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Abstract 

Energy and cost-efficient management of a building’s thermal properties requires heating, 

ventilation and air conditioning (HVAC) systems controllers to be working at optimal settings. 

However, many HVAC systems employ nonlinear time variances to deal with issues that affect 

the system’s optimal operation. The present work considers an HVAC system at Memorial 

University’s S. J. Carew Building which has been mathematically modeled using a state space 

multi-input and multi-output system (MIMO) approach for analyses and control system design. 

An IDA-ICE (Indoor Climate and Energy) simulation program has been applied for modeling the 

building, note that the four-story Carew Building includes an air-handling unit (AHU) on every 

floor. Compared with real data for one year’s (2016) power consumption, the simulated annual 

power consumption for the building shows good agreement. Based on that data, two scenarios are 

applied for building the system models. Scenario 1 considers the HVAC system as a single unit 

with energy consumption (kWh) as inputs and zonal temperature and CO2 concentrations as 

outputs. By employing the MATLAB system identification toolbox, a MIMO-based system forms 

the basis for a state space model. In the model for Scenario 1, there are eight main AHU inputs 

(hot water power usage and power usage) and eight main outputs (return airflow temperature and 

CO2 levels). The state feedback controller obtains good results for both responses rise time and 

stability. In Scenario 2, there are four AHUs in total. Each of this scenario’s AHUs features three 

main inputs (hot water, internal-to-internal air flow, and external-to-internal air flow) and three 

main outputs (static air pressure, CO2 levels, and temperature). In the first AHU (AHU1), we apply 

state-of-the-art fuzzy logic controllers (FLCs) to control fan speeds, CO2 concentrations, and 

temperature in the building in accordance with the flow rates for air and hot water. This strategy 

represents a novel approach for adapting FLCs by modifying fuzzy rule using the Simulink. The 



iii 
 

modified system shows improved levels of thermal comfort. The final part of the work presents 

the design for a supervisor fuzzy logic controller (SFLC) that can be applied to the entire S. J. 

Carew Building HVAC control. This SFLC features 24 inputs and 12 outputs and employs a state-

space model that considers each AHU as an individual system. The SFLC detailed design and 

system simulation results are presented in this thesis. 
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Introduction and Literature review 

1.1. Introduction  

Energy demand for construction has increased significantly over the last two decades, mainly 

due to emerging market economic growth. This leads to high energy cost and high pollution [1]. To 

overcome these two problems, many studies focus on energy saving and renewable energy production. 

The building's heating, ventilation and air conditioning (HVAC) system provides comfort to residents. 

Since heating and cooling loads change over time, the HVAC control system should provide comfort 

in all cases. Proper control of the system also reduces energy consumption. The HVAC system is also 

responsible for adding fresh air to the building. 

The modern approach to optimizing internal air quality, managing indoor environments and 

lowering operational costs is to install a heating, ventilation and air conditioning (HVAC) system. In 

large commercial and industrial structures, HVAC systems comprise one-third of the power 

consumption [1] -[4].  

The main purpose of installing and using an HVAC system in a structure is to improve the 

users’ ability to control the air quality for factors such as heat and humidity to achieve a comfortable 

interior environment. Nowadays, HVAC systems have become so popular that they account for more 

than half of the world’s overall energy consumption [5]-[8]. Part of the reason for the increase in 

usage of these systems is their ability to optimize the efficiency of the heating and cooling processes. 

There are other reasons for the increasing use of the HVAC system, such as [64]. 

1.           The HVAC system can continuously improve the air quality by replacing the indoor 

air with fresh air, which is filtered for optimum quality. 

2.           The HVAC system is heated and cooled in one unit. This not only saves installation 

space, installation time, and cost but also reduces the required energy consumption. 
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3.           The system also works with renewable energy, sometimes in the form of solar panels. 

Energy saving is even better because the coolant is not based on chlorine; it damages the ozone layer. 

These systems aim to create an interior environment which highlights energy efficiency, cost 

efficiency, and user comfort, all while mitigating adverse effects that may be caused by large-scale 

energy usage [1]. The ideal approach to maintaining optimal system performance under circumstances 

of changing variables involves applying a control system that is specifically tailored to the structure. 

One approach applies data to develop a mathematical-based HVAC system which uses input/output 

variables for both ascertaining and setting the parameters for the system. The advantage of data-driven 

HVAC systems is that they are easily able to find strategies that will improve and refine the system.  

Although the research shows the promising potential of using simulation software to estimate a 

building’s structure’s dynamic response, there are still some challenges inherent in the approach. The 

main issue, beyond the time-consuming nature of the software, is that the results tend to lack crucial 

information on a building’s fast dynamic behavior. This lapse in data is caused by the software using 

a discrete time step which is usually set for one-hour time frames. In this case, if data are required 

related to the fast-dynamic behavior of a specific control strategy such as ON/OFF, these data will be 

unobtainable, as they are located within the one-hour time step. Such issues can cause system-wide 

problems and skew results due to data scarcity. 

S. J. Carew building with an interior size of 25,142 m2 is used as a case study. The building is 

located on the campus of Memorial University, St. John’s, Newfoundland. There are four individual 

air-handling units (AHUs) in the building. Figure 1.1 shows clearly the apply fan and the heat 

exchanger of the AHU1. There is some reasoning for selecting the S.J.Carew building. The energy 

inefficiency and cost inefficiency comparing with buildings on the campus. The building has four 

AHUs and Four floors that is means each level has AHU separated, although it will be easy to present 

the model as Multi-Input/Multi-Output system with 12 inputs and 12 outputs. 
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Also, there are some issues for heating system such as the valves of some radiators on the third 

floor, some of the rooms in this floor have just one thermostat.  

 

Figure 1.1 Apply fan and the heat exchanger of the AHU1 

Figure 1.2 shows the building of the central heating plant at the campus, which supplies hot water 

for most buildings on campus at temperatures as high as 168 °C by the primary side (red pipes), as 

shown in Figure 3.1. Each building has heat exchangers to reduce the high temperature to 81 °C, 

approximately as shown by the secondary side in the figure. Also, the figure illustrates two return pipes 

(pink pipes). The first one retunes from the building, and another one returns directly from the heat 

exchangers. 
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Figure 1.2  The main campus heating plant 
 

 

Figure 1.3 Main heat exchangers (Convertor 9 and Convertor 10) 
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1.2. Literature review 

1.2.1. Modeling of the system 

In the literature, these models of the HVAC system, which are having the inputs and output 

data classified as system identification (SI) models. Earlier research classified modeling methods as 

either a gray box or a black box. In the grey box approach, pre-existing knowledge was required to 

build the model, whereas none was required for the black box approach. Hence, the black box modeling 

strategy has become more popular with researchers. In relation to HVAC systems, some examples of 

black-box models include polynomial forms (e.g., ARMAX, ARX, OE, and BJ). Despite its ease of 

use, the black box approach often ignores the physical properties of a system and presents design 

problems implemented in a suitable environment. 

There are several examples of black box strategies being employed in recent research. For 

instance, Chi-Man Yiu et al. [9] applied the black box method to air-conditioning systems by 

comparing two ARMAX models. One of the models was a single-input/single-output system, and the 

other was a multi-input/multi-output (MIMO) system. In their MIMO system model, Chi-Man Yiu et 

al. [9] applied parameters obtained from recursive extended least squares calculations. Another 

research group that worked recently with the black box method is Mustafaraj et al.[10], who looked at 

humidity and temperature models (ARMAX, ARX, OE, AND BJ) in commercial office buildings. In 

[11], these same researchers employed nonlinear auto-regressive models (with NARX inputs) to 

measure humidity and temperature levels. They then compared their test results with results from linear 

ARX models. Mustafaraj et al. [11] also investigated how CO2 concentrations impact model 

performance, based on the understanding that a building’s occupancy levels are related to CO2 levels. 

In related work, Rabl [12] modeled heat dynamics to perform dynamic analysis of energy consumption, 

while Sonderegger [13] and Boyer et al. [14] did essentially the same thing but using differential 
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equations instead. Note that, in dynamic models, system identification and parameter estimation are 

considered by many researchers to be the self-same process of investigation. 

Recent research points to the validity of applying system identification (SI) as the ideal method 

for energy simulation when the aim is to analyze a building’s heating and cooling systems. In [15], 

Lowry and Lee used a data-driven model for estimating thermal response, while in [16], Madsen and 

Holst employed a similar SI strategy, using data from discrete time performance to estimate the heating 

dynamics in a building. In [17], Cunningham used the SI approach to calculate a building’s moisture 

release rates according to psychometric data, and Mechaqrane and Zouak in [18]  applied SI to estimate 

air temperature readings in apartment buildings. Other studies compared test models and theoretical 

estimations by employing simulation software (e.g., TRNSYS).  Utilizing a strategy that employed a 

one-hour time step, Peippo et al. in [19]  applied simulation software to estimate a building’s dynamics 

based on discrete time results calculated in simulation software. 

The present work employs the grey box approach to model dynamic systems, as this strategy 

allows information on a building’s thermal characteristics to be harvested [20]-[22]. In general, grey 

box models use continuous time stochastic differential equations as well as discrete time measurement 

equations. By utilizing performance analysis tools (e.g., IDA-ICE, TRNSYS, HVACSIM+, energy plus 

and eQUEST) set to one hour or fewer timeframes, it is possible to estimate the annual energy 

consumption of a specific HVAC system by applying a set of equations that express the system’s 

thermal performance. These estimations can be further refined by comparing full- or part-load 

performance results for different design options [23]-[26]. 

A cursory review of the literature shows the evolution of HVAC systems. When the systems 

were first introduced, the modeling focus was on heat and humidity levels [27]-[31]. Then, a nonlinear 

HVAC model based on a temperature/humidity ratio coupled with an observer that gauged 



8 
 

thermal/moisture loads was debuted [27], [28], which led to the development of an adaptive fuzzy 

output feedback controller [29] based on the HVAC system observer. Next, researchers built a model 

featuring a decentralized nonlinear adaptive controller [30] as well as a back-stepping controller [31]. 

Subsequent research focused on getting rid of CO2 concentrations in the interior environment, as these 

have negative effects on the general level of user comfort [32], [33]. From these investigations came a 

hybrid HVAC system which could maintain the temperature at contiguous states while dealing with 

CO2 concentrations as discrete states [34], [35]. However, because the continuous and discrete states 

are interdependent, integrating these two dynamics in a model would be the logical next step.  A 

dynamic system’s current state predicts that system’s future development, based on interrelated 

variables. Hence, control systems, by aiming for specific control targets, essentially form a stable state 

from a non-linear system. 

1.2.2. Control strategies  

In current AHU unit system design, a strategy known as feedback linearization is used 

extensively [36]-[38]. Utilizing state feedback to develop subsequent system dynamics creates a multi-

input system which is controllable via a linear state model. Feedback control is then developed by way 

of a step-by-step procedure devised according to closed-loop eigenvalues inserted at specific points. 

For more details on this process, please see Chapter 3. The outcome of this development has led to 

intelligent systems, as explained below. 

Intelligent systems form the basis for Building Intelligent Energy Management Systems 

(BIEMS). The primary aim of BIEMS is optimizing energy consumption in a structure while also 

optimizing the structure’s interior comfort levels. In general, BIEMS tend to be used mostly in large 

commercial or industrial buildings (e.g., office towers, hotels, and university facilities) for controlling 

and tracking the structure’s environmental parameters to develop a range of suitable yet cost-effective 
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microclimates. Following the somewhat successful application of conventional control systems in 

BIEMS, intelligent systems have shown enhanced improvement when conventional systems are 

replaced with fuzzy or even neural techniques [39]-[42]. 

Conventional control approaches require the use of a structure’s operations as a mathematical 

model, whereas intelligent systems do not require mathematical or indeed any modeling. Through the 

application of intelligent controllers in a system, there is no need to gauge variables like temperature, 

air speed or humidity [43]. Instead, comfort levels can be chosen by employing optimized fuzzy 

controllers that utilize adaptive control strategies informed by genetic algorithms. The newest furnace 

installations in homes are using fuzzy logic control via adaptive heating control to enhance comfort 

levels while ensuring better energy efficiency and lower costs [44]. Fuzzy controllers have also been 

installed for modulating air flow, with impressive results [45], [46]. 

Although there are many different methods for using fuzzy logic as closed-loop control, fuzzy PI 

controllers are the most popular [47], [48]. This approach employs process-derived measurement 

signals for the fuzzy logic controller (FLC) inputs/outputs to the actuators. Generally speaking, a fuzzy 

PI controller is essentially an incremental controller. Equation (4.1) expresses a traditional fuzzy PI 

controller where fuzzy rules dictate the outputs [49]. For additional details on FLCs, please refer to 

Chapter 4 on the FLC in AHU1. 

Since the introduction of HVAC systems around four decades ago, numerous control approaches have 

been developed in the research and industry for use in various applications (e.g., Honeywell [50]; 

Levenhagen and Spethmann [51]; Wang and Jin [52]; Zaheer-Uddin and Zheng [53]; Hordeski [54]; 

Haines and Hittle [55]; Nassif et al. [56]; Wang [57]). In the developed methods, primary supervisory 

control is especially popular and has been categorized as either model-based or model-free, as well as 

hybrid or performance map-based. In [58], Kanagaraj, Sivashanmugam, and Paramasivam looked at 
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tuning input scaling factors in controllers using parameters based on error and process in closed-loop 

systems. The purpose of their research [58] was to improve the controller's performance for setpoint 

change and load disturbances with the online setting method, which significantly reduced operator 

input. This method uses an intelligent upper-level supervisory fuzzy controller (for introducing suitable 

changes to achieve the main goals of the system) and a lower-level direct fuzzy controller (for providing 

resolutions to issues that might arise).  

A  couple of years later , Soyguder, Servet, Karakose, and Alli [59] applied Simulink as a basis 

for modeling HVAC systems with variable flow-rates. Their fuzzy adaptive controllers, which featured 

self-tuning PIDs for allocating PID parameters in Kp (Proportional gain), Ki (Integral gain), and Kd 

(Derivative gain), performed equally as well as conventional PID or fuzzy-PD type controllers. 

Shepherd and Batty [60] applied a high-level fuzzy supervisor to make control decisions. The goal of 

the strategy was to improve air quality, lower costs, and regulate temperature through the use of a 

modified fuzzy supervisor. Their test results showed the viability of their approach in achieving their 

stated outcomes. 

In [61], Lianzhong and Zaheeruddin developed a non-linear dynamic model to heat water in 

HWDH systems using an intelligent fuzzy logic-based hybrid control approach. The results of the fuzzy 

logic-based PI simulation tests showed improvements in water return temperature, especially when the 

approach included IATP methods in zonal air temperature control. The results also showed that lower 

power consumption led to improved energy savings of around 17%. Improving energy consumption 

was the main aim in research conducted in [62], where Hussain, Sajid, and Gabbar employed GAs to 

tune an FLC. Their test results indicated that their air conditioner provided 15% more energy savings 

than those which used basic ON-OFF controls. Additionally, the discomfort index fell from 91% to 

62%. Finally, researchers in [63] proposed lower- and higher-level controllers, with the lower level 
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being a conventional PID controller and the higher-level being a fuzzy controller that controlled the 

parameters of the lower-level.  

The present research uses a fuzzy control approach for improving energy and cost efficiency as 

well as thermal/air quality comfort levels in an interior environment. Because fuzzy controllers are able 

to collaborate with incomplete control process models, these “flexible” fuzzy models enable the 

modeling of non-linear processes, which can then be applied in HVAC systems (which are nonlinear). 

Furthermore, the multi-input/multi-output parameter options in a fuzzy controller are easily controlled. 

1.3. Research objectives 

There are six primary aims in this study.  

1. Our first aim develops a simulation for a whole building, using IDA Indoor Climate and Energy 

4.7 as a simulation program and compare this data with actual data from the Department of 

Facilities Management at Memorial University using the structure’s hot water and power usage 

for the whole year 2016. 

2.  The second aim is to test system identification viability as a means for shortening the calculation 

times needed to simulate more complicated structures in Air Handling Unit One (AHU1).  

3. The third aim is to test the usefulness of system identification in the identification of the dynamic 

for structural climate control design when applying discrete time data for one-hour samples. 

4. The fourth aim is to develop a state feedback controller and then apply it toward the optimal 

functionality of a control system.  

5. Fifth aim to develop fuzzy logic controller FLC structures that feature six inputs and three outputs 

and use this to develop a controller in an AHU1 state space model.  

6. The sixth aim is to develop supervisor fuzzy logic controller SFLC that features 24 input and 12 

outputs for all building — modeling building each floor as a separate system results in four spatial 
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models that offer the advantage that the rules of the supervisor controller are reduced to 180. 

Also, by adding additional rules between the entry steps, the SFLC can control energy-saving 

features and results in an improved performance in the heating and cooling of buildings. 

To achieve the stated objectives, the following steps need to be taken:  

1. Employ a commercially available computer simulation program which has the ability to 

measure/model a building’s temperature, CO2 levels, and static pressure. This program should 

also be able to measure/model the building materials’ moisture retention and total energy 

recovery, and ultimately be able to develop a building model which uses these measurements to 

include four air-handling units as features.  

2. Run simulations of HVAC systems on the four air-handling units, measuring individual room 

comfort levels (e.g., static pressure, temperature, etc.) and gauging the system’s energy usage. 

3. Use MATLAB to run a series of simulation tests to measure the performance levels in potential 

and adopted control strategies. 

4. Following the adoption of control algorithms and rules, apply theoretical analysis to measure 

overall control performance as well as the specific ‘pros’ and ‘cons’ of individual controls. 

5. Using Honeywell software data, analyze control performance and any enhancements to the 

quality of the indoor environment. 

1.4. Challenges of the research 

  In addition to the steps outlined above, several issues related to the design of the building and 

controller must be resolved if the stated objectives are to be achieved. The most important of these 

issues are listed below, in no particular order. 

1. MATLAB and Simulink are used for the simulation tests and involve a fuzzy logic controller. 

Using this particular controller design, we will not be able to measure the system’s consumption 

levels.  
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2. The construction maps referred to in the project are dated and do not include recent renovations 

and additions such as the Suncor portion of the building or the cafeteria. 

3. Several of the inputs/outputs (e.g., number of occupants, wind direction, etc.) cannot be validated 

during system identification. 

4. There are numerous kinds of pollutants in a typical building, not all of which need to be monitored 

and/or controlled. This makes indoor air-quality monitoring a very complex situation. Overall, 

however, the controller should provide good adaptability, fast response, small degrees of 

overshoot, and an intelligent algorithm that is coded to the building’s needs. So, for instance, the 

present control strategy takes certain concentrations of CO2 in the indoor environment for a 

control signal, but it can be impacted by issues related to loosely defined parameters or improper 

(i.e., faulty) measurements.  Therefore, the controller needs an intelligent algorithm which is not 

only has a fast response time but is also highly adaptable to changing circumstances. 

5. Simulation tests performed during the winter months, which means that we were only measuring 

and recording system variables for the heating process (not the cooling stage). Because the 

weather is very cold in this region for most of the year, that is means the heating system always 

on all the year, and we can see that clearly in the table of consumptions of the energy in next 

chapter.  

6. The software uses boilers as a hot water supply, whereas the primary hot water supply for the 

entire building comes from the main room. 

7. Numerous pieces of equipment and moveable infrastructure, such as cookers, fridges, freezers, 

TVs, computers, etc., were not taken into account in the heating/cooling features, even though 

they can contribute significantly to these elements. 
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1.5. Organization of the thesis 

This thesis is organized in a manuscript format, including four journal papers as chapters. The 

journal papers completed during the research and demonstrates the objectives and related tasks. The 

overview of each chapter is explained as follows:  

1.  In Chapter 2, we model the S. J. Carew building on the campus of Memorial University, St. 

John’s, Newfoundland by employing the simulation tool IDA Indoor Climate and Energy (IDA-

ICE) 4.7. We  then look at energy consumption in the Carew Building before developing an IDA-

ICE model library as well as 3D and heat models. We use the IDA-ICE for examining various 

climate zones in the structure’s interior environment. Overall, the four main objectives of Chapter 

2 are as follows:  

1) Use the tool IDA-ICE to model the S. J. Carew building. 

2) Do a comparison of the structure’s logged data with IDA-ICE data in order to determine energy 

consumption differences (if any). 

3) Measure time-saving values (if any) in using the system identification (SI) method for 

simulating the structure.  

4) Apply the results from the system model simulation to determine whether there are any 

dynamics associated with the Carew building’s interior climate control. 

2. In Chapter 3, we apply real-life data for the whole building and validate the results. We also 

examine the usefulness of system identification (SI) for time-reduction in simulation calculations 

for large buildings. As well, we gauge the usefulness of SI in identifying climate control dynamics 

when employing samples of one-hour discrete time data. Finally, in Chapter 3, we also investigate 

the validity of a state feedback controller using a state space model. 

3. In Chapter 4, we use the IDA-ICE 4.7 tool to build a simulation for the S. J. Carew building. 

Launched in 1998, the IDA-ICE energy program was developed to study thermal climate zones. 
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Our simulation tests power usage for both heating and cooling and will comparatively look at 

results presented in where real-life data were applied to build systems for entire structures. 

The three main aims of the present study are as follows:  

i. To test the applicability of using SI to reduce the time required for calculations related to 

simulating complex structures found in AHU1.  

ii. To test SI’s viability to identify dynamics in structural climate control design using one-hour 

discrete time data.  

iii. To build fuzzy logic controller structures with six inputs and three outputs and then apply these 

structures as controllers for the AHU1 state space model. 

4. In Chapter 5, our primary aim is to optimize the developed model to satisfy the system’s real-life 

demands. As the Carew Building features four AHUs, the state space model is best suited for our 

stated purpose. Furthermore, as our SI data were harvested during the winter months (November 

to April), the air conditioner was not being used at that time. There are four AHUs in the S. J. 

Carew Building (one AHU for each floor), which feature three inputs [𝑈] and three outputs [𝑌] 

each, or 12 inputs and 12 outputs in total. The three inputs are: 1) fresh air (external source), 2) 

supply fan speed, and 3) hot water valve (for heating coil/zones radiators), while the three outputs 

are: 3) CO2 levels )measured as parts per million [PPM]) to regulate fresh air dampers., 2) static 

air pressure PS (measured as inch in water [INW]) of the ducts to regulate supply fan speed, and 

3) return air temperature to regulate hot water valve aperture. Please refer to chapter 4 for detailed 

information on the state space model applied in the AHU1 controller design. Overall, the present 

research aims to investigate the following:  

1) A fuzzy level control approach which regulates the four AHU outputs to consistently maintain 

the desired temperatures, static air pressure, and CO2 concentrations.  
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2) The optimal strategy or strategies in using fuzzy control to obtain the most suitable outcome 

(i.e., action) in every parameter, to be determined parameter by parameter.  

3) Whether the proposed fuzzy supervisor can successfully determine if an action is beneficial or 

not to the entire system regarding overall performance levels.  

4) Whether the proposed fuzzy supervisor is able to control energy savings towards the building’s 

overall performance levels of heating and cooling, with the individual demands of every floor 

being considered in the performance evaluation. 
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2. Modeling, Energy Consumption Analysis of a Large Building at Memorial 

University 

Preface 

A first manuscript has been submitted in the Journal of Energy at Hindawi. I am the primary 

author of this journal. Along with the co-authors, Tariq Iqbal and Kevin Pope, I model the S. J. Carew 

building on the campus of Memorial University, St. John’s, Newfoundland by employing the 

simulation tool IDA Indoor Climate and Energy (IDA-ICE) 4.7. We then look at energy consumption 

in the Carew Building before developing an IDA-ICE model library as well as 3D and heat models. I 

conducted the literature review, performed the simulation, and analysis the results. The co-authors 

helped in providing reviewed and corrected the achieved results and contributed in preparing, 

reviewing and revising the manuscript. Also, contributed through support in the conceptual 

development of the study, research methodology design, analysis, and discussion of the results. 

Abstract 

In this paper, energy consumption analysis and a process to identify appropriate models based 

on heat dynamics for large structures is presented. The analysis uses data from heating, ventilation, and 

air-conditioning (HVAC) system sensors, as well as data from the indoor climate and energy software 

(IDA Indoor Climate and Energy (IDA-ICE) 4.7 simulation program). Energy consumption data (e.g., 

power and hot water usage) agrees well with the new models. The model is applicable in a variety of 

applications, such as forecasting energy consumption and controlling indoor climate. In the study, both 

data-derived models and a grey-box model are tested, producing a complex building model with high 

accuracy. Also, a case study of the S. J. Carew building at Memorial University, St. John’s, 

Newfoundland, is presented.
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Keywords: State space model, building modeling and simulation, IDA-ICC program, HVAC, energy 

consumption, system identification. 

 

2.1. Introduction 

Heating, ventilation and air conditioning (HVAC) systems are crucial for indoor climate 

management and air quality. These systems are also a key factor in overall operational costs. For 

industrial buildings, nearly one-third of the energy usage depends on HVAC system operation [1]-[3]. 

The recent rapid industrialization of the world’s developing nations has led to an increase in energy 

demand, followed by a rapid rise in pollution levels. As a result, researchers are investigating ways to 

mitigate or prevent further environmental damage through a combination of conservation methods and 

wide-scale adoption of renewable energy systems [4].  

Ideally, HVAC (heating, ventilation, and air-conditioning) systems are developed to form an 

interior environment that provides user-comfort with operational cost-efficiency. To maintain 

consistent user-comfort and affordability amidst changing variables, a suitable control system is 

needed. Several options have been modelled. One popular method uses data to create a mathematical-

based HVAC system that considers input and output variables to find and set system parameters. Data-

driven HVAC can readily identify strategies for system refinement and enhancement. These types of 

model determination are termed system identification (SI) in the literature (ASHRAE, 2005) [5]. 

In previous studies, researchers categorized modeling approaches into two main types, namely 

black box and grey box. For the black box method, no prior information is required, but for the grey 

box strategy, there must be a reservoir of pre-existing knowledge. Due to these constraints, the black 

box modeling approach is generally better represented in the literature. Examples of black box models 

applied to HVAC systems are polynomial forms such as ARX, ARMAX, BJ, and OE. Despite its 
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popularity, the black box model strategy overlooks the physical features of a system, leading to issues 

around the practical application in real-world designs. 

For example, Chi-Man Yiu et al. [6] looked at black box strategies for air-conditioning systems. 

The researchers contrasted two ARMAX models – the first, a single-input / single-output system, and 

the second, a multi-input / multi-output (MIMO) system. For the MIMO system, Chi-Man Yiu et al. 

[6] employed parameters derived from the recursive extended least squares method. Mustafaraj et al. 

[7] investigated temperature and humidity models (ARX, ARMAX, BJ, and OE) for office 

environments, using a black box approach. The same researchers [8] continued their work by applying 

nonlinear auto-regressive models with NARX inputs to gauge temperature and humidity levels while 

comparing and contrasting the outcomes for these models with those of linear ARX models. 

Additionally, Mustafaraj et al. [8] examined CO2 concentrations’ effect on model performance, 

considering that occupancy levels in a building are directly correlated to CO2. Rabl [9] provided a 

summary of approaches applied for dynamic analysis of power usage by modeling heat dynamics. 

These models were applied in studies by Sonderegger [10] and Boyer et al. [11], using differential 

equations. For dynamic models, parameter estimation and system identification are essentially the same 

processes. 

This research uses the Gray Box method to model dynamic systems. This precise and global approach 

makes it possible together, information about the thermal properties of structures [12]-[14]. Gray box 

models use discrete timing equations and continuous time stochastic differential equations. An HVAC 

system’s yearly power usage can be predicted using energy performance analysis tools, such as 

SIMBAD, EnergyPlus, eQUEST, HVACSIM+, IDA ICE, and TRNSYS at set time frames (hourly or 

less) in accordance with a set of equations is describing a building’s thermal performance. Calculations 

comparing various design options are usually made for part-load and full-load performance [15]-[18]. 
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This paper simulates a whole building (the S. J. Carew building in St. John’s, Newfoundland) 

using the IDA Indoor Climate and Energy (IDA-ICE) 4.7 simulation program. In addition to examining 

the modeled structure’s power use, the study investigates a 3D model, a heat model (with variable 

parameters), and an IDA-ICE model library. The IDA-ICE was developed to investigate different 

thermal climate zones occurring in indoor environments [19]. 

Exact details of the construction of the building and logged data from Honeywell software use as the 

detail to build the model of the building in IDA-ICE software. We propose 12 inputs and 12 outputs 

dynamic model for the system. The dynamic model is required to design and test system controllers 

before actual implementation. To determine a state space system model, we use the Matlab system 

identification toolbox. For the model determination, we used data from IDA-ICE software. 

Contributions of this paper are building data, a proposed system dynamic model, a method to determine 

the system model, and developed system dynamic model parameters. The primary objectives of this 

paper are:  

1.  Apply the IDA-ICE software to model the S. J. Carew building (Memorial University, St. 

John’s, Newfoundland), all real dimensions and building materials information are available. 

This is the reason for selecting the building, which the Department of Facilities Management 

and the Honeywell office are responsible for running and monitoring the system.  

2. By using the IDA-ICE software we can divide the single valve of hot water coming from the 

main room to four distinct units, enabling each air-handling unit (AHU) to have an individual 

valve for control the mechanical hot water flow for each zone as another input of the system 

are supply fan speed and fresh air dampers position.  

3. Compare the data from the IDA-ICE software with the building logged data for validating the 

power use outcomes 
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4. Determine the potential of applying the system identification approach to reduce the time 

needed to simulate the building and use the system model simulation results in identifying the 

dynamics related to a building’s climate control.  

2.2. The building for this case study 

A case study on the S. J. Carew building, with an interior size of 25,142 m2 is conducted. The 

building is located on the campus of Memorial University, St. John’s, Newfoundland, and includes 

several teaching rooms and research labs for the Memorial’s Faculty of Engineering and Applied 

Science. The building also features a large cafeteria. There are four individual air-handling units 

(AHUs) in 300 zones within the building. Figure 2.1 illustrates a 3D model for the structure, applying 

the IDA-ICE software mentioned in the previous section, while Table 2.1 provides an energy report. 

 

Figure 2.1 3D model for the structure 
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Table 2.1 Energy report for the building. 

  

2.3. Simulation Tool 

The S. J. Carew building is modelled by employing IDA-ICE as a dynamic thermal simulation 

tool. This program is selected because it is widely accepted as a viable thermal building performance 

simulator towards the study of power usage and indoor thermal climate of whole buildings [19]. The 

IDA-ICE software uses symbolic equations framed in a modeling language and a variable time-step 

differential-algebraic (DAE solver). The models, which can be expressed through Neutral Model 

Format (NMF)/Modelica and act as both computer code and readable document, which are applicable 

to various simulation environments [20], [21]. 

The simulation tool IDA-ICE 4.7 is employed to predict the power usage and interior climate 

of the S. J. Carew building. The IDA-ICE 4.7 tool is ideal for modeling of multiple-zone HVAC 

systems as in the S. J. Carew building. IDA-ICE 4.7 is able to determine the general thermal comfort 

level of the building by measuring the internal air quality (IAQ) and performing dynamic simulations. 

The heat exchanger uses controllers to maintain zonal temperatures, which can be set as fixed points 

by modulating control valves. Meanwhile, in the real system (as shown in Figure 2.2), a hot water valve 
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collects relevant data for water heated by a heating coil. Although the building’s system features a 

single valve for its hot water production, the IDA-ICE software divides the single valve into four 

distinct units, enabling each air-handling unit (AHU) to have an individual valve [22], [23]. 

 

Figure 2.2 AHU2 for S.J. Carew building 

2.4. Building Model 

IFC files were used to develop a simulation model from the building information model (BIM). 

As shown in Figure 2.3, the East side of the third floor features an AHU, and all floors in the building 

have their own individual AHU. 
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Figure 2.3 Third floor of the building  

Data from the Facilities Management department at Memorial University were used to source 

construction information regarding building dimensions and elements such as windows, doors, and 

walls. The data then inputted to the IDA-ICE software.  
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Figure 2.4 Details of windows used in the Carew building 

Figure 2.4 depicts two of the eight different kinds of windows used in the Carew building, while 

Figure 2.5 illustrates the building’s south elevation. Heating system information (e.g., radiator type and 

position) is presented in Figure 2.6, and Figure 2.7 depicts the main room’s ventilation system for 

AHU1, AHU2, and AHU3. Each of the areas has individual internals loads (i.e., occupancy and light 

based on floor type and usage) that have been determined by applying national building code monthly 

values.  The ventilation design determines the supply and exhaust air flows, with standard commercial 

building pressure coefficients applied. There are doors dividing nearly all of the areas in the structure, 

enabling bi-directional air flow (even through closed doors). Air tightness is measured as an n50-

parameter, while infiltration and exfiltration are simulated using the IDA-ICE air-flow network feature. 
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Figure 2.5 South elevation of the building 

 

Figure 2.6 Fourth floor layout 
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Figure 2.7 Main room’s ventilation system 

2.5. Simulation Results 

The IDA-ICE 4.7 program was used to analyze energy use in the S. J. Carew building at 

Memorial University, St. John’s, Newfoundland. The analysis involved a number of factors, such as 

weather data, infiltration, external/internal heat gain, and overall heat capacity. The simulation was 

done for the course of one full year (January 1, 2016, to December 31, 2016). The space heating and 

total energy consumption analysis results for the building are provided below. 
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2.5.1. AHU results 

➢ AHUs temperature 

 

Figure 2.8 AHU1 supply air, return air and outdoor air temperature 

Figure 2.8 shows AHU1 supply air and return air, as well as the outdoor air temperature. As can 

be seen, the air temperature represents a mixture of temperatures from individual zones, while the air 

supply temperature represents the temperature of the air terminal zone following any alterations made 

to the duct or fan systems. The supply air temperature set-point refers to the air temperature prior to 

these alterations. 

➢ AHU airflow 

The flows represent the total flow from every zone impacted by AHU1 (Figure 2.9) and have 

been multiplied according to weight (i.e., how many zones are the same type). This value is included 

in every zone. The flow is volumetric and assessed for actual temperatures. Therefore, it can differ 

from the set-point flow for each zone. Set-point flows are determined from mass flows based on 

variations in density.  
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Figure 2.9  AHU1 supply and return air flow.  

➢ Heating and cooling AHUs coils 

Figure 2.10 depicts the central cooling and energy for AHU1. In circuits that are water-based, 

the energy consumption can be measured in the circuit according to temperature changes and mass 

flow (i.e., supply/return). Therefore, heat can be calculated after generation losses are included, but 

prior to the calculation of emission and distribution losses. Cooling energy is included as a positive 

quantity in the calculations. 
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Figure 2.10  Central heating and cooling power of AHU1 

2.5.2. Heat balance  

Figure 2.11 depicts the zones’ sensible (dry) and full latent (moist) heat balance. To find the 

sensible heat balance only, the details for the zone’s power report need to be logged. In this set-up, the 

control volume indicates air-wetted surface area located at the room unit zone-side, backed by an air 

gap. Heat balance contributions can be allocated as follows: 
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Figure 2.11. Results for building heat balance 

➢ Equipment heat  

This type of heat emanates out of equipment like printers and computers as a form of radiant or 

convective heat. 

➢ Floor and wall heat  

As the control volume is positioned directly below the surface of floors and walls, any measurement 

of heat indicates the presence of conductive heat passing through the structural element. This type of 

thermal energy can include net transmission and heat storage, in addition to internal heat functions 

(e.g., in-floor radiant heat). The thermal energy that has been stored as a function of room masses, such 

as in furniture, also is in this category.  

➢ Daylight heat  

This type of heat describes sunlight streaming into open doors or through windows, taking into 

consideration any shortwave radiation which exists. Solar radiation that has been absorbed and 

retransmitted is excluded from this category.  
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➢ Heating/cooling room heat  

This type of heat is represented by controlled room units (e.g., radiators or chilled beams). In hydronic 

systems, there is an automatic calculation to account for the radiation and convection aspects, as 

described in the manual. Floor heating is excluded from this category.  

➢ Window heat  

This type of heat describes heat emitted from window surfaces, such as through retransmitted absorbed 

solar radiation or through conduction. Long-wave radiation entering via openings such as opened doors 

falls under this category of heat. Solar radiation can have two major impacts on a room’s heat:  

i. It can be absorbed by the window covering or pane and then emanate through the room 

as a radiative or convective process. 

ii. It can be directly transmitted as short-wave radiation and be reflected by room surfaces 

until finally absorbed by internal room masses (furniture, equipment, people, etc.). 

➢ Airflow heat  

This describes all air flows, including infiltration, flowing from other zones and mechanical ventilation.  

2.5.3. Energy delivered 

The report on the energy delivered provides a general overview of total energy purchased or 

generated in the S. J. Carew building, as shown in Figure 2.12. The reported items are matched to the 

energy meters. The report also shows the primary form of energy employed, as well as the cost and 

estimates for CO2 emitted. These are presented according to the structure’s floor area and with regard 

to absolute values. Conversion factors from the meter energy to other measures are given as energy 

meters. 
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Figure 2.12 Energy delivered 

2.5.4. Results – Energy from systems 

The results also provide a general review for HVAC system energy flow. As shown in Table 

2.2, the review is in three categories: use energy, AHUs heat and cold recovery, and auxiliary energy. 

The results provide a means to validate real data and then apply this data for system identification to 

obtain the Carew building’s HVAC system’s state space model. 
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Table 2.2  Energy use distribution 

 

2.5.5. Results – Energy from zones 

The results provide information on the sensible heat balance in the Carew building’s zones. 

Information on total (i.e., dry and wet) heat balance, are presented in the heat balance Figure 2.11. The 

data are provided for monthly and one-year (simulation period) basis. Figure 2.13 provides details on 

envelope transmission losses, with control volume being positioned at the surface of the floor as well 

as on the ceiling and inside walls. For slab (embedded) cooling and heating processes, the control 

volume also involves activated layers and thus includes large thermal masses.  
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Figure 2.13 Details on envelope transmission losses 

2.6. Simulation validation for IDA-ICE  

A viable model must provide accurate results and also meet the required specifications. In the 

present work, the building data used was provided by Memorial University’s Department of Facilities 

Management and the Honeywell Office. The data provided in Tables 2.3 and 2.4 (energy and hot water 

consumption) for the S. J. Carew building were collected between April 2012 and May 2017, inclusive. 

These were used to compare, and contrast power consumption derived from real data with power 

consumption derived from the IDA-ICE software data.  
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 Table 2.3  Energy from hot water consumption 

  Y2012 Y2013 Y2014 Y2015 Y2016 Y2017 

MONTH MMBTU MMBTU MMBTU MMBTU MMBTU MMBTU 

APR 1,646 1,838 1,932 2,333 2,109 1,640 

MAY 1,318 1,446 1,806 1,956 1,745 1,985 

JUN 1,164 1,251 1,273 1,615 1,391 0 

JUL 774 1,067 856 1,464 1,150 0 

AUG 525 932 974 1,019 1,071 0 

SEP 391 958 1,017 1,289 1,368 0 

OCT 1,438 1,519 1,510 1,793 1,906 0 

NOV 1,659 1,740 1,803 2,117 1,946 0 

DEC 1,915 2,313 2,143 2,073 2,732 0 

JAN 2,389 2,228 2,638 2,546 2,898 0 

FEB 2,051 2,175 2,512 2,276 2,473 0 

MAR 1,939 2,405 2,615 2,502 2,605 0 

TOT 17,210 19,871 21,079 22,983 23,394 3,625 

LITRES 565,029 633,115 666,618 719,885 762,559 116,177 

 

Table 2.4  Electrical power consumption  

  Y2012 Y2013 Y2014 Y2015 Y2016 Y2017 

MONTH kWh kWh kWh kWh kWh kWh 

APR 366,300 375,458 462,454 526,557 485,348 444,139 

MAY 393,773 425,824 471,612 503,663 398,352 434,982 

JUN 434,982 357,143 407,509 503,663 489,927 0 

JUL 407,509 508,242 563,187 425,824 467,033 0 

AUG 366,300 366,300 471,612 462,454 494,505 0 

SEP 402,930 393,773 425,824 430,403 370,879 0 

OCT 439,560 407,509 425,824 526,557 434,982 0 

NOV 412,088 476,190 512,821 439,560 489,927 0 

DEC 393,773 444,139 526,557 434,982 508,242 0 

JAN 439,560 462,454 476,190 448,718 476,190 0 

FEB 398,352 439,560 494,505 444,139 430,403 0 

MAR 402,930 416,667 467,033 508,242 476,190 0 

TOT 4,858,059 5,073,260 5,705,128 5,654,762 5,521,978 879,121 

The first step for comparison was to verify design details for the Carew building. These details 

included aspects such as building materials, location, dimensions, total area, etc. The second step was 

to make a comparison using the file for outdoor air temperature/weather as represented in the IDA-ICE 

software (based on readings from St. John's Airport, [ASHRAE, 2013]) and the building’s actual 

outdoor air temperature obtained from the Honeywell software data. Figure 2.3 depicts the sensor (-

1.4° OA); the average of the temperature readings from 2016 in one-hour time samples for both data 

was the same. 
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A viable model needs to have both accurate results and the ability to satisfy any required 

specifications. Figure 2.14 shows the IDA-ICE model of hot water usage from January to December 

2016. The energy consumption for hot water was more than 800,000 kWh in Jan and Dec. Also, it was 

almost 300,000 in the summer time (Jul and Aug). Furthermore, although the actual data for hot water 

usage measured slightly low in some months and slightly high in others, it compared well to the IDA 

simulated data. Regarding overall energy consumption, the modeled data are only somewhat different 

than the actual data. Figure 2.15 shows the actual (measured) data as moderately higher than the 

simulation data, but these slight differences could be due to discrepancies in the lab readings due to 

miscalibrated equipment. 

 

Figure 2.14  Energy use from hot water 
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Figure 2.15  Electrical power use 

2.7. System Identification 

Our study used the IDA-ICE 4.7 simulation software for measuring the interior environment as 

well as the overall energy performance. This software is able to simulate and model multiple-zoned 

HVAC systems and is also gauge interior air quality (IAQ), energy requirements, and thermal comfort 

levels. To model the S. J. Carew building, the zonal inputs and outputs must be included in the 

identification data. There are three main steps in system identification [24]-[27]:   

i. Collecting the data toward model identification. 

ii. Choosing an appropriate model structure. 

iii. Building a model that provides the best functionality (i.e., satisfies specifications and gives 

accurate results). 

During these steps, the focus is on optimizing the chosen model to suit a real-life system. In 

this study, a structure is used that features four AHUs as a means for identifying the state space model 
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of the system. The data used for system identification were collected during the winter months, which 

means that the cold-water valve was not operating. Additionally, because the S. J. Carew building has 

four floors, the system features twelve inputs and twelve outputs overall, calculated from three inputs 

(𝑈) and three outputs (𝑌) per floor. Figure 2.16 illustrates the details. 

 

Figure 2.16  Inputs and outputs of the system 

1) Zonal Temperature (Tz) (𝑦1, 𝑦4, 𝑦7, 𝑦10): These data are derived from the IDA-ICE software. 

Although the actual system features sensors in every room, the temperature on each floor still needs 
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to be measured. The data from the IDA ICE software are used to control the hot water valve. Figure 

2.17 illustrates the outputs. 

 

Figure 2.17  Zones temperature 

2) Hot Water Valve for Heating Coil/Zones (𝑢1, 𝑢4, 𝑢7, 𝑢10): These data are also derived from the 

IDA-ICE software. In the actual system (as shown in Figure 2.16), a hot water valve collects data 

on hot water use. Note that this system only has one valve for hot water production, whereas in the 

IDA-ICE software there are four valves, which enables every floor to have a separate valve. Figure 

2.18 shows these inputs as percentage of opening and closing operation of the hot water valves. 



48 
 

 

Figure 2.18  All inputs of the system 

3) Fresh Air Dampers (𝑢3, 𝑢6, 𝑢9, 𝑢12): As shown in Figure 2.18, the fresh air sensors positioned in 

AHUs are able to gauge, in percentage, the amount of fresh air is entering the building. The sample 

time (𝑇𝑠) used in these calculations is used in all data. 

4) CO2 Levels (CO2) (𝑦3, 𝑦6, 𝑦9, 𝑦12): This data is obtained from the sensors for return air flow ducts 

for individual AHUs. Figure 2.19 depicts CO2 levels occurring in AHUs. These outputs can be 

applied in moderating fresh air dampers. 



49 
 

 

Figure 2.19  CO2 level of AHUs 

5) Static Air Pressure (Ps) (𝑦2, 𝑦5, 𝑦8, 𝑦11): This data comes from two sensors – one for hot ducts and 

one for cold ducts. As illustrated in Figure 2.20, these outputs can be applied to the control of 

supply fan speed. 

6) Supply Fan Speed (𝑢2, 𝑢5, 𝑢8, 𝑢11): This data is derived from the AHUs sensor. Figure 2.18 depicts 

the sensors measuring the fan speed of AHUs. The sample time (𝑇𝑠) for gathering the data is one 

hour, and the input signals are obtained in percentages. 
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Figure 2.20  Static air pressure of AHUs 

System disturbances (𝑤) can occur with changes to wind speed/direction and outside 

temperature. These changes are recorded in the IDA-ICE software and the input/output signal data 

series organized through MATLAB. The ordering of the data is imperative before moving onto the 

next stage, which is system identification using the System Identification (SI) Toolbox. Every 

individual data set is cut in two: one half represents estimation data, while the other half represents 

validation data. 

Data from the first half (Data 1) are organized as input/output sets using MATLAB. The inputs 

are arranged into 12 columns, with every column relating to a specific input signal. Note that the 

number of rows is equal to the number of simulation period hours. Similarly, the outputs are also 

arranged into 12 columns, with every column relating to a specific output signal and the number of 

rows being equal to the number of input arrays.  In these calculations, both the estimation and validation 

data have a 90-day time frame. Figures 21, 22 and 23 show some of the time plots of this data for 
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estimation. The CO2 level of AHU3, static air pressure of AHU2 and zone temperature of AHU1 are 

shown the output is the upper plot and the input is the lower plot. 

 

Figure 2.21  Input and output signals of CO2 level of AHU3 (U9)(%) 

 

Figure 2.22  Input and output signals of the static air pressure of AHU2 
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Figure 2.23  Input and output signals of zone temperature of AHU1 

Figure 2.24 shows the output of the model that follows the temperature of a zone in AHU1 with 

the same output as the real system. The agreement between these graphs can be seen as a percentage 

of the error. Ideally, this result is 87%. Also, Figure 2.25 shows that the system performance percentage 

for the estimated model and the actual system of CO2 level of zone 3 in AHU3 was 84%. Also, the 

percentage of the estimation model of the static air pressure the simulated or predicted model output is 

shown together with the measured validation data in Figure 2.26.   
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Figure 2.24  Validation of real measurements and outputs of CO2 level model fit 87%. 

 

Figure 2.25  Validation of real measurements and outputs of zone temperature model fit 81%. 
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Figure 2.26  Validation of real measurements and outputs of the static air pressure model fit 80%. 

The part of the system data that the model could not describe is called the residuals [28]-[30]. 

They contain important information about the quality of the estimated model. The cross-correlation 

between residuals and the correct model does not exceed the confidence level [28]. If this is the case, 

the original model has captured the underlying properties of the system. The remaining autocorrelation 

indicates whether the error pattern is accurate. Standard process models do not evaluate the error model 

and unknown interference is not in the original model, thus the remaining runtime is not used for model 

verification. Figures 2.27, 2.28 and 2.29 show plots of the autocorrelation and cross-correlation of 

system responses to inputs. It is clear from the cross-correlation diagram of these figures that the 

estimated model is very similar to the responses of the system to the inputs; the correlation curves lie 

between the dashed lines. 
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Figure 2.27   Autocorrelation y1 and cross-correlation of system response u1 & y1 

 

Figure 2.28  Autocorrelation y5 and cross-correlation of system response u5 & y5 
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Figure 2.29  Autocorrelation y12 and cross-correlation of system response u12 & y12 

Every state-space model is estimated in the SI Toolbox. The models undergo a comparison based 

on the degree of accuracy between the validation data sets estimated and measured (i.e., real) outputs. 

In the comparison, the estimated and real outputs are plotted for every model, after which a numerical 

value is allotted regarding the model’s ‘fit.’ Using the SI Tool, the estimated outputs for numerous 

models are able to be plotted quickly and at the same time, with the model showing the highest value 

(i.e., the best ‘fit’) deemed to have the greatest reliability. As an outcome of the process, we can obtain 

state-space models for Data 1 data groups and compare models across different seasons. For detrending 

the data, there are no alterations made to any relative differences among inputs and outputs. 

To determine model settings for the system, a linear parametric model can be estimated from a 

state-space structure. In general, the state-space model discrete-time settings generally feature the 

following structure: 

𝑋 (𝑡 + 𝑇𝑠)  =  𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐾𝑒(𝑡)               

                                                         𝑌 (𝑡)  =  𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) + 𝑒(𝑡)                                              (2.1) 
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where the 𝑥(𝑡) represents the states of the system and 𝑦(𝑡), 𝑢(𝑡) 𝑎𝑛𝑑 𝑒(𝑡) represents the output, 

input and error. The 𝐴, 𝐵, 𝐶, 𝐷 𝑎𝑛𝑑 𝐾 matrices contains the model parameters, and 𝑇𝑠 is the sampling 

time of the system. 

For modeling multi-input/multi-output (MIMO) systems, state-space models have proven to be 

the most popular option, likely because the state-space method is relatively straightforward [31]. For 

the system used in the present work (twelve inputs and twelve outputs), the discrete-time state-space 

model for order 12 (sampled as Ts = 3600 s) and the A, C and K matrices are as following: 
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2.8. Conclusions 

In this paper, the S.J. Carew building was modeled using the IDA-ICE software using all details 

of HVAC system and instructions of the building. This model provides good approximations 

comparing the consumption of hot water and electricity with the measured data for a full year (2016). 

It also compares the average of the outside temperature of the weather file of IDA-ICE software and 

the measured data. All system inputs and outputs were selected, and a linear state-space model was 

identified describing the thermal response of the system. The dynamic model is required to design and 

test system controllers before actual implementation. The model was derived using MATLAB’s 

System Identification Toolbox (SI). The model has twelve state variables, twelve inputs, and twelve 

outputs. The model responses when compared with actual data are within the allowed range. Validation 

data, autocorrelation function for the residuals as well as the cross-correlation function between input 

and residuals computed and presented. 
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3. Modeling, Analysis, and State Feedback Control Design of a Multi-zone HVAC 

System 

Preface 

A version of this manuscript has been published in the Hindawi Journal of Energy. I am the primary 

author of this paper. Along with the co-authors, Tariq Iqbal and Kevin Pope we gauge the usefulness of SI in 

identifying climate control dynamics when employing samples of one-hour discrete time data and we 

investigate the validity of a state feedback controller using a state space model. I completed the first version 

of the manuscript and further revised according to the suggestions of co-authors and reviewers. Tariq Iqbal 

helped to identify the research topic and scope. Keven Pope reviewed the manuscript and provided revision 

suggestions. 

Abstract 

A HVAC system is modeled by applying a state space MIMO (multi-input/multioutput) system 

method for control system design and analysis. State space model of the system are developed using the 

simulation program IDA Indoor Climate and Energy. The building has four floors in total, with separate air-

handling units (AHUs) on each floor. The system’s eight main input data are hot water and the energy usage 

for each AHU, while the eight main outputs are returned airflow temperature and CO2 levels for AHUs. The 

factors of wind direction and velocity are also applied as disturbances. By comparing usage data on simulated 

power consumption versus measured data for the three months of October, November, and December 2016, 

good agreement was achieved with simulated data. The main aim is to develop a state feedback controller and 

then apply it toward the optimal functionality of a control system. After utilizing the MATLAB identification 

toolbox, a MIMO system-based state space model is developed.  

Keywords: State space model, HVAC system, energy consumption system identification, state feedback 

controller,  
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3.1. Introduction 

The main aim in developing an optimal HVAC (heating, ventilation, and air-conditioning) system is 

to create a comfortable environment for occupants with reduced energy inputs [1]. However, heating and 

cooling loads typically change according to the exterior environment, as well as with the specific needs of the 

users. HVAC systems require a control system to keep the comfort level and air quality relatively constant 

with variable conditions. Furthermore, power usage can be greatly decreased if the system is suitably 

controlled.  

A method that is based solely on measured data is one possible means for obtaining a mathematical 

interpretation of the system. The model can be used to determine system parameters in cases where input and 

output variables are already available. This modeling method is useful if the system is constructed and data 

related to performance can be readily obtained. Compared to forwarding models, those that are data-driven 

can identify system approaches that can prove to be both easier to use and better performance predictors. 

Modeling methods that primarily use data are classified as “system identification” (ASHRAE 2005).  

A wide range of research over the past few decades supports the suitability of applying the system 

identification approach in energy simulation and in determining and analyzing the moisture, cooling and 

heating environments in buildings. Applying data gathered from a building management system, Lowry and 

Lee (2004) studied the outcome of using a data-driven model to gauge thermal response [2]. A few years 

earlier, Madsen and Holst (1995) utilized nearly the same system identification approach to determine a 

structure’s heating dynamics obtained from data on discrete time performance [3]. Cunningham (2001) 

applied system identification methods to find moisture release rates in a structure based on psychometric data 

[4], and Mechaqrane and Zouak (2004) incorporated system identification in their investigations on the 

prediction of interior air temperature in residential structures [5]. A few studies have also focused on 

comparing test approach models with theoretical predictions using simulation software like TRNSYS. Peippo, 
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K., P. Kauranen, and P. D. Lund (1991) determined the dynamics of a structure according to discrete time 

results obtained from simulation software using a one-hour time step [6].  

Despite the approach’s clear potential, there are numerous obstacles to the simulation of a structure’s 

dynamic response when applying simulation software. Currently, simulation software can be significantly 

time-consuming, and the results are often missing important information on the fast dynamic behavior of a 

structure (i.e., in the order of seconds), as the majority of available software utilizes a discrete time step that 

is typically set at one hour. Problems arise when, for instance, data is needed on fast dynamic behavior for a 

control strategy (e.g., on/off), but it cannot be obtained because it is situated within the time step.  

This paper presents a simulation of an entire structure, applying the simulation program IDA Indoor 

Climate and Energy 4.7. In the simulation, the energy usage (including the heating and cooling) of the S. J 

Carew Building of Memorial University of Newfoundland, and also investigate a 3-D model, a heat model 

based on variable parameters, and typical IDA ICE model library parts. Established in 1998, the IDA Indoor 

Climate and Energy program can investigate separate thermal climate zones [9]. There are four main 

objectives of the present work:  

1. Use real data to create the entire structure and then validate the results.  

2.  Determine the viability of using system identification in decreasing the time required for 

calculating the simulation of complex structures.  

3. Determine the viability of using system identification for identifying the dynamics of climate 

control design in a structure when using discrete time data of one-hour sample time.  

4. Use state feedback (classical) control by applying a state space model.  

 

 



65 
 

3.2. Building thermal simulation 

3.2.1. Building structure  

For analysis purposes, we use a building on the Memorial University campus in St. John’s, 

Newfoundland, and Labrador, S. J. Carew Building, which accommodates Memorial’s Faculty of Engineering 

and Applied Science. There are more than 300 zones in the S. J. Carew building, which measures 

approximately 25,142 m2 and comprises a cafeteria, teaching rooms, staff rooms, and research labs. Table 3.1 

provides a description of the structure’s amenities and Fig. 3.1 illustrates the structure.  

 

Figure 3.1  3D model of the S. J. Carew building. 
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Table 3.1  Details of the building 

 

 

Initially, a section of the building is investigated using the simulation software IDA-ICE [9].  Data is 

applied on the weather for St. John’s and also construction details (e.g., windows, doors and walls, as well as 

radiators, fans, and pumps) to obtain energy consumption information for the simulation. In addition, we 

apply AutoCAD files drawings for determining the dimensions of the building such as the height of the 

building, size, and positions of the windows and doors, as well as information on ventilation and heating 

systems.  

3.2.2. IDA ICE simulation validation  

Determining whether the model satisfies the requirements and whether the results are accurate is 

critical to developing a feasible model. In this study, data is obtained from the Department of Facilities 

Management at Memorial University and compared with the structure’s hot water and power usage. Fig. 3.2 

illustrates the power usage and Fig. 3.3 illustrates the hot water for the entire structure of the S. J. Carew 

building from April 2012 to May 2017.   
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Figure 3.2  Power usage for the whole building  

 
Figure 3.3  Hot water usage for the whole building  
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Table 3.2 and Fig. 3.4 illustrate the IDA ICE data for three months October to December 2016, including 

energy consumption in the building, from lighting, HVAC, and Equipment. Equipment tenant comprehends 

the electricity used for university hold purposes such as (Computers, TV, cookers, Fridge-freezer, etc.).   

 

Table 3.2  IDA ICE data for three months  

 

 

Figure 3.4  IDA ICE data for three months  

Facility fuel 

(heating 

value)

Tenant 

electric
Peak 

demand

Lighting, 

facility

HVAC 

aux

Domestic 

hot water

Equipme

nt, 

tenant

kWh kWh/m
2 kW

(kWh) (kWh) (kWh) (kWh) Lighting, facility 548329 21.8 251.1

Oct 181016 98019 534558 135768 HVAC aux 518404 20.6 460.2

Nov 180769 152414 571011 135583 Domestic hot water 1919239 76.1 2610

Dec 166544 174971 813670 139914 Equipment, tenant 411265 16.4 188.3

Total 528329 425404 1919239 411265

Month Facility electric

Purchased energy
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The output variables of exterior temperature, hot water power usage, and power usage are compared 

with simulation data (three months’ worth) from IDA ICE software, as follows:  

3.2.2.1.   Exterior temperature  

Exterior temperature from the IDA ICE program and data weather files were compared with data from 

October to December 2016, using one-hour time samples, as shown in Fig. 3.5. 

 

Figure 3.5  outdoor temperatures of IDA ICE and actual data  

3.2.2.2. Power usage   

The modeled data differs slightly from measured data for power usage. As illustrated in Fig. 3.6 the measured 

data slightly exceeds the modeled data, which is likely due to differences in laboratory equipment. 
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Figure 3.6  power usage of IDA ICE and actual data  

3.2.2.3.  Hot water power usage  

As illustrated in Fig. 3.7, in October to December 2016 IDA ICE model, hot water power usage 

measured 6,583 MMBTU. Hot water usage in October for actual data was lower than IDA data, but in 

December was opposite and November was almost the same. 

 

 
Figure 3.7   water power usage of IDA ICE and actual data 
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3.2.3.  Simulation model  

The IDA Indoor Climate and Energy 4.7 (IDA-ICE) simulation tool is used to make an assessment on 

both the energy performance and interior climate. The tool can model multiple-zoned structures housing 

HVAC and can also be used for assessing thermal comfort, interior air quality, dynamic simulation, and 

required energy. Figs. 3.9, 3.10 and 3.11 provided details on the zonal input and output data. This information 

is needed for the identification data and the reference model for modeling the building.  

3.3. System identification 

Three distinct stages can be defined when using system identification [7]:   

1. Data gathering for identifying the model   

2. Choosing a suitable model structure. 

3. Developing a model which offers optimal system functionality. 

The S. J. Carew building has four AHUs which are needed to identify the system’s state space model. 

The system has eight inputs 1, 2, 3 and 4 represent the hot water power usage (kWh) and 5, 6, 7 and 8 represent 

the power usage (kWh) inputs of the system. For the outputs, 1, 2, 3 and 4 represent the level of CO2 (PPM), 

While the 5, 6, 7 and 8 outputs represent the zone temperature (oC), as shown in Fig. 3.8.    
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Figure 3.8  System with inputs and outputs 

3.3.1. Input signals   

A rise in airflow temperatures and radiator heat of the zonal temperature and hot water flow (minimum 

and maximum temperatures) is highly plausible. These form the zones’ sole control variables. Thus 

identification system signals can be used as input signals. The system’s power usage (PU) and hot water 

power usage (WPU) as a time function, for each AHU, are illustrated in Fig. 3.9.  
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Figure 3.9  Actual data of power usage (PU) and water power usage (WPU). 

3.3.2. Output signals  

The system outputs are defined as the temperature and CO2 level in the return air flow.  Returned air 

CO2 levels are shown in Fig. 3.10 and returned air temperature variations are shown in Fig. 3.11.  

 

 
Figure 3.10   Actual data of return air CO2 levels  
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Figure 3.11  Actual data of return air temperature  

3.3.3.  Choosing a model structure  

A model structure is selected from a range of structures which are roughly categorized as being either 

linear or nonlinear. However, because we are using a nonlinear system in this work, we choose the ARMAX 

model.  

3.3.4.  Identifying the model  

For the identification decision process used in pre-processing the data, the decision process can be categorized 

into five stages [8]: 

a. Deciding the optimal model structure (e.g. ARX, ARMAX, process models) for our purposes.   

b. Deciding the model order.  

c. Deciding the optimal estimation approach. 

d. Launching the identification process.   

e. Reviewing and validating the results.  
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3.3.5.  State space model  

The total quantity of the system’s independent components is assumed to equal to the total number of 

the state variables, n. The system’s total power and state time derivative variables set the system’s power 

change rate, and the system’s state variables at a time, t, give enough data for calculating the values of the 

system’s variables for that time [10]. The multizone HVAC system was developed as a single system with 42 

states and nine outputs [11], [12].   

�̇� = 𝐴𝑥 + 𝐵𝑢 

       𝑦 = 𝐶𝑥 + 𝐷𝑢 

Matrix A8*8 and matrix B8*8 form the system’s properties. Hence, the output variables impact the 

output equation matrices (C8*8 and D8*8). The matrices are calculated by applying the MATLAB tool box for 

system identification.  

Additionally, using MATLAB, we can formulate the system’s dynamic behavior for an arbitrary input 

and lsim (sys, u, t, xo) function simulation. The system uses eight inputs, each depicted as u, while the time 

samples are given as t vector and xo indicates the system’s starting values. The system outputs response, in 

Fig. 3.12 shows the zonal temperatures, while Fig. 3.13 indicates the zonal level of CO2. 
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Figure 3.12  Temperatures using lsim function simulation. 

 

 
Figure 3.13  CO2 level using lsim function simulation 

As illustrated in Fig. 3.13, the system responses fall within the correct range if the starting transient is 

neglected.  

3.4. Control strategies  

HVAC systems control interior environmental factors such as room humidity and temperature in 

commercial or residential structures, with the overall aim of giving users a comfortable working and living 
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environment. HVAC systems are so widely used that they comprise at least 50% of global power usage [13]–

[16]. In addition to creating a comfortable working and living environment, HVAC controls typically need 

also to consider maximizing energy efficiency. System identification and state space model for one AHU of 

the S. J. Carew Building was presented without control [17]. In earlier studies, researchers investigated mainly 

humidity and temperature levels in modeling HVAC systems [18]-[22]. A nonlinear HVAC model was 

introduced [18] and [19] that involves a temperature/humidity ratio and an observer for determining 

approximate moisture and thermal loads. An adaptive fuzzy output feedback controller was developed [20] 

that can be premised on an HVAC system observer. Researchers proposed applying both a decentralized 

nonlinear adaptive controller [21]. And a back-stepping controller [22] on a model.   

CO2 concentrations are generally seen as having a notable impact on room comfort levels [23], [24]. 

Accordingly, some researchers are suggesting developing a hybrid HVAC system that can develop continuous 

temperature states, as well as CO2 concentration as a discrete state [25], [26]. As these states can be highly 

interrelated, a more viable approach would be to integrate the presented discrete and continuous dynamics to 

form a model that assumes as states both CO2 concentration and temperature.   

A system’s possible future development can be predicted by the state of a dynamical system; the latter 

is essentially a group of variables. The control system is used to bring the non-linear system into a stable state 

while achieving the control targets. For one AHU unit system design feedback linearization technique have 

been applied [29], the control of the cross-water heat exchanger [28] and feedback controller achieves global 

input_/output linearization of greenhouse environments [30]. In creating system dynamics by referring to state 

feedback, the multi-input system can be controlled as a linear state model. Hence, the feedback control can 

be devised through a step-by-step process that is based on putting closed-loop eigenvalues in specific places. 

Fig. 3.14 illustrates a control system that utilizes state feedback. The system features linear process dynamics, 

processes disturbances, d, reference input, r, and controller elements, K, is feedback gain and, Kr is input gain. 
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The feedback controller’s main purpose is regulating the system output, y until it tracks the reference input 

during process dynamics uncertainty and disturbances.  

Performance specifications are critical to controlling design, and the most important feature is 

stability. The aim is for the system’s equilibrium point to stabilize asymptotically, but increasingly complex 

specifications can include obtaining the preferred properties from the system’s step or frequency responses. 

Such desired specifications include rise times, overshoot and settling times of step responses. In optimizing 

functionality, the system’s disturbance rejection properties can be analyzed to find the best way to handle 

disturbance inputs, d, while maintaining output, y, at the required value specifications.  

 
Figure 3.14  system with state feedback (K) and (Kr). 

The system is represented by the following linear differential matrix equation:  

 �̇� = 𝐴𝑥 + 𝐵𝑢 

       𝑦 = 𝐶𝑥 + 𝐷𝑢 

(3.1) 

 

It is assumed that D = 0 while neglecting the disturbance signal, d. The aim is to give the output value, 

r. In this scenario, state vector components must first be calculated. Thus, as the state at the time, t already 

has the required data for predicting the system’s behavior, the following time-invariant control law becomes 

both a state function and reference input:  

  𝑢 = 𝛼(𝑥, 𝑟) (3.2) 
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The equation can be formulated as follows if the feedback is maintained linear: 

 𝑢 = − 𝐾𝑥 + 𝐾𝑟𝑟 (3.3) 

In this equation, the reference value, r, has been deemed constant, which refers back to Fig. 3.14. Here, the 

negative sign works as an indicator of negative feedback being standard procedure. The closed-loop system 

we created after the feedback (3.1) has been applied to the system (3.3) can be calculated as:  

 𝑑𝑥

𝑑𝑡
= (𝐴 − 𝐵𝐾)𝑥 + 𝐵𝐾𝑟𝑟     (3.4)  

To find feedback gain, K, to set the characteristic polynomial of the closed-loop system: 

 
𝑝(𝑠) = 𝑠𝑛 + 𝑝1𝑠

𝑛−1 + ⋯+ 𝑝𝑛−1𝑠 + 𝑝𝑛 (3.5) 

This formulation is known as the “pole placement” or eigenvalue assignment problem. In the formulation, Kr 

input gain does not affect system stability (the latter is instead created by A−BK eigenvalues) but does have 

an impact on the steady-state solution. Thus, we can set the equilibrium point and steady-state output as: 

  

 
                             𝑥𝑒 = −(𝐴 − 𝐵𝐾)−1𝐵𝐾𝑟𝑟 

                          𝑦𝑒 = 𝐶𝑥𝑒 

(3.6) 

In this formulation, Kr is the best choice, which then gives ye = r, which is the required value. Furthermore, 

because Kr is scalar:  

 
𝐾𝑟 = −1/(𝐶(𝐴 − 𝐵𝐾)−1 𝐵) (3.7) 

The variable Kr represents the opposite of the closed looped system’s zero-frequency gain. Therefore, by 

applying Kr input gain and K which is (8×8) feedback gain matrix, the dynamics of a closed loop system can 

be modified until the required specifications are achieved. In this paper, the state feedback gain matrix is   
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[
 
 
 
 
 
 
 
102080.4 −93791.2 −729047 614999.7 350096.8 658615.9 202011.9 30447.25
−1446580 596078 −969369 776114.2 1646412 355322.9 −393128 −50502.8
645753.8 −269577 −1935998 1784298 589759.8 821055.8 623924.2 91440.54
388775.7 −184664 −601331 542196.5 197042 354662.3 191710.6 27060.44
−30.043 25.90427 20.8471 0.886393 20.65468 −3.9515 −7.54395 −0.83403
−39.3176 33.88056 27.27797 1.154438 27.0208 −5.17458 −9.88601 −1.0934
−58.262 50.20904 40.42217 1.711219 40.04134 −7.66779 −14.6487 −1.6203
−8.83168 7.630466 6.129845 0.253818 6.062056 −1.17064 −2.24588 −0.24996]

 
 
 
 
 
 
 

 

3.5. Simulation results 

3.5.1. Open loop system 

 The system has eight inputs and eight outputs. In this part, the system is presented by 64 transfer 

functions each relating one input to one output. 

 

  

𝐺11  =
𝑦1

𝑢1
=

−0.024 𝑠7 +  0.009 𝑠6 −  0.03 𝑠5 +  0.067 𝑠4 −  0.107 𝑠3 +  0.127 𝑠2 −  0.08 𝑠 +  0.027

𝑠8 −  3.55 𝑠7 +  6.323 𝑠6 −  7.5 𝑠5 +  6.66 𝑠4 −  4.711 𝑠3 +  2.635 𝑠2 −  1.06 𝑠 +  0.23
 

 

𝐺12 =
𝑦1

𝑢2
=

−0.19 𝑠7 +  0.47 𝑠6 −  0.64 𝑠5 +  0.54 𝑠4 −  0.27 𝑠3 +  0.095 𝑠2 −  0.0154 𝑠 −  0.0007

𝑠8 −  3.555 𝑠7 +  6.323 𝑠6 −  7.5 𝑠5 +  6.659 𝑠4 −  4.711 𝑠3 +  2.63 𝑠2 −  1.06 𝑠 +  0.23
 

   .         .                                                                         . 

   .         .                                                                         . 

   .         .                                                                         . 

𝐺87 =
𝑦8

𝑢7
=

5.6𝑒5 𝑠7 − 1.5𝑒6 𝑠6 + 2.6𝑒6 𝑠5 − 2.9𝑒6 𝑠4 +  2.6𝑒6 𝑠3 − 1.59𝑒6 𝑠2 + 6.7𝑒5 𝑠 − 8.5𝑒4

𝑠8 −  3.5 𝑠7 +  6.323 𝑠6 −  7.5 𝑠5 +  6.659 𝑠4 −  4.711 𝑠3 +  2.635 𝑠2 −  1.06 𝑠 +  0.23
 

 

𝐺88 =
𝑦8

𝑢8
=

6.68𝑒5 𝑠7 − 1.15𝑒6 𝑠6 + 1.6𝑒6 𝑠5 − 2.02𝑒6 𝑠4 + 2.3𝑒6 𝑠3 − 1.6𝑒6 𝑠2 + 7.9𝑒5 𝑠 − 1.4𝑒5

𝑠8 −  3.55 𝑠7 +  6.323 𝑠6 −  7.5 𝑠5 +  6.659 𝑠4 −  4.71 𝑠3 +  2.635 𝑠2 −  1.06 𝑠 +  0.23
 

 

Fig. 3.15 illustrates the steps response of the open loop system with sampling time (3600 s). In this paper, 8 

responses are simulated, instead of 64 responses (such as G11, G22, G33, G44, G55, G66, G77, and G88). 
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Figure 3.15  Steps response of the open loop system 

3.5.2. Steady-state tracking 

It has been shown in this paper how state feedback control laws affect the transient response 

characteristics of a system, including the definition of freedom, specifying their curves for a controllable 

equation of state, and how the eigenvalues affect the transient response. It has been demonstrated that by 

adjusting the gain matrix K, only some of the transient parameters can be appropriately adjusted, but there is 

no control over the steady-state value of the system. Next, the requirement forsteady-state monitoring for 

reference inputs is investigated. Such control systems are commonly referred to as servomechanisms. 

Two approaches are described: 

• input gain, the addition of an input gain to the state control law 

• integral, including an overall follow-up measure 

3.5.3. Input Gain 

For the input gain Kr, presented in Equation (3.7), the input gain controller is introduced to eliminate 

the stationary error associated with the complete status feedback controller for each constant input. The 
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control law is designed such that the output, y(t) follows the reference input, r(t). The controller maintains 

tracking in the steady state only if the reference inputs are stage inputs. The gain, K, is outside the feedback 

loop and makes the overall system sensitive to noise and disturbances. However, this is not "robust" since 

any change to the system parameter causes a nonzero error.  

3.5.4. Integral action 

The technique of integral control is another type of technique of placing the poles. It is also known as 

a tracking controller when it needs an output to track the input control signal. The output feedback is 

transferred to the controlled system via the integrator. The integrator, also called integral action, is used to 

increase the system type, and reduce finite errors to become zero [27].  

The configuration of the integrated control technique is shown in Fig. 16. The introduction of the input 

integrator causes the controller to have a pole at S = 0, which helps to eliminate the constant reference and 

improve the robustness of the system. However, Fig. 3.16 shows the block diagram of a system with state 

feedback and integral control using Matlab Simulink. Simulations are performed for a controller structure 

where a unit’s step input is [465 459 453 471 23.9 22.9 21.9 24.9], and signals are used as the reference signal. 

To accomplish one of the design requirements, the output signals should follow the given reference signals. 

Through simulation, mathematical modeling for the system is verified, and the performances for the controller 

structures are analyzed. Also, the initial state, X0, of the system for concentrations and indoor temperatures 

are taken from measured data at 6:00 AM when the system just starts. 
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Figure 3.16  Block diagram using Matlab Simulink.  

Simulation results of the system with a measured initial condition of CO2 level is X0= [446.4  440.6 

435.44  453.4], and change for set points in different time investigate the system’s responses with state 

feedback control and integral action. The responses of the CO2 level for the zones are illustrated in Fig. 3.17. 

 

 
Figure 3.17  Outputs response of the CO2 level of zones  
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Fig. 3.18 shows the responses of the zones temperature with measured initial condition of the zone 

temperatures, X0= [21.21  20.35  19.39   22.13].  

    

 
Figure 3.18  The outputs response of the zone’s temperature T-Zones with steps references T-Refs  

For full state feedback controller, K, with input gain, Kr, and integral action, the steady-state error is 

zero. Fig. 3.19 illustrates the controller action (steady-state error) of CO2 level responses (CO2-Er-Zones).  

 
Figure 3.19  Controller action (steady-state error) of CO2 level responses for each zone CO2-Er-Zones. 
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Fig. 3.20 shows controller action (steady-state error) of zones temperature responses (T-Er-Zones). 

 

Figure 3.20  Controller action (steady-state error) of temperature responses for each zone T-Er-Zones. 

3.6. Conclusion 

In this paper, the HVAC system of the S. J. Carew building was modeled using the IDE ICE program. 

This model provides good approximation results in which hot water consumption and electricity consumption 

are compared with actual data. Also, the outside temperature for the program and the measured data are 

compared for three months as the first part of the process. In the second part, the system identification toolbox 

was used to obtain the state space model of the multi-input and multi-output system MIMO. The model has 

eight status variables, eight inputs, and eight outputs, and model responses are within the permissible range. 

In the third part, a novel HVAC system model was developed that considers temperature and CO2 

concentration as the quantitative indices of comfort in a building. In applying an input-output feedback 

linearization method to linearize the HVAC system, one type of linear controller, pole placement controller 

with input gain and integral action were able to regulate the linearized HVAC system at the desired set point 
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without steady-state error. Simulation results validated the proposed HVAC model, demonstrating its 

effectiveness in maintaining comfortable conditions. 
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4. Modeling, Analysis, and Design of a Fuzzy Logic Controller for an AHU in the S. J. 

Carew Building at Memorial University 

 

Preface  

A version of this manuscript has been published in Hindawi the Journal of Energy. I am the 

primary author of this paper. Along with the co-authors, Tariq Iqbal and Kevin Pope. I build fuzzy 

logic controller structures with six inputs and three outputs and then apply these structures as 

controllers for the AHU1 state space model. I completed the first version of the manuscript and further 

revised according to the suggestions of co-authors. Tariq Iqbal helped to identify the research topic and 

scope. Also helped in choosing the appropriate optimization method, programming and running the 

simulation, reviewing and correcting the achieved results, and contributed in preparing, reviewing and 

revising the manuscript. Keven Pope reviewed the manuscript and provided revision suggestions. 

Abstract  

Proper functioning of heating, ventilation and air conditioning (HVAC) systems is important 

for efficient thermal management, as well as operational costs. Most of these systems use nonlinear 

time variances to handle disturbances, along with controllers which try to balance rise times and 

stability. The latest generation of fuzzy logic controllers (FLC) are algorithm-based and used to control 

indoor temperatures, CO2 concentrations in air handling units (AHUs) and fan speeds. These types of 

controllers work through the manipulation of dampers, fans, and valves to adjust flow rates of water 

and air. In this paper, modulating equal percentage globe valves, fans speed and dampers position have 

been modeled according to exact flow rates of hot water and air into the building, and a new approach 

to adapting FLC through the modification of fuzzy rules surface is presented. The novel system is a 

redesign of an FLC using Simulink, with the results showing an enhancement in thermal comfort levels. 
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Keywords: State space model, AHU modeling and simulation, HVAC, Fuzzy logic controller, 

system identification. 

4.1. Introduction 

Heating, ventilation, and air conditioning (HVAC) systems are installed in millions of 

commercial and non-commercial buildings as a means to provide the desired thermal comfort standards 

at an affordable cost and with minimal maintenance requirements. The HVAC approach to heating and 

cooling has become much more complicated, with the latest HVAC components using control 

algorithms, sensing technology, and artificial intelligence [1]. 

Energy saving is a key feature of HVAC systems and is increasing in importance [2], [3]. As 

the housing and business needs of the developed world generally include buildings that require HVAC 

systems, the percentage contribution of the total energy consumption of these buildings has increased 

from 20% to 40% in Western countries [4], [5]. Typically, an HVAC system requires more energy per 

building than any other system, given that optimal comfort in the home and work environments. 

However, there is a rising demand for costs to remain reasonable but efficiency to be high without 

sacrificing comfort levels. Recent research indicates that intelligent control might be a viable method 

of achieving optimal comfort levels at high energy efficiency. Intelligently controlled HVAC systems 

have been shown to reduce energy consumption by up to 30% [6] or higher [7]. Due to the potential 

these systems have for future energy needs, this paper proposes identifying advanced novel HVAC 

system models that employ intelligent control algorithms to produce energy savings without sacrificing 

comfort levels. Modeling HVAC systems and components mathematically have been demonstrated in 

the literature to be a viable approach for designing controls and detecting faults. 

Earlier research in the field reveals modeling strategies that fall into two distinct categories: 

grey box and a black box. The grey box approach depends on the existence of physical knowledge, 
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while the black box method requires no previous knowledge. In the literature, the black box is more 

common due in large part to issues related to thermodynamic modeling. Some black box options used 

in modeling HVAC systems include linear parametric models, such as OE, BJ, ARMAX, and ARX. 

However, this approach does consider a system’s physical characteristics, which can be a drawback in 

the practical application of designs.  

Chi-Man Yiu et al. [8] investigated black box identity in an air conditioning system. They 

compared a Single-input single-output system (SISO) ARMAX model with a multiple-input and 

multiple-output system (MIMO) ARMAX model, the latter which they devised using parameters 

obtained from the Recursive Extended Least Squares (RELS) technique. Mustafaraj et al. [9], 

investigated humidity and temperature models (OE, BJ, ARMAX, and ARX) to be applied in an office 

environment, identifying them with a black box strategy. This research was extended by Mustafaraj et 

al. [10], where they explored nonlinear auto-regressive models with eXogenous (NNARX) inputs. 

Using this approach, they estimated humidity and temperature and compared the performance of these 

models with linear ARX models. Mustafaraj et al. [10], also investigated carbon dioxide concentrations 

impact on the models, as there is a direct relationship between CO2 and occupancy levels. 

In other studies, Qi and Deng [11] reviewed a MIMO control strategy in air conditioning 

systems for modulating humidity and temperature indoors, using an air conditioning model that was 

based on principles of mass and energy conservation. Maasoumy [12] researched temperature models 

applicable to a three-room suite, designing a suitable HVAC control algorithm for the system using an 

analog of electric circuits along with the thermal circuit technique. More recently, Wu and Sun devised 

a room temperature model for an office building using a linear parametric model which was physics-

based, the researchers used thermodynamics equations to develop structure and order in the linear 

regression model. The outcome indicated that the physics-based ARMAX (pbARMAX) model showed 
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improved functioning over black-box models [13]. Finally, in [14], and based on physical dynamic 

systems, the researchers developed MISO ARMAX models to investigate humidity, temperature, and 

CO2 levels in a standard bedroom. This model also makes allowances for the impact of room occupants, 

as occupants were deemed a ‘disturbance’ in the room temperature pbARMAX model designed in. 

The present study develops a simulation for a whole building, using IDA Indoor Climate and 

Energy 4.7 as a simulation program. The IDA Indoor Climate and Energy program was founded in 

1998 to study thermal climate zones [15]. The simulation will test the energy consumption (heating 

and cooling) at Memorial University’s S. J. Carew Building in Newfoundland, Canada.  It will 

investigate a heat model that is dependent on a range of parameters, a three-dimensional (3-D) model, 

and IDA ICE model library components. The present work will also examine results from [16], [17] 

which used real data as a basis for developing whole structures. 

There are three primary aims in this study. Our first aim is to test system identification viability 

as a means for shortening the calculation times needed to simulate more complicated structures in Air 

Handling Unit One (AHU1). Our second aim is to test the usefulness of system identification in the 

dynamics identification for structural climate control design when applying discrete time data for one-

hour samples. Our third aim is to develop fuzzy logic controller structures that feature six inputs and 

three outputs and use this to develop a controller in an AHU1 state space model. 

4.2. Description of system 

4.2.1. Building structure 

Our analysis will use the S. J. Carew Building at Memorial University in St. John’s, 

Newfoundland. The Carew Building measures approximately 25,142 m2 and houses the university’s 

Faculty of Engineering and Applied Science, as well as teaching rooms, research labs, and a cafeteria. 
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From a structural perspective, the building houses four AHUs across 300 zones. A more detailed 

description of the structure and amenities of the Carew Building can be found in earlier studies [16], 

[17]. As the building’s HVAC system is based on the IDE ICE program, good approximation results 

can be obtained from the model regarding power and hot water data, which can then be compared to 

real data. 

4.2.2. AHU1 structure 

Fig. 4.1 illustrates an AHU1 with a variable air volume (VAV) system. There are valves, hot 

water pumps, heating and cooling coils, supply and return fans, and fresh air dampers. To maintain a 

constant point of internal air quality (IAQ), the building employs fresh air control dampers. An 

economizer mixes outdoor air with recycled building air, while a supply fan funnels the air mixture 

into cold-deck and hot-deck ducts. The fan, which keeps the ducts set at fixed pressure points, also 

alternates the fan speed as a means to balance any duct system resistance changes caused by 

opening/closing dampers located at VAV terminal units. 

 
Figure 4.1  AHU1 for S.J. Carew building 
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Fig. 4.2 depicts Room 347 at the Carew Building. The return fan located in the room’s return 

duct is approximately 10% slower than the supply fan. Controllers are employed in the heat exchanger 

for keeping zonal temperatures set at fixed points through the use of modulating control valves. During 

the cold season (October to May), the heating system is turned on, and the cold system is turned off. 

The present study used data from October to December 2016, so the cold system was off, as illustrated 

in Fig. 4.1. 

 

Figure 4.2  VAV terminal units of room 347 at the Carew Building. 

4.2.3. Simulation model  

The IDA Indoor Climate and Energy 4.7 simulation tool are used for assessing the indoor 

climate and energy performance. This simulation tool is suitable for modeling HVAC systems located 

in multiple-zoned structures, such as the S. J. Carew Building. The tool can assess IAQ, dynamic 

simulation, required energy, and overall thermal comfort. For the real system, a hot water valve (Fig. 

4.1) provides data on hot water usage for the heating coil, as the system has a single valve for the 

building’s entire hot water generation. However, with the IDA-ICE software, the hot water valve is 

divided into four valves, such that every AHU can have its own valve. Hence, every AHU includes 
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three inputs and three outputs. This information will be used as a reference model and identification 

data when modeling the AHU1. 

4.3. System identification   

System identification features three separate steps: 

a. data gathering 

b. choosing the model structure 

c. building a model that provides the highest system functionality 

 

AHUs are useful in system identification. There are three inputs to the AHU: 1) hot water valve 

for the heating coil/zones, 2) supply fan speed, and 3) fresh air from outdoors. The outputs show data 

for three different system elements: 1) return air temperature (degree celsius oC) for controlling the 

valve aperture of hot water, 2) static air pressure, PS (inches of water INW) in ducts for controlling 

supply fan speed, and 3) CO2 levels (parts per million PPM) for controlling fresh air dampers. 

4.4. Inputs and outputs signals   

Figure 4.3 shows the inputs of the AHU1 as percentage of the hot water valve aperture, supply 

fan speed, and fresh air dampers position. As illustrated in Fig. 4.4, an output is zone temperature. The 

second output is static air pressure (Fig. 4.5), and the third output is CO2 quantity (Fig. 4.6). 



92 
 

 
Figure 4.3  Inputs of AHU1 as a percentage (%) 

 
Figure 4.4  Zone temperature (in oC) 
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Figure 4.5  Static Air Pressure PS (INW)  

 
Figure 4.6  level of CO2 (in PPM) 

A model structure is selected from a range of structures which are roughly categorized as being 

either linear or nonlinear. The Identification Tool Box of Matlab is used in pre-processing the data. 

The decision process can be categorized into a few steps of optimal model structure (e.g., ARX, 

ARMAX, and process models), model order, optimal estimation approach and launching the 

identification process. 
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4.5. Control strategies 

4.5.1. Fuzzy logic controller  

Comfort levels and energy savings are the two main driving forces that have led researchers to 

create intelligent systems (i.e., Building Intelligent Energy Management Systems: BIEMS) as a means 

to manage energy use in buildings. BIEMS are usually employed only in large structures, such as 

commercial buildings, office towers, and hotels. These systems can control and monitor a building’s 

environmental parameters, creating a comfortable microclimate while reducing energy consumption 

and operational costs. 

Fuzzy techniques have been used in BIEMS, giving significantly better outcomes than 

traditional control systems. Practical applications employing fuzzy and neural control in HVAC 

systems are also being used, with the overall aim of lowering energy consumption and costs [18]-[22]. 

In traditional control methods, mathematical models of the building’s operations are needed, 

but when using intelligent systems (i.e., model-free automatic controllers), mathematical modeling is 

unnecessary. Hence, through the introduction of higher-level comfort variables in intelligent 

controllers, such as PMV [23], comfort can be managed without the need to regulate lower-level 

variables such as humidity, air speed, and temperature. Users participating in intelligent systems are 

able to choose their preferred comfort levels with optimized fuzzy controllers which employ genetic 

algorithms and adaptive control strategies. Fuzzy logic control is already being applied in the latest 

furnace controllers, using adaptive heating control as a means to optimize comfort and energy 

efficiency in domestic heating systems [24]. Fuzzy controllers are also used to control natural 

ventilation, visual comfort, and thermal comfort; there are notable results in these subsystems [25], 

[26]. 
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4.5.2. Design of fuzzy logic controller  

There are several approaches for applying fuzzy logic for closed-loop control. The most 

common technique is the fuzzy PI controller [27], [28] which uses process-derived measurement 

signals as fuzzy logic controller inputs and outputs to operate the actuators. A fuzzy PI controller 

represents an incremental controller. A traditional fuzzy PI controller can be expressed as in Eq. (4.1), 

with fuzzy rules are determining the output [29]. 

 𝑢(𝑘 +  1)  =  𝑢(𝑘)  +  𝛥𝑢(𝑘)  (4.1) 

where k is the sampling instance, and Δu(k) is the incremental change in the controller. 

The present study uses a traditional fuzzy PI controller for the AHU1 model. The proportional 

(P) and integral (I) actions are combined to benefit from the inherent stability, which is a feature in 

proportional controllers, as well as to benefit from the integral controllers’ offset elimination feature. 

Incremental controllers are most suitable for use in situations where a valve or motor serve as actuators. 

Additionally, it can be beneficial when controller output is derived from an integrator due to its ease in 

handling noise and wind up. As shown in Fig. 4.7, a fuzzy PI controller applies error signals and change 

of error as inputs. 

Another benefit in using a fuzzy PI controller is its lack of operational or set point. A rule-

driven control strategy weighs differences between a set point and measured values, measuring any 

modifications to these differences as a means to determine if increments or decrements should be 

applied to a building’s control variables. While a fuzzy logic controller is able to perform nonlinear 

control strategies, applying a fuzzy logic technique in real applications must be done in the three-step 

process shown below [30]. 

• Step 1: Fuzzification changes crisp/classical data into membership functions (MFs) or fuzzy data. 
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• Step 2: In the Fuzzy Inference process, MFs are added to control rules to obtain the required fuzzy 

output. 

•  Step 3: Defuzzification employs a variety of strategies as a means to formulate every associated 

output, to place them within a table framework, and to choose the output in a look-up table in 

accordance with the current input obtained for the specific application being performed. 

 

As it is illustrated in Fig. 4.7, fuzzy controller is assigned to control zone temperature, static air 

pressure, and CO2 level. Error signals and its changes are fed to a fuzzy controller. The output of fuzzy 

controllers is assigned as inputs of the system. The system outputs are sent to the fuzzy controller to 

make a closed-loop controller. 

 

Figure 4.7  Structure of Fuzzy logic controller 

  Fuzzy Logic Designer App of the system is shown in Fig. 4.8, with this App the FLC can be 

designed to add or remove input or output, fuzzy membership function, IF-Then rules, and select fuzzy 

inference functions. 
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Figure 4.8  Fuzzy Logic Designer App 

4.5.3. Fuzzy membership function 

The MFs editor is used in unpacking the fuzzy tool box, which is applied in shape-defining any 

MFs that are related to variables in the membership. Fig. 4.7 illustrates the AHU1 control system, 

indicating three outputs and six inputs. Brief definitions of the MFs for the input and output variables 

are presented in Sections 3.1 and 3.2. 

4.5.3.1.  Input variables 

1. Temperature differences (∆T) 

Fig. 4.2 depicts the received current zone temperature of return air as recorded by an electronic 

sensor. Eq. (4.2) Expresses differences between setpoint (Tsetp) and current zone temperature (Tz) for 

time (k), while Fig. 4.9 and Table 4.1 show the 5 MFs of V-Hot, Hot, Okay, Cold and V-Cold. 

 ∆𝑇(𝑘) = 𝑇𝑠𝑒𝑡𝑝 (𝑘)  −  𝑇𝑧 (𝑘)            (℃ )                       (4.2) 
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Table 4.1  MFs of zone temperature difference                                                   

Input field Range Fuzzy set 

Temperature 

Difference (∆T) 

[-10.52 -8.48 -1.222 -1] V-Cold 

[-1.222 -1 -0.268 0] Cold 

[-0.268 0 0.2714] Optimal 

[0 0.268 1.02 1.563] Hot 

[1.159 1.465 3.549 13.26] V-Hot 

 

 
Figure 4.9  MFs of zone temperature difference   

2. Change in ∆T (d ∆T) 

Error input variables related to changes in temperature are formulated through finding the ratio 

for the difference of past and present temperature error values in relation to sampling time (∆t), as 

expressed in Eq. (4.3). The building’s real system, Honeywell Software, gives a system sampling time 

of 3 seconds (Department of Facilities Management and Honeywell Offices at Memorial University). 
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As shown in Fig. 4.10 and Table 4.2, three membership functions can be used to define error variable 

changes: Positive (P), Negative (N), and Zero (Z). 

 (𝑑∆𝑇)  =  (∆𝑇(𝑘)  − ∆𝑇(𝑘 − 1))/∆𝑡       (℃ /𝑠)                             (4.3) 

 

Table 4.2  MFs of change in ∆T  

Input field Range Fuzzy set 

Change of 

temperature error 

[-0.118 -0.1031 -0.05 -0.01] N 

[-0.05 -0.01 0.01 0.05] Z 

[0.01 0.05 0.1534 0.1794] P 

 

 
Figure 4.10  MFs of Change in ∆T 

3. Static Air Pressure PS differences (∆PS)  

    Fig. 4.10 illustrates changes in present duct PS; these differences were noted by sensors located 

in both cold- and hot-deck ducts. As can be seen, the static pressure PS-setp setpoints occur for time (k), 
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given in Eq. (4.4). Fig. 4.11 and Table 4.3 present five membership functions of V-High, High, 

Optimal, Low and V-Low.  

         ∆PS (k) = PS-setp - PS (k)                   (INW)                     (4.4) 

Table 4.3  MFs of static pressure difference (∆PS) 

Input field Range Fuzzy set 

Static Air Pressure 

Difference ∆PS 

[-0.8213 -0.1584 -0.08317 -0.06853] V-Low 

[-0.0826 -0.0668 -0.00836 0] Low 

[-0.00771 0 0.00956] Optimal 

[0 0.00836 0.071 0.0816] High 

[0.07052 0.08278 0.1399 1.239] V-High 

 

 
Figure 4.11  MFs of static air pressure difference 
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4. Change in ∆PS (d∆PS) 

As expressed in Eq. (4.5), any alterations in the PS error input variable are formulated using 

ratios for differences between present and past PS error values in relation to sampling time (∆t). Fig. 

4.12 and Table 4.4 illustrate three of the membership functions which indicate changes in error 

variables, expressed as Positive (P), Negative (N), and Zero (Z). 

 d∆Ps (k) = (∆Ps (k) - ∆Ps (k-1))/∆t       (INW/s)                     (4.5) 

Table 4.4  MFs of change in ∆PS 

Input field Range Fuzzy set 

Change of Ps 

error (d ∆PS) 

[-0.005433 -0.005032 -0.002833 -0.001478] N 

[-0.002833 -0.001478 0.001478 0.002833] Z 

[0.001478 0.002833 0.005835 0.005935] P 

 

 
Figure 4.12  MFs of change in ∆PS 
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5. Differences in CO2 Levels (∆CO2) 

As shown in Fig. 4.1, this is the difference between the present CO2 level in the return air from 

the sensor in the AHU1 return duct and the CO2 level CO2-S-setp set point, as recorded at the time (k) 

and expressed by Eq. (4.6). The 5 MFs of V-High, High, Optimal, Low and V-Low are shown in Fig. 

4.13 and Table 4.5. 

             ∆CO2 (k)= CO2-setp-CO2 (k)       (PPM)                        (4.6) 

 

Table 4.5  MFs of CO2 level difference (∆CO2) 

Input field Range Fuzzy set 

Level of CO2 Difference 

 (∆CO2) 

[-25.9 -20.19 -16.43 -14.2] V-Low 

[-16.47 -14.03 -2.92 0] Low 

[-1.92 0 1.92] Optimal 

[0 2.92 8.84 12.33] High 

[8.39 12.1 120 178] V-High 

 

 
Figure 4.13  MFs of CO2 level difference (∆CO2) 
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6. Change in ∆CO2 (d ∆CO2) 

As expressed in Eq. (4.7), CO2 error input variable changes can be formulated through finding 

the ratio for the difference between the present and past CO2 error values in relation to sampling time 

(∆t). Fig. 4.14 and Table 4.6 show the three MFs error variable changes as sets labeled Positive (P), 

Negative (N), and Zero (Z). 

 d∆CO2 (k) = (∆CO2 (k)-∆CO2 (k-1))/∆t     (PPM/s)                (4.7) 

 

Table 4.6  MFs of change in ∆CO2  

Input field Range Fuzzy set 

Change of  

CO2 error (d ∆CO2)  

[-2.1 -1 -0.5 -0.3] N 

[-0.5 -0.3 0.3 0.5] Z 

[0.298 0.498 0.998 1.1] P 

 

 
Figure 4.14  MFs of change in ∆CO2  
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4.5.3.2. Output variables  

The three inputs of AHU1 (fresh air, air flow, and hot water) serve as FLC outputs. The values 

are introduced as gains to the system in order to move system responses towards a stability state. As a 

means to increase output gains, PI controller tuning can be used, as detailed in the following 

subsections. 

 Aperture on the hot water valve 

The process involving the hot water valve’s opening and closing is indicated through the 5 MFs 

for the fuzzy controller output in order to find the zone temperature setpoint (Tsetp). Fig. 4.15 depicts 

MFs using MATLAB  Fig, while Table 4.7 shows MFs and the related valve operation percentages. 

Table 4.7  MFs of the first output 

Output field Range Corresponding  Fuzzy set 

Hot water valve 

temperature 

[-1320 -10000 -7894 -5060] 0%-20% Close-Fast 

[-7264 -5570 -1580 0] 20%-40% Close 

[-689 0 768] 40%-60% NO-Change 

[0 1580 5100 6594] 60%-80% Open 

[5067 6607 10220 10260] 80%-100% Open-Fast 
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Figure 4.15  MFs of the first output 

 Supply fan speed 

The FLC’s second output serves as the speed control for the supply fan in order to reach the ducts’ 

static air pressure set point. Fig. 4.16 and Table 4.8 show the five MFs for this process. 

Table 4.8  MFs of the second output  

Output field Range Corresponding Fuzzy set 

Supply fan 

speed 

[-1060 -913.1 -601 -371] 0%-20% V-Slow 

[-527.9 -449 -105 50] 20%-40% Slow 

[-105.3 50 205.4] 40%-60% No-Change 

[46.3 201 661 800] 60%-80% Fast 

[658 811 1002 1010] 80%-100% V-Fast 
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Figure 4.16  MFs of the second output 

 Fresh air dampers position 

Five MFs of the fuzzy controller output for opening and closing operation of the fresh air dampers 

to obtain on the zone CO2 level set point, the range of MFs are presented in Table 4.9 and Fig. 4.17. 

Table 4.9  MFs of the third output 

Output field Range Corresponding Fuzzy set 

Fresh air 

dampers position 

[-5200 -5028 -3910 -2980] 0%-20% Close-Fast 

[-4056 -2860 -1140 -250] 20%-40% Close 

[-1139 -250 641.6] 40%-60% No-Change 

[-250 642 1610 2677] 60%-80% Open 

[1860 2660 4509 4810] 80%-100% Open-Fast 
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Figure 4.17  MFs of the third output  

4.5.4. Fuzzy Rule Base  

The rule base controls output variables as the most crucial part of the fuzzy inference system. 

In simplified terms, a fuzzy rule is represented as a basic IF-THEN rule which includes a condition and 

conclusion. The fuzzy membership functions can first be applied for converting both the input errors 

(∆T, ∆PS, ∆CO2) and the error changes (d∆T, d∆PS, d∆CO2) to their fuzzy values. Furthermore, in 

every output (damper position, fan speed, and hot water valve) the control action is represented by 

fuzzy rules in different error/change of error values. In every control signal output, the fuzzy default 

rule is 5 × 3, thus indicating 45 rules for system control [31]. 

4.5.5. Defuzzification 

In the process of defuzzification, fuzzy set form results convert into crisp ones. This process is 

required for hardware applications that exchange crisp data. Generally, defuzzified output has to be the 
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most appropriate solution. The two mechanisms are the maxima method, which looks for the highest 

pack, and the centroid method, which relies on determining a property’s balance point. The present 

study uses the centroid approach.  

In Fig. 4.18, the control surface for MFs implemented using zone temperature error values, as 

well as a fuzzy rule-implemented change of error values is presented. The values for the control output 

are associated with every potential input combination for controlling hot water valve processes. 

 

Figure 4.18  Control surface of the first output 

Fig. 4.19 shows the control surface for implementing MFs for static air pressure error values as 

well as a fuzzy rule-implemented change of error values. The values for the control output are 

associated with every potential input combination for controlling the supply fan speed in order to obtain 

static air pressure setpoints for the ducts. 
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Figure 4.19  Control surface of the second output 

Fig. 4.20 illustrates the control surface for error/change of error values for MFs related to CO2 

levels. Fuzzy rules are applied for controlling output values for every potential input combination to 

achieve the CO2 set point. 

 

Figure 4.20  Control surface of the third output 
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Figure 4.21  Block diagram for the AHU1 state space model with controller 

4.6. Simulation model and results 

The Simulink model and simulation results are presented in this section. Fig. 4.21 shows a block 

diagram for the AHU1 state space model for a fuzzy controller with the Simulink. The initial conditions 

selected for temperature, air pressure, and CO2 levels are 20.7 oC, 3.62 INW and 374.2 MMP, 

respectively. The sampling time is three seconds for the control action, which is the same as for the 

real system. Furthermore, the real system’s indoor air quality set points are a zone temperature of 23 

oC, air pressure of 4 INW, and a CO2 level of 500 MMP. A fuzzy-PI type adaptive controller controls 

the AHU1 system, with Tsetp, PS-setp, and CO2-Setp as input references for temperature, air pressure, and 

CO2 level, respectively. Control signals are obtained from FLC to reduce error as well as error change. 

The control signals can alter the system inputs, which include fresh air, air flow rate, and hot water to 

achieve the reference set points. 
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 Three of the system’s output responses that demonstrate the system’s stability. As illustrated in 

Fig. 4.22, zone temperature Tz achieves the set point of 23 oC at a rise time of only 10.83 minutes and 

no overshoot. Fig. 4.23 depicts the response of static pressure, with a rise time of 6.71 minutes and no 

overshoot. Fig. 4.24 shows the CO2 level response, achieving the set point, again with no overshoot, at 

a rise time of 14.13 minutes. 

 

Figure 4.22  Zone temperature Tz response  

 

Figure 4.23  Static pressure Ps response  
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Figure 4.24  CO2 level response 

4.7. Conclusion 

This research paper presented a simulation of the S. J. Carew Building’s AHU1 system using 

MATLAB’s system identification toolbox along with real data and results from the IDE ICE program 

to formulate system parameters for both inputs and outputs. A fuzzy logic controller modulated the 

three AHU1 inputs (fresh air, air flow, and hot water), while FLC was implemented in the multi-input 

/ multi-output system state space model for the AHU1. The results indicate that the fuzzy expert 

controller performance exceeded that of traditional algorithms, such that sufficient control was 

obtained from the fuzzy controller HVAC system. We can see that clearly in figures 3.17 and 3.18 of 

the responses of the system in Chapter 3, the model with feedback controller in that figures of internal 

temperatures and CO2 levels of the building have zero steady-state error at 3000 seconds 

approximately. There is some overshoot in the responses. Compare with the responses of the system 

with the fuzzy logic controller, the responses have zero steady-state error at 1700 seconds 

approximately, and all the responses do not have any overshoot. That means the system's responses to 

a fuzzy logic controller are faster than the system with a feedback controller. Also, the responses with 
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FLC has faster Rise Time without overshoot. Furthermore, across all lab conditions, the FLC algorithm 

gave a stable response and could deal better with several different parameters, including steadying 

errors, response time, and overshoot. 
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5. Supervisor Fuzzy Logic Controller for HVAC System of S.J. Carew Building 

at Memorial University 

Preface 

A version of this manuscript has been submitted to the Journal of Control Science and Engineering 

Hindawi. I am the primary author of this paper. Along with the co-authors, Tariq Iqbal and Kevin Pope. I 

developed supervisor fuzzy logic controller for the whole building, and this controller is able to control energy 

savings towards the building’s overall performance levels of heating and cooling, with the individual demands 

of every floor being considered in the performance evaluation. I completed the first version of the manuscript 

and further revised according to the suggestions of co-authors. Tariq Iqbal helped to identify the research 

topic, and it is scope. Also, Tariq Iqbal helped in choosing the appropriate optimization method, programming 

and running the simulation, reviewing and correcting the achieved results, and contributed in preparing, 

reviewing and revising the manuscript. Keven Pope reviewed the manuscript and provided revision 

suggestions. 

Abstract 

One of the most important characteristics contributing to the thermal management efficiency of 

commercial, industrial, institutional or home environments is the optimal functioning of HVAC (heating, 

ventilation, air conditioning) systems. In addition to using supervisor controllers for balancing comfort level 

in a building, the majority of today’s HVAC employ nonlinear time variance controllers when dealing with a 

variety of disturbances. This paper investigates both current and potential HVAC systems at Memorial 

University’s S. J. Carew building, St. John’s, Newfoundland. The study investigates the viability of algorithm-

based supervisor fuzzy logic controllers (SFLC) for the control of the building’s four air-handling units 

(AHUs) used to manage the interior environment. Along with temperature, the SFLCs also control the AHUs’ 

fan speeds and CO2 concentrations modifying hot water and air flow rates. This work presents models of 
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damper positions, fan speeds and globe valves that have been built in accordance with current rates of air and 

hot water flow in the S. J. Carew building. Based on these specifications, a novel method of SFLC adaptation 

using fuzzy rules has been devised. The novel system aims to better balance the performance level of the 

Carew building’s HVAC system on a floor-by-floor basis. The overall results indicate better overall thermal 

comfort levels and enhanced cost-effectiveness when using the SFLC redesign. 

Keywords: Modeling and simulation, HVAC system, IDA-ICC program, system identification, state space 

model, fuzzy logic, SFLC. 

5.1. Introduction 

The purpose of HVAC systems is to create comfortable and cost-efficient internal environments within 

structures. However, these systems must also be able to deal with constantly changing variables affecting 

their performance level. To accomplish this task, appropriate control systems are required, such as 

mathematics-based HVAC controllers. These approaches, which use input/output variable data to determine 

the parameters of individual systems, are able to refine and enhance HVAC systems through the process of 

system identification (SI) (ASHRAE, 2005) [1]. 

The thermal management efficiency of commercial, industrial, institutional and home environments 

relies, to a large extent, on the optimal functioning of their respective HVAC (heating, ventilation, air 

conditioning) systems. Air quality and thermal comfort levels are nearly entirely dependent on HVACs, and 

these systems also have a major role in a building’s operational costs. In commercial or industrial structures, 

up to 50% of the building’s overall energy use is contingent on how well the installed HVAC system is 

functioning [2]- [4]. In developed countries, mitigating pollution levels is almost equally as important as cost-

effectiveness when it comes to heating and cooling systems, so there has been a recent surge in research that 

investigates combining renewable energy production with state-of-the-art HVAC systems [5]. 
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A driving force behind the development of building intelligent energy management systems (BIEMS) 

in larger structures such as hotels and office buildings is the smart management of thermal comfort levels and 

the smart management of power costs. BIEMS enables buildings to essentially manage their own energy use 

by constant intelligent monitoring of the building’s macroclimate. Based on the data, the operational 

parameters are then adjusted to suit the needs of the building’s several microclimates. In research, as well as 

in practical application, BIEMS that use fuzzy techniques has consistently outperformed traditional control 

systems [6]-[8]. 

The main difference between intelligent systems (i.e., automatic controllers) and traditional control 

methods is that intelligent systems do not require a mathematical model to monitor and control a building’s 

operations. Instead, intelligent systems, like PMV [9], use optimized fuzzy controllers based on adaptive 

control strategies and genetic algorithms. Fuzzy logic control is already being used for state-of-the-art furnace 

controllers in select homes. These controllers employ adaptive heating control to determine the best use of 

the available energy to achieve the desired comfort level [10]. Also, fuzzy controllers are currently being 

tested in real-life ventilation and thermal subsystems, giving promising results [11], [12]. 

Over the past thirty years, numerous HVAC experts have developed operational and control methods 

for specific applications. During the same timeframe, numerous research studies, textbooks and journal 

articles have also investigated various issues of HVAC operation and control, including the supervisor control 

technique (e.g., Honeywell [13]; Levenhagen and Spethmann [14] ; Wang and Jin [15]; Zaheer-Uddin and 

Zheng [16]; Hordeski [17]; Haines and Hittle [18]; Nassif et al. [19]; Wang [20]; etc.). They classify the 

primary supervisory control approaches that are employed in HVAC systems into four different types of 

supervisory control methods: 1) model-based, 2) model-free, 3) performance map-based, and 4) hybrid [21].  

In a study conducted by Kanagaraj, Sivashanmugam, and Paramasivam [22], the researchers 

investigated the tuning of input scaling factors for direct expert controllers by applying error and process input 
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parameters for closed-loop systems. Their aim was developing improved controller performance in relation 

to load disturbances and set-point changes. In general, the on-line tuning strategy involves significantly 

decreased levels of operator input and dependency, while improving the performance of the controller across 

a broad operational spectrum. The approach, which is a form of hierarchical control, comprises the input of 

an intelligent upper-level supervisory fuzzy controller in tandem with a lower-level direct fuzzy controller. 

The task of the upper-level controller is to introduce applicable mechanisms for the system’s primary goals, 

while the task of the lower-level controller is to provide solutions for specific problems. 

A few years later, Soyguder, Servet, Karakose, and Alli [23], used  the Simulink, to model expert 

HVAC systems that had variable flow-rates. They used fuzzy adaptive controllers that were self-tuning PIDs 

to demonstrate PID parameters for kp, ki, and kd. The outcome of their tests showed that their novel control 

algorithm performed comparably to traditional PID, as well as fuzzy-PD type controllers. 

Shepherd and Batty [24], conducted experiments that employed a high-level fuzzy supervisor for 

control decisions. They aimed to obtain the optimal quality for indoor environments by using a modified fuzzy 

supervisor. Their approach also considered how issues around cost and energy efficiency could ultimately 

impact the decisions. From the outcomes of their simulation tests, the researchers determined that systems 

operation could be enhanced by applying their approach. 

Lianzhong and Zaheeruddin [25], built a non-linear dynamic model for water heating HWDH systems. 

Their work also included intelligent fuzzy logic-based hybrid control methods. The researchers’ simulation 

results suggest that fuzzy logic-based PI provides enhanced control and regulation of return temperature of 

water, particularly, when combined with IATP strategies for controlling air temperature within a specific 

zone. The researchers noted a 17% improvement in energy savings through reduced consumption. 

Hussain, Sajid, and Gabbar [26] attempted to improve energy consumption outcomes by tuning an 

FLC via GAs. Using a novel air conditioner, the researchers succeed in saving approximately 15% compared 
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to strategies that simply employ an ON-OFF control method. They noted no increase either in the discomfort 

index/dissatisfaction levels but instead recorded a significant reduction, falling to 62% from a high of 91%. 

Meanwhile, in [27], dual-level controllers (lower-level and higher-level) are presented and tested. The lower 

level controller comprises a traditional PID-type controller, whereas the higher-level controller comprises a 

fuzzy controller which acts over the low-level controller’s parameters.  

Using these and other research outcomes as an inspiration for the present research, this work 

investigates a fuzzy level control method that controls outputs for four AHUs to maintain CO2 concentrations, 

static air pressure, and zonal temperatures. The aim is to determine the best approach for fuzzy control 

methods to perform the desired actions required for each parameter, on a parameter-by-parameter basis. The 

proposed fuzzy supervisor will be able to decide whether a certain desired action is or is not in the best interest 

of the entire system (in terms of overall performance). The fuzzy supervisor might also be given control over 

aspects of energy savings that better balance a building’s overall heating and cooling system’s performance 

levels, taking the needs of each floor into consideration. 

5.2. Case study 

The present paper employs as a case study the S. J. Carew building, which is located on the campus 

of Memorial University, St. John’s, Newfoundland. The building is currently used to house the Faculty of 

Engineering and Applied Science at Memorial and is divided into numerous lecture rooms and labs. There is 

also a large cafeteria space. Interiorly, the Carew building measures approximately 25,142 m2 and features 

four individual air-handling units for the building’s 300+ zones. Table 2.1 lists an energy report for the Carew 

building, while Figure 5.1 depicts a 3D model. 
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Figure 5.1  3D model for the system 

5.3. Simulation Tool 

The Carew building’s multifaceted interior climate and energy use is modeled by the IDA-ICE 4.7 

simulation tool. This tool can easily model multiple-zone HVAC systems like those existing within the Carew. 

Through dynamic simulations based on the monitoring and measuring of internal air quality (IAQ), the IDA-

ICE 4.7 can gauge desirable thermal comfort levels for the structure. For instance, to maintain individual 

zonal temperatures, the heat exchanger employs controllers that are set to fixed points through control valve 

modulation. Figure 5.2 illustrates how a hot water valve gathers pertinent data on the water which has been 

warmed via direct contact with a heating coil. As shown in the figure, the building’s system has only one 

valve to produce hot water, but the IDA-ICE tool creates four sub-valves to allow every air-handling unit its 

own valve [28], [29]. 
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Figure 5.2  AHU1 of the building 

5.4. Simulation validation for IDA-ICE  

Two key features that are necessary to form a viable model are the model’s ease in satisfying 

specifications and the model’s accuracy. Figure 5.3 depicts the Carew building’s Jan-Dec/2016 hot water 

usage as modeled in IDA-ICE. The figure shows hot water energy consumption exceeding 800,000 kWh per 

month in winter and nearly 300,000 kWh per month for July and August. Real (i.e., measured) data for the 

building’s annual power consumption shows lower hot water usage in some months compared to others, but 

the overall consumption levels for both the real and modeled data are nearly the same. Electrical power use 

data for both the IDA-ICE model and real consumption are shown in Figure 5.4. The real data is somewhat 

higher than the simulation data, which could be a result of uncontrolled lighting and equipment in the building. 
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Figure 5.3  Energy use from hot water 

 

Figure 5.4  Electrical power use 
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5.5. System Identification 

The present study employed the simulation tool IDA-ICE 4.7 to model the internal environment and 

energy performance of the S. J. Carew building on the Memorial University campus, St. John’s, 

Newfoundland. IDA-ICE software can easily simulate & model HVAC systems that have multi-zonal 

features. The simulation tool can also measure a range of other important parameters, such as power 

requirement, thermal comfort levels, and interior air quality (IAQ). To model the building, the identification 

data must have zonal inputs and outputs. System identification occurs over three consecutive steps, as listed 

below [30], [31]:  

i. Data collection towards the identification of the appropriate model. 

ii. Choice of most suitable model structure. 

iii. Construction of optimal model that satisfies required specifications and provides accurate results. 

The main focus, when following through on each of the above steps, should be on choosing and then 

optimizing a model to reflect the real-life needs of the system. In this study, the Carew building has four 

AHUs, so the state space model was deemed most appropriate. Moreover, because our data employed for 

system identification were sourced in the winter (November to April), the chiller was not operational during 

that time frame. As the Carew building features four AHUs over four floors, there are 12 inputs and 12 outputs 

(i.e., 3 inputs [𝑈] and 3 outputs [𝑌] for each AHU). Each AHU inputs are: 

1. hot water valve for the heating coil/zones radiators 

2. supply fan speed 

3. fresh air from outdoors 

 The system controlled outputs for each AHU are: 

1. Return air temperature (unit is degree Celsius, oC) for controlling the valve aperture of hot water. 

2. Static Air Pressure PS (unit is an inch in water, INW) in ducts for controlling supply fan speed. 
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3. CO2 levels (unit is parts per million, PPM) for controlling fresh air dampers. 

A detailed state space model used for controller design for AHU1 was presented in [29]. 

5.6. Control Strategies 

The simulation results of the fuzzy control methods developed in this research work suggest enhanced 

comfort levels and energy efficiency across the entire system. The outcome of these improvements would 

therefore also indicate improved cost efficiencies. Overall, we can assert that fuzzy logic can work with partial 

truth values along the same lines as humans process ideas and in this way have certain advantages in 

comparison to traditional controllers, such as: 

i. Fuzzy controllers can work with control process models that are imperfect or incomplete (i.e., 

they do not require mathematical precision). 

ii. Employing fuzzy modeling conditions and parameters expands the application of successful 

control strategies due to the flexibility of the model. 

iii. We can successfully model non-linear processes, which are applicable to HVAC systems because 

these systems are nonlinear. 

iv. Fuzzy controller systems can perform the function of approximate decision-making and 

reasoning, just like human thought processes. 

v. In a fuzzy controller, multi-input / multi-output parameter strategies are controllable.  

A number of different methods have been successfully used to employ fuzzy logic in a closed-loop 

control system, but the fuzzy PI controller is currently the most popular approach [32],[33]. In this strategy, 

fuzzy logic controller inputs and outputs are used to work the actuators, with fuzzy PI controllers serving as 

incremental controllers. Equation (1) expresses the formulation of a traditional fuzzy PI controller, with the 

output determined by fuzzy rules [34]. 
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 𝑢 (𝑘 +  1)  =  𝑢 (𝑘)  +  𝛥𝑢 (𝑘)                                                          (5.1) 

Where k indicates sampling instance and Δu (k) denotes the controller’s incremental change. K was selected as 3s 

For the AHU model, this case study utilizes a traditional fuzzy PI controller. Combining the 

proportional (P) and integral (I) actions enhances the inherent stability that is characteristic of proportional 

controllers. When a motor or valve is the actuators, incremental controllers are the appropriate choice. Fuzzy 

PI controllers are also suitable if the controller output comes mainly from an integrator, as these types of 

controllers are easily able to mitigate issues such as wind-up and noise. 

Figure 5 illustrates how a fuzzy PI controller uses as inputs error and changes of error signals. An 

additional feature of fuzzy PI controllers is that they are not limited by operational set-points. In control 

methods that are rule-driven, any discrepancies between measured or set-point values are first discerned to 

determine whether it is appropriate to use increments or decrements for the control variables. However, in 

fuzzy logic controllers, non-linear control strategies can be performed by using fuzzy logic for actual 

applications, as follows [35]: 

a) In Fuzzification, crisp data is turned into fuzzy data, which are also known as membership 

functions (MFs). 

b) MFs are then included as part of the control rules to find the requested fuzzy output, a process 

which is termed fuzzy inference. 

c) Finally, in the defuzzification step, several different approaches are employed in order, firstly, to 

incorporate all relevant outputs, secondly, to position them as in a table format, and thirdly, to 

find the output in a look-up table that matches the current input in the desired application.  

Figure 5.5 shows the fuzzy controller being designated to control CO2 levels, static air pressure, and 

zonal temperatures. As illustrated in the figure, the fuzzy controller is fed error signals and modifications, 
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with the fuzzy controller outputs used as system inputs. The resulting outputs are then forwarded to the fuzzy 

controller, forming a closed-loop control system.  

 

Figure 5.5  The SFLC with four AHUs. 

Figure 5.6 depicts a fuzzy logic design in Matlab fuzzy logic toolbox according to system specifications 

(e.g., add/remove input/output, or select fuzzy inference operations could be done in Matlab toolbox).  
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Figure 5.6  Application designer of SFLC 

SFLC of the system has 24 inputs as following: 1) 8 inputs are temperature differences (∆T) and the 

ratio for the difference (d∆T) of AHUs, 2) 8 inputs are static air pressure PS differences (∆PS) and the ratio for 

the difference (d∆PS), and 3) 8 inputs are differences in CO2 Levels (∆CO2) and the ratio for the difference 

(d ∆CO2). There are 12 outputs of the SFLC; each AHU has three (fresh air, air flow, and hot water). The 

values are introduced as gains to the system to move system responses towards a stability state. As a means 

to increase output gains, PI controller tuning can be used.  

5.7. Fuzzy Membership Function  

The MFs editor is used to separate the fuzzy toolbox that is in the form defined by all membership 

variables for MFs. The final factors are assigned to the variable inputs and output variables as follows: 

 

 



131 
 

5.7.1. SFLC input variables 

The control system has 6 inputs from each AHU. Three for the difference between setpoints and 

current values and three inputs are the ratio for response differences. The following data show inputs from 

AHU1. Also, Tables 5.2 and 5.3 illustrate the details of all controller inputs. 

a. Temperature Differences of AHU1 (Δ𝑇z1). Zone temperature of return air as recorded by an electronic 

sensor as shown in Figure 5.2 that Eq. (5.2) expresses differences between setpoint (Tsetp1) and current 

zone temperature (Tz1) for time (k). Figure 5.7 shows the five MFs of (V-High, High, Optimal, Low, 

and V-Low). Table 5.2 illustrate the details of this MFs. 

 𝛥𝑇𝑧1 (𝑘)  = 𝑇𝑠𝑒𝑡𝑝1 (𝑘)  − 𝑇𝑧1 (𝑘)        ( ̊𝐶)                                                      (5.2) 

 

Figure 5.7  MFs differences between (Tsetp1) and (Tz1) 

b. Change in ΔTz1 in AHU1 (𝑑Δ𝑇z1). The variables for the error input in temperature changes are set by 

observing the difference ratio between current and actual temperature error values and the sampling 

time (Δ𝑡), as shown in Eq. (5.3). The building’s real system gives a system sampling time of three 

seconds (Honeywell Offices and Department of Facilities Management and at Memorial University). 
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Figure 5.8 and Table 5.3 illustrate that three MFs used to define error variable changes: Positive (𝑃), 

Negative (𝑁), and Zero (𝑍). 

 (𝑑𝛥𝑇𝑧1) = (𝛥𝑇𝑧1 (𝑘) − 𝛥𝑇𝑧1 (𝑘 −  1))/ 𝛥𝑡        ( ̊𝐶/𝑠)                                     (5.3) 

 

Figure 5.8  MFs ratio between the current and actual temperature 

c. Static Air Pressure Differences of AHU1 (PS1). Figure 5.2 illustrates changes in present duct PS; these 

differences were noted by sensors located in both cold- and hot-deck ducts. As can be seen, the static 

pressure (PS-setp1) setpoints occur for time (k), given in Eq. (5.4). Figure 5.9 and Table 5.2 present five 

MFs of (V-High, High, Optimal, Low, and V-Low). 

     𝛥𝑃𝑆1 (𝑘)  =  𝛥𝑃𝑆−𝑠𝑒𝑡𝑝1  −  𝑃𝑆1 (𝑘)        (𝐼𝑁𝑊)                                               (5.4) 
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Figure 5.9  MFs of Static Air Pressure Differences  

d. Change in Δ𝑃𝑆1 (𝑑Δ𝑃𝑆1) in AHU1. As expressed in Eq. (5.5), All changes of the (PS) error input 

variables are made with ratios for the differences between current and actual (PS) values depending on 

the sampling time (Δ𝑡). Figure 5.10 shows three MFs that show changes in the displayed error variables 

Positive (𝑃), Negative (𝑁), and Zero (𝑍). 

 𝑑𝛥𝑃𝑆1 (𝑘)  =  (ΔP𝑆1 (𝑘)  − ΔP𝑆1 (𝑘 −  1))/ 𝛥𝑡          (𝐼𝑁𝑊/𝑠)                                                                (5.5) 

 

Figure 5.10  MFs of ratios for the differences between current and actual (PS) values 
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e. Differences in 𝐶𝑂2 Levels in AHU1 (Δ𝐶𝑂2-1). As shown in Figure 5.2, this is the difference between 

the current CO2-1 level in the return air from the sensor in the AHU1 return duct and the CO2 level of 

setpoint CO2-setp1, as recorded at the time (k) and expressed by Eq. (5.6). The 5 MFs of (V-High, 

High, Optimal, Low, and V-Low) are shown in Figure 5.11. 

  𝛥𝐶𝑂2−1 (𝑘)  = 𝐶𝑂2−𝑠𝑒𝑡𝑝1  − 𝐶𝑂2−1 (𝑘)        (𝑃𝑃𝑀)                                                                                 (5.6) 

 

Figure 5.11  Difference between the current and setpoint of CO2-1 level 

f. Change in Δ𝐶𝑂2-1 (𝑑Δ𝐶𝑂2-1). As indicated in Eq. (5.7), the input variable CO2 error changes can be 

formed by observing the difference ratio between the current and previous CO2 error values as a 

function of the sampling time (Δ𝑡). Figure 5.12 show the three MFs error variable changes as sets 

labelled Positive (𝑃), Negative (𝑁), and Zero (𝑍). 

 𝑑𝛥𝐶𝑂2−1 (𝑘)  =  (𝛥𝐶𝑂2−1 (𝑘)  − 𝛥𝐶𝑂2−1 (𝑘 −  1)) /𝛥𝑡    (𝑃𝑃𝑀/𝑠)         (5.7) 

Table 5.2 and Table 5.3 lists all limits of MFs used in Matlab fuzzy logic toolbox for all AHUs. 
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Figure 5.12  Difference ratio between current and previous CO2 error values 

Table 5.1  Difference between setpoints and current values of all inputs 

      Range  

Inputs 
V-Low Low Optimal High V-High 

Δ𝑇z1 [-5.26 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7817] [0.5797 0.7323 1.774 9.13] 

ΔPS1 [-7 -0.15 -0.083- 0.068] [-0.08 -0.06 -0.008 0] [-0.007 0 0.0095] [0 0.008 0.071 0.081] [0.07052 0.08278 0.1399 9] 

Δ𝐶𝑂2-1 [-62.73 -5.04 -4.1 -3.55] [-4.117 -3.5 -0.73 0] [-0.28 0 0.28] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

Δ𝑇z2 [-8.76 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7815] [0.5795 0.7325 1.774 9.63] 

ΔPS2 [-5.6 -0.126 -0.06 -0.05] [-0.07 -0.05 -0.007 0] [-0.0061 0 0.007] [0 0.006 0.056 0.065] [0.05642 0.0662 0.1119 7.2] 

Δ𝐶𝑂2-2 [-56.4 -5.04 -4.107 -3.5] [-4.11 -3.507 -0.73 0] [-0.18 0 0.18] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

Δ𝑇z3 [-5.26 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7815] [0.5795 0.7325 1.774 9.63] 

ΔPS3 [-6.4 -0.12 -0.066 -0.05] [-0.06 -0.05 -0.006 0] [-0.0061 0 0.007] [0 0.0067 0.057 0.06] [0.05642 0.0662 0.1119 7.2] 

Δ𝐶𝑂2-3 [-56.48 -5.048 -4.1 -3.5] [-4.117 -3.51 -0.73 0] [-0.28 0 0.28] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

Δ𝑇z4 [-5.26 -4.24 -0.611 -0.5] [-0.611 -0.5 -0.134 0] [-0.134 0 0.1357] [0 0.134 0.51 0.7815] [0.5795 0.7325 1.774 9.63] 

ΔPS4 [-4.9 -0.12 -0.06 -0.048] [-0.06 -0.04 -0.005 0] [-0.005 0 0.0067] [0 0.006 0.049 0.058] [0.05 0.05795 0.09793 6.3] 

Δ𝐶𝑂2-4 [-56.5 -5.04 -4.11 -3.55] [-4.12 -3.507 -0.73 0] [-0.288 0 0.288] [0 0.73 2.21 3.082] [2.098 3.025 30 119.5] 

 

Table 5.2  Ratio between the current and previous values of all inputs 

          Range  

Inputs 
P Z N 

dΔ𝑇z1 [-0.1062 -0.09279 -0.045 -0.009] [-0.04601 -0.009 0.01 0.04499] [0.0109 0.0395 0.1381 0.175] 

dΔPS1 [-0.005533 -0.005 -0.003 -0.001469] [-0.002833 -0.0014 0.001478 0.002833] [0.00158 0.00293 0.00595 0.0065] 

dΔ𝐶𝑂2-1 [-2.1 -1 -0.5 -0.3] [-0.499 -0.3002 0.2993 0.5] [0.3 0.5 1 1.091] 

dΔ𝑇z2 [-0.1062 -0.09279 -0.045 -0.009] [-0.045 -0.009 0.009 0.045] [0.009 0.045 0.1381 0.1615] 

dΔPS2 [-0.0053 -0.005 -0.0028 -0.00149] [-0.002833 -0.0014 0.001478 0.002833] [0.00148 0.003 0.00635 0.00635] 

dΔ𝐶𝑂2-2 [-2.21 -1.1 -0.53 -0.323] [-0.5 -0.3 0.3 0.5002] [0.3005 0.501 1 1.1001] 

dΔ𝑇z3 [-0.1064 -0.09279 -0.045 -0.01] [-0.045 -0.019 0.0101 0.045] [0.009002 0.04502 0.139 0.162] 

dΔPS3 [-0.005433 -0.005 -0.00288 -0.00147] [-0.002833 -0.0014 0.001478 0.002833] [0.00148 0.00283 0.00585 0.0055] 

dΔ𝐶𝑂2-3 [-2.21 -1.4 -0.555 -0.343] [-0.5 -0.289 0.3 0.499] [0.3 0.5005 1 1.0891] 

dΔ𝑇z4 [-0.1072 -0.09379 -0.04501 -0.01] [-0.045 -0.009 0.009 0.045] [0.01 0.045001 0.138 0.161501] 

dΔPS4 [-0.005433 -0.005 -0.0028 -0.001478] [-0.002833 -0.0014 0.001478 0.002833] [0.0025 0.00298 0.00585 0.0075] 

dΔ𝐶𝑂2-4 [-2.103 -1 -0.501 -0.312] [-0.5 -0.3 0.3 0.5] [0.299 0.50035 1 1.1] 
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5.7.2. Output Variables.  

The inlet of all ventilation units (hot water, fan speed, and fresh air) acts as an SFLC output. This 

means that SFLC has twelve output. Values are entered as a gain in the system to introduce system reactions 

into a steady state. To increase the output gain, the tuning of a PI controller can be used, as described the 

outputs of the first AHU1 in the following subsections [29]. Also, table 5.4 illustrate all the details of MFs 

(Close-Fast, Close, No-Change, Open, and Open-Fast) and the related operation percentages of hot water 

valve’s, fan speed and fresh air dampers of the whole system. 

a. Aperture on Hot Water Valve of AHU1 (HWV1). The 5 MFs indicates the output of the process 

controller to open and close the hot water valve to set the temperature range of the zone (Tsetp1). Figure 

5.13 depicts MFs using MATLAB/Fig. 

 
Figure 5.13  MFs of the first output of SFLC 

b. Supply Fan Speed of AHU1(SFS1). The second output of the SFLC is the speed control of the supply 

fan to reach the static air pressure setpoint (PS-setp1) inside ducts. Figure 5.14 shows the five MFs for 

this process. 
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Figure 5.14  The second output of the SFLC 

c. Fresh Air Dampers Position of AHU1 (FAD1). Five MFs were used for the controller output to open 

and close the position of the fresh air dampers to determine the CO2 concentration setpoint (CO2-setp1), 

Figure 5.15 shows that. Table 5.4 provides a list of limits of output MFs of all AHUs. 

 

Figure 5.15  The third output of the SFLC 
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Table 5.3  All the outputs of SFLC 

 

5.7.3. Fuzzy Rules 

In systems that operate using fuzzy inference, the output variables are controlled by fuzzy rules, which 

essentially are IF-THEN rules that contain both a condition and a conclusion. Fuzzy membership functions 

can alter input errors (Δ𝑇z, Δ𝑃𝑆, Δ𝐶𝑂2) as well as error changes (𝑑Δ𝑇z, 𝑑Δ𝑃𝑆, 𝑑Δ𝐶𝑂2) in accordance with 

their appropriate fuzzy values. Additionally, for each output investigated in this paper (e.g., hot water valve, 

fan speed and damper position), fuzzy rules provide the control action for values of error and error changes 

[36]-[38]. Note that because each control signal output has 5 × 3 i.e. 15 rules. Ta,ble 5.5 illustrate the rules 

between first and second input (Δ𝑇z1 and 𝑑Δ𝑇z1) of the controller as the fuzzy default rule, there are three 

inputs in each AHU and four AHUs for the system, that mean the SFL controller has (15 × 3 × 4) 180 rules. 

Also, The SFLC can control aspects of energy saving that better the performance of the heating and cooling 

system of building, takingthe  into account the needs of each floor, for that there is extra rules between floors. 

Corresponding 0% - 20% 20% - 40% 40% - 60% 60% - 80% 80% -100% 

        Range 

Outputs 
Close-Fast Close No-Change Open Open-Fast 

HWV1 [-17160 -13000 -10270 -6578] [-9447 -7241 -2054 0] [-895 0 998] [0 2054 6630 8576] [6588 8590 13280 13340] 

SFS1 [-14020 -12170 -8227 -5319] [-7296 -6307 -1958 0] [-1963 0 1963] [0 1911 7723 9475] [7680 9612 12020 12130] 

FAD1 [-7823 -7545 -5779 -4310] [-6010 -4121 -1405 0] [-1404 0 1407] [0 1408 2936 4622] [3332 4595 7515 7988] 

HWV2 [-15840 -12000 -9473 -6072] [-8717 -6684 -1896 0] [-826 0 921] [0 1896 6120 7913] [6081 7929 12260 12310] 

SFS2 [-8768 -7605 -5138 -3323] [-4563 -3938 -1223 0] [-1227 0 1227] [0 1195 4827 5925] [4800 6008 7515 7583] 

FAD2 [-11460 -11060 -8476 -6322] [-8814 -6044 -2062 0] [-2059 0 2065] [0 2066 4307 6778] [4886 6738 11020 11720] 

HWV3 [-11090 -8400 -6631 -4249] [-6102 -4679 -1327 0] [-578 0 645] [0 1327 4284 5539] [4257 5549 8585 8617] 

SFS3 [-7010 -6083 -4110 -2659] [-3652 -3150 -979 0] [-981 0 981] [0 955.8 3862 4735] [3840 4805 6014 6065] 

FAD3 [-9379 -9053 -6935 -5173] [-7211 -4945 -1686 0] [-1684 0 1689] [0 1690 3524 5546] [3998 5514 9017 9587] 

HWV4 [-11220 -8500 -6707 -4301] [-6172 -4735 -1343 0] [-585 0 652] [0 1343 4335 5604] [4307 5616 8686 8720] 

SFS4 [-31540 -27410 -18520 -11960] [-16450 -14180 -4406 0] [-2614 0 2614] [0 4298 17360 21330] [17280 21620 27050 27290] 

FAD4 [-17600 -17010 -13020 -9709] [-13550 -9287 -3166 0] [-1456 0 1469] [0 3177 6616 10400] [7505 10330 16930 18020] 
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Table 5.4  The rules between the first and second input of the controller 

         ∆ inputs 

d∆ inputs V-Low Low Optimal High V-High 

N Open-Fast Open-Fast Open No-Change Close 

Z Open-Fast Open No-Change Close Close-Fast 

P Open No-Change Close Close-Fast Close-Fast 
 

5.7.4. Defuzzification 

Defuzzification changes fuzzy output variables into crisp variables in order to meet control objectives. 

The defuzzification step is used in hardware applications where crisp data are exchanged, and defuzzified 

output is deemed the best solution. The underlying mechanisms for this approach are the maxima strategy and 

the centroid strategy. The maxima approach actively seeks the highest pack, whereas the centroid approach 

seeks to find the balance point. In our case study of the S. J. Carew building, the centroid method is used. 

Figure 5.16 shows the control surface with the applied MFs. Error values for zonal temperatures along with 

the change of error values based on fuzzy rules have been used. The control output values derive from a range 

of input combinations in hot water valve functions.  



140 
 

 

Figure 5.16  Control surface of Δ𝑇z1 and 𝑑Δ𝑇z1 based on fuzzy rules 

In Figure 5.17, the control surface employed to implement static air pressure error value MFs and fuzzy 

rule-implemented change of error values is illustrated. In this case, the control output values derive from a 

range of input combinations for moderating supply fan speed as a means to determine the ducts’ static air 

pressure set-points.  

 

Figure 5.17  Control surface of ΔPs1 and dΔPs1 based on fuzzy rules 
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The control surface for values of error and changes of error in MFs are measuring CO2 levels is depicted 

in Figure 5.18. As shown, fuzzy rules have been used to control output values in order to determine the CO2 

set-point which is most appropriate. 

 

Figure 5.18  Control surface of ΔCO2-1 and dΔCO2-1 based on fuzzy rules 

For the extra rules between floors, Figure 5.19 shows the control surface between second and third-

floor temperature differences for saving energy and better the performance of the hot water valve of AHU2 

(HWV2). 

 

Figure 5.19  Control surface of ΔTz2 and ΔTz3 based on fuzzy rules 
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Figure 5.20 shows the control surface between the second and third floor Static Air Pressure Differences 

for saving energy and better the performance of supply fan speed of AHU2 (SFS2). 

 

 

Figure 5.20  Control surface of ΔPs2 and ΔPs3 based on fuzzy rules 

5.8. Simulation and Results 

In this section, the simulation results and the Simulink model are presented. Figure 5.21 shows a block 

diagram for state space models of a whole building (four AHUs), supervisor fuzzy logic controller and all 

setpoints using the Simulink. There are four state space models; each AHU has one with three inputs and 

three outputs; the advantage of separate the system to four is to decrease the rules of the controller. Also, the 

sampling time was selected as 3 seconds of the control action the same as that for the real system [29]. Also, 

the initial conditions and setpoints are selected for a state space model of temperatures, air pressures, and CO2 

levels of AHUs of the system as follows: 
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Figure 5.21  block diagram for state space models of the whole system with SFLC 

i. 22.46 oC for temperature, 1.013 INW for air pressure, and 471 PPM for CO2 levels of the AHU1 

initial conditions.  Furthermore, the real system’s indoor air quality setpoints are a zone temperature 

of 23 oC, air pressure of 1.5 INW, and a CO2 level of 480 PPM. 

ii. Initial conditions of AHU2 it was 20.29 oC for temperature, 1.11 INW for static air pressure, and 502 

PPM for CO2 levels. Setpoints are 24 oC, 1.2 INW, and 550 PPM of zone temperature, air pressure, 

and CO2 level, respectively. 

iii. For the AHU3 the initial conditions were 22.31 oC for temperature, 1.39 INW for static air pressure, 

and 469 PPM for CO2 levels, the setpoints 23.7 oC, 2 INW, and 500 PPM of zone temperature, air 

pressure, and CO2 level, respectively. 

iv. AHU4 has the initial condition of temperature 21.3 oC, static air pressure 1.01 INW, and CO2 levels 

486 PPM. Setpoints are 23.5 oC, 1.2 INW, and 530 PPM of zone temperature, air pressure, and CO2 

level, respectively. 
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SFLC control characters receive both errors and changes. System input control signals can be changed, 

including hot water, fresh air, and airflow gains to reach the reference points. Figure 5.22 shows the first of 

the system’s output responses of each AHU that demonstrate the system’s stability. Zones temperature (Tz1, 

Tz2, Tz3, and Tz4) achieves setpoints of 23 oC, 24 oC, 23.7 oC and 23.5 oC at good rise time and there is a small 

overshoot of some responses. Also, the setpoints of the system were changed to see the action of the controller; 

the figure shows good responses with this change.  

 

Figure 5.22  Zones temperature responses 

Figure 5.23 depicts the second responses of static air pressure of AHUs (Ps1, Ps2, Ps3, and Ps4), with 

perfect rise time and some small overshoots of the responses. With the changing of the references of the 

system for a period of time, the responses have no study state error.  
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Figure 5.23  Responses of static air pressure of AHUs 

Figure 5.24 shows the CO2 level responses of AHUs (CO2-1, CO2-2, CO2-3, and CO2-4), achieving the 

setpoints of CO2 level with good rise time and small overshoot of some responses. As before the setpoints 

were changed in a period of time, the next figure shows that. 

 

Figure 5.24  CO2 level responses of AHUs 
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5.9. Conclusions 

The simulation results covered the proposed HVAC model, which reflects its capability in maintaining 

comfort conditions. The S.J Carew building control system was simulated in MATLAB 2018a. The building’s 

AHUs were modeled with the MATLAB System Identification Toolbox with real data and IDE-ICE  results 

available to determine input and output system parameters. The designed supervisor fuzzy logic controller 

modulates the AHUs input (fresh air distributing air flow and hot water for each AHU) to achieve comfort 

level in the building. Modeling building each floor as a separate block results in four spatial models that offer 

the advantage that the rules of the supervisor controller are reduced to 180. The results show that the 

performance of the fuzzy controller was better compared to traditional algorithms and current controller used 

to control the HVAC system. Also, the SFLC algorithm responded systematically to all laboratory conditions 

and was able to handle a variety of parameters, including response time, steadying errors, and overshoot. By 

adding additional rules between the entry steps, the SFLC can control energy-saving features and results in 

an improved performance in the heating and cooling of buildings. 
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6. Summary  

6.1. Conclusions 

The first section of this research study employed an HVAC system model for the S. J. Carew Building 

that was formulated using the IDA-ICE software. In comparing the model’s power and hot water consumption 

estimates with twelve consecutive months of measured data, the model was shown to obtain good 

approximations. As well, the model offered a comparison of the IDA-ICE software’s external temperature 

estimations with measured data, during which the inputs/outputs of the system were selected, and the system’s 

thermal responses identified. From this, a linear state-space model emerged with the assistance of MATLAB’s 

System Identification (SI) tool. The new model featured twelve state variables (twelve inputs/twelve outputs) 

and showed good responses (i.e., in the acceptable range) compared to real-life data. 

The second section of this research study applied the system identification tool in MATLAB to build 

a state-space model that featured a MIMO (multi-input/multi-output) system as a first scenario. The model, 

which had eight status variables (eight inputs/eight outputs), gave responses which were in the acceptable 

range. From this, a novel HVAC system model was constructed which used as quantitative indices the Carew 

Building’s temperature and CO2 concentrations to gauge comfort levels. In using an input-output feedback 

linearization approach for linearizing the HVAC system, the pole placement controller was able to control the 

linearized HVAC system without steady-state error and according to the designated set point. The rigorously 

obtained simulation results for the HVAC model showed system validation, thus indicating the method’s 

ability to maintain optimal comfort levels. 

In the third section of the research study, the building’s AHU1 system was simulated for a second 

scenario. Incorporating results from the IDE-ICE software and actual data, the MATLAB SI tool generated 

appropriate system parameters of the inputs and outputs. Meanwhile, a fuzzy logic controller (FLC) regulated 

three AHU1 inputs (hot water, external-to-internal air, and general air flow) and also applied a MIMO system 
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state space model to AHU1. The test outcomes showed that the performance of the FLC surpassed all 

traditional algorithms, providing ample control for the HVAC system. Moreover, in every lab condition 

tested, the FLC algorithm demonstrated not only a stable response but enhanced ability to deal with various 

key parameters such as overshoot, response time, and steadying errors. 

In the final section of the research study, the simulation results indicated that the novel HVAC model 

was able to provide the desired level of environmental comfort throughout the structure by employing a 

supervisor FLC to control the targeted AHUs. Specifically, every floor of the S. J. Carew Building was 

considered a fully unique block, thus giving four spatial models. The advantage of this separation approach 

was a reduction in the number of supervisor controller rules to 180. Even so, the outcomes demonstrated the 

FLC’s superior performance in comparison to both conventional algorithms and the actual controller which 

is presently regulating the Carew Building’s HVAC system. Furthermore, the SFLC algorithm responded 

appropriately under a broad range of laboratory conditions and easily satisfied key parameters (e.g., steadying 

errors and response time). With the addition of a few rules in the entry steps, the SFLC was able to regulate 

the power-saving features and provide enhanced performance of the Carew Building’s heating and cooling 

system. 

6.2. Research contributions 

  To date, our research results have indicated the following: 

1. The S.J. Carew building was modeled using the IDA-ICE software using all details of HVAC system 

and instructions of the building for a whole year period, the model offers good approximation results, 

comparing power/hot water consumption levels with real data, measured data and exterior temperatures 

are also compared. Also, using the system identification toolbox, the state space model for a MIMO 

system was developed. 
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2. In using the input-output feedback linearization approach for HVAC system linearization, the pole 

placement controller (a form of the linear controller) with integral action and input gain successfully 

modulated the system. This was accomplished without any steady-state error and for the required set 

point and resulted in the maintenance of desired comfort levels for the indoor environment. 

3. The fuzzy logic controller was able to control hot water, air flow and fresh air (i.e., the three AHU1 

inputs), and the FLC algorithm was used in the AHU1 state space model of a MIMO multi-input/multi-

output system. 

4. The fuzzy expert controller outperformed conventional algorithms, and adequate control was achieved 

for the fuzzy controller HVAC system. As well, for every tested lab condition, the SFLC algorithm not 

only provided a stable response but was also able to better handle parameters such as overshoot and 

steadying errors. Anticipated outcomes for the present research study include building a state space 

model for the entire structure, using the supervisor's fuzzy controllers. It is expected that this approach 

will lead to an increase in response stability as well as the enhancement of key parameters such as 

overshoot and response time. The proposed fuzzy supervisor also controls the building’s energy savings 

through providing options for improved balancing of the structure’s cooling/heating systems, especially 

by considering the specific requirements of individual floors and areas. Also, the building separated to 

four state space systems, the advantage of this separation approach was a reduction in the number of 

supervisor controller rules, the number of rules (15 × 3 × 4) 180. Without this separation, the rules of the 

SFLC will be (154) 50625. 

6.3. Future work  

There are various directions to extend this work, which can be briefly outlined as follows: 

• Modeling part of the HVAC system, in system identification can add more variables such lighting 

system and disturbances such as occupants the building, solar and the wind direction. 



155 
 

• The proposed control system could be implemented. 

• Cost estimate for implementation could be done. 

• Switching to another heating source could be studied. 

• System simulation can include measured disturbance variable. 

• Adapting the fuzzy logic controller can be used for HVAC control. 

• For the FLC each floor model was determined and used in this study. A whole building model can 

also be used although that will need many more fuzzy rules. 

• Sensitivity analysis of incorrect rules can be done. 
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Abstract- In this paper, the HVAC System for the S.J. 

Carew Building at Memorial University is modeled using a state 

space multi-input and multi-output system (MIMO) approach 

for analyses and control system design. The IDA Indoor Climate 

and Energy ICE simulation program are used to develop the 

models. The system has three air-handling units and four floors. 

Supply air flow temperature and hot water temperature data 

are used as input data for the model. Environmental inputs of 

outdoor temperature, wind direction and velocity are used as 

disturbances. The temperature of the zones and humidity are 

used as output data. The simulated energy consumption for the 

first fifteen days of Dec 2015 is compared to measured data, and 

good agreement is achieved for the whole building. The main 

purpose of this paper is to obtain a state space model of a MIMO 

system using the Matlab system identification toolbox. Building 

data and details of the model are presented in the paper.  

Keywords: State space model, building modeling and 

simulation, HVAC, energy consumption, system identification.  

 

I. INTRODUCTION 

Over the past two decades, the demand for building 

energy has increased significantly, mainly due to 

economic growth in emerging markets. This has led to 

low fuel reserves and high pollution. To overcome 

these two problems, numerous studies are focusing on 

energy conservation and renewable energy generation 

[1]. For a building’s heating, ventilation, and air 

conditioning system (HVAC), the design goal is to 

provide comfort to the occupants. Since the heating 

and cooling loads vary with time, a control system 

should supplement an HVAC system to maintain 

comfort in all conditions. Also, with proper control of 

the system, the energy consumption will be reduced. 

The HVAC system is also responsible for providing 

fresh outside air to the building. This paper represents 

a simulation of the whole building using the IDA 

Indoor Climate and Energy 4.7 simulation program. 

The performance of the detailed heating/cooling plant 

and energy consumption of the modeled plant consider 

the application of a recently developed three-

dimensional model, the parameter-based heat model, 

and standard IDA ICE model library components. The 

IDA Indoor Climate and Energy program is a 

commercial program published in May 1998 that is 

aimed at studying the thermal climate of individual 

zones [4]. 

II. METHODS 

1. The case study building 

Fig. 1. 3D model of the S.J. Carew building 

In this paper, the S.J. Carew Building at Memorial 
University’s Faculty of Engineering and Applied 
Science is analyzed. This building consists of more 
than 300 zones, mainly classrooms, offices, and 
laboratories. Also, the building has a cafeteria. 
Overall, the studied building area is about 25,400 m2. 
The building’s details are presented in Table 1, and 
Figure 1 shows a 3D model of the building. First, a 
detailed area considered with the simulation software 
IDA-ICE [4] model simulation is developed. This high 
order nonlinear model is then used as the source of the 
identification data and the reference model for 
modeling the proposed structure. 

The IDA ICE program’s calculations offered for most 

types of buildings is represented [5]:  

mailto:atmaa7@mun.ca
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a. The thermal balance of the area, including solar 

radiation, light, occupants, furniture, air leaks, 

heating, and cooling appliances. 

b. Solar radiation from windows considering 

shading devices and surrounding elements. 

c. Air and surface temperatures. 

d.  Operating temperatures. 

e.  Indices of comfort: PMV, PPD and several 

occupants in arbitrarily chosen locations. 

f.  Level of daylight. 

g. Humidity and CO2 levels. This provides 

information about the air flow system. 

h. The wind and the flow caused by the buoyancy 

of the air through openings and leaks. 

i. Airflow, CO2, pressure, and humidity in 

different areas of handling and distribution 

systems. 

j. Heating power: heating and cooling units, 

equipment, occupants, light, solar radiation. 

k. Total cost of energy using prices as a function 

of time. 

TABLE I. DETAILS OF THE BUILDING 

2. Validation of IDA ICE simulation 

It is important to determine if the model meets the 

specifications and that the results are correct. The hot 

water and electrical consumption of the building are 

compared with actual data that was taken from the 

Department of Facilities Management at Memorial 

University. Figure 2 shows the Honeywell software 

log for the hot water consumption of the building. The 

following output variables were measured and 

compared with IDA ICE simulation data: 

Fig 2:  Honeywell software  

2.1.   Outdoor temperature 

The first comparison was between the outdoor 

temperatures from the weather file in the IDA ICE 

program and data was measured from the period from 

the 1st to the 18th of Dec 2015 by one hour of simple 

time. This is illustrated in Figure 3. 

Fig. 3: Difference between outdoor temperatures of IDA ICE and 

actual data 

2.2. Energy consumption from hot water  

The energy consumption of hot water was 2,069.8 

MBTU from IDE ICE program. However, the 

measured data showed 2,073 MBTU. Figure 4 shows 

the difference between these results for the whole 

December 2015. 

Fig. 4. Hot water consumption  

2.3. Electricity consumption 

Figure 5 shows the difference between the electrical 

power consumption for the measured and model data. 

The measured data is higher, which can likely be 

attributed to the many different types of laboratory 

equipment that the model does not represent in the 

analysis. 

 Fig. 5. Electricity consumption 

III. SYSTEM IDENTIFICATION  
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Three basic steps can be outlined when applying the 

system identification [2]:  

i. Creation of data to be used for identification 

of the model.  

ii. The choice of a model structure, namely a set 

of candidate models.  

iii. Generate the model that best represents the 

system using a selection rule, for example, 

under the rule of selecting the least squares 

method or instrumental variables.  

Precautions must be taken in each of these steps to 

obtain a model that can represent the real system. In 

this paper, the Air Handling Unit 1 (AHU1) is taken to 

identify the state space model of the system. Figure 6 

shows the details of air handling unit 1. 

Fig. 6. Air handling unit 1. 
 

A. Choosing input signals  

It is expected that there will be an increase in the heat 

from radiators and air flow temperatures varying 

between the zone temperature and the current hot 

water as the minimum and maximum temperature for 

this component. This is the only control variable in the 

zones, and therefore the signals used for the 

identification system are input signals. Figures 7 and 8 

show the supply of hot water and air flow to the system 

as a function of time. 

Fig. 7. Supply and return of hot water temperature. 

 
 

 

 
 

 

 

Fig. 8. Supply air flow (variation is due to damper operation) 

 

B. Choosing output signals 

The level of CO2 and the temperature of the return air 

flow are taken as the system outputs. Figure 9 shows 

the CO2 level in the return air and Figure 10 shows 

temperature variation of the return air. 

Fig. 9. Level of CO2 in the return air. 

 

Another output is taken as the return of the hot water 

temperature which is shown in Figure 7. 
 

Fig. 10. Return air flow temperature 

 

C. Selecting a model structure 

There are several model structures that can be chosen. 

The model structures can be divided into two 

categories: linear and nonlinear. Since the system in 

this paper is nonlinear, the ARMAX-model is selected.  
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D. Model identification  

In this section, the identification procedures that are 

considered for pre-processing the data set are 

presented. The procedure can be divided into the 

following steps [3]:  

i. Choosing a model structure (e.g., ARX, 

ARMAX, process models).  

ii. Choosing a model order.  

iii. Choosing which estimation method to use 

(e.g., least square). 

iv. Starting the identification procedure.  

v. Checking and verifying the results. 

E. State space model 

The number of state variables, n, is the number of 

independent components of the system. The total 

energy of the system and the time derivatives of the 

state variables determine the rate of change in the 

energy of the system. Furthermore, the system state 

variables at any time, t, provide sufficient information 

to determine the values of all other variables in the 

system in that time [6]. 

 

                    
The matrices A and B are properties of the system. The 

choice of output variables determines the output 

equation matrices C and D. The following matrices are 

obtained using the Matlab system identification tool 

box. 

 

 
 
The dynamic behavior of the system is obtained for 

arbitrary input and simulated by the lsim (sys,u,t,xo) 

function in Matlab. The system has two inputs that are 

represented by u, which supply hot water and air flow 

to the system. Also, the t vector represents the time 

samples. Also, xo is the initial values of the system. 

Figure 11 shows the outputs response of the system, 

the mean temperature of the zones, the return hot water 

and the quantity of CO2. 

 
Fig. 11. Outputs of the system. 
 

All responses of the system are in the correct range 

after ignoring the initial transient. Part one of Figure 

11 illustrates the temperature of the zones the range 

between 21oC to 23oC in the steady state of the system. 

In part two the range of return hot water is between 

20oC to 38oC. In part three the level of CO2 is 700 ppm 

to 850 ppm. 
 

IV. CONCLUSION 

In this paper, the S.J. Carew building with a HVAC 

system has been modeled using the IDA ICE program. 

This model provides good approximation results in 

which the hot water and electrical consumption are 

compared with measured data. Also, the outdoor 

temperature for the program and measured data for a 

period are compared as the first step of the process. In 

the second step, the system identification tool box is 

applied to obtain the state space model of the multi-

input and multi-output system. The model has three 

state variables, two inputs, and three outputs and the 

responses of the model are within an acceptable range.  
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7.2 Appendix II. Construction Details 

7.2.1 a02 Elevations 
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7.2.2  First Level Plan - Part A 
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7.2.3 A31 Entrances and Curtain Wall Details 
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7.2.4 SJ Carew Level 1  
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7.2.5 SJ Carew Level 2  
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7.2.6 SJ Carew Level 3  
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7.2.7 SJ Carew Level 4  
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7.3 Appendix III. IDA ICE Details 
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