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ABSTRACT 

Log-based reservoir characterization is one of the widely used techniques to estimate the 

reservoir properties and make decisions for hydrocarbon production. Use of the machine 

learning tools is becoming a more accessible approach for data-driven model development. 

The objective of this research is to identify and rank the most contributing log variables 

considering their relative performance for prediction of water saturation and rock strength 

using the machine learning tools. The single layer and multi-layer perception (MLP) 

artificial neural network (ANN) and the kernel function-based least-squares support vector 

machine (LS-SVM) techniques are employed for model development. The models can 

capture the non-linear behavior and high-dimensional complex relationships among real 

field log data variables. The mutual information (MI) is used to investigate the dependency 

of predictor subset variables in a model and to rank log variables according to their 

importance. The connectionist models are also examined to find reliable data-driven 

predictive models to estimate reservoir properties and rock strength. A new correlation is 

developed to obtain the in-situ rock strength of the siliciclastic rocks using the most 

important log parameters. The model predictions are compared/validated against the 

measured values as well as results obtained from existing log-based correlations. The 

approaches suggested in this study (connectionist and MI strategies) can assist 

engineers/operators to run a few numbers of logging tools for prediction of reservoir and 

rock properties to save the exploration costs. Also, it is expected that the introduced robust 

data-driven predictive models will enable engineers to better manage the wellbore stability 

and formation analysis in terms of technical, economic, and environmental aspects.   
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CHAPTER 1: INTRODUCTION 

 

1.1 Research Background  

Reservoir characterization plays a critical role in appraising the economic success of 

reservoir management and development methods. It also helps in decision making for 

hydrocarbon exploration, perforation for production, and improving the reliability of the 

models for predicting reservoir properties and rock strength. Furthermore, it focuses on not 

only the understanding of past reservoir properties, but also predicting the future reservoir 

conditions. The ultimate target of reservoir characterization is to show the nature of rock-

fluid properties and to develop a reservoir model with high accuracy and minimal 

uncertainties. 

  

The formation evaluation or reservoir characterization is a continuous process that includes 

integrated tasks (e.g., coring, logging, and well testing). In the oil and gas industry, it can 

be accomplished by various techniques such as direct measurement through experimental 

core analysis or indirect measurement techniques. The most common indirect techniques 

of reservoir characterization are downhole well tests, wireline logging, geostatistical and 

geophysical interpretation, reservoir geomechanical analysis, geo-modeling (Dubois et al., 

2006; Close and Caycedo, 2011; Tiab and Donaldson, 2015; Sylvester et al., 2015; 

Azevedo and Soares, 2017; Yusuf et al., 2019; Elkatatny et al., 2019), and soft computing 

approaches. The most popular machine learning (soft computing) techniques are artificial 

neural network (ANN), least-square support vector machine (LS-SVM), gene expression 
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programming (GEP), fuzzy logic (FL), and hybrid computational methods (Cuddy, 2000; 

Masoud, 2004; Wong et al., 2013; Onalo, 2019; Ertekin and Sun, 2019) which have been 

used in various engineering disciplines including chemical and petroleum engineering. 

  

It is essential for petroleum and reservoir engineers, drillers, and geologists to obtain 

detailed information about the type and characteristics of rocks, and flow related properties 

of a reservoir through estimation of a variety of rock properties (e.g., resistivity, porosity, 

permeability, and fluid saturation) and rock strength parameters. These features are not the 

same or uniform in hydrocarbon formations throughout the world due to the various 

heterogeneities in pore geometry, permeability, and fluid saturation. The most extensive 

technique for reservoir characterization is petrophysical analysis using coring and well 

logging data. Water saturation is one of the most important reservoir properties that enables 

to determine perforation depth for hydrocarbon production in both offshore and onshore 

fields. Meanwhile, the uniaxial compressive strength (UCS) is one of the crucial rock 

strength parameters that can be employed to assess reservoir sanding potential during 

formation pressure drawdown, drilling optimization as well as wellbore stability analysis 

before smart well completion. 

  

The most widespread strategy for reservoir evaluation/characterization is direct 

measurements such as experimental core analysis and indirect estimation using wireline 

log-based correlations. Although the laboratory-based direct method for water saturation 

estimation is more accurate, it is time-consuming and expensive. A limited number of 
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samples can capture a few depth-intervals of the well (Adeniran et al., 2009). Due to the 

complex geological behavior and heterogeneity of reservoirs, a large set of samples are 

required to properly characterize a reservoir’s rock and geomechanical properties. Most of 

the times, high-quality cylindrical core specimens’ preparation with regular geometry or a 

large scale core sample is not possible to collect due to the complex geological behaviour 

and heterogeneity of the reservoir. 

  

Over the past few decades, numerous studies have been performed to develop empirical 

models to estimate rock strength and reservoir properties using petrophysical logs such as 

resistivity, sonic, density, and neutron porosity logs. Several researchers developed models 

or correlations to estimate water saturation and rock strength. The existinmg log-based 

models or correlations for water saturation and rock strength of the formation were listed 

and summarized by different authors (Chang et al. 2006; Shedid and Saad, 2017). All those 

petrophysical models are limited to the nature of the lithology, and lithological parameters 

such as tortuosity factor, cementation, and saturation exponent of the rock.  

 

Nowadays, the machine learning (ML) or artificial intelligence (AI) approaches such as 

artificial neural network (ANN) and least squares support vector machine (LS-SVM) are 

becoming more popular tools for data-driven model development and prediction of rock 

properties to save the experimental and operational costs. The connectionist tools do not 

depend on the geological characteristics and lithological parameters (e.g., lithology type, 

saturation exponent, and cementation factor); they overcome some drawbacks of the 
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existing empirical models for reservoir rock properties. ANN and LS-SVM are powerful 

deterministic tools in the petroleum industry to capture the uncertainty and non-linear 

behaviour of the input variables.   

 

1.2 Research Motivation   

The formation specimen collection and processing of high-quality cores from a reservoir 

are complex, tedious, expensive, and time-consuming operations. Lack of experimental 

analysis of reservoir properties should not be a limiting factor in reservoir characterization. 

The wireline log data is an alternative and viable option to obtain the in-site profile of 

reservoir rock properties. If the reservoir core samples are not available, reservoir 

properties and strength of rock can be predicted using models/correlations relating wireline 

logs (such as gamma-ray, resistivity, porosity, and nuclear-magnetic resonance logs) and 

drilling data as well as downhole testing data.  

 

A comprehensive study is required to identify the relative contribution and significance of 

log parameters in the data-driven reservoir predictive models while estimating in-situ 

reservoir properties using several log data. The current research aims to identify the most 

significant log variable in the model while predicting in-situ reservoir 

petrophysical/mechanical rock properties using machine learning approaches. It is believed 

that the research strategies employed in this study can be less time consuming and cost-

effective for efficient reservoir characterization as well as formation evaluation. 
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1.3 Objectives of the Research 

Based on the literature review, a comprehensive investigation is further required to identify 

the relative contributions of input log variables in the predictive models for reservoir 

properties and/or geomechanical properties of the rock formation. To the best of our 

knowledge, feature ranking of logging variables to predict in-situ water saturation as well 

as rock strength profile by coupling logging data and machine learning tools have not been 

investigated systematically. The attribute selection and ranking of logging data with very 

good precision appear to be a serious challenge for not only petroleum engineers and 

drillers, but also geologists to estimate the water saturation and rock strength using the 

wireline log data. The current research work is planned to fill in the knowledge gap by 

finding the most contributing parameters and feature ranking of log variables, according to 

their relative contribution while predicting water saturation and strength of rock. The 

objectives of this research are listed as follows: 

• To use data-driven models for prediction of water saturation and rock strength using 

log data 

• To rank input parameters contributing to the output variables using mutual information 

and smart connectionist models 

• To perform parametric sensitivity analysis and compare the predictive performance of 

deterministic tools through statistical analysis 
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1.4 Organization of the Thesis 

A manuscript style format has been followed in preparing this thesis. A graphical 

representation of the research approach in the study is shown in Figure 1.1. The outline of 

the thesis and individual chapters are presented below:  

 

• Chapter 1 highlights the research background, motivation, and objectives of the study. 

 

• Chapter 2 presents a brief review of the literature on theories and techniques for 

reservoir characterization as well as formation evaluation. To identify the knowledge 

gaps and research scopes in the area of memory-based reservoir characterization as 

well as reservoir modeling of thermal flooding technique capturing the rock-fluid 

interactions in formation porous media, two review articles are written and published. 

A version of one of the published review articles entitled “Application of Memory 

Concept on Petroleum Reservoir Characterization: A Critical Review” is available in 

the www.onepetro.org archive of the Society of Petroleum Engineers (SPE-187676-

MS). The second review article (Modeling of Temperature Distribution and Oil 

Displacement during Thermal Recovery in Porous Media: A Critical Review) is given 

in Appendix A. These studies were done during the research period in collaboration 

with other researchers. Also, the concepts and fundamentals of machine learning 

approaches are briefly described in this chapter. The relevant literature review on the 

relevant machine learning techniques is presented in the subsequent chapters 3, 4 and 

5.   
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Figure 1.1: Integration of research strategies in the study.

Data Driven Predictive Models and Feature 

Ranking in Reservoir Characterization 

Petrophysical well logging data 

Machine learning approach to model rock 

strength: prediction and variable selection 

with aid of log data (Chapter 5) 

Resistivity log Gamma-ray log  Density log Neutron log Sonic log 

Single layer perception-based ANN approach 

Networks approach 

Mutual information strategy 

Connectionist and mutual information tools to 

determine water saturation and rank input log 

variables (Chapter 3) 

Log data-driven model and feature ranking for 

water saturation prediction using machine 

learning approach (Chapter 4) 

Multiple layers perception-based ANN approach and 

Kernel function-based LSSVM strategy 
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• Chapter 3 presents the theoretical concepts and background regarding the petrophysical 

models for water saturation. It also covers the methodology for modeling through single 

layer perception-based ANN and MI techniques. This chapter has been published in the 

“Journal of Petroleum Science and Engineering”. 

 

• Chapter 4 presents the knowledge gap on log data-driven models and feature ranking 

while predicting water saturation using machine learning approaches. In this chapter, 

the multi-layer perception-based ANN and CSA-based LSSVM were employed to 

develop a model for water saturation. This chapter has been published in the “Journal 

of Petroleum Science and Engineering”. 

 

• Chapter 5 presents the investigation on rock strength model and variable selection. This 

chapter includes detailed information about the log-based rock strength models and 

knowledge gap on the AI-based connectionist model for variable selection while 

predicting rock strength. In the study, the smart connectionist AI models (ANN and 

LS-SVM) are employed to construct the data-driven model and variable selection. This 

chapter has been reviewed by the supervisory committee and submitted to the “Rock 

Mechanics and Rock Engineering” Journal in the form of a revised manuscript. 

 

• Chapter 6 presents the overall conclusions and recommendations of the thesis. Thus, 

the readers also will obtain some new directions for future research in the area of 

reservoir analysis as well as formation evaluation.  
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1.5 Research Novelty and Contributions  

The novelty and contribution of this research are in the reliable prediction of water 

saturation and rock strength in reservoir characterization using less number of log data than 

typically used in the existing methods. The novelties and contributions are highlighted 

below: 

 

• The mutual information (MI) is implemented for the first time to rank input parameters 

contributing to the water saturation when log data are available. In this study, 

development and optimization techniques on the basis of connectionist models for 

water saturation estimation are illustrated systematically to investigate the dependency 

of predictor variables using MI and ANN. The MI approach reveals that the important 

log variables are the true resistivity and bulk density while the gamma-ray and neutron 

porosity have minor effects on the water saturation. An important finding of this study 

is that the primary log variables (e.g., true resistivity and bulk density) can be used to 

accurately obtain the water saturation during the exploration of a reservoir using 

efficient deterministic strategies such as smart connectionist models. Utilization of 

such tools requires less time and computational complexities, leading to lower costs in 

the exploration stage while using fewer log variables. This contribution is presented in 

Chapter 3.  

 

• The data-driven model is developed by coupling log data and machine learning 

techniques to identify and rank the most contributing log variables for predicting 

continuous water saturation profile. It is found that the significance order of influential 
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(higher to lower) predictor log variables are the true resistivity, bulk density, neutron 

porosity, photoelectric factor, gamma-ray, and sonic travel time based on their relative 

contribution to the water saturation. The strategy introduced in this study assists to 

forecast water saturation with a relatively few number of log variables, and thus, 

reduces the number of necessary logs to run during exploration, considerably lowering 

the exploration costs. This contribution is highlighted in chapter 4. 

 

• The connectionist models of MLP-based ANN and LSSVM with radial basis kernel 

function are employed to predict the continuous in-situ rock strength with the aid of 

log data. One of the main findings is that the formation acoustic travel time and gamma-

ray are the most significant contributing log variables (compared to other variables) 

while estimating the in-situ rock strength. A new correlation is also developed to 

predict the in-situ rock strength using influential log parameters for the siliciclastic 

sedimentary rocks. It is expected that the introduced robust data-driven predictive 

models/strategies and new correlations will enable rock engineers, drillers, and 

researchers to better manage the wellbore stability, rate of penetration, and rock 

formation analysis in terms of technical, economic, and environmental aspects. This 

contribution is presented in Chapter 5.  
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CHAPTER 2: LITERATURE REVIEW 

 

This section presents a comprehensive literature review to find the research scopes for the 

study. The aim of sub-section 2.1 is to revisit the basic concepts, existing techniques and 

models for reservoir characterization in porous media with the main focus on water 

saturation and rock strength estimation. Subsections 2.2 and 2.3 present the basic concepts 

and theory of mutual information and machine learning (artificial intelligent-based model) 

approaches with highlighting ANN and LS-SVM.  

 

2.1 Reservoir Characterization 

Reservoir characterization encompasses the understanding and procedures to describe the 

behavior of reservoir rock or fluid properties in a porous medium. Several methods and 

advanced technologies have been used to properly characterize clastic and carbonate 

reservoirs. It is a continuous process that can be accomplished using several techniques 

such as experimental measurements through core analysis, geophysical log interpretation, 

and down-hole testing (Lucia, 2007).  

 

Also, the in-situ rock and fluid properties behavior can be analyzed through mathematical 

modeling. The continuous alteration of rock/fluid properties can be characterized using the 

memory concept (e.g., the effect of past events on the present and future course of 

developments (Zhang, 2003). It is also significant to consider the rock, and fluid properties 

as a function of time, and the inclusion of recently introduced memory concept in 
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petroleum engineering study. A detailed review of the existing techniques and models of 

rock and fluid properties related to memory concept in reservoir characterization is 

presented by Miah et al. (2017). In the study, the researchers revisited the literature survey 

and listed the knowledge gaps in the models developed for flow in porous media. For 

instance, the detailed information about the present status of memory-based fluid flow 

modeling, rock and fluid properties models under several assumptions during reservoir 

characterization is provided.  

 

Moreover, the reservoir rock and fluid properties play an important role for both inductive 

and conductive heat transfer process, and considerably affect the energy balance during the 

thermal flooding processes. The effective thermal conductivity of formation is employed 

to characterize the thermal conductivity of reservoir rocks as thermal properties are 

determined by mineral constituents, porosity, and water saturation, as well as fluid 

saturating pore space (Green and Willhite, 1998). For instance, thermal conductivity can 

be obtained from the core and log data (Gąsior and Przelaskowska, 2014). The influence 

of temperature on reservoir rock and fluid properties plays a vital role in accurately 

predicting reservoir temperature distribution, oil displacement, and steam oil ratio. In 

Appendix A, a systematic review discusses about the impacts of rock properties (i.e., 

porosity and permeability), water saturation, and fluid properties on recovery performance 

during the thermal displacement process. This review aticle highlights the assumptions and 

limitations of the current models for thermal conductivity, and temperature distribution 

during the thermal flooding process in porous media. The following subsections cover the 
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literature review on rock properties, and modeling and estimation techniques in the context 

of reservoir characterization/analysis. 

 

2.1.1 Reservoir petrophysical properties  

The reservoir petrophysical properties such as rock resistivity, porosity, permeability, and 

fluid saturation can be measured through experimental core analysis and/or using wireline 

log data. The wireline logs are reliable to estimate in-situ porosity, water saturation, and 

log-based permeability in the absence of core data. The wireline logs (such as gamma-ray 

, resistivity, density, neutron, and sonic logs) are used to obtain the reservoir rock 

(petrophysical) properties.  

 

The gamma-ray (GR) log measures the strength of the natural radioactivity (i.e., 

spontaneous decay of the atoms of certain isotopes into other isotopes) present in the 

formation. The gamma radioactivity is generally expressed in API unit (American 

Petroleum Institute). Note that 1 micrograms (μg) is equal to 16.5 API (Serra, 1984). The 

API unit can be defined as the one two-hundredth of the difference in curve deflection 

between zones of high and low radiation in the API gamma ray calibration pit in Houston, 

Texas (Serrra, 1984). The magnitude of GR is a function of concentration (by weight) of 

radioactive minerals and rock density. The major three radioactive minerals are potassium, 

thorium, and uranium. Potassium is more abundant in the formation, and it has a significant 

contribution to the GR response rather than other clay minerals in the formation. The 

presence of clay minerals (e.g., potassium, thorium, and uranium) in a rock formation may 
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considerably affect the reservoir petrophysical properties. The presence of clay minerals or 

shale in a reservoir may either be good or bad in terms of reservoir quality. On the other 

hand, the presence of a large amount of clay may result in a decrease in the porosity (i.e., 

void spaces in a rock) and permeability (i.e., the ability of fluid flow in a rock) of the 

reservoir so that the reservoir becomes non-productive. More commonly, clay minerals are 

found in sandstone reservoirs; however, not in carbonate rocks. The GR log is extensively 

used to obtain the shaliness (clay content or shale volume) that appreciably affects the 

predicted values of effective porosity (i.e. interconnected pore space in rock volume that is 

capable of transmitting the fluid) and water saturation (i.e. the ratio of water volume to 

pore volume) in shaly sand reservoirs.   

 

Rock porosity measures the void (pore) space in the reservoir, which is available for 

accumulation of fluids. There are three types of logs, namely, density, neutron, and sonic 

logs that are used to estimate the amount of pore space in sedimentary rocks. Porosity in 

sandstones normally varies with the grain size distribution, grain shape, packing 

arrangement, cementation, and clay content (Asquith and Krygowski, 2004). The 

formation density log measures the electron density of a formation, which is used to detect 

gas-bearing zones, determine hydrocarbon density, and evaluate shaly-sand reservoirs as 

well as complex lithologies of the formation. The neutron log measures the hydrogen 

concentration or hydrogen index in the rock. In clean formations (shale free) where 

porosity is filled with water, oil or gas, the neutron log measures liquid-filled porosity. 

Whenever pores are filled with gas rather than oil or water, the reported neutron porosity 



17 
 

is less than the actual formation porosity. This occurs because there is a lower concentration 

of hydrogen in gas than oil or water. This lower concentration is not accounted for by the 

processing software of the logging tool; this is interpreted as a low porosity. A decrease in 

the neutron porosity due to the presence of gas is called the gas effect. Also, an increase in 

neutron porosity because of the presence of clays is called shale effect (Asquith and 

Krygowski, 2004). Neutron porosity increases for the cases with high amount of clay 

minerals to the reservoir. Effective porosity is defined as the porosity available to free 

fluids in the reservoir. The values of neutron and density porosity, corrected for the 

presence of clays, are used to estimate the effective porosity of the formation of interest for 

gas or oil reservoirs (Asquith and Krygowski, 2004); relevant equations are included in 

chapters 3 and 5. 

 

On the other hand, the sonic tool (or borehole compensated device) measures interval 

transit time (DT) of a compressional sound wave travelling through the formation along 

the axis of the borehole. The sonic log device consists of one or more ultrasonic transmitters 

and two or more receivers. The true porosity can be calculated from the compressional 

sonic travel time (the reciprocal of wave velocity) using the Wyllie time-average equation 

(Wyllie et al. 1958). The interval transit time of a formation is increased due to the presence 

of hydrocarbons (e.g., hydrocarbon effect). If the effect of hydrocarbons is not corrected, 

the sonic derived true porosity will be too high.  
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Resistivity logs are used for the evaluation of reservoir pore fluids within formations. The 

resistivity (inverse of conductivity) of a formation can be measured from the laterolog or 

induction type logging tool; this is a crucial parameter in determining water saturation, 

which depends on the formation water resistivity (fully saturated water case), pore 

geometry, and amount of fluids (water and/or hydrocarbon) in the reservoir. The deep 

induction log measures the true resistivity (Rt, ohm-m) of the virgin formation. The 

formation water resistivity (Rw) can be estimated using the inverse Archie’s formula 

(Archie’s, 1941). More information about the common types of logging tools, their 

applications, and uncertainties can be found in the literature (Bassiouni, 1994; Asquith and 

Krygowski, 2004; Masoudi et al., 2017).  

 

2.1.2 Reservoir formation properties and strength of rock   

The unconfined rock compressive strength (UCS) has significant importance as a main 

rock strength parameter with applications in various fields including petroleum and mining 

engineering. It is a vital parameter for reservoir stimulation design, planning the mud 

weight window, bit selection, and real-time wellbore stability analysis. The drilling 

engineer would be able to optimize proper weight on bit and weight of drilling fluid as well 

as to investigate the efficiency of a drilling operation using the rock strength profile (Moos 

et al., 2003; Chatterjee et al., 2013). A drilling operation is an interaction between the rock 

and bit; the rock will fail when the resultant stress is greater than the rock strength 

(resistance of rock against loading). Different methods can be employed to estimate the 

rock strength. Estimation of rock strength (UCS) at the laboratory is very costly because 
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drilled core samples are required to be collected from well sites and then prepared for 

surface testing. When laboratory measurement of rock strength parameters (uniaxial 

compressive strength, UCS, and tensile rock strength) is time-consuming and expensive, 

the UCS is typically estimated from wireline logs such as density and sonic logs. 

  

There are two types of body waves (compressional and shear), which are commonly used 

to estimate rock strength, physical properties profile, and dynamic elastic properties (e.g., 

Poisson's ratio, modulus of elasticity, and shear and bulk moduli) of the rock formation. 

The compressional wave (primary or longitudinal  wave) has the particle motion in the 

direction of wave propagation in rock formations. The compressional wave has the fastest 

arrival times from an acoustic energy source. In rock porous media that are saturated with 

fluids, the primary wave travels through both the liquid and solid phases. The shear wave 

(secondary or transverse wave) has its particle motion perpendicular to its direction of wave 

propagation. The shear wave is the second-fastest wave, which can travel in the rock-solid; 

however, it does not travel through fluids (gas, oil, and water) in a saturated rock formation 

because fluids do not shear. Several empirical equations exist for predicting in-situ UCS 

profile along the wellbore using rock porosity, acoustic velocity (sonic travel time), 

dynamic elastic moduli, and other formation properties (Rabbani et al., 2012). Several 

correlations can be used to predict rock strength for the sedimentary rock types using log 

data, which can be found in the literature (Chang et al. 2006; Odunlami et al., 2011). 
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2.2 Information Theoretic Measures Approach 

The most common measures of information used in different fields of engineering are 

entropy (H) and mutual information (MI). MI is one of the widely used concepts in 

communication engineering, which offers a procedure to measure the strength of the 

relationship between discrete and/or continuous variables. MI has been used to capture the 

dependencies among random variables relevant to a model using available data and feature 

selection methods in different disciplines (Shannon, 1948; Cover and Tomas, 2012; 

Ghaeinia et al., 2017; Pascoal et al., 2017). The detailed theory and procedure to estimate 

MI are provided in Chapter 3.    

 

2.3 Theory and Application of Machine Learning Approach  

The machine learning (ML) is a scientific computational aspect of artificial intelligent (AI) 

that deals with the design and development of different algorithms that allow models to 

learn based on real datasets such as wireline log and/or experimental core data. A major 

focus of ML research is to automatically learn to recognize complex patterns and make 

intelligent decisions based on feed data. Moreover, ML is closely related to different 

disciplines such as probability theory, artificial intelligence, data mining, pattern 

recognition, and theoretical computer science such as computational learning theory 

(Anifowose et al. 2011).  

 

The most common ML techniques are supervised, unsupervised, and hybrid. The 

supervised learning is the ML technique in which the algorithm generates a function that 
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maps inputs to the desired outputs with the least error. Unsupervised learning is another 

ML strategy in which a set of inputs are examined without the target output. This is also 

known as clustering. The most common ML techniques are artificial neural network 

(ANN), fuzzy logic (FL), adaptive neuro-fuzzy inference system (ANFIS), gene expression 

programming (GEP), classic support vector machine (SVM), least squares support vector 

machine (LSSVM), and/or hybrid (two or more combinations) methods. Also, the hybrid 

machine learning-based model can be developed through a combination of LSSVM and 

global optimization technique of coupled simulated annealing (CSA) or particle swarm 

optimization (PSO). More information about the theory and mathematical formulation of 

ML (or AI) techniques can be found in the literature (Jang, 1993; Ashena and Thonhauser, 

2015; Sebtosheikh et al. 2015; Barzegar et al. 2016; Barati-harooni et al. 2017; Gholami 

and Fakhari, 2017). The following two sub-sections briefly explain the ANN and LSSVM 

techniques due to the interest of the current study.    

 

2.3.1 Fundamentals of artificial neural network  

The ANN is a parallel distributed information processing model. The major components 

of ANN are input layer, hidden layer (s), training algorithm, transfer (activation) function, 

and output layer. The ANN has been established as a simplification of the mathematical 

model of the neural networks by having some assumptions listed below (Ashena and 

Thonhauser, 2015): 

a) Variables (input or output) information processing is performed in many simple 

individual processors, called neurons.  
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b) The variable information is transmitted between neurons using connection links in the 

network. 

c) A specified weight factor is assigned to each link to be multiplied by the variable 

information, which is passing through each link.  

d) Each neuron assigns a desired bias term or a threshold value to be added to the sum for 

yielding a net value. 

e) The net value is provided as an input to an activation (transfer) function; the output of 

the neuron would then be determined.  

 

Ultimately, the function of the whole ANN structure is the calculation of the output of all 

the neurons existing in the connectionist network-based model. The number of neurons in 

the input layer relates to the number of input variables. The number of neurons in the output 

layer corresponds to the number of the output variable (s). The number of hidden layers 

and also the number of neurons of hidden layers can be defined by following a trial and 

error procedure (Ham and Kostanic, 2001). The single-layer perception and multi-layer 

perception (MLP) connectionist network solely depend on the adjustment of the weight 

factors between the layers. The output or hidden layers are assigned with activation 

(transfer) function. The most common transfer functions are threshold (unit step), 

piecewise linear, logistic sigmoid, sigmoid hyperbolic tangent function, and purlin transfer 

function. Generally, the output layer is associated with a purlin (linear) transfer function. 
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There are different kinds of ANN learning algorithms used at the summation stage between 

the layers such as probabilistic neural networks, generalized regression neural networks, 

and feed-forward back-propagation neural networks. The purpose of the back-propagation 

algorithm is to find the least minimum error surface, while it computes the local gradient 

in the error surface and afterwards updates the weights along the direction of the steepest 

local gradient (Adedigba et at. 2017). Each iteration in the back-propagation process, the 

forward and backward pass sweep, is performed repeatedly until the output variable is the 

same as the target value within an allowable predetermined tolerance level (Basheer and 

Hajmeer, 2000).  

 

Generally, the data stratification of the ANN network is divided into three phases such as 

training, testing (calibration), and validation (verification). The data points can be divided 

as per the data points available as well as the experience of the users to attain the expected 

outcomes. The detailed procedure of feedforward backpropagation, as well as data 

processing of the ANN model, can be found in the literature (Ashena and Thonhauser, 

2015; Adedigba et al. 2017). The generalized mathematical expression for the ANN model 

is given below: 

𝑦𝑚 = 𝑓𝑜 [∑𝐾𝑗𝑚𝑓ℎ(∑𝐾𝑖𝑗𝑥𝑖 + 𝑏𝑗) + 𝑏𝑚

𝑛

𝑖=1

𝑚

𝑗=1

]                                                          (2.1) 

In equation (2.1),  ym stands for the output variables; xi is the vector of target variables (e.g., 

i = 1, 2, 3, 4, …,n); bm symbolizes the bias term for output layers; 𝐾𝑖𝑗 represents the 

connection weight on the link from i to j node between the input and hidden layers; m refers 
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to the number of hidden nodes; and n represents the number of input variables. 𝑓ℎ and 𝑓𝑜 

are the transfer function for the hidden layer and output layer, respectively.  

 

A typical single neuron-based and multiple neurons structure is shown in Figure 2.1. 

According to Figure 2.1, the inputs are multiplied by the corresponding weight factors (W) 

and a bias term (b) is added as an error correction to obtain the summation in the network. 

This summation value is called the net value of the connectionist model. The net value 

from the input variables is passed through a transfer function (f) (Figure 2.1).    

 

 

 

 

 

 

 

 

 

Figure 2.1: A graphical representation of a typical neuron-based network. 
 

 

A good trained ANN would assign higher weight factors to be multiplied by the more 

important or stronger input variable values. Back propagation is one of the supervised 

training algorithms in which initially all weight factors are randomly optimized in the 
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algorithm, then the neural output variable is compared with the target variable in the 

training datasets and the error (the difference between target and neuron output) is 

propagated backward to the neural network. During this back-propagation, the weight 

factors are changed to decrease the error in the model. This procedure is repeated frequently 

until the produced output variables are acceptably close to the target value. In the 

connectionist model, training is performed by adjusting the weight factors until 

convergence between obtained outputs and desired outputs (target) is acquired (Figure 2.2).  

 

 

 

 

 

 

 

 
 

 

 

Figure 2.2: A graphical representation of an ANN structure with several neurons and two 

hidden layers. 

 

The most common learning algorithms of backpropagation are Levenberg Marquardt 

(LM), Bayesian Regularization (BP), and Scaled Conjugated Gradient (SCG) to train the 
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MLP ANN network. The LM algorithm is faster with the least epochs (e.g., the number of 

iterations it takes for the ANN model to converge to a solution) and more reliable second-

order nonlinear optimization training algorithm than the other standard back-propagation 

techniques (Ceryan et al. 2013). It represents a simplified version of the Newton’s method 

(Marquardt, 1963); the steps in the training algorithm can be found in the literature (Hagan 

and Menhaj, 1994; Ceryan et al. 2013). When training with the LM optimization algorithm, 

the change of weights (∆𝑊) can be calculated using the following equation: 

∆𝑊 = [𝐽𝑘
𝑇𝐽𝑘 + 𝜇𝑘𝐼]

−1𝐽𝑘
𝑇𝑒𝑘                                                                                          (2.2)  

Then, the weight factors can be updated using the following expression: 

𝑊𝑘+1 = ∆𝑊 + 𝑊𝑘                                                                                                      (2.3)  

where 𝜇 (mu) is the Marquardt parameter in the training state of the network; 𝑒𝑘is the 

training error for each k step. I is an identity matrix and J is the Jacobian matrix.  

 

2.3.2 Fundamentals of least square support vector machine 

The primary concept of support vector machine (SVM) was first introduced by Vapnik 

(1995). The SVM is a supervised learning technique applicable to non-linear solutions for 

both classification and regression analysis. The special features of SVM are: a) ability to 

learn well with only a very small number of datasets/features, b) robustness against the 

error of models, and c) computational efficiency compared to other AI techniques such as 

ANN (Gholami and Fakhari, 2017). The major drawback of the SVM is that it needs to 

solve a large-scale quadratic programming problem (Suykens et al., 2002) which can be 

overcome by a modification to the classic SVM called the least-squares SVM (LS-SVM). 
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The LS-SVM can help to solve the complex solution with a more efficient way by setting 

up a linear set of equations employing SVM, instead of the quadratic programming 

problems to reduce the complexity of optimization process (Suykens and Vandewalle, 

1999; Arabloo and Rafiee-Taghanaki, 2014). More information regarding SVM or LS-

SVM principles and different features such as strength and weakness can be found in the 

literature (Suykens and Vandewalle, 1999; Smola et al., 2004; Ceryan, 2014; Gholami and 

Fakhari, 2017). The mathematical formulation of the LS-SVM is provided in Chapter 4. 

The final equation for the LS-SVM function estimation can be expressed as follows: 

𝑦 =  ∑𝛼𝑖𝐾(𝑥, 𝑥𝑘)

𝑛

𝑖

+ 𝑏                                                                                                    (2.4) 

where b and α are the solutions to the linear system; and K(x, 𝑥𝑘) represents the kernel 

function that should satisfy the Mercer’s condition (Pelckmans et al., 2002). The weight 

factor (α) is a vector with a size of n×1.    

There are many kernel functions such as linear, polynomial, radial basis, and sigmoidal 

kernel function employed for LS-SVM. The Gaussian radial basis kernel function has been 

widely used in learning strategy to attain the best output; it is computationally simpler than 

the other types of functions and it nonlinearly maps the training data into an infinite-

dimensional space (Suykens et al., 2002; Ceryan, 2014). The simulated annealing (SA) is 

a technique among several other global optimization approaches developed to solve 

difficult non-convex problems. In order to improve performance of the model during the 

learning process, coupled simulated annealing (CSA) algorithm is adopted to optimize two 

tuning parameters, nemely, as the annealing term (gamma) and the kernel width (sigma), 
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which control the model accuracy and convergence, respectively (Xavier-de-Souza et al., 

2009). 

 

2.3.3 Applications of artificial intelligent for reservoir characterization 

The AI application has become more widespread in different science and engineering fields 

including geosciences, and petroleum and mining engineering due to the ability to predict 

reasonable outputs for different important variables in the context of reservoir analysis. A 

typical workflow of AI-based connectionist approaches to predict rock properties using 

wireline log data is shown in Figure 2.3.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Application of AI technique for reservoir characterization 
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Several scholars have investigated the use of AI techniques, specially ANN and SVM (or 

LS-SVM) in reservoir engineering, reservoir characterization, and production engineering 

(Nikravesh and Aminzadeh, 2001; Mohaghegh, 2005; Rolon et al., 2009; Helmy et al., 

2010; Anifowose, 2011; Wong et al., 2013; Zendehboudi et al., 2014; Anifowose et al., 

2014; Esfahani et al., 2015; Attia et al., 2016; Anifowose et al., 2017; Tariq et al., 2017; 

Onalo, 2019; Ertekin and Sun, 2019). The most commonly used AI techniques are ANN 

and SVM (or LS-SVM), which can be employed to determine the reservoir rock porosity 

and permeability as well as hydraulic flow unit in reservoir characterization using core and 

wireline log data (Olson (1998), Aminian et al. (2003), Aggoun et al. (2006), Ahmadi et 

al. (2008), Anifowose et al. (2010), Moghadam et al. (2011), Gholami et al. (2012), Ali et 

al. (2013), Singh et al. (2016), Rafik and Kamel (2017), Elkatatny et al. (2018), and Eriavbe 

and Okene (2019)). The above mentioned research studied the performance of AI-based 

predictive models for various cases.  

 

To date, AI techniques have also been used intensively to predict water (fluid) saturation 

and strength of rock using log datasets. A critical review on different research 

investigations, assumptions, and limitations of AI-based models for determination of water 

(fluid) saturation and strength of rock has been presented in chapters 3, 4, and 5. Also, the 

detailed model formulation and prediction procedure for ANN and LS-SVM-based 

connectionist models are illustrated systematically in chapters 3, 4, and 5.  
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CHAPTER 3: CONNECTIONIST AND MUTUAL INFORMATION TOOLS TO 

DETERMINE WATER SATURATION AND RANK INPUT LOG VARIABLES 
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Abstract 

Characterization of petroleum reservoirs plays an important role to effectively manage and 

forecast the recovery performance. A number of subset log variables such as gamma-ray, 

resistivity, density, neutron, and sonic porosity logs are generally used to 

characterize/predict the reservoir properties. The data attributes selection and ranking in 

reservoir characterization are vital to determine the output variables with the best 

performance and cost-effective manner during exploration and production operations. The 

objectives of this research work are to estimate the water saturation in the reservoir with 

an acceptable accuracy and to rank the log variables according to their importance. To 

achieve the objectives, the mutual information (MI) and artificial neural network (ANN) 

techniques are implemented with the non-linear predictors using log variables. The feed-

forward ANN model is employed and optimized to predict the water saturation, where the 

Levenberg-Marquardt algorithm is used for the network training.  There is a good match 

between the real data and predictions so that the regression coefficient and the maximum 

error is 99.98% and 5.55%, respectively. In addition, both ANN and MI approaches lead 

to the same ranking levels of log variables, implying high accuracy and reliability of the 

introduced strategy. It is found that the primary (or most important) log variables are true 

resistivity and bulk density to obtain the pore fluid saturation. The approach suggested in 

this study (connectionist and MI strategies) can assist engineers/operators to run a few 

numbers of logging tools for prediction of water saturation to save the exploration costs 

through a timely manner. In addition, further understanding is attained to conduct proper 

data selection for determination of petrophysical properties. 
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 Keywords: Reservoir characterization; Well logs; Prediction tools; Information theory; 

Variables ranking 

 

3.1 Introduction 

Reservoir characterization involves various approaches to describe the reservoir rock and 

fluid properties/behaviors at different process and thermodynamic conditions. There are 

several conventional and advanced methods (and technologies) to properly characterize 

underground formations such as sandstones, shales, and carbonates. The reservoir 

evaluation/characterization is a continuous process that includes integrated tasks (e.g., 

logging and well testing). In the petroleum industry, the most common techniques for 

reservoir characterization are geophysics (Close and Caycedo, 2011), petrophysics and 

well-logging (Luthi, 2001; Worthington, 1985; Asquith and Krygowski, 2004; Al-Ruwaili 

and Al-Waheed, 2004; Aggoun et al., 2006; Lucia, 2007; Ellis and Singer, 2007; Tiab and 

Donaldson, 2011, Yang and Wei, 2017, Miah et al., 2017; Baouche et al., 2017), 

geostatistics (Azevedo, and Soares, 2017), reservoir modeling (Dubois et al., 2006), well 

testing (Sylvester et al., 2015), and soft computing tools such as artificial neural networks 

(ANN), fuzzy logic (FL), and evolutionary computing methods (Cuddy, 2000; Wong et al., 

2002; Masoud, 2004; Wang et al., 2013; Ali et al., 2013; Hakiki and Wibowo, 2014). 

Wireline log is considered as one of the most widely used methods for reservoir 

characterization in the oil and gas industry (Onalo et al., 2018). It is essential for petroleum/ 

reservoir engineers and geologists to obtain detailed information about the type, 

characteristics, and quality of reservoirs through estimation of a variety of rock properties 
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(e.g., rock resistivity, shale content, porosity, permeability, and pore fluid saturation). 

These properties are not the same or uniform in hydrocarbon formations throughout the 

world due to the various heterogeneities in structure, permeability, porosity, and 

wettability. In addition, the wireline log is useful to detect water and hydrocarbon-bearing 

zones and to evaluate the shale (clay) content and hydrocarbon volume. The reservoir 

quality can be also assessed by making various strategies such as the field development, 

economic analysis, and reservoir management plan. 

Several water saturation models were developed based on reservoir behaviors (Shedid and 

Saad, 2017). The mostly used petrophysical model in the petroleum industry to estimate 

the water (or hydrocarbon) saturation includes the Archie’s equation for clean sandstone 

formations (Archie, 1941) and shaly sand formations (Poupon et al., 1954; Simandoux, 

1963; Schlumberger, 1972; Clavier et al., 1984; Worthington, 1985). The empirical models 

may have some limitations due to the nature and type of reservoir formations (Waxman 

and Smits, 1968; Ipek, 2002; Al-Ruwaili and Al-Waheed, 2004; Shedid and Saad, 2017). 

For instance, the models may lead to either overestimation or underestimation of the 

volume of water and hydrocarbon in the reservoir. 

On the other hand, handing the big data of well logging seems crucial and challenging in 

different activities attributed to the oil industry such as reservoir characterization (Shedid, 

2018; Shedid-Elgaghah et. al., 2001) and selection of proper production scenarios and/or 

recovery methods (Khamidy et al., 2019). The smart connectionist models such as artificial 

neural networks (ANN), fuzzy logic (FL), and least square support vector machine (LS-

SVM) have shown a great potential to predict the reservoir properties using the data 
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obtained from different well logs, as seen in research works of several researchers 

including Mohaghegh et al., 1995-1996; Mohaghegh, 2000a-c; Helle et al., 2001; Eidsvik 

et al., 2004; Aminian and Ameri, 2005; Al-Bulushi et al., 2007; Olatunji et al., 2011; El-

Sebakhy et al., 2012; Mollajan et al., 2013; Aïfa et al., 2014; Mollajan, 2015; Baziar et al., 

2018; Zendehboudi et al, 2018; and Alkinani et al., 2019. The connectionist techniques can 

explore the nonlinear relationships between the wireline log data, generate suitable 

correlations, and eventually forecast the reservoir properties such as porosity, permeability, 

and water saturation (Mohaghegh et al., 2000a-d; Banchs and Michelena, 2002; Al-Bulushi 

et al., 2007; Rolon et al., 2009). 

Also, the information theoretic measure approaches such as entropy and mutual 

information (MI) have been used to capture the dependencies among the random variables 

of the model using available big databanks and feature selection methods (Cover and 

Tomas, 2006; Vergara, J.R. & Estévez, 2014; Pascoal et al., 2017).  Most of the feature 

selection methods are applied using conventional statistical methods such as linear 

discriminant analysis, and univariate and multivariate statistical analysis (Biu et al., 2010; 

Graf et al., 2011). There are only a limited number of research studies in the open sources 

that deal with the natural non-linear phenomena and feature selection for improved 

petroleum recovery and characterization of oil and gas reservoirs (Anifowose et al., 2014; 

2015; 2016; 2018). In other words, the applications of MI concept in the oil and gas 

industry are currently limited. For instance, Abellan and Noetinger (2010) employed the 

information theory to find the optimum well placement. Le and Reynolds (2012) 

investigated one-dimensional water flooding case and proposed a model for translating the 



43 
 

magnitude of mutual information to the expected values of probability levels of 90 and 10. 

After that, Le and Reynolds (2014) extended the same approach to simulate two 

dimensional and three-dimensional water flooding cases. The most influencing parameters 

were not identified in their model. 

Helle and Bhatt (2002) employed an ANN tool to predict fluid saturation using log 

variables. It was concluded that the ANN offers a greater precision, compared to the 

petrophysical models. In their study, the gamma-ray (GR) log to identify/characterize the 

shaly sand reservoir was not considered. Shokir (2004) implemented ANN modeling to 

predict the hydrocarbon saturation of low resistivity shaly sand reservoirs using log data, 

showing high potential of ANN. For instance, the regression coefficient was obtained to be 

close to one.  The feature ranking was not investigated in their research study. Al-Bulushi 

et al. (2009) utilized an ANN model to obtain the saturation degree. It was found that the 

true resistivity has the highest contribution (e.g., 40 %) to water saturation. They did not 

take into account GR as an input log variable to figure out the shale effect on the magnitude 

of water saturation. Kamalyar et al. (2011) also constructed an ANN model using core data 

where no field log data was used in the model development. Based on their study, the ANN 

model offers more reliable and accurate predictions, compared to available theoretical and 

empirical models. Mardi et al. (2012) proposed an ANN model based on both core and 

wireline log data to determine the cementation factor and saturation exponent of the water 

saturation model. In the study, the researchers implemented an ANN model to estimate 

water saturation in Sarvak limestone formation of an Iranian oilfield, Azadegan. It was 

concluded that ANN is able to more accurately estimate the target variable, compared to 
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the dual water model. The relative importance of the input parameters was not reported in 

their work. Baneshi et al. (2013) conducted a parametric sensitivity analysis on the log 

variables while predicting reservoir parameters using an ANN model with the Levenberg-

Marquardt training function. They developed the ANN model using the available dataset 

from Iranian onshore hydrocarbon basin to obtain porosity index and water saturation. It 

was found that ANN is a suitable tool to forecast reservoir porosity, saturation degrees, and 

petrophysical index using true resistivity, density, and neutron porosity logs.  

Additionally, Anifowose et al. (2014) used the information gain concept to determine the 

relative significance of feature attributes for the decision tree approach. Based on their 

research findings, the grain density and grain volume are the important input variables for 

porosity estimation, while porosity log, density log, water saturation, and micro-spherically 

focused log are good data attributes to determine reservoir permeability. Water saturation 

was not estimated using input data in their work. Gholanlo et al. (2016) also employed a 

radial-based kernel function in the ANN model to obtain water saturation using log 

variables. In their model, the Levenberg-Marquardt (LM) algorithm was used to optimize 

the weight factor between neurons of the layer. Hamada et al. (2018) developed an ANN 

approach where the activation function was the tans- and log sigmoid function; and two 

hidden layers and one output layer with 16 and 5 neurons, respectively, were utilized. They 

estimated the porosity and water saturation using the core data. The contributions of the 

input variables were not discussed in their work.  Khan et al. (2018) claimed that the 

adaptive neuro-fuzzy inference system gives better results compared to the ANN approach 

while predicting water saturation. However, the sensitivity analysis and relative 
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performance of variables are missing in their research investigation. In addition, Hamada 

et al. (2019) determined the porosity and water saturation with ANN and conventional 

petrophysical approaches using wireline log data. It was found that the ANN model has a 

greater deterministic performance than conventional petrophysical models for the shaly 

sand reservoir. In their study, the input variables ranking was not conducted.  

Multimin is a statistical technique (on the basis of probability concept) for estimating 

properties of fluids and minerals in petroleum reservoirs using petrophysical data including 

cores and logs (Chabock et al., 2017; Kumar et al., 2018, Seyyedattar, 2019a, 2019b; 

Zendehboudi et al., 2018). This approach is probabilistic that possess some inherent 

randomness. Thus, using the same input data and variables might lead to a different set of 

outputs at various runs. However, ANN is a deterministic model in which the output is 

fully obtained by the input data and parameters (Seyyedattar, 2019a, 2019b; Zendehboudi 

et al., 2018). To accurately predict a target variable, more input data and knowledge about 

the problem physics are normally needed while using probabilistic methods such as 

Multimin. In addition, it is more difficult to implement Multimin, compared to ANN. 

Highlighting other limitations of Multimin, the dependencies between variables are not 

transparent and well defined in this strategy. Link between statistical realizations and the 

real world is also unclear; Multimin might cause considerable errors if the input ranges and 

algorithms are not proper (Chabock et al., 2017; Kumar et al., 2018, Seyyedattar, 2019a, 

2019b; Zendehboudi et al., 2018). It is not easy and straightforward to conduct parameter 

ranking using Multimin. It has been also proven that ANN is more cost effective and 

simpler, compared to Multimin (Seyyedattar, 2019a, 2019b; Zendehboudi et al., 2018). 
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Based on the current research interest, we employ new tools such as mutual information 

(MI) and artificial neural network (ANN) to obtain the water saturation with the aid of log 

data. The novelty of this manuscript is utilization of MI and ANN approaches for the first 

time to forecast the water saturation in shale sand formation and to rank the input 

parameters.  

To the best of our knowledge, ranking the logging variables and reservoir characterization 

using the extended mutual information and non-linear regression and/or artificial 

intelligence models have not been studied systematically. The attribute selection and 

ranking of logging subset data appear to be a serious challenge for oil and gas engineers 

and geologists to determine the reservoir properties using the logging data with sufficient 

precision. The logging data is not easy to collect and represent the entire reservoir due to 

the complex nature of geological structures and reservoir locations. The current research 

work is planned to fill in the knowledge gap by finding proper relationships between 

logging parameters for the reservoir characterization where effective predictive strategies 

such as mutual information and computational intelligence techniques with the aid of real-

life log data information are employed.  It is believed that the methods introduced in this 

work can considerably lower the costs and time for efficient reservoir characterization. The 

objectives of this research are listed as follows:  

• To obtain the water saturation using logging data and deterministic tools  

• To investigate the dependency of predictor subset variables in developed model, and  

• To rank the log variables according to their importance while predicting water 

saturation  



47 
 

 

This paper is organized as follows: After the introduction part, Section 3.2 presents the 

theoretical concepts and background regarding the petrophysical models and development 

of ANN and MI techniques. Section 3.3 briefly covers the methodology for modeling 

implementation. The data collection and processing are included in Section 3.4. The results 

and discussions on important points/trends of this study are described in Section 3.5. The 

conclusions and recommendations are highlighted in the last section. 

 

3.2 Theory and Background 

The sources of log variables and log interpretation steps for estimation of water saturation 

are illustrated in this section. In addition, a brief theory on the fundamentals and structure 

of ANN and MI is covered. 

 

3.2.1 Pore fluid prediction using log data  

Hydrocarbon saturation is one of the important petrophysical parameters that is needed for 

reservoir characterization as well as estimation of hydrocarbon volume. Thus, accurate 

prediction of fluid saturation is vital in terms of reservoir analysis. The common logs such 

as lithology log, porosity log, and resistivity log are used to identify the rock lithology and 

to estimate the reservoir thickness and petrophysical properties such as porosity and water 

saturation. More information about the common types of logging tools and uncertainties of 

well logging data can be found in the literature (Crain, 1986; Bassiouni, 1994; Asquith and 

Krygowski, 2004; Masoudi et al., 2017).  
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The gamma-ray (GR) log measures the strength of the natural radioactivity present in the 

formation. The presence of clay minerals in a formation may considerably affect the 

reservoir petrophysical properties. The GR log is extensively used to obtain the shaliness 

(clay content) that appreciably affects the predicted values of effective porosity (𝜙𝑒) and 

water saturation (Sw) in shaly sand reservoirs. In this study, the shale index (IGR) is 

calculated by the following equation (Schlumberger, 1998): 

IGR= 
𝐺𝑅𝑙𝑜𝑔- GRmin

GRmax- GRmin

                                                                                                          (3.1) 

where 𝐺𝑅𝑙𝑜𝑔 stands for the gamma-ray value of the zone of interest; and GRmin and GRmax 

represent the minimum and maximum values of gamma-ray log over the entire log, 

respectively.   

The shale volume (Vsh) for the tertiary rocks of non-linear response is obtained as follows 

(Larionov, 1969): 

Vsh=0.083(2
3.7 IGR  -1)                                                                                                 (3.2) 

The resistivity (inverse of conductivity) of a formation can be measured from the laterolog 

or induction type logging tool. It is a crucial parameter in determining water saturation, 

which depends on the formation water resistivity (fully saturated water case), pore 

geometry, and amount of fluids (water and/or hydrocarbon) in the reserve. The deep 

induction log measures the true resistivity (Rt, ohm-m) of the virgin formation. The 

formation water resistivity (Rw) can be estimated using the inverse Archie’s formula 

(Archie’s, 1941), which is shown below:  

𝑅𝑤 =
𝜙𝑒

𝑚

𝑎
× 𝑅𝑡                                                                                                            (3.3) 
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where a and m denote the tortuosity and cementation exponent, respectively. The procedure 

proposed by Miah and Howlader (2012) is followed to estimate Rwa using the inverse 

Archie’s analysis.  

Rock porosity measures the void space in the reservoir, which is available for 

accumulation/ storage of fluids. Porosity changes slightly laterally and vertically within 

reservoirs. Also, the porosity is affected by geomechanical reservoir conditions such as 

effective stress (Hakiki and Shidqi, 2018). Santamarina et al. (2019a) investigated the 

anisotropic behaviors to estimate the hydraulic conductivity (intrinsic permeability) of the 

porous medium. The variations of porosity (void space of total volume) and the specific 

surface area also affect the permeability measurements. This property can be determined 

from the responses of sonic log (estimation of sonic transit time), density log (bulk electron 

density), and neutron log (a measure of the hydrogen concentration) in a formation. In 

addition, porosity can be estimated using the advanced technology of nuclear magnetic 

resonance (NMR) and dielectric logging tools (Santamarina et al., 2019b). Porosity in 

sandstones normally varies with grain size distribution, grain shape, packing arrangement, 

cementation, and clay content (Asquith and Krygowski, 2004). The density porosity (ϕ
D

) 

can be calculated using the bulk density response (ρ
b
) by the following equation: 

ϕ
D

=
ρ

ma
-ρ

b

ρ
ma

-ρ
fl

                                                                                                                              (3.4)                                   

In Equation (3.4), ρ
ma

 and ρ
fl
 denote the matrix density of the rock and fluid density of the 

drilling mud, respectively.      



50 
 

The effective density porosity (𝜙D,e) and effective neutron porosity (𝜙N,e) with clay 

correction are obtained as follows (Miah, 2014):  

ρ
b.c

= ρ
b
+ Vsh (ρ

ma
-ρ

cl
)                                                                                               (3.5) 

ϕD,e=
ρ

ma
- ρ

b.c

ρ
ma

- ρ
fl

                                                                                                                 (3.6) 

ϕN,e = PHIN − Vsh ∗ ϕN,sh                                                                                                 (3.7) 

in which,  ρ
b.c

 represents the corrected bulk density (g/cm3); PHIN introduces the neutron 

porosity obtained from the neutron log; and ρ
cl

 and 𝜙N,sh  stand for the bulk density (g/cm3) 

and neutron porosity (%) of the shale zone.    

Combining the effective neutron and density porosities, the effective porosity (ratio of the 

interconnected pore space to the total bulk volume of the rock, 𝜙e or PHIND) for gas 

reservoirs is estimated using the following expression: 

𝜙e  =√
𝜙D,e

2
+ 𝜙N,e

2

2
                                                                                                             (3.8) 

Based on a research study on shaly sand reservoirs, the following model (Indonesian 

model) can be employed to predict the water saturation (𝑆𝑤) (Hamada, 1996): 

𝑆𝑤 =
1

𝑅𝑡
 [
𝑉𝑠ℎ

(1−0.5𝑉𝑠ℎ)

√𝑅𝑠ℎ

+ 
𝜙𝑒

0.5𝑚

√𝑎𝑅𝑤

]                                                                   (3.9) 

where Rsh refers to the shale resistivity of the shale zone of the formation. The generalized 

methodology of log data interpretation is depicted in Figure 3.1. Figure 3.2 represents the 

main sources to obtain the reservoir petrophysical parameters and eventually to predict the 

pore fluid (water) saturation.  
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Figure 3.1: A simple procedure to conduct log interpretation for prediction of pore  

water saturation. 

 

 
 

 

 

 

 

 

 

 

Figure 3.2: Graphical representation of log variables to estimate the pore fluid saturation. 
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3.2.2 ANN model 

The ANN model is an information system based on the adaptive learning and parallel 

computing scheme, which was originated from the concept/mechanism of the biological 

neural network (Lippmann, 1987; Mhaskar, 1993; Faucett, 1994; Mohaghegh et al., 1995-

1996; Yao and Liu, 1997; Baev, 1998; Poulton, 2002). This strategy has the ability to find 

highly complex nonlinear relationships between variables. Faucett (1994) listed the main 

assumptions and/or limitations for ANN mathematical models. For instance, the ANN 

model does not provide detailed physics and/or knowledge on the process and 

mechanisms of cases under study.  

 

The main goal in implementation of ANN is to correlate the objective(s) to input 

parameters where it is targeted to minimize differences between the real output values and 

predictions obtained from the model (Yao et al., 2005). Different learning algorithms such 

as back-propagation, genetic algorithm, artificial bee colony (ABC), and imperialist 

competitive (ICA) can be utilized while applying the ANN approach, even when the input 

information is less defined and/or noisy (Ali, 1994). 

The ANN can be classified by feeding direction of the input data such as feed backward, 

and feedforward which is generally used in many engineering cases/problems (White et 

al., 1995; Benardos and Vosniakos, 2007; Razavi and Tolson, 2011; Ahmadi et al., 2013; 

Talebi et al., 2014; Masoudi et al., 2014; Ghaffarian et al., 2014; Akande et al., 2015; 

Adedigba et at., 2017). Feedforward ANNs can be utilized as single-layer perceptron, 

multilayer perceptron (MLP), and radial basis function (RBF) neural networks (Gardner 
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and Dorling, 1998; Razavi and Tolson, 2011). The data in the neural network are divided 

into three main subsets such as training, validation, and testing subcategories (Al-Bulushi 

et al., 2012).  

A set of available data is considered as the input data, inserted into the input layer and then 

propagated through the network to offer the model predictions as the outputs. The 

mathematical expression of this operation can be shown using the following equation 

(Jorjani et al., 2008) for each neuron (in either hidden or output layer), which primarily 

acts as a summing junction for combination/modification of the inputs from the previous 

layer: 

𝑌𝑖 = ∑ 𝑋𝑖𝑊𝑖𝑗 + 𝑏𝑗
𝑛
𝑗=1                                                                                          (3.10) 

where Yi  refers to the net input to neuron j in the hidden or output layer; Xi stands for the 

output of previous layer or inputs to neuron j; Wij is the connected weight between the i-th 

neuron and j-th neuron; and bj represents the bias associated with neuron j.  

 

The typical activation (transfer) functions are the threshold, piecewise linear, logistic 

sigmoid, and sigmoid hyperbolic tangent function for the neurons of the model (Ashena 

and Thonhauser, 2015). In most engineering applications, the sigmoid function can be 

utilized (Amiri et al., 2015). The neural network workflow and main involved steps were 

illustrated by several researchers such as Al-Bulushi et al. (2012) and Onalo et al. (2018). 

The important feature of a data-driven prediction model is to build an appropriate model 

that is capable of solving the linear and non-linear problems with a high reliability and 

precision. The vital steps of the ANN workflow are: a) data acquisition and quality 
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checking b) selection of the input and target variables, c) data stratification, d) selection of 

a training algorithm, e) selection of an optimum structure (number of hidden layer and 

neurons), f) weight optimization, and g) model performance evaluation. In general, the 

training process of an ANN model involves the selection of network structure, numbers of 

layers and neurons, and type of transfer function. 

 

3.2.3 Information theories measure approach  

The information theory was first developed by Shannon (1948) to measure the mutual 

information in the field of signal and image processing. Mutual information (MI) is one of 

the useful concepts/approaches in communication engineering subject, which offers a 

procedure to measure the strength of the relationship between discrete and/or continuous 

variables. The most common techniques of information theories are entropy (H) and mutual 

information. Further background/theory on the information theory can be found in several 

research works such as Vergara and Estévez (2014), Cover and Thomas (2006). This 

section briefly presents the fundamental theories of entropy and mutual information (see 

Figure 3.3). The definition of entropy is a measure of uncertainty of a random variable such 

as X and Y, as shown below: 

Entropy of 𝑋 variable,𝐻(𝑋) =  − ∑𝑝(𝑥)𝑙𝑜𝑔 𝑝(𝑥) 

𝑥∈𝑋

                                          (3.11) 

Entropy of 𝑌 variable, 𝐻(𝑌) =  − ∑𝑝(𝑦)𝑙𝑜𝑔 𝑝(𝑦)

𝑦∈𝑌

                                            (3.12) 

Conditional entropy, 𝐻(𝑋 ∣ 𝑌) =  − ∑ ∑ 𝑝(𝑥𝑖, 𝑦𝑗) log 𝑝 (
𝑥𝑖

𝑦𝑗
)

𝑛

𝑗=1

𝑛

𝑖=1
           (3.13) 
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Figure 3.3: Venn diagram to show relationship between H and MI. 
 

The MI is a measure of the amount of dependency information between the random 

variables. Mathematically, the MI can be expressed for the discrete random variables as 

follows: 

𝑀𝐼 = 𝐼(𝑋; 𝑌) = ∑ ∑ 𝑝(𝑥, 𝑦) log {
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)
}𝑦∈𝑌𝑥∈𝑋                                                        (3.14)      

 

3.3 Research Methodologies 

This section describes the prediction procedure using ANN tool as well as ranking of input 

variables through utilizing both ANN and MI approaches. 

 

3.3.1 Prediction of water saturation using ANN model 

The current study considers five well log parameters including gamma ray, true resistivity, 

density log, neutron porosity, and sonic log as input variables and the water saturation is 

used as the target variable. The ANN modeling is conducted in the Matlab® environment. 

A simple schematic of ANN structure used in this research work is illustrated in Figure 

3.4. N 1 in Figure 3.4 represents the 1st neuron of hidden layer for the ANN feedforward 

backpropagation system. The main features listed in Table 3.1 are used to optimize the 

supervised learning model of ANN.   
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Figure 3.4: Schematic of a single hidden layer-based ANN architecture employed in the 

current work. 

 

Table 3.1: Vital features of the supervised learning ANN approach. 

 

Model features Parameters 

Input data RT, RHOB, NPHI, GR, and DELT 

Target output (data) Water saturation (Sw) 

Network architecture Feedforward back propagation 

Training algorithm Levenberg-Marquardt (trainlm) 

Activation function Tansig (hidden)-Purelin (output) 

Performance (validation) function Mean squared error 

Model performance dependency parameter Regression coefficient 

Weight factor 

𝑁 2 

𝑁 1 

𝑁 4  

𝑁 3 

Resistivity, 

RT 

Water 

saturation 

Input layer Hidden layer  Output layer  

Gamma ray, 

GR 

Bulk density, 

Rhob 

Neutron 

porosity, PHI 

Sonic travel 

time, DT 

Weight factor 

Bias term 

Bias term 
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Based on the procedure described above, a proper flowchart to implement ANN modeling 

is described in Figure 3.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: A typical flowchart for ANN model to predict the water saturation. 

If acceptable  

If no acceptable  

Use the network to evaluate predicted result  

End  

Evaluate the model using statistical indicators (Equations (3.15) - (3.19)) 

Choose optimized ANN predictive model for further feature ranking 

Data stratification into training, testing and validating  

Sample selection 

Development of ANN structure  

Choose activation function and train the algorithm 

Evaluate model 

performance using MSE 

criterion by Equation 

(3.17) 

Data quality control and assurance   

Collect real field log data 

Start 



58 
 

The 182 data points used in this work are from the hydrocarbon-bearing zone in Bengal 

Basin’s gas field. The data points are divided into training (75%), validation (15%), and 

testing (10%) phases to predict the water saturation using the feed-forward ANN model. 

The important statistical parameters such as correlation coefficient (R), average absolute 

percent relative error (AAPE), mean squared error (MSE), and maximum error percentage 

(MAPE) are used to evaluate the performance/accuracy of various ANN models tested in 

this study (Ashena and Thonhauser, 2015). The AAPE and MSE show the deviation of the 

predicted value (𝑌𝑖̂) from the real data (Yi). The correlation coefficient (R), which falls 

between 0 and 1, indicates how well a model can forecast the target parameter. When the 

R-value is high, it implies that the model can offer accurate predictions. The magnitude of 

R is obtained as follows:  

R = 1 - 
∑ (𝑌𝑖 − 𝑌̂𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1

                                                                                                    (3.15) 

in which, Yi stands for the target real value; 𝑌𝑖̂  resembles the predicted value of Yi; and 𝑌̅  

is the mean value of Yi. 

The mathematical expressions for the AAPE and MSE are given below, respectively 

(Ashena and Moghadasi, 2011):   

AAPE  = 
1

n
 ∑(1 −

𝑌𝑖̂

Y𝑖

n

i

)                                                                                                (3.16)  

𝑀𝑆𝐸 =
1

𝑛
∑(𝑌𝑖 − 𝑌𝑖̂)

2
𝑛

𝑖=1

                                                                                               (3.17) 

The performance of the models is also assessed based on the values of MAPE, as defined 

below: 
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𝑀𝐴𝑃𝐸 = Maximum |
(𝑌𝑖 − 𝑌𝑖̂)

𝑌𝑖
| ∗ 100                                                                     (3.18) 

 

3.3.2 Ranking of petrophysical parameters  

The ranking/dependency quantification of parameters in the MI and ANN models is 

conducted by appropriate flowcharts, as shown in Figures 3.6 and 3.7, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Flowchart to illustrate the parameter ranking methodology using the MI 

approach. 
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Figure 3.7: Methodology to determine the parameter ranking using the ANN approach. 
 

The higher dependency of two variables in a model can be attributed to the higher positive 

value of MI. For instance, the MI is zero when variables are statistically independent. The 
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regression coefficient is an appropriate criterion to quantify the dependency of parameters 

involved in the optimized ANN model. 

 

3.4 Data Collection and Processing  

This study is conducted based on the available log data of Bengal Basin’s gas field. In the 

literature, the geological setting of this basin is well illustrated by several researchers such 

as Alam (2003), Imam (2013), Miah and Tamim (2015). The rock lithology has been 

identified with the help of spectral gamma-ray log data. Both water and hydrocarbon- 

bearing zones have been detected using gamma-ray, resistivity, and porosity logs. There 

are three major types of logs used in the current study, as listed Table 3.2.  

 

Table 3.2: List of available log data. 

Major log type Name of log type Parameters 

Lithology log Gamma ray Gamma Ray (GR), API 

Resistivity log Array compensated resistivity Deep (true) resistivity (RT), ohm-m 

Porosity log Spectral density, Dual spaced 

neutron 

Bulk density (RHOB), Neutron porosity 

(NPHI) 

 

3.4.1 Statistical analysis of log data 

According to the log data, there is no significant depth shift among the depth of logs such 

as gamma-ray, resistivity, density, neutron, and sonic logs. Table 3.3 summarizes the 

results of statistical analysis performed on the reservoir parameters. According to Table 

3.3, it is concluded that the reservoir log properties are heterogeneous.     
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Table 3.3: Statistical information on predictor log variables. 

 

Statistical parameter 

GR 

(API) 

RT  

(ohm-m) 

RHOB 

(g/cm3) 

NPHI  

(%) 

DELT  

(µs/ft) 

Mean 100.19 22.67 2.367 16.979 92.90 

Median 98.40 22.47 2.355 16.752 92.83 

Standard deviation 13.87 4.96 0.043 1.296 2.42 

Variance 192.51 24.58 0.002 1.680 5.89 

 

 3.4.2 Data grouping and binning 

The log data are grouped into three categories such as Low (L), Medium (M), and High 

(H) based on the statistical analysis (such as maximum, minimum, mean, and range of log 

data values) of collected data where the standard data binning process is considered to 

categorize the cut-off petrophysical parameters. The ranges of scaled parameters and 

frequency level of data binning are reported in Tables 3.4 and 3.5, respectively.  

 

Table 3.4: Variations of log parameters. 

 

Group GR (API) RT (ohm-

m) 

RHOB 

(g/cm3) 

NPHI (%) PHIND (%) Vsh (%) 

L ≤80 ≤ 15 ≤ 2.32 ≤ 10 ≤ 15 ≤ 10 

M 80.1-100 15.1-30 2.321-2.400 10.1-20 15.1-20 10.1-20 

H 100.1-120 30.1-45 2.401-2.520 ≥ 20.1 ≥ 20.1 20.1-45 
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Table 3.5: Frequency level of data binning. 

 

Parameter/level H M L 

GR (API) 2 103 65 

RT (ohm-m) 12 162 8 

RHOB (g/cm3) 11 140 31 

NPHI (%) 0 176 6 

PHIND (%) 6 176 0 

Vsh (%) 7 130 45 

 

3.5 Limitations of Research Approach 

One of the limitations of this study is the relatively low number of data points used for the 

model development. In addition, the logging parameters are considered as discrete random 

variables to investigate the dependency level of input variables using the MI approach. The 

single hidden layer perception is applied in the current study, while the multilayer 

perception algorithms can be employed to construct a more reliable model. Other 

deterministic tools such as least-square support vector machines and fuzzy logic can be 

also used to estimate the reservoir characteristics and to rank the input parameters. The 

comparison between the performances of the models would be then possible to select the 

best tool for reservoir analysis of various cases with different properties and 

heterogeneities. 

 

3.6 Results and Discussions  

 

This section presents the main results obtained from this study in the form of tables and 

figures so that predictions of water saturation and ranking of input parameters through 
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utilizing the ANN and MI tools are given. The systematic discussions on the findings and 

trends are then provided.   

 

3.6.1 Prediction of water saturation using correlation 

The lithology of the reservoir is the sand and shaly sand based on gamma-ray and resistivity 

log data analysis. Several water-bearing sandstone reservoirs are detected based on the 

available test results. Some shale zones are also found at the top reservoir pools, which act 

as the cap rock (non-permeable).  Below the sand zones, there are a number of shaly sand 

zones, which are porous and permeable. The radioactivity properties, resistivity, bulk 

density, and other log responses considerably change with depth throughout the reservoir. 

The maximum and minimum values of GR log of the studied wells are 155 and 77 API, 

respectively, and the average value is 91-103 API for the main hydrocarbon-bearing zone. 

The water resistivity (Rw in ohm-m) is estimated using Rwa analysis where it gives 0.104 

ohm-m at water-bearing zone. The Rw value ranges from 0.102 to 0.092 ohm-m in various 

zones, considering a reference value of 0.104. The corrected porosity obtained from the 

neutron-density combination formula is used to estimate the magnitude of water saturation. 

The water saturation is determined where the tortuosity coefficient (a=1), cementation 

(m=2), and saturation exponent (n=2) are considered. The ranges of petrophysical 

parameters are listed in Table 3.6.  
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Table 3.6: Predicted reservoir parameters. 

Category Shale volume Corrected porosity Water saturation  

Minimum 0.2622 0.0589 0.2774 

Maximum 0.5605 0.1792 0.5426 

Average 0.2788 0.1540 0.3950 

 

According to the Indonesian model, an average water saturation of 39.50% is obtained 

using sample data studied in this study. The estimated water saturation is close to the core 

water saturation (e.g., 40%). The water saturation predicted from the Indonesian model is 

also utilized to investigate the dependency of the log variables of the model through 

implementing MI and ANN approaches. 

 

3.6.2 ANN model to determine water saturation 

The feed-forward (FF) backpropagation algorithm is employed to optimize the ANN 

network where the main target is to obtain the water saturation using five input variables 

with high reliability and precision.  We conduct the ANN model optimization in the 

training stage. The results obtained from the analysis of the ANN model with one single 

hidden layer but different numbers of neurons are tabulated in Table 3.7. According to 

Table 3.7, case no. 3 with 4 neurons exhibits the least error. The optimal ANN model is 

5:4:1. It means that the model has one input layer with 5 neurons, one hidden layer with 4 

neurons, and one output layer with one neuron; where R is 99.988 and the minimum values 
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of AAPE and maximum error percentage are obtained for this network. This optimal model 

is then used in both testing and validation phases.   

 

Table 3.7: Sensitivity analysis on the number of hidden neurons in terms of network 

performance. 

 

FF-ANN No. of neurons 

in the hidden 

layer 

AAPE (%) for 

training data  

MAPE (%) for 

training data 

AAPE  (%) entire 

data points 

Regression 

Coefficient 

(R) 

Case 1 2 0.7464 5.8821 0.7211 99.442 

Case 2 3 0.4644 1.9387 0.4111 99.903 

Case 3 4 0.165 2.5542 0.1469 99.988 

Case 4 5 0.4623 8.3562 0.3874 99.924 

Case 5 6 0.1179 3.1173 0.1056 99.995 

Case 6 7 0.1437 6.1428 0.1210 99.999 

Case 7 8 1.1913 12.7150 1.0655 98.703 

Case 8 9 0.5279 7.1232 0.4583 99.969 

Case 9 10 0.2590 2.5203 0.2598 99.971 

 

To avoid timely training and over-fitting, the optimal epoch in the validation stage is also 

identified. The best validation performance is attained at epoch 14 with an MSE of 

0.0000173 (see Figure 3.8). As Figure 3.8 demonstrates, the errors of the training and 

testing phases exhibit a decreasing trend with increasing number of epochs, though the 

validation error shows small fluctuations at the beginning. It is found that the minimum 

error occurs at epoch 14 after which no change in error percentage is noticed, as depicted 

in Figure 3.8. The variations of water saturation with reservoir depth are presented in 

Figure 3.9 based on both real data and predictions.  
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Figure 3.8: Validation performance curve for the optimized ANN approach. 
 

 

Figure 3.9: Comparison between target and predicted water saturation while using 

optimized ANN model. 
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The predicted water saturations versus the real data are plotted in Figure 3.10 for all phases 

including testing, training, and validation.   

 

Figure 3.10: Network performance on the basis of targeted and predicted Sw values 

while using optimized ANN model: (a) Training, (b) Validation, (c) Testing, and (d) All 

data 
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As clear from Figure 3.10, all data points are placed on the line Y=X.  As the R-value is 

close to 1, the performance of the connectionist tool is very satisfactory (Coulibaly and 

Baldwin, 2005).  Based on Figures 3.9 and 3.10, there is very good agreement between the 

predicted and real water saturations, showing high predictive capability of ANN method in 

reservoir characterization. 

 

3.6.3 Ranking of log variables 

The range and frequency distribution of Indonesian model based-water saturation are 

reported in Table 3.8. The probability distribution is also presented in Table 3.9.   

 

Table 3.8: Range of water saturation data grouping and frequency distribution. 

Group Range Frequency level of sample 

L (Low) ≤ 35 22 

M (Medium) 35.1-45 140 

H (High) ≥45.1 20 

 

According to Table 3.8, it is found that the M group has a considerably higher frequency 

level, compared to the other two groups of L and H. Referring to Table 3.9, it is noticed 

that the joint distribution between RT and Sw in the M-M category (81.32%) is greater 

than that of other categories. Table 3.10 provides the dependency of petrophysical variables 

with the water saturation. It is concluded that RHOB and RT show higher importance 

(dependency) in the Sw model compared to other variables, while GR has the minimum 

importance.   
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Table 3.9: Matrix table of the probability distribution between two variables. 

 

Log subset variable with 

Sw 

Group H L M 

 H 0 3.85 0.55 

True resistivity (RT) L 4.95 0 1.65 

 M 7.14 0.55 81.32 

 H 5.5 0.55 5.5 

Shale volume (Vsh)  L 2.2 2.75 52.8 

 M 4.4 1.1 25.3 

 H 1.1 4.4 65.4 

Effective porosity (PHI) L 1.65 0 1.65 

 M 9.34 0 16.5 

 H 9.9 1.1 30.8 

Gamma Ray (GR) L 0 0 1.10 

 M 2.2 3.3 51.65 

 H 7.7 0 1.65 

Bulk density (RHOB) L 0 3.3 1.65 

 M 4.4 1.1 80.00 

 H 0.55 0.55 2.2 

Neutron porosity (NPHI) L 0 0 0 

 M 11.5 3.85 81.30 

 

Table 3.10: Importance ranking of log variables to predict water saturation. 

Predictor variable MI Rank 

RHOB 0.271 1 

RT 0.237 2 

PHIND 0.189 3 

NPHI 0.107 4 

VSH 0.038 5 

GR 0.025 6 
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Considering the same number of neurons in the hidden layer, the optimized ANN strategy 

is implemented to explore effect of each variable through excluding it from the model (see 

Figures 3.11 to 3.14). It is found that different regression coefficients are obtained for 

different scenarios where one input parameter is removed from the model.  

 

Figure 3.11: Regression coefficient for the corrected ANN model when RT is excluded: 

(a) Training, (b) Validation, (c) Testing, and (d) All data 



72 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Cross plot to compare the actual and predicted water saturations for 

exploring the impact of RT on the performance of optimized model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Comparing the real data and predictions based on the modified ANN model 

when RHOB is excluded. 
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Figure 3.14: Regression coefficient of the reduced ANN approach to highlight the 

importance of RHOB: (a) Training, (b) Validation, (c) Testing, and (d) All data 

 

According to Figures 3.11 to 3.14, the impacts of RT and RHOB in the model are greater 

than other parameters. For the scenario of excluding RT as shown in Figure 3.11, the 

regression coefficient of the training, testing, and validation phases are 0.924, 0.886, and 
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0.950, respectively. It should be noted that the model gives an R of 0.9234 considering all 

data points when RT as an input parameter is excluded gamma-ray the water saturation, 

Sw. Table 3.11 summarizes the statistical parameters including error percentage for all 

cases (when one input parameter is ignored). 

 

Table 3.11: Error analysis of various versions of reduced ANN model. 

 Excluded 

parameter 

AAPE (%) Maximum 

error (%) 

Regression  

Coefficient 

Ranking 

Scenario Training Testing Validation All data  

a RT 3.55 3.38 5.97 4.0 25 92.34 1 

b RHOB 2.95 2.99 2.85 2.99 11.45 95.44 2 

c NPHI 0.93 0.98 1.05 0.96 3.55 99.56 3 

d GR 0.62 0.69 0.77 0.66 4.6 99.86 4 

e DELT 0.2 0.08 0.21 0.19 2.52 99.96 5 

 

Based on Table 3.11, high error percentage and low regression coefficient are obtained for 

the input parameters with high dependency to the output variable, implying the 

considerable significance of the input parameter. The impact of the parameters excluded 

from the model is also illustrated in Figure 3.15. According to Figure 3.15, the input 

parameters of RT and RHOB are highly significant in the optimized ANN approach to 

estimate the fluid saturation. The comparison between the real and predicted Sw to further 

highlight the impact of input parameters is illustrated in Figure 3.16, implying a great 

match between them. 
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Figure 3.15: Comparison of the performance of the reduced ANN scenarios based on 

statistical analysis. 

 

Figure 3.16: Water saturation versus reservoir depth based on the real data and results 

obtained from the reduced input variable models. 
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The optimized model is also validated using different data sets of the same reservoir to 

rank the log variables incorporated in the model. The model introduced for different data 

banks exhibits almost the same ranking for the input parameters. In addition, the MI 

approach reveals that the most important log variables are the bulk density and true 

resistivity while the gamma-ray and neutron porosity have minor effects on the fluid 

(water) saturation.   

Highlighting the importance of this study, the vital log variables (e.g., true resistivity and 

bulk density) can be employed to accurately obtain the water saturation during exploration 

phase in the oil and gas industry using efficient deterministic strategies such as smart 

models. Utilization of such tools requires less time and computational complexities, 

leading to lower capital and operating costs in the exploration stage.   

 

3.7 Conclusions 

This study presents two efficient tools to characterize the reservoir and rank the input 

parameters affecting the target variable.  It is found that the reservoir log properties are 

heterogeneous based on the nature and distribution of the real-life log data sets of the 

reservoir. The comparison of the results obtained from the petrophysical model and 

artificial neural network (ANN) model indicates that the reservoir quality is good in terms 

of reservoir properties. Based on the study outputs, it is clear that the performance of the 

optimized model is satisfactory in terms of reliability and accuracy while obtaining the 

water saturation so that very good agreement is noticed between the real data and estimated 

water saturations. The strategies used in this research work reveal that the true resistivity 
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and bulk density have higher impacts on the target variable, compared to other variables. 

In other words, there is a strong relationship between water saturation and two input 

variables including true resistivity and bulk density. The ANN model gives an R of 0.9234 

and 0.9996 considering entire data points when true resistivity and sonic travel time as the 

input parameters are excluded, respectively, while predicting the water saturation. It 

follows that bulk density and true resistivity have a mutual information (MI) value in the 

range of 0.237-0.271, confirming high significance of these two parameters in the model 

compared to other variables, while gamma-ray has the minimum importance with an MI of 

0.025.  It is also found that the ranking orders of the variables with both ANN and MI are 

almost the same. The ranking implies that the secondary logging variables have the 

minimum importance to predict the water saturation.   
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Nomenclatures 

Acronyms 

 

 

AAPE Average Absolute Percentage Error 

 

ABC Artificial bee colony 

ANN Artificial Neural Network 

DELT Sonic travel time (µs/ft) 

FL Fuzzy logic 
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GR Gamma-ray (API) 

𝐺𝑅𝑙𝑜𝑔 Gamma-ray value of the zone of interest 

GRmax Maximum value of gamma-ray log over the entire log 

GRmin Minimum value of gamma-ray log over the entire log 

𝐻(𝑋) Entropy of X variable 

𝐻(𝑌) Entropy of Y variable 

𝐻(𝑋 ∣ 𝑌) Conditional entropy of X at fixed variable of Y  

ICA Imperialist competitive  

IGR Shale Index 

LM Levenberg-Marquardt 

MAPE Maximum absolute error percentage 

MSE Mean Square Error 

MI Mutual Information 

N Number of neurons 

NPHI Neutron Porosity 

LSSVM Least Square Support Vector Machine 

PHIN Neutron porosity (frac.) 

PHIND Porosity from the combination of density and neutron log 

R Regression Coefficient  

RHOB Bulk density (gm/cc) 

RT True (Deep) Resistivity (ohm-m), Rt  

𝑅𝑠ℎ Resistivity of shale zone for virgin zone (ohm-m) 

Rw Formation Water Resistivity (ohm-m) 

Sw Water saturation (frac.) 

Vsh Shale volume (shaliness) 

Wij Connected weight between the i-th neuron and j-th neuron 

X Random variable 

Xi Output of previous layer or inputs to neuron j 

Y Random variable 

Yi Net input to neuron j in the hidden or output layer 

𝑌𝑖̂ The predicted value of Yi 

𝑌̅ Mean value of Yi 

 

Variables, Parameters and Subscripts 

 
a tortuosity factor  

b bias  

cl clay 

e effective 

m cementation exponent 

n saturation exponent 

𝑝(𝑥) Probability of x variable  
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𝑝(𝑦) Probability of y variable 

𝑝(𝑥, 𝑦) Probability between x and y variable 

sh shale 

w 

 

Water 

  

 

Greek Letters and subscript  

𝜙 Porosity (frac.) 

𝜙e Effective porosity (frac.) 

𝜙D,e Effective density porosity (frac.) 

𝜙N,e Effective neutron porosity (frac.) 

𝜙N,sh Neutron porosity of the adjacent shale zone (frac.) 

ρ
b
 Bulk density (gm/cc) 

ρ
b.c

 Clay corrected density porosity (gm/cc) 

ρ
𝑓𝑙

 Fluid density (gm/cc) 

ρ
ma

 Matrix density (gm/cc) 
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Abstract 

Log-based reservoir characterization is one of the widely used techniques to estimate the 

reservoir properties and make decisions for hydrocarbon production. Use of the machine 

learning tools is becoming a more accessible approach for data-driven model development. 

The objective of this research is to identify and rank the most contributing log variables for 

estimation of water saturation using the machine learning tools. The multilayer perception 

artificial neural network (MLP-ANN) and kernel function-based least-squares support 

vector machine (LS-SVM) techniques are employed to develop predictive models for water 

saturation. The model can capture the non-linear behavior and high-dimensional complex 

relationships among real field log data variables. Based on the prediction performance of 

the models, the Levenberg-Marquardt algorithm-based MLP-ANN and the radial kernel 

function-based LS-SVM model optimized with coupled simulated annealing optimization 

technique were found to perform better compared with other models. The MLP-ANN and 

radial kernel function-based LS-SVM approaches lead to the same feature ranking of 

predictor variables. It was found that the significance order of influential (higher to lower) 

log variables are the true resistivity, bulk density, neutron porosity, photoelectric factor, 

gamma-ray, and sonic travel time based on their relative contribution to the water 

saturation. The strategy introduced in this study assists to forecast water saturation with a 

relatively few number of log variables, and thus, reduces the number of necessary logs to 

run during exploration, considerably lowering the exploration costs. 

Keywords: MLP-ANN; LS-SVM; Model accuracy; Log variables; Feature ranking; Cost-

effective. 
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4.1 Introduction  

4.1.1 Background  

Reservoir characterization plays an important role in making decisions regarding 

exploration, reservoir simulation as well as the management of a reservoir. It also helps in 

decision making for hydrocarbon perforation to production, and improving the reliability 

of the models for determination of reservoir properties. Thus, it focuses on not only the 

understanding of past reservoir properties, but also predicting the future reservoir 

conditions. The ultimate target of reservoir characterization is to show the nature of rock-

fluid properties and to develop a reservoir model with a high accuracy and minimal 

uncertainty. It is a continuous process that can be accomplished using information sources 

from several disciplines such as geological information, petro-physical knowledge, well 

testing, geophysics, reservoir engineering, and production history (Aminian and Ameri, 

2005; Wong et al., 2005; Sylvester et al., 2015; Miah and Tamim, 2015; Zhang and Xu, 

2016; Yang and Wei, 2017; Miah et al., 2017; Movahhed et al., 2019). The most extensive 

technique for reservoir characterization is petrophysical analysis using coring and well 

logging data.  

Water saturation is one of the most vital reservoir properties that enables researchers and 

engineers to determine perforation depth for hydrocarbon production in both offshore and 

onshore fields. Although the laboratory-based direct method for water saturation (Sw) 

estimation is more accurate, it is time-consuming and expensive. A limited number of 

samples can capture a few limited depth-intervals of a targeted production/injection well 

(Adeniran et al., 2009). Due to the complex geological behavior and heterogeneities of 
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reservoirs, a large set of samples are required to properly characterize an underground 

formation. Nowadays, log-based petrophysical reservoir characterization approach is one 

of the widely used methods to obtain the reservoir properties such as hydrocarbon 

saturation, porosity, permeability, hydraulic flow unit, and reservoir quality index. To 

estimate water saturation, many researchers have attempted to develop models using a 

variety of deterministic approaches (Amiri et al., 2015a; Si et al., 2016). Over the past few 

decades, numerous studies have been performed to introduce empirical models for 

estimating water saturation using petrophysical logs such as resistivity, sonic, density, and 

neutron porosity logs.  For instance, the common models are the Archie’s formula (1942) 

for clean sand zones; DeWittee model (1950) for dispersed shale; Simandoux’s model 

(1963) for shaly sand formations; Waxman and Smits (1968) for shaly sand reservoirs; 

Poupon et al. model (1954) for laminated shaly sand formations; Poupon and Leveaux 

(1971) for Indonesia’s laminated shaly formations; and Schlumberger (1972) for shaly sand 

reserves. Applicability of these models is limited to the nature of the formation (lithology), 

and lithological parameters such as tortuosity factor, cementation, and saturation exponent. 

Shedid and Saad (2017) summarized the existing petrophysical water saturation models 

where their drawbacks were highlighted.  

Nowadays, the connectionist tools or machine learning (ML) approaches such as artificial 

neural network (ANN) and least squares support vector machine (LS-SVM) are becoming 

more popular for data-driven model analysis and prediction of rock properties to save the 

experimental and operational expenses. The connectionist tools do not use the geological 

characteristics and lithological parameters (e.g., lithology type, saturation exponent, and 
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cementation factor) in the models and overcome the drawbacks (data range and 

generalization) of the existing empirical models for obtaining reservoir rock properties. 

ANN and LS-SVM are powerful tools in the petroleum industry to capture the uncertainties 

and non-linear behaviors of the input variables.  

 

4.1.2 Literature survey on ANN and LSSVM application  

The intelligent systems and/or machine learning tools such as ANN, LS-SVM, functional 

network (FN), generic algorithms (GA), imperialist competitive algorithm (ICA), fuzzy 

decision tree (FDT), fuzzy logic (FL), particle swarm optimization (PSO), neuro-fuzzy 

inference system (ANFIS), and recurrent neural network (RNN) models have been 

extensively employed for industrial applications to capture high dimensional non-linear 

data, find best patterns, and predict target variables (Al-Bulushi et al., 2012; Anifowose et 

al., 2013; 2014; 2015; Mollajan, 2015; Amiri et al., 2015b; Dongxiao et al., 2018; Onalo 

et al., 2018; Zendehboudi et al., 2018). Among those approaches, ANN and SVM are more 

popular in applications related to the petroleum industry such as reservoir rock 

characterization, (Wong et al., 2005; Ghaffarian et al., 2014; Anifowose et al., 2014; 

Esmaeili et al., 2019;), rock mechanical properties and formation evaluation (Salehi et al., 

2017; Tariq et al., 2016, 2017; Onalo et al., 2018; Wang and Peng, 2019), drilling 

optimization (Amer et al., 2017; Ashrafi et al., 2019), screening criteria and performance 

of enhanced oil recovery techniques (Ahmadi et al., 2015, Shan et al., 2018), 

compartmentalized reservoir analysis and multi-phase fluid flow modeling in oil reservoirs 

(Esmaeilzadeh et al., 2019, 2020; Temirchev et al., 2020), reservoir history matching and 
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optimization (Hutahaean et al., 2015, 2019), and production optimization (Jreou, 2012; 

Ebrahimi and Khamehchi, 2016).  

Due to the unique features such as simple architecture, ease of training, and stability in 

convergence, LS-SVM and ANN are widely utilized as powerful computational tools to 

improve predictions of the reservoir properties such as water saturation (Sw), porosity 

(PHI), and permeability (K). It was found from the literature survey that many scholars 

including Erofeev et al. (2019), Anifowose et al. (2019), Rafik and Kamel (2017), 

Anifowose et al. (2014), Ahmadi et al. (2014), Tahmasebi and Hezarkhani (2012), 

Saffarzadeh and Shadizadeh (2012), Ahrimankosh et al. (2011),  Karimpouli et al. (2010), 

Helmy et al. (2010), Basbug and Karpyn (2007), and Smaoui and Garrouch (1997) 

implemented different tools including the ANN and LS-SVM algorithms to obtain the 

porosity and permeability using core and wireline logging data. The machine learning-

based models are beneficial for various chemical and energy industries due to their 

capability for handling of high dimensional non-linear data for modelling purposes. Feature 

selection and ranking of the input log variables are also a crucial task to maximize the 

model performance and to avoid the redundancy of input variables for a model 

development.  

However, only a few limited attempts have been made to provide insight into feature 

selection in reservoir characterization (Helmy et al., 2010, Saffarzadeh and Shadizadeh, 

2012; Anifowose et al., 2014, 2016; Miah et al., 2019). Researchers used the available 

wireline logging data such as self-potential (SP) or gamma-ray (GR), deep induction log 

(ILD) or true resistivity (RT), bulk density (RB), neutron porosity (NP), photoelectric 
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factor (PE), and sonic compressional travel time (DT) to estimate reservoir properties such 

as water saturation. To the best of the authors’ knowledge, only a few studies have been 

conducted to predict water saturation using machine learning techniques. Based on the 

literature, Table 4.1 lists most of the available research works as well as a brief information 

on development approach for determination of the water saturation using machine learning 

(ML) tools. To assess the model performance, the statistical indicators such as the mean 

square error (MSE), the root mean square error (RMSE), the coefficient of determination 

(R2), the average percentage relative error (APRE), the absolute average percentage 

relative error (AAPRE), and the standard estimation error (SEE) have been used.  

Helle and Bhatt (2002) used the ANN tool to predict water (fluid) saturation using log input 

variables. It was concluded that ANN gives results with higher accuracy than the 

petrophysical models; however, they did not incorporate the shale effect to diagnose the 

clastic reservoir. Shokir (2004) used an ANN model to predict the water (hydrocarbon) 

saturation of a low resistivity shaly sand reservoir using well log data. Based on the results, 

the correlation coefficient was found to be close to one for the prediction of water 

saturation; however, the study did not investigate the feature ranking of the variables.  
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Table 4.1: Implications of machine learning (ML) tools for water saturation (Sw) prediction in reservoir characterization. 

Authors, year 

Input log variables Output 

variables 

ML 

approach 

Statistical 

parameter 

(s) 

Feature 

ranking  

Comments/Remarks 

Helle and Bhatt 

(2002) 

RT, NP, DT, and 

RB  

Sw ANN RMS No • Used a three-layer ANN model to predict fluid saturation. 

• ANN gives results with greater accuracy than the petrophysical model 

• Did not include GR as an input log. 

Shokir (2004) 

 

GR, SP, RT, NP, 

and RB 

Sw ANN R2 No • It is a powerful tool to predict hydrocarbon saturation. 

• Based on the results, the R2 value is close to 1 for predicting Sw.  

Zhao et al. 

(2006)  

Resistivity and 

density logs 

Sw SVM No No • Shale volume was calculated using the gamma-ray log. 

• Archie’s formula was used for Sw calculation. 

Al-Bulushi et 

al. (2009) 

RT, NP, RB, PE, 

and core data  

Sw ANN RMS Yes • It was found that ANN offers the superior results, compared to the 

conventional statistical regression methods.  

• It was concluded that RT is the main factor with a 40 % contribution to the 

estimation of Sw. 

• Authors did not include GR as an input log to consider the shale effect.  

Adeniran et al. 

(2009)  

GR, RT, NP, RB, 

PE, and core data 

PHI and 

Sw 

FN and 

ANN 

RMS and 

R2 

No • The model network was analyzed through a trial and error approach for 

selecting the number of hidden layers and number of nodes. 

• They also examined various learning algorithms and transfer functions. 

Mardi et al. 

(2012)  

RT, NP, RB, DT, 

and core porosity 

Sw, m, 

and n 

ANN RMS and 

R2 

No • They proposed ANN model by employing both core and log data. 

• It was found that the ANN-based model is more reliable than the dual 

water model.  

Kamalyar et al. 

(2011)  

Core PHI, K, and 

height above free 

water level  

Sw ANN APRE, 

AAPRE, 

RE, and 

SEE 

No • The researchers proposed a model that offers more accurate results than 

the available published models.  

• They did not consider any real field log data. 
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Kenari and 

Mashohor 

(2013) 

SP, RT, NP, RB, 

PE, and effective 

PHI 

Sw ANN, 

FL, and 

ANFIS 

MSE, R2, 

and MSPE 

No • It was concluded that ANFIS is more accurate intelligence algorithm than 

the other smart methods.  

• This study used SP lithology log instead of GR log.  

Mollajan et al. 

(2013)  

RT, NP, RB, and 

DT 

Sw ANN and 

SVR 

RMSE, 

MAE, and 

R2 

No • It was found that the RBF-based SVR model gives better result than ANN 

and dual water model proposed by Clavier et al. (1984). 

• They did not include GR to find the shale effect. 

Amiri et al. 

(2015c)  

GR, RT, NP, RB, 

and effective NP-

DP 

Sw ICA-

ANN 

MSE, 

RME, and 

R2 

No • It was found that ICA-based ANN model performs better with a limited 

number of parameters, compared to the conventional ANN model. 

Bageri et al. 

(2015)  

Resistivity logs 

and core data 

Sw ANN and 

FL  

MAPE, 

MIPE, 

RE, and 

R2 

No • It was claimed that the artificial intelligence models reduce the long time 

required for analytical petrophysical tools. 

• The ANN and FL performed better with a higher precision than other 

studied models. 

Gholanlo et al. 

(2016) 

NP, DT, RB, and 

core data  

Sw RBF- 

ANN 

MSE and 

R2 

No • Log data were collected from carbonate reservoirs. 

• It was concluded that ANN is more reliable compared to Archie’s method.  

Baziar et al. 

(2018) 

GR, ILD, NP, DP, 

and DT 

Sw DT, 

ANN, 

and SVR 

AAE, 

RMSE, 

and R2  

No • Two hidden layers were used to construct the MLP model using the 

sigmoid function and conjugate gradient algorithm. 

• Grid search method was employed to optimize the parameters of SVM. 

Hamada et al. 

(2018) 

GR, LLD, RB, PE 

and NP 

PHI and 

Sw 

ANN MSE No • Developed an MLP based ANN model to predict output variables. 

• The researchers did not discuss about the relative importance of the 

model’s variables.  

Khan et al. 

(2018)  

GR, RT, Rxo, NP, 

RB, and Caliper 

log  

Sw ANN and 

ANFIS 

R2 No • It was concluded that ANFIS has a greater performance than ANN. 

• This study did not include a part of the most important input parameters 

for predicting Sw. 

  



 

105 
 

Al-Bulushi et al. (2007) developed an ANN model with a resilient back-propagation 

learning algorithm to predict the water saturation using well logs and Dean-Stark core data. 

The researchers did not include GR log as an input variable to take into account the shale 

effect while determining water saturation. Rolon et al. (2009) investigated the application 

of ANN with three layers using wireline logs to generate the synthetic logs such as 

resistivity, bulk density, and neutron logs. It was reported that the ANN model results in 

better predictions to generate resistivity log using density and neutron logs. Kamalyar et 

al. (2011) developed an ANN model using core data without considering real field log data; 

the smart model exhibited more accurate results than the available published models 

(Kamalyar et al., 2011). Mardi et al. (2011) developed an ANN approach by employing 

both core and well log data to investigate the saturation exponent and cementation factor 

of a water saturation model. The researchers utilized the data samples from the carbonate 

rocks of Sarvak formation, Iran.  It was found that ANN is more reliable than the dual water 

model. However, the relative importance of log variables was not discussed in their 

research. Baneshi et al. (2013) investigated the sensitivity of log variables for predicting 

reservoir rock parameters using Levenberg-Marquardt training function in an ANN model. 

They found that the ANN is a satisfactory tool to predict not only the reservoir porosity 

and water saturation but also the petrophysical index using well logs. Anifowose et al. 

(2014) employed the concept of information gain to study the relative importance of feature 

attributes for the decision tree approach. It was concluded that density volume of grain is 

an appropriate predictor variable for rock porosity estimation. It is worth noting that some 
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logs (e.g., porosity, density, and micro-spherically focused resistivity logs) offer good data 

attributes to predict reservoir rock permeability.  

As mentioned earlier, a majority of researchers did not take into account the relative 

importance of predictor variables while forecasting the water saturation. Gholanlo et al. 

(2016) also used a kernel function-based ANN model to estimate water saturation by 

employing log predictor variables. In the model, they used the algorithm of Levenberg-

Marquardt to optimize the magnitude of weights, representing the strength of connections 

between the units in the layers. Baziar et al. (2018) investigated a comparative analysis 

using different machine learning approaches such as decision tree forest, tree boost, 

multilayer perception network, and kernel-based support vector machine (SVM) to forecast 

the water saturation of a gas reservoir. The researchers also analyzed the model 

performance using different scenarios of data set. According to their analysis, it was 

concluded that radial basis function (RBF) kernel SVM model is more reliable as it gives 

less error than other models in predicting water saturation. Hamada et al. (2018) introduced 

an ANN model by adopting the tans and log sigmoid transfer function, and 2 hidden layers 

with sixteen and five neurons, respectively, and 1 output layer. In their study, the porosity 

and water saturation were estimated, and then the predictions were compared with the core 

data. Khan et al. (2018) evaluated the predictive performance of the ANFIS while obtaining 

water saturation; the suggested approach provided better results than the ANN model. They 

did not identify the most influential input variables in the model while estimating water 

saturation. Hamada et al. (2019) calculated the water saturation and porosity with ANN 

and conventional petrophysical models using logging data. It was concluded that the ANN 
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approach yields a better performance and/or higher precision than the conventional 

petrophysical approaches for the clastic reservoirs. Recently, Miah et al. (2019) constructed 

a single hidden layer perception-based ANN model with the Levenberg Marquardt training 

algorithm to obtain water saturation (Sw). They concluded that true resistivity and 

formation bulk density log variables are the significant parameters for estimation of Sw. 

The impact of various learning algorithms on the performance of data-driven predictive 

model with linearized predictor variables was not investigated in their study.   

 

The above literature review suggests that more reliable data-driven models are still needed 

to improve the prediction performance/ accuracy in reservoir characterization. To the best 

of our knowledge, data-driven predictive model and feature ranking of logging variables 

to determine the water saturation by coupling logging data and machine learning tools have 

not been investigated systematically. The ranking of logging parameters appears to be a 

serious challenge for not only petroleum engineers, but also petrophysicists to forecast the 

water saturation using the wireline log data with sufficient precision. The well log data is 

expensive to collect and represent the entire reservoir profile. The current research work 

aims to fill in the knowledge gap by finding the most contributing predictor variables and 

feature ranking of log variables, according to their relative significance obtained from ANN 

and LS-SVM while predicting water saturation. Indeed, this is the first time that these two 

predictive approaches (ANN and LS-SVM) are used to forecast the water saturation profile 

in the shale sandy formation and to rank the input parameters. Systematic investigation 

about dependency of predictor variables to the output parameter is another important 
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objective of this study. It is believed that the research strategies employed in this study can 

be less time consuming and cost-effective approaches for efficient reservoir 

characterization as well as formation evaluation.  

The remaining of the paper is structured as follows: Section 2 includes data collection and 

processing, model performance strategy, brief background and formulation of machine 

learning models, and feature ranking strategy. The results and discussions are presented in 

Section 3. In the last section, the conclusions and recommendations are briefly listed. 

 

4.2 Theory and Research Methodology  

This section covers the log data collection, normalization process and, model performance 

analysis procedures. It also describes the model formulation and prediction procedure using 

ANN and LS-SVM tools as well as feature ranking of log variables with both strategies. 

 

4.2.1 Data collection and processing  

The most common wireline logs are resistivity log, porosity log, and lithology log, which 

are utilized to identify the lithology type and hydrocarbon-bearing zone, and to estimate 

petrophysical properties. The gamma-ray (GR) log is a complementary log that can be used 

to identify the lithology and measure the amount of radioactive elements (API) and clay 

fraction (shale content, Vsh). The density log measures the electron density (bulk density, 

RB) as well as photoelectric effect (PE) factor while the neutron log counts the hydrogen 

concentration (NP) of a formation. The sonic log helps to measure the acoustic wave in the 

form of compressional travel (DT) time or shear slowness. On the other hand, the resistivity 
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log measures the conductivity (inverse of resistivity, RT) in the rock. The detailed 

information about the major types of logging principles and their application can be found 

in the open sources (Bassiouni, 1994; Schlumberger, 1972; Asquith and Krygowski, 2004; 

Rolon et al. 2009; Miah and Howlader, 2012; Miah, 2014). These log variables are utilized 

in this study to meet the research goals; field data collected from a hydrocarbon reservoir 

located in the Bengal basin are the input data for this research investigation. The available 

field well logs data (GR, RT, RB, NP, PE, and DT) are used as predictor (input) variables 

while the target variable is the water saturation in the reservoir. The log data quality process 

is also conducted to ensure about the reliability of each log dataset variables through 

checking the depth shift and borehole conditions, and comparing hole size with caliper log. 

 

The procedure to determine water saturation obtained using wireline log data is given by 

Miah et al. (2019) where a series of standard log interpretation steps need to be followed. 

The literature also reports proper procedures for log interpretation, and estimation of water 

saturation (Bassiouni, 1994; Asquith and Krygowski, 2004). A total of 182 data samples 

are collected. The field log data points are divided into training, testing, and validation 

phases to develop the machine learning system and train the model. All the programming 

tasks related to this study are carried out using MATLAB programming environment. The 

statistical information of the data samples is given in Table 4.2. 
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Table 4.2: Summary of the statistical values of the used data. 

Parameters Max. Min. Mean St. Dev. Sample var. Skewness Kurtosis 

DT (µs/ft) 97.40 85.84 92.90 2.43 5.89 -0.2173 0.2263 

GR (API) 157.82 76.28 100.19 13.87 192.51 1.58 3.78 

RT (ohm-m) 39.70 13.70 22.67 4.96 24.58 0.7432 1.57 

RB (g/cc) 2.53 2.30 2.37 0.0425 0.0018 1.559 2.714 

PE (barns/e) 4.456 2.876 3.2294 0.2539 0.0645 1.7812 5.0704 

NP (v/v) 0.2039 0.1455 0.17 0.013 0.0002 0.819 0.035 

Sw (v/v) 0.5426 0.2774 0.3950 0.0515 0.0027 0.6296 0.8851 

 

All available log variables are normalized (scaled) in the range of 0 (zero) to 1 (one) which 

can help to obtain better results from the machine learning approaches. The following 

equation is used for normalizing the variables (Wang et al., 2013; Ashena and Thonhauser, 

2015): 

𝑋(𝑖,𝑛𝑜𝑟)(𝑘) =
𝑥𝑖(𝑘) − 𝑥(𝑖,𝑚𝑖𝑛)

𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛

                                                                                           (4.1) 

where i =1,2,…N with N being the number of variables and k =1,2,…,n with n being the 

number of data for the variable; 𝑋𝑛𝑜𝑟 stands for the normalized value of x (input variable); 

and 𝑥𝑚𝑖𝑛 and  𝑥𝑚𝑎𝑥  refer to the minimum and maximum magnitudes of the log variable, 

𝑥𝑖. 

 

4.2.2 Model performance indicators and accuracy 

There are several statistical indicators used to analyze the model performance, to find the 

model accuracy, and to select a proper algorithm (Olatunji et al., 2014; Akande et al. 2015a-
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b; 2016; Ashrafi et al., 2019). In the ANN approach, it is important to assess the optimum 

number of hidden layers and neurons in each hidden layer. The statistical performance 

indices are used to quantify the difference between the actual and predicted outcomes for 

finding the optimum number of hidden layers. In this study, five statistical indicators are 

utilized to evaluate the predictive model performance. The indicators are RMSE, R2, 

average absolute percentage error (AAPE), maximum average percentage error (MAPE), 

and performance index (PI). The mathematical expressions for all performance indices are 

listed below:     

 𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑡,𝑖 − 𝑌𝑝,𝑖)

2𝑛
𝑖=1                                                                                            (4.2) 

𝑅2 = 1 −
∑ (𝑌𝑡,𝑖 − 𝑌𝑝,𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑡,𝑖 − 𝑌𝑡,𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

                                                                                      (4.3) 

𝐴𝐴𝑃𝐸 =
1

𝑛
∑

(𝑌𝑡,𝑖 − 𝑌𝑝,𝑖)

𝑌𝑡,𝑖

𝑛

𝑖=1

                                                                                               (4.4) 

𝑀𝐴𝑃𝐸 = 𝑀𝑎𝑥. |
(𝑌𝑡,𝑖 − 𝑌𝑝,𝑖)

𝑌𝑡,𝑖
| ∗ 100                                                                              (4.5) 

𝑃𝐼 = (𝑅 +
𝑉𝐴𝐹

100
− 𝑅𝑀𝑆𝐸 )  where 𝑉𝐴𝐹 = {1 −

𝑉𝑎𝑟(𝑌𝑡 − 𝑌𝑝)

𝑉𝑎𝑟(𝑌𝑝)
}                        (4.6) 

 

In the above equations, n indicates the total number of samples; 𝑌𝑡 is the target (actual) 

output variable; 𝑌𝑡,𝑚𝑒𝑎𝑛 introduces the mean value of 𝑌𝑡; VAF stands for variance account 

factor; and 𝑌𝑝 represents the predicted output variable. The accuracies of the data-driven 

models have been analyzed in the scale of the low or high value of statistical indices.  
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Lower values of RMSE, AAPE and MAPE, and higher magnitudes of R2 and PI imply a 

model with a greater precision and reliability. 

 

4.2.3 Fundamentals and development of ANN model  

The artificial neural network (ANN) approach is a computing system based adaptive 

learning model, which was developed from the concept of the biological neural network 

(Lippmann, 1987; Yao and Liu, 1997; White et al., 1995; Mohaghegh et al., 1996; Poulton, 

2002). The ANN network contains an input layer, one or more hidden layers, transfer 

functions, and an output layer. The basics and drawbacks/ limitations of ANN models can 

be found in the available literature (Faucett, 1994; Lawrence et al., 1997; Rolon et al., 

2009; Zendehboudi et al., 2018).  

A major advantage of ANN is its ability to find highly complex nonlinear relationships 

among variables. The feedforward neural network can be adopted by a single-layer 

perception or multi-layer perceptron (MLP), and radial basis function networks (Ali, 1994; 

Mohaghegh et al., 1994; 1996; Razavi and Tolson, 2011; Akande et al., 2015a; Adedigba 

et at., 2017). The data used in the ANN are typically divided into three main subsets, 

namely, training, testing, and validation data series. The MLP is one of the effective and 

conceptually useful feedforward neural network approaches that can be employed in 

estimation of reservoir characteristics, leading to attaining reliable results (Rogers et al., 

1995; Huang et al., 1996; Fung et al., 1997; Helle et al., 2001; Helle and Bhatt, 2002; 

Zendehboudi et al., 2018). The deep learning MLP-ANN model consists of at least four 

layers with one input layer, at least two hidden layers, and one output layer for target 
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variables. A typical MLP-ANN architecture of deep learning feedforward network is 

depicted in Figure 4.1. The hidden layer is characterized by several numbers of 

computation connectionist units called neurons (e.g., N1, N2, N3, and N4).  

 

 

 

 

 

 

 

 

 

Figure 4.1: Schematic of a typical multilayer perception-based ANN architecture. 

 
 

The generalized mathematical expression for the deep learning ANN is given below 

(Ceryan and Can, 2018): 

𝑦𝑚 = 𝑓𝑜 [∑𝜔𝑗𝑚𝑓ℎ(∑𝜔𝑖𝑗𝑥𝑖 + 𝑏𝑗) + 𝑏𝑚

𝑛

𝑖=1

𝑚

𝑗=1

]                                                              (4.7) 

 

In equation (4.7),  ym stands for the output variable (s); xi is the vector of target variables 

(e.g., i = 1, 2, 3, 4, 5, 6,…,n); bm symbolizes the bias term for output layers; 𝜔𝑖𝑗 represents 

y 
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the connection weight on the link from i to j node between the input and hidden layers; m 

refers to the number of hidden nodes; and n resembles the number of input variables. 𝑓ℎ 

and 𝑓𝑜 are the transfer function for the hidden layer and output layer, respectively.     

 

Selection of the number of connectionist neurons and the hidden layers depend on the 

nonlinearity of the problem that is being studied (Hamedi et al. 2019). As illustrated in 

Figure 4.1, the input layer of network is linked to the hidden layer by a defined weight 

factor while it is constantly adjusted by a training algorithm based on the field data. Both 

hidden layers and the output layer of the network are all connected together in a forward 

direction (Esene et al. 2019). The MLP network is solely dependent on the adjustment of 

the weight factor between the layers. The output layer is associated with a ‘purelin’ transfer 

function and the hidden layers are assigned with an activation (transfer) function such as 

Heaviside (threshold), precise linear, and sigmoidal (Gaussian, logistic and arctan) 

function. The purpose of the back-propagation algorithm is to find the least error surface, 

while it calculates the local gradient in the error surface and afterwards updates the weight 

magnitudes along the direction of the steepest local gradient (Gardner and Dorling,1998; 

Adedigba et al., 2017). In each iteration of the back-propagation process, the forward and 

backward pass sweep is performed repeatedly until the output variable becomes the same 

as the target variable within an allowable predetermined tolerance level in the model 

(Basheer and Hajmeer, 2000). A flow chart shown in Figure 4.2 presents the ANN model 

development steps. The detailed procedure of feedforward backpropagation can be found 

in the literature (Mazur and Marry, 2015; Adedigba et al., 2017; Zendehboudi et al., 2018).   
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Figure 4.2: A flowchart for ANN model development and estimation of the output 

variable. 
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train the MLP ANN network in this study. The tan-sigmoidal activation function is adopted 

for the hidden layers as the logistic sigmoidal is well suited to demands of backpropagation, 

while pure line transfer function is chosen for the output layer. To construct the machine 

learning algorithm or kernel function-based models, the learning data subsets (70% of total 

samples) are utilized to adjust the weights of the trained neural network. Furthermore, the 

testing data subsets (15%) are employed for testing the final solution to assess the 

performance of the deterministic neural network. The remaining 15% validation data 

subsets are used to minimize the overfitting of the model. The numbers of hidden layers 

and neurons are chosen by the trial and error, considering a minimal error. 

 

Providing a brief information on the methodology, the training portion of the data points 

are used to train the model. The fitted model is then employed to forecast the responses for 

the observations in a second phase, known as the validation phase. This stage is planned to 

provide an unbiased assessment of the model suggested from the training phase while 

tuning the model parameters. Validation datasets can be utilized for regularization by early 

stopping, meaning the training is stopped when an increase in the error extent is noticed 

during the validation phase, due to overfitting. Thus, the first two stages (training and 

validation) offer an optimal model.   The constructed model is then tested using the testing 

datapoints. The selected ANN network is run for training, testing, and validation purposes 

with the collected data points to ensure model consistency. 
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4.2.4 Background and mathematical formulation of LS-SVM model 

The support vector machine (SVM), a recognized powerful machine learning tool, was first 

introduced by Vapnik (1995). It is used to locate an optimum hyperplane from which all 

real experimental data have a minimum distance or maximum margin (Cristianini and 

Shawe-Taylor, 2000; Suykens and Vandewalle, 1999; Cortes and Vapnik, 1995). More 

information regarding SVM or SVR algorithm with different features can be found in the 

literature (Haifeng and Dejin, 2005; Smola et al., 2004). The LS-SVM, proposed by 

Suykens and Vandewalle (1999), is a modified version of the classic SVM algorithm. This 

modified version is less complex than the classic SVM algorithm. It can help to reach the 

solution of a worsening problem more efficiently by setting up a linear set of equations 

employing SVM instead of the quadratic programming (Suykens and Vandewalle, 1999; 

Suykens et al., 2002; Pelckmans et al., 2002). Comparing with SVM, the LS-SVM learning 

method is less time consuming and it can utilize the real field data to construct an 

appropriate model.  

Generally, the LS-SVM optimization of the model problem is formulated through 

engagement of the following objective function (Suykens and Vandewalle, 1999; Esfahani 

et al., 2015; Esmaeili et al., 2019); Given a training set {𝑥𝑘, 𝑦𝑘}𝑘=1
𝑛  with input data 𝑥𝑘 ∈

𝑅𝑛 and the output variable 𝑦𝑘 ∈ 𝑅𝑛, the LS-SVM model for estimation of the objective 

function has the following mathematical expression in the feature space: 

𝑦(𝑥) =  𝜔𝑇𝜑(𝑥) + 𝑏                                                                                                       (4.8) 

In Equation (4.8), the nonlinear function 𝜑(. )𝑅𝑛 → 𝑅𝑛𝑘  represents the primal space to a 

higher dimensional feature space. The dimension 𝑛𝑘 of this space is only defined in an 
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implicit way while b introduces a bias term and 𝜔 ∈  𝑅𝑛𝑘  is the weight factor. In the primal 

space, the optimization problems can be written as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(𝜔, 𝑒𝑘) ≅  
1

2
𝜔𝑇𝜔 + 𝛾 ∑ 𝑒𝑘

2

𝑛

𝑘=1

                                                                  (4.9) 

Subject to  

𝑦𝑘 = 𝜔𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘 , 𝑘 = 1,2,3, … . , 𝑛                                                              (4.10) 

in which, 𝑒𝑘 represents the error term; J(.) resembles the loss function; and 𝛾 is the 

adjustable constant.  

Using Equation (4.8), the Lagrangian function (ℒ) can be written as follows: 

ℒ(𝜔, 𝑏, 𝑒𝑘, 𝛼𝑘) = 𝐽(𝜔, 𝑒𝑘) − ∑𝛼𝑘

𝑛

𝑘

{𝜔𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘 − 𝑦𝑘}                           (4.11) 

where 𝛼𝑘 refers to the Lagrange multiplier.  

 

The optimality upper function can be expressed as follows:  

𝜕ℒ

𝜕𝜔
= 0 → 𝜔 = ∑𝛼𝑘𝜑(𝑥𝑘)

𝑛

𝑘

                                                                                        (4.12) 

𝜕ℒ

𝜕𝑏
= 0 → ∑𝛼𝑘 = 0

𝑛

𝑘

                                                                                                     (4.13) 

𝜕ℒ

𝜕𝑒𝑘
= 0 → 𝛼𝑘 = 𝛾𝑒𝑘                                                                                                     (4.14) 

𝜕ℒ

𝜕𝛼𝑘
= 0 → 𝜔𝑇𝜑(𝑥𝑘) + 𝑏 + 𝑒𝑘 − 𝑦𝑘 = 0                                                                 (4.15) 
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where k =1,2,3,………,n.  After eliminating 𝜔 and 𝑒𝑘, Equations 4.12 to 4.15 can be 

presented as follows:  

[
0 1𝑇

1 Ω + 𝛾−1𝐼
] [

𝑏
𝛼
] = [

0
𝑦
]                                                                                             (4.16) 

In Equation (4.16), 𝑦 = [𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, …… . . , 𝑦𝑛]
𝑇; 1 = [1,1,1, … .1]𝑇;  

𝛼 = [𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, … , 𝛼𝑛]; Kernel matrix, Ω = 𝐾(𝑥, 𝑥𝑘) = 𝜑(𝑥)𝑇𝜑(𝑥𝑘); and 

K(x, 𝑥𝑘) represents the kernel function that should satisfy the Mercer’s condition 

(Pelckmans et al., 2002). 

 

The final expression can be formulated for the LS-SVM function estimation as follows: 

𝑦 =  ∑𝛼𝑖𝐾(𝑥, 𝑥𝑘)

𝑛

𝑖

+ 𝑏                                                                                               (4.17) 

where b and α are the solutions to the linear system expressed through Equation (4.17). 

The weight factor, α is a vector with the size of n×1.    

 

There are many kernel functions for the LS-SVM such as linear (Lin), polynomial (Poly), 

spinal, radial basis, and sigmoidal kernel function. Among these functions, the Gaussian 

radial basis function (RBF) has been widely used in the LS-SVM learning strategy to attain 

the best output (Suykens et al., 2002). The methodology for kernel-based LS-SVM model 

development is summarized in Figure 4.3. The most common types of the kernel functions 

employed in regression learning approach are listed in Table 4.3 (Zendehboudi et al., 

2018). In Table 4.3, t and d are the intercept and the degree of polynomial kernel function, 

respectively.  



 

120 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: A simple flowchart for kernel-based LS-SVM model development. 
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Table 4.3: Kernel function types and associated mathematical expressions. 

Type of kernel function Mathematical expression Syntax for 

simulation 

Linear 𝐾(𝑥, 𝑥𝑘) = 𝑥𝑇𝑥𝑘 lin_kernel 

Polynomial 𝐾(𝑥, 𝑥𝑘) = (𝑡 + 𝑥𝑇𝑥𝑘)
𝑑 with t ≥ 0 poly_kernel 

Radial based (Gaussian) 
𝐾(𝑥, 𝑥𝑘) = exp (−

(||𝑥 − 𝑥𝑘||)
2

22 ) 
RBF_kernel 

 

In the kernel function- based LS-SVM, the regularization and kernel parameters (also 

named as tuning parameters) are 𝛾 and σ2. These parameters are adjusted through a global 

optimization technique of coupled simulated annealing (CSA) during the training process. 

A small value of γ indicates high regularization, which leads to a less nonlinear model. The 

tuning parameter σ2 affects the number of neighbors. A larger value of σ2 means more 

neighbors in the RBF model and thus a more nonlinear model. In order to improve the 

performance of two tuning parameters, CSA is used to guarantee the model accuracy and 

convergence through an iterative random way. The CSA optimization process is has been 

proven to be more effective than the multi-start gradient descent technique (Suykens et al., 

2002; Rostami et al., 2019). Similar to the MLP-ANN model, the database for log data is 

divided randomly into three sub-datasets to construct the LS-SVM models using different 

kernel functions. All samples are categorized into three groups such as 70% for training, 

15% for testing, and 15% for validation. 
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4.2.5 Feature ranking of the predictive model  

The following systematic strategy, demonstrated in Figure 4.4, is employed to find the 

relative importance/ performance of the input log variables on the machine learning (ML) 

based predictive water saturation model.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: A flowchart to conduct feature ranking using the ML approach in the study. 
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Furthermore, the optimized ML model is employed to predict the output variable; the 

model performance is examined using statistical performance indicators for each case. 

Based on the contribution of an input variable to the predictive models, the input parameter 

is ranked using two approaches. The first approach is a preliminary screening scenario for 

feature ranking by adopting a single-input and single-output strategy. The input variable 

having a high impact on the predictive model has low AAPE, MAPE and RMSE, and high 

R2 and PI values. The second approach is called ‘single variable elimination strategy’ 

(selective multiple input variables to determine the output variable using the optimized ML 

structure). In the second method, a total number of input variables, Nt (as feature selection), 

is chosen based on the relative model performance and contribution using the first 

approach. The low contributing input variable is omitted to avoid the overfitting and run 

model simulation smoothly. After that, the (Nt -1) number of input variables is selected to 

find their contribution in the model consequently. In the second strategy, if the model 

performance exhibits high extent of AAPE, MAPE, and RMSE, and low values of R2 and 

PI, it means that the eliminated input variable has more impact on that model. Finally, the 

input log variables are ranked based on their contribution to the predictive model. 

 

4.3 Results and Discussions  

We study the application of ANN and LS-SVM approaches for obtaining the water 

saturation in the reservoir. According to log data analysis and nature of log variables, there 

are no significant outlier data points in the studied reservoir depth. To eliminate the scale 



 

124 
 

effect, the input variables are normalized, as shown in Figure 4.5. All the log variables are 

employed to find the best ANN and kernel-based LS-SVM models.     

 

Figure 4.5: Normalized input log variables in the study. 

 

4.3.1 MLP-ANN model performance 

To obtain a reliable topology of MLP network using stratified sub-set data, the optimal 

structure of MLP-ANN (6-5-3-1) is trained with three algorithms, namely, Levenberg 

Marquardt (LM), Bayesian regularization (BR), and scaled conjugated gradient (SCG). 

Based on the optimization phase, the model has one input layer with 6 neurons, the first 

hidden layer with 5 neurons, the second hidden layer with 3 neurons, and one output layer 

with one neuron. The performance of the constructed models, for each training-based 

network, is illustrated in Figures 4.6 through 4.11. 
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Figure 4.6: Scatter plot of MLP-ANN model for a) training, b) testing, and c) validation datasets with Levenberg Marquardt 

training algorithm. 

a) b) c) 
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Figure 4.7: Scatter plot of Bayesian regularization training algorithm-based MLP-ANN model for a) training, b) testing, and c) 

validation datasets. 

 

a) b) c) 
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Figure 4.8:  Scatter plot of scaled conjugated gradient training algorithm-based MLP-ANN model for a) training, b) testing, 

and c) validation datasets. 

 

 

a) b) c) 
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Figure 4.9:  Validation performance plot of ANN model with Levenberg Marquardt 

training algorithm. 

 

Figure 4.10: Validation performance plot of ANN model with Bayesian regularization 

training algorithm. 
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Figure 4.11: Validation performance plot of ANN model with scaled conjugated gradient 

training algorithm. 

 

According to Figure 4.6, the LM based training algorithm offers the best match between 

the target and predicted values of water saturation, compared to the others algorithms for 

MLP-ANN network. Based on Figure 4.10, the BR-based ANN network needs more time 

to attain the best training performance with more iterations, compared to other algorithms. 

The model performance of different algorithms for prediction of water saturation using 

MLP-ANN is listed in Table 4.4 and Figure 4.12 for both training (Trn) and testing (Tst) 

datasets. 
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Table 4.4: Evaluation of algorithm based MLP ANN model based on statistical 

criteria. 

Trained 

algorithm 

No. of 

epoch 

(iterations) 

RMSE 

Trn (Tst) 

AAPE 

Trn 

(Tst) 

MAPE 

Trn 

(Tst) 

R2 

Trn 

(Tst) 

PI 

Trn 

(Tst) 

LM-ANN 75 0.0015 

(3.62e-04) 

0.111 

(0.071) 

2.912 

(0.207) 

1.000 

(0.999) 

1.008 

(1.010) 

BR-ANN 975 0.0016 

(6.79e-07) 

0.092 

(0.127) 

3.270 

(1.012) 

0.999 

(0.999) 

1.008 

(1.009) 

SCG-ANN 116 0.0144 

(0.0137) 

2.183 

(2.135) 

23.257 

(11.893) 

0.917 

(0.957) 

0.952 

(0.974) 

 

 

Figure 4.12: Comparison of error measures for different algorithms. 
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As demonstrated in Table 4.4, the LM and BR-based algorithms exhibit a better 

performance than SCG-ANN on the basis of RMSE, AAPE, R2, and PI. Although the BR-

ANN model and LM-ANN model have almost the same values for statistical parameters, 

the former has a higher computational time. Comparing various algorithms, the LM-ANN 

results in a low MAPE (%) of 2.912 and 0.207 for the training and testing schemes, 

respectively. It can be concluded that the LM-ANN performance is better than other 

algorithm-based models according to Table 4.4 and Figure 4.12. Thus, the optimized LM-

ANN model with a topology 6-5-3-1 (total number of layers: 4; input layer with five 

predictor variables; the first and second hidden layers containing five and three neurons, 

respectively with Tansig transfer function; and output layer with a single variable) is used 

for further analysis and to find the influencing input log variables while predicting water 

saturation.   

  

4.3.2 Kernel function-based LS-SVM model performance 

In this paper, the CSA optimization technique is used in the LS-SVM model as an iterative 

random search strategy such that the optimization procedure is repeated several times to 

achieve the optimum global point. Figure 4.13 displays the scatter plot that compares the 

target and predicted (output) results. According to Figure 4.13, the RBF-based model leads 

to a better match compared to the other two kernel function-based models for training, 

testing, and validation phases. The initial values of two tuning parameters of γ and σ2 are 

16134.9131 and 21.7973, respectively.  
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Figure 4.13: Scatter plot of the target and predicted results of RBF based LS-SVM for a) training, b) testing, and c) validation 

phases. 

 

a) b) c) 
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The final tuning parameters of γ and σ2 for the RBF (Gaussian) based LSSVM model for 

water saturation prediction are 1.24e+02 and 4.69e+07 through employing 15 iterations.  

The optimization results and performance of the three different kernel-based LS-SVM 

predictive models are tabulated in Table 4.5. The polynomial-based LS-SVM predictive 

model gives the magnitudes of the hyper-parameters equal to 2.62 (t) and 3 (degree of 

polynomial) with 13 iterations.  

 

Table 4.5: Statistical parameters corresponded to kernel function-based LS-SVM while 

obtaining tuning and hyper-parameters. 

Kernel 

function 

No. of 

iterations 

Obtained 

parameters 

RMSE 

Trn 

(Tst) 

AAPE 

Trn 

(Tst) 

MAPE 

Trn 

(Tst) 

R2 

Trn 

(Tst) 

PI 

Trn 

(Tst) γ b 

RBF  15 4.69e+07 

 

-6.88 0.0002 

(0.0011) 

0.039 

(0.203) 

0.169 

(0.819) 

1.000 

(0.999) 

1.010 

(1.009) 

Polynomial 13 0.124 

 

-0.049 0.0013 

(0.0022) 

0.237 

(0.344) 

1.072 

(1.767) 

0.999 

(0.997) 

1.008 

(1.006) 

Linear 7 0.351 

 

1.78e-15 0.0133 

(0.012) 

1.891 

(2.416) 

18.067 

(7.652) 

0.929 

(0.952) 

0.956 

(0.975) 

 

Although, the RBF model results in the minimum values for MAPE (0.169 for the training 

and 0.819 for the testing), the polynomial function-based model and RBF LS-SVM model 

show almost the same performance based on the magnitudes of RMSE, AAPE, R2, and PI 

(see Table 4.5). Comparing the three-kernel function based predictive models, the RBF 
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based LS-SVM predictive model has the highest accuracy (or best performance) as it 

exhibits the lowest RMSE, AAPE, and MAPE, but the highest R2 and PI.   

  

4.3.3 Feature ranking of the predictive model 

Impact of a single predictor variable: In this section, the topography of LM-ANN (1-5-

3-1: input layer with 1 neuron; the first hidden layer with 5 neurons; the second hidden 

layer with 3 neurons; and one output layer with one neuron) is employed to find the relative 

importance of the input variables in the optimized model while determining water 

saturation. The single log variable is used as the input variable for predicting the water 

saturation by employing the same optimized hidden layers to investigate the contribution 

of that variable in the predictive model. According to the results of conducted simulations, 

Table 4.6 summarizes the statistical analysis and/or performance assessment of different 

model cases. Figures 4.14 through 4.16 demonstrate the relative performance and visual 

contrast amongst the models for training and testing data. According to the different single 

variable-based data connectionist models, the true resistivity (RT) is more significant than 

the other input log variables. In the current study, the LM-based ANN model with RT input 

variable results in the best fit with the highest correlation coefficient (average 0.85) as well 

as high performance index (0.91). In addition, the RT input log-based LM-ANN model 

gives the least RMSE (0.020-0.019), AAPE (3.602-3.765), and MAPE (20.252-19.635), 

compared to other five predictive models.    
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Table 4.6: Performance evaluation of different cases for the optimized LM-ANN model 

based on statistical analysis. 

Case No. 

of model 

(1-5-3-1) 

Input 

variable 

No. of 

iterations 

(validation 

epochs) 

RMSE 

Trn 

(Tst) 

AAPE 

Trn 

(Tst) 

MAPE 

Trn 

(Tst) 

R2 

Trn 

(Tst) 

PI 

Trn 

(Tst) 

1 RT 15  

(9) 

0.0202 

(0.0194) 

3.602 

(3.765) 

20.252 

(19.635) 

0.861 

(0.845) 

0.916 

(0.911) 

2 RB 15  

(9) 

0.0263 

(0.0257) 

5.686 

(5.553) 

22.40 

(12.764) 

0.7581 

(0.6056) 

0.8512 

(0.7569) 

3 NP 10  

(4) 

0.039 

(0.0361) 

7.579 

(7.085) 

32.93 

(28.83) 

0.476 

(0.272) 

0.651 

(0.481) 

4 PE 15  

(9) 

0.0483 

(0.0349) 

9.038 

(8.038) 

29.005 

(28.297) 

0.1689 

(0.4369) 

0.3295 

(0.6219) 

5 GR 10  

(4) 

0.0453 

(0.0406) 

8.917 

(8.720) 

51.525 

(30.842) 

0.2231 

(0.0795) 

0.4059 

(0.2192) 

6 DT 11  

(5) 

0.0464 

(0.0514) 

8.781 

(10.974) 

39.00 

(40.76) 

0.1977 

(0.2752) 

0.3591 

(0.4341) 

 

Based on the predictive performance of the various models, the rank of the influencing 

input log variables from the highest to lowest is as follows: RT, RB, NP, PE, GR, and DT. 

To make sure about the generalization of this finding, the RBF-based LS-SVM is 

implemented to find the most significant parameters for predicting water saturation. Table 

4.7 reports the results of different RBF LS-SVM models to assess the importance of single 

input parameters. 
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Figure 4.14: Correlation coefficient of single input variables while predicting Sw. 
 

 

Figure 4.15: Comparison of performance index of input variables when obtaining water 

saturation. 
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Figure 4.16: Statistical error indicators to show importance of single input variables for 

prediction of Sw. 

 

Table 4.7: Performance of RBF model with respect to single input variables based on 

statistical analysis. 

Input 

variable 

Tuning  

parameters:  

𝛾, 𝜎2 and bias  

(no. of iteration) 

RMSE 

Trn 

(Tst) 

AAPE 

Trn 

(Tst) 

MAPE 

Trn 

(Tst) 

R2 

Trn 

(Tst) 

PI 

Trn 

(Tst) 

RT 352, 6.925; 

2.792 (9) 

0.0181 

(0.0168) 

3.350 

(3.329) 

19.736 

(19.296) 

0.880 

(0.877) 

0.929 

(0.928) 

RB 53.123, 3.188; 

-1.262 (12) 

0.026 

(0.020) 

5.671 

(4.170) 

21.453 

(13.649) 

0.703 

(0.884) 

0.818 

(0.928) 

NP 4.912, 0.0283; 0.031 6.137 28.999 0.670 0.792 

0

10

20

30

40

50

60

RT RB NP P E GR DT

E
rr

o
r 

(%
)

Log Variable

AAPE (Train) AAPE (Test)

MAPE (Train) MAPE (Test)



 

138 
 

0.143 (12) (0.032) (5.987) (18.267) (0.517) (0.692) 

PE 5.412, 1.948; 

-0.294 (14) 

0.046 

(0.048) 

8.875 

(10.601) 

33.530 

(34.100) 

0.256 

(0.090) 

0.438 

(0.225) 

GR 102871.765, 6.335; 

69.452 (13) 

0.044 

(0.051) 

8.322 

(9.147) 

49.935 

(21.694) 

0.231 

(0.060) 

0.412 

(0.130) 

DT 1.642, 19.764; 

0.642 (12) 

0.047 

(0.056) 

9.146 

(11.110) 

40.734 

(38.079) 

0.088 

(0.170) 

0.121 

(0.151) 

 

Based on Figures 4.17 to 4.19, the model performance is evaluated using different 

statistical indicators to demonstrate the importance of various input variables in predicting 

water saturation.  

 

Figure 4.17: Comparison of R2 for different RBF LS-SVM models based on once single 

input variable. 
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Figure 4.18: Comparison of PI for different RBF LS-SVM models with respect to one 

single input variable. 

 

Figure 4.19: Comparison of error indicators for different RBF LS-SVM models based on 

single input variables. 
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According to the performance criteria, the DT log variable-based model is found to have 

the lowest performance with an R2 of 0.09 and 0.17; PI of 0.12 and 0.15; and the highest 

errors, AAPE (%) of 9.15 and 11.11; and MAPE (%) of 40. 73 and 38.08 for the training 

and testing phases, respectively. Referring to the statistical parameter of RMSE, the 

performance of the optimized LM-ANN and RBF LS-SVM with respect to input log 

variables is depicted in Figure 4.20. The DT variable has an RMSE of about 0.05 and a 

total relative error of about 25% for both LM-ANN and RBF LS-SVM approaches, 

implying it has the minimum significance among the input variables in water saturation 

prediction. Based on the results, the RT log leads to a relative error of about 9% for LM-

ANN and 8% for RBF LS-SVM models, while the relative error for RB case is 12% and 

9% in the training and testing phases, respectively, for estimation of water saturation.   

 

Figure 4.20: Performance comparison of different predictive models for predicting Sw 

using one single input variable based on RMSE. 
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It follows that RT and RB exhibit the highest importance among the variables. The study 

also confirms that NP and PE logs have almost the same relative contribution in both LM-

ANN and RBF-based LS-SVM techniques. The GR log variable has also a low impact in 

the model for estimation of water saturation. Comparing the models performance using the 

statistical indicators, it is evident that the influential log parameters (higher to lower) are 

RT, RB, NP, PE, GR, and DT in the predictive model. 

 

Effect of single variable elimination on the optimized predictive model: For further 

analyzing the effect of individual variables, the DT log is first excluded. From the 

remaining variables, another variable is then excluded each time and the remaining 

variables are used to develop the prediction model. Table 4.8 reports the model 

performance in the absence of each single variable. Figures 4.21 and 4.22 demonstrate the 

correlation coefficient and statistical errors to evaluate the effectiveness of the models used 

in the current study.      

 

Table 4.8: Performance of four input variables based-LM ANN models in the absence of 

one single variable. 

Model  

scheme  

Input variables Excluded 

variable 

RMSE 

Trn 

(Tst) 

AAPE 

Trn 

(Tst) 

MAPE 

Trn 

(Tst) 

R2 

Trn 

(Tst) 

PI 

Trn 

(Tst) 

1 GR, RB, NP, PE 

 

RT 0.0176 

(0.0217) 

3.492 

(3.954) 

23.056 

(26.225) 

0.8810 

(0.7926) 

0.9296 

(0.8766) 
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2 GR, RT, NP, PE 

 

RB 0.0125 

(0.0148) 

2.271 

(2.701) 

12.549 

(8.758) 

0.9347 

(0.9097) 

0.9637 

(0.9481) 

3 GR, RT, RB, PE 

 

NP 0.0074 

(0.0073) 

1.398 

(1.394) 

6.960 

(5.647) 

0.9772 

(0.9858) 

0.9905 

(0.9954) 

4 GR, RT, RB, NP 

 

PE 0.0013 

(0.0033) 

0.1967 

(0.2373) 

3.023 

(3.199) 

0.9994 

(0.9965) 

1.0084 

(1.0050) 

5 RT, RB, NP, PE 

 

GR 0.0013 

(0.0007) 

0.1567 

(0.1443) 

2.259 

(0.3439) 

0.9994 

(0.9998) 

1.0085 

(1.0092) 

 

Table 4.9: Performance comparison of four input variable-based RBF LS-SVM model 

while excluding one input parameter. 

Model 

scheme 

Input variables Excluded 

variable 

RMSE 

Trn 

(Tst) 

AAPE 

Trn 

(Tst) 

MAPE 

Trn 

(Tst) 

R2 

Trn 

(Tst) 

PI 

Trn 

(Tst) 

1 GR, RB, NP, PE 

 

RT 0.0153 

(0.0443) 

2.9006 

(4.7283) 

23.7608 

(13.0177) 

0.9113 

(0.7472) 

0.9483 

(0.8466) 

2 GR, RT, NP, PE 

 

RB 0.0094 

(0.0230) 

1.7935 

(3.7944) 

7.2478 

(28.4404) 

0.9651 

(0.8465) 

0.9826 

(0.9050) 

3 GR, RT, RB, PE 

 

NP 0.0043 

(0.0049) 

0.8072 

(0.9912) 

3.633 

(2.4825) 

0.9926 

(0.9936) 

1.0019 

(1.0001) 

4 GR, RT, RB, NP 

 

PE 0.0002 

(0.0025) 

0.0397 

(0.1928) 

2.2162 

(2.5041) 

1.000 

(0.9953) 

1.0098 

(1.0051) 

5 RT, RB, NP, PE 

 

GR 0.0006 

(0.0007) 

0.1065 

(0.1637) 

0.4121 

(0.3621) 

0.9999 

(0.9998) 

1.0094 

(1.0091) 
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Figure 4.21: Comparison of R2 for different model schemes in the absence of once single 

variable. 

 

Figure 4.22: Comparison of MAPE for various model schemes in the absence of once 

single variable. 
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To evaluate the reliability and precision of the five predictive models, various statistical 

parameters including correlation coefficient and relative errors are used. The predictive 

model 1 (see Tables 4.8 and 4.9) in the absence of RT log variable exhibits a high error 

percentage and low correlation coefficient because the RT has a considerable influence on 

the water saturation model. Similarly, model 5 without considering GR log variable leads 

to a high performance (e.g., a low statistical error and high correlation coefficient), since 

the GR has a lower impact than other variables in the data-driven model schemes for water 

saturation prediction. According to the statistical analysis conducted for the LM-ANN 

approach, the decreasing order of important input variables for predicting water saturation 

is RT, RB, NP, PE, and GR. The RBF based LS-SVM technique also leads to almost the 

same finding. In the literature, it is claimed that the resistivity (RT) and porosity logs (RB 

or NP) are essential to determine water saturation using petrophysical models. According 

to the current study, the log variables are ranked in terms of significance as follows: RT, 

RB, NP, PE, GR, and DT for estimation of water saturation. The engineers and/or operators 

in the oil and gas industry can utilize the developed deterministic approaches using the data 

from the most contributing logs for prediction of water saturation to save the exploration 

expenses and time through an effective manner. 

 

4.4 Conclusions 

In this study, using real field well log data such as RT, RB, NP, PE, GR and DT, the MLP-

ANN and the LS-SVM techniques are implemented to develop data-driven predictive 

models for obtaining water saturation. The statistical indicators, namely, RMSE, AAPE, 
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MAPE, R2, and PI are utilized to examine the model performance while using MLP based 

ANN algorithms and different kernel functions-based LS-SVM models. Based on the 

research outcomes, the concluding remarks are listed below:       

• The water saturation extent depends on the log variables including RT, RB, PE, GR, 

and DT. The RBF kernel function-based LS-SVM model and ANN approach use the 

above variables for objective function prediction. Both strategies exhibit an acceptable 

accuracy.  

• The MLP-ANN model including the Levenberg Marquardt training algorithm shows a 

superior performance with a lower error percentage, MAPE (2.91%), compared to the 

other algorithms such as the Bayesian regularization (with an MAPE of 3.27%) and the 

scaled conjugated gradient (with an MAPE of 23.26%).   

• It reveals that the RBF based LS-SVM model has a greater reliability and deterministic 

capability, compared to the polynomial and linear kernel function-based models for 

predicting water saturation so that the lowest statistical errors and high magnitudes of 

R2 and PI for this model are attained.   

• Based on the predictive performance of the MLP-ANN and the LS-SVM models, bulk 

density and true resistivity are found to be the most important predictor variables, while 

gamma-ray and sonic travel time have the least contribution to the water saturation. 

• Good agreement is noticed between the predictions and field data, implying the 

effectiveness and precision of the proposed predictive tools. 
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It is recommended that RT and RB with high influence degrees are included as dataset 

attributes in the data-driven predictive models for estimating water saturation. The feature 

ranking strategy with machine learning technique might be proper to predict other reservoir 

properties (e.g., relative permeability) using log variables and to find the minimum number 

of logging parameters for saving the geophysical exploration costs, because a lower 

number of logging tools is employed. It appears that the research strategies and feature 

ranking approaches in the data-driven models of reservoir rock mechanical properties can 

be useful to field specialists, practitioners, geologists, and engineers in the oil and gas 

industry.  

The LS-SVM is a more desirable tool for investigation of reservoir performance as well as 

enhanced oil recovery (EOR) analysis where deterministic models with high accuracy are 

required. Finally, such a research approach can be implemented using more data points for 

various purposes such as predictive model development, optimization problems, and 

feature ranking that can have various applications in engineering, science, and health 

disciplines. 
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Nomenclature   

Acronyms 

 

 

  AAPE Absolute Average Relative Percentage Error 
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ANFIS Adaptive Neuro-fuzzy Inference System 

ANN            Artificial Neural Network 

BP Bayesian Regularization  

CSA Coupled Simulated Annealing  

DT Sonic Transit (Compressional) Time (µs/ft) 

FDT Fuzzy Decision Tree 

FN Functional Network 

FL Fuzzy Logic 

GA Genetic Algorithm 

GR Gamma Ray (API) 

ICA Imperialist Competitive Algorithm 

ILD Deep Induction Log (ohm-m) 

NP Neutron Porosity (percentage) 

LM Levenberg Marquardt  

LS-SVM Least Square Support Vector Machine 

MSE Mean Square Error 

MAPE Maximum Absolute Percentage Error (percentage) 

ML Machine Learning 

MLP Multi-Layered Perceptron 

PE Photo Electric Index (barns/electron)) 

PSO Particle Swarm Optimization 

PI Performance Index 

RNN  Recurrent Neural Networks 

RBF Radial Basis Kernel Function 

RB Formation Bulk Density (gram/cm3) 

RT True (Deep) Resistivity (ohm-m) 

R2 Regression Coefficient (fraction) 

SCG Scaled Conjugated Gradient 

SP Self-Potential Log (millivolt) 

SVR Support Vector Regression  

SVM Support Vector Machine 

Sw Water Saturation (fraction) 

VAF Variance Account Factor  

Variables and Parameters 

b Bias term 

𝑓ℎ Transfer function for hidden layer, 

𝑓𝑜 Transfer function for output layer 

 

 

Nt Total number of input variables 
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CHAPTER 5: MACHINE LEARNING APPROACH TO MODEL ROCK 

STRENGTH: PREDICTION AND VARIABLE SELECTION WITH AID OF LOG 

DATA  
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Abstract  

Comprehensive knowledge and analysis of in-situ rock strength and geo-mechanical 

characteristics of rocks are crucial in hydrocarbon and minerals exploration stage to 

maximize wellbore performance, maintain wellbore stability, and optimize hydraulic 

fracturing process. Due to the high cost of laboratory-based measurements of rock 

mechanics properties, the log-based prediction is a viable option. Nowadays, the machine 

learning tools are being used for estimation of the in-situ rock properties using wireline log 

data. This article proposes a machine learning approach for rock strength (uniaxial 

compressive strength) prediction. The main objectives are to investigate the performance 

of data-driven predictive model in determining this vital parameter and to select features 

of predictor log variables in the model. The backpropagation multilayer perception (MLP) 

artificial neural network (ANN) with Levenberg-Marquardt training algorithm as well as 

the least squares support vector machine (LSSVM) with coupled simulated annealing 

(CSA) optimization technique are employed to develop the dynamic data-driven models. 

Capturing nonlinear, high dimensional, and complex nature of real field log data, the rock 

strength models’ performances are evaluated using statistical criteria to ensure concerning 

the model reliability and accuracy. The model predictions are compared and validated 

against the measured values as well as the results obtained from existing log-based 

correlations. Both the MLP-ANN and the CSA-based LSSVM connectionist strategies are 

able to predict the rock strength so that there is a very good match between the model 

results and corresponding measured values. The input log parameters are ranked based on 

their contributions in prediction performance. The acoustic travel time and gamma-ray are 
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found to have the highest relative significance in estimating in rock strength. A new 

correlation is also developed to obtain the in-situ rock strength of the siliciclastic 

sedimentary rocks using the most important log parameters. It is expected that the proposed 

models and tools will enable reservoir engineers to better predict rock strength and thus 

enhance wellbore performance. 

Keywords: Log variables; Connectionist models; Uniaxial compressive strength; Variable 

selection; Rock stability.   

 

5.1 Introduction  

 

5.1.1 Background 

Reservoir rock mechanical properties (RMPs) play an important role in making decisions 

regarding exploration development, wellbore stability analysis, sanding potentiality, and 

safe drilling operations. The RMPs are closely related to the rock physical properties such 

as rock density, porosity, and pore fluid saturation. The uniaxial compressive strength 

(UCS) is one of the key rock strength parameters that can be used in wellbore stability 

assessment, in-situ stress analysis, drilling optimization as well as reservoir sanding 

likelihood prediction (Nouri et al. 2006, Crawford et al. 2011).  It is also utilized for mining 

and geotechnical engineering applications including the rock mass characterization, 

underground rock excavation, and geotechnical project design (ISRM, 1981). The reservoir 

rock strength provides the limit of axial stress in-situ condition before rock failing (Fjær et 

al., 2008).  
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The most common techniques for determining rock strength are in-situ measurements using 

geophysical log-based models and laboratory measurements using core samples. The direct 

and indirect measurements of rock strength include UCS test, triaxial test, Brazilian test, 

and basic mechanical tests such as point load index, non-destructive ultrasonic test, 

Schmidt hammer rebound test, impact strength test, scratch test, indentation test, and 

Equotip hardness tester (Miller, 1965; Broch and Frankline, 1972; Hoek and Brown, 1997; 

Fener et al., 2005; Yilmaz, 2013; Mousavi et al., 2018). The rock mechanical laboratory 

(RML) testing on real core samples is the most reliable method to determine the rock 

strength using the procedures recommended by the American Society for Testing Materials 

(ASTM, 1986) and/or the International Society of Rock Mechanics (ISRM, 1981). The 

RML testing cannot provide continuous rock strength profile along with the in-situ 

wellbore condition. Also, the core sample preparation is tedious, time-consuming, 

expensive, and very sensitive to stress unloading (Raeen et al., 1996). Most of the times, 

high-quality cylindrical core specimens preparation with regular geometry is difficult due 

to the nature of fractured thinly bedded and clay-bearing sedimentary rocks. In addition, a 

large scale core sample preparation is often challenging due to time limitation, complex 

variations in rock composition, and geological behavior and heterogeneity of the formation. 

When the formation rock sample is not attainable from the deeper depth of oil and gas 

and/or mining fields, the well logging data can be used to estimate the rock mechanical and 

physical properties.  

Over the past few decades, numerous studies have been performed to develop empirical 

models for estimation of rock strength using petrophysical logs such as the sonic and 
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density porosity logs. The log-based existing models or correlations for rock strength were 

listed/ summarized by different authors such as Chang et al. (2006) and Odunlami et al. 

(2011). A continuous in-situ UCS profile is essential to conduct rock failure analysis during 

a drilling operation.  

Nowadays, the machine learning (ML) or artificial intelligence (AI) approaches such as 

artificial neural network (ANN), functional network (FN), adaptive neuro-fuzzy inference 

system (ANFIS), decision tree (DT), classic support vector machine (SVM) and/or least 

square support vector machine (LS-SVM) are extensively used to develop the data-driven 

models for rock mechanics related to petroleum and mining (Asoodeh and Bagheripour, 

2012; Oscak and Seker, 2012; Khandelwal and Monjezi, 2013; Ashena and Thonhauser, 

2005; Dehghan et al., 2010; Koolivand-Salooki; 2017; Ceryan and Can, 2018; Anemangely 

et al., 2019; Miah et al., 2019). Recently, ANN and LS-SVM are becoming a more popular 

strategy for data-driven model development, prediction of formation elastic properties, and 

failure analysis to save the operational expenses and time.   

 

5.1.2 Literature Survey 

Several empirical correlations exist for calculation of UCS along the wellbore using rock 

porosity (𝜙), sonic travel time (∆𝑡), elastic moduli, and other formation properties such as 

shale volume and resistivity (Fjaer et al., 1992; Edimann et al., 1998; Sonmez et al., 2004; 

Cheng et al., 2006; Odunlami et al., 2011; Singh et al., 2012; Rabbani et al., 2012). The 

rock strength can be estimated from the empirical correlations considering the lithology 

type (e.g., carbonate or clastic rocks) and availability of log variables. In addition, there are 
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so-called “worldwide” models which can be used irrespective of the rock type (Chang et 

al. 2006). Well-known correlations for estimating rock strength (UCS) using log data in 

the oil and gas industry are listed in Table 5.1.  

Onyia (1988) investigated the in-situ rock strength and developed a correlation to estimate 

ultimate rock strength using drilling and logging data such as gamma-ray (GR) log, 

resistivity log, density log, and borehole compensated sonic logs. Fjaer et al. (1992) 

developed a correlation that is most commonly used to obtain the rock strength for shaly 

sand reservoir using three rock parameters, namely, Poisson’s ratio (𝜈), sonic velocity (Vp), 

and shale volume (Vsh). The shale volume measurement is costly and time-consuming 

approach through experimental core analysis, while it can be found from the wireline log 

data including GR log.  For instance, the shale volume can be obtained using over the entire 

GR log of formation to capture the maximum and minimum magnitudes of GR if the full-

length log is available. Moos et al. (2001) developed the UCS correlation for the clastic 

sandstone rocks using sonic travel time or acoustic velocity, and formation bulk density. 

Also, Chang et al. (2006) took into account only sonic travel time to obtain the UCS 

correlation. Both correlations of Moos et al. (2001) and Chang et al. (2006) did not consider 

the shale content effect (i.e., GR parameter) to estimate the in-situ UCS estimation. A 

number of studies have investigated the effect of various rock properties on rock strength; 

however, the ranking of variables was not discussed (Rajabzadeh et al., 2012; Haftani et 

al., 2015; Jamshidi et al., 2016; Kong and Shang, 2018; Jamshidi et al., 2018). In-situ UCS 

models have not been developed yet to capture the lithology indicator (GR), number of 

electron density, and acoustic travel time of the porous shay sand formation.   
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Table 5.1: Selected empirical correlations to estimate rock strength (UCS, MPa) for sandstone reservoir rocks. 

Authors, year 
Input 

variables 

Correlation for UCS Region where 

developed  

Comments/Remarks  

Freyburg, 1972 Vp 0.035𝑉𝑝 − 31.5 Germany • It was developed for the relatively strong rocks.  

McNally, 1987 
∆𝑡 1200exp(-0.036∆𝑡) Bowen Basin, 

Australia  

• It is applicable to sandstones (fine-grained, both consolidated and 

unconsolidated). 

Onyia, 1988 
Rt, GR, 

ρ
b
, ∆𝑡𝑐 

0.98(𝑃 + 𝑄𝐿𝑜𝑔10(𝑅𝑡) + 𝑅 × 𝐺𝑅 

+𝑆 × ρ
b
+ 𝑇 × ∆𝑡𝑐) 

Rogers Country, 

Oklahoma 

• The correlation was developed based on multivariate regression analysis 

(MVRA) incorporating log properties. 

Fjaer et al., 1992 
𝜈, Vsh, 

Vp 

3.3 × 10−20𝜌2𝑉𝑝
4(1 − 2𝜈){(1 +

𝑣)2/((1 − 𝑣)2}(1+0.78Vsh) 

Gulf coast • This correlation is applicable for sandstones if UCS> 30 𝑀𝑃𝑎. 

• Shale effect was considered; it is applicable for shaly sand reservoirs. 

Vernik et al., 1993 𝜙 254(1 − 2.7𝜙)2 Global • It can be used for very clean, well-consolidated sandstones with 0.3 > 𝜙. 

Sarda et al., 1993 

𝜙 a) (357 exp (−10.8𝜙) 

b) (258 exp (−9𝜙) 

c) 115 exp (−11.6𝜙)  

- • It is developed using Germingy-sous-Coulombs reservoir. 

• It is applicable for the range of 0.07 > 𝜙 > 0 (Eq. a)., 0.3 > 𝜙 (Eq. b), and 

𝜙 > 0.3 (Eq. c).  

Farquhar et al., 1994 𝜙 (208.08 exp (−0.074 𝜙) North Sea • It was developed for sandstones. 

Weingarten and 

Perkins, 1995 

E, K, Vsh (114 + 97 × 𝑉𝑠ℎ)𝐾 × 𝐸 USA • It is applicable for unconsolidated sandstone reservoir. 

Raaen et al., 1996 
∆𝑡 1.40 − 2.15∆𝑡 + 0.0083 × ∆𝑡2 Norway, North Sea • It was developed for relatively clean sandstones. 

• It is applicable for 140 > ∆𝑡 > 90 𝜇𝑠/𝑓𝑡. 

Raaen et al., 1996 
𝜙 (43 − 140𝜙 + 63𝜙2) Norway, North Sea • It is applicable for the range of 0.35 > 𝜙 > 0.2 

• It is valid for relatively clean sandstone reservoirs. 

Edlmann et al., 1998 𝜙 (129.54 − 3.225𝜙) North Sea • It was developed for sandstones. 

Bradford et al., 1998 
E 2.28 + 4.1089𝐸 Worldwide • It is a more representative model for the sandstone reservoir of the Chicontepec 

basin. 

Moos 𝑒𝑡 𝑎𝑙. , 2001 Vp, ρ
b
 1.745 × 10−9 × ρ

b
× 𝑉𝑝

−3 − 21 Cook Inlet, Alaska • It was developed for coarse-grained sandstones and conglomerates. 

Chang et al., 2006 ∆𝑡 1.4138 × 107∆𝑡−3 Gulf Coast • It is applicable for the weak and unconsolidated sandstone rocks. 
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Thus, it seems necessary to develop new correlation(s) for estimation of realistic 

continuous in-situ rock strength profile using dynamic wireline logging data in the absence 

of drilling or laboratory-based data.          

The connectionist models, for example ANN and LS- SVM, are being increasingly used 

for predicting rock mechanical properties for wellbore failure analysis, reservoir 

geomechanics, underground excavation as well as rock mass characterization (Yang and 

Zhnag, 1997; Yılmaz and Yuksek, 2008; Ocak and Seker, 2012; Asoodeh and Bagheripour, 

2012; Khandelwal and Monjezi, 2013; Barzegar et al. 2016; Negara et al. 2017; Matin et 

al. 2018; Abdi et al. 2018; Onalo et al. 2018; Ceryan and Can, 2018; Onalo, 2019). 

Although several research works have attempted to determine the elastic or geomechanical 

characteristics of rock using experimental core and log data, only a few studies have 

forecasted the rock strength (UCS) using wireline logs with AI or machine learning tools. 

The existing literature reveals that several input variables are adopted in soft computing 

smart models to obtain the UCS or Young’s modulus (E) using rock physical properties or 

features such as porosity, unit weight (uw), dry density (dd), compressional wave velocity 

(Vp), water absorption (wa), water content (wc), Schmidt hammer rebound number or 

hardness number (SRn), Brazilian tensile strength (BST), point load index (Is(50)), and slake 

durability index (Id). The main studies conducted for rock strength prediction are listed in 

Table 5.2 with a focus on the corresponding research methods and shortcomings. Only a 

few studies investigated ranking of the input variables while determining the rock strength 

(UCS) (Majidi and Rezaci, 2013; Torabi-Kaveh et al., 2015; Matin et al., 2018).   
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Table 5.2: Applications of AI-based connectionist tools for rock strength and mechanical properties prediction. 

 

Authors, year 
Input variables AI approach Variable 

ranking  

Comments/Remarks 

Yilmaz and 

Yuksek, 2009 

SRn, IS(50), wc, 

sonic velocity 

ANN, 

ANFIS 

No • Authors used tansig transfer function for the feed-forward neural network that consists of 4 neurons for an 

input layer, 9 neurons for the hidden layer, and one output layer. 

• The predictive model performance was acceptable with a root means square error (RMSE) of 5.98% and an 

correlation coefficient (R2) of 0.887. 

Sharma et al., 

2010 

RB, Vsh, Vp, Vs ANN No • It was concluded that the neural network is better at capturing the complex relations between geophysical 

properties and the strength of rock. 

Rabbani et al., 

2012 

Total 𝜙, RB, Sw ANN No • To train the ANN network, the optimal number of neurons was used for the first layer (20 perceptions) and the 

second hidden layer (25) using the trial and error approach.  

• The correlation coefficient about 0.903 was found for the UCS deterministic model. 

Yagiz et al., 2012 SRn, 𝜙, Id, Vp, uw ANN No • It was revealed that ANN gives relatively more precise results than a regression approach. 

Majdi and 

Rezaei, 2013 

Rock type, SRn, 

RB, 𝜙 

ANN Yes • Authors constructed a multilayer neural network model using different rock samples.  

• It offered better results, close to laboratory results, with an R2 of 0.97, compared to the MVRA.  

•  It was claimed that the most effective variables are density and SRn. 

Nabaei and 

Shahbazi, 2012 

Well trajectory  ANN No • The feedforward backpropagation network applied to predict the output using tansig transfer function for the 

first two layers.   

Ceryan et al., 

2013 

Vp, Vm, total 𝜙 ANN No • Authors constructed the Levenberg–Marquardt algorithm-based network using input variables including solid 

part (Vm) of the carbonate rock samples.  

Ceryan, 2014 
P-wave durability, 

𝜙  

ANN, SVM No • Ceryan (2014) concluded that the vector machine approach performs better than the ANN model. 

• The model's performance was investigated by adopting porosity and microstructural properties.   

Momeni et al., 

2015 

dd, Is(50), SRn, Vp ANN No • It was concluded that the particle swarm optimization-based ANN predictive model exhibits greater reliability 

than the conventional ANN model for limestone and granite.  

• It was revealed that the dd and SRn have more importance than other variables (Is(50), Vp) to predict UCS.  

Mohamad et al., 

2015 

Density, BTS, Vp, 

Is(50) 

ANN No • The PSO-based ANN model was employed to find the relationship between input variables and UCS of soft 

rocks.  

• The predictive model showed a good match with real date where R2 was equal to 0.971. 
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Torabi-Kaveh et 

al., 2015 

RB, Vp, 𝜙 ANN Yes • The researchers evaluated the performance of the ANN predictive model, and linear and non-linear regression 

equations using predictor variables of limestone rocks.  

• It was revealed that the Vp has a higher contribution than other input variables. 

Barzegar et al., 

2016 

RRn, Vp, 𝜙 ANN, 

ANFIS, 

SVM 

No • Different AI models were utilized to analyze the model performance.  

• It was claimed that SVM performs better than other models for travertine rocks.    

Behnia et al., 

2017 

Quartz content, dd 

𝜙 

GEP No •  Gene expression programming (GEP) tool was employed to predict the intact rock strength parameters; the 

statistical criteria were used to assess the models.  

Tariq et al.,  2017 

Ed, RB, Vs, Vp ANN 

ANFIS 

SVM 

No • The neural network was developed with tansig transfer function between input layer (4 neurons) and hidden layer 

(20 neurons). 

•  It was concluded that Ed has a higher relative importance than wave velocities and RB in carbonate rocks.  

Negara et al.,  

2017 

Grain density, 𝜙, 

elemental 

spectroscopy 

SVR No • They applied the SVR technique using the core data to build the predictive model. 

• It was demonstrated that elemental spectroscopy has a significant impact to estimate the UCS. 

Rastegarnia et al., 

2018 

Is(50), Vp, wc, 𝜙 ANN No • The sigmoidal and linear transfer functions were used between the input and hidden layers, and hidden and output 

layers to train the network. 

• Levenberg-Marquardt feedforward backpropagation algorithm was adopted to train the data.  

Matin et al., 2018 
SRn, Is(50), Vp, 𝜙 SVR, 

DT 

Yes • It was found that a rain forest is a powerful tool for variable selection, and Vp is the most effective variable to 

predict UCS.  

Onalo et al., 2018 

GR, RB, Vsh ANN No • They utilized the ANN model performance to predict compressional, shear travel time, and elastic moduli.  

• The sanding potentiality was also estimated and the results of the ANN-based predictive model and real data are 

compared.  

• The study did not examine variable ranking while estimating UCS with the predictive model. 

Abdi et al., 2018 

dd, wa, Vp, 𝜙 ANN No • It was found that the neural network model is more powerful than the MLR technique to determine the UCS 

and/or E of sedimentary rocks.  

• They proposed the empirical correlations to predict UCS or E using the input variables.  
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Also, the use of AI approaches to estimate elastic properties and rock strength parameter 

was found to be limited (Sharma et al., 2010; Tariq et al., 2017; Onalo et al., 2018). 

Sharma et al. (2010) introduced a correlation between UCS and physical properties of 

weakly cemented sandstone rock such as RB, synthetic Vp and Vs, and Vsh (volume of 

shale).  An extended version of the correlation was built through employing multiple 

regression analysis; the model is valid for the range of 0 to 4 MPa of UCS using synthetic 

velocities and multiple parameters from wireline log data. The performance of the 

regression-based model was also compared with that of an ANN model. Torabi-Kaveh et 

al. (2015) utilized the ANN model and regressive equation for predicting the rock strength 

and elasticity modulus of carbonate and limestone rocks. They claimed that higher 

accuracy can be obtained from the ANN predictive model, compared with the multiple 

regression analysis (MVRA). Tariq et al. (2017) investigated the applicability of machine 

learning approaches such as ANN, ANFIS, and SVM to predict UCS. It was concluded 

that ANN outperforms the other techniques; an empirical correlation to predict the UCS 

was also proposed that gives better results, compared to a number of existing correlations. 

It was claimed that four geomechanical parameters such as RB, BP, VS, and dynamic 

Young’s modulus (E) are sufficient to forecast the rock strength; however, the relative 

contribution of the variables was not investigated.  

Furthermore, Onalo et al. (2018) constructed an MLP-based ANN model using input log 

variables such as GR, Vsh, and RB to predict sonic acoustic velocities. In their study, they 

obtained the elastic moduli using correlations; the results obtained from the correlation 
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were also compared with ANN predictions. The researchers also investigated sanding 

possibility as a case study of shaly sand reservoir, Niger delta basin. In their study, ranking 

of input variables for the predictive ANN model was not discussed. Abdi et al. (2018) 

applied the ANN and the MLR approaches to obtain the sedimentary rock strength 

parameters using experimental data sets. It was found that ANN results in higher accuracy 

than MLR. They introduced a correlation to estimate UCS using data sets for different rock 

samples of limestone, sandstone, conglomerate, and marl. In their research study, the 

correlation did not include the lithology type and they did not rank the input variables. 

Based on the literature review, a comprehensive investigation is further required to identify 

relative contributions of the input variables in prediction of rock strength as well as 

mechanical properties of shaly sand formations. 

 

5.1.3 Research Objectives 

To the best of our knowledge, data-driven predictive model and feature ranking of logging 

variables to study the rock strength with the aid of logging data have not been investigated 

systematically. The variable selection and ranking of logging parameters appear to be an 

important challenge for not only petroleum and mining engineers and drillers but also 

geologists to estimate ultimate rock strength profile using the wireline log data with 

acceptable accuracy. The logging data is expensive to assemble and depict the entire 

formation profile. The current study is planned to fill in the knowledge gap by finding the 

most contributing predictor log variables, corresponding to their relative performance 

while predicting the ultimate rock strength. It is believed that the research strategies 
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employed in this study can be less time consuming and cost-effective for efficient rock 

formation evaluation. The objectives of this research work are listed as follows: 

• To investigate the performance of rock strength models and compare the predictive 

performance of deterministic tools through statistical analysis. 

• To perform comprehensive parametric sensitivity analysis and find the most 

contributing variables for predicting UCS. 

• Develop a new correlation to estimate in-situ formation UCS, capturing most 

effective log parameters. 

 

5.2 Theory and Model Development   

 

5.2.1 Log-based model to predict rock strength  

The strength of rock is a function of rock mineralogy and lithology, acoustic properties, 

density, porosity, geometric factors, depositional environments, and compaction level. The 

most common logging types are the gamma-ray log, resistivity log, and porosity log. The 

comprehensive information on well logging principles, advantages, limitations and 

applications can be found in the available literature (Asquith and Krygowski, 2004; 

Mondol, 2015). The presence of clay minerals in a formation may strongly affect the rock 

materials properties. The GR log is extensively used to identify the lithology as well as to 

estimate the shale volume (clay content); this corrects their presence in shaly sand rock, 

yielding more accurate effective porosity (𝜙𝑒). Rock porosity (void space in the rock 

volume) can be obtained from the responses of neutron log (counts the hydrogen 
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concentration), density log (measures the bulk electron density), and sonic log (estimates 

acoustic travel time) in a formation. Also, the rock porosity varies primarily with particle 

size distribution, grain shape, packing arrangement, compaction, cementation, and clay 

content (Asquith and Krygowski, 2004).  

The conductivity (inverse of resistivity) of a rock can be obtained from the deep induction 

resistivity log, which converts to true resistivity (RT, ohm-m) of the virgin zone in a 

formation. In the present study, several well log responses are incorporated to estimate the 

in-situ shale volume, acoustic primary velocity, and effective porosity; these rock 

properties are then used to estimate the rock strength.   

The shale index (IGR) is obtained in the current study by the following equation 

(Schlumberger, 1998): 

IGR= 
𝐺𝑅𝑙𝑜𝑔- GRmin

GRmax- GRmin

                                                                                                           (5.1) 

where 𝐺𝑅𝑙𝑜𝑔is the gamma-ray value of the zone of interest; and GRmax and GRmin represent 

the maximum and minimum magnitudes of gamma-ray log over the entire formation, 

respectively. The clay content or shale volume (Vsh) is estimated from the following 

equation to simulate the nonlinear response of the tertiary rock formation (Larionov, 1969): 

Vsh= 0.083(2
3.7*IGR  - 1)                                                                                               (5.2) 

The density porosity (ϕ
D

) is determined using the formation bulk density response (ρ
b
) by 

the following equation: 

ϕ
D

=
ρma-ρb

ρma-ρfl

                                                                                                                                   (5.3)                                   
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In Equation (5.3), ρ
fl
 and ρ

ma
 refer to the density of the drilling mud, and the rock matrix 

density, respectively.     

The clay corrected density porosity (𝜙D,e) and neutron porosity (𝜙N,e) are calculated as 

follows (Miah, 2014):  

ρ
b.c

= ρ
b
+ Vsh (ρ

ma
-ρ

cl
)                                                                                                (5.4) 

𝜙D,e=
ρ

ma
- ρ

b.c

ρ
ma

- ρ
fl

                                                                                                                   (5.5) 

𝜙N,e = PHIN − Vsh ∗ 𝜙N,sh                                                                                          (5.6) 

in which, ρ
b.c

 refers to the clay corrected formation bulk density (g/cm3); 𝜙N represents the 

neutron porosity (fraction) from the neutron log; and 𝜙N,sh and ρ
cl

 denote the neutron 

porosity (fraction) and formation bulk density (g/cm3) of the shale zone, respectively. 

The clay corrected effective porosity (𝜙e) is determined through the combination of clay 

corrected neutron and density porosities in the porous rock formation using the following 

equation: 

𝜙e  =√
𝜙D,e

2
+ 𝜙N,e

2

2
                                                                                                           (5.7) 

Although, the non-destructive testing for a rock sample is a more accurate way to predict 

the sonic primary velocity; however, it is a time-consuming, expensive, and tedious 

method. The sonic log is employed to obtain the profile of sonic acoustic compressional 

wave velocity (Vp). The compressional sonic acoustic time (DT, 
𝜇𝑠

𝑓𝑡
 ) is inversely 
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proportional to the sonic primary wave velocity (Vp, km/sec) of the formation, as expressed 

below (Anemangely et al., 2017):  

𝑉𝑝 =
304.8

𝐷𝑇
                                                                                                                          (5.8) 

 

When the shear sonic slowness is not available from the wireline log data, the synthetic 

shear wave velocity (Vs) can be estimated from the available correlations for various rock 

formations (Pickett, 1963; Caroll, 1969; Krishna et al., 1989; Greenberg and Castagna, 

1992; Vernik et al., 2003; Brocher, 2005; Hossain et al., 2012; Bailey and Dutton, 2012; 

Lee, 2013; Ojha and Sain, 2014; Anemangely et al., 2017). A limited number of studies 

have attempted to obtain the shear wave velocity for the siliciclastic or shaly sand rock 

formations (Castagna et al., 1985; Han et al., 1986; Williams, 1990; Miller and Stewart, 

1990; Ramcharitar and Hosein, 2016). Recently, Oloruntobi and Butt (2019) have proposed 

an empirical correlation to estimate Vs using Vp and ρ
b
for any type of sedimentary rocks 

such as shaly sand reservoirs, as given below:  

𝑉𝑠 = 𝐴 [
𝑉𝑝

√ρ
b

]

4

+ 𝐵 [
𝑉𝑝

√ρ
b

]

3

+ 𝐶 [
𝑉𝑝

√ρ
b

]

2

+ 𝐷 [
𝑉𝑝

√ρ
b

] + 𝐸                                           (5.9) 

In Equation (5.9), A (0.094), B (-0.881), C (2.605), D (-1.415), and E (-0.435) are the 

coefficients of the polynomial expression.    

 

In the literature, there are several empirical correlations to calculate the rock strength as 

well as elastic properties using sonic acoustic travel time and formation density. Also, 

elastic properties such as Young’s modulus (E), shear modulus (G), bulk modulus (K), and 
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Poisson’s ratio (𝜐) can be estimated using density and sonic logs. The following equations 

can be utilized to obtain the four main isotropic elastic properties at dynamic conditions 

using bulk density (ρ
b
), sonic acoustic compressional (Vp), and shear wave velocity or Vs 

(Li and Fjaer, 2012): 

𝜈 = 0.5(𝑉𝑝
2 − 2𝑉𝑠

2)/(𝑉𝑝
2 − 𝑉𝑠

2)                                                                               (5.10) 

𝐸 = ρ
b
𝑉𝑠

2(3𝑉𝑝
2 − 4𝑉𝑠

2)/(𝑉𝑝
2 − 𝑉𝑠

2)                                                                         (5.11) 

𝐺 = ρ
b
(𝑉𝑠

2)                                                                                                                     (5.12) 

𝐾 = ρ
b
(𝑉𝑝

2 −
4

3
𝑉𝑠

2) =
𝐸

3(1 − 2𝜈)
                                                                             (5.13) 

Any of the elastic properties (such as E) can be calculated using two remaining properties 

(e.g., K and 𝜈) (Fjær et al., 2008). The dynamic moduli is always larger than the static ones, 

as the dynamic strains are always smaller than static strains of rocks (Demirdag et al., 2010; 

Najibi et al., 2015). The conversion factor from static to dynamic moduli is dependent on 

the formation porosity, confining pressure, degree of loading, and other lithological factors 

(Rasouli et al., 2011). In the current study, the UCS parameter is estimated using the 

following model for the shaly-sand formation (Fjær et al., 2008; Rabbani et al., 2012): 

𝑈𝐶𝑆 = 3.3 ∗ 10−20𝜌𝑏
2 ∗ 𝑉𝑝

4(1 − 2𝜈)
(1 + 𝑣)2

(1 − 𝑣)2
(1 + 0.78𝑉𝑠ℎ)                               (5.14) 

 

5.2.2 Log data collection and quality assurance   

A combination of several wireline logs such as gamma-ray, deep resistivity, porosity, and 

caliper logs is used to identify the lithology, and to estimate the formation thickness, and 
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rock physical and mechanical properties. The gamma-ray (GR) log is a complementary log 

that is able to identify the formation rock type, and to measure the amount of radioactive 

elements (API) and clay content. The density log measures the electron density (bulk 

density, RB) to estimate the formation true porosity, while the neutron log counts the 

hydrogen concentration (NP) as well as porosity of fluid-filled formation. The sonic log 

helps to measure the acoustic wave in the form of compressional travel time (DT) or shear 

slowness. On the other hand, the resistivity log measures the conductivity (inverse of 

resistivity, RT) in the rock formation. All of these log variables are used in this study to 

develop the data-driven model; field log data are collected from a shaly sand reservoir 

located in the Bengal basin.  

The available field well logs data (such as GR, RT, RB, and DT) and neutron-density 

porosity are utilized to predict the in-situ rock strength profile in the shaly sand rock 

formation. A total of 182 data samples are used for each log variable in the study. The log 

data quality is also confirmed to ensure the reliability of each log dataset variable by 

checking the depth shift and borehole conditions. The output and input variables are 

classified into training, testing, and validation phases with 75%, 15%, and 10%, 

respectively. All the programming tasks related to this study are carried out using Matlab 

programming environment. 
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5.2.3 Development of connectionist predictive models  

ANN model: The ANN is composed of different components such as artificial neurons 

(connected in each layer), weight factors, bias term, and transfer function in a connectionist 

process unit system. The ANN can be adopted with a single-layer perception, multilayer 

perception (MLP), and/or radial basis function networks (Ali, 1994; Mohaghegh et al., 

1996; Razavi and Tolson, 2011). The MLP is one of the conceptually attractive 

feedforward neural network approach employed in estimation of rock formation properties, 

rock mechanics, stability of underground openings, wellbore failure analysis, and rock 

engineering (Yang and Zhang, 1997; Meulenkamp and Grima, 1999; Helle and Bhatt, 

2002; Yılmaz and Yuksek, 2009; Ocak and Seke, 2012; Khandelwal and Monjezi, 2013). 

The deep learning MLP model consists of at least four layers with one input layer, at least 

two hidden layers, and an output layer for target variables. The training algorithm and 

activation (transfer) function are the most important components of an ANN structure.  

In this study, the ANN model is processed with the Levenberg–Marquardt (LM) algorithm 

for training function (Trainlm) to adjust the weight factors through simulation in the 

connectionist model. The LM algorithm is usually faster and more reliable in the back-

propagation system for ANN model than other standard back-propagation methods 

(Ceryan et al., 2013). The Tansig type activation function is used between input and hidden 

layers while Purelin (linear) transfer function is employed between the last hidden layer 

and output layer in the model. Taheri-Garavand et al. (2015) claimed that a hidden layer 

with a less number of neurons is desired in an ANN model because of shrinking the neural 

network structure as well as increasing the learning potential.  
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In the current study, the number of hidden layers is chosen by a trial and error strategy to 

optimize the ANN structure such that the maximum regression coefficient and minimum 

mean squared error (mse) as the selection criteria are attained to find the best configuration 

in the smart approach. The number of neurons in the hidden layer is optimized to enhance 

the network performance as well as to save the computational training time. An ANN 

structure is shown in Figure 5.1. A flow chart is also depicted in Figure 5.2 to present the 

ANN model development steps and the optimization strategy in the study. In Figure 1, N1 

and N2 refer to the number of neurons in the hidden layers 1 and 2, respectively. 

 

 

 

 

 

 

 

 

 

Figure 5.1: Schematic of ANN architecture employed in the current work. 
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Figure 5.2: A flowchart for ANN model development and to predict the output variable 
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ym = [∑ωjm Tansig(∑ωijxi + bj) + bm

n

i=1

m

j=1

]                                                             (5.15) 

In Equation (5.15),  ym stands for the output variables; xi introduces the vector of target 

variables (i = 1, 2, 3, 4, 5…); bm resembles the bias term for output layers; ωij denotes the 

connection weight on the link from i to j node between input and hidden layers; m is the 

number of hidden nodes; and n refers to the number of input variables.  

 

LS-SVM model: The SVM is one of the powerful artificial intelligence approaches used 

in data classification and regression analysis. The SVM uses a subset of training points in 

the support vectors (decision function), which was first introduced by Vapnik (1995). The 

LS-SVM is a modified version of the classic SVM algorithm proposed by Suykens and 

Vandewalle (1999). This modified version is less complex than the classic SVM algorithm. 

It helps to reach the solution of a worsening problem with less data points more efficiently 

by setting up a linear set of equations through employing SVM instead of the quadratic 

programming (Suykens and Vandewalle, 1999). Compared to SVM, the LS-SVM learning 

method is less time consuming. More information regarding the theory and algorithm with 

different features of SVM or LS-SVM can be found in the literature (Smola et al., 2004; 

Sebtosheikh et al., 2015; Esfahani et al., 2015). The following equation is used in the LS-

SVM:  

𝑦(𝑥𝑖) =  𝜔𝑇𝜑(𝑥𝑖) + 𝑏   𝑤ℎ𝑒𝑟𝑒 𝑥𝑖 ∈ 𝑅𝑛 and 𝑦𝑖 ∈ 𝑅                                            (5.16) 
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where the nonlinear function φ(. )Rn → Rni represents the primal space to a feature space 

with higher dimensions. The dimension ni of this space is only defined in an implicit way;  

b is a bias term; and ω ∈  Rni introduces the weight factor. The optimization problem can 

be written for function estimation in the LS-SVM (Suykens et al. 2002, Esfahani et al., 

2015), as shown below: 

Minimize J(ω, ei) ≅
1

2
ωTω + γ∑ei

2

n

i=1

                                                                      (5.17) 

Subject to the following constraint,  

yi = ωTφ(xi) + b + ei , i = 1,2,3, … . , n                                                                  (5.18) 

In Equation (5.18), 𝑒𝑖 represents the error variable, and γ resembles the regularization 

(annealing) parameter to prevent overfitting.  

The kernel function is K(x, xi) = φ(xi)
Tφ(xi), which needs to be satisfied with Mercer’s 

condition. After eliminating 𝜔 and 𝑒𝑖, the final expression can be formulated for the LS-

SVM function estimation as follows: 

y(xi) = ∑αiK(x, xi)

n

i

+ b                                                                                          (5.19) 

where b and α are the solutions to the linear system expressed through Equation (5.19). 

The α (weight factor) is a vector with the size of n×1; x is the training sample; and 𝑥𝑖 refers 

to the support vector.     

The kernel function-based LS-SVM structure used in this study is illustrated in Figure 5.3.  

A summarized methodology for development of kernel-based LS-SVM model is shown in 

Figure 5.4.  
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Figure 5.3: A generalized structure of LS-SVM proposed in the study. 

 

There are many kernel functions that can be used in LS-SVM such as linear, polynomial, 

spinal, radial basis, and sigmoidal. Among all kernel functions, the Gaussian radial basis 

kernel function (RBF) is mostly used in the LS-SVM learning strategy to find the best 

output (Suykens et al., 2002; Samui, 2008) due to its computational simplicity and other 

features (e.g., capable of solving nonlinear problems). The Gaussian RBF can be defined 

mathematically as follows (Samui, 2008): 

𝐾(𝑥, 𝑥𝑖) = exp(−
(||𝑥𝑖 − 𝑥||)

2

22 )                                                                             (5.20) 
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Figure 5.4: A flowchart for kernel-based LS-SVM model development 
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model, the databank for the log data is divided randomly into three sub-datasets to construct 

the SS-SVM models using different kernel functions. The total samples are categorized 

into three groups including 75% for training, 15% for testing, and 10% for validation in 

the LS-SVM connectionist model with the CSA optimization approach. 

 

5.2.4 Model performance assessment  

Four statistical indicators are used in this study to analyze the predictive model 

performance. The indicators are root mean square error (RMSE), correlation coefficient 

(R), average absolute percentage relative error (AAPE), and maximum average absolute 

percentage error (MAPE). The mathematical expressions for all performance indices are 

listed below:     

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑌𝑚,𝑖 − 𝑌𝑝,𝑖)

2
𝑛

𝑖=1

                                                                                          (5.21) 

𝑅 = 1 −
∑ (𝑌𝑚,𝑖 − 𝑌𝑝,𝑖)

2𝑛
𝑖=1

∑ (𝑌𝑚,𝑖 − 𝑌𝑚,𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

                                                                                       (5.22) 

𝐴𝐴𝑃𝐸 =
1

𝑛
∑(

(𝑌𝑚,𝑖 − 𝑌𝑝,𝑖)

𝑌𝑚,𝑖
) ∗ 100

𝑛

𝑖=1

                                                                             (5.23) 

𝑀𝐴𝑃𝐸 = 𝑀𝑎𝑥. |
(𝑌𝑚 − 𝑌𝑝)

𝑌𝑚
| ∗ 100                                                                                 (5.24) 

In the preceding equations, n indicates the total number of samples; 𝑌𝑚 resembles the 

measured variable; 𝑌𝑚,𝑚𝑒𝑎𝑛 is the mean value of 𝑌𝑚; and 𝑌𝑝 represents the predicted output 

variable. The accuracies of the data-driven models are analyzed on the basis of the low or 
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high value of statistical indices. In the study, the model is best for the high value of R (close 

to 1) and low values of RMSE, AAPE, and MAPE. 

 

5.2.5 Sensitivity analysis and variable selection  

In this study, a systematic strategy is employed to perform the parametric sensitivity 

analysis as well as to find the relative importance of the input log variables in the AI-based 

predictive rock strength models (see Figure 5.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: A summarized flow chat of parameter sensitivity analysis and ranking using 

AI approaches. 
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Furthermore, the optimized AI models predict the UCS; the model performance is assessed 

using the statistical criteria. Based on the contribution of an input variable to the predictive 

models, the input parameters are ranked. The variable ranking approach is called ‘single 

variable elimination’ of the data-driven model, while it has selective multiple input 

variables to predict the output variable using the optimized AI structure. In the log 

parameter ranking through the data-driven model, if the model results in high AAPE, 

MAPE, and RMSE and low R, implying that the eliminated variable has high impact on 

the model. It is worth noting that only most influential parameters are used to develop the 

new correlation for obtaining continuous in-situ UCS profile for the clastic sedimentary 

reservoir rocks through multivariable regression analysis with real field application.    

    

5.3 Results and Discussions  

5.3.1 Data analysis  

The radioactivity properties including gamma-ray, deep resistivity, formation bulk density, 

and sonic log responses considerably change with depth throughout a shaly sand formation. 

For the data set under study, the minimum and maximum values of gamma-ray over the 

entire lithology log of the formation are 77 and 155 API, respectively, which are used to 

calculate the shale volume. The average shale volume extent is 11.84%, while the 

minimum value is 0.26% in the studied depth interval. The statistical information on the 

log data samples and the estimated values of rock characteristics are presented in Tables 

5.3 and 5.4 over the entire depth of interest reservoir rock zone, respectively. Note that the 
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formation properties in Table 5.4 were derived from the statistical values in Table 5.3 

following the methodology outlined in Section 5.2.1. 

 

Table 5.3: Summary of the statistical values of the used log data. 

Log parameters Max. Min. Mean St. Dev. Sample var. 

GR (API) 157.82 76.28 100.19 13.87 192.51 

RT (ohm-m) 39.70 13.70 22.67 4.96 24.58 

RB (g/cc) 2.53 2.30 2.37 0.0425 0.0018 

NPHI (v/v) 0.2039 0.1455 0.17 0.013 0.0002 

DT (µs/ft) 97.40 85.84 92.90 2.43 5.89 

 

Table 5.4: Summary of log-based formation properties magnitudes in the study 

Formation properties  Maximum Minimum Mean 

Compressional wave, Vp (Km/s) 3.59 3.13 3.28 

Shear wave, Vs (Km/s) 1.59 1.51 1.54 

Poison’s ratio, (fraction)  0.31 0.25 0.29 

Porosity, PHI (v/v) 0.18 0.06 0.15 

Rock strength, UCS (MPa) 78.82 24.40 33.19 

 

The clay corrected effective porosity (PHI) is estimated using neutron and density porosity; 

it is then used to obtain the in-situ UCS of shaly sand formation using an empirical 

correlation presented in Fjær et al. (2008). The clay corrected porosity of a siliciclastic rock 
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changes with the heterogeneity of pore diameter, size and shape of pores, and formation 

density along the direction of vertical depth. Also, the primary acoustic velocity (inverse 

of sonic compressional travel time) and in-situ Poisson's ratio varies with respect to the 

vertical depth (6955.95-7015.33 ft) due to the rock formation compaction, cementation, 

and heterogeneity, as shown in Figure 5.6.  

   

Figure 5.6: Profile of compressional wave and Poison's ratio in the rock formation. 

 

The in-situ rock strength, UCS, varies vertically due to the overall effect of rock 

heterogeneity, formation radioactive mineral depositions, compaction, pore structure, grain 

size, packing, and density of the rock, as depicted in Figure 5.7. The rock strength of a 

shaly sand formation increases with an increase in gamma-ray and bulk density, while it is 

inversely proportional to the acoustic travel time as well as rock resistivity and porosity. 

The correlation matrix between UCS and other formation properties (e.g., porosity and true 

resistivity) is shown in Table 5.5.    
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Figure 5.7: Variation of rock strength with formation gamma-ray, sonic travel time, and 

bulk density, depending on the number of data points. 

 

Table 5.5: Correlation matrix between rock strength and formation characteristics 
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RT -0.44106 1 
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2.25

2.30

2.35

2.40

2.45

2.50

2.55

20

40

60

80

100

120

140

1 21 41 61 81 101 121 141 161 181

F
o

rm
a

ti
o

n
 d

en
si

ty
 (

g
/c

c)

U
C

S
 (

M
P

a
) 

a
n

d
 a

co
u

st
ic

 t
ra

v
el

 t
im

e 
(D

T
) 

Number of data points

UCS DT

GR RB



 

 196 

5.3.2 Data-driven model performance  

 

A feed-forward artificial neural network is designed using stratified data samples. The 

optimum structure is obtained with the algorithm of LM; the optimal model has one input 

layer with 5 neurons, the first hidden layer with 4 neurons, the second hidden layer with 3 

neurons, and one output layer with one neuron. The validation performance versus the 

number of epochs is illustrated in Figure 5.8a for the constructed MLP-based ANN model.  

Figure 5.8b also shows the performance of training phase in terms of number of epochs. In 

this study, the validation phase is conducted to tune the model parameters and terminate 

the neural network training stage before overfitting;  𝜇 (mu) is the Marquardt parameter in 

the training step of the network. The best validation performance is found at the epoch 

number of 10 with a mean square error of 0.02243. The magnitudes of the gradient and mu 

are 0.02034 and 0.01 at epoch 16, respectively, in the training stage. The correlation 

coefficient is close to one for both training and testing stages in the optimized ANN model 

(see Figure 5.9). It follows that the predicted results are in good agreement with the actual 

results for all training, testing, and validation data sets. The MLP based ANN gives less 

error (percentage) with an MAPE of 2.3692 and 1.1956% for the training and testing 

phases, respectively.   

 

 

 

 

 



 

 197 

 

 

Figure 5.8: Graphically representation of a)Validation performance and b) training phase 

for optimized ANN model. 

(a) 

(b) 
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Figure 5.9: Predictive performance of the optimized ANN model. 

 

In addition, the CSA optimization technique is used in the LS-SVM model as an iterative 

random search strategy. The optimization procedure is repeated several times to reach the 

optimum global point. Figure 5.10 displays the scatter plots (target values versus 

predictions) of the training, testing, and validation steps for the optimized LS-SVM model. 
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The initial values of the annealing and tuning parameters (γ and σ2) are 505962.56 and 

104.38, respectively. The final tuning parameters γ and σ2 of the radial kernel function 

(Gaussian) based log data-driven model for UCS are 3.62e+11 and 1.74e+03, after 14 

iterations. The RBF-based model results in a value of MAPE (%) equal to 0.0476 for the 

training and 0.2656 for the testing, respectively; the correlation coefficient is close to 1. 

The RBF based LS-SVM predictive model has a greater performance in terms of accuracy 

and reliability; it leads to the lowest RMSE, AAPE, and MAPE and high R. The statistical 

information for both MLP-based ANN and kernel function-based LS-SVM models is 

summarized in Table 5.6.  

 

Table 5.6: Comparison of data-driven predictive models performance in the study 

AI approach Prediction 

phase 

AAPE MAPE RMSE 

MLP-ANN Training 

Testing 

0.2803 

0.2779 

2.3692 

1.1956 

0.1735 

0.1314 

LS-SVM Training 

Testing 

0.0118 

0.0306 

0.0476 

0.2656 

0.0048 

0.0199 

 

5.3.3 Parametric sensibility analysis and variable Selection  

The optimized ANN structure in this study has two hidden layers with the topography of 

(4-4-3-1). The selected ANN model is used to perform parametric sensitivity analysis. 

Based on the statistical analysis, the log parameters are ranked based on their relative 
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importance in the predictive UCS model. To further understand the effect of individual 

variables, one variable is excluded at each time and the remaining four variables are used 

in both ANN and LS-SVM models. In the model schemes A through E, the UCS 

predictions are obtained in the absence of one input variable. Due to the less significance 

of RT and PHI (input parameters excluded from the predictive models), models D and E 

show better performance (such as lower error and greater correlation coefficient), 

compared with the other models. Model A leads to a weaker performance with a low value 

of the correlation coefficient and high magnitudes of statistical errors due to the absence of 

an important log variable, DT, in the model (Figure 5.10). Tables 5.7 and 5.8 present the 

performance metrics for the developed models. The statistical information of both 

connectionist techniques is presented in Figure 5.11.  
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Figure 5.10: Performance of model A at different stages in the absence of DT (observer) 

variable. 
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Table 5.7: Investigating Investigating the impact of excluded variable on the 

performance of the MLP-based ANN model with four layers.  

Model 

scheme 

Predictor variables Excluded 

variable 

Phase AAPE  RMSE R 

A RT, GR, RB, PHI 

 

DT Training 

Testing 

3.60 

4.84 

1.60 

2.26 

0.947 

0.947 

B RT, RB, PHI, DT 

 

GR Training 

Testing 

1.85 

1.90 

0.96 

0.84 

0.983 

0.991 

C RT, GR, PHI, DT 

 

RB Training 

Testing 

0.63 

0.53 

0.29 

0.23 

0.999 

0.999 

D GR, RB, PHI, DT 

 

RT Training 

Testing 

0.18 

0.16 

0.10 

0.07 

0.999 

0.999 

E RT, GR, RB, DT PHI Training 

Testing 

0.005 

0.004 

0.003 

0.004 

1 

1 

 

Table 5.8: Importance of input variables in the RBF-based LS-SVM model.   

Model 

scheme 

Predictor variables Observer 

variable 

Phase AAPE  RMSE R 

A RT, GR, RB, PHI 

 

DT Training 

Testing 

2.85 

4.41 

1.20 

2.78 

0.973 

0.938 

B RT, RB, PHI, DT 

 

GR Training 

Testing 

1.08 

1.42 

0.61 

0.69 

0.994 

0.952 

C RT, GR, PHI, DT 

 

RB Training 

Testing 

0.44 

1.71 

0.19 

2.38 

0.999 

0.956 

D GR, RB, PHI, DT 

 

RT Training 

Testing 

0.01 

0.02 

0.002 

0.018 

0.999 

1 

E RT, GR, RB, DT PHI Training 

Testing 

0.005 

0.004 

0.003 

0.004 

1 

1 
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Figure 5.11: Comparison of a) R (top) and b) statistical error (bottom) performance for 

various model schemes in the absence of observer variable. 
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porosity, and true resistivity (high to low ranked order) for prediction of UCS. Also, the 

same order of variable importance is attained for the RBF-based LSSVM model. Based on 

the literature, the sonic porosity log (e.g., sonic travel time) is needed to estimate the rock 

strength using lithology-based correlations. The current study demonstrates that acoustic 

compressional travel time (DT) parameter has the highest contribution to the UCS value in 

a shaly sand formation. The rock resistivity and porosity have minor significance while 

predicting in-situ UCS profile. According to the different testing, validation, and 

generalization approaches used in the current study, the most significant predictor variables 

are DT, GR, and RB to estimate the rock strength of siliciclastic rock formations. Also, 

these variables are vital in capturing dense minerals effect, clay content, acoustic velocity, 

and bulk density of rocks.   

 

5.3.4 Development of new correlation for rock strength estimation  

Several correlations have been developed to estimate rock strength (UCS) using either core 

or wireline log properties data. Thus, it seems that a new log-based UCS correlation is 

required to obtain in-situ rock strength profile that can capture the mineralogical or clay 

effect, dynamic formation acoustic travel time, and bulk density. A set of 175 in-situ data 

samples of a shaly sand reservoir in the Bengal basin is used in this study to figure out the 

influences of formation properties on the rock strength as well as to develop a new 

correlation. The relationships between the rock strength and formation bulk density, 

gamma-ray, and acoustic travel time are illustrated in Figures 5.12 through 5.14. The 

formation bulk density is highly heterogeneous with respect to depth in the studied 
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formation. The in-situ rock strength increases with an increase in the formation bulk 

density due to the higher number density of electrons. The rock strength also increases with 

increasing gamma-ray due to the radioactive minerals and clay content in the shaly sand 

rock. The in-situ rock strength decreases with increasing acoustic travel time or decreasing 

compressional wave in the clastic rock formation.         

         

 

Figure 5.12: Relationship between in-situ rock strength and bulk density. 
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Figure 5.13: Relationship between in-situ rock strength and gamma ray. 
 

 

Figure 5.14: In-situ rock strength versus acoustic travel time. 
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To capture the lithology indicators, degree of formation density and touchstone of 

compaction, the formation gamma-ray (GR), bulk density (ρ
b
), and sonic transit time (∆𝑡) 

are considered to develop the new correlations for predicting the UCS of clastic rocks such 

as clean or shaly sand rock formation. The following two UCS models are proposed 

through linear regression analysis: 

Model 1: 𝑈𝐶𝑆 = 68.158 + 31.347ρ
b
+ 0.156𝐺𝑅 − 1.349∆𝑡                              (5.25) 

Model 2: 𝑈𝐶𝑆 = 0.149 𝐺𝑅0.93 + 6.67 ∗ 1010∆𝑡−5 + 0.75ρ
b
3.07                          (5.26) 

 

The performance of proposed models is compared with that of other models in Figure 5.15.  

 

Figure 5.15: A comparison of UCS profile with different models. 
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To develop the above models, 175 field log data samples are collected from the shaly sand 

clastic sedimentary reservoir rock while it has an average UCS of 31.85 MPa, GR (API) of 

98.39, ρ
b
 of 2.36 g/cm3, and ∆𝑡 of 93.12 µs/ft in the depth interval of 6955.5-7015.34 ft. 

The proposed model has a lower prediction error (a RMSE of 2.593 and an MAPE of 21%), 

compared to Moos et al. (2001) model (a RMSE of 8.92 and MAPE of 40.63%), while 

determining the UCS.    

 

To further validate the robustness of the new correlation for UCS, real data taken from 

Volve field in the Norwegian North Sea is used. The detailed geological information about 

the filed can be found in the literature (Brekke et al., 2001; Faleide et al., 2010). Due to the 

availability of well log data in the open sources, the Well no. 15/9-F-1-A is chosen to 

examine the validity of the proposed correlations. The most common lithologies of this 

well are carbonate rocks (limestone, 9091 -10538 ft), marlstones with the trace of limestone 

and sandstone (10538-11017 ft), claystone (11017–11250 ft), and predominantly 

sandstones with some claystone in the depth interval of 11250-11948 ft. The field log data 

of GR, RB, and DT is employed to estimate continuous UCS profile using proposed models 

and other correlations, namely Chang et al. (2006) and Moos et al. (2001) where the 

formation depth is in the range 11250 to 11850 ft of Volve field (Equinor, 2018). A total 

of 1823 log samples are used from the selected depth of formation with average values of 

75.50 µs/ft, 130.52 API,  and 2.48 g/cm3 for DT, GR, and RB, respectively. The predicted 

profile of UCS at 200 ft is depicted in Figure 5.16.   
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Figure 5.16: A comparison of UCS profile obtained from different models of in the 

Volve field. 
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can employ model 1 to obtain more reliable in-situ UCS profile for the shaly sand rock 

formations, compared to the model proposed by Moos et al. (2001). The new models take 

into account the most contributing log parameters to figure out the lithology effect, number 

of electron density, and acoustic travel time of the porous formation. Furthermore, the 

obtained UCS profile can be used to investigate the wellbore stability or rock failure 

criterion, and drilling performance analysis, reducing the exploration costs during the field 

development phase. 

 

5.4 Conclusions   

 

In this study, ANN and LS-SVM techniques are employed to predict the continuous profile 

of in-situ rock strength (UCS) of clastic sedimentary rocks using several field log data such 

as true resistivity, gamma-ray, bulk density, porosity, and compressional sonic travel time. 

The statistical indicators such as AAPE, MAPE, RMSE, and coefficient of determination 

(R) are used to evaluate the AI-based connectionist model performance. The key findings 

of this study are listed as follows:  

• The connectionist models based on ANN with Levenberg-Marquardt training 

algorithm and the LS-SVM with CSA optimization strategy are capable of accurately 

estimating the reservoir rock strength (UCS) using log data. 

• The compressional sonic travel time is the most influential parameter for 

determination of continuous in-situ rock strength profile of siliciclastic rocks. 

• The formation acoustic travel time, gamma-ray, and the bulk density are essential to 

attain an accurate continuous formation UCS profile to capture lithology indicator, 
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dense minerals, number of electron density, and acoustic travel time of the 

underground formation.  

• A correlation (model) is developed to estimate UCS through multivariate regression 

analysis by incorporating three influential log parameters. Similar to existing 

correlations, the introduced model exhibits a good performance.  

• It is proven that newly developed log-based correlation can be used to predict actual 

in-situ unconfined rock strength for clastic sedimentary rocks including shaly sand 

rock formations.         

• The deterministic tools, log variable ranking approach, and developed correlations 

can be useful for field specialists, researchers, and rock engineers while dealing with 

rock failure analysis, geomechanics, drilling optimization as well as formation 

evaluation.  

 

Acknowledgements 

The authors would like to thank Equinor (formerly Statoil) Canada Ltd., Natural Sciences 

and Engineering Research Council of Canada (NSERC) and InnovateNL for providing 

financial support to accomplish this study at the Memorial University, St. John’s, NL, 

Canada. 

Nomenclatures 

 

Acronyms 

 

 

AAPE Average Absolute Percentage Error 

 

AI Artificial Intelligence  

ANN Artificial Neural Network 
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BTS Brazilian Tensile Strength  

DT Sonic Travel Time (µs/ft) 

FL Fuzzy Logic 

GEP Gene Expression Programming 

GR Gamma-ray (API) 

LS-SVM Least Square Support Vector Machine 

LM Levenberg-Marquardt 

MAPE Maximum Absolute Error Percentage 

MSE Mean Square Error 

ML Machine Learning 

MLP Multilayer Perception 

MVRE Multivariate Regression Analysis 

RBF Radial Basis Kernel Function 

RMSE Root Mean Square Error 

UCS Unconfined Compressive Strength (MPa), Rock 

strength  
 

Variables/Parameters  

 
b Bias  

dd Dry density 

E Young’s modulus (MPa) 

G Shear modulus (MPa) 

𝐺𝑅𝑙𝑜𝑔 Gamma-ray value of the zone of interest 

GRmax Maximum value of gamma-ray log over the entire 

log 
GRmin Minimum value of gamma-ray log over the entire 

log 
Id Slake durability index 

Is(50) Point load index test  

IGR Shale Index (Clay index) 

K Bulk modulus (MPa) 

N Number of neurons 

NPHI Neutron Porosity 

PHI Effective Porosity 

PHIN Neutron Porosity (frac.) 

PHIND Porosity from the combination of density and 

neutron log 
R Correlation coefficient 

RB Formation Bulk Density 

RT True (Deep) Resistivity (ohm-m), Rt 

SRn Schmidt hammer rebound number harness number 

(SRn) 
Vp Compressional wave velocity (km/s) 

Vs Shear wave velocity (km/s) 

Vsh Shale volume (shaliness) 

wc 

 

Water content  
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xi Input variables  

yp Predicted value (y) 

ym Target (actual) output variable (y) 

 

Greek Letters  

𝜙 True porosity (frac.) 

𝜙e Effective porosity (frac.) 

𝜙D,e Effective density porosity (frac.) 

𝜙N,e Effective neutron porosity (frac.) 

𝜙N,sh Neutron porosity of the adjacent shale zone (frac.) 

𝜈 Poison’s ratio 

ρ
b
 Bulk density (g/cm3) 

ρ
b.c

 Clay corrected density porosity (g/cm3) 

ρ
𝑓𝑙

 Fluid density (g/cm3) 

ρ
ma

 Matrix density (g/cm3) 

𝜔ij Connected weight between the i-th neuron and j-th 

neuron  
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS  

 

This section includes the main conclusions drawn from this research study as well as the 

recommendations for further investigations.  

 

6.1 Conclusions  

This research study investigates the application of two widely used machine learning tools, 

namely, the artificial neural networks (ANNs) and the support vector machines (SVM) for 

reservoir characterization using log data. The study further explores the application of the 

concept of mutual information to identify and rank log variables for the purpose of 

developing predictive models for reservoir fluid and rock properties. The dataset includes 

real field well logs from a clastic rock formation. The research strategies are established to 

address the knowledge gap and incorporate the in-situ reservoir time-series sequential log 

data in the deterministic tools. This thesis implements conventional and hybridized data-

driven models to predict water saturation and in-situ rock strength in reservoir 

characterization. The introduced approaches provide less time consuming, cost-effective, 

and continuous predictions of the formation properties along the wellbore of the reservoir 

rock formations. These predictive models serve as efficient tools to facilitate reservoir 

characterization for strategic exploration decisions. Based on the research outcomes, the 

following conclusions are made:       

• The data-driven model development techniques are illustrated systematically to 

investigate the dependency of water saturation on the predictor variables using mutual 
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information (MI). The MI approach reveals that the most contributing log variables are 

the true resistivity and the bulk density, while the gamma-ray and neutron porosity have 

minor effects on water saturation. The single hidden-layer perception-based ANN 

technique also shows that the true resistivity and the formation bulk density logs are 

the primary and major predictor variables for the successful development of the fluid 

saturation model.   

• It is also found that the ranking orders of the variables with both multilayer perception 

(MLP)-based ANN and LS-SVM techniques are the same.  

• The Levenberg Marquardt training algorithm-based MLP-ANN water saturation model 

shows superior performance with a lower statistical error and higher correlation 

coefficient (R), compared to the other algorithms such as the Bayesian regularization 

and the scaled conjugated gradient.  

• It is concluded that the radial basis kernel (Gaussian) function-based LS-SVM 

connectionist model has a greater reliability and prediction capability, compared to the 

other kernel function-based models for predicting water saturation.   

• Based on the parametric sensitivity analysis with the MLP-ANN and the LS-SVM 

predictive models, true resistivity and the bulk density are found to be the most 

important predictor variables, while gamma-ray and sonic travel time have the least 

contribution to the water saturation. 

• The acoustic travel time, the gamma-ray, and the formation bulk density are the most 

important predictor variables for continuous in-situ rock strength (UCS) profile of shaly 

sand reservoirs. 
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• The compressional sonic travel time is the most influential parameter to estimate UCS, 

compared to other log variables in the connectionist MLP-based ANN approach; there 

is also a good agreement between LS-SVM and MLP-ANN methods in terms of 

prediction performance. 

• Two new correlations for prediction of UCS have been presented which are able to 

provide an accurate continuous formation UCS profile with capturing lithology 

indicator, dense minerals, number of electron density, and acoustic travel time of the 

porous formation.  

• The smart connectionist models such as coupled simulated annealing-based LS-SVM 

and ANN are more reliable and robust (compared to other tools), and are capable of 

estimating continuous profile of reservoir properties with high accuracy using well 

logs. 

 

6.2 Recommendations for Future Studies   

This section outlines some recommendations that can address in future works while dealing 

with the data-driven connectionist approaches in reservoir characterization. 

• The hybrid computational models such as PSO-based ANN, convolution neural 

network (CNN), recurrent neural network (RNN), neuro-fuzzy inference system 

(ANFIS) and gene expression programming (GEP) can be used to predict water 

saturation and rock strength as well as to find the most influential parameters in the 

model.  
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• The log variables of true resistivity and formation bulk density can be considered to 

develop suitable correlations for predicting water saturation using wireline log data.  

• The machine learning (ML) tools requires less time and computational complexities, 

leading to lower capital and operating costs in the exploration stage; these approaches 

can be used to generate the synthetic wireline logs such as resistivity and sonic logs 

using available other petrophysical well logs.   

• The information theoretic measures approach (i.e. entropy and mutual information) can 

be used to investigate the dependency between the predictor and output variables for 

other reservoir properties (i.e. permeability and porosity), and geo-mechanical 

properties (i.e. elastic constant, and rock strength parameters) of rock formations.  

• The proposed ML research strategies can be implemented to determine formation 

properties (such as porosity, permeability, sonic acoustic velocities, and formation 

strength index); the feature ranking of predictor variables in the data-driven models can 

be also studied. 

• Geophysical log data can be used for different aspects of reservoir analysis. The soft 

computing approaches can be adopted to generate the synthetic well logs such as 

resistivity, density, and sonic logs using different combinations of input and output log 

data for costs reduction and time-saving for further field development and formation 

evaluation.  

• The ML research strategies and log variable ranking approaches in the data-driven 

model can be also used by field specialists, researchers, and petroleum engineers where 
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reservoir fluid properties prediction, rock failure analysis, geomechanics and drilling 

optimization as well as formation evaluation are targeted.  
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APPENDIX 

Appendix A: Modeling of Temperature Distribution and Oil Displacement during 

Thermal Recovery in Porous Media: A Critical Review 

 

Preface 

A version of this chapter has been published in the “Fuel” Journal, Vol. 226 (2018). I am 

the primary author of this article and was the originator of the study concept. The co-

author Dr. Enamul Hossain provided technical assistance to find the research scopes, as 

well as identifying the knowledge gap. The first draft of the manuscript was prepared by 

myself. The co-author Murtada Elhaj helped to present the figures and references in the 

manuscript. Co-author Dr. Salim Ahmed also reviewed and provided valuable insights on 

how to improve the manuscript. I have revised the manuscript based on the feedback from 

the co-authors. Finally, all authors contributed to prepare the final version of the 

manuscript as per the reviewers’ and editor’s comments. 

 

 

 

 

 

 

 



 

 234 

Abstract 

Thermal flooding is one of the most successful and widely used processes for heavy oil 

recovery. The memory-based fluid flow model is effective in characterizing reservoir heat 

transport mechanism, temperature profile, and predicting the performance of thermal 

recovery. Temperature has a substantial effect on the thermodynamic properties such as 

thermal conductivity of the formation. In addition, the influence of temperature on 

reservoir rock and fluid properties plays an important role in accurately predicting reservoir 

temperature distribution, oil displacement, and steam oil ratio. This paper presents a critical 

review and analyses to provide inclusive information on the state-of-the-art memory-based 

fluid flow modeling during the thermal displacement process. The review highlights the 

assumptions and limitations of the current models in the areas of thermal conductivity, 

temperature distribution, oil displacement, and steam oil ratio during the thermal flooding 

process in porous media. This paper also serves to provide an insight into future research 

opportunities to fill the knowledge gaps in the subject area by applying the memory concept 

and further improvement of the current and classical models for heavy oil recovery.  

 

Keywords: Porous media; Heat transport; Thermal conductivity; Heavy oil; Thermal 

flooding; Memory concept.   
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A1 Introduction 

 

A1.1 Background and motivation 

The current worldwide petroleum industry is facing a great challenge to produce 

hydrocarbon from mature reservoirs. The produced reserves from new discoveries have 

provided steadily declining replacement rate over the last few decades. For meeting the 

global energy demands by producing more oil from mature hydrocarbon reservoirs, 

enhanced oil recovery (EOR) is the most popular technique. EOR is accomplished by 

increasing the oil recovery after the primary recovery such as natural drive mechanisms, 

and secondary recovery such as water flooding techniques. This can be accomplished by 

many techniques such as thermal recovery, chemical or gas injection, ultrasonic stimulation 

and microbial injection. These EOR methods allow recovery of oil that was not 

economically recoverable earlier using conventional techniques. EOR methods involve the 

injection of substances and/or energy into the oil reservoir to unlock trapped oil, improve 

sweep and enhance production rates. Among the tertiary oil recovery methods, thermal 

techniques (i.e. cyclic steam stimulation, steam flooding and in-situ combustion) aim to 

reduce oil viscosity to increase its mobility through the application of heat into the reservoir 

formation. Among the EOR processes, thermal injection is the most successful and 

extensively used process that is applicable to a variety of heavy oil as well as bitumen 

reservoirs (Green and Willhite, 1998). However, the achievement of a thermal flood is 

entirely dependent on understanding the mechanism of heat transfer within the reservoir 

and the complex interactions between the reservoir rock and fluid matrices, temperature-
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sensitive rock and fluid parameters, which govern the evolution of the temperature profile 

during the thermal EOR processes (Hossain and Abu-khamsin, 2012).  

 

A1.2 Fluid flow modeling 

It is important to predict reservoir properties and rheology through the porous media during 

thermal flooding. The classical constitutive equation describing fluid flow in reservoir 

porous media is Darcy’s law (Darcy, 1856). This equation is based on several assumptions 

such as single phase, isothermal laminar flow, no chemical reaction between rock and fluid, 

as well as constant permeability and viscosity (Darcy, 1856). When heat energy is 

introduced, thermal alterations of reservoir rock and fluid properties induce non-Darcy 

flow effects, which cannot be captured accurately by the Darcy equation. This type of 

modeling is a complicated research task in oil and gas engineering due to the complex 

nature of reservoir rock and fluid properties, and geological subsurface behavior. Rheology 

is the study of fluid flow and its deformation, which are related to the field of physics 

(Larson, 1999). The study of rheology focuses on materials that possess both viscous and 

elastic properties. Most underground reservoir fluids do not follow the Newtonian behavior 

(Hossain et al., 2008a). Heavy crude oil is a non-Newtonian fluid at low temperatures 

(Dong et al., 2013). Fluid rheology is an important issue for the prediction of rock-fluid 

interactions within a complex oil reservoir or any formation management. The subsurface 

structure and reservoir rock properties of a formation are not only dependent on the 

deposition, but also on the sedimentation process within the earth’s interior with respect to 

geological age (Hossain et al., 2008b). This subsurface geological information is 
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significant to model the performance of the fluid movement within the pore network of 

complex reservoir formations. Consequently, research on fluid rheology and geological 

structure is essential for the development of real flow models in reservoir formations. In 

addition, determination of time-dependent rock and fluid properties is the most challenging 

task in the dynamic condition. The continuous alteration of rock and fluid properties can 

be characterized by the memory concept. This concept is defined as "the properties of rock 

and fluid that help to account for changes in rock properties (such as permeability and 

porosity) and fluid properties (such as pressure dependent fluid properties and viscosity) 

with time and space" (Hossain, 2016). In addition, a simple definition of memory concept 

is also proposed by Hossain (2016) as "the system can remember its previous state" 

(Hossain, 2016). The concept of memory has been incorporated into the various model 

equations to represent the alteration of rock and fluid properties within a reservoir porous 

medium. Literature shows that the memory-based fluid flow models can be utilized 

successfully to develop a more rigorous and realistic model for thermal displacement 

processes by using momentum and energy transport concepts (Obembe et al., 2016a). 

 

A1.3 Thermal flooding 

Thermal flooding is one of the most effective techniques for extracting heavy oil from 

conventional reservoirs. However, it faces challenges in the arctic and offshore regions. 

Proper modeling of thermal flooding is challenging in these regions, if thermal hysteresis 

is considered. This phenomenon was recognized experimentally in several disciplines, 

other than petroleum reservoir engineering (Krober et al., 1993). Mathematically, 
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numerous formulations have been proposed to analyze the difficulties associated with 

thermal flooding, each concentrating on one or more aspects of the process, including 

different assumptions (Krober et al., 1993). For this process, success with modeling is 

entirely dependent on understanding the heat transfer mechanism within the complex 

reservoir and interactions among all temperature-sensitive rock/fluid parameters that 

govern the evolution of the temperature profile (Hossain et al., 2008c; Hossain et al., 

2009a). In a thermal flooding process, a more realistic rheological fluid flow model through 

porous media and accurate prediction of the temperature profile using the memory concept 

are key factors in the process design, production projects, and reservoir management 

(Hossain et al., 2015).    

 

A1.4 The aim of this review and its novelty 

The aim of this study is to revisit the development of fluid flow models with rock-fluid 

interactions during thermal EOR processes. This review highlights the present status of 

memory-based research on fluid flow modeling in complex reservoirs and the thermal 

flooding process. It also serves as a future research guideline towards the development of 

complex heat transfer models, temperature distribution profile prediction, and reservoir 

performance model during thermal oil recovery by application of the memory concept.    

 

A2 Literature Review and Discussions 

Reservoir rock (i.e. clastic or non-clastic sedimentary rock) is the medium of fluid transport 

in hydrocarbon reservoirs. Rock and fluid properties vary during any pressure disturbances 
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or thermal actions in the reservoir formation. Most of the reservoir rock and fluid properties 

are functions of pressure and temperature. In many conventional simulators, these 

properties are considered to vary only as a function of space. However, it is also necessary 

to include variations in rock properties (e.g. porosity, permeability etc.), and fluid 

properties (e.g. fluid saturation, viscosity, and PVT properties) by incorporating time 

function for applications including geothermal activities, chemical reactions and other 

geological activities in the sub-surface of the reservoir structure. In addition, the memory 

concept is important for not only proper modeling of fluid flow through reservoir porous 

media but also temperature effect on thermal flooding processes (Hossain et al., 2011).  

 

A2.1 Fluid flow model in porous media 

The equation of fluid motion by Darcy’s law (i.e. volumetric fluid velocity is proportional 

to the negative of flow potential gradient) is not applicable for capturing changes in rock 

and fluid properties (Darcy, 1856). This model has its own restrictions arising from the 

assumption of a homogeneous medium, and constant reservoir rock and fluid properties. 

When porosity (𝜙), permeability (k), total compressibility (ct) and viscosity (μ) are 

considered constants over the range of reservoir pressures (p), then the linearized Darcy-

based diffusivity equation for fluid flow through porous media at the time (t) can be written 

(Dake, 1998)as: 
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B2.1.1 Classical models in porous media 

Several studies by different researchers were done related to the diffusion of water in 

porous media. It is possible for some fluids to react chemically with a porous medium 

leading to changes in the pores. Similarly, solid particles embedded within the reservoir 

fluids under suitable conditions can be deposited or attached along the pore throats or walls. 

In addition, pore size has been reported to be affected by temperature variations within the 

porous media, and it is also reported in the literature that alterations of rock and fluid 

properties occur during a thermal flooding process (Krober et al., 1993). Several 

researchers have proposed different extensions of the classic Darcy’s law by accounting 

for slip, inertia and so on (Brinkman, 1949; Bear, 1975; Sposito, 1980; Whitaker, 1986). 

Some fluid flow models are reported as alternative models; for example, the non-local flow 

theory is derived using the principles of statistical mechanics (Moroni and Cushman, 

2001). The concept of fractional derivatives incorporated into constitutive equations is not 

a new theme and there are plenty of examples to be found in the literature to model 

rheological properties of solids, frequency-independent quality factor Fennoscandian 

uplift, heat diffusion, and other fields of research (Bagley and Torvik, 1986; Hilfer, 2000; 

Metzler and Klafter, 2004). Similarly, fractional diffusion models have been proposed to 

model sub or super-diffusion transport in the absence and presence of an external field 

(Metzler et al., 1999; Barkai et al., 2000); studies related to the dynamics of interfaces 

between nano-particles and substrate have also been reported (Chow, 2005). Balhoff et al. 

(2012) investigated the behavior of non-Newtonian flow in porous media for capturing the 

numerical accuracy in pore-scale network systems. Authors were able to investigate the 



 

 241 

accuracy and efficiency of other popular equations used for modeling non-Newtonian 

fluids considering shear-thinning. The effect of fluid yield stress and zero fluid yield stress 

were also considered. In addition, for yield-stress fluids, the threshold pressure gradient 

required to initiate flow, and the qualitative pathway in which the fluid would travel at this 

threshold were determined. Different approaches were proposed for determining the 

threshold gradient (Sochi and Blunt, 2008; Sochi, 2010). Hristov (2013) proposed a new 

technique based on the assumption of final depth of penetration to obtain an approximate 

solution for heat conduction equation considering the fading memory, which is expressed 

by Jeffrey's kernel. Hristov observed that infinite speed of propagation of the flux is 

implicitly assumed for the conventional diffusion conservation equations. For the heat 

conduction problem, he introduced a Volterra-type integral, which has the damping 

function as was conceived by Cattaneo (1958). The proposed method consists of the classic 

Fourier's law, the heat flux and its time derivative related to its history. On the other hand, 

temperature and capillary hysteresis also play a significant role during thermal flooding 

process in porous media. Dynamic theories of multi-phase porous media developed for 

hydrocarbon reservoirs through modified wave propagation problem requirements and 

drag forces have drawn more attention from researchers than capillary hysteresis (Santos 

et al., 1990). Ashrafi et al. (2012) investigated that the decrease in residual oil saturation 

and increase in initial water saturation are expected by increasing temperature. The effects 

of temperature on capillary properties as well as relaxation time of liquid flux by capillary 

effects have also been studied by several authors (Molenda et al. (1993). Simonson et al. 

(1993) investigated an experimental and numerical study on thermal hysteresis effect for a 
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fiber glass insulation slab. Authors also concluded that it can lead to errors for an initially 

moist and dry fiber glass slab up to 23% and 51%, respectively, for a transport process at 

dynamic conditions while hysteresis effects are negligible. Therefore, modeling the 

dynamic process in the oil-water displacement process with thermal hysteresis and 

capturing the phenomena through experiments is the most significant research task. Wang 

and Sheng (2017) presented a low-velocity non-Darcy flow model to investigate the oil 

recovery performance of vertical and multi-fractured horizontal wells for shale and tight 

gas reservoirs. Authors concluded that oil production rate for Darcy flow is higher than 

that of non-Darcy flow for a vertical well. Besides, the ultimate oil recovery for Darcy flow 

is about 80% for the multi-fractured horizontal reservoir and 48% higher than that of non-

Darcy flow vertical well.  

 

A2.1.2 Memory-based fluid flow model 

Several researchers have included the dependence and effects of the pathway on fluid 

history in their definitions of memory (Shin et al., 2003; Zhang, 2003; Zavala-Sanchez et 

al., 2009). Zhang (2003) stated that forward time events depend on previous time events 

while the memory is a function of time and space. Memory is the effect of past events on 

the present and future course of developments (Hossain and Abu-Khamsin, 2012). Caputo 

(1999) proposed a modified form of Darcy’s law by introducing the time fractional 

derivative to account for the local permeability changes in porous media. In addition, the 

pressure distribution within a fluid in a half space under varying boundary conditions was 

derived. Finally, a method to determine the two parameters defining memory diffusion 
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model was suggested and memory effects on the volumetric flux along with its spectral 

properties were investigated (Caputo, 1999; 2000; Caputo and Plastino, 2003). Caputo and 

Plastino (2003) proposed a modified constitutive relation in order to better depict the 

diffusion process of fluids in porous media. The memory effect was introduced through 

space fractional derivative in this model. The purpose was to capture the effect on the 

medium previously affected by the fluid. This proposed constitutive equation implied a 

volumetric flow proportional to the spatial fractional derivative, plus another term as 

opposed to the classic Darcy’s equation. Furthermore, Authors noticed that the Green 

function acted as a low-pass filter in the frequency domain. Consequently, while the time-

memory is suitable for accounting for local phenomena, the space memory captures the 

variations in space. Caputo and Plastino (2003) are also associated with modifications to 

the classic Darcy equation and one or more constitutive equation by further studies. Caputo 

and Cametti (2008) proposed a space-dependent diffusion constant to Fick’s diffusion 

equation to accurately describe the transport process. According to Caputo and Cametti 

(2008), it was possible for solid particles to obstruct some of the pores, leading to a non-

constant permeability. Finally, Authors concluded that their approach was a generalization 

of Fick’s equation to describe the diffusion process in more complex systems. Sprouse 

(Sprouse) proposed a numerical solution based on the short memory approach to solving a 

class of fractional diffusional heat equation through an explicit finite difference scheme. 

Carillo et al. (2014) showed analytical solutions for the integrodifferential equations 

describing a rigid heat conductor with memory. According to the authors, the introduction 

of memory effects provides an alternative way to account for nonlinearities in problems 
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where linear models cannot be applied. To understand the effect of memory on some 

physical property of the material, two different models are considered. Carillo et al. (2014) 

concluded that heat flux is related to the temperature gradient history for heat diffusion 

problems. Similarly, the stress tensor is related to the strain history of isothermal visco-

elasticity problems. In addition, several studies have been devoted to properties of free 

energy functional for materials with memory (Coleman and Dill, 1973; Gurtin, 1974). 

Laffaldano et al. (2005) carried out experimental investigations to understand the 

permeability reduction observed during the diffusion of water in porous sand layers 

because of grain rearrangement and compaction. Elias and Hajash (1992) carried out an 

experimental investigation of this phenomenon. Further, the authors have proposed a 

modified diffusion model applicable to porous media by incorporating fluid memory 

formalism where it is able to give a good fit with the volumetric flux observed during 

experiments. 

 

The variation of rock and fluid properties can be demonstrated using the concept of 

memory in the field of reservoir porous media. Hossain and Islam (2006) presented an 

extensive review of fluid memory based on the available literature and models, and 

applications pertaining to fluid flow in porous media problems. The authors showed how 

different researchers correlated the fluid memory to various fluid properties (e.g. the stress, 

density, and free energies). Hossain et al. (2008a) proposed a stress-strain relationship 

applicable to non-Newtonian flow in porous media by taking into account temperature and 

pressure variations, surface/interfacial tension, and rock and fluid memory. The authors 



 

 245 

also investigated the effects of memory on the stress-strain curve assuming a homogeneous 

and isotropic porous media. It was concluded that the stress-strain behavior was a strong 

function of time, distance, and the memory parameter. Besides, the stress-strain models are 

also investigated by several researchers such as Mifflin and Schowalter (1986), Hossain 

and Islam (2009). Hossain and Islam (2009) introduced a modified material balance 

equation by including a stress-strain formulation for rock and fluid. Hossain et al. (2009b) 

developed a model that considers permeability variation over time using the memory 

concept and without linearization. Hossain et al. (2008d) proposed an extension of the 

classic fluid flow diffusivity equation by incorporating rock and fluid memory. It is derived 

by introducing the Caputo fractional derivative to the classic Darcy’s law. Authors argued 

that this introduction is necessary to account for the variation of fluid and formation 

properties with time. In addition, authors also solved the resulting nonlinear 

integrodifferential equation using the explicit finite difference scheme. The general form 

of memory-based non-linear diffusivity equation can be written for any axial flow of a 

single-phase fluid in a porous media (Hossain et al., 2008a) as: 

1

𝜂

𝑑𝜂

𝑑𝑥
[
∫ (𝑡−𝜁)−𝛼(

𝑑2𝑝

𝑑𝜁𝑑𝑥
)𝑑𝜁

𝑡
0

𝜏(1−𝛼)
]+𝑐𝑓

𝑑𝑝

𝑑𝑥
[
∫ (𝑡−𝜁)−𝛼(

𝑑2𝑝

𝑑𝜁𝑑𝑥
)𝑑𝜁

𝑡
0

𝜏(1−𝛼)
] +

𝑑

𝑑𝑥
[
∫ (𝑡−𝜁)−𝛼(

𝑑2𝑝

𝑑𝜁𝑑𝑥
)𝑑𝜁

𝑡
0

𝜏(1−𝛼)
]=

𝜙𝑐𝑡

𝜂

𝑑𝑝

𝑑𝑡
     (A.2)            

 

Where η is the composite variable, and α is the fractional order of the derivative related to 

time and space with 0 < α <1. The other symbols are defined in the nomenclature section.   

 

Hassan et al. (2015) presented a comprehensive study on composite pseudo-permeability, 

fluid velocity and viscosity of memory based diffusivity equation. Hassan et al. (2015) also 
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investigated the effects of these parameters on the pressure response of a reservoir. Table 

A.1 shows a summary of some selected equations/models related to fluid flow in porous 

media. The table explains the contributions of various researchers over recent decades in 

the areas of porous media flow modeling. Hossain (2016) modified the memory-based 

diffusivity equation incorporating integro-differential equation of fluid flow. The non-

linear memory-based equation was solved using an implicit-explicit finite difference 

method. The author concluded that the memory-based equation results in less pressure 

drops compared to Darcy’s model for a specified distance and time. 

 

Obembe et al. (2017a) developed a modified memory-based model to represent the flow of 

fluids in porous media. Authors investigated this model considering the effect of different 

values of anomalous diffusion exponent and pseudo permeability with different simulation 

time and compared the results between the numerical scheme and the analytical solution. 

Authors studied the effect of anomalous diffusion coefficient on the diffusion of fluid 

within the reservoir. In their study a higher diffusion exponent corresponds to a higher 

effect of memory. It was concluded that the diffusion of the fluid decreases with the 

increase in the effect of memory.
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Table A.1: Models describing fluid flow in porous media. 

 

Investigator Model/Equation Remarks 

Darcy (1856) 𝑢⃗ =
𝑘

𝜇
[𝐺 − 𝛻𝑃] =

𝑘

𝜇
[𝛻∅]  

 

a) Single phase flow 

b) Appropriate for laminar flow 

c) No chemical reaction between rock and fluid 

d) No-slip boundary condition is not considered  

e) There is no electro-kinetic effect. 

Lauriat and 

Prasad (1989) 

𝜌

𝜙
[
𝑑𝑢⃗⃗ 

𝑑𝑡
+

(𝑢⃗⃗ .𝛻)𝑢⃗⃗ 

𝜙
] = 𝜌𝑔 − 𝛥𝑃 + 𝜇𝛻2𝑢⃗ −

𝜇

𝑘
𝑢⃗ − 𝜌

𝑐𝐹

√𝑘
𝑢⃗ |𝑢⃗ |  a) The system is considered as isotropic 

b) Assumed homogenous and fluid-saturated porous medium  

c) The non-darcy effect is included. 

Caputo (1999) 𝐴
𝜕𝛾

𝜕𝑡𝛾
𝛻2𝑝 =

𝜕𝑝

𝜕𝑡
   

Where 𝐴 = 𝜂 [
2𝐺(1−𝜈𝑢)

(1−2𝜈)
] [

𝐵2(1+𝜈𝑢)2(1−2𝜈)

9(1−𝜈𝑢)(𝜈𝑢−𝜈))
]  

 

a) Memory formalism to simulate permeability reduction with time in geothermal areas 

b) Linear, isotropic, and homogeneous porous media 

c) Incompressible and viscous fluid 

d) The porosity of the media is not considered. 

Caputo and 

Plastino (2003) 

 −
1

𝑘1

𝜕𝑝

𝜕𝑡
= 𝛼′′ 𝜕2+𝑛

𝜕𝑥2+𝑛 𝑝 + 𝛽
𝜕2+𝑛

𝜕𝑥2 𝑝   

where 

𝛼′′= Modified coefficient of the Darcy’s law 

β= Coefficient of the classical Darcy’s law and  

𝑘1= Ratio of pressure to fluid density in an undisturbed condition 

a) Space memory for diffusion in very thick layers 

b) Linear, isotropic, and homogeneous porous media 

c) Incompressible and viscous fluid 

d) The porosity of the media is not considered. 

Iaffaldano et al. 

(2005) 

𝛾𝑞(𝑥, 𝑡) = − [𝑐 + 𝑑
𝜕𝛾

𝜕𝑡𝛾
𝛻𝑝(𝑥, 𝑡)] ;  a) Original Darcy’s law is modified to account for memory 

b) Linear, isotropic, and homogeneous porous media 
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𝑎𝑝(𝑥, 𝑡) = 𝛼𝜌(𝑥, 𝑡);  𝛻. 𝑞(𝑥, 𝑡) +
𝜕𝜌(𝑥,𝑡)

𝜕𝑡
= 0;  

where γ, d and c are real numbers and α/a is the bulk modulus of 

fluid. 

c) Incompressible and viscous fluid 

d) The porosity of the media is not considered. 

Hossain et al. 

(2008a) 

1

𝜂

𝑑𝜂

𝑑𝑥
𝑍+𝑐𝑓

𝑑𝑝

𝑑𝑥
𝑍 +

𝑑

𝑑𝑥
𝑍=

𝜙𝑐𝑡

𝜂

𝑑𝑝

𝑑𝑡
   where 𝑍 =

∫ (𝑡−𝜁)−𝛼(
𝑑2𝑝

𝑑𝜁𝑑𝑥
)𝑑𝜁

𝑡

0

𝜏(1−𝛼)
  

a) Incompressible and viscous fluid 

b) The porosity of the medium is not considered 

Hossain (2016) 1

𝜂

𝑑𝜂

𝑑𝑥
∑ (𝑡 − 𝜉𝑘)

−𝛼 (
𝑑2𝑝

𝑑𝜁𝑑𝑥
)𝑊𝑘

𝑛
𝑘=1 +𝑐𝑓

𝑑𝑝

𝑑𝑥
∑ (𝑡 −𝑛

𝑘=1

𝜉𝑘)
−𝛼 (

𝑑2𝑝

𝑑𝜁𝑑𝑥
)𝑊𝑘 + ∑ (𝑡 − 𝜉𝑘)

−𝛼 (
𝑑3𝑝

𝑑𝜁𝑑𝑥
)𝑊𝑘

𝑛
𝑘=1  = 

𝜙𝑐𝑡

𝜂
𝛤(1 − 𝛼)

𝑑𝑝

𝑑𝑡
 

a) This model is written based on approximating the convolution integrals with 

summations   

b) It can be solved by explicit finite difference scheme  

Obembe et al. 

(2017a) 

 

𝜕

𝜕𝑥
(
𝛽𝑐𝑘𝛼

𝜇𝑜

𝐴𝑥

𝐵𝑜

𝜕

𝜕𝑥
𝐷𝑡

𝛼(𝑡)
𝑝)∆𝑥 +  𝑞𝑠𝑐 = (

𝑉𝑏𝜙𝑐𝑡

𝛼𝑐𝐵𝑜
)

𝜕𝑝

𝜕𝑡
  

 

a) One dimensional fractional diffusion equation 

b) Considered as single-phase slightly compressible fluid 

c) Constant fluid and rock properties   

d) Source term (𝑞𝑠𝑐) included in this model 

e) It is non-linear time-fractional partial differential equation. 

Obembe et al. 

(2017b) 

 

𝜕

𝜕𝑥
(
𝛽𝑐𝑘𝛾

𝜇𝑜

𝐴𝑥

𝐵𝑜

𝜕𝑝

𝜕𝑥
) ∆𝑥 = (

𝑉𝑏𝜙𝑐𝑡

𝛼𝑐′𝐵𝑜
)

𝜕𝛾𝑝

𝜕𝑡𝛾
  

a) One dimensional fractional diffusive equation 

b) Considered as a homogeneous porous medium  

c) Constant fluid and rock properties  

d) No producer or well present within the reservoir  

e) Specified flux at the left boundary and no flow at the right boundary   

f) Constant order fractional derivative. 
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Rammay et al. (2016) conducted a study on the variations of PVT properties using the 

Darcy’s as well as the memory-based diffusivity equations. Hassan and Hossain (2016) 

developed a memory-based equation considering both the motion equation and the 

continuity equation to estimate temperature distributions during a thermal EOR process. It 

also concluded that coupling of pressure and temperature model can lead to more 

reasonable temperature distribution which is affected by fluid velocity and pressure 

variations. Furthermore, Obembe et al. (2018) studied anomalous effects during thermal 

displacement in porous media employing the order of fractional differentiation. Authors 

investigated the profiles of both pressure and temperature for different injection rates.     

 

A2.2 Production mechanism and screening criteria for thermal flooding process 

Various types of EOR techniques are employed to recover residual oil left in the reservoir 

when the primary and secondary recovery methods have been performed to their respective 

economic limits. The final goal of EOR methods is to enhance the overall oil displacement 

by considering the microscopic and macroscopic displacement efficiency. Thermal 

recovery processes such as cyclic steam stimulation (CSS), steam flooding (SF) and In-

situ-combustion as well as steam-assisted gravity drainage (SAGD) have been the most 

widely used tertiary recovery methods for extracting heavy crude oil and bitumen. During 

thermal flooding, hot water or steam is injected into several wells while the oil is produced 

from adjacent wells. A typical mechanism of an oil recovery system is shown in Figure 

A.1 (Hossain et al., 2007). The solar energy can be used for a green environment for 

generating hot water or steam where a direct solar heating system has been established to 
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be effective by several authors (Krober et al., 1993; Kaye et al., 1998; Chu, 1983; Khan et 

al., 2005). 

 

The physical and chemical mechanisms of different types of thermal flooding are well 

described in the literature (Burger et al., 1985; Butler, 1991; Prats, 2005). The list of 

screening criteria for thermal flooding methods is well described by several authors 

(Muskat, 1949; Taber and Martin, 1983; Taber et al., 1997; Green and Willhite, 1998; 

Hama et al., 2014; Kang et al., 2014; Elbaloula et al., 2016)). Green and Willhite (1998) 

mentioned that the reservoir depth, pressure and average permeability are the major 

screening criteria in any thermal flooding process evaluation. The performance of heavy 

oil recovery from thermal flooding depends not only on the reservoir geometry and 

characteristics but also on selected flooding type, and pattern size. This process classically 

proceeds through four phases of development. Several studies were done for EOR field 

project applicability based on lithology type, such as sandstone and carbonate reservoir 

rocks (Alvarado and Manrique, 2010). Figure A.2 shows the most EOR applications where 

the authors have extensively implemented the sandstone formations based on an available 

database of EOR developments covering 1,507 projects combined during the last decade 

(Alvarado and Manrique, 2010). As shown in Figure A.2, thermal methods are among the 

most extensively applied techniques in sandstone reservoirs compared to other EOR 

techniques. Thermal flooding projects have not been popular in carbonate reservoirs due 

to the chemical alterations in reservoir conditions.  
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Figure A.1: Mechanism of the thermally oil recovery scheme (Hossain et al., 2007). 

 

 

Figure A.2: Thermal and non-thermal EOR methods based on reservoir rocks (Redrawn 

from Alvarado and Manrique, 2010). 
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Garland Fields in Wyoming and Yates Field in Texas, USA are two of the few steam-

driven projects in carbonate formations reported in the literature (Dehghani and Ehrlich, 

1998;  Manrique et al., 2007). In general, sandstone formations show the most potential for 

implementing thermal recovery projects because most of the technologies have been 

verified at the pilot and commercial scale in this type of formations (Alvarado and 

Manrique, 2010). Thermal flooding projects have been used mostly in Canada, the Former 

Soviet Union (FSU), the United States, Brazil, Venezuela and China, and to a lesser extent 

where steam injection began roughly five decades ago (Alvarado and Manrique, 2010). 

Globally CSS projects have been used extensively to produce heavy oil in the oil field such 

as Cold Lake in Alberta (Buckles, 1979), Midway Sunset field in California (Burns, 1969), 

Liaohe Shuguang field, Liaohe Huanxiling field, Gudao Field, Karamay field, and 

Gaosheng Field in China (Sheng, 2013).  

 

The Tia Juana and Mene Grande fields in Venezuela (De Haan et al., 1969; Ernandez, 

2009), the Kern River and Yorba Linda fields in California (Hanzlik, 2003) are examples 

of successful steam flooding projects that have been ongoing for over four decades. Some 

examples of recent steam flooding projects listed in the literature for sandstone formations 

such as Crude E Field (Ramlal, 2004), the Schoonebeek oil field and Alto do Rodrigues in 

Brazil (Jelgersma, 2007; Lacerda et al., 2008). Several coupling techniques were proposed 

to improve steam flooding process by using solvents (Rivero and Mamora, 2007), gases 

(Bagci and Gumrah, 2004), chemical additives (Ovalles et al., 2001) and foams (Mendez 

et al., 1992). 
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Field tests on in-situ combustion (ISC) have been extensively done in a variety of oil 

reservoirs. An extensive survey of ISC is done by Chu (1982a; 1982b). Some good 

examples of both dry and wet ISC projects are reported in Getty’s Bellevue filed, United 

States (Bleakley, 1971), Golden Lake, LIoydminster in Canada (Fairfield, 1982), Santhal 

and Balol fields of Cambay Basin, India (Chattopadhyay, 2002; Chattopadhyay et al., 

2003; 2004). An ISC pilot project was conducted by the Peace River in-situ project in the 

Peace River oil sands area of Canada. The pressure cycle steam drive process was tested 

as the pilot project in the same oil sands area (Lentz, 1971). Later Peace River Expansion 

Project (PREV) was commercialized in 1986 (Thimm, 1993). SAGD and CSS projects 

were also initiated in the same region of Canada (Hamm and Ong, 1995; Brissenden, 2005). 

CSS and SAGD have been applied on a commercial basis in Alberta for many years by oil 

producing companies in the different formations such as Cleanwater, Bluesky-Gething, and 

Lower Grand Rapids Formations (Nasr and Ayodele, 2005; Chang, 2013). Several 

commercial SAGD projects were being initiated for oil sand extractions in Canada (Suggett 

et al., 2000; Huc, 2011). 

 

A2.3 Role of thermodynamic and reservoir properties during thermal flooding 

process 

The thermodynamic properties of steam, and physical properties of the fluid and solid 

matrices are needed to predict the real performance of thermal recovery processes. In 

addition, the design of hot fluid injection projects requires a clear understanding of the 

thermal properties of steam, reservoir matrices and fluids. These properties such as 
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saturated water and steam heat content, saturation temperature and specific heat capacity 

are important in performing the calculations of heat losses and oil recovery displacement 

by both steam and hot water injection. The supporting correlations and data for crude oil 

and rock properties, and thermodynamic properties of water during thermal recovery 

calculations are well organized in the literature for thermal recovery calculations (Keenan 

and Keyes, 1936; Farouq-Ali, 1970; Taber and Martin, 1983;  Boberg, 1988; Kartoatmodjo 

and Schmidt, 1994; Green and Willhite, 1998; Hossain et al., 2005). The porosity and 

permeability of reservoir rocks play an important role for both inductive and conductive 

heat transfer process considering energy balance equation during thermal flooding. In 

addition, porosity and temperature also affect the reservoir permeability during thermal 

EOR processes. Hossain (2017) showed that porosity increases the storage capacity of fluid 

during heat conduction process in the reservoir. It was concluded that permeability of 

reservoir increases with the increase in temperature at the outer boundary as well as toward 

the production well. In his study, two dimensionless numbers were considered to describe 

the rheological behavior of the rock and fluid interaction system. Temperature changes that 

take place in a reservoir during steam injection have a significant impact on the oil viscosity 

of reservoir. An appropriate temperature profile is useful for investigating the profile of 

temperature distribution and heat exchange between rock and fluid in the reservoir. The 

distribution of temperature profile is very significant in heavy oil recovery. When the 

thermal expansion is constrained due to a significant increase in temperature by hot fluid 

injection, thermal stress is developed (Collins, 2011). Hossain and Abu-khamsin (2012) 

confirmed that the continuous alterations of rheological properties of rock and fluid 
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influence heat conduction and convection significantly. The effective thermal conductivity 

of formation is used to characterize the thermal conductivity of reservoir rocks because 

thermal properties are determined by mineral constituents, porosity, and fluid saturating 

pore space (Green and Willhite, 1998). Some researchers studied the thermal conductivity 

of the rocks such as Somerton; Somerton and Boozer; Tikomirov; Anand et al.; Somerton 

et al.; Messmer; Setu and Bharatha; Arthur et al.; Peyman et al.; Irani and Cokar (Somerton, 

1958; Somerton and Boozer, 1960; Tikomirov, 1968; Anand et al., 1973; Somerton et al., 

1974; Messmer, 1984; Arthur et al., 2015; Mohammadmoradi et al., 2016; Irani and Cokar, 

2016). Some selected models of thermal conductivity are mentioned in Table A.2. 

 

Somerton (1958) investigated on heat capacities of fluid-saturated rocks and thermal 

conductivities of rock samples under considerations of fluid saturation. In addition, thermal 

diffusivity using those data was calculated. It was concluded that vapor or gas has a minor 

effect on heat capacities. However, heat capacities greatly changed due to variations in 

pressure, temperature, porosity and water saturation of the rock. In addition, the 

temperature has a substantial effect on thermal conductivity as well as thermal diffusivity. 

The influence of elevated pressure and temperature on thermal conductivity and diffusivity 

of fluid-saturated rocks was not investigated. Later Somerton et al. (1974) developed an 

empirical correlation for predicting thermal conductivity incorporating the effects of 

temperature, porosity and fluid saturation of unconsolidated oil sands. In this model, the 

impact of pressure was ignored.    
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Table A.2: Thermal conductivity models for unconsolidated and consolidated sands 

Investigator  Model/Correlation Considered Variables Remarks 

T P 𝜙 Si  

Somerton (1958) The effective thermal conductivity of oil sand, 

𝜆ℎ𝑅 = 0.735 − 1.30𝜙 + √𝑆𝑤 

Where 𝑆𝑤 = 𝑤𝑎𝑡𝑒𝑟 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 

𝜙 = 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 𝑜𝑓 𝑟𝑜𝑐𝑘 

No No Yes Yes a) Sands (unconsolidated) contained by a mixture of fluids at the 

temperature of 325 Kelvin.  

b) Porosity range of 28-37%. 

Tiknomirov 

(1968) 
𝜆ℎ(𝑇) = 8.787[

𝑒0.6(𝜌𝑏+𝑆𝑤)

(𝑇 + 459.6)0.55
] 

 

Yes No No Yes a) Laboratory sample is sandstone saturated with water and gas 

Anand et al. 

(1973) 

The effective thermal conductivity of dry to liquid-

saturated sandstone,  
𝜆ℎ𝑅,𝑙

𝜆ℎ𝑅,𝑑
= 1.00 − 0.3 [

𝜆ℎ𝑙

𝜆ℎ𝑎
− 1.0]

1

3
 

+4.57(
𝜙

1 − 𝜙

𝜆ℎ𝑙

𝜆ℎ𝑅,𝑑

)0.48𝑚(
𝜌𝑅,𝑙

𝜌𝑅,𝑑

)−4.30 

 

No No Yes No a) The thermal conductivity of the liquid is known at 680F 

b) Cementation factor (m) is 2.15 for consolidated sandstone. 

Somerton et al. 

(1974) 

𝜆 =a + b𝜙 + 𝑐√𝑆𝑤 + 𝑑√𝑆𝑜 + 𝑒𝑇 

Where a, b, c, d and e are constant coefficients 

Yes No Yes Yes a) It allows linear temperature dependence of thermal conductivity 

b) Considered multi-phase fluids 
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Prats (2005) 
𝜆ℎ𝑅 = 𝜆ℎ𝑅,𝑤 × (

𝜆ℎ𝑜

𝜆ℎ𝑅,𝑤

)^(𝜙𝑆𝑤) × (
𝜆ℎ𝑔

𝜆ℎ𝑅,𝑤

)^(𝜙𝑆𝑔)  
No Yes Yes Yes a) This correlation is for three phases (oil, water and gas) 

Seto and Bharata 

(1991) 

𝜆 = 𝑎 + 𝑏𝜙𝑚 + 𝑐𝑆𝑤
𝑛 + 𝑐𝑆𝑜

𝑝
+ 𝑐𝑇𝑞 

Where m, n, p and q are constant exponents 

Yes No Yes Yes a) It is used for clear water formation 

b) Temperature condition is 550F 

Arthur et al. 

(2015) 

𝜆 = 1.98𝑆𝑊
0.2 No No No Yes a) It is an experimental study for oil sands 

b) This model did not consider the impact of porosity, pressure and 

temperature. 

 

Mohammadmoradi 

et al. (2016) 

𝜆𝑒𝑓𝑓 =
− 𝑞

𝛻𝑇
 No No Yes Yes a) Lithology type: sandstone  

b) Heat transfer at steady state conditions 

c) Finite element software (COSMOL) is used 

Irani and Cokar 

(2016) 

𝜆 = 𝑎 + 𝑏𝜙 + 𝑐√𝑆𝑤 + 𝑑√𝑆𝑜 − 𝑒𝑇 = 𝐴 − 𝐵𝑇 

Where A=thermal conductivity at T=0, and B= thermal 

conductivity reduction as a function of T 

Yes No Yes Yes a) Lithology type is unconsolidated oil sand 
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Setu and Bharatha (1991) modified the model proposed by Somerton et al. (1974) for 

estimating in-situ thermal conductivity using temperature logs and laboratory 

measurements core data from the Athabasca oil sands field, Clearwater formation at 

Cold Lake. The anisotropic condition for estimation of thermal conductivity was 

ignored in this study. Arthur et al. (2015) investigated changes in thermal conductivity 

through experimentation, considering the steady state measurement techniques for both 

radial and axial thermal systems. In addition, Arthur et al. (2015) also studied the 

performance of this model numerically using the COMSOL software to check its 

accuracy level. Authors concluded that thermal conductivity is significantly changed 

with water saturation. Later, Mohammadmoradi et al. (2016) investigated prediction of 

effective thermal and electric conductivity in porous media on pore-scale using the 

COMSOL software. It also concluded that rock solids are the crucial carrier and weak 

function of fluid saturation in the system of steam-water for thermal properties 

estimation at the pore scale.   

 

A2.4 Modeling of reservoir heat transport and temperature distribution  

The heat transport system is crucial to represent the real scenario of heat transfer 

through a porous medium into an oil reservoir during a thermal flooding process. 

Several mathematical heat transport models have been established to describe the heat 

transfer mechanism to predict the heated area, heating efficiency and temperature 

distribution in heavy oil and bitumen reservoirs. The available models are presented 

and critically analyzed in the following sections.  
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A2.4.1 Analytical investigation on heat transport and thermal bleeding  

Thermal conduction is accountable for heat losses to the overburden and under-burden 

rocks of reservoir formation. Heat conduction is caused by temperature difference 

between adjacent particles without flowing fluid (Kaviany, 2012). Heat transfer can 

also occur through the movement of heated fluid. Convection heat transfer takes place 

as the hot fluid flows into the reservoir, and heat is transferred by the movement of 

particles within the fluid (Yu and Zhao, 2016). The relationship between convective 

heat flux and Darcy’s velocity can be shown as in the following equation (Baston, 2008; 

Irani and Ghannadi, 2013): 

  

 𝑞𝑣 = 𝜌𝑓𝐶𝑓(𝑇𝑖𝑛𝑗 − 𝑇𝑟) × −
𝑘

𝜇
𝛻𝑃                                                                           (A.3) 

 

Please refer to the nomenclature section for variables introduced in Equation A.3. 

 

Several authors assumed that conduction is the main heat transfer mechanism during a 

thermal flooding process. Some researchers considered only conduction heat at the edge 

of the steam chamber from steam to cold oil reservoir in the classical SAGD models 

(Butler and Stephens, 1981; Butler et al., 1981; Reis, 1992; Akin, 2005; Liang, 2005; 

Nukhaev et al., 2006; Azad and Chalaturnyk, 2010). However, this assumption is 

questioned by several other authors (Farouq-Ali, 197; Edmunds, 199; Ito, 1998; Ito and 

Suzuki, 1999; Sharma and Gates, 2011; Irani and Ghannadi, 2013). Sharma and Gates 

(2011), Irani and Ghannadi (2013) presented convective heat flux from condensate flow 

at the edge of the steam chamber. Authors also considered both convection and 

conduction heat transfer mechanisms in the SAGD process in bitumen reservoirs (Irani 
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and Ghannadi, 2013). Some analytical models of reservoir heat transport have been 

critically reviewed in the preceding paragraphs.   

 

Lauwerier (1955) developed an analytical solution for convective heat transport in 

porous media. Lauwerier assumed that heat transfers in the aquifer just by convection 

(no conduction) and into the adjacent layers by vertical conduction, and heat transport 

in a reservoir is uniform over the height. However, the heat loss from both overburden 

and under-burden cap rocks was not considered. Marx and Langenheim (1959) 

developed a conceptual heating model for both conduction and convection heat transfer 

in an idealized reservoir for calculating cumulative heated area, thermal efficiency and 

theoretical economic limit considering the following assumptions: (i) steam is 

introduced at a constant rate into a uniform reservoir, (ii) heat losses are negligible to 

the overburden and underburden rocks, and (iii) temperature is constant within the 

steam zone. Lawal and Vesovic (2009) investigated a one dimensional mathematical 

model for conduction heating of a heavy oil reservoir using three major assumptions: 

(i) homogenous reservoir, (ii) heating plane is maintained at a constant steam 

temperature, and (iii) local thermal equilibrium in the horizontal direction. It is 

concluded that induced convection is substantial in the vicinity of the heating plane. 

Barends (2010) modified Lauwerier’s concept by including the effect of thermal 

bleeding during the conduction process. An analytical solution for plane-symmetric and 

radial convective heat transport including thermal bleeding effect was presented. These 

cases are limited to not only incompressible porous media with steady fluid flow 

patterns but also for Lauwerier’s concept. Using the COSMOL 2D heat flow simulator, 
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it was also shown that thermal bleeding affects the entire front position with respect to 

the Peclet number.  

 

Farouq-Ali (1997) first criticized the assumption that there is only conductive heat 

transfer in the SAGD process. It was pointed out that with so much condensate flowing, 

convective heat transfer would be expected to be dominant, which can be reasonable at 

high temperature. Yu and Zhao (2015)  developed three models with different fluid 

injection scenarios to describe the transient heat transfer coupled with steady flow 

conditions during a SAGD process. These models are solved analytically using the 

Laplace transformation under consideration of continuous fluid injection at a constant 

temperature, with exponentially decreasing temperature, and periodic fluid injection at 

high and low temperature with respect to time (Yu, 2014). It was concluded that 

conductive and convective heat transfers simultaneously occur during a SAGD process. 

Finally, fluid flow is influenced by convection, and greatly increases the rate of heat 

transfer. Irani and Ghannadi (2013) analyzed the relative roles of convective and 

conductive heat transfers at the edge of a SAGD system’s steam chambers for bitumen 

reservoirs and compared with several models (Ito and Suzuki, 1999; Edmunds, 1999; 

Sharma and Gates, 2011). Authors concluded that convection can transfer relatively 

large amount of heat at the edges of steam chambers. Later Irani and Gates (2013) 

presented that the convective heat flux linked with parallel flow to the edges of a 

chamber is minor compared to perpendicular to the edges. Irani and Cokar (2014) 

modified the Butler’s model by incorporating the impact of temperature on thermal 

conductivity within the oil reservoir to a SAGD analytical model.       
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A2.4.2 Hot fluid injection rate and heating efficiency  

Marx and Langenheim (1959) introduced a mathematical model incorporating heat 

transfer model for forecasting the growth of the steam zone during steam injection into 

a single well. It is assumed that no heat is transferred ahead of the front. However, 

authors did not consider the variable heat injection rate as a function of time. Later 

Ramey (1959) updated this model by incorporating the variable heat injection rates. 

Rubinshtein (1959) developed a heat transport model for calculating the heat efficiency 

while heat injection rate is constant. Boberg and Lantz (1966) developed a heating 

model for calculating the production rate and to predict the field performance during 

cyclic steam stimulation process. It was established for multiple oil sands which 

separated by shales. It is assumed that steam flow is radial and the heated zone is a 

cylindrical centred on the well. 

 

Willman et al. (1961) presented an equation to estimate the steam injection rate 

neglecting both the sensible heat and the conduction process. Authors also suggested a 

calculation procedure to estimate heat requirements and oil recovery for hot fluid 

injection and steam drive process. By laboratory tests, it also concluded that both steam 

and hot water injection recover more oil than an ordinary water flood. Mandl and Volek 

(1967) developed a linear steam drive model considering a single layer reservoir to 

predict the total heat flow into the liquid zone and the steam zone growth. In this model, 

authors made some assumptions: (i) constant thermal properties as well as all saturation, 

temperature and fluid properties, (ii) heated layer is uniform thickness, (iii) 

gravitational effects and pressure gradient is negligible, (iv) variable injection rate for 

both sensible and latent heat as function of time, and so on. Mandl and Volek (1967) 
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first introduced the critical time across the condensation front which depends on 

reservoir temperature, thickness and steam quality. Mandl and Volek also showed that 

the theoretical steam-zone volume to be higher rather than the experimental result at 

near or after critical time.  

 

Myhill and Stegemeier (1978) developed a mathematical model for prediction of oil 

and steam ratio. Authors also calculated the steam-zone growth using a slightly 

modified version of Mandl and Volek model (1967). Authors used the following basic 

assumptions for the development of models: (i) uniform rock and fluid properties, (ii) 

thermal properties are assumed constant throughout the zone, (iii) vertical temperature 

gradients in the reservoir are zero, (iv) heat losses from the steam zone are by 

conduction only, and occur normal to the reservoir into the base and cap rocks, (v) heat 

transfer in the reservoir by convection only, and (vi) heat passes only after critical time 

through the condensation front. Prats (1969) modified the model of Mandl and Volek 

(1967) considering two nearby layers separated by impermeable center layer during 

steam injection. In this model, it was considered that the injection rate is constant. It 

also concluded that steam zone volume is lower while heat transfer between the layers 

is negligible. Some selected models of reservoir heated area and heating efficiency is 

shown in Table A.3. Figure A.3 shows the typical profile of reservoir heating efficiency 

during the thermal flooding process. Butler (1991) presented the heating model for 

constant displacement rate which gives higher thermal efficiency compared to 

Rubenshtein (1959) and Marx and Langenheim (1959) models due to sufficient supply 

of heat to mitigate the heat losses.   
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Figure A.3: A typical nature of thermal efficiency for different models (Redrawn 

from Nian and Cheng, 2017). 

 

Hearn’s model (1969) gives similar heating efficiency if we compare Marx and 

Langenheim model (1959) while there is no sensible heat transfer beyond the 

condensation front (CF). If latent to sensible heat ratio (Hl/Hs) is lower than 1, Hearn’s 

model gives lower values of thermal heating than other models. Van Lookeren (1983) 

presented a calculation method to predict the steam-zone shape and oil recovery from 

radial and linear steam-drive process using the principles of segregated flow and steam 

override effects. The calculated results of a radial steam zone shape were also verified 

by experimental study. It is concluded that the shape of the steam zone is controlled by 

not only steam-injection rate and pressure but also by effective formation permeability 

to steam. Jensen et al. (1991) proposed a model for steam-drive projects, which showed 

a reasonably better accuracy over the existing models such as Myhill and Stegemeier 

(1978), Van Lookeren (1983), and also compared with 15 field scale steam-drive 

projects.
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Table A.3: Mathematical models for reservoir heated area and heating efficiency. 

Investigator Model/Equation Remarks 

Marx and 

Langenheim 

(1959) 

The cumulative heated area at time t, 

𝐴𝑠(𝑡) = (
𝐻0𝑀ℎ𝐷

4𝜆𝑅
2(𝑇𝑠−𝑇𝑟)

) [𝑒𝑡𝐷𝑒𝑟𝑓𝑐√𝑡𝐷) + 2√
𝑡𝐷

𝜋
− 1] where  

𝑡𝐷 = (
4𝜆𝑅

2𝑀ℎ𝐷

𝑀2ℎ2𝐷
) 𝑡 and  𝑀 = 𝜙(𝑆𝑜𝜌𝑜𝐶𝑜 + 𝑆𝑤𝜌𝑤𝐶𝑤) + (1 − 𝜙)𝜌𝑟𝐶𝑟 

𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦, 𝐸𝐻 = (
1

𝑡𝐷
) [(𝑒𝑡𝐷𝑒𝑟𝑓𝑐(√𝑡𝐷 ) + 2√

𝑡𝐷

𝜋
) − 1]          

a) Injection heat content (injection rate) is 

constant 

b) The areal shape of the steam zone is not 

specified 

c) Heat losses are negligible to the cap and 

base rocks. 

d) Heat is not transferred beyond the heat 

front 

Ramey 

(1959) 

𝐴𝑠(𝑡) = (
𝐻0(𝑡)

2𝜌𝐶𝑏(𝑇𝑖𝑛𝑗−𝑇)
) ∗ (𝑒𝑡𝐷

2
𝑒𝑟𝑓𝑐 𝑡𝐷)          

a) The injection rate is a function of time 

b) This model is modified based on Marx and 

Langenheim (1959) 

c) Constant effective volumetric specific heat 

throughout the formation   

Rubinshtein 

(1959) 𝐸𝐻 = 1 − (1 − 𝛽) × {

√𝛾𝜏

𝜋
[1 − (1 − 𝛽)∑ 𝛽𝑛−1𝑚

𝑛=1 (1 +
𝑛2

𝛾𝜏
) 𝑒

(1+
𝑛2

𝛾𝜏
)
]

+(1 − 𝛽)∑ 𝑛𝛽𝑛−1∞
𝑛−1 (1 +

2𝑛2

3𝛾𝜏
) 𝑒𝑟𝑓𝑐

𝑛

√𝛾𝜏

} 

where 𝛽 =
𝛾𝑎−1

𝛾𝑎+1
, 𝛾 =

𝑘1

𝑘2
 and 𝑎2 =

𝑘2𝜌1𝑐1

𝑘1𝜌2𝑐2
 

a) Thermal properties are same for both cap 

and base rocks 
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 b) Heating efficiency in the oil layer in 

between the overburden and the under-

burden formation 

 

Myhill and 

Stegemeier 

(1978) 

𝐸ℎ,𝑠

=
1

𝑡𝐷

[
 
 
 
 
 𝐺(𝑡𝐷) +

(1 − 𝑓ℎ,𝑣)𝑈(𝑡𝐷 − 𝑡𝑐𝐷)

√𝜋

{2√𝑡𝐷 − 2(1 − 𝑓ℎ,𝑣) × √𝑡𝐷 − 𝑡𝑐𝐷 − ∫
𝑒𝑢𝑒𝑟𝑓𝑐√𝑢

√𝑡𝐷 − 𝑢
𝑑𝑢 − √𝜋𝐺(𝑡𝐷)

𝑡𝑐𝐷

0

}

]
 
 
 
 
 

 

𝑊ℎ𝑒𝑟𝑒 𝑈(𝑡𝐷 − 𝑡𝑐𝐷) = 1 𝑓𝑜𝑟 𝑡𝐷 > 𝑡𝑐𝐷 𝑎𝑛𝑑 0 𝑓𝑜𝑟 𝑡𝐷 ≤ 𝑡𝑐𝐷 

 

a) The weighting factor (1-fh,v) is empirical 

b) The correlation should not be used for low-

quality steam-drives  

Prats (1969) 
𝐻(𝑡) = ∫ 𝑄̇(𝑡′)𝐾(𝜃𝑛√𝑡 − 𝑡′)𝑑𝑡 − 𝐹 ∫ 𝐻𝑜(𝑡

′)𝑑𝑡 𝐾(𝜃𝑛√𝑡 − 𝑡′)𝑑𝑡′
𝑡

0

𝑡

0

 

𝑤ℎ𝑒𝑟𝑒 𝐾(𝑧) = 𝑒𝑧2
𝑒𝑟𝑓𝑐(𝑧), 𝜃𝑛 =

𝜆ℎ2𝑧

ℎ√𝛼2(𝜌𝑐)1
  and 𝐹 =

(𝜌𝑐)𝑓−(𝜌𝑐)𝑛

(𝜌𝑐)𝑛
 

a) It is assumed that effective volumetric heat 

capacity of the pay zone is independent of 

the liquid saturation 

b) This model is considered for hot water 

injection that there is no distinction 

between near and far regions, and 

coefficient, F =0.  
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Cheng et al. (2016) investigated wellbore heat loss during hot water injection. Authors 

concluded that injection time and pressure, and air temperature have minimal effect on 

heat loss while injection rate and temperature, the proportion of hot water as well as 

insulated tube have a significant effect on heat loss from offshore wells. Nian and 

Cheng (2017) showed number of  heat transport models in pipe wellbore, formation 

near the wellbore, and in reservoirs to evaluate heat loss from hot fluid to surrounding 

and for estimating wellbore fluid temperature. 

 

A2.4.3 Models related to temperature distribution 

Thomas (1967) proposed an approximate method for determining the temperature 

profile when injecting fluid is hot. This model approximation is applicable to relatively 

thin reservoir beds in which the injected fluid flow is high. He considered that 

convective heat flux in the radial direction is the leading heat transport mechanism. 

Ziagos and Blackwell (1986) developed a two-dimensional mathematical model in fluid 

flow in geothermal structures using two major assumptions: (i) the thickness of the 

aquifer is negligible compared to the layer thickness, and (ii) conduction process is 

negligible in the horizontal direction. Authors proposed a method to forecast the extent 

of the zone of influence and its scale for any combination of hydrological and thermal 

parameters. Numerous models and theory are developed for temperature distribution 

considering various scenarios in geothermal and naturally fractured reservoirs (Satman, 

1988; Kocabas and Horne, 1990), thermal injection modeling by well test analysis 

(Aeschliman et al., 1983; Jahanbani Ghahfarokhi et al., 2012), and development of 

analogies to tracer transport (Kocabas, 2001; 2006).  

 



 

 268 

For a CSS process, Boberg and Lantz (1966) developed a model for determining 

average temperature which was solved by an analytical technique using the principle of 

superposition. In this model, two adjustments were used: (i) there is no initial 

temperature spreading in the shale above or below the heated zone and added a 

hypothetical thickness for each sand thickness; and (ii) used a dimensionless parameter 

(sigma) to account for energy removed by produced fluids. Kocabas (2004) developed 

a two-dimensional analytical model and solved it to predict the dimensionless 

temperature distribution across half of the injection plane. In this conceptual model, 

several assumptions used such as (i) linear flow unit confined by two layers, (ii) 

incompressible fluid flow with constant linear flow velocities in the directions of x and 

z, and (iii) heat conduction coefficients in the boundary layers is constant and equal. A 

major benefit of this model is that it gives a correct estimation of thermal efficiency 

than the one-dimensional models considering infinite transverse conductivity. In 

addition, it serves to detect the roles of boundary conditions and fluid mechanics 

through dispersion parameters.  

Li et al. (2010) developed a mathematical model and solved it by Laplace domain 

solution approach to simulate the temperature distributions of the aquifer and rocks in 

an aquifer thermal energy storage system. Authors made some assumptions for this 

model such as: (i) the underlying and overlying, and confined aquifer is homogeneous, 

anisotropic, and uniform thickness, (ii) buoyancy flow is negligible, (iii) the initial 

temperature is constant over the whole aquifer system, and (iv) the temperatures in both 

rocks are uniformly disseminated over vertical depth before the hot water injection. In 

addition, the steady state solution obtained by the final value theorem while thermal 

energy loss is zero at any radial distance from the aquifer into rocks. It observed that 
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the value of aquifer temperature exhibits higher while the effect of thermal conductivity 

is negligible. Besides, it is concluded that aquifer temperature will be underestimated 

when wellbore radius is considered as negligible. Irani and Cokar (2016) developed an 

analytical SAGD model to calculate the oil production rate and oil production and steam 

oil ratio (SOR). Authors presented a modification of Butler’s model (1985a; 1985b) in 

which thermal conductivity varies as a function of temperature within the oil reservoir. 

Authors also investigated on SOR variation under consideration of temperature-

dependent thermal conductivity effects. Irani and Cokar (2016) concluded that SOR is 

independent of the thermal conductivity for both laterally and angularly expanding 

reservoirs. Barends (2010) developed a model to forecast the temperature profile in 

porous rocks for both radial and linear flow conditions. The model was solved 

analytically using the methods of Boltzmann and the Laplace transformation. The 

model is also validated by the COMSOL software. It was concluded that thermal 

bleeding (i.e. heat leakage) affects the temperature distribution in both linear and radial 

flow directions. Li and Cheng (2015) constructed the condensate velocity versus 

temperature ahead of a steam chamber, and temperature versus distance normal to the 

interface ahead of the steam chamber using several models such as Birrell (2001), and 

Sharma and Gates (2011). Li and Cheng (2015) showed that water condensate velocity 

drops more rapidly rather than Sharma and Gates (2011) model with the decrease of 

temperature under typical Athabasca oil sands conditions. Besides, the results presented 

that temperature from Li and Cheng model is approximately 10 0C lower than that of 

Sharma and Gates model, and 13 0C higher than that from Butler’s model.  

Yu and Zhao (2016) developed a one-dimensional heat transfer model under 

consideration of steady flow, and pressure gradient between crude oil and injection fluid 
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zone is constant. Authors solved this mathematical model analytically to depict the 

temperature behavior as a function of time and location. It was stated that conductive 

and convective heat transfer occur simultaneously during a SAGD process. Yu and 

Zhao (2016) also concluded that the heating area and the temperature gradient are 

smaller for a reservoir and fluid system with larger thermal diffusivity. In addition, the 

increasing rate of reservoir temperature is smaller when thermal diffusivity is lower due 

to poor ability to store thermal energy. Lawal and Vesovic (2009) developed a one-

dimensional heat transfer model in linear systems to predict the viscosity profile and 

temperature distribution at different conditions. Authors used the correlation of the 

temperature-dependent oil density and viscosity of an Athabasca bitumen reservoir. In 

addition, Lawal and Vesovic (2009) also used the magnitude of Nusselt number for the 

relative importance of natural convection. Authors concluded that the significance of 

free convection depends on the rock and fluid properties including duration of heating. 

Miura and Wang (2012) developed an analytical model to predict the cumulative SOR 

as a function of both average reservoir properties, and time-dependent operation 

variables. Wei et al. (2014) proposed a new analytical model to determine the oil 

production rate, steam chamber development process, water cut, and steam oil ratio 

including production performance of SAGD under a constant steam injection rate. 

Authors also compared the results between STARS and proposed a new model. It was 

concluded that the shape of the steam chamber is affected by injection rate. Finally, 

Lawal (2016) modified the model of Lawal and Vesovic (2009) for steam flooding 

process. The author concluded that a maximum of four zones (i.e. conduction, 

quiescent, convection and condensation) can be recognized at any instant of the thermal 

flood.  
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A summary of some mathematical models for the temperature distribution in heavy oil 

reservoir is shown in Table A.4. In addition, a brief review of some selected analytical 

solutions for describing some aspects of thermal flooding process is presented in Table 

A.5. A typical reservoir temperature distribution profile is depicted in Figure A.4.  

 

 

Figure A.4: A typical plot of temperature distribution where t2 > t1 (Redrawn from 

Nian and Cheng, 2017). 

 

For radial distances of a different reservoir, the temperature distribution gives a higher 

value for both analytical and numerical solutions at the longer time (t2) than less time 

(t1) duration. The analytical and numerical solutions also give almost close results for 

temperature distribution at time t2. On the other hand, at a short time (t1), the solutions 

show slightly different profiles compared to a longer time at the same distance as can 

be seen from in Figure A.4.   
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Table A.4: Analytical models of temperature distribution for thermal flooding. 

Investigator Model/Equation Remarks 

Butler (1985a) 𝑇 − 𝑇𝑟

𝑇𝑠𝑡 − 𝑇𝑟

= 𝑒−
𝑣𝑠 𝜉′
𝛼  

Where vs = linear velocity of steam front,  

and 𝜉′ =distance measured ahead of the front into the coder zone 

a) This model is considered as quasi-steady-state condition, and 1 D heat 

transfer mechanism 

b) Heat losses for both cap and base rocks are negligible  

c) Homogeneous porous medium 

d) Thermal conductivity is constant 

Kocabas 

(2001) 

Temperature distribution,   

𝑇𝐷 = 1 − ∑ ∑
(−1)𝑚

𝑚!

𝑛

𝑚=0

(
𝑛
𝑚

)
2𝑚+1

√𝑚
∫ 𝐹𝜔𝑚𝑒−𝜔2

𝐻𝑚(𝜔)𝑑𝜔
∞

0

∞

𝑛=0

 

Where 𝐹 = 𝑒𝑟𝑓𝑐 {
2√

𝜏

𝜃
𝜔+𝛼1

2√𝜂
} + 𝑒𝑟𝑓𝑐 {

2√
𝜏

𝜃
𝜔+𝛼2

2√𝜂′
} 

a) Assumed that flow rate is constant 

b) This model considered for injection of low temperature into a hot 

reservoir  

Hossain et al. 

(2007) 

 

𝜕𝑇∗

𝜕𝑡∗
+

𝜌𝑠𝑐𝑝𝑠

𝑀
(𝑢∗)

𝜕𝑇∗

𝜕𝑡∗
−

(𝑘𝑠 + 𝑘𝑓)

𝑀𝐿𝑢𝑖

𝜕2𝑇𝑠

𝜕𝑥∗2
= 0 

Conditions: Initial and boundary conditions 

a) One-dimensional numerical model in a one-dimensional reservoir. 

b) The temperature of rock and fluids is not similar 

c) Assumed that thermal conductivity of rock and fluid is constant in the 

system 
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𝑇∗(𝑥, 0) = 1, 𝑇∗(0, 𝑡) =
𝑇𝑠𝑡

𝑇𝑖

 𝑎𝑛𝑑 𝑇∗(𝐿, 𝑡) = 1 
d) Governing equation solved using an explicit finite difference scheme. 

Barends 

(2010) 

𝑇 − 𝑇𝑖 =
(𝑇1 − 𝑇𝑖)

2
{𝑒𝑟𝑓𝑐 (

𝑥 − 𝑣𝑡

2√𝛼𝑡
) + 𝑒

𝑥𝑣
𝛼  𝑒𝑟𝑓𝑐 (

𝑥 + 𝑣𝑡

2√𝛼𝑡
)} 

Where v= heat convective velocity, and x= special coordinate 

horizontal  

a) Considered the local thermal equilibrium between fluid and rock 

grains.  

b) Diffusivity and reservoir height are constant 

Irani and 

Ghannadi 

(2013) 

Dimensionless temperature distribution,  

𝑇𝐷
∗ =

𝑇 − 𝑇𝑟

𝑇𝑠𝑡 − 𝑇𝑟

=

∑
(𝑃∗)

𝑈𝑥
𝜆𝛼

+𝑛

𝑛! ×
𝑈𝑥

𝜆𝛼
+ 𝑛

(−𝜂)𝑛∞
𝑛=0

{
𝜆𝛼
𝑈𝑥

+ ∑
1

𝑛! ×
𝑈𝑥

𝜆𝛼
+ 𝑛

(−𝜂)𝑛∞
𝑛=1 }

 

Where  𝑃∗ =
𝑃−𝑃𝑟

𝑃𝑠𝑡−𝑃𝑇𝑟
 𝑎𝑛𝑑 𝜂 =

𝑈𝑥(𝑃𝑠𝑡−𝑃𝑟)𝑘𝑘𝑟𝑤

𝛼𝑐𝜇𝑤
 

 

a) The system is considered as a quasi-steady-state condition 

b) Assumed a stable bitumen/steam front.  

c) Condensate velocity is included during convection heat transfer mode 

d) There is a lack of effect on transverse heat transfer into the oil sand 

beyond the chamber 

Irani and Gates 

(2013) 

𝑇𝐷
∗ = [1 −

𝜆𝑟

𝑛(𝑛 + 1)𝑈𝑥
2𝜌𝑟𝑐𝑝𝑟

𝑘𝑘𝑟𝑔 𝑠𝑖𝑛𝜃

𝜇𝑠𝑡

] × [𝑒
(−

𝑈𝑥𝜌𝑟𝑐𝑝𝑟

𝜆𝑟
𝜉)

]

+ [
𝜆𝑟

𝑛(𝑛 + 1)𝑈𝑥
2𝜌𝑟𝑐𝑝𝑟

𝑘𝑘𝑟𝑔 𝑠𝑖𝑛𝜃

𝜇𝑠𝑡

]

× 𝑒
[−(𝑛+1)

𝑈𝑥𝜌𝑟𝑐𝑝𝑟

𝜆𝑟
𝜉]

 

a) The system is considered as a quasi-steady-state condition 

b) Outflow convection is a result of temperature variation  
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where n= power constant for viscosity variation versus 

temperature  

Li and Chen 

(2015) 

𝜕2𝑇∗

𝜕2𝜉2
+

𝑈𝑥𝜌𝑜𝑠𝑐𝑝 − 𝜌𝑐𝑐𝑝𝑐𝑉𝑐

𝜆𝑟

𝑑𝑇∗

𝑑𝜉
= 0 

Temperature gradient, 𝑇∗ = 𝑐1 + 𝑐2𝑒
𝜌𝑐𝑐𝑝𝑐𝑉𝑐−𝑈𝑥𝜌𝑜𝑠𝑐𝑝

𝜆 × 𝜉 

where Vc = condensate velocity normal to the steam chamber 

edge 

a) Temperature gradient at the boundary condition is zero 

b) Condensate velocity is constant 

c) The system is considered as a quasi-steady-state condition 

Yu and Zhao 

(2016) 

𝑇(𝑥, 𝑡) = 

{
 
 

 
 𝑇𝑖 +

𝑇0−𝑇𝑖

2
[𝑒𝑟𝑓𝑐 (

𝑥−𝑢𝑡

2√𝐷𝑡
) + 𝑒

𝛼𝛾

𝐷 𝑒𝑟𝑓𝑐 (
𝑥+𝑢𝑡

2√𝐷𝑡
)] , 𝑡 ≤ 𝑡0

𝑇𝑖 +
𝑇0−𝑇𝑖

2
[𝑒𝑟𝑓𝑐 (

𝑥−𝑢𝑡

2√𝐷𝑡
) + 𝑒

𝛼𝛾

𝐷 𝑒𝑟𝑓𝑐 (
𝑥+𝑢𝑡

2√𝐷𝑡
)] + 

𝑇𝑖−𝑇𝑜

2
[𝑒𝑟𝑓𝑐 (

𝑥−𝑢(𝑡−𝑡0)

2√𝐷(𝑡−𝑡0)
) + 𝑒

𝛼𝛾

𝐷 𝑒𝑟𝑓𝑐 (
𝑥+𝑢(𝑡−𝑡0)

2√𝐷(𝑡−𝑡0)
)] , 𝑡 > 𝑡0

 

 

a) Steady-state and 1 D heat transfer coupled model  

b) Thermal diffusivities of the reservoir and the fluid systems are constant 

c) Temperature as a function of both time and space  
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Table A.5: Selected some heat transport models related to temperature distribution and thermal efficiency into the oil reservoir 

Investigator 

 

  Assumptions  

Injecetd  Flow type Thermal conductivity Solution 

Fluid  Impermeable strata Productive sand  

  Horizontal 

 

Vertical Horizontal 

 

Vertical Temperature 

distribution 

Thermal 

efficiency 

Lauwerier (1955) Hot water Linear Zero Finite Zero Infinite Yes Yes 

Marx and Langenheim 

(1959)  

Steam Radial Zero Finite Zero Infinite No Yes 

Ramey (1959) Steam Radial Zero Finite Zero Infinite No Yes  

Rubinshtein (1959) Hot liquid Radial Finite Finite Finite Finite No Yes 

Willman et al. (1961) Steam Radial Zero Finite Zero Finite No Yes 

Malofeev and Scheinman 

(1963) 

Hot water Radial Zero Finite Zero Infinite Yes Yes 
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Avdonin (1964) Hot water Linear, Radial Finite Infinite Zero Finite Yes No 

Kocabas (2004) Cold water Linear Zero Finite Infinite Finite Yes No 

Barends (2010) Hot water Linear, Radial Zero Finite Zero Finite Yes No 

Lawal and Vesovic (2009) Hot fluid Linear Zero Infinite Zero Finite Yes No 

Li et al. (2010) Hot fluid Radial Zero Finite Finite Zero Yes No 

Miura and Wang (2012) Steam Linear Zero Finite Zero Infinite No No 

Wei et al. (2014) Steam Linear Zero Infinite Finite Finite No No 

Lawal (2016) Steam Linear Zero Infinite Zero Finite Yes No 
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A2.5 Models related to oil production rate and recovery performance  

A variety of empirical and analytical models have been developed to determine the oil 

flow rate, oil displacement efficiency, steam oil ratio and recovery performance through 

the injection of hot water and steam for thermal flooding. Several models have been 

critically analyzed in the following subsections.  

 

A2.5.1 Oil production rate models 

The first gravity drainage based model of oil production rate is predicted by Butler et 

al. (1981). Authors used some assumptions such as (i) constant reservoir height and 

porosity (ii) uniform thermal diffusivity and effective permeability of oil, (iii) steam 

pressure is constant in the steam chamber, (iii) heat transfer ahead of the steam chamber 

to cold oil is only by thermal conduction. This model reportedly overestimated oil 

drainage rate and predicted an un-realistic steam zone shape. Later, this model was 

modified by Butler and Stephens (1981) to obtain a better model for the steam zone 

shape. Reis (1992) modified the model of Butler et al. (1981) using the value of 

dimensionless temperature coefficient. This model is developed by experimental 

investigation using an inverted cone geometry of steam-chamber. The above models 

did not consider the effects of asphaltene deposition and steam distillation. Some 

selected models of oil production rate have been shown in Table A.6. The model 

equations are critically analyzed and reported in the remarks of the table.  
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Table A.6: Oil production rate models during SAGD process. 

Investigator Model/Equation Remarks 

Butler et al. 

(1981) 

Oil drainage rate,𝑞 = 𝐿√
2𝜙𝛥𝑆𝑜𝑘𝑔𝛼ℎ

𝑎𝑚𝑣𝑠
 

a) Constant steam pressure, and only steam flows in the steam 

chamber 

b) Considered only conduction heat transfer system 

c) Assumed temperature coefficient, a=1 

Butler and 

Stephens 

(1981) 

The rate of oil flow,𝑞 = 𝐿√
1.5𝜙𝛥𝑆𝑜𝑘𝑔𝛼ℎ

𝑚𝑣𝑠
 

a) This model altered the theory of Butler by pinning the base of the 

chamber to the production-well location 

b) It is known as “Tandrain” model 

Reis (1992) 
Oil flow rate, 𝑞 = 2𝐿√

𝜙𝛥𝑆𝑜𝑘𝑔𝛼ℎ

2𝑎𝑚𝑣𝑠
 

 

a) This model did not include effects of asphaltene deposition and 

steam distillation, and assumed temperature coefficient, a= 0.4  

b) Assumed that steam-chamber geometry is an inverted cone  

Akin  

(2005) 

Cumulative oil production 𝑄𝑜 = √
𝜙𝛥𝑆𝑜𝑘𝑜𝑔𝑤𝑠ℎ

2𝑚𝑣𝑠
𝑡 

a) This is a modification of Butler et al. (1981) and Reis (1992) 

models  

b) This model includes the effects of steam distillation and 

asphaltene deposition 
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Sharma and 

Gates (2010) 
𝑞 = 2𝐿√

2𝜙𝛥𝑆𝑜𝑔ℎ𝛼𝑘𝑘𝑟𝑜𝑐𝑤𝛤(𝑚)𝛤(𝑎 + 1)

𝑣𝑠𝛤(𝑚 + 𝑎 + 1)
 

a) This model included relative permeability effects 

b) It does not consider the effect of Geomechanics 

Cokar et al. 

(2013) 

The oil-phase velocity, 

𝑢𝑜𝑖𝑙 =
𝑒

𝐸+𝐹𝜙𝑜[1+𝛽(𝑇𝑠−𝑇𝑟)𝑒
−

𝑈𝜉
𝛼 ]

𝜈𝑠
× (1 − 𝑒−

𝑈𝜉
𝛼 )𝑎(𝑒− 

𝑈𝜉
𝛼 )𝑚 

a) This model overcomes the limitations of Sharma and Gates 

(2010) model  

b) It includes the dilation caused by thermal expansion 

Irani and 

Cokar 

(2014) 

𝑞 = 

(𝐴 − 𝐵𝑇)
𝑈𝑥𝜌𝑟𝑐𝑝𝑟

𝐴
×

√1 −
2𝐵
𝐴 𝑇 (1 −

𝐵
2𝐴𝑇)

[(
𝐵
𝐴)2𝑇 −

𝐵
𝐴]

×
1

{1 + √1 −
2𝐵
𝐴 𝑇𝑟(1 −

𝐵
2𝐴𝑇𝑟)[√𝑋 − √𝑌]}

 

𝑤ℎ𝑒𝑟𝑒 𝑋 =
2𝐵

𝐴
𝑇 (1 −

𝐵

2𝐴
𝑇)𝑎𝑛𝑑  

𝑌 =
2𝐵

𝐴
𝑇𝑟 (1 −

𝐵

2𝐴
𝑇𝑟) 

 

a) This is modified form of Butler’s SAGD model  

b) Convective heat transfer was not considered 

c) 𝜆 as a function of temperature   



 

 280 

Akin (2005) experimentally investigated the prediction of cumulative oil 

production rate during a SAGD process by incorporating the effects of asphaltene 

deposition and steam distillation. It was concluded that asphaltene deposition and 

steam distillation effects dominate over steam zone size and lateral heat transfer 

effects during late stages of a SAGD operation. Sharma and Gates (2010) modified 

the theory of Butler and developed a model to predict the oil production rate 

including the effect of relative permeability. This model is solved by the gamma 

function solution approach. Sharma and Gates concluded that most mobile oil is not 

at the edge of steam chambers but at some distances into the oil sands. However, 

authors did not include the effect of geomechanics as well as that of thermal 

expansion on the reservoir properties. 

 

Later, Cokar et al. (2013) modified the Sharma and Gates model (2010) to predict 

the oil flow rate at the edge of steam chamber including the effect of thermal 

expansion. Cokar et al. (2013) developed an analytical model for SAGD oil rate 

considering the effect of thermogeo-mechanics at the edge of the steam chamber. 

This model also considered the effect of relative permeability and the effects of 

changes in permeability and porosity. It was concluded that geo-mechanical effects 

should be included in the analysis of oil phase flow at the edge of steam chambers. 

Besides, authors mentioned that oil drainage and production rates are substantial at 

the edge of the steam chamber due to the impact of thermal expansion. In addition, 

Cokar et al. (2013) reported that the peak oil-phase velocity is upto 45% which is 

higher than that from the Sharma and Gates model (2010) due to the consideration 

of geo-mechanical effects.             
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A2.5.2. Investigation on oil displacement and recovery performance  

Oil displacement rate is predicted by using the frontal advance models or gravity-

override models. Myhill and Stegemeier (1978) modified the frontal advance model 

to predict the ultimate steam oil ratio (SOR) for a steam drive process. Jones (1981) 

proposed an analytical model which is an extension of the model proposed by 

Myhill and Stegemeier (1978) through the introduction of the capture efficiency 

(three dimensionless factors). The model converts the oil displacement rate 

obtained from the results of Myhill and Stegemeier (1978) steam flood to the 

corresponding actual oil production rate. The correlation was developed based on 

the results of 14 different steam-flood projects. Jones (1981) assumed that any 

steam flood consists of three production stages. The first stage is controlled by 

initial oil viscosity, the second stage is controlled by hot oil mobility and reservoir 

permeability, and the final stage is dominated by the remaining mobile fraction of 

original oil in place. Chandra and Mamura (20025) improved the analytical model 

of John’s (1981) to predict the capture efficiency as well as steam flood production 

performance analysis. Neuman (1985) developed a model to predict the post-steam 

breakthrough performance and steam injection rate. However, the pre-steam 

breakthrough period was not addressed. Van der Knaap (1993) showed that 

Neuman model can be derived from Mandl-Volek model (1967), and Authors are 

completely compatible. Miller and Leung (1985) developed an approximation 

method to estimate oil displacement rates when gravity drainage is the dominant 

mechanism. Chu (1985) developed a series of empirical correlation to estimate the 
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SOR with the various reservoir and crude properties by regression analysis based 

on 28 field projects. 

 

Edmunds and Peterson (2007) developed an analytical model to predict the 

cumulative steam-to-oil ratio (CSOR) for steam-based recovery of bitumen from 

high permeability reservoirs. Authors interpreted as unsteady-state SAGD recovery 

for cyclic steam which can be operated at effective temperatures about half of that 

for SAGD. This model captured the fundamentals of the basic physics considering 

material and energy balances. This model has the limited dependency on time 

through heat loss term and neglects the practical aspects such as the operating 

conditions and other time-dependent factors such as rising steam chamber, the 

chamber, and the temperature difference between injection steam and production 

fluid. Miura and Wang (2012) developed an analytical model to predict the CSOR. 

It is a modified form of Edmunds and Peterson model using both the energy balance 

equation and the gravity drainage theory. Authors extended this model by 

incorporating operating variables such as the temperature of production and 

injection and accounting for the effect of time-dependent variables such as oil 

saturation and height of the rising chamber to mimic the applied SAGD process. 

Table A.7 and Table A.8 shows the oil displacement capture efficiency model and 

SOR, respectively. 

 

Davies and Silberberg (1968) presented a technique for predicting the performance 

of five-spot steam floods under considerations of both Buckley and Leverett (1942), 

and Marx and Langenheim model (1959). Gomaa (1980) developed a set of 
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correlation charts for the prediction of oil-to-steam ratio and oil recovery as a 

function of reservoir characteristics and operating conditions. It was concluded that 

CSOR depends strongly on initial mobile oil saturation, thickness, and net to gross 

ratio of a reservoir. In addition, a series of correlations based on numerical 

simulation using a particular set of fluid and rock properties were developed. Rhee 

and Doscher (1980) developed a model for predicting oil recovery including the 

effects of gravity override and distillation during steam flooding process. Vogel 

(1984) presented a simple, practical and conservative approach to calculate the 

steam requirements for a steam flood. It was assumed that the steam chamber 

spreads immediately across the top of the whole reservoir pattern. In addition, 

Vogel suggested that it is required to inject steam at a higher rate initially in a steam 

flood, and then to reduce the rate to compensate for the reduced vertical heat flux. 

Several studies also have been done to characterize the bitumen and crude oil in 

porous media for applying of thermal flooding process (Phillips et al., 1985; Ayasse 

et al., 1997; Yoshiki and Phillips, 1985; Lal and Mather, 1999; Cai and Chung, 

2001; Sadrameli, 2015; Li et al., 2016; Rodriguez-DeVecchis et al., 2017). Jabbari 

et al. (2017a; 2017b) investigated the oil recovery performance coupling by 

thermally-induced wettability alteration from hot-water imbibition in naturally 

fractured reservoirs. Jabbari et al. concluded that the rate of oil recovery of counter-

current imbibition is less than that in co-current imbibition in a hot-water injection 

process.  
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Table A.7: Models of capture efficiency for oil displacement during thermal flooding. 

Investigator Capture efficiency = 𝐴𝑐𝐷 × 𝑉𝑜𝐷 × 𝑉𝑝𝐷 Remarks 

 𝐴𝑐𝐷 𝑉𝑜𝐷 𝑉𝑝𝐷  

Jones (1981) 

𝐴𝑐𝐷 = [
𝐴𝑠

𝐴 {0.11𝑙𝑛 (
𝜇𝑜𝑖

100
)}

0.5
]

2

 

𝑊𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡: 0 ≤ 𝐴𝑐𝐷 ≤ 1.0 𝑎𝑛𝑑  

𝐴𝑐𝐷 = 1.0 𝑎𝑡 𝜇𝑜 ≤ 100 𝑐𝑝.  

 

𝑉𝑜𝐷 = [1 −
𝑁𝑑

𝑁
×

𝑆𝑜𝑖

∆𝑆𝑜

]

1
2
 

𝑊𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡: 0 ≤ 𝑉𝑜𝐷 ≤ 1.0. 

 

𝑉𝑝𝐷 = [
𝑉𝑠,𝑖𝑛𝑗 × 5.615

43560𝐴ℎ𝑛𝜑𝑆𝑔

]

2

 

𝑊𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡: 0 ≤ 𝑉𝑝𝐷 ≤ 1.0  

𝑎𝑛𝑑 𝑉𝑝𝐷 = 1.0 𝑎𝑡 𝑆𝑔. 

a) The heat capacity of the reservoir rock is 1.2 

times less than the base and caprocks  

b) This model considered that production life 

cycle is three stages of steam flooding process 

c) Used a correlation to estimate the critical time 

as a dimensionless form (tcD) 

Chandra and 

Mamora 

(2005) 

𝐴𝑐𝐷 =
(
𝐴𝑠

𝐴
)4

𝐴 {𝛼 × 𝑙𝑛 (
𝜇̅𝑜

100
)}

0.5 

𝑊𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡: 1.0 ≤ 𝐴𝑐𝐷 ≤

𝐴𝑐𝐷𝑚𝑎𝑥
; 

𝐴𝑐𝐷 = 1.0 𝑎𝑡 𝜇̅𝑜 ≤ 100 𝑐𝑝  

𝑎𝑛𝑑 𝛼 = 0.00015𝑖𝑠 + 0.05; 

 

𝑉𝑜𝐷

= 𝐴𝑐𝐷𝑚𝑎𝑥
× 𝑒

𝛽𝑆𝑜𝑖(𝑁𝑑𝑚𝑎𝑥−𝑁𝑑)

𝑁∆𝑆𝑜  

 

𝑙𝑖𝑚𝑖𝑡: 𝐴𝑐𝐷𝑚𝑎𝑥
> 𝑉𝑜𝐷 ≥ 1.0;  

𝛽 = 17.93𝑁𝑐 + 1.3401 and  

𝑁𝑐 = [
7758𝐴ℎ(1−𝑆𝑜𝑟−𝑆𝑤𝑐)

365𝐴𝑖𝑠𝑡𝑐
]; 

𝑉𝑝𝐷 = [
𝑉𝑠,𝑖𝑛𝑗 × 5.615

43560𝐴ℎ𝑛𝜑𝑆𝑔

]

2

 

𝑊𝑖𝑡ℎ 𝑙𝑖𝑚𝑖𝑡: 0 ≤ 𝑉𝑝𝐷 ≤ 1.0  

𝑎𝑛𝑑 𝑉𝑝𝐷 = 1.0 𝑎𝑡 𝑆𝑔. 

 

a) This model has overcome the limitations of 

Jones model (1981) 

b) Used linear correlation between alpha (α) and 

steam injection rate (is) 
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Table A.8: Models of steam oil ratio during thermal flooding. 

Investigator Model/Equation Remarks 

Chu (1985) SOR = 18.744 + 0.001453D – 0.05088h – 

0.0008864k – 0.0005915𝜇 - 14.79𝑆𝑜 - 0.0002938 
𝑘ℎ

𝜇
 

a) This correlation was developed base on 28 different steam flood field 

projects. 

b) All reservoir properties are assumed constant 

c) The memory concept is not considered 

Edmund and 

Peterson 

(2007) 

𝐶𝑆𝑂𝑅 =

𝛥𝑇 {𝐶𝑣𝑟 +
√𝜆𝑡𝐶𝑣𝑜𝑡

ℎ𝜂𝑠
}

𝐻𝑙𝑣𝜙𝛥𝑆𝑜𝑖
 

 

a) Residual oil saturation is assumed constant  

b) Neglected the vertical development period of the steam chamber 

c) Horizontal chamber shape and effective sweep efficiency constant as 

50% are assumed 

Miura and 

Wang 

(2012) 

𝐶𝑆𝑂𝑅 =  

𝛥𝑇(𝑡) {𝐶𝑣𝑟 +
√𝑘𝑡𝐶𝑣𝑜𝑡
𝛽ℎ𝑠(𝑡)

}

𝛥𝐻(𝑡)𝜙 [𝑆𝑜𝑖 −
𝑏 − 1

𝑏
{
𝜐𝑠(𝑡)𝜙ℎ𝑠(𝑡)

𝑏𝑘𝑔𝑡
}]

1
𝑏−1

 

 

a) This model is overcoming the limitations of that by Edmund and 

Peterson (2007)  

b) It is assumed that the effect on the reservoir-chamber height is very 

small 
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Stewart and Udell (1987) developed a quasi-steady model for one-dimensional steam 

displacement by considering the effects of capillary pressure gradients as well as gravity 

on steam displacement. Authors presented the distributions for both pressure and saturation 

to show the mechanisms for semi-analytical calculations. Authors also concluded that 

Buckley-Leverett displacement velocity is higher than the velocity of steam condensation 

front from the practical interest point of view. Scott (2002) compared between SAGD and 

CSS projects in the highlighting points of energy efficiency as well as bitumen recovery 

performance using available data from Clearwater formation at Cold Lake. This author 

proposed a conversion factor from the external gas requirement to SOR based on the 

quality of steam. Li and Chalaturnyk (2006) studied the variations of absolute permeability 

in response to isotropic unloading and shearing within unconsolidated oil sands during the 

SAGD operations. Authors concluded that the reservoir permeability is varied due to the 

changes of pore geometry under considerations of both isotropic and deviatoric system. 

Besides, authors suggested that geomechanical effects can be incorporated to predict the 

absolute and effective permeability variations into a SAGD process. Wang et al. (2008) 

showed that electrothermal oil recovery method is a promising and economical technology 

to develop low permeability bitumen resources compared to the SAGD process.  

 

A3 Future Research Guideline  

To minimize the knowledge gaps in the literature regarding the issues identified in this 

paper, a comprehensive study is needed to incorporate (i) the memory effects for complex 

fluid flow modeling in porous media, (ii) alterations of rock and fluid properties, (iii) 

variations in hot fluid injection rate, (iv) oil displacement rate and steam oil ratio, and (iv) 



 

 287 

temperature distribution during thermal flooding process. Some specific research 

opportunities are included here as a guideline for future research: 

• Formation compressibility, porosity and permeability are directly related to the 

reservoir depth and pressure. Reservoir porosity and pressure decrease over time. 

Permeability changes over distance because it is directly related to the pressure of the 

complex reservoir system. Reservoir fluid properties also change with position and 

time. Besides, the rheological properties also change with space and time as well as the 

temperature of the complex reservoir in porous media. A comprehensive study in the 

area will give more understanding for predicting thermal fluid activities in porous 

media as well as the thermal exchange between rock and fluid and can capture the 

whole spectrum of the field life during thermal recovery processes.  

• The porosity, permeability and fluid saturation change not only with temperature and 

pressure but also with space and time. In addition, formation temperature and pressure 

also change with space and time during hot fluid injection of thermal recovery. 

Therefore, coupling those parameters, several models for thermal conductivity such as 

Tiknomirov (1968), Somerton et al. (1974), Seto and Bharato (1991), Irani and Cokar 

(2016) and so on can be modified. Thus, memory-based thermal conductivity model 

and volumetric heat capacity can help to develop modified heat transport model for 

prediction of temperature distribution profile during thermal flooding processes. 

• Coupling of influential factors into rock and fluid properties, oil flow rate models (e.g. 

Butler and Stephens (1981), Akin (2005), Sharma and Gates (2010) and so on) can be 

modified to capture the memory effect during hot fluid injection.  
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• On the other hand, residual oil situation is also changed by hot fluid injection into oil 

and bitumen reservoirs. The steam-oil ratio (SOR) models (such as Chu (1985), 

Edmund and Peterson (2007), Miura and Wang (2010), and capture efficiency of oil 

displacement models such as Jones (1981), Chandra and Mamora (2005) model can be 

modified to capture the memory effect during steam (hot fluids) flooding process.   

• As stated earlier, thermal conductivity and volumetric heat capacity are not constant 

with respect to time through heat injection into reservoir formation of thermal recovery. 

In addition, the thermal diffusivity of reservoir and fluid system is not constant due to 

non-homogenous reservoir heating systems. So, the reservoir heating models such as 

Lauwerier (1955), Marx and Langenheim (1959), Myhill and Stegemeier (1978) can 

be improved by considering both conduction and convection heating process. Memory 

concept can be implemented into the reservoir heating system. The analytical models 

of temperature distribution such as Barends (2010), Irani and Ghannadi (2013), Irani 

and Gates (2013), Li and Chen (2015), and Yu and Zhao (2016) can be modified to 

include influential parameters as well as using the memory concept in complex 

reservoir system for thermal recovery.      

 

A4 Concluding Remarks  

The reservoir properties, as well as thermal properties are assumed to remain constant with 

time in most of the current thermal EOR emulators. The rock properties vary with 

temperature changes during a thermal flooding process. Besides, crude oil viscosity is a 

strong function of temperature. The critical review rebuilds that controlling parameters of 
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effective thermal conductivity are formation porosity, permeability, fluid saturation, 

pressure, temperature and lithology quality. The thermal properties of consolidated rocks 

differ from unconsolidated oil sands due to changes in cementation factor and deposition 

of sediments. The reservoir rock and fluid properties, and thermal properties such as 

thermal conductivity and volumetric heat capacity play a significant role in both inductive 

and conductive heat transfer process considering energy balance equation during thermal 

flooding process. It is also identified that thermal properties are not the same for both 

overburden and underburden rocks. The steam injection models are more complicated than 

the hot water injection models due to the changes in fluid phase in the reservoir formation 

and moving thermal boundaries. During thermal recovery methods, the amount of oil 

recovered is a function of several variables, which are: i) flooding pattern size, ii) heat loss 

(thermal bleeding) via the flood time, iii) the reservoir pressure and the amount of steam 

injected, iv) the net sand thickness of the producing interval, v) steam properties and vi) 

the state of the primary depletion. It is crucial to predicting the real behavior of reservoir 

rock and fluid properties in porous media and hysteresis effect on thermal flooding in the 

complex reservoir system. The memory-based oil flow rate, CSOR, heating efficiency, heat 

transport and temperature distribution models are required to predict the real recovery 

performance of thermal flooding. 
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Nomenclatures 

List of symbols  

𝐴𝑐𝐷 Dimensionless steam zone size [fraction] 

A (t) Cumulative heated area function of time [m2] 

a Corey coefficient of the oil relative permeability curve 

Bo Oil formation volume factor [rm3/sm3] 

Cf Specific heat capacity of fluid [JKg-1K-1] 

CSS Cyclic steam stimulation 

Co Specific heat capacity of oil [JKg-1K-1] 

CSOR Cumulative steam oil ratio (fraction)  

Cw Specific heat capacity of water [JKg-1K-1] 

Cr Specific heat capacity of rock [JKg-1K-1] 

𝑐𝐹 Non-dimensional form-drag constant 

ct Total compressibility in porous medium [1/Pa] 

D Thermal diffusivity [m2/s] 

dt Time step [s] 

EH Heating efficiency [percentage] 

Eh,s Overall reservoir thermal efficiency [percentage]  

EOR Enhanced oil recovery 

G The body force term due to gravity [N] 

g Acceleration due to gravitation force [N]  

Ho Heat injection rate [J/s] 

Hm Hermite polynomial of order m 
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h Reservoir thickness [m]  

k Reservoir permeability [m2] 

M Volumetric (overall) heat capacity [JK-1m-3] 

m Temperature/viscosity parameter  

P Pressure of condensate [Pa] 

Pr Reservoir pressure [Pa] 

Ps Pressure of the system [Pa] 

Pst Steam temperature [Pa] 

𝑄𝑜 Cumulative oil production rate [m3/s] 

q Oil flow (drainage) rate [m3/s] 

qv Convective heat flux [W/m2] 

r Radial distance of reservoir in equation (1) [m] 

SAGD Steam-assisted gravity drainage 

SF Steam flooding 

So Oil saturation [fraction] 

Sg Gas saturation [fraction] 

Sw Water saturation [fraction] 

T Reservoir temperature [K] 

Tinj Injection temperature [K] 

Tst Steam temperature [K] 

T* Temperature gradient [K/m] 

𝑇𝐷
∗ Dimensionless temperature distribution [dimensionless] 

dt/dx Temperature gradient along direction of heat transfer [K/m] 

t Time [s] 

tD Dimensionless time [dimensionless] 

tcD Dimensionless critical time [dimensionless] 

Ux Velocity of the advancing front of steam chamber (m/s) 

𝑢⃗  Velocity vector [m/s]  

𝑉𝑜𝐷 Volume of displaced oil produce [fraction] 
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𝑉𝑝𝐷 Initial pore void filled with steam as water [fraction] 

vs Linear velocity of steam front [m/s] 

Wk A weighting function for the numerical integration        

𝑤𝑠 Steam zone half width [m] 

  

Greek letters  

𝛻𝑃 Pressure gradient [Pa/m] 

𝛥𝑆𝑜 Change in oil saturation before/after steam front passage [fraction] 

Δx Size of grid block in x direction 

𝛻∅ Fluid potendial gradient [N] 

ξ A dummy variable for time i.e., real part in the plane of the integral 

[s] 

𝜉′ Distance measured ahead of the front into the coder zone [m]  

dξ Dummy time step [s] 

𝜙 Porosity of fluid media [fraction] 

μ Fluid dynamic viscosity at any temperature [Pa-s] 

μo Oil (dynamic) viscosity [Pa-s] 

μw Water (dynamic) viscosity [Pa-s] 

ρc Condensate density [kg/m3] 

ρf Fluid density [kg/m3] 

ρo Oil density [kg/m3] 

ρr Dry rock density [kg/m3] 

ρw Dry rock density [kg/m3] 

λ Thermal conductivity [Wm-1K-1] 

𝜆ℎ(𝑇) Effective thermal conductivity function of temperature [Wm-1K-1] 

λhf Thermal conductivity of fluid or formation [Wm-1K-1] 

𝜆ℎ𝑅 Effective thermal conductivity of oil sand [Wm-1K-1] 

𝜆𝑟 Reservoir thermal conductivity [Wm-1K-1] 

λh,s Thermal conductivity of steam [Wm-1K-1]  
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η Ratio of the pseudo-permeability of the medium with memory to 

fluid viscosity [m3s1+α/kg] 

𝜂′ Scaled dimensionless space variable  

α Fractional order of differentiation (related to the time and space), 

dimensionless  

α1, α2 Derived variable for dimensionless thickness 

αc Simplified condensate (water) or convective diffusivity 

𝛼𝑐′ Volumetric conversion factor 

β Coefficient of the classical Darcy’s law  

βc transmissibility conversion factor  

𝛾 Fractional order derivative  

Γ Euler gamma function 

𝜉 Normal distance to the advancing front of the steam chamber [m] 

θ Inclination of the draining surface from the horizontal plane [angle] 

𝜔 Dummy integral variable 

Subscripts  

e Effective 

erfc Complementary error function 

f Fluid  

g Gas  

m Confining layer 

o Oil  

r Rock (matrix)  

v Convection  

w Water  
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