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ABSTRACT 1 

Many animals produce multiple types of breeding vocalizations that, together, constitute a 2 

vocal repertoire. In some species, the size of an individual's repertoire is important because it 3 

correlates with brain size, territory size, or social behaviour. Quantifying repertoire size is 4 

challenging because the long recordings needed to sample a repertoire comprehensively are 5 

difficult to obtain and analyze. The most basic quantification technique is simple enumeration, 6 

where one counts unique vocalization types until no new types are detected. Alternative 7 

techniques estimate repertoire size from subsamples, but these techniques are useful only if 8 

they are accurate. Using 12 years of acoustic data from a population of rufous-and-white wrens 9 

in Costa Rica, we used simple enumeration to measure the repertoire size for 40 males. We 10 

then compared these to the estimates generated by three estimation techniques: Curve Fitting, 11 

Capture-Recapture, and a new technique based on the Coupon Collector’s Problem. To 12 

understand how sampling effort affects the accuracy and precision of estimates, we applied 13 

each technique to six different-sized subsets of data per male. When averaged across subset 14 

sizes, the Capture-Recapture and Coupon Collector techniques showed the highest accuracy, 15 

whereas the Curve Fitting technique underestimated repertoire size. Precision (the average 16 

absolute difference between the estimated and true repertoire size) was significantly better for 17 

the Capture-Recapture technique than the Coupon Collector and Curve Fitting techniques. Both 18 

accuracy and precision improved as subset size increased. We conclude that Capture-Recapture 19 

is the best technique for estimating the sizes of small repertoires. 20 

Key words: Capture-Recapture, Coupon Collector’s problem, Curve Fitting, repertoire size, 21 
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INTRODUCTION 23 

 Variation in vocal characteristics is associated with fitness in many species. For example, 24 

structural variation in vocalizations can signal fighting ability and aggression (Linhart, 25 

Slabbekoorn, and Fuchs, 2012), facilitate adaptive antipredator responses (Manser, 2013), and 26 

enable animals to communicate effectively in the presence of variable background noise 27 

(Slabbekoorn, 2013). Many animals have multiple types of breeding vocalizations that they can 28 

produce, and, together, these constitute an animal’s vocal repertoire. Repertoire sizes vary 29 

considerably within species and populations (e.g. Peters et al., 2000), and this variation has 30 

been correlated with reproductive success (e.g. Reid et al., 2004), territory size (e.g. Aweida, 31 

1995), and cognitive abilities (e.g. Sewall, Soha, Peters, and Nowicki, 2013). Our understanding 32 

of the adaptive significance of animal repertoires hinges on accurate and precise quantification 33 

of repertoire size. 34 

 Determining an animal’s repertoire size can be a challenging task. The most basic 35 

technique is simple enumeration, which involves counting the number of unique types of 36 

vocalizations that an individual produces. Ideally, an individual would be followed for its entire 37 

lifetime to ensure that no vocalizations are missed. Because this is impractical, a rule must be 38 

established to limit sampling effort to a practical level. The sampling effort required for simple 39 

enumeration should reflect the effort typically needed to quantify an individual’s entire 40 

repertoire, based on previous findings that involve thorough recordings. If no previous findings 41 

exist, then the sampling effort should be high enough that the researcher obtains many new 42 

recordings without detecting any new vocalization types. The amount of effort required to 43 

quantify repertoire size using simple enumeration is influenced by the size of the animal’s 44 



repertoire, the pattern with which the animal selects its vocalizations, the frequency with which 45 

the animal vocalizes, and whether an animal is a closed-ended learner (i.e. all songs are learned 46 

early in life and adult repertoire size is fixed) or an open-ended learner (i.e. songs continue to 47 

be learned throughout life). Simple enumeration can work well for species with small repertoire 48 

sizes, species that cycle through their entire repertoire cyclically, and species that vocalize often 49 

(Botero et al., 2008). Simple enumeration requires much greater effort for species with larger 50 

repertoires, species that choose different types of vocalizations with different probabilities or a 51 

broader range of probabilities, and species that vocalize rarely. 52 

 Several estimation techniques have been developed to reduce the amount of effort 53 

required to obtain an accurate measure of repertoire size. Two common techniques are Curve 54 

Fitting and Capture-Recapture. The Curve Fitting technique uses the formula described by 55 

Wildenthal (1965) to fit a line of best fit to a small subset of data. The horizontal asymptote of 56 

the line then becomes the repertoire size estimate. Curve Fitting has been used for repertoire 57 

size estimation in several species (Derrickson, 1987, Botero et al., 2008). 58 

The Capture-Recapture technique involves a different approach that is based on a 59 

comparison of the number of unique types of vocalizations recorded during two or more 60 

sampling occasions. The proportion of vocalization types from an initial sample that are 61 

observed again in subsequent samples is then used to estimate total repertoire size 62 

(Baillargeon & Rivest, 2007). Capture-Recapture has been popular for estimating the sizes of 63 

populations in ecological studies, but proves equally useful for estimating animals’ repertoire 64 

sizes (Garamszegi et al., 2002, Garamszegi et al., 2005).  65 



Previous studies on the accuracy of Curve Fitting and Capture-Recapture techniques 66 

have yielded inconsistent findings. Garamszegi et al. (2005) demonstrated that Capture-67 

Recapture could accurately estimate a bird's syllable repertoire size using only 15 songs. The 68 

method was especially useful for species with large repertoires and heterogeneous selection 69 

probabilities (Garamszegi et al. 2005). In another study that focused on species with large 70 

repertoire sizes (³ 160 element types), Botero et al. (2008) found that Capture-Recapture and 71 

Curve Fitting were both inaccurate when the sample size was small, and that they only became 72 

accurate when the sample size was so large that simple enumeration was also feasible (Botero 73 

et al. 2008). 74 

 A new estimation technique based on the Coupon Collector’s Problem (Erdös and Rényi, 75 

1961; Feller, 1968; Dawkins, 1991) was recently debuted by Kershenbaum, Freeberg, and 76 

Gammon (2015). The Coupon Collector’s Problem describes a situation in which all items in a 77 

set must be collected, and where sampling occurs with replacement. Under this model, the 78 

initial items are collected rapidly, and the last few items take much more extensive sampling to 79 

acquire. This situation has obvious parallels to the sampling of an animal’s vocal repertoire, 80 

particularly when the animals select their vocalization types at random (Kershenbaum et al., 81 

2015). Observed repertoire size grows rapidly at the beginning of sampling, but then tapers off 82 

as more of the repertoire is sampled, until it plateaus when the entire repertoire has been 83 

sampled. Using a modification of the Coupon Collector’s Problem that accounts for unequal 84 

probabilities of each song type (i.e. heterogeneous selection probability), Kershenbaum et al. 85 

(2015) showed that this technique is a more accurate predictor of repertoire size than other 86 

estimation techniques for species with heterogeneous selection probability. Their study 87 



estimated repertoire sizes at the population level, rather than the individual level, and so 88 

whether the Coupon Collector technique provides accurate estimates of the repertoire sizes of 89 

individual animals remains to be studied. 90 

 In this study, we compare repertoire size estimation techniques by analyzing historical 91 

repertoire size data from a population of rufous-and-white wrens (Thryophilus rufalbus). We 92 

compare the Curve Fitting, Capture-Recapture, and Coupon Collector techniques in terms of 93 

their ability to produce repertoire size estimates that match with the results from extensive 94 

simple enumeration. Rufous-and-white wrens are neotropical songbirds found in forests 95 

throughout western Central America and northwestern South America. Males of this species 96 

are closed-ended learners that sing one song type repeatedly before switching to a different 97 

song type, and may cycle through the same song types many times before singing their entire 98 

repertoire (i.e. an eventual variety, non-cyclic singing style; Mennill & Vehrencamp 2005, 99 

Hennin et al. 2009). When song type switches occur, certain song types are selected more often 100 

than others, giving a heterogeneous selection probability to each song type in their repertoire 101 

(unpublished data). Repertoire estimation techniques are thought to perform poorly when 102 

animals are undersampled (Derrickson 1987) or when they do not select song types with equal 103 

probability (Kroodsma 1982); this makes rufous-and-white wrens an interesting test case for 104 

studying these three estimation techniques. 105 

 Our first goal was to determine the repertoire sizes of male rufous-and-white wrens 106 

using twelve years of historical data collected in the field in Costa Rica. Many of our study 107 

animals have been recorded extensively, and we could quantify their repertoire size with 108 

confidence using simple enumeration. Our second goal was to compare the accuracy and 109 



precision of repertoire size estimations from the Curve Fitting, Capture-Recapture, and Coupon 110 

Collector techniques. We applied these techniques to different-sized subsets of our data and 111 

compared the repertoire size estimates to the repertoire size we determined through simple 112 

enumeration, which we used as a proxy for the animals’ true repertoire sizes. 113 

METHODS 114 

Recording Vocal Repertoires 115 

 Data were collected at Sector Santa Rosa, Area de Conservación Guanacaste, Costa Rica 116 

(10°40’ N, 85°30’ W), where our research group has been conducting a long-term study of 117 

communication behaviour in a colour-banded population of rufous-and-white wrens since 118 

2003. We analyzed data from 40 male wrens that we recorded during 1 to 7 successive 119 

breeding seasons (average ± SE: 3.7 ± 0.2) between 2003 and 2014. Birds were recorded 120 

between March and July of each year, coinciding with the onset of the breeding season of this 121 

species, when male vocal output reaches its peak (Topp & Mennill 2008). Birds were captured 122 

in their territories using mist nets and then banded with a unique combination of three 123 

coloured leg bands and a metal band to facilitate identification in the field. Rufous-and-white 124 

wrens are renowned for their vocal duets (Mennill & Vehrencamp 2008, Kovach et al. 2014), 125 

but we focused the current analyses on the vocalizations produced by males (both songs 126 

produced as solos and as contributions to duets), given their high song output and our 127 

extensive sampling of their songs (Mennill & Vehrencamp 2005; Topp & Mennill 2008). 128 

Analysis of Field Recordings 129 



 We collected two types of field recordings: focal recordings and automated recordings. 130 

Focal recordings involved a recordist following a male through his territory at distances of 10 to 131 

30m, dictating the bird’s identity after each song. All focal recordings were collected between 132 

0445 h and 1100 h. Focal recordings were collected with a shotgun microphone (Sennheiser 133 

MKH70 or ME67) and a solid-state digital recorder (Marantz PMD660 or PMD670; 22,050 Hz 134 

sampling rate, 16-bit encoding accuracy, WAVE format). Focal recordings were collected every 135 

year between 2003 and 2014, and they comprise the majority of recordings in this analysis 136 

(approximately 60%).  137 

To complement focal recordings, and to sample birds’ repertoires over longer periods 138 

than was possible with focal recordings, we collected automated recordings with three 139 

different types of equipment, all used to sample birds’ songs at times when focal recordists 140 

were not present. (1) Microphone array recordings were collected in 2003 and 2004 by placing 141 

an array of eight stationary omni-directional microphones throughout birds' territories 142 

(sampling frequency: 22,050 Hz; full equipment details in Mennill et al., 2006). (2) Automated 143 

recorders consisting of elevated omni-directional microphones (Sennheiser ME62) and solid-144 

state digital recorders (Marantz PMD670) were placed near the centre of the focal pair’s 145 

territory in 2007 through 2010 (sampling frequency: 44,100 Hz; full equipment details in 146 

Mennill, 2014). (3) Automated Song Meter recorders (model: SM2-GPS, Wildlife Acoustics Inc., 147 

Concord, Massachusetts, USA) were placed in the centre of a pair’s territory in 2011-2014, 148 

usually within 10m of the focal pair’s nest (sampling frequency: 22,050 Hz; full equipment 149 

details in Mennill et al. 2012). We confirmed the identities of the birds in these unattended, 150 

automated recordings by ensuring that the song types matched between the focal recordings 151 



and the automated recordings; in all cases the songs recorded with the automated recorders 152 

unambiguously matched with the songs in the focal recordings of the known male from the 153 

same area. We distinguished between the voices of males versus females following previously 154 

established criteria (see Mennill and Vehrencamp, 2005). Our ongoing field studies involve re-155 

sighting the birds throughout the field season to monitor their breeding behaviour, and we 156 

ensured that focal animals were located in the same territory before and after automated 157 

recordings were collected. Given that our study birds have large breeding territories (territory 158 

sizes range from 5678 ± 548 m2 to 13497 ± 1043 m2; Osmun and Mennill, 2011, Mennill and 159 

Vehrencamp, 2008), with substantial undefended spaces between adjacent territories (Osmun 160 

and Mennill 2011), our automated recorders placed centrally within birds’ territories recorded 161 

only the target individuals. Any songs produced by rare territorial intruders were readily 162 

distinguished from the resident birds by cross-referencing repertoire data of neighbouring 163 

animals; even though song types are shared between individuals (Mennill & Vehrencamp 2005), 164 

shared song types have individually distinctive characteristics. 165 

Assigning Songs to Song Types 166 

 Rufous-and-white Wrens have vocal repertoires of songs, where each song type is 167 

readily classified into different song types based on the visual and aural characteristics of the 168 

three sections of their song: the introductory syllables, trill notes, and terminal syllables (as in 169 

Mennill & Vehrencamp 2005; Barker 2008). Following previous work by Barker (2008), songs 170 

were classified manually into types by comparing structural characteristics such as syllable 171 

length, minimum and maximum frequencies, frequency of maximum amplitude, bandwidth, 172 

and inter-syllable interval for the three song sections. In an analysis of song type categorization 173 



that relied on discriminant analysis with cross-validation, Barker (2008) showed that fine 174 

structural measurements are useful for accurately distinguishing different song types. 175 

 We annotated the audio files from all focal and automated recordings in SYRINX-PC 176 

sound-analysis software (J. Burt, Seattle, Washington, USA). We annotated each song and 177 

recorded its song type, manually comparing each song to a library of all previously recorded 178 

song types from that animal. When a bird produced a song that had a different song type from 179 

the previous song, we counted it as a song type switch. We determined the repertoire size of 180 

each bird from the total number of song types recorded throughout the entire study for that 181 

bird. Using these data, we constructed accumulation curves that showed the number of song 182 

type switches sampled on the x-axis versus the number of unique song types detected on the y-183 

axis for each bird (Figure 1). Rather than using the total number of songs recorded, we used 184 

song type switches as the unit of interest when calculating repertoire size (as in other studies, 185 

for example, Valderrama et al. 2008; Sosa-López & Mennill 2014a, 2014b). We did this because 186 

rufous-and-white wrens sing with eventual variety, repeating a given song type, on average, 187 

eleven times before switching to a new song type (Mennill & Vehrencamp, 2005). Indeed, an 188 

animal may sing a specific song type more than 100 times in a row before switching to a new 189 

song type, leading to large plateaus in song type collection if sampling effort is measured 190 

relative to number of songs sung instead of number of song type switches. Within these long 191 

bouts of repeated songs, the song type of subsequent songs are not independent. For this 192 

reason, we treated song type switches as our unit of analysis. 193 

We used simple enumeration to measure the actual repertoire size of each rufous-and-194 

white wren because individuals used in this study had been recorded extensively (see Results). 195 



This estimate was used as the benchmark to which the other three techniques were compared. 196 

Only individuals with 150 or more recorded song type switches were used in the analysis. We 197 

chose this number because 95% of the individuals had no new song types discovered after 150 198 

song type switches using simple enumeration. 199 

Repertoire Size Estimation 200 

 To determine the effect of sampling effort on the accuracy of each estimation 201 

technique, we created subsets of the data for each bird, using the first 25, 50, 75, 100, 125, and 202 

150 song type switches recorded from each individual. This allowed us to examine the 203 

estimates produced by each technique from different amounts of sampling effort. We used R (R 204 

Core Team, 2014) to generate data subsets and to generate all repertoire size estimates. The 205 

raw data and the relevant R code are included in the online supplementary material. 206 

For the Curve Fitting technique, we generated prediction curves for each possible 207 

repertoire size between 1 and 30 song types (i.e. a range that encompassed repertoire sizes we 208 

have encountered in our population in the last 12 years). We used the formula presented in 209 

Wildenthal (1965): 210 

n = N (1 – e-T/N) 211 

where n is the number of unique song types expected in a sample containing T song type 212 

switches; N is the assumed repertoire size. Thus, for each possible repertoire size between 1 213 

and 30 song types, we generated a unique curve with an asymptote at that value. We applied 214 

an iterative process in which we generated a predictive model for each possible repertoire size, 215 



and then assessed the fit of each model by comparing it to the observed data using a least 216 

squares technique. Specifically, for each subset size and for each male, we selected the model 217 

that generated the smallest value when the absolute differences between the predicted and 218 

observed values were summed across all song type switches. The N from this model became 219 

the best estimate of repertoire size. 220 

 For the Capture-Recapture technique, we used Rcapture (R package; Rivest & 221 

Baillargeon, 2014) to estimate repertoire size. For each combination of male and subset size, 222 

we created a capture history that indicated which song types were captured during which 223 

capture occasions (0 = not captured; 1 = captured). Following Garamszegi et al. (2005) and 224 

Botero et al. (2008), we defined a capture occasion as 5 song type switches, which divided 225 

evenly into all of our subset sizes. Our Capture-Recapture models were based on a closed 226 

population, since our preliminary analyses suggest that repertoire size does not change 227 

throughout an adult's lifetime in this species (i.e. Rufous-and-white Wrens are closed-ended 228 

learners; Mennill & Vehrencamp 2015; DJM unpublished data). Rcapture can incorporate 229 

several different sources of variation that can each affect capture probabilities (Baillargeon & 230 

Rivest, 2007). We used Darroch's Mh model, which allows the probability of capture to vary 231 

among units (Darroch et al. 1993). This model thereby accounts for the possibility of common 232 

and rare song types when predicting repertoire size. 233 

 The Coupon Collector's Problem is based on the idea of collecting a set of coupons that 234 

are hidden in cereal boxes (Dawkins 1991; Feller 1968). If there are N different coupons, it 235 

estimates the probability of collecting exactly i different coupons after purchasing m cereal 236 

boxes. The coupons are drawn at random and with replacement. For our study, we used the 237 



Coupon Collector's Problem to estimate the probability of observing i of N different song types 238 

after sampling m song type switches. We implemented the Coupon Collector’s Problem using a 239 

Monte Carlo simulation. For each possible repertoire size (N), and for each possible number of 240 

song type switches (m), we drew 100,000 independent samples. Each sample contained m 241 

songs and was drawn at random and with replacement from the repertoire of N song types. As 242 

in Kershenbaum et al. (2015), we modified the Coupon Collector’s Problem to allow for unequal 243 

probabilities of song type selection. We set the probability of selecting each song type based on 244 

a Zipfian distribution, which has been used in previous studies to model the frequency of words 245 

in human languages, as well as the frequency of song types in avian vocal repertoires (Zipf 246 

1949; Lemon & Chatfield 1973). Probabilities are calculated by the formula: 247 

𝑝(𝑘; 𝑠, 𝑁) =
1/𝑘!

∑ (1/𝑛!)"#$
"#%

 248 

where p(k; s, N) is the probability of selecting the kth most common song type from a repertoire 249 

of N song types; s is the absolute value of the slope of the regression of the frequency of each 250 

song type on its corresponding rank, when plotted on a log-log scale. We used our raw data to 251 

calculate s for each subset size included in our analyses (25, 50, 75, 100, 125, or 150 song type 252 

switches). For each possible repertoire size (i.e. 1 to 30), and for each possible number of song 253 

type switches (i.e. 1 to 150), we calculated the expected number of song types as the average 254 

number of song types observed among the 100,000 samples. We used these values to create a 255 

prediction curve for each repertoire size. As in our analysis of the Curve Fitting technique, we 256 

assessed the fit of each prediction curve by comparing it to the observed data with a least 257 



squares technique. The N from the model that minimized the least squares was selected as the 258 

best estimate of repertoire size. 259 

Statistical Analysis 260 

 We used a linear mixed-effects model in the R package nlme (Bates et al. 2015) to assess 261 

the effects of estimation technique and subset size on the accuracy of repertoire size estimates. 262 

We defined “accuracy” as the average difference between the repertoire size estimates 263 

generated with a particular technique and the true repertoire sizes determined through simple 264 

enumeration. In general, smaller deviations from zero indicated better accuracy; negative 265 

values indicated that a method was underestimating the true repertoire size, whereas positive 266 

values indicated that a method was overestimating the true repertoire size. We included the 267 

differences as a dependent variable in our analysis, and the estimation technique (i.e. Curve 268 

Fitting, Capture-Recapture, and the Coupon Collector technique), subset size (as a covariate), 269 

and 2-way interaction as independent variables with fixed effects. We did not include an 270 

intercept for the fixed effects because the hypothesized difference between the estimated and 271 

observed repertoire sizes was zero. To facilitate the interpretation of model coefficients, we 272 

centered subset size on zero. Bird identity was included as a subject variable with random 273 

intercepts to account for repeated measurements from the same individuals. We fit the model 274 

using restricted maximum likelihood estimation, and concluded that a particular estimation 275 

technique was accurate if the difference between its repertoire size estimates and the true 276 

repertoire sizes could not be distinguished statistically from zero. 277 

 We used a similar analysis to assess the effects of estimation technique and subset size 278 

on the precision of repertoire size estimates. In this study, we consider precision to be a 279 



measure of consistency in estimation. In estimating repertoire size, one might generate some 280 

overestimates and some underestimates of true repertoire size, but an average value that 281 

matches the true repertoire size; this is a situation with high accuracy, but low precision. We 282 

defined “precision” as the average absolute difference between the repertoire size estimates 283 

generated from a particular technique and the true repertoire sizes determined through simple 284 

enumeration. Smaller differences in these absolute values would indicate more consistency in 285 

the estimation of repertoire size, and therefore better precision. We again used a linear-mixed 286 

effects model as in our analysis of accuracy (above). We compared precision among the three 287 

estimation techniques using Tukey post-hoc comparisons, which we implemented in the R 288 

package multcomp (Hothorn et al. 2008). 289 

 All tests were two-tailed, and results were considered significant when p ≤ 0.05. Both 290 

models complied with the parametric assumptions of linearity, homoscedasticity, and 291 

normality, as revealed by visual inspection of residual plots. 292 

RESULTS 293 

Enumerated Repertoire Size 294 

 Simple enumeration showed that the 40 male rufous-and-white wrens produced an 295 

average of 11.4 ± 0.3 song types each (mean ± SE; range: 8 – 15 song types), which is in 296 

accordance with a previous enumeration study of this species (Mennill and Vehrencamp, 2005). 297 

These results were based on extensive recordings of each individual (e.g. Figure 1), containing 298 

an average of 3619 ± 374 songs (mean ± SE; range: 744 – 11691) and 447 ± 43 song type 299 

switches (mean ± SE; range: 154 – 1882).  300 



Accuracy of Repertoire Size Estimates 301 

Estimation technique had a significant effect on the accuracy of repertoire size 302 

estimates (linear mixed-effects model: F3,675 = 11.5, p < 0.001; Fig. 2). The Capture-Recapture 303 

technique generated repertoire size estimates that were not statistically different from animals’ 304 

true repertoire sizes (t675 = -1.1, p = 0.283; 95% CI for the difference: -0.8 – 0.2 songs types), 305 

underestimating the true repertoire size by only 0.3 ± 0.3 song types (mean ± SE; Table 1; Fig. 306 

2). The Coupon Collector technique also generated repertoire size estimates that were not 307 

significantly different from animals’ true repertoire sizes (t675 = 0.8, p = 0.444; 95% CI: -0.8 – 0.3 308 

song types), underestimating the true repertoire size by only 0.2 ± 0.3 song types. In contrast, 309 

the Curve Fitting technique significantly underestimated repertoire size, with an average 310 

repertoire size estimate that was 1.0 ± 0.3 song types below the true repertoire size (t675 = -3.4, 311 

p = 0.002; 95% CI for the difference: -1.5 – -0.4 song types; Table 1; Fig. 2).  312 

Subset size had a significant effect on the accuracy of repertoire size estimates, with 313 

larger subset sizes producing more accurate estimates for all estimation techniques. This effect 314 

was manifested through a significant interaction between estimation technique and subset size 315 

(estimation technique: F3,675 = 11.5, p < 0.001; subset size: F1,675 = 2.0, p < 0.001; interaction: 316 

F2,675 = 14.8, p < 0.001). Specifically, the Curve Fitting and Capture-Recapture techniques tended 317 

to underestimate repertoire size more at smaller subset sizes than at larger subset sizes. In 318 

contrast, the Coupon Collector technique tended to overestimate repertoire size more at 319 

smaller subset sizes than at larger subset sizes (Table 1; Fig. 2). 320 



Precision of Repertoire Size Estimates 321 

 The precision of repertoire size estimates was affected significantly by estimation 322 

technique (linear mixed-effects model: F3,675 = 13.3, p < 0.001), subset size (F1,675 = 201.0, p < 323 

0.001), and the 2-way interaction between them (F2,675 = 6.0, p = 0.003). The precision of the 324 

Capture-Recapture technique was 0.9 ± 0.2 song types (mean ± SE; 95% CI: 0.5 – 1.4 song 325 

types), which was significantly better than the Coupon Collector technique (1.4 ± 0.2 song 326 

types; 95% CI: 0.9 – 1.9 song types; Tukey post-hoc comparison: Z = 6.3, p < 0.001; Table 1), but 327 

was statistically indistinguishable from the Curve Fitting technique (1.2 ± 0.2 song types; 95% 328 

CI: 0.7 – 1.7 song types; Tukey post-hoc comparison: Z = 2.2, p = 0.066). The precision of the 329 

Curve Fitting technique was statistically indistinguishable from the precision of the Coupon 330 

Collector technique (Tukey post-hoc comparison: Z = -1.5, p = 0.314). Precision improved with 331 

increasing subset size for all three techniques, although it improved more dramatically for the 332 

Capture-Recapture and Coupon Collector techniques than it did for the Curve Fitting or 333 

Capture-Recapture techniques (Table 1; Fig. 3). 334 

DISCUSSION 335 

 Our comparison of three techniques for estimating song repertoire sizes of male rufous-336 

and-white wrens revealed that the Capture-Recapture and Coupon Collector techniques 337 

produced more accurate estimates than the Curve Fitting technique, and that the Capture-338 

Recapture technique produced more precise estimates than the Coupon Collector and Curve 339 

Fitting techniques. Both Capture-Recapture and Coupon Collector estimates were statistically 340 

indistinguishable from actual repertoire size values based on simple enumeration, whereas 341 



Curve Fitting estimates consistently underestimated the birds’ repertoire sizes. Therefore, we 342 

recommend using either Capture-Recapture or Coupon Collector estimation techniques for 343 

generating accurate estimations of repertoire size, particularly for species with small or 344 

medium sized repertoires, heterogeneous song type selection probability, and closed-ended 345 

learning, like the rufous-and-white wren.  346 

 The Capture-Recapture technique had the best performance of the three techniques, 347 

providing estimates that were statistically indistinguishable from our enumerated calculations 348 

of repertoire size, and doing so even with a small sampling effort. The Capture-Recapture 349 

technique estimated repertoire size to within 0.02 to 0.60 song types, and provided an 350 

exceptionally accurate estimate of repertoire size with 100 or more song type switches (Figure 351 

2). With subsets of just 25 song type switches, the repertoire size estimates derived from the 352 

Capture-Recapture technique provided truer estimates than the Curve Fitting technique, as did 353 

the Coupon Collector technique (Figure 2). Furthermore, the Capture-Recapture technique had 354 

significantly better precision than the other two estimation techniques. Although precision was 355 

similar for the three estimation techniques with small subsets of data, the Capture-Recapture 356 

technique surpassed the precision of the other two techniques at higher sampling levels (Figure 357 

3). Our conclusions are consistent with Garamszegi et al. (2005) who provided evidence that 358 

Capture-Recapture is a compelling technique for estimating repertoire size. 359 

The Coupon Collector technique is a newer estimation technique than the other two we 360 

explore here. In the only other published study of the Coupon Collector technique, 361 

Kershenbaum et al. (2015) found that this technique provided better estimates than the Curve 362 

Fitting and Capture-Recapture techniques. Kershenbaum et al. (2015) generated estimates for 363 



the very large repertoire sizes that exist among a population of animals, instead of the relatively 364 

small repertoire sizes found within individuals. Our study is the first to assess the Coupon 365 

Collector technique for estimating the repertoire sizes of individual animals. This technique was 366 

the only technique that we explored here to over-estimate repertoire size, which occurred only 367 

at our smallest sampling level (25 song type changes). At all higher sampling levels, the Coupon 368 

Collector technique generated accurate estimates of repertoire size.  Overall, the Coupon 369 

Collector technique generated estimates with similarly high accuracy to the Capture-Recapture 370 

technique, but with low accuracy at small sample sizes, and lower precision at all sample sizes. 371 

 The Curve Fitting technique produced estimates that underestimated repertoire size by 372 

an entire song type. This underestimation likely arose due to uncommon song types present in 373 

the repertoires of many rufous-and-white wrens. The Curve Fitting equation devised by 374 

Wildenthal (1965) cannot account for uncommon song types because it is strongly affected by 375 

the rapid presentation of common song types early in the sample. As sampling effort increased, 376 

the Curve Fitting technique produced estimates with better accuracy and precision. Botero et 377 

al. (2008) also explored the Curve Fitting technique for repertoire estimation and drew similar 378 

conclusions that this technique underestimates repertoire size, especially when sampling effort 379 

is small.  380 

 Many of our estimations resulted in under-estimates of repertoire size, including the 381 

Curve Fitting technique estimations at all sampling levels, and the other two estimation 382 

techniques at some sampling levels. Estimation techniques that under-estimate repertoire size 383 

may still be well-suited for determining an individual’s biologically relevant repertoire size. For 384 

example, some birds in our study had song types that were only detected after thousands of 385 



songs and hundreds of song type switches had already been recorded. Additionally, some song 386 

types were very rare, and made up less than 0.1% of a bird’s song production, occurring a few 387 

times across multiple field seasons. Songs that are sung so infrequently that they require 388 

extensive sampling to detect may have little impact on the bird’s life history (Derrickson, 1987). 389 

For example, in sedge warblers, repertoire size affects mate attraction (Buchanan and 390 

Catchpole, 1997), so if females do not take the time to listen for rare song types, then rare song 391 

types will have little to no impact on mate choice. Additionally, individuals may modify their 392 

song type selection based on social contexts, and this could lead to a further decrease in an 393 

individual’s effective repertoire size. For example, Trillo and Vehrencamp (2005) found that 394 

banded wrens modify their repertoire use in the presence of females to increase the 395 

production of song types with specific acoustic characteristics and to song type match with 396 

neighbouring males. Similarly, Hennin, et al. (2009) found that male rufous-and-white wrens 397 

use a subset of their total repertoire when they are trying to attract a mate. Techniques that 398 

consistently under-estimate repertoire size, as we have revealed for the Curve Fitting technique 399 

here, may offer realistic estimates of how other birds assess an individual’s repertoire size by 400 

ignoring rare song types or song types that are not used in specific social contexts. 401 

 Overall, we found that the Capture-Recapture and Coupon Collector techniques provide 402 

the most accurate estimates of repertoire size, and that the Capture-Recapture technique 403 

provides the most precise estimates of repertoire size. The Curve Fitting technique did not 404 

perform as well, tending to underestimate repertoire size to a statistically significant degree at 405 

smaller sample sizes. Future research should explore the use of Capture-Recapture for 406 

estimating actual repertoire size in other species with small repertoire sizes and heterogeneous 407 



song type probabilities. Curve Fitting and Coupon Collector techniques may be useful for 408 

estimating an individual’s biologically relevant repertoire size in contexts where rare song types 409 

have little to no impact.  410 
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Figures 521 

 522 

Figure 1. Simple enumeration data showing repertoire size estimates for five example male 523 

rufous-and-white wrens. Sampling effort (number of song type switches recorded) is on the x-524 

axis and number of unique song types detected is on the y-axis. The large plateaus in the graph, 525 

where the number of unique song types does not increase despite large increases in sampling 526 

effort, suggest that a bird’s repertoire has been sampled in its entirety. Note that in rare cases, 527 

such as the lowest curve, unique songs are detected even after extensive sampling. 528 

  529 



 530 

Figure 2. Estimated repertoire sizes from three different estimation techniques (Capture-531 

recapture, Coupon Collector, and Curve Fitting techniques) for 40 male rufous-and-white 532 

wrens.  For each of the three estimation techniques, the error bars show estimated repertoire 533 

sizes for each of six subset sizes: 25 (left), 50, 75, 100, 125, and 150 (right) song type switches. 534 

True repertoire sizes were measured through simple enumeration and are depicted by the 535 

hatched lines (mean = black hatched line; mean ± SE = gray hatched lines). Accuracy is defined 536 

as the average difference between the repertoire size estimated with a particular technique 537 

and subset size and the true repertoire size determined through simple enumeration. Smaller 538 

differences indicate better accuracy.  539 
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 540 

Figure 3. Effects of estimation technique and subset size on the precision of repertoire size 541 

estimates for 40 male rufous-and-white wrens. For each estimation technique, we show the 542 

precision of repertoire size estimates derived from subsets of 25 (left), 50, 75, 100, 125, and 543 

150 (right) song type switches. Precision is defined as the average absolute difference between 544 

true repertoire size, as determined through simple enumeration, and the repertoire size 545 

estimated with a given technique and subset size; smaller absolute differences indicate better 546 

precision.  547 
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Table 1. Model coefficients from the analyses of the accuracy and precision of repertoire size 548 

estimates.  549 

Dependent 
Variable Parameter Model 

Coefficient SE 

Accuracy Capture-Recapture1 -0.298 0.277 

 Curve Fitting1 -0.950 0.277 

 Coupon Collector1 -0.213 0.277 

 Subset size2 0.004 0.002 

 Curve fitting x subset size3 -0.002 0.003 

 Coupon collector x subset size3 -0.017 0.003 

Precision Capture-Recapture1 0.946 0.240 

 Curve Fitting1 1.208 0.240 

 Coupon Collector1 1.379 0.240 

 Subset size2 -0.017 0.002 

 Curve fitting x subset size3 0.007 0.003 

 Coupon collector x subset size3 -0.002 0.003 

1Model coefficients for the three estimation techniques indicate the average 550 
accuracy or precision of the technique (in song types), relative to zero, when all other 551 
variables are held constant.  552 

2Model coefficients for subset size indicates how much the dependent variable 553 
changes (in terms of song types) with each 1-unit change in subset size, when 554 
averaged across all techniques.  555 

3Model coefficients for the interaction terms indicate how much the dependent 556 
variable changes with each 1-unit change in subset size for a particular technique, 557 
relative to the amount of change observed for a 1-unit change in subset size for the 558 
reference category (i.e. Capture-Recapture). 559 


