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ABSTRACT

The stimulated Raman scattering (SRS), arising from the
interaction between molecules of a medium and two strong light fields -
a resonant field and a pumping field - is studied theoretically. The
transitions of molecules between a given pair of levels is assumed to
be both Raman active and infrared active. A semiclassical approach,
in which the density matrix method is used for the quantum mechanical
description for the medium, is employed. We expand the density matrix
in various orders within which the zeroth-order is referred to as the
solution of the equation of motion of the density matrix when only the
resonant field is applied.

We obtain a set of equations in second order of the
density matrix element a%g)(m) from which the gain function can be
derived. This set of equations in the special case of steady state is
accidentally similar to those obtained by Mollow in his study of the
power spectrum of a strong driven two-level system. We have shown that
the SRS in the steady state under the resonant field interaction, is
drastically reduced in general. When the flopping frequency is larger
than the relaxation constants (@ > '), we find there appears both weak
positive and weak negative gains on both sides of the ordinary SRS
components.

Since we retain our second-order equations in a general form
rather than the form for steady state, we are able to take account of

the dependence on the transient zeroth solution. By employing the



ii
Laplace transform technique with the help of convolution products, we

2)
0

the intensity of the resonant field is high, we have found theoretically

are able to solve for pg (w) in the stationary flopping state. When

that both the Stokes and anti-Stokes component become doublets and

equally displaced by the amount of the flopping frequency, @, on the
opposite sides of ordinary Stokes and anti-Stokes components, respectively.
The gain maxima are approximately the order of 9/4r times the ordinary
gain of the Stokes component, where @/T >> 1 if the flopping exists.

The gains are therefore large in comparison with the ordinary gain for

SRS in the steady state.
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CHAPTER 1

INTRODUCTION

1.1 Absorption, Emission and Scattering

The electric dipole interaction is normally the predominant
feature when a molecule is placed in the optical field [1]. Various
processes may take place in connection with this interaction: absorption,
spontaneous emission, stimulated emission, spontaneous scattering,
stimulated scattering, etc. The frequency and intensity of the 1ight,
the kind of molecule and the type of medium are the factors that determine
which of these processes will actually take place. If the molecule has
a nonvanishing electric dipole moment involving a pair of the levels
|0> and |1>, Tight absorption can take place. The frequency of the Tight
field, > is given as

wg = (E,—En /g
where E0 and E] are the energies for the levels |0> and |1>, respectively.
This Tight field, hereafter, we shall call the "resonant field". The
molecule absorbs the energy of the Tight field - in other words a photon -
and is excited from the state |0> to the state |1>. Even when the
frequency wp is slightly detuned, such absorption can still take place if
the difference which falls within the range which can be compensated by the
kinetic energy of the molecule or molecular collision. On the other
hand, if the molecule is originally in an excited state, it may emit a

photon and return to the ground state through spontaneous emission.



The emission under the influence of the resonant field is known
as stimulated emission [2]. The change of intensity, dIab’ of an incident
resonant Tight field due to the absorption and stimulated emission can be

given by
dly= CH-py 22 70, ) B.d3 (1-2)

for a beam having incident intensity I(mm) at frequency @y passing
through a slab of thickness dz. In this equation, N0 and N] are the
populations of the levels |0> and |1>, respectively, v is the velocity of
Tight in the medium, and B]O is the Einstein transition probability of

absorption. In the dipole approximation,

Bo= 22t L%
where Y0 is the dipole moment between the levels |0> and |1>. It is
worth noticing that when the population inversion (N1 > No) is created,
instead of net absorption, stimulated emission may take place. The
stimulated emission from a system with population inversion is one of
the basic principles for a laser.

Besides absorption and emission, scattering is also a well-
known effect. In a scattering process, if the field is a resonant field,
the scattering is known as resonant scattering. However, in Tight
scattering in general, it does not require the frequency of the field to
be resonant with the energy levels of the molecule. Consider a scaler

representative of a linearly polarized field

(1-4)



with frequency Wy which is not resonant with the levels of the molecules.
The amplitude e* is the complex conjugate of the amplitude e. The complex
nature for the amplitudes accounts for the arbitrary phase. If this light
field is weak, the scattering of this 1ight by a molecule in a semi-

classical theory [3], is attributed to induced dipole moments
Lo I e~y 2k A, cd-o 0t
= - o ]
Mo S o™ 5 S A
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The oscillation of the induced dipole moments give rise to scattered

(1-5a)

fields at the frequencies w_ =w_-w, and w_=w_+w

s o m a o am”
Here, rx“" and umE are the transition polarizabilities which can be
given by ;i
CHE Moy Mewn Moy Mer

of —/'gg (s~ e (1-6)

and
( Moy Mo Mu ) (1-6a)
/ﬁ Z' Wyp =+,

These expressions imply that the transition between |2> and |m> due
to the induced dipole moments is always connected through the third
levels |r> which may be real or virtual.

In Egs. (1-5) and (1-5a), when 2 = 1 and m = 0, we have the
spontaneous Raman scattering at frequencies wo Wy and wy *1pe which
are the Stokes and anti-Stokes components, respectively. Raman scatter-
ing is inelastic since the energy of the scattered photon is different
from that of the incident field. However, the conservation of momentum

and of energy for the molecule-photon system requires



Hhed = AW, -0
Ak, = bk - % a-n

for the Stokes component. Here, Is and Io are the propagation vectors of
the Stokes component and the incident fields; Im is the propagation
vector of an optical phonon associated with the vibrational levels |0>

and [I>. For the anti-Stokes components, the conservation laws require
HPa = A CD,+ Dpd

= = —
Ak =Lk kY

where 93 and —Ea are the frequency and propagation vector for the anti-

(1-8)

Stokes component. Raman scattering may be viewed as a two-photon process.
For instance, for the Stokes component, the molecule is pumped by the
incident 1ight field from |0> state to an intermediate state by absorbing
a photon from the incident field whereupon the molecule immediate
returns to an excited state |1> by emitting a photon at frequency 0.
This incident field we will refer to as the "pumping field" hereafter.

In Eq. (1-5), with £ =m = 0, or 1, when the pumping field is
weak, we will only have Rayleigh scattering. The scattered field has
a frequency equal to that of the pumping field. However, strictly
speaking, "elastic" light scattering can occur only when the molecule is
stationary and not collision broadened. Otherwise, a slight shift and/or
broadening in the frequency of the scattered field due to the molecular

translational motion and the collisions will take place.



It seems worthwhile, at this point of the discussion, to
note certain features of spectral line shapes. The spontaneous
emission of an ensemble of molecules due to natural decay gives
rise to the natural linewidth. The natural Tinewidth as well as
collision broadening can be given in a Lorentzian line shape and
is thus normally referred to as homogeneous broadening. On the
other hand, when the emission frequencies of different molecules
in the ensemble are different, the resultant spectral line is
effectively broadened. This is known as inhomogeneous broadening.
In gases, Doppler's broadening is an example. The Doppler line-

-6

width is about 107" of the frequency emitted at room temperature.

1.2 Level Saturation and Frequency Modulation due to a Strong

Resonant Field Radiation

In the discussion of the interaction between the optical field
and the molecules which is presented in the previous section, the
populations in each level involved are not considered to be altered
significantly from those in thermal equilibrium. When a strong light
field, resonant with the energy difference between a pair of molecular
levels, is applied the effect of saturation and frequency modulation
become important in understanding the nature of absorption, emission and

scattering. These effects are well-known observations in the microwave



regime [4]. The saturation of absorption in the optical frequency
regions was first studied by Javan [5] in the investigation of the
sharply-tuned laser Tight through the amplifying medium of a second gas
laser. The incident 1ight burns a "hole" in the Doppler profile and
Timits the output power of the second laser. This effect is also known
as the "Lamb dip" [6]. The "hole" or "dip" indicates the saturation of
absorption by a group of molecules within a certain velocity range.

In addition to the saturation of absorption in the inter-
action between the molecules and the resonant field in the steady state,
the population difference and transition probability exhibit the so-
called "Rabi flopping frequency" or "Rabi frequency" in the transient
regime. The "Rabi frequency" originates from the investigation carried
out by Rabi in 1937 [7] in connection with the study of Nuclear Magnetic
Resonance. By solving the Bloch equations [8] without the damping
mechanism, Rabi showed that the molecule undergoes "flopping" between
two spin states when the resonance field is applied. As a consequence,
the ability of the molecules to absorb radiation varies with the flopping
frequency. On the other hand, the flopping frequency is equal to the
nutation frequency of the spin. Since the spin nutation is governed by
the Bloch equations, the spin may be called the Bloch vector. Later,
Torrey [9] gave a detailed solution by using the Laplace transform
technique and verified that the nutation is a transient effect and it
dies out due to the damping mechanism. In a density matrix formalism,
the equation of motion of the density matrix for a two-level system can

be so arranged that the equation is coincident with the Bloch equations,



which will be explained in detail in Chapter 2. Tang and Statz [10]
were the first to suggest that the nutation should be observable in the
optical region. This so-called "optical nutation" signal was shown by
the time variation of absorption in SFg [11]. Brewer and Shoemaker [12]
have made a series of studies on this transient effect by using the
Stark switching technique. Transient effects, other than optical
nutation, such as self-induced transparency [13] and photon echoes [14,
15], are closely related to the flopping frequency.

The resonance scattering of a high intensity laser field has
recently attracted much attention both theoretically [16-18] and

experimentally [19-22]. Two satellite lines in the neighborhood of the

Rayleigh t under the r scattering condition was first
predicted by Mollow [18a]. By using the atomic dipole moment correlation
function, he was able to show that two satellite lines, one upshifted
and the other downshifted from the incident frequency by the amount

equal to the "Rabi frequency" [7], should be observed. Carlsten et al.
[22] recently reported the results of their experimental investigation
for near resonance scattering which showed the collisional redistribution
and saturation. In their observations, the emission spectrum split into
three components - the Rayleigh scattering component at the frequency of
incident laser 1light and two displaced components on opposite sides of
the Rayleigh component. One of these two components is called resonance

fluorescence while the other is a component due to a three-photon process.



1.3 Stimulated Raman Scattering

The scattering of Tight obtained by employing a high intensity
laser beam as the pumping field may exhibit entirely different features
from that of the spontaneous scattering. This scattering can be character-
ized by its marked pumping power threshold, high beam collimation, narrow
spectral-line and high intensity, and is known as "stimulated scattering".
Various kinds of stimulated scattering such as the stimulated Raman
scattering (SRS) [23], the stimulated Brillouin scattering (SBS) [24],
the stimulated Rayleigh wing scattering (SRWS) [25], the stimulated
thermal Rayleigh scattering (STRS) [26, 27], etc., have been extensively
studied. Among these, the SRS is of present interest.

Let us introduce the usual phenomenological relation for SRS
by [28]

4T = (N-N, )’%‘D—‘ @B e el o)
which is, in fact, analogous to the relationship in Eq. (1-2) for
ordinary absorption and stimulated emission. In this equation, we have
inserted a Lorentzian distribution for the intensity distribution for
the scattered field. The half-width y is the relaxation constant of the

dipole transition between two levels. The constant B]O is given as

— 2 w© 2.
Be= S5 iy (1-10)



In Eq. (1-10), » is the induced dipole moment associated with the

1nduced
Raman scattering. According to Eq. (1-9), the intensity of the scattered
field is built up as the pumping light passing along its path. This fact
optimizes the observation of the SRS in the forward as well as the back-
ward directions [29]. The intensity of the pumping field in the steady
state regime is constant; B]O can thus be treated as a constant parameter.
The final intensity of ISR after passing through an interaction distance
2 1s F G_l_

I1=1,¢ (-1
where Io is the base intensity of the scattered field at frequency g
Normally, the spontaneous scattering will contribute the base intensity.
The function G is known as the gain function in the steady state, which

can be derived as

S
G =ty e el ey =) jfw»“%'“‘;%‘ (1-12)
This equation is identical to the result obtained by Bloembergen by means
of his nonlinear susceptibility theory [30]. The gain function for the
"ordinary" SRS is positive for the Stokes components and negative for the
anti-Stokes components, since NO > N] at thermal equilibrium. The negative
gain for the anti-Stokes component indicates absorption at the frequency
w,. The observation of the inverse Raman effect [31] verified this
negative gain at o,. However, it is puzzling that the inverse Raman

effect at the Stokes frequency was also observed [32]. Furthermore,
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stimulated anti-Stokes Raman scattering was also observed and is explained
as follows. In the presence of both the strong pumping field and the
Stokes field in the medium, an interaction of two photons of the pumping
field and one photon of the Stokes field may give rise to two photons at
the Stokes frequency and one photon at the anti-Stokes frequency. This
mechanism is called "optical mixing" [33]. Based on this mechanism,
simultaneous input of the strong laser Tight at the Stokes frequency
together with the pumping 1ight results in the coherent anti-Stokes

Raman scattering opening up a powerful spectroscopic method now known as

CARS [34].

1.4 Statement of the Problem

Due to the interaction between the molecule and the strong
resonant field, the population difference and the transition probability
between the pair of levels will be altered from that in the thermal
equilibrium in the steady state and may be flopping in the transient
state. If this pair of levels is Raman-active in addition to infrared-
active, the SRS may be produced in the presence of both the strong
resonant field and the pumping field. The SRS under this circumstance
may have an entirely different feature from "ordinary" SRS due to the
presence of the strong resonant field. In this thesis, a theoretical
investigation of the Stimulated Raman scattering in the simultaneous
presence of a strong resonant field and the pumping field is presented
It is expected that modulation of the scattered frequency by the flopping
frequency will take place. In developing the theory, we adopt the non-

Tinear susceptibility theory by employing a semiclassical approach



In Chapter 2, we begin by firstly presenting (i) the general
feature of a quantum mechanical density matrix description of an ensemble
of molecules, (ii) a classical description of Tight fields governed by
Maxwell's equations, and (iii) the connections between the field and the
medium which lead to the obtaining of the gain function of stimulated
scattering. Secondly, we specify the equation of motion of the density
matrix for a two-level scheme to account for the influence of the strong
resonant field and then we extend this equation into a three-level scheme,
which governs the SRS as well as the sautration and modulation due to
the resonant field. It is very important to notice that we exclude the
interaction arising from the resonant field from the perturbation due to
the external fields in our equation of the density matrix in the
perturbation-series expansion. By doing this, the contribution of the
resonant field can be clearly analyzed in the SRS process. In Part A of
Chapter 3, a discussion of the solutions leading to the nonlinear
susceptibility associated with the present problem is given in detail.
During the course of our study, Mollow [18b] obtained an equation in his
study on stimulated emission and absorption near resonance for a driven
system, which is coincidently similar to the special case of the steady
state of our equation for p%g)(m). In order to account for the transient
flopping effect, we retain our equations in a general form rather than
the special case of a steady state. In Part B of Chapter 3, we present
the steady state results at the beginning and then we analyze the
modulation of the flopping frequency on the SRS arising from p(z)(m)

10
modulated in stationary state. In our analysis, we propose to employ the
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CHAPTER 2

EQUATION OF MOTION OF THE DENSITY MATRIX FOR MOLECULES IN INTERACTION

WITH A STRONG PUMPING FIELD AND A STRONG RESONANT FIELD

2.1 Density Matrix Description of the Medium

In the present study, the molecules under consideration are
subject to the radiations of both a "resonant field" and a “"pumping
field". We employ a semi-classical approach in which the fields are
described classically and the medium is treated quantum mechanically.
However, for the quantum mechanical treatment for the medium, the wave
function description is inconvenient due to the lack of complete
knowledge of the damping. We therefore adopt the formalism of the
density matrix which has been widely used in the study of the molecular
response to electromagnetic fields in the optical region as well as in
the microwave or radiowave region by many other authors.

The density matrix description is derived through the wave
function with the general properties of quantum mechanics. The
Hamiltonian of a molecule without perturbation is Ho’ and the correspond-

ing Schrddinger's equation is

(9) 2 IRC) =
How” = ixd fea
The state of the molecule is characterized by the wave function, w(o).

which can be expressed in a complete set of orthonormal eigenstates.

That is,



° ~iEnt /4
Y =2 tn e (2-2)

Since Ho is not time-dependent, the a"‘s are independent of time. Thus

we have the time-independent Schrodinger's equation for the eigenstate,

H.lmy = Eim> (23]
where En is the eigenvalue corresponding to the eigenstate |n>. The
state of the molecule due to a Hamiltonian H, which includes a time-
dependent interaction V(t) as a perturbation, can be described by a wave
function spanned over all the eigenstates with time-dependent co-

efficients,
e
Y= a,we Am7 (2-2)

according to the perturbation theory. Here, an(t) is time-dependent.
The wave function ¥(t) is normally referred to as a pure state which

satisfies the Schrodinger's equation.

(H,+ Vo) Pw = ih Yo (2-5)

The behaviour of the molecule under the Hamiltonian Ho + V(t) can be
found if the wave function y(t) can be solved. However, it is not
necessary to solve for y(t) explicitly. By following the fundamental
principle of quantum mechanics, the expectation value of an observable A

can be written in the form

<A = LPBATYEY (2-6)



k8

This expression can be also denoted as
LAY =Z {hml Al P <l yw) (2-7)
since the eigenstates |j> form a complete orthonormal set. Upon transposing the
two scalar products on the right-hand side of Eq. (2-7), we have
LA =775 YL Y b A 13> (Zd)
)
In this expression, we recognize that |p(t)><y(t)| is a matrix operator

for the pure state ¥(t) of the molecule. We give below the form of this

matrix represented by R.
R = | YLy

= *Zl as a}*we'iw“*lix iy o

where Oy = (Ek-EL)/h. With this shorthand notation, the expectation

value <A> can thus be written as

A= <jRAIG> =Tr RA (2-10)
i

Differentiating R with respect to time t, with the help of Eq. (2-5) and
the orthonormality of the eigenstates, we can readily verify that the

matrix operator R obeys the relation

F.Z:—v,%[r—l,g] (2-11)

where H = Ho + V(t) is the Hamiltonian with perturbation V(t) for the

molecule. The matrix with elements in the form



Rn = KRR

2-12
# — ket e
= b QoNe )
* x
can thus be represented as
RN Qu"“"gd.ﬂ
R = ‘2 EH =50 2N e (2-]3)
s o
S
Rro Run

In Eq. (2-13), the diagonal elements represent the populations of the
levels concerned, and the off-diagonal elements account for the transition
probabilities between the designated levels. This operator form is
especially useful when an ensemble average of R is defined as the density

matrix, p, which satisfies the equation of motion

? =:4;\i [H, ?] (2-14)

In this expression, V(t) in H may represent the sum of all the time-
dependent perturbation terms rather than one term. Following the method
by Bloembergen and Shen [37], we divide the time perturbations into two
classes. One is the random perturbations, the other is the coherent
perturbations.

In a gas system, for instance, a molecule is always subject
to some random interactions due to its environment. For high pressure

gases, the molecular collisions are the main source of interaction in



such a category. These random perturbations on the equation of motion
of the density matrix can be represented by phenomenological damping

terms [37].

a* zurw,P =, Pk (2-15)

l —
b
O\b i Pab (2-16)

In Eq. (2-15), for diagonal terms, w__ is the transition probability due

an
to the random perturbations from |n> to |a>, while W, s that from la>
to [n> Lamb [38] has derived a similar expression in the gas laser
theory. Each off-diagonal element decays with a relaxation constant
Yab-

When the molecules are subject to radiations of "monochromatic"
or coherent light fields, the interactions between the light fields and

the molecules are coherent perturbations. The equation of motion of

the density matrix in Eq. (2-14) can be written

PPl - £ P15, P rm

where

"/‘&F"YHMJM y Pl = (% )mv\J.om
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and the explicit form of E%t‘] is given by Eq. (2-15) and Eq. (2-16).
random

Once the solution for the density matrix is solved, the expectation values

of an observable in Eq. (2-10) can be found from the equation

AT = T A f (2-18)

2.2 Maxwell's Equations and the Gain Function of Stimulated Scattering
in Steady State

We consider the system described in the previous section as
subject to the radiation of two external coherent light fields. One of
the fields is a "resonant field" which has a frequency resonant with
the levels |0>and |1>. If these are vibrational levals, an
infrared laser for this resonant field is required. The other field is
the "pumping field" which is not supposed to resonate with any pairs of
energy levels. A giant pulse laser beam which is normally used in the
ordinary SRS study may serve as this field. The beam of the pumping field
is supposed to be linearly polarized and has a frequency W > vy for the
present study.

Besides the two external fields, it is vitally important that
the inclusion of the scattered field should be taken into consideration
in order to meet the commitment of the stimulated scattering study. This
scattered field is assumed to have a frequency near the frequency of
ordinary SRS for a given medium. The direction of propagation and the
polarization of the scattered field are assumed to be the same as those

of the pumping field.



Since the 1ight fields (resonant field, pumping and scattered
field) are intense, the number of photons for each field is so large that
the correspondence principle is applicable; therefore, the fields can be
described classically, obeying Maxwell's equations. Maxwell's equations

in the Gaussian system of units are

s - Pey M
Vb =4 PQ, Yk =t O
(2-19)
=8 A
VB =9, IxH=E4« D
together with the constitutive equations
——l\ o - - -
e D=¢ckt B =uH (2-20)

A1l the symbols for the physical quantities are conventional. However,
we will stress here that the dielectric constant e and magnetic
permeability u are not always constants but may be functions of the field
strength. This set of macroscopic Maxwell equations is valid for the
fields in the medium only if the wavelengths of the light fields are
large in comparison with the molecular dimension and if the number of
molecules within the wavelength dimension is large. Light wavelength

in the visible region is about 10° R to 10* &, while the molecular
dimension is only about a few angstroms for normal molecules. The number
of molecules within a volume of wavelength dimension is of the order of
108 at STP. Therefore, the validity of macroscopic Maxwell equations in

the medium in the present study is justified.
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For the medium which is dielectric, nonmagnetic and without

free charge, Eq. (2-19) and Eq. (2-20) can be written as

. =0 = - —
v-D VX E =
N = - (2-21)
Vb= o TrH= L3
and the constitutive equations can be written as
=y = =X —
DEERCAE B=_uH (2-22)

For the conventional situation when the 1ight field is weak, the electric
displacement B can be regarded as linearly proportional to the electric
field strength, and the dielectric constant e serves as the proportionality

constant. The displacement E can be further expressed as

B = E = 4nPt (2-23)

where FL, in connection with a's in Eq. (1-5), is the polarization
linearly varied with the E in a linear theory. Before lasers became
available, the linear theory was a good approximation for interpreting
the spontaneous scattering problem when a weak incident field was used.
However, since the laser gives a field strength of the order of 107
volts/cm or more, the linear polarization is inadequate to represent
the total polarization so that a nonlinear part will be significant.
Thus we add a term P'- to Eq. (2-23) to account for the

nonlinear polarization.

oy = > &
= 4 PL - p M-
peg E - [ e e e (2-24)
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where -ﬁl' and ENL are the linear and nonlinear polarizations, respectively,
and are macroscopic quantities. In SRS, we are interested in the
nonlinear polarization 3NL. Assuming that the direction of the nonlinear
polarization is the same as that of the light field, the magnitude of

ﬁNL is given by

P <Py = T )

is the third-order density matrix, which is to be solved

(2-25)
where 9(3)
through the equation of motion of the density matrix. We will later
explain how the third-order density matrix in the expansion of power
series of the field strengths gives rise to PNL. The nonlinear
polarization will oscillate at the frequency of the scattered field
giving rise to the scattered field. Thus, we may write the nonlinear

polarization and the scattered field, respectively:

NL L ladt ¥ Ll
.F =';'+£)€ 7= =+ ‘.éi '{)Nthﬁ)eh SL (2-25)

—iedk # Ay

| i & = 2-27

E& = ESUA\QC. = 2‘50";76 ( )
Maxwell's wave equation derived from Eqa. (2-21) to (2-24) for Fourier

components of the scattered field at frequency wg can be written as

L
RISy >, §&) SR (2-28)
T8 . @fefY anel T

In this equation, we have used the approximation of slowly varying of Es

and PNL, which has been employed by many other authors. In this section,
we follow the procedure by Herman [39]. The use of this approximation

indicates
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The frequency of the scattered field, in the present problem, is not
resonant with the energy levels of the molecules. Consequently, the
linear part of the dielectric constant e will not be changed significantly.
In a steady state, we may assume that :sw.n's a function of position, say z,

along the direction of propagation,

Eyd = Epe 2k (2-29a)

s +i_*:
-f wy = TQNL%) ' & (2-29b)
By regarding es(z) as a "slowly varying" function of position, we can
write
a
id 2 S e st i
ok ;&,-a-g Ep = -4m 2 P (2-30)
where we have employed the relation

’k; = ——‘%’— (2-31)
where n (=¢%) is the index of refraction.

The nonlinear polarization pm‘(z) can be put in the form
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L
+ “Lcy = 'X W E (3 (2-32)

where XNL(mS) is defined as the nonlinear susceptibility which can have
both a real and an imaginary part. The real part is known to have an
additional contribution to the index of refraction which will not be
significant because g is not resonant with the molecular system. It

is very important to notice that the imaginary part satisifes

A tE S Keleg e

whereg (m ) denotes the negative imaginary part of XNL(mS). The
real part of x (ms) is not significant and, hence, has been dropped.
The fractional change in es(z)incurred by traveliing a distance dz along the

direction of propagation in the medium is
oAEsp
21
= "4 VQ (X “" "’La« (2-38)
Zq)
We will show later that y I‘(ms) is a function of the pumping power. The

pumping power is a constant in the steady state. We can therefore write

AL
é(f) = E,ﬁ)e 21"*“& "9"' %“"" L (2-35)
s

In the same fashion, we have

- J"’e (Ule
E;d' f(n)@ I K

(2-36)
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The intensity of the scattered field can be found as

L= Leyp o e L&”’% et

(2-37)

Let

G 3 4‘"{ J % Lu ) (2-38)

where G is defined as the "gain function" in the steady state which is
independent of time and position. However, the "steady state" is not
always a condition that can be met; therefore, "transient" stimulated
scatterings have been proposed by Kroll [40], Wang [41], and Creaser
and Herman [42] for SBS, SRS, and STRS, respectively. The experimental
verification of transient SRS has been done by Carman, et al. [43].

Since nonlinear polarization is derived through the density
matrix which is drastically influenced by the presence of the fields,
it is necessary to formulate the equation of the density matrix by
taking the interactions between the medium and the fields into

consideration.

2.3 Equation of Motion of the Density Matrix for a Two-Level Scheme

under the Radiation of the Resonant Field

Instead of using the density matrix formalism concerning n
Tevels, we first simplify the density matrix for the present purpose.
Physically, the Raman effect involves two transition levels |0> and |1> and

intermediate levels |r>. We now Tet a third level |2> represent one of the
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intermediate levels. The contribution to o1l from each intermediate
Tevel can be added up at the final stage. Among these intermediate
Tevels, only the Tevel with energy closest to the energy of the photon
in the pumping field is predominant in making a contribution to alo,
and the contribution from the rest of the intermediate levels may be
ignored. Therefore, we need to specify three levels in our problem.

In the present study, we assume that level |2> is well above
levels |1> and |0>, and the population in level |2> may be negligibly
small. For instance, the energy of separation between vibrational
levels |0> and |1>, ﬁwlo, is an order of magnitude of .1 ev, while the
pumping photon energy is of 1 ev. Therefore, this assumption can be
readily justified according to the Boltzman distribution. Without being
subject to any external radiation, all the density matrix elements
associated with level |2> will eventually vanish - so p isa2x2
matrix at thermal equilibrium at room temperature.

In order to verify the relation among the parameters associated
with the elements of the 2 x 2 matrix, we write the equation for the
density matrix according to Eq. (2-17), excluding the coherent perturba-

tions.

m\w

o

o
il

P GR

- Ea — P, (2-39)
—tef v P,

P.= R

O
1"

RPN
:jo |
1l
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where the transition probabilities and g are written as Y1 and Yo»

o1
respectively, and Y10 is denoted as vy. o1 is the complex conjugate of
P10 In the two-Tevel system at thermal equilibrium, we have the

relation

(2-40)

where 500 and ‘-’ll represent the Pog and P11 at thermal equilibrium at
which the time derivatives on the left-hand side of Eq. (2-39) vanish.

When Eq. (2-40) incorporates with the normalized relation

P~ P=l (2-41)

we can readily verify

Yo =G+ ﬁ =¥ f3
¥ —(Yl'*Y)P EY‘P.

where we define

fi e (2-42)

y in Eq. 2-39 and y/in Eq. 2-42 are known as “transverse" and
"longitudinal” relaxation constants. This nomenclature has its origin
in the magnetic resonance study and will be explained later. In the
present study, various relaxation mechanisms contribute to the spectral
linewidth. 1In gases, spontaneous decay and collisions are the main
sources for the homogeneous linewidth. The spontaneous decay gives rise

to an intrinsic linewidth due to a finite Tifetime in the excited state.
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The collisions between molecules will de-excite the molecule in the upper
level and will dephase the oscillation of the dipole moment and, therefore,
give rise to the collisional broadening of the spectral line. In a strong
collision model, the broadening due to dephasing is equal to collision
frequency [54]. Furthermore, the collision which can be elastic and
inelastic, contributes to the transverse and longitudinal relaxation con-

stants differently. Accordingly, [18c, 44],
’

=

[

Zaddb @ + Qo)
where T is the rate of spontaneous decay, and QI and Qe are the mean rates

of occurrence of inelastic and elastic collisions, respectively, 1In a
strong collision model, y and y' are equal to the collision frequency [18]
and thus requires QI = Qe when T1o0 is negligible. In general, this condition
cannot be fulfilled. In addition to the relaxation constants y, y' and

the normalized relation in Eq. (2-20), we have the parameter By which is
defined as the population difference at thermal equilibrium and can be
written as M, = ? = P

oo

(2-43)
\
The population difference between |0> and |1> as given in Eq. (1-2)

can be expressed as
No-N, = Nn,

where N = N] * No’ which is total number of molecules per unit volume. In
our later calculation, we retain only n, as if N is normalized to be 1.
Now we will consider the molecules which are subject not only to
the interactions with the environment but also to the interaction with a
resonant field. We therefore introduce a coherent perturbation due to
the resonant field. In a dipole approximation, the Hamiltonian of the

molecules can now be given as
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H::H“ + H(;.Jo,,‘)‘(EY (2-44)

where u is the dipole moment operator, Er is the resonant field and
the term ”Er is the coherent perturbation. Based on the parameters
obtained, the equation of motion of the 2 x 2 density matrix due to the

dipole interaction can be written as

> O = S -
—7;*?,. = y(P, “PSy e M Erﬁ(, +ce,

2.0%_ _up_o%_ ; o
o b W R A E P e
2% ?u ) A X P,| (2-85)

%—;Rj: —GPr ol e Er({j:— R

W=E

Here P(o) is the density matrix when the interactions with the resonant
field is considered.
By changing variables as

P.(N — " = e AT

° "

B
( P‘:.; i P:) S (2-46)

0 R
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we obtain a set of equations

%u:—*fa—ru),,u'
%u: — YT = O, L ﬁi“#&nr (2-47)
%I“"“I'(w“.—w)—"‘ﬁf)—u

where we make no distinction between M0 and o1 if we assume they are
real. This set of equations has the same form as the Bloch equations
[8]. The Bloch equations were originally employed in the study of
nuclear magnetic resonance. Since u and v correspond to the transverse
components of the nuclear magnetization and w corresponds to the
Tongitudinal component, the relaxation constantsy and y' are therefore
called the "transverse" and "longitudinal" relaxation constants,
respectively, and their reciprocals (% = Tz, VL. = Tl) are called the
"transverse" and "longitudinal® relaxation times. The Bloch equations
and, hence, Eqs. (2-45) have a "closed" form solution (subject to the
rotating wave approximation) in the steady state without any restrictions
to the parameters in these equations. However, obtaining the "closed"
form of the solutions in the transient state is somewhat difficult. Only
under certain circumstances such as y=y' or sw=0 can the "closed" form
of transient solutions be found. In order to minimize the difficulty

in solving the present problem, we adopt the exact resonance case at
which Aw=0 so that the "closed" form solutions can be obtained. The

detailed solutions will be deferred until Chapter 3.
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2.4 Equation of Motion of the Density Matrix for a Three-Leyel Scheme

in the Study of SRS under the Radiation of the Resonant Field

In Eq. (2-17), we have given the general formalism for the
density matrix. Due to dipole interaction with the resonant field,
the populations and transition in the two-level system are governed
by Eq. (2-45). In addition to the interaction of the medium with the
resonant field, we have to consider its interaction with the pumping
field as well as with the scattered field in the present study of the
SRS. The pumping field is typically of 107 v/cm, provided by a giant
pulse laser. The field at this strength is still small in comparison
with the field strength in intra-molecular dimensions (108 v/cm), yet
strong enough to produce a nonlinear effect. A dipole interaction
between the fields and the molecules can be treated as a coherent

perturbation. The Hamiltonian for this system is
o !
I = ke = E (2-48)

where Ht" is given in Eq. (2-44). u is the dipole moment operator and E
represents the total field of the pumping 1ight and the scattered light;

3 1T

[ES=NE S RE (2-49)

With the use of this equation, the interaction between the scattered
field and the molecules is taken into consideration.
Since the fields are assumed to be linearly polarized in the

same direction, we can write
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= TheE ¥ sk
En_ —;&6 Skis e (2-50)
- o :
= =g Z,C"‘s’th a2 &L»,m: gk (2-51)

where we suppose e and es(ms) to be either independent of time or a
slowly varying function of time and likewise their complex conjugates.
The assumption of a complex nature for the light field amplitudes is
made to account for the arbitrary phase of the fields. The molecular
system interacting with the resonant field is now subject to an
additional coherent perturbation uE. The equations of motion of the den-
sity matrix are similar to Eq. (2-45), with levels extended to include

the intermediate level |2>. They are
> - ¢ "
Grvean P < EHER P SHEL - EAED,
30 i frtr + EUER, il o

%F\-‘Y'(E'R\)* %()(-OE’Rl”unEth) TG

2 (2-52)
(3* *"%)P /g‘}’lz.oEg(P P)*’L)‘ME,F ._-—- ‘°’kF
B 4y ;.){) S BB R M _,P-—,u,,gx&
‘;i P,_: -\gii +./% (jJME,‘]Dﬂ_ + u B PO+ el

* .~
Pu’.a' :P}; :}:’a’zo""z

where E* « Er e
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Javan [45] employs a similar set of equations in the study of
ordinary SRS. In his treatment, he considered a simple situation at
which Mg = 0 and, therefore, the resonant field is not relevant.
Recently, Brewer and Hahn [46], Bloembergen and Levenson [47], and
Chebotayev [48] considered two near-resonant fields in the study of
coherent two-photon processes, two-photon absorption spectroscopy
and three-level laser spectroscopy, respectively. In their study, only
two dipole moments associated with the level pairs resonating with the
resonant fields are considered.

In the present study, we assume that the physical conditions
are different from those for all the above authors. We assume the
molecules are infrared active so that the dipole moment ¥10 is non-
vanishing and Raman active so that there exists the induced dipole
10

10 Sk 1
moment Winduce The nonvanishing of u;

0
induced
or a0 is just the nonvanishing of both Hyp and Hop* Both the infrared

4 °r polarizability a

active and the Raman active for the three-level system is thus
indicating that the three dipole moments exist among all three levels
while only two dipole moments exist in the three-level schemes studied
by all of the above authors. In addition, we are treating three
electromagnetic fields among which only one is the resonant field. By
inspecting the set of equations in Eq. (2-52), they are not likely to
have the "closed" form of solutions due to the pumping field that is not
assumed to be resonant between any pair of levels. However, since the
field strengths are small in comparison with those of intra-molecular

origin, a perturbation method is applicable. In the same fashion as for
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the wave function subject to a perturbation in quantum mechanics is
written, we put the density matrix in a series according to the order

of & [49], i.e.,
P " ]ow A gfm Al Pw—» L ol (2-53)

where p(o), p(l), p(z), .. are zeroth-, first-, and second-order
of the density matrix for the present "perturbation" suE to the

Hamiltonian

Hou=H e (2-54)

where H“) is given in Eq. (2-44) in which the random perturbations and
the interaction with the resonant field are regarded as perturbations
to Ho' As we have indicated, a "closed" form of solution in both the
steady state and the transient state for the density matrix governed
by the Hamiltonian H0 can be found for the resonant field at exact
resonance. Therefore, it is our intention to exclude rather than to
include the coherent perturbation pEr due to the resonant field from
the present "perturbation" suE in finding the higher-order density
matrix. In our treatment, we can retain all the information due to
the resonant field and yet the equations will not be complicated. By
applying the Hamiltonian in Eq. (2-54) to the density matrix in

Eq. (2-53), we can verify the density matrix equations for various
orders of 6. The set of nth-order (except n=0) equations of the density

matrix is given by
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In this set of equations, pgg) can be set to be zero since Raman
scattering is a two-photon process so that short lifetimes ensure no

accumulation of p£g). Consequently, we can set pl()g) + (") =05 N> 0,

00
to its fast variation and retain only the component for p:(m) near

Hq0E, ] %
We omit the term i "1»%_ p(" e "H 1)] in the first equation due

“10 (or mR). When n=0, the equation can be written as
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By ignoring all terms of zeroth order associated with level [2> due to
the fact that level |2> is not populated and the transition probability
is low due to thermal agitation, the set of Eq. (2-56) is reduced to
exactly the same as Eq. (2-45).

Thus far, we have derived equations of the density matrix of
various orders. In each of these equations, the elements of the same
order as well as of lower order are coupled together. We will show the
solutions for the third-order density matrix elements give rise to
pNL(ms) in which the imaginary part of nonlinear susceptibility xNL(uS)
is directly related. In the next chapterwewill devote ourselves to
solving the density matrix of various orders and to clarifying the

related physical meanings.
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CHAPTER 3

PROPOSED METHOD IN SOLVING THE EQUATION OF MOTION

OF THE DENSITY MATRIX AND THE SRS

UNDER THE FLOPPING MODULATION

Part A

The Coupling of the Equation of Motion of the

Density Matrix and the Maxwell Wave Equation

3.A.1 Solutions of the Zeroth-Order of the Density Matrix in the

Steady State and in the Transient State
The zeroth-order equation of motion of the density matrix has
been given in Eq. (2-56). After setting all of the elements associated
with level |2> to be zero, we have the set of equations which is

identical to Eq. (2-45), namely:

(@

%@fﬁj = 7'(€i°-F§?) + -Al NS v oL,

(o . __J'_ )
= (P“ P“ ,,,/-lo.E,P “ce, (3-1)
"a (s} odd (ur
3 E_ = —X’{) — £, P ,}‘-pE (F
o) (Gt
B =R
This set of equations is equivalent to the Bloch equations [8] which
have been used in the study of magnetic resonance. The present form of
the equations was employed by Lamb [6] in formulating the gas laser

theory. Nowadays, this set of equations which yields transient and
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steady solutions has been adapted for the study of various aspects of
a two-level system in the optical region. Studies relating to optical
nutation [10], self-induced transparency [13] and photon echoes
[14] are based upon the transient solution, while those relating to
saturation absorption [50] and spectrum redistribution [18,22]
are based upon the steady state solutions.

In solving Eq. (3-1), we follow the method by Torrey [9].
Let a set of trial solutions with appropriate Fourier components be
represented by

(n) () © @ ©) () BNAR 3

PP fefes 0 P=Puye (3-2)

which involves the interaction with the resonant field
_=__ a - Wk -‘—E: eg-.\,_r (3-3)
=

After substituting Eq. (3-2) and Eq. (3-3) into Eq. (3-1),we find the
equations for the amplitudes:

aPm

=y (Poo P Pl *[ . ﬁ:wg-_o., P:::«w]
3_’?“(-1=}| (E‘ 5 P:)u;)\ -i[ﬂ: R‘:(‘-.p _Q,P::,*’]

(3-4)
H;P (A= -\*Pw» A (W, Pu—p +iQ, (Pm E(.,

(e

W ¥
N =, P
o ® o
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%

M € H €
where 2 = %R and szz = Ozlﬁ . The product of a density matrix

element and the resonant field can have terms with frequency adding
and with frequency difference. The terms with frequency adding are
ignored, and only the terms with frequency difference are retained.
This approximation is known as the rotating wave approximation (RWA)
[51] which has been employed by many other authors.

The amplitudes in Eq. (3-4) can only vary slowly in comparison
with o

10" R SO that the RWA is valid. In order to solve Eq. (3-4) by

using Laplace transform, it is convenient to put Eq. (3-4) in the form

(l -+ PAQ) ML‘A) _ o) ©)
a0 Y —ra e YD ( Pm’(ﬂ -ﬁ‘m)

iy n 3 F (@ »
(?* + Y +rioQd) PNL“‘F\= -iQ(C Pﬁw = P:‘,,l (3-5)

3 ) )
G0 1R PO 1= v il -a1pi

where Aw = W = ¥y0° In Eq. (3-5), if we bring the spatial phase factor
together with the temporal phase factor into consideration, iAw should
be replaced by i(dw - kRv), where v is the velocity of the molecules

and kR is the propagation vector of the resonant field. We denote a

Laplace transform function as
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dp=F=fetpe (o

Eq. (3-5) after the Laplace transform becomes

L B 2 ,A(nl N
(pra— <2 > Rv(q.: =~ \P"'.a) = ﬂ;(',‘) =0
A A 2
(A s ) ﬂ (PN ‘H:ﬂt(P(Ze: 3 P‘(;) g
_JA.Q- & UAM + 21802, F O _‘.ﬂg+r)(i>((., ,FW =L, ? ¥,

(3-7)

In Eq. (3-3), we have used the relation

o A
= + -
+ F ﬁ.:; . (3-8)
The initial conditions imposed on the system are
(= (o
P (¥=0) = P (=0) =0
0 o

(‘ (“U P(A} 5
°°)- n(D)ltu:(n‘u
This is because the absorption from the field and the change of the
index of refraction due to the field are both zero before the medium is
brought into interaction with the resonant field. ny is the population
difference at thermal equilibrium. The secular determinant for Eq. (3-7)
is

D= i par=sas ° — A0,

i
° Py sisw (Yo

—-2:00F S0, Py’
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This equation can be further written as
D, = f{ Pl o a0l An,\‘qo«w)} (3-9)

It is very simple to solve Eq. (3-7) in the steady state without any
restriction to Aw, y and y'. However, the transient solution [9] is
somewhat complicated and the approximated solution at higher
intensity has been obtained [51]. The transient solution of the
zeroth-order density matrix is extremely important to the present study
and we feel that it is not proper to make the high intensity approxima-
tion at the very beginning. The transient solution will be in a
"closed" form by setting y = y' or Aw = 0. Now y and vy', the relaxation
constants in gases are mainly due to collisions and spontaneous decay as
presented in Chapter 2. Generally, the relation between y and y' is
lacking. In the present work, we are not allowed to set y = y'.
Therefore, we let y and y' be free parameters which can be determined
experimentally or calculated based on the potential between molecules.
In order to obtain the closed form of the solutions for this set of
equations, we assume Aw = 0. With the availability of tunable dye
lasers, such an assumption is readily justified.

The Laplace transforms of the functions will be in a

relatively simpler form by setting

R
I e e

P =+'+y)
(3-11)
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and

T T G ol (3-12)

which is the flopping frequency at exact resonance. However, @ is a
little different from the Rabi flopping frequency since r' = 0, the

solution can be found readily:
s ; a=-r'e
\

(wg>
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X ) L
& ‘. (‘t)ff’)z‘f()_)’ i ?&‘ ] (3-13)
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where Xgor XEos and Vg 2re the steady state solutions for 10 (mR),

0

p(()(l))(uR),and pégl)(o) - p{lln)(ﬂ), respectively, and are given as

X = AP >, o, (3-16)
X5 = - (P a>, o5 (3-17)

and

ld = R, G )/
8o O’- r;
g ’ (3-18)
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A1l the elements in the steady state are proportional to the factor
1/(1 + |n|2/1“2). The absorpiton line shape due to the off-diagonal
elements is broadened when the resonant field intensity is high. This
broadening, referred to as "power broadening", is homogeneous having a
Lorentzian line shape. In steady state, the transition probability

represented by x__ and xgo, and the population defference Yoo approach

S0
zero as the resonant field increases. The steady state solutions in
Egs. (3-16) to (3-18) can also be obtained by setting the time
derivatives on the right-hand side to be zero and then solving for
these equations.

The convenience of using Laplace transforms is that we can
obtain the steady state solutions as well as the transient solutions.
This fact can be revealed if we take the inverse transform of Eq.

(3-13). Thus we have

P xs[f«@f).‘):+ =1 @Qt]

alrar) (3-19)
xe~ iy = 3(_55
5 i o=
W) = S
o e x,, I O ‘*mj@wﬁﬂ
(3-20)
Sivhs P
Qe +_ B
A? ) = %sﬁjmwﬂ + _(\__G“"ﬂ;']
S (3-21)
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In these equations, the flopping behaviour is clear. The flopping
frequency @ has to be much smaller than ) or wp, SO that the RWA is
valid. It is important to note that the amplitudes of the transient
terms are damped through the combination of transverse and longitudinal
relaxations, while the phase of flopping is not interrupted by either
of these relaxations, and the oscillatory property should last even

Tonger than the relaxation time.

3.A.2 Solutions of the First-Order Density Matrix

The set of first-order equations of motion of the density

matrix in components is obtained by setting n = 1 in Eq. (2-55), i.e.

(% S e iw,,)F" = )4-. AE (3 “’
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where the light fields are given in Eq. (3-3) and Eqs. (2-49, 2-51).
In this set of equations, elements associated with level |2> in zeroth
order have been dropped. By inspecting the four equations in Eq. (3-22a),
we find that all the elements are linearly dependent, and the solutions
for them are
w o w w
= = - =5
EI\’ [ Pnl P«» Pn‘
since the coefficients for all these elements are not fixed values in
general. In the set of Egqs. (3-22b), a0 and Yo are neglibly small in
comparison with g = and Wy = wg if we assume the pumping field EL
is not resonant with the Tevel pairs associated with level |2>. By
assuming also that n << o = W) or Wyp T Wg» we reject the terms
i %10% (1)
h

P51 and 1' e (l) in Eq. (3-22b). The equations for g%é)

(1) can now be written

and o1

2 C_ G ARED® L E O
R A

w
(_'l. - Ty _,,,,ma) _ ‘_Jl..E ]D"‘ o L””E Pw (3-23)
u

w ¥

o R

The density matrix elements péll)) and p(l) driven by the pumping and

i

scattered fields are now represented by se” s, LY. After substituting
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the expressions for E in Eq. (2-49) to (2-51), a typical equation for S

can be put as
S T EAS = §ct) (3-24)

where A is the frequency difference between the frequency of the light
field (ms or mL) and that of the level transition ("’20 or u21)4 The
function s(t) on the right-hand side is due to the products of the field
strength and the zero-order density matrix elements. Therefore, s(t)
can be represented generally by
(3£

s® =0 -»Ib CoSLE k) + ¢ QL Ok +fn)e 3-25)
where ty is the delay time of the pumping field. The coefficients a,
b and ¢ can be slowly varying functions of time due to the pumping field
as well as the scattered field. Since we ignore this slowly varying
character, a, b and c can be regarded as constants. The solution for
Eq. (3-24) can thus be put

et

e :
: +€'“‘*‘"”J. € syay (326
1.

SGhH=SHwe
The first term on the right-hand side is zero due to the initial
condition at which e is zero and £ is negligibly small. The second
term can be carried out by regarding a, b and c as constants. Eq. (3-26)

can now be written as
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i —(C-c)kb e+ p O <ty

5(*):;A+ -E-(e -+ i )\/
\—r'* Mo+ - +i(4-Q)
(3-27)
- cQ) ek L

« QK
> § L e e ) )

= "o +) - =4ila-Q)

where a =b = ¢ = 0 at t = 0 due to the fact that g and eg vanish at
t= 0. Since o >> g and T by assumption, Eq.(3-27) can be rewritten

as
\
Sw= 7 (0» + (bwass + c@;nm}g]e‘m*h) (3-28)

This solution is the same as if we set S =0 in Eq. (3-24). The physical
meaning of this fact is that the amplitude of the first-order matrix
element p§(1])(ws)|_) or pg%)(ms"_) will not be further modified
significantly by the resonant field except by modulation through zeroth-
order elements. This consequence occurs because of the beating
frequencies between 1ight fields, and level transition rate associated with
level |2> are much larger than 2 and T when the frequencies of the
pumping as well as the scattered 1light fields are far from being

resonant with the molecular system. The solutions for the amplitudes

o

of p in the Fourier components at + g and + w, are

L
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Plua= ey F‘“
- o0 (3-29)
F‘ .L""s‘ J it
7S e gl R,
) \
R e St P
and the solution for the amplitude of pzl) is
Q0
W) =
E\< . w'_ w G P“
il (6)
[) o= Wnﬂu e (3-30)
w
NS e b ()
?;\ £ "“s" Tegr e Su?
w 1 ©)
() = * P
ral L3+ O L n
Hij%s .t
where the parameter 2 Lij = T and likewise for the parameters with

the complex conjugates, EE s and u:.‘j. Besides the Fourier components at
s

Y or wgs there exist some other possible components at the frequencies
of the combination of 0 and wps OF g and “R Equations for the

components of pgé) are
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{41] -1 ‘o)
COFWIE — ©
ﬁo =S O W, $2sm Rn <, _u..,n“‘ LR

(3-31)

N ) o) \ ©)
Pw('“{_'*w,‘) = o, Qf;l ﬁ:"u:mln._u “\w,)

where the relation w L wg = wEep has been used in the denominators due to

resonance. The similar set of equations for the components of p(l) can

be written as
[ <l (o
el e “’n = P-.""ﬂ’ = w._»w.,as“:.o P'It-),)
(3-32)

w

?(—'J.—hp -m g‘lP(Uﬂ w,_+ k\‘lﬂ._ _,,,P Y]

The equations for their complex conjugates are not shown here. These
sets of equations may be used to derive the linear susceptibility at

the corresponding frequencies. However, in the linear theory, the

scattering is a spontaneous one which is out of the scope of the
present study and will not much concern us. Among these sets of
equations, only the equations

"’(_ s ey e (o)
at Loyt wl_*w”.cls",_n

“(AJ.\
m s o
P;, Loz = Cliao RILMR)
[ (3-33)
-— e (43
fm (W) = “u.. - Llige Pv-

N( Wy = \ e
L s e s, P
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(b \ {o)
Gl e —ee———t
& ) TSR ,‘QL,.r K

w
ORI Qe “(07

Q)L - w»
(3-34)

R | (03
.G~ mﬁm‘ﬁ‘ e

)
W+ = ! (@
ﬁ;t TR = e O Pl

are of interest to us due to their contributions to the phenomenon under
the present study. In these two sets of equations, it is worth noting
that only the four terms péé) (w ) néo)( S) p&l)(-u ) and pg)(ms)
contribute to ordinary SRS when the Raman transition levels are not
modified by the resonant field through zeroth-order population
difference. Now, besides the four terms which are modified by the
resonant field through zeroth order population difference, there are

four additional terms: p;l)(uL-mR), péi)(-ms‘*wR), o(()%)(-ml_mR) and

Dé;)(ws‘*‘mk) These terms exist due to the modification of the resonant
field on p( )(mR) and pm)(mR) which do not exist in the study of
ordinary SRS but do exist in the present study according to our

assumption of a nonvanishing g
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3.A.3 Equations of Motion of the Second-Order Density Matrix for the
(2)

Fourier Components of Py at or Near Resonance

Without the pumping field, the zeroth-order solutjons will
describe the emission and absorption of the frequency of the resonant
field. The introduction of the pump field will give an additional

modification to the population difference and transition probability

1)L (1)
éa 3 P93

conjugates. This fact cannot be revealed without the study of the

between |0> and |1> through o and through their complex
second-order equation of motion of the density matrix.

The second-order equation can be obtained by setting n=2 in
Eq. (2-55), i.e.,

B w0 AR O pY DY E DY
2% S R T

3;»,{){2‘_’; —i-[,u,‘r:,P“' “HLEPY] « e e

(3-35a)
2 P S UEP - pED) + et
P“'_ ¥
(?m’o’»ﬂ“’u) -J"“ (Er Pm 'd“E “;‘E @
S pieiipp 4o
T‘(})F :7%—,4),‘&]3 « HER] 4 e (3-35b)

Pasit A
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where the c.c.'s are complex conjugates. It has been solved for p(()é) =
pﬂ) = p{})) = 0. We also assumed that frequencies o and ug are well
below ) and wpy SO that Yo0 and Ypq can be dropped. However, the
inclusion of these constants is important when o and wg are resonant
with the levels involved. It is also interesting to notice the terms
which appear on the right side of the equation for pég). These terms
also appear separately on the same side of the equations for p:(li) and
p(()[zl) but differ in sign. This is a consequence of the fact that the
net change of the total population in a three-level system has vanished.
The set of Eq. (3-35a) and Eq. (3-35b) are coupled through the first-
order elements of various Fourier components which have been solved in
the last section. Since there is no direct linkage between Egs. (3-35a)
and (3-35b), we can solve these two sets of equations separately. In
Eq. (3-35b), the first-order diagonal elements are zero, so that the
equations for pg) and pgg) are linearly dependent and, therefore, p%)
and pég) vanish. The equation for pég) is not coupled with any other
elements and can be solved easily. However, the solution of pg) will
not be used in seeking nonlinear polarization in the next section.

In solving Eq. (3-35a), we first consider the Fourier components
(2)

of plg at R By using the set of trial solutions

(ST IR & o >

s Fl(;“\z‘ e P“ i E:‘” Ph = P“(-J
we have the set of equations

2 . e _Q:y s

(ﬁt +Y + Lad) ﬁlu.pi" o[P‘:ﬂ H(q] =0

x 3 ~ 5 G e

(51 Ty -vew) P:.Chkl-t(l“‘ﬁt,)-e?)]—_o

o

(3-36)
= "‘X')[R:ﬂ ~ﬁ;‘;]—>i[[ﬁﬁ?hﬂ -, ?pr] = Ato)
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E
: Hoat L) Rk (1) :
The term A(0) arises from the terms P20 " 2R Pp1 and their
complex conjugates. Since we consider E at frequency w,

L
(1) (1)

the terms Pp]’ OF pyy’ can only be driven at the frequency w

or at u)sx

L O g
According to Eq. (3-29) and Eq. (3-30), the term i ngl) is purely
imaginary and cancels its complex conjugate. By following

(1)

the same manner, the term i T is also cancels its
complex conjugate. Therefore, A(U) vanishes so that we have the
solutions:

e -

™ (5
Cwa = Wa) = 9 w -t =0 3-37
o hewls peih t37)

Eq. (3-37) indicates that neither absorption (emission) takes place at
the frequency wp nor nonfluctuated population difference enhancement

occurs in the second order. We now consider the Fourier component for

p(z) at frequency (w -w.) which is near the frequency w,. A set of
10 L8 R
trial solutions can be given as follows:
® e s u!ml-
< L e c.
Pn E‘ = AP (GRS c.
& iy -k ¥ (3-38)
P‘c = Pu—l) (2

o

= : WL <
fo s P“(;oﬂ—m) aE
ol LX)

where w = ) g From Eq. (3-35a), we have
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& @ _ (.
(:%, — A=y +Y) R:m ~AGA R\(Am = B

(-— —L- wp-q)aP o —2i [0l f‘ms-()‘f:;’m,w]

(3-39)
2 A Ced-e2
3 L2
(2 b 30+ 1 Pl 5 2,8P o =0
o ] of
where
W = - ST Ayl (3-39a)
The functions A(m-mR) and B(w) can be evaluated as
: (0)
Alw-thr=-9iF POIUJR)
(3-39b)
- (03 @)
Bw) = ’*Ffﬂc<°) -ﬁ(v)]
where
[ Iy & M.E,’w,v
= —_" (3-39
Folam=a* [ZNET) S R

(

It is very important to notice the existence of the term poo)(m—mR) -
pgl)(m-mk), which is an amplitude for the population difference
oscillating at the frequency (m—mR). The product of this term and the
field of dipole radiation at wp is one of the sources that contributes to
p§g)(w). The off-diagonal element péi)(2mR~m) at the frequency ZNR'N,
driven by the resonant field E > Mmakes a direct contribution to
pég)(m—ma) - pgg)(m mR) and an indirect contribution to Dgo)(m). On the
right-hand side of these equations, there are terms A(m-mR) and B(w).
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The term B(w) arises from the product of the light field E(= ES+EL) and
the four density matrix elements of the first order: "g(l))(“’l_)’
Détll)('“‘s)’ pgé)(-ml—) and pg)(ms). Therefore, B(w) is proportional to
€ and £ge This beating term is of paramount importance in the ordinary
SRS study. Moreover, the function A(u-mR) represents the term pro-
portional to the product of the beating signal and the resonant field
radiation at the frequency wp+ The function A(w—mR) exists only if a
resonant field is applied and the dipole moment 0 is nonvanishing.
During the course of preparing this thesis, we found that our Eq. (3-39)
is accidentally similar to Eq. (3-6) obtained by Moller [18b] in the
study of spectrum from a driven two-level system. However, he
considered only the response to steady state of the zeroth-order density
matrix in his treatment, while we are considering the zeroth-order
matrix not only in the steady state but also in the transient state.

Eq. (3-39) is very similar to Eq. (3-7). However, in Eq. (3-7),
the term on the right-hand side is time-independent, while the terms
A(m—wR) and B(w) on the right-hand side of Eq. (3-39) are time-dependent

in general. The dependence on time is through e and zeroth-order

SHS)
density matrix elements. It is very important to notice that the slow vari-
ation of £g and e will not simplify the problem as it did with

solving first-order equations. This is due to the fact that the
differences between w and “4o (or uR) may be comparable with 2 and y

(or v'). Equation (3-39) shows the dependence of second-order density

matrix elements on the pumping field as well as on the scattered field
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which still remains unknown and, therefore, another equation with regard
to the relation between £ and the second-order matrix element(s) should
be coupled with the set of Eq. (3-39).

The scattered field, in a classical theory, has to satisfy
Maxwell's wave equation which is given in Eq. (2-30). The nonlinear
polarization in the wave equation is related to the density matrix, and
this equation provides this additional relation. The coupling between
the wave equation and the equations of the second-order density matrix
will be clear after the discussion on the third-order density matrix and

the nonlinear polarization in the next section.

3.A.4 The Third-Order Density Matrix and the Nonlinear Polarization

The equation of motion of the third-order density matrix takes

the same form as those of the first-order; thus,
(3 1-7-*;@.‘:)? -r.lﬂ—‘( P
“

B +v-iwp ﬁ =B LP ey (3-40a)

™= aiAE ry' “'FEVP"]

o)

(% MAIUE

(I B R RS e e E ™
L»**%‘E,- e R
(%* PO, ‘u"E (P Pi) ~i 5);;5 F:

P‘ St (&N G *
O A Y
(Y Fey

(3-40b)



56

We see that the elements in Eq. (3-40a) are not coupled with the
(2) (2)

elements associated with |2>, since oy

and D) vanish. Due to the

linear dependence, the elements pgg), p(()g) = oﬁ) and p(n) are all
zero. We need only to solve Eq. (3-40b) for the components pgg)(ms)
(3)(

and P12 mS). These two components, subject to later verification,

are the elements that give rise to the nonlinear susceptibility at wg-
In order to solve Eq. (3-40b), we employ the approximation needed for

solving Eq. (3-22b). Accordingly,

i ) (3-41)
2T e, Qo “”

£3] - (21

0 = =, Birex [ e (3-42)

where the relation W =g = g has been used for the denominators.
The nonlinear polarization at frequency ugs according to

Eq. (2-25), can be written as

NL ¥ (3 (3 (3.43)
cw,) :/uh [)z:-u‘, + M, o )

By substituting Eq. (3-41) and Eq. (3-42) into Eq. (3-43), we have

*
P (3-44)
Yews = [ ) Mes by 2 P
- 2
where the nonlinear polarization p (ms)* satisfies
|y NE 4 sk (3-45)

AR
=
—-‘T’ Ncw (<4 tEP iy e

according to Eq. (2-26).
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3.A.5 The Coupling of the Maxwell Wave Equation and the Equation of
the Second Density Matrix

The wave equation in Eq. (2-30) for eg can be expressed as

¥ . *

2 N % o) b \ 1 (2

:a—aéx('é;ﬂ =ioptes —:' o k—uﬂ‘ﬂ*{' ‘%_;N) Mo ML\ é; . (3;,\ (3-46)
In this equation, the phase factors which have the dependence on
position have been factored out, since these phase factors satisfy the

following relations:
y

(S =
P‘ow) = P.,, (&% I * & (3-47)
e 7
S =180 ¥ (3-48)

e e (3-49)

Equation (3-49) represents the conservation of momentum. The
momentum of the scattered field satisfying this condition is referred
to as "momentum matched" or "phase matched". If we consider the

temporal phase factor for Eq. (3-46), we have readily

W, =S, —w (3-50)

s

This relation gives the conservation of energy. The frequency of the
scattered field satisfying this condition is referred to as "frequency
matched". In Eq. (3-39), if we substitute the trial solutions
LIS AR I ek 2

@ o
AP wa=aPue (3-51)
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o @ ~ i G-y
20 W) =
ﬁ"c W W) ﬁ‘cg,ﬂe (3-52)

and

: &
5.: = 81 Q” ¥ —

We have
=l 5 Gl
(Z -4 mdy 4 Aehy o E:w- 0 g0=B
-

(2 - st + ilRoA=kQ a1 8D Tam

L Py sa 0Pl SAGH B30
O R PLE 1 S

o\

* 1
5 10 6? Gy =0
o\

where
Choie %%* feii e Lf’ (3-54a)
Aar =i F! P:‘m (3-54b)
Bgm=iF'a P:‘m (3-54c)
and
P (ot S o
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In the expression for A(z,t) and B(z,t), the zeroth-order density matrix

elements are given as

(o) (o) s '&33/
we) = ULk
C.( ”) i ye (3-54e)
and
@ (O}
AP @ = & NH:) (3-54f)

(4
In the second and third equations of Eq. (3-54), the quantities
—1'(m—mR) + i[(kL—ks) - kR]v and 'i(ZmR—m-mlO) - i(2kp-k)v can be written
as i[(mR-mm) - kvl - i[(m—mlo) - kv] and 21'[(wR—m10) - kRv] -
i[(m-mlu) - kv], respectively. We recognized that the conditions at
exact resonance for the resonant field can be redefined as Aw =
(“’R_mlo) - kRv = 0 if the translational motion of the molecules is
considered and if the homogeneous linewidth is smaller than the Doppler
profile. Hereafter, we define Aw' = w10 instead of aw' = w-wp in
Eq. (3-39a) if the translational motion of the molecules is considered.
Moreover, for the momentum-matched condition, i.e., kL - kS =k, k is
very small in comparison with kL and kS in the forward scattering and,

therefore, kv may be ignored. Thus we have

1a)

5 X ) . ]
(% - raw +Y)P‘:3.*)—AD.A?N%,) = B3
(s sy B e s
2% ~ Y) ?(3.&)—2;.Q,'E &) +>;[L.F(i,) (3-55)
A o oy’
= AC3P

(a "
(g; - £ aw'yy) P Gy rQ7s P‘g’;}) =s
o) o\

where

PRONEIRS TN
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By no means should k and kR be confused since k # kR in general. Equation

(3-55), apart from phase factors for the elements and for the fields, is

Ni0E
identical to Eq. (3-39). Hereafter, we will denote 2, for mé = 12; 3

and will not stress the difference between Eq. (3-55) and Eq. (3-39)
unless the phase factors are to be discussed. Equation (3-55) and
Eq. (3-46) form the coupled equations of the density matrix of second
order and the Maxwell wave equation.

In order to compare with the work by Wang [41], if we ignore
the term Apgo)(z,t) in the first equation of Eq. (3-55), which does not
exist in the ordinary SRS study, then the coupled equations of the

equation of the density matrix of second order and Maxwell's wave

equation can be written as
Gy
: [ (B P, o1
& -4t Py =3[k ~ artalfh &&an%n
ol

@ Mo, (9 (3-56)
a}é-.stb*)";"‘ = Ak-l— *‘_73_ ‘E(P (30

These sets of equations are equivalent to Eq. (3-37) in Reference 41 in
which a classical theory was employed. When we compare these two sets
of equations, we recognize that our p%)(z,t) is equivalent to Q, which
represents the amplitude of the classical vibrational mode. It is very
important to notice that the coupling constant between the electric
field and the vibrational mode in ordinary SRS treated by Wang is a
constant while, in our treatment, this "coupling constant" can be a

function of time since the transient solutions to the density matrix of

the zeroth-order are time-dependent functions.
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PART B

Solutions to the Density Matrix and the SRS
under the Flopping Modulation

3.B.1 The Steady State of the SRS Modified by the Zeroth-Order Density
Matrix in the Steady State

In Part A of this Chapter, we have shown that the equation for
the density matrix element "g(z))(“) is coupled with Maxwell's wave
equation. This set of coupled equations is difficult to solve in general.
However, if we assume that the pulse lengths of the resonant field and
the pumping field are long in comparison with the relaxation times, then,
physically, the density matrix and the scattered field will reach a steady
state. In this section, the steady state of the scattered field under
the influence of the zeroth-order density matrix in the steady state will
be discussed.

Inasmuch as the pulse lengths of the pumping and the resonant
fieldsare long, the scattered field in Eg. (3-55) is a constant value.

If the delay time of the pumping field is long, the interaction between
the pumping field and the molecules will take place after the zeroth-
order density matrix elements have reached the steady state. For the
scattered field in the steady state, the time derivatives in Eq. (3-55)

can be set as zero. Thus we have
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(C3)

(=i(W—,y ) P"Zy -0 e P ey
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= 5(—6\
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o1 0 5 o

=A(3)

! (C3) 3 » =)
(« (2Wp-W-, +)’)E|<3‘» 4 R0 aﬁ‘ p =0

Here, A(z) and B(z) are time-independent, since x§0’ y’s‘o and e’s'(z) are
not functions of time in the steady state. This set of equations is
coincidentally similar to Eq. (3-6) in Reference 18b by Mollow. The
beating term between the pumping field and the scattered field is
equivalent to the signal field in Reference 18b. Within Eq. (3-57),
pgg)(z) is directly related to the nonlinear polarization. The solution
of p%)(z) is obtained readily:

. . ﬂ’
(a0 coadd 1 + y%—;\m

B3
) = im, % — -
Pm i °F Th e (160 [ 2o ead )+ 41047 (3-58)

where F is given by Eq. (3-54d). In solving Eq. (3-57) for p:(lg)(z), Aw
has been set to be zero for the situation at exact resonance. Except for
a constant factor, our solution would be identical to Eq. (3-1la) in
Reference 18b if we had included the detuning (Aw # 0) in our considera-
tion. As a matter of fact, the zeroth-order as well as the second-order

density matrix in the steady state can be solved easily without the
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restriction Aw = 0. The assumption Aw = 0 is for later use in the
study of the scattered field influenced by the zeroth-order matrix in
the transient regime.

The nonlinear polarization can be obtained from Eqs. (3-44)

and (3-58) and is given by

) oo 'rl.(n

a2 s
2 J
P =+ AN l%—" %T

. (3-59)
! 2 adey) (= £aS+e) 42l A2 O

Pl 3
SRR em'o'ﬂ)[q_caom(-ud»#) -+ a0t

x

and the complex conjugate of nonlinear susceptibility is given by
,>< w) = A-g ‘s: (3-60)

Mo \ @\

= \
8“ - "\’(m‘.ﬂd “"u.;w)w"' ke T ¥ (3-61a)

where

'
__f* I | X J-iadvn) c—u-Sw'l*ZA'E?‘nﬂ(s—Glb)
i %E;T‘ 5 (ied | a8 +0) (~iedar') + 4120 ]
In Eq. (3-61b), the first factor is the power broadening term due to the
interaction between the resonant field and the molecules. The term
4|no|2/w' is known as the saturation parameter [50]. The second factor
for f* is a dispersive-like function. The real part of this factor has
been calculated by means of a computer. In the computation, we have set
= y' for the strong collision model [18]. In Fig. 3-1, three curves
have been plotted for @/y = 0, 1 and 5. Our curve for @/y = 5 has a

shape similar to that obtained by Mollow [18b].
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For convenience in the SRS study, we write the nonlinear

susceptibility as
NL
(W) = —¢ 5
K, g (3-62)

The corresponding gain function, according to Eq. (2-38) can be given as
@ = —“%{t’—z,&df = %?‘a_&.l -S-* (3-63)
The real part of f is a function describing the "redistribution" of the
gain function influenced by the zeroth-order density matrix in the steady
state. The plot of G versus aw'/y for o/y =0, T and 5 is given in
Fig. (3-2). In this figure where q/y = 0, the gain curve is identical
to that for the ordinary SRS, since f = Yz/(w'z + yz) ato/y =0
When @/y = 1, the gain curve is broadened and suffers reduction by a
factor of four for the frequency-matched mode. When @/y = 5, the gain
curve is broadened further and gives rise to two weak positive gains at
Aw' near + 9, respectively, and two negative gains in the intervals
(0,) and (0,-a).

At this point, it may be desirable to clarify the implication
of the present results in relation to those obtained by Mollow. As shown
in Fig. (3-1), the calculated steady state gain of SRS in the neighborhood
of the frequency of the ordinary SRS, shows a striking similarity to the
signal field absorption Tine-shape function given in Ref. 18b. it is
interesting to note that Mollow treated his problem from the viewpoint
of quantum regression, while we proceeded our work by calculating non-
linear susceptibility. Our results, therefore, are not only applicable
to the Stokes components of SRS, but also to the anti-Stokes components.

The gain curve for /T = 5 in Fig. (3-1) will give rise to two satellite



66a

Tines at the gain maximum for the Stokes components. On the other hand,
the samilar curve predicts two satellite lines at the gain minima

for the anti-Stokes components as discussed in Appendix. The present
results are, of course, highly directional dependent, namely, the
observation of the present effect has to be made in the foreward
direction. The line-shape function in Ref. 18b, however, needs not

to consider along any specified direction.

3.B.2 Laplace Transforms of the Equations of Motion Related to the

Density Matrix of Second Order Modified by the Zeroth-Density

Matrix
The gain function for SRS influenced by the zeroth-density

matrix in the steady state gives rise to weak sidebands when the

intensity of the resonant field is high. These gains may be too

weak to be observed experimentally. In this section, we will consider

the
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modulation of the flopping of the zeroth-order density matrix on the

SRS in the steady state. We assume that the pulse lengths of the resonant
field and the pumping field are long in comparison with the relaxation
times and flopping period, so that the steady state of the SRS can be
reached. When we take the transient solution into consideration, A(z,t)
and B(z,t) are the products of the time-dependent terms. It is difficult
to write a time-independent function for A(z,t) and B(z,t). We

treat A(z,t) and B(z,t) in Eq. (3-55) as time-dependent functions. The
time-dependent character of stimulated scattering was first proposed by
Kroll [40] in the study of the transient effect of stimulated Brillouin
scattering (SBS) by solving integral equations. Subsequently, a similar
method was employed by Bespalov et al. [52] and by Creaser and Herman [42]
in treating transient stimulated thermal Rayleigh scattering (STRS). Wang
[41] was able to use Riemann's method in solving partial differential
equations in the transient SRS study. In all of their treatments, the
coupling coefficients between the media and the electric fields are
regarded as constants. However, our situation is equivalent to having a
coefficient varying with time due to the flopping and, therefore, it is
not suitable to employ either of these methods directly.

In the present study, we propose to employ Laplace transforms
to simplify Eq. (3-55). However, the direct transform will not be able
to solve the problem because the Laplace transform of A(z,t) or B(z,t),
which is the product of the zeroth-order density matrix and the fields,
cannot be separated as products of Laplace transforms in general. In
order to prepare equations so that Laplace transforms can be used, we

define the functions:



%
X0 =X = S ?"{3,4) a3’
. \( o t (69} " ' s
Y(’b,*)— ——J A? Lb,‘l)d*

Z (}’*) = Z __.th RTZB,-‘.) df‘

and

X(pe = % X g0

Y = %Y(g,ﬁ

(3-65)

Zeg ki LYAS

The initial conditions for these functions are:

P‘i J0 = P:’vb,u) = P“'
"

e (})J =0
and

MG =Yg = Ztg.e) =0

Upon integrating Eq. (3-55),with the help of Eq. (3-64) and Eq. (3-65),
we have
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F I L R )
Hd¥ = X oy Lo S '
_LB(&,& F=fm UAE'R) e G (3-67a)
and
= TS F o i & Sam
J A(;,t)dk:wj ﬂlw = et (3-67b)
° ° =X
where
I I
m = (m + m) Ao ﬂ“;ﬁ' (3-67¢)

Since the pumping field and the scattered field are not in resonance with
any level pairs of the molecules, following Carman et al. [53] we
assume that both the pumping field and the scattered field propagate with

the same group velocity v. This assumption enables us to define

=
£ £89 . Met-rn (3-68)



where t = z/v. By sutstituting Eq. (3-68) into Eq. (3-67), we have
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and

t * Le) ’
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j; Bg,erdt = J_M-J:.s ﬁn({»l M (e

The right-hand sides of Eq. (3-69) and Eq. (3-70) give rise to "Faltung
integrals" [35] or "convolution products" [36]. Though cg(z,t) is an
unknown, the physical justification gives rise to the "Faltung
integrals" which have the advantage in manipulating the Laplace transform
method. According to Morse [35], the Laplace transforms of Eq. (3-69)
and Eq. (3-70) can be written as
j/ Az o --Qum}O &
(3-71)
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The Laplace transforms of Eq (3- 66) can thus be written as
afﬂ-*m-‘ *¥) X ey = i AF"'
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where m is given in Eq. (3-67c). In order to solve Eq. (3-72), we first
verify the Laplace transforms of Aﬁé?)nand ﬁé?&;, If the delay time for

the pumping field is to’ we have

N
E:;:): JC: A2 Fo o )LP+ P+ Q) Lon(Quh,—dk) x;
Pl 03w 2 ) (3-73)
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In Eq. (3-73), pm);sand Apm)qcan be written in the following forms which

will be convenient for later use:

m =Y li el Pkr‘w(1~ﬂ(a—~?)4(0+f")mp}

% P4+

A (3-74)
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where we have set o' = a t;-o and 8' = (g ty-8). The following

relations can be easily verified:
*

¥ 5
Kso 3 Sie 1: Lso *

=S YT =gty
ﬂsn ¥ L}su lgs- X
From Eq. (3-72), after some algebra, we have
2 - n o )
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%)+ boag'~b RLCoB 20O HON Y orpty

e o 2
~ 2 Paw L add /Y

(1l + apn ~a ;(%Lra«‘—-%;--f%tao(’:x[ﬁr“)(»-'-vﬁ')}
where m is given in Eq. (3-67c) and *
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(3-76)
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where T and @ are given in Eqs. (3-10) and (3-12). After some simplification,

Eq. (3-75) can be given as
»

N
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The first term in the bracket is due to the zeroth-order density matrix
in the steady state, while the remainder of the terms are due to that in

the transient state.

3.B.3 The Decomposition of the Equation for plo ( ) Leading to a Set

of Simple Equations
In order to find a convenient form for the inverse Laplace
transforms of the equations of the second-order density matrix elements
psg)(m , we write Eq. (3-77) as follows:

i’ ~ A A A

X = X\ x X& o ><‘s N ><4 (3-78)
with

~ /‘
)(\ = nw-—% X(’(’-».b‘-"*ﬂ(-P-néG*‘l) %22 (3-79)
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(i i it
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In this set of equations, 5( has been represented by the sum of four terms.

;(] is for the response to the steady state of the zeroth-order density

matrix; the terms ;(2, ;(3 and ;(4 are for the response to the transient of
the zeroth-order density matrix. The set of equations from Eq. (3-79)

to Eq. (3-82) can be further decomposed as

3 B, ()
X e + ‘3"’{ ...t.unr -(a-.-m’w,un" /p—;ak)-t[‘-&,\n:\ (3-83)

5 A
> Ca
)(2 _\mica A ~ g =+ = \
T 'P—;Adtx P-bode(‘-iﬂ. P-r8040%0
(3-84)
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1o ﬂw 1o-wm( ,t;.umr-cn Tt o)
Y & ___‘E_,__ ] (3-85)
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B« C,
and =L 7 <
X4 10 (J”’ 1” f““"" g/ 'f’"‘“*f'—l’ﬂ_* ()JU!\I-H"..[Q_
(3-86)
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The coefficients in this set of equations can be determined as
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(3-87)
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In the following we will treat ;(1, ;(2’ ;(3 and ;(4 separately )2] in
Eq. (3-83) can be written
~ " N VS
*I = x\« * %, S e (3-94)
with
R thid o
la = MM e e Y (3-952)
A A
g L 2
g5 -+ %56 poilsd)+0 (3-95b)
A ‘Q Cy
g e e
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where A], B1 and C] are given in Eq. (3-87). Because the Laplace transform
of 1 is still an unknown function, we cannot consider these as the
solutions of the equations. However, 3(1 has been decomposed into various

components so that the behaviour of X and cs(z.t) can be more easily
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found. \Mhen we take the inverse transform of Eq. (3-95a), if (p - isg +r) #

0, we have

’ +
(%; SYXCE D S iv'”'j” S M8t Ay (3-96)

since X1a(t=0) = 0. According to Egs. (3-64) and (3-65), we have
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Upon differentiating with respect to t, Eq. (3-97) becomes

i . 7,
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Similarly, we have
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In the same fashion, we have equations for Xz, X3 and X4 which are given

as:
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Within these sets of equations, sg(z,t) is an unknown. In the following

two sections, we will solve these equations in special cases.
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3.B.4 The Steady State of the SRS Modified by the Zeroth-Order Density

Matrix
In this section, we will discuss the steady state solution for

u%)(z). We assume that the pulse length of the pumping field is much
larger than the relaxation time while the flopping period is much less
than the relaxation times. We consider, generally, that the delay time
for the pumping field is short so that the flopping character of the
zeroth-order density matrix is significant. If the pulse length of the
pumping field is long, ng)(z) and cg(z) can be studied in the steady
state so that the time derivatives on the left-hand side of Egs. (3-98)
to (3-101) vanish. Thus we have
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These sets of equations are algebraic. The sum of the components in

Eq. (3-102) gives rise to Xgs which represents the component of p%g)(z)
arising fromthe steady state solutions of the zeroth-order density

matrix. This component is solved as

x_s =X. == bmy&:%"g_‘m

2

3-106
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l_,:a»a X =L@ (e

The sum of the remainder of the components in Eqs. (3-103) to (3-105)

gives rise to the component of p%g)(z) arising from the transient

solutions of the zeroth-order density matrix, i.e.,
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In Eq. (3-107), we notice that the term in the bracket [ ] is equal to
the sum of the terms with p=0 in the brackets in the equations from
Egs. (3-84) to (3-86). With the help of Eq. (3-77), we evaluate readily
that

:X:*_=: o
Therefore, the transient part of the solution of the zeroth-order density
matrix makes no contribution to pgg)(z) in the steady state. Then we

have
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where the constants Aps By and C; are given in Eq. (3-87). It is not
difficult to verify that Eq. (3-108) is equivalent to Eq. (3-58) since
s 0. According to Eq. (3-44) and Eq. (2-32), the nonlinear

susceptibility can be given as
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where Ysg is given in Eq. (3-18). The corresponding gain function is

given as
G,= £ zé‘f ( ) e k™ 1B
nh\Q al™ r_~ ma 1= !
it - B, 0L
Coe (m-m + P [ga<) 5 T

It is worth noting that in the special case for the zero intensity of

the resonant field (]Szo]2 = 0) these three components are reduced to
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one component with the centre located at Aw' = 0 and is reduced to the

case of ordinary SRS. It can also be shown that Gs is identical to G

in Eq. (3-63).

3.B.5 The Flopping of ogé)(m) in the Stationary State and the Gain

Function for the SRS

We have verified that the transient part of the solutions of
the zeroth-order density matrix will not have any contribution to SRS

in the steady state in the last section. It is worthwhile to

investigate the periodical modulation on p;g)(l,t) by the driving of

the transient zeroth-order density matrix. In this section, if the

frequency of the periodical modulation is assumed to be 4w’ which is

subject to verification, then Egs. (3-99) to (3-101) can be written as
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(3-112)

(3-113)
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Due to this modulation, we can write
@) ’ ey
P Gy = X' e et
1o

(3-114a)

¥ > cadFE
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where x":(z) and tg’(z) are time-independent. By substituting Eq. (3-114)
into Eqs. (3-111) to (3-113) and solving for x;;(z), we have
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In this equation, X1s arising from the zeroth-order density matrix in

the steady state, has been excluded. The coefficients are given as

A= A + A

B=0B0 8 - B

Gl G = e T C‘ (3-116)
p = D3+ Dg

o= B by
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The coefficients on the right-hand side are given by Eq. (3-88) to
(3-93). The Maxwell wave equation corresponding to eg'(z), according to

Eq. (3-46), is given as

E
—S% m comia L(J—.,{ e w)ﬁh 5’* e (g (3-117)

This equation is valid only when the approximation of a slowly varying
zg(z,t) with time can be used. This requirement is justified since we
assume that 9 << wg- In order to carry out the calculation for xt‘(z),

we find it is convenient to write
{g ’
20 = 2 fep) T Hiip e ey (3-118)

with the equations for the components
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For the special case when a strong collision model is used, we can set

=0 and a = 8. Thus we have

| 5 -_ ‘_%) *
L G ‘El ’%”gk (3-121)
where
_g*— ke I_— (,QQQ‘,: . _—Kﬂa"‘ﬂ‘ ;_m\) e—-/—fl*,
* S e+
(3-122)

iute

o %@m‘w, 60
A\ o ) i(sd-0) -rPJ

In these equations, Y50 is small in comparison with ny when @ >> T
and, hence, is omitted. The gain function can be obtained from Eq.
(3-117) and Eq. (3-121). The gain function 6y arising from the

modulated second-order density matrix can thus be given as

Gk_ 4“* 3 Q«-Ygr (3-123)

where

\ \ ~ 1\&\
(o e bl ™

_ e
° /gf

Which has been given in Eq. (3-61a).

A
=

The real part of f*t‘ can be found as
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R | ¥ =0k k. _l.w\cwtnh,@,p (a1 conto + CRMOLE,
e e x ’ﬂ-—n’*r‘)'—'“a—'-——"
(A0 r*

) X (3-124)

(A\Cl.\w_‘ WY (- eo R~ TR

S e ¢ oRt JoREhie Tl o
AL ol (e

According to Eq. (3-123), the real part of f: describes the distribution
of the gain of SRS under the present investigation. It is very important
to notice that f: does not have a reduction factor (1 + nzlw') which

is present in the function f* in Eq. (3-61). The gain is, therefore,
comparable with the gain for ordinary SRS. However, the features of
the gain function in the present study are quite different from those

of ordinary SRS due to the absence of the reduction factor.

In the following, some special cases will be discussed.
(1) ety =0+ 2m, & is an integer

In this case, for & = even numbers, sin oty = 0 and cos et = 1,
Eq. (3-124) can be written as

PQJ{; eh[ Lo ot wd

Qe

a4+ QL

wdsatr e (3.195)
L ledirt vagt o esQ
Ess ol o ]
For @/t =5, t = 0 and g = 0, Real f: versus Aw'/T has been plotted in
Fig. 3-3. When we compare this figure with the corresponding curve in
Fig. 3-1, we find it is extremely interesting that the two curves are

similar in shape but different by a factor of 25, approximately, in
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magnitude. The curve in Fig. 3-3 is more similar to the correspond-

ing Real f* x (1 + 92/1“2) in Fig. 3.2. This fact shows that the gain
function for the SRS driven by the flopping of the transient zeroth-
order density matrix is much larger than that obtained when the zeroth-
order density matrix is in the steady state. In Fig. 3-3, we have two
positive gains near Aw'= * 673 i.e., wg = g ¥ 6T, where Ugg = W T 8o
The gain is about 9/8 of that of the ordinary SRS. Therefore, we

expect two Stokes components shifted to opposite sides of the ordinary
component of the SRS by approximately 6r for the case @/T = 5. In this
figure, we also have two absorption maxima located approximately at

Aw' = + 41 for @/T = 5. It is very important to notice that the
absorption on the Stokes side indicates the gain on the anti-Stokes

side. This fact has been verified in the Appendix. For the case

9/T = 5, the frequencies for the anti-Stokes components are wy = o ¥ 4r

ao

where + w,, and the gain is only 1/8 of that of the correspond-

ag = 4 @ g
ing Stokes component.

In general, by using Eq. (3-125), we can verify that

W, = W, T =W, tQL (3-126a)

COn & 00y, HE-Nic cta. (3-126b)

where @ >> T and to = 0. Since @/T >> 1, the term 1/2 in the bracket
of Eq. (3-125) can be omitted. The gains (Stokes and anti-Stokes) are

.S
proportional to the value (é{flu\lﬂ’)érn_ ) (ﬂ."—r r?) which is
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approximately equal to @/4r. According to Eq. (3-123), the maximum gains
for the Stokes components are approximately 9/8T times the gain for the
frequency-matched mode of ordinary SRS. Since we assumed that @ >> T,
the factor %% may be larger than one and, thus, the gains may be larger
than that corresponding to ordinary SRS. The gains for the anti-Stokes
components are comparable with those for the Stokes components but

different by a factor of ka/ks it 2 % and the index of refraction

8r
for the Stokes and the anti-Stokes components is assumed to be the same.

The ratio of ka/ks is approximately equal to one if w, >> w,, and, hence,

L 10
we may ignore the difference due to this ratio in our discussion.

If 2 = even numbers other than zero and ty is not zero, we
have cos Slto =zl s nto = 0 and the curve for Real f’t* will be of the
same shape as that in Fig. 3-3, but the magnitude is reduced by a
factor exp (- nr/a ). This factor is approximately equal to one if &
(or to) is small and @/T is large. The frequencies for the Stokes
components and the anti-Stokes components are the same as those given
in Eq. (3-126).

If & is an odd number, we have cos oty = -1 and sin at, = 0,
the curve for Real f;‘ in Fig. 3-3 will be inverted. The frequencies of

the component on the Stokes side and on the anti-Stokes side are,

respectively,

Wy & W, T@Q-M &= O +Q (3-127a)

(CEIRC NS b Al G T e IR S (3-127b)
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when @ >> . The magnitudes of the gains are approximately % % exp (-2nr/R)
times that of ordinary SRS if &£ is small.

(2) aty = n/2 + n and & is an integer

In this case, Eq. (3-124) can be written as

L2
-tk e
Rl f =™ [- e cmay . o

I \ b
X(@\S-rn)-m g )] (3-128)

We first consider nto = /2, then sin at, = 1, ‘cos at, = 0 and
exp (- I‘to) =1,if @/r >> 1. The curve is plotted in Fig. 3-4. We see
that two negative gains appear at Aw' = + @, which give rise to two

anti-Stokes components at frequencies

Ba= Wa, £ O (3-129)
The gain function for each compoent is of Lorentzian shape with half
maximum width equal to r. The magnitudes of the gains of the two co-

ponents are roughly 4"ka N
7

ar 9

If & is other than zero, but an even number, the gain function
remains the same as that given in Fig. 3-4, except for the damping
factor exp (- rto). This factor is approximately equal to one if g is
small.

Now, if £ = an odd number, the curve in Fig. 3-4 will be
inverted, and we expect positive gains for the Stokes components. The

frequencies for the Stokes components are



Aw'/T

-

Fig. 3-4. The gain function for SRS arising from p%)(m) flopping in the stationary state.

This curve is plotted for @/T = 5 and delay time e ;—n'

96
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W= O, T (3-130)

The shape of the gain function is again Lorentzian and the magnitudes

4rk,
of the gains of these components are approximately ~—25— X—r go.
n

(3) Real ft as function tg

In the above two special cases, we have verified the gain as a
function Aw'/T at some constant values of the delay time to. We con-
sider, in this instance, the gain as a function of to'

For the present purpose, real part of f{ may be expressed as

follows .
Qh!f} 7 ]E* & “L (3-131)

where
f* " c—v*‘ fr-’ @t Lo (O, + B) (3-131a)
T_‘— e‘pt FHQ8 ot ~0,, (130
s (& ) (3-131c)

0, =tem"(gx=as
As usual, @>>T is assumed, and therefore the term % cost, in Eq.
(3-124) is negligible in comparison with f, and f_.
According to Eq. (3-131c), 64 = O when either Aw'@ =
or I' = 0. For AwtQ = = we obtain Real f_é 0. For the condition
T = 0, the function f_ and f_ can be given respectively as

il

L L2
s .Cl‘}r d o= ey
-f, 4(a0-0) a0 -5‘ - 4L+
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Here, the amplitude parts of f,_ and f_ show strong resonance at
Aw' = Q and Aw' = -2 respectively. In real cases the value of I' can not
be zero, namely, behavior of either f, or f_ will be typical damped

oscillatory functions of to as long as a>>T.

3.B.6 Summary of the Results and Conclusion

The gain function of the SRS in the steady state is derived in
Section 3.B.1 for the case when the zeroth-order density matrix is
in the steady state. The gain function under this circumstance is
drastically reduced. In Fig. 3-2, we have very weak positive and
negative gains (absorptions) on opposite sides of the ordinary Stokes
components when 2>>T . These weak gains and weak absorptions are
difficuit to verify experimentally. We hoped that the steady state
of the element of the second-order density matrix, p%)(m), would give
rise to an appreciable steady state gain far the SRS if we included the
transient solutions of the zeroth-order density matrix in our
consideration. In order to solve this problem, we were able to simplify
the second-order density matrix equations by constructing convalutin
products so that Laplace transforms are applicable. Unfortunately, we
verified that the transient solutions of the zeroth-order density matrix
does not make any contributions to the gain function of the SRS in the
steady state. However, our simplified equations were advantageous in
considering p%)(m) to be modulated in a stationary state due to the
driving of the zeroth-order density matrix which is flopping in the

transient state.
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The frequency modulations of the density matrix element o%g)(w)
is approximately equal to the flopping frequency when @ >>T'. When
the delay time is equal to a multiple of half or whole periods, we
verified that two Stokes components and two anti-Stokes components are
shifted by an equal amount of flopping frequency to opposite sides of
the ordinary Stokes component and anti-Stokes component, respectively.
The gain maxima are approximately equal to the gain of the ordinary
Stokes components times 2/8I'. When the delay time equals (22 + 1)/4
periods, we obtained two anti-Stokes components if 2 is an even
 number and two Stokes components if & is an odd number. The frequencies
of the Stokes and the anti-Stokes components are, respectively,
wg = wgq + 0 and Wy % g + Q. The gains for these components are
approximately @/4r times the gain of the ordinary Stokes SRS. We
verified also the damped oscillatory curve for the gain function vary-
ing with the delay time to.
Our results can only be explained by the second-order density
matrix. Through our derivations, we have used the oscillatory term of

the population difference Ap(()f)(
(2
il

p((ﬁ)(m) which is flopping in the stationary state and gives rise to the

m—mR) and the off-diagonal element

)(ZmR -w). The existence of these elements determines the element

scattered fields studied in this thesis.
At last, nevertheless, our approach is not only capable of

solving the present problem, but it is also applicable in solving the
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problem of the absorption and emission spectrum of the strongly driven
two-level system. This fact is clearly shown when we compare our

Eq. (3-39) with Eq. (3-6) in Ref. 18b. We feel it is easy to extend
to the present approach and its results in the study of the absorption
and emission spectrum of the strongly driven system. However, this
study is beyond the scope of the present work; thus, we will not

consider this any further here.
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APPENDIX

The negative gain for a Stokes component at frequency wg =
w - indicates a positive gain for an anti-Stokes component at
frequency wy = + w. This fact can be verified as follows. Throughout
the derivation for the Stokes component, we replace all parameters of the
pumping field by those of the anti-Stokes scattered field, and a1l those
of the Stokes scattered field by those of the pumping field. According
to Eq. (3-58) or Eq. (3-121), the amplitudes of the Fourier component

of the second-order density matrix element can be derived as

(8} \ "~
(W) = & - “E =
P’o ekl g Y. (A-1)
In Eq. (A-1), we define v = 0y - and
*
B _( g I &g, & )
ST T

which is the function corresponding to Eq. (3-54c). The function f; can
be either f* in Eq. (3-61b) or f; in Eq. (3-122) depending on pgg)(w) in
the steady state or in the stationary flopping state. The nonlinear

polarization at frequency u,, according to Eq. (3-44) and Eq. (A-1), can

be written as

oo b el il
’f’w«’“z(mfair—q}’““' il f«“»"?f? )
A-3

NL
= fx Ca) E,430



105

The imaginery parts of XNL(ma) and XNL(mS) are different by sign and,
therefore, the negative gain for a Stokes component gives rise to the
positive gain for the corresponding anti-Stokes component. The
magnitudes of gains are approximately the same if we do not distinguish
the difference between the factors lhrksln2 and 4"ka/"§ where kS’" and
ka’"a are propagation vectors and indexes of refraction for the Stokes
and the anti-Stokes components, respectively. As a matter of fact, ka
is very close to ks and n is very close to "a if w

>> - w, Oor
Ya

i L

w - g since wy and ug are not supposed to be resonant with any pair

of energy levels of the molecules.
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