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Abstract

Cysteine is a unique amino acid because of the chemical reactivity of its thiol (–SH)

side chain. For that reason, cysteine serves several essential roles in biochemistry, and

its reactivity is critical for the catalytic activity of several biological enzymes. This sig-

nificance of cysteine residues has been exploited in designing covalent-modifier drugs,

particularly kinase inhibitors, which have proven to be successful cancer chemother-

apeutic agents in recent years. The reactivity of cysteine thiol group is complex,

but a measure of its acidity or pKa is a strong determinant of its reactivity towards

druggable targets—and can help guide the selection of appropriate druggable targets

for covalent modification. Relatively few experimental pKa’s of cysteine residues in

proteins have been reported, and methods for the computation of cysteine pKa’s have

received little attention.

This thesis presents studies undertaken to investigate the reactivity and cova-

lent modification of cysteine residues in proteins. The introductory chapter lays the

groundwork that becomes the basis for subsequent chapters in the thesis. This chapter

provides a general introduction to covalent modification and the techniques used to in-

vestigate the biophysical properties of residue-specific nucleophilic targets for covalent

modification. The first two chapters following the introduction are focused on pre-

dictive pKa assessments and validation studies on di↵erent computational methods in

accurately calculating experimental cysteine pKa’s. In the latter chapters, advanced

computational and multiscale methods are adopted to investigate the reactivity of

druggable cysteines in protein kinases commonly implicated in diverse clinical indi-

cations, as well as model all the steps in the covalent modification mechanism of a

kinase target. The thesis concludes by providing a concise summary of the research

findings and future directions stemming from the work.
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The fundamental studies presented herein expand our current knowledge of mod-

elling the covalent inhibition of druggable cysteines in enzyme targets and could go a

long way to inform drug design and discovery.
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1.1 Introduction

The general mechanism for the inhibition of an enzyme or receptor by a small molecule

drug is for the drug to bind to the protein, attenuating its activity. The canonical

mode by which a drug will bind to its target is through non-covalent interactions,

such as hydrogen bonding, dipole–dipole interactions, and London dispersion interac-

tions. Kollman and coworkers estimated that small molecules that bind to proteins

through non-covalent interactions have a maximum binding a�nity of 6.3 kJ/mol

per non-hydrogen atom,1 so these binding energies are generally su�ciently weak for

the binding to be reversible. This establishes a measurable equilibrium between the

bound and unbound states.

A sizable class of drugs bind to their targets by an additional mode; a covalent

bond is formed between the ligand and its target. These drugs contain a moiety that

can undergo a chemical reaction with an amino acid side chain of the target protein,

covalently modifying the protein. Dissociating this covalent modifier from the target

requires these protein–ligand bonds to be broken. In the cases where the dissociation

is strongly exergonic, the equilibrium will lie so far towards the bound state that

the inhibition is e↵ectively irreversible. Some covalent protein–ligand reactions are

only weakly exergonic, so covalent modification can be reversible in some instances.2

These ligands also interact with the protein through conventional non-covalent in-

termolecular forces, so the total binding energy in the covalently-bound state results

from both covalent and non-covalent interactions. Refs. 3–10 are recent reviews on

covalent-modifiers in drug discovery.

The covalent modification of proteins can involve many types of chemical motifs

in the inhibitor and involve a variety of amino acids. Catalytic residues in the active

site often have depressed pKa’s, so they are more likely to occupy the deprotonated

state that is reactive towards electrophiles. Serine residues that serve as a Brønsted

acid in an enzymatic catalytic cycle have been a popular target. Two of the most

famous covalent modifier drugs, aspirin and penicillin (Figure 1.1), act by acylating

this type of active site serine residue. Aspirin targets Ser530 of cyclooxygenase and

penicillin targets the active site serine in DD-transpeptidase enzymes to inhibit the

growth and survival of bacterial cell wall. Catalytic serine, cysteine, threonine, and

lysine residues have all been targeted by covalent modifiers.11,12
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Figure 1.1: Aspirin and penicillin are early examples of covalent modifier drugs. These
drugs bind to their target by acetylating a catalytic serine residue. The reactive moiety
is drawn in red.

In recent years, there have been extensive e↵orts to develop covalent modifier

drugs that undergo reactions with the thiol group of non-catalytic cysteine residues.

Cysteines are relatively rare amino acids, comprising only 2.3% of the residues in the

human proteome.13 This limits the number of o↵-target reactions that are possible.

These non-catalytic residues are less likely to be conserved within a family of proteins,

which creates opportunities to select for a specific target in a large family of proteins.

Although this type of covalent modification does not inactivate the catalytic residues

directly, the covalent linker serves to anchor the drug binding site and achieve a

stronger binding a�nity. Large-scale screens have shown that reactive fragments

have unexpectedly high specificity for individual proteins, suggesting that covalent

modifiers have a lower risk of promiscuity than had been previously assumed.14–16

These advantages must be balanced against the drawbacks associated with cova-

lent protein–ligand binding. Covalent protein–ligand adducts are believed to trigger

immune responses in some cases.17 Further, the inhibitor must be carefully tuned so

that it will only bind irreversibly to its target because irreversible inhibition of an

o↵-target receptor could result in adverse drug reactions. The chemical reactivity of

the electrophilic functional group of the ligand (a.k.a., “warhead”) also creates the

potential that the inhibitor will be chemically degraded in an inactive form through
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metabolism or other types of chemical reactions before it reaches the target. This

constrains the reactivity of the warhead.

To develop drugs of practical use that have the advantages of covalent modification

but avoid the disadvantages, researchers have developed targeted covalent inhibitors

(TCIs). Typically, these compounds have a non-covalently binding framework that is

highly selective for the target. For example, covalent modifier ibrutinib (Figure 1.2)

shares the aminopyrimidine sca↵old that has been successfully employed in the de-

velopment of Bruton’s tyrosine kinase-selective non-covalent inhibitors. The reactive

warhead is an acrylamide, which is a moderately-reactive electrophile. Thiol-Michael

additions are generally only weakly exergonic, so these additions are often reversible.18

This allows the inhibitor to dissociate if it reacts with a thiol of a protein other than

its target. High selectivity is achieved by the combination of selective non-covalent in-

teractions and the additional strength of the covalent interaction between the warhead

and a complementary reactive amino acid.

Figure 1.2: Ibrutinib is an example of a targeted covalent inhibitor used for the
treatment of B cell cancers. The aminopyrimidine sca↵old is highlighted in blue and
the reactive acrylamide warhead is indicated in red.

1.1.1 Physical Parameters of Covalent Modification

The strength of the binding of a non-covalent inhibitor to its target can be quanti-

fied by the equilibrium constant, KI , for the association of the ligand (inhibitor, I)

and its target (enzyme, E) to form a protein–ligand complex (E·I). This association

can also be defined in terms of the Gibbs energy of binding through the relation

�Gnon�covalent = �RT lnKIC�, where C� is the standard state concentration.19 The

binding of a covalent modifier involves additional steps. The protein–ligand complex
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(E·I) undergoes reaction to form the covalent adduct (I–E), Figure 1.3. The rate of

this process is characterized by its rate constant, kinact.. In some cases, this reaction

is reversible and the covalent adduct can revert to the non-covalent protein–ligand

complex with the rate constant k�inact.. If the reaction is strongly exergonic, kinact.

will be much larger than k�inact., so the binding will e↵ectively be irreversible. The

total binding energy of the ligand results from both the covalent and non-covalent

protein–ligand interactions (i.e., �Gcovalent and �Gnon�covalent).

E + I E   I E–I
kinact.KI

kíLQDFW�

Ɣ

�G �Gnon-covalent

�Gcovalent

N

HN

O

N

NR

R

S

N

HN

O

N

NR

R
N

HN

O

N

NR

R

HS

�G‡

E+I E•I E–I

Figure 1.3: Schematic binding profile for the formation of a covalent protein–ligand
complex. In this example, afatinib binds non-covalently to the active site of epidermal
growth factor receptor (EGFR) kinase (E·I), then undergoes a chemical reaction with
the thiol group of Cys-797 to form a covalent thioether adduct (E–I).

The rate at which an inhibitor reacts with the target (kinact.) can be calculated

using transition state theory. Conventional transition state theory is the simplest and
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most widely used theory, which relates the rate of reaction to the Gibbs energy profile

along the reaction coordinate1. Using transition state theory, the rate of reaction can

be calculated by the Gibbs energy of activation (�G‡ of the rate limiting step21),

kTST =
kBT

h
exp

✓
��G‡

kBT

◆
. (1.1)

The mechanism of covalent modification can be complex and involve multiple

reaction steps. For example, the mechanism of covalent modification of a cysteine by a

Michael acceptor involves the deprotonation of the thiol to form a thiolate, formation

of an enolate intermediate, and protonation of the enolate to form the thioether

product (Figure 1.4). A comprehensive model for covalent modification requires the

calculation of �Gnon�covalent, �Gcovalent, as well as the rate-limiting barriers of the

chemical reaction (�G‡). The rates of binding, unbinding, inactivation, and activation

govern the drug residence time, which has been proposed to be a better determinant

of in vivo pharmacological activity than the binding a�nity.22–24

NH
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S

O
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O S
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O
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O S

R

RR

thio-ether adduct enolate intermediate

thiolate

Figure 1.4: The mechanism of the addition of an acrylamide warhead to a cysteine
thiol.

1A discussion of the limitations of this model in enzymatic reactions is available in Ref. 20.
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1.2 Determination of the pKa of Targeted Residues

Generally, the first step in the mechanism for covalent modification of cysteines,

lysines, and serines is their deprotonation to yield their more reactive form (Fig-

ure 1.5). In the case of the modification of a cysteine residue by an electrophile, the

thiol group of the amino acid side-chain must be deprotonated to form the reactive

thiolate nucleophile. The stability of the thiolate is thus a significant parameter for

the inhibition of a target site by a drug molecule. The equilibrium between the thiol

and thiolate states of a cysteine residue in a protein is defined by its pKa. Cysteines

with low pKa’s are more likely to exist in their reactive thiolate state, so they will be

more susceptible to covalent modification by electrophilic inhibitors.

NH

O

NH

O
SH

S

NH

O

NH3

NH

O

NH2

NH

O

NH

OOH O

++ࡁ�

++ࡁ�

++ࡁ�

Figure 1.5: Deprotonation reactions involving cysteine, lysine, and serine. Covalent
modification of these residues typically involves reaction in their deprotonated, nucle-
ophilic states.
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1.2.1 Factors A↵ecting the pKa of Ionizable Residues

Typically, the pKa’s of ionizable residues in a protein will vary due to intrinsic dif-

ferences in bonding with functional groups of the side chain (e.g., –C(––O)OH vs.

–NH3

+, etc.) and the nature of the environment where the ionizable residue resides.

As a general rule, the pKa of ionizable residues in a positively charged environment

will be lowered from their intrinsic pKa values. For example, placing an Asp or Glu

residue near positively charged Lys residues stabilizes the negative form of the Asp

and Glu residues, lowering their pKa.25 Conversely, in a negative electrostatic poten-

tial environment, the pKa will be increased. The intrinsic pKa (i.e., pKintr) of an

ionizable residue is the pKa of that residue when all other titratable groups in the

protein are fixed in their neutral or reference states, Table 1.1. For ionizable amino

acid residues, the intrinsic pKa is determined by synthesizing a pentapeptide with

blocked neutral terminal groups, where the ionizable residue of interest is positioned

between two alanine side chains. This provides the pKa of the solvent-exposed amino

acid residue without electrostatic interaction e↵ects from other neighboring ionizable

residues with charged functional groups. The pKa of an amino acid in a protein can

deviate from this intrinsic value due to di↵erences in its intermolecular interactions

in its folded state.

Table 1.1: Intrinsic pK values of ionizable groups in proteins

Ionizable Group pKintr

↵-amino 8.0
Asp 3.9
Glu 4.3
His 6.5
Cys 8.6
Tyr 9.8
Lys 10.4
Arg 12.3

↵-carboxyl 3.7

N.B., pKintr values reported above were determined in alanine pentapeptides with
blocked termini [Ac-(Ala)2-Cys-(Ala)2-NH2], and were taken from Refs. 26 and 27.

The standard pKa of a free cysteine in solution is 8.6,27 but pKa’s of cysteines

have been reported to range from 2.9 to 11.1.28–30 This broad range results from the

intermolecular interactions that the thiol and thiolate states of the cysteine experience
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inside the protein. Catalytic cysteines in enzymes like cysteine proteases tend to have

nearby cationic residues, like histidine or asparagine, which lowers their pKa’s by

stabilizing the thiolate state of the cysteine.28 Conversely, the thiolate state of the

cysteine residue will experience repulsive interactions with nearby anionic residues,

raising the pKa. Amino acids buried in hydrophobic pockets of the protein can also

have elevated pKa’s because they do not experience stabilizing interactions with water

molecules.

Three competing interactions are generally responsible for the environmental per-

turbation in pKa of ionizable residues, namely: hydrogen bonding, desolvation e↵ects,

and electrostatic interactions. Hydrogen bonding tends to lower the pKa of ionizable

residues in a deprotonated state and raises the pKa of ionizable residues in a proto-

nated state. In proteins, hydrogen bonding generally confers 1–2 kcal/mol to structure

stability.31 Regarding desolvation e↵ects, the neutral state of ionizable residues will

be favoured when buried in the hydrophobic core of the protein. This is primarily

due to lack of water in the protein interior, which has the ability to form favourable

interactions with ionizable residues—stabilizing their charged states. As a result, the

pKa’s of cysteine residues will be elevated when buried in the protein interior. Also,

electrostatic interactions between charged groups when attractive and favourable, can

help stabilize ionizable residues in proteins. This has the e↵ect of lowering the pKa’s

of acidic residues while raising the pKa’s of basic residues.

1.2.2 Methods for pKa Determination

Experimental Methods

A number of experimental methods exist for determining the pKa’s of molecules, al-

though the choice of technique is dependent on the sample and matrix under investiga-

tion.32 For ionizable residues in proteins, potentiometric titration, quantitative mass

spectrometry, and nuclear magnetic resonance (NMR) are among the most common

experimental methods. A vast majority of these methods require the measurement of

a physical parameter as a function of pH. For instance, in NMR titrations the mean

chemical shift of an assigned proton near the ionization site is measured at varied

pH levels. The pKa value can then be determined by locating a point of inflection

on the plotted titration curve. This approach of pKa determination is described by
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the Henderson–Hasselbalch equation, (Eqn. 1.2). The pKa’s of titratable sites will

have to be independent and di↵er significantly from one another (i.e., > 2 pK units)

in order to be accurately determined by this approach. The pKa value is generically

equal to the pH at which the protonation probability hxi, given by the expression in

Eqn. (1.3), is 0.5. For proteins and biomolecules where individual titratable residues

interact and couple with each other, the titration curves can be considerably more

complex and highly irregular. This e↵ect of cooperativity in the interactions be-

tween titratable sites in proteins can result in ill-defined inflection points on titration

curves—making it di�cult to decipher pKa values. Also, the variations in protein

pKa’s due to environmental and conformational e↵ects can further perturb the pKa

values.

pKa = pH + log

✓
[Conjugate Acid]

[Conjugate Base]

◆
(1.2)

hxi =
10pKa�pH

1 + 10pKa�pH
(1.3)

Computational Methods

The complications in experimental protein pKa determination have led to the emer-

gence of a number of computational techniques for protein pKa prediction.33–41 Prac-

tically, these methods are simpler than experimental pKa techniques because the

rather cumbersome and time-consuming process of protein expression and synthesis

is avoided. These methods provide pKa estimates of titratable sites of interest using

the three-dimensional protein structure, traditionally determined via X-ray crystal-

lography or NMR. The pKa estimates are based on the relative stability of titratable

states and are obtained by computing the di↵erences in free energy between charged

and neutral forms of the amino acid of interest. The generic computational strategy

involves the estimation of a pKa shift (i.e., �pKa), which depends on the environment

of the residue. The pKa shift is combined with a reference or intrinsic pKa value to

obtain the pKa of the residue of interest. This can be formally expressed as:42

pKa(residue) = pKa(reference) +�pKa(solvent ! protein) (1.4)
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where pKa(reference) refers to the reference pKa value of the residue in solution (i.e.,

pKintr). �pKa is the pKa di↵erence of removing the residue from pure solvent and em-

bedding it into the protein; a resultant term arising from the interactions experienced

by the ionizable residue in its new environment.

The majority of computational pKa prediction methods are based on an electro-

static approach, with calculations designed to accurately describe and estimate both

the Coulombic interaction and solvation energy terms of ionizable residues within

the model structure. These models are based on either a macroscopic or microscopic

structural framework. Under the macroscopic framework, the system is modelled as a

continuum dielectric with relevant interactions accounted for by solutions to macro-

molecular electrostatics equations, like the Poisson–Boltzmann Equation (PBE). Mi-

croscopic electrostatic methods on the other hand, are based on an atomistic model

framework and attempt to treat all interactions in an ab initio quantum mechanical

(QM) fashion. Macroscopic continuum electrostatic models were among the earli-

est methods used,43 although the approximations incorporated in their methodology

limit their accuracy. Since this time, these models have been continually improved,

and some methods that make use of an explicit solvent representation perform well

for predicting the pKa’s of aspartic and glutamic acid residues.42,44 More recently,

methods established on the basis of experimental parameterization of large datasets

of protein pKa’s have also been developed.38,41 These so-called empirical methods, are

simply mathematical models trained on optimized parameters from large databases

of experimental pKa values. An example is the widely used program, PROPKA, de-

veloped by Jensen and coworkers.38,45 PROPKA can predict side-chain pKa’s of Asp

and Glu residues with a root-mean-square deviation of 0.79.45 The method estimates

pKa shifts based on a physical description of desolvation e↵ects, hydrogen bonding,

and Coulombic interactions between charged groups.

1.2.3 Challenges in pKa Calculation of Targeted Residues

To accurately calculate the pKa’s of targetable ionizable residues in a protein, one

needs to consider the solvation environment, the protonation state of nearby titrat-

able residues, and pH-induced conformational or structural changes. In addition,

pH-dependent interactions that lead to favourable hydrogen bonding, inter-residue

electrostatic interactions, and salt-bridges in proteins need to be accounted for to
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yield accurate pKa’s. Methods that are capable of describing the coupling between

conformational changes and variation in protonation/deprotonation events can signif-

icantly improve the accuracy of predictive pKa calculation methods.

Despite the plethora of predictive pKa methods, variations exist in the level of

accuracy, performance, and cost of these algorithms in calculating ionizable residue

pKa’s. Accurate calculation of the pKa’s of amino acid side chain groups in proteins

has been a long-standing challenge in computational biophysics. Benchmark studies

on the accuracy and performance of standard predictive pKa methods suggest the

need for a more thorough assessment and comparison of methods—an approach which

could significantly enhance their accuracy and predictive capabilities. A significant

portion of the work reported in this thesis is focussed towards addressing some of

the challenges of existing computational methods in accurately predicting targetable

residue pKa, particularly cysteine.

The methods for prediction of the pKa of cysteine residues in proteins are less es-

tablished and have received very little attention. This is explored in-depth in Chapter

2, where a benchmark assessment of di↵erent computational methods is performed

for predicting experimental cysteine pKa’s in a test set of proteins. Computational

methods that employ either an implicit or explicit representation of solvent water

molecules in the pKa calculation were evaluated to determine their predictive ac-

curacy. In Chapter 3, the cysteine thiolate parameters in the popular Amber and

CHARMM molecular mechanical protein force fields were evaluated using advanced

multiscale methods in an e↵ort to validate and ascertain their use for biomolecular

simulations, including pKa calculations. The hydration structure of a model thiolate

(i.e., methylthiolate) was calculated using ab initio molecular dynamics methods and

compared with the structures predicted by molecular mechanics force field models.

In Chapter 4, the reactivity of druggable cysteines in the protein kinase family of

therapeutic targets were predicted based on their acidities (i.e., computed pKa’s) us-

ing a variety of rigorous pKa calculation methods. The pKa’s of important oncogenic

mutants of these targetable kinases were also computed.
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1.3 Computer Modelling in Drug Discovery

Computer modelling is used extensively in the pharmaceutical industry to aid in the

development of new drugs. The membrane permeability of a drug can be estimated

by empirical computational methods or molecular simulation.46–48 Docking algorithms

are used to rapidly screen large databases of compounds for their ability to bind a

protein or nucleic acid that is targeted for inhibition.49–51 Other methods, such as

free energy perturbation (FEP), are used to calculate the binding a�nities of a drug

to a protein (�Gnon�covalent).52–55 These methods are generally based on molecular

mechanical force fields or other simplified representations of the protein and ligand,

which typically only describe the intermolecular component of protein–ligand binding.

Covalent modification inherently involves the making and breaking of chemical bonds,

so these methods must be adapted to describe this mode of binding.

In Chapter 5, a multiscale approach is undertaken in an e↵ort to describe all the

steps in the covalent binding process and quantify the energetics of non-covalent and

covalent aspects of the binding process. The model system is a high-resolution crystal

structure of Bruton’s tyrosine kinase (BTK) complexed with a t-butyl cyanoacry-

lamide ligand bearing a piperidine linker and pyrazolopyrimidine sca↵old (PDB ID:

4YHF), Figure 1.6.

Figure 1.6: X-ray crystallographic structure of BTK complexed with t-butyl
cyanoacrylamide ligand (PDB ID: 4YHF).
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1.3.1 Docking and Free Energy Calculations

A principal goal of modern structure-based and computational drug design is to be

able to accurately predict the binding mode, selectivity, and a�nity of a potential

drug candidate to a protein target. Docking algorithms and free energy calculations

o↵er an avenue to estimate the bound-conformation and binding free energies of active

molecules in their targets for lead optimization.56

In molecular docking, large libraries of compounds are screened for their ability

to bind to a receptor. The compounds screened are then ranked based on a scor-

ing function that takes into account the conformation and interaction energies of the

compounds in the binding pocket of the receptor. In order to screen thousands of

compounds, docking algorithms use highly simplified and e�cient scoring functions

to predict both ligand orientation and interaction, limiting their ability to quantita-

tively predict accurate binding strengths. Further, these methods in most cases fail

to account for the conformational changes of the receptor, configurational entropy of

the ligand upon binding, and solvent e↵ects. Despite these limitations, the recent ad-

vancements in computer technology, algorithm, and speed has led to the development

of more sophisticated and improved computational docking methods.49

Free energy calculations on the other hand, o↵er a more rigorous approach to

calculate protein–ligand binding energies.57 These calculations, despite being compu-

tationally more expensive than docking methods, account for conformational changes

and entropy of the receptor and ligand, while also taking into account the discrete

nature of the solvent as explicit water molecules. The binding free energy can be

estimated from binding and unbinding events that yield an accurate thermodynamic

average, so long as adequate sampling is achieved. Free energy calculation methods

can be used to compute either relative binding a�nities55,58 (i.e., the di↵erence in the

binding a�nity between two or more related ligands) or absolute binding a�nities19,52

(i.e., the binding a�nity of a single ligand to a receptor).

For the work discussed in Chapter 5 of this thesis, the absolute binding energy of

the t-butyl cyanoacrylamide ligand to BTK receptor (which represents �Gnon�covalent)

is computed using alchemical free energy calculations. Alchemical free energy calcula-

tions54,59,60 o↵er a theoretically rigorous way of computing ligand binding free energies.

In alchemical free energy calculations, the ligand is slowly decoupled from its bind-

ing environment into a non-interacting “ghost” molecule in a series of intermediate
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stages that characterize binding/unbinding processes. This alchemical approach of

computing ligand–receptor binding free energy is computationally more tractable and

cost-e↵ective than direct sampling of the bound and unbound states of the ligand.

Also, given that free energy is a state function (i.e., path independent), alchemi-

cal simulations that provide a convenient pathway connecting the final bound and

unbound thermodynamic states are an e�cient way of computing absolute binding

free energies of druggable molecules. In fact, alchemical free energy calculations have

been shown to provide accurate estimates of the binding a�nity,61 selectivity,62–64 and

specificity65,66 of drug-like molecules binding to biologically relevant enzyme targets.

The approach for computing the absolute binding free energy of a ligand to a

receptor follows a non-physical thermodynamic cycle depicted in Figure 1.7, where

the binding free energy is computed through a series of alchemical transformations

that characterize binding/unbinding processes of the ligand in the bound/unbound

states. The absolute free energy of ligand binding (�Go

binding
which is synonymous

to �Gnon�covalent) is determined from the sum of the separate energy contributions

and corresponds to the forces and intermolecular interactions of the ligand following

its association and dissociation from the protein. These calculations are performed

for both the ligand in bulk solvent and in the protein binding site. For the example

shown in Figure 1.7, the binding free energy of transferring a ligand from bulk solvent

to the protein binding site consists of computing the terms: �Gsolv

elec+vdw
, �Gsolv

restr
,

�Gprot

elec+vdw
, and �Gprot

restr. The free energy terms �Gsolv

elec+vdw
and �Gprot

elec+vdw
represent

the interaction energy following the dissociation of the ligand from bulk solvent and its

association in the protein binding site, respectively. �Gsolv

restr
and�Gprot

restr correspond to

the free energy cost due to the conformational, positional, and orientational restraints

underlying the ligand binding process.

15



Figure 1.7: Thermodynamic cycle showing the necessary steps involved in the cal-

culation of absolute binding free energies. The fully interacting ligand (orange) in

solution at the top left (A) is transformed into a non-interacting solute (B, white)

during a series of equilibrium simulations where its electrostatic and van der Waals

interactions are scaled to zero, providing the term �Gsolv

elec+vdw
. The ligand is then re-

strained while still non-interacting with the environment (C), yielding �Gsolv

restr
. This

state is equivalent to having the non-interacting ligand restrained within the protein

cavity (D). The restrained ligand and non-interacting ligand in complex with the pro-

tein has its electrostatic and van der Waals interactions turned back on again (E),

giving �Gprot

elec+vdw
. The restraints between the ligand and protein are then removed

(�Gprot

restr), closing the cycle, and the final state is the unrestrained and fully inter-

acting ligand in complex with the protein (F). Adapted from Aldeghi et al.[ 61] with

permission from the Royal Society of Chemistry.
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1.4 Quantum Chemical Methodology

The pKa calculation and free energy methods described thus far rely on molecular

mechanical methods to describe the protein and inhibitor. Typically, these methods

do not describe bond formation and breaking processes associated with chemical reac-

tions, so terms like �Gcovalent and �G‡ cannot be calculated by these methods. This

has led researchers to employ quantum chemistry to model the mechanisms, kinetics,

and structures involved in covalent modification. Density functional theory (DFT) is

widely used for modelling biological systems because of its ability to describe large

chemical systems with quantitatively accurate energies and structures.67

Early models of electrophilic thiol additions were unable to identify the eno-

late/carbanion intermediates that occur in the canonical mechanism for a thiol-Michael

addition.68 The failure of conventional DFT methods to describe these reactions stems

from an issue in contemporary DFT known as delocalization error.69–72 DFT calcu-

lates inter-electron repulsion in a way that erroneously includes repulsion between an

electron and itself, which must be corrected for in an approximate way through the

exchange-correlation functional. The result of this e↵ect is a spurious delocalization

of electrons to reduce their self-interaction (Figure 1.8).

Delocalization error is an issue when DFT is used to model thiol additions.68,73 The

thiolate intermediate features a di↵use, sulfur-centered anion. When some popular

DFT functionals are used (e.g., B3LYP or PBE), self-interaction error74,75 causes

the energy level of the highest occupied molecular orbital (HOMO) to be positive,

making the anionic electron formally unbound. When the thiolate is complexed with

a Michael acceptor, delocalization error spuriously stabilizes a non-bonded state where

electron density is transferred from the HOMO of the thiolate to orbitals of the Michael

acceptor. For some electrophiles, this complex is the most stable form and these

methods predict that there is no enolate/carbanion intermediate.

Issues with delocalization error have led to the development of range-separated

DFT functionals, where the exchange-correlation functional uses a large component

of exact exchange for long-range inter-electron exchange-correlation. Smith et al.

showed that range separated DFT functionals such as !B97X-D predicted a stable

thiocarboanion intermediate, while popular methods like B3LYP predicted that this
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Figure 1.8: The charge transfer between a thiolate and Michael acceptor calculated
using !B97X-D/aug-cc-pVTZ. Charge is transferred from methylthiolate (top) to the
acrolein Michael acceptor (bottom). Areas in blue indicate an increase in charge
density while areas in green correspond to a decrease in charge density when the two
fragments interact. Charge is lost from the thiolate anion and gained in the space
between the S–C↵ sigma bond, the ⇡ molecular orbital of the C↵–C bond, and the pz
orbital of the O atom, corresponding to an oxygen-centered anion.

intermediate could not exist as a distinct species (Figure 1.9).68 This result was cor-

roborated by highly accurate CCSD(T) calculations. Some hybrid functionals that

have a high component of exact exchange globally, such as PBE0 or M06-2X, also

predicted a stable carbanion intermediate. In this thesis, the !B97X-D is the pre-

ferred functional of choice for modelling the chemical step of the thiol-Micheal addition

reaction investigated in Chapter 5.
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Figure 1.9: The potential energy surfaces for the addition of methylthiolate to methyl
vinyl ketone, calculated using DFT and ab initio methods. The PES for the B3LYP
and PBE functionals fail to predict a stable enolate intermediate. High-level ab initio
(CCSD(T)), range-separated functions (e.g., !B97X-D) and hybrid functionals (e.g.,
PBE0) predict a moderately-stable enolate intermediate with a minimum near C�–S
= 1.9 Å.

1.4.1 QM/MM Models of Covalent Modification

Studies of covalent modification using model reactants in the gas phase or using a

continuum solvent model do not provide a rigorous description of how the protein

environment a↵ects the reaction between the protein and the inhibitor. Paasche et

al. found that continuum solvent models provided limited success in describing the

cysteine–histidine proton transfer reactions associated with cysteine protease func-

tion.76 Describing the full enzyme, inhibitor, and solvent using a quantum mechanical

model would be prohibitively computationally demanding, so it is not practical to

apply these methods naively to model the covalent modification of a protein.

Quantum mechanics/molecular mechanics (QM/MM) methods allow for a critical

component of a chemical system to be described using a quantum mechanical model,

while the rest of the system is represented using a molecular mechanical model (Fig-

ure 1.10). As the size of the QM region is reduced to a relatively small size, the

computational expense of these QM/MM calculations is tractable. This is well-suited
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Figure 1.10: An example QM/MM model of Bruton’s tyrosine kinase in complex
with a covalent modifier (Ref. 23, PDB ID: 4YHF). The covalently-modified Cys481
residue and the cyanoacrylamide warhead define the QM region. The calculated
electron density of the QM region is represented by the blue mesh. The remainder of
the protein (gray) and inhibitor comprise the MM region.

for modelling chemical reactions involving proteins, like enzymatic reaction mecha-

nisms, where the chemical reaction only directly involves a small number of atoms,

but the rest of the system provides an essential environment. Analogously, the cova-

lent modification of proteins can also be described using a QM/MM model, where the

reactive warhead of the inhibitor and the residue being modified are described using

QM, while the balance of the system, such as the solvent and the rest of the protein

are described using an MM model. If needed, additional sections of the inhibitor and

protein can be included in the QM region.

QM/MM modelling has the potential to play a significant role in understanding
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and predicting the mechanisms, kinetics, and thermodynamics of covalent modifica-

tion. In this thesis, QM/MM method is used to model the covalent modification steps

of a cyanoacrylamide inhibitor binding to BTK and to calculate a rigorous, complete

binding energy profile of the chemical reaction (Chapter 5). This approach allows

us to model the action of covalent modifier drugs in a comprehensive way through

the calculation of �Gnon�covalent, �G‡, and �Gcovalent. We also used QM/MM to

study the solvation structure of model thiolates in aqueous solutions in an e↵ort to

determine their hydration structure (Chapter 3).

1.5 Outline

In this thesis, I explore the reactivity of cysteine residues in proteins from a com-

putational chemistry standpoint. Methods to identify which cysteines in druggable

protein targets that have the right balance between reactivity and in vivo stability

inform drug development.

In Chapter 2, I perform benchmark assessments of di↵erent computational meth-

ods in accurately estimating experimental cysteine pKa’s for a test set of proteins.

Methods that use either an implicit solvent or explicit solvent model were analyzed to

determine their predictive accuracy. In an e↵ort to address the intrinsic limitations

in the accuracy of pKa calculation methods as observed in chapter 2, Chapter 3 de-

tails an approach to determine which molecular mechanical model provides the best

description for model thiolates in solution. The cysteine thiolate parameters for the

Amber and CHARMM force field models are validated using free energy perturba-

tion methods and QM/MM MD simulations. In Chapter 4, improved pKa calculation

methods and rigorous computational approaches like constant-pH molecular dynamics

that are capable of describing variable protonation states within proteins, are used to

predict the reactivity of select druggable cysteines across the protein kinase family of

popular drug targets. Important oncogenic mutants of these kinases are also included

in the test set. Chapter 5 presents the first complete model for covalent modification

of druggable cysteine in an enzyme target, including both noncovalent and covalent

binding steps. The absolute binding free energy is calculated rigorously using ad-

vanced MD and hybrid QM/MM methods. A brief summary of the research results

is presented in Chapter 6, along with future directions stemming from this work.
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“We can only see a short distance ahead, but we can see

plenty there that needs to be done.”

— Alan Turing

2
Evaluation of Methods for the Calculation

of Cysteine pKa in Proteins

This chapter is adapted with permission from: Awoonor-Williams, E. and

Rowley, C. N. Evaluation of Methods for the Calculation of the pKa of Cysteine

Residues in Proteins J. Chem. Theory Comput., 2016, 12 (9), 4662–4673. Copyright©

2016 American Chemical Society.
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2.1 Abstract

Methods for the calculation of the pKa of ionizable amino acids are valuable tools for

understanding pH-dependent properties of proteins. Cysteine is unique among the

amino acids because of the chemical reactivity of its thiol group (S–H), which plays

an instrumental role in several biochemical and regulatory functions. The acidity of

noncatalytic cysteine residues is a factor in their susceptibility to chemical modifica-

tion. Despite the plethora of existing pKa computing methods, no definitive protocol

exists for accurately calculating the pKa’s of cysteine residues in proteins. A cysteine

pKa test set was developed, which is comprised of 18 cysteine residues in 12 proteins

where the pKa’s have been determined experimentally and an experimental structure

is available. The pKa’s of these residues were calculated using three methods that

use an implicit solvent model (H++, MCCE, and PROPKA) and an all-atom replica

exchange thermodynamic integration approach with the CHARMM36 and AMBER

↵99SB-ILDNP force fields. The models that use implicit solvation methods were gen-

erally unreliable in predicting cysteine residue pKa’s, with RMSDs between 3.41 and

4.72 pKa units. On average, the explicit solvent methods performed better than the

implicit solvent methods. RMSD values of 2.40 and 3.20 were obtained for simu-

lations with the CHARMM36 and AMBER ↵99SB-ILDNP force fields, respectively.

Further development of these methods is necessary because the performance of the

best method is similar to that of the null-model (RMSD=2.74) and these di↵erences

in RMSD are of limited statistical significance given the small size of our test set.

2.2 Introduction

Cysteine is unique among the amino acids because of its thiol (S–H) functional group.

This moiety allows cysteine to serve several biochemical roles,1,2 including disulfide

bond formation,3 metal-binding,4 proton donor,5,6 and redox-catalyst.6,7 Many of

these processes require cysteine to act as Brønsted–Lowry acid. The relative weakness

of the S–H bond allows these reactions to occur spontaneously under mild conditions;

cysteine has an intrinsic pKa of ⇠8.6,8 which is one of the closest to physiological pH

of all the naturally occurring amino acids.

In many instances, the reaction mechanism of the cysteine residue involves the
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formation of a negatively-charged thiolate anion. The catalytic cycles of the cysteine

protease5,9 and protein tyrosine phosphatase10,11 enzyme families involve the depro-

tonation of a cysteine residue as a critical step. For instance, in the cysteine protease

family, the thiolate is a necessary intermediate that undergoes a nucleophilic attack

on the carbonyl carbon of an amide bond (Figure 2.1 (a)).

Cysteine side chains in proteins also engage in a broad range of chemical reactions

with both endogenous and exogenous compounds. For example, the anti-cancer drugs

neratinib, dacomitinib, and afatinib contain an electrophilic acrylamide moiety that

inhibits target kinase enzymes by undergoing addition to an active site cysteine.12–15

The canonical mechanism for these reactions is a thiol-Michael addition, where the

thiol side-chain of the cysteine must be deprotonated before reacting with an elec-

trophilic carbon of the acrylamide moiety (Figure 2.1 (b) ). The covalent modification

of the epidermal growth factor receptor by afatinib is an example of this activity

(Figure 2.2).

Cys S Cys S

O

N
HH

R
-H

Cys S

O

N
H

R+HCys S

O

N
H

R

(b)

S H

S
S

C
O

N
H

R
R'

C
ys

-H C

O

N
H

R
R'

(a)

C
ys C

ys

Figure 2.1: Mechanism of cysteine reactivity (a) in cysteine protease enzymes and (b)
with the acrylamide moiety (red) of a covalent modifier drug.
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Figure 2.2: Covalent-modifier afatinib bound to the kinase domain of the epidermal
growth factor receptor (EGFR). The acrylamide moiety of afatinib has formed a
covalent bond with the protein by undergoing a Michael addition with the thiol group
of Cys797.

2.2.1 Factors A↵ecting Cysteine pKa’s

The pKa of a cysteine residue in a protein can be shifted significantly from its intrinsic

pKa value. Catalytic cysteines have pKa’s that are as low as 2.88,16–18 but the pKa’s

of non-catalytic cysteines generally range from 7.4 to 9.1.19 Generally, intermolecular

interactions that stabilize the thiolate or destabilize the thiol state will lower the

pKa, while intermolecular interactions that destabilize the thiolate and stabilize the

thiol will raise the pKa. The thiol group is a poor hydrogen bonding partner, but

the thiolate group is a good hydrogen bond acceptor, so a hydrogen bond donor

near a cysteine residue can decrease its pKa.19 Electrostatic interactions between

the thiolate and charged residues is another important determinant.20–23 Positively

charged residues will have an attractive interaction with the thiolate that will lower

the pKa, while negatively charged residues will have repulsive interactions with the

thiolate that will raise the pKa.
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2.2.2 Methods of pKa Determination

The pKa’s of cysteine residues in proteins are typically determined by spectroscopic

observation of the thiol during pH titration24,25 or by measuring the rate of a chemical

reaction involving the thiol.26,27 Recently, potentiometric titration28 and quantitative

mass spectrometry29 have been explored as alternative methods for cysteine pKa

determination. These methods require the protein of interest to be expressed or syn-

thesized with good yield and purity. Furthermore, the presence of multiple ionizable

residues within the protein complicates these experiments.

The challenges of experimental pKa determination have spurred the development

of a number of computational techniques to estimate the pKa’s of amino acids in pro-

teins.30–38 Using the three dimensional protein structure determined by X-ray crystal-

lography or Nuclear Magnetic Resonance (NMR) spectroscopy, these algorithms can

estimate the pKa of a given residue based on the relative stability of protonated and

deprotonated forms of the side chain. These methods can be divided into those that

model the e↵ect of the solvent by an implicit representation and those that include

explicit representations of solvent water molecules.

Implicit solvent methods are popular because they generally have a lower compu-

tational cost and the calculations can often be performed with limited preparation

by the user. These methods generally model the solvent around the protein as a

continuum dielectric.39–41 The electrostatic e↵ect on the pKa of a residue is deter-

mined by numerical solutions to either the Poisson–Boltzmann Equation (PBE)39,41–45

or by Generalized Born theory.46,47 H++36,48,49 and Multi-Conformation Continuum

Electrostatics (MCCE)30,50,51 are two popular pKa prediction methods based on a

continuum electrostatic solvent model.

PROPKA is a popular empirical pKa prediction method that also describes solva-

tion e↵ects implicitly.33,52–54 Given a protein structure, this method estimates pKa’s

based on approximate perturbative terms, including desolvation of the residue, inter-

residue Coulombic interactions, and hydrogen bonding interactions. The methods

used to calculate these terms are approximate, but they are parameterized based on a

large set of experimental pKa’s. PROPKA is one of the most accurate pKa prediction

methods;55,56 the pKa’s of Asp and Glu side chains are predicted with root-mean-

square deviations (RMSDs) of 0.79.53 Previous surveys have shown that this method

performs well for Tyr, Lys, and His side chains as well,53 although no study has

35



systematically examined its accuracy for cysteine.

There are intrinsic limitations to the accuracy of these methods. Solvation has a

large e↵ect on pKa, so the simplifications associated with using an implicit solvent

model are significant sources of error. Moreover, the PROPKA and H++ methods

assume that the protein structure is static, while the MCCE method only incorpo-

rates the e↵ect of side chain rotations. This neglects the true dynamic nature of the

protein, particularly in terms of how the structure changes when the cysteine residue

is deprotonated. These limitations can be addressed by modelling the protein using

molecular dynamics simulation methods that represent the solvent explicitly. Free

energy calculation methods like free energy perturbation and thermodynamic inte-

gration can be used to calculate the relative Gibbs energies of the protonated and

deprotonated states of the protein, which in turn can be related to the relative pKa

of a cysteine residue.57

2.2.3 Need for Validation

The available pKa prediction methods vary enormously in computational cost and can

be more accurate for some residues than others.56,58 Additionally, there is no definitive

protocol for accurately calculating the pKa’s of cysteines.59 Benchmark studies on

the performance of common pKa prediction methods have shown that the accuracy

of these methods varies widely.55,60 A comprehensive comparison and evaluation of

existing pKa computing methods will allow for a more thorough assessment of their

accuracy and identify where improvement is needed.

In this study, we have calculated the pKa’s of 18 cysteine residues in 12 pro-

teins where an experimental value has been reported. The pKa’s of the selected cys-

teine residues were calculated using three popular implicit solvation methods, namely:

H++,49 MCCE51 and PROPKA.54 We also compute the pKa’s of the selected cysteine

residues using an all-atom replica-exchange thermodynamic integration (RETI) ex-

plicit solvent approach with the CHARMM3661 and AMBER ↵99SB-ILDNP62 force

fields.
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2.3 Theory and Computational Methodology

2.3.1 Test Set

The coordinates for all proteins modeled in this study were based on structures deter-

mined using X-ray di↵raction and NMR that have been deposited in the Protein Data

Bank (PDB).63 The cysteine residues in these proteins for which the pKa’s are deter-

mined do not form disulfide bonds, so their pKa’s can be accessed directly. In cases

where the coordinates of some residues within the protein structure were missing,

SWISS-MODEL homology modelling64 was used to estimate the missing coordinates.

The PDB identifiers of the test set structures used in our study are included in Table

2.1.

Table 2.1: Test set of protein cysteine pKa’s.

Protein Abbrev. PDB codea Cys Residue Exptl. pKa Ref.b

↵-1-AT 1QLP65 232 6.86 ± 0.05 [66]
ACBP-m46c 1NTI 46 8.20 ± 0.10 [67]
ACBP-s65c 1NTI 65 9.00 ± 0.10 [67]
ACBP-t17c 1NTI 17 9.80 ± 0.10 [67]
AhpC 4MA968 46 5.94 ± 0.10 [69]
DJ-1 1P5F70 106 5.40 ± 0.10 [71]
HMCK 1I0E72 283 5.60 ± 0.10 [73]
HMCK-s285a 1I0E72 283 6.70 ± 0.10 [73]
Mb-g124c 2MGE74 124 6.53 ± 0.05 [75]
Mb-a125c 2MGE74 125 8.43 ± 0.03 [75]
MmsrA 2L9076 72 7.20 ± 0.20 [77]
MmsrA-e115q 2L9076 72 8.20 ± 0.10 [77]
O6-AGT 1EH678 145 5.30 ± 0.20 [79]
Papain 1PPN80 25 3.32 ± 0.01 [16]
PTP1B 2HNP81 215 5.57 ± 0.12 [18]
pp⌦ 1PPO82 25 2.88 ± 0.02 [16]
YopH 1YPT83 403 4.67 ± 0.15 [17]
YopH-h402a 1YPT83 403 7.35 ± 0.04 [17]

a PDB structure code, followed by the crystal structure reference number (if
one was published).

b Reference that provides the experimental pKa value of the Cys residue.

In the following sections, we present the relevant details about the methodology

and simulation techniques we employed in calculating the pKa’s of selected cysteine
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residues in the proteins. The pKa’s range between 2.88 for Papaya Protease Omega

(pp⌦) to 9.80 for the T17C mutant of Acyl-coenzyme A binding protein (ACBP).

2.3.2 Implicit Solvent Methods

The pKa’s of cysteine residues in the test set were calculated using three popular pKa

prediction methods: H++, MCCE, and PROPKA. Each of these methods assigns the

protonation states of residues automatically, so the calculations are based only on the

“deprotonated” experimental structure without any non-standard charge assignments

by the user. These methods are briefly described here:

H++

H++ computes pKa’s of titratable groups by calculating the solvation energy of the

various protonation states of a protein using a continuum solvent model. The electro-

static component of the relative stability of these states is calculated by a numerical

solution to the Poisson–Boltzmann equation. The accuracy of this method was evalu-

ated on a test set of measured pKa values for 23 proteins with 201 titratable residues

(of which 81 were Cys), collected from the work of Grimsley et al.84. H++ predicted

the correct protonation state of titratable residues 97% of the time. The true direc-

tion of pK shift was predicted 85% of the time. H++ is available through a free web

interface.85 The calculations reported here used H++ 3.1. The server default settings

were used; the salt concentration was 0.15 M and the dielectric constants of the bulk

protein and water environment were 10 and 80 respectively.

MCCE

MCCE provides pKa estimates using a molecular mechanical force field with a con-

tinuum solvent model. Side chain conformations are sampled using a Monte Carlo

algorithm. MCCE can predict the pKa’s of ionizable groups in proteins with an overall

RMSD of 0.90 with 75% of the errors < 1 pH unit.51 An extensive benchmark study

on a large pKa dataset of 100 proteins consisting of over 700 titratable residues, found

that MCCE can predict the pKa’s of buried residues to an accuracy of 53% within 1

pKa unit.55 No Cys and Arg residues were included in this test set. MCCE 2.7 was

38



used for the calculations reported in this study. Default dielectric constants of 8 and

80 were used in pKa calculations for the protein and the solvent, respectively.

PROPKA

PROPKA is a fast empirical method designed for structure-based pKa prediction and

rationalization of ionizable residues in proteins and protein–ligand complexes. The

pKa of a residue is estimated by calculating the pKa shifts of titratable groups us-

ing empirical rules that incorporate e↵ects from hydrogen bonding, desolvation, and

Coulombic interactions. PROPKA can predict the pKa’s of aspartate and glutamate

residues with an error of 0.79.53 A benchmark study on a large pKa dataset of 100

proteins consisting of over 700 titratable residues showed that PROPKA has an ac-

curacy of 85% within 1 pK unit for surface residues;55 however, this dataset did not

include the pKa of any cysteine residues. PROPKA 3.154 was used for the pKa’s

reported here.

2.3.3 Explicit Solvent Methods

For the models with an explicit representation of the solvent, cysteine pKa’s were

determined by calculating the shift in pKa from a reference value (i.e., �pKa),

pKa(residue) = pKa(reference) +�pKa (solvent ! protein) (2.1)

Here, pKa(reference) refers to the reference pKa value of the residue in solution. �pKa

results from the di↵erence in the intermolecular interactions experienced by the pro-

tonated and deprotonated states of the amino acid side chain in the protein relative

to the interaction they experience in bulk solution.

The cysteine pKa shifts are calculated using the thermodynamic scheme illustrated

in Figure 2.3, introduced by Warshel and coworkers.86 The free energy di↵erence be-

tween the protonated and deprotonated states of a residue are calculated in the pro-

tein environment and in a reference model system. The reference system is typically

a short, blocked peptide that contains the ionizable residue of interest. An accurate

experimental pKa of this reference value, pKa(reference), must be known so it can be

used to calculate the absolute pKa’s in the protein using eq 2.1.
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The relative Gibbs energies of the protonated and deprotonated states for both

the residue in the protein and in the reference system are computed using free energy

calculation methods. The di↵erence between these two values gives the Gibbs energy

of deprotonation of the protein residue relative to the reference value (��G), eq 2.2.

��G = �G (protein)��G (reference) (2.2)

In turn, the relative pKa shift can be calculated from the relative Gibbs energy,

�pKa =
��G

2.303RT
(2.3)

where R and T are the gas constant and simulation temperature, respectively. In

this study, the relative Gibbs energies are calculated using replica-exchange thermo-

dynamic integration simulations of the proteins in an explicit solvent.

The reference system used in this study was a blocked pentapeptide with the

sequence: ACE-Ala-Ala-Cys-Ala-Ala-NH2. The experimental pKa of the cysteine

residue in this peptide is 8.55 ± 0.03.84 Acetyl (ACE) and amine (NH2) functionalities

were used as capping groups for the N and C termini, respectively, to avoid artifacts

from charged termini.

2.3.4 Thermodynamic Integration

Thermodynamic integration (TI)87 provides a means of calculating the relative free

energies of the protonated and deprotonated states of the protein. The free energy

di↵erence of the two states (�GA!B) is expressed as an integral of the derivative of

potential energy as a function of a continuously varying parameter, �. The formal

expression for the free energy di↵erence between the two given states, labeled here as

A and B, of a system is,

�GA!B =

Z
�=1

�=0

✓
@G

@�

◆
d� =

Z
�=1

�=0

⌧
@V(�)

@�

�

�

d� (2.4)

where � is the reaction coordinate connecting states A and B. � = 0 corresponds
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Figure 2.3: Alchemical transformation used in thermodynamic integration calcula-
tions of cysteine pKa shifts. Top — Deprotonation reaction of cysteine residue in
protein environment; Bottom — Deprotonation reaction of cysteine residue in refer-
ence model pentapeptide; ��G refers to the relative free energy di↵erence between
the two reaction schemes.

to the reference or initial state (A), while � = 1 corresponds to the final state (B).

� values in-between 0 and 1 represent an alchemical hybrid of the two states. The

term V(�) refers to the potential energy function along the reaction coordinate and

h i� represents an ensemble average at a particular � value. For the purposes of pKa

calculations, TI is used to calculate the free energy di↵erence between the protonated

and deprotonated forms of the amino acid in the protein.

A limitation of TI is that long simulation times can be required for the calculated

free energies to converge. For instance, the anionic thiolate state inside an active

site can have a range of hydration structures, but transitions between these states

can be rare within the nanosecond time scales of conventional TI simulations. The

infrequency of these transitions causes the sampling of these windows to converge

slowly.

Replica-exchange methods88–90 can improve the rate of convergence for TI simu-

lations, allowing the relative free energies to be calculated with less sampling error.

With these methods, each simulation (a.k.a., replica) with a value of � is run in

parallel. Periodically, exchanges are attempted between neighboring replicas. The
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acceptance probability of the exchanges is,91

Pacc = min


1, exp

✓
�{[H�i(rj,pj) +H�j(ri,pi)]� [H�i(ri,pi) +H�j(rj,pj)]}

kBT

◆�

(2.5)

where H�i is the Hamiltonian of the system for the ith replica. ri and pi are the

coordinates and momenta of the particles of the ith replica, respectively.

These exchanges improve the e�ciency of the configurational space sampling of

the windows by allowing di↵erent configurations to be accessed by exchanges rather

than dynamical transitions. Meng et al. showed that this type of Hamiltonian replica

exchange dramatically improved the convergence of a free energy perturbation calcu-

lation of the pKa of Asp26 in thioredoxin.92

For the calculation of cysteine pKa’s with an explicit solvent model, we used the

all-atom Replica-Exchange Thermodynamic Integration (RETI) technique to calcu-

late the relative Gibbs energy of the thiol and thiolate states (Fig. 2.4). The neutral

cysteine was defined as the initial state (� = 0.0). The final state (� = 1.0) corre-

sponds to the negatively charged thiolate anion. To maintain a neutral simulation

cell, a chloride ion restrained in solution is neutralized in the final state of the sys-

tem. The only di↵erence in the potential energy function, V , of the two states are the

charges, and Lennard-Jones parameters are linearly interpolated between the initial

and final states as � = 0 ! 1,

V(�) = (1� �)V�=0 + �V�=1. (2.6)

Sample topology files showing the charges and Lennard-Jones parameters for the

cysteine thiol/thiolate states are provided (see Appendix A).
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Figure 2.4: Representative configuration of Cys283 from an all-atom RETI simulation

of human muscle creatine kinase (PDB ID: 1I0E). Top – Explicit representation of

active site thiol cysteine (� = 0); Bottom – Explicit representation of active site

thiolate cysteine (� = 1).
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2.3.5 Technical Details of RETI Calculations

Models for the all-atom simulations of proteins in our test set were constructed from

structures deposited in the protein data bank. These structures were used to generate

models using the CHARMM3661 and AMBER ↵99SB-ILDNP62 force fields. The

editconf module within the GROMACS software package was used to define a periodic

cubic box with the protein centred and placed at least 1.0 nm from the edge of the

box. Solvation of the protein within the periodic cubic box was accomplished using

the solvate module within the GROMACS software package. Na+ and Cl� ions were

added to the simulation cell such that the unit cell had no net charge and the ion

concentration was approximately 0.10 M. Water molecules were represented using the

TIP3P model.93

The simulation temperature and pressure were kept constant at 298.15 K and

100 kPa, respectively, by the velocity-rescaling thermostat94 and the Parrinello–

Rahman barostat.95,96 Covalent bonds to hydrogen were constrained with the LINear

Constraint Solver (LINCS) algorithm.97 Long range electrostatics were treated by

the Particle Mesh Ewald (PME) method.98 A grid spacing of 1.0 Å was used for all

simulation cells and a cut-o↵ distance of 1.0 nm was chosen for both the real space

Coulombic and Lennard-Jones interactions.

The initial structure was subjected to a steepest descent energy minimization to

eliminate steric atomic clashes or structural irregularities that may exist within the

constructed model system. Afterwards, 10–20 ns equilibration simulations were per-

formed using a simulation in the canonical ensemble (NVT) followed by a simulation in

the isothermal-isobaric (NpT) ensemble. These simulations used a velocity-rescaling

thermostat94 with a reference temperature 298.15 K and the Parrinello–Rahman baro-

stat95,96 with a reference pressure of 100 kPa. The time step was 2 fs.

After equilibration, the relative free energies of the thiol and thiolate states were

calculated using RETI. Each simulation was comprised of 11 windows with �= 0.0,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0. Exchanges were attempted between

neighboring replicas every 1 ps. The average exchange probability between replicas

was in the 0.1–0.2 range. The RETI simulations were 12 ns in length, with the first

2 ns discarded for equilibration. All free energy calculations and molecular dynamics

(MD) simulations were performed using the GROMACS 4.5.4 software package.99

Gibbs energies were calculated from the RETI data using g wham.100
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2.4 Results and Discussion

Table 2.2: Comparison of calculated cysteine pKa’s using the implicit and explicit solvation
methods for the residues in the test set.

Abbrev. Exptl. pKa H++ MCCE PROPKA CHARMM AMBER
↵-1-AT 6.86 ± 0.05 7.28 8.29 9.06 7.64 ± 0.35 9.35 ± 0.67
AhpC 5.94 ± 0.10 9.38 9.09 9.14 8.19 ± 0.46 9.66 ± 0.61
ACBP-m46c 8.20 ± 0.10 8.77 8.80 9.03 8.69 ± 0.16 6.96 ± 0.34
ACBP-s65c 9.00 ± 0.10 8.81 9.39 9.57 8.13 ± 0.20 7.55 ± 0.56
ACBP-t17c 9.80 ± 0.10 8.39 8.76 8.87 8.97 ± 0.44 10.34 ± 0.85
DJ-11 5.40 ± 0.10 11.25 12.55 12.28 5.40 ± 0.98 8.80 ± 0.34
HMCK 5.60 ± 0.10 9.10 6.82 10.41 7.06 ± 0.38 7.09 ± 1.15
HMCK-s285a 6.70 ± 0.10 9.31 6.60 11.21 6.46 ± 0.79 9.38 ± 0.39
Mb-g124c 6.53 ± 0.05 8.06 8.46 8.35 7.95 ± 0.77 8.84 ± 0.60
Mb-a125c 8.43 ± 0.03 8.25 8.79 9.15 8.65 ± 0.77 8.45 ± 0.47
MmsrA2 7.20 ± 0.20 >12 16.29 13.09 7.45 ± 0.63 10.68 ± 0.99
MmsrA-e115q3 8.20 ± 0.10 >12 15.42 11.36 7.01 ± 0.66 13.24 ± 0.68
O6-AGT 5.30 ± 0.20 9.51 8.34 10.57 8.67 ± 0.52 10.90 ± 0.67
papain4 3.32 ± 0.01 9.32 8.84 10.50 4.44 ± 0.57 4.95 ± 0.83
pp⌦5 2.88 ± 0.02 9.44 7.57 7.45 0.71 ± 0.83 -0.16 ± 0.73
PTP1B 5.57 ± 0.12 3.93 -0.66 8.50 1.18 ± 0.40 1.31 ± 0.27
YopH 4.67 ± 0.15 3.97 -0.98 7.55 2.89 ± 0.71 4.63 ± 0.83
YopH-h402a 7.35 ± 0.04 3.29 -0.63 7.54 0.25 ± 1.03 1.39 ± 0.39

The protonation states of all residues in the pKa test set were determined automatically for the methods
using implicit solvent approach (i.e., H++, MCCE, PROPKA). CHARMM and AMBER simulations on
the other hand, were performed with select residues in non-standard protonation states, in accordance
with experimental pK protonation state conditions.

1 DJ-1: Glu18 protonated;
2 MmsrA: Glu115, Asp150, His206 protonated;
3 MmsrA-e115q: Asp150, His206 protonated;
4 Papain: His159 protonated;
5 pp⌦: His159 protonated.

2.4.1 Implicit Solvent Methods

Table 2.3 lists the RMSDs of the predicted pKa’s from experiment using the di↵erent

pKa prediction methods. The implicit solvent methods were generally inaccurate

for predicting cysteine pKa’s (Figure 2.5). For each of these methods, the RMSD

for cysteine pKa prediction was greater than 3 pK units. Among the three implicit

solvent methods used, H++ reported cysteine pKa values with the smallest deviation

from experiment (RMSD = 3.41). The pKa’s calculated using MCCE had the largest

deviations from the experimental values (RMSD = 4.72). We note that because the
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size of our test set is small, the uncertainty for the RMSDs is large,101 so the relative

accuracy of these methods cannot be definitively assigned from these calculations.

PROPKA has a modest RMSD, but this is largely because all pKa’s are pre-

dicted within 7.4–13.1 range, so the margin of error is smaller than for some of the

other methods that predict more extreme pKa values in some cases. The accuracy

of PROPKA for cysteine pKa prediction is generally poor; the pKa of residues are

overestimated in 16 of the 18 cases and this method is generally unreliable for pre-

dicting the direction or magnitude of the pKa shift. Even cysteine proteases that

have Cys(�)—His(+) ion pair are predicted to have pKa’s in the 7–10 range character-

istic of non-catalytic cysteines, indicating that the e↵ect of thiolate stabilization by

charge–charge interactions within the protein is underestimated.

The pKa’s of papain, pp⌦, MmsrA, and DJ-1 are significantly overestimated by all

the implicit solvent methods. The protic cysteine residue in these proteins are in close

contact with another acidic residue, such as Glu or His. In order for these methods

to predict the pKa of the cysteine residue correctly, it must correctly predict the pKa

of these coupled residues and the e↵ect of this residue on the cysteine. This type of

electrostatic coupling with residues that are not in their standard protonation states

can be a challenge for these methods.

Table 2.3: RMSDs (�) and associated error interval reported at 80% confidence limit
for cysteine pKa methods. The error bounds on the RMSDs were calculated using
eq. (74) of Ref. 101. H++ does not report absolute pKa’s for Cys-72 in MMsrA &
MmsrA-e115q, so these values are not included in the RMSD (n=18) calculation.

Method RMSD (n=18) RMSD (n=16)
� Range for �2

80% � Range for �2
80%

H++ – – 3.41 2.72 < � < 4.33
MCCE 4.72 3.82 < � < 5.90 4.08 3.26 < � < 5.18

PROPKA 3.90 3.15 < � < 4.88 3.78 3.02 < � < 4.80
CHARMM 2.40 1.94 < � < 3.00 2.52 2.01 < � < 3.20
AMBER 3.20 2.59 < � < 4.00 3.03 2.42 < � < 3.85

Null-model 2.74 2.22 < � < 3.43 2.88 2.30 < � < 3.66
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Figure 2.5: Correlation between experimental and calculated cysteine pKa’s using the

H++, MCCE, and PROPKA implicit solvent pKa prediction methods.
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MCCE and H++methods are able to correctly predict that some catalytic cysteine

residues will have a depressed pKa, but the magnitude of this e↵ect tends to be

overestimated, especially by the MCCE program. This is certainly the case for the

predicted pKa’s of YopH and PTP1B, which are predicted to be significantly lower

than reported experimental pKa values. The catalytic cysteines in these proteins

neighbor charged residues, which can stabilize the thiolate state of the cysteine residue.

The underestimation of the pKa’s of these proteins by these methods suggests that the

pKa-lowering e↵ect by nearby cationic residues is not fully accounted for. In general,

these methods appear to underestimate the stability of cysteine groups with coupled

protonation states to other ionizable residues (e.g., His and Arg), leading to significant

disparities between predicted and experimentally reported cysteine pKa values.

Mouse methionine sulfoxide reductase A (MmsrA) is a particularly challenging

case for these methods; the experimental pKa is 7.4 but MCCE and PROPKA predict

values of 16.3 and 13.1, respectively. H++ does not report values of cysteine pKa’s

that it deems to be greater than 12, so it only reports that these pKa’s are > 12. The

catalytic cysteine residue (Cys72) in MmsrA interacts with a neighboring protonated

Glu-115 residue.77 These implicit solvent methods predict this residue to be anionic, so

the pKa is predicted to be shifted higher rather than lower. If MmsrA and its E115Q

mutant are excluded (n = 16), the RMSDs of predicted pKa’s using the MCCE and

PROPKA methods are reduced to 4.08 and 3.78, respectively.

2.4.2 Explicit Solvent Methods

The explicit solvent RETI pKa calculations show a significant improvement over the

implicit solvent methods (Table 2.3). The accuracy of these calculations are sensitive

to the force field used; the RMSD of the RETI calculations with the CHARMM36

force field are 2.40 while the RMSD for the calculations with the AMBER force field

are 3.20 (Table 2.3). Figure 2.6 shows the correlation between the calculated and

experimental pKa’s using these methods. The most significant improvement of these

methods over the implicit solvent methods are in predicting depressed pKa’s. It should

be noted that these RMSDs are calculated from a sample size (n = 18). With an 80%

confidence limit, the level of uncertainty within the calculated RMSDs is too large to

conclusively say that these simulations are more accurate than the null-model; but we

can conclude that the CHARMM36 calculations and the null-model outperform the
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implicit solvent methods.
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Figure 2.6: Correlation between experimental and calculated cysteine pKa’s using the

explicit solvent RETI method with the CHARMM36 and AMBER ↵99SB-ILDNP

force fields.

The calculation of the pKa of Cys72 of MmsrA was greatly in error when the other

residues of the protein were assigned standard protonation states. The RETI simula-

tions with the CHARMM and AMBER force fields predicted pKa’s of 11.9 and 10.7,

respectively, while the experimental value is 7.2. The predictions with the CHARMM

force field were improved considerably when nearby residues, Asp150 and His206,
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were also protonated; with these modifications, the predicted pKa is decreased to 7.4,

in good agreement with experiment. Experiments or more sophisticated simulations

would be needed to rigorously show that these assignments are correct.

These methods perform surprisingly poorly on AhpC. The reported pKa of Cys46

in AhpC is 5.94.69 The thiolate state of this residue is stabilized by the nearby

cationic charge of Arg119, although the RETI-predicted pKa’s are 8.19 and 9.66 for

the CHARMM and AMBER force fields, respectively. The e↵ect of this arginine–

thiolate salt bridge appears to be underestimated, or the e↵ect of the more distant

destabilizing interaction with Glu49 has too large of an impact. Another possibility is

that there is a significant structural change in this protein between the protonated and

deprotonated states that is not captured in these simulations. The protein backbone

RMSD of the final coordinates of the � = 1 window is only 4.27 Å, indicating that

the thiolate state did not undergo a large conformational change on the timescale of

our simulation (see Table A.3 in Appendix A).

These methods also perform poorly for O6-AGT; the pKa should be depressed to

5.30, but both the CHARMM and AMBER models predict elevated pKa’s (8.67 and

10.90, respectively). If the simulations are performed with the nearby His146 residue

in its cationic state, the pKa’s are underestimated, with values of 1.44 and 4.04,

respectively. This suggests that the His protonation state a↵ects the pKa results and

that His146 is actually only protonated a fraction of the time, so the actual pKa is an

intermediate between these two extremes. The protonation states of other ionizable

amino acids in the protein remains constant in this type of RETI calculation, which

limits the accuracy of the calculations in cases like this. Non-standard protonation

states of ionizable residues used in the RETI simulations are presented in Table 2.4.

Table 2.4: Cysteine test set proteins with residues of non-standard protonation states

for RETI simulations.

Abbrev. Cys Residue Exptl. pKa Protonated Residue

DJ-1 106 5.40 ± 0.10 Glu18

MmsrA 72 7.20 ± 0.20 Glu115, Asp150, His206

MmsrA-e115q 72 8.20 ± 0.01 Asp150, His206

papain 25 3.32 ± 0.01 His159

pp⌦ 25 2.88 ± 0.02 His159
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2.4.3 Opportunities for Improvement

The limited accuracy of all these methods suggest there is considerable room for

improvement for cysteine pKa prediction methods. The poorer performance of these

methods for cysteine residues compared to surface glutamic and aspartic acid residues

may reflect a greater complexity in the acid-base chemistry of cysteine due to e↵ects

like induced polarization and coupled protonation states. It may be possible to address

these issues using more realistic models, more extensive simulations, and validation

on a more extensive set of cysteine pKa’s.

The three implicit solvent methods are significantly less accurate for cysteine

residues than for Glu and Asp residues. For example, the RMSD of pKa’s estimated by

PROPKA for a test set consisting of 201 Glu and Asp residues was only 0.79.53 These

methods are partially empirical and were primarily developed for Asp and Glu amino

acids. It is possible that the performance of these methods for cysteine residues could

be improved if they are redeveloped specifically for cysteine residue pKa’s. The pKa’s

of a small number of cysteine residues calculated using PROPKA 2.0 were predicted

reasonably well,33 so it may be possible to improve current versions of PROPKA by

adjusting parameters like distance cuto↵s. The partial or complete neglect of protein

dynamics is another serious limitation for these methods.

The explicit solvent models are systematically more accurate, so these are a more

promising base for further development. The disparity between the AMBER and

CHARMM results indicates that the calculated pKa’s are sensitive to the force field

used in the simulations. The conformational ensemble sampled from the simulation

can depend strongly on the force field used.102–104 The thiol/thiolate parameters will

also have a large e↵ect on the computed pKa. In particular, the thiolate parameters

in these force fields have not been optimized for pKa calculations. It is possible that

reparameterization of these force fields could yield more accurate results, although

there was no systematic trend in the deviations from experiment, so there is no obvious

parameter to adjust.

Polarizable force fields are one possible means to improve the accuracy of these

calculations. Sulfur is highly polarizable105–107 and a more realistic description of the

electrostatic environment of the protein could provide a significant improvement.108

Perhaps more significantly, the thiolate is a di↵use, polarizable anion,109 so induced
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polarization could have a large e↵ect on the stability of the deprotonated state. Alter-

natively, QM/MM methods have shown promise in the calculation of pKa’s, including

cysteine.31,34,35 Ab initio methods like SCC-DFTB could be particularly useful for

cysteine pKa’s because the experimental data about thiolate structure and energetics

is relatively limited, which makes it di�cult to parameterize an empirical force field.

The simulations performed using the thermodynamic integration technique were

limited to 12 ns simulations, which is generally su�cient to sample the relative en-

ergies if the conformation of the protein is generally preserved. A change in the

protonation state of a residue can result in significant changes to the conformation

of a protein.110,111 Capturing such a large conformational change in a TI simulation

would require very long simulations or the use of more sophisticated enhanced sam-

pling methods. The RMSDs of the protein backbone of the RETI simulations ranged

from 1–4 Å for both the � = 0 and � = 1 windows (see Table A.3 in Appendix

A). This suggests that our simulation times were reasonable for sampling the relative

Gibbs energies of the two states given that no major rearrangements occurred, but

also that if a large rearrangement should have occurred, it did not occur within the

timescale of our simulations.

Another challenge is that there are relatively few experimentally-determined cys-

teine pKa’s in comparison to the pKa’s of acidic amino acids, like glutamic and aspartic

acid. This contributed to a large uncertainty in the RMSDs relative to experiment for

these methods. Furthermore, the experimentally-reported cysteine pKa’s used in the

test set were determined through a wide range of physical techniques, such as relative

reaction kinetics, spectroscopic titration, and microcalorimetry, so the test set may

include inconsistent values.

Lastly, the protonation state of cysteine side chains are often coupled to the pro-

tonation states of other residues. In particular, histidine has a similar intrinsic pKa

to cysteine (pKa ⇡ 6) and the protonation states of catalytic cysteines are often

lowered by the electrostatic interaction with a nearby cationic histidine residue. A

typical example of this activity occurs in the enzyme papain, where the active site

cysteine (Cys25) thiolate anion is stabilized by a nearby imidazolium cationic his-

tidine (His159) forming a zwitterionic pair (Fig. 2.7).112. In the RETI simulations

presented here, the protonation states of all residues other than the target cysteine are

fixed. In other words, the charges of other ionizable residues are constant throughout
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these simulations. As such, contributions of other protonation states are not captured

by these simulations. These e↵ects are particularly significant for catalytic cysteines

because their pKa’s are often coupled to other residues.

(a)

(b)

Figure 2.7: Structures of (a) Cys25–His159 ion pair based on the protein crystal struc-

ture (PDB ID: 1PPN). Salt bridge between the protonated histidine side chain and

the deprotonated cysteine side chain results in a large reduction of the pKa of Cys25

(pKa(exptl)=3.32).16 and (b) the pKa-coupled residues Cys403 and His402 based on

the protein crystal structure (PDB ID: 1YTW). The protein structure precludes a

Cys–His salt bridge, but a through-space Coulombic interaction between the depro-

tonated cysteine and the protonated histidine e↵ects a large decrease in the cysteine

pKa (WT pKa(exptl)=4.67 vs. H402A mutant pKa=7.35).17
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Newly-developed constant-pH methods o↵er promising solutions to the limitations

of pKa prediction methods based on dual-state free energy calculations. A method by

Mongan et al. allows a protein described by the Generalized-Born model to transition

between protonation states via Monte Carlo moves.113 The pKa of a residue can be

calculated from the calculated “titration” curve. These methods can be combined with

temperature-exchange molecular dynamics to improve configurational sampling.92 A

hybrid explicit solvent/implicit solvent scheme has also been developed where the MD

simulations are performed with an explicit solvent but the transition probabilities

between protonation states are calculated using an implicit solvent model.114 In a

similar vein, Chen and Roux have developed a new method that attempts transitions

between protonation states by non-equilibrium Monte Carlo moves, which allows an

explicit solvent model to be used consistently.115 Constant-pH MD methods, where

the protonation state varies as a dynamical variable, also show promise.116–119 The

maturation and widespread implementation of these methods could be particularly

important for the quantitative calculation of cysteine pKa’s.

2.5 Conclusions

A test set of 18 cysteine side chain pKa’s in 12 proteins was selected to evaluate how

e↵ective computational methods are for predicting the pKa’s of these residues. Three

implicit solvent methods were compared: H++, MCCE, and PROPKA. An explicit

solvent method that uses replica-exchange thermodynamic integration was also tested

with the CHARMM36 and AMBER ↵99SB-ILDNP force fields.

The implicit solvent methods were found to be highly unreliable, with RMSDs > 3

pK units. These methods are less accurate for cysteine residues than for other types

of ionizable side chains. H++ performed incrementally better than the other implicit

methods, with an RMSD of 3.41.

The explicit solvent methods were found to be significantly more accurate. The

results from the CHARMM36 calculations showed the highest accuracy. Nevertheless,

the accuracy of the simulations using the CHARMM36 force field was limited, with

an RMSD of 2.40. This is considerably less accurate than pKa predictions for other
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types of side chains. Improvements in the models for thiolate state of the cysteine

side chain and descriptions of the protonation states of pKa-coupled residues are

areas where there are significant opportunities to improve the accuracy of cysteine

pKa predictions.
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“A new scientific truth does not triumph by convincing its

opponents and making them see the light, but rather because

its opponents eventually die, and a new generation grows up

that is familiar with it.”

— Max Planck

3
The Hydration Structure of Methylthiolate

from QM/MM Molecular Dynamics
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3.1 Abstract

Thiols are widely present in biological systems, most notably as the side chain of cys-

teine amino acids in proteins. Thiols can be deprotonated to form a thiolate, which

a↵ords a diverse range of enzymatic activity and modes for chemical modification of

proteins. Parameters for modeling thiolates using molecular mechanical force fields

have not yet been validated, in part due to the lack of structural data on thiolate

solvation. Here, the CHARMM36 and Amber models for thiolates in aqueous solu-

tions are assessed using free energy perturbation and quantum mechanical/molecular

mechanical (QM/MM) molecular dynamics (MD) simulations. The hydration struc-

ture of methylthiolate was calculated from 1 ns of QM/MM MD (PBE0-D3/def2-

TZVP//TIP3P), which show that the water–S– distances are approximately 2 Å

with a coordination number near 6. The CHARMM thiolate parameters predict a

thiolate S radius close to the QM/MM value and predict a hydration Gibbs energy

of -329.2 kJ/mol, close to the experimental value of -318 kJ/mol. The cysteine thi-

olate model in the Amber force field underestimates the thiolate radius by ⇡0.2 Å

and overestimates the thiolate hydration energy by 119 kJ/mol because it uses the

same Lennard-Jones parameters for thiolates as for thiols. A recent Drude polariz-

able model for methylthiolate with optimized thiolate parameters also performs well.

SAPT2+ analysis indicates exchange repulsion is larger for the methylthiolate, con-

sistent with it having a more di↵use electron density distribution in comparison to

the parent thiol. These data demonstrate that it is important to define distinct non-

bonded parameters for the protonated/deprotonated states of amino acid side chains

in molecular mechanical force fields.

3.2 Introduction

Cysteine is unique among the amino acids due to its alkyl thiol side chain. Due to

the weakness of the S–H bond, the acid dissociation constant (pKa) of cysteine is

moderate (⇠8.6).1 This allows cysteine to be deprotonated to form a thiolate an-

ion under physiological conditions. Through this Brønsted acid mechanism, cysteine

serves as a catalytic residue in some enzymes2–6 and can undergo a broad range of

post-translational modification reactions.7–11
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Despite the importance of thiolate chemistry, the physical description of thiolates

in solution lags behind those of other anions; we have been unable to find experimen-

tal studies of the hydration structure of thiolates that would establish basic quantities

of the ion–water distance and coordination number. The hydration structure of other

anions has been determined by a combination of experiment and computation. For ex-

ample, Pluhařová et al. found that the molecular dynamics simulations that matched

the neutron scattering profiles of aqueous solutions of LiCl most closely predicted

a Cl– coordination number of 7.7.12 Computer simulations could help understand

and predict reactions involving cysteine, although this type of simulation requires an

accurate molecular mechanical model of the deprotonated thiolate state. This is par-

ticularly important for the calculation of the pKa of a cysteine residue in a protein

using free energy perturbation (FEP) or constant-pH MD.13,14

The popular Amber and CHARMM force fields include parameters for deproto-

nated cysteine residues. The parameters used for thiolates in the CHARMM force

field were included in early revisions and have been propagated into modern ver-

sions.15 The Amber 99 force field includes a deprotonated cysteine residue (CYM),16

although the same Lennard-Jones parameters are used for the cysteine thiol sulfur and

the deprotonated thiolate form. No formal validation has been reported for either of

these models.

Ab initio molecular dynamics (AIMD) has been widely used to study the hydration

structure of solutes.17–21 These simulations can provide a first-principles representa-

tion of the solvent–ion structure. This is especially valuable for thiolates because

there is little experimental data to describe their solution structure. QM/MM MD

is a variant of AIMD where the solute and first coordination sphere of waters can

be described using QM while the balance of the solvent is described using MM. Sig-

nificantly, QM/MM MD can be performed using atom-centered basis sets, so hybrid

density functional theory (DFT) functionals can be used e�ciently. These hybrid

functionals mitigate the issues associated with delocalization error in these systems,

which can be serious for weakly bound anions like thiolates.22,23

To investigate the solvation structure of thiolates, we have performed QM/MM

MD simulations of a model thiolate (methylthiolate, CH3S
– ) and its parent thiol

(methylthiol, CH3SH) for comparison. The results of the simulations are compared

to those predicted by the CHARMM and Amber force fields to assess their accuracy.
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Symmetry Adapted Perturbation Theory (SAPT) is used to investigate the origin of

di↵erence in the thiol and thiolate hydration structure. The hydration energies of the

MM models are also calculated and compared to the experimental value. Lastly, the

solvation structures of methylthiol and methylthiolate structures calculated using the

newly-released Drude polarizable force field are compared to the QM/MM structure.

3.3 Computational Methods

3.3.1 QM/MM Simulations

A QM/MMmodel for methylthiolate (CH3S
– (aq)) in a 14 Å sphere of water molecules

was constructed with CHARMM c40b224 interfaced with TURBOMOLE 7.025 us-

ing the CHARMM-TURBOMOLE interface.26 The QM region was comprised of the

methylthiolate anion and 12 water molecules (Figure 3.1). These components were

represented using the PBE0 exchange-correlation functional27 and the def2-TZVP ba-

sis set.28 This functional has been shown to describe the electrostatic moments and

polarizability of molecules accurately29 and the high exact-exchange component of

functional mitigates the e↵ect of delocalization error.22 The D3 correction for disper-

sion was included.30 The MM region was represented using 428 TIP3P-model water

molecules.31,32 In the CHARMM–TURBOMOLE QM/MM implementation, the QM

atoms are polarized by the partial atomic charges of the MM region. The forces

between the MM point charges and QM atoms are calculated rigorously through one-

electron integrals between each MM atomic charge and the QM electron density as

well as the Coulombic interaction between the QM nuclei and the MM point charges.

Additionally, Lennard-Jones interactions are calculated between the QM region and

the MM region, where the Lennard-Jones parameters of the CHARMM force field are

used for the atoms in the QM region. The sulfur atom was restrained to the origin us-

ing a harmonic restraint (k=418 kJ/mol/Å2). MM water molecules were restrained to

remain within a 14 Å radius around the sulfur atom using a half-harmonic potential.

The general construction of QM/MM MD simulations of solutes in solution is for

the solute and the water molecules closest to it to be described using the QM method.

QM/MM simulations of ions in solution face the issue that the QM water molecules

could di↵use away from the ion and be replaced by MM waters. A variety of boundary
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Figure 3.1: A representative snapshot of the QM/MM system. The electron density
of the QM region, comprised of the methylthiolate and 12 nearest water molecules, is
shown by blue mesh.

methods have been developed to address this. For example, the Adaptive Bu↵ered

Force method interpolates between a QM representation and an MM representation

of a solvent molecule as it moves across a predefined bu↵er region.33

The Flexible Inner Region Ensemble Separator (FIRES) employs an alternative

approach to dividing the QM and MM regions.34 This method takes advantage of

the separability of a configurational integral of the system, which can be rigorously

rewritten as the product of integrals over the first m water molecules multiplied by

the configurational integral over the remaining solvent molecules,

Z =
R
drsolute

1

N !

R
· · ·

R
dr1 · · · drN exp

⇣
�V
kBT

⌘

= 1

m!

R
drsolute

R
· · ·

R
dr1 · · · drm

⇥
1

(N�m)!

R 0
· · ·

R 0
drm+1 · · · drN exp

⇣
�V
kBT

⌘ (3.1)

here
R 0

denotes that the configurational integral only integrates the region of config-

urational space where r > max(r1, r2, . . . , rm) (i.e., those more distant from the ion

than the outermost solute in the set of solute molecules with indices ranging from 1

to m).

In a QM/MM system, this separation can be used to define them solvent molecules

closest to the solute as the QM set, while those further from the solute are represented
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using MM. This condition must be enforced in order to sample this distribution in

an MD simulation. This can be achieved in an approximate manner by introducing

a half-harmonic potential. At each time step, if the outermost QM water is further

from the solute than the nearest MM water, a half-harmonic potential is applied to

push the QM water towards the solute and push the MM water outward.

VFIRES = kFIRES (rk �Rinner)
2 , if rk < Rinner (3.2)

where Rinner = max(r1, r2, . . . , rm) and k is the index of the MM solvent molecule that

has violated the FIRES criterion by moving closer to the solute than the outermost

QM solvent molecule and rk is the distance between this molecule and the solute.

In this study, the FIRES boundary potential was used to restrict the QM wa-

ter molecules to remain closest to the sulfur atom throughout the simulation. The

CHARMM and TURBOMOLE input files for these simulations are included in the

supplementary information of Ref. 35. Three simulations were initiated from di↵erent

snapshots of an equilibrated MM simulation. The first 50 ps of each simulation was

discarded prior to a 334 ps sampling simulation. The QM/MM radial distribution

functions (RDFs) were calculated from these three trajectories, which totaled 1 ns of

MD.

3.3.2 Molecular Mechanical Simulations

The pure MM MD simulations were performed using NAMD 2.12.36 A 32 ⇥ 32 ⇥ 32

Å simulation cell was constructed, which contained the solute and 987 TIP3P-model

water molecules. The MM RDFs were calculated from a 40 ns simulation. The

simulations sampled an isothermal-isobaric ensemble with a temperature of 298 K

and a pressure 101.325 kPa using a Langevin thermostat with a damping frequency

of 1 ps�1 and a Nosé-Hoover Langevin piston barostat with a period of 2 ps.

The Gibbs energies of hydration were calculated using CHARMM c40b1 with

the thermodynamic integration technique. To calculate the relative solvation energy

of methylthiol and methylthiolate, the charges and Lennard-Jones parameters for

methylthiol were simultaneously transformed to those for methylthiolate using ther-

modynamic integration, where values of � were calculated at 11-evenly spaced intervals

between [0, 1]. Each value of � was run for a 1 ns equilibration simulation, followed
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by a 2 ns sampling simulation. The solvation energy of methylthiol for the CHARMM

and Amber models (�Ghydr.(MeSH) = �0.04 and �1.12 kJ/mol, respectively) from

Ref. (37) were used to calculate the absolute solvation energy of methylthiolate from

the relative solvation energy of methylthiol and methylthiolate. Tables 3.1 and 3.2

lists the Lennard-Jones parameters for methylthiol and methylthiolate as adopted by

the Amber and CHARMM force field models, following the definition of the Lennard-

Jones potential of,

VLJ = 4✏

⇣�
r

⌘12

�

⇣�
r

⌘6
�

(3.3)

Gibbs energies were calculated from the TI time series using the Weighted Histogram

Analysis Method (WHAM). The calculated hydration energies corrected for an in-

terfacial potential of -520 mV, which corresponds to a correction of 48.2 kJ/mol.38

Uncertainties were estimated by dividing the production trajectory into three equal

segments, calculating the hydration energy from this segment, and then taking the

standard deviation of the three Gibbs energies.

Table 3.1: Force field parameters for methylthiol.

Atom Amber CHARMM

S ✏ (kJ/mol) 1.05 1.88
� (Å) 3.56 3.56
q (e) -0.31 -0.23

C ✏ (kJ/mol) 0.46 0.46
� (Å) 3.40 3.65
q (e) -0.12 -0.20

Table 3.2: Force field parameters for methylthiolate.

Atom Amber CHARMM

S– ✏ (kJ/mol) 1.05 1.97
� (Å) 3.56 3.92
q (e) -0.88 -0.80

C ✏ (kJ/mol) 0.46 0.46
� (Å) 3.40 3.92
q (e) -0.24 -0.47

75



3.3.3 Symmetry Adapted Perturbation Theory

Methylthiol/methylthiolate–water potential energy surfaces (PES) were calculated

using the SAPT2+ method39–41 with the aug-cc-pVTZ basis set and an auxiliary,

density-fitting basis set. All SAPT2+ calculations were performed using version 1.1

of the Psi4 code.42 The water and methylthiol/methylthiolate molecules were opti-

mized in isolation using MP2/aug-cc-pVTZ. For each position on the PES, an energy

minimization was performed using MP2/aug-cc-pVTZ where \C–S—O angle was al-

lowed to change in a constrained energy minimization calculation but the remaining

structural degrees of freedom were fixed. Using these structures, SAPT2+ energies

were calculated on a grid spanning sulfur–oxygen distances between 2.5 and 5.0 Å,

with a grid spacing of 0.1 Å and \ S—O–H angles spanning 0°–180° at 5° increments.

Orientationally-averaged potential energies were calculated by numerically integrat-

ing over the ✓ angles for each value of r (Eqn. 3.4), where each configuration was

weighted according to the Boltzmann distribution at 298 K (Eqn. 3.4).43

hV(r)i =

R
⇡

0
V(r, ✓) exp

⇣
�V(r,✓)
kBT

⌘
sin ✓d✓

R
⇡

0
exp

⇣
�V(r,✓)
kBT

⌘
sin ✓d✓

(3.4)

Here, V(r, ✓) is the interaction energy between the water and methylthiol/methylthiolate

at a given value of r (the sulfur–oxygen distance) and ✓ (the sulfur—oxygen–hydrogen

angle).

3.4 Results and Discussion

3.4.1 Radial Distribution Functions

Methylthiol

All three models predict similar hydration structures for methylthiol, which has a

broad first peak of the S—O(H2) RDF centered at 3.6 Å (Figure 3.2 (a)). The

first peak is somewhat higher in the QM/MM and CHARMM models, corresponding

to an increased hydration number of approximately 13 in the QM/MM model vs

approximately 10–11 in the MM models (Table 3.3). The S—HOH RDF shows only
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a small shoulder on the left side of the first peak for all three models (Figure 3.2 (b)).

This is consistent with previous studies that concluded that thiol sulfurs are poor

hydrogen bond acceptors due to their large radius and modest electronegativity.20,44

These RDF’s are consistent with the thiols being hydrophobic solutes, with very

limited hydrogen bonding interactions with the aqueous solvent.
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Figure 3.2: Radial distribution functions of methylthiol (upper) and methylthiolate
(lower) models in aqueous solution using Amber, CHARMM, and QM/MM models.
Thiol: (a) S—O(H2), (b) S—HOH; Thiolate: (c) S—O(H2), and (d) S—HOH.
Note: The chemical structures are schematics to indicate the geometric variables.
Figure 3.1 provides a more representative rendering of the solvation structure.

Table 3.3: Coordination numbers of methylthiol and methylthiolate from simulations
using the CHARMM, Amber, and QM/MM models. The thiolate coordination num-
bers are calculated by integrating g(r) between zero and the first minimum. The thiol
coordination numbers are calculated by integrating over the interval, r=[0, 4.5 Å].

Models Thiol Thiolate

CHARMM 10.7 7.2
Amber 10.5 6.7
Drude 9.3 7.1
QM/MM 13.5 6.0
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Methylthiolate

The QM/MM RDF’s of methylthiolate are typical of a di↵use anion. There is a high

but broad first peak in the S—O(H2) RDF that corresponds to 6 water molecules in a

disordered first coordination sphere (Figure 3.2 (c), Table 3.3 ). This ionic radius and

coordination number is similar to those reported for the Cl– anion (g(r) is maximum

at r = 3.15 Å, nc = 6 � 6.5).45,46 The typical coordination mode is for the water

molecules to donate a hydrogen bond to the thiolate sulfur, resulting in the peak

observed in the S—HOH RDF at r = 2.3 Å (Figure 3.2 (d)).

There is good agreement between the RDF’s calculated using the CHARMM force

field and the QM/MM simulations; the maxima of the S—O(H2) and S—HOH peaks

for the CHARMM36 model occur at similar positions as in the QM/MM RDFs. In

comparison, the location of the first peaks of the S—O(H2) and S—HOH RDF’s

calculated using the Amber model occur at significantly smaller radii. This trend

is also apparent in optimized structures of a single methylthiolate–water pair; the

Amber S—H distance is only 2.02 Å while the CHARMM S—H distance is 2.47 Å.

The di↵erence between the CHARMM and Amber force fields can be attributed

to the Lennard-Jones parameters of the thiolate sulfur atom. The Amber model for

thiolates only changes the atomic charges of the cysteine thiol residue; the Lennard-

Jones parameters are the same as those used for the thiol (Table 3.1, 3.2). As an

anion, the ionic radius of S– is considerably larger than that of neutral S. A realistic

description of thiolates requires distinct Lennard-Jones parameters from the parent

thiol to reflect this more di↵use electron density distribution.

The second coordination sphere of the QM/MM model had a higher maximum

than the MM models and the S–HOH RDF shows a splitting in the peak of the second

coordination sphere. As the number of atoms described using QM must be kept low

in order to achieve long-time scale simulations using accurate QM/MM methods,

part of the 2nd coordination sphere is comprised of MM waters, which will indirectly

a↵ect the first coordination sphere. The interactions between two QM waters tends

to be stronger than between a QM water and an MM water due to polarization and

MM sphere with molecules in the first coordination sphere than they have with MM

waters. Inevitably, there is a transition between the QM representation and the MM

representation in QM/MM calculations. When using the FIRES boundary, this will

manifest itself over a range of radii that are within the QM region at some steps but in
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the MM region in other steps. In principle, a larger set of QM waters could be defined

so that the entire 2nd coordination sphere is always in the QM region, although the

increased computational cost associated with this would limit the accuracy of the

simulations. Alternatively, this could be attenuated by a larger QM region or by

pair-specific Lennard-Jones terms between the QM and the MM water molecules that

would make the interactions between QM and MM waters closer in strength.

3.4.2 Hydration Energies

The absolute hydration energies of methylthiolate calculated using the CHARMM and

Amber force fields are presented in Table 3.4. The experimental solvation energy was

taken from Ref. 47, which was estimated from the experimental methylthiolate pKa of

10.30. The hydration energy calculated using the CHARMM model is in remarkable

agreement with the experimental value, di↵ering only by 11 kJ/mol. In contrast, the

Amber model overestimates the hydration energy by 119 kJ/mol. This appears to

reflect the use of the same Lennard-Jones parameters for the thiol and thiolate states

in the Amber force field, which results in the anomalously short S––water distances

seen in the RDF analysis.

Table 3.4: Absolute hydration free energies of methylthiolate for molecular mechanical
models.

Models �G (kJ/mol)

CHARMM �329.2± 0.3
Amber �437.0± 0.8
Drude1 -308.4
exptl. 2 -318

1Ref. 48
2Ref. 47
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Symmetry Adapted Perturbation Theory

The di↵erences in the thiol and thiolate water RDF’s can be understood using Sym-

metry Adapted Perturbation Theory (SAPT) analysis. The total potential energy and

its components for the interaction between methylthiolate/methylthiol and a water

molecule calculated using SAPT2+ are plotted in Figure 3.3. The total potential en-

ergy of interaction is much stronger between methylthiolate and water than methylth-

iol and water (�62 kJ/mol vs. �10 kJ/mol). The SAPT2+ methylthiolate–water

interaction energy is in good agreement with a benchmark CCSD(T)/aug-cc-pVTZ

calculation (Table 3.5), so we can be confident in the SAPT2+ analysis.
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Figure 3.3: Rotationally averaged SAPT2+ potential energy surfaces for the interac-

tion between methylthiol/methylthiolate with a water molecule. The position of the

methylthiolate–water potential energy minimum is indicated by the vertical dotted

line. The solid lines correspond to the methylthiolate–water interaction, while the

dashed lines represent the methylthiol–water interactions.

80



Table 3.5: Water–methylthiolate interaction energies and S–—H–OH distance in the
minimum-energy structure.

Models �Ecomplex (kJ/mol) rS�H (Å)

CHARMM -55.0 2.47
Amber -69.9 2.02
Drude -58.0 2.19
SAPT2+ -62.1 2.21
CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ -64.7 2.18

The stronger interaction between the methylthiolate and water in comparison to

the interaction between methylthiol and water largely results from stronger electro-

static interactions between the anionic methylthiolate and the water molecule in com-

parison to the dipole–dipole interactions of the weakly-polar methylthiol and water.

The methylthiolate–water interaction also has a strong inductive component due to

the exceptionally high polarizability of the methylthiolate and the increased strength

of the polarizing electric field. Likewise, the methylthiolate–water dispersion inter-

action is also stronger. In opposition to these stronger methylthiolate–water interac-

tions, the methylthiolate–water exchange repulsion is also considerably stronger than

the methylthiol–water exchange repulsion. This is consistent with the atomic radius

of the sulfur being e↵ectively larger for the thiolate, as the electron density cloud of

the sulfur anion is more di↵use than the neutral thiol. These interactions are consis-

tent with the thiolate having S—O distances that are incrementally shorter than for

the thiol in the QM/MM RDF’s. It also highlights the importance of defining di↵er-

ent Lennard-Jones parameters for an ion and its parent molecule, as the underlying

exchange-repulsion and dispersion interactions can be considerably di↵erent.

Neither of the molecular mechanical models are in good agreement with the

SAPT2+ energy. The CHARMM model underestimates the interaction energy but

overestimates the rS�H distance, while the Amber model overestimates the interaction

energy but underestimates the rS�H distance (Table 3.5). The short Amber distance

is consistent with the short S–—HOH distances in the calculated RDF. It should be

noted that the water–ion interaction energies of non-polarizable molecular mechan-

ical models typically do not match QM or experimental interaction energies closely

because they are generally parameterized to reproduce ion solvation Gibbs energies.49

Because of the approximate nature of non-polarizable force fields, parameters that are
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e↵ective for calculating interaction energies are not generally e↵ective at describing

properties like hydration energies. Nevertheless, the SAPT2+ analysis demonstrates

that the protonated and deprotonated states of the thiol have intermolecular interac-

tions with water that are fundamentally di↵erent, which should be accounted for by

the non-bonded parameters of the two forms.

Protein pKa Calculations

The CHARMM36 and Amber force fields have both been used to calculate the pKa’s

of cysteine residues in proteins. For a test set consisting of 18 cysteine residues in

12 proteins, the CHARMM36 force field was found to predict cysteine pKa’s more

accurately than the Amber force field when using the replica-exchange molecular dy-

namics thermodynamic integration (REMD-TI) method.13 For example, Cys232 of

↵-1-antitrypsin has a reported pKa of 6.86±0.05.50 REMD-TI pKa calculations using

the CHARMM36 force field are fairly e↵ective at predicting this cysteine pKa value

(pKa=7.6± 0.4), while simulations using Amber force field significantly overestimate

it (pKa=9.4±0.7).13 Analysis of Cys232–S–—water RDFs from 12-ns MD simulation

of the thiolate state of this protein in TIP3P model water show similar trends as

previously observed (Figure 3.4). A representative configuration of Cys232 thiolate in

↵-1-antitrypsin and water molecules within 5 Å of the thiolate is highlighted in Figure

3.4 (a). The thiolate S–water distances computed using the CHARMM36 force field is

slightly larger (⇡0.3 Å) than that of the Amber force field (Figure 3.4 (b), (c)). Con-

sequently, the location of the first peaks of the S—O(H2) and S—HOH RDFs occur

at significantly shorter distances for the Amber model than for the CHARMM model.

Protein pKa simulations are generally relative predictions, so accurate pKa predictions

are still possible even if the titratable residue–water interactions are imperfect. Never-

theless, this analysis shows that the water–thiolate interactions of cysteine residues in

proteins are strongly a↵ected by the Lennard-Jones parameters of the sulfur thiolate.
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Figure 3.4: Representative configuration and radial distribution plots of Cys232 in ↵-

1-antitrypsin. (a) Explicit solvent representation of Cys232 thiolate in ↵-1-antitrypsin

(PDB ID: 1QLP); Radial distribution function of Cys232 thiolate with solvent water

molecules, (b) S—O(H2) and (c) S—HOH.
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3.4.3 Drude Polarizable Force Field

A force field based on the classical Drude oscillator model51 has recently been devel-

oped for simulations of aqueous methythiol and methylthiolate.48 The methylthiolate

model was parameterized to provide the correct hydration energy when used with the

SWM4-NDP polarizable water model52 and is in good agreement with the experi-

mental hydration energy. To evaluate this model, we have plotted its RDF’s against

those calculated from our QM/MM simulations (Figure 3.5). The Drude model RDFs

agree reasonably well with the QM/MM RDFs. Both models yield very similar values

for the location of the first peaks of the S—O(H2) and S—HOH distances, particu-

larly for methylthiolate. The RDF peaks of methylthiol are, however, higher for the

QM/MM model than the Drude model and the Drude model coordination number of

methylthiol is 9.3, considerably lower than the QM/MM value.
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The methylthiolate–water complexation energy and structure are also improved. The

potential-energy-minimum S—H–OH distance for the Drude model is 2.17 Å, which

is very close to QM value of 2.18 Å. Based on these results, these parameters are

expected to provide reasonably-accurate descriptions of aqueous thiolates that could

provide improved accuracy over the non-polarizable MM models when polarization

e↵ects are significant.

3.5 Conclusions

QM/MMMD simulations were used to characterize the solution structure of methylth-

iolate. These simulations and free energy perturbation calculations were used to eval-

uate the models for methylthiolate for Amber and CHARMM36 protein force fields.

For comparison, simulations were also performed on methylthiol.

The calculated coordination structure of the thiolate is characteristic of a large

anion. The solvation structure of the thiolate is more rigid than the corresponding

thiol, consistent with a transition from a hydrophobic solute to an anionic solute.

SAPT analysis showed that although the charge–dipole attraction between the thio-

late and the water molecules are much stronger than the dipole–dipole interactions

between the water and the thiols, the sulfur–water distance only decreases by ⇡0.2

Å because the exchange repulsion is more significant at larger distances for the more

di↵use thiolate sulfur.

The CHARMM model for the thiolate is in better agreement with the QM/MM

RDF and experimental hydration energy than the Amber model. This can be at-

tributed to the Lennard-Jones parameters used for the thiolate sulfur. The CHARMM

force field uses Lennard-Jones parameters with a larger radius for the thiolate sulfur,

while the Amber force field uses the same parameters for both the thiol and the thi-

olate. The QM/MM and FEP data indicate that distinct non-bonded parameters

must be defined for the ionic forms of molecules. This is significant for the calcula-

tion of the pKa’s of titratable residues of proteins because the same Lennard-Jones

parameters are often used for all protonation states. The development of optimized

parameters could improve the accuracy of protein pKa calculations, which remains a

major challenge.

At present, the thiolate parameters included in the CHARMM36 force field provide
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a generally good description of the solvation structure and energies of methylthiolate.

The Drude polarizable force field parameters of Lin et al.48 were also found to be

e↵ective for describing the solution structure of methylthiol and methylthiolate, pro-

viding a model that incorporates the e↵ect of induced polarization. Further validation

and development will be necessary to show that these models are generally reliable in

non-aqueous environments.
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“I would rather have questions that can’t be answered than

answers that can’t be questioned.”

— Richard Feynman

4
How Reactive are Druggable Cysteines in

Protein Kinases?

This chapter is adapted with permission from: Awoonor-Williams, E. and

Rowley, C. N. How Reactive are Druggable Cysteines in Protein Kinases? J. Chem.

Inf. Model, 2018, 58(9), 1935–1946. Copyright© 2018 American Chemical Society.
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4.1 Abstract

Targeted covalent-inhibitors (TCIs) have been successfully developed as high-a�nity

and selective inhibitors of enzymes of the protein kinase family. These drugs typically

act by undergoing an electrophilic addition with an active site cysteine residue, so

design of a TCI begins with the identification of a “druggable” cysteine. These elec-

trophilic additions generally require the deprotonation of the thiol to form a reactive

anionic thiolate, so the acidity of the residue is a critical factor. Few experimental mea-

surements of the pKa’s of druggable cysteines have been reported, so computational

prediction could prove to be very important in selecting reactive cysteine targets.

Here we report the computed pKa’s of druggable cysteines in select protein kinases

which are of clinical relevance for targeted therapies. The pKa’s of the cysteines were

calculated using advanced computational methods based on all-atom replica-exchange

thermodynamic integration molecular dynamics simulations in explicit solvent. We

found that the acidities of druggable cysteines within protein kinases are diverse and

elevated, indicating enormous di↵erences in their reactivity. Constant-pH molecu-

lar dynamics simulations were also performed on select protein kinases, with results

confirming this varied range in the acidities of druggable cysteines. Many of these

active-site cysteines have low exposure to solvent molecules, elevating their pKa. Elec-

trostatic interactions with nearby anionic residues also elevate the pKa’s of cysteine

residues in the active site. The results suggest that some cysteine residues within

kinase binding sites will be slow to react with a TCI because of their low acidity. Sev-

eral oncogenic kinase mutations were also modelled and found to have pKa’s similar

to that of the wild-type kinase.

4.2 Introduction

The family of human protein kinases contains over 500 members,1 which play critical

biological roles in cellular processes such as signal transduction, cell metabolism, and

apoptosis. Dysregulation, overexpression, and mutation in protein kinases has been

linked to many proliferative human diseases and disorders, notably cancer and inflam-

mation.2 Kinases have proven to be excellent drug targets;3 to date over 35 kinase

inhibitors have gained regulatory approval from the U.S. Food and Drug Administra-

tion.4–6
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The general strategy in kinase inhibitor drug discovery is focused on targeting

the ATP-binding pockets of the catalytic domain. Most kinase inhibitors are re-

versible ATP-competitive inhibitors, which can either bind to the active form of the

kinase (“type I” inhibitors), the inactive form (“type II” inhibitors), or an allosteric

binding site outside the ATP-binding pocket of the kinase enzyme (“type III & IV”

inhibitors). Reversible kinase inhibitors bind to their preferred targets of interest

through non-covalent interactions like hydrogen bonding and dispersion interactions.

These inhibitors face issues with potency and duration of therapeutic action due to

transient inhibition mechanisms and competition with high intracellular ATP concen-

trations. This can result in decreased in vivo pharmacological activity. Additionally,

the structure of the ATP-binding pocket is largely conserved across the kinase family,

so some reversible kinase inhibitors may also bind to kinase proteins other than their

intended targets. This raises the potential for o↵-target inhibition. For example, the

multi-target reversible kinase inhibitors sunitinib (Sutent) and sorafenib (Nexavar)

have a wide range of toxic side e↵ects owing to promiscuity in targeting multiple

kinase enzymes.7

Recently, there has been renewed interest among medicinal chemists in developing

kinase inhibitors that bind covalently to their targets.8–18 Targeted covalent inhibitors

(TCIs) augment conventional non-covalent protein–ligand interactions with a covalent

linkage with a side-chain of the target.8,10,16 As a result, TCIs can achieve better

target e�cacy, a longer residence time, and a prolonged duration of therapeutic action

in comparison to their conventional non-covalent counterparts. Additionally, TCIs

can have exceptionally high target selectivity because in order to achieve covalent

inhibition of a desired target, a reactive amino acid must be in a favorable position

where a covalent linkage can be formed with the electrophilic moiety of the bound

ligand. This is particularly advantageous in the kinase family, where there is a high

active-site homology but the targeted cysteine residues are poorly conserved. As a

result, the number of proteins in this family that share a cysteine residue are relatively

small, limiting the risk of o↵-target inhibition.17

The mechanism of covalent kinase inhibition involves the reaction of an elec-

trophilic warhead of the ligand with a nucleophilic amino acid side-chain in the active

site of the targeted kinase. Non-catalytic cysteine residues in or near the active sites of

protein kinases have been the primary targets of this approach.19,20 Cysteine residues

possess a chemically-reactive thiol (–SH) moiety that can react with a diverse array
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of electrophiles.21 The reactivity of a cysteine thiol group is complex, with steric,

hydrophobic, and electronic factors; however, the propensity for the thiol to be de-

protonated is generally the prime determinant of its reactivity towards electrophiles.22

One successful group of TCI’s feature an electrophilic acrylamide warhead, which un-

dergoes a thio-Michael addition with the target cysteine. In the mechanism of this

addition, which is illustrated in Figure 4.1, the cysteine thiol is deprotonated to form

a thiolate before it reacts with an acrylamide functional group of the inhibitor.23 Be-

cause of the deprotonation step, the rate of covalent modification is dependent on

the pKa of the cysteine residue; more reactive cysteines tend to have lower pKa’s due

to the increased probability of the cysteine being in the nucleophilic thiolate state.

Accordingly, cysteines with low pKa’s in principle are more susceptible to covalent

modification. Thus, calculating the pKa’s of cysteines in kinases could help identify

druggable cysteine targets that are prone to covalent modification, ultimately leading

to the design of more potent and selective kinase inhibitors for therapeutic interven-

tion.

Figure 4.1: Mechanism of covalent modification of cysteine thiol side-chain by an
acrylamide warhead moiety (Shown in Red)

Several structure-guided bioinformatics studies have identified cysteines within the

human kinome that could be targeted by covalent-modifier drugs.19,24–27 In a land-

mark study, Taunton and coworkers24 employed a structural bioinformatics approach

to design selective covalent inhibitors of ribosomal protein S6 kinases (RSKs), taking
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advantage of two distinct modes of selectivity: a threonine gatekeeper and a non-

conserved solvent-exposed cysteine in the glycine-rich loop region of the ATP-binding

pocket. The designed inhibitors were potent and selective for RSK1 and RSK2 ki-

nases over other closely related structural kinase paralogs.24 Subsequently, Gray and

coworkers identified approximately 200 kinases within the human kinome that have

a cysteine located in or near the ATP-binding pocket, which could be targeted by a

covalent modifier.25,28 More recently, predictive algorithms, statistical analysis, and

computationally-derived properties have been employed to identify which cysteine

residues in kinases are optimal targets for a TCI.26,29–31 A recent study by Bourne

and coworkers30 combined a function-site interaction fingerprint method and density

functional theory calculations to explore covalently-modifiable cysteines and their po-

sitions across the section of the human kinome where crystal structures are available.

The positions of accessible covalent-modifiable cysteines were classified into five re-

gions, namely: phosphate-binding loop (P-loop), roof of binding pocket, front pocket,

catalytic loop, and Asp-Phe-Gly (DFG) motif (Figure 4.2).30 We have used this clas-

sification system in our study.

While these structural and bioinformatics studies have identified cysteine residues

that have appropriate locations for forming a covalent bond with an inhibitor, no

study to date has rigorously assessed if these cysteines will react with an inhibitor at

a rate that is su�ciently fast for the covalent linkage to be formed on the necessary

timescale. Knowledge of the pKa’s of targetable cysteines in kinases would help to

define the intrinsic reactivity of a given cysteine towards an electrophilic inhibitor and

provide one of the parameters of the pharmacokinetics of these drugs. These data will

guide medicinal chemists in designing drugs that specifically inhibit reactive cysteine

targets and avoid wasting e↵ort targeting cysteines that are not reactive.

In this study, we report the calculated pKa’s of 29 druggable cysteine targets in

kinases that are active or potential targets for covalent inhibition. Important onco-

genic mutants are also included. The pKa’s of the cysteines were calculated using

advanced molecular dynamics-based methods, namely, thermodynamic integration32

and constant-pH molecular dynamics33,34 simulations in explicit solvent. The kinase

structures investigated span the family of the human kinome. Cysteines residues

within these kinase structures were chosen based on previous structural analysis stud-

ies or where a covalent inhibitor has been reported and confirmed experimentally.

96



Figure 4.2: The kinase domain of EGFR (PDB ID: 4G5J) in complex with covalent-
modifier drug, afatinib (blue). The locations of the target cysteine residues can be
categorized into the catalytic loop (magenta), DFG region (red), front pocket (orange),
P-loop (yellow), hinge region (green), and the roof sheet (cyan).

4.3 Theory and Methods

Protein Kinases. The initial coordinates of the protein kinase structures used

in the molecular dynamics (MD) simulations were collected from the protein data

bank (PDB).35 Atomic coordinates missing from these structure were assigned using

SWISS-MODEL homology modelling.36 Druggable cysteines within these structures

were identified by searching the literature for reports of the covalent modification of

kinase proteins. In most cases, covalent modification of cysteine targets has been con-

firmed experimentally, either by mass spectrometry or X-ray crystallographic data.

The kinase proteins investigated in this study and targeted cysteine residues are col-

lected in Table 4.1. The majority of the druggable cysteines considered were primarily

positioned in three kinase segments, namely: front pocket, P-loop, and DFG region.

97



PDB identifiers and details of kinase structure models are included in the supplemen-

tary information of Ref. 37, (Table S3).

4.3.1 Replica-Exchange Thermodynamic Integration (RETI)

The method of Thermodynamic integration32 (TI) provides a means of calculating

the relative free energy di↵erence between the protonated and deprotonated forms of

a target residue in the protein. Replica-exchange molecular dynamics38–40 improves

the convergence and accuracy of the free energies calculated using TI.41,42

The pKa’s of the kinase cysteines were calculated using all-atom RETI method in

explicit solvent with the CHARMM36 force field.43 In the RETI approach, the relative

Gibbs energies of the thiol and thiolate states of the cysteine residues are calculated

in the protein kinase environment and in a reference model system, (Eqn. 4.2). Both

acid dissociation reactions are performed in aqueous solution. The reference model

is a blocked alanine pentapeptide that contains a cysteine residue: i.e., Ac-(Ala)2-

Cys-(Ala)2-NH2. The end groups of the reference model compound were capped with

acetyl and amide functionalities to avoid artifacts from charged termini. Cysteine

pKa’s were determined by calculating the shift in pKa from the reference pKa value,

which is experimentally known. This can be formally expressed as:

pKa(Cys) = pKref

a
+�pKa (4.1)

�pKa =
1

2.303kBT
(�Gprotein ��Gmodel) (4.2)

where pKref

a
refers to the known reference pKa value of the cysteine residue in aqueous

solution, (pKref

a
= 8.55± 0.03).44 �pKa results from the di↵erence in the intermolec-

ular interactions experienced by the thiol and thiolate states of the cysteine in the

protein environment and in the model system.

Computational prediction of the pKa’s of ionizable residues in proteins remains a

challenging problem and it is particularly di�cult to predict cysteine pKa’s.45 For a

test set of 18 cysteine residues in 12 proteins, the RETI explicit solvent approach with

the CHARMM36 force field outperformed all the other methods that were evaluated,

yielding an RMSD error of 2.4 pK units.45 Hybrid quantum mechanics/molecular
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Table 4.1: Protein Kinases Studied and their Targeted Cys-
teine Positions

Protein Kinase Cys Residue Region

BMX 496* front pocket
BRAF 532 hinge region
BRAF (V600E) 532 hinge region
BTK 481* front region
c-KIT 788* catalytic loop
c-Src 277* P-loop
EGFR 797* front pocket
EGFR (L858R) 797* front pocket
EGFR (T790M) 797* front pocket
EGFR (T790M/L858R) 797* front pocket
ERK2 166* DFG region
FGFR1 488* P-loop
FGFR4 477* P-loop
FGFR4 552* hinge region
FLT3 828* DFG region
GSK3� 199* DFG region
HER2/ErbB2 805* front pocket
HER3/ErbB3 721 roof sheet
HER4/ErbB4 778* front pocket
IKK� 46* catalytic loop
IKK� 179* activation loop
ITK 442* front pocket
JAK3 909* front pocket
JNK2 116* front pocket
JNK3 154* front pocket
MEK1/MAP2K1 207* DFG region
MSK1 440 P-loop
NEK2 22* P-loop
PDGFR↵ 814* catalytic loop
RSK1 432* P-loop
RSK2 436* P-loop
TAK1 174* DFG region
VEGFR2 1045* DFG refgion

* Cysteine residue confirmed to be covalently modified by ex-
perimental X-ray crystallographic or mass spectrometry ex-
periments. Literature reports used to inform covalent modifi-
cation of cysteines have been included in supplementary Table
S3 of Ref. 37.
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mechanics (QM/MM) MD simulations have shown that the CHARMM36 force field

accurately predicts the experimental hydration structure of a model cysteine thio-

late.46 Benchmark of the RETI method specifically for kinase cysteine pKa prediction

show a similar deviation from experiment (see Supplementary Table S1 in Ref. 37)

The method predicted the correct direction in pK shifts for the active site cysteine

(Cys283) in wild-type and mutant variants of creatine kinase, with an overall root-

mean-square deviation of 1.4 pK units. We note that the pKa’s reported in this study

are not expected to be quantitatively accurate, but rather are suggestive of general

trends.

Following the RETI pKa calculation protocol employed in our cysteine pK predic-

tion benchmark study,46 the GROMACS 5.1.4 molecular dynamics software package47

was used to perform all the RETI simulations on the protein kinases studied in this

work. The CHARMM3643 all-atom protein force field was used to generate structural

models of both the reference model and the kinase system. Titratable residues were

assigned protonation states corresponding to their default values at neutral pH. The

initial protein kinase structure was centered and solvated in a cubic periodic box, with

a cuto↵ distance of 10 Å from the edge of the box. The simulation cell was neutral-

ized with Na+ and Cl– ions at a concentration of approximately 0.10 M. TIP3P water

model48 was used for all the simulations and the system was kept at a temperature of

298.15 K and pressure of 100 kPa using the velocity rescaling thermostat49 and the

Parrinello-Rahman barostat.50,51 The LINear Constraint Solver algorithm52 (LINCS)

was used to constrain covalent bonds involving hydrogen. Long-range electrostatic

interactions were treated using the Particle Mesh Ewald (PME) method.53,54 A grid

spacing of 1.0 Å was used for all simulation cells.

After system preparation, the kinase structure was subjected to the steepest de-

scent energy minimization to eliminate any steric clashes or structural irregularities

within the model system. Following that, a 20 ns equilibration run was performed in

the canonical ensemble (NVT) followed by an equilibration in the isothermal-isobaric

ensemble (NpT), in that order. A time step of 2 fs was used for all the simulations,

with a reference temperature and pressure of 298.15 K and 100 kPa, respectively.

After system equilibration in the NVT and NpT ensemble, replica exchange ther-

modynamic integration runs were performed to calculate the relative free energies of

the thiol and thiolate states of the selected cysteine. Each free energy calculation is
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comprised of 11 windows with � values ranging from 0.0–1.0, in increments of 0.1. Ex-

changes between � states were attempted between neighboring replicas every 1.0 ps.

The average exchange probability between replicas was in the 0.10–0.20 range. Gibbs

energies were calculated from the RETI data using the weighted histogram analy-

sis method, g wham.55 All replicas were run for 12 ns, with the first 2 ns discarded

as equilibration. For each kinase model system, the simulations were performed in

triplicates. The computed pKa’s reported are the averages of the three independent

replicates.

4.3.2 Constant-pH Molecular Dynamics (CpHMD)

CpHMDmethods33,34,56–64 are capable of simulating pH-induced conformational changes

while naturally accounting for the variation in protonation states of titratable residues.

Additionally, the influence of nearby ionizable residues and coupled protonation states

on the pKa’s of titratable residues can be correctly captured by these simulations. In

our RETI-pKa approach, the protonation state of all residues other than the target

cysteines of interest are fixed. As a result, contributions of other protonation states

on the pKa’s of targeted cysteines are not captured by these simulations. These ef-

fects are particularly significant for ionizable residues with coupled pKa’s. We adopted

CpHMD methods to investigate the e↵ect of cooperativity between cysteines and their

nearby ionizable residues. Of particular interest for study were the structural models

of protein kinases EGFR and JAK3. Targetable cysteines within these kinase mod-

els (i.e., Cys797 in EGFR and Cys909 in JAK3) have nearby ionizable residues like

Asp, whose influence on cysteine pKa’s might not be fully captured by our RETI-pKa

calculations. Supplementary Table S5 in Ref. 37 lists charged ionizable residues that

are within 7.0 Å from target cysteines in the set of protein kinases studied.

The CpHMD simulations were performed using two distinct programs; namely,

Amber’s65 implementation of replica exchange in the pH-dimension33 (pH-REMD)

and the hybrid nonequilibrium Molecular Dynamics/Monte Carlo (neMD/MC) con-

stant pH approach34 implemented in the MD program NAMD.66 The same struc-

tures used in the RETI-pKa calculations were used for the pH-REMD and hybrid

neMD/MC calculations. In the pH-REMD approach, simulations of multiple inde-

pendent replicas are performed at di↵erent solution pH values but at the same tem-

perature, and attempts are made to exchange pHs between replicas. The neMD/MC
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approach on the other hand, consists of carrying out short nonequilibrium molecular

dynamics switching trajectories to generate physically plausible configurations with

changed protonation states that are subsequently accepted or rejected according to a

Metropolis Monte Carlo criterion.56

Constant pH-REMD

The constant pH-REMD simulations were performed in explicit solvent, following

the protocol developed by Roitberg and coworkers.33 Protein kinase models were

parametrized using the Amber ↵99SB67 protein force field. Some titratable residues of

interest in protein kinase models (i.e., Asp, Glu, His) were modified to properly match

titratable residue names used by the program. The tleap program of AmberTools

16 program suite was used to prepare the necessary topology and coordinate files.

The intrinsic solvent radius of titratable Asp and Glu residues were reduced by 0.2

Å to compensate for the e↵ect of having 2 dummy protons present on each of the

carboxylate oxygen in the syn- and anti-positions.60 The protein was solvated in a

truncated octahedron water box with 10 Å bu↵er of TIP3P-model water surrounding

the protein in each direction. All simulations were performed using either the pmemd

or sander module of Amber 14/16 program.68 The simulations were performed in

triplicate and the seed for the random number generator was set from the computer

clock to avoid synchronization artifacts.

The simulations followed three initial standard steps before the pH-REMD sim-

ulations were performed. The three standard steps include: energy minimization,

heating, and equilibration or system relaxation. Langevin dynamics and Berendsen

barostat were used to maintain a constant temperature and pressure of the simulation

cells. NaCl salt concentration of 0.10 M was maintained using the igb=2 GB model,69

which has been parameterized for explicit solvent simulations. The SHAKE algo-

rithm70,71 was used to constrain hydrogen bonds. The Particle Mesh Ewald method

was used for treating long-range electrostatics and a 8 Å cuto↵ was used in the cal-

culation of Lennard-Jones interactions. The minimization was run for 5000 cycles.

Following that, the system was heated at a constant volume, varying the target tem-

perature linearly from 10 K to 300 K over 400 ps. The simulation system structure

was then equilibrated for 10 ns molecular dynamics simulations in the isothermal-

isobaric ensemble (NpT). This equilibrated structure was used as the starting point
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for the constant pH-REMD simulations.

The pH-REMD simulations typically consisted of 16 replicas spanning the pH

range of interest, in increments of 1.0 pH unit. In the case of EGFR kinase, the

replicas were constructed to span a pH range of 0.0–15.0. Replica exchange attempts

between adjacent replicas were made every 2500 steps (5 ps) and the protonation

state changes were attempted using 100 step (200 fs) non-equilibrium trajectories for

all pH-REMD simulations. The simulation was run for a total of 10 ns per replica.

The results from the simulation were analyzed using the cphstats program from the

Amber program suite. The deprotonated fraction (fdeprot) and pH for each individual

replica were fitted to the Hill equation, (Eqn. 4.3). The Marquardt-Levenberg fitting

equation was then used to calculate the pKa and Hill coe�cient (n), which was then

plotted to derive titration curves for ionizable residues of interest. The pH-REMD

simulations were run in triplicate and the final pKa reported is the average of the

three independent pK runs performed.

fdeprot =
1

1 + 10n(pKa�pH)
(4.3)

Hybrid neMD/MC

The neMD/MC constant pH simulations were performed in explicit solvent using

the CHARMM36 protein force field, implemented in NAMD 2.12 program.66 Kinase

model systems were solvated in a water box using the VMD solvate package,72 with

water box dimensions having a 10 Å layer of thickness between the box boundaries

and the minimum and maximum coordinates of the protein. Na+ and Cl– ions were

introduced into the system to neutralize excess charge and the concentration was set

to 0.10 M. Periodic boundary conditions were employed using PME electrostatics

method and Lennard-Jones interactions were smoothly truncated at 12 Å, using a

switching function from 10–12 Å. The SHAKE algorithm was used to constrain co-

valent bonds containing hydrogen atoms and the simulation time step was 2 fs. A

Langevin thermostat of 298.15 K with a damping coe�cient of 1 ps�1 was used for

equilibration.

For each simulation, the system was first minimized (1000 steps), followed by 20 ns

of equilibrium molecular dynamics. The equilibration sampled an isothermal-isobaric
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ensemble (NpT) with a temperature of 298.15 K and a pressure of 101.325 kPa using

Langevin dynamics. The equilibrated model system was used as the starting point

for the constant pH molecular dynamics simulations. The theoretical background

of the neMD/MC constant-pH MD approach employed in this study is described in

detail in a publication by Roux and coworkers.34 Given the large number of titratable

residues present in the protein kinase models, residues of particular interest (Cys

and neighboring Asp) were assigned a proposal weight of 10.0, while the remaining

titratable residues were assigned the default proposal weight of 1.0 during simulations.

Inherent pKa values for all titratable residues were assigned using their reference pKa

values in bulk solution, as calibrated for by the method.34 All simulations attempted

protonation state moves every 10 ps with switching times of 15 ps. All simulations

were repeated three times and were run for 20 ns within pH values where ionizable

residues of interest titrate. Titration curves and error estimates from simulation

outputs are computed using a Python-based utility, cphanalyze, available through

the PyNAMD package. The PyNAMD library is accessible via the URL: https:

//github.com/radakb/pynamd. The computed titration curves were fitted to the Hill

equation, Eqn. 4.3. The reported pKa values are the averages of three independent

replicates.

4.4 Results and Discussion

The pKa’s of the targetable cysteines using the RETI method range from values as

low as 7 pK units to as high as 24 pK units (Figure 4.3). Most of the cysteine residues

have pKa’s that are elevated above the pKa of a free cysteine thiol in solution, 8.6.44

Only the targeted cysteine residues of c-Src, FGFR4, and JNK2 yielded predicted

pKa’s lower than the solution cysteine pKa. In principle, cysteine residues with low

pKa’s are more susceptible to covalent modification because the thiol side-chain is

easily deprotonated and is more likely to exist in the reactive nucleophilic thiolate

state. There was no systematic trend between predicted cysteine pKa’s and their

positions in the kinase segment, although cysteines in the catalytic loop of protein

kinases c-KIT and PDGFR↵, reported the highest pKa’s (i.e. > 20). In reality, these

proteins could likely undergo a conformational change such that the deprotonation

could occur at a lower pH or covalent modification could occur through a non-ionic

mechanism.
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Figure 4.3: Calculated pKa’s of covalent-modifiable cysteines in selected protein ki-

nases using RETI method.

105



Two particularly important conformational states of protein kinases are the ac-

tive (“DFG-in”) and inactive (“DFG-out”) states. These are relevant in c-KIT and

PDGFR↵, where there has been e↵orts to develop inhibitors for the DFG-out state.73,74

In the active conformation, the Asp residue at the N-terminus of the activation loop

within the conserved DFG motif points towards the ATP-binding site (“DFG-in”);

while in the inactive conformation, this position is occupied by the Phe residue of

the DFG motif (“DFG-out”). These local structural di↵erences in kinase DFG mo-

tif conformation can impact the physicochemical environment of ionizable residues in

functional domains—perturbing their pKa. To investigate the e↵ect of di↵erent kinase

conformations on the predicted pKa’s of targetable residues, we calculated the pKa of

Cys788 of c-KIT in the inactive “DFG-out” (PDB ID: 3G0E) and active “DFG-in”

(PDB ID: 1PKG) conformations; and we find that the “DFG-in” conformation yields

a slightly lower pKa (21.0 ± 0.5) than the “DFG-out” conformation—although still

elevated (Figure 4.3). The dislocation of the juxtamembrane domain from its autoin-

hibitory position into solvent in the active “DFG-in” conformation is a likely cause

for the di↵erence in Cys788 pKa’s for both “DFG-in” and “DFG-out” c-KIT kinase

conformations.75 This indicates that di↵erent kinase conformation can have an e↵ect

on the pKa’s of cysteine residues near the catalytic loop region, especially if it involves

a conformational transition of the DFG motif.76 As a result, the predicted pKa’s will

vary depending on the conformation present in the PDB structure. The predicted

pKa’s we report for the targeted cysteine residues in c-KIT and PDGFR↵ kinases are

for their autoinhibited “DFG-out” forms, which bind inhibitors imatinib and suni-

tinib.73 The high predicted pKa’s for these kinase cysteines are largely notional and

indicative of the physicochemical environment around the cysteines, which appear to

be desolvated and buried away in the protein interior. The wide range observed in the

acidities of kinase cysteines indicates that the reactivity of targeted cysteine residues

can vary greatly across the protein kinase family.

The variation in the cysteine pKa’s is due to di↵erences in the environment around

the residue. Thiols have limited intermolecular interactions, but the stability of the

thiolate state is sensitive to its interactions with water molecules and other ionizable

residues in the protein.77,78 We computed cysteine thiolate hydration numbers from

the trajectories of free energy calculations of the protein kinase models (see Supple-

mentary Table S4 in Ref. 37). A solvent-exposed cysteine thiolate is predicted to have

a hydration number of 4.4. The hydration of the cysteine thiolate has a dramatic e↵ect
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on the pKa (Figure 4.4).

Figure 4.4: Factors perturbing the pKa of druggable cysteines in protein kinases. (a)
Poor solvation of thiolate state of Cys788 in c-KIT kinase (PDB ID: 3G0E) results in
an elevated pKa (23.8). (b) Solvent-exposed Cys116 in JNK2 (PDB ID: 3E7O) kinase
reports a predicted pKa of 7.0. Only water molecules within 5 Å from the target
cysteine are shown. The hydration numbers calculated are 3.6 and 5.5 for c-KIT and
JNK2 kinase, respectively.

Buried cysteine residues that are poorly solvated have higher pKa values, while

solvent-exposed cysteine residues have lower pKa values. For example, Cys277 and

Cys116 in c-Src and JNK2 kinases are predicted to have relatively low pKa’s and have

high hydration numbers of 6.0 and 5.5, respectively (Table 4.2). Conversely, cysteines

with low thiolate hydration numbers (i.e., 3–5) typically have pKa’s greater than 11.
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Table 4.2: Thiolate Hydration Numbers of Select Kinase Cysteines

Protein kinase Cys Residue RETI-pKa Hydration number

c-KIT“DFG-out” 788 23.8 ± 1.0 3.6
c-Src 277 8.3 ± 0.9 6.0
EGFR 797 11.1 ± 0.7 4.3
ERK2 166 11.7 ± 0.7 4.0
FGFR4 477 7.8 ± 0.7 4.4
HER2 805 11.8 ± 0.5 3.8
JAK3 909 13.0 ± 0.4 5.4
JNK2 116 7.0 ± 0.8 5.5
JAK3 207 12.8 ± 0.4 4.0
PDGFR↵ 814 24.3 ± 0.6 3.7

This e↵ect is particularly strong for Cys788 of c-KIT (Figure 4.4 (a)) and Cys814

of PDGFR↵, which have very low thiolate hydration numbers and extremely high

pKa’s. Notable exceptions to this trend include Cys477 in FGFR4 and Cys909 in

JAK3. Cys477 in FGFR4 is predicted to have modest hydration number of 4.4 but a

pKa of only 7.8. Lys644 is near to Cys477, which results in a stabilizing cation-anion

interaction with the cysteine thiolate. This results in a relatively low pKa for Cys477,

despite being poorly solvated. On the other hand, Cys909 in JAK3 kinase is predicted

to have a high hydration number of 5.4, but an elevated pKa of 13. Asp912 is close

to Cys909 and destabilizes the cysteine thiolate anion, elevating the pKa.

Inter-residue electrostatic interactions can also significantly shift the pKa of an

amino acid in a protein. Several of the target cysteine residues are in close proximity

to an amino acid with an anionic side-chain. This generally results in an increase in

the pKa of the cysteine residue due to electrostatic repulsion between thiolate and the

anionic side-chain. For instance, Cys207 of MEK1 kinase neighbors Asp208 and its

predicted pKa is elevated to 12.8 (Figure 4.5(a)). In ERK2 kinase, Asp167 neighbors

Cys166 and this yields an elevated pKa of 11.7 for Cys166 (Figure 4.5(b)). Both

thiolates in the above protein kinases have similar hydration numbers (Table 4.2), but

the influence and relative proximity of inter-residue electrostatic interactions within

the cysteine microenvironment is a contributing factor to their elevated pKa’s.

The predicted shifts in cysteine pKa’s versus the thiolate hydration numbers from

the RETI calculations are plotted in Figure 4.6. Targetable cysteines surrounded

by negatively charged amino acid side-chains within 6.5 Å are represented as red
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Figure 4.5: Electrostatic e↵ects of neighboring Asp on the pKa’s of select kinase
cysteines. (a) The proximity of Asp208 to Cys207 contributes to the elevated Cys
pKa(12.8) in MEK1 kinase. (b) The thiol side-chain of Cys166 in ERK2 kinase (pKa=
11.7) is 6.0 Å from the carboxylate anion of Asp167.
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circles, while cysteines surrounded by positively charged side-chain groups within 6.5

Å are represented as blue circles. Cysteines with no acidic or basic side-chain groups

within 6.5 Å are represented as black circles. As expected, cysteines with nearby

acidic residues on average have slightly larger pK shifts than cysteines surrounded

by basic residues. Several residues with the lowest hydration numbers have very

elevated pKa shifts, while residues with high hydration numbers have pKa shifts that

are modestly positive or are even shifted in the negative direction in some cases.

Although electrostatic interactions with nearby residues and hydration of the thiolate

state can clearly have a significant influence on the computed cysteine pKa’s, the

diversity in these values highlights that the pKa of a residue depends on a complex

set of factors.

Figure 4.6: pKa shifts vs. thiolate hydration number for targetable cysteine residues,
as predicted by the RETI method. Blue and red circles represent cysteines surrounded
by positively-charged and negatively-charged groups within 6.5 Å, respectively. Black
circles represent targeted cysteine residues with no nearby charged groups within 6.5
Å.

The observation that the active-site cysteine residues tend to have elevated pKa’s

is consistent with other reports that the protonation states of active-site residues can

be shifted considerably from their solution values, even when these residues are not

catalytic. Isom et al.79 showed that lysine residues engineered into the active sites

of staphylococcal nuclease proteins tended to have low pKa’s. In that case, the poor
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hydration of the residues in the active site favored the deprotonated, neutral state of

lysine. For cysteine residues, the low solvent exposure favors the neutral thiol form

relative to the thiolate form, resulting in an elevated pKa. This suggests that non-

catalytic active-site lysine residues will tend be more reactive towards nucleophiles

than amines in solution, while non-catalytic active-site cysteines generally tend to

be less reactive than cysteines in solution.17,80 Paradoxically, the high pKa’s of these

cysteine residues may protect them from oxidation, preserving them as targets for

reaction with electrophilic drugs.81

Recent progress in kinase inhibitor drug discovery has seen the regulatory approval

of a number of small-molecule covalent kinase inhibitors.18,82 Majority of these in-

hibitors have been successful at targeting noncatalytic cysteine residues near the ATP-

binding pocket. Cys797 in EGFR, Cys805 in HER2, and Cys481 in BTK are proven

examples where e↵ective, cysteine-targeting covalent inhibitors have been developed

successfully.82 Within the kinases where there is an e↵ective and well-characterized

covalent inhibitors, the calculated pKa’s tend to be modestly elevated. BTK, EGFR,

and Her2 are inhibited, respectively, by the drugs ibrutinib,83 afatinib,84 and ner-

atinib.85 The targeted cysteine in these kinases are all located in the front pocket

region of the active site (Table 4.1), and their calculated pKa’s range between 10 and

11 pK units. The thiolate state of these residues tends to have a moderate hydration

number (i.e., 4–5 water molecules). Based on the demonstrated success of drugs that

target these residues, front-pocket cysteines appear to have a combination of acidity

and positioning that make them well-suited for covalent inhibition. This indicates

that a residue with a pKa of 11 can still be targeted, although complex factors in-

cluding protein–ligand binding and conformational changes could perturb the pKa of

a targetable residue, making it more amenable to covalent modification.

The pKa of Cys797 in EGFR is particularly significant for drug development.

Several chemotherapy drugs have functioned by inhibiting EGFR through covalent

modification of Cys797, including afatinib84 and osimertinib.86 Sequence alignment

studies have shown that ten other kinases within the human kinome possess a cys-

teine residue in a structurally similar position as Cys797 of EGFR.82 The RETI-pKa

method predicts the pKa of Cys797 in EGFR to be elevated to 11. This is in contrast

to the experimental work of Truong et al.,87 who measured the rate of bromobimane

fluorescent labeling of recombinant EGFR over the pH range of 2–6.5 and estimated
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the pKa of Cys797 to be 5.5. This low pKa value reported was attributed to stabiliz-

ing electrostatic interactions between the cysteine thiolate and the backbone dipole

formed by the ↵-helix of residues 799-806.87 This is a larger e↵ect than has been

reported for other cysteine residues at the N-cap position of an ↵-helix;88 in compar-

ison, a cysteine engineered at the N-cap position of a 26-residue ↵-helical segment in

myoglobin is only reduced to 6.5.89 This e↵ect of the ↵-helix dipole should be partially

captured by the molecular mechanical force field used in the RETI-pKa calculations,

although the neglect of induced polarization may cause the cooperative e↵ect of the

helix dipole to be underestimated.90,91

One of the approximations of the RETI-pKa calculations is the neglect of cooper-

ativity of side-chain protonation states. For instance, an anionic residue nearby the

cysteine would generally raise its pKa, but if this side-chain was protonated all or

part of the time, its e↵ect on the cysteine pKa would be attenuated or even reversed.

In EGFR, it has been hypothesized that Asp800 can act as a general base/general

acid in distinct steps of the covalent modification of Cys797, including functioning

as a hydrogen bond donor to the thiolate when in its carboxylic acid form.92,93 To

explore the e↵ect of cooperativity between titratable residues, we calculated the titra-

tion curves for select cysteines and aspartates in EGFR and JAK3 kinases using

two constant pH molecular dynamics (CpHMD) methods; pH-REMD33 and hybrid

neMD/MC.34 CpHMD takes into account the variation of protonation states in the

pKa calculation—allowing both ionizable residues of interest (i.e., Cys and the nearby

Asp) to be titrated simultaneously. These methods allow the protonation state of

a residue to change over the course of the simulation. pH-REMD calculates the

probability of a transition between two protonation states using an implicit solvent

calculation, while the neMD/MC simulation is performed entirely with an explicit

solvent representation. Details about the CpHMD methods employed and simulation

procedures can be found in the theory and methods section of this chapter. Figure

4.7 shows the representative configuration of the target Cys and nearby Asp residues

in both EGFR and JAK3 kinase models.

The percentage of time each residue of interest is deprotonated as a function of

pH is plotted in Figures 4.8 and 4.9. The equivalence point of the titration curve of

Cys797 in EGFR is evaluated to pKa value of 13.5 by the pH-REMD method (Figure

4.8 (a)). The hybrid neMD/MC method on the other hand, evaluates the pKa of

Cys797 in EGFR to be 11.5 (Figure 4.8 (b)). Similarly, the equivalence point of the

112



Figure 4.7: Representative configuration of Cys797 and proximal Asp800 in EGFR
kinase (a); and Cys909 with nearby Asp912 in JAK3 kinase (b).

titration curve of Cys909 in JAK3, which features a homologous pairing with Asp912,

is predicted to be 12.7 by the pH-REMD method (Figure 4.9 (a)) and 11.1 for the

neMD/MC method Figure 4.9 (b)).

Although these methods are fundamentally di↵erent approaches for calculating

ionizable residue pKa and employ di↵erent force field models and parameters for

thiol/thiolate cysteines,46 the computed titration curves agree reasonably well with

each other. Furthermore, the calculated pKa’s for Cys797 in EGFR and Cys909

in JAK3 using the constant pH methods are in good agreement with the RETI-

pKa simulation results; which predict pKavalues of 11.1 and 13.0 for Cys797 and

Cys909, respectively. Both the CpHMD and hybrid neMD/MC simulations predict

significantly elevated pKa’s for these cysteine residues, with no cooperativity with the

nearby Asp residue, so these models are inconsistent with a stable thiolate—aspartic

acid pairing.

The titration curves suggest that targetable cysteines present inside the binding

sites of these protein kinase models have pKa’s that are higher than in solution. It

is also clear from the titration curves that there is no instance where the protonation

113



Figure 4.8: Titration curves of Cys797 and Asp800 in wild-type EGFR kinase. The
fitted titration curves were generated from deprotonated fractions of pH-REMD (a),
and neMD/MC (b), constant pH molecular dynamics simulations. The pKa’s reported
are the average of three independent replicates.

114



Figure 4.9: Titration curves of Cys909 and Asp912 in JAK3 kinase. The fitted
titration curves were generated from deprotonated fractions of pH-REMD (a), and
neMD/MC (b), constant pH molecular dynamics simulations. The pKa’s reported are
the average of three independent replicates.
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states of cysteine and aspartate are coupled or fractionally populated — evident in the

characteristic sigmoidal shape pH titration curves observed for both residues (Figures

4.8 and 4.9). This suggests that the transfer of a proton from Cys797 to Asp800

as part of the reaction mechanism of the covalent inhibition of EGFR would be a

significantly exergonic step, although the presence of the ligand could a↵ect this.94

Based on these simulations, we expect that the dominant e↵ect of an acidic residue

proximal to a cysteine will be to elevate its pKa, as observed.

The pKa of 5.5 for Cys797 in EGFR reported by Truong et al.87 contradicts the el-

evated pKa values calculated by all the molecular dynamics methods employed in this

study, including the pKa’s calculated by popular pK prediction web servers: H++95

(pKa
Cys797=10.5) and PROPKA96 (pKa

Cys797=10.4). To ensure that the thiolate—

carboxylic state was accessed in the molecular dynamics simulations, a simulation

was performed where the pKa of Cys797 was initially assigned the pKa of 5.5 reported

by Truong et al. 87 so that the simulations would begin in this state. After 20-ns of

neMD/MC sampling, the protonation state had reverted to the thiol—carboxylate

state with an elevated pKa value of 10 for Cys797, consistent with the results of

our earlier CpHMD simulations. This disparity between the reported Cys797 pKa in

EGFR and those calculated by the computational methods merits further investiga-

tion.

Given that there is a lack of quantitative experimental data about kinase cysteine

residues in general, it would be very challenging to include all possible kinase confor-

mations in the pKa calculations, although in principle, the protein could adopt di↵er-

ent conformations during covalent modification than the crystallographic structures

used in our molecular dynamics simulations. Also, limitations of empirical molecular

mechanics force fields, protonation state sampling, and convergence issues in com-

puted free energies can introduce errors in the calculated pKa’s. Constant-pH MD

simulations that include induced polarization e↵ects and more direct experimental ob-

servation of the protonation states of ionizable residues, such as NMR titration, would

help unambiguously determine the protonation state of targetable cysteine residues

in kinase proteins. This would be particularly valuable for conclusively determining

the pKa of important targets like Cys797 in EGFR and other side-chains to reconcile

the apparent inconsistency between computational and experimental results.
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4.5 Conclusions

In summary, we have calculated the pKa’s of select kinase cysteine residue targets for

covalent-modifier drugs. The pKa’s were computed using rigorous simulation meth-

ods with an explicit representation of the solvent. Our analysis suggests that the

degree of solvation of the thiolate state and interactions between the thiolate and

other amino acids in the binding site are responsible for the perturbation in the pKa’s

of druggable cysteines in kinases. The general trend is for the pKa’s of the cysteines

to be elevated because they are poorly solvated in comparison to residues on the

surface of the protein. The pKa of a cysteine residue can also be perturbed by electro-

static interactions with other charged residues; nearby anionic residues increase pKa

due to electrostatic repulsion with the cysteine thiolate. These simulations indicate

that cysteine residues in kinase active sites will have widely di↵erent susceptibility

to reactions with an electrophilic drug due to di↵erences in their acidity. Given the

trend for active-site kinase cysteines to have elevated pKa’s, the step in the covalent

modification mechanism where the thiol is deprotonated will occur at a slower rate

than in solution. Computational prediction of the stability of the thiolate state and

other intermediate states of covalent modification will enable more rational develop-

ment of this important class of drugs. The evolution of pKa prediction methods by

improved force fields (e.g., those that include induced polarization), cooperativity of

side-chain protonation states, and conformational sampling will allow the acidity of

these residues to be predicted more rigorously.
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dahl, E. GROMACS: High performance molecular simulations through multi-

level parallelism from laptops to supercomputers. SoftwareX 2015, 1-2, 19–25.

[48] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L.

Comparison of simple potential functions for simulating liquid water. J. Chem.

Phys. 1983, 79, 926.

[49] Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity

rescaling. J. Chem. Phys. 2007, 126, 014101.

[50] Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new

molecular dynamics method. J. Appl. Phys. 1981, 52, 7182–7190.
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“ ... A molecular system ... (passes) ... from one state

of equilibrium to another ... by means of all possible

intermediate paths, but the path most economical of

energy will be the more often traveled.”

— Henry Eyring, 1945
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5.1 Abstract

Covalent-binding drugs are experiencing a resurgence in drug discovery and devel-

opment, owing to their benefits of improved potency and sustained target engage-

ment. These drugs bind to their targets by forming a chemical bond with a nucle-

ophilic residue in the target. The mechanism of binding of a covalent drug consists of

both covalent and non-covalent binding steps, with di↵erent free energy contributions.

Mapping and quantifying these free energy contributions require di↵erent computer

modelling techniques due to the chemical bond formed. Although, there have been

multiple studies reporting on the binding a�nity and kinetics of covalent-binding

inhibitors, no study to our knowledge has provided a rigorous thermodynamic dissec-

tion of the various free energy contributions a↵ecting the covalent and non-covalent

binding steps of the chemical process. To address this issue, we employ advanced

molecular dynamics and quantum chemical calculations to quantify and describe all

the steps involved in the covalent modification of a druggable cysteine in a clinically-

validated protein kinase target. The enzyme target investigated is Bruton’s tyrosine

kinase which is implicated in various forms of leukemia. We model the addition re-

action of a potent and selective cyanoacrylamide ligand binding to this target. These

calculations provide a rigorous and complete free energy profile of the binding pro-

cess. Our results indicate that the covalent binding step of the ligand and target is

a critical step in the chemical reaction and constitutes a large component of the to-

tal binding free energy. Non-covalent interactions between the ligand and individual

amino acid residues in the binding pocket of the enzyme are also essential for ligand

binding, particularly, van der Waals dispersion forces. These results indicate that the

mechanism of covalent modification of a protein occurs through a complex series of

steps and that entropy, conformational flexibility, non-covalent interactions, and the

formation of covalent linkage are all significant factors in the ultimate binding a�nity

of a covalent drug for its target.
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5.2 Introduction

Drugs that bind to their targets covalently are gaining traction in recent drug devel-

opment e↵orts,1,2 particularly in the burgeoning field of kinase inhibitor drug discov-

ery.3–5 Despite earlier safety concerns of the pharmaceutical industry about their po-

tential for idiosyncratic adverse events and o↵-target toxicities,6 covalent drugs have

proven safe and e↵ective in treating diverse clinical indications, including cancer.7

Also, covalent drugs o↵er the unique benefits of prolonged duration of therapeutic

action, improved e�cacy, and high target selectivity.8 To date, there are over 40

FDA-approved covalent drugs.9 These include early successful drugs like aspirin and

penicillin that covalently-modify active site serine residues in their enzyme targets.

More recent examples of successful covalent drugs include cysteine-targeting kinase

inhibitors, afatinib and ibrutinib. Afatinib is used in the treatment of metastatic non-

small cell lung cancer,10 and ibrutinib is used for treating B cell cancers like chronic

lymphocytic leukemia.11

The mechanism of targeted covalent inhibition of a druggable target usually in-

volves the reaction of a nucleophilic moiety of a target protein with an electrophilic

functional group of the drug (a.k.a., the “warhead”). This reaction is the central

process that governs the rate of inhibition of covalent drugs. Selectivity of a covalent

drug for an enzyme target is particularly due to favourable non-covalent interactions

plus non-conserved complementarity between the nucleophilic target of the enzyme

and warhead of the bound drug. Covalent inhibition is preceded by a non-covalent

binding step (Scheme 5.1). This positions the electrophilic warhead of the drug where

it can undergo a reaction with the nucleophilic residue of the target enzyme.

Scheme 5.1: Mechanism of covalent inhibition of enzyme (E) by inhibitor (I). E·I de-
notes the non-covalent complex while E–I signifies the covalent adduct upon chemical
reaction.

There are a broad range of chemical motifs in existing drugs12 that can covalently-

modify nucleophilic groups in enzyme targets (e.g., –SH side chain of cysteine).

Among these, ↵,�-unsaturated carbonyl compounds,13 particularly acrylamides, dom-

inate the current pharmacopeia of covalent inhibitors. These acrylamide-based co-

valent inhibitors undergo a thiol-Michael addition reaction14 with a non-catalytic

cysteine residue of a desired target (Figure 5.1).15 Although the mechanism of this
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covalent engagement is irreversible, recent work by Taunton and coworkers have shown

that these irreversible acrylamide-based inhibitors can be chemically tuned to react

with target cysteines in a reversible manner.16–18 More specifically, they demonstrated

that by perturbing the steric and electronic environment around an acrylamide elec-

trophile, reversible covalent inhibitors with remarkably slow o↵-rates can be synthe-

sized.18 This is particularly advantageous in that concerns about potential o↵-target

modification of proteins that have been associated with toxicity and immunogenicity

can be mitigated due to the reversibility of the covalent binding process. This concept

of reversible covalent modification has been explored in designing reversible cysteine-

targeting covalent inhibitors of the protein kinase family of enzymes16,18,19—one of

the most important drug targets of the 21st century.20

Figure 5.1: Thiol-Michael addition reaction showing the covalent modification of nu-
cleophilic cysteine thiol group of an enzyme target by an acrylamide moiety (in red).

Molecular modeling and quantum chemical methods can provide a wealth of useful

insight into the thermodynamics and kinetics of the covalent binding process.21 Com-

putational methods such as free energy perturbation molecular dynamics (FEP/MD)

have been shown to provide accurate estimates of the binding a�nity, specificity, and

selectivity of ligands for non-covalent enzyme targets.22–30 Hybrid quantum mechan-

ics/molecular mechanics (QM/MM) methods can be used to describe the potential

energy surfaces and reaction thermodynamics of the steps in the covalent reaction

mechanism.31 In particular, the chemical bond formed during the binding step of

covalent modification process can only be described using QM methods. Altogether,
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these methods when combined can reveal critical molecular information about the rel-

ative free energies and barriers associated with the covalent modification mechanism

that may be di�cult to access experimentally.

Although a number of studies have reported on the kinetics of cysteine-targeted

thiol-Michael additions,32,33 very little attention has been given to understanding in

detail the thermodynamic contributions that a↵ect the binding process. This will

require calculating the total binding a�nity and evaluating the free energy profile

of the chemical reaction. To address this issue, we employ alchemical free energy

perturbation and hybrid QM/MM molecular dynamics to model all the steps involved

in the covalent modification process. Bruton’s tyrosine kinase (BTK) is a clinically-

validated and attractive target in drug discovery for treating B cell malignancies.

Several chemotherapy drugs have been developed that target this kinase enzyme,

most notably ibrutinib,11 which is used for treating various forms of leukemia. BTK

contains a druggable cysteine (Cys481) that is accessible for covalent modification

by inhibitors. Our model system consists of a protein–ligand complex of BTK with

a t-butyl cyanoacrylamide ligand bearing a piperidine linker and pyrazolopyrimidine

sca↵old, Figure 5.2a. A high-resolution X-ray crystallographic structure has been

reported for this model system (PDB ID: 4YHF). The cyanoacrylamide ligand is a

highly potent and selective reversible covalent inhibitor of BTK, (Figure 5.2b).18

(a)

(b)

=

Figure 5.2: (a) Cocrystal structure of BTK complexed with t-butyl cyanoacrylamide
inhibitor (PDB ID: 4YHF). The chemical structure of the inhibitor is highlighted. (b)
Reaction mechanism showing the steps involved in the reversible covalent modification
process for addition of the t-butyl cyanoacrylamide inhibitor to Cys481 of BTK.
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To quantify and describe the energetic determinants of all the steps involved in

the cysteine-targeting thiol-Michael addition reaction, we performed detailed all-atom

FEP/MD simulations and QM/MM MD simulations to calculate a rigorous, complete

binding energy profile of the cyanoacrylamide ligand binding to BTK in an explicit

aqueous solvent. This combined computational methodology allows for an in-depth

thermodynamic dissection of the molecular determinants governing the mechanism of

covalent modification.

5.3 Theory & Methods

5.3.1 Ligand–Protein System Setup

The initial structure of BTK complexed with t-butyl cyanoacrylamide ligand was

taken from PDB entry 4YHF.18 MD simulations were performed in explicit solvent

and the TIP3P34 water model was chosen to describe water molecules. The GAAMP35

method was used to obtain the ligand parameters and the CHARMM36 all-atom pro-

tein force field36 was used to model the protein. Our previous biomolecular simulation

studies have shown that the CHARMM36 force field provides the most accurate pre-

diction of the experimental hydration structure of model cysteine thiolates,37 as well as

cysteine pKa’s in proteins38 and kinase enzymes.15 All crystallographic resolved water

molecules in the structure were retained in the model system. The initial protein–

ligand complex was solvated in a simulation cell with dimensions of 72⇥72⇥80 Å3.

Sodium ions were added to neutralize the system. All MD simulations of the protein–

ligand complex were performed using NAMD 2.1339 under periodic boundary con-

ditions. A constant temperature of 298.15 K and pressure of 1 atm was applied to

the system using the Langevin dynamics and Langevin piston method, respectively.

A Langevin damping coe�cient of 1 ps�1 was used for propagating dynamics and a

timestep of 2 fs was used in all calculations. Long range electrostatics interactions

were treated using the particle mesh Ewald (PME) method.40,41 A cuto↵ distance of

12 Å was applied to Lennard-Jones interactions. A smoothing function was applied

from 10 to 12 Å to smoothly truncate van der Waals forces at the cuto↵ distance.

The SHAKE algorithm42 was applied to constrain covalent bonds involving hydrogen

atoms. The model system was initially energy minimized for 1000 steps to eliminate

any steric clashes or structural irregularities that may exist within the protein–ligand
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molecular assembly. The system was then equilibrated for 20 ns at constant pressure

and temperature conditions (NpT ensemble) of 1 atm and 298.15 K, respectively. The

equilibration was performed under harmonic restraints using the collective variable

(colvars) module43 in NAMD. This was done in order to ensure that the configura-

tion of the protein–ligand complex remained close to the crystallographic structure.

The coordinates of the equilibrated protein–ligand complex were used as a starting

structure for the free energy perturbation calculations.

5.3.2 Absolute Binding Free Energy Calculations

To calculate the absolute binding free energy of t-butyl cyanoacrylamide ligand to

BTK, we applied alchemical free energy perturbation/lambda-exchange molecular dy-

namics (FEP/�-REMD) and umbrella sampling/replica-exchange molecular dynamics

(US/REMD) with restraining potentials using the double decoupling protocol devel-

oped by Roux and coworkers.44 This method provides a rigorous step-by-step for-

mulation for computing absolute protein–ligand binding free energies45–47 and allows

for the inclusion of explicit solvent, conformational entropy, and flexibility to yield

absolute binding free energies. The alchemical FEP/�-REMD and US/REMD simula-

tion techniques have achieved good statistical convergence for calculating the absolute

binding a�nities of small molecule ligands to tyrosine kinases.22–24 The approach re-

lies on a series of alchemical transformations to compute the absolute binding energy

of a ligand to a protein. This follows a step-by-step reversible work staging procedure

where the ligand is restrained in its native conformation in the bound state and is

then decoupled from its environment. In the decoupling step, the electrostatics and

Lennard-Jones interactions between the ligand and its environment (protein and bulk

solvent) are gradually switched o↵. The absolute free energy of ligand binding is

simply derived from separate energy contributions from a series of rigorous sequential

equilibrium simulations and correspond to the forces and intermolecular interactions

of the ligand when in bulk solution and in the protein binding site, Figure 5.3.

The absolute binding free energy (�Go

binding
) of transferring a ligand from bulk

solvent (bulk) to a protein binding site (site) can be formally expressed as:23

�Go

binding
= ��Gbulk!site

conf
+��Gbulk!site

t+r
+��Gbulk!site

int
(5.1)
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�G°binding 

Figure 5.3: Structure of cyanoacrylamide ligand in bulk solution and in BTK binding
site. The absolute ligand binding energy is the total free energy of transferring a
ligand from aqueous solvent to receptor.

where ��Gbulk!site

conf
is the conformational free energy cost associated with applying

conformational restraints on the ligand in bulk solvent to restrain its conformation

near its bound-state and releasing the restraint in the binding site; ��Gbulk!site

t+r
is

the free energy cost of imposing and releasing translational and rotational restraints

on the ligand in bulk solvent and in the binding site; ��Gbulk!site

int
is the di↵erence in

free energy of dissociation of the ligand from bulk solvent and its association in the

protein binding site that results from intermolecular interactions between the ligand

and its environment. All the free energy terms comprising the binding energy in

Eqn. (5.1) can further be decomposed into separate individual energy components in

bulk solvent and in the protein binding site.

The conformational free energy cost of the ligand upon binding ��Gbulk!site

conf
is

given as:

��Gbulk!site

conf
= �Gbulk

conf
��Gsite

conf
(5.2)

These terms correspond to the free energy contributions associated with applying and

releasing conformational restraints of the ligand in bulk solution and in the binding

site relative to a reference conformation. US/REMD simulations were used to obtain

the conformational free energy of the ligand upon binding. These simulations were

carried out by computing the potential of mean force (PMF) of the ligand as a function

of the root mean-square deviation (RMSD) relative to its bound-state conformation

both in bulk solvent and in the protein binding site. The force constant for all RMSD
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restraints used in the simulations was 50 kcal/mol·Å2. The equilibrated conformation

of the bound-state ligand to BTK was used as the reference structure for the RMSD

restraint. The US/REMD simulations consisted of eight replicas centered on RMSD

o↵sets increasing from 0.0–3.5 Å in increments of 0.5 Å. Each replica window was

sampled for 20 ns, totaling 160 ns of sampling. The conformational free energies of

the ligand in bulk solvent (�Gbulk

conf
) and in the binding site (�Gsite

conf
) were calculated

from the US/REMD data collected using the weighted histogram analysis method

(WHAM),48 after sorting replica trajectories into their respective files.

The translational and rotational degrees of freedom of the ligand upon binding is

given by:

��Gbulk!site

t+r
= [�kBT ln(FtC

�)��Gsite

t
] + [�kBT ln(Fr)��Gsite

r
] (5.3)

where Ft and Fr denote the translational and rotational factors that are calculated

numerically to define the position and orientation of the bound ligand.44 C� is the

standard reference concentration of 1 mol/L or 1/1661 Å-3 and T is the absolute tem-

perature in Kelvin. The relative position and orientation of the bound ligand in the

complex was described using six internal coordinates; one distance, two angles, and

three dihedrals. These values were calculated from the average equilibration trajec-

tory. The force constant for the distance was set to 10 kcal/mol·Å2, while those of the

angles and dihedrals were set to 0.1 kcal/mol·degrees2. The Gibbs energy associated

with imposing each restraint was calculated using thermodynamic integration in the

colvars module of NAMD. The free energy contribution due to the translational and

rotational restraints on the ligand in the binding site (�Gsite

t
and �Gsite

r
) were then

determined by integrating the gradient profile. The simulation length was 67.2 ns.

The interaction free energy term (��Gbulk!site

int
) is decomposed into repulsive,

dispersive, and electrostatic contributions, Eqn. (5.4).

��Gbulk!site

int
= ��Grep +��Gdis +��Gelec (5.4)

where��Grep = ��Gsite

rep
���Gbulk

rep
, ��Gdis = ��Gsite

dis
���Gbulk

dis
, and��Gelec =

��Gsite

elec
���Gbulk

elec
. These terms describe the repulsive, dispersive, and electrostatic
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interactions, respectively, of removing the ligand from bulk solvent and inserting it into

the binding site. The repulsive and dispersive components of the free energies were ob-

tained from the 6–12 Lennard-Jones potential using the Weeks–Chandler–Anderson49

decoupling scheme.50 Alchemical FEP/�-REMD simulations, staged by three thermo-

dynamic coupling parameters (�rep, �dis, �elec), were applied to compute the ligand

interaction free energies in bulk solvent and in the protein binding site. A total num-

ber of 36 replicas (12�rep, 12�dis, 12�elec) were used and the simulation length for each

replica window was 20 ns, totaling 720 ns for a complete single run. The simulations

were performed in triplicate yielding a total simulation time of 2.16 µs. Interaction

free energies separated into their repulsive, dispersive, and electrostatic components

for the ligand in bulk solution (��Gbulk

rep
, ��Gbulk

dis
, ��Gbulk

elec
) and in the binding site

(��Gsite

rep
, ��Gsite

dis
, ��Gsite

elec
) were calculated from the data collected using WHAM.

The interaction energies reported are the averages of the three independent replicates.

5.3.3 Potential of Mean Force and Reaction Energies

Hybrid Quantum Mechanics/Molecular Mechanics MD Simulations

We used hybrid QM/MM MD umbrella sampling simulations to calculate the PMF

for the addition reaction of the cyanoacrylamide ligand to BTK. The initial struc-

ture was taken from the final trajectory of the FEP/�-REMD simulation. Hybrid

QM/MM MD simulations were performed using the comprehensive QM/MM suite

implemented in NAMD,51 with ORCA 4.1.152,53 as the QM package. The parameters

for the cyanoacrylamide ligand were the same as those used for the MD simulation

and were obtained from the GAAMP method. The CHARMM36 all-atom force field

was used to describe the protein and TIP3P water model for the explicit solvent water

molecules. The QM region defined consisted of the t-butyl cyanoacrylamide warhead

with the piperidine linker of the ligand and the thiolate side chain of Cys481 in the

protein, Figure 5.4. QM/MM boundary region was treated by using the electrostatic

embedding scheme54 and hydrogen link atoms were used to cap QM regions containing

QM–MM bonds.

In order to ensure a stable QM/MM simulation system for the PMF calculations,

a series of steps involving QM-based minimization, geometry optimization, and equi-

libration were performed for the QM and MM regions. The QM region was treated

136



QM 
region

=

Figure 5.4: The QM region defined in our hybrid QM/MM calculations for the
protein–ligand complex.

by the !B97X-D functional55 with the def2-TZVP basis set. Grimme’s D3 dispersion

correction using Becke-Johnson damping function56 was used for the QM calcula-

tions. The !B97X-D functional performs well for modelling covalent modification of

biological thiols,31 yielding results that are in close agreement with high-level ab ini-

tio CCSD(T) calculations.57 The hybrid QM/MM simulation system was subjected

to 100 steps of energy minimization, followed by 15 ps equilibration run in the NpT

ensemble with temperature maintained at 300 K (using Langevin dynamics) and pres-

sure at 1 atm (using Langevin piston). The PMF was calculated for the interval where

the covalent bond is formed between C� of the t-butyl cyanoacrylamide ligand and the

S atom of Cys481 of BTK. This was performed using hybrid QM/MM MD umbrella

sampling simulations for the interval r=[1.7, 4.5) Å where the C�—S bond is formed.

The windows for the umbrella sampling simulations were separated by 0.1 Å and a

spring constant of 100 kcal/mol·Å2 was used. For each window, the simulation length

was 50 ps, with the first 5 ps discarded as equilibration. The PMF of the C�—S

coordinate was calculated from the umbrella-sampling time series using WHAM.
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Quantum Mechanical Calculations with ONIOM

The PMF for the addition reaction of the cyanoacrylamide ligand to BTK receptor

yields the enolate intermediate complex as the product of the reaction. In order to

attain the final product (i.e., thioether adduct) of the chemical reaction, the ↵-carbon

of the enolate intermediate must be protonated, Figure 5.2. We performed ONIOM58

QM/MM calculations to compute the relative energy di↵erence between the thioether

adduct and enolate intermediate in order to model the final protonation step of the

chemical reaction. The ONIOM calculations were performed using Gaussian 16.59 The

final coordinates from the hybrid QM/MM MD equilibration simulation was used as

the starting structure for the ONIOM calculations. In order to calculate the Gibbs

energy of reaction using this model, it was necessary to develop a simpler model

system. A simpler model system of the ligand–protein complex was thus constructed

for the ONIOM calculations, Figure 5.5. This truncated model system is based on

the ligand interaction diagram from the X-ray crystallographic structure (PDB ID:

4YHF) and considers key interacting amino acid residues within proximal distance

from the ligand.

In our ONIOM model, the ligand–protein system is divided into two distinct re-

gions (a.k.a.,“layers”): (1) high-level DFT region, and (2) low-level molecular mechan-

ical region. The high-level region was treated using the !B97X-D functional with the

def2-TZVP basis set, while the low-level layer was treated using the Amber molecular

mechanics force field. The high-level layer consisted of the t-butyl cyanoacrylamide

warhead with the piperidine linker of the ligand and the Cys481 thiolate side chain

of BTK, Figure 5.5. The remainder of the ligand and protein were treated as the low

level layer, with the MM charges and parameters the same as those used for the MD

simulation. Solvent e↵ects were included in the ONIOM calculations by using the

polarized continuum model (PCM).60,61

The initial enolate and thioether protein–ligand model complexes were fully opti-

mized in the gas phase using ONIOM (!B97XD/def2TZVP:AMBER) level of theory.

Following this, the model complexes were re-optimized in water to account for solvent

e↵ects using PCM. Frequency analyses were then performed on the optimized struc-

tures at the same level of theory to verify that there was a true minima, and estimate

the thermal correction to the Gibbs energy.
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Figure 5.5: 2D (top) and 3D (bottom) representation of ligand–protein model system
used for ONIOM calculations. The region constituting high-level layer is indicated in
red. For clarity, some residues in the low layer have been omitted in the 3D figure.

5.4 Results and Discussion

Molecular dynamics and quantum chemical methods can be used to calculate the

various kinetics and thermodynamic contributions a↵ecting the binding free energy of

covalent modification process. In this study, we employ this combined computational

approach to evaluate the various thermodynamic contribution terms that a↵ect the

reversible covalent modification process of a highly potent and selective inhibitor for

BTK. The inhibitor is a t-butyl cyanoacrylamide ligand consisting of a piperidine

linker and pyrazolopyrimidine sca↵old, Figure 5.2. We computed the absolute free

energy of binding for this ligand to BTK and evaluated the free energy profile for the

chemical reaction of the covalent modification process.
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Alchemical free energy perturbation molecular dynamics and umbrella sampling

simulations have been shown to provide accurate estimates of the binding a�nity

and selectivity of drug-like molecules to biologically relevant enzyme targets,25,27,28

including protein kinases.22–24 We calculated the absolute binding a�nity of t-butyl

cyanoacrylamide ligand to BTK using this method. The computed binding a�n-

ity, �G�
non�covalent

, represents the non-covalent interactions between the ligand and

protein. This takes into account the electrostatic, dispersion, and repulsive free en-

ergy contributions driving ligand binding, as well as the translational, rotational,

and conformational degrees of freedom underlying the binding process. The covalent

binding step of the ligand to the protein kinase enzyme is modelled using hybrid

QM/MM molecular dynamics method in aqueous solution. Using this approach, the

electrophilic warhead of the cyanoacrylamide ligand and nucleophilic cysteine side

chain of the kinase enzyme target are described by quantum mechanics (QM)—which

models the chemical reaction step of the covalent modification process. The rest of the

ligand and protein are modelled using molecular mechanics (MM) which accounts for

the conformational changes, dynamics, and non-covalent binding interactions within

the model system. We used this hybrid QM/MM approach to construct a rigorous

free energy profile of the ligand binding to BTK.

Overall, these combined computational methods allowed us to model the action

of t-butyl cyanoacrylamide ligand binding to BTK in a comprehensive way, through

the calculation of both non-covalent and covalent binding free energy terms (i.e.,

�Gnon�covalent and �Gcovalent).

5.4.1 Non-covalent Binding Free Energy Contribution

The non-covalent binding free energy of the cyanoacrylamide ligand to BTK was com-

puted thoroughly from a sequence of rigorous equilibrium simulations which character-

ize the binding/unbinding processes of the ligand in the bound/unbound states. This

process yields free energy terms that are separated into various thermodynamic con-

tributions based on the conformation entropies, translational and rotational motions,

and the native network of intermolecular interactions underlying the binding process.

The absolute non-covalent binding free energy of the ligand to BTK, �G�
non�covalent

which is synonymous to �G�
binding

, is determined from the sum of the separate free

energy contributions that characterize the reversible association of the ligand to the
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protein. These di↵erent energy contribution terms correspond to the intermolecular

interactions of the ligand following its association and dissociation from the protein

kinase receptor. Table 5.1 summarizes the results of the various contributions to the

binding free energy of the ligand to BTK.

Table 5.1: Summary of Binding Free Energy Calculations of Ligand to BTK.

��Gbulk!site (kcal/mol)

��Gconf 4.4
��Gt+r 15.3
��Gelec �5.9
��Gdis �31.9
��Grep 6.7
��Gint �31.1

�G�
binding

�11.4

Each ��G term indicates the free energy di↵erence of the ligand
dissociating from bulk solvent and associating in the binding site.
The standard deviation of �G�

binding is 1.3 kcal/mol.

For comparison, the binding free energy of the ligand to BTK was also calculated

using the GROMACS molecular dynamics software package62 with the CHARMM36

and CGenFF63 force fields, following the protocol reported by Aldeghi et al.27 This

approach uses a non-physical thermodynamic cycle to compute absolute binding free

energies. The calculated binding free energy of the ligand to BTK using this ap-

proach (�G�
binding

= �11.3 ± 1.4 kcal/mol) was found to be in excellent agreement

with the binding energy reported in our study (�G�
binding

= �11.4±1.3 kcal/mol; Ta-

ble 5.1). The agreement of the binding free energy results between these two di↵erent

approaches makes us confident in our predicted values. Furthermore, the calculated

binding free energy result is in good agreement with experimental binding a�nity

measurements.18 For example, the experimental inhibitory constant (Ki) value deter-

mined for a closely related compound which bears a methylpyrrolidine linker in place

of the piperidine linker present in our model cyanoacrylamide ligand is reported as

5.2 nm.18 This corresponds to a �G�
exptl.

value of �11.30 kcal/mol, which is in good

accord with our calculated binding free energy, Table 5.1.
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Conformational, Translational and Rotational Free Energies

The free energy contribution arising from the loss of conformational degrees of freedom

of the ligand upon binding (��Gbulk!site

conf
) is 4.4 kcal/mol. This suggests that the

ligand has more conformational freedom in bulk solution than in the protein binding

pocket. A plot of the potential of mean force of the ligand in bulk solution and in the

protein binding site shows that the ligand adopts a broader range of conformations in

solution than when in the protein binding site, Figure 5.6. The potential of mean force

is calculated as a function of the root-mean-square deviation relative to a reference

bound-state structure. The reference structure was chosen from an equilibrated MD

simulation of the ligand–bound X-ray crystallographic structure.
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Figure 5.6: Calculated potential of mean force (PMF) of the cyanoacrylamide ligand
conformational degrees of freedom as a function of the root-mean-square deviation
(RMSD) in the protein binding site (BTK) and in bulk solution (water). The PMF
was calculated using US/REMD simulations.
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Among the wide range of conformational states that the ligand adopts in bulk

solution, the lowest average energy conformations of the ligand is observed at ⇡ 2.5

Å, Figure 5.6. On the other hand, a single average conformation is observed for the

ligand in the binding pocket of the protein at ⇡ 1 Å, Figure 5.6. The PMF of the

ligand in bulk solution is also broader than in the protein binding site, a result that

confirms the multiple accessible low-energy conformational states that are available

to the ligand in bulk solution than in the binding pocket of the protein. Collectively,

these PMFs help quantify the loss in conformational entropy of the cyanoacrylamide

ligand upon binding to BTK receptor. Figure 5.7 shows the average conformation

of the cyanoacrylamide ligand in bulk solution (red) and in the protein binding site

(blue) at RMSDs of 2.5 Å and 1.0 Å, respectively

Figure 5.7: Sample conformational states taken up by the cyanoacrylamide ligand
in bulk water and in BTK binding site. The red and blue structures represent the
average conformational states of ligand in water and binding site at RMSDs of 2.5 Å
and 1.0 Å, respectively, relative to the average reference bound-state structure.

The free energy cost arising from restrictions in translational and rotational mo-

tions of the ligand upon binding (��Gbulk!site

t+r
) is 15.3 kcal/mol. This suggests an

even greater entropic penalty for the ligand losing its translational and rotational free-

dom upon binding to BTK than the penalty arising from the loss of conformational

freedom upon binding. On the other hand, the loss of translational and rotational

freedom of the ligand upon binding could suggest that this ligand is held more tightly

in the binding pocket of the protein by strong non-covalent interactions. Together, the

loss of translational, rotational, and conformational degrees of freedom of the ligand

accompanying the binding process comes at a considerable free energy cost.
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Interaction Free Energies

The interaction free energy (��Gbulk!site

int
) associated with the non-covalent dissoci-

ation of the ligand from bulk solution and its association in the protein binding site

is the largest component of the binding free energy, Table 5.1. Among the three ma-

jor contributions to the nonbonding interaction energy, the dispersion component is

the most dominant (��Gdis=�31.9 kcal/mol). This is followed by the electrostatic

interactions (��Gelec=�5.9 kcal/mol), which is less than one-fifth the magnitude of

the dispersion forces. The repulsive contribution opposes the binding of the ligand to

the protein kinase (��Grep=6.7 kcal/mol).

These results suggest that the contribution from the dispersion forces play a major

role in the non-covalent binding interactions of the cyanoacrylamide ligand to BTK

receptor. More specifically, the ligand enjoys more favourable dispersive interactions

in the binding pocket of the protein kinase enzyme than in bulk solution. A closer

examination of the ligand interaction diagram of the protein–ligand complex shows

that the ligand makes strong hydrophobic contacts and van der Waals interactions

with amino acid residues in the binding pocket of the protein, Figure 5.8. For example,

there exists a favourable ⇡�⇡ stacking interaction between Phe540 of the protein and

the phenyl group of the bound ligand. Additionally, the phenyl group of the ligand

makes favourable van der Waals contacts with a host of individual amino acid residues

in the binding pocket, including Leu528 and Met449. Hydrogen bonding interactions

also contribute to enhancing the non-covalent interactions of the ligand in the binding

pocket. One such example is the interaction between the backbone amide hydrogen

of Met477 in the protein and a nitrogen in the pyrazolopyrimidine sca↵old of the

ligand. These non-covalent interactions between the ligand and individual amino acid

residues of the protein leads to strong stabilization of the ligand in the binding pocket

of BTK receptor, favouring ligand binding.

Although the non-covalent interactions accompanying ligand binding result in un-

favourable repulsive interactions, this e↵ect is nullified by the favourable dispersion

and electrostatic interactions. The free energy of ligand binding to BTK is dominated

by van der Waals dispersion interactions, which reflects a key role of dispersion forces

in ligand–protein association. In a similar vein, Roux and coworkers have shown that

van der Waals dispersion interactions is primarily responsible for the binding a�nity

and specificity of the well-known anticancer drug Gleevec to tyrosine kinases.22–24
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Figure 5.8: Ligand interaction diagram of t-butyl cyanoacrylamide ligand with amino
acid residues of BTK (PDB ID: 4YHF). Hydrogen bonding, hydrophobic, and ⇡ �

⇡ interactions are indicated by dashed black, solid green, and dashed green lines,
respectively.

5.4.2 Covalent Binding Free Energy Contribution

The potential energy surface for the addition reaction of the cyanoacrylamide ligand

with BTK in explicit aqueous solution was calculated using QM/MM MD umbrella

sampling simulations. ONIOM QM/MM simulations were also performed to compute

the relative free energy di↵erence between enolate intermediate and thioether product

of the chemical reaction. The !B97X-D functional which is accurate for modelling

covalent modification of biological thiols31 was used to describe the QM region. The

MM region on the other hand, was described using the molecular mechanics force

field. Solvent e↵ects were included in the calculations either as individual explicit

water molecules or as a dielectric continuum medium. The QM region consisted of

the electrophilic cyanoacrylamide warhead of the ligand and Cys481 thiolate side chain

of the protein kinase receptor, Figure 5.4. The remaining part of the ligand–protein

model system was treated using MM. The PMF was calculated along rC��S coordinate

where the C�—S bond is formed (r = 1.7 � 4.5 Å). Figure 5.9 shows the calculated

PMF for the addition reaction of t-butyl cyanoacrylamide ligand with BTK.
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Figure 5.9: PMF for the reaction of t-butyl cyanoacrylamide inhibitor with Cys481
side chain of BTK in aqueous solution. The PMF was calculated using QM/MM MD
simulations (QM: !B97X-D3BJ/def2-TZVP, MM: CHARMM36).

The equilibrium non-covalent ligand:protein complex forms a contact pair at rC��S

distance of approximately 4.45 Å. This complex is used as a reference point for the

free energy profile, so its free energy is defined as 0 kcal/mol. Relative to this non-

covalent ligand:protein complex, the enolate intermediate is 15.2 kcal/mol more stable,

yielding �Genolate = �15.2 kcal/mol. There is a modest activation energy barrier of

3.9 kcal/mol (at rC��S = 3.15 Å) for the chemical reaction leading to the formation

of the enolate intermediate complex. The free energy minimum for the enolate in-

termediate is observed at a C��S distance of 1.85 Å. This distance is slightly more

elongated than the typical C�S bond length of approximately 1.8 Å64 because it is

an intermediate state structure.

Using our ONIOM model (Figure 5.5), the computed free energy di↵erence be-

tween the enolate intermediate and final thioether product of the chemical reac-

tion was calculated to be -292.9 kcal/mol. This predicted free energy value does
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not include the hydration free energy of the proton, which is essential to fully ac-

count for the protonation step in the conversion of the enolate intermediate into

the thioether product (Figure 5.10). The absolute hydration energy of the proton

from high-level, first principles electronic structure calculations is predicted to be

-262.4 kcal/mol.65 Upon taking into account the intrinsic hydration free energy of

the proton required for final protonation step of the chemical reaction, the thioether

product is found to be 30.5 kcal/mol more stable than the enolate intermediate (i.e.,

�Gthioether ��Genolate = �30.5 kcal/mol). This suggests that the thioether product

as expected is the thermodynamically favoured product of the chemical reaction.

Figure 5.10: Reaction scheme showing the protonation step required for the conversion
of ligand–protein enolate intermediate to thioether adduct.

Combining these results, the free energy contribution due to the covalent bind-

ing chemical process of the cyanoacrylamide ligand to BTK is -45.7 kcal/mol (i.e.,

�Gcovalent = �45.7 kcal/mol). This represents a strongly exergonic chemical process.

The results suggest that the interaction energy that results from the covalent bond

formation contributes the largest share to the total binding a�nity.

5.4.3 Free Energy Profile of Covalent Modification

Figure 5.11 illustrates the free energy profile for the addition reaction of BTK with

the cyanoacrylamide ligand, which represents a highly exergonic chemical process.

This reaction consists of multiple steps involving the target cysteine residue and the

ligand. The first step in the reaction involves the deprotonation of the thiol side
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chain of Cys481 in BTK. The deprotonation Gibbs energy of Cys481 in BTK is esti-

mated from its calculated pKa value of 9.47, computed using advanced constant-pH

methods following our published protocol.15 This pKa value corresponds to a Gibbs

energy of 1.2 kcal/mol at 298.15 K. Following this, the next step is the formation

of non-covalent protein:ligand complex (�Gnon�covalent = �11.4 kcal/mol). The fi-

nal step involves a chemical reaction between the thiolate group of the cysteine and

electrophilic cyanoacrylamide warhead of the ligand. This reaction step leads to the

formation of an enolate intermediate, before leading to the formation of the final

thioether covalent complex product. The activation energy required for this chemical

process is modest (�GTS

binding
= 3.9 kcal/mol). The enolate intermediate formed from

this chemical reaction is ⇡15 kcal/mol more stable than the non-covalent state and

has an absolute Gibbs energy (i.e., �Genolate) of -26.6 kcal/mol. The final covalent

complex is approximately 30 kcal/mol more stable than the enolate intermediate.
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Figure 5.11: Free energy profile of covalent modification of Cys481 in BTK by
cyanoacrylamide inhibitor. Cys481 thiol side chain in BTK protein is indicated as
P and the cyanoacrylamide ligand is indicated as L.
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5.5 Conclusion

In summary, we have employed advanced multiscale simulation methods to model

all the steps involved in the covalent modification process of a druggable cysteine

in Bruton’s tyrosine kinase (BTK) enzyme. BTK is a clinically-validated enzyme

target that is of interest in drug discovery, particularly for treating B cell cancers.

We explore the covalent modification of Cys481 in this enzyme target by modelling

its addition reaction to a t-butyl cyanoacrylamide inhibitor. We quantify the various

energetic determinants that contribute to the covalent and non-covalent free energy

binding components of the chemical reaction. In addition, a rigorous, complete free

energy profile of the inhibitor binding to the enzyme target in aqueous solution is

calculated. The results indicate that the chemical reaction leading to the formation

of the covalent adduct represents a highly exergonic process on the free energy profile.

The covalent binding between C� of the cyanoacrylamide ligand and Cys481 thiolate

side chain of the target represents a critical step in the covalent modification process.

This chemical step yields a free energy of -45.7 kcal/mol relative to the non-covalent

interaction energy of -31.1 kcal/mol. Van der Waals dispersion forces between the

ligand and individual amino acid residues in the protein binding pocket are the largest

component of the non-covalent binding energy, and greatly favour ligand binding.

The results highlight the importance of both covalent and non-covalent free energy

contributions to the thermodynamics of ligand binding processes. It also demonstrates

the potential of computer modelling to provide detailed information regarding ligand–

protein interactions for drug design and discovery.
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“We cannot solve our problems with the same thinking we

used when we created them.”

— Albert Einstein
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6.1 Summary

Computer modelling plays an integral role in the pharmaceutical industry by aiding in

drug discovery and development. Covalent drugs, particularly those targeting cysteine

residues in enzyme targets, have garnered significant renewed interest in drug discov-

ery owing to their unique benefits of prolonged therapeutic action, improved e�cacy,

and high target selectivity. The mechanism of inhibition of covalent drugs consists

of both covalent and non-covalent binding energy contributions, which require di↵er-

ent computational methods to compute. Computer modelling has not been used for

modelling covalent-modifier drugs. Furthermore, methods to predict the reactivity of

druggable targets in enzymes for covalent modification have received little attention.

The fundamental studies presented within this thesis seeks to address some of these

research questions. The primary goal of this thesis has been to explore computational

methods for modelling all the steps in the covalent modification of targetable cysteine

residues in enzyme targets, so as to inform drug design and discovery e↵orts.

The first step in the covalent modification of a druggable cysteine is the deproto-

nation of thiol side chain (–SH) to form the more reactive thiolate (–S– ). The rate of

this reaction is dependent on the acidity or pKa of the cysteine thiol. Methods for the

prediction of cysteine residues in proteins are less established and have received little

attention. In Chapter 2, a benchmark assessment of di↵erent computational meth-

ods was performed in an e↵ort to evaluate their predictive accuracy in calculating

experimental cysteine pKa’s. Computational methods that employ both explicit and

implicit solvent models for computing cysteine pKa’s were evaluated for a test set of

proteins. Results indicated that explicit solvent models are systematically more ac-

curate than implicit solvent models. Among the explicit solvent models, the accuracy

of the computed cysteine pKa’s tended to be sensitive to the force field parameters

used. In particular, the results from the CHARMM36 force field was more accurate

than the Amber force field; RMSD of 2.4 for CHARMM36 force field versus 3.2 for

Amber force field. This highlights a limitation of current molecular mechanical force

fields in cysteine pKa calculations. It is possible that reparameterization of existing

force fields or the development of new, more sophisticated force fields could yield more

accurate results for cysteine pKa calculations.
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In an e↵ort to understand why the CHARMM36 and Amber protein force fields

gave di↵erent pKa predictions and to ascertain which is a more realistic model, ad-

vanced multiscale computational methods were performed to evaluate the hydration

structure of a model cysteine thiolate in aqueous solution (Chapter 3). Hybrid quan-

tum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations

and free energy perturbation calculations were used to characterize the solution struc-

ture for models of methylthiolate. The results suggested that the CHARMM36 model

for thiolate generally provides a better description of the solvation structure and hy-

dration energies of methylthiolate than the Amber force field. This is attributed to

the non-bonded parameters present within the di↵erent force fields. More specifically,

the CHARMM36 force field uses di↵erent Lennard-Jones parameters to describe the

thiol and thiolate states, while the Amber force field uses the same parameters for

the thiol and thiolate states. This study showed that distinct non-bonded parameters

are essential in describing the protonated/deprotonated states of model cysteine side

chains in biomolecular simulations.

Protein kinases have proven to be major drug targets for treating diverse clinical

indications. In fact, they are considered to be one of the most important drug targets

of the 21st century.1 One strategy that is used to target a kinase enzyme implicated in

human disease is to covalently-modify a nucleophilic amino acid side chain group in

the enzyme by an electrophilic inhibitor. Non-catalytic cysteine residues within the

active site region of kinases have been the primary target of this approach. Although

a number of studies have used structural analysis to identify cysteine residues in

kinases that undergo covalent modification readily, research on the intrinsic reactivity

of druggable kinase cysteines have not been reported. Furthermore, few experimental

kinase cysteine pKa’s have been determined. In Chapter 4, the reactivity of druggable

cysteines in protein kinases was predicted based on their computed pKa’s. Important

oncogenic mutants of these kinases were also included in the study. The CHARMM36

explicit solvent method together with other rigorous pKa calculation methods that are

capable of describing variable protonation and pH state e↵ects of ionizable residues in

proteins were employed. Results suggested that there is a broad range in the acidity

of druggable cysteines in protein kinases, indicating enormous di↵erences in their

reactivity towards drug molecules. The general trend observed was that druggable

cysteines in kinases have elevated pKa’s and tend to be buried away from contact

with solvent water molecules. Inter-residue electrostatic interactions and the degree
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of solvation of the active site cysteine thiolate were found to be prime determining

factors for the perturbation of kinase cysteine pKa’s.

In Chapter 5, alchemical free energy perturbation and QM/MM molecular dynam-

ics were used to model all the steps in the covalent modification process of Cys481 in

Bruton’s tyrosine kinase (BTK) by a cyanoacrylamide inhibitor. BTK is a clinically-

validated enzyme target for treating B cell cancers. In an e↵ort to quantify and

describe the steps in the covalent modification chemical process, the energetic deter-

minants of all the terms contributing to the covalent binding of the ligand to BTK were

computed. In addition, a rigorous, complete binding energy profile of the binding pro-

cess in explicit solvent was also calculated. The results suggest that both non-covalent

and covalent binding free energy contributions are important in the covalent modifi-

cation process, with the latter being the most significant contributor to the total free

energy of ligand binding. For the non-covalent binding free energy contribution, van

der Waals dispersion forces between the ligand and binding pocket is the most dom-

inant and largest component of the ligand protein interaction energy. The covalent

binding step of the addition reaction between BTK and the cyanoacrylamide ligand

represents a highly exergonic chemical process.

6.2 Future Directions

The work presented in Chapter 2 highlights the existing barriers and limitations of

current computational methods in accurately predicting experimental cysteine pKa’s.

Although explicit solvent models have proved to be significantly more accurate than

implicit solvent models for cysteine pKa calculation, there is further room for im-

provement.

One way to improve the accuracy of these models is by further validation, opti-

mization, and development of existing molecular mechanical force field parameters.

This issue is brought to light in Chapter 3 which demonstrated that cysteine pKa cal-

culations could greatly benefit from improvements in the Lennard-Jones parameters

that account for the di↵erence in non-bonded interactions of the thiol/thiolate states

of cysteine side chain. Another area of improvement in the accuracy of existing models

for cysteine pKa calculations is the inclusion of polarizable force field. Electrostatic

interactions are significant in the perturbation of pKa’s of titratable residues from
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their intrinsic solution pKa’s. More significantly, the thiolate (–S– ) is a di↵use, po-

larizable anion and for that reason induced polarization could have a sizable e↵ect on

its stability in a protein—influencing the acidity of a target cysteine residue. Further

work could include incorporating induced polarization e↵ects in cysteine pKa calcu-

lations by using, for example, the Drude polarizable force field.2,3 This could improve

the accuracy of pKa calculations over the methods that employ non-polarizable force

fields, especially in cases where the charged state of the amino acid strongly polarizes

its environment. Additionally, conformational sampling and pH-coupled behavior of

amino acid residues is another important area of consideration for improvement in pKa

models. This will allow pKa’s to be predicted more rigorously as shown in Chapter

4, and is particularly important for the quantitative calculation of catalytic cysteine

pKa’s whose pKa’s are often coupled to other ionizable residues.

There are relatively few experimentally determined pKa’s for cysteine residues in

proteins that have been reported in the literature. This has sparked e↵orts in using

computation to address this issue, which is a fundamental theme of this thesis. Addi-

tionally, experimental measurement of more cysteine pKa’s in proteins will allow for a

more thorough and comprehensive evaluation of existing pKa methods. Of particular

importance are the pKa’s of noncatalytic residues in protein active sites (Chapter 4),

which are typically the target of covalent modifier drugs. Overall, progress in the

calculation and prediction of titratable residue pKa’s in proteins will require collabo-

rative e↵orts from experimentalists and theoreticians alike;4 redefining the conceptual

framework behind the underpinnings of acid-base equilibria in proteins and biomacro-

molecules.

Lastly, methods for modelling the covalent modification of druggable targets in

biologically relevant enzymes are computationally expensive, and require some level

of technical expertise (e.g., coding and scripting) to successfully perform such cal-

culations in an accurate way. Although, Chapter 5 presents a successful multiscale

approach to quantify the energetics of both the covalent and non-covalent aspects of

ligand binding to BTK receptor, this approach requires access to large computational

resources which may not be readily available to a user. Additionally, the high cost

of the QM component of the calculation and simulations of explicit solvent molecules

can hinder the e�ciency of such calculations. The development of more e�cient

computational algorithm and computer hardware will enable fast and e↵ective QM

calculation, especially in cases where the size of the QM region is large. Also, finding
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ways to automate this process will enable these calculations to be routinely applied

to more ligands and enzyme targets—streamlining the process of drug design and

development.
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“One thing in life is for certain, the more profoundly ba✏ed

you have been in your life, the more open your mind becomes

to new ideas.”

— Neil deGrasse Tyson

A
CHARMM36 & AMBER99 Cysteine

Topology
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A.1 CHARMM36 Topology

A.1.1 CHARMM36 All-Hydrogen Cysteine Topology

RESI CYS 0.00

GROUP

ATOM N NH1 -0.47 ! |

ATOM HN H 0.31 ! HN-N

ATOM CA CT1 0.07 ! | HB1

ATOM HA HB1 0.09 ! | |

GROUP ! HA-CA--CB--SG

ATOM CB CT2 -0.11 ! | | \

ATOM HB1 HA2 0.09 ! | HB2 HG1

ATOM HB2 HA2 0.09 ! O=C

ATOM SG S -0.23 ! |

ATOM HG1 HS 0.16

GROUP

ATOM C C 0.51

ATOM O O -0.51

BOND CB CA SG CB N HN N CA

BOND C CA C +N CA HA CB HB1

BOND CB HB2 SG HG1

DOUBLE O C

IMPR N -C CA HN C CA +N O

CMAP -C N CA C N CA C +N

DONOR HN N

DONOR HG1 SG

ACCEPTOR O C

IC -C CA *N HN 1.3479 123.9300 180.0000 114.7700 0.9982

IC -C N CA C 1.3479 123.9300 180.0000 105.8900 1.5202

IC N CA C +N 1.4533 105.8900 180.0000 118.3000 1.3498

IC +N CA *C O 1.3498 118.3000 180.0000 120.5900 1.2306

IC CA C +N +CA 1.5202 118.3000 180.0000 124.5000 1.4548

IC N C *CA CB 1.4533 105.8900 121.7900 111.9800 1.5584
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IC N C *CA HA 1.4533 105.8900 -116.3400 107.7100 1.0837

IC N CA CB SG 1.4533 111.5600 180.0000 113.8700 1.8359

IC SG CA *CB HB1 1.8359 113.8700 119.9100 107.2400 1.1134

IC SG CA *CB HB2 1.8359 113.8700 -125.3200 109.8200 1.1124

IC CA CB SG HG1 1.5584 113.8700 176.9600 97.1500 1.3341

A.1.2 CHARMM36 Deprotonated Cysteine Topology

RESI CYSD -1.00 ! Deprotonated Cysteine

(Thiolate charge modification based on ethylthiolate parameters, adm jr.)

GROUP

ATOM N NH1 -0.47 ! |

ATOM HN H 0.31 ! HN-N

ATOM CA CT1 0.07 ! | HB1

ATOM HA HB1 0.09 ! | |

GROUP ! HA-CA--CB--SG (-)

ATOM CB CT2 -0.38 ! | | \

ATOM HB1 HA2 0.09 ! | HB2 HG1

ATOM HB2 HA2 0.09 ! O=C

ATOM SG S -0.80 ! |

ATOM HG1 HS 0.00

GROUP

ATOM C C 0.51

ATOM O O -0.51

BOND CB CA SG CB N HN N CA

BOND C CA C +N CA HA CB HB1

BOND CB HB2 SG HG1

DOUBLE O C

IMPR N -C CA HN C CA +N O

CMAP -C N CA C N CA C +N

DONOR HN N

DONOR HG1 SG

ACCEPTOR O C

IC -C CA *N HN 1.3479 123.9300 180.0000 114.7700 0.9982
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IC -C N CA C 1.3479 123.9300 180.0000 105.8900 1.5202

IC N CA C +N 1.4533 105.8900 180.0000 118.3000 1.3498

IC +N CA *C O 1.3498 118.3000 180.0000 120.5900 1.2306

IC CA C +N +CA 1.5202 118.3000 180.0000 124.5000 1.4548

IC N C *CA CB 1.4533 105.8900 121.7900 111.9800 1.5584

IC N C *CA HA 1.4533 105.8900 -116.3400 107.7100 1.0837

IC N CA CB SG 1.4533 111.5600 180.0000 113.8700 1.8359

IC SG CA *CB HB1 1.8359 113.8700 119.9100 107.2400 1.1134

IC SG CA *CB HB2 1.8359 113.8700 -125.3200 109.8200 1.1124

IC CA CB SG HG1 1.5584 113.8700 176.9600 97.1500 1.3341

A.2 AMBER ↵99SB-ILDNP Topology

A.2.1 AMBER ↵99SB-ILDNP Cysteine Topology

[ CYS ] 0.00

[ atoms ]

N N -0.41570 1

H H 0.27190 2

CA CT 0.02130 3

HA H1 0.11240 4

CB CT -0.12310 5

HB1 H1 0.11120 6

HB2 H1 0.11120 7

SG SH -0.31190 8

HG HS 0.19330 9

C C 0.59730 10

O O -0.56790 11

[ bonds ]

N H

N CA

CA HA

CA CB

CA C
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CB HB1

CB HB2

CB SG

SG HG

C O

-C N

[ impropers ]

-C CA N H

CA +N C O

A.2.2 AMBER ↵99SB-ILDNP Deprotonated Cys Topology

[ CYM ] -1.00 ! Deprotonated Cysteine

[ atoms ]

N N -0.41570 1

H H 0.27190 2

CA CT -0.03510 3

HA H1 0.05080 4

CB CT -0.24130 5

HB1 H1 0.11220 6

HB2 H1 0.11220 7

SG SH -0.88440 8

C C 0.59730 9

O O -0.56790 10

[ bonds ]

N H

N CA

CA HA

CA CB

CA C

CB HB1

CB HB2

CB SG

C O
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-C N

[ impropers ]

-C CA N H

CA +N C O

A.3 Lennard-Jones Parameters for Cys Thiolate

Table A.1: Lennard-Jones parameters for selected atom types in cysteine thiolate

Force Field Atom Name Atom Type Charge ✏ (kJ mol�1) � (Å)

CA CT -0.0351 0.4577 3.3997
AMBER HA H1 0.0508 0.0657 2.4714

CB CT -0.2413 0.4577 3.3997
SG SH -0.8844 1.0460 3.5636

CHARMM CB CS -0.3800 0.4602 3.9200
SG SS -0.8000 1.9665 3.9200

Table A.2: Charged residues within 5 Å of cysteine in the test set of PDB structures

Protein Cys Residue Charged Residues

↵-1-AT 232 His231, Lys233, Lys234
ACBP-m46c 46 Glu41, Arg43, Glu48
ACBP-s65c 65 Lys66
ACBP-t17c 17 Lys18, Lys81
AhpC 46 Asp41, Glu49, Arg119, Arg142
HMCK 283 Glu232, Asp233
DJ-1 106 Glu18, His126, Arg156
Mb-g124c 124 Asp126
Mb-a125c 125 Asp126
MmsrA 72 Glu77, Glu115, Asp150
O6-AGT 145 His146, Arg147, Lys165
Papain 25 Asp158, His159
pp⌦ 25 Asp158, His159
PTP1B 215 Lys120, His214, Arg 221
YopH 403 His402, Arg404, Arg409
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Table A.3: RMSD of protein backbone for the final coordinates of the protein struc-

tures from the RETI simulations of the thiol (� = 0) and thiolate states (� = 1).

Protein
RMSD (Å)

� = 0 � = 1

↵-1-AT 1.51 1.51

ACBP-m46c 2.01 2.00

ACBP-s65c 2.10 1.93

ACBP-t17c 1.90 1.33

AhpC 4.22 4.27

DJ-1 1.42 1.73

HMCK 2.22 1.64

HMCK-s285a 2.26 1.74

Mb-g124c 2.12 2.02

Mb-a125c 2.22 1.97

MmsrA 4.11 4.90

MmsrA-e115q 3.67 3.90

O6-AGT 2.27 3.19

papain 0.79 0.72

pp⌦ 1.34 0.84

PTP1B 1.15 1.01

YopH 0.98 1.72

YopH-h402a 1.41 1.37

Table A.4: Explicit solvent pKa results with di↵erent histidine tautomeric states for
tyrosine phosphatase proteins investigated.
Protein Cys Res. Exptl. pKa His Residue CHARMM AMBER

PTP1B 215 5.57 ± 0.12 H(S/I)D214 1.18 ± 0.40 1.31 ± 0.27
PTP1B 215 5.57 ± 0.12 H(S/I)E214 1.16 ± 0.77 4.14 ± 1.00
PTP1B 215 5.57 ± 0.12 H(S/I)P214 -1.70 ± 0.54 -0.76 ± 0.82
YopH 403 4.67 ± 0.15 H(S/I)D402 -1.16 ± 0.65 -1.78 ± 0.37
YopH 403 4.67 ± 0.15 H(S/I)E402 2.89 ± 0.71 4.63 ± 0.71
YopH 403 4.67 ± 0.15 H(S/I)P402 -2.80 ± 0.79 -5.29 ± 1.04
YopH-H402A 403 7.35 ± 0.04 H(S/I)D270,H(S/I)D350 -0.26 ± 0.59 1.69 ± 0.27
YopH-H402A 403 7.35 ± 0.04 H(S/I)E270,H(S/I)E350 0.25 ± 1.03 1.39 ± 0.39
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