq. (2-15). for diagonal terms, wan i s  the transit ion probabil i ty due 

to the randarn perturbations fro. In, to la,, while wna i s  that fm. la> 

to im. Lac& C381 has d i v e d  a siolilar expression i n  the gas laser 

I theory. Each off-diagonal elenent deceys with a relaxation constant 

I yak.. 

t Nhen the mlecules are subject t o  radiations o f  Wmnochmatic" 

w coherent l t gh t  f ields, the interactions between the Hght  f ields and 

the mlecules are coherent pepturbatims. The equation o f  notion of 

density m t r i x  i n  Eq. (2-14) can be written E -  





t Since the l i g h t  f ie lds  (resonant f ield, punping and scattered 

f ~ e l d )  are intense, the number o f  photons f o r  each f ie ld  i s  so large that 

i the correspondence principle i s  applicable; therefore, the f ie lds  can be 

described classlcally, obeying Maxwell's equations. Maxwell's equations 

1 I n  the Gaussian systm af units are 

i A a A A V.D =?TCg, VIE = - '  
I 7 B. 

C (2-19) 
2 3  + 5.3 =o , X$XH=:;~ "2% 

together with the constitutive equations 
A A -. & 

D = sE 0 =A cc (Z-rn) 

111 the sjmbols for the physical quantities are conventional. Hnuever, 

a w i l l  stress here that the dielectr ic constsnt r and magnetic 

Mmeebfl l ty p are not always constants but m y  be functions o f  the f i e l d  

itrength. This set o f  mcrOsFopic Maxwell equattons i s  val id f o r  the 

fields i n  the medium only if the wavelengths o f  the l i g h t  f ie lds  are 

lawe i n  conparlson with the mlecular dimension and if the nlahber of 

wlecules within the wavelength dimension i s  large. Light wavelength 

in the v is ib le  region i s  about lo3 fl  t o  ?a4 f l ,  while the nolecular 

iimension i s  only about a far a n g s t m  for normal nwlecules. The nwber 

rf nwlecules within a vollwe of wavelength dimension i s  of the order of 

12 a t  STP. Therefore, the va l id i ty  of macroscopic Maxwell equations i n  

€he medium i n  the present st* i s  just i f ied. 



For tlle mdiun which i s  dielrctric, mnna$Wt4c and Uithwt 

free chaw?. E q  (2-11)) end Eq. (2-20) can be wrttten 8% .. 0.3  =o q x  E = --?a G 8 

V,  B = c  V * H P  -L g z  (2-21) 

and the con~titutive aguations csn be writtan as 

1 LPG 42-22) 

For the cQaventiaql s i twt im Yhn the light f lad i s  weak, the electrir 

displacaent 6 can be ~ p ~ n t e d  as linearly p r t i a n a l  to the dectr ic  

field s t r w h ,  and the dEelectric corrstant r s e r a  a5 the propDrEtonalftY ' 
eonstant. The displ4cme1)t 3 can be turther wwssed as 

A 

$ = E + 4 -7~  (2-Z3) 

* &re bL, in eonncetian with a's in Eq. (1-5). $3 tkc polartration 

/ llnearlr vsrfel with the E in a linOar theory. 8afcre lasers Wane 

I available, the If- tkarry *as a pood spgroxinat%an hr interprPtin9 

lL €he sptanscrus smrtecing pPoblem a waaC Inc%dant field ran used. 

Wewever, rincs tha laser gives s Fleld strength of Un ontrr o f  10' 

volOda w lasap the limar polarizetion i s  % n a W t e  €a ~ ~ p f e m t  

the tdwl polarizetion so Mat s nbnlimr pkrt will ho ri~nificant. 

1 ~ h u s  r. adtl a tern PL te ~ q .  (2-ZS) te amount ~r  ti^ 

Wnlqnerr polarization. 
-L A 

i ; = E - ~ 6 n P ~ - + + w ~ *  
(e-24) 



where bL and ifNL are the l inear  and nonlinear polarizations, respectively, 

and are macroscopic quantities. I n  SRS, we are interested i n  the 

nonlinear polarizat ion bNL. Assuming that the d i rec t ion o f  the nonlinear 

polarizat ion i s  the same as that  o f  the l i g h t  f ield, the magnitude of 

bNL i s  given by 

where i s  the third-order density matrix, which i s  t o  be solved 

through the equation O f  motion of the density matrix. We w i l l  l a t e r  

explain how the third-order density matr ix i n  the expansion of parer 

series of the f i e l d  strengths gives r i s e  t o  pNL. The nonlinear 

polarizat ion w i l l  osc i l l a t e  a t  the frequency o f  the scattered f i e l d  

giving r i s e  to the scattered f ie ld .  Thus, we may wr i te  the nonlinear 

polarizat ion and the scattered f i e l d ,  respectively: 

(2-26) 

Maxwell's wave equation derived from Eqa. (2-21) to (2-24) for Fourier 

components of the scattered f i e l d  a t  frequency us can be wr i t ten as 

I n  t h i s  equation, we have used the approximation o f  slowly varying of E 

and pNL, which has been employed by many other authors. I n  t h i s  section, 

we foliow the procedure by H e m n  [39]. The use of t h i s  approximation 

; indicates 



a= &<*> - 4 & %-'> =.7 g* E,C*I 

and 

UL 
0; +4",,, >> 'as & ~ Y : Y >  2- &. fy(@ 

me frequency of the scattered field, i n  the present problem, i s  not 

resonant w i th  the energy levels o f  the malecules. Consequently, the 

l inear  part o f  the d i e l ec t r i c  constant e w i l l  not be changed signif icantly. 

I n  a steady state, we may assume that  e p i s  a function o f  position, say z, 

along the d i rec t ion o f  propagation, 

(2-29a) 

-fC%, - - p n L c d ~  e (2-29b) 

By regarding ~, (z)  as a "slowly varying" function o f  position, we can 

wr i te  

where we have enployed the re la t ion 

4, =OL+ (2-31) 

where n (=&) i s  the index of refraction. 
The nonlinear polarizatfon pNL(z) can be Put i n  the form 



i 
L 

P 
f ?:a>a 3 LM*> (2-32) 

where xm(us) i s  deflned as the nonlinear susceptthi l i ty which can have 

both a real and an imaginary part. The real part i s  k m  to have an 

additional contribution t o  the index of refraction which w i l l  not be 

significant because p i s  not reomant with the molecular system. It 

I s  very SAlportant t o  notice that the imoinary par t  satisifes 

*C a = 4 & ~ *  xw ~ 3 ,  11-33) * 
where la xAL(%) denotes the negative inaginary part of xm(tos). The 

real par t  of xWL(ws) fs not significant and, hence, has been dropped. 
I 

The fractional change i n  ss(z) incurred by t ravel l ing a dis-ace dz along the 

direction o f  propagation i n  the m d i m  i s  

dE&, ,,f, - J,,, %?as: 
&*q, = 53 

(2-34) 

We w i l l  shar l a te r  that xm(aS) i s  a function of the puntping power. The 

pumping power i s  a constant in the steaQy state. We can therefore write 

t& - ,sc6)~ 4 QmXcw2d (2-35) 

I n  the same fashion, ue have 
z * 

(2-ss) 



The intensity of the scattered field can be found as 

Let 

where G i s  defined as the "gain function" in the steady state  which i s  

independent of time and position. However, the "steady state" i s  not 

I always a condition that can be met; therefore, "transient" stimulated 

, scatterings have been proposed by Kmll [401, Wang 1411, and Creaser 

, and Hemn [421 for SBS, SRS, and STRS, respectively. The experimental 

verification of transient SRS has been done by Camn, g a. 1431. 

Since nonlillear polarization i s  derived through the denslty ' 
m t r i x  which i s  drastically influenced by the presence of the fields, 

I 

, i t  i s  necessary to formulate the equation of the density mt r ix  by 

' taking the interactions between the medium and the fields into 

consideration. 

2.3 Equation of Motion of the Density Mstrix for  a Two-Level Schm 

under the Radiation of the Resonant Field 

Instead of using the density matrix fomlism concerning n 

levels, we f i r s t  simplify the density matrix for the present purpose. 

Physically, the Raman effect involves two transition levels 10, and 11, and 

intermediate levels Ir>. We now l e t  a third level 12, represent one of the 



intermediate levels. The contr ibution t o  o1° from each i n tened ia te  

level can be added up a t  the f ina l  stage. bong  these i n t e m d i a t e  

levels, only the level with energy closest t o  the energy of the photon 

i n  the pumping f i e l d  i s  predominant i n  making a contr ibution t o  .lo, 

and the contr ibution from the res t  o f  the i n t e m d i a t e  levels may be 

ignored. Therefore, we need t o  specify three levels i n  our problem. 

I n  the present study, we assume that  leve l  12, i s  wel l  above 

levels 11, and Ib, and the population i n  leve l  12, may be negl ig ib ly  

small. For instance, the energy of separation between v i b r a t i o ~ l  

levels 10, and 11% fiwlO, i s  an order o f  magnitude o f  .1 ev, while the 

pumping photon energy i s  o f  1 ev. Therefore, t h i s  assumption can be 

read i ly  j us t i f i ed  according t o  the Boltzman distr ibut ion. Without being 

subject t o  any externa1,radiation. a l l  the density matrix elements 

associated with leve l  12, W i l l  eventually vanish - so p i s  a 2 x 2 

matr ix a t  t h e m 1  equilibritnm a t  mom temperature. 

I n  order t o  ve r i f y  the re la t ion m n g  the parameters associated 

wi th  the elements of the 2 x 2 matrix, we wr i te  the equation f o r  the 

density matrix according t o  Eq. (2-17). excluding the coherent perturba- 

tions. 



where the transition pmbabilitiesy,l and?u10 are written as yl and ro, 

respectively, and y10 i s  denoted as r. pol i s  the complex conjugate of 

plO. 
In the two-level system a t  t h e m l  equilibrium, we have the 

relation 

where and ill represent the pO0 and p l l  a t  t h e m l  equilibrium a t  

which the tilne derivatives on the left-hand side of Eq. (2-39) vanish. 

When Eq. @-40)incorporates with the normalized relation 

we can readily verify 

I 

! 
I where we define 

r in Eq. 2-39 and r'in Eq. 2-42 are known as "transverse" and 

"longitudinal" relaxation constants. This m n c l a t u r e  has I t s  origin 

in the mgnetic resonance study and will be explained later. In th@ 

present study, various relaxation nechanisms contribute to the spectral 

linewidth. In gases, spontaneous decay and collisions are the main 

sources for the hwgeneous linewidth. The spontaneous decay gives rise 

to an intrinsic linewidth due to a f ini te  lifetine i n  the excited state. 

I 



The co l l is ions between nalecules w i l l  de-excite the m lecu le  i n  the upper 

level and w i l l  dephase the oscillation of  the dipole m e n t  and, therefore, 

give r i s e  to the co l l i s iona l  broadening o f  the spectral l ine. I n  a strong 

co l l i s i on  rnodel, the broadening due t o  dephasing i s  equal t o  co l l i s i on  

frequency 1543. Fur themre,  the co l l i s i on  which can be e las t ic  and 

inelast ic, contributes t o  the transverse and longitudinal relaxation con- 

stants dif ferently. Accordingly, [I&, 441, 

x' = PI* + Qz 

Y = . t C r , ,  7 Qr ' Qr> 
where r10 i s  the ra te  of spontaneous decay, and QI and ge are the mean rates 

of occurrence o f  ine las t ic  and e l as t i c  co l l i s i ons ,  respectively. I n  a 

strong collision model, r and y '  are equal t o  the co l l i s i on  frequency 1181 

and thus requlres QI = Qe when r10 i s  negl igible. I n  general, t h i s  condition 

cannot be f u l f i l l ed .  I n  addit ion t o  the relaxation constants r, 7' and 

the normalized re l a t i on  An Eq. (2-20), we have the parmeter no which i s  

defined as the population difference a t  thermal equi l ibr ium and can be 

wr i t ten as - 
Re = Fee - e, (2-43) 

The population difference between 10, and )I* as given i n  Eq. (1-2) 

, can be expressed as 

t hl.- tJ, = tJ 12. 
i where N = N~ + N ~ ,  which i s  t o ta l  nmber o f  molecules per u n i t  v o l w .  I n  

[ our l a t e r  calculation, we re ta in  only no as i f  N i s  normalized to be 1. 

i Now we w i l l  consider the nalecules which are subject not only to 

the interact ions wi th  the enviroment but also t o  the interact ion wi th  a 

resonant f i e l d .  We therefore introduce a coherent perturbation due t o  

the resonant f ie ld .  I n  a dipole approximation, the HarnilMnian of the 

mlecules can now be given as 



where u i s  the dipole m n t  operator, Er i s  the resonant f i e l d  and 

the term uEr i s  the coherent perturbation. Based on the parameters 

obtained, the equation of m t i o n  o f  the 2 x 2 density matr ix due to the 

dipole interact ion can be wr i t ten as 

Here P(O) i s  the density matr ix when the interact ions wi th  the resonant 
f i e l d  i s  considered. 
By changing variables as 



we obtain a set o f  equations 

*cu = - Y U +  u),,y 

3 0- = -7 d- - +Jyd (2-47) 

7 1 ( w - C L T ) - A 1 1 1  
& 

where we make no d is t inc t ion between ul,, and vo1 i f  we assume they are 

real. This set of equations has the s m  form as the Bloch equations 

181. The Bloch equations were o r i g i na l l y  employed i n  the study o f  

nuclear magnetic resonance. Since u and v correspond t o  the transverse 

components of the nuclear magnetization and w corresponds t o  the 

longitudinal component, the relaxation constantsy and I' are therefore 

cal led the "transverse" and " longitudinal" relaxation constants, 

respectively, and t he i r  reciprocpls (1 = TI. = T,) are ca l led the 

"transverse" and " longitudinal" relaxation times. The Bloch equations 

and, hence, Eqs. (2-45) have a "closedVorm solut ion (subject t o  the 

Wtating wave approximation) i n  the steady state without any res t r ic t ions 

to the parameters i n  these equations. However, obtaining the "closed" 

form o f  the solutions i n  the transient state i s  s o w h a t  d i f f icu l t .  Only 

der certain circumtances such as Y - ~ '  o r  b - 0  can the "closed" form 

transient solutions be found. I n  order t o  minimize the d i f f i cu l t y  

solving the present problem, we adopt the exact resonance case a t  

h Au-0 so that the "closed" form solutions can be obtained. The 

f l ed  solutions w i l l  be deferred u n t i l  Chapter 3. 



2.4 Equation of Motion o f  the Density Matrix for a Three-Level Schene 

i n  the Study Of SRS under the Radiation o f  the Resonant Field 

I n  Eq. (2-17). we have given the general formalism f o r  the 

density matrix. Due to  dipole interaction with the resonant field, 

the populations and transit ion i n  the two-level systern are governed 

by Eq. (2-45). I n  additlon to the interaction o f  the medim with the 

resonant field, we have to consider i t s  interaction with the pumping 

f ie ld  as well as with the scattered f i e l d  i n  the present study o f  the 

SRS. The pwping f i e l d  i s  typical ly o f  lo7 v/m, provided by a giant 

pulse laser. The f i e l d  a t  t h i s  strength i s  s t i l l  small i n  cmparison 

with the f i e l d  strength i n  intra-inalecular dintenstons (lo8 v/m), yet  

strong enough to pmduce a nonlinear effect. A dipole interaction 

t 
between the f ie lds and the molecules can be treated as a coherent 

perturbation. The ~ m i l b n i a n  for th is  system i s  

H = H : - d E  (2-48) 

where HA i s  given i n  Eq. (2-44). p i s  the dipole m n t  operator and E 

represents the to ta l  f i e l d  of the pumping l i gh t  and the scattered l ight ;  

E 5 E, 7 E* (2-49) 

the use o f  t h i s  eguation, the interactfon between the scattered 

and the mlecules t s  tahsn I n to  conslderution. 

Since the f i e l C  are sssMecl to be l inear ly  polarlzd I n  Uut 

dtrect iw,  we can W t e  



where we suppose eL and cS(uS) t o  be e i ther  independent of t iw o r  a 

slowly varying function o f  time and l ikewise t he i r  complex conjugates. 

The assmption of a complex nature f o r  the l i g h t  f i e l d  amplitudes i s  

made t o  account f o r  the arb i t rary  phase of the f ields. The lnolecular 

systm interact ing wi th  the resonant f i e l d  i s  now subject t o  an 

addit ional coherent perturbation eE. The equations of motion of the den- 

s i t y  matrix ares imi lar  t o  Eq. (2-45). wi th  levels extended t o  include 

the i n t e m d i a t e  level 12,. They are 

t%*"c9.) e, r $J,.~~(f'~;e, & L E ~ ~ ~  -$fiUq,. 
%jF 2'~ k - ~  > + 2 <A.I&~,. -N..E*~: + c-C. 

I i I g t , = ~ ' ( g - ~ , > +  A ILI,~E&,~JJ,.E~P=,) + c-c .  

. (2-52) 'b * L + i ~ ~ ~ =  ~ A . ~ * C ~ - ~ + $ n & f l - ~ ~ , ~ ~  L 
O +u + A . L ) ~ ~  =iY.,~fi-e)+f A - ~ L - ~ A ~ G ~  
7 
3 b. = a!. +i ( K E . ~  + A.E. f!,) + C.r. 

t 

pid = 5, , i , d =  o , ~ , ~  

where E, = E, + E 



Javan 1451 fanploys a similar set of equations in the study of 

rdinary SRS. In his treatment, he considered a simple situation a t  

which w10 = 0 and, therefore, the resonant field i s  not relevant. 

Recently, Brewer and Hahn [46], Bloembergen and Levenson 1471, and 

Chebotayev [48] considered t m  near-resonant fields in the study of 

coherent tm-photon processes, two-photon absorption spectroscdpy 

and three-level laser spectroscopy, respectively. In their study, only 

two dipole m n t s  associated with the level pairs resonating with the 

resonant fields are considered. 

In the present study, we assum that the physical conditions 

are different from those for all the above authors. We assune the 

mlecules are infrared active so that the dipole rmment u10 i s  non- 

vanishing and R m n  act'fve so that there exists the induced dipole 

m n t  u:l(duced or polarizability .lo. The nonvanishing of u&,,ced 

or =lo is  just the nonvanishing of both "2 and wo2. Both the Infrsred 
-and the Raman active for the three-level systfan i s  thus 

indicating that the three dipole mmnts exist among al l  three levels 

while only two dipole namnts exist in the three-level schfanes studied 

by al l  of the above authors. In addition, we are treating three 

electrcinagnetic fields among which only one i s  the resonant field. By 

inspecting the set  of equations in Eq. (2-52). they are not likely to 

have the "closed" form of solutions due to the pumping field that i s  not 

assuned to be resonant between any pair of levels. However, since the 

field strengths are small in comparison with those of intra-mlecular 

o r i g i n ,  a perturbation method i s  applicable. In the same fashion as for 



he wave function subject t o  a perturbation i n  quantum mechanics i s  

wri t ten, we put the density matr ix i n  a series according t o  the order 

o f  6 1491. i.e.. 

(2-53) 

where p('), p('), ... are zeroth-, f i rst-,  and second-order 

o f  t& density matrix for the present "perturbation' 6vE t o  the 

Hamiltonian 

where HA i s  given i n  Eq. (2-44) i n  which the random perturbations and 

the interact ion wi th  thy resonant f i e l d  are regarded as perturbations 

t o  H,. As we have indicated, a "closed" form o f  solut ion I n  both the 

steady s ta te  and the transient s ta te  f o r  the density matr ix governed 

by the Hamiltonian Ho can be found f o r  the resonant f i e l d  a t  exact 

resonance. Therefore, i t  i s  our intention t o  exclude rather than t o  

include the coherent perturbation uEr due t o  the resonant f i e l d  from 

the present "perturbation" 6wE i n  f inding the higher-order density 

matrix. I n  our treatment, we can re ta in  a l l  the information due t o  

the resonant f i e l d  and yet  the equations w i l l  not be complicated. By 

applying the Hamiltonian i n  Eq. (2-54) t o  the density matr ix i n  

Eq. (2-53). we can veri fy the density matrix equations for various 

orders o f  6. The set of nth-order (except n=O) equations o f  the density 

matr ix i s  given by 



I n  t h i s  set o f  equations, P:;) can be set to be zero since Raman 

scattering i s  a two-photon process so that  short l i f e t i m s  ensure no 

accmulation of pi;).  Consequently, we can set + = 0, -1 0. 

v E 
We mit the term i (p6;-1) - p!;")] i n  the f i r s t  equation due 

to  i t s  f as t  variat ion and re ta in  only the component far P$) near 

(or toR). When n=O, the equation can be m i t t e n  as 



By ignoring a l l  t e n s  of zeroth order associated with leve l  12, due t o  

the fac t  that  leve l  12> i s  not populated and the t rans i t ion probabi l i ty  

i s  low due t o  t h e n a l  agitat ion, the set o f  Eq. (2-56) i s  reduced t o  

exactly the sarne as Eq. (2-45). 

Thus far, we have derived equations o f  the density matrix Of 

various orders. I n  each of these equations, the elements of the same 

order as well as of lower order are coupled together. We w i l l  show the 

solutions for the third-order density matr ix elments give r i s e  to 

pNL(os) i n  which the imaginary par t  o f  nonlinear suscept ib i l i ty  xNL(rnS) 

i s  d i r ec t l y  related. I n  the next chapterwewil l  devote ourselves tn 

solving the density matr ix of various orders and t o  c lar i fy ing the 

related physical meanings. 



CHAPTER 3 

PROPOSED METHOD IN SOLVING THE EQUATION OF MOTION 

OF THE DENSITY MATRIX AND THE SRS 

UNDER THE FLOPPING MODULATION 

Part A 

The Coupling of the Equation of Motion o f  the 

Density Matrix and the Maxwell Wave Equation 

3.A.1 Solutions of the Zeroth-Order o f  the Density Matr ix i n  the 

Steady State and i n  the Transient State 

The zeroth-order equation o f  M t i o n  o f  the density matrix has 

been given i n  Eq. (2-56). After set t ing a l l  of the elements associated 

wi th  leve l  12r t o  be zero, we have the set o f  equations which i s  

ident ica l  t o  Eq. (2-451, namely: 

c.1 -%*(p -p, t $h4L(.,~,prr CF n?.. - .- .a 

This set  of equations i s  equivalent t o  the Bloch equations [E l  which 

have been used i n  the study of magnetic resonance. The present fonn of 

the equations was employed by Lamb [61 i n  formulating the gas laser 

theory. Nowadays, t h i s  set o f  equations which y ie lds  transient and 



Steady solutions has been adapted for the study o f  various aspects o f  

) two-level system i n  the optical region. Studies re la t ing t o  optical 

mutation [lo], Sel f - induced transparency [I31 and photon echoes 

[ I 4 1  a r e  based upon the transient solution, while those re la t ing t o  

saturat ion absorption 1501 and spectrwn red is t r ibut ion 118,221 

are based upon the steady state solutions. 

I n  solving Eq. (3-1). we follow the method by Torrey [91. 

Let a set of t r i a l  solutions with appropriate Fourier cmponents be 

represented by 

p .. " = p& .. , f" I, = Fl I ry! c4) ,o--;%* (3-2) 

$hich involves the interact ion with the resonant f i e l d  

-i LJr+ El-&C,c + & G * ~ ~ ~ ~  (3-3) 

substi tut ing Eq. (3-2) and Eq. (3-3) i n t o  Eq. (3-l),we f ind the 

quations f o r  the amplitudes: 

,.I 

"Pb!" . r t L- f~;.,) .,. ~ : t ; ~ ~ ~  - p;;*l -5ir 

$::-=.I p, - ~-$OI, -i[nzfi -GCU~ ,,-,, 
V> %f;* = -t b.. -, 2%-9, :* +i"*'F -p,, r . 6. 



where %2 = 10ER 0 M 
11 E* 

and n: = . The product of a density matrix 

elenent and the resonant f i e l d  can have t e r n  wi th  frequency adding 

and wi th  trequency difference. The terms with frequency adding are 

ignored, and only the tenns wi th  frequency difference are retained. 

This approximation i s  known as the ro ta t ing w v e  approximation (RWA) 

1511 which has been w l o y e d  by many other authors. 

The amplitudes i n  Eq. (3-4) can only vary slowly i n  amparison 

with u10 s % so that the RWA i s  valid. I n  order to solve Eq. (3-4) by 

l / y n g  Laplace transfom, it i s  convenient t o  put Eq. (3-4) i n  the f om 

I L I.' - 1 9 .  . , 

where bo = uR - ulO. I n  Eq. (3-5). i f  we br ing the spatial phase factor 
L .. ...&. . . . P .  . .  .. .. . . ., rogerner w im  m e  remporal pnase raczor i n t o  wnnaeranon,  im snout0 

be replaced by i(Aw - kRv), where v i s  the ve loc i ty  o f  the molecules 

and kR i s  the propagation vector o f  the resonant f i e l d .  Me denote a 

Laplace t ransfom function as 



Eq. (3-5) a f t e r  the Laplace transform becones 

I n  Eq. (3-3), we have used the re l a t i on  

The i n i t i a l  conditions imposed on the systm are 

f f ( * z ~  --- r o  

rfOc:(.q - f,?l0> = /n. 
This i s  because the absorption fmm the f i e l d  and the change of the 

index o f  refract ion due t o  the f i e l d  are both zero before the ned im i s  

brought i n t o  interact ion with the resonant f ie ld .  no i s  the population 

difference a t  t h e m 1  equilibrium. The secular determinant for Eq. (3-7) 

i s  

B . = f ~ v  f+r- ir& o -i& 

- A .  +,r 



1 
I This equation can be further wr i t ten as 

' 
It i s  very s i ~ l p l e  t o  solve Eq. (3-7) i n  the steady state without any 

I res t r ic t ion to bw, T and 7 ' .  However, the transient s o l u t i ~ n  191 i s  

I 
sanewhat cmplicated and the approximated solut ion a t  higher 

in tens i ty  has been obtained [511. The transient solut ion o f  the i zeroth-order density matr ix i s  ex t remly  i p r t a n t  t o  the p t -emt  study 

I and we feel that i t i s  not preper t o  make the high in tens i ty  approxima- 

t i on  a t  the very beginning. The transient solut ion w i l l  be i n  a 

"clozed" f om by set t ing r = 7' o r  bw = 0. Now r and 7 ' .  the relaxation 

I constants i n  gases are q i n l y  due t o  co l l i s ions and spontaneous decay as 

i presented i n  Chapter 2. Generally, the re la t ion between y and y' i s  

I lacking. I n  the present work, me are not allowed t o  set y = r'.  

) Therefore, We l e t  .r and y' be free parameters which can be detemined 

: experimentally o r  calculated based on the potential  between mlecules. 

, I n  order t o  obtain the closed form o f  the solutions f o r  t h i s  set o f  

equations, we a s s m  hca - 0. With the avai lab' i l i ty o f  tunable 4ye 

lasers, such an assunption I s  read i ly  j us t i f i ed  

The Laplace transforovs of the functions w i l l  be i n  a 
' r e l a t i ve l y  silnpler f o m  by set t ing 

ra = + c y 1 - 7 >  
(3-10) 



which i s  the flopping frequency a t  exact resonance. Hwever, n i s  a 

l i t t l e  different frum the  Rabi flopping frequency since r '  = 0 ,  the 

solution can be found readily: 
n 
(a, 

ntrr 
*tr)f - ~, - P 1 ( 3 - l 3 )  

where xsO, x* so, and ys0 are  the steady state solutions for P!;)(O~), 

p!?)(w,),and #)(0) - P!?~) (O) ,  respectively, and are given as 

and 



,411 the elments i n  the steady state are proportional t o  the factor 

1/(1 + 1i112/r2). The absorpitoll l i n e  shape due t o  the off-diagonal 

elements i s  bmadened when the resonant f i e l d  in tens i ty  i s  high. This 

broadening, referred t o  as "power broadening", i s  homogeneous having a 

Lorentzirm l i n e  shape. I n  steady state, the t rans i t ion pmbabi l i ty  

represented by xSO and x&, and the population defference ys0, approach 

zero as the resonant f i e l d  increases. The steady state solutions i n  

~ q s .  (3-16) t o  (3-18) can also be obtained by set t ing the time 

derivatives on the right-hand side t o  be zero and then solving f o r  

these equations. 

The convenience o f  using Laplace transforms i s  that we can 

obtain the steady state solutions as well  as the transient solutions. 

This fact can be revealed i f  we take the invepse transform o f  Eq. 

(3-13). Thus we have 



In these equations, the flopping behaviour i s  clear. The flopping 

frequency $2 has to be much smaller than ulo or uR. so that the RWA i s  

valid. I t  i s  important to note that the amplitudes of the transient 

terms are danped through the cwbination of transverse and longitudinal 

relaxations, while the phase of flopping i s  not interrupted by either 

I of these relaxations, and the oscillatory property should last  even 

, longer than the relaxation tine. 

I 3.A.2 Solutionsof theFirst-Order Density Matrix 

I The set  of first-order equations of mtion of the density 

matrix in components i s  obtained by setting n = 1 in Eq. (2-55). i.e. 



where the light fields are given in Eq. (3-3) and Eqs. (E-49, 2-51). 

In this  set  of equations, elements associated with level 12r in zwoth 

order have been dropped. BY inspecting the four equations in Eq. (3-22a), 

we find that  a l l  the elements are  linearly dependent, and the solutions 

for them are 

since the colfficlents for a l l  these elenents are not fixed valua i n  

generel. In the set of Eqs. (3-22b), yzO and yzl are negltbly smll in 

canparison with wt0 - anU oZ1 - tog i f  we assuae tho W1p1ng f f t l d  EL 

i s  not resonant with the level p a i n  associated with level 12% b 

I assuming also that no << u2,, - r~ or wal - %, we rejact the terp 

~l e 
I i and i 1n Eq. (3-22b). The equations fop 

I and n$:) can mw be written 

The density mtr ix  e l m n t s  @g) and pi:) driven by the pmping and 

Jcattared fields are now represented by ~ e - ~ " s ,  L ~ .  Mter  substituting 



the expressions for  E i n  Eq. (2-49) to (2-511, a typical equation for 5 

can be put as 

I (3-24) 

where A i s  the frequency difference between the frequency of the l i g h t  I f i e l d  (I., o r  and that of the level transit ion (20 or yl). The 

[ function s ( t )  on the right-hand side i s  due to the products o f  the f i e ld  

strength and the zero-order density matrix elements. Therefore, s( t )  

1 can be represented generally by 

where to i s  the delay t ine of the p w i n g  field. The coefficients a, 

b and c can be slowly varying functions of time due to  the punping f ie ld  

as well as the scattered field. Since we ignore th i s  slowly varying I character, a. b and c can be regardeU as consUts.  The s o l ~ t i o n  for 

1 Eq. (3-24) can thus be put 

I 
The f i r s t  term on the right-hand side i s  zeFo due to  the i n i t i a l  

I condition a t  which eL is  zero and sS i s  negligibly small. The seund 

term can be carried out by regarding a, b and c as constants. Eq. (3-26) 

I san mm be written as 



where a = b = c = 0 a t  t = 0 due t o  the fact t h a t  sL and cS vanish a t  

t = 0. Since A >> 0 and r by assumption, Eq.(3-27) can be rewr i t ten  

as 

This solut ion i s  the  sam as i f  we set S - 0 i n  Eq. (3-24). The physical 

meaning of t h i s  fact i s  t h a t  the amplitude of the f i rs t -order  matr ix 

e lemnt  P[A)(ws,L) o r  Pi:)(OS,L) w i l l  no t  be further modified 

s ign i f i cant ly  by the resonant f i e l d  except by modulation through zeroth- 

order elements. This consequence occurs because o f  the beating 

frequencies between l i g h t  f i e l d s a n d  leve l  t rans i t ion  ra te  associated wi th  

leve l  12, are much la rger  than 17 and r when the frequencies o f  the 

puwing as wel l  as the scattered l i g h t  f ie lds  are far from being 

resonant w i th  the molecular system. The solut ions f o r  the amplitudes 

of ph i )  i n  the Fourier components a t  r oS and t oL are 



and the solution f o r  the amplitude o f  i s  

Lt, p3f--Js) = 

1 I I  

/'*,(A.) =-A 
4+ - rs,**, p,; 

11. .E 

where the parameter = w a n d  l ikewise f o r  the paramterr with 

the c o w l e x  conjugates. pisS and v f j  Besides the Fourier components a t  

mL o r  us. there ex is t  sane other possible components a t  the frequencies 

of the combination of oL and wR, o r  us and w R .  Equations for  the 

components o f  a re  



I where the re l a t i on  wL-mS - wuR has been used i n  the denominators due t o  
! .  

resonance. The s imi lar  set o f  equations f o r  the conponents of can 

be wr i t ten as 

(3-32) 

f(4-~=+~fi~'+,~f:~ =&nLvaO p.7~  
The equations f o r  t he i r  coAplex conjugates are not shown here. These 

sets of equations m y  be used t o  derive the l inear  suscept ib i l i ty  a t  

the corresponding frequencies. However, i n  the l inear  theory, the 

scattering i s  a spontaneous one which i s  out of the scope of the 

present study and w i l l  not much concern us. .bang these Sets of 

equations, only the equations 



fl:~~, - "&" ,**, pr>R 

(3-34) 

~:(-q*.u - & ~ u , * ~ * ,  

p'i$*.\> =. 6 nest* C%) 

are o f  interest to us due to their contributions t o  the phmonenon under 

the presmt study. In  rhese two set$ of equ#itions, it i s  WWh noting 

that only ttra four terra  PA^)(^), P & ) ( - ~ J ,  and opl:)(%) 

contribute t o  Ordinary SRS wken We lMarsn transition levels are not 

wd i f t sd  try the monant f i d d  thraugh zerctk-el'der ribriulatton a differenoe. War, besides the fola tenar uhtch are mdif ted by the 

r e s o m t  f i e l d  through zeroth o r b r  posulatiw difference, thew are 

four additional te rn :  Pg)(y-o$. pg)(-(Ps%R). pii)(-y%$ and 

p$i)(ms+%). T k s e t e m e x i s t  eue uet the m$ifieation ef the remnant 

f i e ld  m pE)(%) and @if)(%) whfch 64 not ex7.t l n  the st* of 

ordinary 4RS but do exist i n  th& prermt LtwIy aceordlng to wr 

assuqrtion of a nonvanishing u , ~  



3.A.3 EquationsofMotion o f  the Second-Order Density Matr ix f o r  the 

Fourier Canponents o f  a t  o r  l eo r  Resonance 

Without the pumping f ie ld ,  the zeroth-order solutions w i l l  

describe the emission and absorption o f  the frequency o f  the resonant 

f ie ld .  The introduction of the pump f i e l d  w i l l  give an additional 

md i f i ca t i on  t o  the population difference and t rans i t ion prababi l i ty  

between 10, and 11, through pi:), and through t he i r  complex 

conjugates. This f ac t  cannot be revealed without the study o f  the 

second-order equation o f  nation of the density matrix. 

The second-order equation can be obtained by set t ing n=2 i n  

~ q .  (2-55). i.e., 



where the c.c.'s are complex conjugates. It has been solved for P$) - 
pi:) = = 0. We also assumed that  frequencies oL and % are well 

below uZ0 and wZ1 so that yZ0 and T~~ can be dropped. However, the 

inclusion o f  these constants i s  important when oL and us are resonant 

with the leve ls  involved. It i s  also interest ing t o  notice the tenas 

which appear on the r i g h t  side of the equation f o r  pi:). These terns 

also appear separately on the same side of the equations f o r  pi:) and 

pi:) but d i f f e r  i n  sign. This i s  a consequence o f  the fac t  that  the 

net change o f  the t o ta l  population i n  a three-level system has vanished. 

The set  o f  Eq. (3-35a) and Eq. (3-35b) are coupled through the f i r s t -  

order elements o f  various Fourier components which have been solved i n  

the l a s t  section. Since there i s  no d i rec t  linkage between Eqs. (3-35a) 

and (3-35b), we can solve these two sets of equations separately. I n  

Eq. (3-35b). the f i rs t -order  diagonal elements are zero, so that  the 

equations f o r  pi:) and pi;) are l i nea r l y  dependent and, therefore, pg) 
and pi:) vanish. The equation f o r  pig) l s  not coupled with any other 

elements and can be solved easi ly. However, the solut ion o f  pig) w i l l  

not be used i n  seeking nonlinear p l a r i z a t i o n  i n  the next section. 

I n  solving Eq. (3-35a), we f i r s t  consider the Fourier components 

of pi:) a t  wR. By using the set o f  t r i a l  solutions frI c+ ii*' tr= 
we have the set of equations 

(k+t + i ~ ) ~ ~ y + ~ ~ ? [ f $ ~  -G]j=o 
( '  fr -;A&) f>yj- ia~ f$.,-$,] --o (3-36) 

$$ +'6')[p> "$,]->i[dp6' ,:%I -a !:*I] = A[*) 



P E 
The tenn A(0) arises from the tenns pi:), !!$ and the i r  

complex conjugates. Since we consider E a t  frequency oL o r  a t  oS, 

the tenns phi) o r  pi:) can only be driven a t  the frequency oL o r  us. 
v E 

According t o  Eq. (3-29) and Eq. (3-30). the term i p6:) i s  purely 

imaginary and cancels i t s  cmplex conjugate. By following 
II E 

the same manner, the term i i s  also cancels i t s  

complex conjugate. Therefore, A(0) vanishes so that we have the 

solutions: 

Eq. (3-37) indicates that  neither absorption (miss ion)  takes place a t  

the frequency oR nor nonfluctuated population difference enhancement 

occurs i n  the second order. We now consider the Fourier canponent f o r  

pi:) a t  frequency (uL-%) which i s  near the frequency wR. A set o f  

t r i a l  solutions can be given as follows: 

where o = wL-aS. FPM Eq. (3-35a). we have 



where 

L3 = d,- L3, *us= 3-4 ( 3 - 3 9 a )  

The functions A(.-wR) and B ( o )  can be evaluated as 

a ~ a )  = I; F I?':, - r,)l 
*D 

where 

It i s  very important t o  notice the existence o f  the tern  Pt)E)(w-wR) - 
Pi:)(o-uR), which i s  an amplitude f o r  the population difference 

osc i l la t ing a t  the frequency ( w - o R )  The product o f  t h l s  tern  and the 

f i e l d  of dipole radiat ion a t  wR i s  One o f  the sources that contributes t o  

pig)(w). The off-diagonal element p g ) ( ~ w R - w )  a t  the frequency 2wR-w, 

driven by the resonant f i e l d  Er, makes a d i rec t  contr ibution to 

~ ~ ~ ) ( o - ~ ( o  - and an ind i rec t  contr ibution t o  p$ ) (w) .  On the 

right-hand side of these equations, there are terms and B(w) .  



he tern  B(w) arises from the product of the l i g h t  f i e l d  E(= ES+EL) and 

the four density m t r i x  elements of the f i r s t  order: oiA)(WL), 
P$A)(-oS). and pii)(rS). Therefore, B(o) i s  proportional t o  

zL and cS. This beating term i s  o f  paramount importance i n  the ordinary 

SRS study. Moreover, the function A(woR) represents the t e rn  pro- 

portional t o  the product o f  the beating signal and the resonant f i e l d  

radiat ion a t  the frequency woR. The function A(wwR) exists only if a 

resonant f i e l d  i s  applied and the dipole moment vIO i s  nonvanishing. 

During the course of preparing t h i s  thesis, we found that  our Eq. (3-39) 

i s  accidental ly s imi lar  t o  Eq. (3-6) obtained by Moller [18bl i n  the 

study of spectrum from a driven two-level system. However, he 

considered only the response t o  steady s ta te  of the zeroth-order density 

matr ix i n  h is  treatment. while we are considering the zeroth-order 

matrix not only i n  the steady state but also i n  the transient state. 

Eq. (3-39) i s  very similar t o  Eq. (3-7). However, i n  Eq. (3-7), 

the term on the right-hand side i s  tirne-independent, whi le the terms 

A(o-oR) and B(w) on the right-hand side of Eq. (3-39) are tire-dependent 

i n  general. The dependence on time i s  through ss, SL and zeroth-order 

density matr ix elenents. It i s  very important t o  notice that the slow vari-  

a t i o n  of cS and tL w i l l  not simpli fy the problem as i t  did wi th  

solving f irst-order equations. This i s  due t o  the fact that the 

differences between w and yo (or  oR) may be comparable with no and y 

(or  us). Equation (3-39) shows the dependence of second-order density 

matrix elements on the pumping f i e l d  as well  as on the scattered f i e l d  



which s t i l l  remains unknown and, therefore, another equation with regard 

t o  the re l a t i on  between rS and the second-order matrix elenent(s) should 

be coupled with the set o f  Eq. (3-39). 

The scattered f ield, i n  a classical theory, has t o  sat is fy  

Maxwell's wave equation which i s  given i n  Eq. (2-30). The nonlinear 

polarizat ion i n  the wave equation i s  related t o  the density matrix, and 

t h i s  equation provides t h i s  addit ional relat ion. The coupling between 

the wave equation and the equations of the second-order density matr ix  

w i l l  be clear a f t e r  the discussion on the third-order density matrix and 

the nonlinear polarizat ion i n  the next section. 

3.A.4 The Third-Order Density Matr ix and the Nonlinear Polarization 

The equation ~f motion o f  the third-order density matrix takes 

the s m  forn as those of the f irst-order; thus, 



We see that the e l m n t s  i n  Eq. (3-40a) are not coupled wi th  the 

elements associated with 12,. since and pi:) vanish. Due to the 

l inear  dependence, the elements pi:) - pi:) and 06:) are a l l  

zero. We need only t o  solve Eq. (3-40b) f o r  the components 

and Pig)(oS). These two components, subject t o  l a t e r  veri f icat ion, 

are the elements that  give r i s e  t o  the nonlinear suscept ib i l i ty  a t  us. 

I n  order ta solve Eq. (3-40b). we employ the approximation needed for 

solving Eq. (3-22b). Accordingly, 

- 1  (iu H:(*' = wL - "L*" p, :g (3-42) 

where the re la t ion wL -'us = o10 has been used f o r  the denminators. 

The nonlinear polarizat ion a t  frequency us, according t o  

Eq. (2-25). can be wr i t ten as 

hl 

fpkO,: = tp41 &-..I frL3., (3-43) 

By substi tut ing Eq. (3-41) and Eq. (3-42) i n t o  Eq. (3-43). we have 

* '  I I g: 0 1  (3-44) 
f"'W = [qq + -)A** 4, i fy 

where the nonlinear polarizat ion pNL(mS)* satisf ies 

according t o  Eq. (2-26). 



3.A.5 The Coupling of the Maxwell Wave Equation and the Equation of 

the Second Density Matrix 

The wave equation i n  Eq. (2-30) for E: can be expressed as 

I n  t h i s  equation, the phase factors which have the dependence on 

posit ion have been factored out, since these phase factors satisfy the 

fol lowing relat ions: 

Equation (3-49) represents the conservation o f  men tun .  The 

m e n t m  of the scattered f i e l d  satisfying t h i s  condition i s  referred 

t o  es "mwntum matched" o r  "phase matchedu. I f  we consider the 

temporal phase factor for Eq. (3-46). we have read i ly  

This re la t ion gives the conservation of energy. The frequency of the 

scattered f i e l d  satisfying t h i s  condit ion i s  referred t o  as "frequency 

matched". I n  Eq. (3-39), i f  we substi tute the t r i a l  solutions 



and 
; ha% e, = e, c 

We have 

(& - A CcJ-+.t -+ ~ch.-4,) d-+r> F 3 , x ) -  ;%,&CJv*3= i3C3>, 

\%- ~tta+,+ i t k ; 4 , - k a G + ~ )  A p n ,  <a3*> 

-=in2, P,7b,,, +s~no.P.F3,f) = Aca,*) (3-54) 

where 

a.6 (3-54al 



I n  the expression f o r  A(z,t) and B(z,t), the zeroth-order density matrix 

elements are given as 

and 

I n  the second and t h i r d  equations o f  Eq. (3-54). the quanti t ies 

-i(w-w ) t i [ ( k  -k ) - k I v  and i(20R-w-wlO) - i(2kR-k)v can be wr i t ten R L S  R 

as i [(%-olO) - kRv] - i [(w-wlO) - kv] and 2i1(oR-wlO) - kRvl - 
i [(o-olO) - kv], respectively. We recognized that the conditions a t  

exact resonance for the resonant f i e l d  can be redefined as bo = 

(W~-W~, , )  - kRv = 0 i f  the translat ional metion o f  the molecules i s  

considered and i f the hmgeneous l inewidth i s  smaller than the Doppler 

pro f i le .  Hereafter, we define do' = w-w10 instead of nu' = o-oR i n  

Eq. (3-39a) if the translat ional motion of the molecules i s  considered. 

Moreover, f o r  the mentun-matched condition, l.e., kL - kS = k, k i s  

very small i n  comparison wi th  kL and $ i n  the fomard scattering and, 

therefore, kv may be ignored. Thus We have 

'I, * w w ($ - "'* Y ' I ' ~ ~ ) ~ )  - 2 i h e  + =c'Q b8q (3-55) 

where 
. *A' = a - i A b 0  



By no means should k and kR be confused since k f kR i n  general. Equation 

(3-55). apart frm phase factors for  the e l m n t s  and for the fields, i s  

identical t o  Eg. (3-39). Hereafter, we w i l l  denote no f o r  n; = . 
and w i l l  not stress the dif ference between Eq. (3-55) and Eq. (3-39) 

unless the phase factors are t o  be discussed. Equation (3-55) and 

Eq. (3-46) for. the coupled equations of the density matrix o f  second 

order and the Maxwell wave equation. 

I n  order t o  compare wi th  t he  work by Wang [411, if we ignore 

the term bp i i ) (z , t )  i n  the f i r s t  equation of Eq. (3-55), which does not 

ex i s t  i n  the ordinary SRS study, t h m  the coupled equations o f  the 

equation of the density matrix o f  second order and Maxwell's wave 

equation can be wr i t ten as 

These sets o f  equations are equ i va lm t  t o  Eq. (3-37) i n  Reference 41 i n  

which a classical theory was employed. When we compare these two sets 

o f  equations, we recognize that  our pi:)(z.t) i s  equivalent t o  Q0 which 

represents the ainplitude o f  the c lass ica l  vibrat ional mode. It i s  very 

important t o  notice that  the coupl ing constant between the e lec t r ic  

f i e l d  and the vibrat ional mode i n  ord inary  SRS treated by Wang i s  a 

constant while, i n  our treatment, t h i s  "coupling constant'' can be a 

function of t i ne  since the t rans ient  solutions t o  the density m t r i x  of 

the zeroth-order are time-dependent functions. 



Solutions t o  the Density Matrix and the SRS 

under the Flopping Modulation 

3.8.1 The Steady State of the SRS Modified by the Zeroth-Order DensiV 

Matrix i n  the Steady State 

I n  Part A of t h i s  Chapter, we have shown that the equation for 

the density matrix element p[i)(w) i s  coupled wi th  Maxwell's wave 

equation. This set of coupled equations i s  d i f f i cu l t  to  solve i n  general. 

However, if we assume tha t  the pulse lengths of the resonant f i e l d  and 

the pumping f i e l d  are long i n  comparison wi th  the relaxation times, then, 

physically, the density matr ix and the scattered f i e l d  w i l l  reach a steady 

state. I n  t h i s  section, the steady state of the scattered f i e l d  under 

the influence of the zeroth-order density matr ix i n  the steady s ta te  w l l l  

be discussed. 

Inaswch as the pulse lengths of the pumping and the resonant 

fieldsare long, the scattered f i e l d  i n  Eq. (3-55) i s  a constant value. 

If the delay t i ne  o f  the pumping f i e l d  i s  long, the interact ion between 

the pumping f i e l d  and the molecules w i l l  take place a f t e r  the zeroth- 

order density matrix elerrants have reached the steady state. For the 

scattered f i e l d  i n  the steady state, the time derivatives i n  Eq. (3-55) 

can be set as zero. Thus we have 



Here, A(z) and B(z) are time-independent, since xSO. yEO and F;(z) are 

not functions o f  time i n  the steady state. This set o f  equations i s  

coincidental ly similar t o  Eq. (3-6) i n  Reference 18b by Mollow. The 

beating term between the pumping f i e l d  and the scattered f i e l d  i s  

equivalent to the signal f i e l d  i n  Reference 18b. Within Eq. (3-57), 

p$)(z) i s  d i r ec t l y  r e l ~ t e d  t o  the nonlinear polarizat ion. The solut ion 

o f  p ( * ) ( ~ )  i s  obtained readily: 10 

where F i s  given by Eq. (3-54d). I n  solving Eq. (3-57) for p$ ) (~ ) ,  Au 

has been set t o  be zero f o r  the s i tuat ion a t  exact resonance. Except for 

a constant factor, our solut ion would be identical to Eq. (3-l la) i n  

Reference 18b i f  we had included the detuning (AM f 0) i n  our considera- 

t ion. As a matter o f  fact,  the zemth-order as well  as the second-order 

density matrix i n  the steady state can be solved eas i ly  without the 



r es t r i c t i on  Au = 0. The assunption Aw = 0 i s  for l a t e r  use i n  the 

study o f  the scattered f i e l d  influenced by the zeroth-order matrix i n  

the transient regime. 

The nonlinear polarizat ion can be obtained fran Eqs. (3-44) 

and (3-58) and i s  given by 

and the complex conjugate o f  nonlinear suscept ib i l i ty  i s  given by 

where 

I n  Eq. (3-61b). the f i r s t  factor i s  the power broadening tenn due to the 

interact ion between the resonant f i e l d  and the molecules. The tenn 

4 1 ~ ~ 1 ~ l y y '  i s  known as the saturat ion parameter [501. The second factor 

for f* i s  a dlspersive-like function. The real part of t h i s  factor has 

been calculated by means of a computer. I n  the computation, we have set 

y = r' for the strong co l l i s i on  node1 [181. In Fig. 3-1, three curves 

have been p lo t ted for Rly = 0, 1 and 5. Our curve f o r  n l y  = 5 has a 

shape s imi lar  t o  that obtained by Mollow I18bl. 
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For convenience in the SRS study, we write the nonlinear 

susceptibility as 

(3-82) 

galn function, according t o  Eq. (2-38) can be gfverr as 

- -  c - ea.~f = ++ruf (3-a> 

( The real part of f i s  a function dencribing the "redistribution" of the 

I gain function influenced by the zeroth-order density matrix in the steady 

I state. The plot of G versus &ru'/y for  ~ l r  = 0, 1 and 5 i s  gfven in 

Fig. (3-2). In this  figure where n/y = 0, the gain curve i s  identical 

to that for  the ordimry SRS, since f = 72/(h'2 + T2) a t  a/7 = 0. 

When n/-, - 1, the gain curve i s  bmdened and suffers reduction by a 

factor o f  four for the frequency-matched W e .  When Olr = 5. the gain 
I 

curve i s  broadened further and gives r ise  to two weak p6sitive gains a t  

A*' near t n, respctively, and two negative gains in the intervals 

(0,n) and (0.-n). 

At this  point, i t  may be desirable to clarify the tmplication 

of the present results in relation to those obtained by Mollow. As shm 

in Fig. (3-l), the calculated steady state  galn of SRS in the neighborhood 

of the frequency of the ordinary SRS, stnms a striking similarity to  the 

sigma1 f ield abserption line-shape function given in Ref. 18b. It Is 

interesting to note that Mollow treated his problem frm the viewpoint 

of quantun regression, while we proceeded our mrk by calculating ~ n -  

linear susceptibility. Our resu'lts, therefore, are not only applicable 

to the Stows cmpments of SRS, but also to the Inti-Stokes crmpoments. 

The galn curve for n/r = 5 in Fig. (3-1) will give r l se  to two satel l i te  
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l ines a t  the gain maxisun for the Stokes components. On the other hand, 

the samilar curve predicts two sa te l l i t e  l ines a t  the gain minima 

f o r  the anti-Stokes components as discussed i n  Appendix. The present 

results are, of course, highly direct ional dependent, namely, the 

observation o f  the present e f fec t  has to be made i n  the foreward 

direction. The 11ne-shape function i n  Ref. 18b, however, needs not 

t o  consider along any specified direct ion. 

.? Laplace Transforms o f  the Equations o f  Mation Related t o  the 

Density Matr ix of Second Order Modified by the Zeroth-Density 

Matrix 
The gain function f o r  SRS influenced by the zeroth-density 

matrix i n  the steady state gives r i s e  t o  weak sidebands when the 

in tens i ty  o f  the resonant f i e l d  i s  high. These gains may be too 

weak t o  be observed experimentally. I n  t h i s  section, we w i l l  consider 



modulation o f  the flopping o f  the zeroth-order density matrix on the 

SRS i n  the steady state. We assume that  the pulse lengths o f  the resonant 

f i e l d  and the p w i n g  f i e l d  are long i n  comparison with the relaxation 

times and flopping period, so that  the steady state of the SRS can be 

reached. When we take the transient solution i n to  consideration. A(z,t) 

and B(z,t) are the products of the time-dependent terns. It i s  d i f f i c u l t  

t o  wr i te  a time-independent function for A(z.t) and B(2.t). Ue 

t r ea t  A(z,t) and B(z,t) i n  Eq. (3-55) as time-dependent functions. The 

ttme-dependent character o f  stimulated scattering was f i r s t  proposed by 

Kro l l  [401 i n  the study o f  the transient effect o f  stimulated B r i l l ou i n  

scattering (SBS) by so l v i i g  integral equations. Subsequently, a s imi lar  

method was ernployed by Bespalov &a. 1521 and by Creaser and Hennan 1421 

i n  t reat ing transient stimulated t h e m 1  Rayleigh scattering (STRS). Wang 

[411 was able to use Riemnn's method i n  solving par t ia l  d i f fe rent ia l  

equations i n  the transient SRS study. I n  a l l  o f  t he i r  treatnents, the 

coupling coeff icients between the media and the e lec t r ic  f ields are 

regarded as constants. However, our s i tuat ion i s  equivalent t o  having a 

coeff icient varying wi th  t im due t o  the flopping and, therefore, i t i s  

not suitable to employ either gf these rnethods direct ly. 

I n  the present study. we propose t o  enploy Laplace t r ans fom 

to  simpli fy Eq. (3-55). Hmver ,  the d l rec t  transforn w i l l  not be able 

t o  solve the problem because the Laplace transform o f  A(2.t) o r  B(2.t). 

which i s  the product o f  the zeroth-order density matrix and the fields, 

cannot be separated as products o f  Laplace transforms i n  general. I n  

order to prepare equations so that  Laplace t r a n s f o m  can be used, we 

define the functions: 



and 

y (a,+) = +kYq,+' 

zc ,t> = 3 z (a,*) a 
he i n i t i a l  conditions for these functions are: 

<r, 'a,' ,  = * kF3.*) = p;~$,~, =o 

X cat., = Yq, -1 = Z 
ating Eq. (3-55),with the help of Eq. (3-64) and Eq. (3-65). 



where 

J ~ B C ~ + ~ , ~ ~ - ~ - J ) ~ &  4 edr~ (3-67a) 

and 

(3-676) 

where 

Since the pumping f ie ld  and the scattered f i e l d  are not i n  resonance with 

any level pairs o f  the molecules, f o l l o w i n g  Carman fl. [53]  we 

assume that  both the pumping f i e l d  and the scattered f i e l d  propagate with 

the same group velocity v. This assumption enables us t o  define 

(3-68) 



where t = r l v .  By s u t s t i t u t i n g  Eq. (3-68) i n t o  Eq. (3-67). we have 

The right-hand sides of Eq. (3-69) and Eq. (3-70) g ive  r i s e  t o  "Faltung 

integrals ' '  [351 o r  "convolution products" [361. Though eSf(2.t) i s  an 

unknown, t h e  physical j u s t i f i c a t i o n  gives r i s e  t o  the  "Faltung 

in tegra ls "  which have the  advantage i n  manipulating the  Laplace transform 

method. According t o  Morse 1351, the Laplace transfonns o f  Eq. (3-69) 

(3-70) can be w r i t t e n  as 
A 

where 

and 

The Laplace transforms of Eq. (3-66) can thus be w r i t t e n  as 
A ,  , . A  

(+ - idd*a>  X - i n 6 y  = A m  M . r  F 
air2' 9 -t rp -;,d+rjy->i4$ = -2~ i rA i; (3-72) 

A in: 0 -e c p - i ~ d ' ~ ~ )  =- 



In Eq. (3-73). $$,and  can be written in the following fonns which 

will be convenient for later use: 



where we have set a' = R to-a and 8 '  = ( 0  to- 0 ) .  The following 

relations can be easily verified: 

From Eq. (3-72). after some algebra, we have 

where r and n are given in E q r  (3-10) and (3-12). After some simplification, 

Eq. (3-75) can be given as 



The f i r s t  term i n  the bracket i s  due to the zeroth-order density RRtrix 

i n  the steady state,  while the reminder of the t e r n  are due to that i n  

the translent state. 

3.8.3 The Dezanposition of the Equation for  p[;)(.) Leading M a Set 

of  Simple Equations 

I n  order to f ind a convenient form for  the inverse Laplace 

transfornr of the equations of the second-order density m t r f x  el€5nentS 

p\g)(l). we write ~ q .  (3-77) as fotlows: 

(3-78) 

with 



In this set of equatiOw. X has been represent& by the sm of four t ~ r n t P .  

XI 1s for the mponse to the steady s a t e  of the zewth-order den5iV 

matrix; the tews 4, i3 and i4 are for the response to the tramimt af 

the zeroth-onkr density mtrix. The set of equatfons fm. Eq. (3-79) 

to Ea. (3-82) can be further decasrmed as 

r* ," --I 

I 
The coefficients in this set of equations can be detemlned as 







a * "  - 
I n  the fol lowing we w i l l  t r e a t  XI, X2, X3 and X4 separately. X1 i n  

Eq. (3-83) can be w r i t t e n  

(3-94) 

w i t h  
i. ~cl al 
YIP. = i'wT IS, + - r a o ' + ~  (3-95a) 

where Al. B1 and C1 are given i n  Eq. (3-87). Because t h e  Laplace transfonn 

of i i s  s t i l l  an unknown funct ion, we cannot consider these as the 

so lu t ions  o f  the equations. However, al has been decmposed i n t o  various 

components so t h a t  the behaviour of i and rS(z, t)  can be more eas i l y  



lurid. tlhen we take the inverse transfor. o f  Eq. (3-95a). if ( p  - i ~ d  + 

, we have 

(3-96) 

ince X (t=O) = 0. According t o  Eqs (3-64) and (3-65), we have 
l a  

lpon d i f ferent ia t ing  with respect t o  t, Eq. (3-97) becomes 

(3-98a) 

i imi lar ly ,  we have 

(3 - &us *a)+ PI sib = ;mysh@ 8, (3-gab) 
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11, the same fashion, we haw equations for  X2, Xa and Xq which are given 

as: 

(2& - &a,+ 7 )  & .= jwl* .+ +*'A& (3-99.1 

a &aa*) [g - i (6 '~?t~  ~&b=;'& y fZ& 

I 

% -LC ~ m + r  ) i A c = k W %  $ 
CL (3-99c) 



Ui th in  these sets of equations, ~ S ( 2 . t )  i s  an unknown. I n  the following 

two sections, we w i l l  salve these equations i n  special cases. 



3.8.4 The Steady State o f  the SRS Modified by the Zeroth-Order Density 

Hatrix 
I n  t h i s  section, we w i l l  discuss the steady state solution for 

We assume that the pulse length o f  the punping f i e l d  i s  much 

larger than the relaxation t i ne  while the flopping period i s  much less 

than the relaxation tines. We consider, generally, that the delay time 

for the punping f i e l d  i s  short so t ha t  the flopping character o f  the 

zeroth-order density matr ix i s  signif icant. If the pulse length of the 

pumping f i e l d  i s  long, p i t ) ( * )  and c;(z) can be studled i n  the steady 

s a t e  so that the time deriwrt iver on the left-hand side of Eqs. (3-98) 

t o  (3-101) vanish. Thus we have 



These sets o f  equations are algebraic. The sum o f  the components i n  

Eq. (3-102) gives r i s e  t o  xS, which represents the cmponent of pl(;)(z) 

ar is ing ROmthe steady state solutions o f  the zeroth-order density 

matrix. This component i s  solved as 

r - x , = ; - p + +  

The sum of the remainder of the components i n  Eqs. (3-103) t o  (3-105) 

gives r i s e  t o  the component of p ig) (Z)  arisingfrom the transient 

solutions o f  the reroth-order density matrix, i.e.. 



I n  Eq. (3-107). we notice that  the tenn i n  the bracket [ 1 i s  equal t o  

the s m  o f  the terns w i th  p=O i n  the brackets i n  the equations frMn 

Eqs. (3-84) t o  (3-86). With the help o f  Eq. (3-77), we evaluate readi ly 

t h a t  

dt=0 
Therefore, the transient par t  o f  the solut ion o f  the zeroth-order density 

matr ix makes no contr ibut ion t o  i n  the steady state. Then we 



I where the constants B, a d  C, are given in Q. (3-87). r t  i s  not 

diff icul t  t o  verify that Eq. (3-108) Is equivalent to Eq. (3-68) since 

+ = 0. According to Eq. (3-44) and Eq. (2-32), the nonlinear 

susceptibility can be given as 

I *  
= -i +(&&+ q ~ ~ ~ a ~ d i  Fa 

where ySO i s  given in Eq. (3-18). The corresponding gain function i s  

given as 

I t  i s  worth noting that in the special case for the zero intensity of 

the resonant field ( ~ n , , 1 ~  = 0 )  these three components are reduced to 



one canponent with the c e n h  located a t  b' - 0 and i s  redwed to the 

case o f  ordinary SRS. It cpn alsO be show that 6, i s  identical to G 

, i n  Eq. (3-69). 

3.8.5 The Flopping of pi:)(@) i n  Me Stetionaw State and the 6aTn 

Function for the SRS 

We have verif ied that the transient part o f  the solutfons of 

the zeroth-order density matrix w i l l  net have any contributlw to SRS 

i n  the steady state i n  the las t  section. It i s  rmrttnrRile to 

invest ir te  the periodical mdulation on p ! : ) ~ x . t )  by the drtvinp of 

the transient zeroth-order density matrix. In  th is  section. If the 

frequency of the periodical ~radulation i s  assurned to be h' which 1s. , 
subject to verification, then ~ q s .  (3-99) to (3-101) can be written as 





Due to this modulation, we can write 

x fsl i *a'+ 
and 

.+I sad* 
$6,t) = E, ~ 3 )  e (3-114b) 

where x;(z) and ef '(2) are time-independent. By substituting Eq. (3-114) 

Into Eqs. (3-111) to (3-113) and solving for x;(z), we have 

In this equation, xl, arising fran the zeroth-order density matrix in 

the steady state, has been excluded. The coefficients are given as 



The coeff icients on the right-hand side are given by Eq. (3-88) to 

(3-93). The Maxwell wave equation corresponding t o  c*tr) ,  according t o  

Eq. (5-46). i s  given as 

This equation i s  va l id  only when the approximation o f  a slowly varying 

E;(z,~) with time can be used. This requirement i s  jus t i f ied since we 

assume that n << wS. I n  order t o  carry out the calculat ion for x ; ( z ) ,  

we f ind i t  i s  convenient t o  wr i te  

with the equations for t#e components 



aheq a~ 'eJqa6Le auos ~a?)v 



For the special case when a strong co l l i s i on  mdel  i s  used, we can set 

r '  = 0 and u = 8. Thus we have 

* I  

)~l~~>=jv&e F3'%$ f k * (3-121) 

I " I n  these equations, ySO {s small i n  comparison with no when n >r r 

and, hence, i s  omitted. The gain function can be obtained from Eq. 

(3-117) and Eq. (3-121). The gain function Gt arising from the 

mdulated second-order density matrix can thus be given as 

W?i~h has been given i n  Eq. (3-6la). 

!4ff:> The real part o f  fe can be found as . \+.v -3 

', L 
8 



According t o  Eq. (3-1231, t h e  real par t  o f f ;  describes t h e  d is t r ibut ion  

of the  gain Of SRS under the  present investigation. I t  i s  very Important 

to  notice t h a t  f; does M t  have a reduction fac tor  (1. + a2/yi')  which 

i s  present in  the  function f*  in  Eq. (3-61). The gain i s ,  therefore. 

comparable with the  9a ih  f o r  ordinary SRS. However, t h e  fea tures  of 

t h e  gafn function in  t h e  present study a r e  quite d i f ferent  f m  those 

of ordinary SFS due t o  t h e  absence of the  reduction fac tor .  

In the following, some special cases will  be discussed. 

(1) nto = 0 + In ,  L i S  an integer 

In  t h i s  case, f b r  1 = even nmbers, s in  nto = 0 and cos nto - 1, 

Eq. (3-l£4) can be written a s  

For nlr = 5, to = 0 and L = 0, Real f; versus Aw' / r  has been plotted i n  

Fig. 3-3. When we cMP@re th5s figure with the  corresponding curve in  

Fig. 3-1, we find i t  i s  extr-ly interesting t h a t  the  two curves a r e  

s i a i l a r  in  ahape but d i f ferent  by a fac tor  of 25, approximately. i n  





magnitude. The curve i n  Fig. 3-3 i s  more similar t o  the correspond- 

ing Real f* x (1 + n2/rP) i n  Fig. 3.2. This fact shows that the gain 

function for the SRS driven by the flopping of the transient zemth- 

order density matrix i s  much larger than that  obtained when the zeroth- 

order density matrix i s  i n  the steady state. I n  Fig. 3-3, we have two 

posit ive gains near Aw'= + 6r; i.e., wS = us,, 6r, where wso = oL - wl0. 

The gain i s  about 918 of  t ha t  of the ordinary SRS. Therefore, w@ 

expect two Stokes components sh i f ted t o  opposite sides of the ordinary 

component o f  the SRS by approximately 6r f a r  the case n/r = 5. I n  t h i s  

figure, we also have tw absorption maxima located approximately a t  

AU' = f 4r for n/r = 5. It i s  very important t o  notice that the 

absorption on the Stokes side indicates the gain on the anti-Stokes 

side. This fac t  has beeh ver i f ied i n  the Appendix. For the case 

n l r  = 5, the frequencies for the anti-Stokes components are ma = uao * 4r 
where ma, = oL + w10 and the gain i s  only 1/8 o f  that of the correswnd- 

ing Stokes component. 

I n  general, by using Eq. (3-125). we can ver i fy  that  

where n >> r and to = 0. Since n/r >r 1, the tenn 1/2 i n  the bracket 

of Eq. (3-125) can be omitted. The gains (Stokes and anti-Stokes) are 

proportional t o  the value (a~~l ' t fg~~ - w2,(@* t-1) which i s  



approximately equal t o  014r. According t o  Eq. (3-123). the rnaximun gains 

f o r  the Stokes compOnents are approximately n l 8 r  times the gain f o r  the 

frequency-matched mode o f  ordinary SRS. Since we assumed that n ;.) r, 

the factor + f may be larger than one and, thus, the gains may be larger 

than that  corresponding t o  ordinary SR5. The gains f o r  the anti-Stokes 

components are comparable with those f o r  the Stokes components but 

different by a factor of ta lks  ~f 8f >> 4 and the index o f  refract ion 

for the Stokes and the ant id tokes mponents i s  asslmd t o  be the same. 

The r a t i o  of ka/kS i s  approximately equal t o  one i f  wL >> w10 and, hence, 

we may ignore the difference due t o  t h i s  r a t i o  i n  our discussion. 

If I = even numbers other than zero and to i s  not zero, we 

have cos ato = 1. Sin nto = 0 and the curve for Real f; w i l l  be of the 

same shape as that ~n ~f$. 3-3, but the magnitude i s  reduced by e 

factor exp (- I n r l n  ). This factor i s  approximately equal t o  one i f  I 

(or  to) i s  small and n l r  i s  large. The frequencies f o r  the Stokes 

cmponents and the anti-Stokes components are the same as those given 

i n  Eq. (3-126). 

I f  1 i s  an odd number, we have cos n to  = -1  and s i n  nt, = 0. 

the curve for Real f; i n  Fig. 3-3 w i l l  be inverted. The frequencies of 

the canponent on the Stokes side and on the anti-Stokes side are, 

respectively, 



when n >> r .  The magnitudes of the gains are approximately & g  exp (-anrln) 

times that  o f  ordinary SRS i f  1 i s  small. 

(2) nto = "12 + kn and 8. i s  an integer 

I n  t h i s  case, Eq. (3-124) can be wr i t ten as 

We f i r s t  consider Qto - n12, then s i n  n to  = 1, cos a to  = 0 and 

exp (- r t o )  = l , i f  n l r  >> 1. The curve i s  plotted i n  Fig. 3-4. We see 

that two negative gains appear a t  Am' = * n, which give r i s e  t o  two 

anti-Stokes canponents a t  'frequencies 

0, = &a, -+_ a (3-129) 

The gain function f o r  each compoent i s  o f  Lorentzian shape with half 

maxinnm width equal t o  r. The magnitudes of the gains of the two co- 

ponents are roughly 5 n 
nz K go' 

If k i s  other than zero, but an even number, the gain function 

remains the same as that  given i n  Fig. 3-4, except f o r  the damping 

factor exp (- r t o )  This factor i s  approximately equal t o  one if L i s  

Small. 

Now, if a = an odd nmber, the curve i n  Fig. 3-4 w i l l  be 

inverted, and we expect posit ive gains for the Stokes components. The 

frequencies f o r  the Stokes components are 



Fig. 3-4. The gain function for SRS arising from pi:)(u) flopping i n  the stationary state. 

This curve i s  plotted for  n/r = 5 and delay time to = 5. 



The shape of the gain function i s  again Lorentzian and the magnitudes 

o f  the gains o f  these components are approximately %$ go. 

(3) Real f; as function to 

I n  the above two special cases, we have ver i f ied the gain as a 

function h ' l r  a t  same constant values of the delay time to. We con- 

sider, i n  t h i s  instance, the gain as a function o f  to. 

For the present purpose, real part o f  f; may be expressed as 

follows 

where 

As usual, Q-r i s  asswed, and therefore the tern f cos n to i n  Eq. 

(3-124) i s  negl igible i n  comparison with f+ and f-. 

According t o  Eq. (3-131c), Bi  - 0 when e i ther  Am'tQ = - 
or I. = 0. For do f n = - we obtain Real f* 0. For the condition t 
r = 0, the function f+ and f- can be given respectively as 



Here, the amplitude parts o f  f+ and f- show strong resonance a t  

ao8 = n and ao' - -n respectively. I n  real cases the value o f  r can not 

be zero, namely, behavior o f  either f+ o r  f- w i l l  be typical damped 

osc i l la tory  functions o f  to as long as fi>>r. 

3.8.6 S m r y  of the Results and Conclusion 

The gain function o f  the SRS i n  the steady state i s  berived i n  

Section 3.8.1 f o r  the casc when the zeroth-order density matr ix i s  

i n  the steady state. The gain function under th is  ci*Cumstance i s  

drast ica l ly  reduced. I n  Fig. 3-2, we have very weak posit ive and 

negative gains (absorptions) on opposite sides o f  the ordinary Stokes 

components when n>> r . These weak gains and weak absorptions am 

d i f f i c u l t  t o  veri fy e x p e r i ~ t a l l y .  We hoped that the steady s ta te  

o f  the element o f  the second-order density matrix, would give 

r i se  t o  an appreciable steady state gain for the SRS if we included the 

transient solutions o f  the zeroth-order density matrix i n  our 

consideration. I n  order t o  solve t h i s  problm, we were able t o  s i np l i f y  

the second-order density matr ix equations by constructing convalutin 

products so that  Laplace transforms are applicable. Unfortunately, we 

ve r i f i ed  that  the transient solutions o f  the zeroth-order density matrix 

does not make any contributions t o  the gain function o f  the SR5 i n  the 

steady state. However, our simpli f ied equations were advantageous i n  

considering t o  be mdulated i n  a stationary s ta te  due t o  the 

dr iv ing o f  the reroth-order density matrix which i s  flopping i n  the 

transient state. 



The frequency modulations of the density matrix element p!i)(w) 
i s  approximately equal t o  the flopping frequency when n = r .  When 

the delay time i s  equal t o  a mult iple of half  or whole periods, we 

veri f ied that two Stokes components and two anti-Stokes components are 

shif ted by an equal m u n t  of flopping frequency t o  opposite sides o f  

the ordinary Stokes component and anti-Stokes component, respectively. 

The gain maxima are approximately equal t o  the gain o f  the ordinary 

Stakes components times nI8r. When the delay time equals (21 + 1)/4 

periods, we obtained two anti-Stokes colnponents if I i s  an even 

number and two Stokes components i f  1 15 an odd number. The frequencies 

o f  the Stokes and the anti-Stokes components are, respectively, 

us = wSO " and ua = uao f 13. The gains for these components are 

approximately nl4r times ,the gain o f  the ordinary Stokes SRS. We 

ver i f ied also the dmped oscillatory curve for the gain function vary- 

ing wi th  the delay time to. 

Our resu l ts  can only be explained by the second-order density 

matrix. Through our derivations, we have used the osc i l la tory  term of 

the population difference d ~ $ ~ ) ( u - ~ ~ )  and the off-diagonal e l w n t  

- w ) .  The existence o f  these elements determines the elenent 

p:f)(u) which i s  flopping i n  the stationary s ta te  and gives r i se  t o  the 

scattered f i e l ds  studied i n  th is  thesis. 

At  last,  nevertheless, our approach i s  not only capable o f  

solving the present problem, but i t  i s  also applicable i n  solving the 



problem of the absorption and emission spectrum of the strongly driven 

two-level system. This fact i s  c lear ly  shown when we compare our 

Eq. (3-39) with Eq. (3-6) i n  Ref. 1%. me feel i t  i s  easy t o  extend 

t o  the present approach and i t s  results i n  the study o f  the absorption 

and miss ion spectrum o f  the strongly driven system. However, t h i s  

study i s  beyond the scope of the present work; thus, we w i l l  not 

consider t h i s  any further here. 
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The negatlve gain for a Stokes component a t  frequency % = 

q - o indicates a posit ive gain for an anti-Stokes component a t  

freqwncy oa = + o. This fac t  can be ve r i f i ed  as follows. Throughout 

the derivat ion f o r  the Stokes component, we replace a l l  parameters of the 

punping f i e l d  by those o f  the anti-Stokes scattered f ie ld ,  and a l l  those 

of the Stokes scattered f i e l d  by those of  the pumping f i e l d .  According 

t o  Eq. (3-58) o r  Eq. (3-121). the awli tudes of the Fourier cownen t  

o f  the second-order density matrix e l m n t  can be derived as 

I n  Eq. (A-1). we define 6 = wa - q, and 

which i s  the function corresponding t o  Eq. (3-54c). The functlon $ can 

be either F i n  Eq. (3-61b) o r  f; i n  Eq. (3-122) depending an i n  

the steady state or i n  the stationary flopping state. The nonlinear 

po lanrat ion a t  frequency u,, according t o  Eq. (3-44) and Eq. (A-1). can 

be wr i t ten as 



The imaglnery parts of xNL(,.) and xNL(oS) are dif ferent by sign and, 

therefore, the negative gain f o r  a Stokes cwonen t  gives r i se  t o  the 

posit ive gain for the corresponding anti-Stokes component. The 

magnitudes of gains are approximately the same i f  we do not dist inguish 

the difference between the factors 4nkS/n2 and 4rka/n: where kS,n and 

ka.na are propagation vectors and indexes o f  re f rac t ion far the Stokes 

and the anti-Stokes c m n e n t s ,  respectively. As a wetter o f  fact, ka 

i s  very close t o  kS and n i s  very close to na i f  rL >. o - o o r  a L 

oL - us. since oa and oS are not supposed t o  be resonant w i th  any pa i r  

of energy levels of the molecules. 
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