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Abstract  

This thesis outlines the development of an electromagnetic (EM) backscatter model of icebergs. It is a 

necessary first step for the generation of in-house synthetic aperture radar (SAR) data of icebergs to support 

optimum iceberg/ship classifier design. The EM modelling was developed in three stages. At first, an EM 

backscatter model was developed to generate simulated SAR data chips of iceberg targets at small incidence 

angles. The model parameters were set to mimic a dual polarized dataset collected at C-Band with the 

Sentinel-1A satellite. The simulated SAR data chips were compared with signatures and radiometric 

properties of the satellite data, including total radar cross section (TRCS). A second EM model was 

developed to mimic the parameters of a second SAR data collection with RADARSAT-2; this second data 

collection was at larger incidence angles and was fully polarimetric (four channels and interchannel phase). 

The full polarimetric SAR data allowed for a comparison of modelled TRCS and polarimetric 

decompositions. Finally, the EM backscatter models were tested in the context of iceberg/ship classification 

by comparing the performance of various computer vision classifiers using both simulated and real SAR 

image data of iceberg and vessel targets. This step is critical to check the compatibility of simulated data 

with the real data, and the ability to mix real and simulated SAR imagery for the generation of skilled 

classifiers.  

An EM backscatter modelling tool called GRECOSAR was used for the modelling work. GRECOSAR 

includes the ability to generate small scenes of the ocean using Pierson-Moskowitz spectral parameters. It 

also allows the placement of a 3D target shape into that ocean scene. Therefore, GRECOSAR is very useful 

for simulating SAR targets, however it can only model single layer scattering from the targets. This was 

found to be limiting in that EM scattering throughout volume of the iceberg could not be generated. This 

resulted in EM models that included only surface scattering of the iceberg. In order to generate realistic 

SAR scenes of icebergs on the ocean, 3D models of icebergs were captured in a series of field programs 

off the coast of Newfoundland and Labrador, Canada. The 3D models of the icebergs were obtained using 

a light detection and ranging (LiDAR) and multi-beam sonar data from a specially equipped vessel by a 
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team of C-CORE. While profiling the iceberg targets, SAR images from satellites were captured for 

comparison with the simulated SAR images.  

The analysis of the real and simulated SAR imagery included comparisons of TRCS, SAR signature 

morphology and polarimetric decompositions of the targets. In general, these comparisons showed a good 

consistency between the simulated and real SAR scene. Simulations were also performed with varying 

target orientation and sea conditions (i.e., wind speed and direction). A wide variability of the TRCS and 

SAR signature morphology was observed with varying scene parameters.  

Icebergs were modelled using a high dielectric constant to mimic melting iceberg surfaces as seen during 

field work. Given that GRECOSAR could only generate surface backscatter, a mathematical model was 

developed to quantify the effect of melt water on the amount of surface and volume backscatter that might 

be expected from the icebergs. It was found that the icebergs in a high state of melt should produce 

predominantly surface scatter, thus validating the use of GRECOSAR for icebergs in this condition.  

Once the simulated SAR targets were validated against the real SAR data collections, a large dataset of 

simulated SAR chips of ships and icebergs were created specifically for the purpose of target classification. 

SAR chips were generated at varying imaging parameters and target sizes and passed on to an iceberg/ship 

classifier. Real and simulated SAR chips were combined in varying quantities (or targets) resulting in a 

series of different classifiers of varying skill. A good agreement between the classifier’s performance was 

found. This indicates the compatibility of the simulated SAR imagery with this application and provides an 

indication that the simulated data set captures all the necessary physical properties of icebergs for ship and 

iceberg classification.  
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 Introduction and Overview 

1.1 Background 

Climate change has increased the sea-ice free window in the Arctic, opening the opportunities for increased 

marine transportation and resource exploration activities. Arctic regions are also frequented by sea ice, thus 

increasing the need for effective and frequent iceberg charting. In the context of scientific research, global 

iceberg monitoring is important; climate change has effected an increase in iceberg calving relates and 

therefore, knowledge of iceberg populations help in the development of long-term weather models (Bigg, 

Wadley, Stevens, & Johnson, 1997). To safeguard offshore assets and human mobility, it is important to 

robustly monitor iceberg targets and predict their trajectory and fate in advance so that preventive measures 

– iceberg management – can be carried out. Technology based solutions now exist to help improve and 

advance effective iceberg surveillance strategies. The Arctic and Antarctic are subject to frequent inclement 

weather, dark polar nights and excessive cloud cover. In this context, radio detection and ranging (RADAR) 

is generally the preferred choice for iceberg monitoring. Specifically, satellite synthetic aperture radar 

(SAR) has become the defacto choice for Polar ice monitoring and is quickly becoming the preferred 

technology for routine iceberg monitoring (Power, Youden, Lane, Randell, & Flett, 2001). The last decade 

has seen an onslaught of new SAR missions, and Polar Regions now enjoy daily – or better – coverage with 

wide swath SAR imagery.  

Satellite based SARs generally operate at single wavelength and fall into many different bands, including 

P-Band (100-30 cm), L-band (15-30 cm), S-Band (7.5-30 cm), C-band (3.75-7.5 cm) and X-band (2.4-3.75 

cm). Presently, there are satellite SARs being developed at higher frequencies (e.g., Ku Band), and missions 

that can transmit multiple radar wavelengths. Unlike satellite based optical systems (e.g., SPOT, Landsat, 

MODIS, Sentinel-2, others), SAR is all weather and can image day or night. SAR wavelengths are long 

enough to be only slightly influenced by atmosphere and penetrate through rain, fog and clouds. SAR also 

offers polarization diversity. Electromagnetic (EM) radiation reflected from an object is polarized and 

carries polarimetric information of the object that offers clues regarding the object’s physical composition 



2 

(i.e., geometry, shape and dielectric properties). A SAR that transmits and receives in a single polarization 

is called single-pol (SP) SAR. A SAR that transmits single polarization and receives two orthogonal 

polarization signals is called dual-pol (DP) SAR. A quad-pol (QP) SAR transmits and receives two 

orthogonal polarizations. The quad-pol system contains full polarimetric information of an object but 

generally covers less swath width than comparable dual pol systems. So, while QP SARs have a better 

ability to classify an object based on polarimetry, they are less practical than SP or DP SAR, especially for 

applications like maritime surveillance requiring frequent and broad area coverage. A compromise between 

traditional DP and QP SARs is a specific variant of dual polarization that transmits and/or receives a 

combination of circular, elliptical and linear polarizations. These SARs are called compact polarimetry (CP) 

and offer the same swath coverage as traditional DP SARs, while having polarimetric capabilities that 

approach QP SARs. CP is thus a very attractive feature for maritime surveillance and a myriad of 

applications including ship detection (Atteia & Collins, 2013) , crop condition monitoring (McNairn et al., 

2017), oil spill detection (Yin, Yang, Zhou, & Song, 2014), wetland mapping (Mahdianpari, Salehi, 

Mohammadimanesh, & Brisco, 2017) and sea-ice classification (Geldsetzer et al., 2015). As of the writing 

of this thesis, there is only one operating satellite – RADARSAT Constellation Mission – that has a working 

CP mode; nonetheless, other missions are being developed (e.g., the next generation of Cosmo SkyMed 

and TerraSAR-X satellites) that include this capability. 

One of the primary challenges for SAR data-based ocean surveillance in ice-frequented waters is the 

discrimination of vessel targets from icebergs (Power, Bobby, Howell, Ralph, & Randell, 2011). In the 

context of iceberg surveillance, vessel targets are considered false alarms and the same is true for icebergs 

in vessel monitoring applications. The present state of the art in SAR-based vessel and iceberg 

discrimination is the use of machine learning to train algorithms to distinguish between vessel and iceberg 

backscatter. Machine learning requires the use of large validated datasets of iceberg and vessel targets. 

Given the inclement polar weather, the collection of ground truthed iceberg targets can be quite challenging, 

costly and time consuming. Some Polar Regions are simply inaccessible in a practical sense. In spite of 
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this, there is a recent instance where over 5000 validated iceberg/ship data were made available for an 

internet-based computer vision competition, sponsored by C-CORE and Statoil (now Equinor).1 Although 

large, this dataset still lacks the ability to provide information of how an iceberg’s SAR response could vary 

with the sea state, satellite parameters and target orientation. One potential solution to the problem is the 

use of physically-based EM backscatter modelling of iceberg and ship targets in SAR data. The availability 

of such models could prove to be a crucial and important step in developing in house simulated SAR 

datasets and should help develop robust iceberg and ship classification algorithms. In addition to the 

classification application, simulated SAR images of icebergs would be highly beneficial to quantify 

detectable ranges of sea states for various berg sizes to allow for an optimization of beam mode selection 

for robust iceberg detection. This thesis will present the effort to date in the development of an EM 

backscatter model of iceberg targets in an ocean environment.  

1.2 Relevant Literature 

1.2.1 Iceberg Surveillance with SAR  

Iceberg location and movement have long been monitored by radar technology – more specifically SAR –

as it can see through the harsh weather, dark polar nights and excessive cloud cover in Arctic and Antarctic 

regions (Power et al., 2001). This has been a common practise by governments and industry to monitor 

iceberg locations in ice frequented waters (Randell, Freeman, Power, & Stuckey, 2009). In the literature, 

few studies have been found on iceberg detection with SAR, perhaps because only a few countries are 

affected by the presence of icebergs. Early studies of iceberg detection in SP SAR involved isolating 

clusters of bright pixels (e.g., icebergs) from background dark pixels (e.g., clutter) by a histogram method 

followed by ad hoc processing steps (Murthy & Haykin, 1987; Orlando, Mann, & Haykin, 1990). 

Drawbacks of this method include the fact that the histogram highly varies with ocean conditions and target 

 

1 https://www.kaggle.com/c/statoil-IB-classifier-challenge  

https://www.kaggle.com/c/statoil-iceberg-classifier-challenge
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response can become indistinguishable between different target types. Howell et al. (2004; 2006; 2008) 

proposed a likelihood ratio based detector method based on work conducted by Defence Research and 

Development Canada (DRDC) (Liu, C., Vachon, & Geling, 2005) to detect targets (icebergs and ships) 

followed by a classification algorithm to separate icebergs from ships. The success rate of this method is 

dependent on selecting the right features, which is sometimes challenging as there could be many intrinsic 

features that are not necessarily captured by machine learning based approaches. Howell et al. (2008) first 

compared iceberg/ship classification performances among SP RADARSAT-1 (HH), DP ENVISAT 

(HH/HV) and QP (HH/HV/VH/VV) airborne EMISAR data. Howell indicated the utility of having multi-

pol data for improved iceberg/ship classification performance. In Howell et al. (2012), a more 

comprehensive study on target detection and classification of vessels and icebergs based on the 

combinations of polarimetric SAR data was performed by the same team at C-CORE. Detection 

performance was evaluated using a receiver operating characteristic (ROC) curve and vessel and iceberg 

discrimination was achieved using a quadrature multivariate feature discriminator that extracts feature 

vectors from target pixels. Results suggested that the HH-HV combination of DP SAR has maximum 

potential for vessel/iceberg discrimination, with the HV channel appearing to be more important in many 

scenarios. Furthermore, it was shown that the QP data performs best in the context of detection and 

discrimination although for maritime surveillance QP data is fairly limited because of the narrow swath 

width of existing satellites (e.g., RADARSAT-2). As suggested earlier, CP offers a trade off between QP 

and DP. Denbina and Collins (2012) published a comparative study between DP and simulated CP data for 

iceberg detection. Since there were no CP satellites at the time of publication, CP data were simulated from 

RADARSAT-2 QP data, by combining various channels and resampling the data. This study confirmed the 

importance of the HV channel and demonstrated that CP data outperforms all linear DP configurations. 

Ultimately, this research showed the potential for CP in iceberg detection and classification as it overcomes 

the swath width limitation of QP modes. The utility of the HV channel has been shown by other authors for 

iceberg detection, including Wesche & Dierking (2012). They found that RADARSAT-2 data performed 
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better for iceberg detection than RADARSAT-1 and ENVISAT primarily because of the availability of the 

cross-pol channel (HV or VH) with a suitably low noise equivalent sigma zero (NESZ).  

Other authors have also made suggestions about the performance of various polarizations for target 

detection; most of this work has been conducted in the context of ship detection. In general, HH channel 

has been found to be better than VV, due to the slightly elevated sea clutter levels of the latter relative to 

HH (Vachon, PW, Campbell, Bjerkelund, Dobson, & Rey, 1997). This is because of the difference in the 

Fresnel reflection coefficients for horizontal and vertical directions in the integral equation method (IEM) 

for ocean surface (Ulaby et al., 2014). On the other hand, HV has better signal to clutter ratio than HH in 

low incidence angles (Touzi, Charbonneau, Hawkins, & Vachon, 2004). Higher incidence angles are 

suggested for better detection as less clutter is generated than the low incidence angles (Vachon, Paris W. 

& Wolfe, 2011). 

In terms of the sensor wavelength, to date, iceberg detection has mostly been performed with C-band SAR 

because of the data availability and government and industry practise; nonetheless, there are some notable 

examples of X-band iceberg surveillance. Representative examples of iceberg detection research include 

Akbari & Brekke (2018), Dierking & Wesche (2014) and Kim, Kim, Kim & Hwang (2011).  

SAR is extensively used for vessel surveillance as the applications are very similar, involving the detection 

of bright backscatter on a clutter background. As the list of publications available on SAR-based ship 

detection is rather extensive, the focus here is on more recent publications that involve some aspect of 

multi-pol detection of discrimination. For example, Crisp (2004) suggested that DP SAR data provides 

better performance than SP data while providing greater swath coverage than QP data. Unsurprisingly, this 

mirrors the conclusions made with iceberg detection. C-CORE, in a series of publications between 2004 

and 2012 investigated the use of DP SAR for maritime surveillance (C-CORE, 2012; Howell et al., 2004; 

Howell et al., 2006; Howell, 2008). Ship detection algorithms have been published for both DP and QP 

data (see for example Brekke & Anfinsen (2011) and Wang, Li, Zhang, & Guo (Wang, Li, Zhang, & Guo, 
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2015)). The paper by Brekke & Anfinsen (2011) is one of the few that discusses ship detection in ice prone 

waters. In terms of CP use in ship detection, a few representative papers include Atteia & Collins (2013), 

Shirvany, Chabert, & Tourneret (2012), and Yin, Yang, & Zhang (2011). Shirvany et al., (2012) compared 

CP to several DP configurations and found that the ship detection performed better for CP configuration 

than DP. Liu et al., (2010) at DRDC showed that CP outperforms DP configurations in ship detection. 

However, this study used data of much higher resolution than is typically used operationally and the effect 

of incidence angle and sea states were not discussed. Later, researchers from C-CORE addressed the issue 

of resolution (C-CORE, 2012) by resampling the data to simulate lower resolution modes of RADARSAT-

2 and compared these results to ENVISAT ASAR data. SAR-based ship detection has been performed at 

several frequencies, and most commonly include C-Band and X-Band. Some representative publications 

include C-band RADARSAT-1 (Meyer & Hinz, 2009), ENVISAT ASAR (Tello, López-Martínez, 

Mallorquí, & Greidanus, 2005), RADARSAT-2 (Marino, Walker, & Woodhouse, 2010), X-band 

TerraSAR-X (Marino & Walker, 2011; Marino & Hajnsek, 2012) and X-Band COSMO-SkyMed (Pastina, 

Fico, & Lombardo, 2011).  

The present state of the art in SAR-based vessel and iceberg discrimination is the use of machine learning 

to train algorithms to distinguish between vessel and iceberg backscatter (see, for example (C-CORE, 2012; 

C-CORE, 2016; Howell et al., 2004; Howell et al., 2006; Howell, 2008; Howell, Bobby, Power, Randell, 

& Parsons, 2012)). Several of the authors have been involved in efforts to develop ship and iceberg 

classifiers in different types of SAR imagery, starting initially with RADARSAT-1 (unpublished) and then 

to ENVISAT ASAR (Howell et al., 2004; Howell et al., 2006), RADARSAT-2 (C-CORE, 2012; Howell, 

2008) and TerraSAR-X (Howell et al., 2012). Recent efforts (C-CORE, 2016) deal with discriminators 

trained for simulated data from the RADARSAT Constellation Mission2, showing the benefits of compact 

 

2 Simulated RCM data were produced from RADARSAT-2 QP data with a program from the Canada Centre for 

Mapping and Earth Observation.  
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polarimetry for target discrimination. In 2017, iceberg/ship classifiers’ performances were reported (Jun, 

Atharva, & Dhruv, 2017) based on the Kaggle competition3 data. In generating abound training data to train 

machine learning based classifiers, synthetic image data of targets were generated by simple image rotation 

and scaling. While this might be reasonable to do for the targets with static background whose signature 

would not vary as the look direction changes, this might not be reasonable as the dynamics of iceberg/ship 

and water interaction changes a lot with look direction and sea states, producing different SAR signatures.  

1.2.2 EM Backscatter Modelling of Icebergs 

Although EM tools are used quite frequently to model the backscatter of various objects, their use to model 

EM backscatter from marine targets is not quite frequently reported in literature. Gerard et al. (2006), 

reported a simulation tool called ‘GRECOSAR’ to model EM backscatter from vessel targets. The tool has 

the capability of producing simulated SAR images of complex targets from varying satellite parameters, 

target orientations and imaging scenes with a full polarimetric capability. The tool uses an EM solver called 

Graphical Electromagnetic Computing (GRECO) developed at the Universitat Politecnica de Catalunya 

Apdo in Barcelona. The EM solver calculates backscatter from the target in 3D environment by using 

physical optics (PO) and ray-tracing (RT) theory and handles multiple scattering, curvature and shadowing 

effect (Margarit et al., 2006) from complex environments. GRECOSAR allows the simulation of a variety 

of satellite SAR modes using input parameters of the SAR to produce the required ground resolution and 

radiometric dynamic range. The functionality of the software has been rigorously tested and verified by 

comparing radar backscatter generated from standard canonical objects (sphere, dihedral and trihedral) with 

reported theoretical values (Margarit et al., 2006). GRECOSAR accounts for single layer propagation and 

backscatter from any object and has been extensively used for the high dielectric objects like marine targets 

(ships) (Margarit, G., Mallorqui, & Fabregas, 2007; Margarit, G. & Mallorqui, 2008; Margarit et al., 2006; 

 

3 https://www.kaggle.com/c/statoil-iceberg-classifier-challenge 

https://www.kaggle.com/c/statoil-iceberg-classifier-challenge
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Margarit, Gerard, Mallorqui, & Fabregas, 2007; Margarit, Gerard & Mallorquí, 2008; Margarit, Gerard, 

Mallorqui, Fortuny-Guasch, & Lopez-Martinez, 2009; Margarit, Gerard & Tabasco, 2011)  and for urban 

scattering (Margarit, Gerard, Mallorqui, & Lopez-Martinez, 2007). GRECOSAR has not been used to 

address backscatter coming from low permittivity dielectrics, such as the glacial ice within an iceberg. 

Furthermore, the single layer limitation of GRECOSAR implies that the simulation of complicated 

multilayer propagation and backscatter is not possible. Depending on the frequency, microwaves are known 

to penetrate to a significant depth into cold glacial ice, resulting in both surface and volume backscatter 

(Haykin, Lewis, Raney, & Rossiter, 1994). A mismatch in the dielectric values of air and glacial ice results 

in almost 10% incident energy back to the sensor, contributing to the surface scattering. The rest of the 

microwave energy penetrates through the berg and dissipates in the form of absorption and scattering loss. 

Gray et al. in (1991) showed in a field experiment that the absorption loss at X-band is 10 times higher than 

that of L-band. For the scattering loss, X-band loss is almost 4000 times higher than that of L-band. 

Penetration depth of a heterogeneous medium constitutes from the absorption (medium loss factor, 𝜀′′) and 

scattering loss (impurities in the medium). Currie et al. (1987) mentioned that the penetration depth of C-

band wave in iceberg medium varies between 3 to 14 m depending on the properties of the bergs. This 

variation arises from the fact that, the absorption loss in the firn of iceberg is a function of ice temperature 

and a variation of 53 dB/100 m length was found over 18˚ temperature change (Dierking & Wesche, 2014). 

Dierking et al. (2014) also observed a 1-6 dB/100 m variation for scattering loss (volume scattering) in the 

Antarctic iceberg and the absorption loss is almost 5 times higher than scattering loss.  

This research documented in this thesis attempts to develop an EM model of an iceberg with the help of 

GRECOSAR which would be pivotal in understanding and quantifying iceberg backscatter for a variety of 

sensor parameters, environmental conditions and imaging modes and help in producing ground truth 

iceberg image data in designing more robust iceberg/vessel classifier, thus filling this gap in the literature. 

The research has been conducted while accounting for the limitations of GRECOSAR and its ability to 

model only single layer propagation and backscatter.  
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1.3 Research Objective  

The main objective of the research documented herein is to develop an EM backscatter model of low 

dielectric targets such as icebergs while accounting for the limitations of the GRECOSAR simulation tool. 

In addressing these objectives, the following steps are followed: 

1. Ocean model parameters are explored in GRECOSAR to produce the realistic ocean backscatter.  

2. The dielectric permittivity of 3D iceberg profiles embedded within an ocean patch is adjusted 

within GRECOSAR to match with real iceberg backscattering properties, including total radar cross 

section (TRCS), radar morphological signature and polarimetry properties. Efforts were made to 

match the geometrical orientation and surrounding sea states of the in-field iceberg observations, 

as these are shown to alter the backscattering properties of iceberg targets.  

3. Modelling is performed in GRECOSAR to assess backscattering properties of both low and high 

incidence angles.  

4. To support the validity of the GRECOSAR model, a multi-layer mathematical model of glacial 

iceberg is explored. This model accounts for the various layers of glacial ice, including a surface 

melt layer that was observed during an iceberg field campaign. The impact that this melt layer has 

on the total radar backscatter is explored and elaborated. The modelling shows that actively melting 

icebergs may be realistically modelled in GRECOSAR given the single layer limitations within this 

modelling software.  

5. Once the basic EM properties of icebergs in GRECOSAR are validated, GRECOSAR is then used 

to produce a set of simulated SAR iceberg and ship targets of various sizes, geometrical and 

environmental surroundings for use within machine learning classifiers. The compatibility of these 

simulated SAR image chips with real SAR targets is confirmed for use within a ship and iceberg 

target classifier application. A ‘chip’ refers to a square patch or sub-image of the SAR imaging 

area. 
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1.4 Chapters Overview 

The thesis has been divided into five chapters, including this introduction. A chapter summery is given 

below: 

• Chapter 2 is titled EM Backscatter Modelling of Icebergs at Large Incidence Angles using Dual 

Polarization Radar Modes. This chapter constitutes the paper published in 2018 in the Canadian 

Journal of Remote Sensing as: Ferdous, M. S., McGuire, P., Power, D., Johnson, T., & Collins, M. 

(2018). A comparison of numerically modelled iceberg backscatter signatures with sentinel-1 C-

band synthetic aperture radar acquisitions. Canadian Journal of Remote Sensing, 44(3), 232-242.  

• Chapter 3 is titled EM Backscatter Modelling of Iceberg at Small Incidence Angles using Quad 

Polarization Radar Modes. This chapter constitutes the paper, published in the Journal of Selected 

Topics in Applied Earth Observations and Remote Sensing as: M. S. Ferdous, U. H. Himi, P. 

McGuire, D. T. Power, T. Johnson and M. J. Collins, "C-Band Simulations of Melting Icebergs 

Using GRECOSAR and an EM Model: Varying Wind Conditions at Lower Beam Mode," in IEEE 

Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 12, no. 12, pp. 

5134-5146, Dec. 2019. 

• Chapter 4 is titled Assessing the Utility of Modelled SAR Images of Iceberg and Ship Targets using 

a Machine Learning Classifiers. It constitutes the paper published in 2019 in the IEEE Geoscience 

and Remote Sensing Letters as: Ferdous, M. S., Himi, U. H., McGuire, P., Power, D., Johnson, T., 

& Collins, M. (2019). Assessing the usefulness of iceberg electromagnetic backscatter modeling 

using a C-band SAR classifier. IEEE Geoscience and Remote Sensing Letters, Early access, 1-5. 

doi:10.1109/LGRS.2019.2944432. 

Basic summaries of the chapters are outlined below. 
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1.4.1 Chapter 2 

The research started by looking at the aspects of EM backscatter modelling of icebergs using GRECOSAR. 

The available dataset was from DP Sentinel-1 collected at large incidence angles that included 

complementary 3D profiles of icebergs. Limitations in generating the iceberg backscatter model in 

GRECOSAR were identified and necessary assumptions were made to account for the limitations. 

GRECOSAR can only simulate single layer propagation from a surface whereas multilayer propagation 

and backscatter is possible from the large volume of an iceberg. Icebergs are of freshwater origin and have 

many discontinuities such as trapped air pockets, giving rise to the potential for significant backscatter 

through its volume. The permittivity of the iceberg surface was adjusted from low to high to mimic, 

respectively, cold and freshly calved icebergs seen in the high Arctic and the wet, actively melting surface 

of icebergs seen further south. The latter condition was assumed for the icebergs that were ground truthed 

during a complementary field program conducted by C-CORE in 2015 and 2017, given that field personnel 

witnessed significant melt conditions on all the icebergs that were profiled. EM simulation parameters were 

chosen to mimic the field program conditions. Simulation results were measured and compared in terms of 

SAR target morphological signature and radiometric properties, including TRCS. 

Backscatter models for icebergs are developed for this paper using GRECOSAR and compared with ground 

truth data. The imaging scene consists of iceberg targets surrounded by the ocean surface. The 3D profiles 

of the icebergs were obtained using LiDAR and multi-beam sonar data mounted on a vessel by a team of 

C-CORE. These data were collected during a field program off the coast of Salvage, Newfoundland and 

Labrador, Canada. While profiling the iceberg targets, a SAR image from Sentinel-1 was captured and used 

as the basis for comparison to the simulated SAR images. Comparisons made in terms of TRCS and the 

SAR signature of the targets generally indicate realistic simulations. Simulated SAR images were generated 

at low and high dielectric conditions to mimic cold and melting icebergs. Variability of the TRCS and 

morphology as a function of target orientation highlights the usefulness of EM modelling in developing a 

large database of targets that mimic real world situations. 
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1.4.2 Chapter 3 

In the next phase of the research, fully polarimetric (QP) RADARSAT-2 image data were collected at a 

low incidence angle beam mode during a second iceberg field campaign. Using these data, the polarimetric 

characteristics of the GRECOSAR simulated iceberg SAR data are explored. In addition to the polarimetric 

response, the SAR morphological signatures and radiometric properties are also evaluated.  

The SAR response investigation is supplemented in this chapter with an analysis of SAR signature 

variability over various ocean parameters such as wind speeds and directions. As in the previous chapter, 

3D profiles of three icebergs were captured in a field study to facilitate the EM modelling; these profiles 

were captured off the coast of Bonavista, Newfoundland and Labrador, Canada in June, 2017 at the same 

time of the RADARSAT-2 satellite overpass. The SAR image and 3D profiles were captured within hours 

of one another. Simulated SAR images of the icebergs were generated in GRECOSAR with the satellite, 

target orientation and ocean parameters that closely mimic the real SAR scene. A comparison between real 

and simulated SAR images of the icebergs shows good agreement in terms of SAR morphological signature, 

TCRS and polarimetric decomposition. Wind direction was varied over 90˚ to observe the level of 

backscatter variability of the icebergs in the simulated images. Furthermore, simulated SAR images were 

generated for low and high wind conditions. This study finds that the macro structure of the iceberg 

dominates its polarimetric behavior. The study also shows a large variability of iceberg SAR signature over 

varying ocean parameters. This aspect is very important when considering the design of iceberg 

classification algorithms. Specifically, it points to a need to collect a large quantity of iceberg images over 

a large variety of meteorological conditions and a large number of incidence angles and orientations in 

order to completely characterise an iceberg. This is a very important conclusion when considering the 

collection of a dataset for use in iceberg classification, computer vision and machine learning.  

In support of the melt water surface assumption presented in chapter 2, a 2D mathematical model is 

presented to estimate to what extent the melt water layer will contribute to the backscatter. That 
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mathematical model considers backscatter contributions at various interfaces of the iceberg, including the 

air to meltwater interface, meltwater to ice interface and ice to ocean interface (at the iceberg bottom). The 

analysis shows that the melting condition of iceberg presents a significant backscattering interface that 

reflects a predominant proportion of the incidence microwave radiation from the SAR. The analysis also 

shows that the melt water layer can be as little as 0.1 mm to produce a dominant radar response relative to 

other scattering surfaces on a berg. Thus, the mathematical model independently supports the validity of 

the GRECOSAR EM simulations. 

1.4.3 Chapter 4 

In the previous two chapters, EM backscatter models of icebergs were presented and compared in terms of 

handpicked radiometric and polarimetric properties. These models are developed through a very limited 

range of satellite parameters, presenting only a small and large incidence angle condition. It is clear that 

there are more intrinsic properties of the SAR that need analysis. However, the availability of SAR ground 

truthing limits that analysis. Nonetheless, the EM simulation allows for the development of a large variety 

of iceberg targets in many different conditions. One way to perform a more detailed comparison for the 

larger range of SAR parameters is to perform an indirect comparison of simulated SAR images to actual 

SAR targets comprising that larger range of parameters. In this case, the indirect comparison is made by 

combining simulated SAR images with a large collection of real SAR targets in a machine learning 

application. The application chosen here is a SAR-based ship and iceberg classifier.  

To perform this indirect comparison, simulated SAR image data were obtained from GRECOSAR in 

combinations of imaging beam modes and scene parameters to produce a total of 216 simulated SAR 

images. A very large dataset of ship and iceberg targets from the Sentinel-1 C-Band satellite was made 

available thanks to a deep learning competition sponsored by C-CORE and Equinor on the Kaggle platform. 

In this dataset, over 5000 target chips were collected at the Interferometric Wide Swath (IW) mode, with 

HH and HV polarizations. Parameters of the GRECOSAR simulations consisted of Sentinel-1 IW1 (33.1°) 
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and IW3 (43.1°) beam mode, wind speeds of 5 and 10 m/s, wind directions of 0°, 45° and 90° (measured 

clock wise (CW) with respect to range direction) and target orientations of 0°, 45° and 90° (measured CW 

with respect to azimuth direction). Simulations were performed in GRECOSAR using 3D profiles of 

icebergs and computer aided design (CAD) models of ships. The idea was to mimic the real SAR scenes as 

closely as possible. The iceberg profiles used here were the same ones used in chapter 3 that were collected 

off the coast of Bonavista in June 2017. Three ship CAD models were sourced from an online inventory 

and scaled to the sizes of iceberg targets. Classifiers, including state vector machines (SVM), random forest, 

k-nearest neighbour (kNN) and neural net (NN), were trained with simulated SAR data and then gradual 

mixed with real SAR data. Similar performances of the mixed and real-data only classifiers are observed. 

The similarity of the different classifiers indicates the compatibility of the GRECOSAR simulated data for 

this application. Thus, it indicates that the simulated SAR data captures the necessary physical parameters 

of the iceberg/ship targets for SAR target classification. 

1.4.4 Chapter 5 

Chapter 5 is the concluding part of the thesis. It has been segmented into two parts. The first part compares 

research objectives with accomplishments as described in chapter 1. In the second part, future research 

directions have been suggested based on the accomplishments of this research.  

Co-authorship Statement 

The principal author of the published papers containing the techniques and results reported in this thesis 

contributed primarily in the design and identification of the research proposal and the resulting research. 

The supervisory team helped in reviewing the research proposal and the output research. Practical aspects 

of the research identified by the principal author were discussed with supervisors. Data analysis and 

interpretation was primarily conducted by the principal author and reviewed by the supervisory team. In 

preparing this manuscript and the papers that comprise the various chapters, the principal author organised 

and composed the drafts that were reviewed and approved by the supervisors.  
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 EM Backscatter Modelling of Icebergs at Large Incidence Angles 

using Dual Polarization Radar Modes 

2.1 Introduction 

Safe offshore operations and navigation in ice-prone waters require reliable surveillance of icebergs. 

Iceberg monitoring is of interest in the scientific context as well. Increase in iceberg calving relates to global 

warming and helps predict long-term climate change (Bigg, Wadley, Stevens, & Johnson, 1997). In the 

context of the Arctic and Antarctic, harsh weather, dark polar nights and excessive cloud cover in summer 

implies that radar and more specifically SAR – is generally the preferred choice for ice monitoring(Power, 

Youden, Lane, Randell, & Flett, 2001) . SAR is widely used by governments and industry to monitor 

iceberg locations in ice-frequented waters (Randell, Freeman, Power, & Stuckey, 2009). SAR is also used 

extensively for vessel surveillance, as the applications are very similar, involving the detection of bright 

backscatter on a clutter background. Some representative publications of SAR-based ship detection include 

C-band RADARSAT-1 (Meyer & Hinz, 2009), ENVISAT ASAR (Tello, López-Martínez, Mallorquí, & 

Greidanus, 2005), RADARSAT-2 (Marino, Walker, & Woodhouse, 2010), X-band TerraSAR-X (Marino 

& Walker, 2011; Marino & Hajnsek, 2012) and X-Band COSMO-SkyMed (Pastina, Fico, & Lombardo, 

2011). To date, iceberg detection has been performed mostly with C-band SAR because of the data 

availability and government and industry practise; nonetheless, there are some notable examples of X-band 

iceberg surveillance. Representative examples of iceberg detection research include (Akbari & Brekke, 

2017; Akbari & Brekke, 2018; Dierking & Wesche, 2014; Kim, Kim, Kim, & Hwang, 2011). RADARSAT-

2 data performed better for iceberg detection than RADARSAT-1 and ENVISAT (Wesche & Dierking, 

2012), primarily because of the availability of a cross pol channel (HV or VH) with a suitably low NESZ. 

In general, HH channel is better than VV, due to the slightly elevated sea clutter levels relative to HH 

(Vachon, PW, Campbell, Bjerkelund, Dobson, & Rey, 1997). On the other hand, HV has better signal to 

clutter ratio than HH in low incidence angles (Touzi, Charbonneau, Hawkins, & Vachon, 2004). Higher 

incidence angles are suggested for better detection as less clutter is generated than the low incidence angles 

(Vachon, Paris W. & Wolfe, 2011). 
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In the context of ocean surveillance in ice frequented waters, one of the primary challenges in using SAR 

data is the discrimination of vessel targets from icebergs (Power et al., 2001). In the context of iceberg 

surveillance, vessel targets are considered false alarms and the same is true for icebergs in vessel monitoring 

applications. The present state of the art in SAR-based vessel and iceberg discrimination is the use of 

machine learning to train algorithms to distinguish between vessel and iceberg backscatter (see, for example 

(Bentes, Frost, Velotto, & Tings, 2016; C-CORE, 2012; C-CORE, 2016; Howell et al., 2004; Howell et al., 

2006; Howell, 2008; Howell, Bobby, Power, Randell, & Parsons, 2012) ). Several of the authors have been 

involved in efforts to develop ship and iceberg classifiers in different types of SAR imagery, starting 

initially with RADARSAT-1 (unpublished) and then expanding to ENVISAT ASAR (Howell et al., 2004; 

Howell et al., 2006), RADARSAT-2 (C-CORE, 2016; Howell, 2008) and TerraSAR-X (Howell et al., 

2012). The most recent efforts (C-CORE, 2016) deal with discriminators trained for simulated data from 

the RADARSAT Constellation Mission, showing the benefits of compact polarimetry for target 

discrimination.  

Machine learning requires the use of large validated datasets for iceberg and vessel targets, which can be 

costly and time consuming to collect. For example, an internet-based computer vision competition, 

sponsored by C-CORE and Statoil, used over 5000 validated targets as training and testing datasets. One 

solution to the problem is the use of a physically based EM backscatter modelling of iceberg and ship targets 

in SAR data. The availability of such models could prove to be a crucial and important step in developing 

a robust iceberg/ship classification algorithm.  

GRECOSAR was used for the EM modelling work (Margarit, Gerard, Mallorqui, Rius, & Sanz-Marcos, 

2006). The functionality of the software has been rigorously tested and verified by comparing radar 

backscatter generated from standard canonical objects (sphere, dihedral and trihedral) with reported 

theoretical values (Margarit et al., 2006); these results have been reproduced by the authors. Use of 

GRECOSAR for the detection and classification of marine targets (ships) (Margarit, G., Mallorqui, & 
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Fabregas, 2007; Margarit, G. & Mallorqui, 2008; Margarit, Gerard, Mallorqui, & Fabregas, 2006; Margarit 

et al., 2006; Margarit, Gerard, Mallorqui, & Fabregas, 2007; Margarit, Gerard & Mallorquí, 2008; Margarit, 

Gerard & Mallorqui, 2008; Margarit, Gerard, Mallorqui, Fortuny-Guasch, & Lopez-Martinez, 2009; 

Margarit, Gerard & Tabasco, 2011) and for urban scattering (Margarit, Gerard, Mallorqui, & Lopez-

Martinez, 2007) have been reported extensively. GRECOSAR uses a multi-harmonic (MH) sea model to 

modulate sea waves and the sea model has been validated in other published work (Yam, Mallorqui, & 

Rius, 2012). 

The main objective of this work is to present an EM backscatter model of icebergs using GRECOSAR at a 

satellite’s higher incidence angle beam mode and to compare with DP SAR data. The rest of the chapter 

includes the following sections: “Materials and Methods”, “Results and Discussions” and finally 

“Conclusion”. “Material and Methods” describes first, how SAR images containing three target icebergs 

were captured and how corresponding 3D profiling of the icebergs were measured in a field program off 

the coast of Salvage, NL. This is followed by the description of wide ranges simulation parameters and a 

selection and a thresholding based de-clutter technique to mask iceberg target pixels from ocean clutter in 

a SAR image. In the “Results and Discussions” section simulated and real SAR images of the iceberg targets 

were compared in terms of morphology of the target signatures and TRCS. A further simulation result is 

presented to show the variability of the TRCS of the icebergs over orientations to the satellite. The 

“Conclusions” sums up the article in terms of objectives and the result found and provides future directions 

of this work. 

2.2 Materials and Methods 

2.2.1 Field Data 

2.2.1.1 SAR Image Acquisition and 3D Model Profiling 

A SAR image containing icebergs off the coast of Salvage, NL, Canada was captured on 7 July 2015 at 

1423 UTC with Sentinel-1 sensor. The SAR image mode was IW mode in DP single look complex (SLC) 
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format with 3 sub-swaths. The image is then de-burst and calibrated with European Space Agency (ESA)-

made SNAP software (ESA’s open source software to process Sentinel images) to ground range intensity 

(𝜎0) format to comply with the GRECOSAR-generated SAR image format as shown in Figure 2.1. It is the 

amount of backscatter return per unit area of an object to the antenna. Satellite parameters representing the 

IW3 mode of the Sentinel-1 satellite are presented in Table 2.1. 

Table 2.1 Sentinel-1 satellite parameters. 

Parameter Value Parameter Value 

Incidence angle, 𝜑 (˚) 43  Pulse width, 𝜏 (𝜇s) 53.4 

Centre frequency, 𝐹𝑐 (GHz) 5.405 
Pulse repetition frequency, 

PRF (Hz) 
1717.129 

Bandwidth, 𝛿𝑓 (MHz) 56.5 Sampling rate, 𝐹𝑠 (MHz) 64.34 

Resolution 
Range x Azimuth 

=3.5×21.6 m 
Pixel spacing in slant range 

Range x Azimuth 

=2.31×13.904 m 

Three icebergs were identified and are also shown in Figure 2.1. These three icebergs are denoted by the 

symbols IB1, IB2 and IB3. A field program was conducted by a team at C-CORE to capture the 3D profiles 

of the icebergs using LiDAR and a multi-beam sonar. IB1 was profiled on 3 July 2015 and the IB2 and IB3 

were profiled on 6 July 2015. A Dynascan m-250 Single Head LiDAR was used to generate point clouds 

for the above water part of the icebergs. A R2 Sonic 2024 Single head Multibeam Sonar beam was used to 

collect point clouds for the submerged portion of the icebergs. Three loops were made for a single iceberg 

profiling with 4 knots average speed of the survey vessel. Although the LiDAR’s footprint will vary by 

range it has a standard resolution of 1 cm. On average, LiDAR has points density for IB1, IB2 and IB3 as 

120.80, 172.05, 100.79 points/m2 and for Sonar 23.60, 84.18, 22.1 points/m2. The raw point clouds were 

then filtered to generate a clean, quantified and corrected version of the iceberg 3D profiles. These were 

used to generate simulated SAR images and to compare with the real SAR image. 
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Figure 2.1 Sentinel-1 SAR image in 𝝈𝟎 (m2/m2) showing the locations of three icebergs of interest. 

 

2.2.1.2 Iceberg 3D Profile Orientation 

Prior to simulation, it is important to know the correct orientation of the icebergs with respect to the radar 

look direction to get an accurate image footprint to compare with the real SAR image. Iceberg orientations 

in the SAR image might differ from the orientation at the time the 3D profile was captured due to significant 

delay between 3D profiling and SAR image acquisition time. The approximate orientations of the icebergs 

were obtained by overlaying the outline of icebergs (that were encoded with global positioning system 

(GPS) information) and the captured SAR image footprint as shown in Figure 2.2. Note that the simulated 

SAR image footprint is small because of the extensive simulation time required for the numerical 

computations by GRECOSAR. Better visualizations of the icebergs and their relative waterlines are shown 

in Figure 2.3.  
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Figure 2.2 Simulated SAR image footprint (blue) and icebergs outline from GPS data (red) overlaid; 

icebergs (a) IB1 (b) IB2 (c) IB3.  
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Figure 2.3 Full 3D profiles of the icebergs and relative waterlines shown by the blue surfaces. 

 

2.2.2 EM Backscatter Simulation Parameters 

2.2.2.1 Simulation Scene 

The simulation scene consisted of an iceberg 3D profile surrounded by an ocean surface. GRECOSAR 

considers the target (iceberg) and the ocean in Figure 2.4 as a single target. It computes backscatter in every 

antenna position along the azimuth direction considering curvature, edges, shadows and multiple 

reflections. The height profile of the ocean updates as the sensor position moves along the azimuth and is 

defined by the Pierson-Moskowitz spectrum (described in the next section) (Pierson & Moskowitz, 1964). 

The geometrical parameters necessary to define the simulation scene are illustrated in Figure 2.4 and 

described in the following sub-sections. Looking into Figure 2.4, the SAR beam is directed in the range 
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direction. The berg is referenced CW with respect to the azimuth direction. The wind direction is referenced 

CW with resect to the range direction. The azimuth direction is along the flight direction of the satellite. 

The range direction is perpendicular to the right of the azimuth direction.  

 

Figure 2.4 GRECOSAR simulation scene. 

 

2.2.2.2 Ocean Surface 

The surrounding ocean surface is a flat meshed surface of a CAD model as shown in Figure 2.5 (a). The 

surface height is modulated by an embedded MH sea model. The parameters of the MH sea model are 

configured by selecting pre-defined sea states in the software according to the Pierson-Moskowitz spectrum 

(Pierson & Moskowitz, 1964). Sea states are defined by their significant wave height ℎ𝑠 and average wave 

period 𝑇, which scales the wave spectrum’s height and defines the centre frequency respectively (see Figure 

2.5 (b)). GRECOSAR takes significant frequency and phase components surrounding the centre of the 
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Pierson-Moskowitz spectrum (Figure 2.5 (b)) and maps back to the spatial domain to modulate the height 

at every point in the 𝑥𝑧 plane by (2.1) and as shown in Figure 2.5 (c), 

 𝑦(𝑥, 𝑧, 𝑡) = ∑ ∑ 𝑦𝑛,𝑚
𝑀
𝑚=1

𝑁
𝑛=1  sin{𝜔𝑡 + 𝜖𝑛,𝑚 − 𝑘𝑛(𝑥 cos 𝜒𝑚

∗ + 𝑧 sin 𝜒𝑚
∗ )}  (2.1) 

Where, 𝑀 and 𝑁 are phase and frequency components.  

𝜔 = wave components in the wave spectral density (rad/s) 

𝑘𝑛= wave number (rad/m) 

𝜒𝑚= propagation directions in the wave spectral density (˚) 

𝑥, 𝑧 and 𝑡 are spatial and time coordinates (m , m, second) 

𝑦𝑛,𝑚= height of each wave component (m), defined as 

 𝑦𝑛,𝑚 = √2𝑆𝑧(𝜔∗, 𝜒∗)∆𝜔∆𝜒 (2.2) 

Where, ∆𝜔 and ∆𝜒 are differential steps in frequency and phase axis (Fig. 2.5 (c)). 

𝑆𝑧(𝜔, 𝜒)= wave spectral density (m2/Hz) shown in vertical axis of Fig. 2.5 (a) 

 𝑆𝑧(𝜔, 𝜒) = S(ω)M(χ) (2.3) 

Where, 𝑆(𝜔) is related to significant wave height, ℎ𝑠 and average wave period, 𝑇 by: 

 
S(ω) =

173ℎ𝑠
2

𝑇4𝜔5
exp {−

691

𝑇4𝜔4
} (2.4) 
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M(χ) is the spread function along 𝑋-axis in Fig. 2.5 (c). Parameters are described in detail in (Pierson & 

Moskowitz, 1964). 

 

Figure 2.5 Ocean target modelling in GRECOSAR (a) 2D CAD model of a flat surface that is 

discretized by triangular meshes (b) the wave heights in the y direction are modulated by the frequency 

and direction components defined by Pierson-Moskowitz sea spectrum inside GRECOSAR (c) 

visualization of a Pierson-Moskowitz sea spectrum for a sea-state defined by significant wave height  

𝒉𝒔 and average wave period 𝑻. GRECOSAR takes dominant frequency and phase components centred 

around the peak of Pierson-Moskowitz spectrum to modulate wave heights and directions in (b). An 

ocean chip size of 200x200 m2 was modelled with an iceberg model embedded at the middle of the chip. 

 

Note that sea spray is significant along the shoreline and near the ocean/iceberg interface; this could affect 

ocean wave patterns. Looking from the iceberg images, the ocean looks very calm and no sea spray is 

visible. There are also other factors to consider, but these additional considerations are left as future work. 

2.2.2.3 Meshing 

The ocean waves composed of ranges of frequencies. Among them there is a certain wavelength at which 

EM wave from the sensor interacts strongly and reflects significant energy to the sensor. This wavelength 
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is called ‘creeping wavelength’ and be denoted as 𝜆𝑐𝑟𝑒𝑒𝑝. 𝜆𝑐𝑟𝑒𝑒𝑝 is a function of sensor frequency and the 

incidence angle and related by:  

 
𝜆𝑐𝑟𝑒𝑒𝑝 =

𝜆𝑠𝑒𝑛𝑠𝑜𝑟

2 sin θ
 (2.5) 

The ocean model in GRECOSAR is a flat surface CAD model. To ensure that the meshed CAD surface can 

represent the variation of a ‘creeping wave’, the meshing size needs to be at least half of the ‘creeping 

wavelength’ according to the Nyquist criteria. For the case of Sentinel-1 IW3 imaging mode (43˚ incidence 

angle) 𝜆𝑐𝑟𝑒𝑒𝑝 would be 4.06 cm which suggests the mesh size needs to be 2.03 cm to comply with Nyquist 

rate in the spatial sense. However, minimizing mesh size requires huge computational time and resources. 

An experiment was done to determine optimum mesh size. An ocean chip size of 100x100 m2 was meshed 

by 2, 4, 5, 6 and 8 cm. Mean clutter was calculated for Sentinel-1 IW3 beam mode and relative error was 

calculated. To calculate error, mean clutter for a 2 cm mesh was assumed as reference. As seen in Figure 

2.6, error is negligible until it starts to pick up at 6 cm and in substantial at 8 cm. Therefore, in the CAD 

software, the ocean chip was meshed by a 5 cm triangular mesh as a compromise between computational 

load and accuracy. For example, with a 5 cm mesh size and a 200x200 m2 ocean area, the work station 

needed 6-7 hours to generate simulated SAR image. 
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Figure 2.6 Variation of mean ocean clutter at HH channel over mesh size for Sentinel-1 IW3 mode. 

 

2.2.2.4 Key Parameters 

This sub-section will describe parameters necessary for the simulation scene to replicate a real SAR image 

as closely as possible. A real SAR image containing icebergs in Figure 2.1 was captured by the Sentinel-1 

satellite in IW3 mode. Satellite parameters used for GRECOSAR simulation were taken from Table 2.1. 

Field observation suggests the ocean was calm and the weather remained stable while the SAR image was 

captured. Based on this, a sea state-0 (2.57 m/s wind speed) was chosen that has significant wave height of 

0.1524 m and average wave period of 1.5 second. In the simulation, to make sure the iceberg targets get 

equal amounts of surrounding clutter as in the real SAR image, the wave course was varied until the 

simulated mean backscatter equalled the real SAR image ocean clutter in HH channel. The wave course 

was calculated clockwise with respect to the radar look direction as shown in Figure 2.5. SAR image 

captured on 7 July, 2015 containing the icebergs has a mean HH channel backscatter of -24.57 dB that sets 

the wave course to 30˚. The role of sea state is very important in iceberg detection. With an increase in sea 

state, the average clutter increases, lowering the signal to clutter ratio and degrading target detection 
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(Vachon et al., 1997). Reduced detectability in high clutter for ship targets has been studied (Li, He, & 

Wang, 2009); a similar study for icebergs is intended as a future work.  

Setting the right dielectric permittivity for the iceberg target is very critical for the GRECOSAR simulation. 

This parameter could range between from very low for cold bergs just after calving to much higher if the 

berg surface is under a high melting condition. GRECOSAR can only simulate surface backscatter, 

although it is known that for icebergs that backscatter can come from both the surface and from inside the 

volume (due to air bubble inclusions) and even from the bottom surface (ice to water interface at the bottom 

of the berg). Nonetheless, GRECOSAR provides an opportunity to determine the significance of the surface 

backscattering contribution at various dielectric permittivities by comparing the GRECOSAR simulations 

(with only surface scattering) to the real SAR images (with multiple types of scattering). Two extremes for 

dielectric permittivities were examined. The dielectric permittivity of a cold berg surface is well established 

in the literature and was extensively measured value of 3.15 with a loss factor/loss tangent of 2 × 10−3 

(Haykin, Lewis, Raney, & Rossiter, 1994). To mimic the perfect melting berg condition, the permittivity 

of fresh water at 0° C was assumed and calculated according to (Meissner & Wentz, 2004) to be 65.8-36.4i. 

Modelling the iceberg surface as melt ice is expected to provide high surface backscattering that should 

dominate other scattering types, including the volume scattering that arises from an iceberg’s multi-layer 

surface. This high backscatter may compensate for GRECOSAR’s inherent limitation to simulate volume 

scattering. Nonetheless, it is recognized that an iceberg may contain localized regions of glacial ice with 

high and low melting surfaces and therefore the total backscatter may be a superposition of scattering from 

the two dielectric permittivity extremes.  

In setting the permittivity of the surrounding ocean surface, a water temperature of 0° C and a salinity of 

35 parts per thousand (PPT) were considered. Although the permittivity of ocean water is a function of 

temperature, salinity and frequency, because of its high reflectance, the relative variation should be 
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insignificant. The dielectric permittivity of the seawater was set to 60.8-40.6i at a frequency of 5.4 GHz 

and was calculated according to (Meissner & Wentz, 2004). 

2.2.2.5 Target Pixels Separation from Clutter  

To facilitate the analysis and quantification of the icebergs targets, the target pixels in the SAR image were 

separated (masked) from the surrounding ocean clutter. Ocean clutter surrounding the target pixels was 

isolated from the target using an intensity threshold of 𝑚 + 8𝜎 of the ocean clutter pixels statistics for both 

SAR image and simulated intensity images. 𝑚 is the mean and 𝜎 is the standard deviation of the ocean 

clutter. This simple thresholding technique is widely used and been taken from (Howell, 2008). 

2.3 Results and Discussions 

2.3.1 SAR Image at Varying Permittivity 

Two sets of simulated SAR images were generated, one with iceberg material permittivity set to fresh cold 

ice and the other with actively melting surface. The simulated SAR signatures of the icebergs at these two 

permittivities are shown in Figure 2.7 along with real SAR signatures for comparison. All chips represent 

a 200x200 m2 area and the images are for HH channel in 𝜎0 linear scale. Although the patterns of the high 

intensity regions of the image do not exactly match, the extent of the target pixels is comparable. It is very 

important to note that with increase in permittivity, i.e., from fresh ice to the melt condition, significant 

backscatter contributions come from the surface as seen in the middle and right column image clips of 

Figure 2.7. The high intensity region variation in the iceberg signatures might be due of the time lag between 

3D profiling and SAR image capture time. The time lags between 3D profiling and SAR image capture 

time for IB1, IB2 and IB3 are approximately 4 days and 1 day respectively. Some environment factors e.g., 

high melting condition, washing and eroding of iceberg sides might have influenced the physical 

appearance of the icebergs.  



29 

 

Figure 2.7 Real (left) and simulated (middle, right column) SAR images of IB1 (top row), IB2 (middle 

row) and IB3 (bottom row) over a 200x200 m2 chip area. Middle column is with water permittivity at 

0˚, right column is with ice permittivity Images are taken in HH channel and in 𝝈𝟎 (m2/m2) format. 

 

It is evident from the above figure that determining iceberg permittivity is challenging and might fall at any 

value between fresh ice and melt water. This is a logical assumption, since a melting berg may contain both 

wet and dry locations, depending on the shape of the berg. As the SAR image was captured in July off the 

coast of Newfoundland in a summer day at around noon, it is highly probable the surface will be in a state 

of melt flux. The field program team also noted the actively melting iceberg surface condition. They verified 

this by using a paintball gun to mark the icebergs; the paintball marks were almost immediately washed out 

by the melting water. This is very important in simulating iceberg objects in GRECOSAR as it can only 
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simulate single layer contribution and the melting iceberg surface provides the dominant backscattering 

contribution.  

2.3.2 TRCS over Orientations 

The TRCS of the iceberg targets have been determined after varying the orientations of the iceberg with 

respect to the SAR look direction are plotted in Figure 2.8. The iceberg targets were rotated between 180˚ 

to 360˚ in 45˚ intervals. The TRCS of an iceberg was calculated by summing the RCS over every pixel in 

the target. Individual RCS of a pixel was determined by the intensity of the cell multiplied by pixel area.  

 𝑇𝑅𝐶𝑆 =  ∆𝐴 ∑ 𝜎0

𝑎𝑙𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑐𝑙𝑖𝑝

 (2.6) 

The TRCS of the iceberg targets at the orientations corresponding to the real and simulated SAR image are 

shown in the Table 2.2. It shows the TRCS from real and simulated SAR images are in very good agreement, 

when considering the melt surface condition, rather than the cold fresh ice condition. Low TRCS at the 

fresh ice condition could also result from GRECOSAR’s limitation that it only considers surface 

backscatter. However, it is evident that multilayer propagation in iceberg can be compensated if the surface 

dielectric is set for fresh water at 0˚ that represents melting water all over the surface in the iceberg target. 

Table 2.2 TRCS of icebergs on real and simulated SAR images. 

TRCS in dBsm Real image Simulated-melt 

surface  
Simulated-

fresh ice  
Error (%) = 

|(Real-Sim. melt)/Real|x100% 

IB1 27.79  28.18 17.48 1.40 

IB2 26.98 26.76 16.08 0.81  

IB3 37.07  36.54 21.31 1.43 

 

Variations of the TRCS of the iceberg targets as a function of orientation (𝛽), measured with respect to the 

azimuth direction CW, are shown in Figure 2.8. Of note are the maximum and minimum TRCS positions 

and their corresponding orientations with respect to the radar look direction. At maximum RCS positions, 
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the reflecting edges and the sides of the icebergs face maximum exposure to the radar look direction. The 

opposite happens at minimum RCS positions; in other words, the reflecting edges and the sides of the 

icebergs are turned away from the radar look direction.  

 

Figure 2.8 TRCS of the iceberg targets of orientations (shown in 𝑿-axis by 𝜷) between 180˚ and 360˚ 

with 45˚ intervals including the point where the orientation of 3D profile is like that of SAR image. 

Black boxes are for the SAR image orientation. Green boxes are for minimum TRCS locations and red 

boxes are for maximum TRCS locations. 
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2.4 Conclusions 

An EM backscatter model of several icebergs at a satellite’s higher incidence angle beam mode has been 

presented and compared with ground-validated DP SAR data. Measurements from SAR imagery of 

icebergs were captured by the Sentinel-1 satellite over Salvage, Newfoundland, Canada and then compared 

with simulated images generated by GRECOSAR. Simulated images were generated for low and high 

dielectric conditions to demonstrate seasonal surface permittivity variation of the iceberg in cold and 

melting conditions. The similarity of the TRCS of the simulated and SAR images and the SAR signature 

pattern provide a strong indication of the validity of the EM backscatter models of the icebergs. The large 

backscatter generated from realistic multilayer propagation in an iceberg can be compensated by a higher 

dielectric surface permittivity condition to emulate the backscatter generated by the single layer model in 

GRECOSAR. Variation of the TRCS of icebergs over orientations suggests the use of the EM backscatter 

model of iceberg could be very useful in designing a robust iceberg/ship classifier. Limitations of this study 

include the fact that GRECOSAR is only capable of single layer backscatter simulations. As shown here, 

this appears to be highly applicable to the mid-latitude icebergs in Newfoundland waters. It is speculated 

by the authors that icebergs in colder regions (e.g., Greenland) that are freshly calved or exist in sub-zero 

temperatures may produce a more dominant multi-layers backscatter, including both surface and volume 

scatter. Practically, electric permittivity is a distributed parameter across any volumetric object, whereas in 

GRECOSAR it is constant for an object that limits its ability more practical representation of any target. 

Several factors could be sources of errors in the results. Environment factors that might contribute to the 

difference between real and simulated SAR image results are the slow and natural drifting and rotation of 

the icebergs over time and melting that might smoothen the surface of the iceberg between the time of the 

profile acquisition and the SAR image acquisition. In GRECOSAR, the iceberg-ocean intersection 

representation is simplistic, whereas in the real world, this representation is more complex.  

Avenues to explore in the future includes assessing the volume scattering contribution in an iceberg target 

by comparing GRECOSAR generated SAR images with real SAR images, taking the advantage of 
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GRECOSAR’s inability to simulate diffuse scattering inside an iceberg’s volume. This can be done, for 

example, by analysing polarimetric decompositions of the real and simulated iceberg backscattering. 

Extensive simulations will be performed to suggest optimum satellite parameters and imaging modes for 

iceberg and vessel discrimination and to quantify the effect of higher sea states and wind directions in 

iceberg detection. The results of the iceberg simulations produced in GRECOSAR are applicable for the 

case of icebergs in seawater of any temperature and salinity. The effect of sea-ice surrounding the iceberg 

can also be produced given the CAD model profile of ranges of sea-ice in hand.  
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 EM Backscatter Modelling of Iceberg at Small Incidence Angles 

using Quad Polarization Radar Modes 

3.1 Introduction 

The good agreement seen in the previous chapter between the simulated and real SAR data provides a 

strong basis to complement and extend the EM work into further combinations of sensor and environmental 

parameters. The EM interaction at the iceberg and ocean is a complex phenomenon and varies as the 

incidence angle and sea state changes. In this chapter, EM backscatter modelling will be done at satellite’s 

lower incidence angle beam mode and compared with QP RADARSAT-2 data in terms of radiometric 

properties. Surrounding ocean states driven by varying wind speed and direction will be explored to 

determine if the modelling work produces trends observed in real life. The availability of QP RADARSAT-

2 data provided an opportunity to check on the integrity of polarimetric properties in the iceberg EM 

backscatter model that was completed in this chapter. Similar to previous chapter, another field program 

was operational off the coast of Bonavista, Newfoundland and Labrador to collect 3D profiles of the 

icebergs to use within the simulation. The field program was conducted in June when the weather was 

relatively warm (between 10° and 20° Celsius) and the team observed active melting of the bergs. This was 

confirmed by firing paint-balls at the icebergs and observing that the paint quickly washed away from the 

bergs in seconds. In the previous chapter, then a melt water dielectric was used in the model to simulate the 

melting berg conditions showed promising results in that iceberg brightness compared favourable to real 

SAR data. A mathematical backscatter model for icebergs would be an important tool to predict to what 

extent a melting layer would contribute to backscatter. Modelling work exists for sea-ice (Partington & 

Hanna, 1994), snow covered sea-ice (Komarov, Isleifson, Barber, & Shafai, 2015; Komarov, Landy, 

Komarov, & Barber, 2017) and snowpack layer (Longepe, Allain, Ferro-Famil, Pottier, & Durand, 2009; 

Matzler, Aebischer, & Schanda, 1984; Phan et al., 2012), however no such model exists for icebergs. A 

mathematical backscatter model of the iceberg, including of a melt-water layer, is presented below that 

assesses the influence of melt layer thickness on the overall backscatter return from the target.  
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This chapter includes the following sections: “Field Data and 3D Profile Acquisition,” “GRECOSAR 

Simulation Parameters,” “GRECOSAR Simulations,” “Polarimetric Decomposition Comparison,” “2D 

Iceberg Backscatter Model,” and finally “Discussion.” “Field Program and 3D Profile Acquisition” 

describes the real SAR images that were captured during the field program off the coast of Bonavista, NL. 

The “GRECOSAR Simulation Parameters” section describes wide ranges of simulation parameters 

required for a confident simulation in GRECOSAR. The “GRECOSAR Simulations” section presents all 

the SAR simulations based on the parameters. The “Polarimetric Decomposition Comparison” section 

compares Pauli decompositions of the SAR images with the actual SAR acquisitions of the same icebergs. 

The “2D Iceberg Backscatter Model” section contains a simple mathematical model of an iceberg for 

analysis of the iceberg melting effect. The “Discussion” section sums up the article and its findings and as 

well provides future directions of this work. 

3.2 Field Data and 3D Profile Acquisition 

3.2.1 SAR Image Acquisition  

Two RADARSAT-2 images were captured containing icebergs off the coast of Bonavista, NL, Canada on 

13 June and 16 June 2017 respectively (Figure 3.1 the SAR images were in FQ1W and FQ2W mode and 

in SLC format). The image was radiometrically scaled with PCI Geomatica software to ground range 

intensity (𝜎0) format to match the GRECOSAR generated SAR image format. Quick looks of the two SAR 

images and their imaging geometry are shown in Figure 3.2 and Figure 3.3. More detail on the 

RADARSAT-2 imaging mode is shown in Table 3.1.  

The local incidence angles for icebergs termed as IB4, IB5 have been calculated to be 18.76˚ and 18.55˚ 

respectively. The third iceberg, IB6 has incidence angle of 21.85˚. Incidence angles of FQ1W and FQ2W 

mode have been used in this modelling to adhere to the standard incidence angles of the RADARSAT-2 

Fine Quad (FQ) beam mode. 
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Figure 3.1 Field study location and RADARSAT-2 SAR image footprints. 

 

 

Figure 3.2 RADARSAT-2 SAR image from June 13 (false coloured with RGB = HV, HH, HH channels) 

showing the locations of two icebergs of interest. The satellite icon indicates the azimuth and range 

look directions. RADARSAT-2 data and data products © 2017 MDA Geospatial Services, all rights 

reserved. RADARSAT is an official mark of the Canadian Space Agency. 



42 

 

Figure 3.3 RADARSAT-2 SAR image from June 16 (false coloured with RGB = HV, HH, HH channels) 

showing the locations of one iceberg of interest. RADARSAT-2 data and data products © 2017 MDA 

Geospatial Services, all rights reserved. RADARSAT is an official mark of the Canadian Space 

Agency. 

 

Table 3.1 RADARSAT-2 satellite parameters. 

 Beam mode FQ1W FQ2W 

Parameters  

Acquisition Date June 13, 2017 June 16, 2017 

Acquisition Time 2106 hrs UTC 0954 hrs UTC 

Incidence angle, 𝜑 (˚) 19.35 20.85 

Orbit inclination, (˚) 98.6 

Pass direction Ascending  Descending 

Antenna pointing Right Right 

Resolution,  

Range × Azimuth (m) 

4.52 x 4.83  4.733 x 5.28 

Pixel spacing in ground range, 

Range × Azimuth (m) 

14.6 x 4.83 13.22 x 5.3 

Centre frequency, 𝐹𝑐 (GHz) 5.405 

Pulse repetition frequency (Hz) 1389 

Bandwidth, 𝛿𝑓 (MHz) 31.02 

Sampling rate, 𝐹𝑠 (MHz) 31.9 

Pulse width, 𝜏 (𝜇s) 21 
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3.2.2 3D Profiling of Icebergs 

A field program was conducted by a team of C-CORE to capture these 3D profiles of the icebergs using 

LiDAR and a multi-beam sonar. IB4, IB5 were profiled on 13 June 2017, respectively 1 hour 35 minutes 

and 3 hours 15 minutes, respectively, later than the SAR image capture. IB6 was profiled on 16 June 2017, 

4 hours 38 minutes after the SAR image was taken. A Dynascan m-250 Single Head LiDAR was used to 

generate point clouds for the above water part of the icebergs. A R2 Sonic 2024 Single head multibeam 

sonar was used to collect point clouds for the submerged portion of the icebergs. A single iceberg profiling 

required three loops to encircle the bergs to allow the removal of iceberg drift from the profile measurement. 

The average speed of the survey vessel during data acquisition was 4 knots. Although the LiDAR’s footprint 

will vary by range it has a standard resolution of 1 cm. The raw point clouds were filtered to generate clean, 

quantified and corrected versions of the iceberg 3D profiles. The final version of the 3D profiles is shown 

in Figure 3.4. 

The physical properties and conditions of the icebergs, also noted during the field program, are summarized 

in Table 3.2. 
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Figure 3.4 Real icebergs photos (top row) and full 3D profiles of the icebergs and relative waterline 

(WL) shown by the blue surfaces (middle row: perspective view and down row: top view). 

Table 3.2 Iceberg physical parameters. 

Parameter Iceberg 

IB4 IB5 IB6 

Maximum WL length (m) 69.5 88 149 

Transverse WL length (m) 64.3 32 108 

Keel depth (m) 45 32 75 

Sail height (m) 21 12 27 

Water Depth 45 32 75 

Shape pinnacle wedge tabular 

Status grounded grounded grounded 

 

3.2.3 Iceberg 3D Profile Orientation 

Prior to simulation, it is important that the orientation of the icebergs with respect to the radar look direction 

remains the same as in the real SAR image. This was ensured by encoding every point cloud in the 3D 

profile with the measured GPS positions of the vessel. As suggested above, there was a time delay between 
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the 3D profiling and SAR image acquisition. Some of the icebergs were grounded and they are expected to 

move very little in the time gap. 

3.3 GRECOSAR Simulation Parameters 

3.3.1 Simulation Scene 

The simulation scene consisted of a 3D profile containing an iceberg surrounded by an ocean surface. The 

geometrical parameters necessary to define the simulation scene are illustrated in Figure 3.5 and described 

in the following sub-sections. 

 

Figure 3.5 Simulation scene and parameters in GRECOSAR. 
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3.3.1.1 Ocean Surface 

The surrounding ocean is a CAD model of a square-shaped flat meshed surface. The surface height is 

modulated by an embedded MH sea model. The harmonic components and directional information of the 

MH sea model comes from the Pierson-Moskowitz spectrum (Pierson & Moskowitz, 1964), which is 

defined by significant wave height ℎ𝑠 and average wave period 𝑇. GRECOSAR translates this information 

to spatial height variation as shown in Figure 3.5. Details of the procedure can be found in Chapter 2 

(Ferdous et al., 2018). Validation of sea surface model in GRECOSAR has been published in (Yam, 

Mallorqui, & Rius, 2012). An ocean chip size of 200x200 m2 was used to simulate IB4, IB5 and 250x250 

m2 was used for IB6. Note that the Pierson-Moskowitz spectrum assumes a deep-water condition 

(depth>=𝜆𝑤/2), where 𝜆𝑤 is the largest ocean wavelength. In our examples, the shallowest water depth is 

32 m (for IB5), and this satisfies the deep-water criteria for the wind speeds and sea states being considered 

here. 

3.3.1.2 Meshing of the Ocean Surface 

Similar experiment has been done to determine the optimum mesh size as in chapter 2. For the case of 

RADARSAT-2 FQ1W imaging mode (19˚ incidence angle) 𝜆𝑐𝑟𝑒𝑒𝑝 would be 8.31 cm which suggests the 

mesh size needs to be 4.15 cm to comply with the Nyquist rate. An ocean chip size of 100x100 m2 was 

meshed by 2, 4, 5, 6 and 8 cm. Mean clutter was calculated for the RADATSAT-2 FQ1W beam mode and 

the relative error was calculated. To calculate error, mean clutter for the 2 cm mesh was assumed as a 

reference. As seen in Figure 3.6 the error is negligible for all cases. A 4 cm triangular mesh size seemed a 

reasonable choice to be consistent with previous workflow and again a compromise between computational 

load and accuracy.  
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Figure 3.6 Variation of mean ocean clutter at HH channel over mesh size for RADARSAT-2 FQ1W 

mode. 

 

3.3.2 Wind Speed and Direction 

As noted earlier, the role of sea state is very important in iceberg detection. With an increase in sea state, 

the average clutter increases, lowering the signal to clutter ratio and degrading target detection (Vachon, 

PW, Campbell, Bjerkelund, Dobson, & Rey, 1997). Reduced detectability in high clutter for ship targets 

has been seen in (Li, He, & Wang, 2009). 

Wind speed and direction drive ocean roughness and determine the amount of ocean clutter seen in a SAR 

image. CMOD4 (Vachon, Paris W. & Wolfe, 2011) is a geophysical model that can retrieve wind speed 

from full polarimetric RADARSAT-2 image data and predict clutter variation over wind directions. 

Stoffelen et al. in (1997) reported error margin of 0.5 m/s of the CMOD4 model. Retrieved wind speed by 

CMOD4 for image-1 is 7.2 m/s and for image-2 is 7.17 m/s. The variation of ocean clutter over wind 

direction for image-1 and -2 has been shown as blue and red lines in Figure 3.7. In order for the simulated 

ocean clutter to be a close representative of the real clutter behavior in image-1 and -2, parameters of the 

MH sea model have been adjusted to ℎ𝑠=0.04 m, 𝑇=0.155 sec. This produces ocean clutter variation that is 
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a good match with the image-1 and -2 scene (green line in Figure 3.7). This combination is used to generate 

simulated ocean clutter at 7.2 m/s. Part of this chapter will investigate the influence of wind speed on 

iceberg targets.  

Wind direction for the image-1 and -2 scenes was measured from the local weather station data in 

reasonable proximity to the SAR image capture time. The closest weather station was Bonavista, NL. 

Predicted wind direction for image-1 is 78˚ CW from the radar look direction at 2100 hrs UTC, which is 6 

minutes before the SAR image capture. For image-2, it is 352˚ CW from the radar look direction at 1000 

hrs UTC which is 6 minutes after the SAR image capture. 

 

Figure 3.7 Ocean backscatter variation over wind direction in VV channel. 

 

3.3.3 Dielectric Permittivity 

Setting the correct dielectric permittivity for the iceberg target is very critical for the GRECOSAR 

simulation. This parameter could range between from very low for cold bergs just after calving and could 

be much higher if the berg surface is under a high melting condition. GRECOSAR can only simulate surface 
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backscatter, although it is known that for icebergs that backscatter can come from both the surface and from 

inside the volume (due to air bubble inclusions) and even from the bottom surface (ice to water interface at 

the bottom of the berg). Nonetheless, GRECOSAR provides an opportunity to determine the significance 

of the surface backscattering contribution at various dielectric permittivities by comparing the GRECOSAR 

simulations (with only surface scattering) to the real SAR images (potentially with multiple types of 

scattering). Two extreme dielectric permittivities were examined. The dielectric permittivity of a cold berg 

surface is well established in the literature and was set to 3.15 with a loss factor of 2 × 10−3 (Haykin et al., 

1994). To mimic the perfect melting berg condition, the permittivity of fresh water at 0° C was assumed 

and calculated according to (Meissner & Wentz, 2004) to be 65.8-36.4i. Modelling the iceberg surface as 

melt ice is expected to provide high surface backscattering that should dominate other scattering types, 

including the volume scattering that arises from an iceberg’s multi-layer surface. This high backscatter may 

compensate for GRECOSAR’s inherent limitation to simulate volume scattering. Nonetheless, it is 

recognized that an iceberg may contain localized regions of glacial ice with high and low melting surfaces 

and therefore the total backscatter may be a superposition of scattering from the two dielectric permittivity 

extremes.  

In setting the permittivity of the surrounding ocean surface, a water temperature of 0° C and a salinity of 

35 PPT or, equivalently, practical salinity unit (PSU) were considered. Although the permittivity of ocean 

water is a function of temperature, salinity and frequency, because of its high reflectance, the relative 

variation should be insignificant. The dielectric permittivity of the seawater was set to 60.8-40.6i at a 

frequency of 5.4 GHz and was calculated according to (Meissner & Wentz, 2004). 

3.4 GRECOSAR Simulations 

Ranges of simulations were produced, based on the parameters mentioned in the previous section. These 

simulations are described below. Note that the SAR simulation parameters have been taken from Table 3.1. 
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3.4.1 Varying Wind Directions 

Simulated SAR images were generated for the 0-90˚ wind direction range for all three icebergs and 

compared with the real SAR images. Comparisons are made in terms of SAR signature, TRCS and 

polarimetric decomposition. 

3.4.1.1 Simulated SAR Signature 

For the simulations, QP SAR images were generated for all four channels (HH, HV, VH, VV). The images 

are displayed in ground range intensity format (𝜎0). The HV channel has been chosen for display, thanks 

to its higher signal to clutter ratio for low incidence angle compared with the two co-pol channels (Touzi, 

Charbonneau, Hawkins, & Vachon, 2004). Target pixels were separated and segmented from clutter pixels 

by a threshold of 𝑚 + 8𝜎, where, 𝑚 is the mean and 𝜎 is the standard deviation of the ocean clutter. This 

mask has been applied to the rest of the four channels to extract target pixel components in HH, VH and 

VV channels.  

Figure 3.8 shows a comparison of SAR signatures for IB4 for various wind directions. For each of the 

images in this figure, the Y-axis is the azimuth (along orbit) direction of the satellite and the X-axis is the 

range (transverse to orbit) direction. The measured wind direction at the time of IB4 SAR image capture 

was 78˚. We can see that the simulated SAR image of IB4 at 78˚ qualitatively matches closely with the real 

SAR image. It is noteworthy that there is significant variation of the SAR signature with wind direction. 

Specifically, the pattern of the high intensity pixels change, but to a lesser extent than the lower intensity 

pixels in the vicinity of the primary backscatter. This is because change in wind direction is expected to 

modify the interaction of the backscatter near the iceberg-ocean interface.  

Figure 3.9 shows a comparison of SAR signatures for IB5 using the same axes conventions as Figure 3.8. 

The measured wind direction at the time of IB5 SAR image capture was 78˚. It may be observed that the 

simulated SAR image of IB5 at 22˚ is a better qualitative match to the actual SAR image than the 78˚ 
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simulation. Similar to IB4, low intensity pixels surrounding the IB5 are seen to be re-oriented as the wind 

direction changes. 

Figure 3.10 Shows a comparison of SAR signatures for IB6. We can see that real SAR signature at 352˚ 

looks most similar to the simulated SAR signatures of 337˚ and 360˚. Similar to IB4 and IB5, the low 

intensity pixels surrounding IB6 are seen to be re-oriented as the wind direction changes. 

All three icebergs were grounded at the time of profiling and image acquisition. A slight rotational 

movement may have taken place before the image acquisition, but this would not be expected to drastically 

alter the results. 

 

Figure 3.8 Real and simulated SAR signatures of IB4 in HV channel and in 𝝈𝟎 (m2/m2) format. 
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Figure 3.9 Real and simulated SAR signatures of IB5 in HV channel and in 𝝈𝟎 (m2/m2) format. 

 

 

Figure 3.10 Real and simulated SAR signatures of IB6 in HV channel and in 𝝈𝟎 (m2/m2) format. 
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3.4.1.2 Image Similarity Quantification 

The similarity between the real and simulated SAR signatures have been measured by the structural 

similarity index measure (SSIM) described in (Wang, Bovik, Sheikh, & Simoncelli, 2004). The MATLAB 

function named ‘ssim’ has been used to determine SSIM index in (%). The real SAR image was set as a 

reference for the measurements. Figure 3.11 summarizes the results for the three icebergs. SSIM index has 

been found maximum for IB4 at 22˚ (86.5%) and IB5 at 78˚ (94%), whereas for IB6 maximum SSIM index 

(75.1%) has been found at 337˚. 

 

Figure 3.11 Image similarity of IB4, IB5 and IB6 over wind direction. 

 

3.4.1.3 TRCS 

The TRCS of a target is a strong measure that the target has been detected by the SAR sensor. Targets of 

higher RCS are obviously easier to detect, given the larger contrast between the target pixels and the 

background clutter. In this case, the TRCS was calculated by summing the RCS over every pixel in the 

segmented target. The individual RCS of a pixel was determined by the intensity of the cell multiplied by 

pixel area.  
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Figure 3.12 shows TRCS of IB4 versus wind direction, based on the simulated SAR images. The TRCS 

calculated from real SAR image is very close to the simulation at 78˚, which is the measured wind direction 

at the time of SAR image acquisition. The maximum SSIM was also found at this wind direction (Figure 

3.11). This RCS plot shows how the wind direction can influence the TRCS; in the case of IB4, it is in the 

range of 21-26 dBsm.  

Figure 3.13 shows TRCS of IB5 versus wind direction based on the simulated SAR images. TRCS 

calculated from real SAR image is very close to the simulation at 22˚, whereas the measured wind direction 

at the time of the real SAR image was 78˚. This is consistent with Figure 3.9 and maximum SSIM seen in 

Figure 3.11. whereby, the SAR backscatter pattern most closely resembled the simulation at 22˚. The 

simulated RCS of IB5 varies in the range of 17-23 dBsm. 

Figure 3.14 shows the TRCS of IB6 versus wind direction based on the simulated SAR images. The TRCS 

calculated from the real SAR image and the measured wind direction of 352˚ is very close to the simulation 

and the maximum SSIM index has been found at 337˚ in Figure 3.11. What is noticeable about this plot 

relative to the previous two is the low variation in the TRCS. The simulated RCS of IB6 only varies by 

about 2 dBsm, which is much lower than either IB4 or IB5. 
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Figure 3.12 TRCS of IB4 over wind direction variation. 

 

 

Figure 3.13 TRCS of IB5 over wind direction variation. 
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Figure 3.14 TRCS of IB6 over wind direction variation. 

 

3.4.1.4 RMS Deviation 

Given that IB6 is much larger than the two other icebergs, the above results suggest that larger icebergs 

may have a TRCS that varies less with wind direction. To test this hypothesis, two larger versions of IB5 

were created by scaling the size of the 3D profiles by a factor of 1.4 and 1.8 respectively in all directions. 

The TRCS of the scaled versions of IB5 (IB5-SC1 and IB5-SC2) are plotted in Figure 3.15. The TRCS 

varied by 0.81 dBsm for IB5-SC1 and 1.4 dBsm for IB5-SC2. Note that the two larger versions of IB5 have 

much lower RCS variation relative to the smaller IB5. 

The TRCS variation is further summarized in Figure 3.16, showing the root mean square (RMS) deviation 

of the three icebergs with wind direction. The deviation has been calculated taking the differences between 

simulated and real values. This deviation was then normalized with respect to the real value and the RMS 

deviation calculated as a percentage. It is noticeable that the smallest iceberg (IB5) has the largest variation 

(19%), whereas the variation is smallest for the largest berg, IB6 (2%). To further confirm this trend, 

normalized deviation is also plotted for the up-scaled versions of IB5. Both bergs also show lower relative 

variation with IB5-SC1 at 1.22% and IB5-SC2 at 2.14%. 
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Figure 3.15 TRCS of scaled versions of IB5, showing variation over wind direction. 

 

Figure 3.16 RMS deviation of TRCS measure of the icebergs. 

 

3.4.2 Varying Wind Speeds 

The objective of this section is to demonstrate EM model’s response as wind speed changes. Increasing 

wind speeds translate into increasing ocean clutter. GRECOSAR simulations were generated to see the 
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effect of wind speeds on SAR iceberg targets. Ocean parameters were configured to produce mean ocean 

clutter levels defined by CMOD4 wind speeds. Significant wave height, ℎ𝑠 was kept constant at 0.04 m and 

wave period 𝑇 was varied. Figure 3.17 (bottom) shows the wave period variation with wind speed. The 

wind speeds were translated by the CMOD4 model based on the mean ocean clutter generated at FQ1W 

mode and 0˚ wind direction with respect to RADAR look direction CW. The icebergs’ EM model response 

for 7.2 m/s wind speed has already been discussed in previous sections. 

Figure 3.17 (top) shows the TRCS of the icebergs at varying wind speeds. These simulations show that, for 

the most part, increasing wind speed (and clutter) provides a decreasing TRCS trend. This is a satisfying 

result since a higher level of diffuse ocean/iceberg backscatter around the perimeter of the berg may end up 

reducing the total berg RCS by destructive interference. Taking the example of IB6, this iceberg has a 

consistently decreasing trend in RCS with wind speed, with TRCS varying by 2.5 dBsm. This iceberg has 

steep sides so it will have a dominant double bounce scatter on the side of the berg that faces the radar. This 

double bounce scatter could conceivably decrease with diffused destructive interference as the ocean 

roughness increases. In the case of IB4 and IB5, the trend is generally decreasing with wind speeds, except 

in the case of 5 m/s for IB5 and 10 m/s for IB4 (1.32 dBsm). A possible explanation for this discrepancy in 

the trends is the shape of these two icebergs. IB6 is the largest icebergs and has smooth/steep sides, whereas 

the two smaller icebergs (IB4, IB5) have irregular sides. The irregularity of these bergs’ sides might, at 

times, form constructive interference at the leading edge of the icebergs for certain wind speeds. The TRCS 

variation is 1.32 dBsm for IB3 and 3 dBsm for IB5.  
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Figure 3.17 TRCS of icebergs and wave period variation at different wind speeds. 

 

3.5 Polarimetric Decomposition Comparison 

Given that the three icebergs being examined here were under significant deterioration (melt) during the 

field program, it was speculated that the surface water melt contributes to dominant surface backscatter 

rather than the dominant volume backscatter that might be seen in glaciers. In order to test this hypothesis, 

the polarimetric properties of the simulated SAR images have been examined more closely. Specifically, 

polarimetric decompositions, based on the full polarimetric image data, have been generated to examine 
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the different SAR scattering mechanisms. In this study, the real and simulated SAR images of the icebergs 

have been processed in the form of Pauli decompositions according to (Lee, Grunes, & Kwok, 1994) . 

In Figure 3.18, the Pauli decompositions of the three icebergs have been shown in terms of surface, double 

bounce and volume scattering components. The simulated images are shown at the wide coloured bars, 

while the real images are shown at the narrow white bars. Simulated SAR images were generated for the 

wind direction that was measured by local weather station. Power components in the bar chart are expressed 

as a percentage of total power from surface, double-bounce and volume scattering. For all the GRECOSAR 

iceberg simulations, the percentages assigned to each scattering type closely follow that of the real SAR 

image data, as seen in Figure 3.18. Double bounce scattering (in cyan) is maximum for IB6, which is the 

biggest iceberg and has largest dihedral corner among the three icebergs shown here. Although 

GRECOSAR cannot simulate multi-layer volume backscatter, considerable volume scattering (in yellow) 

is seen from the simulations. This is likely due to diffuse scattering produced from the superposition of 

multiple out-of-phase surface scatterers. In addition, mathematically, volume scattering is proportionate to 

the HV component and any diplane oriented at 45˚ line of sight (LOS) direction can produce HV by 

definition (Haykin et al., 1994). Physically, icebergs have a complex geometry with many scattering 

features, and thus HV backscatter may be produced as a result. 

Given the significant surface and double bounce scattering in both the real SAR and GRECOSAR simulated 

scenes, it is speculated that the surface melt layer is largely responsible, and that for these icebergs, the lack 

of a GRECOSAR volume scattering component is less of a concern for actively melting icebergs. This adds 

significant credibility to the use of the GRECOSAR simulations for practical applications. 
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Figure 3.18 Comparison of Pauli decomposition of simulated and real SAR images of the three 

icebergs IB4-IB6. 

 

3.6 2D Iceberg Backscatter Model 

Given the results in the previous section, further analysis was conducted on the expected percentages of 

surface and volume scatter in an actively melting iceberg. The analysis was performed by deriving a simple 

two-dimensional multilayer backscatter model, as a supplement to the 3D GREECOSAR simulations. In 

this 2D model, analysis is simply given to the amount of radar backscatter rather than deriving detailed 

SAR image simulations.  

As mentioned in the Introduction section, 2D backscatter modelling has been reported for sea ice 

(Partington & Hanna, 1994), snow covered sea ice (Komarov et al., 2015; Komarov et al., 2017) and snow 

pack layer (Longepe et al., 2009; Matzler et al., 1984; Phan et al., 2012) . The sea ice layer is primarily 

modelled with cylindrical shaped brine, and spherical air bubble inclusions embedded in a fresh ice medium 

(Partington & Hanna, 1994) . The snow medium is modelled by an air medium hosting densely packed 

water and ice inclusions (Longepe et al., 2009; Matzler et al., 1984; Phan et al., 2012).  
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Icebergs are composed of densely packed snow (Ulaby et al., 2014) and can be modeled simply as fresh ice 

stuffed with air bubbles as shown in Figure 3.19. The iceberg melting layer will be modeled as a thin layer 

on top of the iceberg made of fresh water shown in Figure 3.19.  

 

Figure 3.19 Iceberg model consisting of melt layer on top. 

 

3.6.1 Mathematical Model  

Total backscattering components coming from the various layers can be written as following, similar to 

(Partington & Hanna, 1994). 

 𝜎0 = 𝜎𝑤𝑠
0 + 𝜎𝑖𝑠

0 + 𝜎𝑖𝑣
0 + 𝜎𝑠𝑠

0  (3.1) 

where, 

𝜎𝑤𝑠
0 = surface scattering from air-water interface 
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𝜎𝑖𝑠
0= surface scattering from water-ice interface 

𝜎𝑖𝑣
0 = volume scattering from ice volume 

𝜎𝑠𝑠
0 = surface scattering from ice-sea water interface 

Surface scattering contributions between the air-water interface are computed by the integral equation 

method (IEM) for small surface roughness approximation, as given in (Fung, Li, & Chen, 1992). The VV 

and HH normalized radar cross sections are expressed as: 

 

𝜎𝑉𝑉
0 = 8𝑘4𝜎2 |

𝑅𝑉cos2θ + sin2θ(1 + 𝑅𝑉)2

2
∗ (1 −

1

𝜀𝑟
)|

2

𝑊(−2𝑘𝑥, 0) (3.2) 

 𝜎𝐻𝐻
0 = 8𝑘4𝜎2|𝑅𝐻cos2θ|2𝑊(−2𝑘𝑥, 0) (3.3) 

where,  

𝑘 = wave number in the incident medium; 

θ = incidence angle 

𝜎 = rms height (m) of the surface; 

𝜀𝑟  = permittivity ratio between medium 2 to 1; 

𝑘𝑥  = wave number projected into medium 1 in horizontal direction; 

𝑅𝑉 = Fresnel reflection coefficient for vertical polarization (Ulaby et al., 2014); and 

𝑅𝐻= Fresnel reflection coefficient for horizontal polarization (Ulaby et al., 2014). 

𝑊(−2𝑘𝑥, 0) is the spectrum of height correlation function taken from (Komarov et al., 2017); 

 𝑊(𝑞, 0) =
2𝜋𝐿2

(1+𝑞2𝐿2)1.5  (3.4) 

Where,  
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𝐿 = correlation length of surface roughness (m). 

Surface scattering from water-ice interface is computed by Radiative Transfer Model (RTM) as given in 

(Partington & Hanna, 1994): 

 𝜎𝑖𝑠
0 = 𝜎𝑖𝑠1

0 𝑇𝑎𝑤1
𝑇𝑎𝑤2

𝑒𝑥𝑝(−
2𝛽𝑤𝑑𝑤

𝑐𝑜𝑠 𝜃𝑤
)  (3.5) 

where, 

𝜎𝑖𝑠1
0  is scattering at the interface of two media computed by (3.2) and (3.3); 

𝑇𝑥𝑦𝑧 is the transmission coefficient between medium x and y and z=1 for x to y medium 2 means y 

to x medium; and 

𝛽𝑥𝑒 = 𝛽𝑎 + 𝛽𝑠 is the extinction coefficient composed of absorption and scattering coefficient. 𝑥 =

𝑤, i, s subscript for the medium. 

Similarly for the ice-sea water interface (Partington & Hanna, 1994), 

 𝜎𝑠𝑠
0 = 𝜎𝑠𝑠1

0 𝑇𝑎𝑤1𝑇𝑎𝑤2𝑇𝑤𝑖1𝑇𝑤𝑖2exp (−
2𝛽𝑖𝑑𝑖

cosθi
) exp(−

2𝛽𝑤𝑑𝑤

cosθw
)  (3.6) 

The volume scattering component coming from the iceberg surface is given by (Partington & Hanna, 1994) 

 

𝜎𝑖𝑣
0 = 𝜎𝑣

0𝑇𝑎𝑤1𝑇𝑎𝑤2𝑇𝑤𝑖1𝑇𝑤𝑖2 (
1 − 𝑒𝑥𝑝 (−

2𝛽𝑖𝑑𝑖
cosθi

)

2𝛽𝑖𝑑𝑖
𝑐𝑜𝑠𝜃𝑖

) exp(−
2𝛽𝑤𝑑𝑤

cosθw
) (3.7) 

𝜎𝑣
0is the scattering from all the air bubbles in the iceberg (Gray & Arsenault, 1991) : 

 𝜎𝑣
0 = 𝜎𝑣𝑛𝜌𝑎𝑚sinθ (3.8) 

where,  
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𝑛 = air bubble density per cubic meter; and 

𝜌𝑎𝑚= approximate range-ambiguous distance, the extent by which the volume scattering spreads 

(it will be assumed 10 m according to (Gray & Arsenault, 1991)). 

Scattering from individual air bubbles in an iceberg volume is considered as Rayleigh scattering (Gray & 

Arsenault, 1991): 

 
𝜎𝑣 = 4𝜋𝑟6𝑘4 |

𝜀𝑎𝑖𝑟 − 𝜀𝑖𝑐𝑒

𝜀𝑎𝑖𝑟 − 𝜀𝑖𝑐𝑒
|

2

 (3.9) 

where,  

𝑟 = radius of air bubble (m); and 

𝑘 = wavenumber in iceberg media whose effective permittivity can be computed by a dielectric 

mixture model of ice and air (Ulaby et al., 2014): 

 𝜀𝑖𝑏 = 𝜀𝑖 + 3𝜐𝜀∗ 𝜀𝑎𝑖𝑟−𝜀𝑖𝑐𝑒

𝜀𝑎𝑖𝑟−𝜀∗   (3.10) 

where, 𝜀∗ = 𝜀𝑖𝑐𝑒 according to(Partington & Hanna, 1994) 

The extinction coefficients will be computed as: 

 
𝛽𝑎 = 3𝜐𝑘

𝜀′′

|𝜀 + 2|2
 (3.11) 

 𝛽𝑠 = 2𝜐𝑘4𝑟3|𝛫|2 (3.12) 

 
𝛫 =

𝜀 − 1

𝜀 + 2
 (3.13) 



66 

 𝜀 =
𝜀𝑎𝑖𝑟

𝜀𝑖𝑐𝑒
  (3.14) 

3.6.2 Model Parameters 

All the necessary parameters used in the 2D mathematical iceberg backscatter modeling, as described 

above, have been tabulated in Table 3.3. The model is designed for C-band frequency (𝐹𝐶). A 30 m thick 

iceberg (𝑑𝑤) has been assumed. The melt water thickness (𝑑𝑤) and incidence angle (𝜃𝑎𝑖𝑟) are model 

variables as it is the objective to see the sensitivity of backscatter as the melt water changes. Other 

parameters in Table 3.3 have been set according to the references.  

Table 3.3 Iceberg backscatter model parameters. 

Parameter Value Parameter Value 

𝐹𝐶  (GHz) 5.4 𝑑𝑤 (mm)  0.1~1 

𝜃𝑎𝑖𝑟(˚) 10~60 𝑑𝑤 (m) 30 

𝜀𝑖 1 𝜀𝑖𝑏 1.75 - 0.0018i 

𝜀𝑖𝑐𝑒 
3.15 with loss tangent 2x10-3  

(Haykin et al., 1994) 
𝜀𝑤 

65.8-36.5i calculated at 0˚, 𝐹𝐶  

(Meissner & Wentz, 2004)  

𝑛 (m3) 1.18×108 (Gray & Arsenault, 1991)  
 

𝜎𝑤 (mm) Assumed same as 𝜎𝑖 

𝑟 (mm) 1 (Gray & Arsenault, 1991) 𝐿𝑤 (cm) Assumed same as 𝐿𝑖 

𝜎𝑖 (mm) 1.5 (Partington & Hanna, 1994)  𝜎𝑠 (mm) Assumed same as 𝜎𝑖 

𝐿𝑖 (cm) 8 (Partington & Hanna, 1994)  𝐿𝑠 (cm) Assumed same as 𝐿𝑖 

 

3.6.3 Model Results 

The iceberg model and parameters described above have been used to predict the effect of the water melt 

layer on the SAR backscatter. Figure 3.20 shows the backscattering components from the interfaces within 

the iceberg for a very thin melt layer (0.1 mm) versus incidence angle. The major backscatter contribution 

comes from the top melt water surface. Although the melt layer is very thin, its high dielectric constant 

reflects most of the energy. The next significant backscatter contribution increase is from the water-ice 

interface, and then from the ice-sea water interface at the bottom of the iceberg. Air bubbles inside the 

iceberg also contribute to the backscatter, but for this bubble density, the backscatter is low. With increasing 
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incidence angle, the surface scattering components drop rapidly, whereas the volume scattering component 

only drops a little. This is due to the relative symmetry of the air bubbles with respect to varying incidence 

angle. 

The effect of melt water layer thickness is also explored. In Figure 3.21, the melt water layer thickness is 

increased to 0.5 mm, and thence to 1 mm in Figure 3.22. In each of these cases, the increase in backscatter 

produces a slightly increased backscatter from the top two layers, and slightly lesser from the other 

volumetric sources. 

Given the results of these figures, it seems clear that the surface backscattering will dominate for actively 

melting icebergs, and therefore, GRECOSAR seems to be well suited to deriving realistic SAR simulations 

for these types of bergs. 

 

Figure 3.20 Scattering components from iceberg layers for 0.1 mm melt water layer in HH 

polarization channel. 
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Figure 3.21 Scattering components from iceberg layers for 0.5 mm melt water layer in HH 

polarization channel. 

 

 

Figure 3.22 Scattering components from iceberg layers for 1 mm melt water layer in HH polarization 

channel. 

 

3.7 Discussion 

An EM backscatter model, based on the simulation software GRECOSAR, has been presented and 

compared with ground-validated data for QP RADARSAT-2 imagery for several iceberg case studies. SAR 
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imagery of icebergs was captured over Bonavista, NL, Canada and then compared with simulated images 

generated by GRECOSAR. Simulated images were generated for varying wind speeds and directions.  

Simulated SAR signatures of the same iceberg were shown to vary with wind direction. Wind direction was 

also shown to change the backscattering pattern at the iceberg-ocean interface and resulted in a pattern 

change in low intensity pixels surrounding the iceberg perimeter. The change in the pixel pattern has been 

quantified with respect to the real SAR imagery using the SSIM index. Maximum SSIM index locations 

suggest closest simulation to the real SAR scenario. The TRCS of an iceberg was also shown to vary with 

wind direction. It was also observed that, with an increase in iceberg size, the TRCS variation decreases.  

The effect of wind speed on iceberg backscatter was also explored. Low wind speed (3.5 m/s) generates 

less clutter and results in brighter target backscatter relative to the same iceberg simulated in a higher wind 

speed of 7.2 m/s.  

Given that the SAR signature and TRCS of icebergs vary with wind speed and direction, this suggests that 

the development of a statistical iceberg classifier would benefit greatly from a large dataset with a variety 

of meteorological conditions. This type of a dataset, with a large volume of targets and a large variation in 

wind speeds and direction, may be challenging and costly to collect manually. This suggests that the 

generation of training data sets from an EM backscatter model of icebergs could be very useful in designing 

a robust iceberg/ship classifier. Using the same 3D profile of an iceberg, a large variety of iceberg targets 

could be generated by simply varying the wind speed and direction in the EM model. With a large number 

of 3D iceberg profiles, a very large dataset of SAR training data could be generated for a statistical classifier.  

The GRECOSAR backscatter model was also tested by examining the polarimetric backscatter properties 

of various iceberg targets. Pauli decomposition results for the simulated SAR iceberg targets were compared 

with decomposition results from real SAR data; the comparison was considered very favourable. Given that 

the GRECOSAR simulations are comparable to the real SAR data when considering backscatter 
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mechanisms, this suggests that the macro structure of the iceberg surface is the dominant backscatter, 

relative to the internal the microstructures (air bubbles) of the iceberg when the surface undergoes melting. 

GRECOSAR only simulates backscatter from top single layer surface; the discrepancies between simulated 

and real data are rather significant when it comes to the spatial distribution of backscattering. However, the 

TRCS exhibits lower discrepancies and we believe the simulator can still be used to depict general trends 

for melting icebergs. The iceberg surface was seen to be in a high melt state by the field study team and 

high backscattering is expected to come from the high dielectric melt water surface assumed in this study. 

To confirm this, a 2D mathematical backscatter model of an iceberg, considering the melt water layer, was 

derived. This model shows that, even for a very thin melt water layer (0.1 mm), dominant surface scattering 

from the melt water layer is present. This indicates that the single layer backscatter model in GRECOSAR 

should be enough for producing SAR images simulations of icebergs in a high state of melt. 

Limitations of this study include the fact that GRECOSAR simulations assume a constant electric 

permittivity for a particular object. Practically, electric permittivity is a distributed parameter across any 

volumetric object that limits GRECOSAR’s ability for practical representation of any target. Environment 

factors that might contribute to the difference between real and simulated SAR image results are the slow 

and natural drifting and rotation of the icebergs over time. In GRECOSAR, the iceberg-ocean intersection 

representation is simplistic, whereas in the real world, this representation is more complex.  

Future recommendations for research include the extension of this work to a larger dataset of icebergs in a 

more extensive range of incidence angles. In particular, only three 3D profiles were used for a narrow 

incidence angle range. It is recommended that 3D profiles be collected using satellite incidence angles that 

are more varied. It is also recommended that the GRECOSAR simulations be tested in a machine learning 

context to see the value of these simulations for SAR ship and iceberg discrimination.  
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 Assessing the Utility of Modelled SAR Images of Iceberg and Ship 

Targets using a Machine Learning Classifiers 

4.1 Introduction 

The previous chapters presented EM backscatter modelling of icebergs at Sentinel-1 higher incidence angle 

(43˚) beam mode and RADARSAT-2 lower incidence angle (19˚) beam mode. The chapters showed good 

agreement in terms of SAR signature, TRCS and polarimetric decomposition between simulated and real 

SAR image of the icebergs. An assessment was made on how ocean parameters, including wind direction 

and speed, could alter the polarimetric behavior of iceberg targets that include SAR signature and TRCS. 

A mathematical backscatter model of the iceberg considering a melting water layer showed that as little as 

0.1 mm melt water could produce maximum backscattering from the surface which further solidify melt 

water dielectric assumption presented (chapter 3).  

So far, an iceberg’s EM backscattering properties have been compared in terms of visual SAR signatures 

and hand-picked radiometric parameters such as TRCS and polarimetric decomposition. This is enough for 

parameter based simple classifiers but might be insufficient for machine learning based classifiers that can 

deal with hundreds or thousands of intrinsic parameters. This chapter will show a test of the compatibility 

of simulated SAR images of icebergs in machine learning based classifiers and thus suggest validation of 

the EM backscatter model of an iceberg.  

The rest of the chapter includes the following sections: “SAR Data Set Collection,” “Iceberg/Ship 

Classifiers,” “Comparisons of Classifiers Accuracy,” and finally “Discussion.” “SAR Data Set Collection” 

describes rationale and procedure of simulated SAR image generation and real SAR image sourcing. The 

“Iceberg/Ship Classifiers” section describes data pre-processing, rationale for chosen classifiers such as 

SVM, RanFor, kNN and NN and software, hardware packages used in this experiment. The “Comparisons 

of Classifiers Accuracy” section presents classifiers performances with the simulated SAR image data set 

and gradual mix up with the real SAR data set as training data. Similar performances have been achieved 
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with only real SAR training data and compared with results from a with simulated data set. The 

“Discussion” section sums up the article and its findings and as well provides future directions of this work. 

4.2 SAR Data Set Collection 

4.2.1 Real SAR Image Sourcing 

C-CORE has ground truth data of icebergs and vessels available in house. 5000 image data were available 

for the Kaggle competition, the same data set will be used in this experiment. The SAR images are Sentinel-

1 SLC intensity format. Each image comes with HH and HV layers of 75x75 pixels. Images were downsized 

to 60x60 pixels to make them comparable to the size of simulated SAR images. The images also contain 

incidence angle information. The incidence angle ranged from 30˚ to 44˚. 

4.2.2 Simulated SAR Data Generation 

4.2.2.1 Simulation Scene and Parameters 

In GRECOSAR simulated SAR images of icebergs and ships were generated. The simulation scene 

consisted of a 3D model containing an iceberg or ship surrounded by an ocean surface as shown in Figure 

4.1.  
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Figure 4.1 Simulation scene and parameters in GRECOSAR. 

 

The objective is to produce simulation scenes that capture all possible phenomena consisting of beam 

modes, wind speeds, wind directions and target rotations. The satellite parameters were set for Sentinel-1 

low incidence angle (IW1) and high incidence angle (IW3) beam modes. Wind parameters that drive the 

ocean backscattering have been set for high and low wind speeds and for azimuth to range wind directions. 

Targets have also been varied from 0-90˚ to realistically capture the effect of target rotation in contrast to 

the image rotation effort to produce augmented data reported in (Jun, Atharva, & Dhruv, 2017). Six icebergs 

and ships were picked. All these combinations would produce a total of 216 unique simulated SAR images. 

Other simulations parameters and procedures have been followed as described previously in Chapters 2 and 

3. The summary of simulation parameters appears in Table 4.1.  
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Table 4.1 Summary of simulation parameters. 

Parameter Value 

SAR centre frequency 5.405 GHz 

Targets Icebergs= 3, Ships= 3 

Scene pixels 60x60 

Total image counts Icebergs=108, Ships=108, Total=216 

Incidence angle, (𝜙) IW1= 33.1˚, IW3= 43.1˚ 

Wind speed  5 m/s, 10 m/s 

Wind direction 0˚, 45˚ and 90˚ 

Target orientation 0˚, 45˚ and 90˚  

 

4.2.2.2 3D Profiles of Iceberg and Ship targets 

3D profiles of the iceberg and ship targets are required to generate simulated SAR images in GRECOSAR. 

3D profiles of icebergs were captured using LiDAR and a multi-beam sonar in a field program conducted 

by a team of C-CORE in June 2017 off the coast of Bonavista, NL, Canada. Three icebergs of small, 

medium and large sizes were picked for this field program. The measured 3D profiles of the icebergs 

(designated as IB4, IB5 and IB6) are shown in Figure 4.2. Three vessels were also used, and their CAD 

models are shown in Figure 4.3. The Cargo Vessel model was included in the GRECOSAR package. The 

Small Oil Tanker and Medium Oil Tanker models were outsourced from an online CAD model store4. The 

ship models were scaled to the sizes of the icebergs to ensure that target classifiers were not influenced 

significantly by target size.  

 

4 http://www.cgtrader.com 

http://www.cgtrader.com/
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Figure 4.2 Icebergs photos and full 3D profiles showing waterline length. 

 

 

Figure 4.3 CAD models of ships, including waterline length and width. 

 

4.3 Iceberg/Ship Classifiers 

Using the dataset of real and simulated SAR targets, a series of image classifiers were developed using the 

data for training and testing purposes. A brief description of the classifiers and data pre-processing 

performed for the analysis is discussed in the subsections below.  

4.3.1 Software and Hardware 

The software package and hardware used in this work have been summarized below:  

• MATLAB 2017a academic version  

• Work station 

62 m x 9 m

Small oil tanker Medium oil tanker

86 m x 12 m

Cargo Vessel

143 m x 21 m
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• Processor: Core i7 processor with 3.60 GHz speed 

• Internal Memory (RAM): 32 GB 

• Operating system: 64-bit Windows 7 

• GPU: NVIDIA GeForce 337.88 

4.3.2 Classifiers 

As the central intent of this work is to test the adaptability of a simulated SAR dataset with real data, the 

focus of the analysis is not on optimizing the classifier design, nor in determining the utility of various 

classifier techniques for this application. Such an analysis – particularly on this dataset – has been reported 

in (Power et al., 2018). Rather, classifiers were chosen based on those already used (Jang, Kim, & Lam, 

2017) with the same Kaggle target database. All the classifiers were modelled in MATLAB built-in 

functions. In all the classifiers, 10-fold cross validation has been applied in the training and testing data 

(Duda, Hart, & Stork, 2012). 

4.3.2.1 Support Vector Machine 

SVM is very well suited for binary classification as would be good for our case of iceberg/ship 

classification. SVM finds a hyperplane that separates the two classes with minimum distance margin. SVM 

sits at the top 10 list according to (Jang et al., 2017). Basic parameters used: 

• Classification model: ‘fitcsvm’(The MathWorks, b)  

• Kernel Function: radial bias function (rbf) 

4.3.2.2 Random Forest 

RanFor learns from an ensemble which is divided based on many decision trees and finally votes for 

classification. RanFor is one of two classifiers in top 10 list that classifies based on decision trees according 

to (Jang et al., 2017). Basic parameters: 
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• Classification model: ‘fitctree’ (The MathWorks, c)  

• Maximal number of decision splits (or branch nodes) per tree is 7199  

4.3.2.3 K-Nearest Neighbour 

kNN algorithm looks for k-nearest samples for an object and tags to a class based on maximum voting. 

According to (Jang et al., 2017) kNN is in the top-10 algorithm list. Basic parameters used for this work: 

• Classification model: ‘fitcknn’ (The MathWorks, a)  

• Number of weights: 3 

• Weights: one weight per observation 

4.3.2.4 Neural Network 

NN can perform better with high dimensional complex features seen in the image data set. Basic features 

are: 

• Classification app: ‘Neural Net Pattern Recognition’ (The MathWorks, d)  

• Number of hidden neurons: 10 

• Number of layers: 2  

In all the classifiers 10-fold cross validation has been applied in the training and testing data. 

4.3.3 Data Pre-processing 

As a first step, the matrix elements of each real SAR image, consisting of 75×75×2 (×2 accounts for HH 

and HV bands) elements, have been clipped to 60×60×2 to make it comparable to the simulated SAR image 

matrix size. Then, matrix elements were converted to a two layers linear format of 3600×2 and then to a 

single layer 7200 element vectors. Elements of the HV layer were juxtaposed with HH layer. The linear 

vectors were then pre-processed in various combinations of band selection, ocean clutter, data 
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normalization and linearity of the data. Four combinations have been tried based on the parameters shown 

in Table 4.2. Ocean clutter was masked with a thresholding technique described in chapter 2. Data 

normalization was performed according to (Jang et al., 2017). Combinations 1-4 were tested using the SVM 

classifier with 400 randomly drawn real SAR targets, with an equal number of iceberg and ship targets. As 

can be seen, combination 1 outperforms other combinations, hence this pre-processing combination are 

used in all subsequent tests. 

Table 4.2 Data pre-processing Combinations. 

Comb. Band Clutter Normalization Accuracy 

1 HH, HV yes Yes 81.5 

2 HH, HV no Yes 74.7 

3 HH, HV yes No 81 

4 HH (incidence angle 

>30˚) or HV (otherwise)  

yes Yes 75.7 

 

4.3.4 Accuracy Measure  

In the classification process for SVM, RanFor and kNN, the basic steps followed are: classifier model 

generation, cross-validation on the generated model; and 10-fold loss calculation based on the cross-

validation step. 

Models parameters were optimized by the ‘OptimizeHyperparameters’ option in MATLAB aiming to 

minimize cost function in default 30 epochs for SVM, RanFor and kNN classifiers. Once the 10-fold loss 

is known (in %), the accuracy can be calculated by deducting the loss from 100. For NN, it measures 

classifier performance by computing the confusion matrix for training, test and validation data. Accuracy 

is determined from the MATLAB generated ‘all confusion matrix’. 



82 

4.4 Comparison of Classifier’s Accuracy 

Following the steps of data-preprocessing and classifier formation, classifiers were trained based on real 

and simulated SAR image data and the accuracies were then compared. In the literature, there is no specific 

mention of the amount of training data that would be required to produce optimal performance for iceberg 

and ship classifiers. Nonetheless, based on the Kaggle experience, the optimal number of targets should 

number in the thousands. As the total amount of simulated SAR data is 216, this number will be assumed 

as a starting point and increased up to 1616 in steps of 200. This number of targets was considered enough 

to confirm the hypothesis of this paper – that simulated SAR images can be used to augment (or even 

replace) a real SAR target training dataset. 

4.4.1 Accuracy with Real SAR Images as Training Data 

Real SAR images of icebergs and ships were randomly drawn from the Kaggle dataset and fed to train the 

classifiers. The accuracy of the classifiers has been plotted in Figure 4.4 with respect to the increase in the 

number of training data. As similar pattern for accuracy followed for all the classifiers. The accuracy is 

maximum when the number of training data are 1016 for SVM and kNN classifiers, 216 for NN and the 

RanFor classifier peaked at 816 training data.  
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Figure 4.4 Classifiers accuracy with real SAR data as training data. 

 

4.5 Accuracy with Simulated SAR Images as Training Data and Prediction with 

Real Data 

Accuracies were measured first with classifiers trained with the 216 simulated SAR targets. Then, real SAR 

targets were mixed with the simulated SAR targets into one larger dataset, in increments of 200 targets. In 

every step, the total number of training targets were made equal to the number for the case of real SAR 

data. The results have been plotted in Figure 4.5. In the case with only the simulated SAR data (dataset # 

1), a high level of accuracy is already observed for all the classifiers in contrast to the result with only the 

real SAR data. Accuracy numbers of approximately 95%, 93%, 95% and 95% were seen for the SVM, 

RanFor,kNN and NN classifiers. The explanation for the high accuracy with the simulated SAR images is 

because the simulated SAR data contains 216 targets generated from only six different 3D profiles whereas 

the real SAR data contains all distinctly different targets. With the blend of real SAR data with simulated 

data, the level of accuracy is comparable, and the patterns followed the trend as similarly seen in Figure 
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4.4. Real iceberg data set containing equal number of training data were passed into the classifiers trained 

with simulated only (dataset #1) and mixed datasets (#2 to 8) to determine prediction accuracy. This has 

been shown in Figure 4.5 (middle). High prediction accuracy for icebergs is trending on the right spectrum 

of the figure (#6 to #8) where trained models were dominated by real data set. Above 85% prediction 

accuracy is seen for the classifiers trained with purely simulated data (#1) for all the algorithms except 

kNN. The reason perhaps being that the simulated data contains variability of the 3 icebergs at varying 

clutter and sensor parameters. It is possible for the real dataset to contain icebergs with more varying sizes 

and shapes. 

 

Figure 4.5 Classifiers accuracy (top) and prediction (middle) with simulated and real SAR data mix. 
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4.6 Accuracy Comparison 

As a measure of comparison, ‘change in accuracy’ was measured for every classifier, keeping the simulated 

data accuracy result as reference. The results are shown in Figure 4.6. This provides a measure of the 

accuracy shift from the simulated data alone to results with the mixture of simulated and real data. Another 

term called ‘average absolute accuracy’ has also been computed for better insight. This was computed by 

taking absolute and averaging ‘changes’ over classifiers at each dataset number. This has been plotted by 

grey bars in Figure 4.6. In the case with only the simulated dataset (# 1) the margin is the maximum at 

almost 8%. The reason for this is that the SAR dataset contains full polarimetric information of 6 targets 

for ranges of scene, geometrical and sensor parameters. That yielded a high accuracy margin with respect 

to the same number of real SAR data. On the other hand, with real and simulated data mixed, lowest and 

highest margins were found to be almost 0.6% (# 8) and 2.7% (# 2).  

 

Figure 4.6 Classifiers accuracy comparison. 
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4.7 ROC Analysis 

In addition to the accuracy measure, receiver operating characteristics (ROC) curves have been generated 

by passing the real data on the classifiers trained by the real and mixed data. ROC curves were generated 

for the SVM, RanFor and NN based classifiers. It was not possible to generate ROC curves for the kNN 

classifier because it does not provide the probability of the object that is necessary to generate a false 

positive rate. Rather it assigns objects directly to a nearest neighbor.  

4.7.1 Real Data 

Real data containing Iceberg and Ship targets were passed to the classifiers trained by real data and ROC 

curves were generated. ROC curves have been plotted for SVM, RanFor and NN classifiers in Figure 4.7, 

Figure 4.8 and Figure 4.9, respectively, and their corresponding area under curve (AUC) measures are 

shown. A minimum AUC of 99% for SVM, 92% for RanFor and 91% for NN have been calculated. 

 

Figure 4.7 ROC and AUC for SVM classifier trained with real data. 
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Figure 4.8 ROC and AUC for RanFor classifier trained with real data. 

 

 

Figure 4.9 ROC and AUC for NN classifier trained with real data. 

 

4.7.2 Mixed Data 

Real data containing Iceberg and Ship targets were passed to the classifiers trained by only simulated data 

(#1) and mixed data (#2-#8) to generate ROC curves. For the SVM classifier (in Figure 4.10), with only a 

simulated-data-trained classifier, the AUC was calculated to be 48.3% (#1), whereas for the case of mixed 

data, a minimum of 91.2% is seen (#2). For the case of the RanFor classifier (in Figure 4.11), with only a 

simulated-data-trained classifier, an AUC was calculated to be 47.5% (#1), whereas for the case of mixed 

data, a minimum of 71.1% is seen (#2). For the case of the NN classifier (in Figure 4.12), with only the 
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simulated-data-trained classifier, an AUC of 72.1% was calculated (#1), whereas for the case of mixed data, 

a minimum of 82.5% is seen (#2). 

 

Figure 4.10 ROC and AUC for SVM classifier trained with mixed data. 

 

 

Figure 4.11 ROC and AUC for RanFor classifier trained with mixed data. 
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Figure 4.12 ROC and AUC for NN classifier trained with mixed data. 

 

From the above, the following observations can be made: 

1. With only simulated data trained classifiers, lower numbers of AUC have been found (close to 

50% line) for SVM and RanFor. This is still quite good for the iceberg data which is our main 

focus considering that a high prediction accuracy for icebergs (above 85%) has been seen. A 

lower prediction accuracy for the simulated ship targets is to blame for the lowering of the AUC 

numbers. Thus, the simulated iceberg data could be used to train iceberg/ship classifiers. 

2. With only a simulated-data-trained NN classifier, 72.1% AUC has been found. With reference 

to the main document, the prediction for iceberg targets is above 85%; thus, the lower prediction 

accuracy for ship targets lowered this value. 

3. With mixed-data-trained classifiers, AUC rapidly increased. A minimum of 72.1% was found 

for the #2 for RanFor classifier. This suggests that simulated iceberg and ship targets could be 

supplemented with real data to train these types of classifiers.  

4.8 Discussion and Conclusion 

Concerning the analysis presented in the previous sections, several observations can be made.  
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1. With only simulated SAR data, the accuracy is seen as a maximum for all the classifiers (almost 

95%) in comparison to the case with the same number of real SAR targets. This is a first indication 

that the target classifiers can pick up inherent features for the six targets in all possible scene 

parameter variations from the simulated SAR images. 

2. Prediction of real iceberg data with a simulated-data-trained classier (#1) is very much comparable 

to any data mix ratio (#2 to #8). This confirms the utility and compatibility of simulated SAR data 

of icebergs for use in this machine learning application. 

3. With the progressive mixing of real and simulated SAR data, the ‘average absolute change in 

accuracy’ fluctuates between 0.6% to 2.7%. This indicates that the combination of simulated and 

real data in a single dataset is comparable to the accuracy with real SAR data alone with only minor 

fluctuation. 

4. With #1 and #2 data set, the levels of accuracy are very comparable and the patterns are very 

similar. This is another indication that the simulated SAR data are compatible with real SAR data 

within this specific application.  

These observations are consistent with the authors’ previous research (chapter 2 and 3) that showed the 

similarity of real SAR targets to simulated targets produced from an EM backscatter model. The simulated 

SAR data of icebergs was found capable of capturing intrinsic parameters as it was comparable to the real 

SAR images tested in the classifiers. 
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 Conclusion 

5.1 Summary 

This thesis presents the development and validation of EM backscatter modelling of icebergs at C-band in 

an ocean environment. The research was segmented and progressed through three main steps as outlined in 

chapter 2, three and four.  

Starting with chapter 2, an EM backscatter model of icebergs has been presented, addressing the modelling 

challenges at large incidence angle beam modes operating at C-band. Modelled backscatter from icebergs 

was compared with real backscatter in terms of radiometric properties. Given that the EM modelling tool, 

GRECOSAR, is limited to simulating single layer backscatter, the dielectric of the iceberg target was varied 

and set to mimic the melt water surface that produces SAR brightness that closely matched observed results. 

This was the first indication that the GRECOSAR models can accurately mimic a SAR image clip of a wet 

iceberg target in an ocean environment. Taking advantage of GRECOSAR, it was shown that the same 

target can vary in brightness and signature as it changes orientation with respect to radar look direction.  

Chapter 3 expands on the EM backscatter modeling approach to smaller incidence angle beam modes. 

GRECOSAR was used to determine the complete scattering matrix (all four channels with phase), which 

can be used with polarimetric techniques to further analyse scattering mechanisms from the icebergs. The 

subsequent analysis of both the radiometric and polarimetric properties of the modelled backscatter showed 

significant promise when compared to observed results.  

To supplement the GRECOSAR work, chapter 3 includes the description of a 2D multilayer backscattering 

model that was developed to include air-water and water-ice interfaces at the iceberg surface. This allowed 

for an analysis of the sensitivity of the presence of the melt layer and its thickness to the radar return. It was 

shown that as little as 0.1 mm of melt layer could result in significant surface backscattering, a fact which 

further endorses the melt layer assumption in chapter 2. Simulations were expanded to generate SAR returns 
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of iceberg targets in a multitude of ocean environments, including variable wind directions and speeds. 

Variations in target brightness and signature were observed with changes in wind direction and speed. In 

summary, chapters 2 and 3 successfully demonstrated the capability to model an iceberg target’s SAR 

signature, radiometric properties, polarimetric properties and realistic backscattering phenomena sensitive 

to the varying beam modes, target geometry and variation in the surrounding ocean environment.  

In chapter 4, the iceberg backscatter simulations were analysed in a holistic sense by passing the simulated 

SAR images to various machine learning algorithms in the context of a iceberg/ship classifier. This allowed 

for a myriad of model parameters to be used within the learning phase of the algorithm development. 

Simulated SAR data of the icebergs and ships were generated to include extensive ranges of scenarios 

covering varying target sizes, orientations, imaging modes and ocean environments. Classifier accuracy 

measures were comparable when trained and tested with real and simulated SAR data. This is an indication 

that the EM model is able to capture intrinsic and holistic properties of the iceberg in addition to the 

capabilities demonstrated in chapter 2 and three. This last point demonstrates the objective of the original 

research idea – to exploit the convenience of an EM model to generate many thousands of target image 

clips for use in deep learning applications.  

5.2 Future Directions 

Several recommendations can be made based on the research presented herein.  

1. A more realistic representation of the iceberg-ocean interface is envisaged to reflect the dynamics 

of iceberg-ocean interaction. 

2. Field work could be extended to capture 3D profiles of colder bergs near Greenland that do not 

have the same melt layer on the iceberg surface. Simulations can be developed to determine if the 

melt water surface condition holds for icebergs in any other geographical locations. This will 

confirm if GRECOSAR can be used to simulate iceberg backscatter irrespective of geographical 

locations. It might indicate that an alternative to GRECOSAR is necessary to properly simulate 
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multilayer backscatter. For example, the EM solver HFSS (high-frequency structure simulator) 

could be used with a SAR wrapper to facilitate this multilayer model.  

3. A more extensive set of SAR data of icebergs/ships can be generated to include a larger span of 

beam modes, target rotations and ocean parameters to determine their effect on classifier accuracy. 

4. Since there is an interest in determining the detectability of icebergs in sea ice, these type of 

simulations could be developed. Sea ice can be profiled and added to the 3D model of the iceberg 

in the simulation scene to generate EM backscatter of icebergs in a sea ice environment. This will 

help determine the different scattering mechanisms of targets in different scattering environments. 

5. EM modelling could be used to determine the detection limits of SAR by generating simulations 

of a large variety of icebergs with different shapes and sizes. This could help determine if a 

particular shape of iceberg is more or less detectable and the exact size limit for detectability. 

Undetectable iceberg sizes can thus be determined for sets of environment and satellite parameters.  
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Appendix  

A. MATLAB Code to Generate 2D Backscatter Model of Iceberg 

clc 
clf 
clear 
close all 

  
%% script to compute back-scatter contribution from two-layered IB model 
% sig0=sig0_ws+sig0_is+sig0_ss+sig0_iv------ws=water surface, iv=ice volume 
% --------------------------- 
% water | 
%----------------------------- 
% ice (with air bubble)| 
%----------------------------- 
% sea-water | 
%---------------------------- 
%% common parameters 
fc=5.4e9; 
theta_air=linspace(10,60,60); % incident angle in (degree) 
thickness_w=1*.001; % in (mm)----assumption 
thickness_ib=30*1; % in (m)----assumption 

  
% air bubble density calculation 
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d_by_dice=.5; % gray et al. d/dice=.5, .8, .9 and .95 
radius_air_bubble=1e-3; % air bubble radius (mm) Laurence gray et al. 1991 

(greenland--1mm)/in dierking et al. .15-.25 mm (antartica) 
N_air_bubble=(3/4/pi/radius_air_bubble^3)*(1-d_by_dice) % /m3 
rms_height_w=1.5*.001; % rms height of water surface (mm)------partington et. 

al--1.5 mm 
corr_length_w=8*.01; % corr. length of water surface (cm)------partington et. 

al--8 cm 
weight_rms_height_sea=1; %  
weight_corr_length_sea=1; %  
rms_height_sea=weight_rms_height_sea*rms_height_w; % rms height of water 

surface (mm) 
corr_length_sea=weight_corr_length_sea*corr_length_w; % corr. length of water 

surface (cm) 
rms_height_i=rms_height_w; % rms height of water surface (mm) 
corr_length_i=corr_length_w; % corr. length of water surface (cm) 
vol_air_bubble=(4/3)*pi*radius_air_bubble^3*N_air_bubble; % volume fraction 

of air bubbles 

  
% water dielectric constant 
e_water=my_seawater_permittivity(0,fc./1e9,0); %(T,fc,S) 
% e_water=3-1i*.1; 
er_water=real(e_water); 
eim_water=-imag(e_water); 
ep_a=1; % air 
lamda_air=3e8/fc; 
k_air=(2*pi/lamda_air); 
k_water=k_air*sqrt(er_water); 
n_air=sqrt(ep_a); 
n_water=sqrt(e_water); 
theta_water=my_snellslaw(theta_air,er_water,eim_water,fc); 
ke_water=-2*k_air*imag(sqrt(e_water)); 

  
k_water*rms_height_w; 
k_water*corr_length_w; 

  
% reflection/transmission coefficient calculation-----air/water 
[R_horizontal_a_to_w,R_vertical_a_to_w,R_horizontal_w_to_a,R_vertical_w_to_a,

T_horizontal_a_to_w,T_vertical_a_to_w,T_horizontal_w_to_a,T_vertical_w_to_a]=

my_my_reflection_transmission(theta_air,theta_water,n_air,n_water); 
% figure 
% 

plot(theta_air,abs(R_horizontal_a_to_w),theta_air,abs(R_vertical_a_to_w),'r') 
% legend('h','v') 
% back-scatter from------ air-ice interface 
W_water_gauss=(2*pi*corr_length_w.^2)./(1+corr_length_w.^2.*(2*k_air.*sind(th

eta_air)).^2).^1.5; % komarov 2017 pp-5705 
% 

W_water_exp=4*corr_length_w.^2./(1+corr_length_w.^2.*k_air.^2.*sind(theta_air

).^2.*(1)^2).^2; 
sigma0_vv_ws=8.*k_air.^4.*rms_height_w.^2.*abs(R_vertical_a_to_w.*cosd(theta_

air).^2+sind(theta_air).^2.*(1+R_vertical_a_to_w).^2*.5.*(1-

(ep_a/e_water))).^2.*W_water_gauss; 

  
sigma0_hh_ws=8*k_air.^4.*rms_height_w.^2.*abs(R_horizontal_a_to_w.*cosd(theta

_air).^2).^2.*W_water_gauss; 
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% plot(theta_air,10.*log10(sigma0_vv_ws),'r') 
% legend('hh','vv') 

  
% %%%%%%%%%%%%%%% 
% iceberg dielectric constant 
e_i_re=3.15; % gray et al--IEEE TGRSS-1991 
losstangent=2e-3; % haykin 
e_i_im=e_i_re * losstangent; 
e_ice=e_i_re-1i*e_i_im; 
vi=vol_air_bubble; % volume inclusion of air bubble in ice 
e_iceberg=e_ice+3*vi*e_ice*((ep_a-e_ice)/(ep_a+2*e_ice)); % ulaby---pp-131 
k_ice=k_air*sqrt(real(e_iceberg)); 
n_ice=sqrt(e_iceberg); 
theta_ice=my_snellslaw(theta_water,real(e_iceberg),imag(e_iceberg),fc); 
% %  
E_i=ep_a/e_ice; % ulaby pp-474 
K_ice=(E_i-1)/(E_i+2); % ulaby pp-474 
ka_iceberg=3*vol_air_bubble*k_ice*imag(E_i)/(abs(E_i+2))^2; % ulaby pp-474 
ks_iceberg=2*vol_air_bubble*k_ice^4*radius_air_bubble^3*(abs(K_ice))^2; % 

ulaby pp-474 
ke_iceberg=ka_iceberg+ks_iceberg; 
% %  
% reflection/transmission coefficient-------- water-ice 
[R_horizontal_w_to_i,R_vertical_w_to_i,R_horizontal_i_to_w,R_vertical_i_to_w,

T_horizontal_w_to_i,T_vertical_w_to_i,T_horizontal_i_to_w,T_vertical_i_to_w]=

my_my_reflection_transmission(theta_water,theta_ice,n_water,n_ice); 
% % correlation spectrum--ice 
W_ice_gauss=(2*pi*corr_length_i.^2)./(1+corr_length_i.^2.*(2*k_water.*sind(th

eta_water)).^2).^1.5; % komarov 2017 pp-5705 
% 
sigma0_vv_is1=8.*k_ice.^4.*rms_height_i.^2.*abs(R_vertical_w_to_i.*cosd(theta

_water).^2+sind(theta_water).^2.*(1+R_vertical_w_to_i).^2*.5.*(1-

(e_water/e_ice))).^2.*W_ice_gauss; 
sigma0_hh_is1=8*k_ice.^4.*rms_height_i.^2.*abs(R_horizontal_w_to_i.*cosd(thet

a_water).^2).^2.*W_ice_gauss; 

  
% %  
sigma0_vv_is=sigma0_vv_is1.*T_vertical_a_to_w.*T_vertical_w_to_a.*exp(-

2*ke_water*thickness_w./cosd(theta_water)); 
sigma0_hh_is=sigma0_hh_is1.*T_horizontal_a_to_w.*T_horizontal_w_to_a.*exp(-

2*ke_water*thickness_w./cosd(theta_water)); 

  

  
%% volume scattering in IB 
% % f_iva=4*(2*pi*radius_air_bubble/lamda_air)^4*(abs(K_ice))^2; 
rho_m=10; % range-ambiguous distance 
sig0_vol=N_air_bubble*4*pi*radius_air_bubble^6.*k_air.^4.*(abs(K_ice)).^2*rho

_m; 

  
sigma0_vv_iv=... 
 

sig0_vol.*T_vertical_i_to_w.*T_vertical_w_to_i.*T_vertical_a_to_w.*T_vertical

_w_to_a... 
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 .*((1-exp(-

2*ke_iceberg*thickness_ib./cosd(theta_ice)))./(2*ke_iceberg*thickness_ib./cos

d(theta_ice)))... 
 .*(exp(-2*ke_water*thickness_w./cosd(theta_water))); 
sigma0_hh_iv=... 
 

sig0_vol.*T_horizontal_i_to_w.*T_horizontal_w_to_i.*T_horizontal_a_to_w.*T_ho

rizontal_w_to_a... 
 .*((1-exp(-

2*ke_iceberg*thickness_ib./cosd(theta_ice)))./(2*ke_iceberg*thickness_ib./cos

d(theta_ice)))... 
 .*(exp(-2*ke_water*thickness_w./cosd(theta_water))); 

  

 
%% scattering from IB-sea interface 
e_sea=my_seawater_permittivity(5,fc/1e9,35); %(T,fc,S) 
er_sea=real(e_sea); 
eim_sea=-imag(e_sea); 
k_sea=k_air*sqrt(er_sea); 
n_sea=sqrt(e_sea); 
theta_sea=my_snellslaw(theta_ice,er_sea,eim_sea,fc); 

  
% reflection/transmission coefficient ice-sea 
[R_horizontal_i_to_s,R_vertical_i_to_s,R_horizontal_s_to_i,R_vertical_s_to_i,

... 
 

T_horizontal_i_to_s,T_vertical_i_to_s,T_horizontal_s_to_i,T_vertical_s_to_i]=

... 
 my_my_reflection_transmission(theta_ice,theta_sea,n_ice,n_sea); 
% % correlation spectrum--ice 
W_sea_gauss=(2*pi*corr_length_sea.^2)./(1+corr_length_sea.^2.*(2*k_ice.*sind(

theta_ice)).^2).^1.5; % komarov 2017 pp-5705 
% 
sigma0_vv_ss1=8.*k_ice.^4.*rms_height_sea.^2.*abs(R_vertical_i_to_s.*cosd(the

ta_ice).^2 ... 
 +sind(theta_ice).^2.*(1+R_vertical_i_to_s).^2*.5.*(1-

(e_iceberg/e_sea))).^2.*W_sea_gauss; 
sigma0_hh_ss1=8*k_ice.^4.*rms_height_sea.^2.*abs(R_horizontal_i_to_s.*cosd(th

eta_ice).^2).^2.*W_sea_gauss; 
%  
sigma0_vv_ss=sigma0_vv_ss1.*T_vertical_a_to_w.*T_vertical_w_to_a.*T_vertical_

w_to_i.*T_vertical_i_to_w.*... 
 exp(-2*ke_water*thickness_w./cosd(theta_water)).*exp(-

2*ke_iceberg*thickness_ib./cosd(theta_ice)); 
sigma0_hh_ss=sigma0_hh_ss1.*T_horizontal_a_to_w.*T_horizontal_w_to_a.*T_horiz

ontal_w_to_i.*T_horizontal_i_to_w.*... 
 exp(-2*ke_water*thickness_w./cosd(theta_water)).*exp(-

2*ke_iceberg*thickness_ib./cosd(theta_ice)); 

  
 %% plot 
figure 
plot(theta_air,10.*log10(sigma0_hh_ws),'bl') 
hold on 
plot(theta_air,10.*log10(sigma0_hh_is)) 
hold on 
plot(theta_air,10.*log10(sigma0_hh_iv),'c') 
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hold on 
plot(theta_air,10.*log10(sigma0_hh_ss),'g') 
hold on 
total=10.*log10(sigma0_hh_ws+sigma0_hh_is+sigma0_hh_iv+sigma0_hh_ss); 
plot(theta_air,total) 

  
xlabel('incident angle (\circ)') 
ylabel('\sigma_0 (dB)') 
legend('surface (water)','surface (ice)','volume (ice)','surface 

(sea)','total') 
title('HH') 
%  

 

 

 


