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Introduction 

 

Ships travelling through pack ice are exposed to structural damage in the hull due to collisions with ice-

floe. GEM simulation environment, a Memorial University project, is an ice-ship interaction software that 

allows the study of the impact forces applied on a ship, when it maneuvers through pack ice [1]. At a rate 

much faster than the real-time, GEM is capable of simulating ship navigation through complex pack ice 

formations [1]. Such a tool is beneficial in predicting hazardous collisions that affect structural integrity 

and operational performance of ships and floating offshore structures.  

 

In addition to performance prediction that GEM can provide, it can be also used for real operation of 

actual ships by generating operational planning commands. In order to use the software for this hyper-

real time simulation, the near field ice information need to be accurately acquired. Upon availability of 

such information, GEM can also be used in a “feed forward” near-field hazard warning and avoidance 

system (HWAS). In the first phase of this project, a computer vision system was developed to detect and 

numerically reconstruct a pack ice field using the information received from a camera mounted on a ship. 

The developed system was tested in laboratory settings with fixed ice polygons [2].  

 

The operation of the vision based system is highly challenged by the lighting and weather conditions, 

which can degrade the system performance. The 2D shape of an ice floe can be produced accurately based 

on a vision system. However, the reconstruction of ice-floe locations and dimensions is less reliable from 

a 2D image [2]. Therefore, in this project, a Light Detection and Ranging (LiDAR) sensor is integrated with 

a camera in order to achieve a better 3D perception of pack ice fields. LiDAR sensors provide reliable depth 

information, which is minimally affected by lighting conditions of the field. 

Project Objective 

The objective of this project is threefold. Firstly, build and develop a LiDAR-vision based instrumentation 

that is capable of simultaneously capturing a 3D point-cloud and a 2D image of the field. Secondly, collect 

a realistic data set, which mimics a ship moving in an ice-floe, using the developed sensor. Finally, develop 

and apply a tracking algorithm to the collected data, which detects and keeps track of ice-floe polygons in 

the measurement. 
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Technical Background 

 

This project requires an object detection method to extract the polygonal locations of each ice floe seen 

in a pack ice field. In a prior project to this one, an image based object detection and 3D reconstruction 

using camera images were used [2]. Therein, a system was developed to detect and reconstruct ice fields 

using both synthetic and actual images from ships operating in pack ice conditions. Finally, the developed 

vision analysis module was integrated with the GEM software for performance testing. 

A number of practical factors challenges the image based method developed previously: a) vision sensors 

are highly sensitive to lighting conditions and also the weather can severally affect their performance. For 

night operations, even with added illuminations, the field of view becomes highly restricted. b) vision 

techniques can extract the 2D shape information. However, depth information is not reliable. c) detection 

of ice-floe polygons from an image is not a straightforward process. Therefore, developing a sensor that 

treats the mentioned problems is the focus of the current project.  

Laser range finders offers direct acquisition of 2D points with reliable depth information; a reasonable 

(large) amount of 2D points on surfaces; and independence of lighting conditions. Moreover, no laser 

reflections come from a water surface, and this makes it easy to detect floating object on water surfaces 

[3]. These features render a laser range finder a necessary component to be integrated with a vision 

sensor for our application. Combining a 2D laser range finder with a moving unit permits the simulation 

of a 3D laser range finder (LiDAR) [3]. In our experiments, we use a HUKUYO [4] laser range finder with a 

servo motor to ensemble a 3D laser scanner. Then, we use the available techniques to reconstruct 

surroundings with the help of mathematical transformations depending on the physical design, which 

results in a 3D point-cloud. 

In this project, the developed sensor is used to collect laboratory experiments data, which mimic a moving 

ship in a pack ice field. The collected data is then analyzed and a tracking algorithm is developed to keep 

track of the sensor detections of ice polygons. The developed tracking algorithm is based on the Kalman 

filter [7] and the Hungarian assignment algorithm [8]. The results validated the proposed concept of using 

the laser scanner in detection and tracking of ice-floe. 
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Project Methodology 

The project is implemented in three respective steps. These steps include developing a sensor; collecting 

data using the developed sensor; and finally applying a position tracking algorithm to the collected data. 

The three activities of the project are: 

 

1- Construction and calibration of a LiDAR-Camera sensor: In this activity, an instrument combining 

a LiDAR and a camera is developed and calibrated. The calibration results in the rigid 

transformation between a 3D point-cloud assembled by the LiDAR and an image captured by the 

camera.  

2- Experimental Test bed and Data Collection: In this activity, an experimental setup is created to 

mimic a ship moving in a pack ice field. Moreover, the developed sensor is used to collect real 

data form the developed setup, i.e. laser and image data of floating objects (plastic polygons), 

which ensembles pack ice. The experimental setup uses Memorial University’s tow tank.  

3- Polygons Tracking: In this activity, the detected polygons are tracked using a computer program, 

which is based on Kalman filtering and Hungarian assignment algorithm. The tracking algorithm 

combines historical measurements of the polygons and gives a unique identifier to each detected 

polygon. 

 
 

Project Timeline 

 

The time allocated for this project is 6 months and the below table shows the time line of the project. 

 

Activity March April May June July August 

Construction and calibration of a 

LiDAR-Camera sensor 

        

Experimental Test bed and Data 

Collection 

        

Polygons Tracking         

Project Documentation         
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Completed Work 

 

Activity 1: Construction and calibration of a LiDAR-Camera sensor 

During this phase of the project, an instrument combining a LiDAR and a camera was developed. The 

constructed sensor was then calibrated to obtain the proper transformation between a 3D point-cloud 

assembled by the LiDAR and an image captured by the camera.  

The Sensor: 

The developed sensor employs a HUKUYO UST-20LX laser range finder; a Dynamixel AX servo motor; a 

Logitec monocular camera; and a single-board computer running a UNIX operating system. All sensor 

components are mounted on a 3D printed casing. The sensor assembly is shown in Figure 1.  

Table 1 shows also some of the specifications of the laser range finder used; we refer to [4] for a complete 

specifications list. 

 

Figure 1 The developed LIDAR-Vision sensor. 

 

Table 1 Specifications of HUKUYO UST-20LX laser range finder 

Scan angle 270° Detection range 0.06m to 20m 

Angular resolution 0.25° Accuracy ±40mm 

Measurement steps 1081 Scan speed 25ms 

 

Servo Motor Laser range 
finder 

Tilt Table  

Camera 

Casing 
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Operation of the sensor: 

The objective is to use the sensor to generate a 3D point-cloud using the LIDAR and a corresponding image 

using the camera. Sensor components are wired to the single-board computer, which runs a Robot 

Operating System (ROS) [5]. Generating an image from the camera is straightforward and is done using 

the usb_cam package implemented in ROS. However, creating a 3D point-cloud is a more involved 

process knowing that the used laser range finder gives readings only in its plane. Thus, tilting the laser 

range finder and assembling the readings for each tilt plane is necessary to generate the 3D point-cloud. 

As can be seen in Figure 1, the laser range finder is mounted on a tilt plane, which can be turned using a 

servo motor.   

The tilt table is turned forward and backward at a rate of 10 rad/s while laser data is collected every 0.1 

rad of angular change. In order to obtain a properly dense 3D point-cloud, the mechanism for tilting and 

registering laser readings is programmed to run for 8 seconds. The mentioned operational sequence is 

implemented on the sensor’s computer using the following ROS packages: dynamixel_tutorials, 

urg_node, laser_assembler, and point_cloud_converter.  

Operating the developed sensor results a monocular camera image and a 3D point-cloud. Figure 2 shows 

a sample data of the sensor. As can be seen in the created point-cloud, intensity information can be 

captured by the laser range finder, i.e. information on the color, at which laser reflections happen, is 

available by the LIDAR.  

 

Figure 2 A sample data of the sensor outcome. Left: camera image. Right: corresponding 3D point-cloud visualized in ROS’ Rviz. 
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Calibration of the sensor: 

Calibration is basic requirement in multi-sensor platforms where data needs to represented in a common 

reference frame for the purpose of analysis and data fusion. On platforms where a camera provides 

intensity information in the form of an image and a laser supplies depth information in the form of a set 

of 3D points, external calibration allows reprojection of the 3D points from the laser coordinate frame to 

the 2D coordinate frame of the image [6].  

The procedure proposed in [6] is used to calibrate our sensor. This method uses the same checkerboard 

calibration target commonly used for internal calibration of the camera. An interactive GUI is provided by 

this method, which allows the user to select a region of points in a range image which contain the planar 

calibration pattern. A robust fitting procedure, then, fits a plane to this selection to find estimates of the 

perpendicular direction and distance to the plane with respect to the coordinate frame of the laser. A 

separate procedure to internally calibrate the camera provides independent estimates in the coordinate 

frame of the camera. 

The calibration procedure includes the following steps: 

1- Collection of camera and LiDAR data sets using the sensor. These data sets employ a 

checkerboard target, see Figure 2 for a data set sample. 

2- Intrinsic calibration of the camera: The camera intrinsic parameters are calibrated using the 

Camera Calibration Toolbox implemented in MATLAB. This procedure essentially involves 

supplying basic parameters like window size and number of squares in each dimension of the 

checkerboard grid, etc. 

3- Computing extrinsic parameters: this procedure is implemented in MATLAB following the study 

[6]. It involves matching the collected images with their corresponding 3D LiDAR points. Then, 

checkerboard polygons are marked in the LiDAR data for each captured data set. Finally, an 

optimization routine is executed to estimate the rigid transformation parameters.  

The above procedure results in a transformation matrix 

𝑇 = [𝑅 𝑑], 
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where 𝑅 is the rotation matrix and 𝑑 is the translation vector between the LiDAR and the camera frames 

of reference. After estimating this rigid transformation matrix, coloring the point cloud can be done to 

visually verify the success of the calibration procedure. Figure 3 shows a sample result of the calibration 

procedure, where an image and a colored point-cloud are presented. As can be seen in the colored point 

cloud, some parts of the 3D points are outside the field of view of the camera, e.g. the 3D readings of the 

floor plane which are black colored. 

 

Activity 2: Experimental Test bed and Data Collection 

In this phase of the project, the developed sensor was used to collect real data, which ensembles field ice-

floe. The experimental setup used for this purpose mimics a ship moving in a pack ice field. Memorial 

University’s tow tank was used at this step of the project. The tow tank has a large water tank (nearly 4 m 

wide and 40 m long) with a moving carriage. The sensor was mounted on the carriage while polypropylene 

floating polygons were used as ice-floe pieces. These polygons have nearly the same density of pack ice. 

The process of collecting data from the tow tank involved the following steps: 

1- For a certain carriage position, run the sensor, and generate and store the image and the 3D point-

cloud of the view. 

2- Advance the carriage 10-20 cm. 

3- Repeat the above two steps until an adequate number of data points is collected. 

 

Figure 3 A sample calibration result. Left: camera image. Right: corresponding colored 3D point-cloud. 
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The above steps were performed and 53 frames of data were collected. Sample data of the first frame 

is visualized in Figure 4, where the point-cloud points are visualized in the planar view. A number of 

observations can be made from the figure: 

a- No laser reflections come from the water surface and only the polypropylene objects can be 

clearly identified and matched with their corresponding locations in the image. 

b- Both camera and LiDAR have different fields of view, e.g. not all ice-floe objects appearing in the 

camera appear in the point cloud and vice versa. 

c- The point-cloud resolution is degraded for the far-sighted floes. This is expected as small tilt angles 

diverge laser beams greatly for longer distances.  

Similar data to Figure 4 are collected for the remaining frames captured during the experiment. 

 

One of the advantages of using the LiDAR is that its depth readings are independent on the lighting 

conditions of the water surface. Moreover, another advantage of using the LiDAR here is that no laser 

reflections come from the water surface. This feature makes it easy to detect the ice-floe polygons, which 

is a rather more complicated process depending only on a camera.   

Now, the LiDAR data of the polygons can be clustered and the resulting center of each cluster correspond 

to the center of a polygon. This is done using MATLAB. These centers can be used as the detections when 

a multi-object tracking algorithm is implemented; this will be discussed in more details in the following 

 

Figure 4 sample data collected from the tow tank. Left: camera image. Right: planar view of the corresponding point-cloud. 
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section. Figure 5 shows an example of clustering the laser data presented in Figure 4. Clusters’ centers are 

visualized on the laser data in Figure 5. Additionally, these centers are mapped to the image using the 

transformation matrix resulted from the calibration process. 

 

Activity 3: Polygons Tracking 

In this phase of the project, the detected polygons are tracked using a computer program, which is based 

on Kalman filtering and Hungarian assignment algorithm. Tracking means combining historical 

measurements of the polygons and giving a unique identifier for each detected polygon while detections 

are changed from frame to frame. 

The Kalman filter: 

Kalman filter is an algorithm that uses a series of measurements observed over time, containing statistical 

noise and other inaccuracies, and produces estimates of unknown variables of dynamical systems. The 

filter employs motion and measurements models, which are linear and have the general form [7]: 

x𝑡 = A x𝑡−1 + B u𝑡 + 𝝐𝑡, 

y𝑡 = C x𝑡 + δ𝑡, 

 

Figure 5 Result of clustering the laser data. The centers of the clusters are mapped to the image frame. 
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where x𝑡 is the state of the system to be tracked; u𝑡 is the control input; y𝑡 is the sensor measurements; 

and 𝑡 is the current time step. A, 𝑩, and C are the state, input, and measurement matrices, respectively. 

𝝐𝑡, and δ𝑡 are additive Gaussian noise with covariance matrices R and Q, respectively.   

For a previous state estimate  x̂𝑡−1with covariance �̂�𝑡−1, and current control action u𝑡 and measurement 

y𝑡, the Kalman filter estimates the current state x̂𝑡 over two consecutive steps a) state prediction b) 

measurement update. The prediction step is done by 

x̅𝑡 = A x̂𝑡−1 + B u𝑡, 

 �̅�𝑡 = A �̂�𝑡−1A
𝑻 + R. 

Next, the Kalman gain is calculated using   𝐾 =  �̅�𝑡C
𝑻 (C �̅�𝑡C

𝑻 + Q)
−1

. 

Finally, the corrected state estimate and its corresponding covariance are calculated via 

x̂𝑡 = x̅𝑡 + 𝐾(y𝑡 − C x̅𝑡) , 

�̂�𝑡 = (I − 𝐾 C) �̅�𝑡. 

For our tracking problem, each polygon is considered as an object that moves in a 2D space, i.e. water 

surface, with instantaneously varying speed. Moreover, the measurement we get for each polygon is the 

polygon’s x-y center position computed after clustering the point cloud as shown previously in Figure 5. 

Thus, the vectors x𝑡, u𝑡 and y𝑡 are given by  

x𝑡 = [

𝑥

𝑦

�̇�

�̇�

], u𝑡 = 𝑎 = 0, and y𝑡 = [
𝑥
𝑦],  

respectively. Moreover, the matrices A, 𝑩, and C are given by  

A = [

1 0
0 1

Δ𝑡 0
0 Δ𝑡

0 0
0 0

1 0
0 1

], 𝑩 =

[
 
 
 
 
Δ𝑡2

2

Δ𝑡2

2

Δ𝑡
Δ𝑡 ]

 
 
 
 

 , and C = [
1 0 0 0
0 1 0 0

]  , 

respectively. Δ𝑡 is the sampling time between two captured frames and it is set to 1 second in our analysis. 
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Since in this tracking problem multiple objects (polygons) are tracked, the number of Kalman filters used 

is ideally equal to the number of tracked objects. Moreover, a major problem to be tackled in multi-object 

tracking is “when new detections are observed to which polygon they should be assigned?” This recalls 

the measurement assignment problem, which is discussed in the following section. 

Hungarian assignment algorithm:  

Here, we present the technique used to assign centers’ detections (measurements) to tracked polygons 

in our tracking algorithm. The technique is based on what’s known as the Hungarian algorithm [8]. The 

Hungarian method is a combinatorial optimization algorithm that solves the assignment problem. This 

algorithm is best explained by the following example [9]. 

We consider an example where four jobs (J1, J2, J3, and J4) need to be executed by four workers (W1, 

W2, W3, and W4), one job per worker. The matrix below shows the cost of assigning a certain worker to 

a certain job. The objective is to minimize the total cost of the assignment. 

 

Following the Hungarian algorithm steps, as shown in [9], leads to the following optimal assignment in the 

original cost matrix. 

 

The above solution means that worker 1 should perform job 3, worker 2 job 2, worker 3 job 1, and worker 

4 should perform job 4. The total cost of this optimal assignment is to 69 +  37 +  11 +  23 =  140. 

Returning now to our tracking problem; when the prediction step of the Kalman filter is done, the 

measurement step is to start, but not before all the new centers detections are assigned as accurately as 

possible to the correct polygons’ predictions. At this step of the filter implementation, the Hungarian 

algorithm is applied. The algorithm uses a cost matrix in which the calculated cost is how far each polygon 
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prediction from each detection. For example, assume that there are 4 polygons (P’s) to be tracked and 4 

corresponding detections (D’s). In this case, the cost matrix will have the form 

𝐷1
𝑃1 𝑃1 − 𝐷1

𝐷2 𝐷3 𝐷4
𝑃1 − 𝐷2 𝑃1 − 𝐷3 𝑃1 − 𝐷4

𝑃2 𝑃2 − 𝐷1
𝑃3 𝑃3 − 𝐷1
𝑃4 𝑃4 − 𝐷1

𝑃2 − 𝐷2 𝑃2 − 𝐷3 𝑃2 − 𝐷4
𝑃3 − 𝐷2
𝑃4 − 𝐷2

𝑃3 − 𝐷3
𝑃4 − 𝐷3

𝑃3 − 𝐷4
𝑃4 − 𝐷4

 

where 𝑃𝑖 − 𝐷𝑗 is the Euclidean distance between the prediction of polygon 𝑃𝑖 and the detection 𝐷𝑗 for all 

𝑖, 𝑗 ∈ {1,2,3,4}. Using the Hungarian algorithm, the above cost matrix is optimized and each detection is 

assigned to the corresponding polygon prediction.  

In our implementation of the tracking algorithm some rules are used in order to improve the performance 

of the tracking algorithm. These rules are: 

1- After assignment of detections, if a detection is very far from a prediction, this detection is 

considered as a new polygon entering the field of view of the sensor. A new Kalman filter is 

triggered for such a detection. The margin for detection rejection used is 𝐷𝑚𝑎𝑟𝑔𝑖𝑛 = 40 cm. 

2- If one of the tracked polygons is not getting any detection assignment for more than 𝑁𝑛𝑑 = 3 

time steps, its Kalman filter is stopped. 

𝐷𝑚𝑎𝑟𝑔𝑖𝑛 and 𝑁𝑛𝑑 can be tuned to other values than the mentioned one depending on the tracking 

problem. 

Tracking results:  

The overall tracking algorithm implemented is summarized by the following steps: 

1- Detection: measure the polygons’ locations using the sensor. 

2- Kalman filter prediction: apply the Kalman filter prediction equations. 

3- Detections assignments: apply the Hungarian algorithm to assign measurements to polygons’ 

predictions. 

4- Kalman filter update: apply the Kalman filter measurement update equations. 

Now, we present the tracking results. Figure 6 shows the tracking result between the first two frames 

collected from the tow tank. As can be seen, the tracking algorithm performed very well in estimating the 
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tracks of motion of the polygons. Moreover, the convergence of these tracks to the actual tracks occurred 

immediately after obtaining frame 2 detections.  

 

One of the advantage of the used tracking algorithm is that after polygons go outside the field of view of 

the sensor, we still can estimate their future locations for a number of time steps (𝑁𝑛𝑑). This is best 

explained by Figure 7, where the tracking between 3 frames is presented. In the figure, two tracks are 

specified by two solid arrows. As can be concluded from the figure, the used tracking algorithm was able 

to estimate the locations of the two corresponding polygons even when they are beyond the sensor field 

of view.  

 

 

Figure 6 Tracking between the first two frames of the tank data. 
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Figure 7 Tracking between frames 24, 26 and 28. 
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The overall tracking of all frames is illustrated in a video that is attached to the report. 
 

Conclusions and Outlook 

In this project, a LiDAR-Camera sensor is developed and calibrated to detect and track ice-floe. The 

developed device is necessary to implement hazard warning and avoidance system (HWAS) for ships 

travelling in pack ice. In contrast to the ice floe detection method (vision based) developed in the first 

phase of the project [2], a LiDAR sensor is used to detect such objects. Employing such a technique has 

several advantages over the vision detection method which are: 

• Laser readings of the LiDAR sensor are less sensitive to environment (light) conditions than 

cameras. 

• Laser range finders directly provides reliable depth information. 

• When used to detect floating objects in water, no laser reflections come from the water surface, 

and, thus, floating objects can be easily detected.  

The developed sensor was then used to collect experimental data that mimic ice-floe in front of a moving 

ship. The experiment was conducted in Memorial University’s tow tank. The collected data set is more 

realistic than the one collected in the previous phase of the project [2], in which the collected data were 

for objects that were placed on the floor and not a water surface. 

Finally, a tracking algorithm, which is based on Kalman filter and Hungarian algorithm, was implemented 

to keep track of each ice-floe. The results showed a good convergence and overall performance of the 

tracking algorithm. The developed LiDAR processing method and the tracking method completes the 

essential components for successful demonstration of a LiDAR/Vision based pack ice HWAS. However, the 

full software link from LiDAR/ image data to GEM was not completed during the project due to time 

constraints. This sub-component of the project will be completed and demonstrated as future work. 

The overall performance of the sensor showed a noticeable enhancement to the vision only sensor 

developed in  [2]. The conducted work provided also a proof of concept of using the LiDAR technology in 

ice-floe detection. However, the data collection was achieved at a low sampling rate because of the time 

needed to assemble 3D point-clouds. This rate can be improved by using an industrial LiDAR [10], which 

directly gives 3D point-clouds at rates up to 10 Hz.  
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Future work: 

The developed work in this project can be further improved by the following: 

• Adding polygons’ areas as a state in the tracking algorithm and extracting this data from the image 

following the method (labelled watershed) shown in the first phase of the project [2]. This allows 

to exploit the high-resolution information that is available from the camera in the overall method. 

• Using an industrial LiDAR sensor, which has a higher resolution, range, sampling rate than the 

developed sensor. 

• Performing tracking analysis on actual field data of pack ice and demonstrating a hazard warning 

avoiding mechanism. 
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