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Abstract 
 

Benthic fauna are a crucial part of the marine ecosystem providing many 

ecosystem services. Unfortunately, Arctic coastal marine environments are under 

tremendous pressure from changing climate conditions and it is becoming increasingly 

important to understand community changes occurring in these environments. Long-term 

ecological studies in the Canadian Arctic are rare, however, Frobisher Bay provides a 

unique opportunity to study long-term change in the marine benthos because historical 

benthic community datasets exist for this region. We focused on the molluscs as 

indicators of long-term change by comparing community temporal and spatial changes 

between 1967-1976 and 2016. Significant changes in community composition were 

observed between these two time periods and shifts in functional trait characteristics were 

also observed. These changes coincided with long-term environmental change in the 

region. Our results highlight the need for long-term systematic sampling which is 

fundamental to our understanding of Arctric marine ecosystems and for identifying long-

term ecosystem change.   
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Chapter 1 Introduction and Overview 
 

 

1.1 Introduction 
 

Long-term ecological studies extend beyond the life span of the dominant 

organisms in a particular ecosystem such that the key processes that structure that 

ecosystem can be quantified (Strayer et al. 1986). This definition, however, requires 

long-term studies to extend over the generation time of the species being studied and 

this may not be possible for organisms that are extremely long lived (e.g. 500-1000 

year old trees). A more realistic definition of long-term studies are those that extend 

over a much longer time period than most ecological studies and which examine 

system attributes that would not otherwise be observed on a shorter term study 

(Strayer et al. 1986). Based on these two definitions, Lindenmayer et al. (2012) 

defines long-term studies as those that extend more than 10 years because it allows for 

repeated sampling of annual growth cycles and bioclimatic cycles which occur on 

decadal scales. Long-term studies are vital to identifying a measurable ecological 

response to natural or anthropogenic environmental change (Carpenter et al. 1995) 

and researchers who have conducted long- term marine-based studies in response to 

climate change have indicated that decadal scales are required to examine community 

level changes in the marine benthos (Cusson et al. 2007, Renaud et al. 2007). 

One of the major difficulties with measuring the impact that humans have had 

on the environment is that pristine, benchmark sites are rare and therefore we do not 
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have a good baseline to work from (Harris 2012). Another more difficult task in 

identifying long-term anthropogenic impacts to benthic marine systems is that 

researchers must be able to differentiate between short- and long-term natural 

variability and long-term anthropogenic change, ensuring that long-term natural 

fluctuations in marine systems are not attributed to anthropogenic influences (Gray 

and Christie 1983, Beuchel and Gulliksen 2008, Novoa et al. 2016, Kang et al. 2019). 

Some authors believe that predicting long-term anthropogenic change is an 

unattainable goal because of the short- term natural variability that exists at different 

temporal scales (days to years) and which may or may not repeat on a longer time-

scale (e.g. Gray and Christie 1983). However, with a growing concern around climate 

warming and its predicted impacts on Arctic continental shelf benthos (Carmack and 

McLaughlin 2001, Piepenburg 2005), there is a growing consensus that long-term 

studies are required to monitor changes in benthic communities. Many authors have 

called for such studies (e.g., Cusson et al. 2007, Renaud et al. 2007, Brown et al. 

2011a, Thurstan et al. 2015) to understand how they are linked to environmental 

processes and how future climate change may influence their distribution, 

composition, and function (Loeng 2005, Carroll et al. 2008). 

One group of invertebrates present in the benthos that could be potentially 

useful for detecting long-term changes are bivalves and gastropods from the phylum 

Mollusca. Over 46,000 marine molluscs have been identified worldwide with upwards 

of 150,000 marine molluscs yet to be described (Bouchet et al. 2016). Marine molluscs 

are often abundant in benthic communities (Carey et al. 1984, Carroll et al. 2009, 
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Clarke and Crame 2010), and are long-lived, some living over 30 + years (Andrews 

1972, Carroll et al. 2009, Moss et al. 2017, Moss et al. 2018). Molluscs have 

previously been used as monitors and indicators of environmental change because they 

are sensitive to changing environmental conditions (Fortunato 2015). They can also 

integrate contamination into their tissues, and they exhibit several behavioural and 

physiological responses to stressors (Smaal and Widdows 1994, Dame 2012, Novoa et 

al. 2016). Molluscs also have good preservation potential (Aitken 1990, Gordillo and 

Aitken 2000) and historical records of their presence can be compared with modern 

records. Molluscan fossil records from the Canadian Arctic Archipelago indicate that 

the modern circum-Arctic molluscan fauna has evolved as a result of two major 

geological events: the opening of the Bering Strait between 3.5-3.0 Ma and a 

connection between the Pacific and Atlantic oceans resulting from deglaciation of 

North America, Europe and Asia (Golikov and Scarlato 1989, Vermeij 1991, Gordillo 

and Aitken 2000, Taldenkova 2000, Gladenkov and Gladenkov 2004). Given the 

impact that climate change and anthropogenic stressors may have on the Arctic marine 

environment, it is important to document changes that have occurred within molluscan 

communities to determine both how they respond to long-term change and to determine 

what environmental factors influence those changes. 

Frobisher Bay, located at the southern end of Baffin Island can be used as a 

natural laboratory for studying long term ecological change. Inner Frobisher Bay 

experienced a period of systematic observation of the benthic fauna between 1967 and 

1976 (Wacasey et al. 1979, 1980) and Cusson et al. (2007) previously examined small 
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scale temporal variations observed in these benthic communities during that time. 

Since the 1960’s, long-term environmental data has been collected in this region up 

until the present time (Government of Canada 2017, 2018a, 2018b). Of concern is that 

the circumpolar Arctic, and inner Frobisher Bay specifically, have experienced warmer 

air temperatures, warming sea temperatures, a persistent reduction in sea ice cover, and 

an earlier nival freshet than previously observed (Government of Canada 2017, 

Overland et al. 2017, Perovich et al. 2017, Timmermans et al. 2017, Government of 

Canada 2018a, 2018b). These trends, particularly warming air temperatures, appear to 

have started in the mid 1970s (Overland et al. 2017) and may affect the marine 

benthos in the long term. 

 

1.2 Research Questions and Hypothesis 
 

This study aims to answer the following research questions: 

 

1. How has the species composition of the molluscan (Bivalvia and Gastropoda) 

community changed temporally over the last fifty years in the sub-tidal benthos of 

inner Frobisher Bay? 

 

2. How has the species composition of the molluscan (Bivalvia and Gastropoda) 

community changed spatially over the last fifty years in inner Frobisher Bay? 
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I hypothesize that long-term temporal and spatial changes will be observed in the 

molluscan (Bivalvia and Gastropoda) communities of inner Frobisher Bay resulting in 

changes to the benthic community structure including molluscan community 

composition, diversity and relative abundance. I propose that changing environmental 

conditions over the last five decades as a result of climate warming have influenced these 

changes. 

 

1.3 Study Area 
 

Frobisher Bay is located along the southeastern coastline of Baffin Island 

between 62 ºN and 64 ºN, extends 230 kilometers in a southeasterly direction, is 40 km 

wide at the southern end and 20 km wide at the northern end (Todd et al. 2016; Figure 

1.1). At the head of Frobisher Bay is the City of Iqaluit, home to 7740 people 

(Statistics Canada 2018). Frobisher Bay contains a chain of islands approximately 35 

nautical miles to the southeast of Iqaluit which splits the bay into two regions: inner 

Frobisher Bay and outer Frobisher Bay. Inner Frobisher Bay is shallow and reaches 

depths of up to 260 meters (NTS Map Sheet Area 25; Hodgson 2005, Todd et al. 2016) 

but most of inner Frobisher Bay is less than 200 m (Andrews et al. 1985). By 

comparison, outer Frobisher Bay reaches depths of up to 600 meters or more (Andrews 

et al. 1985; Todd et al. 2016). 

Twelve sample stations ranging in depth from 10 to 95 m are located in inner 

Frobisher Bay within ten kilometres of the City of Iqaluit. The head of Frobisher Bay 
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is characterized by an extensive shallow offshore zone (Miller et al. 1980) and borders 

Koojesse Inlet which is characterized by extensive tidal flats (McCann et al. 1981, 

Hatcher et al. 2014, Hatcher and Forbes 2015). Koojesse Inlet is located just east of the 

Sylvia Grinnell River, a major outflow into Frobisher Bay. Two channels are situated 

offshore of the tidal flats: Apex Channel, a shallow narrow channel (minimum depth of 

1 m CD) that runs between Long Island and the town of Apex to the east, and a second 

deeper channel, Navigation Channel, which runs between Long Island and Inuit Head 

to the west (Hatcher et al. 2014, Hatcher and Forbes 2015). Five of the long-term 

ecology stations are located in Navigation Channel and up to Monument Island where 

station depths range between 9 to 40 meters. The remaining seven long-term ecology 

stations are located approximately 10 kilometers southeast of Iqaluit, between Cairn 

Island and Mair Island along the eastern side of Frobisher Bay where station depths 

range between 25 and 94 meters (Figure 1.2). 

Frobisher Bay is characterized by semi-diurnal tides that range from 7.8 m (neap 

tide) to 11.3 m (spring tide) (Wengerd 1951, Leech 1998, Dale et al. 2002, Hatcher et al. 

2014, Hatcher and Forbes 2015), however, maximum tides have exceeded 13 m (Miller et 

al. 1980). This tidal influence persists throughout the year including when the bay is ice- 

covered for eight to nine months of each year (Leech 1998, Dale et al. 2002). Ice 

formation typically begins in late October with complete ice cover in the region by the 

middle of November. While there is considerable variability from year to year, ice break 

up typically begins in the middle of June (Leech 1998) and the open water season is 

typically observed to begin by middle to late July (McCann et al. 1981). More recent data 
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based on a 30-year ice atlas (1981 – 2010) provided by the Canadian Ice Service 

indicates that the average freeze up date for inner Frobisher Bay is November 19 

(December 4 for outer Frobisher Bay) and ice break up in inner Frobisher Bay occurs 

July 2 (July 16-30 for outer Frobisher Bay; Canadian Ice Service 2013). 

 

Figure 1.1. Location of Frobisher Bay within the Canadian Arctic Archipelago (ESRI 2019). 
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Figure 1.2 Frobisher Bay long-term ecology stations re-drawn from Wacasey (1979, 1980). 
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1.4 Literature Review 
 

1.4.1 Arctic Change: Global Trends  

 

Climate change is most directly influencing Arctic environments through rising 

air temperatures which cause sea ice to melt, sea surface temperatures to rise, and sea- 

level to rise (McLaughlin et al. 2011, IPCC 2014). The 2017 Arctic report card 

headline (issued by the National Oceanic and Atmospheric Administration (NOAA)) 

states that the “Arctic shows no sign of returning to the reliably frozen region of recent 

past decades” (Richter-Menge et al. 2017). It further states that the Arctic has “reached 

a ‘new normal’, characterized by long-term losses in the extent and thickness of the sea 

ice cover and warming sea surface temperatures” (Richter-Menge et al. 2017). 

The circumpolar Arctic is currently warming at a rate twice that of the global 

mean temperature (Overland et al. 2017) and this has the potential to alter the 

environment at the Earth’s surface (Dery et al. 2016). Sea ice cover is also 

declining. Significant declines in sea ice extent were observed from 2000-2010 and 

were some of the lowest records observed over the past 30 years (Forbes 2011, 

McLaughlin et al. 2011). In particular, the Canada Basin had significant losses of 

both multiyear and first- year ice (McLaughlin et al. 2011). On March 7, 2017, the 

maximum sea ice extent in the Arctic was 14.42 million km2, 8% below the 1981-

2010 average (Perovich et al. 2017). The Arctic Ocean is losing its sea ice cover at a 

rate of 13.2% per decade based on September monthly averages relative to the 

1981-2010 average (Perovich et al. 2017). Arctic sea ice is also predominantly 
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younger and thinner compared to historical records. In 1985 thick, old ice covered 

45% of Arctic waters compared to March 2017 where only 21% of thick, multi-year 

pack ice was observed (Perovich et al. 2017). 

Sea surface temperatures are also warming in the Arctic. In 2017, the surface 

of the Barents and Chukchi seas were 4 ºC warmer compared to the 1982-2010 August 

mean temperature and between 1982-2017, the Chukchi Sea experienced an ocean 

surface warming trend of approximately 0.7 ºC per decade (Timmermans et al. 2017). 

Loss of sea ice in the circumpolar Arctic has also resulted in enhanced light 

availability, impacting primary productivity which is highly seasonal and dependent on 

light availability (Frey et al. 2017). Satellite observations indicated that primary 

productivity had shown a widespread increase in 2017 compared to the 2003-2016 

mean for most arctic regions with the strongest trends observed in the Barents Sea and 

Eurasian Arctic regions (Frey et al. 2017). The Arctic Ocean is also experiencing 

increased rates of acidification as a consequence of the loss of sea ice and over the last 

200 years, humans have been responsible for a 30-40% increase in concentration of 

atmospheric CO2 and about one third of this carbon dioxide has been absorbed by the 

oceans (Dame 2012). 

 

1.4.2 Environmental Change: Frobisher Bay 
 

Frobisher Bay has experienced similar long-term trends including warmer air 

temperatures, declining sea ice thickness, and a shortened ice cover season (Government 
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of Canada 2018a) as have been observed on a global scale. Historical air temperature data 

from the city of Iqaluit shows a trend of warming temperatures beginning in the mid 

1980s. By the mid 1990s, air temperatures appeared more frequently above the 1981- 

2010 climate normal for each of the selected months of March, June, September and 

December (Figure 1.3). 

 

 

Figure 1.3. Historical mean air temperature trends for select months for the city of Iqaluit between 1967 

and 2017. Solid red line refers to mean 1981-2010 climate normal, solid blue line refers to the 10 year 

moving average air temperature. Data accessed from the Government of Canada (2018a). 

 

This warming trend may be affecting the timing of the nival freshet of the Sylvia 

Grinnell River and Apex River. The Sylvia Grinnell River is fed by Sylvia Grinnell Lake 
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and runs 88 kilometers before draining into the inner portion of Frobisher Bay at 

63˚44’N, 68˚34’W, approximately 2 kilometres west of the city of Iqaluit. The Apex 

River drains into Frobisher Bay near the town of Apex, located approximately 4 

kilometers southeast of the city of Iqaluit. Historical discharge data from the Government 

of Canada (2018b) indicate a strong positive trend in the monthly mean discharge for 

June for both the Sylvia Grinnell (1971-2015; Figure 1.4) and Apex Rivers (1973-2015) 

and the Sylvia Grinnell River experienced a subsequent, though slight, negative trend in 

summer discharge (July-September) that could be indicative of an earlier and more rapid 

snow melt in June and a decline in summer precipitation. 

 

 

Figure 1.4. Monthly mean discharge rates (m3/s) for the Sylvia Grinnell River, located 2 km west of the 

city of Iqaluit. Red line indicates trendline. Data accessed from the Government of Canada (2018b). 
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Ice thickness and the length of the ice season in Frobisher Bay have also 

changed over time. Maximum ice thickness in Frobisher Bay was measured each year 

(near the city of Iqaluit) between 1967 and 2016 and shows a declining trend over time 

(Figure 1.5a). The length of the ice cover season (number of days with ice cover) also 

shows a declining trend over the same period of time (Figure 1.5b). 

 

 

 

Figure 1.5. (A) Maximum ice thickness (cm) measured each year between 1967 and 2016 near Iqaluit, 

Nunavut (p = 0.06899) showing a non-significant declining trend. (B) Length of ice season (days) 

measured each year between 1967 and 2016 near Iqaluit Nunavut (p < 0.0001) showing a significant 

declining trend. Data accessed from Government of Canada (2017). 

A 

B 



14 
 

1.4.3 Benthic-Pelagic Coupling 
 

There is a strong consensus that global climate change will profoundly impact 

marine ecosystems (IPCC 2014), possibly to the community level (Harley et al. 2006). 

It is predicted that future Arctic marine ecosystems will look considerably different in 

the future causing warmer waters and reduced sea ice that could result in range 

expansions of new taxa, changes in species abundance, community structure, and the 

seasonal distribution of taxa (Carmack and McLaughlin 2001, Carmack and Wassmann 

2006, Carmack and McLaughlin 2011, Wassmann and Reigstad 2011, Macdonald et 

al. 2015, Renaud et al. 2015). In Frobisher Bay, the environmental changes that have 

occurred over the last 50 years are no exception. Pelagic-benthic coupling (the 

relationship between the pelagic realm and the benthos; Wassman and Reigstad 2011) 

is tightly linked in the Arctic where ice cover and light availability affect the quality 

and quantity of the food supply that reaches the benthos. Therefore, environmental 

changes that occur at the surface of our oceans will strongly impact the marine benthic 

communities. 

Most of our ocean’s seabed consists of sediment which supports a high 

biodiversity of benthic fauna that are a crucial part of the marine ecosystem (Gougeon 

et al. 2017), many of which provide key ecosystem services (Snelgrove 1999). Benthic 

organisms consist of epifauna (organisms that live on top of the sediment) and infauna 

(organisms that reside within the sediments) which together include benthic 

megafauna and macrofauna. The benthic megafauna includes large-bodied, energy-

rich organisms such as fish and invertebrates including large crustaceans, 
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echinoderms, and molluscs (Blanchard et al. 2013a) while the benthic macrofauna 

typically represents smaller- bodied organisms residing within the sediments such as 

polychaetes, amphipods, molluscs, ostracods, and cumaceans (Blanchard et al. 2013b). 

The distribution of benthic organisms is highly dependent on temperature, salinity, 

water movement, water depth, sediment type, and food availability which is tightly 

linked to pelagic primary productivity (Grebmeier and Barry 1991, Snelgrove 1999, 

Wei et al. 2019). 

Temperature is the main determining factor in the distribution of terrestrial 

organisms from tropical to Arctic environments (Jeffree and Jeffree 1994) but this is 

less directly a factor in the marine environment. Water depth is a particularly important 

driver of benthic distributional patterns though water depth is typically a proxy for 

numerous other physical characteristics including temperature, salinity, and food 

availability (Roy et al. 2014). Water movement influences sediment type and the 

vertical and horizontal flux of food particles which also affect the distribution of 

organisms (Grebmeier and Barry 1991). High wave energy environments are 

associated with coarser sediments dominated by sand or larger grain sizes and low 

energy environments are dominated by finer sediments such as silts and clays 

(Snelgrove 1999). Many benthic organisms are either sessile or have limited mobility 

and are therefore reliant on the water column providing them with food for survival. 

Benthic organisms feed on plankton and other organic material with suspension 

feeding organisms removing food particles from the water column and deposit feeding 

organisms obtaining organic (e.g. meiofauna, microbes) and inorganic food sources 
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that have settled onto the seabed or live within the sediments (Snelgrove 1997, 1999). 

The benthos plays a critical role in nutrient cycling and is an important 

component of the food web. A complex interaction exists between benthic 

macrofauna and microbial communities (bacteria, protozoans, and fungi) who help 

with nutrient cycling through the decomposition of organic matter (Grebmeier and 

Barry 1991, Kristensen et al. 1992, Duchene and Rosenberg 2001). For example, 

fungi and bacteria decompose particulate organic carbon (primarily algae and fecal 

detritus; Snelgrove 1997). Macrofauna re-work the sediment and draw down oxygen 

into the sediment through their feeding, burrowing, and tube building activities (e.g. 

tentacles of polychaetes, siphons of bivalves, and arms of brittle stars; Kamp and 

Witte 2005). This re-working can reach a depth of more than 20 cm (Dauwe et al. 

1998, Duchene and Rosenberg 2001) and aids in nutrient cycling through carbon 

metabolism and other geochemical cycles (Kristensen et al. 1992) and makes 

nutrients available to different bacterial groups (Dauwe et al. 1998, Duchene and 

Rosenberg 2001, Snelgrove 1999). This re-working of the sediment also re-

distributes sediments (Papaspyrou et al. 2006) and modifies sediment chemistry 

(Norling et al. 2007), while also altering sediment stability and near-bed 

hydrodynamics (Norkko et al. 2001). 

Some organic carbon is transferred back into the pelagic realm through the 

food chain. Decomposed dissolved and particulate organic matter is absorbed by 

bacteria and fungi and supplies macrofauna with food. However, some organic matter 

is lost to the system through burial and bioturbation and this organic matter becomes 
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part of the carbon pool stored in seafloor sediments (Snelgrove 1997). Organic matter 

processed by benthic organisms provides an important link to the pelagic system and 

to upper trophic levels (Grebmeier and Barry 1991, Snelgrove 1999) as these 

organisms are a critical source of food for fish, sea birds, and marine mammals such 

as grey whales, walrus, and bearded seals (Frost and Lowry 1984, Dickson and 

Gilchrist 2002). Benthic organisms such as clams, scallops, and shrimp are also a 

valuable food source for humans and commercially important fish species (e.g. cod 

and Greenland halibut) who rely on benthic organisms as a food source (Carlson et al. 

1997). These complex links between marine organisms impact global carbon cycling 

processes in both a direct and indirect manner (Snelgrove 1999). 

In the Arctic, pelagic-benthic coupling is primarily driven by the distribution 

and seasonal dynamics of sea ice (Marcus and Boero 1998, Wassmann and Reigstad 

2011) and is a key feature structuring Arctic food webs (Grebmeier and Barry 1991, 

Conlan and Kvitek 2005, Carmack and Wassmann 2006, Wasmann and Reigstad 

2011). It is also an important factor influencing short-term variability in benthic 

organism abundance in the Arctic (Loeng 2005). Wassmann and Reigstad (2011) 

provide conceptual models of biogeochemical cycling and climate warming in the 

seasonal ice zone of the Arctic and they have indicated the loss of sea ice in Arctic 

regions has already influenced primary productivity from once highly episodic blooms 

to longer seasonal blooms but at lower concentrations and these rapid changes may 

continue to result in an ecological response of both pelagic and benthic organisms 

(Wassmann and Reigstad 2011). 
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Sea ice has a clear seasonal cycle (Parkinson et al. 1999) and coverage and 

thickness can be highly variable from year to year (Loeng 2005). Sea ice directly 

impacts the amount of light penetrating through the water (Loeng 2005, Renaud et al. 

2015).  This affects primary production of ice algae present at the base of sea ice and 

phytoplankton that grows in open water as both of these sources of primary production 

supply food to the benthos which is tightly linked to ice seasonality (Grainger 1979, 

Soreide et al. 2010). Deposit feeding organisms receive most of their food supply 

through sedimentation of epontic algae through melting sea ice and from 

phytoplankton as well as other organic material following the spring bloom (Atkinson 

and Wacasey 1987) and benthic biomass is directly influenced by the availability of 

food (Grebmeier and Barry 1991). While some deposit- feeding organisms exhibit 

selective feeding, most rely on what is available in the sediment and this may impact 

the benthos seasonally (Ambrose and Renaud 1997). The quantity and composition of 

organic material that reaches the benthos also changes seasonally and is likely a 

consequence of changes in ice cover (Ambrose and Renaud 1997). For example, ice 

algae and phytoplankton production contribute around 90% of the total primary 

production over Arctic continental shelves, however, ice algae are important earlier in 

the growing season (Bates et al. 2005, Roy et al. 2015, Makela et al. 2017). These 

authors noted that suspended particulate organic matter concentrations are high 

between spring and summer as a result of phytoplankton production in the surface 

waters of the Chukchi Sea and changing carbon-nitrogen ratios of the suspended 

particulate matter from spring to summer reflects a significant change in the quality of 
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material being produced (e.g. a change in the species composition of phytoplankton or 

the relative contribution of these species; Bates et al. 2005). This change in food 

quality may be a result of a seasonal shift in the type of phytoplankton communities 

present during different seasons (Bates et al. 2005) with microalgae from the sea ice 

dispersing into the water column as the ice melts in spring and phytoplankton 

developing throughout the summer (Hsiao 1988). The reduction of sea ice thickness 

and extent may impact food availability in two ways. Primary production can increase 

through episodic nutrient availability, increased light availability and increased 

nutrient discharge from rivers. Nutrient availability can decrease through an increase 

in water stratification resulting from ice melt and river discharge, a decrease in 

incident light as a result of increased cloudy weather associated with low pressure 

systems, and increased turbidity from river discharge (Wassmann and Reigstad 2011). 

 

1.4.4 Identifying benthic community change through long-term studies  
 

Because most benthic fauna are sessile or have limited mobility, and because 

many taxa have life spans that range from years to decades, the species composition 

of the benthos can be an excellent indicator from which to measure environmental 

change over long time scales (Underwood 1996, Beuchel et al. 2006, Kedra et al. 

2010). Long- term studies of benthic communities in cold waters and/or the Arctic 

have been documented in Arctic fjords around Svalbard, Norway (e.g. Dyer et al. 

1984, Beuchel et al. 2006, Renaud et al. 2007, Beuchel and Gulliksen 2008, Kedra et 
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al. 2010, Kortsch et al. 2012), the northern Bering Sea (Grebmeier et al. 2006), Fram 

Strait (Taylor et al. 2017), the Chukchi Sea (Grebmeier et al. 2015), Alaska 

(Blanchard et al. 2002), and the Barents and Kara Seas (Kiyko and Pogrebov 1997, 

Carroll et al. 2009, Kozlovskiy et al. 2011) but no longitudinal studies of the benthos 

have occurred in the Canadian Arctic aside from one study that looked at the direct 

impacts of an experimental release of oil on Arctic nearshore macrobenthos over a 4-

year period in the early 1980s at Cape Hatt, northern Baffin Island (Cross et al. 1987, 

Cross and Thomson 1987; Figure 1.6; Table 1.1). 

 

Figure 1.6. Coverage of long-term studies throughout the Arctic Seas. Figure acquired and adapted from 

Piepenburg 2005.
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Table 1.1. Summary of long-term studies of benthic communities and/or species conducted throughout the Arctic Seas. 

Reference Arctic Sea Study Area Long-Term Benthic Project 

Beuchel et al. 2006 and 

Beuchel and Gulliksen 2008 

Greenland Sea Kongsfjord, Svalbard, 

Norway 

24 year study (1980-2003) that examined temporal patterns of recolonization 

and disturbance in a hard bottom marine macrobenthic community. 

Dyer et al. 1984 Greenland Sea Along western coastline 

of Svalbard, Norway 

Compared benthic invertebrate species sampled between 1949-1959 with 

samples collected between 1978-1981. 

Kedra et al. 2010 Greenland Sea Kongsfjord, Svalbard, 

Norway 

Examined benthic macrofauna communities between 1997/1998 and 2006 

along the fjord axis. 

Kortsch et al. 2012 Greenland Sea Kongsfjord and 

Smeerenburgfjord, 

Svalbard, Norway 

Investigated changes in rocky-bottom community structure between 1980-

2010. 

Renaud et al. 2007 Greenland Sea Van Mijenfjord, Svalbard, 

Norway 

Examined changes in the soft-sediment benthic community from samples 

collected in 1980 and 2000/2001. 

Grebmeier et al. 2006 Bering Sea Shallow shelf of the North 

Bering Sea 

Demonstrate that an ecosystem shift has occurred with a displacement of 

marine mammal populations, reduction of benthic prey populations, and an 

increase pelagic fish coinciding with a reduction in sea ice, and increase in 

air and ocean temperatures. 

Taylor et al. 2017 Greenland Sea HAUSGARTEN long-

Term Observatory, Fram 

Strait 

Assessed temporal variability in structure, density, and diversity of 

megafaunal communities between 2004-2015. 

Grebmeier et al. 2015 Chuchki Sea Throughout Southern 

Chukchi Sea 

Examined macrofaunal and epifaunal composition and biomass and 

associated environmental drivers for time-series data collected in 2004, 

2009, and 2012. 

Blanchard et al. 2002 Gulf of Alaska Port Valdez, Alaska, USA Examined benthic faunal structure and hydrocarbon concentrations within 

the sediments over a ten year period (1989-1998). 

Carroll et al. 2009 Barents Sea Southeastern Barents Sea Analyzed growth rates of the cockle Serripes groenlandicus for almost 70 

years (1882-1968) to identify patterns and drivers of natural variability in the 



22 
 

population and to gauge the potential effects of climate change on the 

ecosystem. 

Kiyko and Pogrebov 1997 Barents Sea 

and Kara Sea 

Throughout the Barents 

and Kara Sea 

Analyzed grab, trawl, and underwater photographs between 1991-1992 and 

compared these data with changes over the last 60-70 years presented for the 

Barents Sea. 

Kozlovskiy et al. 2011 Kara Sea Southwestern Kara Sea Compared the structure and distribution of microbenthic communities from 

2007 with samples collected between 1927-1945, 1975, and 1993. 

Cross and Thomson 1987 

and Cross et al. 1987 

Baffin Bay Cape Hatt, Baffin Island Examined the effects of an experimental release of oil on Arctic nearshore 

infauna and epifauna between 1980-1983. 
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In the Canadian Arctic, there are numerous benthic studies that document benthic 

fauna but long-term studies are scarce. Canadian Arctic benthic environments are 

understudied and where studies do exist, they are typically baseline studies that 

document the biodiversity observed in a given area under study (Carey 1991, Cusson et 

al. 2007, Conlan et al. 2008, Piepenburg et al. 2011, Wei et al. 2019). Long-term studies 

are expensive and time- consuming to conduct (Wolfe et al. 1987, Simkanin et al. 2005) 

and accessibility is an ongoing issue in the Canadian Arctic primarily due to sea ice 

which restricts accessibility for repeated sampling (Carey 1991). 

In the absence of systematically collected long-term data, many authors have 

called for and have begun to use historical sample data to fill knowledge gaps by 

combining them with contemporary studies (Wolfe et al. 1987, Kiyko and Pogrebov 

1997, Cusson et al. 2007, Renaud et al. 2007, Thurstan et al. 2015). In the Canadian 

Arctic, numerous historical baseline studies on Arctic benthic communities have been 

conducted (e.g., Ellis 1955, Wacasey et al. 1979, Wacasey et al. 1980, Thomson 1982, 

Dale et al. 1989, Syvitski et al. 1989, Aitken and Fournier 1993, Clough et al. 1997, 

Conlan et al. 2008, Brown et al. 2011a, Nephin et al. 2014). These historical studies 

provide an opportunity to bridge the gap in knowledge of long-term benthic community 

change through resampling of these historic sample sites. However, only one study by 

Cusson et al. (2007) has utilized historical benthic sample records to compile a summary 

of the current state of knowledge related to the biodiversity of benthic assemblages on 

the Canadian Arctic continental shelf. In their article, these authors highlight the 

importance of available historical benthic faunal data and call for these data to be 
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integrated with modern sampling efforts in order to set a baseline from which patterns of 

benthic biodiversity can be measured in the Canadian Arctic. More recently, 

Archambault et al. (2010) Thurstan et al. (2015), and Wei et al. (2019) all emphasized 

the importance of establishing baseline biodiversity datasets across Canada’s Arctic with 

Thurstan et al. (2015) specifically emphasizing the importance of filling gaps in our 

knowledge of marine systems through the use of historical datasets, further stressing the 

importance of setting a baseline from which future change can be measured. 

 

1.4.5 Molluscs: Indicators of Long-Term Change? 
 

Molluscs (bivalves and gastropods) are ecosystem engineers, creating, 

modifying, and maintaining habitat for the benthic community (Gutierrez et al. 2003). 

Marine molluscs burrow and bioirrigate the sediment and they exhibit a wide variety of 

feeding modes (e.g. deposit feeders, suspension feeders, grazers, and predators), all of 

which aid in modifying the sediments within which they live (e.g. Crooks et al. 1999, 

Gutierrez et al. 1999, Buschbaum et al. 2009). The shells of molluscs and aggregations 

of shells also impact the abiotic environment by introducing heterogeneity and 

complexity into the benthic environment (McLean 1983, Kidwell 1986, Gutierrez et al. 

2003, van der Zee et al. 2012). Taphonomic feedback, the shells left behind by dead 

molluscs and the shells of live molluscs introduce complexity and heterogeneity into the 

benthic environment (Kidwell 1986), and they persist over geological time scales, thus 

affecting the benthic community on both temporal and spatial scales (Gutierrez et al. 
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2003). Mollusc shells can provide hard substrates for other benthic organisms to attach 

to such as algae, barnacles, sponges, and hydroids and they can also provide refuge for 

other organisms from predators such as grazing sea urchins, crabs, fish, and shorebirds 

(Guiterrez et al. 2003). 

Temporal changes to molluscan communities resulting from anthropogenic 

stressors and warming Arctic temperatures could therefore impact the benthic 

community as a whole. One major impact to the circumpolar Arctic oceans that could 

affect molluscs is that atmospheric CO2 has been increasing in the atmosphere and has 

entered the ocean causing ocean acidification (Comeau et al. 2010). Molluscs in arctic 

nearshore environments have tremendous preservation potential (Aitken 1990) but high 

terrigenous input, strong tides, and sea ice scour in Frobisher Bay make this region not 

an ideal place for the formation of carbonate deposits in the benthos (Zammit 2017). 

Changes in ocean acidification could affect this further. For example, ocean 

acidification can impact the early life stages of molluscs as calcium carbonate is known 

to be deposited during the larval stage of bivalves (Dame 2012). Bivalves may not be 

able to grow their calcium carbonate skeletons resulting in the mortality of living 

individuals (Kurihara 2008, Dame 2012). Empty shells on the seabed may also be 

dissolved at a greater rate which would ultimately result in reduced habitat availability 

for other benthic organisms (Dame 2012). Fabry et al. (2009) have indicated that 

changes in CO2 chemistry have already been observed in Arctic surface waters and these 

rapid changes emphasize the urgency to monitor ocean acidity in the north and Zammit 

(2017) concluded that further investigation into dissolution rates of carbonate bioclasts 



26 
 

should be conducted in Frobisher Bay to gain insight into the impacts of ocean 

acidification on cold-water carbonates in this region.  Other environmental changes, 

such as increased sedimentation rates from river input or increased shoreline erosion 

associated with increased wave action and increased storm activity (Hatcher and Forbes 

2015) could also influence the distribution of molluscs in coastal environments.  These 

changes, in particular, increased wave action and storm activity, occur in response to sea 

landfast ice loss in northern regions. For example, most bivalves are either suspension 

feeders (obtain their food from the water column) or deposit feeders (remove organic 

matter from the surrounding benthic environment) and where one type is abundant, the 

other is often reduced (Dame 2012). Suspension feeding bivalves are typically found on 

coarser sediments in more energetic environments while deposit-feeding bivalves are 

more commonly associated with muddy low energy environments (Dame 2012). The re-

working of sediments by deposit-feeding bivalves creates conditions unsuitable for and 

stressful for suspension-feeding bivalves and discourages settlement of suspension- 

feeding larvae (Dame 2012). Increased sedimentation and wave action in coastal regions 

may therefore also influence the settlement location of suspension-feeding bivalve 

larvae. 

Only a few studies, however, focus specifically on the molluscs as a tool to 

identify community change. Novoa et al. (2016) examined four estuaries in southern 

California over a 50 year time period and found that bivalve species richness was 

higher in the 1960s and 1970s compared to the 1980s and mid 2000s. They found 

that the bivalve communities in these estuaries had undergone dramatic changes such 
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that the community structure had shifted from the presence of larger, longer-lived 

bivalves to a predominance of faster-growing, surface-dwelling smaller species. 

Habitat loss and increased urban and industrial development in these areas resulting 

in increased contaminant levels were identified as potential contributors to the 

decline in bivalves in these regions (Novoa et al. 2016). Strayer et al. (1998, 1999) 

examined the zebra mussel invasion in the Hudson River which was first observed in 

May 1991. The zebra mussel population grew rapidly over time and native clams and 

other sediment dwellers including oligochaetes and amphipods in deeper water were 

believed to have suffered due to competition for food as there was a decline in 

phytoplankton biomass of 80-90% over time (Strayer et al.1998, 1999). Rothschild et 

al. (1994) examined the ecological impact of a historical fishery on the eastern oyster 

Crassostrea virginica in Chesapeake Bay. They found that 100 years of increasingly 

intensive mechanized fishing has caused a leveling profile on the oyster bars (over 

50% of the bars from 1907-1982) to the extent that the sediments were no longer able 

to produce oysters and the remaining un-silted areas are now considered less 

productive than they once were (Rothschild et al. 1994). 

Researchers are often left only with historical data sets from which to compare 

with modern studies. The long-lived nature of marine molluscs make this group of 

organisms a potentially useful one for identifying long-term change compared with other 

organisms. For example, polychaetes and amphipods are also an important component 

of Arctic benthic biomass but exhibit more seasonal variation. Examining change in the 

structure of mollusc communities allows for the identification of long-term trends 
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without being distracted by the seasonal noise created by short lived species. By 

studying a group of organisms that lives longer than the life expectancies of most 

species in the benthic community, we can attempt to differentiate between short- and 

long-term natural variability and long-term anthropogenic change, ensuring that long-

term natural fluctuations are not attributed to anthropogenic influences (Bowman 1978, 

Gray and Christie 1983). 

 

1.4.6 Methods for Assessing Long-Term Change 
 

1.4.6.1 Taxonomic and Functional Traits 

 

Utilization of both the taxonomic approach to measure the impact of 

environmental change on biodiversity and the functional trait approach to measure 

change in ecosystem function are both valid and complimentary methods for 

examining long-term change in the marine benthos.  

Historical ecological studies have traditionally examined benthic community 

similarities or changes through taxonomic analysis based on species diversity, species 

composition, abundance and biomass (Kiyko and Pogrebov 1997, Weigel et al. 2016), 

often in association with abiotic factors (Josefson and Rosenberg 1988, Beuchel et al. 

2006, Renaud et al. 2007, Kedra et al. 2010, Kortsch et al. 2012, Grebmeier et al. 

2015). However, this approach does not consider the functional role that each species 

contributes within the community. 

Functional diversity refers to the diversity of species traits present within a 
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community (Diaz and Cabido 2001) and represents both behavioural and morphological 

traits displayed by an individual (Bremner et al. 2003, Paganelli et al. 2012). Functional 

traits include: feeding mode (e.g. suspension feeder, deposit feeder, etc.), sediment 

preference (e.g. sand, silt, rock, etc.), life span, mobility, body form, environmental 

position (e.g. epifauna, infauna, hyperbenthic), living habit (e.g. crevice dwelling, free 

living, etc.), bioturbation (e.g. biodiffusors, surficial modifiers, etc.), and many others 

though not all may be ecologically important to measure.  

Taxonomically distinct individuals within the community may have evolved 

similar adaptations leading to functional similarity (Paganelli et al. 2012) and so the 

loss of one species in the community (e.g. decline in species richness) does not 

necessarily mean a loss of the functional traits that species provided to the community 

nor the loss of ecosystem function. Additionally, not all species are considered equal 

and the loss of some species (e.g. keystone species) could have a profound impact on 

the community while the loss of other species could have little impact (Tilman et al. 

1997). For example, some oyster species that form oyster beds are considered a 

keystone species that provide important ecosystem services including providing 

habitat, protection, and a source of food for many other species (Rodriguez-Perez et 

al. 2019). Oyster beds increase biodiversity and trophic complexity of the sea bottom 

and mediate ecosystem function and the loss of such beds has a profound effect on the 

ecosystem services that these species provide (Kent et al. 2017). 

The use of functional traits to assess the relationship between organisms and 

ecosystem functioning is becoming increasingly important (Weigel et al. 2015) as 
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functional diversity within the community is a significant factor driving ecosystem 

processes (Tilman et al. 1997, Bremner et al. 2003, Petchey and Gaston 2006). In some 

studies, functional diversity has had a greater impact on ecosystem processes than 

species diversity (Tilman et al. 1997). There has been a substantial amount of research 

using trait analysis to examine terrestrial plant communities (Tilman et al. 1997, Weigel 

et al. 2015) but this approach is new to the marine environment and only a few studies 

have used functional trait analysis to examine changes to the benthos (Bremner et al. 

2006, Paganelli et al. 2012, van der Linden et al. 2012, Clare et al. 2015, Kun et al. 

2019). 

 

1.4.6.2 Habitat Mapping  

 

Habitat mapping has emerged as a valuable visual tool to aid in predicting the 

spatial distribution of benthic fauna. Anthropogenic threats to the benthic environment 

are a key driver for producing comprehensive habitat maps that provide a baseline from 

which future change can be measured (Harris 2012). Understanding the spatial 

distribution of macrobenthic habitats, their structure, and dynamics is paramount for 

understanding their vulnerability (Sherman 1991, Zajac 1999, Schumchenia and King 

2010, Reiss et al. 2014) and for our ability to manage them (Buhl-Mortensen et al. 

2009, Buhl-Mortensen et al. 2012). 

Despite this growing body of research, only 5-10% of marine habitats have been 

mapped worldwide and the circumpolar regions make up only a small portion of this 

value (Wright and Hayman 2008, Gougeon et al. 2017). With emerging technologies, 
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we can now acquire 100% seabed data coverage using acoustic systems that provide 

information on seabed geology and geomorphology (Kenny et al. 2003, Eastwood et al. 

2006). By combining acoustical data with physical oceanographic and geological data, 

as well as biological information (Brown et al. 2011b), we have the potential to produce 

habitat maps that gives the best prediction of the distribution of marine communities for 

a given area (Foster-Smith et al. 2008). Because ground-truthed samples cover only a 

small percentage of the seabed, the coverage of specific habitats is inferred through the 

association of remotely sensed data with ground-truthed benthic sample data (Brown et 

al. 2011b). 

Combining remotely sensed data with ground-truthed benthic sample data has 

primarily consisted of utilizing underwater video or still photographs which characterize 

the epifauna and which can also be used to verify sediment type (Pinn et al. 1998, 

Hewitt et al. 2004, Rooper and Zimmermann 2007, Grizzle et al. 2008, Copeland et al. 

2013). More often a combination of underwater video or photographs and infaunal grab 

samples have been used to classify unique benthic communities (Foster-Smith and 

Sotheran 2003, Brown et al. 2004a, Brown et al. 2004b, Foster-Smith et al. 2004, 

Brown and Collier 2008, Buhl-Mortensen et al. 2009, Callaway et al. 2009, Christensen 

et al. 2009, McGonigle et al. 2009). To a lesser extent, infaunal samples have been used 

on their own in conjunction with multibeam sonar and sediment sample data to produce 

benthic habitat maps that reflect the infaunal community distribution for a given region 

(Freitas et al. 2003, Zajac et al. 2003, Eastwood et al. 2006, Freitas et al. 2006, Degraer 

et al. 2008, Schumchenia and King 2010, Misiuk et al. 2019). 
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By utilizing modern ground-truthed infaunal and sediment data along with 

multibeam sonar data collected in Frobisher Bay, a habitat map can be produced that 

characterizes unique benthic habitats which can be compared with the historical benthic 

community data (Wacasey et al. 1979, 1980). From this, spatial shifts in benthic 

communities between historical records and modern data may become apparent and this 

may be used as an indicator of the indirect effects of climate change on the benthos. 

 

1.4 Thesis Structure 

This thesis contains two manuscripts and a summary discussion in addition to this 

introductory chapter. Each chapter is a stand alone paper that has been prepared to be 

published in the scentific literature. Each chapter contains a literature review, methods, 

results, and discussion section with some overlap of introductory material occurring 

between manuscripts. 

Chapter 2 examines long-term temporal changes observed in the molluscan 

(bivalves and gastropods) communities of inner Frobisher Bay. Historical relative 

abundance sample data collected by Wacasey et al. (1979, 1980) was compared with 

samples collected at the same stations fifty years later as part of the field work 

component of this thesis. This chapter highlights the importance of historical datasets as 

invaluable records and baselines from which long-term benthic community change can be 

measured. 

Chapter 3 examines long-term spatial changes that have occurred in the 
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molluscan (bivalves and gastropods) communities of inner Frobisher Bay. This was 

accomplished by highlighting the ‘potential distribution’ (the distribution where specific 

mollusc communities may be found) of the modern molluscan communities through the 

use of MBES data sources and comparing these results with the historical communities. 

The summary chapter of this thesis provides a synthesis of the findings in the 

two manuscript chapters. This chapter highlights the importance of systematic long-term 

sampling for identifying temporal and spatial change within this group of benthic fauna 

and provides recommendations for future monitoring given changing climate conditions 

in the Arctic as well as on-going coastal development that is expected in the Iqaluit 

region. 
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Chapter 2 Long-term temporal change in the molluscan 

communities of Frobisher Bay, Nunavut, Canada 
 

 

2.1 Introduction 

The circumpolar Arctic has experienced long-term environmental change 

including warming air temperatures, warming sea surface temperatures, and losses in the 

extent and thickness of sea ice (Richter-Menge et al. 2017). There is a strong consensus 

that global climate change will profoundly impact marine ecosystems (IPCC 2014), 

possibly to the community level (Harley et al. 2006) and it is predicted that future Arctic 

marine ecosystems will look considerably different in the future due to changes expected 

in the physical environment (Carmack and Wassmann 2006, Carmack and McLaughlin 

2001, Carmack and McLaughlin 2011, Wassmann and Reigstad 2011, Macdonald et al. 

2015, Renaud et al. 2015). 

Long-term studies are vital to understanding the impact that climate warming 

will have on the marine environment. The marine benthos specifically can be used as an 

indicator of long-term environmental change (Kedra et al. 2010). Benthic species 

composition is influenced by a number of factors including water column stratification, 

water movement, water depth (which is correlated with other environmental variables 

including temperature and salinity (Roy et al. 2014)), sediment type, inorganic and 

organic sedimentation, and pelagic productivity (Grebmeier and Barry 1991, Snelgrove 

1999, Gosling 2004, Renaud 2007). The benthos plays a critical role in nutrient cycling 



62 
 

as ice algae, phytoplankton, and zooplankton provide an important source of organic 

carbon and nitrogen to the benthos. In turn, organic carbon and nitrogen are transferred 

back into the pelagic realm through the food chain as the benthos provides a critical 

source of food to higher trophic levels (Grebmeier and Barry 1991, Snelgrove 1999). 

Changes to these conditions could therefore result in changes in structure and function 

of benthic communities. Some benthic fauna have limited mobility or are completely 

sessile and some have life spans that range from a few years to many decades (Beuchel 

et al. 2006) which makes assessing changes in these communities possible. Marine 

molluscs (gastropods and bivalves) in particular are an excellent group of organisms 

with which to examine long-term change because of their long lived nature (Powell and 

Cummins 1985, Carroll et al. 2009). 

Long-term benthic community studies have been documented in many parts of 

the Arctic but few studies have examined long-term benthic community change in the 

Canadian Arctic. In response to this, historical baseline studies have been used to 

measure long-term change by looking at “snap-shots in time” by comparing historical 

baseline data and available Traditional Ecological Knowledge (TEK) with 

contemporary studies carried out in the same region. Historical studies provide a source 

of data which can be directly compared with modern sampling through a comparative 

sampling design while TEK has emerged as an important source of traditional historical 

ecological information. For example, Misiuk et al. (2019) explored the use of the 

Nunavut Coastal Resource Inventory, a dataset that contains Inuit knowledge of aquatic 

and coastal species, for mapping marine habitats in Frobisher Bay. This type of data is 
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thought to be beneficial when used at a broad rather than fine scale to support scientific 

studies (Misiuk et al. 2019). Therefore, the use of multiple sources of historical datasets 

can be critical to filling data gaps and documenting long-term change (Thurstan et al. 

2015). 

Frobisher Bay, located along the southeastern coast of Baffin Island, Canada, 

has experienced similar long-term environmental trends as the circumpolar Arctic 

including warming air temperatures and declining sea ice thickness and areal extent 

(Government of Canada 2017, Government of Canada 2018a). This region has also 

experienced rapid population growth and urban development in the coastal city of 

Iqaluit including the current development of a deep-sea port, located at Inuit Head in 

inner Frobisher Bay. Between 1967-1976 benthic sediment and infaunal samples were 

collected in the coastal waters of inner Frobisher Bay in less than 100 m water depth 

and these data were archived in two technical data reports (Wacasey 1979, 1980). We 

re-sampled these same stations in 2016 to acquire sediments and infauna to examine 

how seabed habitats and molluscan communities have changed over the last 50 years. 

We predict that molluscan community composition and function in Frobisher Bay has 

experienced a change over the last 50 years. 
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2.2 Methods 

2.2.1 Study Area 

Frobisher Bay is located in southeastern Baffin Island, Canada and extends 

approximately 265 kilometers into the northern Labrador Sea with the inner portion of 

Frobisher Bay reaches a maximum depth of 272 m (Hodgson 2005). Frobisher Bay is 

covered by ice for most of the year. Ice formation typically begins around November and 

ice break-up typically occurs in July (Canadian Ice Service 2013). Sample stations 

included in this study were located approximately 2 kilometers south of Iqaluit herein 

referred to as the “Iqaluit” stations and approximately 10 kilometres southeast of Iqaluit 

near Cairn Island herein referred to as the “Cairn Island” stations (Figure 2.1). The Sylvia 

Grinnell River is located approximately 2.5 km west of the Iqaluit stations and 

approximately 10 kilometers north-west of the Cairn Island stations. The Apex River is 

located approximately 3 kilometers east of the Iqaluit stations and approximately 7 

kilometers south of the Cairn Island stations. Both of these rivers provide a source of 

fresh water and sediment input into Frobisher Bay in the vicinity of the study region. 

 

2.2.2 Sources of Historical Data 
 

Long-term environmental data has been collected in the Frobisher Bay region 

that measured a number of different parameters. Historical climate data collected by the 

Government of Canada (2018a) was available for the Iqaluit region (63º45’00.00”N, 

68º33’0.00”W) and was examined for warming air temperature trends while historical 
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ice thickness data collected in Frobisher Bay through the Canadian Ice Thickness 

Program was examined for changes in both ice thickness and length of the ice cover 

season in Frobisher Bay (Government of Canada 2017). Mean annual air temperature 

was calculated from average monthly temperature data while the maximum ice 

thickness for each year was determined based on weekly ice thickness measurements. 

The length of the ice cover season was measured as the number of days it was safe to 

walk on the ice to take a thickness measurement (Government of Canada 2017). 

Historical hydrometric data for the Sylvia Grinnell River and Apex River were collected 

by the water office (Government of Canada 2018b) and examined for changes observed 

in river discharge over time. Average monthly discharges were examined for the months 

June through October. Between the 1960’s and 1980’s, oceanographic measurements 

were also made at various locations in inner Frobisher Bay. Water temperature and 

salinity data are presented by Lovrity (1981, 1982a, 1982b, 1984, 1987) and these data 

were compared with oceanographic data collected onboard the CCGS Amundsen in 

2016 and 2017 (Amundsen Science Data Collection 2019). 
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Figure 2.1. Location of long-term ecology stations sampled in Frobisher Bay, Nunavut between 1967 and 

1976 and in 2016 (a), inset map of Baffin Island (b), and inset map of Frobisher Bay (c). 
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2.2.3 Infaunal and Sediment Sampling 

Benthic infaunal and sediment samples were collected using a Petersen grab 

(surface area 0.065 m2) between 1967 and 1976 in the coastal waters of Frobisher Bay.  

Between 4-6 grabs were collected per station and pooled for a total surface area of 

between 0.25 – 0.39 m2 of sediment sampled per station. Detailed sampling methodology 

for these historic samples can be found in Wacasey et al. (1979, 1980). In 2016, these 

same stations were re-sampled using a Van Veen grab (surface area 0.111 m2) from the 

MV Nulialjuk and using a box core (surface area 0.125 m2) from the CCGS Amundsen 

due to equipment availability. The modern replicate samples from each station were 

pooled to be comparable with the historical data. Between 2-3 grabs were collected per 

station with the Van Veen for a total surface area of 0.024 – 0.11 m2 of sediment sampled 

per station after the samples were pooled. Three grabs were collected from one station 

using the box core and these samples were pooled for a total surface area of 0.129 m2 

(Figure 2.1). Historical (1967-1976) and modern (2016) samples included in this study 

were collected when the bay was free of sea ice between the months of July and October. 

Sediment samples acquired in 2016 were frozen and later analyzed for grain size, total 

organic carbon (TOC) content (%) and total nitrogen (TN) content (%) in the sediments, 

and to determine the ratio of carbon to nitrogen in the sediments which provides an 

indication of the source of the organic matter in the sediments (e.g., terrestrial vs. 

marine). Protocols for processing of historical sediment and infaunal samples can be 

found in Wacasey et al. (1979, 1980). For modern samples, approximately 100 g of 

sediment was used to determine grain size composition up to 4 mm, though only silt ( < 



68 
 

0.063 mm) and sand (0.063 – 2 mm) fractions were used in this thesis to compare with 

the historical samples. Sediment samples were dry sieved for five minutes over a sieve 

shaker to separate the mud, sand and gravel. Many of the samples had grain particles that 

stuck together and these samples were lightly rinsed through the 0.063 mm sieve with 

water to break up the particles and re-dried and weighed. The weight of each grain size 

fraction was divided by the total weight of the sample to determine the proportion of silt 

and sand in the sediments. Sediment samples were processed for TOC and TN and C:N 

ratio’s in the Stable Isotope Lab at Memorial University.  Loss-on-ignition analysis was 

performed to determine the percentage of organic content in the sediments following the 

methods of Heiri et al. (2001). Triplicate samples collected from each station were oven 

dried at 60ºC for a minimum of 4 hours to dry the samples.  All samples were then ashed 

at 550ºC to remove organic content.  The ashed weight was subtracted from the pre-ashed 

weight to determine the organic content in each sample. Triplicate samples were 

averaged for each station, resulting in a single TOC measurement for each station. 

Carbon:Nitrogen ratio’s were determined using a Carlo-Erba NA1500 Elemental 

Analyser and ConFLoIII interface. The protocol for these analyses can be found in 

Appendix I. Analysis of Iqaluit area samples and Cairn Island area samples were run 

separately. 

Infaunal samples were washed over a 0.5 mm sieve (the  2016 box core sample 

was washed over a 1.0 mm sieve) and organisms were fixed in 10% formalin for 24 hours 

before being transferred to 70% ethanol. Bivalves and gastropods from each grab sample 

were identified to the lowest taxonomic level with 84.6% of individuals from the 
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historical samples identified to the species level and 79.5% of the modern samples 

identified to the species level. Sampling effort for both the historical and modern samples 

used in this study is summarized in Table 2.1 and complete sampling details can be found 

in Appendix 2. 

 

2.2.4 Analysis 

General linear models were developed to identify significant long-term changes in 

the environmental datasets for the response variables temperature (ºC), length of ice 

season (days), maximum ice thickness (cm), average monthly water discharge and the 

explanatory variable year (Datasets used in these analyses are found in Appendix 3). The 

models were run using the aov function in RStudio (RStudio Team 2016). 

General linear models were also generated to identify changes in grain size and 

sediment quality over time (Datasets used in analysis found in Appendix 4). The response 

variables proportion of sand and silt (%), total organic carbon, total nitrogen and carbon-

nitrogen ratio and the explanatory variable time period were included in the models using 

the aov function in RStudio. Initial data exploration pointed to the inclusion of the 

explanatory variable depth in some of these models as water depth varies among the 

sampling stations. 
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Table 2.1. Summary of samples collected in Frobisher Bay between 1967-1976 by Wacasey et al. (1979, 1980) and in 2016. 

Station
Date 

Sampled

Latitude 

(˚N)
a

Longitude 

(˚W)
a

Depth 

(m)
b

Sed. 

Sample

No. Grabs 

Pooled 

Total 

Surface 

Area (m
2
)

Station
Date 

Sampled

Latitude 

(˚N)
a

Longitude 

(˚W)
a

Depth 

(m)
b

Sed. 

sample 

No. Grabs 

Pooled 

Total 

Surface 

Area (m
2
)

5 23-Jul-68 45 No 6 0.39 5b 29-Jul-69 15 No 6 0.39

5 20-Aug-68 60 Yes 6 0.39 5b 3-Sep-69 15 Yes 6 0.39

5 3-Sep-68 60 No 6 0.39 5b 8-Aug-73 14 Yes 5 0.325

5 8-Oct-68 62 No 6 0.39 5b 19-Aug-76 14 Yes 5 0.325

5 2-Sep-69 53 Yes Not Collected 5b 10-Oct-16 63º43'32.0 68º31'15.4 8.5 Yes 3 0.333

5 6-Aug-70 72 No 6 0.39

5 14-Oct-16 63º40'22.5 68º25'45.8 57 Yes 3 0.333 25 8-Aug-73 30 Yes 5 0.325

25 18-Aug-76 28 Yes 5 0.325

5a 1-Aug-68 26 Yes 6 0.39 25 10-Oct-16 63º43'21.7 68º30'58.6 28.5 Yes 3 0.333

5a 20-Aug-68 32 No 6 0.39

5a 2-Sep-69 36 Yes Not Collected 26 8-Aug-73 63º42'48.2 68º30'14.0 40 Yes 5 0.325

5a 14-Oct-16 63º40'6.0 68º26'0.9 69.2 Yes 3 0.333 26 10-Oct-16 63º42'45.9 68º30'11.2 35.2 Yes 3 0.333

5c 23-Aug-69 63º39'40.0 68º25'19.2 31 Yes 6 0.39 27 8-Aug-73 63º41'48.8 68º29'18.6 43 Yes 5 0.325

5c 11-Oct-16 63º39'39.8 68º25'17.8 77.2 Yes 3 0.333 27 10-Oct-16 63º41'48.8 68º29'21.2 33.1 Yes 3 0.333

5d 23-Aug-69 63º40'39.4 68º25'17.8 43 Yes 6 0.39 28 13-Aug-73 63º42'35.3 68º31'17.0 30 Yes 4 0.26

5d 11-Oct-16 63º40'39.3 68º25'15.3 25 Yes 3 0.333 28 10-Oct-16 63º42'35.9 68º31'15.9 11.5 Yes 3 0.333

5e 23-Aug-69 63º40'30.7 68º25'49.4 58 Yes 6 0.39

5e(box) 16-Jul-16 63º40'30.8 68º25'49.3 63 Yes 3 0.375

5e 11-Oct-16 63º40'32.4 68º25'49.1 52.3 Yes 3 0.333

5f 23-Aug-69 63˚39.8’ 68˚26.1’ 73 Yes 6 0.39

5f 11-Oct-16 63º39'50.2 68º25'10.6 90.1 Yes 2 0.333

a 
Latitude and longitude recorded only once at a station in the historical data.  

The reported latitude and longitude for the 2016 samples are the coordinates of the 

first pooled replicate sample collected.  Appendix 1 lists the coordinates for all 

replicate samples collected.
b

Water depth recorded only once at each station in the historical data. The 

reported depth for the 2016 samples is the depth of the first pooled replicate 

sampled. Appendix 1 lists the water depth for all replicate samples collected.

63º43'21.7 68º30'58.3

63º40'5.9 68º26'3.1

Cairn Island Stations  Iqaluit Stations

63º40'23.2 68º25'44.0

63º43'32.2 68º31'18.5
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Species accumulation curves were generated for the historical and modern 

mollusc samples using the Sobs statistic in Primer v6 where the number of different 

species observed are successively pooled (Clarke and Warwick 2001). Diversity indices 

including species richness (S), Shannon Weiner diversity (H’), and Pileou evenness (J’) 

were generated for all pooled historical and modern samples in Primer v6 (Clarke and 

Gorley 2006). General linear models were then developed to identify significant changes 

in species richness, diversity, and evenness over time. The response variables S, H’, and 

J’ and the categorical explanatory variable time period (categories: historical samples and 

modern samples) were included in these models. Initial data exploration emphasized the 

importance of a time period and depth interaction likely as a result of variable depths at 

the different stations and because community composition is known to correlate to water 

depth (Snelgrove 1997). The models were run using the aov function in RStudio. 

Using Primer v6 (Clarke and Gorley 2006), Analysis of Similarities (ANOSIM) 

was performed on the molluscan samples to determine if the historical and modern 

samples were significantly different from each other through generation of a Global R 

value which provides a measure of significance. Samples were assigned to one of four 

groups: 1) historical – Iqaluit, 2) modern – Iqaluit, 3) historical – Cairn Island, 4) modern 

– Cairn Island rather than comparing each sample on a station by station basis. This was 

done because the historically pooled samples meant no replicates were available for 

comparison. Similarity Percentage Analysis (SIMPER) was performed to identify species 

that were driving the similarity and dissimilarity between the groups of samples (datasets 

used in these analyses are found in Appendix 5). Non-metric multi-dimensional scaling 
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(nMDS) was performed to visualize the similarities/differences between samples. Bray-

Curtis Similarity matrices were generated from the square-root transformed abundance 

dataset as this transformation reduces the influence of highly abundant species and 

increases the influence of rare species (Clarke and Warwick 2001).  Rare species were 

not removed from the dataset because preliminary data exploration indicated that the 

natural groupings of stations was not influenced by their removal. Initial data exploration 

of the square-root and 4th root transformations confirmed that the less severe 

transformation (square-root) provided a similar result as the more severe transformation. 

All organisms in a system perform a range of functions (Gray 1997) and 

Biological Traits Analysis (BTA) provides the means to examine the response of benthic 

community functions to environmental change (Dimitriadis et al. 2012, Van Son et al. 

2013, Bolam et al. 2017). Biological Traits Analysis was performed using the ade4 

package in RStudio (Dray and Dufour 2007) to identify functional changes in the bivalve 

communities over time. Gastropods were not included in this analysis due to the scarcity 

of information related to biological traits for many of the species included in the 

historical and modern datasets. Five biological traits were included in the analysis: body 

size, shell structure (solid, thick and robust shell vs. thing, fragile and brittle shell), 

feeding habit, sediment preference, and A Marine Biotic Index (AMBI; describes a 

species sensitivity to organic enrichment). These traits were further subdivided into 17 

modalities that describe in more detail a species’ functional characteristics (Table 2.2). 
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Table 2.2. List of trait characteristics included in the functional trait analysis. 

Trait Trait Modalities Code 

Body Size < 10 mm BS1 

10-50 mm BS2 

50-100 mm  BS3 

100-200 mm  BS4 

Shell Structure Solid/ Robust/Thick SS1 

Thin/Fragile/Brittle SS2 

Feeding Habit Deposit Feeder FH1 

Suspension Feeder FH2 

Scavenger FH3 

Sediment Preference Silt/Mud SP1 

Sand SP2 

Gravel SP3 

Silt-Mud-Sand-Gravel SP4 

Bedrock/Boulder/Hard Surface SP5 

AMBI Ecological Group Very Sensitive to Disturbance AMBI1 

Indifferent to Disturbance AMBI2 

Tolerant to Disturbance AMBI3 

 

The AMBI functional trait refers specifically to an organism’s sensitivity to 

organic enrichment (Borja et al. 2000). Species which are “very sensitive to disturbance” 

are typically observed in unpolluted conditions and species “indifferent to disturbance” 

can withstand some variations in organic enrichment, while species which are “tolerant of 

disturbance” thrive where there is excess organic enrichment (Borja et al. 2000). A 

database of bivalve traits was compiled from trait characteristics obtained from scientific 

literature, online databases including but not limited to WoRMS, ITIS, and BIOTIC, and 

personal communication with biologists familiar with various bivalve species (A list of 

references and online databases used to document bivalve traits can be found in 

Appendix 6). A trait matrix was developed using the “fuzzy coding” method (Chevenet et 

al. 1994). Trait characteristics for each bivalve species were assigned a value from 0 – 3 

which describes the organism’s affinity for a specific trait. A 0 indicated “no affinity” for 
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a trait while a 3 represented total affinity for a trait. A 1 or 2 indicated partial affinity for 

a given trait, such that an organism could display some affinity for multiple modalities 

within a trait with a 2 representing the trait that is more characteristic and a 1 representing 

a trait that is less characteristic (Chevenet et al. 1994). A weighted trait matrix was 

produced from the bivalve abundance dataset and the bivalve traits dataset.  Using the 

ade4 package in RStudio, Fuzzy Principal Components Analysis (FPCA) was performed 

using the weighted trait matrix to visualize the distribution of specific functional traits by 

station and to identify how the traits at a particular station may have changed over time 

(the weighted trait matrix used in the analysis can be found in Appendix 7). Fuzzy 

Correspondence Analysis (FCA) was performed to produce correlation ratios to identify 

the contribution of each trait to the variance observed among the stations. ANOSIM was 

performed in Primer v6 to test whether a significant change in functional diversity was 

observed between the historical and modern samples for both the Iqaluit and Cairn Island 

regions.  Functional diversity was calculated using Rao’s Diversity Coefficient and a 

general linear model was developed to test whether functional diversity had changed 

significantly over time. The response variable functional diversity and the explanatory 

variable time period were included in the model which was run using the aov function in 

RStudio.  

A significance level of α = 0.05 was used for all statistical analysis and marginally 

significant results were considered carefully. All models executed in RStudio were tested 

for homogeneity of variance, independence, and normality to look for violations of model 

assumptions (Zuur et al. 2010). 
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2.3 Results 

2.3.1 Long-term Environmental Data Sources 

Mean annual air temperature was -10.4 ºC in 1967 and in 2016 the mean annual 

air temperature was -8.3 ºC. Mean annual air temperature in Iqaluit increased 

significantly (F = 8.966; p = 0.0043) over time between 1967 and 2017 (Table 2.3; Figure 

2.2a). Sea water temperature and salinity were recorded in July and August between 1980 

and 1986 near long term ecology station 26 and bottom temperature at 40 metres depth 

ranged between -1.7 ºC and 0.4 ºC while salinity ranged between 32.2 ppt and 32.9 ppt 

(Lovrity 1981, 1982a, 1982b, 1984, 1987). In 2016, sea water temperature and salinity 

were recorded at long term ecology stations 5d and 5g during the month of July onboard 

the CCGS Amundsen, approximately 10 kms away from the historical measurements.  

Bottom temperature at 40 metres depth was -1.306 oC (5d) and -1.407 oC (5g) 

while salinity was 32.127 ppt and 32.229 ppt, respectively. These values fall within a 

similar range of historical data and therefore did not suggest any significant change in 

water temperature or salinity at depth had occurred between the two time periods. The 

greater flux of freshwater observed in the Sylvia Grinnell River (identified in Chapter 1) 

may indicate that freshwater is being trapped above the thermocline/halocline in the inner 

bay. A lack of comparable sample size precluded statistical analysis here. 
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Figure 2.2. Long-term air temperature, sea ice, and water discharge trends observed in Frobisher Bay. a) 

Significant increase in mean annual temperature from the city of Iqaluit between 1967-2017 (F = 8.966, p = 

0.0043; Government of Canada 2018a), b) Significant decline in the length of the ice cover season in 

Frobisher Bay near Iqaluit between 1967-2016 (F = 64.33, p = 1.94e-9; Government of Canada 2017), c) 

declining trend in sea ice thickness in Frobisher Bay near Iqaluit between 1967-2016 (F=3.488, p = 0.069), 

d) Significant decline in average instantaneous discharge for the Sylvia Grinnell River during the month of 

June (F = 13.36, p = 0.00181), and e) Significant decline in average instantaneous discharge for the Apex 

River during the month of June (F = 6.94, p = 0.0168). 

 

   a     d  

   b     e  

   c  
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Table 2.3. Results of general linear models for long-term temperature, ice, and river discharge data, sediment samples, and diversity  indices for 

historical and modern samples. Significant findings are in bold. For Iqaluit and Cairn Island analyses, the response variable was initially tested against 

Time Period, Water Depth and the interaction between TimePeriod and Water Depth.  The model is included in the table where more than one 

explanatory variable is reported. Significant and non-significant relationships are reported where there is only one explanatory variable, Time Period. 

Only significant relationships are presented for the explanatory variable Water Depth and the interaction (Time Period*Water Depth). 

Response Variable Model/Explanatory Variables n F-value P-value 

Mean Annual Temperature Year 51 8.966 0.0043 

Length of Ice Season Year 43 64.33 1.94e-9 

Maximum Ice Thickness Year 43 3.488 0.069 

Sylvia Grinnell River Average Instantaneous 

Discharge (June) 
Year (1971 – 2012) 20 13.36 0.00181 

Apex River Average Instantaneous Discharge 

(June) 
Year (1982-2015) 20 6.94 0.0168 

 

Iqaluit Region  

 
 

  

Proportion Sand/Silt (%) Time Period 23 0.335 0.569 

Total Organic Carbon 

TOC = TOC ~ TimePeriod + Depth    

Time Period 

Depth 
23 

0.489 

8.850 

0.4923 

0.00749 

Total Nitrogen 

TN = TN ~ TimePeriod + Depth    

Time Period 

Depth 23 
2.073 

9.296 

0.16542 

0.00634 

Carbon/Nitrogen Ratio Time Period 26 0.98 0.332 

Species Richness (S) 

S = S ~ Time Period + Depth    

Time Period 

Depth 
14 

1.784 

3.269 

0.209 

0.098 

Species Diversity (H’) 

H’ = H’ ~ Time Period + Depth    

Time Period 

Depth 
14 

0.001 

7.156 

0.9751 

0.0216 

Species Evennes (J’) Time Period 14 1.273 0.281 

Functional Diversity 

FD = FD ~ Time Period + Depth    

Time Period 

Depth 
14 

2.176 

15.79 

0.16824 

0.00218 
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Cairn Island  

 
 

  

Proportion Sand/Silt (%) Time Period 37 4.089 0.0509 

Total Organic Carbon Time Period 34 12.13 0.00146 

Total Nitrogen Time Period 34 3.694 0.0636 

Carbon/Nitrogen Ratio Time Period 29 1.078 0.308 
 

Species Richness 

SR = SR ~ Time Period + Depth    

Time Period 

Depth 18 
0.057 

4.839 

0.8155 

0.0451 

Species Diversity 

SD = SD ~ Time Period + Depth + Time Period*Depth    

Time Period   

Depth  

Time Period*Depth 
18 

0.398 

0.409 

9.665 

0.5381 

0.5328 

0.0077 

Species Evenness 

SR = SR ~ Time Period + Depth    

Time Period  

Depth 
18 

0.00 

2.670 

0.9866 

0.1245 

Functional Diversity Time Period 18 6.931 0.0197 
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Between 1967 and 1976 the length of the ice cover season was between 200-250 

days and between 2010 and 2016 the length of the ice cover season decreased to 130-157 

days. This resulted in a significant negative relationship over time between length of the 

ice cover season and year (F=64.33; p = 1.94e-9; Table 2.3; Figure 2.2b) while a 

declining but non-signicant trend was observed between sea ice thickness and time 

(F=3.488; p = 0.069; Table 2.3; Figure 2.2c). Long-term average instantaneous river 

discharges were measured consistently between June and October. Average instantaneous 

river discharge increased significantly over time during the month of June for both the 

Sylvia Grinnell River (F= 13.36; p = 0.00181; Table 2.3; Figure 2.2d) and the Apex River 

(F = 6.94; p = 0.0168; Table 2.3; Figure 2.2e). No significant change in river discharge 

was observed over time between July and October for both rivers. Discharge exhibited a 

declining trend for July through October in the Sylvia Grinnell River and a declining 

trend was observed only for the month of July while a positive trend was observed for 

August through October in the Apex River. 

The proportion of sand and silt in the sediments and the amount of total organic 

carbon and total nitrogen in the sediments did not change significantly over time in the 

Iqaluit region (Table 2.3; Figure 2.3). Comparatively, the proportion of sand significantly 

decreased and the proportion of silt significantly increased in the sediments over time in 

the Cairn Island region (F=4.089; p = 0.0509; Table 2.3; Figure 2.3). Total organic 

carbon (F=12.13; p = 0.00146) significantly increased over time while total nitrogen 

showed a marginal increase over time (F = 3.694; p = 0.0636) in the Cairn Island region 

(Table 2.3; Figure 2.3) suggesting a transition to a lower energy seabed environment. 
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Figure 2.3. Box plots showing historical and modern sediment characteristics for Iqaluit (top row) and 

Cairn Island (bottom row) regions including % sand, % silt, % total organic carbon, and % total nitrogen. 

Cairn Island % sand/silt (F = 4.926, p = 0.033) and % total organic carbon (F = 12.13, p = 0.00146) were 

significantly affected by time period (denoted with a *). 

 

Historical and modern carbon-nitrogen ratio’s ranged between 3.79:1 and 14.34:1 

in the Iqaluit region and between 6.38:1 and 11.39:1 in the Cairn Island region. 

Typically, values between 4 and 10 are indicative of a marine-derived organic matter 

because phytoplankton and zooplankton characteristically have C/N ratios in this range 

(Rumolo et al. 2011). Comparatively, terrestrial plants typically exhibit C/N ratios higher 

than 15 and are therefore indicative of a terrestrial source of carbon and nitrogen 

(Rumolo et al. 2011). These results suggest that the Iqaluit and Cairn Island regions may 
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have experienced some carbon and nitrogen input from terrestrial sources as some C/N 

values were above 10:1. In the Iqaluit region, Stations 5b, 26, 27, and 28 all indicate a 

trend of increased terrestrial input in the sediments and the same is true for stations 5a, 

5c, 5d, and 5e in the Cairn Island region which may be a result of increased stream 

discharge over time. Small sample size precluded our ability to statistically test each site 

individually. When statistically examined as a region (Iqaluit and Cairn Island), no 

significant increase in C/N ratio in the sediments was observed over time (Table 2.3; 

Figure 2.4) indicating that these two regions did not experience an overall increase in 

terrestrial input of organic matter to the benthos over time. 

 

2.3.2 Mollusc Diversity  

Between 1967 and 1976, 12 stations were sampled between 1 and 5 times for a total of 

112 grabs which were pooled (5-6 grabs) into 20 samples. Sixty four (64) mollusc species 

were identified. Of these, 34.4% (22 species) were bivalves and 65.6% (42 species) were 

gastropods. These same stations were sampled again in 2016 where a total of 692 

individuals were identified to the species level from 34 grabs that were pooled (1-3 grabs) 

into 12 samples to compare with the historical data. Fifty-one (51) mollusc species were 

identified of which 47.1% (24 species) were bivalves and 52.9% (27 species) were 

gastropods. Most of the same bivalve species were observed in both the historical and 

modern samples while some gastropods were less common and appeared either only in 

the historical samples or only in the modern samples (Table 2.4). Species accumulation 
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Figure 2.4. C/N ratios in sediment samples collected in Frobisher Bay between 1967 and 1976 and in 2016. 

Historical and modern samples were compared for the Iqaluit and Cairn Island regions (a) and were 

compared station by station (b). Individual sites were not statistically tested due to small sample size. 
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curves generated for the historical and modern pooled samples begin to indicate some 

flattening of the curve and the standard error observed for both the historical and modern 

samples overlap for the first ten samples examined (Figure 2.5). 

 

Table 2.4. Bivalve and gastropod molluscs found in Iqaluit and Cairn Island samples in Frobisher Bay in 

1967-1976 and 2016. 

Species 
1967-

1976a 
2016 Species 

1967-

1976a 
2016 

Gastropods      

Admete viridula X X 
Tachyrhynchus 

reticulatus 
X X 

Alvania moerchi  X Trichotropis bicarinata X  

Alvania moerchi X  Trichotropis conica X  

Anatoma crispate X X Velutina velutina X  

Anomalisipho 

verkruezeni 
 X 

Onoba mighelsii 
X  

Ariadnaria borealis X X Philine lima X  

Astyris rosacea X  Propebela arctica X  

Aulacofusus brevicauda  X Propebela turricula X X 

Boreotrophon 

clathratus 
 X 

Puncturella noachina 
X  

Buccinum 

hydrophanum 
X  Retusa obtusa 

X  

Buccinum undatum X     

Cadlina laevis X  Bivalves   

Colus holboelli X X Astarte borealis X X 

Colus islandicus  X Astarte montagui X X 

Colus pubescens X X Axinopsida orbiculata X X 

Colus sabini  X Ciliatocardium ciliatum X X 

Cryptonatica affinis X X Crenella faba  X 

Curtitoma decussata  X Dacrydium vitreum X X 

Curtitoma incisula X  Ennucula tenuis X X 

Curtitoma violacea X  Hiatella arctica X X 

Cylichna alba X X Liocyma fluctuosa X X 

Cylichnoides occultus X X Lyonsia arenosa X X 

Ecrobia truncata X  Macoma calcarea X X 

Erginus rubellus X  Macoma loveni  X 

Euspira pallida X X Macoma moesta X X 

Flabellina salmonacea X  Macoma torelli X X 
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Frigidoalvania cruenta  X Musculus discors X X 

Laona finmarchica X  Musculus niger X X 

Lepeta caeca X X Mya truncata X X 

Limneria undata X  Nuculana minuta X X 

Margarites costalis X X Nuculana pernula X X 

Margarites 

groenlandicus 
X X 

Pandora glacialis 
X  

Margarites helicinus X X Parvicardium pinnulatum  X 

Margarites olivaceus X X Periploma aleuticum X  

Margarites umbilicalis X X Portlandia arctica  X 

Margarites vahli X  Serripes groenlandicus X X 

Moelleria costulata 
X X 

Similipecten 

greenlandicus 
X  

Nassarius lima X  Thracia myopsis  X 

Nepotilla amoena X  Thyasira dunbari  X 

Neptunea despecta X  Thyasira gouldi X X 

Oenopota declivis X X Yoldia hyperborea X X 

Oenopota pyramidalis X X Yoldiella lenticula  X 

Oenopota reticula  X    

 

 

Stations 5b, 25, 26, 27, and 28 sampled in the Iqaluit region were located in 

relatively shallow water (8.5 - 43 m). Species richness ranged between 3 and 22 species 

and species diversity and evenness were low at most stations sampled in this region 

(Figure 2.6, Appendix 8). Station 26 experienced the greatest species diversity and the 

smallest amount of change over time while station 28 experienced the greatest change in 

species richness over time with a loss of 16 species at this station. The dominant taxa in 

the historical Iqaluit samples included bivalves Axinopsida orbiculata, Thyasira gouldi, 

Ennucula tenuis and the gastropods Cylichna alba and Retusa obtusa while the dominant 

taxa in the modern Iqaluit samples included the bivalve Ennucula tenuis. Axinopsida 

orbiculata and Thyasira gouldi were a dominant taxa in the modern Iqaluit samples but 

were not found in all samples (Table 2.5). 
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Figure 2.5. Species-accumulation curves (Sobs) for historical and modern benthic samples collected in 

Frobisher Bay between 1967-1976 and 2016. The greyed areas represent the standard deviation around the 

values. 

 

Station 5, 5a, 5c, 5d, 5e, and 5f sampled near Cairn Island were located in deeper 

water ranging between 26 – 90.1 m. Species richness was higher overall at these stations 

compared to the Iqaluit stations; each station had between 11 – 29 species. Species 

diversity and evenness were also consistently greater at these stations (Figure 2.6, 

Appendix 8). Station 5c experienced the greatest loss in species richness over time in the 

Cairn Island region while all other Cairn Island stations experienced gains or losses of 

only a few species over time. The dominant taxa in the historical Cairn Island samples 

included the bivalves Ennucula tenuis, Hiatella arctica, Musculus discors, Nuculana 

minuta, Thyasira gouldi, and the gastropod Cylichna alba. Dominant taxa in the modern 

Cairn Island samples included the bivalves Ennucula tenuis, Hiatella arctica, Macoma 
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moesta, Nuculana pernula, Thyasira gouldi, Yoldia hyperborea, and the gastropod 

Cylichna alba (Table 2.5). 

Neither species richness, diversity, or evenness changed significantly over time in 

the Iqaluit and Cairn Island regions (Table 2.3). It is imperative to note, however, that 

species richness and diversity did significantly change with water depth in the Iqaluit 

region and there was a significant relationship observed between water depth and species 

richness, diversity, and evenness. Furthermore, there was a significant interaction 

between time-period and depth in the Cairn Island region (Table 2.3). Therefore, these 

significant relationships may have masked changes in species richness, diversity, and 

evenness over time. 

 

 

Figure 2.6. Results of diversity indices (species richness (S), Shannon-Weiner diversity (H’), and Pileou’s 

evenness (J’)) for historical and modern samples collected in Frobisher Bay. 
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Table 2.5.  Average relative abundance (#/m2) of the most dominant taxa observed in historical and 

modern samples for the Iqaluit and Cairn Island regions (in bold). Un-bolded values are presented for 

comparison. Taxa were considered dominant if present in all or all but 1 samples collected in each region 

during each time period (e.g.  present in at least 8/9 historical Iqaluit samples, 4/5 modern Iqaluit samples, 

10/11 historical Cairn Island samples, 7/8 modern Cairn Island samples). 

Species 
Cairn Is (H) 

(#/m2) 

Cairn Is (M) 

(#/m2) 

Iqaluit (H) 

(#/m2) 

Iqaluit (M) 

(#/m2) 

Axinopsida orbiculata   685.6 87.7 

Ennucula tenuis 35.0 20.1 87.3 17.2 

Hiatella arctica 26.3 9.2   

Macoma moesta 4.2 11.0   

Musculus discors 40.7 16.1   

Nuculana minuta 19.5 5.0   

Nuculana pernula 3.1 13.1   

Thyasira gouldi 78.4 74.8 260.2 109.1 

Yoldia hyperborea 0.0 8.1   

Cylichna alba 7.3 9.5 119.1 8.0 

Retusa obtusa   92.4 0.0 

 

 

2.3.3 Multidimensional Scaling Analysis 

The historical mollusc communities in the Iqaluit and Cairn Island regions 

differed significantly from the modern mollusc communities in the Iqaluit and Cairn 

Island regions, as confirmed through multivariate analysis (Global R = 0.68, p = < 0.001, 

ANOSIM). The historical Iqaluit samples were significantly different from the modern 

Iqaluit samples (Global R = 0.627, p = < 0.001, ANOSIM) and the Cairn Island historical 

samples were significantly different from Cairn Island modern samples (Global R = 

0.622, p = < 0.002, ANOSIM). 

SIMPER analysis indicated that the historical Iqaluit stations were 52.3% similar 

to each other while the modern Iqaluit stations were only 24.6% similar to each other and 
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in both time periods, the thyasirid bivalve Axinopsida orbiculata contributed most 

significantly to within station similarity (Table 2.6). The historical Iqaluit stations 

clustered together while the modern Iqaluit stations were more dispersed in the MDS plot 

(Figure 2.7). The historical and modern Iqaluit samples were 72.69% dissimilar (Table 

2.7). The thyasirid bivalves Axinoposida orbiculata and T. gouldi contributed most 

significantly to the dissimilarity observed over time, potentially the result of a steep 

decline in relative abundance of these species in the modern samples compared to the 

historical samples. The relative abundance of T. gouldi was slightly lower in one sample 

(5e) that was sieved over a 1.0 mm sieve (box core samples) compared to the sample 

collected at 5e sieved over a 0.5 mm sieve (Van Veen samples) and this was likely due to 

these small bivalves passing through the 1.0 mm sieve. However, the impact of one 

sample sieved through a 1.0 mm mesh likely had little influence on the dissimilarity 

observed between the historical and modern Iqaluit samples given that the modern 5e 

station plotted amidst all the other modern Iqaluit stations in the nMDS (Figure 2.7). 

Cylichna alba, Retusa obtusa, and Ennucula tenuis also contributed to over 50% of the 

dissimilarity between the historical and modern Iqaluit samples (Table 2.7). 

Comparatively, the deeper Cairn Island samples did not exhibit such dramatic 

change in the molluscan community over time. SIMPER analysis indicated that the 

historical Cairn Island stations were 54.03% similar to each other while the modern Cairn 

Island stations were 50.71% similar to each other and in both time periods the thyasirid 

bivalve Thyasira gouldi contributed most significantly to within station similarity (Table 

2.6). Both the historical and modern samples clustered more closely together in the MDS 
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plot (Figure 2.7) compared to the Iqaluit stations. The historical and modern Cairn Island 

samples were 60.0% dissimilar and many species contributed to the dissimilarity 

observed compared to the Iqaluit region (Table 2.7). 

 

2.3.4 Biological Traits Analysis 

The molluscs sampled in Frobisher Bay exhibited 16 trait modalities (Table 2.8). 

Body size was most commonly small (< 10 mm) or medium (10-50 mm) and shell 

structure was either solid/robust/thick or thin/fragile/brittle. Bivalves were primarily 

deposit or suspension feeders. Bivalves exhibited all of the sediment modalities with the 

majority of bivalves preferring silt/mud or a silt/mud/sand/gravel mix. All three AMBI 

modalities were present with the majority of bivalves exhibiting the “very sensitive to 

disturbance” trait. Historical and modern stations 5b, 25, and 28 located near Iqaluit were 

characterized primarily by molluscs that had solid/thick/robust shells, that were tolerant 

of disturbance, that were less than < 10 mm in size, that preferred silt/mud sediments, and 

that were deposit feeders. The historical and modern Cairn Island stations and the 

remaining Iqaluit stations exhibited a wider range of body sizes and were more 

commonly suspension feeders. They exhibited a wider range of sediment preferences and 

were either indifferent to or very sensitive to disturbance. 
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Table 2.6. Summary of SIMPER Analysis identifying within station similarity among the historical and modern Iqaluit and Cairn Island stations. 

Region 

 Historical Samples  Modern Samples 

Within 

Station  

Similarity 

(%) 

Species 

Contribution 

to within 

Station 

Similarity (%) 

Cumulative 

Contribution 

to within 

Station 

Similarity (%) 

Within Station  

Similarity (%) 
Species 

Cumulative 

Contribution 

to within 

Station 

Similarity (%) 

Cumulative 

Contribution 

to within 

Station 

Similarity (%) 

Iqaluit 52.32 Axinopsida 

orbiculata 

24.85 24.85 24.60 Axinopsida 

orbiculata 

34.26 34.26 

Thyasira gouldi 19.37 44.22 Ennucula tenuis 18.75 53.01 

Cylichna alba 15.61 59.83 Macoma moesta 8.68 61.69 

Ennucula tenuis 12.07 71.9 Macoma calcarea 7.05 68.74 

Retusa obtusa 11.13 83.03 Cylichna alba 6.61 75.35 

Philine lima 3.91 86.94 Thyasira gouldi 6.2 81.55 

Astarte borealis 3.04 89.99 Thracia myopsis 4.94 86.49 

Macoma calcarea 2.4 92.38 Hiatella arctica 2.77 89.27 

     Yoldia hyperborea 2.11 91.37 

         

Cairn Island 54.03 Thyasira gouldi 24.43 24.43 50.71 Thyasira gouldi 25.66 25.66 

  Musculus discors 13.84 38.28 Ennucula tenuis 12.47 38.13 

  Ennucula tenuis 11.5 49.78 Nuculana pernula 9.71 47.84 

  Nuculana minuta 11.4 61.18 Cylichna alba 8.37 56.21 

  Hiatella arctica 8.97 70.15 Macoma moesta 6.07 62.28 

  Dacrydium 

vitreum 
5.99 76.13 Yoldia hyperborea 5.79 68.07 

  Cylichna alba 5.09 81.22 Hiatella arctica 5.67 73.74 

  Margarites 

olivaceus 
3.89 85.11 Musculus niger 3.07 76.81 

  
Mya truncata 1.97 87.08 

Margarites 

helicinus 
2.91 79.72 

  
Musculus niger 1.57 88.65 

Frigidoalvania 

cruenta 
2.6 82.32 

  Lepeta caeca 1.52 90.17 Musculus discors 2.4 84.72 

     Macoma loveni 2.18 86.9 

     Cryptonatica affinis 1.87 88.76 

     Macoma calcarea 1.74 90.51 
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Figure 2.7. Non metric multidimensional scaling plot of the benthic community in Frobisher Bay sampled near Iqaluit and Cairn Island 

between 1967-1976 (historical) and 2016-2017 (modern). Results are based on square-root transformed data and these communities were 

deemed significantly different from each other through ANOSIM (Global R = 0.677, all pairwise p = < 0.05). 
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Table 2.7. Summary of SIMPER Analysis identifying species that contributed to the dissimilarity between 

the historical and modern Iqaluit and Cairn Island stations. 

Region 

Dissimilarity 

between Historical 

and Modern 

Samples (%) 

Species Contributing 

to Dissimilarity 

Contribution to 

Dissimilarity 

(%) 

Cumulative 

Contribution to 

Dissimilarity (%) 

Iqaluit 72.86 Axinopsida orbiculata 17.41 17.41 

 Thyasira gouldi 12.2 29.6 

 Cylichna alba 9.12 38.72 

 Retusa obtusa 8.69 47.42 

 Ennucula tenuis 5.1 52.51 

 Astarte borealis 3.36 55.88 

 Philine lima 3.23 59.11 

 Hiatella arctica 3.19 62.3 

 Macoma moesta 3.03 65.33 

 Musculus discors 2.72 68.05 

 Curtitoma violacea 2.0 70.04 

     

Cairn Island 60.0 Musculus discors 6.0 6.0 

  Nuculana minuta 4.95 10.96 

  Nuculana pernula 4.13 15.09 

  Dacrydium vitreum 4.12 19.2 

  Hiatella arctica 3.87 23.07 

  Margarites olivaceus 3.6 26.67 

  Yoldia hyperborea 3.58 30.25 

  Ennucula tenuis 3.45 33.7 

  Macoma moesta 3.45 37.15 

  Thyasira gouldi 3.44 40.59 

  Frigidoalvania 

cruenta 
2.42 43.01 

  Macoma loveni 2.31 45.32 

  Mya truncata 2.31 47.63 

  Macoma calcarea 2.19 49.82 

  Cylichna alba 2.05 51.86 
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Table 2.8. List of functional trait characteristics for bivalves collected in historical and modern samples 

(Body Size: S – Small, M – Medium, L – Large, XL – X-large; Feeding Mode: SF – Suspension Feeder, 

DF – Deposit Feeder, S – Scavenger; Shell Structure: S – Solid/Robust/Thick, F – Thin/Fragile/Brittle; 

Sediment Preference: SMSG – Silt-Mud-Sand-Gravel, SM – Silt/Mud, S – Silt, G – Gravel, B – 

Bedrock/Boulder/ Hard Surface; AMBI Index: AMBI1 - Very Sensitive to Disturbance, AMBI2 – 

Indifferent to Disturbance, AMBI3 – Tolerant to Disturbance). 

Species Body Size 
Feeding 

Mode 

Shell 

Structure 

Sediment 

Preference 
AMBI Index 

Astarte borealis M SF S SMSG AMBI1 

Astarte montagui M SF S SMSG AMBI1 

Axinopsida orbiculata S DF S SM AMBI3 

Ciliatocardium ciliatum L SF S SMSG AMBI1 

Crenella faba M 
    

Dacrydium vitreum S 
 

F SM AMBI1 

Ennucula tenuis M DF F 
SM and S and 

G 
AMBI2 

Hiatella arctica M and L SF F G and B AMBI1 

Liocyma fluctuosa M DF and SF F SMSG AMBI1 

Lyonsia arenosa M 
  

SM 
 

Macoma calcarea M DF and SF S SM and G AMBI2 

Macoma loveni M 
 

F SM and G 
 

Macoma moesta M DF and SF F SM and G AMBI2 

Macoma torelli M 
 

F SM and S AMBI2 

Musculus discors M SF F G and B AMBI1 

Musculus niger L SF F SM and S AMBI1 

Mya truncata L SF S SMSG AMBI2 

Nuculana minuta M DF F SM and G AMBI1 

Nuculana pernula M DF F SM AMBI1 

Pandora glacialis M 
  

SM and S AMBI1 

Parvicardium 

pinnulatum 
M 

 

S  SMSG AMBI1 

Periploma aleuticum 
  

F 
  

Portlandia arctica M DF F SM 
 

Serripes groenlandicus L and XL SF F SM and S AMBI1 

Similipecten 

greenlandicus 
M 

 

F SM AMBI1 

Thracia myopsis M 
 

S SM AMBI1 

Thyasira dunbari S DF and SF F SM 
 

Thyasira gouldi S DF and SF F SM and S AMBI3 

Yoldia hyperborea M DF and SF F SM AMBI1 

Yoldiella lenticula S DF and D S SM AMBI1 
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Fuzzy Principal Components Analysis (FPCA) explained only 11.0% of the trait 

variability of which 81.2% was explained by axis 1 and only 10.3% was explained by 

axis 2. Correlation ratios resulting from Fuzzy Correspondence Analysis (FCA) indicated 

that no particular trait was a significant contributor to explaining the variability observed.  

For example, the trait AMBI was the most significant contributor explaining only 23.3% 

of the variability followed by the traits Feeding Habit (19.3%), Sediment Preference 

(18.4%), Body Size (17.3%), and lastly Shell Structure (0.6%).  ANOSIM performed on 

the functional trait characteristics for each region and time period confirmed that the 

functional traits between the historical Iqaluit and historical Cairn Island regions were 

significantly different from each other (R Statistic = 0.697, p = 0.001) but this 

relationship was less clear for the modern Iqaluit compared to the modern Cairn Island 

regions due to a low R Statistic (R Statistic = 0.218, p = 0.053). Similarly, little 

functional change occurred between the historical and modern Iqaluit region (R Statistic 

= 0.026, p = 0.277) and between the historical and modern Cairn Island region (R 

Statistic = 0.265, p = 0.017). 

The functional trait’s: very sensitive to disturbance (AMBI3), thin/fragile/brittle 

shells (SS2), small body size (< 10 mm; BS1), deposit feeder (FH1), and silt/mud (SP1) 

fell to the right of axis 1 while all other trait characteristics fell to the left of axis 1.  The 

Iqaluit samples 5b, 25, and 28 fell to the right of axis 1 and along axis 2 while the 

remaining Iqaluit samples except for modern station 27 and all the Cairn Island samples 

except for modern station 5e and 5d clustered to the left of Axis 1 with greater spread 

along axis 2 (Figure 2.8). 
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The historical station 5b samples clustered together while modern station 5b was 

shifted slightly upward and to the left of the historical 5b samples. The historical and 

modern station 25 samples did not cluster as together indicating some degree of 

functional variability among these samples. Similarly, the historical and modern station 

28 samples were not clustered near each other suggesting some functional variability over 

time. Station 26 experienced a slight downward shift along axis 2 between the historical 

and modern sample.  Station 27 experienced a shift to the right along axis 2 between the 

historical and modern sample moving towards Iqaluit stations 5b, 25, and 28. 

The Cairn Island stations indicated varying trends with the stations 5, 5c, and 5d 

all exhibiting a slight upward shift to the right along axis 2 over time. One of two modern 

5e samples was in close proximity to the historical 5e sample and the other modern 5e 

sample exhibited a slight upward shift to the right along axis 2.  Both the historical and 

modern 5a and 5f samples clustered closely together, indicating only a very slight shift 

down axis 2.  A shift upward along axis 2 suggests bivalve species are indifferent to 

disturbance, have solid/robust/thick shells, have medium to x-large body size, and prefer 

silt, sand, mud, and gravel or a combination of sediments types. 

Over time, functional diversity did not change significantly in the Iqaluit region 

(F = 2.176, p = 0.16824) but a significant change in functional diversity was observed in 

the Cairn Island region (F = 6.931, p = 0.0197; Table 2.3).  Functional Diversity (FD) 

was lower overall at the Iqaluit stations compared to the Cairn Island stations with FD 

values ranging from 0 to 3 with 0 representing no functional diversity and 3 representing 

high functional diversity (Figure 2.9). 
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Figure 2.8. Fuzzy correspondence analysis showing station distribution based on the functional trait characteristics SS (shell structure), AMBI 

(tolerance to disturbance), FH (feeding habit), SP (sediment preference), and BS (body size). Iqaluit Stations are 5b, 25, 26, 27, and 28 and Cairn Island 

Stations are 5, 5a, 5c, 5d, 5e, and 5f. 
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Figure 2.9. Functional diversity calculated from Rao’s Quadratic Entropy (FGQ) for all historical and 

modern samples collected near Iqaluit and Cairn Island. 

 

 

2.4 Discussion 

Frobisher Bay experienced significant long-term changes in the local environment 

between 1967 and 2016 including increased air temperatures, loss of sea ice, and changes 

in the hydrodynamics of the Sylvia Grinnell River and the Apex River. These changes 

should be expected to contribute to warming sea surface temperatures and a reduction in 

sea surface salinities though we were unable to confirm if this translated to a change in 

sea bottom temperature and salinity over time due to having only a snapshot of 

environmental conditions during the two time periods examined. The Cairn Island region 
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experienced a significant increase in the proportion of silt and a decrease in the 

proportion of sand in the seabed sediments and this region also experienced a significant 

increase in organic carbon and total nitrogen in the sediments while the Iqaluit region did 

not experience these same changes. Eight of the eleven stations sampled demonstrated an 

increase in carbon-nitrogen ratio in the sediments, however, this change was not signicant 

when region and time period were examined statistically.  

Carbon-nitrogen ratios increased in 8 of 11 stations sampled and at three Iqaluit 

stations that value increased to over 10 (10-14 indicates a terrestrial source) suggesting 

that a change in summer discharge of the Sylvia Grinnell and Apex Rivers may have 

resulted in an increase in terrestrial organic matter input in the Iqaluit region. However, 

no statistically significant change in C/N ratios was observed when tested by region 

(Iqaluit and Cairn Island) indicating that C/N values of sedimentary organic matter were 

generally indicative of a marine rather than terrestrial origin. 

The molluscan communities observed in the coastal waters of inner Frobisher Bay 

in 2016-2017 exhibited differences in community structure and some functional traits 

compared to the molluscan communities observed 50 years earlier by Wacasey et al. 

(1979, 1980). Four groupings of samples were tested for significance: Historical Iqaluit, 

Modern Iqaluit, Historical Cairn Island, and Modern Cairn Island (Figure 2.7). The 

Iqaluit region exhibited the greatest change in community composition due to the loss of 

a few previously abundant species while the Cairn Island region exhibited a smaller 

amount of change, probably due to a more diverse community of molluscs whose 

abundances varied less significantly over time. Functional trait analysis did not 
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demonstrated any significant change in functional characteristics over time. Functional 

diversity increased at three nearshore Iqaluit stations but decreased at the outermost 

Iqaluit stations and in the Cairn Island region, functional diversity significantly decreased 

over time. Despite significant long-term changes to the local environment in this region 

including warming air temperatures, loss of sea ice, and changes in the timing of the nival 

freshet in the Sylvia Grinnell River and Apex River, overall, neither the Iqaluit or Cairn 

Island regions experienced significant changes in the benthic community over time. 

 

2.4.1 Long-term Change in the Physical Environment  

Coastal benthic communities can be significantly impacted by long-term 

environmental change (Kedra et al. 2010, Brown 2011). In the Arctic, benthic community 

composition is well known to be tightly linked to pelagic processes (Stasko et al. 2018). 

The loss of arctic sea ice resulting from increased air temperatures affects benthic 

communities through increased light availability which promotes phytoplankton blooms 

and which can result in increased organic sedimentation to the benthos (Clark et al. 

2017). Frobisher Bay experienced a significant loss of annual sea ice between 1967-2017 

as well as a decline in sea ice thickness, likely the result of increasing air temperatures in 

the region. Overeem et al. (2011) observed a similar trend along the coastline in the 

Beaufort Sea including expansion of the open water season from 45 days to 95 days over 

a 50 year period (Overeem et al. 2011). As more light becomes available, the quality and 

quantity of the food source available to the benthos changes (Hsiao 1992). Benthic fauna 

receive most of their nutrition from the deposition of organic material from the overlying 
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water column either from ice algae when sea ice is present or from phytoplankton in the 

water column when the sea ice has disappeared (Hsiao 1992, McMahone 2006, Clark et 

al. 2017). Changes to the food source available to the benthos can therefore result in 

changing the structure and function of the benthic community (McMahone 2006) and in 

regions covered by sea ice, the summer phytoplankton bloom is a major contributor of 

organic matter and typically occurs in response to increased light availability (Clark et al. 

2017). For example, during years with only small amounts of ice, Heide-Jorgensen et al. 

(2007) observed greater chlorophyll concentrations in the water column of Disko Bay, 

West Greenland while Kedra et al. (2010) observed greater particulate organic carbon in 

the sediments of Kongsfjorden, Svalbard as a result of increased primary production in 

the water column due to warming water temperatures. In this study, ice break up in inner 

Frobisher Bay occurred between late June and early July in 1967-1976 but ice break-up 

occurred much earlier – in late April in 2016. The Cairn Island region responded to this 

increased light availability through a significant overall increase in organic carbon in the 

sediments and carbon-nitrogen ratios confirm that the source of this organic matter was 

marine and therefore must be from phytoplankton deposition. Hsiao and Pinkewycz 

(1983, 1985) measured phytoplankton production weekly or biweekly in the Iqaluit 

region and Cairn Island region in 1976, and 1979-1981 and observed that phytoplankton 

blooms typically occurred in mid to late July in Frobisher Bay and in some years there 

was a second phytoplankton bloom in late August (Hsiao and Pinkewycz 1983, 1985). 

Phytoplankton blooms occurred quickly with very high concentrations of over 2 million 

cells/litre present one week and significantly diminished the next. The Iqaluit region 
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(station 5b) experienced slightly smaller concentrations of phytoplankton compared to the 

Cairn island region in most years examined except in 1976 when the Iqaluit region 

experience a 2-fold increase in phytoplankton concentration compared to the Cairn Island 

region (Hsiao and Pinkewycz 1983, 1985). Unfortunately, no modern phytoplankton data 

were available to compare the concentration of modern phytoplankton samples with the 

historical phytoplankton data to support our findings of a significant increase in total 

organic carbon in the sediments between the two time periods in the Cairn Island region 

in response to changing environmental conditions including a shorter ice season and 

therefore greater open water season. 

Long-term air temperature rise can also influence river discharge rates and both 

organic and inorganic sediment loading through snow and glacier melt in Arctic regions 

(Syvitski 2002). Increased river discharge influences water column stratification, nutrient 

cycling, primary production, and inorganic sedimentation which all influence the food 

supply to the benthos. Increased water turbidity reduces light penetration which limits 

primary production and large sediment fluxes dilute organic matter delivered to the sea 

bed which reduces the organic matter content of the sea bed through the dilution of large 

inorganic sediment (Atkinson and Wacasey 1987, Gorlich et al. 1987, Thrush et al. 2004, 

Wlodarska-Kowalczuk et al. 2005, Wassmann and Reigstad 2011). Svendsen et al. 

(2002) observed that ice-melt and riverine/glacial drainage had a strong impact on the 

hydrographical conditions of Kongsfjorden, Svalbard which resulted in steep 

environmental gradients along the fjord. Chou et al. (2004) also found that limited 

organic matter in seabed sediments resulting from excessive clastic sedimentation 
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resulted in decreased faunal abundance. Long-term chronic sedimentation can disturb 

benthic communities by smothering or killing organisms (Chou et al. 2004, Renaud et al. 

2007) or by clogging the filtering organs of invertebrates (Wlodarska-Kowalczuk and 

Weslawski 2001, Wlodarska-Kowalczuk et al. 2005) and it can alter the overall sediment 

composition of the benthos (Gorlich et al. 1987, Thrush et al. 2004). The mouth of the 

Sylvia Grinnell River is located approximately 2 km from the Iqaluit stations and 

approximately 10 km from the Cairn Island stations while the mouth of the Apex River is 

located approximately 3 km from the Iqaluit stations and 7 km from the Cairn Island 

stations and both rivers experienced a significant increase in average instantaneous 

discharge during the month of June suggesting that the timing of freshwater discharge 

from these rivers has changed over time. The proximity of these rivers to the study region 

suggest that changes over time in the hydrodynamics of these rivers may have caused 

change in sedimentary and biotic characteristics of the benthos. Atkinson and Wacasey 

(1987) measured particulate organic carbon in the water column near station 27 (station 

closest to the Sylvia Grinnell River) between 1981 and 1985 and confirmed that primary 

production at this station was significantly reduced due to high turbidity from the Sylvia 

Grinnell River. These results help support why TOC in the sediments appear lower 

overall in the Iqaluit region compared to the Cairn Island region (not statisticaly tested) 

but they do not help answer why there was an increase in total organic carbon observed 

over time in the Cairn Island region. The ratio of carbon to nitrogen in the sediments did 

not significantly change over time in either the Iqaluit or Cairn Island region suggesting 

that these rivers did not contribute to an increase in supply of terrestrial carbon to the 
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benthos. However, it is possible that output from these rivers did affect individual 

stations as stations 5b, 26, and 28 near Iqaluit all appear to have experienced an increase 

in C/N ratio above a value of 10 (indicative of terrestrial input of organics). 

The discharge of sediments in Arctic rivers is typically low compared to 

temperate and tropical regions (Syvitski 2002) therefore, the author applied a model to 

predict how increased sediment loads may affect Arctic rivers as a result of global 

warming and found that for every 20% increase in water discharge, the sediment load 

would increase by 10% (Syvitski 2002). In this study, the proportion of sand and silt/clay 

in the sediments did not change over time in the Iqaluit region. In the Cairn Island region, 

the proportion of sand and silt/clay in the sediments did change over time with the sand 

component of the sediments declining and silt/clay component increasing. It is therefore 

possible that there are other sources of sediment that may have influenced these results in 

the Cairn Island region. Coastal erosion is known to increase where sea ice, especially 

landfast ice, is lost (Brown 2011, Overeem et al. 2011) and where permafrost is thawing 

(ACIA 2005). Much of the coastline in Frobisher Bay consists of fine-grained tills and 

glaciomarine sediments (Hodgson 2005) including in Tarr Inlet where these sediments 

are exposed in the intertidal zone in some areas (Tommy Tremblay pers. comm. 2019). 

Tarr Inlet is located next to the mouth of the Apex River and in close proximity to 

the Cairn Island stations and could be the source of sediments that contributed to finer 

grain sizes recorded in modern sediments in this region. Comparatively, Koojesse Inlet, 

located at the head of Frobisher Bay, is in closer proximity to the Iqaluit stations and is 

primarily composed of glaciomarine sediments that are overlain by a surficial sand/mud 
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layer (Hatcher et al. 2014). However, in their study examining erosional and depositional 

processes on the Koojesse Inlet tidal flats between 2009-2011 (Hatcher et al. 2014), the 

authors were unable to confirm significant amounts of erosion had occurred on the tidal 

flats.  These results suggest that erosion of the coastline in Frobisher Bay could be 

occuring at a very slow rate and this could be why no significant change was observed in 

the sediments in the Iqaluit region even after fifty years. 

 

2.4.2 Long-Term Benthic Community Change 

Both the Iqaluit and Cairn Island regions experienced molluscan community 

change over time when when statistically tested though ANOSIM. In the Cairn Island 

region molluscan community change coincided with observed changes in sediment 

properties while in the Iqaluit region, the reasons for the changes observed are uncertain. 

Dissimilarity between the historical and modern Cairn Island region was 60% and 

numerous species contributed to this dissimilarity with all species contributing only a 

small portion (< 6.0%) and no single species contributing significantly to the differences 

observed in this region over time (Table 2.7). Historically, the most dominant molluscan 

taxa in the Cairn Island region included the bivalves Ennucula tenuis, Hiatella arctica, 

Musculus discors, Nuculana minuta, Thyasira gouldi, and the gastropod Cylichna alba  

(Table 2.5). All these species experienced a decline in average relative abundance over 

time. H. arctica, M. discors, N. minuta, and T. gouldi are all considered very sensitive to 

disturbance while E. tenuis and C. alba are considered indifferent to disturbance.  In the 

modern Cairn Island region, Macoma moesta, Nuculana pernula, and Yoldia hyperborea 
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were dominant where they had not been abundant historically.  N. pernula and Y. 

hyperborea are both considered very senstitive to disturbance while M. moesta is 

considered indifferent to disturbance. The decline in relative abundance of the historically 

dominant molluscs that are sensitive to disturbance coincides with the significant increase 

in TOC observed in the sediments in the Cairn Island region. Though there were 

dominant species that are also considered very sensitive to disturbance in the modern 

samples, their average relative abundance overall was lower than the historically 

dominant species. 

While the physical changes to the seabed are possible contributors to the change 

in community composition observed in the Cairn Island region, Renaud et al. (2007) 

suggest that there is no specific physical driver of community change where there is 

stability in the benthic community. Gray and Christie (1983) observed that long-term 

environmental cycles (e.g. periods of 3- 4, 6-8, 10-12, and 18-20 years) could be 

responsible for the temporal variability observed in the benthic community while Powell 

and Cummins (1985) predicted that species life- spans control community composition to 

some degree.  Longevity data for the mollusc species that contributed to over 50% of the 

dissimilarity between the historical and modern samples indicates that these species 

demonstrate a variety of life spans. For example, M. discors, T. gouldi, and N. minuta 

have a life span ranging from 3-10 years (BIOTIC 2019, Ansell et al. 1978) and all 

experienced a decline in relative abundance over time while N. pernula and M. calcarea 

have a life span of 10+ years (Ansell et al. 1978, Selin 2010) and these species 

experienced an increase in relative abundance over time. H. arctica has a life span of 3-
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10 years (Selin 2010) while F. cruenta has a life span of 3 years (Ponder 1984) or less 

and these species experienced no noticeable change in relative abundance. Unfortunately, 

a lack of longevity data for the majority of bivalve species observed in Frobisher Bay 

resulted in exclusion of this trait from the biological traits analysis. Many long-term 

cycles have been shown to correspond to the maximum life spans of molluscs and Powell 

and Cummins (1985) suggest that natural long-term cycles may correspond to adult 

mortality and recruitment and ultimately influence the molluscan community. Therefore, 

it is possible that not only changes in the sediment composition and quality are 

influencing the changes observed in the molluscan community near Cairn Island. 

Dissimilarity between the historical and modern Iqaluit region was 72.86% and A. 

orbiculata, T. gouldi, C. alba, R. obtusa, and E. tenuis contributed most significantly to 

the differences observed over time with the thyasirid bivalves A. orbiculata and T. gouldi 

contributing most significantly to the differences observed. These same species were the 

most dominant in the historical samples and had the greatest average abundance of all 

species sampled historically (Table 2.5). A. orbiculata and T. gouldi cope well with 

sedimentation, are both typically found in organically enriched across the Arctic 

(Batstone et al. 2014, Dufour Pers. Comm, 2019, Wlodarska-Kowalczuk 2007, Kedra 

2010), and are both listed as species that are tolerant of disturbance (WoRMS 2019). 

Thyasirid bivalves are mobile deposit feeders (Wlodarska-Kowalczuk 2007) that inhabit 

surface layers of the sediment and that are able to move in unstable rapidly deposited 

sediments (Ockelmann 1958). Species that are tolerant of disturbance thrive where there 

is excess organic enrichment (Borja et al. 2000) and they occur abundantly in areas such 
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as in glacial bays (Wlodarska-Kowalczuk 2007). The relative abundance of A. orbiculata 

declined significantly at station 5b and 25 while T. gouldi experienced a decline in 

relative abundance at station 26 and 28 and a complete loss of this species was recorded 

at stations 5b and 25, however, no significant change in sediment grain size composition 

and no significant change in proportion of organic carbon and nitrogen in the sediments 

was observed in the Iqaluit region that can explain why these changes occurred. 

This study examined only the molluscan communities in Frobisher Bay but other 

taxa may also have had an influence on the community composition of the benthos and 

the changes observed over time.  For example, the interactions between molluscs and 

arthropods and annelids could have influenced molluscan community composition. 

Cusson et al. (2007) examined the composition of the Frobisher Bay historical samples 

and found that these two groups (arthropods and annelids) contributed more to the 

composition of the benthos than did the molluscs.  The interaction between groups of 

benthic species can have positive or negative effects on community composition through  

predation, space occupation, disturbance, etc. (Brey 1991).  Brey (1991) examined the 

interaction between a surface deposit feeding polychaete, Pygspio elegans, and a surface 

deposit feeding bivalve, Macoma balthica, in the subtidal (Kiel Bay) and intertidal station 

(Westerhever) of the German Wadden Sea. The author found a strong competition for 

food and suggested that this competition may affect recruitment of benthic species. 

Polychaetes are also ecosystem engineers and play an important role in in the functioning 

of benthic communities including recycling and reworking sediments, bioturbating 

sediments, and burying organic matter through their burrowing and feeding activities 
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(Hutchings 1998) and these activities could have an influence on the presence/absence 

and/or abundance of mollusc species present in the community. The community 

dynamics between the molluscs and other species within the benthic communities in 

Frobisher Bay could therefore be another influence on changes observed in the molluscan 

communities over time. 

Two potentially significant contributing factors may have influenced the 

differences observed in molluscan community composition over time: the spatial 

distribution and associated water depth variablity observed and temporal discrepancies in 

water depths (resulting from inaccuracy of sampling at the same location in both time 

periods) sampled between the historical and modern samples. In the Iqaluit region, water 

depth ranged between 11.5 m and 43 m (historical samples) and between 8.5 m and 35.2 

m (modern samples) while in the Cairn Island region water depth ranged between 26 m 

and 73 m (historical samples) and between 25 m and 90.1 m (modern samples). 

Due to small sample size, physical and community changes observed over time at 

individual stations in the Iqaluit region could not be statistically tested and therefore all 

historical samples were compared to all the modern samples collected in the Iqaluit 

region. The spatial distribution of the Iqaluit stations was much greater compared to the 

Cairn Island Stations and water depth increased with distance from the shore. When 

tested statistically, total organic carbon and total nitrogen in the sediments, species 

richness, species diversity, and functional diversity all changed significantly with water 

depth when depth was tested as a response variable. Three of the five Iqaluit stations (5b, 

25, and 28) all experienced an increasing trend in C/N ratio above 10 suggesting that the 
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molluscan communities at these stations may have been influenced by the Sylvia Grinnell 

River through terrestrial input while station 26 and 27 exhibited community composition 

and trait characteristics that were more similar to the modern Cairn Island stations than 

they were to the remaining Iqaluit stations and station 27 was located almost equidistant 

to the Cairn Island stations. The physical and benthic community patterns observed in the 

Iqaluit region, therefore, could have been influenced by the spatial distribution of the 

Iqaluit stations themselves. The Iqaluit region, therefore, could have benefited greatly by 

the collection of a larger number of historical and modern samples collected closer to 

shore around stations 5b, 25 and 28 samples sizes which then could have been compared 

on a station by station basis rather than being included with stations 26 and 27 which 

appear to have a much different community composition. By conducting all analyses on 

this group of stations, the differences observed due to spatial distribution of the stations 

may have masked significant temporal changes observed in both the physical 

characteristics and community composition observed among individual stations. 

Global positioning devices like we have available today were not available in the 

1960’s and 1970’s when the historical samples were collected and the GPS location was 

recorded only one time for replicate pooled samples despite the un-likeliness that samples 

were collected in the exact same position given the equipment being used at the time 

while also factoring in local sampling conditions such as the strong tidal influences of 

Frobisher Bay. Renaud et al. (2007) experienced this same dilemma with the pooled 

historical dataset used in their multi-decadal study examining the benthic community 

structure in an Arctic fjord in Svalbard, Norway. The positional data provided in the 
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historical data reports by Wacasey et al. (1979, 1980) did not match the map of historical 

sample locations therefore the historical maps were loaded into ESRI ArcMap and the 

sample locations were georeferenced using the positional information on the historical 

maps. Despite these efforts, water depth at some of the historical stations did not match 

with the modern sample stations. This meant that for some stations the historical sample 

was not re-sampled in the same location in 2016. This temporal water depth discrepancy 

may have influenced the composition of molluscs observed at Iqaluit station 28 which 

experienced the greatest water depth discrepancy in the Iqaluit region but it may have 

also played a role in the Cairn Island region as well where a water depth – time period 

interaction was significantly related to species richness, diversity, and evenness. This was 

likely the result of deeper water depths sampled in the modern samples compared to the 

historical samples at three of the Cairn Island stations. 

A third potential influence that could have been a significant contributor to the 

community composition observed in the historical versus the modern samples is 

discrepancies between sample volume and the number of grabs collected and differences 

in sieve size  used to process samples.  Historically, 4-6 grabs were pooled for a total 

surface area of between 0.25 – 0.39 m2 while in the modern samples only 2-3 grabs were 

pooled for a total surface area of 0.024 – 0.11 m2.  The historical samples that were 

collected covered a greater total surface area compared to the modern samples and this 

could have resulted in a greater diversity of species that were collected.  Additionally, 

this may have influenced the density of each species that was collected compared to the 

smaller surface area that was sampled 50 years later. The one modern pooled sample 
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collected by the box core was not directly comparable to the historical samples collected 

at the same station because it was sieved over a 1.0 mm mesh screen compared to all 

other samples which were sieved over a 0.5 mm mesh screen.   The use of different mesh 

sizes can have an influence on the observed composition of the benthic community 

(Hartwell and Fukuyama et al. 2015) where small molluscs (< 1.0 mm) could have been 

sieved out and lost. This issue was minimized as only one sample from the modern Cairn 

Island group of samples was sieved over a 1.0 mm mesh screen and the same station was 

also sampled and sieved over a 0.5 mm mesh screen. The 1.0 mm sieved sample fell 

within the modern Cairn Island group of samples. 

Despite observed long-term environmental change and associated physical 

changes to the environment that were observed, diversity metrics showed no significant 

changes over time with only functional diversity in the Cairn Island region significantly 

declining over time. A station by station comparison to identify community change over 

time was ultimately decided against because of too small of a sample size, difficulties 

associated with inconsistent collection methods and discrepancies in spatial coverage 

between the historical and modern samples precluded such analysis. Novoa et al. (2016) 

also cited these inconsistencies and recognized the difficulties of using historic datasets in 

their study examining spatial and temporal bivalve community change in Southern and 

Northern Baja California. Using an appropriate time-scale to identify temporal variability 

is particularly important in measuring long-term change (Beuchel et al. 2006, Renaud et 

al. 2007, Kedra et al. 2010) as benthic communities are influenced by disturbance on a 

variety of time scales (seasonal to multi-decadal) which makes distinguishing long-term 
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change from short term variability difficult (Beuchel and Gulliksen 2008). Renaud et al. 

(2007) suggests examining benthic community change at decadal scales. Fifty years 

should then certainly be an appropriate time scale to measure benthic community change 

in Frobisher Bay amid the significant environmental changes that have occurred. 

Unfortunately, the benthic communities in Frobisher Bay experienced dramatic short 

term changes in species richness in the historical samples. A 100% increase in molluscan 

species richness was observed between 1973 and 1976 at Station 25 while a 70% increase 

in species richness was observed between July and September 1969 (Appendix 8). 

Cusson et al. (2007) observed this trend for the whole macrofaunal community at station 

27 when they examined interannual and annual benthic community change in Frobisher 

Bay using the historical samples collected by Wacasey et al. (1979, 1980). Beuchel et al. 

(2006) also observed similarly large fluctuations of up to 80% in the coverage of an algae 

species measured between just two years in their study examining long-term patterns in 

rocky bottom community structure in relation to climate variability over a 23 year period 

and Bergmann et al. (2011) documented inter-annual change in the mean relative 

abundance of Gersemia fruticosa (~ 0.28 ind/m2 in 2002 to ~ 0.48 ind/m2 in 2004), 

burrowing crustaceans (~ 0.62 ind/m2 in 2002 to ~ 0.98 ind/m2 in 2004), the sea pig 

Elpidia heckeri (~ 1.1 ind/m2 in 2004 to ~ 0.2 ind/m2 in 2007), and the crinoid 

Bathycrinus carpenterii (~ 3.0 ind/m2 in 2004 to ~ 1.8 ind/m2 in 2004). The implications 

for this study are that large seasonal and inter-annual variation may have obscured the 

identification of long-term change with regards to species diversity indices.   
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2.4.3 Conclusion 

Long-term environmental change has occurred in Frobisher Bay including 

warming air temperatures, loss of sea ice, and changing hydrodynamic conditions and 

some of these factors may have influenced the benthic community composition over fifty 

years. This study examined temporal change in molluscan communities separated by 50 

years amid changes in the local environment. A significant change in sediment 

characteristics was observed in the Cairn Island region and this translated to changes in 

the associated molluscan benthic community over time. The absence of consistent long-

term monitoring of these molluscan communities also limits our understanding of the 

extent of the change observed. Data on the range of natural variability that may exist 

within these communities was limited and samples sizes were small therefore short-term 

natural variability was not examined and ultimately made it difficult to distinguish 

between short-term natural variability and long-term change. Better standardization of 

sampling for long-term monitoring is required and has been highlighted by others (e.g. 

Wei et al. 2019).  Future research should continue to utilize historical datasets as they are 

an invaluable tool with which to examine benthic Arctic communities in “pristine” 

conditions but consistent long-term monitoring should also take place in order to gain an 

understanding of the natural fluctuations that exist within the benthic community being 

examined and to be able to distinguish this from long-term change. 
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Chapter 3 Long-term spatial change observed in the molluscan 

(Bivalvia and Gastropoda) communities of Frobisher Bay, NU 
 

 

3.1 Introduction 
 

Habitat mapping has become an invaluable tool for predicting the spatial 

distribution of benthic fauna and can be used as a baseline from which to measure long-

term change (Harris 2012). This is particularly important in the face of rapid 

environmental and anthropogenic change in polar regions (Aitken et al. 2008) as it is 

anticipated that Arctic marine ecosystems will look considerably different in the future as 

a result of changing physical conditions including warmer air and sea temperatures and 

longer open water seasons (Carmack and McLaughlin 2001, Carmack and McLaughlin 

2011, Wassmann and Reigstad 2011, Carmack and Macdonald et al. 2015, Renaud et al. 

2015). The circumpolar Arctic has experienced long-term environmental change 

including rising air and sea temperatures and the loss of significant amounts of sea ice 

(Vinnikov et al. 1999, Comiso et al. 2006, Grebmeier 2012, Richter-Menge 2017) as well 

as increasing anthropogenic pressures from increased population growth and 

infrastructure development in Arctic coastal cities.  

Benthic processes are tightly linked to pelagic processes (Stasko et al. 2018). 

Warming Arctic air temperatures result in significant losses of sea ice which increases 

light availability, and greater wind-driven mixing of the water column.  This results in 

higher planktonic primary productivity and less ice algae which can result in changes in 

the quality and quantity of the food source that reaches the benthos (Roy et al. 2015). 
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These changes could affect the distribution of benthic fauna in different ways. For 

example, rocky-bottom communities in two Svalbard fjords have experienced a climate-

driven regime shift over a 30-year period which saw benthic taxa with boreal affinities 

expanding along the coast (Kortsch et al. 2012).  In the North Atlantic, Drinkwater 

(2006) observed Atlantic fish species (e.g. cod, haddock, herring) moving northward 

along the west coast of Greenlandand and Arctic fish species retreating northward during 

the 1920’s and 1930’s and this occurred in conjunction with warming air and sea 

temperatures in the northern North Atlantic and high Arctic and in conjunction with a 

northward spread of benthic species including the mussel Mytilus edulis, and Asterias 

starfish including Asterias rubens. In this instance, the author argued that bottom-up 

processes as a result of increased phytoplankton and zooplankton production were the 

primary cause of these changes (Drinkwater 2006). Some northern coastal regions have 

also experienced increased anthropogenic pressure through population growth (e.g. 

Statistics Canada 2018) and coastal development (e.g. Aarluk Consulting Inc. et al. 2005) 

and these changes also have the potential to influence the composition and distribution of 

benthic communities which are quick to respond to changes in their environment 

(Grebmeier 2012). For example, the Centre for Water Resource Studies (2015) examined 

the impact of waste water effluent on the marine benthos in five arctic communities 

throughout Nunavut.  Near the city of Iqaluit, a city that has experienced a rapidly 

growing population, annual waste water volume is 552,600 m3/year.  As a result, the 

authors observed anoxic sediments that were devoid of benthic fauna up to 580 m away 
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from the waste water discharge site based on benthic samples collected with a hand 

corefrom shore.  

Mapping the distribution of benthic communities is becoming increasingly 

attainable through the integration of traditional benthic surveys (e.g. in situ sampling) 

with multibeam echosounder (MBES) acoustic technology (Copeland et al 2011). 

Traditionally, benthic samples are collected for infauna or epifauna to characterize the 

benthic community at a specific location and time, however, this type of sampling 

typically covers only a very small sampling area. MBES are capable of surveying large 

regions of the sea floor to map geophysical characteristics including bathymetry (water 

depth) and backscatter (acoustic return strength, a proxy for the hardness of the sea 

bottom; Harris and Baker 2012). Benthic community composition is determined in part 

by geologic features such as sea floor hardness, substrate type, and other physical 

characteristics (Kostylev and Hannah 2007, Brown et al., 2011, Copeland et al., 2011). 

Because benthic fauna are relatively stationary or have limited mobility they are 

constantly exposed to the surrounding physical environment (Silberberger et al. 2019) 

and they can be sensitive to disturbance and slow to recover (Conlan and Kitvek et al. 

2005). Marine molluscs in particular are an important component of the ecosystem and 

perform many important functions such as providing a hard surface for other organisms 

to attach to (e.g. mussel beds provide a place for algae, barnacles, and anthozoans to 

settle), providing protection for other organisms (e.g. oyster shell beds provide protection 

for juvenile species such as Dungeness crab), they create complexity and heterogeneity 

on the sea bottom and help maintain high speies richness (Gutierrez et al. 2003). 
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Therefore, changes in the composition and distribution of mollusc communities could 

have a profound effect on the ecosystem services that molluscs provide (van der Zee et 

al. 2012, Novoa et al. 2016).  Molluscs often dominate the biomass of nearshore benthic 

communities (McDonald et al. 1981, Feder et al. 1994b, Carroll et al. 2009, Dame 2012), 

they are long-lived, living upwards of 30 years (Powell and Cummins 1985), and their 

shells persist in the marine environment over geological time scales (Aitken 1990, Aitken 

and Fournier 1992, Gutierrez et al. 2003). Molluscs have previously been used as 

indicators of ecosystem health because of their long lived nature, because they are 

tolerant to a wide range of environmental conditions and because of the behavioural and 

physiological responses they display in response to changes in their environment (Dame 

2012), thereby making them an excellent group of organisms from which to measure 

spatial change. By combining in situ molluscan community samples with the physical 

characteristics of the sea bed using MBES data, maps can be produced that demonstrate 

the potential distribution of the mollusc communities in question from a specific region 

of interest (e.g. Misiuk et al. 2019a). In areas where historical benthic community 

datasets exist, these modern maps can then be used as a tool from which to measure the 

extent of spatial change that has already occurred. 

Frobisher Bay, located at the southern end of Baffin Island, has experienced 

significant long-term environmental change and as a result, the molluscan communities 

of Frobisher Bay have undergone long-term temporal change in community structure and 

function (Chapter 2). This paper aims to answer whether long-term spatial shifts have 

also occurred within the mollusc communities of Frobisher Bay. By developing modern 
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day mollusc community distribution maps using MBES bathymetry and backscatter data 

from Frobisher Bay, the potential distribution of the modern day mollusc communities 

can be compared with the observed historical communities to measure the extent of 

spatial change that has occurred over the past 50 years in this region. 

 

 

3.2 Methods 
 

3.2.1 Study Area 
 

Frobisher Bay is located in southeastern Baffin Island, Canada.  Frobisher Bay 

reaches depths of 600 m but the inner portion of Frobisher Bay is less than 200 m water 

depth. Multibeam data was collected throughout Frobisher Bay while benthic samples 

were collected in less than 100 m water depth and in relatively close proximity to the city 

of Iqaluit which is located at the head of Frobisher Bay.  

 

3.2.2 Multibeam Data Collection 
 

Multibeam echosounder (MBES) technology uses sound beams to map water 

depth (bathymetry (m)) and sea bottom roughness/hardness (backscatter (dB)) 

simultaneously (Harris and Baker 2012). MBES data were collected in Frobisher Bay 

between 2006-2010 and 2014-2017 from the CCGS Amundsen using Kongsberg EM 300 

and EM 302 echosounders and between 2012-2016 MBES data was collected from the 

Nunavut Fisheries Research Vessel M/V Nulialjuk using Kongsberg EM 3002 (300 kHz; 
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2012-2013) and EM 2040C (variable 200-400 kHz; 2014-2016) echosounders (Deering et 

al. 2018). Bathymetry and backscatter rasters were generated from the multibeam data 

with a 10 m resolution. Complete details for processing of the multibeam data can be 

found in in Deering et al. (2018) and Misiuk et al. (2019b).  

 

3.2.3 Benthic Sampling and Mollusc Identification 
 

Sediment and benthic infaunal samples at eleven stations were collected between 

between July and October 1967-1976 onboard the M.V. Calanus by the Arctic Biological 

Station using a Petersen Grab (surface area 0.065 m2; Wacasey 1979, 1980). Detailed 

sampling methodology for the historical samples can be found in Wacasey et al. (1979, 

1980). These stations were re-sampled in 2016. On July 16, 2016 one box core sample 

(station 5e) was collected (surface area 0.125 m2) onboard the CCGS Amundsen and 

between October 10-14, 2016 the remaining stations were sampled onboard the MV 

Nulialjuk using a Van Veen grab (surface area 0.111 m2). Five stations were located near 

the city of Iqaluit herein referred to as the “Iqaluit” stations and six stations were located 

near Cairn Island herein reffered to as the “Cairn Island” stations (Figure 3.1). Up to six 

grab samples were collected and pooled at each station for samples collected between 

1967-1976.  In 2016, up to three grabs samples were collected at each station and pooled 

in order to be comparable with the historical samples.  All historical and modern samples 

were collected between July and October when Frobisher Bay was ice free. Replicate 

infaunal samples were washed over a 0.5 mm sieve (the 2016 box core sample was 
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washed over a 1.0 mm sieve). Organisms were fixed in 10% buffered formalin for 24 

hours then transferred to 70% ethanol for longer term preservation. Molluscs were 

identified to the lowest taxonomic level possible with 84.6% of individuals from the 

historical samples identified to the species level and 79.5% of individuals from the 

modern samples identified to the species level.  Table 3.1 summarizes the sampling effort 

for both the historical and modern samples. 

 

3.2.4 Data Analysis 
 

The historical samples were reported by Wacasey et al. (1979, 1980) as number 

of individuals per m2 and for comparison, the modern mollusc samples were reported in 

the same way. The historical and modern mollusc samples were combined into a single 

spreadsheet and the dataset was standardized to percent total abundance to minimize the 

influence of differences in sampling methods between the historical and the modern 

samples (See Appendix 9 for complete dataset used in analysis). In this way, the dataset 

reports the proportion of each species contributing to a given community and ignores 

large differences in absolute abundance that may be attributed to sampling effort. Non-

metric multidimensional scaling (nMDS) plots and dendograms were generated using 

PRIMER v6 (Clarke and Gorley 2006) to visualize the distribution of unique molluscan 

communities. Square-root and presence/absence tranformations were applied to 

determine whether species abundance structure had an influence on the composition of 

molluscan communities. 



132 
 

 

Figure 3.1. Long-term ecology stations sampled in Frobisher Bay, Nunavut between 1967-1976 and in 

2016. 
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Table 3.1. Summary of sampling effort for benthic infaunal samples collected by Van Veen grab and box 

core in Frobisher Bay between 1967-1976 and in 2016. 

Station Date 

No. 

Replicates 

Pooled 

Total Surface Area 

of Pooled Samples 

(m2) 

Water 

Depth 

(m) 

Latitude 

(DD) 

Longitude 

(DD) 

Rep. 11 Rep. 11 

5b 

Jul-29-1969 6 0.390 15 

63.7256 -68.5218 
Sep-3-1969 6 0.390 15 

Aug-8-1973 5 0.330 14 

Aug-19-1976 5 0.330 14 

Oct-10-2016 3 0.072 15.4 63.7255 -68.5209 

25 

 

Aug-8-1973 

 

5 

 

0.330 

 

30  

63.7227 

 

-68.5162 
Aug-18-1976 5 0.330 28 

Oct-10-2016 3 0.333 28.5 63.7227 -68.5163 

26 

 

Aug-8-1973 

 

5 

 

0.330 

 

40 

 

63.7134 

 

-68.5039 

Oct-10-2016 3 0.333 37.8 63.7128 -68.5031 

27 

 

Aug-8-1973 

 

5 

 

0.330 

 

43 

 

63.7098 

 

-68.5214 

Oct-10-2016 3 0.333 33.1 63.6969 -68.4892 

28 

 

Aug-13-1973 

 

4 

 

0.250 

 

30 

 

63.6969 

 

-68.4885 

Oct-10-2016 3 0.218 11.5 63.71 -68.5211 

5 

 
Jul-23-1968 

 
6 

 
0.390 

 
45 

 

63.6731 

 

-68.4289 

Aug-20-1968 6 0.390 60 

Sep-3-1968 6 0.390 60 

Oct-8-1968 6 0.390 62 

Aug-6-1970 6 0.390 72 

Oct-11-2016 3 0.278 58.6 63.6729 -68.4294 

5a 

 

Aug-1-1968 

 

6 

 

0.390 

 

26 63.6683 -68.4342 
Aug-20-1968 6 0.390 32 

Oct-14-2016 3 0.333 70 63.6683 -68.4336 

5c 

 

Aug-23-1969 

 

6 

 

0.390 

 

31 

 

63.6611 

 

-68.422 

Oct-11-2016 3 0.333 77.2 63.6611 -68.4216 

5d 

 

Aug-23-1969 

 

6 

 

0.390 

 

43 

 

63.6776 

 

-68.4216 

Oct-11-2016 3 0.333 27 63.6776 -68.4209 

5e 

 

Aug-23-1969 

 

6 

 

0.390 

 

58 

 

63.6752 

 

-68.4304 

Oct-11-2016 3 0.305 55.4 63.6757 -68.4303 

Jul-16-2016(Box) 3 0.375 63 63.6752 -68.4304 

5f 

 

Aug-23-1969 

 

6 

 

0.390 

 

73 

 

63.6642 

 

-68.4195 

Oct-11-2016 2 0.167 90.1 63.6639 -68.4196 

1Latitude and Longitude of the historical samples reflect the georeferenced historical sample locations. Latitude and longitude of the 

modern samples reflect the first of three replicate samples. See Appendix 1 for complete list of all replicate samples collected. 
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The presence/absence transformation compared the historical and modern communities 

based solely on species presence while the square-root transformation put more emphasis 

on the contribution of each species in the community with regards to its abundance. 

Initial data exploration indicated that the 4th root transformation produced similar results 

as the square-root transformation therefore the less severe transformation was used. Rare 

species were not removed from the dataset prior to the presence/absence and square-root 

transformations being applied as preliminary data exploration indicated that their removal 

did not influence the natural groupings of stations. Analysis of similarities (ANOSIM) 

was performed using PRIMER v6 to confirm that the groups of stations were 

significantly different from each other and these groups were assigned the designations 

“Community I, II, III, etc.” for the square-root transformed analysis and “Community A, 

B, C, etc.” for the presence/absence analysis. Similarity percentage analysis (SIMPER) 

was performed on each community to identify the dominant species contributing most 

significantly to within community similarity. 

Water depth is well known to be one of the most important variables that 

structures benthic communities (Piepenburg et al. 1996, Piepenburg and Schmid 1996, 

Jones et al. 2007, Soltwedel et al. 2009, Bluhm et al. 2011, Roy et al. 2014, Vedenin et 

al. 2018). Therefore, general linear models were developed using the non-transformed 

pooled sample data for species richness (R), species diversity (H’), species eveness (J’), 

and for sediment grain size composition using the statistical program RStudio to 

determine whether these indices changed significantly with increasing water depth and to 

help explain unique community observations. Violation of model assumptions were 
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examined by testing for homogeneity of variance, independence, and normality (Zuur et 

al. 2010). 

 

3.2.5 Distribution Maps of Modern Mollusc Communities 

 

Maps that demonstrate the “potential distribution” of each modern community 

reflected in the square-root transformed analysis and the presence-absence analysis were 

produced using the spatial analysis package in ESRI ArcMap version 10.4.1. Figure 3.2 

demonstrates the workflow followed to produce the maps of the potential distribution of 

each community.   

The first steps in developing maps that highlight the potential distribution of the 

modern mollusc communities involved determining the sample area around each station 

from which the range of bathymetry and backscatter values could be used to characterize 

the the physical characteristics of seabed habitats occupied by mollusc communities. This 

was important because replicate samples at each station were not collected in the exact 

same sampling location and therefore there was some variation in water depth 

(bathymetry) and sediment reflectivity (backscatter) between the replicate samples.  

Because the mollusc communities were identified based on pooled replicate samples, the 

physical characteristics of the sea bottom for each station needed to encompass the 

characteristics of all replicate samples. 
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First, the “mean center” (e.g. the geographic centre between three replicate 

samples) of each of the 11 stations was determined based on the triplicate samples 

collected at each station (Step 1; Figure 3.2).  Next, the distance between mean center and 

each replicate sample at each station was measured using the “measure” tool to obtain a 

distance measurement (Step 2; Figure 3.2). This step was completed to define a sampling 

error distance given that each replicate sample was not collected in the exact same 

location. The greatest sampling error distance that was measured among all the stations 

was 61 m and this distance was used to draw an error buffer around the mean-center at 

each station using the “buffer” tool (Step 3; Figure 3.2). In this way, there was a buffered 

area of 61 m around the mean centre of each station that encompassed all replicate 

samples. The “extract by mask” tool was then used to extract the bathymetry and 

backscatter raster values within the buffered regions (Step 4; Figure 3.2) and the “raster 

to point” tool was used to convert the values of each raster cell to a point value (Step 5; 

Figure 3.2). The range of bathymetry and backscatter values from the buffered regions 

were then recorded for each modern station and  boxplots were produced using the 

square-root transformed and presence/absence communities to display the range of 

bathymetry and backscatter values for each community observed.  

The raster calculator was then utilized to determine the distribution of the 

different communities based on their bathymetry and backscatter values (Step 6; Figure 

3.2). The minimum and maximum bathymetry and backscatter values for each modern 

mollusc community were included in the raster calculator using the equation: 

 



137 
 

Potential Community Distribution for Community X = Con(Backscatter >=a) & 

(Backscatter <= b) & (Bathymetry >= c) & (Bathymetry <= d), 1,0) 

 

Where X represents identified communities A, B, C, D (presence/absence analysis), or I, 

II, III, IV, V, VI (square-root transformed analysis), where a, b, c, d represent the 

minimum or maximum bathymetry or backscatter values for each community and where 

Con referred to the condition being examined. The minimum and maximum bathymetry 

and backscatter values were used rather than the interquartile range because at some 

stations, the bathymetry and backscatter values for specific replicate samples fell outside 

the interquartile range and these values were included by using the minimum and 

maximum values. This calculation was run for each modern mollusc community (square-

root and presence/absence transformation method) and maps were produced that 

demonstrate the potential distribution for each community using both transformation 

methods. The historical communities were then added to the maps as point values to 

identify the direction of any spatial shifts that had occurred in the mollusc communities 

over time. The total coverage area of each modern community using the abundance 

structure community data and the total coverage area of each modern community using 

the composition community data was determined.  The total area of overlap between any 

two mollusc communities was determined using the “clip” tool in ArcMap where one 

mollusc community was clipped to another where there was overlap between the two 

communities. These values were converted to a “proportion of coverage” and “proportion 
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of overlap” to determine the relative size and relative overlap of each modern community 

compared to the others.  

 The resulting maps that were produced through the mapping processes include a 

single biotope map that demonstrates the distribution of the modern communities while 

the other two maps produced are deconstructed biotope maps with the historical 

communities added as points (where the historical samples were collected) in order to 

identify the extent of spatial change over time of each community.  These maps were 

produced based on the square-root transformed and presence-absence transformed 

molluscan community data.   

 

3.3 Results 
 

Twenty historical pooled samples representing twelve stations were collected 

between 1967 and 1976 and these were compared with thirty one grabs and three box 

core samples that were pooled to represent eleven stations collected in 2016 to identify 

whether any spatial shifts in community structure had occurred over a period of fifty 

years in inner Frobisher Bay, Nunavut. Sixty-four mollusc species (22 bivalves and 42 

gastropods) were identified in the historical samples in water depths ranging between 14 

and 72 m compared to fifty-one mollusc species (24 bivalves and 27 gastropods) 

observed in the modern samples in water depths ranging between 11.5 m and 90.1 m 

(Chapter 2).  
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3.3.1 MBES Coverage 

 

Only a small portion of the large bathymetry and backscatter multibeam 

echosounder raster dataset that was collected in Frobisher Bay was used in this study. 

The total area included in this analysis covered an area of 30.35 km2. The bathymetry 

(water depth in meters) of the study region ranged from 3 m to 158 m water depth with 

water depths less than 60 m found at the Iqaluit stations and water depths greater than 40 

m found at the Cairn Island stations (Figure 3.3a).  Backscatter values ranged from -18.67 

to -39.01 dB (Figure 3.3b).  

Misiuk et al. (2019b) previously characterized the sediments in the Iqaluit region 

as gravelly muddy sand ((g)mS), gravelly sandy mud ((g)sM), and muddy sand (mS) 

while in the Cairn Island region the sediments were characterized as gravelly sandy mud 

(g)sM.  Grain size composition in the Iqaluit region was different from the grain size 

composition in the Cairn Island region but only the Cairn Island region experienced a 

temporal change in grain size composition (Chapter 2). Deering et al. (2018) noted that 

the MBES data indicated that the Iqaluit region (including Iqaluit stations 5b, 25, 26, 27, 

and 28) had previously been subjected to sea ice scouring. In this study, the proportion of 

sand in the sediment was found to significantly decrease with water depth while the 

proportion of silt in the sediment significantly increased with water depth (F = 24.52; p = 

1.46e-5; Figure 3.4).     
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Figure 3.2. Flow chart outlining the steps and ESRI ArcMap tools utilized in production of maps that 

demonstrate the potential distribution of the molluscan communities observed in Frobisher Bay. 
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Figure 3.3. Bathymetry (a) and backscatter (b) coverage of study area in inner Frobisher Bay, Nunavut 

including the location of mollusc samples collected between 1967-1976 and in 2016 (black and red dots). 

 

 

3.3.2 Mollusc Communities 
 

Species richness (R) did not significantly increase with water depth but species 

diversity (H’; F = 19.33; p < 0.001) and species evenness (J’; F = 21.08; p < 0.001) did 

significantly increase with water depth (Figure 3.4).  
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Figure 3.4. Changes observed in sediment characteristics, species richness, species diversity, and species 

evenness with water depth for samples collected in 2016 in Frobisher Bay. 

 

 

Analysis of Similarities (ANOSIM) confirmed that the 6 groupings of stations 

identified using the abundance structure community data were significantly different 

from each other (Global R = 0.868; all pairwise tests with p <0.05; Figure 3.5ab; Table 

3.2). SIMPER analysis identified the percent similarity observed among each grouping 
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which ranged between 41.49 – 66.16% similarity and these groupings were assigned the 

Community designations I-IV based on the mollusc species that contributed most 

significantly to each assemblage (Table 3.2).  

Four of the six communities (Community I, II, III, and IV) were dominated by the 

thyasirid bivalve Thyasira gouldi with small differences in the remaining associated 

species observed.  Community I also contained the small to medium bivalves Ennucula 

tenuis and Nuculana pernula, and the small gastropod Cylichna alba, Community II also 

contained the small to medium bivalve Enncula tenuis, Community III also contained the 

small to medium bivalves Ennucula tenuis and Musculus discors and Community IV also 

contained the small to medium bivalves Musculus discors, Nuculana minuta, and the 

small gastropod Margarites olivaceus. Comparatively, Community V was dominated by 

the thyasirid bivalve Axinopsida orbiculata and the small gastropod Cylichna alba only 

and VI was dominated by only the thyasirid bivalve Axinopsida orbiculata.  

Analysis of similarities (ANOSIM) confirmed that the 4 groupings of stations 

identified using the composition community data were significantly different from each 

other (ANOSIM; Global R = 0.752; all pairwise tests with p < 0.05; Figure 3.5cd; Table 

3.2). SIMPER analysis confirmed the percent similarity observed among each grouping 

which ranged between 20-59.71% similarity and these groupings were assigned the 

Community designations A-D based on the mollusc species that contributed most 

significantly to each assemblage (Table 3.2). 
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Community A was primarily composed of two small thyasirid bivalves 

Axinopsida orbiculata and Thyasira gouldi, a small gastropod Cylichna alba, and some 

medium sized bivalves Ennucula tenuis and Macoma calcarea.  Community B and 

Community C were both represented by the thyasirid bivalve Thysira gouldi and 

otherwise contained small to medium sized bivalves with Community B also represented 

by the bivalves Ennucula tenuis, Nuculana pernula, Yoldia hyperborea, Macoma moesta 

and the small gastropod Cylichna alba as well as other molluscs to a lesser degree and 

Community C was represented by the bivalves Hiatella arctica, Musculus discors, 

Nuculana minuta, and Ennucula tenuis and many other molluscs to a lesser degree. 

Finally, Community D was represented only by the small thyasirid bivalve Axinopsida 

orbiculata. 

 

3.3.3 Mollusc Community Distribution 

 

Despite community differences between the square-root transformed data and the 

presence/absence transformed data, the modern mollusc samples grouped together in the 

same way indicating that these transformations did not alter the modern mollusc 

community composition. Only the historical samples exhibited some differences between 

transformation methods. Community A corresponded with Community V, Community B 

corresponded with Community I, Community C corresponded with Community II, and 
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Figure 3.5. Mollusc communities identified through nMDS (non metric Multidimensional Scaling) and associated dendogram resulting from 

presence-absence and square-root transformed analyses. 

 

a b 

c d 
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Table 3.2. Mollusc community descriptions as identified through SIMPER (Similarity Percentages) analysis based on nMDS of presence/absence and 

square-root transformed benthic community data.  

Community 
Global 

R 

Percent Similarity 

Among Samples Within 

Each Community (%) 

Species Contributing to Similarity Within Each Community (% Contribution) 

 

Presence/Absence transformed analysis 

  
A 0.752 55.09 Axinopsida orbiculata (13.03%), Ennucula tenuis (13.03%), Cylichna alba (13.03%), Macoma 

calcarea (10.39%), Thyasira gouldi (9.59%), Retusa obtusa (9.59%), Philine lima (6.71%), 

Astarte borealis (4.51%), Curtitoma violácea (3.55%), Macoma moesta (3.04%), Serripes 

groenlandicus (2.37%), Yoldia hyperborea (1.93%) 
 

B 59.71 Ennucula tenuis (9.19%), Nuculana pernula (9.19%), Thyasira gouldi (9.19%), Yoldia 

hyperborea (9.19%), Cylichna alba (9.19%), Macoma moesta (6.61%), Hiatella arctica (6.42%), 

Musculus niger (6.42%), Cryptonatica affinis (4.29%), Macoma calcárea (4.05%), Macoma 

loveni (2.7%), Frigidoalvania cruenta (2.69%), Margarites helicinus (2.61%), Astarte borealis 

(2.61%), Astarte montagui (2.41%), Musculus discors (2.31%), Serripes groenlandicus (1.38%) 
 

C 50.59 Thyasira gouldi (12.13%), Hiatella arctica (10.38%), Musculus discors (10.33%), Nuculana 

minuta (10.33%), Ennucula tenuis (10.09%), Cylichna alba (10.09%), Dacrydium vitreum 

(4.79%), Margarites olivaceus (4.47%), Lepeta caeca (3.6%), Mya truncata (3.3%), Musculus 

niger (2.94%), Nuculana pernula (2.16%), Ciliatocardium ciliatum (1.38%), Euspira pallida 

(1.37%), Macoma moesta (1.27%), Velutina velutina (1.23%), Margarites umbilicalis (1.2%) 
 

D 20.00 Axinopsida orbiculata (100.0%) 
 

 

Square-root transformed analysis 

 

I 0.868 56.43 Thyasira gouldi (23.49%), Ennucula tenuis (10.74%), Nuculana pernula (9.86%), Cylichna alba 

(7.52%), Yoldia hyperborea (7.24%), Macoma moesta (6.25%), Hiatella arctica (5.73%), 

Musculus niger (4.42%), Cryptonatica affinis (2.85%), Macoma calcárea (2.74%), 

Frigidoalvania cruenta (2.26%), Macoma loveni (2.11%), Musculus discors (1.95%), Astarte 

montagui (1.85%), Astarte borealis (1.71%) 
 

II 55.22 Thyasira gouldi (43.93%), Ennucula tenuis (12.14%), Cylichna alba (9.62%), Hiatella arctica 

(8.96%), Lepeta caeca (6.1%), Macoma moesta (5.73%), Nuculana pernula (5.63%) 
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III 66.16 Thyasira gouldi (26.82%), Ennucula tenuis (14.5%), Musculus discors (13.71%), Nuculana 

minuta (10.3%), Hiatella arctica (10.11%), Dacrydium vitreum (9.75%), Cylichna alba (7.0%) 
 

IV 56.96 Thyasira gouldi (21.01%), Musculus discors (12.89%), Nuculana minuta (9.48%), Margarites 

olivaceus (9.34%), Hiatella arctica (7.98%), Mya truncata (6.07%), Ennucula tenuis (5.74%), 

Margarites umbilicalis (2.78%), Astarte montagui (2.72%), Cylichna alba (2.66%), Anatoma 

crispata (2.66%), Lepeta caeca (2.61%), Erginus rubellus (2.11%), Margarites vahli (1.84%), 

Tachyrhynchus reticulatus (1.48%) 
 

V 61.4 Axinopsida orbiculata (38.55%), Cylichna alba (15.13%), Ennucula tenuis (11.08%), Thyasira 

gouldi (19.91%), Retusa obtusa (10.21%), Macoma calcarea (3.25%), Philine lima (3.21%) 
 

VI 41.49 Axinopsida orbiculata (100.0%) 
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Community D corresponded with Community VI.  Community III and IV were 

represented by historical samples only. Community I(B) covered the largest area with 

12.2 km2 (40.0%) coverage while community II(C) covered 1.6 km2 (5.2%) of the study 

region.  Community I(B) and II(C) shared 8.15% overlap.  The remaining modern 

community coverage was very small.  Community V(A) covered only 0.066 km2 (0.2%) 

and community VI(D) covered 0.81 km2 (2.7%). Community III and IV had no coverage 

on the modern map because these communities represented historical samples only. 

15.7% of the study area was unclassified and this was primarily due to water depth as no 

benthic communities were sampled in depths greater than 90 m (Table 3.3).  

  

Table 3.3. Summary of benthic community coverage in Frobisher Bay. 

Community1 

Coverage in 

Study Region 

(km2) 

Proportion of 

Community 

in Study Region (%) 

Proportion of 

Overlap between 

Communities (%) 

Community I (B) 12.22 40.26 8.15 (II/C) 

Community II (C) 1.566 5.160 8.15 (I/B) 

Community III 0.000 0.000 0.00 

Community IV 0.000 0.000 0.00 

Community V (A) 0.066 0.220 0.00 

Community VI (D) 0.812 2.680 0.00 

    

Total Area of Study Region 30.35 -- -- 

Unclassified Area 15.69 -- -- 
1Roman numerals refer to communities that were subject to square-root transformation and letter 

designations refer to communities that were subject to presence-absence transformation. 

 

 

There was only minimal overlap in bathymetry (water depth) for each of the 

modern communities. Community I(B) exhibited the greatest depth range from 34.0 m to 
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90.7 m, Community II(C) ranged from 21.5 m to 46.5 m, Community V(A) ranged from 

22.4 m to 33.7 m and Community VI(D) was shallowest and ranged from 10.8 m to 21.7 

m. Backscatter ranges were narrow with overlap occurring at three of the four 

communities.  Community I(B) ranged from -29.5 to -26.6 dB, Community II(C) ranged 

from -28.8 to -27.6 dB, and Community VI(D) ranged from -31.9 to -25.9 dB.  

Community V(A) did not overlap with the other communities and ranged from -34.7 to -

32.0 dB (Table 3.4; Figure 3.6). 

 

 

Table 3.4. Range of bathymetry and backscatter values used to determine modern mollusc community 

spatial distribution in Frobisher Bay. 

Mollusc 

Community 

Bathymetry (m) Backscatter (dB) 

Minimum Maximum Minimum Maximum 

Community I (B) -90.6590 -34.0273 -29.4620 -26.6174 

Community II (C) -46.0.502 -25.0854 -28.7573 -27.6316 

Community III1 -- -- -- -- 

Community IV1 -- -- -- -- 

Community V (A) -33.6928 -22.4053 -34.6992 -32.0107 

Community VI (D) -21.7119 -10.8321 -31.9744 -25.8811 
1Community III and IV were not mapped as these communities were not present in the modern samples. 

 

 

The resulting biotope map of the modern mollusc communities observed in inner 

Frobisher Bay demonstrated a spatial shift in the composition of the molluscan 

communities and their preferred habitat (Figure 3.7). Community I/B is characteristic of a 

mixed small bodied bivalve and gastropod community that is sensitive to or indifferent 
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Figure 3.6. Range of bathymetry and backscatter values associated with each modern mollusc community in Frobisher Bay for the presence-absence 

and square-root transformed analyses. 
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Figure 3.7. Biotope map of the molluscan communities observed in inner Frobisher Bay in 2016. Coverage 

area of each biotope is derived from multibeam bathymetry and backscatter datasets from the study area.  
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to organic enrichment, with a wide ranging depth distribution and a range of sediment 

types. Community II/C is characteristic of a small bodied to large bodied bivalve 

community that is indifferent to organic enrichment, found in less than 50 m water depth, 

and prefers a sandy bottom.  Community V/A is characteristic of a small to medium sized 

bivalve community found in water depths less than 34 m that is tolerant of organic 

enrichment and prefers silty muddy sediments, and Community VI/D is characteristic of 

a small bodied solid-shelled Axinoposida orbiculata community that is tolerant of organic 

enrichment, prefers silty muddy bottoms, and is found in water depths less than 22 m. 

 

3.3.4 Mollusc Community Spatial Shifts (Square-Root Transformation) 
 

Six mollusc communities (I, II, III, IV, V, and VI) were observed in the square-

root transformed multivariate analysis. Historically, the mollusc communities were 

represented by four communities: Communities II, III, IV, and V. Fifty years later, there 

were still four mollusc communities present but two historical communities had been lost 

(Community III and IV) and two new communities had been gained (Community I and 

VI; Table 3.5; Figure 3.8).  

Community I and Community VI experienced expansion of their potential 

distribution as both of these communities had not been observed historically but were 

observed in the modern samples.  Community I exhibited a wide ranging 

distributionthroughout the study area with a more limited presence in the shallower 

regions of  inner Frobisher Bay. The functional traits exhibited by this modern 

community included molluscs that were either very sensitive to disturbance or indifferent 
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to disturbance, were suspension feeders, had small to large or large body sizes and 

preferred a range of sediment types (based on stations 26, 5, 5a, 5c, 5e, and 5f that 

represented modern Community I; Chapter 2). Community VI demonstrated a greater 

distribution throughout the Iqaluit region with only a small presence in other regions of 

the study area (Figure 3.8). The functional traits exhibited by this modern community 

included molluscs that were tolerant of disturbance, had solid/robust/thick shells, 

preferred silt/mud, were deposit feeders, and had a small body size (based on stations 5b 

and 28 that represented modern Community VI; Chapter 2).  

Community II expanded and shifted further out into Frobisher Bay over time 

(Figure 3.8). Historically, Community II was found only at station 26 which was located 

relatively close to Iqaluit.  This community was lost at historical station 26 but appeared 

at modern station 27 (located part way between the Iqaluit stations and Cairn Island 

stations) and station 5d (located near Mair Island). When historical station 26 transitioned 

from Community II to Community I the bivalve Nuculana pernula and the gastropod 

Cylichna alba became more important contributors to within community similarity at 

Community I along with Ennucula tenuis while Thyasira gouldi contributed less (Table 

3.5).  Historically, the area covered by modern Community II was characteristic of 

functional traits that included bivalves that overall were indifferent to disturbance, 

preferred sandy bottoms, had thin/fragile/brittle shells, and had medium-large body size 

(based on historical station 26 which once represented Community II; Chapter 2). The 

change in functional traits in Community II was subtle as the modern functional trait 

characteristics of community II were also represented by similar trait characteristics as 

historical Community II.  Modern Community II indicates the bivalve species may have a 
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slightly stronger affinity to be scavengers than they previously had (based on modern 

station 27 and 5d that now represents this community; Chapter 2). 

 Community III represented historical stations 27, 5, 5e, and 5f which were 

located between Iqaluit and Cairn Island and the area between Cairn Island and Mair 

Island. Community IV represented historical stations 5a, 5c, and 5d, which were located 

solely in the Cairn Island region. The potential distribution of both Community III and IV 

was reduced as these communities were completely absent in the modern samples (Table  

3.5; Figure 3.8). Historical Station 27 experienced a loss of Musculus discors when it 

shifted from Community III to Community II and historical stations 5, 5e, and 5f 

experienced a loss of Musclus discors and the gain of Nuculana pernula and slight 

increase in Cylichna alba when these stations shifted from Community III to Community 

I.  Historical stations 5a, 5c, and 5d experienced a loss of Nuculana minuta and 

Margarites olivaceus when these communities shifted away from Community IV. The 

functional trait characteristics that historically represented these communities were lost, 

though some semblance of these communities was retained due to the widespread 

coverage of Community I. 

Community V was present in the shallowest stations in the Iqaluit region 

including station 5b, 25, and 28. The distribution of Community V was reduced over time 

as this community only persisted in the area surrounding station 25 (Table 3.5; Figure 

3.8). When station 5b and 28 transitioned to Community VI, the thyasirid bivalve 

Axinopsida orbiculata and the gastropod Cylichna alba were reduced while the thyasirid 

bivalve Thyasira gouldi and the bivalves Musculus discors and Nuculana minuta were 
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gained. Historically, the area covered by modern Community V was characteristic of 

functional traits that included molluscs that were tolerant of disturbance, had 

solid/robust/thick shells, preferred silt/mud, were deposit feeders, and had a small body 

size (based on stations 5b, 25 and 28 that historically represented Community V; Chapter 

2). The change in functional traits in Community V were very slight with the modern 

community represented by molluscs that very strongly exhibit the trait characteristics of 

being tolerant to disturbance, having small body size, preferring silt/mud sediments, and 

being deposit feeders (based on modern 26 that now represents this community; Chapter 

2). 

 

3.3.5 Mollusc Community Spatial Shifts (Presence/Absence Transformation) 

 

Historically, mollusc communities at the eleven stations represented only two 

communities using the presence/absence transformation: Community A and C.  Fifty 

years later, four mollusc communities were observed: Community A, B, C and D (Table 

3.6, Figure 3.9). The distribution of Community A was reduced over time. Community A 

historically encompassed station 5b, 25, 26, and 28 in the Iqaluit region but in the modern 

samples this community only covered the region surrounding station 25. Station 5b and 

28 were the shallowest stations and were both very close to shore. These stations 

experienced a loss of diversity including the loss of Enncula tenuis, Cylichna alba, 

Macoma calcarea, and Thyasira gouldi and became dominated by the thyasirid bivalve 

Axinopsida orbiculata in the modern samples when they shifted to Community D. Station 

26 lost the species Axinoposida orbiculata and Macoma calcarea when it shifted to 
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Community B but numerous other species were present at this station in the modern 

sample.  Community C shifted an undetermined amount. The modern distribution map 

indicates that this community is still present throughout the study region but it no longer 

overlaps with 5 of the 7 stations historically classified as Community C.  Station 27 in the 

Iqaluit region and station 5d in the Cairn Island region remained as Community C while 

stations 5, 5a, 5c, 5e, and 5f in the Cairn Island region all shifted to Community B due to 

the loss of the small to medium sized bivalves Hiatiella arctica and Musculus discors in 

the historical samples and the presence of Yoldia hyperborea, Macoma moesta, and the 

gastropod Cylichna alba in the modern samples at these stations. 
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Table 3.5. Mollusc community shifts observed in Frobisher Bay based on square-root transformed analysis. 

Station Change 
Historical 

Community  

Historical Community (largest 

contributors to community) 
 

Modern 

Community  

Modern Community (largest 

contributors to community) 

5b Yes Community V Axinopsida orbiculata (38.55%), Cylichna 

alba (15.13%) 
→ Community VI Axinopsida orbiculata (100.0%) 

25 No Community V Axinopsida orbiculata (38.55%), Cylichna 

alba (15.13%) 
→ Community V Axinopsida orbiculata (38.55%), Cylichna 

alba (15.13%) 

26 Yes Community II Thyasira gouldi (43.93%), Ennucula tenuis 

(12.14%) 
→ Community I Thyasira gouldi (23.49%), Ennucula tenuis 

(10.74%), Nuculana pernula (9.86%), 

Cylichna alba (7.52%) 

27 Yes Community III Thyasira gouldi (26.82%), Ennucula tenuis 

(14.5%), Musculus discors (13.71%) 
→ Community II Thyasira gouldi (43.93%), Ennucula tenuis 

(12.14%) 

28 Yes Community V Axinopsida orbiculata (38.55%), Cylichna 

alba (15.13%) 
→ Community VI Axinopsida orbiculata (100.0%) 

5 Yes Community III 

and IV 

Thyasira gouldi (26.82%), Ennucula tenuis 

(14.5%), Musculus discors (13.71%) 

And 

Thyasira gouldi (21.01%), Musculus 

discors (12.89%), Nuculana minuta 

(9.48%), Margarites olivaceus (9.34%) 

→ Community I Thyasira gouldi (23.49%), Ennucula tenuis 

(10.74%), Nuculana pernula (9.86%), 

Cylichna alba (7.52%) 

5a Yes Community IV Thyasira gouldi (21.01%), Musculus 

discors (12.89%), Nuculana minuta 

(9.48%), Margarites olivaceus (9.34%) 

→ Community I Thyasira gouldi (23.49%), Ennucula tenuis 

(10.74%), Nuculana pernula (9.86%), 

Cylichna alba (7.52%) 

5c Yes Community IV Thyasira gouldi (21.01%), Musculus 

discors (12.89%), Nuculana minuta 

(9.48%), Margarites olivaceus (9.34%) 

→ Community I Thyasira gouldi (23.49%), Ennucula tenuis 

(10.74%), Nuculana pernula (9.86%), 

Cylichna alba (7.52%) 

5d Yes Community IV Thyasira gouldi (21.01%), Musculus 

discors (12.89%), Nuculana minuta 

(9.48%), Margarites olivaceus (9.34%) 

→ Community II Thyasira gouldi (43.93%), Ennucula tenuis 

(12.14%) 

5e Yes Community III Thyasira gouldi (26.82%), Ennucula tenuis 

(14.5%), Musculus discors (13.71%) 
→ Community I Thyasira gouldi (23.49%), Ennucula tenuis 

(10.74%), Nuculana pernula (9.86%), 

Cylichna alba (7.52%) 

5f Yes Community III Thyasira gouldi (26.82%), Ennucula tenuis 

(14.5%), Musculus discors (13.71%) 
→ Community I Thyasira gouldi (23.49%), Ennucula tenuis 

(10.74%), Nuculana pernula (9.86%), 

Cylichna alba (7.52%) 
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Figure 3.8. Community distribution maps of mollusc communities observed in Frobisher Bay based on square-root transformed community analysis. 

Colour circles represent the presence of each community historically overlaid on the distribution map indicating the current spatial distribution of each 

community.
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Table 3.6. Mollusc community shifts observed in Frobisher Bay based on presence/absence transformed analysis. 

Station Change 
Historical 

Community  

Historical Community Description (largest 

contributors to community) 
 

Modern 

Community  

Modern Community Description (largest 

contributors to community) 

5b Yes Community A Axinopsida orbiculata (13.03%), Ennucula 

tenuis (13.03%), Cylichna alba (13.03%), 

Macoma calcarea (10.39%), Thyasira gouldi 

(9.59%) 

→ Community D Axinopsida orbiculata (100.0%) 

25 No Community A Axinopsida orbiculata (13.03%), Ennucula 

tenuis (13.03%), Cylichna alba (13.03%), 

Macoma calcarea (10.39%), Thyasira gouldi 

(9.59%) 

→ Community A Axinopsida orbiculata (13.03%), Ennucula 

tenuis (13.03%), Cylichna alba (13.03%), 

Macoma calcarea (10.39%), Thyasira gouldi 

(9.59%) 

26 Yes Community A Axinopsida orbiculata (13.03%), Ennucula 

tenuis (13.03%), Cylichna alba (13.03%), 

Macoma calcarea (10.39%), Thyasira gouldi 

(9.59%) 

→ Community B Ennucula tenuis (9.19%), Nuculana pernula 

(9.19%), Thyasira gouldi (9.19%), Yoldia 

hyperborea (9.19%), Cylichna alba (9.19%), 

Macoma moesta (6.61%) 

27 No Community C Thyasira gouldi (12.13%), Hiatella arctica 

(10.38%), Musculus discors (10.33%), 

Nuculana minuta (10.33%), Ennucula tenuis 

(10.09%) 

→ Community C Thyasira gouldi (12.13%), Hiatella arctica 

(10.38%), Musculus discors (10.33%), 

Nuculana minuta (10.33%), Ennucula tenuis 

(10.09%) 

28 Yes Community A Axinopsida orbiculata (13.03%), Ennucula 

tenuis (13.03%), Cylichna alba (13.03%), 

Macoma calcarea (10.39%), Thyasira gouldi 

(9.59%) 

→ Community D Axinopsida orbiculata (100.0%) 

5 Yes Community C Thyasira gouldi (12.13%), Hiatella arctica 

(10.38%), Musculus discors (10.33%), 

Nuculana minuta (10.33%), Ennucula tenuis 

(10.09%) 

→ Community B Ennucula tenuis (9.19%), Nuculana pernula 

(9.19%), Thyasira gouldi (9.19%), Yoldia 

hyperborea (9.19%), Cylichna alba (9.19%), 

Macoma moesta (6.61%) 

5a Yes Community C See Station 5 description → Community B See Station 5 description 

5c Yes Community C See Station 5 description → Community B See Station 5 description 

5d No Community C Thyasira gouldi (12.13%), Hiatella arctica 

(10.38%), Musculus discors (10.33%), 

Nuculana minuta (10.33%), Ennucula tenuis 

(10.09%) 

→ Community C Thyasira gouldi (12.13%), Hiatella arctica 

(10.38%), Musculus discors (10.33%), 

Nuculana minuta (10.33%), Ennucula tenuis 

(10.09%) 

5e Yes Community C Thyasira gouldi (12.13%), Hiatella arctica 

(10.38%), Musculus discors (10.33%), 

Nuculana minuta (10.33%), Ennucula tenuis 

(10.09%) 

→ Community B Ennucula tenuis (9.19%), Nuculana pernula 

(9.19%), Thyasira gouldi (9.19%), Yoldia 

hyperborea (9.19%), Cylichna alba (9.19%), 

Macoma moesta (6.61%) 

5f Yes Community C See Station 5e description → Community B See Station 5e description 
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Figure 3.9. Community distribution maps of mollusc communities observed in Frobisher Bay based on 

presence-absence transformed community analysis. Colour circles represent the presence of each 

community historically overlaid on the distribution map indicating the current spatial distribution of each 

community. 
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3.4 Discussion 
 

The biotope map produced here demonstrates the potential distribution of the 

modern molluscan communities based on MBES bathymetry and backscatter data.  

Examination of the distribution of individual modern communities with the historical 

molluscan communities overlaid on these maps demonstrates the spatial changes that 

were observed among the molluscan communities of Frobisher Bay over five decades. 

Non-metric multidimensional scaling analysis with a presence/absence 

transformation demonstrated the existence of two historically unique communities 

(Community A and C) separated predominantly by geographic region (ie. Iqaluit region 

stations and Cairn Island region stations) and after fifty years, there were four unique 

molluscan communities present (Community A, B, C and D).  Community B and 

Community D experienced expansion in their spatial distribution given that these 

communities had not been observed historically while Community A experienced a 

decline in its spatial distribution and Community C appears to have shifted its spatial 

distribution to areas of Frobisher Bay not historically sampled. Non-metric 

multidimensional scaling analysis with a square-root transformation demonstrated the 

existence of four historically unique communities (Community II, III, IV, and V) and 

after fifty years, two of those historical communities were lost (Community III and IV) 

while two new communities were observed (Community I and VI). Community I, II, and 

VI experienced expansion in their spatial distribution while Community III, IV, and V 
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experienced a decline in their spatial distribution based on where these communities had 

first been observed historically. 

 

3.4.1 Habitat Mapping 

 

Multibeam echosounder (MBES) technology has become a common tool used in 

predictive habitat mapping (Brown et al. 2011, Kostylev et al. 2008) with the resulting 

bathymetry data characterizing water depth and the backscatter data characterizing sea 

bottom hardness over the area that is sampled. These data layers are typically used in 

conjunction with in situ benthic samples to produce a predictive habitat map through 

either a top-down (unsupervised classification) or bottom-up (supervised classification) 

approach (Brown et al. 2011).  In this way, the majority of in situ samples are included in 

the production of a distribution map while a small proportion of the samples are used to 

test the accuracy of the map. This study was limited to a very small sample size which 

precluded our ability to take a top-down or bottom-up approach to mapping the 

distribution of mollusc communities in Frobisher Bay. We applied a simplified approach 

similar to the “abiotic surrogates” approach described by Brown et al. (2011) where the 

bathymetry and backscatter data layers were utilized to identify patterns in the 

environmental data but where no in situ samples were used to test the resulting maps 

accuracy.  The distribution patterns of each community that were identified were based 

on the range of bathymetry and backscatter values found within the buffered regions 

around each station sampled and those ranges were combined based on assigned 
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community. The abiotic surrogates approach is more commonly applied at a broad scale 

as was done by Roff et al. (2003) who applied a geophysical framework to the entire 

Canadian coastline and to the Scotian Shelf, however, this method has also been applied 

at smaller scales (Brown et al. 2011). Cochrane and Lafferty (2002) performed textural 

analysis of side-scan sonar data to distinguish between rocky and sandy habitats in the 

Northern Channel Islands along the California coast with a range of 220 km, while Marsh 

and Brown (2009) classified the seabed over Stanton Bank Area IV, 115 km northwest of 

Malin Head, Ireland (as part of the Mapping European Seabed Habitats program), an area 

of only 64 km2, using multibeam echo-sounder bathymetry and backscatter data. Our 

approach was a more simplified design and on an even smaller scale (~ 30 km2).  The 

distribution maps produced here highlight the potential habitat that each community may 

occupy based solely on water depth and sea bottom hardness. In the Arctic, water depth is 

well known to be one of the most important variables that structures benthic communities 

(Bluhm et al. 2011, Jones et al. 2007, Piepenburg et al. 1996, Piepenburg and Schmid 

1996, Roy et al. 2014, Soltwedel et al. 2009, and Vedenin et al. 2018). The Frobisher 

Bay samples ranged in water depth from 11.5 to 90.1 m and species diversity and species 

evenness was found to increase significantly with water depth (Figure 3.4). This may be 

due to ice scouring in the shallower depths near Iqaluit (Deering et al. 2019) or from 

other coastal influences. Furthermore, the mollusc communities separated out by water 

depth with minimal overlap between communities (Figure 3.6).  Sediment characteristics 

(e.g. grain size) play an equally important role in the distribution of benthic communities 

(Snelgrove et al. 1997). Sea bottom characteristics are defined by the hydrodynamics of a 
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given area where fine-grain sediments are found in quieter waters compared to coarse-

grained sediments which are found in stronger currents. Benthic species observed in these 

varying conditions reflect adaptations to these sediment characteristics (Eltringham 

1971). Differences in the sediment composition were observed between the Iqaluit and 

Cairn Island regions with gravelly muddy sand, gravelly sandy mud, and muddy sand 

observed in the Iqaluit region and gravelly sandy mud observed in the Cairn Island region 

(Misiuk et al. 2019b, Chapter 2). Furthermore, the proportion of sand and silt in the 

sediments were found to change significantly with water depth throughout the study 

region (Figure 3.4). Therefore, these observations provide support for using solely the 

bathymetry and backscatter environmental data to demonstrate the potential distribution 

of the molluscan communities.  

 

3.4.2 Community Spatial Shifts 
 

Many of the historical stations observed in Frobisher Bay have experienced 

statistically significant spatial change in molluscan community composition over a 50 

year period based on multivariate analysis despite no major losses or gains of mollusc 

species. Therefore, it is imperative to determine to what extent these communities have 

changed and whether these communities should be classified as new or “novel” 

communities. Hobbs et al. (2006) coined the term “novel ecosystems” in recognition of 

new combinations of species being observed as a result of “human action, environmental 

change, and the impacts of deliberate and inadvertent introduction of species from other 
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regions” (Hobbs et al. 2006). A novel ecosystem has undergone a complete 

transformation from its original historic system and has crossed a threshold from which 

restoration back to the historical state is unlikely (Hobbs et al. 2013). Some stations in 

Frobisher Bay experienced a greater change in species composition over time. For 

example, Station 5b, 25 and station 28 (Community A; presence/absence transformation) 

all historically contained numerous mollusc species including the thyasirid bivalves 

Axinopsida orbiculata and Thyasira gouldi as well as the bivalves Ennucula tenuis and 

Macoma calcarea, and the gastropod Cylichna alba. Even the historical square-root 

transformed community (Community V) represented multiple species including 

Axinopsida orbiculata and Cylichna alba.  But in the modern samples, station 5b and 28 

experienced a loss in species richness with only the thyasirid bivalve Axinopsida 

orbiculata abundant at these stations and the distribution of Community A(V) was 

reduced to the area surrounding station 25. These stations were located closest to shore 

and the changes in composition observed could be due to numerous factors.   

One possible reason for the reduction in spatial coverage of Community A(V) and 

the expansion of Community D(VI) could be an increased input of organic carbon in the 

sediments at the modern sample stations compared to the historical stations (Chapter 2).  

For example, the waste water treatment plant in Iqaluit was constructed in 1964 and 

discharged raw sewage directly into Koojesse Inlet (Prosko et al. 2016). Primary 

treatment was eventually implemented and an evaluation of the wastewater treatment 

facility in 2002 indicated a move forward to secondary treatment but was frought with 

building deficiencies (Prosko et al. 2016). Upgrades to waste water treatment were again 
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implemented in 2011 (Stantec 2020). This outfall is located approximately 2 kilometers 

from station 5b and 25. In 2015, the Centre for Water Resource Studies (2015) conducted 

a study on the benthic fauna around the outfall and observed high organic enrichment in 

the sediments associated with sediments devoid of benthic fauna up to 580 m away from 

the outfall site.  The authors did not sample below the low tide line and it is possible that 

the effects of the outfall site could extend further into the bay. The deposition of 

sediments from nearby rivers can also result in increased sedimentation in coastal zones. 

Conlan et al. (2008) observed that inshore fauna present near the Mackenzie River along 

the Beaufort Shelf were dominated by the bivalve Portlandia arctica and species in this 

area of the Beaufort Shelf are adaptable to conditions including enhanced sediment 

transport and coastal erosion.  An increase in mean river discharge in both the Sylvia 

Grinnell and Apex Rivers over time during the month of June suggest that changes in 

river discharge dynamics may have had an influence on sediment transport into Frobisher 

Bay over time and significant changes in sediment grain size and organic carbon and 

nitrogen in the sediments in the Cairn Island region support this (Chapter 2). C/N ratios 

from terrestrial sources are typically higher than 15 while C/N ratios with a marine origin 

have ratios between 4-10 (Rumolo et al. 2011).  

Station 5b, 26, 27, and 28 all had a higher C:N in the modern samples compared 

to the historical samples suggesting that there may have been some input of terrestrial 

sourced organic carbon, possibly from a change in the hydrodynamics observed in the 

Sylvia Grinnell River over the last fifty years though no significant trend was observed 

(Chapter 2). Axinopsida orbiculata is characterized as a species that is abundant in areas 
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of increased sedimentations and organically enriched environments (Batstone et al. 2014, 

Dufour pers. comm., 2019, Wlodarska-Kowalczuk 2007, Kedra 2010) and one that 

thrives where there is excess organic enrichment (Borja et al. 2000). The reduction in 

coverage of Community A(V) therefore could have resulted from the loss of other 

bivalves (e.g. Ennucula tenuis and Macoma calcarea) that were considered indifferent to 

disturbance (e.g. can tolerate only some variation in organic enrichment) while the 

expansion of Community D(VI) could have benefited from the elevated levels of organic 

enrichment observed in this area. 

Other factors that could have influenced the change in community distribution 

observed in the Iqaluit region. Ice scour was observed in the analyzed MEBS data  in less 

than 50 m water depth (Deering et al. 2018) in the Iqaluit region. Frobisher Bay is 

covered by sea ice from November to July (Canadian Ice Service 2013). Ice scour is a 

common occurrence along arctic shores and causes large-scale disturbance to the benthos 

by re-working the sediments and crushing benthic biota in its path (Conlan et al. 1998, 

Conlan and Kvitek 2005, Gutt 2001, Smale et al. 2008). While sea ice scouring can be 

destructive, it also provides a feeding opportunity for scavengers such as gastropods and 

other species (e.g. amphipods and isopods) which first colonize ice scours (Conlan et al. 

1998). Conlan and Kvitek (2005) found that juvenile bivalves were often early colonizers 

in ice scours and that the abundance of some bivalve species in the ice scours 

significantly increased as the community aged when they looked at the recolonization 

rate of soft-sediment ice scours in Barrow Straight in the Canadian Arctic Archepelago. 

This suggests that while ice scouring may alter community composition, it is not 
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necessarily detrimental to the existence of the pre-scoured benthic community and a 

gradual shift (over decades) back to the pre-scoured community can occur, though many 

Arctic coastal regions may consistently be responding to the effects of ice scouring 

(Conlan and Kvitek 2005, Conlan et al. 2008). The length of time it takes for the benthic 

community to recovery from a scouring event in shallow water environments is unknown 

(Smale et al. 2008) and Conlan and Kvitek (2005) have indicated that it can take upwards 

of a decade for the benthic community to recover to its pre-scoured condition and it could 

be over 40 years before ice scours would no longer be visible. It is therefore a possibility 

that in the Iqaluit region, which has shown evidence of ice scouring in the past to 

maximum depth of 50 m (Deering et al. 2018), could have contributed to the differences 

observed in the molluscan community composition between the two time periods. 

Coastal erosion and its resulting sedimentation could also influence the 

composition of the benthos and therefore the spatial distribution of communities in the 

Iqaluit region. Sea ice processes in conjunction with tidal processes may impact the 

benthos through sedimentation. Coastal erosion results from a feedback loop where 

warming air temperatures result in warming sea temperatures and sea ice loss. This 

increases wave exposure along the coastline which then increases erosion along coasts 

that are already subjected to permafrost melt as a result of global warming (ACIA 2005, 

Frederick et al. 2016, Manson et al. 2005). The Beaufort Sea coastline exhibits some of 

the greatest erosion rates in the Arctic (Frederick et al. 2016) and Brown et al. (2011) 

observed a sparse community of benthic infaunal organisms in Sachs Harbour, along the 

southwest coast of Banks Island, NTW and attributed this to active sediment transport in 
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this region which regularly experiences coastal erosion. However, the coastline of south-

eastern Baffin Island is quite rocky and steep with mostly rocky beaches and only 

localized sandy beaches, though tidal flat areas may have finer grained sediments (Miller 

et al. 1980). A study of the sand flats in Koojoose inlet near Iqaluit did not reveal 

significant erosion or deposition of sediments between 2009 and 2011 (Hatcher et al. 

2014) and Hatcher and Forbes (2015) indicated that erosional retreat of the coast is not a 

concern in the Iqaluit region. 

Another factor that could have influenced the species composition of the different 

communities is discrepancies in water depth among the historical and modern sampling 

periods, particularly at station 28 in the Iqaluit region. While this could partially be due to 

large 11 m tidal ranges near Iqaluit (Hatcher et al. 2014, Hatcher and Forbes 2015) and 

sampling at high tide versus low tide, some of the depth discrepancies were much larger 

than this tidal range.  Between 1967-1976 when the historical samples were collected, 

water depth was recorded as 30 m at station 28.  In 2016 when this station was re-

sampled the water depth was significantly lower with a water depth of 11.5 m, a 

difference of 18.5 m. This suggests that there was some spatial inaccuracy during the 

sampling process which resulted in a water depth discrepancy between the two sampling 

period.  These spatial discrepancies were minimized in this study through the 

measurement of a “sampling error buffer” that was placed around the mean centre of the 

modern stations.  The buffered region was used to more broadly define the water depth 

(bathymetry) and sea bottom hardness (backscatter) at each station. By imposing the 

buffer around the station, a greater range of bathymetry and backscatter values was 



163 
 

captured and the depth discrepancies were minimized. However, these water depth 

discrepancies could have serious implications for benthic community composition, 

especially where faunal distribution is related to water depth.  For example, the thyasirid 

bivalves Axinopsida orbiculata and Thyasira gouldi were both very abundant in the 

Frobisher Bay samples.  They are both found to occur in areas with high volumes of 

inorganic sedimentation (Wlodarska-Kowalczuk and Pearson 2004) but Axinopsida 

orbiculata was more prevalent at the shallower Iqaluit stations closer to shore (with a 

lower abundance of T. gouldi also present in the Iqaluit region; Chapter 2). 

Comparatively, T. gouldi was more abundant in the deeper Cairn Island stations (Chapter 

2). A. orbiculata prefers shallow water compared to T. gouldi (Dufour 2019 pers. comm.) 

and in their study examining the macrozoobenthos of Kongsfjord, Svalbard, Kaczmarek 

et al. (2005) also observed A. orbiculata to be more prevalent in waters around 15 m 

compared to T. gouldi which was observed more commonly in deeper waters (e.g. 50 m).  

The Iqaluit region experienced a reduction in the relative abundance of T. gouldi at two 

of the five stations sampled including station 28 and a complete loss of this species at 

another two Iqaluit stations. Therefore, it is possible that water depth discrepancies 

between the two sampling periods due to inaccurate or imprecise location data could have 

contributed to the changes observed in the distribution of the mollusc communities. 

It is difficult to confirm if the mollusc communities in inner Frobisher Bay have 

reached a point where they are unlikely to return to their historic state.  For example, 

McCann et al. (1981) summarized the findings of Ellis (1955, 1960, 1969) who observed 

many of the same bivalve and gastropod species in 1955, 1960 and 1961 and these 
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species persisted through the 1960’s and 1970’s as observed by Wacasey (1979, 1980) 

and still into 2016-2017 as observed in Chapter 2. Most of the stations sampled 

historically have only experienced small changes in mollusc species composition over 

time.  These communities could therefore be classified as “hybrid” communities (Hobbs 

et al. 2009).  Hybrid communities have experienced a significant change in composition 

or function but still represent some characteristics of their historic system (Hobbs et al. 

2009). These systems are more likely to prevail in areas that are dominated by long lived 

species who are tolerant of large environmental variations. The molluscs are a group of 

organisms that are long lived and can dominate the biomass in benthic communities 

(Feder et al. 1994a, Powell and Cummins 1985). Despite the loss of historical 

communities and the presence of new communities in inner Frobisher Bay, the majority 

of the stations experienced only small changes in species composition of the dominant 

taxa despite being designated as new distinct communities. For example, the 

presence/absence transformed analysis indicated that all six of the Cairn Island stations 

plus station 27 in the Iqaluit region were historically designated as Community C 

represented by the species Thyasira gouldi, Hiatella arctica, Musculus discors, Nuculana 

minuta, and Ennucula tenuis. After fifty years, four of these six stations transformed to 

Community B and were represented by the species Ennucula tenuis, Nuculana pernula, 

Thyasira gouldi, Yoldia hyperborea, Cylichna alba, and Macoma moesta.  Some species 

persisted over the 50-year timeframe of this study while some species were lost and 

others appeared. Historical Community C persisted over time and its distribution was 

either reduced in size as seen by the loss of this community at most stations, or it shifted 
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to different areas of the study area, or this community was lost at the stations sampled but 

persisted in other regions that were not sampled historically. New Community B has a 

wide potential distribution but the distribution overlap between historical Community C 

and modern Community B suggest that these two communities may to a certain extent 

occupy similar habitats and that these communities may not be so different.  

A possible reason for the spatial shifts observed in Community B(I) and 

Community C(II) is that there was a significant change observed in the sediment 

characteristics in the Cairn Island region including an increase in the proportion of silt 

(and subsequent decrease in the proportion of sand) in the sediments, and a siginificant 

increase in total organic carbon and total nitrogen within the sediments (tests conducted 

in Chapter 2). The change in sediment composition in this region could be the result of 

sedimentation from Tarr Inlet while an increase in organic carbon and nitrogen could be 

the result of greater light availability due to a loss of sea ice and these factors could be 

what influenced changes in species composition over time (as previously discussed in 

Chapter 2), though other factors including riverine discharge and urbanization discussed 

earlier could also be factors affecting the sedimentation here.  

It could be that hybrid communities may revert back to their historical 

characteristics with time (Hobbs et al. 2013b) and that the community changes and shifts 

observed are simply a result of temporal variability or patchiness within the benthic 

communities of inner Frobisher Bay. For example, Cusson et al. (2007) performed 

multivariate analysis on the entire benthic infaunal community dataset in inner Frobisher 

Bay using the historical benthic data collected by Wacasey et al. (1979, 1980) at the same 
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sampling stations as this paper as part of their study examining the biodiversity of benthic 

assemblages on the Arctic continental shelf.  They observed that the structure of the 

benthic assemblages exhibited significant community differences between seasons and 

years and they suggested that these observed differences may actually be greater than the 

spatial variations in community structure between stations (Cusson et al. 2007). This 

same trend was observed in Chapter 2 specifically in the molluscs.  This suggests that 

extensive temporal variability exists within a single station and this variability may mask 

any meaningful spatial change given the small scale of the study area and despite 

significant temporal differences in the communities being observed.  

Patchiness of benthic communities within marine soft sediments at small scales is 

also well known to exist (Morrisey et al. 1992). Morrisey et al. (1992) observed that the 

abundances of infauna in soft sediments were patchy at a range of spatial scales from 1 

metre to several kilometers while Volckaert (1987) observed patchiness in the 

distribution of polychaetes in soft sediments at scales less than 10 cm, 10 to 50 cm, and 

greater than 50 cm.  The distance between replicate samples collected using a benthic 

grab is unknown and depends on water depth and water movement but samples are 

expected to be representative of the community at a given location (Morrisey et al. 1992). 

Samples in this study were pooled to be comparative to the historical data and in doing 

so, this should have reduced any effect of patchiness within replicate grabs.  

Small sample size and spatial discrepancy between the historical and modern 

samples may be two additional factors that influenced the changes in community 

distribution within the study region and would suggest that the mollusc communities may 
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not have shifted as significantly as the distribution maps suggest. Two transformation 

methods were employed to compare the historical samples with the distribution of the 

modern mollusc communities but the samples collected cover only a small portion of the 

0.35 km2 study region. It is entirely possible that there were more molluscan communities 

present historically that were not sampled, that modern mollusc communities were 

present historically but were not sampled, or that historical communities that were lost 

are actually still present but were not re-sampled.  

The benthic communities sampled in Frobisher Bay have experienced some 

degree of change in their spatial distribution over the last 50 years and many factors may 

have contributed to this change. Many authors have voiced the importance of using 

historically datasets as baselines from which to measure future change in the absence of 

long-term datasets (e.g. Wolfe et al. 1987, Kiyko and Pogrebov 1997, Cusson et al. 2007, 

Renaud et al. 2007, Thurstan et al. 2015, Novoa et al. 2016) while other authors have 

cautioned against the comparison of historical and modern datasets (e.g. Cusson et al. 

2007) especially given that the temporal and spatial variability of the historical benthic 

communities in Frobisher Bay were found to be of similar magnitude. We recognized the 

limitations of comparing historical and modern datasets and focussed this study on the 

molluscs which are long-lived species in an effort to identify long-term community 

change. This was a first attempt to map spatial shifts over time in the molluscan 

communities of inner Frobisher Bay using solely bathymetry and backscatter multibeam 

data. While a larger modern sample size would have aided in a more accurate image of 

the current potential distribution of the mollusc communities in this region, the historical 
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samples provide a snapshot of what these communities once looked like in comparison to 

the modern community. This dataset provides as a useful benchmark dataset and a basis 

for future sampling from which to measure on-going spatial change in the benthos of 

Frobisher Bay given the future predictions around climate change and its potential impact 

on Arctic systems and considering anthropogenic impacts including continuous 

infrastructure development that are on-going in Frobisher Bay.  
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Chapter 4 Conclusions 
 

Long-term studies are crucial to our understanding of ecological responses to 

natural and anthropogenic environmental change (Carpenter et al. 1995). Lindenmayer et 

al. (2012) defines long-term studies as those that extend more than 10 years because it 

allows for repeated sampling of annual growth cycles and bioclimatic cycles which occur 

on decadal scales.  This definition was adopted by numerous Arctic benthic ecologists 

who have previously conducted long-term studies of rocky and soft bottom benthic 

communities in various regions across the Arctic (e.g. Dyer et al. 1984, Kiyko and 

Pogrebov 1997, Beuchel et al. 2006, Grebmeier et al. 2006, Renaud et al. 2007, Beuchel 

and Gulliksen 2008, Carroll et al. 2009, Kedra et al,. 2010, Kozlovskiy et al. 2011, 

Kortsch et al. 2012, and Grebmeier et al. 2015) in response to environmental change.  

In the circumpolar Arctic, the on-going effects of climate change have resulted in 

warming at twice the global rate (Richter-Menge et al. 2017), the implications of which 

include accelerated sea ice melt and sea water temperature rise (Richter-Menge 2017).  

These changes can have a profound effect on the surrounding benthic environment 

through increased light availability and primary production in surface waters and these 

changes directly influence the benthic communities that respond directly to pelagic 

processes (Wassman and Reigstad 2011). Despite the need for documenting long-term 

benthic community change in a warming Arctic, repeated long-term sampling is 

particularly difficult to accomplish in regions that are covered by sea ice for much of the 

year (Carey 1991). It is therefore imperative to utilize existing historical datasets in 
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combination with modern studies to answer questions about long-term temporal and 

spatial changes affecting benthic communities in response to a changing climate. This 

thesis is one of the first long-term studies to examine both temporal and spatial change in 

the benthic communities within the Canadian Arctic.   

 

4.1 Research Outcomes 
 

We used molluscs (phylum Mollusca), a group of benthic invertebrates, as an 

indicator species to detect long-term temporal and spatial community change within 

Frobisher Bay in light of the on-going effects of climate change in the Canadian Arctic. 

Historical molluscan sample data collected by Wacasey et al. (1979, 1980) was compared 

with modern molluscan sample data collected at the same stations 50 years later to 

identify long-term temporal (Chapter 2) and long-term spatial (Chapter 3) community 

change over a 50 year period by comparing two “snap-shots” in time. Long-term 

environmental data were incorporated into the analysis to help support our findings.  

In Chapter 2, we observed that the mollusc communities in two regions, the 

Iqaluit region and Cairn Island region, had experienced a change in community 

composition between the two time periods and functional diversity between the two time 

periods had also been reduced in the Cairn Island region.  These findings were observed 

in conjunction with changes observed in sediment grain size characteristics and sediment 

quality in the Cairn Island region in addition to a significant long-term decline in air 

temperature, significant losses of sea ice, and a change in the hydrology of the Sylvia 
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Grinnell River and Apex River, all repeatedly measured in the vicinity of the long-term 

ecology stations over the course of the study period (Government of Canada 2017 and 

Government of Canada 2018a, 2018b). Changes in the physical environment of the 

Iqaluit region were slightly more difficult to identify but influences of sedimentation and 

organic enrichment may be potential factors that influenced community composition in 

this region, though other forces may have played a part. Where there is stability in 

community structure, it can often be difficult to identify specific drivers of community 

change (Renaud et al. 2007). It is true, that while changes in community composition 

were observed, no significant decline in species richness or diversity were found and 

most historical and modern stations retained at least similar characteristics in terms of 

species composition. This indicates that benthic community function is being maintained 

in inner Frobisher Bay. Therefore, we cannot confirm that changing climate conditions in 

this region are responsible for the community changes observed in this study without 

looking at repeatedly sampled long-term trends. Therefore, these findings highlight the 

importance of systematic long-term sampling that can paint a more complete picture of 

the community level and functional changes that have occurred in the molluscan 

communities of inner Frobisher Bay. 

In Chapter 3, we took the approach of utilizing bathymetry and backscatter 

coverage data to produce distribution maps that highlighted the “potential distribution” of 

the modern molluscan communities. This approach was utilized because sample size was 

too small and precluded our ability to test the accuracy of the resulting maps. Square-root 

transformed data analysis of the environmental data identified four molluscan 
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communities within the historical sample data and four molluscan communities within 

the modern sample data, however, only two of these communities persisted over both 

time periods and all but one station experienced a transition to a new community over 

time. Comparatively our presence-absence data analysis identified two historical 

communities and four modern communities and eight of the eleven stations experienced a 

transition to a new community over time.  In both analyses, molluscan communities were 

observed to separate by water depth and backscatter (reflectivity of the sea bottom which 

is a measure of sea bottom hardness).  Environmental factors that may have contributed 

to the spatial shifts observed in the communities close to Iqaluit include an increase in 

terrestrial sourced carbon in the sediments as a result of changing hydrographic 

conditions in the Sylvia Grinnell River while in the Cairn Island region, the spatial shifts 

in community composition observed may be the result of significant changes in sediment 

characteristics (grain size composition, total carbon and total nitrogen in the sediments). 

The effects of urbanization in Iqaluit which has experienced rapid population growth 

from 900 in 1964 to 7,740 in 2016 (Statistics Canada 2019) may have also impacted the 

benthos.  Iqaluit has experienced significant infrastructure development along the coast 

and the coastal waters and the benthos may have been impacted by raw sewage disposal 

into the tidal flats near the LTE stations over the last fifty years. Other factors not 

identified in this study may have also influenced the modern spatial distribution of the 

molluscan communities observed. In this chapter we emphasized the need for a larger 

sample size in order to test the accuracy of the predictive habitat map as our small sample 
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size precluded our ability to incorporate in-situ biological sample data into the habitat 

map. 

 

4.2 Limitations and Recommendations 
 

The primary limitations of this thesis were a lack of systematic long-term 

sampling, small sample sizes, a lack of long-term environmental data associated with the 

stations sampled (e.g. bottom temperature, salinity, phytoplankton concentrations, etc.), 

and discrepancies in temporal and spatial coverage of the stations sampled. 

A lack of systematic long-term sampling and small sample sizes precluded our 

ability to monitor shorter-term temporal change within the molluscan communities of 

Frobisher Bay and therefore made it difficult to distinguish between long-term change 

and natural shorter-term fluctuations. Data on the range of natural variability that may 

exist within these communities was limited to one station within the historical samples 

which experienced greater inter-annual and seasonal variation in species richness than 

was observed between the historical and modern time periods. A lack of supporting 

environmental data associated with the stations sampled resulted in having to rely on un-

related datasets to support the molluscan community changes observed and these datasets 

did not necessarily correspond to the timeline of this study. Small sample size also 

limited our ability use separate training and testing datasets to predict the distribution of 

the modern communities. Lastly, discrepancies in temporal and spatial coverage of 

sampling sites and in sampling methods is a common limitation to comparing historical 



185 
 

datasets with modern datasets (Novoa et al. 2016).  These discrepancies can ultimately 

mask the long-term changes that are being sought.  For example, some of the stations 

sampled in Frobisher Bay (e.g. Station 28) experienced a large difference in water depth 

when the historical sample was collected compared to when the modern sample was 

collected.  Water depth is a proxy for many environmental factors which affect the 

distribution of benthic organisms (Roy et al. 2014) and if there is a high degree of 

patchiness within the benthic community, these factors could all contribute to the 

differences in community structure observed among the molluscs at these particular 

stations. 

We recommend that future research should continue to utilize historical datasets 

as they are an invaluable tool with which to examine historic benthic Arctic community 

structure in “pristine” conditions and which can be used as a benchmark from which to 

measure long-term community change. In addition to the stations sampled in this study, 

an additional 158 benthic grab samples were collected were collected throughout 

Frobisher Bay for sediment and/or biota onboard the MV Nulialjuk in 2016 but were not 

processed and utilized in this study due to the scope of this project (Appendix 10). These 

samples, along with the samples used as part of this thesis, can also be used as a 

benchmark dataset from which to measure future change in the benthic communities of 

Frobisher Bay. 

We recommend that consistent long-term monitoring of the benthos should occur 

in order to gain an understanding of the natural fluctuations that exist within the benthic 

community being examined so that long-term community change can be distinguished 
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from natural shorter-term variability within the community. This includes setting up a 

sampling design with an appropriate sample size that will be comparable in the long-term 

and that would be comparable with historical data. In light of the development of 

Iqaluit’s deep-sea port and the associated dredging of the southern tip of Koojesse Inlet 

(Tranter 2019) after sampling was conducted for this thesis, we further recommend that 

consistent long-term monitoring of the benthos of Frobisher Bay should continue to occur 

given the effects that dredging will have on the benthos in this region and so that long-

term recovery of the benthic communities in this area can be documented. Both the 

historical and modern dataset utilized in this study can be used as a benchmark from 

which to measure these changes. 

 
 

4.3 Emerging Scientific Questions 
 

Our knowledge of Arctic benthic communities is continuing to grow but the 

vastness of the Arctic and the difficulties and limitations associated with sampling in the 

North limit our ability to conduct repetitive sampling. Fortunately, the city of Iqaluit is 

the gateway to Frobisher Bay and is one of the more accessible locations from which to 

conduct sampling in the marine environment.  

Within Frobisher Bay, the shallow coastal environment is currently experiencing 

some disturbance due to current and on-going infrastructure development. In light of 

these coastal pressures, it is important to ask how infrastructure development such as the 

installation of a deep water port off of Indian Head may impact the benthos in this region.   
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This port is currently being developed with dredgeing of the seabed taking place between 

July and November 2019.  The historical Frobisher Bay samples collected between 1967-

1976 and again in 2016 provide excellent baseline datasets from which to measure these 

changes.  The development of the deep-water port also allows for an opportunity to 

examine the rate of recovery of shallow water benthic ecosystems affected by 

infrastructure development in the Arctic. 

This study highlighted some of the long-term datasets that are available for the 

Frobisher Bay region (e.g. air temperature, ice cover and thickness) but other excellent 

environmental (e.g. oceanographic data) and biological (e.g. phytoplankton production) 

historical datasets also exist, providing a snapshot back in time to what the coastal marine 

environment once looked like. In this thesis, we collected benthic infaunal samples to 

compare with a historical dataset, but oceanographic data and data related to primary 

production in Frobisher Bay were not collected (though some data sets have been 

collected from the CCGS Amundsen through ArcticNet science cruises).  One question 

that could help answer whether climate related changes are affecting the benthos is to 

conduct a long-term study that examines long-term oceanographic and primary 

productivity changes in Frobisher Bay as these were noticeable data gaps in this thesis. 

The long-term ecology samples collected during this thesis were only a small sub-

set of samples collected in Frobisher Bay during the 2016 field season. Once processed, 

this dataset provides an excellent benchmark dataset from which any number of studies 

could branch off.  This dataset also provides an opportunity from which to conduct 
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repeated sampling in support of building one of the first long-term systematically 

sampled datasets in the Canadian North.  

 

4.4 Conclusion 
 

This thesis aimed to answer questions about long-term community change in the 

benthic molluscan communities of Frobisher Bay.  Thus far, research on soft bottom 

benthos in the Canadian Arctic has primarily been focussed on baseline studies. Baseline 

studies dot the Canadian Arctic but to our knowledge, no long-term studies have been 

conducted to document changes to the benthos in relation to the ongoing effects of 

climate change. Canada is trailing behind compared to other countries which have 

conducted such studies. This thesis was a first step in conducting a long-term analysis of 

molluscan community change in the Canadian Arctic and it has provided insight into 

some possible factors that influenced both the temporal and spatial changes observed 

within the molluscan communities of Frobisher Bay over the last fifty years. Despite the 

difficulties associated with using historical datasets to answer important questions about 

long-term temporal and spatial change in Arctic benthos, the findings of this thesis 

indicate that historical datasets are invaluable records and baselines from which future 

change can and should be measured. 
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Appendices 
 

Appendix 1. Total organic carbon and total nitrogen sample processing methodology provided by the 

Stable Isotope Lab Coordinator, Alison Pye, Memorial University of Newfoundland. 

 

Carlo-Erba NA1500 Elemental Analyser and ConFloIII Interface: NC setup  

The Carlo-Erba NA1500 Elemental Analyser (EA) consists of an autosampler, oxidation and reduction 

ovens, water trap, gas chromatographic (GC) column and a thermal conductivity meter (TCD).  

The entire EA system is continuously flushed with He (carrier gas) at a rate of 90-110 ml/min. The sample, 

sealed in a tin capsule, is loaded into the autosampler. The autosampler drops the capsule into the oxidation 

reactor (1050C) just as a pulse of oxygen, flushed by He, arrives. Reaction of O2 with the tin creates a 

“flash combustion” (temperature instantaneously increases to 1800C) which totally oxidizes the sample 

into combustion products. The combustion gases pass through an oxidation catalyst, CrO3, which ensures 

complete oxidation of the sample, and silvered cobaltous/cobaltic oxide, which removes halides and SO2. 

The gas mixture passes through the reduction reactor (650C), reduced copper, which reduces nitrogen 

oxides to N2 and also absorbs excess O2. The gases pass through a Mg(ClO4)2 water trap and the remaining 

gases (N2, CO2) enter the chromatographic column, a 3 m stainless steel Poropak QS 50/80 mesh column 

held at 40-100C, dependent on sample type and gas(es) of interest. The individual gases are separated as 

they pass through the column and when they reach the TCD, they are detected as separate gas peaks: first 

N2, then CO2. The TCD output signal for each is proportional to the concentration of each combustion gas, 

allowing elemental determination (%N, %C) based on sample weight.   

From here the He carries the gases to the ConFloIII interface. This unit has split tubes, open to the 

atmosphere, which allow a portion of the He and combustion gases to enter directly into the ion source of 

the mass spectrometer (MS) (DeltaVPlus) via fused glass capillaries. During operation, He from the EA 

continuously flows into the MS (hence the term EA-CF). All gases exiting the EA also enter the ion source, 

but the instrument only records signals for the gases of interest, as defined through the software and by 

instrument configuration. The ConFloIII also injects reference gases from gas cylinders into the He stream 

through the glass capillaries.  

For some procedures, large sample sizes are required that may result in too much of a gas being produced 

(may cause damage to the ion source or pumps). In these instances, all or a portion of the gas from the EA 

must be diluted. For dilution, He is injected through another capillary into the split tube and into the stream 

of gases coming from the EA, forcing a higher portion of the gases to flow outside the tube, thereby 

reducing the amount entering the MS source.  

Alison Pye        Phone (709) 864-3217 

Stable Isotope Lab Coordinator       Room ER5034 

CREAIT Network –TERRA Facility      apye@mun.ca 

 

Updated: October 12, 2016 
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Appendix 2. All samples collected in Frobisher Bay aboard the M.V. Calanus (1967-1976), M.V. Nulialjuk (2016), and CCGS Amundsen (2016). 

Station Rep. 

No. 

Pooled 

Reps 

Date 

Sampled 

Time 

Sampled 
Lat. (DD) Long. (DD) 

Water 

Depth 

(m) 

Vessel 
Grab 

Sampler 

Depth 

Sed. 

Sample 

(m) 

Length 

Sed. 

Sample 

(m) 

Width 

Sed. 

Sample 

(m) 

Area 

Sampled 

(m2) 

Sed. Biota 

Historical Samples 

5 N/A 6 23-Jul-68 N/A 63.6731 -68.4289 45 M.V. Calanus Petterson N/A N/A N/A 0.39 N Y 

5 N/A 6 20-Aug-68 N/A 63.6731 -68.4289 60 M.V. Calanus Petterson N/A N/A N/A 0.39 Y Y 

5 N/A 6 3-Sep-68 N/A 63.6731 -68.4289 60 M.V. Calanus Petterson N/A N/A N/A 0.39 N Y 

5 N/A 6 8-Oct-68 N/A 63.6731 -68.4289 62 M.V. Calanus Petterson N/A N/A N/A 0.39 N Y 

5 N/A N/A 2-Sep-69 N/A 63.6731 -68.4289 53 M.V. Calanus Petterson N/A N/A N/A 0.39 Y N 

5 N/A 6 6-Aug-70 N/A 63.6731 -68.4289 72 M.V. Calanus Petterson N/A N/A N/A 0.39 N Y 

5a N/A 6 1-Aug-68 N/A 63.6683 -68.4342 26 M.V. Calanus Petterson N/A N/A N/A 0.39 Y Y 

5a N/A 6 20-Aug-68 N/A 63.6683 -68.4342 32 M.V. Calanus Petterson N/A N/A N/A 0.39 N Y 

5a N/A N/A 2-Sep-69 N/A 63.6683 -68.4342 36 M.V. Calanus Petterson N/A N/A N/A 0.39 Y N 

5c N/A 6 23-Aug-69 N/A 63.6611 -68.422 31 M.V. Calanus Petterson N/A N/A N/A 0.39 Y Y 

5d N/A 6 23-Aug-69 N/A 63.6776 -68.4216 43 M.V. Calanus Petterson N/A N/A N/A 0.39 Y Y 

5e N/A 6 23-Aug-69 N/A 63.6752 -68.4304 58 M.V. Calanus Petterson N/A N/A N/A 0.39 Y Y 

5f N/A 6 23-Aug-69 N/A 63.6642 -68.4195 73 M.V. Calanus Petterson N/A N/A N/A 0.39 Y Y 

5b N/A 6 29-Jul-69 N/A 63.7256 -68.5218 15 M.V. Calanus Petterson N/A N/A N/A 0.39 N Y 

5b N/A 69 3-Sep-69 N/A 63.7256 -68.5218 15 M.V. Calanus Petterson N/A N/A N/A 0.39 Y Y 

5b N/A 5 8-Aug-73 N/A 63.7256 -68.5218 14 M.V. Calanus Petterson N/A N/A N/A 0.33 Y Y 

5b N/A 5 19-Aug-76 N/A 63.7256 -68.5218 14 M.V. Calanus Petterson N/A N/A N/A 0.33 Y Y 

25 N/A 5 8-Aug-73 N/A 63.7227 -68.5162 30 M.V. Calanus Petterson N/A N/A N/A 0.33 Y Y 

25 N/A 5 18-Aug-76 N/A 63.7227 -68.5162 28 M.V. Calanus Petterson N/A N/A N/A 0.33 Y Y 

26 N/A 5 8-Aug-73 N/A 63.7134 -68.5039 40 M.V. Calanus Petterson N/A N/A N/A 0.33 Y Y 

27 N/A 5 8-Aug-73 N/A 63.7098 -68.5214 43 M.V. Calanus Petterson N/A N/A N/A 0.33 Y Y 

28 N/A 4 13-Aug-73 N/A 63.6969 -68.4885 30 M.V. Calanus Petterson N/A N/A N/A 0.25 Y Y 

Modern Samples               
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25 G1  10-Oct-16 7:05 63.72269167 -68.51627 28.5 M.V. Nulialjuk Van Veen 0.03 0.37 0.30 0.1110 Y Y 

25 G2  10-Oct-16 7:15 63.722415 -68.516296 27.6 M.V. Nulialjuk Van Veen 0.07 0.37 0.30 0.1110 Y Y 

25 G4  10-Oct-16 7:35 63.72261667 -68.516466 27.6 M.V. Nulialjuk Van Veen 0.10 0.37 0.30 0.1110 Y Y 

26 G2  10-Oct-16 8:45 63.712755 -68.503121 35.2 M.V. Nulialjuk Van Veen 0.05 0.37 0.30 0.1110 Y Y 

26 G3  10-Oct-16 8:55 63.712595 -68.503075 35.9 M.V. Nulialjuk Van Veen 0.07 0.37 0.30 0.1110 Y Y 

26 G4  10-Oct-16 9:05 63.71231333 -68.502588 37.8 M.V. Nulialjuk Van Veen 0.07 0.37 0.30 0.1110 Y Y 

27 G1  10-Oct-16 17:30 63.69688167 -68.489226 33.1 M.V. Nulialjuk Van Veen 0.09 0.37 0.30 0.1110 Y Y 

27 G2  10-Oct-16 17:35 63.69708333 -68.488943 30.1 M.V. Nulialjuk Van Veen 0.08 0.37 0.30 0.1110 Y Y 

27 G3  10-Oct-16 17:40 63.69699833 -68.489645 ??? M.V. Nulialjuk Van Veen 0.08 0.37 0.30 0.1110 Y Y 

28 G1  10-Oct-16 10:30 63.70996333 -68.521091 11.5 M.V. Nulialjuk Van Veen 0.03 0.37 0.30 0.1110 Y Y 

28 G4  10-Oct-16 10:40 63.70998833 -68.521396 10.3 M.V. Nulialjuk Van Veen 0.03 0.28 0.30 0.0833 Y Y 

28 G5  10-Oct-16 10:45 63.71012167 -68.521781 10.2 M.V. Nulialjuk Petite Ponar 0.05 0.16 0.16 0.0240 Y Y 

5b G2  10-Oct-16 14:00 63.725545 -68.520935 8.5 M.V. Nulialjuk Petite Ponar 0.03 0.16 0.16 0.0240 Y Y 

5b G3  10-Oct-16 14:05 63.72553833 -68.52046 10.5 M.V. Nulialjuk Petite Ponar 0.05 0.16 0.16 0.0240 Y Y 

5b G4  10-Oct-16 14:10 63.72573167 -68.521918 15.4 M.V. Nulialjuk Petite Ponar 0.03 0.16 0.16 0.0240 Y Y 

5 G1  10-Nov-16 8:55 63.67292333 -68.429376 57 M.V. Nulialjuk Van Veen 0.09 0.19 0.30 0.0555 Y Y 

5 G2  10-Nov-16 9:00 63.67350667 -68.428265 58.6 M.V. Nulialjuk Van Veen 0.13 0.37 0.30 0.1110 Y Y 

5 G3  10-Nov-16 9:05 63.673585 -68.430486 56.3 M.V. Nulialjuk Van Veen 0.08 0.37 0.30 0.1110 Y Y 

5a G7  14/10/2016 7:10 63.66833667 -68.433588 69.2 M.V. Nulialjuk Van Veen 0.12 0.37 0.30 0.1110 Y Y 

5a G8  14/10/2016 7:15 63.66823 -68.433846 68.1 M.V. Nulialjuk Van Veen 0.09 0.37 0.30 0.1110 Y Y 

5a G9  14/10/2016 7:20 63.66869667 -68.433573 70 M.V. Nulialjuk Van Veen 0.07 0.37 0.30 0.1110 Y Y 

5c G1  10-Nov-16 13:30 63.661055 -68.421603 77.2 M.V. Nulialjuk Van Veen 0.10 0.37 0.30 0.1110 Y Y 

5c G2  10-Nov-16 13:40 63.660845 -68.422138 66.3 M.V. Nulialjuk Van Veen 0.08 0.37 0.30 0.1110 Y Y 

5c G4  10-Nov-16 13:45 63.66101667 -68.421953 74.1 M.V. Nulialjuk Van Veen 0.07 0.37 0.30 0.1110 Y Y 

5d G1  10-Nov-16 7:55 63.67759333 -68.420925 25 M.V. Nulialjuk Van Veen 0.07 0.37 0.30 0.1110 Y Y 

5d G2  10-Nov-16 8:00 63.67804833 -68.422216 27 M.V. Nulialjuk Van Veen 0.10 0.37 0.30 0.1110 Y Y 

5d G3  10-Nov-16 8:20 63.67785167 -68.421238 23.9 M.V. Nulialjuk Van Veen 0.08 0.37 0.30 0.1110 Y Y 

5e G1  10-Nov-16 7:00 63.67566833 -68.430296 52.3 M.V. Nulialjuk Van Veen 0.13 0.28 0.30 0.0833 Y Y 
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5e G2  10-Nov-16 7:25 63.67572333 -68.431281 53.7 M.V. Nulialjuk Van Veen 0.05 0.37 0.30 0.1110 Y Y 

5e G3  10-Nov-16 7:30 63.67519167 -68.429913 55.4 M.V. Nulialjuk Van Veen 0.08 0.37 0.30 0.1110 Y Y 

5f G6  10-Nov-16 14:10 63.663945 -68.419608 90.1 M.V. Nulialjuk Van Veen 0.09 0.37 0.30 0.1110 Y Y 

5f G7  10-Nov-16 14:20 63.66412833 -68.42056 88.2 M.V. Nulialjuk Van Veen 0.06 0.19 0.30 0.0555 Y Y 

5f G8  10-Nov-16 14:30 63.66423833 -68.41944 90.2 M.V. Nulialjuk Van Veen N/A N/A N/A N/A Y Y 

5f G9  10-Nov-16 14:40 63.66399167 -68.419753 89.9 M.V. Nulialjuk Van Veen N/A N/A N/A N/A Y Y 

5g G1  10-Nov-16 11:20 63.662085 -68.414433 93.8 M.V. Nulialjuk Van Veen 0.06 0.37 0.30 0.1110 Y Y 

5g G2  10-Nov-16 11:20 63.662085 -68.414425 92.8 M.V. Nulialjuk Van Veen N/A N/A N/A N/A Y Y 

5g G3  10-Nov-16 11:20 63.66272333 -68.41404 86.1 M.V. Nulialjuk Van Veen N/A N/A N/A N/A Y Y 

5g G4  10-Nov-16 11:20 63.66222 -68.413978 90.8 M.V. Nulialjuk Van Veen 0.11 0.37 0.30 0.1110 Y Y 

FB2-1(5g) Rep1  16-Jul-16 19:39 63.66358333 -68.422383 80 CCGS Amundsen Box Core 0.15 0.51 0.25 0.1290 Y Y 

FB2-1(5g) Rep2  16-Jul-16 19:53 63.6635 -68.422 80 CCGS Amundsen Box Core 0.15 0.51 0.25 0.1290 Y Y 

FB2-1(5g) Rep3  16-Jul-16 20:06 63.6635 -68.421666 81 CCGS Amundsen Box Core 0.15 0.51 0.25 0.1290 Y Y 

FB2-2(5e) Rep1  16-Jul-16 18:39 63.67523333 -68.43035 63 CCGS Amundsen Box Core 0.15 0.51 0.25 0.1290 Y Y 

FB2-2(5e) Rep2  16-Jul-16 18:59 63.67528333 -68.430466 62 CCGS Amundsen Box Core 0.15 0.51 0.25 0.1290 Y Y 

FB2-2(5e) Rep3  16-Jul-16 19:14 63.67521667 -68.430483 62 CCGS Amundsen Box Core 0.15 0.51 0.25 0.1290 Y Y 

* Van Veen - 22D x 37L x 30W (cm); Petite Ponar - 11D x 15.5L x 15.5D (cm); Peterson Grab - Approx 30 x 30 (cm)       
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Appendix 3. Supporting long-term environmental data collected in Frobisher Bay. 

Temperature 

Year Month 
Mean Temperature 

(ºC) 

1967 January -23.5 

1967 February -35.6 

1967 March -26.5 

1967 April -17.4 

1967 May -0.8 

1967 June 2.9 

1967 July 7.7 

1967 August 7.2 

1967 September 1.1 

1967 October -6.2 

1967 November -14.6 

1967 December -19.5 

1968 January -27.5 

1968 February -24.2 

1968 March -26.9 

1968 April -10.5 

1968 May -4.2 

1968 June 2.8 

1968 July 6.3 

1968 August 6.7 

1968 September 3.3 

1968 October 0 

1968 November -12 

1968 December -18.9 

1969 January -19.8 

1969 February -16.9 

1969 March -23 

1969 April -19.5 

1969 May -3.6 

1969 June 3.7 

1969 July 9.8 

1969 August 6.9 

1969 September 1.9 

1969 October -5.4 

1969 November -10.5 

1969 December -20.3 

1970 January -24.1 

1970 February -26.3 

1970 March -18.5 

1970 April -16.7 

1970 May -6.9 

1970 June 1.6 

1970 July 5.9 

1970 August 6.5 

1970 September 2.2 

1970 October -3.2 

1970 November -9.9 

1970 December -23.1 

1971 January -22.4 

1971 February -26.9 

1971 March -17.8 

1971 April -12.9 

1971 May -4 

1971 June 3.8 

1971 July 6.6 

1971 August 7.1 

1971 September 1.4 

1971 October -3.2 

1971 November -11.9 

1971 December -29.9 

1972 January -32.4 

1972 February -31.1 

1972 March -27.5 

1972 April -15.3 

1972 May -6.9 

1972 June -0.1 

1972 July 5.7 

1972 August 5.2 

1972 September 0.8 

1972 October -7 
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1972 November -15.6 

1972 December -28.6 

1973 January -29.1 

1973 February -29.8 

1973 March -25.5 

1973 April -14.3 

1973 May -3.3 

1973 June 3.6 

1973 July 7.3 

1973 August 8 

1973 September 4.3 

1973 October -2.9 

1973 November -7.6 

1973 December -22.8 

1974 January -30.7 

1974 February -26.3 

1974 March -25 

1974 April -17.2 

1974 May -2.8 

1974 June 5.5 

1974 July 8.6 

1974 August 7 

1974 September 1.7 

1974 October -5.1 

1974 November -13.9 

1974 December -27.9 

1975 January -29.7 

1975 February -24.8 

1975 March -25.6 

1975 April -16.2 

1975 May -3.2 

1975 June 6.9 

1975 July 7.7 

1975 August 8.3 

1975 September 2.6 

1975 October -3 

1975 November -12.6 

1975 December -22.6 

1976 January -25.4 

1976 February -29.4 

1976 March -25.7 

1976 April -14.7 

1976 May -2.7 

1976 June 3.4 

1976 July 6 

1976 August 5.1 

1976 September 1.8 

1976 October -10.4 

1976 November -13.3 

1976 December -22.2 

1977 January -16.2 

1977 February -24.9 

1977 March -16.3 

1977 April -14.1 

1977 May -2.5 

1977 June 4.4 

1977 July 8.1 

1977 August 7 

1977 September 2.5 

1977 October -3.8 

1977 November -7 

1977 December -22.8 

1978 January -30.7 

1978 February -22.2 

1978 March -27.6 

1978 April -15.9 

1978 May -6.3 

1978 June 0.6 

1978 July 5.8 

1978 August 6.8 

1978 September 1.9 

1978 October -10 

1978 November -21.9 

1978 December -15.1 

1979 January -21.6 

1979 February -32.2 

1979 March -21.7 

1979 April -11.2 

1979 May -0.5 

1979 June 2.7 

1979 July 7.5 

1979 August 6.3 
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1979 September 2 

1979 October -3.5 

1979 November -15.3 

1979 December -23.5 

1980 January -20.4 

1980 February -25.3 

1980 March -19.5 

1980 April -15.8 

1980 May -1 

1980 June 4.4 

1980 July 7.4 

1980 August 7.7 

1980 September 1.5 

1980 October -3.5 

1980 November -10.1 

1980 December -22.4 

1981 January -21.1 

1981 February -22.1 

1981 March -13.2 

1981 April -13.3 

1981 May -4.8 

1981 June 3.8 

1981 July 9 

1981 August 7.5 

1981 September 4 

1981 October -2.2 

1981 November -11.4 

1981 December -16.8 

1982 January -18.8 

1982 February -28.9 

1982 March -27.3 

1982 April -16.5 

1982 May -5.6 

1982 June 3.9 

1982 July 7.5 

1982 August 6.6 

1982 September -0.2 

1982 October -5.9 

1982 November -13.8 

1982 December -27.7 

1983 January -33.9 

1983 February -31.5 

1983 March -26.4 

1983 April -13.3 

1983 May -6.1 

1983 June 3.8 

1983 July 7.7 

1983 August 5.9 

1983 September 1.9 

1983 October -5.7 

1983 November -16.2 

1983 December -26.2 

1984 January -33.3 

1984 February -31.7 

1984 March -23 

1984 April -15.7 

1984 May -5.1 

1984 June 3.6 

1984 July 9 

1984 August 6 

1984 September 1.6 

1984 October -4.5 

1984 November -13.8 

1984 December -24.6 

1985 January -17.9 

1985 February -24.9 

1985 March -23.8 

1985 April -17.4 

1985 May -4 

1985 June 6.3 

1985 July 8.9 

1985 August 8.2 

1985 September 3.6 

1985 October -3.4 

1985 November -9.6 

1985 December -11.8 

1986 January -25.9 

1986 February -20.1 

1986 March -26 

1986 April -12.9 

1986 May -3.5 

1986 June 1.8 



200 
 

1986 July 8.8 

1986 August 5.9 

1986 September 2.5 

1986 October -10.8 

1986 November -17.3 

1986 December -26.4 

1987 January -28.3 

1987 February -29.2 

1987 March -24.6 

1987 April -16.2 

1987 May -7.7 

1987 June 3.5 

1987 July 7.6 

1987 August 6 

1987 September 4.2 

1987 October -4.1 

1987 November -14.1 

1987 December -21.4 

1988 January -28.2 

1988 February -26.5 

1988 March -21 

1988 April -12.6 

1988 May -4.4 

1988 June 2.9 

1988 July 7.2 

1988 August 7.8 

1988 September 3.4 

1988 October -1.2 

1988 November -12.7 

1988 December -25.6 

1989 January -31.6 

1989 February -30.7 

1989 March -28.5 

1989 April -13.2 

1989 May -7.6 

1989 June 3.8 

1989 July 8.6 

1989 August 7 

1989 September 0.6 

1989 October -6.9 

1989 November -11.7 

1989 December -21.3 

1999 January -29.4 

1990 February -31.9 

1990 March -22.8 

1990 April -17.4 

1990 May -5.2 

1990 June 3.3 

1990 July 8.3 

1990 August 6.1 

1990 September 2 

1990 October -6.5 

1990 November -12.3 

1990 December -27.4 

1991 January -32.1 

1991 February -29 

1991 March -22.5 

1991 April -17.8 

1991 May -7.1 

1991 June 6.2 

1991 July 9.2 

1991 August 8.2 

1991 September 2.3 

1991 October -5 

1991 November -9.8 

1991 December -21.9 

1992 January -25.4 

1992 February -33.4 

1992 March -27.1 

1992 April -19.2 

1992 May -8.3 

1992 June 0.6 

1992 July 7.3 

1992 August 6.7 

1992 September 1.7 

1992 October -2.8 

1992 November -18.4 

1992 December -25.7 

1993 January -31.5 

1993 February -34.6 

1993 March -27.2 

1993 April -18.9 
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1993 May -4.1 

1993 June 3.8 

1993 July 6.2 

1993 August 6.2 

1993 September 1.9 

1993 October -3.9 

1993 November -16.4 

1993 December -26.3 

1994 January -26.5 

1994 February -27.1 

1994 March -26.2 

1994 April -13.4 

1994 May -2.8 

1994 June 3.6 

1994 July 7.3 

1994 August 6 

1994 September 1.9 

1994 October -3.5 

1994 November -13.6 

1994 December -22.1 

1995 January -23.6 

1995 February -28.8 

1995 March -24.8 

1995 April -9.6 

1995 May -0.9 

1995 June 4.8 

1995 July 7.2 

1995 August 8 

1995 September 1.8 

1995 October -3.5 

1995 November -5.7 

1995 December -21.8 

1996 January -26.7 

1996 February -22.8 

1996 March -23.2 

1996 April -8.7 

1996 May -3.8 

1996 June 2.2 

1996 July 8.9 

1996 August 6.2 

1996 September 2.8 

1996 October  

1996 November -11.8 

1996 December -15.9 

1997 January -25.1 

1997 February -31.1 

1997 March -21.2 

1997 April -15.4 

1997 May -1.1 

1997 June 5.5 

1997 July 8.1 

1997 August 7.2 

1997 September 2.4 

1997 October -3 

1997 November -10.8 

1997 December -19.1 

1998 January -28.9 

1998 February -30.2 

1998 March -25.8 

1998 April -12.9 

1998 May -2.8 

1998 June 5.8 

1998 July 7 

1998 August 8.4 

1998 September 3.9 

1998 October -3.5 

1998 November -9.4 

1998 December -18.2 

1999 January -28 

1999 February -29 

1999 March -18.8 

1999 April -10.9 

1999 May -4.4 

1999 June 2 

1999 July 7.4 

1999 August 6.8 

1999 September 2.7 

1999 October -4.8 

1999 November -15.4 

1999 December -15.5 

2000 January -27.4 

2000 February -28.6 
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2000 March -21.2 

2000 April -12.4 

2000 May -5.9 

2000 June 2.4 

2000 July 9 

2000 August 8.7 

2000 September 3.1 

2000 October -4.9 

2000 November -9.2 

2000 December -12.9 

2001 January -28.9 

2001 February -27.9 

2001 March -17 

2001 April -12.9 

2001 May -3.2 

2001 June 3.6 

2001 July 9.9 

2001 August 7 

2001 September 3.1 

2001 October -1.8 

2001 November -13 

2001 December -15.4 

2002 January -28.7 

2002 February -29.9 

2002 March -25.9 

2002 April -15.3 

2002 May -4.2 

2002 June 4.1 

2002 July 8.7 

2002 August 7.5 

2002 September 3 

2002 October -1.6 

2002 November -11 

2002 December -17.6 

2003 January -21.1 

2003 February -30.8 

2003 March -23.8 

2003 April -13.4 

2003 May -0.8 

2003 June 3.5 

2003 July 9 

2003 August 7.8 

2003 September 4.6 

2003 October -1.3 

2003 November -8.7 

2003 December -16.6 

2004 January -25.6 

2004 February -23.2 

2004 March -26.5 

2004 April -14.9 

2004 May -1.9 

2004 June 3.8 

2004 July 8.4 

2004 August 6.4 

2004 September 2.6 

2004 October -1.1 

2004 November -10.4 

2004 December -24.2 

2005 January -31.1 

2005 February -22.6 

2005 March -17 

2005 April -10 

2005 May -2.5 

2005 June 4.2 

2005 July 7.7 

2005 August 7.1 

2005 September 3.4 

2005 October -0.8 

2005 November -7.7 

2005 December -21 

2006 January -26.4 

2006 February -21.3 

2006 March -17.2 

2006 April -11.3 

2006 May -0.6 

2006 June 4.5 

2006 July 9.4 

2006 August 8.3 

2006 September 3.9 

2006 October -0.6 

2006 November -9.2 

2006 December -19.1 
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2007 January -24.4 

2007 February -18.8 

2007 March -23 

2007 April -14.1 

2007 May -5.9 

2007 June 3.2 

2007 July 6.6 

2007 August 8.2 

2007 September 2.4 

2007 October -4.6 

2007 November -11.3 

2007 December -23.6 

2008 January  

2008 February  

2008 March  

2008 April  

2008 May  

2008 June  

2008 July  

2008 August 7 

2008 September 2.4 

2008 October -3.3 

2008 November -14.4 

2008 December -24.2 

2009 January -24.4 

2009 February -24.8 

2009 March -21.6 

2009 April -14.7 

2009 May -5.4 

2009 June 3.7 

2009 July 10.5 

2009 August 7.3 

2009 September 2 

2009 October -5.5 

2009 November -12.1 

2009 December -13.4 

2010 January -21.6 

2010 February -17.4 

2010 March -19.5 

2010 April -9.9 

2010 May -1.7 

2010 June 5.3 

2010 July 9.3 

2010 August 9.2 

2010 September 5.2 

2010 October 0.8 

2010 November -2.2 

2010 December -8.5 

2011 January -16.9 

2011 February -28.2 

2011 March -23.8 

2011 April -17.4 

2011 May -5 

2011 June 4 

2011 July 8.8 

2011 August 7.3 

2011 September 3.2 

2011 October -4.7 

2011 November -9.5 

2011 December -16.3 

2012 January -26.9 

2012 February -24.8 

2012 March -24.2 

2012 April -13.2 

2012 May -0.6 

2012 June 4.7 

2012 July 7.5 

2012 August 7.2 

2012 September 4.1 

2012 October -3.4 

2012 November -10 

2012 December -17.1 

2013 January -24.9 

2013 February -24.3 

2013 March -15.9 

2013 April -10.7 

2013 May -6.7 

2013 June 2.8 

2013 July 7.2 

2013 August 7.6 

2013 September 2.3 

2013 October -1.6 
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2013 November -15.2 

2013 December -23.2 

2014 January -19.3 

2014 February -25.8 

2014 March -25.3 

2014 April -17.8 

2014 May -1.7 

2014 June 4.4 

2014 July 9.1 

2014 August 7.4 

2014 September 2.4 

2014 October -3.4 

2014 November -12.6 

2014 December -20.1 

2015 January -31.2 

2015 February -32.1 

2015 March -25.4 

2015 April -14.7 

2015 May -3.5 

2015 June 2.2 

2015 July 4.2 

2015 August 5.7 

2015 September 2.4 

2015 October -4.8 

2015 November -12.9 

2015 December -23.5 

2016 January -23.6 

2016 February -24.8 

2016 March -22.8 

2016 April -11.8 

2016 May -1.4 

2016 June 4.9 

2016 July 6.2 

2016 August 8.8 

2016 September 3.1 

2016 October -6.1 

2016 November -10.7 

2016 December -21.7 

2017 January -20.4 

2017 February -27.7 

2017 March -23 

2017 April -14.9 

2017 May -2.4 

2017 June 4.6 

2017 July 7.4 

2017 August 8 

2017 September 2.5 

2017 October -3.3 

2017 November -8.9 

2017 December -15.7 

 

Length of Ice Season and Ice Thickness 

Year 
Ice Season 

Length (Days) 

Max Ice Thickness 

(cm) 

1967 203 175 

1968 224 165 

1969 204 147 

1970 203 155 

1971 207 165 

1972 237 202 

1973 249 197 

1974 198 185 

1975 203 183 

1976 210 178 

1977 203 132 

1978 210 183 

1979 231 170 

1980 217 171 

1981 203 157 

1982 203 164 

1983 223 183 

1984 212 192 

1985 202 180 

1986 182 110 

1987 210 175 

1988 210 165 

1989 209 187 

1990 203 185 

1991 217 153 

1992   

1993  202 

1994 217 168 
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1995 196 157 

1996 196 164 

1997   

1998  156 

1999  150 

2000   

2001   

2002  148 

2003 132 158 

2004   

2005  145 

2006 132 156 

2007   

2008   

2009  165 

2010 72 120 

2011 150 139 

2012 130 166 

2013 134 138 

2014 150 180 

2015 157 180 

2016 134 175 

 

Sylvia Grinnell River Discharge 

 

Year 

Month 

June July Aug Sep 

1971 42.2 158 57.2 42.5 

1972 4.4 132 79.6 48.6 

1973 89.3 223 76.6 56 

1974  78.7 67.9  

1975  120 71.2 59.3 

1976  236 95.7 35.5 

1977  164 48.3 41.9 

1978  342 123  

1979  283 121 130 

1980  86.2 36.2 28.9 

1981  115 44.8  

1982  73.8 66.2 33.9 

1983 126 188 74.5 28.8 

1984 64.5 112 74.6 50.6 

1985 148 101 53.8 63.5 

1986 7.32 243 96 84.5 

1987 105 191 71.4 52.5 

1989 101 174 78 33.9 

1990 93.8 145 106 49 

1991 85.7 74 68.9 72.2 

1992 13.7 204 58.9 29.8 

1993  80.2 87.6 56.2 

1994 118 167 79.8 37.4 

1995 112 64.6 71.4 45 

1996  283 93.5 47.9 

1997  103   

1998   28.7 19 

1999  219 107 52.1 

2006  124 40.8 80.8 

2007 135 124 82.7 40.3 

2008 184 55.4 28.4 40.7 

2009 185 114 35.4 43.3 

2010 152 72.8 65.8 46.5 

2011 98.3 127 57.2 41.2 

2012 142 65.3 62.4 82.1 

2013  184 36.3 33 

2014  69 82 56.6 

2015  228 45.8 36.2 

 

Apex River Discharge 

Year June July Aug Sept Oct 

1973 3.84 2.66 0.913 1.44  

1974  0.379 1.05   

1975  1.48 1.03 0.806  

1976  2.44 0.895 0.47  

1977  1.62 0.612 0.437  

1978  4.93 1.63   

1979  2.24 1.13 1.42  

1980  0.896 0.34 0.57  

1981  0.901 0.325   

1982 2.22 1.06 0.567 0.673 0.021 

1983 3.27 1.41 0.179 0.154  

1985 3.11 1.46 0.975 1.41  

1986 2.6 3.59 2.13 1.94 0.099 

1987 4.59 2.5 1.46 1.14  

1988 2.39 2.84 1.31 0.888 0.253 
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1989 1.78 1.89 1.2 0.471 0.031 

1990 2.7 2.04 2.12 1.26 0.108 

1991 1.67 0.469 1.16 2.07 0.269 

1992 0.457 3.57 0.601 0.45 0.189 

1993  0.863 1.93 0.972 0.357 

1994 3.6 0.968 1.21 0.863 0.745 

1995  0.751 1.5 1.31 0.251 

2006    1.59 1.6 

2007 3.43 2.18 2.19 0.525 0.046 

2008 3.11 1.01 0.652 1.09 0.15 

2009 3.87 1.61 1.02 1.5 0.077 

2010 3.83 0.947 1.71 1.18 1.13 

2011 3.55 1.44 0.954 0.974 0.162 

2012 3.82 0.728 1.01 2.05 0.578 

2013 4.32 2.81 0.501 0.872 1.21 

2014 5.22 0.883 1.63 1.13 0.257 

2015 3.05 3.61 0.778 0.6 0.158 
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Appendix 4. Sediment grain size (sand and silt fractions) data collected by Wacasey et al. (1979, 1980) 

between 1967-1976 and compared with grain size (sand and silt fractions) collected in Frobisher Bay in 

2016). 

Iqaluit Grain Size 

Station Replicate Date Time Period Sand (%) Silt (%) Depth (m) 

5b  3-Sep-69 Historical 66.7 33.3 15 

5b  8-Aug-73 Historical 37.8 62.2 14 

5b  19-Aug-76 Historical 58.6 41.4 14 

25  8-Aug-73 Historical 56.4 43.6 30 

25  18-Aug-76 Historical 65.2 34.8 28 

26  8-Aug-73 Historical 56.8 43.2 40 

27  8-Aug-73 Historical 55.7 44.3 43 

28  13-Aug-73 Historical 75.6 24.4 30 

25 G1 10-Oct-16 Modern 56.1 43.9 28.5 

25 G2 10-Oct-16 Modern 54.9 45.1 27.6 

25 G4 10-Oct-16 Modern 45.7 54.3 27.6 

26 G2 10-Oct-16 Modern 56.2 43.8 35.2 

26 G3 10-Oct-16 Modern 58.6 41.4 35.9 

26 G4 10-Oct-16 Modern 52.1 47.9 37.8 

27 G1 10-Oct-16 Modern 33.7 66.3 33.1 

27 G2 10-Oct-16 Modern 35.3 64.7 30.1 

27 G3 10-Oct-16 Modern 54.5 45.5  

28 G1 10-Oct-16 Modern 73.2 26.8 11.5 

28 G4 10-Oct-16 Modern 73.2 26.8 10.3 

28 G5 10-Oct-16 Modern 72.8 27.2 10.2 

5b G2 10-Oct-16 Modern 66.3 33.7 8.5 

5b G3 10-Oct-16 Modern 39.4 60.6 10.5 

5b G4 10-Oct-16 Modern 67 33 15.4 

 

Cairn Island Grain Size 

Station Replicate Date Time Period Sand (%) Silt (%) Depth (m) 

5a  1-Aug-68 Historical 45.5 54.5 26 

5a  2-Sep-69 Historical 30 70 36 

5  20-Aug-68 Historical 40.8 59.2 60 

5  2-Sep-69 Historical 39 61 53 

5  2-Sep-69 Historical 26.3 73.7 53 

5c  23-Aug-69 Historical 54.4 45.6 31 

5d  23-Aug-69 Historical 38.1 61.9 43 

5e  23-Aug-69 Historical 37.7 62.3 58 



208 
 

5f  23-Aug-69 Historical 34.7 65.3 73 

5g  2-Sep-69 Historical 34.1 65.9 73 

5 G1 14-Oct-16 Modern 26.4 73.6 57 

5 G2 14-Oct-16 Modern 27.3 72.7 58.6 

5 G3 14-Oct-16 Modern 37.9 62.1 56.3 

5a G7 14-Oct-16 Modern 37.1 62.9 69.2 

5a G8 14-Oct-16 Modern 36.1 63.9 68.1 

5a G9 14-Oct-16 Modern 45 55 70 

5c G1 11-Oct-16 Modern 41.3 58.7 77.2 

5c G2 11-Oct-16 Modern 39.3 60.7 66.3 

5c G4 11-Oct-16 Modern 51.5 48.5 74.1 

5d G1 11-Oct-16 Modern 28.9 71.1 25 

5d G2 11-Oct-16 Modern 37.9 62.1 27 

5d G3 11-Oct-16 Modern 32.8 67.2 23.9 

5e (FB2-2) G1 16-Jul-16 Modern 13.3 86.7 63 

5e (FB2-2) G2 16-Jul-16 Modern 18.8 81.2 62 

5e (FB2-2) G3 16-Jul-16 Modern 14.4 85.6 62 

5e G2 11-Oct-16 Modern 24.7 75.3 53.7 

5e G3 11-Oct-16 Modern 23.2 76.8 55.4 

5f G6 11-Oct-16 Modern 41.7 58.3 90.1 

5f G7 11-Oct-16 Modern 38.7 61.3 88.2 

5f G8 11-Oct-16 Modern 22.5 77.5 90.2 

5f G9 11-Oct-16 Modern 24.2 75.8 89.9 

5g G1 11-Oct-16 Modern 21.1 78.9 93.8 

5g G3 11-Oct-16 Modern 38.6 61.4 86.1 

5g G4 11-Oct-16 Modern 28.8 71.2 90.8 

5g (FB2-1) G1 16-Jul-16 Modern 30.6 69.4 80 

5g (FB2-1) G2 16-Jul-16 Modern 34.6 65.4 80 

5g (FB2-1) G3 16-Jul-16 Modern 28.1 71.9 81 

 

Iqaluit Organic Total Organic Carbon and Total Nitrogen 

Station Year Date Time Period TotalN (%) OrgC(%) Depth (m) 

25 1973 8-Aug-73 Historical 0.093 0.87 30 

25 1976 18-Aug-73 Historical 0.103 1.1 28 

A-25-G1 2016 10-Oct-16 Modern 0.08 0.68 28.5 

A-25-G2 2016 10-Oct-16 Modern 0.08 0.71 27.6 

A-25-G4 2016 10-Oct-16 Modern 0.1 0.83 27.6 

26 1973 8-Aug-73 Historical 0.136 0.98 40 

A-26-G2 2016 10-Oct-16 Modern 0.1 1.08 35.1 
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A-26-G2 2016 10-Oct-16 Modern 0.1 1.18 35.2 

A-26-G3 2016 10-Oct-16 Modern 0.1 0.97 35.9 

A-26-G4 2016 10-Oct-16 Modern 0.11 0.97 37.8 

27 1973 8-Aug-73 Historical 0.216 1.56 43 

A-27-G1 2016 10-Oct-16 Modern 0.2 1.77 33.1 

A-27-G2 2016 10-Oct-16 Modern 0.25 2.13 30.1 

A-27-G3 2016 10-Oct-16 Modern 0.18 1.42  

28 1973 13-Aug-73 Historical 0.09 0.87 30 

A-28-G1 2016 10-Oct-16 Modern 0.05 0.59 11.5 

A-28-G4 2016 10-Oct-16 Modern 0.05 0.62 10.3 

A-28-G5 2016 10-Oct-16 Modern 0.04 0.51 10.2 

5b 1969 3-Sep-69 Historical 0.067 0.52 15 

5b 1973 8-Aug-73 Historical 0.153 0.58 14 

5b 1976 19-Aug-73 Historical 0.128 1.62 14 

A-5b-G2 2016 10-Oct-16 Modern 0.04 0.3 8.5 

A-5b-G3 2016 10-Oct-16 Modern 0.07 0.63 10.5 

A-5b-G4 2016 10-Oct-16 Modern 0.03 0.37 15.4 

 

Cairn Island Total Organic Carbon and Total Nitrogen 

Station Year Date Time Period TotalN OrgC Depth (m) 

B-5-G1 2016 11-Oct-16 Modern 0.25 2.32 57 

B-5-G2 2016 11-Oct-16 Modern 0.25 2.24 58.6 

B-5-G3 2016 11-Oct-16 Modern 0.2 2.09 56.3 

B-5a-G7 2016 14-Oct-16 Modern 0.2 1.71 69.2 

B-5a-G8 2016 14-Oct-16 Modern 0.23 2.59 68.1 

B-5a-G9 2016 14-Oct-16 Modern 0.24 1.98 70 

B-5c-G1 2016 10-Oct-16 Modern 0.23 2.08 77.2 

B-5c-G2 2016 10-Oct-16 Modern 0.21 1.95 66.3 

B-5c-G3 2016 10-Oct-16 Modern 0.2 1.74 74.1 

FB2-2-Rep1 2016 16-Jul-16 Modern 0.27 2.33 63 

FB2-2-Rep2 2016 16-Jul-16 Modern 0.25 2.24 62 

FB2-2-Rep3 2016 16-Jul-16 Modern 0.27 2.4 62 

B-5d G1 2016 10-Oct-16 Modern 0.32 2.65 25 

B-5d G2 2016 10-Oct-16 Modern 0.22 1.99 27 

B-5d G3 2016 10-Oct-16 Modern 0.27 2.37 23.9 

B-5e-G1 2016 10-Oct-16 Modern 0.23 2.01 52.3 

B-5e-G2 2016 10-Oct-16 Modern 0.16 1.45 53.7 

B-5e-G3 2016 10-Oct-16 Modern 0.23 1.57 55.4 

B-5f-G6 2016 10-Oct-16 Modern 0.2 1.82 90.1 



210 
 

B-5f-G7 2016 10-Oct-16 Modern 0.22 1.97 88.2 

B-5f-G8 2016 10-Oct-16 Modern 0.21 1.85 90.2 

B-5f-G9 2016 10-Oct-16 Modern 0.21 1.87 89.9 

B-5g-G1 2016 10-Oct-16 Modern 0.26 2.31 93.8 

B-5g-G3 2016 10-Oct-16 Modern 0.27 2.34 86.1 

B-5g-G4 2016 10-Oct-16 Modern 0.27 2.34 90.8 

FB2-1-Rep1 2016 16-Jul-16 Modern 0.25 2.25 80 

FB2-1-Rep2 2016 16-Jul-16 Modern 0.28 2.5 80 

FB2-1-Rep3 2016 16-Jul-16 Modern 0.19 1.66 81 

5a 1968 1-Aug-68 Historical 0.261 1.86 26 

5 1968 20-Aug-68 Historical 0.18 1.45 60 

5c 1969 23-Aug-69 Historical 0.18 1.57 31 

5d 1969 23-Aug-69 Historical 0.212 1.57 43 

5e 1969 23-Aug-69 Historical 0.218 1.39 58 

5f 1969 23-Aug-69 Historical 0.185 1.91 73 

 

Iqaluit Carbon/Nitrogen Ratios 

Station Time_Period C_N_Ratio 

5b - H Historical 7.76 

5b - H Historical 12.08 

5b - H Historical 10.94 

5b - H Historical 3.79 

5b - H Historical 12.66 

5b - M Modern 6.91 

5b - M Modern 9.47 

5b - M Modern 14.35 

25 - H Historical 9.35 

25 - H Historical 10.68 

25 - M Modern 8.43 

25 - M Modern 9.05 

25 - M Modern 8.52 

26 - H Historical 7.21 

26 - M Modern 11.29 

26 - M Modern 11.67 

26 - M Modern 10.22 

26 - M Modern 8.52 

27 - H Historical 7.22 

27 - M Modern 8.98 

27 - M Modern 8.44 

27 - M Modern 8.11 

28 - H Historical 9.67 

28 - M Modern 12.55 

28 - M Modern 11.87 

28 - M Modern 12.63 

 

 

Cairn Island Carbon/Nitrogen Ratios 

 

Station Time_Period C_N_Ratio 

5 - H Historical 8.06 

5 - H Historical 11.17 

5 - M Modern 9.34 

5 - M Modern 8.91 

5 - M Modern 10.24 

5a - H Historical 7.13 

5a - M Modern 8.46 

5a - M Modern 11.39 

5a - M Modern 8.40 

5c - H Historical 8.72 

5c - M Modern 8.89 

5c - M Modern 9.24 

5d - H Historical 7.41 
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5d - M Modern 8.812183 

5d - M Modern 8.216718 

5d - M Modern 8.981982 

5d - M Modern 8.821561 

5e - H Historical 6.376147 

5e - M Modern 8.815789 

5e - M Modern 9.132075 

5e - M Modern 6.898678 

5e - M Modern 8.701493 

5e - M Modern 8.976 

5e - M Modern 8.78022 

5f - H Historical 10.32432 

5f - M Modern 9.34359 

5f - M Modern 8.851351 

5f - M Modern 8.735849 

5f - M Modern 8.843602 
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Appendix 5. Relative abundance (#/m2) of molluscs collected in Frobisher Bay. 
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5-Sep3-68         

5-Oct8-68    2.5     

5-Aug6-70         

5c-Aug23-69  2.5 22.5  20    

5d-Aug23-69 2.5  5 2.5   2.5 5 

5e-Aug23-69   10     2.5 

5f-Aug23-69      2.5   

A5b-Jul29-69   202.5      

5b-Sep3-69 2.5  57.5      

5b-Aug8-73   102      

5b-Aug19-76 15  192    6  

25-Aug8-73   30      

25-Aug18-76 12  75      

26-Aug8-73 3 6 36      

27-Aug8-73        3 

28-Aug13-73   44      
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Appendix 6. Data sources utilized in development of bivalve trait database. 

Databases Website 

Arctic Ocean Diversity http://www.arcodiv.org/seabottom/bivalves/Serripes_groenlandicus.html 

Biological Traits Information Catalog (BIOTIC) http://www.marlin.ac.uk/biotic/browse.php 

Encyclopedia of Life (EOL) http://eol.org/pages/614282/details 

ETI BioInformatics Marine Species Identification Portal http://species-identification.org/index.php 

Gladys Archerd Shell Collection at Washington State University Tri-Cities Natural History Museum http://shells.tricity.wsu.edu/ArcherdShellCollection/ShellCollection.html 

Malacolog Version 3.3.2: Western Atlantic gastropod database http://www.malacolog.org  

Marine Bivalves of the British Isles http://naturalhistory.museumwales.ac.uk/BritishBivalves/home.php? 

Neogene Marine Biota of Tropical America (NMITA)  http://porites.geology.uiowa.edu/database/mollusc/mollusclifestyles.htm 

North Atlantic Register for Marine Species (NARMS) http://www.vliz.be/vmdcdata/narms/index.php 

Norwegian Biodiversity Information Centre http://www.biodiversity.no 

Norwegian Biodiversity Information Centre http://www.biodiversity.no 

The marine flora and fauna of Norway http://www.seawater.no/index.html 

The Marine Life Information Network (MarLIN) https://www.marlin.ac.uk/species/detail/2163 

World Register of Marine Species (WoRMS) http://www.marinespecies.org/ 
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Appendix 7. Weighted Trait Matrix of bivalve molluscs collected in Frobisher Bay. 

Traits by Species 
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BS1 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 2 0 0 0 0 0 0 0 3 3 3 0 0 0 3 

BS2 3 3 0 3 3 0 2 3 0 0 3 0 3 3 3 2 3 0 3 3 3 3 3 0 0 0 3 3 3 0 

BS3 0 0 3 0 0 2 1 0 3 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

BS4 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SS1 3 3 3 2 0 0 0 0 3 0 0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 3 

SS2 0 0 0 2 3 3 3 0 0 3 3 3 0 3 3 3 0 3 2 3 3 3 2 3 3 3 3 3 3 0 

AMBI1 3 3 3 3 3 3 3 0 0 3 3 3 0 3 3 0 3 0 0 0 0 0 3 0 0 0 3 0 3 3 

AMBI2 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 3 3 0 3 0 0 0 0 0 0 0 0 

AMBI3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 

FH1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 3 0 0 2 2 0 0 0 3 1 3 3 3 2 3 

FH2 3 3 3 0 0 3 3 0 3 0 3 3 0 0 0 0 0 0 2 2 0 0 0 0 2 3 3 0 1 0 

FH3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 

SP1 0 0 0 0 3 2 0 3 2 3 0 2 0 2 3 2 2 0 2 2 2 2 3 3 2 3 0 3 3 3 

SP2 0 0 0 0 0 2 0 0 2 0 0 2 0 0 0 1 2 0 0 0 2 2 0 0 2 0 0 0 0 0 

SP3 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

SP4 3 3 3 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 

SP5 0 0 0 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Station by Species 
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Astarte borealis 7.5 5 0 0 0 0 0 0 2.5 0 0 0 7.5 0 3 9 24 72 3 136 

Astarte montagui 15 15 0 0 0 0 0 5 2.5 0 0 0 2.5 0 0 0 0 0 0 16 

Ciliatocardium ciliatum 0 0 0 5 0 2.5 0 0 2.5 2.5 0 0 0 0 0 0 0 0 0 0 

Parvicardium pinnulatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 

Similipecten greenlandicus 0 0 0 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Serripes groenlandicus 0 0 0 0 0 0 0 2.5 0 0 0 0 5 0 0 3 3 0 0 0 

Hiatella arctica 0 35 35 2.5 25 10 22.5 67.5 45 15 5 2.5 7.5 0 3 0 0 57 72 0 

Lyonsia arenosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 4 

Mya truncata 7.5 15 2.5 0 0 2.5 0 22.5 2.5 0 2.5 2.5 0 0 0 0 3 3 0 0 

Dacrydium vitreum 0 0 17.5 30 12.5 0 17.5 5 17.5 12.5 32.5 0 0 0 0 0 0 6 3 0 

Musculus discors 20 37.5 15 10 22.5 17.5 55 198 22.5 30 20 0 2.5 0 0 0 0 87 66 0 

Musculus niger 2.5 0 2.5 0 0 2.5 2.5 0 5 0 2.5 0 0 0 0 0 0 0 0 4 

Crenella faba 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nuculana minuta 25 20 10 30 20 7.5 10 45 7.5 22.5 17.5 0 0 0 0 0 0 0 12 28 

Nuculana pernula 0 0 0 0 5 0 2.5 0 0 2.5 2.5 0 0 0 0 0 3 15 0 32 

Ennucula tenuis 108 37.5 30 12.5 25 0 52.5 15 25 20 25 20 20 39 27 45 135 60 48 392 

Pandora glacialis 0 0 0 0 2.5 0 5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 

Periploma aleuticum 0 0 0 2.5 0 0 2.5 5 0 5 0 0 0 0 0 0 0 0 0 0 

Macoma calcarea 5 0 0 0 0 0 0 35 0 0 5 2.5 0 3 36 6 15 6 0 8 

Macoma moesta 0 0 0 0 0 0 2.5 0 5 5 0 0 12.5 0 0 0 6 6 0 116 

Macoma loveni 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Macoma torelli 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 

Thracia myopsis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Axinopsida orbiculata 0 0 0 0 0 0 0 0 0 0 0 438 660 693 1722 93 1380 27 0 472 
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Thyasira gouldi 95 95 65 75 52.5 20 87.5 138 67.5 85 82.5 52.5 72.5 39 48 105 372 819 234 600 

Thyasira dunbari 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Liocyma fluctuosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Portlandia arctica 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Yoldia hyperborea 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 0 0 4 

Yoldiella lenticula 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Astarte borealis 0 6 0 0 13.9 7.2 3 0 0 0 6 0 0 0 

Astarte montagui 0 6 0 0 0 7.2 6 0 0 0 0 4.5 2.7 2.7 

Ciliatocardium ciliatum 0 0 12 0 0 7.2 3 0 0 0 0 0 2.7 10.7 

Parvicardium pinnulatum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Similipecten greenlandicus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Serripes groenlandicus 3 0 0 0 0 0 6 6 0 0 0 0 0 2.7 

Hiatella arctica 0 15 15 0 0 18 0 6 3 3.3 6 22.5 21.3 18.7 

Lyonsia arenosa 0 0 3 0 0 0 0 0 0 0 0 0 0 0 

Mya truncata 0 3 0 0 0 0 0 0 9 0 6 0 0 0 

Dacrydium vitreum 0 0 0 0 0 3.6 0 0 0 0 12 4.5 2.7 2.7 

Musculus discors 0 9 0 0 0 7.2 0 0 6 0 6 9 5.3 45.3 

Musculus niger 0 6 6 0 0 3.6 6 0 0 3.3 18 18 8 2.7 

Crenella faba 0 0 0 4.6 0 0 0 0 0 0 0 0 0 0 

Nuculana minuta 0 3 0 0 0 10.8 0 0 3 0 6 0 2.7 0 

Nuculana pernula 0 9 3 0 0 18 21 12 3 3.3 24 4.5 0 10.7 

Ennucula tenuis 48 9 15 0 13.9 36 18 15 12 32.8 24 4.5 2.7 2.7 

Pandora glacialis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Periploma aleuticum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Macoma calcarea 3 6 0 4.6 0 3.6 9 0 0 0 6 0 2.7 2.7 

Macoma moesta 18 30 9 0 0 21.6 24 3 6 3.3 0 27 13.3 8 

Macoma loveni 0 0 0 0 0 0 6 6 0 0 18 4.5 0 2.7 

Macoma torelli 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thracia myopsis 0 3 6 0 13.9 0 0 9 0 0 0 9 0 5.3 

Axinopsida orbiculata 60.1 0 0 50.4 153 0 0 0 0 0 0 0 0 0 

Thyasira gouldi 0 75.1 252 0 0 115 66.1 63.1 102 55.7 108 99.1 42.7 13.3 

Thyasira dunbari 0 0 0 0 13.9 0 0 0 0 0 0 0 0 0 

Liocyma fluctuosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Portlandia arctica 0 3 0 0 0 7.2 15 0 0 0 0 0 0 0 

Yoldia hyperborea 15 6 0 0 0 3.6 15 9 0 6.6 12 13.5 16 2.7 

Yoldiella lenticula 0 0 0 0 0 10.8 0 6 0 3.3 0 0 0 0 

 

Weighted Trait Matrix 
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BS1 500 360 308 340 245 60 420 458 305 333 395 1510 2238 2274 5364 684 5526 2676 807 4000 

BS2 433 378 205 158 250 95 375 1020 260 250 195 52.5 130 87 195 135 423 801 483 1912 

BS3 27.5 80 47.5 17.5 25 30 27.5 140 70 22.5 17.5 10 17.5 0 3 6 15 66 72 8 

BS4 2.5 0 2.5 0 0 2.5 2.5 2.5 5 0 2.5 0 5 0 0 3 3 0 0 4 

SS1 100 105 7.5 15 0 15 0 153 30 7.5 17.5 1325 2010 2085 5253 318 4251 318 9 1888 

SS2 760 675 525 495 488 173 765 1495 585 593 573 230 360 240 321 471 1596 3162 1305 3640 

AMBI1 210 338 240 240 263 120 345 975 315 255 240 7.5 75 0 36 36 99 711 468 660 

AMBI2 360 158 97.5 37.5 75 7.5 165 218 97.5 75 97.5 75 97.5 126 189 153 477 225 144 1644 

AMBI3 285 285 195 225 158 60 263 413 203 255 248 1470 2198 2196 5310 594 5256 2538 702 3216 

FH1 503 268 185 203 203 42.5 288 388 175 230 228 1430 2138 2241 5373 531 4974 1149 414 3628 

FH2 358 513 295 203 248 145 420 1230 393 323 265 125 245 84 189 258 879 2319 891 1920 
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FH3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SP1 485 335 273 333 253 65 380 535 278 310 375 1468 2200 2241 5397 597 5226 1941 597 3896 

SP2 318 258 170 163 135 50 243 345 175 190 200 130 175 117 123 261 891 1704 516 1664 

SP3 158 130 90 55 92.5 35 143 360 105 92.5 72.5 25 42.5 42 66 51 156 216 198 544 

SP4 75 75 2.5 15 0 10 0 37.5 25 7.5 2.5 2.5 30 0 18 27 75 219 9 456 

SP5 40 145 100 25 95 55 155 530 135 90 50 5 20 0 6 0 0 288 276 0 
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BS1 276.3 243.3 786.9 151.2 527.3 461.1 234.3 237.3 330.3 242.6 408.3 319.8 141.6 53.4 

BS2 204 291 123 27.6 111.2 367.2 333 159 84 111.8 294 270 176.1 283.1 

BS3 6 36 63 0 0 46.8 33 18 30 9.9 60 58.5 45.4 61.6 

BS4 3 6 6 0 0 3.6 12 6 0 3.3 18 18 8 5.4 

SS1 186.3 63 48 160.4 527.3 104.4 54 36 27 9.9 48 31.5 21.6 56.2 

SS2 258 513.3 912.9 9.2 111.2 741.9 549.3 378.3 405.3 324.9 714.3 639.3 349.5 352.6 

AMBI1 54 189 126 0 83.4 291.6 180 144 45 59.4 270 256.5 184.2 312.6 

AMBI2 207 144 72 13.8 41.7 183.6 153 54 81 108.3 108 94.5 56.1 40.2 

AMBI3 180.3 225.3 756.9 151.2 457.8 345.9 198.3 189.3 306.3 167.1 324.3 297.3 128.1 39.9 

FH1 396.3 231.1 324.3 160.4 541.2 421.3 324.1 186.1 168.1 193.7 306.1 207.1 122.9 80.3 

FH2 66 363.2 621.6 9.2 83.4 435.8 285.2 177.2 270.2 144.4 366.2 427.7 253.4 299.1 

FH3 0 0 0 0 0 32.4 0 18 0 9.9 0 0 0 0 

SP1 369.3 327.2 600.6 160.4 569 511.4 423.2 294.2 273.2 229.8 516.2 400.7 200.3 133.8 

SP2 54 177.2 531.6 0 13.9 273.8 186.2 165.2 234.2 150.8 324.2 247.7 104.1 45.5 

SP3 69 72 39 4.6 13.9 97.2 51 24 30 39.4 48 63 48 77.4 

SP4 0 39 36 0 41.7 64.8 36 0 9 0 24 13.5 16.2 40.2 

SP5 0 48 30 0 0 50.4 0 12 18 6.6 24 63 53.2 128 
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Appendix 8 Results of diversity indices (species richness (S), Shannon-Weiner diversity (H’), and Pileou’s 

evenness (J’)) for historical and modern samples collected in Frobisher Bay. 

Station Date S H' J' Station Date S H' J' 

Stations between Cairn and Mair Islands Stations near Iqaluit 

5 23-Jul-68 16 2.21 0.80 5b 29-Jul-69 10 1.38 0.60 

5 20-Aug-68 15 2.03 0.75 5b 03-Sep-69 17 1.22 0.43 

5 03-Sep-68 13 2.17 0.84 5b 08-Aug-73 10 1.15 0.50 

5 08-Oct-68 11 2.12 0.88 5b 19-Aug-76 18 1.22 0.42 

5 06-Aug-70 14 2.01 0.76 5b 10-Oct-16 7 1.35 0.69 

5 14-Oct-16 23 2.49 0.79  
25 

 
08-Aug-73 

 
9 

 
1.73 

 
0.79 

5a 01-Aug-68 16 2.06 0.74 25 18-Aug-76 18 1.38 0.48 

5a 20-Aug-68 24 2.68 0.84 25 10-Oct-16 9 1.66 0.75 

5a 14-Oct-16 16 2.33 0.84  
26 

 
08-Aug-73 

 
22 

 
1.57 

 
0.51 

5c 23-Aug-69 29 2.54 0.75 26 10-Oct-16 21 2.49 0.82 

5c 11-Oct-16 16 2.24 0.81  
27 

 
08-Aug-73 

 
11 

 
1.58 

 
0.66 

5d 23-Aug-69 24 2.62 0.82 27 10-Oct-16 15 1.31 0.48 

5d(box) 16-Jul-16 20 2.47 0.83      

5d 11-Oct-16 18 1.94 0.67 28 13-Aug-73 19 1.94 0.66 

 
5e 

 
23-Aug-69 

 
16 

 
2.12 

 
0.76 

28 10-Oct-16 3 0.54 0.49 

5e 11-Oct-16 14 2.04 0.77      

5f 23-Aug-69 15 1.98 0.73 
     

5f 11-Oct-16 19 2.38 0.81      

 

 

Appendix 9. Percent abundance of molluscs collected in Frobisher Bay (1967-1976 and 2016). 
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25-2016 0.0 0.0 37.0 0.0 0.0 0.0 29.6 0.0 0.0 1.9 0.0 11.1 0.0 0.0 0.0 0.0 

26-2016 2.6 2.6 0.0 0.0 0.0 0.0 3.8 6.4 0.0 2.6 0.0 12.8 0.0 3.8 2.6 1.3 

27-2016 0.0 0.0 0.0 3.4 0.0 0.0 4.2 4.2 0.8 0.0 0.0 2.5 0.0 0.0 1.7 0.0 

28-2016 0.0 0.0 84.6 0.0 7.7 0.0 0.0 0.0 0.0 7.7 0.0 0.0 0.0 0.0 0.0 0.0 

5b-2016 5.6 0.0 61.1 0.0 0.0 0.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-2016 2.2 2.2 0.0 2.2 0.0 1.1 11.0 5.5 0.0 1.1 0.0 6.6 0.0 2.2 1.1 0.0 

5a-2016 1.4 2.8 0.0 1.4 0.0 0.0 8.5 0.0 0.0 4.2 2.8 11.3 0.0 0.0 2.8 0.0 
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5c-2016 0.0 0.0 0.0 0.0 0.0 0.0 9.3 3.7 0.0 0.0 3.7 1.9 0.0 0.0 0.0 0.0 

5d-2016 0.0 0.0 0.0 0.0 0.0 0.0 6.3 1.6 0.0 0.0 0.0 3.2 0.0 3.2 0.0 4.8 

5e-2016 0.0 0.0 0.0 0.0 0.0 0.0 20.4 2.0 0.0 0.0 0.0 2.0 0.0 0.0 2.0 0.0 

5f-2016 2.0 0.0 0.0 0.0 0.0 4.1 8.2 2.0 0.0 2.0 6.1 0.0 0.0 2.0 6.1 2.0 

5e-2016Box 0.0 1.8 0.0 7.1 0.0 1.8 1.8 12.5 0.0 1.8 1.8 5.4 0.0 30.4 1.8 0.0 

5a-Aug1-68 2.1 4.2 0.0 0.0 0.0 0.0 30.3 0.0 0.0 1.4 0.0 0.0 0.0 5.6 0.7 2.1 

5a-Aug20-68 1.2 3.5 0.0 0.0 0.0 0.0 8.7 8.1 0.0 0.0 0.0 0.0 0.0 8.7 0.0 3.5 

5-Jul23-68 0.0 0.0 0.0 0.0 0.0 8.0 13.8 16.1 0.0 0.0 0.0 0.0 0.0 6.9 1.1 1.1 

5-Aug20-68 0.0 0.0 0.0 2.4 0.0 14.6 6.1 1.2 0.0 0.0 0.0 0.0 0.0 4.9 0.0 0.0 

5-Sep3-68 0.0 0.0 0.0 0.0 0.0 6.7 13.3 13.3 0.0 0.0 0.0 0.0 0.0 12.0 0.0 0.0 

5-Oct8-68 0.0 0.0 0.0 2.8 0.0 0.0 0.0 11.1 0.0 0.0 0.0 0.0 0.0 19.4 2.8 2.8 

5-Aug6-70 0.0 0.0 0.0 0.0 0.0 6.1 18.4 7.9 0.0 0.0 0.0 0.9 0.0 19.3 0.9 0.0 

5c-Aug23-69 0.0 0.7 0.0 0.0 0.0 0.7 2.0 9.2 0.0 4.8 0.0 0.0 0.0 26.9 0.0 3.1 

5d-Aug23-69 0.8 0.8 0.0 0.8 0.0 5.9 8.4 15.1 0.0 0.0 0.0 1.7 0.0 7.6 1.7 0.8 

5e-Aug23-69 0.0 0.0 0.0 1.1 0.0 5.6 8.9 6.7 0.0 0.0 0.0 2.2 0.0 13.3 0.0 0.0 

5f-Aug23-69 0.0 0.0 0.0 0.0 0.0 15.5 11.9 2.4 0.0 2.4 0.0 0.0 0.0 9.5 1.2 1.2 

5b-Jul29-69 0.0 0.0 51.3 0.0 0.0 0.0 2.3 0.3 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.3 

5b-Sep3-69 0.8 0.3 71.2 0.0 0.0 0.0 2.2 0.8 0.0 0.0 0.0 1.3 0.0 0.3 0.0 0.0 

5b-Aug8-73 0.0 0.0 65.4 0.0 0.0 0.0 3.7 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 

5b-Aug19-76 0.1 0.0 67.8 0.0 0.0 0.0 1.1 0.1 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 

25-Aug8-73 2.4 0.0 25.2 0.0 0.0 0.0 12.2 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 

25-Aug18-76 1.0 0.0 60.1 0.0 0.0 0.0 5.9 0.0 0.0 0.7 0.0 0.3 0.0 0.0 0.0 0.1 

26-Aug8-73 5.5 0.0 2.1 0.0 0.0 0.5 4.6 4.4 0.2 0.5 0.0 0.5 0.0 6.7 0.0 0.2 

27-Aug8-73 0.6 0.0 0.0 0.0 0.0 0.6 10.1 15.2 0.0 0.0 0.0 0.0 0.0 13.9 0.0 0.0 

28-Aug13-73 6.9 0.8 24.0 0.0 0.0 0.0 19.9 0.0 0.2 0.4 0.0 5.9 1.6 0.0 0.2 0.0 
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25-2016 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 9.3 0.0 1.9 0.0 0.0 0.0 

26-2016 1.3 3.8 0.0 0.0 0.0 1.3 0.0 0.0 1.3 0.0 32.1 2.6 0.0 3.8 0.0 0.0 0.0 

27-2016 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 71.2 0.0 0.0 0.0 0.8 0.0 0.0 

28-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5b-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.6 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-2016 3.3 5.5 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 35.2 1.1 3.3 0.0 0.0 0.0 0.0 

5a-2016 0.0 9.9 0.0 0.0 0.0 7.0 2.8 0.0 0.0 0.0 31.0 7.0 0.0 0.0 0.0 0.0 0.0 
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5c-2016 0.0 7.4 0.0 0.0 0.0 0.0 3.7 0.0 5.6 0.0 38.9 5.6 3.7 0.0 0.0 0.0 0.0 

5d-2016 1.6 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54.0 0.0 0.0 0.0 3.2 0.0 1.6 

5e-2016 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 34.7 4.1 2.0 0.0 2.0 0.0 0.0 

5f-2016 2.0 8.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.7 4.1 0.0 0.0 0.0 0.0 0.0 

5e-2016Box 0.0 7.1 0.0 0.0 0.0 0.0 1.8 0.0 3.6 0.0 8.9 1.8 0.0 0.0 0.0 0.0 0.0 

5a-Aug1-68 7.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 26.8 0.0 0.0 0.0 0.0 0.0 0.0 

5a-Aug20-68 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.0 0.0 0.0 0.0 0.0 0.0 7.5 

5-Jul23-68 4.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 29.9 0.0 0.0 0.0 0.0 0.0 1.1 

5-Aug20-68 14.6 0.0 0.0 0.0 1.2 0.0 0.0 1.2 0.0 0.0 36.6 0.0 0.0 0.0 0.0 0.0 0.0 

5-Sep3-68 10.7 2.7 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 28.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-Oct8-68 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.2 0.0 0.0 0.0 0.0 0.0 0.0 

5-Aug6-70 3.5 0.9 1.8 0.0 0.9 0.0 0.0 0.0 0.0 0.0 30.7 0.0 0.0 0.0 0.0 0.0 0.0 

5c-Aug23-69 6.1 0.0 0.3 0.0 0.7 0.0 0.3 0.0 0.0 0.0 18.7 0.0 0.0 0.3 0.0 0.7 4.1 

5d-Aug23-69 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 22.7 0.0 0.0 0.0 0.0 0.0 5.9 

5e-Aug23-69 10.0 1.1 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 37.8 0.0 0.0 0.0 0.0 0.0 0.0 

5f-Aug23-69 8.3 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 39.3 0.0 0.0 0.0 0.0 0.0 0.0 

5b-Jul29-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.2 0.0 0.0 0.0 0.0 0.0 0.0 

5b-Sep3-69 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 7.8 0.0 0.0 0.0 0.0 0.0 0.0 

5b-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.0 0.0 0.0 

5b-Aug19-76 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.1 0.0 0.0 0.0 0.0 0.0 

25-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 28.5 0.0 0.0 0.0 0.0 0.0 0.0 

25-Aug18-76 0.0 0.1 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 16.2 0.1 0.0 0.0 0.0 0.0 0.0 

26-Aug8-73 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 62.9 0.0 0.0 0.0 0.0 0.0 0.0 

27-Aug8-73 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 49.4 0.0 0.0 0.0 0.0 0.0 0.0 

28-Aug13-73 1.4 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.5 0.2 0.0 0.2 0.0 0.0 0.0 
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25-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.7 

26-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 1.3 1.3 0.0 0.0 3.8 

27-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 

28-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5b-2016 11.1 0.0 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-2016 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 3.3 

5a-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 
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5c-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 1.9 0.0 0.0 0.0 5.6 

5d-2016 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.2 

5e-2016 0.0 0.0 0.0 0.0 4.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 14.3 

5f-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 4.1 

5e-2016Box 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 3.6 0.0 0.0 1.8 0.0 0.0 0.0 1.8 

5a-Aug1-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 

5a-Aug20-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 

5-Jul23-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 1.1 0.0 0.0 0.0 0.0 0.0 3.4 

5-Aug20-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 1.2 

5-Sep3-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 2.7 0.0 2.7 

5-Oct8-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-Aug6-70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 

5c-Aug23-69 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 3.4 

5d-Aug23-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.8 

5e-Aug23-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 2.2 

5f-Aug23-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 

5b-Jul29-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 12.3 

5b-Sep3-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.5 4.9 

5b-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 15.3 

5b-Aug19-76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.2 13.9 

25-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 20.3 

25-Aug18-76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 9.1 

26-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.2 0.0 4.6 

27-Aug8-73 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 4.4 

28-Aug13-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 2.0 
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25-2016 3.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

26-2016 7.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

27-2016 0.0 0.0 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.8 0.0 0.8 0.8 0.0 0.0 0.0 

28-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5b-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-2016 1.1 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 0.0 1.1 1.1 0.0 0.0 0.0 0.0 

5a-2016 4.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 
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5c-2016 0.0 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 

5d-2016 0.0 0.0 0.0 0.0 0.0 0.0 3.2 0.0 1.6 0.0 1.6 0.0 0.0 0.0 1.6 0.0 

5e-2016 0.0 0.0 0.0 0.0 0.0 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5f-2016 0.0 0.0 0.0 0.0 0.0 2.0 2.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 

5e-2016Box 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5a-Aug1-68 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 11.3 1.4 0.0 0.0 0.0 

5a-Aug20-68 0.0 0.0 5.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3 3.5 4.6 0.6 0.0 

5-Jul23-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 

5-Aug20-68 0.0 2.4 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-Sep3-68 0.0 0.0 0.0 2.7 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-Oct8-68 0.0 0.0 0.0 0.0 0.0 0.0 13.9 0.0 0.0 0.0 0.0 11.1 2.8 0.0 0.0 0.0 

5-Aug6-70 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 0.0 0.0 0.0 0.0 

5c-Aug23-69 0.0 0.0 2.7 0.0 0.0 0.0 0.3 0.0 0.3 1.4 0.0 2.7 0.3 1.4 2.0 0.0 

5d-Aug23-69 0.0 0.0 3.4 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 7.6 0.0 5.0 0.0 0.0 

5e-Aug23-69 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5f-Aug23-69 0.0 0.0 0.0 1.2 0.0 0.0 1.2 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 

5b-Jul29-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5b-Sep3-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 

5b-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 

5b-Aug19-76 0.0 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

25-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

25-Aug18-76 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

26-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 

27-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28-Aug13-73 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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25-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

26-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

27-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

28-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5b-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5a-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 



230 
 

5c-2016 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5d-2016 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 

5e-2016 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5f-2016 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5e-2016Box 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 

5a-Aug1-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 1.4 0.0 0.0 0.7 

5a-Aug20-68 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 8.7 0.6 0.0 1.2 0.6 1.2 0.6 

5-Jul23-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.7 0.0 0.0 0.0 3.4 0.0 

5-Aug20-68 0.0 0.0 0.0 0.0 0.0 9.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 

5-Sep3-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5-Oct8-68 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 

5-Aug6-70 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5c-Aug23-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 3.1 0.0 2.7 0.0 0.0 0.0 

5d-Aug23-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.7 0.8 0.0 0.0 0.8 1.7 

5e-Aug23-69 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.4 0.0 0.0 0.0 0.0 1.1 

5f-Aug23-69 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 

5b-Jul29-69 0.0 0.0 0.0 0.0 0.0 0.0 2.3 0.0 0.0 0.0 23.8 0.0 0.0 0.0 0.0 0.0 

5b-Sep3-69 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.5 0.3 0.0 6.2 0.0 0.0 0.0 0.0 0.0 

5b-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.0 9.6 0.0 0.0 0.0 0.0 0.0 

5b-Aug19-76 0.0 0.0 0.2 0.0 0.0 0.0 0.9 0.0 0.6 0.0 7.6 0.0 0.0 0.0 0.2 0.0 

25-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.1 0.0 0.0 0.0 0.0 0.0 

25-Aug18-76 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.7 0.5 0.0 3.3 0.0 0.0 0.0 0.0 0.0 

26-Aug8-73 0.0 0.5 0.0 0.0 0.0 0.0 0.9 0.0 0.2 0.5 2.8 0.0 0.0 0.0 0.0 0.0 

27-Aug8-73 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 

28-Aug13-73 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 
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Appendix 10. Inventory of grab attempts made and samples collected in 2016 onboard the MV Nulialjuk using Van Veen and Petite Ponar grab samplers in  

Frobisher Bay. 

 

Date Station Rep 
Latidude 

(DD) 

Longitude 

(DD) 

Water 

Depth 

(m) 

Success Sediment Biota Grab 

2016 

Nulialjuk 

Cruise Leg 

Notes 

10/10/2016 A-IF1 G1 63.71371333 -68.509375 17.4 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF1 G2 63.71353167 -68.50934667 16.4 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF1 G3 63.71405333 -68.50955333 19.1 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF18 G1 63.703575 -68.49289333 34.8 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF18 G2 63.70396667 -68.49259167 33.2 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF18 G3 63.70390833 -68.49249333 32.8 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF19 G3 63.67462167 -68.503955 37.3 no 
  

Van Veen 3d blank 

14/10/2016 A-IF19 G4 63.67452333 -68.50344667 39 no 
  

Van Veen 3d blank 

14/10/2016 A-IF19 G1 63.67484833 -68.505155 27 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF19 G2 63.674805 -68.50456833 33.7 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF19 G5 63.67472833 -68.50476833 32.9 yes yes yes Van Veen 3d good 

10/10/2016 A-IF2 G1 63.70412833 -68.53883333 26 no 
  

Van Veen 3d blank 

10/10/2016 A-IF2 G2 63.70392833 -68.53860167 32.8 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF2 G3 63.70407 -68.53808167 28.3 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF2 G4 63.704075 -68.53807667 28.3 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF20 G1 63.70692 -68.51989667 11.1 ??? 
  

Van Veen 3d 
 

10/10/2016 A-IF20 G2 63.70722 -68.519125 14.6 yes yes yes Petite Ponar 3d 
 

10/10/2016 A-IF20 G3 63.70747667 -68.518935 16.7 yes yes yes Petite Ponar 3d 
 

10/10/2016 A-IF20 G4 63.70661333 -68.52117667 17.1 yes yes yes Petite Ponar 3d 
 

14/10/2016 A-IF21 G1 63.66958167 -68.50067167 63.7 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF21 G2 63.669705 -68.50062 60.4 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF21 G3 63.66955 -68.50172 55.4 yes yes yes Van Veen 3d 
 

11/10/2016 A-IF22 G1 63.6656 -68.50311667 56.4 yes yes yes Van Veen 3d 
 

11/10/2016 A-IF22 G2 63.66561167 -68.50313833 56.4 yes yes yes Van Veen 3d 
 

11/10/2016 A-IF22 G3 63.66565 -68.50329333 54.4 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF61 G1 63.71916833 -68.47457167 24.6 yes no yes Van Veen 3d bio, no sed 

10/10/2016 A-IF61 G2 63.719495 -68.47418333 23.2 yes yes yes Petite Ponar 3d 
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10/10/2016 A-IF61 G3 63.71930667 -68.47328 22.1 yes yes yes Petite Ponar 3d 
 

10/10/2016 A-IF61 G4 63.719255 -68.47323 23.1 yes yes yes Petite Ponar 3d 
 

10/10/2016 A-IF61 G5 63.71899833 -68.472945 23.1 yes yes yes Petite Ponar 3d 
 

10/10/2016 A-IF62 G2 63.71106333 -68.50926333 14.6 no 
  

Van Veen 3d blank 

10/10/2016 A-IF62 G1 63.71069333 -68.50937333 12.7 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF62 G3 63.71094333 -68.509285 14.3 yes yes no Van Veen 3d no bio 

10/10/2016 A-IF62 G4 63.71081333 -68.50903 14 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF62 G5 63.71085833 -68.50857167 15.4 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF63 G1 63.681635 -68.47696667 70.5 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF63 G2 63.68094833 -68.477575 83.4 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF63 G3 63.68128667 -68.47692167 72.4 yes yes yes Van Veen 3d 
 

11/10/2016 A-IF68 G1 63.68119 -68.48211167 75.1 yes yes yes Van Veen 3d 
 

11/10/2016 A-IF68 G2 63.68112833 -68.48212167 74.8 yes yes yes Van Veen 3d 
 

11/10/2016 A-IF68 G3 63.68097833 -68.48214 73.3 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF69 G1 63.68095333 -68.49540833 54.1 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF69 G2 63.680985 -68.49543833 53.5 yes yes yes Van Veen 3d 
 

14/10/2016 A-IF69 G3 63.68085833 -68.49554833 52.9 yes yes yes Van Veen 3d 
 

10/10/2016 A-IF70 G1 63.704635 -68.533275 10.5 ??? 
  

Van Veen 3d 
 

10/10/2016 A-IF70 G2 63.70458167 -68.53265 11.3 yes 
 

no Van Veen 3d no bio, just rock 

10/10/2016 A-IF70 G3 63.70452167 -68.53277333 10.8 yes yes yes Petite Ponar 3d 
 

10/10/2016 A-IF70 G4 63.70451333 -68.53305667 10.7 yes yes yes Petite Ponar 3d 
 

14/10/2016 B-IF24 G2 63.65374667 -68.487325 84.1 yes no yes Van Veen 3d rock; no seds, just 

biota 

14/10/2016 B-IF24 G5 63.65384 -68.48766833 83.3 yes no yes Van Veen 3d no seds; biota only - 

bryozoans 

14/10/2016 B-IF24 G1 63.65392167 -68.48682833 92.8 
   

Van Veen 3d 
 

14/10/2016 B-IF24 G3 63.65381 -68.48754 84.6 
   

Van Veen 3d 
 

14/10/2016 B-IF24 G4 63.65393333 -68.48757167 87.9 
   

Van Veen 3d rock only 

13/10/2016 B-IF33 G1 63.63272 -68.47208 80.1 yes yes yes Van Veen 3d 
 

13/10/2016 B-IF33 G2 63.63317 -68.47228833 79.3 yes yes yes Van Veen 3d 
 

13/10/2016 B-IF33 G3 63.63320167 -68.47209833 79.9 yes yes yes Van Veen 3d 
 

8/10/2016 B-IF35 G3 63.56992333 -68.353975 149 no 
  

Van Veen 3c one rock 

8/10/2016 B-IF35 G1 63.570665 -68.35378167 144 yes yes yes Van Veen 3c good return 
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8/10/2016 B-IF35 G2 63.57050167 -68.35385833 145 yes yes yes Van Veen 3c some return 

14/10/2016 B-IF64 G1 63.66596833 -68.46362833 77.9 yes yes yes Van Veen 3d 
 

14/10/2016 B-IF64 G2 63.66606 -68.46354 77.9 yes yes yes Van Veen 3d 
 

14/10/2016 B-IF64 G3 63.66628667 -68.46531167 87.2 yes yes yes Van Veen 3d 
 

14/10/2016 B-IF66 G2 63.65542333 -68.49100833 83.3 no 
  

Van Veen 3d blank 

14/10/2016 B-IF66 G1 63.65538 -68.49108833 85.4 yes yes yes Van Veen 3d good 

14/10/2016 B-IF66 G3 63.65517 -68.48985333 92.6 yes 
  

Van Veen 3d half good 

14/10/2016 B-IF66 G4 63.65515333 -68.49185333 72.8 yes yes yes Van Veen 3d good 

11/10/2016 B-IF72 G1 63.65129833 -68.45164333 70.2 yes yes yes Van Veen 3d 
 

11/10/2016 B-IF72 G2 63.65130333 -68.45099667 68.9 yes yes yes Van Veen 3d 
 

11/10/2016 B-IF72 G3 63.65117 -68.466455 64.8 yes yes yes Van Veen 3d 
 

11/10/2016 B-IF73 G1 63.654235 -68.496595 56.8 yes yes yes Van Veen 3d 
 

11/10/2016 B-IF73 G2 63.65425167 -68.49535 63.1 yes yes yes Van Veen 3d 
 

11/10/2016 B-IF73 G3 63.65415333 -68.49727 50.5 yes yes yes Van Veen 3d 
 

14/10/2016 B-IF74 G2 63.65569333 -68.45251333 85.3 no 
  

Van Veen 3d just water 

14/10/2016 B-IF74 G1 63.65551333 -68.45151333 80.5 yes 
  

Van Veen 3d just some pebbles 

14/10/2016 B-IF74 G3 63.65525 -68.453025 92.4 yes yes 
 

Van Veen 3d small sed sample 

14/10/2016 B-IF74 G4 63.65573 -68.45208333 82.7 
   

Van Veen 3d 
 

14/10/2016 B-IF74 G5 63.65588667 -68.45178667 82.1 
   

Van Veen 3d 
 

12/10/2016 C-IF26 G1 63.65410167 -68.59800333 156 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF26 G2 63.65422167 -68.59816833 158 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF26 G3 63.65404333 -68.598285 149 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF27 G3 63.64824833 -68.61381167 47.6 no 
  

Van Veen 3d didn't trigger 

12/10/2016 C-IF27 G1 63.648155 -68.61392 47.8 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF27 G2 63.64829833 -68.61368 47.4 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF36 G3 63.66667333 -68.64210167 142 no 
  

Van Veen 3d blank 

12/10/2016 C-IF36 G1 63.667055 -69.64563 143 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF36 G2 63.66691 -68.64436 143 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF36 G4 63.66636667 -68.64474333 142 yes yes yes Van Veen 3d good 

12/10/2016 C-IF37 G1 63.66773667 -68.57288 83.9 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF37 G2 63.66762333 -68.57250167 85.7 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF37 G3 63.667685 -68.57218333 87.9 yes yes yes Van Veen 3d 
 



234 
 

12/10/2016 C-IF38 G1 63.66380667 -68.59985167 208 no 
  

Van Veen 3d did not close 

12/10/2016 C-IF38 G4 63.664275 -68.59812667 182 no 
  

Van Veen 3d didn't close 

12/10/2016 C-IF38 G2 63.66349667 -68.59858 201 yes yes yes Van Veen 3d good 

12/10/2016 C-IF38 G3 63.66428167 -68.60018333 205 yes yes no Van Veen 3d sed only, no bio 

12/10/2016 C-IF38 G5 63.66397167 -68.59665667 170 
   

Van Veen 3d 
 

12/10/2016 C-IF5 G1 63.67968333 -68.63673167 138 no 
  

Van Veen 3d blank 

12/10/2016 C-IF5 G3 63.680115 -68.635925 138 no 
  

Van Veen 3d blank 

12/10/2016 C-IF5 G2 63.67995333 -68.63601 137 yes yes no Van Veen 3d sed only, no bio 

12/10/2016 C-IF5 G4 63.68031 -68.635225 135 yes yes yes Van Veen 3d good 

12/10/2016 C-IF5 G5 63.680365 -68.63436833 126 yes yes yes Van Veen 3d good 

12/10/2016 C-IF5 G6 63.68055833 -68.63376667 115 yes yes yes Van Veen 3d 
 

13/10/2016 C-IF53 G1 63.62679167 -68.60497333 121 no 
  

Van Veen 3d blank 

13/10/2016 C-IF53 G2 63.62659 -68.60547333 128 no 
  

Van Veen 3d blank 

13/10/2016 C-IF53 G4 63.62693833 -68.604385 114 no 
  

Van Veen 3d blank 

13/10/2016 C-IF53 G5 63.62683667 -68.60489333 119 no 
  

Van Veen 3d blank 

13/10/2016 C-IF53 G3 63.626295 -68.60583333 135 yes yes yes Van Veen 3d good 

13/10/2016 C-IF53 G6 63.62657667 -68.60538667 126 yes yes yes Van Veen 3d good 

12/10/2016 C-IF54 G1 63.63368333 -68.60850167 95.9 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF54 G2 63.63376333 -68.60783167 92.9 yes yes yes Van Veen 3d 
 

12/10/2016 C-IF54 G3 63.63375667 -68.60774333 93.8 yes yes yes Van Veen 3d 
 

5/10/2016 C-IF55 G2 63.62530167 -68.58357667 99.2 no 
  

Van Veen 3c no return 

5/10/2016 C-IF55 G1 63.62564167 -68.58240167 91.9 yes yes yes Van Veen 3c good return 

5/10/2016 C-IF55 G3 63.62549167 -68.583025 95.4 yes yes yes Van Veen 3c good return 

5/10/2016 C-IF55 G4 63.62557667 -68.58323333 94.7 yes yes yes Van Veen 3c good return 

5/10/2016 C-IF6 G1 63.62250667 -68.60412833 156 yes yes yes Van Veen 3c good return 

5/10/2016 C-IF6 G2 63.62239667 -68.60327833 156 yes yes yes Van Veen 3c good return 

5/10/2016 C-IF6 G3 63.62234333 -68.60357 155 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF30 G1 63.54396667 -68.50076833 139 yes yes yes Van Veen 3c good return; sponge 

in sediment, picture 

taken, thrown back 

8/10/2016 D-IF30 G2 63.54342833 -68.50014833 138 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF30 G3 63.54352167 -68.49974333 137 yes yes yes Van Veen 3c 
 

8/10/2016 D-IF31 G1 63.54456667 -68.48700667 140 yes yes yes Van Veen 3c good return 
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8/10/2016 D-IF31 G2 63.544485 -68.48691833 140 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF31 G3 63.54441833 -68.48695833 139 yes yes yes Van Veen 3c good return 

13/10/2016 D-IF32 G1 63.58537833 -68.54966 80.4 yes yes yes Van Veen 3d camera already 

completed; on top of 

moraine 

13/10/2016 D-IF32 G2 63.58554833 -68.54854167 78.6 yes 
  

Van Veen 3d rock only 

13/10/2016 D-IF32 G3 63.5853 -68.55009 77.2 yes yes yes Van Veen 3d 
 

13/10/2016 D-IF32 G4 63.651935 -68.54931 75.7 yes yes yes Van Veen 3d 
 

4/10/2016 D-IF41 G1 63.471905 -68.36087 120 no 
  

Van Veen 3c no return 

4/10/2016 D-IF41 G2 63.47228667 -68.36209167 121 no 
  

Van Veen 3c no return 

4/10/2016 D-IF41 G3 63.47288333 -68.36201833 128 yes yes yes Van Veen 3c good return 

4/10/2016 D-IF41 G4 63.47211667 -68.36241333 119 yes yes yes Van Veen 3c good return 

4/10/2016 D-IF41 G5 63.47161667 -68.361725 117 yes yes yes Van Veen 3c good return 

5/10/2016 D-IF42 G1 63.58537833 -68.54877667 80.4 no 
  

Van Veen 3c no return 

5/10/2016 D-IF42 G3 63.58528833 -68.54810667 78.8 no 
  

Van Veen 3c no return 

5/10/2016 D-IF42 G4 63.58543167 -68.548605 80.8 no 
  

Van Veen 3c no return; called off 

due to wind 

5/10/2016 D-IF42 G2 63.584685 -68.54720667 74.1 yes yes yes Van Veen 3c good return 

13/10/2016 D-IF56 G1 63.61427333 -68.56571833 97.7 yes 
  

Van Veen 3d rock only 

13/10/2016 D-IF56 G2 63.61459833 -68.56535833 97.8 yes yes yes Van Veen 3d 
 

13/10/2016 D-IF56 G4 63.61455167 -68.565715 96.9 yes yes yes Van Veen 3d 
 

13/10/2016 D-IF56 G3 63.614445 -68.56578167 97.3 yes  yes yes Van Veen 3d 
 

5/10/2016 D-IF58 G1 63.53838667 -68.48333833 139 no 
  

Van Veen 3c no return; high 

winds, come back 

later 

8/10/2016 D-IF58 G2 63.53882833 -68.48174833 140 no 
  

Van Veen 3c one rock 

8/10/2016 D-IF58 G3 63.53890333 -68.48261833 138 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF58 G4 63.53872667 -68.48208333 139 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF59 G1 63.558175 -68.47186333 157 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF59 G2 63.55780167 -68.47063667 154 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF59 G3 63.55793 -68.47268333 158 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF60 G3 63.55923167 -68.50763667 194 no 
  

Van Veen 3c one rock 

8/10/2016 D-IF60 G1 63.559225 -68.50765167 195 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF60 G2 63.55896667 -68.50772 188 yes  yes yes Van Veen 3c good return 
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13/10/2016 D-IF7 G1 63.60474167 -68.56825167 58.6 yes yes yes Van Veen 3d 
 

13/10/2016 D-IF7 G2 63.60497667 -68.56787667 58.5 yes yes yes Van Veen 3d 
 

13/10/2016 D-IF7 G3 63.60497667 -68.567505 62 yes yes yes Van Veen 3d 
 

8/10/2016 D-IF76 G1 63.54604667 -68.49785 116 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF76 G2 63.54586333 -68.49746 114 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF76 G3 63.54599833 -68.49701167 115 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF79 G2 63.54501833 -68.452115 147 no 
  

Van Veen 3c one rock 

8/10/2016 D-IF79 G3 63.54509 -68.45248833 149 no 
  

Van Veen 3c no return 

8/10/2016 D-IF79 G4 63.544995 -68.45276167 153 no 
  

Van Veen 3c no return 

8/10/2016 D-IF79 G1 63.54526333 -68.450975 139 yes yes yes Van Veen 3c good return 

8/10/2016 D-IF79 G5 63.54536333 -68.45296833 146 yes yes yes Van Veen 3c good return 

5/10/2016 D-IF8 G1 63.48892167 -68.39145 89.1 yes yes yes Van Veen 3c good return 

5/10/2016 D-IF8 G2 63.48857667 -68.393135 77.5 yes yes yes Van Veen 3c good return 

5/10/2016 D-IF8 G3 63.48860667 -68.39036167 92.5 yes yes no Van Veen 3c single rock 

5/10/2016 D-IF8 G4 63.488425 -68.388095 99.2 yes yes no Van Veen 3c single rock 

5/10/2016 D-IF8 G5 63.48924333 -68.38953167 97.9 yes yes no Van Veen 3c single rock 

13/10/2016 D-IF81 G3 63.5903 -68.546965 57.7 no 
  

Van Veen 3d just water 

13/10/2016 D-IF81 G1 63.59028167 -68.54716167 57.2 yes yes yes Van Veen 3d camera already 

completed 

13/10/2016 D-IF81 G2 63.59022333 -68.54705 57.5 yes yes yes Van Veen 3d 
 

13/10/2016 D-IF81 G4 63.59023333 -68.54686 58 yes no yes Van Veen 3d large sponge 

4/10/2016 E-IF1 G0 63.40450667 -68.279515 123 no 
  

Van Veen 3c no return 

4/10/2016 E-IF10 G1 63.39581333 -68.209005 106 no 
  

Van Veen 3c no return 

4/10/2016 E-IF10 G2 63.39547167 -68.210895 99.5 yes yes yes Van Veen 3c good return 

4/10/2016 E-IF10 G3 63.39567833 -68.210375 100 yes yes yes Van Veen 3c good return 

4/10/2016 E-IF10 G4 63.39579833 -68.21099 101 yes yes yes Van Veen 3c good return 

7/10/2016 E-IF12 G1 63.35163833 -67.83734833 145 no 
  

Van Veen 3c no return 

7/10/2016 E-IF12 G2 63.35193667 -67.83731167 146 yes yes yes Van Veen 3c some return 

7/10/2016 E-IF12 G3 63.35197 -67.837925 148 yes yes yes Van Veen 3c some return 

7/10/2016 E-IF12 G4 63.352135 -67.83821667 148 yes yes yes Van Veen 3c some return 

4/10/2016 E-IF42 G1 63.34986667 -68.23403333 57.6 yes yes yes Van Veen 3c good return 

4/10/2016 E-IF42 G2 63.34956667 -68.23385 58.4 yes yes yes Van Veen 3c good return 

4/10/2016 E-IF42 G3 63.34948333 -68.23451667 61.6 yes yes ??? Van Veen 3c some return 
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8/10/2016 E-IF45 G1 63.46544833 -68.080225 180 yes yes yes Van Veen 3c some return 

8/10/2016 E-IF45 G2 63.46533167 -68.07950667 178 yes yes yes Van Veen 3c some return; two 

shells; lost the screen 

8/10/2016 E-IF45 G3 63.46529167 -68.08013 177 yes yes yes Van Veen 3c some return 

4/10/2016 E-IF9 G1 63.36550833 -68.30791667 100 yes yes yes Van Veen 3c good return 

4/10/2016 E-IF9 G2 63.36572 -68.30966667 97.2 yes yes yes Van Veen 3c good return 

4/10/2016 E-IF9 G3 63.36544167 -68.307075 101 yes yes yes Van Veen 3c good return 

4/10/2016 E-IFI G1 63.40461333 -68.28007333 122 yes yes yes Van Veen 3c good return 

4/10/2016 E-IFI G2 63.40430167 -68.279305 124 yes yes yes Van Veen 3c good return 

4/10/2016 E-IFI G3 63.40428333 -68.28031667 119 yes yes yes Van Veen 3c good return 

7/10/2016 F-IF17 G1 63.23082 -67.56952333 197 no 
  

Van Veen 3c no return 

7/10/2016 F-IF17 G2 63.23133 -67.56857333 198 yes yes no Van Veen 3c some return; mostly 

rocks 

7/10/2016 F-IF17 G3 63.23118 -67.56864833 201 yes yes no Van Veen 3c some return; two 

rocks 

5/10/2016 IFPH1 G2 63.73771 -68.680935 51 no 
  

Van Veen 3c no return 

5/10/2016 IFPH1 G1 63.73762833 -68.68139333 51.2 yes yes yes Van Veen 3c good return 

5/10/2016 IFPH1 G3 63.73748 -68.68029 50.4 yes yes yes Van Veen 3c good return 

5/10/2016 IFPH1 G4 63.73737667 -68.67993333 50.3 yes yes yes Van Veen 3c good return 

12/10/2016 IFPH2 G1 63.71376667 -68.647515 34.3 yes yes yes Van Veen 3d 
 

12/10/2016 IFPH2 G2 63.71331667 -68.6478 32.1 yes yes yes Van Veen 3d 
 

12/10/2016 IFPH2 G3 63.713845 -68.64776167 38.3 yes yes yes Van Veen 3d 
 

 


