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ABSTRACT  

One key characteristic of big data is variety. With massive and growing amounts of data 

existing in independent and heterogeneous (structured and unstructured) sources, assigning con-

sistent and interoperable data semantics, which is essential for meaningful use of data, is an in-

creasingly important challenge. I argue, conceptual models, in contrast to their traditional roles in 

the Information System development, can be used to represent data semantics as perceived by the 

user of data. In this thesis, I use principles from philosophical ontology, human cognition (i.e., 

classification theory), and graph theory to offer a theory-based conceptual modeling grammar for 

this purpose. This grammar reflects data from users of data perspective and independent from data 

source schema. I formally define the concept of attribute lattice as a graph-based, schema-free 

conceptual modeling grammar that represents attributes of instances in the domain of interest and 

precedence relations among them. Each node in an attribute lattice represents an attribute - a true 

statement (predicate) about some instances in the domain. Each directed arc represents a prece-

dence relation indicating that possessing one attribute implies possessing another attribute.  

In this thesis, based on the premise that inherent classification is a barrier that hinders se-

mantic interoperation of heterogeneous data sources, a human cognition based conceptual model-

ing grammar is introduced as an effective way to resolve semantic heterogeneity. This grammar 

represents the precedence relationship among attributes as perceived by human user and provides 

a mechanism to infer classes based on the pattern of precedences. Hence, a key contribution of 

attribute lattice is semantic relativism – that is, the classification in this grammar relies on the 



iii 

 

pattern of precedence relationship among attributes rather than fixed classes. This modeling gram-

mar uses the immediate and semantic neighbourhoods of an attribute to designate an attribute as 

either a category, a class or a property and to specify the expansion of an attribute – attributes 

which are semantically equal to the given attribute. The introduced conceptual modeling grammar 

is implemented as an artifact to store and manage attribute lattices, to graphically represent them, 

and integrate lattices from various heterogeneous sources.  

With the ever-increasing amount of unstructured data (mostly text data) from various data 

sources such as social media, integrating text data with other data sources has gained considerable 

attention. This massive amount of data, however, makes finding the data relevant to a topic of 

interest a new challenge. I argue that the attribute lattice provides a robust semantic foundation to 

address this information retrieval challenge from unstructured data sources. Hence, a topic mod-

eling approach based on the attribute lattice is proposed for Twitter. This topic model conceptual-

izes topic structure of tweets related to the domain of interest and enhances information retrieval 

by improving the semantic interpretability of hashtags. 

 

Keywords: Attribute lattice, Conceptual modeling grammar, Semantic data integration, At-

tribute-lattice-based topic modeling, Twitter content analysis 
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1 Introduction 

Conceptual models formally describe “some aspects of the physical or social world 

around us for the purposes of understanding and communication” (e.g., Mylopoulos, 

1992). Conceptual models are supposed to represent the information in the domain of in-

terest in a direct and natural manner (Mylopoulos, 1998). Traditionally, conceptual models 

are an early and essential part of requirements engineering for information system devel-

opment (Wand et al., 1995; Mylopoulos, 1998; Olivé, 2007 ). However, with the explosion 

of available data, often created without any schema, the traditional paradigm of “model 

first, data after” is breaking down (Roussopoulos & Karagiannis, 2009; Lukyanenko & 

Parsons, 2013 ). 

 Traditional conceptual modeling grammars commonly have two assumptions, 

which I call schema dependency assumptions. First, they assume the subject domain that 

they represent consists of classes (entities) and instances belong to these classes (entities). 

This assumption is reflected in various conceptual modeling languages. For instance, Chen 

(1976) argues that “[t]he entity-relationship model adopts the more natural view that the 

real world consists of entities and relationships” , while Olivé (2007, p. 383) emphasizes  

that “[o]ne principle of conceptual modeling is that domain objects are instances of entity 

types.” However, this assumption has been criticized for not offering a natural representa-

tion of the real world around us (Parsons & Wand, 2000). 

Second, data is collected, accessed and used only for predefined purposes by known 

users who have a shared understanding of classes in the schema (Parsons & Wand, 2014). 
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However, with the rapid advance in Internet technology, more and more collected data is 

used for emerging purposes. For instance, social media data, which is collected to capture 

online interactions between people, can also be used to support decision making in organ-

izations (LaValle et al., 2011). Data from external sources – outside of organization bound-

aries – either has no schema (or unknown schema), or has a schema that is not designed for 

the current particular emergent purpose.  

With the unprecedented growth of data, challenges include not only efficient collec-

tion and storage of data, but also its meaningful use (Bizer et al., 2012, p. 51). Central to 

meaningful use is representing data in a semantically clear and interpretable manner, and, 

when combining data from multiple sources, providing a unified semantic view over data 

from independent and heterogeneous sources (independent from their logical data model). 

Nearly all existing conceptual modeling grammars assume the goal of creating a domain-

knowledge-based, predefined schema (Lukyanenko et al., 2019) and provide modeling 

constructs consistent with this assumption. This dependency on predetermined classes hin-

ders the meaningful use of data (Parsons & Wand, 2000, 2003; Lukyanenko et al., 2019). 

To address the limitations of schema-based conceptual modeling grammars, Lukyanenko 

et al. (2019) call for research on instance-based conceptual modeling grammars.  

This thesis introduces a conceptual modeling grammar (Wand & Weber, 2002) that 

captures the semantics of data independent of a fixed, class-based schema and provides a 

foundation for representing and combining data from independent and heterogeneous 
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sources. This schema-free conceptual modeling grammar, which I call attribute lattice 

grammar1, represents data semantics of the subject domain in a graph like structure.  

Traditionally, data semantics has been defined as the "meaning and the use of data" 

(Woods, 1975). The information system community adopts this definition and describes 

semantics as a mapping between objects modeled, represented, and stored in the infor-

mation system, and the real-world objects they represent (Sheth, 1997). This grammar aims 

to help data users understand data. Using cognitive principles (Parsons & Wand, 2008), the 

key to developing this grammar is mapping constructs (attributes) to the classes that are 

meaningful for data consumers. In other words, this grammar aims to provide data users 

with a data-consumer-oriented schema. In this context, semantics refers to mapping attrib-

utes in the subject domain to meaningful classes that data users need to understand and 

analyze data. 

The notion of attribute lattice grammar is proposed in line with the instance-based 

data model (IBDM) (Parsons & Wand, 2000). The IBDM argues that instances (things) 

exist independent of classes, and classes are human-created constructs that provide useful 

abstractions (Parsons & Wand, 2000). The IBDM proposes a two-layered structure in 

which one layer is responsible for the (storage of) data about individual entities (instances) 

and their attributes, and the other keeps track of the definition of classes in terms of attrib-

utes of instances. In the IBDM approach, instances are stored only with their attributes, 

rather than classes (Parsons & Wand, 2000). By freeing data from predefined classes and 

 

1 In this thesis, hereafter, “attribute lattice grammar” refers to the conceptual modeling grammar, and an “attribute lat-
tice” or a “lattice” refers to a model (script) generated from this grammar.  
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schemas and eliminating the need to map class-level constructs between independent sche-

mas, the IBDM simplifies semantic interoperation.  

1.1 Research Objectives 

The attribute lattice grammar utilizes principles from human cognition and philo-

sophical ontology to offer a theory-based, lightweight conceptual model - that is, a concep-

tual model with a minimal set of components (attributes and the relationships among them) 

to capture the semantics of the domain. This conceptual modeling grammar aims to offer a 

form of representation that reflects users of the data point of view, independent of the 

schema of the data source (schema-free).  

The first research objective is to define components of this conceptual modeling 

grammar, which is independent of fixed classes but supports classification. This research 

objective also aims to discuss how this grammar provides a mechanism to infer unobserved 

attributes based on observed ones, to encapsulate attributes that are common to all members 

of a class, and to assign new attributes to all members of a class (Parsons & Wand, 2008).  

The grammar provides a basis to create a unified view over heterogeneous data 

sources. Hence, another goal of this research objective is to define the notion of “similarity” 

(Evermann, 2008a) in this grammar, and elaborate on how this grammar enables semantic 

data integration. Finally, this research objective aims to compare this grammar with other 

knowledge representation languages (i.e., DL). The first research objective of this thesis, 

therefore, is: 
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Research Objective 1: To formalize the notion of attribute lattice grammar by using 

principles from human cognition and philosophical ontology. 

The next research objective is to develop a software artifact that supports the attribute 

lattice conceptual modeling grammar. This artifact: (1) provides basic features such as the 

ability to store, query, and edit lattices; (2) provides a declarative graphical representation 

of lattices; (3) supports basic analyses such as class structure and attribute lattice validation; 

and (4) supports the integration of lattices from distinct data sources. Hence, the second 

research objective of this thesis is: 

Research Objective 2: To implement an IT artifact to support attribute lattice crea-

tion, manipulation, graphical representation, validation, and integration.  

The research strategy that guides this study is Design Science Research (DSR). The 

DSR typically involves the creation and evaluation of  IS artifacts (March & Smith, 1995; 

Hevner et al., 2004). In this context, the artifact is a conceptual modeling grammar (com-

ponents, and rules), and a tool that supports the creation of this artifact. The last research 

objective of the thesis concerns the evidence-based evaluation of this artifact, as a crucial 

part in DSR (Hevner et al., 2004).  

The evaluation of the artifact can be absolute or relative (to comparable artifacts, or 

to the absence of artifact) (Prat et al., 2014). The former evaluation techniques examine if 

the artifact achieves its goal, where the later techniques compare the artifact to the absence 

of artifact or to other comparable artifacts. The introduced grammar is an innovative ap-

proach to address representing data semantics coming from heterogeneous data sources. I 

propose an absolute evaluation approach to demonstrate how this grammar reaches its goal 
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of representing data (text data) semantics. In specific, I propose the use of attribute-lattice-

based topic modeling for Twitter - the most popular micro-blogging site. 

With the explosive amount of data, finding relevant information from data sources is 

not a trivial task. Specifically, the lack of schema in semi-structured and unstructured data 

sources (e.g., text data) presents new challenges for information retrieval. An attribute lat-

tice grammar can be used to represent data semantics of structured, semi-structured, or 

unstructured data. This notion is being used, here, to summarize and to conceptualize the 

topic structure of text data (tweets) in the domain of interest. Hence, the third research 

objective of this thesis is:  

Research Objective 3: To demonstrate the practical usefulness of attribute lattice 

grammar. 

Table 1 summarizes the research objectives of this thesis and specific objectives re-

lated to each research objective. 

In the following, I begin by formally defining the notion of attribute lattice and dis-

cussing a procedure to create a unified attribute lattice (Chapter 2). Then, the implemented 

artifact is discussed (Chapter 3). This is followed by introducing topic modeling for Twitter 

(Chapter 4). The thesis concludes by summarizing the primary contributions of the research 

to theory and practice and suggesting several areas for future research (Chapter 5). 
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Table 1. Research Objectives and Specific Objectives 
Ch

ap
te

r 2
 

RO1 Formalize the notion of attribute lattice by using principles from human 
cognition and philosophical ontology. 

SO 1.1 Define attribute lattice grammar components and characteristics 

SO 1.2 Elaborate attribute lattice validation rules 

SO 1.3 Compare the attribute lattice grammar with other knowledge representa-
tion languages 

SO 1.4 Develop a foundation for the semantic integration of data conceptualized 
with the attribute lattice grammar 

Ch
ap

te
r 3

 

RO2 Implement an IT artifact to support attribute lattice creation, manipula-
tion, graphical representation, validation, and integration.  

Ch
ap

te
r 4

 

RO3 Demonstrate the practical usefulness of attribute lattice grammar. 

SO 3.1 Develop the procedure of lattice extraction for topic modeling in Twitter 
(attribute-lattice-based topic model.) 

SO 3.2 Extend the artifact to retrieve tweets and to suggest precedences based on 
them for attribute-lattice-based topic modeling. 

SO 3.3 Demonstrate the practical applications of attribute-lattice-based topic 
modeling. 
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2 Attribute Lattice: A Graph-Based Conceptual Modeling Grammar 

2.1 Introduction  

Traditionally, conceptual modeling has been considered a critical step of require-

ments engineering in Information System (IS) analysis and design (Wand & Weber, 2002). 

Previous studies have emphasized that conceptual models help IS stakeholders to under-

stand and communicate relevant knowledge in a domain. Furthermore, conceptual models 

are a way to document the original IS development requirements, and they serve as input 

for the design process (Kung & Solvberg, 1986; Wand & Weber, 2002; Recker, 2015). 

Over the years, extensive work has been conducted on this topic. There exists a consider-

able body of literature on how these models are used to capture and represent both static 

phenomena (e.g., instances and their attributes) and dynamic phenomena (e.g., events and 

processes) in a domain. For instance, Moody (2005), Recker et al. (2009), and Van der 

Aalst (2013) provide a more comprehensive review on conceptual modeling approaches.  

In the era of big data, with the rapidly growing amount of available data, the envi-

ronment of IS development has changed. Parsons and Wand (2014) coined the open infor-

mation environment (OIE) to explain the characteristics of this new environment. In this 

environment, “users have access to sources over which they may have no control; new 

sources of data may emerge; applications of data might change radically over time; and 

new uses of data might emerge” (Parsons & Wand, 2014. p. 2). In OIEs, support is needed 

to enable users to apply their own conceptual models to the information coming from var-

ious data sources (Parsons & Wand, 2014). 
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Based on the premise that dependency on the schema of data sources is a barrier to 

conceptual modeling for OIEs (Lukyanenko et al., 2019), I propose a schema-free (i.e., not 

requiring or producing requiring a fixed schema) conceptual modeling grammar, which I 

call attribute lattice grammar. This grammar, independent from the original schema of 

data source, captures data semantics and represents the structure of data. 

Conceptual models represent knowledge in a domain as understood by humans 

(Hirschheim et al., 1995; Wand et al., 1995). As has been previously shown in the literature, 

ontology and cognition are appropriate theoretical foundations to create, and evaluate con-

ceptual modeling grammars and scripts (e.g., Shanks et al., 2003; Parsons & Wand, 2008; 

Burton-Jones et al., 2009; Recker et al., 2011). The notion of attribute lattice, as a theory-

based conceptual modeling grammar, is developed using principles from philosophical on-

tology and cognitive psychology. The components of this grammar are defined by elabo-

rating and differentiating various types of subsumption relationships. These types have 

been defined such that the introduced grammar supports the meaningful classification of 

data. 
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2.2 Related Research 

In this section, I discuss principles from philosophical ontology and cognitive psy-

chology that offer guidance in defining the attribute lattice conceptual modeling grammar. 

Then, I briefly present a review of approaches for resolving semantic heterogeneity through 

data integration to highlight a common assumption underlying many approaches – the re-

liance on class-based schemas – and to point out that this dependency, in turn, leads to 

several known challenges in these approaches. This is followed by elaborating the mathe-

matical foundation (i.e., graph theory) used to define the attribute lattice as a graph-based 

grammar. 

2.2.1 Principles from cognitive psychology and philosophical ontology 

Ontology - the branch of philosophy which deals with the order and the structure of 

reality (Angeles, 1981; Wand et al., 1995) – has been used as a foundation for prescribing 

components of conceptual modeling grammars, as well as for analyzing and improving 

conceptual models (Guizzardi & Wagner, 2010). In particular, Bunge’s ontology  (Bunge, 

1977) , as elaborated for conceptual modeling by Wand and Weber (1990, 1993), has been 

popular in conceptual modeling research. Three ontological principles, which are widely 

adopted in IS research, are central to our approach: (1) the world consists of, either tangible 

or intangible, things that are assumed to exist; (2) things possess attributes; and (3) sub-

sumption relations between attributes can be expressed by attribute precedence (Wand & 

Weber, 1990, 1993; Parsons & Wand, 2002, 2003; Chen & Parsons, 2008; Parsons, 2011) 
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The concept of attribute precedence2 -i.e., subsumption relationships between attrib-

utes - provides an essential foundation for the definition of attribute lattice. As has been 

previously reported in the literature, this concept can be utilized to improve semantics cap-

tured and conveyed by conceptual models (Parsons & Wand, 2003; Parsons, 2011). To 

elaborate on this concept, suppose r and s are two attributes, s precedes r means that any 

instance possessing r also possesses s (Bunge, 1977; Parsons & Wand, 2000, 2003). For 

example, suppose r is ‘is blue’ and s is ‘has a color’, every instance that ‘is blue’, also ‘has 

a color’. Likewise, ‘is visible’ precedes ‘has a color’, which in turn, precedes ‘is blue’.  

Cognitive psychology provides a guideline for the definition of attribute lattice. The 

classical view of categories assumes classes independently exist and views them as abstract 

containers with things either inside or outside of them (Lakoff, 1987). Along the same 

lines, the inherent classification of data is a common assumption in conceptual modeling 

and database design (Parsons & Wand, 2000).  

Inherent classification entails that (1) each class is defined by its properties, (2) all 

instances must belong to classes and (3) each instance of a class possesses the same set of 

properties. Traditionally, identifying classes is an initial step in conceptual modeling, and 

database design assumes (either explicitly or implicitly) that (1) instances are inherently 

classified and must belong to at least one class to exist in a database (Parsons & Wand, 

2000) and (2) there is a clear and fundamental distinction between classes and properties 

of instances (i.e., instances belong to the classes and possess properties). As a result, the 

 

2 The term “attribute precedence” refers to “property precedence” using the terminology in Parsons and Wand (2000) 
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main body of research on resolving semantic heterogeneity focuses on schema mapping 

techniques, that is, the identification of similar schema elements in various data sources 

(Rahm & Bernstein, 2001; Noy, 2004; Dong & Srivastava, 2013).  

Parsons and Wand (1997, 2000, 2008) criticized the inherent classification assump-

tion in conceptual modeling and database design. They argued classification should be 

guided by cognitive principles. Humans use concepts to classify phenomena they encounter 

based on observable properties. In fact, without categorizing the world into concepts, hu-

mans cannot function at all (Lakoff, 1987). These concepts, which manifest as classes in 

conceptual modeling and database design, enable us to understand and communicate the 

phenomena of interest (Parsons & Wand, 2008) 

It is commonly accepted that classification has two major functions. First, it promotes 

cognitive economy. A class abstracts all the relevant attributes (properties) of its instances. 

Hence, by classifying instances and assigning them to classes, humans decrease the amount 

of information that is needed to perceive, learn and communicate about each individual 

instance. Second, it supports inference – that is, it enables us to go beyond the information 

given.  When humans come across an instance, based on their direct (observed) knowledge, 

they can infer the unobserved properties of instances (Smith & Medin, 1981; Smith, 1988; 

Parsons, 1996; Parsons & Wand, 2000, 2008). 

Parsons and Wand (2008), utilizing these functions, offers a model of “good” classi-

fication structure in conceptual modeling, and provides a set of rules for constructing such 

structures. These rules provide a guideline to develop high-quality conceptual models in a 
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domain of interest, with meaningful classes, that better support and reflect users’ perspec-

tives. For instance, the good classification model emphasizes that a proper subset of a class 

must exist that the class membership can be inferred from this subset. As will be discussed 

in further detail in the attribute lattice component definition section (2.3.1), the model of 

good classification guides the process of attribute lattice component development.  

2.2.2 Resolving Semantic Data Heterogeneity via Data Integration 

Semantic data modeling and integration is an active research area in several research 

communities such as databases, domain ontologies and big data (Rahm & Bernstein, 2001; 

Noy, 2004; Dong & Srivastava, 2013). Despite its pervasiveness and the substantial work 

in this area, resolving semantic heterogeneity remains a key challenge in using data from 

independent sources. The lack of deep data understanding, and a focus on syntax and struc-

ture, rather than on data semantics, hinders semantic data integration (Uschold & 

Gruninger, 2004; Haas, 2007).  

Semantic data integration is an approach for providing unified access to disparate 

and semantically heterogeneous data (Bergamaschi et al., 1999).  The field has been an 

active area of research since the 1980s (Batini et al., 1986; Doan & Halevy, 2005). How-

ever, in spite of abundant literature, concerns have persisted about the lack of (1) consistent 

theory and methodology, (2) in-depth understanding of semantics, and (3) a unified ap-

proach for integration (Sheth, 1999; Uschold & Gruninger, 2004; Haas, 2007; Hendler, 

2014). 
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The aim of this section is not to review all approaches for semantic integration in all 

disciplines. For example, Rahm (2011), and,  Shvaiko and Euzenat (2005) provide a com-

prehensive review of integration approaches. Instead, I try to highlight the common as-

sumptions underlying many approaches (the reliance on class-based schemas) and provide 

a general overview of the limitations arising from these assumptions.  

• From Traditional to Domain Ontology-based Data Integration 

Traditional semantic data integration can be divided into two main steps (Rahm & 

Bernstein, 2001; Doan et al., 2004). The first step, a match operation, takes two schemas 

as input and provides a semantic mapping between schema elements. The second step de-

fines mapping expressions formally. Depending on the context, the mapping can be 

expressed using different approaches such as LAV (local as view), or GAV (global as 

view). In these methods, the data reside in data sources, while the global schema provides 

a unified, integrated, and virtual view (Lenzerini, 2002).  

Generally speaking, matcher types can be categorized into schema level and data 

(instance) level matchers (Rahm & Bernstein, 2001). As argued by Parsons and Wand 

(2000), in traditional data models, classification is inherently part of data management and 

storage. In this regard, schema reconciliation is a prerequisite to accessing data. Not sur-

prisingly, then, the main body of semantic data integration literature focuses on schema 

integration and data integration based on a so-called global schema (or a mediated schema). 

Match methods in the data level are often used as a complementary method, or for semi-

structured data when a schema cannot be constructed from data. These methods are either 

based on linguistic characteristics (for text elements) such as keyword relative frequency 
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and string match (e.g., Clifton et al., 1998), or constraint characteristics (for more struc-

tured data), such as value ranges and averages (Rahm & Bernstein, 2001). Probabilistic 

and statistical models are the key common approaches used in match methods in the data 

level (e.g., Doan et al., 2003; Kang & Naughton, 2003). 

The initial approach for data integration was hard-coding the integration points. In 

this approach, developers were supposed to implement separate and specific code to get 

access to components of other schemas. Therefore, it had no flexibility, and it was hard to 

maintain. Although subsequent methods were loosely coupled and easier to manage, data 

semantics was a missing component in the integration process (Uschold & Gruninger, 

2004). Domain ontology-based approaches were introduced to address this lack of seman-

tics. Domain ontology has two primary roles to play in these methods (Wache et al., 2001): 

first, map concepts in the content to fixed classes (an ontology); and second, integrate these 

concepts from different ontologies.  

Schemas and ontologies have different purposes: ontologies have been used for in-

teroperability, search, and automated reasoning purposes, while, schemas have been used 

for structuring and querying data in a single database (for a detailed comparison see 

Uschold & Gruninger, 2004). However, a common practice in both is to utilize fixed clas-

ses for structuring the data. As a result, similar techniques were used for schema mapping 

and ontology mapping (Shvaiko & Euzenat, 2005). The ontology mapping techniques, like 

their ancestors (schema mapping), still suffer from a lack of deep (cognitive) semantics - 

that is, although ontology-based semantic data integration approaches reach the agreement 

about the semantics of data within the individual ontology, their ties to the schema and 
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fixed classes makes defining a shared interlingua ontology challenging (Uschold & 

Gruninger, 2004).  

• Semantic Web and Linked Data 

The notion of Semantic Web, first coined by Tim Berners-Lee (Berners-Lee et al., 

2001), has been used for semantically integrating semi-structured data on the web. To 

achieve this goal, Linked Data provides a set of best practices, and offers principles (Bern-

ers-Lee, 2006; Heath & Bizer, 2011) to publish and interlink machine-readable data on the 

web (Heath & Bizer, 2011). In brief, Linked Data uses URIs (Berners-Lee et al., 2005) to 

define uniquely identifiable web resources and RDF (Consortium, 2014) triples (subject, 

predicate, and object) to encode how these resources are related (Bizer et al., 2011).  

As a semantic extension of the RDF data model, RDF schema (Brickley & Guha, 

2014) provides a data model vocabulary (schema) for RDF-based data sets. It provides 

mechanisms to describe groups of resources in terms of classes and properties by using the 

RDF-based syntax (Brickley & Guha, 2014). RDF schema improves the capability of RDF 

data sources in important ways such as adding subsumption hierarchy to the classes and 

properties (Horrocks et al., 2003) 

During the past two decades, multiple web ontology languages such as OIL (Fensel 

et al., 2001), DAML + OIL (Connolly et al., 2001), OWL (McGuinness & Van Harmelen, 

2004), and OWL2 (Hitzler et al., 2009) have been introduced. The latest version of OWL, 

OWL2, is based on Description Logics (DL) - a family of class- and property-based (con-

cept-based) knowledge representation languages and a subset of first-order logic (Baader, 

2003). It became a W3C recommendation in 2009 – W3C recommendations promote the 
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interoperability of Web technologies. OWL2 provides a richer vocabulary for describing 

instances of RDF-based resources in comparison to RDFS, such as relations between clas-

ses, and characteristics of properties (e.g., symmetry). However, like other schema-based 

approaches, there is a clear fundamental distinction between class and property in this lan-

guage. In the standard OWL2 semantics and reasoners, different usages of the same term 

(e.g., both as a class and a property) will be considered different.  

• Known Issues in Schema-Based Approaches 

There are several well-known problems in schema-based approaches, which arise 

because of their inherent classification assumption. I argue these longstanding problems 

can be addressed by using attribute-lattice-based integration approach. First, in schema-

based approaches, there is a clear distinction between the concept of class and the concept 

of property. With this assumption, it is not easy (if possible at all) to integrate a class from 

one data source to a property in another (Omelayenko, 2002; Ghidini & Serafini, 2006; 

Šváb-Zamazal & Svátek, 2009). For instance, faculty member or graduate student could 

be a property (or property value) of the customer class in one data source, and each can be 

separate classes in another source. 

Second, concepts (either properties or classes) in distinct data sources may have var-

ious levels. This means a concept in one data source can be more general, or more specific 

than a related concept in another data source. For instance, ‘person’ class in one data source 

is more general than ‘student’ class in another. I refer to this as the “general/specific con-

cepts integration” problem (e.g., Barrasa Rodríguez et al., 2004; Dragut & Lawrence, 2004; 

Lammari et al., 2007). 
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Finally, schema-based approaches are susceptible to the “complex matching prob-

lem”, in which possessing several concepts (class or property) at the same time in one 

schema is semantically equal to possessing one concept (or several concepts) in the second 

schema (e.g., Barrasa Rodríguez et al., 2004; Dragut & Lawrence, 2004). For instance, ‘is 

a Ph.D. candidate’ could be a property of ‘Ph.D. students’ class in one data source, how-

ever, it might be semantically equivalent to and calculable from several properties of ‘stu-

dent’ class (‘is a Ph.D. student’, ‘has completed comprehensive exam’ and ‘has a thesis 

topic’) in another data source. 

2.2.3 Mathematical Foundation 

Mathematically, an attribute lattice is a set of attributes and a set of precedences that 

show the subsumption relationships among attributes. An attribute lattice can be 

represented in a graph-like structure. The mathematical structure of attributes and pairwise 

(precedence) relationships among them, however, can be modeled using graph theory. The 

mathematical structure helps, first, to represent attribute lattices where the graphical model 

is large, second, to make inferences based on known precedences, and finally, to develop 

an artifact for representing and manipulating an attribute lattice. The aim of the following 

brief review is to summarise digraph (directed graph) definitions needed for the 

mathematical definition of an attribute lattice. These definitions are adopted from Agnars-

son and Greenlaw (2007). 

A directed graph (Agnarsson & Greenlaw, 2007, p. 21)  is an ordered triple !⃗ =

(%, ', (), where 
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%	 ≠ 	, 
% ∩ '	 = , 
( ∶ ' ↦ %	 × %	is	a	map.		

Here, , denotes an empty set, % a set of vertices, ' a set of directed edges (or just 

edges) and ↦ a ‘maps to’ symbol. If ((7) = (8, 9), then 8 is called the tail of 7 and 9 the 

head of 7. Also, 9 is called a successor of 8, and 8 is called predecessor of 9.  

If ((7) = (8, 8), then 7 is called a directed loop. If !⃗ is a digraph, then %:!⃗; and 

'(!⃗) will always denote the set of vertices and directed edges of !⃗, respectively. Two di-

rected edges 7 and 7́ are said to be parallel edges if ((7) = ((7́). That is, the edges are 

mapped onto the same ordered pair of vertices. 

Let !⃗ = (%, ', () be a digraph, and 8 ∈ % a vertex in !⃗, the indegree of 8 (Agnars-

son & Greenlaw, 2007, p. 24) denoted by >!(8), is the number of directed edges having 8 

as head, that is, 

>!(8) = |{7 ∈ ': ((7) = (B, 8)	for some	B ∈ %}| 

The outdegree of 8, denoted by >"(8), is the number of directed edges having 8 , as 

tail, that is,  

>"(8) = |{7 ∈ ': ((7) = (8, D)	for some	D ∈ %}| 

For a given vertex	8 ∈ %(!⃗), the inneighbours, denoted byE!(8), and the outneigh-

bours, denoted byE"(8), of 8	are given by the following: 

E!	(8) = {B ∈ %:!⃗;:	((7) = (B, 8)	for some 7	 ∈ ':!⃗;}, 

E"	(8) = {D ∈ %:!⃗;:	((7) = (8, D)	for some 7	 ∈ ':!⃗;}, 
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respectively. 

 

This section reviewed mathematical and theoretical foundations – graph theory, cog-

nitive psychology and philosophical ontology – that will be used to develop a graph-based 

attribute lattice grammar. This section also pointed out a common assumption in semantic 

integration approaches, that is, schema dependency. Schema dependency, from traditional 

data integration approaches to domain ontology-based data integration approaches to the 

semantic web integration approaches, contributes to the known integration challenges. In 

the following, I introduce the notion of attribute lattice, and I discuss how this grammar 

offers a new approach for semantic data integration based on classes that are constructed 

from the point of view of users of data. 
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2.3 Attribute Lattice Grammar Components and Characteristics 

In traditional schema-based notation, classes are concepts to which instances belong 

and properties are attributes of classes that are part of the class definition, and are possessed 

by instances in the class. In contract with this approach, I argue attributes are statements 

about instances, and whether a particular statement is considered a class or a property de-

pends on the relationship between attributes3.  

Grounded in classification – d a human cognition process to understand the 

semantics of instances (Parsons, 1996; Parsons & Wand, 1997, 2008) – d and the concept 

of attribute precedence from philosophical ontology (Bunge, 1977; Parsons & Wand, 

2003; Chen & Parsons, 2008; Parsons, 2011), this sections formally defines the concept of 

attribute lattice as a graph-based conceptual modeling grammar that represents the class 

structure of the subject domain from perspective of the users of data independent from a 

data source schema. This modeling grammar focuses on attributes (not classes nor proper-

ties) and the relationship among attributes. However, the class structure of the domain can 

be inferred from the pattern of precedences and attributes in the grammar.  

A key contribution of an attribute lattice grammar is semantic relativism – that is, 

the pattern of precedences around an attribute designates the attribute as a class, or a prop-

erty. A precedence relationship in an attribute lattice represents how a human (user of data) 

perceives the relationship between two attributes (true statements) in the domain. For any 

given attribute in a lattice, a set of precedences around it represent its relationship with 

 

3 Hereafter in this thesis, attribute refers to the node itself, and property denotes one type of node. 
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other attributes. In other words, changing the pattern of precedences around an attribute 

over time (i.e., adding/removing precedence relationships) may change the type of 

attribute. For instance, the type of attribute may change from a property to a class by adding 

new precedences. 

2.3.1 Definition of Attribute Lattice and its Components 

An attribute lattice is a representation of attributes linked to each other in a graph 

like structure. It can be shown in a graphical representation in which each node represents 

an attribute, and each directed arc represents a precedence relation between attributes indi-

cating subsumption relations between attributes. Here, the grammar is defined formally, a 

mathematical notation for lattice structure presentation is introduced by expanding digraph 

(directed graph) notation, and examples are used to elaborate each definition.  

Definition 1 (Attribute): An attribute refers to any true statement (predicate) de-

scribing instances4. 

Expr	1. F = 	 {	G#, G$, G%, … , G&};		

Definition 2 (Domain of interest): A domain of interest is a set of phenomena (in-

stances), X, and a set of attributes, A, possessed by the instances in X. D = (X, A) such that 

each attribute in A is possessed by at least one instance in X. 

Expr	2. J = 	 {	B#, B$, B%, … , B'}			 

∀G( ∈ F, ∃B) ∈ J	M8Nℎ	PℎGP	G( 	 ∈ Q:B);; 

 

4 The “attribute” in this notation is equal to the definition of property in Parsons and Wand (2008) 



23 

Q is a function (map) from an instance to its attributes, that is, for any given instance 

(B(), the output (F() of this function is a set of attributes possessed by this instance.  

Expr	3. Q ∶ J	 ⟶ F	is	a	map	such	that	for	each	B( ∈ J,Q(B() = F( ⊆ F; 

 Principles from philosophical ontology suggest that attribute precedence can repre-

sent the semantic relationship between attributes. Attribute precedence provides a formal-

ism to represent subsumption relations between attributes. Assume that r and s are two 

attributes in a domain of interest; s precedes r (denoted as r → s) means any instance that 

possesses r it also possesses s. For instance, we know that instances can be seen, if they 

have colour. This relationship can be represented by attribute precedence formalism. In this 

example, r is has a colour and s is visible; visible precedes has a colour which is denoted 

as has a colour → visible (see Parsons and Wand (2008) for a detailed discussion).  

The attribute precedence formalism can be used to represent the relationship between 

specialized and general attributes (Parsons & Wand, 2003). Attributes in a lattice can be 

manifestations of higher-level attributes (Parsons & Wand, 2003), and such higher-level 

attribute supports the semantic integration of lattices (discussed in section 2.5). For in-

stance, both nurse and doctor, in a hospital context, are manifestation of a more general 

attribute which is hospital staff, meaning that any individual who is either a nurse or a 

doctor is a hospital staff (doctor → hospital staff and nurse → hospital staff). 

Definition 3 (Attribute Precedence): Assume r and s are attributes such that r, s ∈	

A. A precedence exists between r and s (denoted by r → s) if and only if every instance 

that possesses r also possesses s. 
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The set of all precedences in an attribute lattice is denoted by \], and is defined as 

following: 

Expr	4. \] = {	^]#, ^]$, ^]%, … , ^]*} =	

{(], M):	], M	 ∈ F	, M8Nℎ	PℎGP	"	B( ∈ J, ] ∈ Q(B()	®	M ∈ Q(B()};			

For brevity, hereafter, the above expression will be presented as follows: 

Expr	5. \] = {	^]#, ^]$, ^]%, … , ^]*} = {(], M):	] → M};			

Definition 4 (Attribute lattice): In mathematical terms, an attribute lattice is a di-

rected acyclic graph which denoted by an ordered triple ` = (F, \], ℱ) where  

Expr	6. F	 ≠ 	,	

\] ≠ 	,	

ℱ ∶ \] ↦ F	 × F	is	a	map;		

The set F	is the set of attributes, and the set \] the precedences. If 	ℱ(\]) = (], M), 

then ] is called the preceded and M the inferred (preceding) attribute. If ` is a acyclic di-

graph, then F(`) and \](`) will always denote the set of attributes and precedences of `, 

respectively. 

Following constraint (Expr 7) states that the lattice is acyclic, and loops and paral-

lel edges are not allowed in the lattice. 

Expr	7. 	bc]	GdD	] ∈ F,	∄	^]) 	such	that		ℱ:^]); = (], ]).		

bc]	GdD	fg97d	^]( , ^]) ∈ \]; 	ℱ	(^]() ≠ ℱ	:^]);.	

bc]	GdD	{]#, ]$, . . . , ]'} ⊆ F, Gd>		{(]#, ]$), (]$, ]%), … , (]'!#, ]')} ⊆ `,	∄	(]', ]#) ∈ `.			
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Parsons and Wand (2008) define the full expansion of a class as the set of all attrib-

utes common to all class members. In an attribute lattice, this definition is adopted to 

formally define the expansion of an attribute. 

Definition 5 (Expansion of an attribute): Expansion of an attribute G(, denoted as 

G(
+, is a set of attributes such that possessing the given attribute G( is equivalent to pos-

sessing all attributes in the set (G(
+). In other words, any given attribute is semantically 

equal to the union of attributes in its expansion.  

Expr	8. G(
+ 	= 	⋃ G()

&
),# 		ic]	Mcj7	G() ∈ F(`)		

M8Nℎ	PℎGP	G(
+ ⊂ (F(`) − {G(})	 

Gd>	G( ∈ Q(B() ≈ {G(#, G($, … , G(&} 	 ∈ Q(B()	

where		

≈	represents	semantical	equivalency	

Parsons and Wand (1997, 2008) offer criteria for meaningful classification in con-

ceptual modeling. A set of attributes possessed by some instances in the domain (potential 

class) is a class5 whenever it has a base - a strict subset of attributes that is sufficient to 

identify an instance as a member of the class, and from which the remaining attributes of 

the class can be inferred (Parsons & Wand, 1997, 2008). In other words, a class must pro-

vide information (in terms of new attributes) about its members beyond the attributes re-

quired to identify members as belonging to the class. Where a base provides sufficient 

information to identify class membership, classes inferred from a single set of attributes 

 

5 The concept of “class” in this thesis is equivalent to the definition of useful class in Parsons and Wand (2008) 
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(base) will be identical classes. Moreover, Parsons and Wand (2008) define a qualifying 

set as a set of properties possessed by some instances in a class (not all) which provides 

sufficient information to infer class membership.  

Following the same principles and using the notion of expansion of attributes, three 

types of attributes can be distinguished in the attribute lattice. Attributes can be designated 

as either a class, a category or a property attribute. The pattern of precedences around an 

attribute, which reflects its semantic relationships, is utilized for this designation. In the 

following, each attribute type is defined, following by an explanation of how the pattern of 

precedences specifies these types. 

Definition 6 (Class): Let G( denote an attribute in an attribute lattice. G( is a class if 

and only if: (1) the cardinality of its expansion is greater than one (|G(
+| > 1); (2) at least 

one proper subset of  G(
+ exists such that other attributes in G(

+can be inferred from it (∃	v ⊂

G(
+ 	M8Nℎ	PℎGP	v → {G(

+ − v}); and (3) at least one instance exists that possesses all attrib-

utes in G(
+. 

Definition 7 (Category): Let G( denote an attribute in an attribute lattice. G( is a cat-

egory if and only if: (1) the cardinality of its expansion is greater than one (|G(
+| > 1); (2) 

no proper subset of G(
+ exist such that other attributes in G(

+can be inferred from it;  and (3) 

at least one instance exists that possesses all attributes in G(
+.  

Note that, a category is also referred to as a potential class using the terminology in 

Parsons and Wand (2008). 

Definition 8 (Property): Assume G( is an attribute in an attribute lattice. G( is a prop-

erty if and only if its expansion is an empty set (|G(
+| = 0). 
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To summarize, attributes in an attribute lattice can be designated as either a class, a 

category or a property. The attribute is a property if the semantics of the attribute cannot 

be represented by the union of other attributes in the domain (|G(
+| = 0). Otherwise, it is 

either a class or a category. If all attributes in the expansion (G(
+) of a non-property attribute 

can be inferred from a strict subset of it, the attribute is a class; otherwise, it is a category.  

Mathematically, x is a function (map) from an attribute to its designated type. In 

other words, for any given attribute (G)), the output of this function will be either class, 

category or property. 

Expr	9. x ∶ F(`) ⟶	{yzGMM, yGP7fc]D, \]c^7]PD}		

is	a	map,	such	that	for	each	G( ∈ F(`), x(G()	is	a	designated	type	of	the	attribute	

For example, in a university context, assume that saying an individual is a student is 

semantically equal to saying an individual has a student number, a program of study, a 

degree, and a start date for her program. In this setting, student is an attribute in the attrib-

ute lattice, and its expansion is student number, program, degree, and start date. This at-

tribute, student, is a candidate to be a class or category. Also assume that possessing student 

number is sufficient to infer that an individual is a student, and has a student number, a 

program of study, a degree, and a start date for her program. This means a proper subset 

of student expansion (student number) exist such that possessing other attributes in the 

expansion can be inferred from possessing it. As a result, student is a class, and student 

number is a base for this class. Expression 10 shows the mathematical representation of 

this class.  
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Expr	10. F = 	 {	MP8>7dP, MP8>7dP	d8j~7], ^]cf]Gj, >7f]77, MPG]P	>GP7}; 

MP8>7dP ∈ Q(B() ≈ {	MP8>7dP	d8j~7], ^]cf]Gj, >7f]77, MPG]P	>GP7}	∈ Q(B() 

MP8>7dP+ =	 {MP8>7dP	d8j~7], ^]cf]Gj, >7f]77, MPG]P	>GP7} 

x(MP8>7dP) = yzGMM; Note	that	other	attributes	are	properties. 

In addition, in the same context suppose that some graduate students are eligible for 

teaching courses as a part-time instructor. These graduate instructors (not all graduate 

students) are considered employees of the university. Thus, it is reasonable to define a new 

attribute – that is, graduate instructor. Possessing graduate instructor, as an attribute in 

the attribute lattice, is semantically equal to being a graduate student, and an instructor at 

the same time. As a result, the expansion of graduate instructor is graduate student and 

instructor. Since no proper subset of this expansion provides sufficient information to infer 

other attributes in the expansion, graduate instructor is a category. Mathematical descrip-

tion of these relationships are given in Expression 11. 

Expr	11. F = 	 {	f]G>8GP7	MP8>7dP, gdMP]8NPc], f]G>8GP7	gdMP]8NPc]}; 

f]G>8GP7	gdMP]8NPc] ∈ Q(B() ≈ {	f]G>8GP7	MP8>7dP, gdMP]8NPc]}	∈ Q(B()	

f]G>8GP7	gdMP]8NPc] → 7j^zcD77 

f]G>8GP7	gdMP]8NPc]+ =	 {f]G>8GP7	MP8>7dP, gdMP]8NPc]} 

x(f]G>8GP7	gdMP]8NPc]) = yGP7fc]D; Note	that	other	attributes	are	properties. 

Semantic relativism states that a given attribute should be designated as a class, cat-

egory or property, based on the pattern of arc and attributes around it. To be able to, first, 

capture the semantics of relationships between attributes, and second, infer the type of at-

tribute based on precedences, three types of precedences are introduced – simple prece-

dence, base precedence, and subcategory precedence.  
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In the following, the function which mathematically expresses the type of prece-

dence, Ä(^](), is formally defined. This is followed by the formal definition of the seman-

tics being represented by each precedence type. 

Ä is a function (map) from a precedence to its type. For any given precedence rela-

tionship (^](), the output of this function will be either \ (simple precedence), Å (subcate-

gory precedence), or v (base precedence.) 

Expr	12. Ä ∶ \]	(`) ⟶	 {\, Å, v}		

is	a	map,	such	that	for	each	^]( 	 ∈ 	\]	(`), Ä(^]()	is	a	type	of	precedence	

Precedence relations with the type	\, provide semantics not further than simple prec-

edence which is defined earlier (Expr 4). It is worthwhile to note this relationship (simple 

precedence) is a transitive relationship, that is, if ] → 	M and	M → 	t, by definition ] → 	P.  

Expr	13. For	any	given	^]( =	 (]( , M(); 		if	Ä(^]() = \,	then	]( → M( 		

Following simple precedence definition, the direct inference of any given attribute 

(](), denoted by >^(](), refers to the union of attributes which are connected as inferred 

attributes via simple precedence to the given attribute. 

Expr	14. >^(]() = 	⋃ M()
*
),# 	ic]	Gzz	M() ∈ F(`), :]( , M(); ∈ \](`),	and		Ä É	:]( , M();Ñ = \.	

Definition 9 (Subcategory precedence): Assume r is a category and s is an attribute 

in its expansion (M ∈ ]+).  A subcategory precedence exists between r and s. This type of 

precedence is denoted by an arc labeled with S (r  s).  
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Subcategory precedence (s), declares that a preceded attribute is a category, and the 

expansion of this attribute (category) is equal to the union of all attributes connected to it 

via outgoing subcategory precedence. 

Expr	15. For	any	given	^]) =	 (]( , M(); 		if	Ä(^]() = Å,	then		

G)	]( → M( 		

~)x	(]() = yGP7fc]D			

N)	](
+ =	ÖM()

*

),#

	ic]	Gzz	M() ∈ F(`), :]( , M(); ∈ \](`) Gd>		Ä É	:]( , M();Ñ = Å	

Definition 10 (Base precedence): Assume r is a class and s is an attribute in its ex-

pansion (M ∈ ]+) such that other attributes in ]+ 	can be inferred from it. A base precedence 

exists between r and s. This type of precedence is denoted by an arc labeled with B (r  

s). 

Base precedence (B), declares that the inferred attribute (M() is a class, and the ex-

pansion of this attribute (class) is equal to the union of expansion of its bases and attributes 

which are directly inferred from each base. 

Expr	16. For	any	given	^]) =	 (]( , M(); 		if	Ä(^]() = v,	then		

G)	]( → M( 		

~)x	(M() = yzM			

N)	M(
+ =	Ö(]()

+ ∪ >^(]())

*

),#

)		

ic]	Gzz	]() ∈ F(`), :]() , M(; ∈ \](`) Gd>		Ä É	:]() , M(;Ñ = v.	



31 

To illustrate, consider the example mentioned above. The following base and sub-

category precedence relations exist: 

Expr	17. f]G>8GP7	gdMP]8NPc]	 		f]G>8GP7	MP8>7dP 

f]G>8GP7	gdMP]8NPc]	 		gdMP]8NPc] 

MP8>7dP	d8j~7]	 	MP8>7dP 

An attribute lattice can be represented as a graph in which nodes represent attributes 

and directed arcs represent precedences. Directed arcs labeled with S and B are used in the 

graphical representation to depict the subcategory and base precedence relationship, re-

spectively. The graphical representation of sample attributes with these three precedence 

type are shown in Figure 1. Note that to be able to quickly identify various type of prece-

dences, three different arc styles are used to represent these types. Also, class, category, 

and property attributes are represented by different colours. 

 

   

a) Simple precedence b) Subcategory precedence c) Base precedence 

 Three type of precedence relationships 

 

Figure 2.a and 2.b represent the attribute lattice structure of the above discussed ex-

amples (Expressions 10 and 11, respectively.)  

 

r s r sS sr B
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a) Class attribute; student  b) Category attribute; graduate instructor 

 Class and category attribute 

2.3.2 Attribute Lattice Grammar Characteristics  

The previous section introduced the components of the attribute lattice grammar. 

This section discusses attribute lattice characteristics. These characteristics explain the se-

mantic relativism in an attribute lattice – that is, how the pattern of precedences provide 

sufficient information to: (1) identify attribute type; (2) validate an attribute lattice (section 

2.3.3); and (3) integrate distinct lattices (section 2.5). To discuss these characteristics, the 

immediate and semantic neighbourhood of attributes are defined by adopting neighbour 

definitions in regular digraph (section 2.2.3). These neighbourhoods are used to designate 

the attribute type, and to deduce the class structure of the domain represented by the attrib-

ute lattice.  

In graph theory (Agnarsson & Greenlaw, 2007), specifically in digraphs, 

inneighbours and outneighbours of a node refer to a set of nodes that have the given node 

as a head or tail, respectively. An attribute lattice has two key differences from a regular 

digraph. First, in contrast with a regular digraph, which has only one type of arc, the attrib-

ute lattice has three types of precedences (\, Å, v) with different semantics. Second, an 
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B

Degree
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attribute (a node) in the attribute lattice might have an expansion. Precedences that are 

connected to attributes in its expansion might convey information that is of interest. As a 

result, inneighbours and outneighbours of attributes in the attribute lattice are defined such 

that they cover type of precedence, and whether the precedence is a direct precedence, or 

a precedence through expansion of an attribute.  

The following expressions provide formal definitions of inneighbours and outneigh-

bours in an attribute lattice. These expressions elaborate whether attributes are connected 

to the given attribute directly or through its expansion (>	c]	7), the type of precedence 

(\, Å, v), and whether the given attribute is a preceded or an inferred attribute (−	c] +) in 

the relationship. For instance, for a given attribute G(, E!-. 	(G() is a set of attributes that 

are directly connected to G( with a base precedence relationship, and G( appears as an in-

ferred attribute in the precedence relationship. 

Expr	18. E!-/	(G() = {] ∈ F(`):	ℱ(^]) = (], G(), Ä(^]) = \,	 for some ^]	 ∈ \](`)}. 

E!-0	(G() = {] ∈ F(`):	ℱ(^]) = (], G(), Ä(^]) = Å,		for some ^]	 ∈ \](`)}. 

E!-. 	(G() = {] ∈ F(`):	ℱ(^]) = (], G(), Ä(^]) = v,	for some ^]	 ∈ \](`)}. 

E"-/	(G() = {M ∈ F(`):	ℱ(^]) = (G( , M), Ä(^]) = \,		for some ^]	 ∈ \](`)}. 

E"-0	(G() = {M ∈ F(`):	ℱ(^]) = (G( , M), Ä(^]) = Å,	for some ^]	 ∈ \](`)}. 

E"-. 	(G() = {M ∈ F(`):	ℱ(^]) = (G( , M), Ä(^]) = v,	for some ^]	 ∈ \](`)}. 

			E!1/	(G() = {] ∈ F(`):	ℱ(^]) = (], M), ] ∉ G(
+ , M ∈ G(

+ , Ä(^]) = \,	 

 for some ^]	 ∈ \](`)}.  

E!10	(G() = {] ∈ F(`):	ℱ(^]) = (], M), ] ∉ G(
+ , M ∈ G(

+ , Ä(^]) = Å,	   

for some ^]	 ∈ \](`)}. 

E!1. 	(G() = {] ∈ F(`):	ℱ(^]) = (], M), ] ∉ G(
+ , M ∈ G(

+ , Ä(^]) = v,				

for	some	^]	 ∈ \](`)}.	
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E"1/	(G() = {M ∈ F(`):	ℱ(^]) = (], M), ] ∈ G(
+ , M ∉ G(

+ , Ä(^]) = \,				

for	some	^]	 ∈ \](`)}.	

E"10	(G() = {M ∈ F(`):	ℱ(^]) = (], M), ] ∈ G(
+ , M ∉ G(

+ , Ä(^]) = Å,			

for	some		^]	 ∈ \](`)}.	

E"1. 	(G() = {M ∈ F(`):	ℱ(^]) = (], M), ] ∈ G(
+ , M ∉ G(

+ , Ä(^]) = v,				

for	some	^]	 ∈ \](`)}.	

Using the same notation, relationships of a given attribute (G() to another attribute 

in its neighbours (G)), denoted by	â7z(G( , G)) , can be abbreviated as follow:  

Expr	19. â7z:G( , G); ∈

{−>\,−>Å,−>v,+>\,+>Å,+>v,−7\,−7Å,−7v,+7\,+7Å,+7v} 

Where		

−	Gd>	 +	represents	whether	the	given	attribute	is	the	inferred	or	preceded	at-

tribute,		

>	Gd>	7	represents	whether	the	precedence	is	a	direct	precedence	or	precedence	

through	its	expansion,		

\, Å	Gd>	v	represents	the	type	of	precedence	 

 Characteristic 1 (Immediate neighbourhood): The pattern of precedences around 

each attribute can be represented by a set of paired elements in which the first component 

is an attribute G) which is directly connected to the given attribute and the second compo-

nent is the type of this relationship, this pattern is called the immediate neighbourhood (çE) 

of the given attribute (G(). 

Expr	20. çE(G() = {(G) , â7z:G( , G);: ic]	Gzz	G) 	éℎ7]7	:G( , G);	c]	:G) , G(; 	∈

\](`) , Gd>	â7z:G( , G); ∈ {−>\,−>Å,−>v,+>\,+>Å,+>v}}	
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Characteristic 2 (Attribute type): Each attribute has one type at a time and this type 

can be deduced based on its immediate neighbourhood.  

The type of an attribute is defined based on the expansion of the attribute – that is, a 

set of attributes that are semantically equal to the given attribute. If the cardinality of an 

expansion of the attribute is zero, the attribute is a property. Also, if at least one proper 

subset of the expansion exists such that other attributes in the expansion can be inferred 

from it, the attribute is a class, otherwise it is a category. Hence, an attribute has only one 

type at any time. By definition (Expr 15), the preceded attribute in a subcategory prece-

dence is a category, and the inferred attribute in the base precedence is a class. As a result, 

the immediate neighbourhood of an attribute provides sufficient information to deduce the 

type of attribute.  

Corollary (Class attribute): An attribute G( in the lattice represents a class if and 

only if it has at least one incoming base precedence. In other words, G( is a class if and only 

if |E!-. 	(G()| ≥ 1. 

Corollary (Category attribute): An attribute G( in the lattice represents a category if 

and only if it has at least one outgoing category precedence. In other words, G( is a category 

if and only if |E"-0	(G()| ≥ 1. 

Corollary (Property attribute): An attribute G( in the lattice represents a property if 

and only if it has neither incoming base precedence nor outgoing category precedence. In 

other words, G( is a property if and only if |E"-0	(G()|= 0	and	|E!-. 	(G()| = 0. 

Characteristic 3 (Expansion of each attribute): The expansion of each attribute can 

be deduced based on its immediate neighbourhood.  
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The expansion of class and category attributes can be deduced by the pattern of prec-

edences in the immediate neighbourhood of attributes. Following subcategory precedence 

definition (Expr 15), for a given category attribute, the union of all inferred attributes from 

subcategory precedences defines the category expansion.  

Expr	21. çi	|E"-0	(G()| ≥ 1	, Pℎ7d	N(G() = yGP7fc]D, Gd>	G(
+ = E"-0	(G()			

A class attribute in an attribute lattice has at least one base (Expr 16), and other at-

tributes of its expansion can be inferred from base attributes. Hence, the union of all bases 

of a class, and attributes that can be directly inferred from these bases constitute the expan-

sion of a class. It is worthwhile to note that the base attribute can be a category or a property 

attribute. The following expression shows the formal definition. 

Expr	22. çi	|E!-. 	(G()| ≥ 1	, Pℎ7d	N(G() = yzGMM, Gd>		

G(
+ = ⋃êE!-. 	(G()	, E

"-/	:G();ë, ic]	Gzz	G() 	 ∈	 E
!-. 	(G()		

Figure 3a and 3b show the class structure in an attribute lattice with a property and 

category attribute as a base, respectively.  

 

 

 

 
a) Class with property as a base b) Class with category as a base 

 Class structure in an attribute lattice 
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Corollary (Qualifying Attribute for a Class): An attribute G( in the lattice represents 

a qualifying attribute for a class attribute G) if and only if G) is a class, and it can be inferred 

with the direct precedence from	G(. In other words, G( is a qualifying attribute for G) if and 

only if N:G); = yzGMM and â7z:G( , G); = 	+>\. 

Characteristic 4 (Semantic neighbourhood): The pattern of precedences related to 

each attribute and its expansion can be represented by the set of paired elements in which 

the first component is an attribute (G*) that is connected to the given attribute either directly 

or through its expansion and it is not part of its expansion. The second component is the 

type of this relationship, this pattern is called the semantic neighbourhood (ÅE) of the given 

attribute (G(). 

Expr	23. ÅE"(G() = {(G* , â7z(G( , G*): ic]	Gzz	G* ∉ G(
+ , G2 ∈ {G( ∪ G(

+}, éℎ7]7	(G2 , G*) ∈

\](`)}.	

ÅE!(G() = {(G* , â7z(G( , G*): ic]	Gzz	G* ∉ G(
+ , G2 ∈ {G( ∪ G(

+}, éℎ7]7	(G* , G2)

∈ \](`)}. 

ÅE(G() = 	ÅE
"(G() 	∪ 	ÅE

!(G() 

Note, immediate neighbourhood and semantic neighbourhood are defined to formal-

ize the relation of a given attribute to other attributes in the lattice. IN formalizes how an 

attribute, individually, is related to other attributes. In contrast, SN encapsulates the expan-

sion of attributes and formalizes how the given attribute, directly and through its expansion, 

is related to other attributes in its neighbourhood. Hence, to define the SN of an attribute, 

the interrelationships among attributes that are part of the attribute expansion are excluded. 
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For attributes that are designated as a class, or category, not all pairs in the IN are in the 

SN. However, the IN and SN of properties will be identical. 

Expr	24. gi	x(G() ∈ {yzGMM, yGP7fc]D}, íℎ7d	çE(G() ⊄ ÅE(G().		

gi	x(G() = \]c^7]PD, íℎ7d	çE(G() = ÅE(G().	

As discussed later in section 2.5, the semantic neighbourhood of attributes is utilized 

to integrate lattices and to suggest potential merge nodes based on the known merge nodes.  

 

2.3.3 Attribute Lattice Validation 

This section develops attribute lattice validation rules – that is, rules that can be used 

to validate if the structure of a given attribute lattice is consistent with the basic attribute 

lattice grammar component definitions. In other words, given an attribute lattice, these 

rules can be utilized to verify that each attribute has only one type, to verify that the class 

and category attributes are meaningful, to eliminate redundant precedences, and to elimi-

nate precedences that can be immediately inferred from other precedences in an attribute 

lattice. 

Rule 1 (Multiple precedence relationship): Following the lattice definition (Defini-

tion 4), multiple precedences (of any type) between two attributes are not permitted. That 

is, ic]	GdD	fg97d	^]( , ^]) ∈ \]; 	ℱ	(^]() ≠ ℱ	:^]); 

Rule 2 (Attribute type): An attribute should be designated as either a class, a cate-

gory, or a property, that is, it cannot a class and a category at the same time. As a result, it 

cannot have both direct incoming base precedence and outgoing subcategory precedence. 
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In other words, for any G( in the lattice, |E!-. 	(G()| ≥ 1 and |E"-0	(G()| ≥ 1 cannot hap-

pen at the same time. 

Rule 3 (Class validation): Assume G( is designated as a class based on its immediate 

neighbourhood – that is, |E!-. 	(G()| ≥ 1. There should be at least one attribute in its ex-

pansion such that it is inferred form one of its bases – that is, E!-. 	(G() ⊂ 	G(
+. 

This rule ensures that the class provides information (in term of attributes) for class 

members beyond what is needed to identify the members (base attributes).  

Note that if a class attribute precedes another class attribute with a simple precedence 

relationship, then a superclass/subclass relationship exists between them. Similarly, a su-

perclass/subclass can be represented by a base precedence - that is, a class could be a base 

for another class. However, the structure is valid if and only if it satisfies above-mentioned 

rule (class validation rule). 

Rule 4 (Category validation): Assume G( is designated as a category based on its 

immediate neighbourhood – that is, |E"-0	(G()| ≥ 1. There should be at least two attrib-

utes in its expansion – that is, G(
+ =	 |E"-0	(G()| > 1.	 

Figure 4 shows invalid attribute lattice structures. In the first lattice (a), G$	has no 

valid attribute type. It has both incoming base precedence and outgoing subcategory prec-

edence, hence, this structure violates attribute lattice definitions. Second and third partial 

lattices (b and c) are invalid because no attribute can be inferred from G# bases. And finally, 

in the last lattice (d), G#has only one subcategory precedence which is in contrast with 

category definition. As a result, it is not a valid lattice structure.   
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One desirable quality (for simplicity) for an attribute lattice is to represent only non-

redundant relationships. The precedence relation (an arc) in the lattice is considered re-

dundant if it can be inferred from (i.e., is implied by) other precedence relations. The fol-

lowing guidelines provide mechanisms to eliminate unnecessary precedences in the lattice.  

 

 

 

 

a) Invalid attribute type (No type for a2) b) Invalid class (No inferred attributes for a1) 

 

 

c) Invalid class (No inferred attributes for a1) d) Invalid Category (a1) 

 Invalid Attribute Lattice Structures  

 

Rule 5 (Transitive Redundancy): The precedence between two attributes is redun-

dant if it can be inferred from a transitive chain of two simple precedences.  

The simple precedence relationship is a transitive relationship, that is, if G# →	G$ 

and	G$ →	G%, by definition	G# →	G%. Representing all precedences that can be inferred 

from the chain of two other simple precedences unnecessarily increases the number of 
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precedences and decreases the attribute lattice clarity. Figure 5.a shows this redundant 

precedence. 

Rule 6 (Class Attribute Redundancy): Precedence from a class to an attribute that 

can be immediately inferred from one of its bases (attributes in class expansion) is redun-

dant.  

Possessing a class attribute is semantically equal to possessing all attributes in its 

expansion. Following attribute characteristics (Characteristic 3), the expansion of a class 

can be identified from the immediate neighbourhood of the class, and hence, precedence 

from a class to its expansion provides redundancy. Figure 5.b shows a class attribute 

(G#)	with a redundant precedence. 

 

 

 

a) Redundant precedence b) Redundant class precedence 
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2.3.4 Attribute Lattice Grammar Comparison with Description Logics (DL) 

The attribute lattice conceptual modeling grammar represents relations among attrib-

utes – true statements about instances – as perceived by users of data in the domain of 

interest. This grammar is developed to provide an inferential representation scheme for 

data sources. Moreover, this inferred scheme provides a semantic foundation to address 

semantic data heterogeneity among various data sources. This grammar follows the as-

sumptions that (1) classification is a critical ability in humans to understand and communi-

cate about the world (Lakoff, 1987; Parsons & Wand, 2008), and (2) finding classes (cog-

nitive abstractions) in different data sources that refer to the same set of instances in the 

real-world is key in data integration (Clifton et al., 1998). Following these assumptions, 

this grammar offers a minimal set of components (i.e., attributes and three types of prece-

dences) to represent the class structure of the domain. Classification (in the sense of the 

role of classification in human cognition) is central to the definition of this notion and 

development of attribute lattice integration.  

This section compares this conceptual modeling grammar with other knowledge rep-

resentation languages – that is, Description Logics (DL) based languages. The attribute 

lattice grammar is translatable to DL; however this translation will lead to losing a part of 

the semantics captured and represented in the attribute lattice. 

Similar to Description Logics (DL), subsumption relations among attributes are used 

to develop the attribute lattice grammar. Hence, this approach has some shared assumptions 

with DL. However, grounded on different assumptions, the semantics represented by at-

tribute lattices and DL languages are different. DL languages offer a variety of constructors 
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to represent a knowledge base (Baader, 2003). Generally speaking, research in DL lan-

guages examines, first, the extent to which the constructors of languages can capture the 

semantics of the knowledge base, and second, the trade off between language expressive-

ness and the complexity of reasoning (Brachman & Levesque, 1984).  In the attribute lattice 

grammar, however, we focus on the minimal set of components, constructed based on hu-

man cognition, to capture subsumption relationships among attributes as perceived by hu-

man users. This conceptual modeling grammar aims to represent the class structure of het-

erogeneous data sources from the perspective of users of data, independent from initial 

(predefined) schema of data source, and to provide a basis for class-based data integration.   

• Attributes (in an attribute lattice) are neither concepts nor roles (in DL) 

In DL, concepts - unary predicates - refer to expressions that denote the set of indi-

viduals, and roles – binary predicates – express relationships between concepts. Attributes 

in the attribute lattice grammar are true statements about instances, hence, they are compa-

rable with concepts. The notion of “concept” in description logic languages treats all the 

concepts as classes. As a result, classification methods in this approach provide a class 

lattice based on all unary predicates.  

In the attribute lattice grammar, I follow classification guidelines (Parsons & Wand, 

2008) for meaningful classification of instances in the domain. In other words, following 

the principle that we form classes to allow us to infer attributes of an instance that are not 

required to classify it (a key element of usefulness), not all attributes in a lattice are mean-

ingful domain classes. I f attributes are represented by concepts in a DL, the resulting lattice 
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will contain “unnecessary” concepts (that is, concepts that do not enable inferences), which 

makes the conceptual model unclear for humans.  

• Precedence relationship in the attribute lattice grammar is not necessarily IS-A re-

lation. 

In the DL paradigm, statements can be divided into two groups; the TBox, general 

properties of concepts, and the ABox, declaration of knowledge involving individuals. In-

tuitively, the notion of attribute lattice can be compared to TBox. Two primary types of 

axiom exist in the terminology (TBox); inclusion axioms denoted by y ⊑ ï and equality 

axioms denoted by y ≡ ï in which y	Gd>	ï are concepts. The subsumption relationship 

(inclusion) declares that concept D (the subsumer) is considered more general than the 

concept C (the subsumee.) This subsumption relationship further will be used to make in-

ferences related to IS-A relationships that are not directly declared in the knowledge base, 

and to build the hierarchy of concepts.  

The interpretation of subsumption relationship in the DL – any instance belong to 

the subsumee, also belongs to subsumer - is similar to the interpretation of precedence 

relationship in the attribute lattice grammar – any instances possessing preceded attributes 

will possess inferred attributes. However, these two are not semantically equal.  

Grounded on semantic networks, in the DL paradigm subsumption relationship re-

flects IS-A relation, where the attribute lattice grammar utilizes three types of precedence 

relationships to capture the semantics of subsumption relationships among attributes.  
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Base precedence in the lattice, (r s) is crucial for meaningful classification (based 

on classification guidelines (Parsons & Wand, 2008)) and provides information beyond the 

simple subsumption relation (inclusion). Base precedence declares that s is a class attribute 

and other attributes in the lattice exist such that possessing r is semantically equal to pos-

sessing them. This precedence also states a sufficient attribute, such that instances pos-

sessing the attribute are a member of class s and implies other attributes can be inferred 

from this membership. Likewise, subcategory precedence provides semantics beyond the 

simple subsumption relationship. In addition to simple subsumption, this precedence also 

reflects that possessing the preceded attribute is semantically equal to possess all inferred 

attributes with subcategory precedence relationship. 

For instance, using the above-discussed example (2.3.1), the student (class) precedes 

the student number (attribute) with the base precedence relationship. This base relationship 

can be translated into DL with defining both student and student number as concepts and 

defining an equivalence relationship between them. However, this translation miss captur-

ing part of the semantics which represented by base precedence in this attribute lattice 

grammar. 

To summarize, concept and inclusion in DL languages can be used to represent com-

ponents of attribute lattice (i.e., attributes and precedences). However, in the resulting 

structure, all attributes will be considered as classes, all precedences will be considered as 

IS-A relationships, and the class structure (meaningful class structure from the human point 

of view) cannot be inferred.  
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2.4 Attribute Lattice Example 

2.4.1 Attribute lattice creation  

Extending the above example from a university context (section 2.3.1), this section 

demonstrates how an attribute lattice represents the attributes and precedence relationships 

among them, and how attribute lattice characteristics are used to infer the class structure 

based on the pattern of precedences. In addition, I elaborate by an example how a given 

attribute lattice can be validated using above discussed validation rules (section 2.3.3).  

As discussed, let student be a class attribute in the attribute lattice with student num-

ber, program, degree, and start date in its expansion.  

ÅP8>7dP+ =	 {ÅP8>7dP	d8j~7], \]cf]Gj,ï7f]77, ÅPG]P	>GP7} 

Assume instructors, in the university context, have a separate contract for their 

teaching that includes a course to teach, and a course-based salary. As a result, possessing 

instructor attribute is semantically equal to possessing instructor contract, course to teach, 

and course-based salary. In this setting, possessing instructor contract provides sufficient 

information to infer that an instance is an instructor, and it possesses course to teach and 

course-based salary. Hence, instructor contract is a base for instructor. Likewise, faculty, 

person and graduate student are other class attributes in this domain.  

çdMP]8NPc]	+ =	 {çdMP]8NPc]	NcdP]GNP, yc8]M7	Pc	P7GNℎ, yc8]M7	~GM7>	MGzG]D} 

bGN8zPD+ =	 {óg]gdf	NcdP]GNP, bGN8zPD	MGzG]D} 

!]G>8GP7	MP8>7dP+ =	 {ÅP8>7dP	égPℎ	i8d>, âF/íF	^cMgPgcd} 

\7]Mcd+ =	 {ÅÅE, ïcv,EGj7} 
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As discussed (section 2.3.1), in this domain graduate instructors are considered to 

be employees of the university. As a result, an attribute is defined to represent the graduate 

instructor. Any instance that possesses this attribute possess both graduate student and 

instructor attributes. However, no proper subset of the expansion of graduate instructor 

exists such that other attributes in its expansion can be inferred from it. Hence, graduate 

instructor is a category. Table 2 shows the list of class and category attributes with their 

expansions. Note that underlined attributes in this table are base attributes. 

 

Table 2. The list of class and category attributes and their expansions 

 

Let assume, in addition to above discussed information, following precedence rela-

tionships are given in this domain.  

!]G>8GP7	gdMP]8NPc] → 'j^zcD77 

bGN8zPD → 'j^zcD77 

çdMP]8NPc] → 'j^zcD77 

!]G>8GP7	MP8>7dP → ÅP8>7dP 

ÅP8>7dP	 → \7]Mcd 

'j^zcD77	 → \7]Mcd 

Attribute  Type Attribute Expansion 

Person Class SSN, DoB, Name 

Faculty Class Hiring contract, Faculty salary 

Student Class Student Number, Program, Start Date, Degree 

Graduate student Class Student with fund, RA/TA position 

Instructor Class Instructor Contract, Course based salary, Course to Teach 

Graduate instructor Category Instructor, Graduate student 



48 

Finally, assume the university offers insurance for graduate students. However, not 

all graduate students use this insurance.  

!]G>8GP7	gdM8]GdN7 → !]G>8GP7	MP8>7dP 

Using the above information, an attribute lattice can be created as in Figure 6. 
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The first characteristic of the attribute lattice describes how the immediate neigh-

bourhood of each node can be represented. Using this characteristic, the pattern of prece-

dences directly connected to the given attribute is represented as a set of pairs in which the 

first element shows an attribute that is connected to the given attribute, and the second 

element shows their relationship. Expression 25 shows the immediate neighbourhood of 

some of the attributes in Figure 6.  

Expr	25. çE(\7]Mcd) = {(ÅÅE,−>v), ('j^zc77, −>\), (ÅP8>7jP,−>\)} 

çE(ÅÅE) = {(\7]Mcd,+>v), (EGj7,+>\), (ïcv,+>\)}	

çE(ïcv) = {(ÅÅE,−>\)}	

çE(EGj7) = {(ÅÅE,−>\)}	

çE('j^zcD77) = {(\7]Mcd,+>\), (bGN8zPD, −>\), (çdMP]8NPc], −>\),	

(!]G>8GP7çdP]8NPc], −>\)}	

çE(!]G>8GP7çdP]8NPc]) = {(!]G>8GP7ÅP8>7dP, −>Å), (çdP]8NPc], −>Å)}	

Using the second and third characteristics of the attribute lattice grammar, attribute 

types and their expansion can be identified by the immediate neighbourhood of attributes. 

For instance, in Expression 25, attribute Person has only one incoming direct base prece-

dence (−>v). This relationship reflect that this attribute is a class, with one base. The base 

of this class (ÅÅE) has two outgoing direct simple precedences (+>\). The base attribute 

(ÅÅE), and two attributes (EGj7, ïcv) which are connected with (+>\) precedence to 

the base constitute the expansion of the class attribute (\7]Mcd). 
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2.4.2 Attribute lattice validation 

Attribute lattice validation (Section 2.3.3) offers a set of rules to verify whether the 

pattern of precedences in a given attribute lattice is consistent with the attribute lattice 

principles.  

The first four validation rules (Rules 1 to 4) discuss the correctness of the model and 

assert that a model is correct if each attribute has only one type, and class/category attrib-

utes are meaningful. The last two rules (Rules 5, and 6) focus on the precedence redun-

dancy. This section elaborates these rules with an example.  

Assume that the attribute lattice in Figure 7 is created based on domain knowledge 

and we are interested in examining if the lattice structure (the pattern of precedences) is 

valid. Table 3 shows the validation results for this attribute lattice. 

Given an attribute lattice, finding patterns that lead to violating rules could be a cum-

bersome task. Hence, as will be discussed in Chapter 3, an artifact is developed to examine 

validation rules for a given attribute lattice and to facilitate attribute lattice validation. 
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Table 3. Validation results for Lattice in Figure 7 

 

Rule No.  Rule Name Result 

Rule 1  Multiple precedence 
relationship 

Two precedences exist between Student Number and Student 

Rule 2 Attribute type 

Using the immediate neighbourhood of Faculty, this attrib-

ute has both incoming base precedence and outgoing subcat-

egory precedence. This means this attribute is a category at-

tribute, and class attribute at the same time.  

Rule 3  Class validation 

Graduate Student has an incoming base precedence. Hence, 

it is designated as a class. However, no attribute can be in-

ferred from the attributes in its base. 

Rule 4  Category validation 

Graduate instructor is a category. However, it has only one 

attribute in its expansion. 

If Faculty is a category (it has two types for now), it cannot 

have only one attribute in its expansion. 

Rule 5  Transitive Redun-
dancy 

Instructor precedes Graduate Instructor. Employee, in turn, 

precedes Instructor. By definition, Employee precedes 

Graduate instructor. As a result, Graduate instructor → 

Employee is redundant. 

Rule 6 
Class Attribute  

Redundancy 

Faculty Salary is included in the expansion of Faculty at-

tribute. Any direct precedence between these two attributes 

is redundant. 
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2.5 Attribute Lattice Integration 

Given a structured, semi-structured, or even unstructured data source, an attribute 

lattice can represent its semantic structure. Attribute lattice integration aims to: (1) define 

the concept of similarity and merge nodes between attribute lattices; (2) show how similar 

attributes in distinct attribute lattices can be merged to provide a federated (unified) attrib-

ute lattice; and (3) elaborate how attribute lattice grammar principles can be utilized to find 

potential similar attribute nodes based on known merge nodes. In this context, a federated 

(unified) attribute lattice is an attribute lattice that includes all attributes and precedences 

from distinct lattices that represent a common underlying subject domain, and shows the 

relationship between similar attributes in these distinct lattices. Let `# and `$be two dis-

tinct attribute lattices as follows:  

Expr	26. ̀ # = (F#, \]#, ℱ#),	and		`$ = (F$, \]$, ℱ$)	are	two	distinct	attribute	lattices	

where	

F# = {G##, G#$, G#%, … , G#(}, Gd>	\]# = {	^]##, ^]#$, ^]#%, … , ^]#*}	

F$ = êG$#, G$$, G$%, … , G$)ë, Gd>	\]$ = {	^]$#, ^]$$, ^]$%, … , ^]$&}	

In the following I discuss how these lattices can be integrated to offer a federated 

view over them. 
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2.5.1 Federated Attribute Lattice 

The approach introduced in this section aims to find similar attributes (based on the 

semantic neighbourhood of attributes) in distinct lattices and create a unified view over 

these lattices by joining them on the merge nodes. This federated view, in turn, gives the 

user of data the ability to query data from distinct sources. 

Arguably, the most basic problem in semantic data integration is finding “similar” 

attributes which state the same kind of real-world information about instances in distinct 

data sources (Clifton et al., 1998). The definition of similarity varies greatly in different 

schema-based approaches for data integration. These approaches employ various methods 

(based on different similarity theories) to identify similar concepts (Evermann, 2008a, 

2008b). Independent from the method employed to find similarity, the successfulness of 

the approach is measured by the extent to which similar concepts identified by the approach 

are perceived to be similar by a human user (Evermann, 2008a, 2008b).  

To improve the similarity judgment quality, Evermann (2009) emphasizes the im-

portance of attributes of instances, suggesting that integration approaches should use the 

most relevant attributes to find similar concepts. In the same line, the lattice integration 

procedure emphasizes semantic relativism, i.e. the immediate neighbourhood and the se-

mantic neighbourhood of attributes, to find similar attributes.  

In attribute lattice integration, following Parsons and Wand (2002, 2003) similar at-

tributes have been defined as attributes in distinct lattices which either represent the same 

kind of real-world information about instances (i.e. semantically equal attributes) or repre-

sent the same kind of real-world information about instances in various levels. Based on 
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this definition, three types of similarity are envisioned – that is, semantically equal attrib-

utes, attributes that are a manifestation of the same higher-level attribute, and general/spe-

cific attributes. 

First, attributes in distinct lattices are similar when they are semantically equivalent. 

That is, possessing an attribute in the first lattice is semantically equal to possessing an 

attribute in the second lattice. For instance, possessing teenager attribute in one lattice is 

equal to say an instance possess the age group (13:19) in another one. It is worthwhile to 

note that categories can be added to attribute lattices for cases in which possessing multiple 

attributes (a set of attributes) are semantically equivalent. For example, attribute name in 

lattice A is similar to attributes given name and surname in lattice B. In this case, a category 

(such as full name) can be defined with given name and surname as its expansion. Next, 

name in lattice A can be merged to the full name in lattice B (Figure 8a and 8b). 

Second, similarity also refers to attributes that are a manifestation of the same higher-

level attribute. For instance, although being graduate student and being undergraduate 

student are not semantically equivalent, these attributes are similar. These attributes can be 

merged by introducing a higher-level attribute, student (Figure 8.c).  

Finally, if an attribute in the first lattice is more general (or more specific) than an 

attribute in the second lattice, these attributes are similar. For example, the attribute faculty 

in the first lattice is similar to attribute employee in the second lattice. Although these two 

attributes are not semantically equal, the faculty is a manifestation (a more specific attrib-

ute) of the employee (Figure 8.d). 
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Similar attributes in distinct lattices can be merged to provide a unified view over 

data sources. Merge nodes in a federated attribute lattice refers to attributes that either 1) 

represent higher-level attributes introduced for merging similar attributes or 2) attributes 

connected to an attribute in another lattice either with semantic equivalency relationship or 

precedence relationship. The merge nodes are represented in Figure 8. 
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2.5.2 Potential Merge Nodes in Attribute Lattice Integration  

The majority of approaches in this area are manual (Spanos et al., 2012). However, 

semi-automated approaches exist for schema-based semantic data integration (such as Volz 

et al., 2004; Hu & Qu, 2007). Here, I argue the intrinsic characteristics of attribute lattice 

can be utilized to semi-automatically integrate conceptual models that represent the 

semantics of various data sources to provide a unified view for the semantic structure of 

the subject domain.  

As discussed earlier (section 2.3.2), the immediate and semantic neighbourhood of 

attributes is defined to infer the class structure of the domain. In the following, lemmas that 

suggest potential similar attributes based on the known merge nodes are proposed. That is, 

given initial merge nodes in distinct lattices, these lemmas suggest new merge nodes based 

on the immediate and semantic neighborhood of known merge nodes. 

 Lemma 1: Let G#( 	and G$) be attributes in `# and	`$, respectively. Assume both at-

tributes are either category or class. If G#( is semantically equal to G$), attributes in their 

expansion are candidates to be similar and new merge nodes. 

Explanation: Attributes G#( 	and G$) are either class, or category, that is, there are 

other attributes in the lattices which are semantically equal to them (their expansion). Since 

G#( 	and G$) 	are semantically equal, the attributes that define these attributes (their expan-

sions) are potential candidates to be similar and new merge nodes. An example for this 

lemma is presented in Figure 9. 
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 Potential merge nodes based on lemma 1 

Lemma 2: Let G#( 	and G$) be attributes in `# and	`$, respectively. If G#( is semanti-

cally equal to	G$), attributes in their semantic neighbourhood with outgoing precedence 

relation (ÅE"(G#() and	ÅE"(G$))) are candidates attributes to be similar and new merge 

nodes. 

 Explanation: Attributes G#( 	and G$) are either class, category, or property. If attrib-

ute is a class or category, any attribute that can be inferred from its expansion can be in-

ferred from the class or category itself. In all cases, if attributes in `# and	`$ can be inferred 

from semantically equal attributes (G#( 	and	G$)), they are potentially merge nodes.    
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Figure 10 presents an example of this lemma. In this figure, G##	and	G$#are two se-

mantically equal attributes in distinct lattices. G##	is a class with three attributes in its ex-

pansion (G##
+ = {	G#$, G#%, G#3}.) In the first lattice, G#4 is inferred from G#%, and G#% is a 

part of G##  expansion, since possessing G##  is semantically equal to possessing 

	G#$, G#%, Gd>	G#3, G#4 can be inferred from G##itself. In this example G##and G$# are se-

mantically equal attributes, and, G#4 and G$$ are inferred from these two equal attributes, 

respectively. Following lemma two, these two attributes (G#4 and G$$) are potential new 

merge nodes.   

 

 Potential merge nodes based on lemma 2 
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Lemma 3: Let G#( 	and G$) be attributes in `# and	`$, respectively. Assume both at-

tributes are either category or class. If	G#( and	G$) are manifestations of the same higher-

level attribute(	j*), attributes in their expansion are potential merge nodes. 

Explanation:	G#( and	G$) 	are either a class or a category. As a result, these attributes 

can be represented as a union of other attributes in the lattice. On the other hand, these two 

attributes (G#( and	G$)) are manifestations of the same higher-level attributes, which means 

a proper subset of their expansions are semantically equal (Figure 11). 

 

 

 Potential merge nodes based on lemma 3 

The attribute lattice integration procedure starts with an initial list of merge nodes 
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can be merged independent from their types (class, category, or property). However, the 
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immediate and semantic neighbourhood of attributes are utilized, through lemmas, to find 

new merge nodes.  

To elaborate these lemmas, consider the following example adopted from  

Bergamaschi et al. (1999). Assume the following federated attribute lattice (Figure 12) 

represents the partial lattices related to patients in two departments in a given hospital - 

that is, intensive care department and cardiology department (showed by ID and CD pre-

fixes, respectively.) Let assume the only known merge nodes are patients in both lattices.  

Given these merge nodes, Lemma 1 suggests that attributes in their expansion are 

similar and potential merge nodes. Using this suggestion, patient name in cardiology de-

partment data set can be merged to patient first name and patient last name in intensive 

care department (excluded from Figure 12). Moreover, Lemma 2 suggests that nurse and 

doctor are potentially similar and potentially new merge nodes. 

Let assume that user identified that nurse and doctor are actually similar and both 

are manifestations of a higher-level attribute, hospital staff. Lemma 3, using this new merge 

node, suggests that attributes in the expansion of nurse and doctor are potentially similar.  

However, finding all potentially similar attributes and merge nodes could be a cum-

bersome and time-consuming task. Chapter 3 presents an artifact that utilizes these lemmas 

to facilitate the integration process.  

To summarize, a key contribution of attribute lattice is semantic relativism. Semantic 

relativism makes possible to merge property attributes with category and class attributes. 

In this context, the similarity is defined in a broader sense that covers semantically equal 
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attributes, attributes that are manifestations of a same higher-level attribute, and spe-

cific/general attributes. Using attribute lattice characteristics, I proposed lemmas that can 

be utilized to find potential similar attributes based on the known merge nodes. In Section 

3.4, details of the artifact developed to assist attribute lattice integration procedure are pre-

sented.  
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2.6 Discussion 

The traditional paradigm of information system development considers conceptual 

modeling as an important step in requirements engineering. This paradigm assumes that 

data is created, stored, and queried for pre-defined purposes. However, in the era of Big 

Data, this assumption often does not hold. In the current environment, users of data query 

analyze it for purposes beyond what data contributor might anticipate. Here, I argue that 

conceptual models can be utilized to understand the data semantics as perceived by users 

of data.  

In this thesis, I use principles from cognitive psychology, philosophical ontology, 

and graph theory to define a lightweight graph-based conceptual modeling grammar, which 

I call attribute lattice grammar. The attribute lattice grammar has several important char-

acteristics. First, it offers a minimal set of components designed to capture the class struc-

ture of the domain of interest. The attribute lattice grammar has two components: nodes 

and directed arcs. Nodes represent attributes – true statements about some instances in a 

domain – and directed arcs represent precedence relationships among attributes as per-

ceived by users of data.  

Second, it represents precedences as perceived by the user of data. Defined by using 

classification guidelines, three types of precedences are introduced in this conceptual mod-

eling grammar. These precedence types reflect how the users of data perceive the relation-

ship that exists between attributes. Hence, it is independent of the schema of the data source 

that it presents.  
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Third, an attribute lattice grammar supports classifications – that is, the pattern of 

precedences around attributes can be used to infer the class structure of the domain it rep-

resents. Following the assumption that the classes are constructed to provide useful ab-

stractions of similarity, we use the pattern of precedences (and their types) to designate an 

attribute as a class, a category or a property.  

Finally, an attribute lattice grammar provides a robust semantic foundation to inte-

grate various data sources. A key challenge in semantic data integration is to find similar 

classes which refer to the same real-world concept. The attribute lattice grammar enables 

users of data to construct their classes over heterogeneous data sources. This uniformity of 

representation affords greater flexibility in viewing information (multiple perspectives can 

co-exist), which in turn supports integration.   

The first theoretical contribution of the attribute lattice modeling grammar is utilizing 

conceptual models to understand the semantics of data sources that come from a developed 

information system, and independent from the schema of the data source. This grammar 

helps users of data to represent the class structure of based on the current purpose and sue.  

The second contribution of this grammar is extending the concept of attribute prece-

dence to capture the type of subsumption relationship among attributes more clearly. The 

base and subcategory precedences in this grammar convey semantics beyond the simple 

precedence relationship. These types, in turn, are utilized to define semantic relativism in 

an attribute lattice.  

The third contribution is utilizing human view of classification to define semantic 

relativism – whether a node represents a class or property depends entirely on its semantic 
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neighbourhood, the pattern of incoming and outgoing arcs and nodes connected to these 

arcs. Semantic relativism frees instances from predefined (or undefined) schemas, and en-

ables users to query and analyze data based on their understanding of it. 

Finally, this chapter suggests an attribute-lattice-based approach to provide a unified 

view over distinct heterogeneous data sources. In this approach, attributes are similar when 

referring to the same characteristics of instances, or convey the same kind of characteristics 

in a different level. This approach iteratively finds similar attributes in separate data 

sources and joins them on the merge nodes.  

This grammar provides several core uses. First, attribute lattices are well-suited for 

analysis. Given a lattice, it is possible to automatically analyze it to identify attributes that 

represents meaningful abstraction – that is, classes. This, in turn, enables data users to 

identify set of instances belonging to each class, and make inferences about instances using 

these classes. These analyses are incorporated in a tool for lattice visualization (Chapter 3) 

that enables users of data to view the data structure from various perspectives, thereby 

contributing to gaining insights from data. 

Second, lattices provide a strong semantic foundation for data integration. In tradi-

tional approaches, an impediment to data integration is structural heterogeneity between 

independent data sources. However, this approach is built based on a class schema-free 

artifact (attribute lattice) and can be used for integration of data from structured (e.g., tra-

ditional relational databases), semi-structured (e.g., web data which has no rigid structure), 

and even unstructured data sources (e.g., text data). 
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3 Artifact Implementation 

The previous chapter defined the attribute lattice grammar, its components, its char-

acteristics, and a set of rules to validate a given attribute lattice. Also, it suggested an ap-

proach to find potentially similar attributes and to create a unified view over distinct lattices 

by joining the merge nodes. This chapter elaborates on the design and implementation of 

the artifact that supports attribute lattice. Here, the programming language and functions 

which are developed to implement the attribute lattice artifact are discussed. This imple-

mented artifact, which is available to the research community and accessible on the web6, 

enables a wide range of empirical studies on the usefulness and adoption of the attribute 

lattice.  

This section presents a set of features implemented in the artifact that allows users to 

create, update, represent, validate, and integrate lattices. These features aim to: (1) enable 

users to create and manipulate an attribute lattice; (2) provide a graphical representation of 

attribute lattices; (3) represent the expansion of attributes; (4) validate a given attribute 

lattice; and (5) suggest similar attributes based on known merge nodes.  

Later, section 4.4 explains how this artifact can be expanded for various attribute 

lattice-based use cases. In particular, it will discuss additional features that have been im-

plemented to support attribute lattice-based topic modeling. 

 

  

 

6 The application is available at this address (https://attribute-lattice.shinyapps.io/thesis/) 
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Table 4 summarizes the list of features covered in this chapter. Also, Appendix A 

shows the user interfaces (screenshots) of the artifact. 

 

Table 4. Artifact Features 

 

  

Feature Category Main Features 

1. Lattice Operation 1.1 Provide a mechanism to store, and manipulate attributes lattices 

2. Lattice Representation and 
Analysis 

2.1 Illustrate an attribute lattice graphically 

2.2 Represent expansion of attributes 

2.3 Validate a given attribute lattice 

3. Lattice Integration 3.1 Provide a mechanism to create a federated attribute lattice, and to 
merge nodes 

3.2 Suggest similar attributes based on known merge nodes 
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3.1 Programming language  

Initially developed for statistical computation and graphics, R (R Core Team, 2000) 

and its packages offer powerful sets of tools to handle graphical representation of the lat-

tice, lattice operation, and lattice integration. Therefore, R is used for the implementation 

attribute lattice in three tiers – that is, storage, logic, and representation tiers. A web-based 

structure has been used for implementation to make the attribute lattice available for future 

studies. 

The attribute lattice is structurally simple, that is, an attribute lattice is a set of 

attributes and precedences relationships among them. Hence, there is no need to use data-

base management systems to store attribute lattices data, and it can be stored in files di-

rectly. These files are saved into cloud storage by using Dropbox services in R (rdrop27). 

A combination of R packages (including igraph8, DT9, and dplyr10) is utilized to develop 

required functions in the logical tier. Finally, the representation layer of the application is 

developed using the shiny (Chang et al., 2015) package. This package provides an interac-

tive web-based environment for development.  

The developed application has two panels – control panel and main panel (Figure 

13). Located on the left-hand side of the screen, the control panel is used to capture users’ 

inputs and commands - that is lattice operation, lattice integration, similar attributes and 

 

7 https://cran.r-project.org/web/packages/rdrop2/index.html 
8 https://cran.r-project.org/web/packages/igraph/index.html 
9 https://cran.r-project.org/web/packages/DT/index.html 
10 https://cran.r-project.org/web/packages/dplyr/index.html 
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plot adjustment. The main panel, with five tab panels (lattice definition, plot, attribute 

structure, lattice validation, and lattice integration), is used for attribute lattice represen-

tation purposes (graphical attribute lattice and report tables.) 

 

 

 Control panel and main panel 

  

Main panel 

Control panel 
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3.2 Lattice Operation 

3.2.1 Store, and manipulate attributes lattices  

As discussed earlier (Expr 6), an attribute lattice is a set of attributes and precedences. 

An attribute is a true statement about at least one instance in the domain of interest. Long 

attribute names, in the attribute lattice, might make the graphical representation of the lat-

tice unreadable. Hence, attribute abbreviations are also stored in the application. The data-

frame object (R Core Team, 2000) with two columns (attribute itself, and its abbreviation) 

is used to store attributes in each lattice. Similarly, the data-frame object with three col-

umns is used to store the precedence relationships, in which the first column stores the 

abbreviation of the preceded attribute, the second one stores the precedence type, and the 

last column stores the abbreviation of the inferred attribute.   

The list object (R Core Team, 2000) is used to store each lattice. This R object can 

contain many different types of elements, such as vectors, and data frames inside it. A list 

object that stores a lattice in the application includes two data frame objects (R Core Team, 

2000). The first one stores attributes with their abbreviations, and the second one stores 

precedences of each lattice. The logical model of an attribute lattice is demonstrated in 

Figure 14. A set of functions is developed to support lattice creation and manipulation. In 

the following these functions are discussed.   
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Attribute Lattice Name 

 
Abbreviation Attribute Label 

Abb 1 Att Label 1 
Abb 2 Att Label 2 
Abb 3 Att Label 3 
… … 
  

 
 

 
Preceded  

Attribute 

Precedence Type Inferred  

Attribute 

Abb 1 S Abb 2 

Abb 1 P Abb 3 
… … … 
   
   

 
 

 The logical model of list object to store attribute lattice 

 

• Save and load attribute lattices 

By default, the storage of a lattice is volatile and local. This means the attribute lat-

tices are accessible just for the current user, and only while the session is active. In other 

words, as soon as the user closes the web browser, the existing lattices will be deleted. 

However, the application provides the capability to store a lattice to the server. At the ap-

plication start-up, all server-saved lattices are accessible for users for manipulation, rea-

soning, and integration. Note that the application can store and manage multiple lattices; 

however, at any point, there is only one active lattice, and all the tab panels in the main tab 

represent different information about the active lattice. 

• Create initial (empty) attribute lattice 

This function takes an attribute lattice name as input. Using the user provided name, 

it creates a list object (attribute lattice) with two data-frames in it – one for attributes in the 

lattice, and one for the precedence relationships in the lattice. 
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• Add attributes to the lattice 

This function takes an attribute name and abbreviation as input and adds a row to 

attributes data-frame of the active lattice. It is worthwhile to note that attribute abbreviation 

is utilized as an identifier for the attribute. That is, precedence relationships are stored, 

queried, and analyzed using attribute abbreviations. 

• Edit attributes in the lattice 

This function takes an existing attribute and a new value for either attribute name or 

attribute abbreviation and updates the attribute information with the given value. As men-

tioned earlier, precedence relationships are stored by using attribute abbreviations. As a 

result, if the update happens on an attribute abbreviation, all the precedences will be up-

dated by the new value.  

• Delete a given attribute from the lattice 

This function is developed to delete an existing attribute. If an attribute has been used 

as a preceded or an inferred attribute in any precedence relationship, it cannot be deleted. 

In this case, this function returns an error to the user – “The attribute has been used in a 

precedence relationship and cannot be deleted”.  

• Add precedence to the lattice 

Given a pair of existing attributes and a precedence type, this function adds a prece-

dence relationship to the current lattice by adding a row to the current attribute lattice prec-

edence data-frame.  
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• Delete a given precedence from the lattice 

This function is developed to delete an existing precedence from the active attribute 

lattice.  

• Edit a given precedence 

The precedence type of an existing precedence relationship can be edited by this 

function.  

• Import attributes and precedence relationships from Excel file  

Using the above-discussed functions to add attributes and their precedence relation-

ship one by one could be a cumbersome task. This function is developed to facilitate at-

tribute lattice definition by adding both attributes and precedences from an Excel file. Note 

that, using this function, attributes and precedences can be added either to an initial (empty) 

attribute lattice, or lattices that already have attributes and precedences.  

A predefined structure is defined for the excel file. There must be two pages in the 

file in which the first page has two named columns (abbreviation and attribute) and the 

second one has three named columns (precededAbr, prcType, and inferredAbr).  

Given a file, this function first validates the file structure – that is, it verifies if the 

file is an excel file with two pages and above mentioned named columns. Then, it adds all 

attributes and precedences to the active attribute lattice. In case the function cannot find 

the attribute name of attribute abbreviations that have been used in precedence relationship 

definitions (neither in the excel file nor within existing attributes), it automatically adds an 
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attribute to the attributes data frame and sets attribute abbreviation as the attribute name as 

well.  

The functions discussed above are available for users through the lattice operation 

section of the control panel. These functions enable users to create, store and modify an 

attribute lattice. At any point, the detail of a defined attribute lattice can be viewed in the 

lattice definition tab panel, which is located in the main panel. The lattice definition tab 

panel represents the list of attributes and their precedence relationships. Figure 15 shows 

the lattice definition tab panel for the attribute lattice discussed in section 2.3.4 (see Ap-

pendix A for user interfaces details). 

 

 

 Lattice definition tab panel, in the artifact main panel 
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3.3 Lattice Representation and Analysis 

An attribute lattice is a set of attributes and precedence relationships among them 

which can be represented in a graph-like structure. A set of functions developed to repre-

sent the lattice graphically, represent the lattice structure, and validate a given attribute 

lattice, is discussed in the following.  

• Attribute type  

Given an attribute lattice, this function return type of all attributes in the lattice. If an 

attribute G( has either incoming base precedence (|E!-. 	(G()| ≥ 1), or outgoing subcate-

gory precedence (|E"-0	(G()| ≥ 1) in its immediate neighbourhood, it will be designated 

as a class or a category, respectively. Otherwise, it will be designated as a property. This 

function returns a list object with three vectors, that is, classes, categories, and properties 

vectors.  

• Illustrate an attribute lattice graphically  

This function is developed to represent an attribute lattice graphically. This function 

has two steps. First, it provides a list of arcs (precedence) with their types and nodes (at-

tributes) with their types. Second, it passes the arcs and nodes to the igraph (Csardi & 

Nepusz, 2006) package for graph representation. 

As discussed in Expression 12, three type of precedence relationships exist in the 

attribute lattice. These three types of precedence are represented in the lattice with directed 

arcs with various styles (Figure 1). The same styles have been used in the application to 
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represent precedences. This function passes precedences, their type and their style to the 

igraph package. Moreover, using the above-discussed function (attribute type function), 

this function creates a list of all attributes, with their types and their styles and passes them 

to the igraph package as well. 

To draw the attribute lattice, the Fruchterman-Reingold layout algorithm (Fruchter-

man & Reingold, 1991) has been used. This heuristic algorithm, which keeps the distance 

of attributes as equal as possible and minimizes crossing edges, provides an intuitive rep-

resentation for the attribute lattice. Figure 16 shows the plotted lattice in the application for 

the lattice introduced in section 2.3.4. 

This function provides the capability to adjust the plotted attribute lattice as well. 

Attributes (nodes) are represented by circles in the lattice, with an attribute name written 

inside the circle. To improve graph clarity, node and font size of attributes can be adjusted 

using plot adjustment section in the control panel.  
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 Graphical representation of Attribute lattice 
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• Semantic relations of attributes 

This function summarizes the semantic relationships for each attribute G( - that is, it 

extracts all attributes which are related to the given attribute G(, either directly or through 

its expansion (as elaborated in Expression 19). 

• Attribute expansion 

Given an attribute lattice, using the third characteristic of attribute lattice (section 

2.3.2), this function returns the expansion of class and category attributes. First, this func-

tion finds the expansion of category attributes by following subcategory precedences in 

their immediate neighbourhood (Expr 21). Second, it identifies all bases for each class 

attribute and uses these bases to determine inferred attributes for each base (Expr 22). The 

result of this function, for the active attribute lattice, is represented in the attributes struc-

ture tab panel in the main panel (Figure 17).  

 

 

 Attribute structure  
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• Validate a given attribute lattice  

This function is developed to verify a given attribute lattice validity. Specifically, 

this function uses the functions described above to determine if the active attribute lattice 

violates any of the attribute lattice rules (discussed in section 2.3.3). This function has six 

steps (for six rules). After each step, it creates a data-frame object with two columns –the 

rule which is violated, and the message that represents how the pattern of precedences leads 

to the violation. At the end, this function adds up all data-frame objects and represent the 

result in the lattice validation tab panel in the main panel. Figure 18 shows the result for 

the example discussed in section 2.3.4.  

 

 

 Validating a given attribute lattice 
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3.4 Lattice Integration 

The application supports attribute lattice integration through the following three 

functions. The first function creates an initial federated lattice, the second function captures 

the known merge nodes, and the third suggests similar attributes based on the known merge 

nodes.  

• Create initial federated attribute lattice 

This function takes two attribute lattices and a name for the federated lattice and 

creates a federated attribute lattice by first, adding a prefix to attributes abbreviations (l1 

and l2) and second, adding all attributes and precedences from two attribute lattices. 

• Capture merge nodes 

This function takes two attributes (from distinct lattices in the federated attribute lat-

tice) and a merge type (Figure 8) as an input and creates a corresponding merge node in 

the federated attribute lattice. If two attributes are semantically equal, this function adds a 

row to the precedence data-frame of federated attribute lattice which represents semantic 

equivalency (represented by a line with arrows at both ends). If one attribute is more gen-

eral (specific) than the other one, this function adds a precedence relationship (a row) be-

tween these two similar attributes with a different style. And finally, if both attributes are 

manifestations of a higher-level attribute this function asks for a name for this higher-level 

attribute and creates a new merge node. This new merge node precedes both given attrib-

utes.  
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• Suggest similar attributes based on known merge nodes 

This function suggests potentially similar attributes based on known merge nodes. 

Following Lemma 1, if merged nodes are semantically equal and both are either class or 

category attributes, attributes in their expansion will be suggested as new similar attributes. 

Also, this function uses the ‘semantic relations of attributes’ function (discussed in section 

3.3) to find attributes with outgoing precedence relationship in the semantic neighbourhood 

of merged nodes and suggests them as similar attributes (Lemma 2).  

If given merged nodes are manifestations of the same higher-level attribute and both 

are either a class or a category attribute, attributes in their expansion will be suggested as 

potentially similar attributes based on the Lemma 3.  

 

 

 Using lemmas to suggest attributes that are candidates to be similar 

 

Finally, this function summarizes known merge nodes and potentially similar attrib-

utes in a data-frame object. The result of this function for the example discussed earlier 

(section 2.5.2) is represented in Figure 19. 
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3.5 Discussion 

This chapter describes the design and implementation of a web-based, publicly 

available artifact that supports the attribute lattice conceptual modeling grammar. This 

application provides significant benefits for users who wish to utilize the proposed 

conceptual modeling grammar.  

First, it represents graphically models created by the attribute lattices grammar. This 

graphical representation will help users to gain insight into the data semantics of the 

domain that the model represents.  

Second, as discussed in the previous chapter, class bases and attribute expansions 

explain inferences that can be made for instances in the domain. The implemented artifact 

demonstrates the type of attributes, and their expansions by analyzing patterns of 

precedences around attributes. Hence, it enables users to understand instance-related 

inferences. Additionally, this artifact enables users to manipulate the model by adding 

precedences to or removing precedences from the model. Through these manipulations, 

users can conduct what-if analysis. That is, they can learn how changes in precedences will 

affect instance-related inferences. 

Further, the implemented artifact enables users to validate the captured class 

structure of the domain. Users capture the precedences in the domain of interest, and these 

precedences constitute an attribute lattice. The artifact enables users to examine if the 

captured precedences create a meaningful class structure - that is, an inferred class structure 

from the pattern of precedence represents a meaningful class structure of the subject 

domain. 
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Finally, this application enables attribute lattice-based semantic data integration. 

Given a set of known merge nodes, this artifact uses integration lemmas (section 2.5) to 

suggest potentially new merge nodes. Hence, it enables users to create a federated view 

over distinct lattices.  
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4 Attribute-lattice-based Topic Modeling  

4.1 Introduction 

The Big Data era brings new challenges for meaningful use of data, such as the in-

creasing number and heterogeneity of data sources (Dong & Srivastava, 2013). In contrast 

to traditional approaches, which mainly focus on structured data, with the explosive num-

ber of unstructured data sources there is a growing interest in integrating unstructured data 

(mostly text) for data-driven decision making (Russom, 2011). LaValle et al. (2011) argue 

that more and more strategic information comes from unstructured data sources such as 

social media. With the ever-increasing amount of data, the challenge is to understand the 

content of unstructured data and to find relevant information.  

The notion of attribute lattice is defined in Chapter 2 as a schema-free conceptual 

modeling grammar. The attribute lattice has a simple structure and provides a foundation 

for representing the semantics of the data source. However, building a lattice for unstruc-

tured data from the beginning can be a challenging and cumbersome process. This chapter 

aims to elaborate how: 1) an initial lattice can be created automatically by analyzing the 

content of unstructured data sources, and 2) this model can be used to find and retrieve 

relevant information.  

This chapter utilizes the concept of attribute lattice grammar for the task of topic 

modeling of unstructured data – representing the latent semantics of unstructured data. 

Twitter, the most popular micro-blogging site, which generates a massive amount of text 
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data every day, has been selected as the unstructured data source for this study. The attrib-

ute-lattice-based topic model, built based on content analysis of tweets, provides valuable 

insight into the topic structure of tweets, and helps to identify related tweets and retrieve 

the most relevant tweets on the topic of interest. 

In the following, I begin by reviewing topic visualization approaches, and research 

in which hashtags have been utilized for Twitter analysis. Then, I examine the use of at-

tribute lattice grammar principles for the task of topic modeling. This is followed by illus-

trating an artifact implemented for the task of Twitter topic modeling. Next, the result of 

an empirical study in the domain of technology is presented. Finally, contributions, limita-

tions, and opportunities for future research are discussed. 
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4.2 Related Literature 

Tweets have several properties such as user, geo-location, number of replies and 

number of retweets. Also, tweets might include mentions, hashtags, and URLs to external 

pages. Among the properties, hashtags provide valuable insight into the topic of a given 

tweet. Given a set of tweets, attribute-lattice-based topic modeling aims to conceptualize 

the topic structure of tweets by utilizing tweets’ hashtags and user-defined topics. In this 

regard, after discussing general approaches for analyzing Twitter the review in this section 

focuses on topic modeling, topic visualization approaches, and approaches that use 

hashtags for Twitter analysis.  

4.2.1 Twitter Analysis  

Analyzing text data - all data in the form of natural language text - is an active re-

search area in both Information Retrieval (IR) and Text Mining (TM) research communi-

ties. Although these two areas of research address text analysis from two different points 

of view, research conducted in these areas is highly related. In general, IR aims to find text 

documents from large collections that satisfies an information need (Manning et al., 2008), 

whereas the goal of TM is to extract and discover useful, actionable knowledge (Zhai & 

Massung, 2016). IR and TM can be considered as two steps of finding relevant text data 

from an extensive collection of text data (Zhai & Massung, 2016). The explosive growth 

of tweets, a short text data, makes it impossible for people to retrieve all data related to 

their interest. As a result, a wide range of IR and TM approaches have been applied to 
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Twitter for various analyses (Zimmer & Proferes, 2014), such as topic identification, event 

detection, sentiment analysis, and user analysis. 

4.2.2 Topic Modeling and Topic Classification  

Both supervised and unsupervised techniques have been employed for analyzing the 

topic of text data. Topic modeling approaches utilize unsupervised or weakly supervised 

techniques. On the other hand, topic classification approaches employ supervised tech-

niques. Here, I review key research in both categories and point out how this research uses 

predefined topics for analyzing topics of text data.  

Topic modeling in the IR and TM literature refers to unsupervised and weakly su-

pervised mining methods that find latent topics in text documents. Probabilistic Latent Se-

mantic Analysis (PLSA) (Hofmann, 1999), Latent Dirichlet Allocation (LDA) (Blei et al., 

2003), Correlated Topic Modeling (CTM) (Blei & Lafferty, 2005), and labeled LDA 

(Ramage et al., 2009) are the most well-known methods for topic analysis. Generally 

speaking, these techniques reveal the latent topics by implicitly capturing word co-occur-

rence patterns at the document level (Yan et al., 2013).  

The result of topic modeling tasks is the identification of topic words in given docu-

ments and the coverage of these topics in each document (Zhai & Massung, 2016). Tweets, 

which contain less than 280 characters (140 characters before Nov 2017), and shortened 

words that are not like standard written English, presented new challenges to topic model-

ing. As a result, several PLSA, and LDA extensions have been proposed (e.g., Hong & 

Davison, 2010). To tackle these new challenges, PLSA and LDA extensions usually as-

sume that each tweet has only one topic (e.g., Zhao et al., 2011), and incorporate additional 
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tweets’ properties such as user information (e.g., Hong & Davison, 2010; Diao et al., 2012), 

and time period of tweets (e.g., Diao et al., 2012).  

Unsupervised topic modeling approaches represent each topic as a set of topic words 

(a bag of words). However, these sets of words do not have explicit semantics (Lau et al., 

2010; Sun et al., 2015); as a result, these approaches suffer from the lack of semantic in-

terpretability for human users (Chang et al., 2009). Hence, in weakly supervised ap-

proaches, a common practice for labeling the topics is to map latent topics to a set of pre-

defined topics. Ramage et al. (2010), for instance, map the contents of tweets into four 

classes (i.e. substance, social, status, and style topics). Zhao et al. (2011)  assigns the result 

of topic analysis to a set of predefined topic categories by extending LDA approach for 

Twitter and comparing tweet topics with traditional media topics.  

Topic classification approaches are supervised topic modeling techniques, similar to 

weakly supervised approaches that map tweets to a set of predefined topics. Yang et al. 

(2014) define approximately 300 topics in a hierarchical structure with six levels. Yang et 

al. (2014) use a spectrum of topic modeling techniques and crowdsourced labelers to clas-

sify tweets. Sriram et al. (2010) proposed to use domain-specific features extracted from 

author profile of tweets (eight features) to classify tweets to five general, high-level cate-

gories (i.e., news, events, opinions, deals, and private messages). And finally, Lee et al. 

(2011) employ both tweets and Twitter users (tweeters11) network models to classify trend-

ing topics into 18 general categories. 

 

11 In this thesis, “tweeter” refers to the Twitter user who wrote the tweet, and “user” refers to an individual who uses the 
topic model for tweet retrieval. 
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In topic modeling and topic classification, independent of the employed technique, a 

common practice is to map tweets to a set of predefined topics. This approach restricts 

users in classifying and retrieving tweets – that is, users need to select the most relevant 

topic among a set of pre-defined topics to retrieve tweets. 

4.2.3 Topic Visualization 

Text visualization, as an important subfield of information visualization, has gained 

considerable attention in recent years (Liu et al., 2014a; Kucher & Kerren, 2015).  The 

focus of text visualization techniques is to assist users in exploring, understanding and an-

alyzing text data through visual representations (Liu et al., 2014a; Kucher & Kerren, 2015). 

Several survey papers focus on characteristics of text and information visualization 

techniques (for example, Šilić and Bašić (2010); Liu et al. (2014a); Kucher and Kerren 

(2015)). A recent taxonomy (Kucher & Kerren, 2015) categorizes text visualization tech-

niques based on six dimensions - that is, analytic tasks, visualization tasks, domain, data 

source and properties, and visualization type (dimensionality, representation, and align-

ment). The web-based version of this survey, as of June 2019, covers 440 text visualization 

techniques.  

Topic visualization, a common analytics task in text visualization, improves user ex-

perience regarding topic exploration, and provides a better understanding of evolutionary 

patterns of the topics. In the context of Twitter, topic visualization practices either visualize 

the topic information statically (e.g., Liu et al., 2014b), illustrate topic evolution over time 

(e.g., Havre et al., 2000; Cui et al., 2014) or integrate both static and dynamic aspects of 



90 

topics (e.g., Dou et al., 2013). However, the semantics of the topics and their relationships 

are not the focus of the research. 

4.2.4 Hashtags 

A hashtag is a word that starts with “#” symbol on Twitter. Hashtags are tweeter-

composed keywords for a tweet which can be included in tweets for various purposes. 

Approximately one-tenth of tweets have hashtags; however, tweets with hashtags tend to 

have more valuable information (Suh et al., 2010). Hashtags provide valuable insight into 

the topic of a given tweet. However, their semantic interpretability is hindered by charac-

teristics such as shortened formation (Liu et al., 2011; Pöschko, 2011), conversational na-

ture (Huang et al., 2010) and sparseness (Yang et al., 2012). In some cases, it can be hard 

or even impossible to understand the intended meaning of a given hashtag (Liu et al., 2011; 

Pöschko, 2011). This happens not only because of words with multiple meanings (homo-

nyms) but also because words may have been written in a shortened format to fit into char-

acter count of Twitter. For instance, #ttot (a highly adopted hashtag in the Travel domain) 

does not convey meaning clearly by itself. 

The use of hashtags has attracted considerable interest and research attention. The 

research in this area widely can be categorized into three topics. First, there is research in 

which hashtags have been used for IR/TM tasks. For instance, Lin et al. (2011) use hashtags 

for topic filtering, Livne et al. (2011) for community analysis, and, Liu et al. (2011) for 

topic summarization. Second, some research addresses the low rate of hashtag adoption by 

tweeters and offers hashtag recommendation (e.g., Godin et al., 2013). Finally, research 

explores the characteristics of hashtags and how/why tweeters adopt hashtags. For instance, 
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Huang et al. (2010) look at the time series chart of traditional tagging platforms (such as 

Delicious) and hashtags, and asserts that tagging nature of Twitter is different from tradi-

tional tags. Traditional tags have been widely utilized for organizational purposes whereas 

hashtags have been used for conversational purposes, and filtering and directing the tweets. 

Yang et al. (2012) argue that tweeters adopt hashtags to indicate their membership in a 

community. 

To summarize, hashtags are a potentially valuable source of information for topic 

modeling and information retrieval. However, the semantic interpretation of hashtags 

needs to be addressed to exploit this potential.  

The proposed topic model aims to utilize attribute lattice grammar principles to im-

prove semantic interpretation of hashtags (tweeter-defined topics) and to visualize seman-

tics of topics and their relationships. Built based on tweeter-defined topics, this topic model 

(a graph-like conceptual model) represents the topic structure of a given set of tweets and 

enables users to incorporate their topics in the model. Hence, it frees users from pre-defined 

topics and enables them to use topics that reflect their interest for tweet retrieval and anal-

ysis purposes.  
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4.3 Attribute-lattice-based Topic Model 

The attribute lattice is a schema-free conceptual modeling grammar. Developed 

based on IBDM principles, this model frees instances from predefined classes and offers 

classification that relies on the relationship among attributes. Classes, useful cognitive ab-

stractions, can be defined and represented by the precedence relationship among the 

attributes possessed by instances. These classes provide support for information retrieval 

and semantic data integration. In this section, I first investigate how attribute lattice gram-

mar principles can be used to represent the latent semantics of unstructured data (i.e., 

tweets). Second, the automated topic model extraction procedure is discussed. Finally, I 

illustrate how the topic model is utilized to represent the topic structure of the domain, to 

find related information from a vast amount of data, to retrieve more related information, 

and to gain insight into the meaning of unknown data.  

4.3.1 Attribute-lattice-based Topic Model  

In computational linguistic models, “topic” refers to a set of words that capture the 

latent semantics of a document (Newman et al., 2010). Users of these models can interpret 

the “topic label” by using the set of words in a topic (Mei et al., 2007). The topic label, in 

turn, refers to the concept that provides meaning to the set of words and makes the latent 

semantics explicit (Sun et al., 2015). Note that a topic is a set of words and should be 

distinguished from a topic label, which is a single word that makes the latent semantics 

explicit for users.  
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However, previous research suggests not all the words in a topic contribute equally 

to the interpretation of the topic label. In other words, a set of words (which I call repre-

sentative words) in the topic can be found that contribute to this interpretation more than 

others do. These words best summarize the latent semantics of the document (Lau et al., 

2010; Sun et al., 2015). For instance, Sun et al. (2015), given a set of topical words that 

need to be covered, used data-driven semantic network to find a minimum set of words that 

summarize the words in the topic and eventually extract the topic labels. 

Twitter allows users to send tweets for all sorts of reasons in real time (Zhao & Ros-

son, 2009). The explosive growth of tweets makes them a valuable source of information. 

According to a recent statistic, by the end of 2017  Twitter, had 330 million monthly active 

users (Statista, 2018) who created an average 500 million tweets per day ("Twitter Usage 

Statistics," 2018). In addition to text, tweets may include mentions of specific users (“@” 

sign immediately followed by Twitter account), URLs to external pages, or user-specified 

hashtags (single words with the symbol “#”).  

Tweets cover a wide range of topics, from users’ opinions to users’ life events to 

emerging political news. As a result, topic identification of tweets has attracted intensive 

interest in recent years. Hashtags are tweeter-specified labels that convey the topic of the 

tweet. Tweeters adopt existing hashtags or create new hashtags to associate their tweets 

with other tweets with a similar topic. However, the shortened formation (Liu et al., 2011; 

Pöschko, 2011) and conversational nature  (Huang et al., 2010) of hashtags hamper their 

semantic interpretation.  
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I argue the attribute lattice conceptual modeling grammar can be used to improve 

semantic interpretability of hashtags (tweeter-specified topics) and to create a topic mod-

eling on Twitter. Although tweets (instances) possess several attributes such as author, 

mentions, hashtags, URLs, and geo-location, in developing the topic model, I only consider 

hashtags as attributes of tweets.  

An attribute lattice can serve as a topic model to represent the topic structure of 

tweets in a subject domain. This topic structure shows topic labels (a hashtag or a word), 

topics (a set of frequent hashtags in the topic), and the representative hashtags for each 

topic label. In this topic modeling approach, a topic label (like a class in the attribute lattice) 

is a useful cognitive abstraction that meaningfully conveys the semantics of words in a 

topic. The representative words for a topic label are semantically equal to bases of a class 

in attribute lattice (i.e., they can be used to infer the topic). And finally, a topic (a set of 

frequent hashtags) is semantically equal to class expansion in an attribute lattice.  

For instance, assume the technology domain is the domain of interest. Also, assume 

the set of hashtags, including Bigdata, Analytics, BI, Hadoop, MachineLearning, DataSci-

ence, and IoT, is the set of frequently used hashtags in Twitter to talk about this topic. For 

this topic, Bigdata can be a topic label, and DataScience and Hadoop can be representative 

hashtags – that is, if a tweeter adopts either DataScience or Hadoop in her tweet, it can be 

inferred that the topic label of the tweet is Bigdata. 

The following section (4.3.2) proposes a semi-automatic approach to extract the ini-

tial attribute lattice from Twitter. This section aims to represent how an initial topic model 

can be created from data. This initial model can further be adjusted and modified by users 
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to include user-defined topics and relationships. This is followed by a discussion on the 

practical usefulness of the topic model on section 4.3.3. The section elaborates how this 

model enables users to predict the topics of emerging hashtags, facilitates finding domain-

related terms/hashtags among trending terms/hashtags, and improves information retrieval.  

4.3.2 Constructing the Topic Model 

As discussed earlier (section 4.2.4), hashtags provide valuable insight into the topic 

of a tweet. However, they are extremely sparse and consequently not interpretable. Attrib-

ute-lattice-based topic modeling aims to utilize attribute lattice grammar principles to rep-

resent the topic structure of a given set of tweets on a subject domain. This topic model 

shows the topic structure by identifying the most influential hashtags in the set12, concep-

tualizing the relationship among hashtags (attributes of tweets) and elaborating how these 

hashtags contribute to the user-specified topics in the domain of interest. In this section, I 

discuss how tweets related to a subject domain can be retrieved using the Twitter API, and 

how the attribute-lattice-based model is constructed using this set of tweets.  

The proposed topic modeling approach starts with identifying and refining tweeters 

who are regularly tweeting about the topic of interest. Next, tweets of these tweeters are 

retrieved to calculate the popularity and frequency of hashtags related to the topic of in-

terest.  The popularity of a hashtag is defined as the number of unique tweeters who have 

adopted the given hashtag in the retrieved tweets. The frequency of a hashtag is defined as 

 

12 Note that if tweets are based on a highly specific subject domain (e.g., a specific fun activity or specific news category), 
a single hashtag might become dominant and the topic structure will become ineffective. 
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the number of original tweets (not retweets or quotes) that have used a given hashtag in 

the retrieved tweets. The popularity and frequency of co-occurrences of pairs of hashtags 

are defined in the same manner.  

Finally, the topic model is constructed by comparing popularity and frequency of 

pairs with user-defined thresholds – that is, popularity rate, precedence threshold, topic 

threshold, and frequency threshold (Table 5). The first two thresholds (popularity rate and 

precedence threshold) are used to identify potentially meaningful subsumption relationship 

among hashtags. The popularity threshold refers to the minimum number of tweeters who 

need to adopt a pair to consider the pair as a meaningful co-occurrence. This threshold 

depends on the number of tweeters who contribute to the tweet set. Hence, it is calculated 

by multiplying the user-defined popularity rate by the number of tweeters who contributed 

to the topic model. The precedence threshold refers to the minimum value of a conditional 

probability that defines a meaningful subsumption relationship among hashtags in a pair.  

The next two thresholds (topic threshold and frequency threshold) are used to suggest 

potential topic labels, and to find the representative hashtags for each topic. The topic 

threshold refers to the minimum number of hashtags that should co-occur with a given 

hashtag to consider the given hashtag as a topic label. For each topic label, a minimum 

frequency is defined by multiplying ‘the frequency of the most frequent hashtag for the 

topic label’ by the ‘frequency threshold’. The most frequent hashtag and hashtags with a 

frequency higher than the minimum frequency are potential representative hashtags for the 

topic (Table 5).  
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Table 5. A summary of user-defined thresholds 

Thresholds  Definition 

Popularity threshold 
The minimum number of tweeters need to adopt a pair to consider it 
meaningful 

Popularity rate 
A user-defined ratio to calculate the popularity threshold (popularity 
threshold is equal to the number of tweeters in the tweets set multiplied 
by the popularity rate) 

Precedence threshold 
The minimum value of a conditional probability that defines a mean-
ingful subsumption relationship 

Topic threshold 
The minimum number of hashtags that should co-occur with a topic 
label 

Frequency threshold A user-defined ratio to find representative hashtags of each topic 

 

The following six steps elaborate the procedure (Figure 20). 

4.3.2.1 Searching for known tweeters  

Based on the assumption that Twitter users (tweeters) tend to tweet about a narrow 

range of topics (Sriram et al., 2010; Yang et al., 2014), the first step in the procedure is to 

find tweeters who are known for frequently tweeting about the topic of interest. 

Given a topic of interest, two approaches can be used to identify known tweeters; the 

published peer-reviewed list of tweeters (for instance Borison (2014)) and/or the “Twitter 

List.” The former approach (using a peer-reviewed list of tweeters) might have two limita-

tions. First, they usually cover a limited number of tweeters for each topic of interest (rang-

ing from 10 to 100 tweeters.) Second, considering the growth rate of Twitter, the list might 

become obsolete quickly. The Twitter list provides a social annotation (Bao et al., 2007) 

mechanism to find tweeters who are known for tweeting about specific topics (Yang et al., 
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2014). The latter approach provides a more updated list of tweeters; however, the list is not 

peer-reviewed. For this procedure, I suggest utilizing both types of lists together.  

 

 

 Twitter attribute-lattice-based topic modeling  

 

4.3.2.2 Refining tweeters’ list 

The Twitter API provides access only to the tweets of public accounts. As a result, 

the initial list of tweeters should be pruned to include only tweeters whose accounts are 

publicly available. 

  

1) Searching for known 
tweeters 2) Refining tweeters’ list 3) Extracting tweets

4) Refining tweets5)Calculating frequency and 
popularity of hashtags6) Constructing the attribute lattice
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4.3.2.3 Extracting tweets  

Tweets of known tweeters can be retrieved at least by two approaches: borrowing 

tweets from previously published and available studies, or extracting directly from Twitter 

by the Twitter API. The former approach has several disadvantages. First, tweets in these 

data sets will be limited in the time covered. Second, there is no guarantee we can find 

tweets of all tweeters in the list in a specific data set. Third, considering the high rate of 

tweets, an average 500 million tweets per day ("Twitter Usage Statistics," 2018), the data 

sets might be obsolete, and they cannot reflect a recent topic structure of the domain. The 

latter approach, on the other side, imposes some limitations to the tweet retrieval process. 

The Twitter API provides the last 3200 tweets for each tweeter. Also, the service offers 

only 32,000 tweets every 15 minutes. As a result, tweet retrieval will be a time-consuming 

process (less than three million tweets can be retrieved each day.) Although using the Twit-

ter API imposes some limitations to tweet retrieval process, it provides the most recent 

tweets to build the topic model. Hence, I use the Twitter API to directly retrieve the latest 

tweets for the tweeters in the refined tweeters’ list for the empirical study.  

4.3.2.4 Refining tweets 

We are interested in tweets written in English, and tweets which have at least one 

hashtag. Therefore, I will discard non-English tweets and tweets without hashtags. 
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4.3.2.5 Calculating frequency and popularity of hashtags 

This step aims to summarize data (tweets) based on co-occurrences of hashtags and 

to calculate the frequency and popularity of hashtag pairs. The output of this step is a sum-

mary table that contains pairs of hashtags and the popularity and frequency of each pair. 

This table is used in the next step to estimate the conditional probability of hashtags and to 

create the attribute-lattice-based topic model. Note that, for tweets with more than two 

hashtags, all the pair combinations will be used to calculate the popularity and frequency. 

For instance, if a given tweet has three hashtags (#h1, #h2, and #h3), the summary table 

will include three pairs for this tweet {#h1,#h2} , {#h1,#h3}, and {#h2,#h3}.  

4.3.2.6 Constructing the attribute lattice  

The last step in the procedure is to extract suggested precedence relationships among 

hashtags. The precedence relationship in the attribute lattice  grammar reflects the sub-

sumption relation among attributes. This relationship can be represented mathematically 

as follow: 

Expr	27. J	M8~M8j7M	ô	çi:	

\(J|ô) = 1, \(ô|J) < 1;	

õℎ7]7	G|~	]7^]7M7dPM	Pℎ7	Ncd>gPgcdGz	^]c~G~gzgPD	ci	G	fg97d	~	

Previous studies adopted the simple conditional statistical model to construct hierar-

chical organization of concepts from text data (Sanderson & Croft, 1999) and to find sub-

sumption relations among tags (Schmitz, 2006; Wu, 2015). Sanderson and Croft (1999) 
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argue a strict value (\(J|ô) = 1) will miss capture all meaningful pairs, hence, they pro-

pose to use relaxed conditional probability (\(J|ô) ≥ 0.8) to construct hierarchical organ-

ization of concepts from text data (Expr 28).  

Expr	28. J	^cP7dPgGzzD	M8~M8j7M	ô	çi:(Sanderson	&	Croft,	1999)	

\(J|ô) ≥ 0.8, \(ô|J) < 1;	

Schmitz (2006) adopted the same statistical model to extract subsumption relation-

ship among Flickr tags. However, in this study, to filter meaningful tags, they use a lower 

limit both for the number of documents in which a given tag occurs and for the number of 

users that use a given tag, that is, Dmin, and Umin respectively.  

Expr	29. J	^cP7dPgGzzD	M8~M8j7M	ô	çi:	(Schmitz,	2006)	

\(J|ô) ≥ P, \(ô|J) < P;		

ï5 ≥	ï&('	; ï6 ≥	ï&(';	

§5 ≥	§&('		; §6 ≥	§&('	

õℎ7]7:	

P	gM	Pℎ7	Nc − cNN8]]7dN7	Pℎ]7Mℎcz>	

ï5	gM	Pℎ7	d8j~7]	ci	>cN8j7dPM	gd	éℎgNℎ	P7]j	J	cNN8]M, Gd>	j8MP	~7	f]7GP7]		

PℎGd	G	jgdgj8j	9Gz87	ï&(',		

§5gM	Pℎ7	d8j~7]	ci	8M7]M	PℎGP	8M7	J	gd	GP	z7GMP	cd7	gjGf7	PGf, Gd>		

j8MP	~7	f]7GP7]	PℎGd	G	jgdgj8j	9Gz87	§&('	

In this model, the author utilizes a fixed range for Umin, and Dmin to find the most 

meaningful subsumption relationships among tags. The evidence from this experiment in-

dicates, in comparison to the original model (Sanderson & Croft, 1999), the lower thresh-

olds - that is, between 0.7 and 0.8 - provides more meaningful subsumption relationships. 
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Following the relaxed statistical model offered by Sanderson and Croft (1999), I use 

the same statistical model to extract potential meaningful precedences. In the context of 

Twitter, tweeters adopt existing hashtags, or, create new hashtags freely and without any 

constraints. As a result, hashtags are extremely sparse and we expect to see lower threshold 

(t precedence) for the meaningfulness of precedences.  

To identify meaningful tags, Schmitz (2006) offer to use a lower bound for each tag. 

I use the same principles to extract meaningful hashtags, however, the adopted model needs 

to be adjusted with the structural and semantical characteristics of hashtags (discussed in 

section 4.2.4).  

First, to create a topic model, I assume tweeters tend to tweet about a narrow range 

of topics. Still, as reflected in the result of the experimental study, they might tweet about 

trending social topics which are not necessarily related to their topic of interest. For in-

stance, #metoo is a popular hashtag among the tweeters who are known for tweeting about 

the domain of technology even though this hashtag is not related to the domain of technol-

ogy. Hence, to eliminate hashtags that reflect topics that are not necessarily associated with 

the domain of interest, the statistical model should focus on the co-occurrences of hashtags. 

Note that, if tweeters adopt any hashtag, it is not an uncommon practice to adopt more than 

one hashtag. My empirical study (section 4.5.1) suggests that in the domain of technology, 

close to 65 percent of tweets have one hashtag and the rest have at least two hashtags. 

Second, in contrast with Schmitz (2006), I argue the extent to which co-occurrence 

of hashtags contributes to the topic model in the domain of interest should be measured 

based on the ratio of known tweeters who adopt/use the hashtag rather than fixed lower 
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bounds. As a result, the lower bound for the meaningfulness of co-occurrence is defined 

based on ratio of popularity, which is popularity rate (^c^89:1). This lower bound, mini-

mum popularity (^c^&('), is calculated by multiplying the popularity rate by the number 

of tweeters who contribute to the topic model. For instance, if the tweet set include tweets 

from one thousand tweeters (dc. ci	íé77P7]M = 1000), with the	^c^89:1 of one percent 

(^c^89:1 = 0.01), a co-occurrence is meaningful if it is adopted/used by at least ten tweet-

ers (^c^&(' = 1000 ∗ 0.01 = 10 ). Expression 30 summarizes the adopted statistical 

model.  

Expr	30. óGMℎPGf	v	^cP7dPgGzzD	^]7N7>7M	óGMℎPGf	F	(F → v)	gi:	

\(v	|	F) ≥ 	 P	;81<1-1'<1 	

\(v	|	F) 	> 	\(F	|	v)	

^c^=,. ≥	^c^&('	

õℎ7]7:	

^c^&(' = 	dc. ci	íé77P7]M	 ∗ 	^c^89:1 	

P;81<1-1'<1 	gM	G	Pℎ]7Mℎcz>	ic]	j7Gdgdfi8z	^]7N7>7dN7	

A key contribution of the attribute lattice grammar is semantic relativism. Hashtags 

(attributes) can be labeled as topic labels (classes) based on their semantic neighbourhood. 

As discussed earlier (section 4.3.1), a topic is a set of words that are likely to appear in the 

same context and the topic label provides a semantically clear and meaningful summary of 

the words in the set.  

Given the above definition, any hashtag that co-occurs with a set of other hashtags 

in several tweets is a potential topic label for this set. In other words, the hashtag should be 

identified as a potential topic label if it precedes at least a minimum number of other 



104 

hashtags. The topic threshold (t topic) is defined in the model to capture this minimum num-

ber that is required to identify a hashtag as a topic label. The number of identified potential 

topic labels depends on this threshold. A low threshold (i.e., t topic = 1 or 2) identifies too 

many hashtags as potential topic labels. On the other hand, a more restricted threshold (i.e., 

t topic > 5) misses capturing several potentially meaningful topic labels. Expression 31 rep-

resents the statistical model mathematically. 

Expr	31. óGMℎPGf	v	gM	G	^cP7dPgGz	Pc^gN	zG~7z	gi: 

∃	{F#, F$, … , F(}	G	M7P	ci	ℎGMℎPGfM	M8Nℎ	PℎGP		

∀F( 	gd	Pℎ7	M7P, F( → v, Gd>	g ≥ 	 P:?;(< 

õℎ7]7:	P:?;(<	gM	G	Pℎ]7Mℎcz>	ic]	Pℎ7	jgdgj8j	d8j~7]	ci	ℎGMℎPGfM	 

PℎGP	d77>	Pc	~7	^]7N7>7>	~D	ℎGMℎPGf	v	Pc	zG~7z	ℎGMℎPGf	v	GM	G	Pc^gN. 

Given hashtag B as a topic label, following the above expression, the next step is to 

find base(s) of this topic. A base for a topic is a set of words that best summarizes the latent 

semantics. If a preceded hashtag frequently appears with the given topic, we can assume 

that the preceded hashtag provides a good summary of the topic; as a result, it is a base for 

the topic label. The frequency of pairs (i]¶=,.) has been utilized in the model to identify 

potential base precedences. In the proposed approach, for any given topic label, the most 

frequent hashtag and hashtags with a close range of frequency are identified as bases for 

topic labels. 

Suppose hashtag v  is identified as a topic label, and {F#, F$, … , F(}  is a set of 

hashtags preceded by hashtag v. Also, assume {i]¶=!,. , i]¶=",. , … , i]¶=#,.} is a set that 

shows the frequency of pairs. F&, the hashtag with the highest pair frequency (i]¶&9@ =
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i]¶=$,. = max 	{i]¶=!,. , i]¶=",. , … , i]¶=#,.}), is deemed a base for the topic. Also, if 

there exists another hashtag, F', such that F' ∈ {F#, F$, … , F(} with a pair frequency close 

to the maximum frequency, it will be deemed a base for the topic label as well. Frequency 

threshold (t frequency) is defined to measure the closeness. The frequency of a pair of hashtags 

considered to be close to the maximum frequency if it is higher than the frequency thresh-

old multiplied by the maximum frequency. For instance, let the frequency of the most fre-

quent pair be one thousand (i]¶&9@ = 1000), and the frequency threshold be 0.8, a 

hashtag with the pair frequency of 850 has frequency close to maximum frequency, and it 

is a base for the topic label (max 	{i]¶} ∗ PABCDECFGH = 1000 ∗ 0.8 = 800). The following 

expression represents the mathematical model to extract potential bases for topic labels.  

Expr	32. óGMℎPGf	F* 	gM	G	^cP7dPgGz	~GM7	ic]	Pc^gN	zG~7z	v	:F* 	v;gi:	

v	gM	G	^cP7dPgGz	Pc^gN	zG~7z	

F* ∈ F	

i]¶=%,. ≥	i]¶&(' 

õℎ7]7:		

F = 	 {F#, F$, … , F(}	gM	G	M7P	ci	ℎGMℎPGfM	^]7N7>7>	~D	ℎGMℎPGf	v	 

i]¶&9@ = jGB 	êi]¶=!,. , i]¶=",. , … , i]¶=#,.ë 

i]¶&(' = i]¶&9@ ∗ PI81JK1'<L 

Finally, the last step is to find inferred hashtags for each base. Assume, hashtag v is 

identified as a potential topic label in the model, F = 	 {F#, F$, … , F(} is a set of hashtags 

that preceded by this topic label, and {F*#, F*$, … , F*)} ⊂ F	is a set of attributes identified 

as bases for the topic label using Expression 32. Preceded hashtags that are not identified 



106 

as a base (F −	{F*#, F*$, … , F*)}) are qualifying hashtags for the topic label – the topic 

label can be inferred from them, but they are not part of the topic. However, some of these 

hashtags might be, indeed, part of the topic. In this step, we are interested to find attributes 

that are potentially part of the topic among these hashtags.  

For instance, assume bigdata, opendata, hadoop, datascience, and analytics are five 

hashtags in the tweet set. Suppose, bigdata precedes other four hashtags (i.e. datascience, 

hadoop, opendata, and analytics), bigdata is identified as a potential topic label, and ana-

lytics is identified as a potential base for it. In this step, we are interested to find if opendata, 

hadoop, and datascience can be inferred from analytics, and as a result, be part of the 

bigdata topic. 

It is reasonable to assume that if a hashtag F& ∈ F −	{F*#, F*$, … , F*)} is a frequent 

hashtag in a given topic (part of the topic expansion), there is a higher chance that tweeters 

adopt hashtag F& and hashtag v (topic) for positioning their tweets rather than hashtag F& 

and F*) (any of the bases). For instance, assume datascience is part of the bigdata topic. I 

assume there is a higher chance for tweeter to adopt datascience with bigdata (the topic) 

rather than with analytics (the base). 

Following this assumption, if hashtag F& can be inferred from a base with a weak 

precedence relationship, the model considers F&  as a part of the topic. The weak prece-

dence relationship is a precedence with the probability not higher than precedence thresh-

old (PMBCGCNCFGC	). The following expressions represent the mathematical model to extract 

inferred hashtags for each base. 
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Expr	33. óGMℎPGf	F&	gM	^]7N7>7>	~D	F*) 	:F*) →	F&;	gi:	

v	gM	G	^cP7dPgGz	Pc^gN	zG~7z	 

F&	Gd>	F*) 	 ∈ F 

F*) 	gM	G	^cP7dPgGz	~GM7	ic]	v 

\:F&ßF*); > 0 

õℎ7]7:		

{F#, F$, … , F(}	gM	G	M7P	ci	ℎGMℎPGfM	^]7N7>7>	~D	ℎGMℎPGf	v	 

While categories provide a mechanism to have shorthand access to a set of hashtags, 

users might arbitrarily group hashtags and create categories. Hence, at this point, this pro-

cedure has no step to identify and extract potential categories. 

To summarize, the procedure starts with identifying meaningful precedences to con-

struct a topic model from hashtag co-occurrences. Based on the semantic neighbourhood 

of each hashtag (attribute) in the model, the procedure identifies potential topic labels. Fi-

nally, the procedure identifies bases, and hashtags that can be inferred from each base. The 

function developed for this procedure is elaborated in section 4.4.1. 
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4.3.3 Topic Model Applications 

There are several applications for the attribute-lattice-based topic model. First, it rep-

resents the topic structure of the domain. Second, it can be used to identify and keep track 

of emerging and/or trending hashtags related to the domain of interest. Third, using the 

immediate and sematic neighbourhoods of topics, the model can be used to retrieve more 

tweets related to the hashtag and/or topic of interest. And finally, it can be used to accu-

rately position tweets by adopting an appropriate set of hashtags. These applications are 

discussed in the following. 
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4.3.3.1 Topic structure of the domain 

This model not only provides a mechanism to integrate tweeter (data contributor) 

defined topic labels with user-defined (data user) topic labels, but also, using attribute lat-

tice grammar principles, it reflects how hashtags contribute to the topic structure of the 

domain. The model represents: 1) topic labels, which presumably convey meaningful con-

cepts to users; 2) sets of hashtags that reflect the underlying semantics of topics; and 3) sets 

of hashtags that best summarize the latent semantics. Also, based on attribute lattice prin-

ciples, the supertopic and subtopic relationship among topic labels can be inferred from the 

model.  

Note that a node in the model will be labeled as a topic label based on its immediate 

neighbourhood.  Labeling a node, either hashtag or user-defined node, as a topic label 

changes the semantics of the node in two important ways. First, it declares that the node is 

a meaningful concept for users rather than an atomic word. In other words, when a node 

becomes a topic label, users potentially can define the topic hierarchy for it, can determine 

its types, and assign tweets to it and so on. For example, in the domain of technology, 

mobile (cellphone) can be an atomic word. However, if this word becomes a topic label, it 

will convey a meaningful concept and can be considered as sub-topic of handheld devices. 

Also, smartphone will be a type of mobile. 

Second, labeling a node as a topic label states that a set of hashtags exists in the 

model that capture the latent semantics of tweets belonging to this topic, and this set of 

hashtags can be best summarized by the hashtags in the base. 
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4.3.3.2 Topic prediction and trend identification 

A hashtag, either emerging or trending, might not be a meaningful word, and even 

for meaningful words, the topic that hashtag represents might not be semantically clear for 

users. Hashtags are conversational in nature – they can emerge at some point and may 

vanish soon thereafter (Huang et al., 2010), and tweeters can freely adopt/use any set of 

hashtags for their tweets. Considering the massive volume of tweets and the variety of 

hashtags adopted in these tweets, it is not possible for the human user to identify and keep 

track of all hashtags related to the domain of interest.  

The attribute-lattice-based topic model offers mechanisms, first, to predict the topics 

of a given set of tweets, and second, to identify trending hashtags/terms related to the do-

main of interest. These two mechanisms are enabled by modeling hashtags as term vectors. 

The Vector Space Model (VSM) is a known model for representing text documents as a 

vector (Turney & Pantel, 2010). Using this model, the tweets vector ( %:O11:P) represents a 

term vector of unique hashtags in a given set of tweets, and, the attribute lattice vector 

(%&?-12) represents a term vector of the all the nodes in a given attribute lattice. 

• Find topics of a given term/hashtag 

The topic model of a domain enables mapping a set of tweets onto the known, user-

defined topics. Given a search term/hashtag, Twitter offers a set of tweets that contains the 

search term/hashtag. This tweet retrieval comes in three modes – that is, popular, recent, 

and mixed tweets. Here, the goal of topic prediction is to associate the search term/hashtag 

with known topics in the topic model. Hence, the proposed method for topic prediction 
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collects recent tweets (rather than popular, or mixed tweets which are filtered by Twitter) 

and uses them as a tweet set.  

This set of tweets has been used to identify a vector of popular hashtags related to 

the search term/hashtag (%:O11:P ). The related topics can be identified by comparing 

hashtags in the set vector with the nodes in an existing topic model (%&?-12), and following 

the precedence relationships in the model. In section 4.5.2.2, I discussed how this mecha-

nism has been utilized to identify the related topics of selected hashtags. 

• Find domain-related terms/hashtags among trending terms/hashtags 

Twitter offers a set of trending hashtags/terms, every few minutes, in each geograph-

ical location and worldwide. For each trending hashtag/term, Twitter retrieves the top 

tweets by real-time analysis of related conversations and using sophisticated Machine 

Learning algorithms. Here, the proposed procedure uses top tweets for each trending 

hashtag/term to create a term vector for each trending hashtag/term (%:O11:P). Using top 

tweets improves the procedure in two ways. First, it allows retrieving tweets that are se-

mantically related to the current conversation, not all the tweets with the same 

term/hashtag. Second, it enables to accelerate tweet retrieval, that is, even with the smaller 

number of tweets, popular hashtags in the conversations can be retrieved.  

Then, the cosine similarity (Han et al., 2011) has been used to compare the extent to 

which a term vector of each trending hashtag/term is related to the topic model of interest. 

The cosine similarity of two vectors is measured as indicated in Expression 34. A trending 

hashtag/term with a higher similarity will be more related to the topic model. 
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In this expression, the numerator represents the number of shared terms between 

%:O11:P and %&?-12, and the denominator represents the multiplication of the number of 

terms in these vectors. 

Expr	34. ÅgjgzG]gPD = 	
Q&'((&).		Q$*+(,

‖Q&'((&)‖.‖Q$*+(,‖
	

éℎ7]7	

%:O11:P	]7^]7M7dPM	G	97NPc]	ci	]7zGP7>	ℎGMℎPGfM	ic]	7GNℎ	P]7d>gdf	Pc^gN	

%&?-12 	]7^]7M7dPM	G	97NPc]	ci	dc>7M/ℎGMℎPGfM	gd	G	fg97d	Pc^gN	jc>7z	

||	]7^]7M7dPM	Pℎ7	dc]j	(Mg®7)	ci	97NPc]	

	

4.3.3.3 Tweet retrieval  

The model can be used to retrieve more related tweets. The topic structure in the 

lattice (i.e., different types of hashtags and precedences) provides a mechanism to identify 

the most relevant hashtags to the topic of interest, and therefore, to retrieve more related 

tweets. This relationship leads to retrieving tweets that cannot be retrieved otherwise.  

For instance, assume infosec and security are two hashtags in the domain of technol-

ogy and security precedes infosec. Users interested in tweets about security, can use this 

precedence relationship and include tweets with infosec hashtag. Tweets which have in-

fosec hashtag but not security cannot be retrieved by overlooking the precedence relation-

ship. 
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4.3.3.4 Tweet positioning  

Hashtags can be utilized to direct tweets (Huang et al., 2010). That is, a tweeter 

adopts hashtags for her tweet in a way that the tweet will be seen in a specific stream. The 

topic model provides necessary information for tweeters to position their tweets. The model 

represents influential hashtags in a subject domain, frequent hashtags in a specific topic, 

and subsumption relationships among hashtags. Using this information, selecting the 

proper set of hashtags helps a tweeter to convey her message to the right audience. 

For instance, suppose a tweeter wants to raise her concern about data security in a 

tweet. Topic model extracted from tweets in the domain of technology (Figure 21) suggests 

that security and, specifically, infosec are influential hashtags related to data security that 

can be adopted. 
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4.4 Implementation of Attribute-lattice-based Topic Model 

The artifact implementation chapter (chapter 3) discussed the design and implemen-

tation of the attribute lattice artifact. The artifact helps users of the conceptual modeling 

grammar to create, update, visualize, and validate attribute lattices. This section aims to 

present how the artifact can be expanded to support other attribute lattice-based use cases. 

The proposed additional features help users to create an initial lattice from data, and to gain 

new insight into data using the attribute lattice. 

In particular, this section introduces a set of additional features that supports the task 

of topic modeling. These features have been implemented in the artifact, and they are ac-

cessible to the research community13. These features enable users to use tweets to automat-

ically create an initial topic model, to find related topics among trending topics, and to 

retrieve relevant tweets. Like before, using the domain knowledge, the automatically ex-

tracted model can be modified to reflect users’ perspectives more accurately. Similarly, the 

model can be visualized and validated using basic features of attribute lattice artifact. 

It is worthwhile to note that the model extraction and model modification procedures 

are independent – that is, once an initial topic model has been extracted from tweets, any 

update on the tweet set will not be reflected on the topic model, and vice versa. Table 6 

summarizes implemented features that support attribute-lattice-based topic modeling. 

  

 

13 The application is available at this address (https://attribute-lattice.shinyapps.io/thesis/) 
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Table 6. Artifact Features; Extended for Attribute-lattice-based topic Modeling 

 

4.4.1 Implemented Functions to Extract Initial Topic Model 

Following the topic model procedure (Figure 20), the Twitter API has been used to 

retrieve the known tweeters based on user-provided lists. The developed function for re-

fining tweeters filters out tweeters whose accounts are not publicly available. This is fol-

lowed by the function that extracts recent tweets for tweeters in the list from the previous 

step. The Twitter API has certain limits for tweet retrieval. First, it only provides the last 

3200 tweets of each tweeter, second, it limits retrieval to 32,000 tweets every 15 minutes. 

As a result, tweet retrieval is a time-consuming process.  

The developed function splits the refined tweeters list and retrieves the maximum 

number of tweets available for each tweeter – that is, max (number of tweeters’ tweet, and 

3200). The function repeats the process every 15 minutes to retrieve latest tweets for all 

tweeters. It is worthwhile to note that the Twitter API is configured, in this function, to 

extract only the original tweets (not quotes nor retweets) and tweets written in English. 

Feature Area Feature 

4. Twitter Topic Modeling 4.1 Provide a mechanism to build the initial topic model from tweets 
automatically 

4.2 Provide a mechanism to manipulate and adjust the initial topic 
model  

4.3 Find topics related to the subject of interest among trending topics 

4.4 Search Twitter for a given hashtag/term (either trending or emerg-
ing) and find related topics in an existing topic model 
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The Twitter API provides a variety of information about each tweet. In addition to 

the tweeter and hashtags, it includes other information such as the location of the tweeter, 

number of retweets and quotes, and whether the tweet is written to respond to another 

tweet. The developed model focuses on the tweet itself, tweeter, and all the hashtags in the 

tweet. The next function is developed to refine the tweets, that is, 1) to make sure all the 

tweets are original tweets written in English, 2) to filter out tweets without any hashtags 3) 

to remove special characters from hashtags, and 4) to change all the hashtags’ characters 

to lower case. The result of this function will be an id for the tweet, the tweeter name, and 

a list of hashtags for each tweet. 

The next function summarizes tweets based on co-occurrences of hashtags and cal-

culates the frequency and popularity of them. The following pseudocode elaborates the 

function.  

Input:	Retrieved	tweets	(tweet	id,	tweeter	id,	hashtags’	list)	

	

Create	a	separate	row	for	each	hashtag	(the	result	will	be	tweet	id,	tweeter	id,	

hashtag)	

Group	by	tweet	id,	tweeter	id 

Filter	out	tweets	with	less	than	two	hashtags	

Find	all	pairs	of	hashtags	for	tweets	with	more	than	two	hashtags	(hashtag	A,	

hashtag	B)	

Filter	out	pairs	in	which	hashtag	A	=	hashtag	B	(this	will	happen	if	the	tweeter	

uses	a	single	hashtag	more	than	once	in	a	single	tweet.)	

Group	by	hashtag	A,	hashtag	B		

Count	number	of	tweets	for	each	pair	

Add	Column	to	save	count	as	the	frequency	of	the	pair	
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Group	by	hashtag	A,	hashtag	B,	tweeter	id,	frequency	

Remove	duplicates	

Group	by	hashtag	A,	hashtag	B,	frequency	

Count	number	of	pairs	(this	will	provide	the	number	of	unique	tweeters	for	each	

pair)	

Add	Column	to	save	count	as	the	popularity	of	the	pair	

Group	by	hashtag	A,	hashtag	B,	frequency,	popularity	

Remove	duplicates	

	

Output:	hashtag	co-occurrences	(hashtag	A,	hashtag	B,	frequency,	popularity)	

Finally, the last function creates a topic model based on the output of the above-

mentioned function (i.e., hashtag A, hashtag B, frequency, and popularity), the total num-

ber of tweeters in the refined tweeters’ lists, and a set of user-defined thresholds (i.e., pop-

ularity rate, precedence threshold, topic threshold, and frequency threshold). The following 

pseudocode elaborates the topic model creation function.  

Input:	hashtag	co-occurrences	(hashtag	A,	hashtag	B,	frequency,	popularity),	no.	of	

Tweeters,	pop	rate,	t	precedence,	t	frq,	t	topic	

	

Calculate	pop	min	=	no.	of	Tweeters	*	pop	rate	

Filter	out	pairs	with	popularity	less	than	pop	min	

Calculate	popularity	for	each	hashtag	(hashtag	A	and	hashtag	B	separately)	in	the	

remaining	pairs	(i.e.,	the	summation	of	the	popularity	of	the	pairs	that	have	the	

given	tag	as	hashtag	A	or	hashtag	B)	

Add	Columns	to	store	pop	hashtag	A,	and	pop	hashtag	B	

Find	rows	in	which	pop	hashtag	A	>	pop	hashtag	B		
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Permute	(hashtag	A,	hashtag	B)	and	(pop	hashtag	A,	pop	hashtag	B).	To	make	sure	

hashtag	A	and	hashtag	B	are	always	arranged	in	a	way	that	pop	hashtag	A	<=	pop	

hashtag	B	

Calculate	conditional	probabilities	

° Calculate	p(hashtag	A	|	hashtag	B)	=	pop	hashtag	A,	hashtag	B/	pop	hashtag	B	

° Add	Column	to	store	p	(hashtag	A	|	hashtag	B)	

° Calculate	p(hashtag	B	|	hashtag	A)	=	pop	hashtag	A,	hashtag	B/	pop	hashtag	A	

° Add	Column	to	store	p	(hashtag	B	|	hashtag	A)14	

Find	precedence	relationships	from	pairs	

° Find	pairs	in	which	p	(hashtag	B	|	hashtag	A)>=	t	pop	and	p	(hashtag	A	|	

hashtag	B)	<	1	

Prune	the	topic	model		

° Filter	out	transitive	precedences	(for	instance,	If	hashtag	A	→	hashtag	B,	

hashtag	B	→	hashtag	C,	and	hashtag	A	→	hashtag	C	,	Then	filter	out	hashtag	

A	→	hashtag	C)	

Find	topic	labels	and	base	precedences	from	pairs	

° Group	by	hashtag	B	

° Calculate	Number	of	preceded	hashtags	for	each	hashtag	B	(B	input)	

° Calculate	the	maximum	frequency	for	each	hashtag	B	(frq	max)	

° Calculate	the	minimum	frequency	for	each	hashtag	B	(frq	min)	

° Find	precedences	in	which	B	input	>=	t	topic	

° Find	precedences	in	which	frq	hashtag	A,	hashtag	B	>=	frq	min	

° Label	pairs	as	base	precedence	

Find	inferred	hashtags	for	each	base	

 

14 Note that, the previous step ensures pop tag A <= pop tag B , as a result, p (tag B | tag A) >= p (tag A | tag B) 
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° Find	candidate	pair	for	weak	precedences	(pairs	in	which	the	first	hashtag,	

A,	is	a	base	for	topic	label	B,	and	the	second	hashtag,	C,	preceded	by	topic	

label	B)	

° Find	weak	precedences	p	(hashtag	A	|	hashtag	C)	>	0	

° Label	pairs	as	precedence	

Find	all	attributes	(hashtag	A,	hashtag	B)	from	the	precedence	

	

Output:	Topic	model	(attributes,	precedences)	

4.4.2 Topic Model Manipulation 

The initial topic model has been built based on hashtag co-occurrences. Hashtags are 

conversational in nature, and they are extremely sparse. As a result, the initial topic model 

is not necessarily accurate. Moreover, users should be able to add/modify the topic labels 

in the model. The basic functions discussed in Chapter 3 can be used to add hashtag/topic 

label, add hashtag categories, and modify suggested precedences. 

4.4.3 Trends - Topic Model Similarity 

One application of the topic model is to track trending hashtags/terms and examine 

if they are related to a user domain of interest. Using the Twitter API, the implemented 

function retrieves the trending hashtags/terms in the user-specified location and measures 

similarity of each hashtag/term to an existing topic model.  

This function starts with getting a geographical location from the user. For each lo-

cation, the Twitter API provides a list of top 50 trending hashtags/terms. Hence, the result 

of this step is a list of trending topics/terms based on a given location. Next, this function 

retrieves a small sample of popular tweets for each term (e.g., one hundred popular tweets 
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for each hashtag/term). Twitter measures the popularity of tweets by the extent to which 

they capture the attention of users. For this step, I retrieve a small sample of popular tweets 

to rapidly retrieve tweets for all trending hashtags/terms without reaching to the API limits 

(a hundred tweets for all trending hashtags/terms can be retrieved in a few seconds.) Next, 

for each hashtag/term, the function defines a vector that represents a list of unique hashtags 

in tweets retrieved for it. Finally, it measures the cosine similarity of vectors of 

hashtag/term with the vector of an existing topic model.  

4.4.4 Topics/Hashtags of a Given Search Term/Hashtag 

The trends - topic model similarity, introduced in the previous section, aims to find 

hashtags/terms that are potentially related to the domain of interest. The function measures 

and compares similarities for trending hashtags/terms. However, since the similarity is 

measured based on the small sample size, it might not be able to identify hashtags/topics 

in an existing topic model accurately. As a result, another function is developed for in-

depth analyzing of tweets retrieved based on searching for a hashtag/term. This function 

aims to find meaningful hashtags in the tweets and show how these hashtags are related to 

the known hashtags/topics in a given topic model.  

The function starts with a user-specified search term/hashtag and a popularity rate. 

It retrieves the maximum number of tweets available for the term/hashtag. The latest 

18,000 tweets for each search term/hashtag can be retrieved by using the Twitter API. 

Tweets are refined to extract English tweets. Next, the function creates a list of hashtags 

and their popularities. The function calculates the minimum popularity based on the num-

ber of tweeters who contribute to the retrieved tweets multiple by user-specified popularity 
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rate. Finally, it returns a list of hashtags for which popularities are higher than the minimum 

popularity as meaningful hashtags in retrieved tweets. For instance, assume the given term 

is bigdata, and the given popularity rate is one percent. This function, first, retrieves and 

refines the latest 18,000 tweets related to this search term and calculates the number tweet-

ers in the tweet set. Assume 2000 tweeters contribute to this tweet set. Then, with the given 

popularity rate, the function creates a list of hashtags that have been adopted by at least 20 

unique tweeters and returns them as a set of meaningful hashtags for this search term. The 

topic structure of the tweets will be presented to users by comparing this result with the 

known hashtags in a given topic model. 
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4.5 Evaluation 

This section presents the results of an evaluation of attribute-lattice-based topic mod-

eling in the domain of technology. The topic model described in this section is extracted 

directly from tweets without user modification. 

4.5.1 Topic Model for the Domain of Technology 

4.5.1.1 Searching for known tweeters 

For the first step, Google search is used to find known tweeters in the domain of 

technology. Borison (2014) offers a peer-reviewed list of the most influential tweeters in 

this domain. Although the report was written a couple of years ago, it still provides a val-

uable list of tweeters. Five other Twitter lists which represent influential tweeters in this 

domain has been added to the initial list of tweeters. Table 7 represents six selected lists 

and the number of tweeters in each list.  

4.5.1.2 Refining tweeters’ list 

The initial list was refined to filter out duplicate tweeters (the same tweeter appearing 

in various lists) and to find tweeters who their accounts are publicly available. 1,533 unique 

tweeters with the publicly available account were found after refining the initial tweeters’ 

list (Table 7). 
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4.5.1.3 Extracting tweets 

The most recent 3,200 tweets for each tweeter can be retrieved via the Twitter API. How-

ever, not all tweeters have 3,200 tweets. For instance, Bill Gates is among the top 10 tweet-

ers in this domain (based on Business Insider peer-reviewed list (Borison, 2014)) and, as 

of May 2018, he has posted only 2,681 tweets (Table 8). For this step, the maximum num-

ber of available tweets for each tweeter is retrieved.  

 

Table 7. Lists of tweeters 

List Type of list Owner No. of Tweeter 

Most Influential in Tech Twitter List Scobleizer 404 
Digital and Social Media Twitter List courtenaybird 483 
Toptechbloggers Twitter List louisgray 116 
CIO Twitter List abbielundberg 236 
Legal tech thinkers Twitter List nikiblack 87 
Cloud Twitter List GeorgeReese 288 
Business Insider Peer reviewed List ---- 100 

Total Number of Tweeters 1714 
Unique Number of Tweeters (Public) 1533 
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Table 8. Top ten tweeters - based on peer reviewed list 

 Name Twitter ID No. of Followers No. of Lists No. of Tweets 

1 jack jack 4,195,463 27,395 23,463 
2 Jeremiah Owyang jowyang 176,216 13,193 69,252 
3 Aaron Levie levie 2,659,674 5,353 3,722 
4 OM om 1,525,552 14,321 49,520 
5 Robert Scoble Scobleizer 426,649 24,830 69,735 
6 Elon Musk elonmusk 21,642,048 43,970 4,181 
7 Mathew Ingram mathewi 86,865 5,978 221,083 
8 Benedict Evans BenedictEvans 246,539 6,415 128,786 
9 Bill Gates BillGates 45,996,671 121,953 2,681 
10 Anil Dash anildash 630,855 8,914 168,723 

 

 

4.5.1.4 Refining tweets 

After filtering out retweets, non-English, and quoted tweet, 2,591,322 tweets were 

retrieved for tweeters in the list. As demonstrated in Table 9, approximately 20 percent of 

the remaining tweets have at least one hashtag. The distribution of hashtags is shown in 

Table 10. In the attribute-lattice-based topic model, the co-occurrences of hashtags will be 

used to create a topic model and to suggest the precedences relationship among hashtags. 

As shown in the table, more than one-third of tweets containing hashtags have more than 

one hashtag. 
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Table 9. Refining tweets 

 No of Tweets No of Tweeters 

Retrieved tweets 3,761,288 1533 
Refined Tweets (eliminating quotes, retweets, non-
English tweets) 2,591,322 1532 

tweets with hashtag 532,150 1491 

 

Table 10. Distribution of Hashtags 

No. of Hashtags No. of Tweets % of Tweets No. of Tweeters 

1 344,771           64.79  1488 
2 116,581           21.91  1351 
3 41,031             7.71  1115 
4 15,505             2.91  785 
5 6,606             1.24  506 
6 2,933             0.55  335 

More than 6 4,723 0.89  

TOTAL 532,150   

    

4.5.1.5 Calculating frequency and popularity of hashtags 

A meaningful co-occurrence refers to a pair of hashtags such that their popularities 

are higher than minimum popularity. As shown in Table 11, low popularity rate (low min-

imum popularity) identifies a vast number of hashtags as meaningful. However, more re-

stricted popularity rates (high minimum popularity) recognizes only a few (or even no) 

meaningful hashtags.  

Table 10 reflects the sparseness of hashtags in the given set of tweets. It shows how 

tweeters (even within the same subject domain) adopt/use a varied set of hashtags in their 

tweets. Among 245,292 initial pairs of hashtags, only 326 pairs are adopted by more than 
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1 percent of tweeters. Where a pair of hashtags is adopted by more tweeters, there is higher 

chance that users perceive the pair to be meaningful. By increasing the popularity rate, the 

remaining pairs have more chance to be perceived as meaningful by the user. However, the 

cost of this increase is a higher probability of missing some meaningful pairs. 

 

 

Table 11. Meaningful co-occurrence 

Popularity rate Minimum popularity Meaningful co-occurrence No. of hashtags 

0 0 245,292 90,956 

0.005 8 1140 579 

0.01 16 326 212 

0.02 31 83 84 

0.05 77 2 3 
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 Topic Model; pop rate = 1%, t precedence = 0.3, t frq = 0.8, t topic = 3 
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 Topic Model; pop rate = 2%, t precedence = 0.4, t frq = 0.8, t topic = 3 
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4.5.1.6 Constructing the attribute lattice 

The model uses a set of user-defined thresholds - popularity rate, precedence thresh-

old, topic threshold, and frequency threshold - to suggest initial relations and a topic model. 

The number of identified attributes, topic labels, precedences and base precedences is sen-

sitive to these user-defined thresholds. Popularity rate and precedence threshold affect the 

number of precedences that the model considers as meaningful.  

As represented in Figures 21 and 22, independent from the topic threshold and fre-

quency threshold, increasing the popularity rate and precedence thresholds leads to identify 

fewer precedence relationships. A low popularity rate (low popularity threshold) might 

result in a very high number of hashtags being considered as meaningful. However, more 

restrictive popularity rates (higher popularity threshold) might recognize only a few (or 

even no) meaningful hashtags. 

The number of potential subsumption relationships in the model depends on both 

popularity rate and precedence threshold. Increasing the popularity rate and precedence 

thresholds leads to identify fewer subsumption relationships (Table 12). Higher popularity 

rates indicate that more tweeters adopted/used a pair. Hence, it has a higher chance to be 

perceived as meaningful by users. Higher precedence thresholds indicate higher confidence 

that a subsumption relationship exists between the hashtags in the pair. As a result, increas-

ing popularity rate and precedence threshold increases precision– that is, subsumption re-

lationship with higher confidence. However, this increase comes at a cost of decrease in 

recall – that is, a cost of missing potentially meaningful precedences.  
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Table 12. Popularity rate and precedence threshold sensitivity analysis  

 Popularity Rate 

 0 0.005 0.01 0.02 0.05 

  Minimum Popularity 0 8 16 31 77 
  Unique co-occurrence 245,292 1140 326 83 2 

Pr
ec

ed
en

ce
 T

hr
es

ho
ld

 

0.1 
No. of Attributes 61,322 409 146 63 3 
No. of Precedences 91,175 514 165 63 2 

0.2 
No. of Attributes 58,593 408 145 63 3 
No. of Precedences 73,850 453 153 63 2 

0.3 
No. of Attributes 51,998 399 144 63 3 
No. of Precedences 54,861 389 138 55 2 

0.4 
No. of Attributes 44,258 376 137 61 3 
No. of Precedences 40,351 332 114 50 2 

0.5 
No. of Attributes 43,471 351 126 59 3 
No. of Precedences 39,341 288 100 46 2 

0.6 
No. of Attributes 27,583 312 115 57 3 
No. of Precedences 19,730 243 89 43 2 

0.7 
No. of Attributes 26,451 286 109 53 3 
No. of Precedences 18,699 217 83 39 2 

0.8 
No. of Attributes 26,156 265 103 51 3 
No. of Precedences 18,421 197 77 36 2 

0.9 
No. of Attributes 25,940 254 96 50 3 
No. of Precedences 18,220 187 71 35 2 

1 
No. of Attributes 25,887 251 96 50 3 
No. of Precedences 18,171 184 71 35 2 
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The topic threshold determines the number of attributes designated as topic labels. 

Increasing the topic threshold results in a model that suggests fewer potential topic labels. 

Conversely, relaxing topic thresholds produces a model that identifies more topic labels 

but increases the risk of suggesting topics that might not be semantically clear for users.  

Finally, the number of representative hashtags for each topic - that is, precedences 

that are considered as base precedence- is influenced by frequency threshold. With a re-

stricted frequency threshold (i.e., frequency threshold of 1), the model identifies only one 

representative hashtag for each topic label. However, with a more relaxed frequency 

threshold, there is a chance to identify more representative hashtags (base precedences). 

For instance, assume the frequency of three hashtags in a given topic are 1000, 950, and 

700. With a restricted frequency threshold, only one hashtag with the frequency of 1000 

will be identified as a representative hashtag. However, with the frequency threshold of 

0.9, all hashtags that their frequencies are higher than 900 (1000 and 950 in this example) 

will be identified as representative hashtags. Table 13 shows the number of identified topic 

labels and representative hashtags with the fixed popularity rate and precedence threshold 

(pop rate = 1%, t precedence = 0.3). 

The unsupervised nature of the proposed topic modeling approach makes evaluating 

the performance of user-defined thresholds a challenging task. Popularity rate and prece-

dence threshold contribute to identifying a hashtag as a topic and topic label and including 

it in the model. It is reasonable to assume that user-defined thresholds are performing better 

if they offer a more consistent topic model for the domain of interest. That is, topic models 

created based on different subsets of tweets are similar.  



132 

Table 13. Topic and frequency thresholds sensitivity analysis  

No. of Topic Labels and 
Representative Hashtags  

Frequency Thresholds 

0.5 0.6 0.7 0.8 0.9 

T
op

ic
 T

hr
es

ho
ld

 

1 
Topic labels 35 35 35 35 35 
Representative Hashtags 51 50 43 38 37 

2 
Topic labels 21 21 21 21 21 
Representative Hashtags 37 36 29 24 23 

3 
Topic labels 14 14 14 14 14 
Representative Hashtags 27 26 20 16 16 

4 
Topic labels 10 10 10 10 10 
Representative Hashtags 22 21 15 12 12 

5 
Topic labels 6 6 6 6 6 
Representative Hashtags 15 15 9 7 7 

 

In this study, I randomly select and set aside 30% of the retrieved tweets as a test set 

and use the rest of the tweets as a training set. Using training and testing sets, a series of 

topic models were created by manipulating popularity rate and precedence threshold to 

identify thresholds that provide a more consistent topic model. For each manipulation, the 

cosine similarity (Expr 35) of the train and test models has been measured (Table 14).  

Expr	35. ÅgjgzG]gPD = 	
Q&-.#/#/0.		Q&()&

TQ&-.#/#/0T.‖Q&()&‖
	

éℎ7]7	

%:89('('U	]7^]7M7dPM	G	97NPc]	ci	dc>7M/ℎGMℎPGfM	gd	Pℎ7	P]Ggdgdf	Pc^gN	jc>7z	

%:1P:	]7^]7M7dPM	G	97NPc]	ci	dc>7M/ℎGMℎPGfM	gd	Pℎ7	P7MP	Pc^gN	jc>7z	

||	]7^]7M7dPM	Pℎ7	dc]j	(Mg®7)	ci	97NPc] 
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The results show that the popularity rate of 0.01 (i.e., co-occurrences that have been 

adopted by at least one percent of tweeters) provides more similar models in comparison 

to other popularity rates (Table 14, and Figure 23). Also, a precedence threshold between 

0.1 and 0.4 offers a more consistent topic model for this domain. Although these thresholds 

provide models with higher consistency for this specific domain, the results might not be 

generalized to other domains.  

 

Table 14. Performance analysis of popularity rate and Precedence threshold  

Training/Test  
Model Similarity 

Popularity Rate 

0 0.005 0.01 0.02 

Pr
ec

ed
en

ce
 T

hr
es

ho
ld

 

0.1 0.43 0.69 0.73 0.61 
0.2 0.41 0.71 0.78 0.57 
0.3 0.37 0.71 0.73 0.58 
0.4 0.34 0.65 0.72 0.52 
0.5 0.32 0.57 0.68 0.6 
0.6 0.27 0.49 0.5 0.61 
0.7 0.25 0.54 0.54 0.61 
0.8 0.25 0.43 0.53 0.5 
0.9 0.24 0.46 0.46 0.5 
1 0.24 0.44 0.45 0.44 
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 Performance analysis of popularity rate and Precedence threshold  
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4.5.2 Practical Applications of Topic Model  

4.5.2.1 Topic structure of the domain 

The topic model represents topics, topic labels, and representative hashtags for each 

topic. Figure 24 a-d illustrates different parts of the topic model represented in Figure 21.  

 

 

 
a) Topic structure for bigdata b) Topic structure for ai 

  

c) Topic structure for security d) Topic structure for aws 

 Topics, bases, and their expansions 
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In the technology domain, bigdata (Figure 24.a) is a topic label, and analytics is a 

representative hashtag for this topic; that is, analytics can best summarize hashtags in the 

bigdata topic. Also, bigdata, analytics, and bi are hashtags that frequently appear in this 

topic. For this topic, both opendata, and hadoop are qualifying hashtags, that is, bigdata 

can be inferred from these hashtags, but they are not part of the topic. As shown in Figure 

24.b, ai is another topic label, machinelearning is a base for it, and ai, machinelearning, 

deeplearning, and artificialintelligence are frequent hashtags in this topic.  

Once again, this model has been built based on tweets without any adjustment. It can 

be further adjusted to provide clearer semantic structure. For instance, based on tweets, we 

do not have enough evidence to include hadoop as a frequent hashtag in the bigdata topic 

however, users might be interested to include hadoop. The initial model can be adjusted to 

include this hashtag as a part of topic as well.  

The topic structure enables users to retrieve tweets on the topic of interest that cannot 

be retrieved otherwise. Following precedences, specifically base precedences, users can 

include other hashtags which contribute to the topic of interest to retrieve tweets. For in-

stance, as shown in Figure 24.c, infosec is preceded by security. Users interested retrieving 

tweets related to security, can retrieve tweets with both infosec and security hashtags. In 

the current dataset, 3420 tweets exist with security hashtag, 927 with infosec hashtag, and 

194 with both hashtags. Including the infosec in the tweet retrieval will result to find 733 

(21 percent more) tweets related to the topic that cannot be retrieved using only the security 

hashtag. Figure 25 shows tweets related to the topic of security, which include infosec 
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hashtag but not security hashtag. Table 15 shows the number of tweets that can be retrieved 

based on the representative words of the topics (base precedences) in the model.  

In the topic model created by the above-discussed thresholds, assuming all the initial 

base precedences are perceived as meaningful relationships by users, by following base 

precedences, an average 24 percent more tweets can be retrieved. That is, using representa-

tive hashtags for topics leads to retrieve an average 24 percent more related tweets for each 

topic. 

Table 15. Increased number of tweet retrieval, using representative words 

Topic Representative 
Hashtag 

Tweets with 
both Hashtags 

Tweets with 
topic hashtag 

Tweets without 
topic hashtag 

Increased  
percentage 

cio   cto  2261 15054 122 0.81 
iot   smartcities  280 9284 161 1.73 
iot   internetofthings  274 9284 185 1.99 
ai   machinelearning  672 8163 774 9.48 
mobile   app  205 3422 351 10.26 
cloud   cloudcomputing  1407 15934 2063 12.95 
bigdata   analytics  473 4158 778 18.71 
startups   vc  129 2006 396 19.74 
security   infosec  194 3420 733 21.43 
startup   entrepreneur  367 2886 658 22.80 
bitcoin   cryptocurrency  133 1323 323 24.41 
apple   iphone  159 1858 549 29.55 
aws   reinvent  706 4892 1574 32.17 
innovation   digitaltransformation  864 4387 2084 47.50 
innovation   leadership  886 4387 2662 60.68 
marketing   socialmedia  205 3603 2294 63.67 

 

Finally, the topic structure enables users to adopt a more accurate set of hashtags to 

increase the chance of being seen in the right community. For instance, the aws topic struc-

ture suggests (Figure 24.d) that aws is a hashtag that tweeters adopt to talk about amazon 

web services. Suppose, a tweeter has a comment on one of the amazon web services. The 
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tweeter can adopt this influential hashtag in her tweet to increase the chance of being seen 

in the right stream.  

 

 

 

 Examples of tweets related to security retrieved by infosec hashtag 

To summarize, the topic model represents the topic structure of the domain - the 

precedence relationship among hashtags, how hashtags can be grouped into topics, and 

how each hashtag contributes to the topic. This topic structure improves semantic inter-

pretability of hashtags and information (tweets) retrieval based on hashtags. 
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4.5.2.2 Hashtag detection 

Twitter provides a list of 50 trending hashtags/terms based on locations around the 

world. These trending hashtags/terms are a valuable source of information for users to fol-

low their topics of interest. However, detecting hashtags/terms related to the domain of 

interest is not a trivial task for three reasons. First, a massive number of tweets are created 

every minute. As a result, Twitter updates the list of trending hashtags/terms frequently 

and tracking all the trending hashtags/terms is a cumbersome (if not impossible) task for 

the human user. Second, hashtags are mostly written in a shortened format, as a result, they 

are not necessarily semantically clear for users. And third, even if a hashtag represents a 

meaningful word, understanding topics that hashtag represents is not a trivial task, partic-

ularly when same hashtags (e.g., #apple) may appear in unrelated domains. This section 

aims to describe how the initial topic model created from tweets can be used to identify 

topics of emerging hashtags/terms. 

Using the developed function (elaborated in section 4.4.4), I retrieved Canada trend-

ing hashtags/terms for two consecutive days (June 11 and 12, 2018), and measured the 

similarity of hashtags/terms with the topic model represented in Figure 21. Figure 26 and 

Figure 27 show the result of similarity analysis. Two hashtags on day 1 (#CLUS, 

#TOIC2018), and one hashtag on day 2 (#ConfMTL) had similarity with the given topic 

model. However, these hashtags are not among known hashtags in the given topic model. 

Also, the meanings of these hashtags are not clear.  

As represented in in Figures 28 and 29, the function identifies nine related nodes for 

the first hashtag (#CLUS). Following the precedences, six topic labels and four hashtags 
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can be identified for this hashtag. Hashtags and topic labels suggest that #CLUS should be 

related to cloud technology of cisco. In fact, this hashtag had been used by tweeters to talk 

about Cisco live event in Orlando focusing on network and collaboration15. 

The second hashtag (#TOIC2018) was related to TribalScale’s TakeOver Innovation 

Conference in Toronto, focusing on innovation16. Identified hashtags and topics provide a 

good insight into the topics of this hashtag (Figures 30 and 31.) Finally, the last hashtag 

(Figures 32 and 33) was related to an annual economic event (Conference of Montreal) 

organized by the International Economic Forum of the Americas17 (IEFA) which focuses 

on major current economic issues. The identified hashtags and topic labels suggest that 

tweeters had tweets related to technological issues of current economy (tech, fintech, inno-

vation, ai). Table 16 summarizes these three hashtags and identified hashtags and topic 

labels for each one of them. 

To summarize, the practical contribution of hashtag detection is twofold. First, it 

provides a procedure to detect hashtags that are related to a given topic model. Tweeters 

utilize hashtags and keywords to contribute to the discussion about an issue, an event or a 

topic. Every day hundreds of hashtags/terms become trending on Twitter. The proposed 

method measures the extent to which trending hashtag or keyword is related to users’ topic 

model. Second, an in-depth analysis of a given hashtag finds co-occurring hashtags/topics 

that are known to users. This enables users to infer the semantics of ambiguous hashtags.  

 

15 https://www.ciscolive.com/us/attend/about 
16 https://takeoverinnovationconference.com 
17 http://forum-americas.org/montreal/home/ 
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Table 16. Hashtag detection 

Hashtag Identified Hashtags Identified Topic Labels 

#CLUS cisco, automation, machinelearning, analytics  bigdata, innovation, security, 
iot, cloud, ai 

#TOIC2018 ar, vr, healthcare, finetech, futureofwork, trans-
formation, blockchain, entrepreneurs, tech innovation, ai, startup 

#ConfMTL tech, fintech, artificialintelligence ai, innovation 

 

 

 

 Trends – topic model similarity, day 1 
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 Trends – topic model similarity, day 2 
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 Tweets’ topics and topic labels, #CLUS 
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 Tweets’ topics and topic labels; plot, #CLUS 
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 Tweets’ topics and topic labels, #TOIC2018 
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 Tweets’ topics and topic labels; plot, #TOIC2018 
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 Tweets’ topics and topic labels, #ConfMTL 
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 Tweets’ topics and topic labels; plot, #ConfMTL 
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4.6 Discussion 

In the era of big data, decision-makers increasingly need to rely on data from external 

data sources such as social media for decision making. Data heterogeneity is one of the 

main challenges for the meaningful use of data. The concept of attribute lattice is intro-

duced chapter 2 as a schema-free conceptual modeling grammar to represent the semantic 

structure of data from various data sources. This chapter elaborates how attribute lattice 

principles can be adopted for the task of topic modeling, that is, representing the topic 

structure of data. 

One challenge of attribute lattices, and consequently for the attribute-lattice-based 

topic model, is defining attributes and precedences from the beginning. Creating an attrib-

ute lattice (specifically for unstructured data) without an initial schema would be a cum-

bersome process. This chapter addressed this concern by offering an automated procedure 

to extract an initial attribute lattice from unstructured data. Twitter data has been selected 

to elaborate on how the initial topic model can be constructed from tweets. 

In the context of Twitter, hashtags – tweeter defined labels for tweets – provide val-

uable insight into the topics of a given tweet. However, the structure of hashtags makes 

them semantically unclear, and they cannot be used directly to retrieve tweets of interest. 

This chapter argues, first, the attribute lattice approach can be used to mitigate the semantic 

ambiguity of hashtags, and second, the topic model provides a semantic grounding for us-

ers to create the topic model of the domain of interest.  
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This chapter offers a mechanism to extract an initial attribute lattice from tweets. The 

initial attribute lattice can be adjusted to include user-defined topic labels. The extracted 

topic model from tweets not only provides a foundation for users to create the topic model 

of the domain, but also improves the usefulness of hashtags for tweet retrieval in several 

ways.  

First, it can be used to identify hashtags/terms of interest among the vast amount of 

trending hashtags/terms. Second, given an ambiguous hashtag, the topic model suggests 

related topics/hashtags from known topics/hashtags. And third, the model can be used to 

retrieve more related tweets. 
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4.7 Limitations  

This chapter demonstrates how a topic model can be constructed from tweets auto-

matically. However, a limitation of this study is the user-defined thresholds (i.e., popularity 

rate, precedence threshold, topic threshold, and frequency threshold). The procedure relies 

on these thresholds to create the model, and the semantic clarity of the extracted model 

depends on them. The sensitivity analysis of the extracted models suggests an initial value 

for thresholds in the domain of technology. However, to be able to generalize the suggested 

values future studies are needed. A potential future study in the attribute-lattice-based topic 

model is to examine to what extent the extracted model is perceived as semantically clear 

for various thresholds in different domains.  

Another concern about the automated topic model extraction procedure is domain 

selection. If retrieved tweets come from a specific and focused domain, a key hashtag might 

become dominant, and the initial topic model becomes ineffective. For instance, the result 

of an application to the travel domain shows that #travel is a dominant hashtag in this 

domain (i.e., #travel appear in the majority of pairs). This leads to a topic model in which 

#travel precedes most other hashtags. Hence, the initial model is ineffective. This problem 

can be mitigated by two approaches. First, the topic model can be pruned to decrease the 

effects of the dominant hashtag. Second, other sources of information (such as DBpedia) 

can be incorporated into the model to identify more semantically clear topics. For instance, 

in the travel domain, a part of the extracted hashtags are meaningful, known words such as 

#paris, #cruise, #food, and so on). The DBpedia metadata, as an additional data source, 
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may help the initial lattice extraction procedure by defining new topics such as a place to 

go, a place to stays, a way to travel and so on, and including them in the initial model. 
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5 Contributions, Future Work and Conclusion 

In the era of Big Data, data comes from a wide variety of sources in different formats 

and structures. In most cases, the data schema is unknown to the data users or data does 

not have a schema. Where data users query and analyze these heterogeneous data sources 

for purposes beyond what data contributor might anticipate, the ability to assigning con-

sistent and interoperable data semantics to data sources has become more important than 

ever before. This thesis develops a conceptual modeling grammar to represent data seman-

tics of independent and heterogeneous (structured and unstructured) data sources. This the-

sis makes several contributions to theory and practice.  

5.1 Contributions to Research and Practice 

5.1.1 Developing a conceptual modeling grammar 

This thesis conceptualizes an alternative role for conceptual modeling. In contrast 

with the current information system development paradigm that considers conceptual mod-

eling as a part of requirements engineering, the proposed conceptual modeling grammar 

has been developed to understand semantics of existing data.  

Parsons and Wand (2014) suggest that in the environment in which data comes from 

sources with unknown schema, conceptual model grammars need to enable users to apply 

their own conceptual models to data. Hence, this thesis proposed a theory-based conceptual 
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modeling grammar for this purpose. This lightweight, graph-based grammar is: (1) devel-

oped based on principles from cognitive psychology, philosophical ontology, and graph 

theory; and (2) independent from the schema of the data source that it presents. 

An important contribution of the attribute lattice grammar is its semantic relativism. 

Semantic relativism is enabled by extending the concept of attribute precedence to capture 

subsumption relationships among attributes more distinctly. This grammar defines three 

types of precedence relationships - that is, simple precedence, base precedence, and sub-

category precedence. The patterns of arcs and nodes (i.e., precedences and attributes) 

around each attribute reflects how users of data perceive the subsumption relationships 

related to the attribute. These patterns enable data users to infer the type of attributes, ex-

pansion of attributes, class bases, class properties and the class structure of the domain. 

This inferential representation contributes to the meaningful use of data by enabling users 

to define a schema based on the current data inquiry task and making data consumers in-

dependent from the structure of data source.  

This thesis extends the concept of attribute similarity for attribute lattice-based se-

mantic data integration (Evermann, 2008a, 2008b). It defines similar attributes as attributes 

that are: (1) semantically equal; (2) a manifestation of the same higher-level attribute; or 

(3) in a generalization/specialization relation to each other. Using similar attributes as 

merge nodes, the proposed semantic data integration approach provides a unified view over 

varied and heterogeneous data sources, and hence, enables data consumers to identify re-

lated instances in different data sources.  
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5.1.2 Gaining insights from data 

In open information environments (OIEs), users need to apply their own conceptual 

model to data to gain insight into it (Parsons & Wand, 2014). The proposed grammar is 

well suited for creating and analyzing the class structure of the data source and attaining 

new knowledge about the domain that the model represents. 

Enabled by the implemented artifact, given a set of precedences it is possible to au-

tomatically: (1) analyze the lattice to determine which nodes are classes and make infer-

ences about instances that belong to each of these classes; (2) validate the models (scripts) 

against the model of good classification (Parsons & Wand, 2008); (3) visualize the model 

and view the data structure from various perspectives; and finally (4) conduct what-if anal-

ysis.  

The type of attributes may change by adding precedences to or removing precedences 

from an attribute lattice. This means changes may affect the inferences that can be made 

about instances. The implemented artifact helps users to understand how changing prece-

dences may affect class structure, and inferences more clearly.  

5.1.3 Topic Modeling 

This thesis further contributes by adopting the attribute lattice principles to concep-

tualize the topic structure of tweets related to a domain of interest and enhances information 

retrieval by improving semantic interpretability of hashtags.  

The proposed topic modeling approach contributes to the practical usefulness of this 

grammar in two important ways. First, it represents a theory-based process through which 
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practitioners can create an attribute lattice model from unstructured (or semi-structured) 

data itself. To create an attribute lattice model, users need to identify all precedence rela-

tionships. It might not be practically feasible to identify all these relationships only based 

on domain knowledge and without incorporating the data. Here, based on the assumptions 

that came from literature - assumptions such as using tweets with hashtags rather than all 

tweets - a procedure has been defined through which an attribute lattice can be extracted 

from data (Figure 20). 

Second, attribute lattice-based topic modeling demonstrates how practitioners, using 

the model, get a deeper understanding of the domain. Attribute lattice grammar can be 

utilized to represent data semantics as perceived by the user of the data. The proposed topic 

modeling approach elaborates on how practitioners can use this conceptual model to un-

derstand the topical structure of a domain and to use the model to improve information 

retrieval (section 4.3.3). 
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5.2 Future Research 

5.2.1 Expanding the grammar 

This thesis proposes a lightweight conceptual modeling grammar with a minimum 

set of components to understand data semantics. This grammar enables users to infer the 

classes that an instance belong to based on the instance attributes. Based on philosophical 

ontology guidelines the precedence relationship in this grammar is pairwise in the sense 

that an attribute or a set of the attributes (class/category) precedes another attribute or a set 

of attributes (class/category). However, utilizing a logic-based approach to develop this 

grammar might lead to adding other components to it. For instance, the more logic-based 

approach suggests adding ‘NOT’ and ‘XOR’ operators where the underlying ontology 

deals only with the presence of properties (not their absence). Future research on attribute 

lattice might expand this grammar to include logic-based components and examine if the 

additional components improve the performance of the grammar.  

5.2.2 Attribute lattice-based semantic data integration 

Although the primary focus of the second chapter is defining attribute lattice as a 

conceptual modeling language, it represents a procedure through which this grammar can 

be utilized for the semantic data integration of heterogeneous data sources. This integration 

process starts with an initial set of merge nodes and iteratively suggests new merge nodes 

based on the immediate and semantic neighbourhoods of similar attributes. This procedure, 

however, is subject to two limitations. It assumes the initial set of merge nodes is available 
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based on the domain knowledge, and, the process leaves users with the potential merge 

nodes. A possible avenue for the future study in attribute lattice-based semantic data inte-

gration is to use multi-method integration approach (e.g., Li et al. (2008)) to create the 

initial list of merge nodes, and to suggest more accurate and definite merge nodes at each 

step. 

5.2.3 An initial attribute lattice and model quality 

The grammar is intrinsically simple, and it has only two components –nodes that 

represent attributes, and arcs that represent subsumption relationships. However, because 

data sources might have a huge number of attributes, creating an attribute lattice could be 

a cumbersome task. 

This study demonstrates how data can be used to create a conceptual model (the topic 

model in this case), and how the model can improve the understanding of data users (com-

pared to not having such a model) by predicting the topic of trending hashtags, and im-

proving information retrieval. Here, based on the assumptions that come from literature - 

assumptions such as using tweets with hashtags rather than all tweets - we define a proce-

dure to show the possibility of extracting an attribute lattice extraction from data. And, we 

demonstrate that even this initial attribute lattice will provide new insight into data. How-

ever, an important open question is how to use a pre-existing schema and/or data itself to 

create attribute lattice from other data sources. Future research can examine challenges 

(i.e., the complexity of the lattice) that data consumers may face when creating an attribute 

lattice from different data sources.  
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The similarity of the model created based on the train, and the test tweet sets have 

been used to evaluate the consistency of the models and to offer a set of values for the user-

defined thresholds. However, it will be important that future research investigates the over-

all quality of the lattice.  Two approaches can be envisioned to evaluate the lattice quality 

in further research.  

First, the study could use labeled data to examine the quality of the initially extracted 

lattices. For example, the quality of lattices extracted from Twitter can be evaluated by 

using a standardized set of tweets with “known” topics. Given a set of labeled tweets, and 

using various thresholds, the quality of extracted lattices could be compared to each other, 

or even this method can be compared to other methods. Second, the research can evaluate 

how the quality of the created conceptual model can be measured based on the purpose of 

the task at hand. For instance, the quality of a lattice created to summarize the topics in a 

domain should be measured differently from a lattice created for improving information 

retrieval. In the former case, the focus should be on human-readability of the model, how-

ever, in the latter on the adequacy of precedence threshold.  

5.2.4 Improving the quality of decision-making 

In the era of big data, organizations increasingly use external data sources, such as 

social media data, to make strategic decisions (LaValle et al., 2011). Using social media, 

all stakeholders can share information in a short time. This offers organizations a new op-

portunity to actively listen to their customers and other stakeholders and use their feedback 

in the decision-making process (Power & Phillips-Wren, 2011; Malthouse et al., 2013). To 
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be able to capture this information and use it for decision making, decision-makers need a 

tool to actively monitor social media (Del Giudice et al., 2016). 

 The attribute lattice-topic modeling approach has provided evidence for using this 

grammar to find the relevant information among the trending topics and to find more re-

lated data in social media. Future work can investigate the extent to which the proposed 

conceptual modeling approach can benefit decision-makers to retrieve more related infor-

mation from external sources (especially social media) to make more informed decisions.  

Moreover, this thesis provides a theoretical argument for integrating attribute lattices 

representing distinct data sources. It elaborates rules to find potential attributes that are 

candidates to be similar based on the known merge nodes. Another avenue for future re-

search is examining the extent to which the proposed semantic data integration approach 

will improve meaningful use of data. For example, in the context of healthcare, previous 

research suggests that both publicly available and patients’ social media data can be utilized 

to predict the pattern of Emergency Department (ED) visits (Ram et al., 2015). As patients 

are willing to share their social media data to compare it with their electronic medical rec-

ords (Padrez et al., 2016), future work can investigate whether and how the proposed topic 

modeling approach for social media data can contribute to the understanding of the health-

related data and predicting patients patterns more accurately. 
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5.2.5 Incorporate topic identification approaches for topic modeling 

Based on the assumption that tweets with hashtags tend to be more meaningful for 

topic analysis, the procedure elaborated in Chapter four focuses on hashtags and their co-

occurrences to suggest potential precedence relationship and, consequently, to create an 

initial topic model. A possible avenue for future study is to utilize existing topic identifi-

cation approaches, find keywords for tweets without hashtags and include all tweets in the 

topic model. 
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5.3 Thesis Conclusions 

This research focuses attention on the data variety aspect of big data. The meaningful 

use of data that comes in different structures from varied data sources entails assigning 

consistent and interoperable data semantics to it. This thesis argues conceptual models, in 

contrast with their traditional roles, can be utilized to visualize data semantics of pre-exist-

ing data sources. In this regard, by using principles from philosophy and human cognition, 

a conceptual modeling grammar has been introduced. The proposed grammar is independ-

ent of the data structure in the data source. This grammar provides data users with a data 

consumer aimed schema to analyze data and integrate it with other sources.  

This research adopts the grammar to visualize the topic structure of social media 

content. The practical evaluation of the topic modeling approach confirms this modeling 

grammar provides insight into data and improves information retrieval. 
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APPENDIX A (Implemented Artifact; Chapter 3) 

 

  

Show/hide control panels 

Current (active) attribute lattice Main panel with 5 tab panels 
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Lattice modification (double click) 

Attribute lattice manipulation 

Lattice definition tab panel 
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Graphical representation adjustment  

Graphical representation tab panel 
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Attribute lattice structure 
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Attribute lattice validation result 
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Federated lattice creation Federated lattice definition 
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Similar attribute definition 

Similar attribute suggestion 
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APPENDIX B (Implemented Artifact; Topic modeling on Twitter)  

  

Search for trending topics/hashtags 

Trend-Topic model similarity 

Trending topics/hashtags 

Current (active) topic model 
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In-depth hashtag/topic search 

Popular hashtags-Topic model similarity 

Popular/frequent hashtags in retrieved tweets 

Current (active) topic model 
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Topic model adjustment  

Identified hashtags and topics 


