

ATTRIBUTE LATTICE: A GRAPH-BASED CONCEPTUAL MODELING

GRAMMAR FOR HETEROGENEOUS DATA

by © Mojtaba Asgari

A Dissertation submitted

to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

 Doctor of Philosophy

Faculty of Business Administration

Memorial University of Newfoundland

May 2020

St. John’s, Newfoundland and Labrador

ii

ABSTRACT

One key characteristic of big data is variety. With massive and growing amounts of data

existing in independent and heterogeneous (structured and unstructured) sources, assigning con-

sistent and interoperable data semantics, which is essential for meaningful use of data, is an in-

creasingly important challenge. I argue, conceptual models, in contrast to their traditional roles in

the Information System development, can be used to represent data semantics as perceived by the

user of data. In this thesis, I use principles from philosophical ontology, human cognition (i.e.,

classification theory), and graph theory to offer a theory-based conceptual modeling grammar for

this purpose. This grammar reflects data from users of data perspective and independent from data

source schema. I formally define the concept of attribute lattice as a graph-based, schema-free

conceptual modeling grammar that represents attributes of instances in the domain of interest and

precedence relations among them. Each node in an attribute lattice represents an attribute - a true

statement (predicate) about some instances in the domain. Each directed arc represents a prece-

dence relation indicating that possessing one attribute implies possessing another attribute.

In this thesis, based on the premise that inherent classification is a barrier that hinders se-

mantic interoperation of heterogeneous data sources, a human cognition based conceptual model-

ing grammar is introduced as an effective way to resolve semantic heterogeneity. This grammar

represents the precedence relationship among attributes as perceived by human user and provides

a mechanism to infer classes based on the pattern of precedences. Hence, a key contribution of

attribute lattice is semantic relativism – that is, the classification in this grammar relies on the

iii

pattern of precedence relationship among attributes rather than fixed classes. This modeling gram-

mar uses the immediate and semantic neighbourhoods of an attribute to designate an attribute as

either a category, a class or a property and to specify the expansion of an attribute – attributes

which are semantically equal to the given attribute. The introduced conceptual modeling grammar

is implemented as an artifact to store and manage attribute lattices, to graphically represent them,

and integrate lattices from various heterogeneous sources.

With the ever-increasing amount of unstructured data (mostly text data) from various data

sources such as social media, integrating text data with other data sources has gained considerable

attention. This massive amount of data, however, makes finding the data relevant to a topic of

interest a new challenge. I argue that the attribute lattice provides a robust semantic foundation to

address this information retrieval challenge from unstructured data sources. Hence, a topic mod-

eling approach based on the attribute lattice is proposed for Twitter. This topic model conceptual-

izes topic structure of tweets related to the domain of interest and enhances information retrieval

by improving the semantic interpretability of hashtags.

Keywords: Attribute lattice, Conceptual modeling grammar, Semantic data integration, At-

tribute-lattice-based topic modeling, Twitter content analysis

iv

ACKNOWLEDGMENTS

First and foremost, I want to thank my supervisor, Dr. Jeff Parsons. Jeff, you have supported

me in so many important ways throughout my Ph.D. journey. I would not have been able to com-

plete this journey without your persistent and kind support. I would also like to thank my commit-

tee members, Dr. Yair Wand and Dr. Joerge Evermann, for their valuable, and constructive feed-

back. I want to thank Dr. Jan Recker, Dr. Matti Rossi, and Dr. Sherrie Komiak for their helpful

comments in the examination process.

I would also like to thank my amazing parents for their love and support. Thank you for

being there for me through all the ups and downs.

Finally, I would like to dedicate this dissertation to my extraordinary wife, Hani, whose love,

patience and support is immeasurable, and to our amazing son Ryan, whom I love dearly.

v

TABLE OF CONTENTS

ABSTRACT .. II

ACKNOWLEDGMENTS ... IV

TABLE OF CONTENTS ... V

LIST OF FIGURES AND TABLES .. VIII

1 INTRODUCTION ... 1

1.1 RESEARCH OBJECTIVES .. 4

2 ATTRIBUTE LATTICE: A GRAPH-BASED CONCEPTUAL MODELING GRAMMAR 8

2.1 INTRODUCTION ... 8
2.2 RELATED RESEARCH .. 10

2.2.1 Principles from cognitive psychology and philosophical ontology 10
2.2.2 Resolπving Semantic Data Heterogeneity via Data Integration .. 13
2.2.3 Mathematical Foundation .. 18

2.3 ATTRIBUTE LATTICE GRAMMAR COMPONENTS AND CHARACTERISTICS ... 21
2.3.1 Definition of Attribute Lattice and its Components ... 22
2.3.2 Attribute Lattice Grammar Characteristics ... 32
2.3.3 Attribute Lattice Validation .. 38
2.3.4 Attribute Lattice Grammar Comparison with Description Logics (DL) 42

2.4 ATTRIBUTE LATTICE EXAMPLE .. 46
2.4.1 Attribute lattice creation .. 46
2.4.2 Attribute lattice validation ... 50

2.5 ATTRIBUTE LATTICE INTEGRATION .. 53
2.5.1 Federated Attribute Lattice .. 54
2.5.2 Potential Merge Nodes in Attribute Lattice Integration .. 57

2.6 DISCUSSION .. 63

3 ARTIFACT IMPLEMENTATION ... 66

3.1 PROGRAMMING LANGUAGE .. 68

vi

3.2 LATTICE OPERATION .. 70
3.2.1 Store, and manipulate attributes lattices .. 70

3.3 LATTICE REPRESENTATION AND ANALYSIS ... 75
3.4 LATTICE INTEGRATION ... 80
3.5 DISCUSSION .. 82

4 ATTRIBUTE-LATTICE-BASED TOPIC MODELING .. 84

4.1 INTRODUCTION ... 84
4.2 RELATED LITERATURE ... 86

4.2.1 Twitter Analysis .. 86
4.2.2 Topic Modeling and Topic Classification .. 87
4.2.3 Topic Visualization ... 89
4.2.4 Hashtags ... 90

4.3 ATTRIBUTE-LATTICE-BASED TOPIC MODEL ... 92
4.3.1 Attribute-lattice-based Topic Model .. 92
4.3.2 Constructing the Topic Model .. 95
4.3.3 Topic Model Applications .. 108

4.4 IMPLEMENTATION OF ATTRIBUTE-LATTICE-BASED TOPIC MODEL ... 114
4.4.1 Implemented Functions to Extract Initial Topic Model ... 115
4.4.2 Topic Model Manipulation ... 119
4.4.3 Trends - Topic Model Similarity .. 119
4.4.4 Topics/Hashtags of a Given Search Term/Hashtag ... 120

4.5 EVALUATION .. 122
4.5.1 Topic Model for the Domain of Technology .. 122
4.5.2 Practical Applications of Topic Model .. 135

4.6 DISCUSSION .. 149
4.7 LIMITATIONS .. 151

5 CONTRIBUTIONS, FUTURE WORK AND CONCLUSION ... 153

5.1 CONTRIBUTIONS TO RESEARCH AND PRACTICE .. 153
5.1.1 Developing a conceptual modeling grammar .. 153
5.1.2 Gaining insights from data ... 155
5.1.3 Topic Modeling .. 155

5.2 FUTURE RESEARCH ... 157
5.2.1 Expanding the grammar ... 157

vii

5.2.2 Attribute lattice-based semantic data integration .. 157
5.2.3 An initial attribute lattice and model quality ... 158
5.2.4 Improving the quality of decision-making .. 159
5.2.5 Incorporate topic identification approaches for topic modeling ... 161

5.3 THESIS CONCLUSIONS .. 162

REFERENCES .. 163

APPENDIX A (IMPLEMENTED ARTIFACT; CHAPTER 3) ... 174

APPENDIX B (IMPLEMENTED ARTIFACT; TOPIC MODELING ON TWITTER) 181

viii

LIST OF FIGURES AND TABLES

TABLE 1. RESEARCH OBJECTIVES AND SPECIFIC OBJECTIVES .. 7
 THREE TYPE OF PRECEDENCE RELATIONSHIPS .. 31
 CLASS AND CATEGORY ATTRIBUTE ... 32
 CLASS STRUCTURE IN AN ATTRIBUTE LATTICE .. 36
 INVALID ATTRIBUTE LATTICE STRUCTURES ... 40
 REDUNDANT PRECEDENCES .. 41

TABLE 2. THE LIST OF CLASS AND CATEGORY ATTRIBUTES AND THEIR EXPANSIONS 47
 ATTRIBUTE LATTICE ... 48
 PRELIMINARY ATTRIBUTE LATTICE .. 51

TABLE 3. VALIDATION RESULTS FOR LATTICE IN FIGURE 7 ... 52
 SIMILAR ATTRIBUTES AND MERGE NODES ... 56
 POTENTIAL MERGE NODES BASED ON LEMMA 1 .. 58

 POTENTIAL MERGE NODES BASED ON LEMMA 2 .. 59
 POTENTIAL MERGE NODES BASED ON LEMMA 3 .. 60
 LATTICES INTEGRATION. ADOPTED FORM BERGAMASCHI ET AL. (1999) 62

TABLE 4. ARTIFACT FEATURES .. 67
 CONTROL PANEL AND MAIN PANEL ... 69
 THE LOGICAL MODEL OF LIST OBJECT TO STORE ATTRIBUTE LATTICE 71
 LATTICE DEFINITION TAB PANEL, IN THE ARTIFACT MAIN PANEL .. 74
 GRAPHICAL REPRESENTATION OF ATTRIBUTE LATTICE .. 77
 ATTRIBUTE STRUCTURE .. 78
 VALIDATING A GIVEN ATTRIBUTE LATTICE ... 79
 USING LEMMAS TO SUGGEST ATTRIBUTES THAT ARE CANDIDATES TO BE SIMILAR 81

TABLE 5. A SUMMARY OF USER-DEFINED THRESHOLDS ... 97
 TWITTER ATTRIBUTE-LATTICE-BASED TOPIC MODELING .. 98

TABLE 6. ARTIFACT FEATURES; EXTENDED FOR ATTRIBUTE-LATTICE-BASED TOPIC MODELING 115
TABLE 7. LISTS OF TWEETERS .. 123
TABLE 8. TOP TEN TWEETERS - BASED ON PEER REVIEWED LIST .. 124
TABLE 9. REFINING TWEETS ... 125
TABLE 10. DISTRIBUTION OF HASHTAGS .. 125
TABLE 11. MEANINGFUL CO-OCCURRENCE .. 126

ix

 TOPIC MODEL; POP RATE = 1%, T PRECEDENCE = 0.3, T FRQ = 0.8, T TOPIC = 3 127
 TOPIC MODEL; POP RATE = 2%, T PRECEDENCE = 0.4, T FRQ = 0.8, T TOPIC = 3 128

TABLE 12. POPULARITY RATE AND PRECEDENCE THRESHOLD SENSITIVITY ANALYSIS 130
TABLE 13. TOPIC AND FREQUENCY THRESHOLDS SENSITIVITY ANALYSIS .. 132
TABLE 14. PERFORMANCE ANALYSIS OF POPULARITY RATE AND PRECEDENCE THRESHOLD 133

 PERFORMANCE ANALYSIS OF POPULARITY RATE AND PRECEDENCE THRESHOLD 134
 TOPICS, BASES, AND THEIR EXPANSIONS ... 135

TABLE 15. INCREASED NUMBER OF TWEET RETRIEVAL, USING REPRESENTATIVE WORDS 137
 EXAMPLES OF TWEETS RELATED TO SECURITY RETRIEVED BY INFOSEC HASHTAG 138

TABLE 16. HASHTAG DETECTION ... 141
 TRENDS – TOPIC MODEL SIMILARITY, DAY 1 ... 141
 TRENDS – TOPIC MODEL SIMILARITY, DAY 2 ... 142
 TWEETS’ TOPICS AND TOPIC LABELS, #CLUS ... 143
 TWEETS’ TOPICS AND TOPIC LABELS; PLOT, #CLUS ... 144
 TWEETS’ TOPICS AND TOPIC LABELS, #TOIC2018 .. 145
 TWEETS’ TOPICS AND TOPIC LABELS; PLOT, #TOIC2018 .. 146
 TWEETS’ TOPICS AND TOPIC LABELS, #CONFMTL ... 147
 TWEETS’ TOPICS AND TOPIC LABELS; PLOT, #CONFMTL .. 148

1

1 Introduction

Conceptual models formally describe “some aspects of the physical or social world

around us for the purposes of understanding and communication” (e.g., Mylopoulos,

1992). Conceptual models are supposed to represent the information in the domain of in-

terest in a direct and natural manner (Mylopoulos, 1998). Traditionally, conceptual models

are an early and essential part of requirements engineering for information system devel-

opment (Wand et al., 1995; Mylopoulos, 1998; Olivé, 2007). However, with the explosion

of available data, often created without any schema, the traditional paradigm of “model

first, data after” is breaking down (Roussopoulos & Karagiannis, 2009; Lukyanenko &

Parsons, 2013).

 Traditional conceptual modeling grammars commonly have two assumptions,

which I call schema dependency assumptions. First, they assume the subject domain that

they represent consists of classes (entities) and instances belong to these classes (entities).

This assumption is reflected in various conceptual modeling languages. For instance, Chen

(1976) argues that “[t]he entity-relationship model adopts the more natural view that the

real world consists of entities and relationships” , while Olivé (2007, p. 383) emphasizes

that “[o]ne principle of conceptual modeling is that domain objects are instances of entity

types.” However, this assumption has been criticized for not offering a natural representa-

tion of the real world around us (Parsons & Wand, 2000).

Second, data is collected, accessed and used only for predefined purposes by known

users who have a shared understanding of classes in the schema (Parsons & Wand, 2014).

2

However, with the rapid advance in Internet technology, more and more collected data is

used for emerging purposes. For instance, social media data, which is collected to capture

online interactions between people, can also be used to support decision making in organ-

izations (LaValle et al., 2011). Data from external sources – outside of organization bound-

aries – either has no schema (or unknown schema), or has a schema that is not designed for

the current particular emergent purpose.

With the unprecedented growth of data, challenges include not only efficient collec-

tion and storage of data, but also its meaningful use (Bizer et al., 2012, p. 51). Central to

meaningful use is representing data in a semantically clear and interpretable manner, and,

when combining data from multiple sources, providing a unified semantic view over data

from independent and heterogeneous sources (independent from their logical data model).

Nearly all existing conceptual modeling grammars assume the goal of creating a domain-

knowledge-based, predefined schema (Lukyanenko et al., 2019) and provide modeling

constructs consistent with this assumption. This dependency on predetermined classes hin-

ders the meaningful use of data (Parsons & Wand, 2000, 2003; Lukyanenko et al., 2019).

To address the limitations of schema-based conceptual modeling grammars, Lukyanenko

et al. (2019) call for research on instance-based conceptual modeling grammars.

This thesis introduces a conceptual modeling grammar (Wand & Weber, 2002) that

captures the semantics of data independent of a fixed, class-based schema and provides a

foundation for representing and combining data from independent and heterogeneous

3

sources. This schema-free conceptual modeling grammar, which I call attribute lattice

grammar1, represents data semantics of the subject domain in a graph like structure.

Traditionally, data semantics has been defined as the "meaning and the use of data"

(Woods, 1975). The information system community adopts this definition and describes

semantics as a mapping between objects modeled, represented, and stored in the infor-

mation system, and the real-world objects they represent (Sheth, 1997). This grammar aims

to help data users understand data. Using cognitive principles (Parsons & Wand, 2008), the

key to developing this grammar is mapping constructs (attributes) to the classes that are

meaningful for data consumers. In other words, this grammar aims to provide data users

with a data-consumer-oriented schema. In this context, semantics refers to mapping attrib-

utes in the subject domain to meaningful classes that data users need to understand and

analyze data.

The notion of attribute lattice grammar is proposed in line with the instance-based

data model (IBDM) (Parsons & Wand, 2000). The IBDM argues that instances (things)

exist independent of classes, and classes are human-created constructs that provide useful

abstractions (Parsons & Wand, 2000). The IBDM proposes a two-layered structure in

which one layer is responsible for the (storage of) data about individual entities (instances)

and their attributes, and the other keeps track of the definition of classes in terms of attrib-

utes of instances. In the IBDM approach, instances are stored only with their attributes,

rather than classes (Parsons & Wand, 2000). By freeing data from predefined classes and

1 In this thesis, hereafter, “attribute lattice grammar” refers to the conceptual modeling grammar, and an “attribute lat-
tice” or a “lattice” refers to a model (script) generated from this grammar.

4

schemas and eliminating the need to map class-level constructs between independent sche-

mas, the IBDM simplifies semantic interoperation.

1.1 Research Objectives

The attribute lattice grammar utilizes principles from human cognition and philo-

sophical ontology to offer a theory-based, lightweight conceptual model - that is, a concep-

tual model with a minimal set of components (attributes and the relationships among them)

to capture the semantics of the domain. This conceptual modeling grammar aims to offer a

form of representation that reflects users of the data point of view, independent of the

schema of the data source (schema-free).

The first research objective is to define components of this conceptual modeling

grammar, which is independent of fixed classes but supports classification. This research

objective also aims to discuss how this grammar provides a mechanism to infer unobserved

attributes based on observed ones, to encapsulate attributes that are common to all members

of a class, and to assign new attributes to all members of a class (Parsons & Wand, 2008).

The grammar provides a basis to create a unified view over heterogeneous data

sources. Hence, another goal of this research objective is to define the notion of “similarity”

(Evermann, 2008a) in this grammar, and elaborate on how this grammar enables semantic

data integration. Finally, this research objective aims to compare this grammar with other

knowledge representation languages (i.e., DL). The first research objective of this thesis,

therefore, is:

5

Research Objective 1: To formalize the notion of attribute lattice grammar by using

principles from human cognition and philosophical ontology.

The next research objective is to develop a software artifact that supports the attribute

lattice conceptual modeling grammar. This artifact: (1) provides basic features such as the

ability to store, query, and edit lattices; (2) provides a declarative graphical representation

of lattices; (3) supports basic analyses such as class structure and attribute lattice validation;

and (4) supports the integration of lattices from distinct data sources. Hence, the second

research objective of this thesis is:

Research Objective 2: To implement an IT artifact to support attribute lattice crea-

tion, manipulation, graphical representation, validation, and integration.

The research strategy that guides this study is Design Science Research (DSR). The

DSR typically involves the creation and evaluation of IS artifacts (March & Smith, 1995;

Hevner et al., 2004). In this context, the artifact is a conceptual modeling grammar (com-

ponents, and rules), and a tool that supports the creation of this artifact. The last research

objective of the thesis concerns the evidence-based evaluation of this artifact, as a crucial

part in DSR (Hevner et al., 2004).

The evaluation of the artifact can be absolute or relative (to comparable artifacts, or

to the absence of artifact) (Prat et al., 2014). The former evaluation techniques examine if

the artifact achieves its goal, where the later techniques compare the artifact to the absence

of artifact or to other comparable artifacts. The introduced grammar is an innovative ap-

proach to address representing data semantics coming from heterogeneous data sources. I

propose an absolute evaluation approach to demonstrate how this grammar reaches its goal

6

of representing data (text data) semantics. In specific, I propose the use of attribute-lattice-

based topic modeling for Twitter - the most popular micro-blogging site.

With the explosive amount of data, finding relevant information from data sources is

not a trivial task. Specifically, the lack of schema in semi-structured and unstructured data

sources (e.g., text data) presents new challenges for information retrieval. An attribute lat-

tice grammar can be used to represent data semantics of structured, semi-structured, or

unstructured data. This notion is being used, here, to summarize and to conceptualize the

topic structure of text data (tweets) in the domain of interest. Hence, the third research

objective of this thesis is:

Research Objective 3: To demonstrate the practical usefulness of attribute lattice

grammar.

Table 1 summarizes the research objectives of this thesis and specific objectives re-

lated to each research objective.

In the following, I begin by formally defining the notion of attribute lattice and dis-

cussing a procedure to create a unified attribute lattice (Chapter 2). Then, the implemented

artifact is discussed (Chapter 3). This is followed by introducing topic modeling for Twitter

(Chapter 4). The thesis concludes by summarizing the primary contributions of the research

to theory and practice and suggesting several areas for future research (Chapter 5).

7

Table 1. Research Objectives and Specific Objectives
Ch

ap
te

r 2

RO1 Formalize the notion of attribute lattice by using principles from human
cognition and philosophical ontology.

SO 1.1 Define attribute lattice grammar components and characteristics

SO 1.2 Elaborate attribute lattice validation rules

SO 1.3 Compare the attribute lattice grammar with other knowledge representa-
tion languages

SO 1.4 Develop a foundation for the semantic integration of data conceptualized
with the attribute lattice grammar

Ch
ap

te
r 3

RO2 Implement an IT artifact to support attribute lattice creation, manipula-
tion, graphical representation, validation, and integration.

Ch
ap

te
r 4

RO3 Demonstrate the practical usefulness of attribute lattice grammar.

SO 3.1 Develop the procedure of lattice extraction for topic modeling in Twitter
(attribute-lattice-based topic model.)

SO 3.2 Extend the artifact to retrieve tweets and to suggest precedences based on
them for attribute-lattice-based topic modeling.

SO 3.3 Demonstrate the practical applications of attribute-lattice-based topic
modeling.

8

2 Attribute Lattice: A Graph-Based Conceptual Modeling Grammar

2.1 Introduction

Traditionally, conceptual modeling has been considered a critical step of require-

ments engineering in Information System (IS) analysis and design (Wand & Weber, 2002).

Previous studies have emphasized that conceptual models help IS stakeholders to under-

stand and communicate relevant knowledge in a domain. Furthermore, conceptual models

are a way to document the original IS development requirements, and they serve as input

for the design process (Kung & Solvberg, 1986; Wand & Weber, 2002; Recker, 2015).

Over the years, extensive work has been conducted on this topic. There exists a consider-

able body of literature on how these models are used to capture and represent both static

phenomena (e.g., instances and their attributes) and dynamic phenomena (e.g., events and

processes) in a domain. For instance, Moody (2005), Recker et al. (2009), and Van der

Aalst (2013) provide a more comprehensive review on conceptual modeling approaches.

In the era of big data, with the rapidly growing amount of available data, the envi-

ronment of IS development has changed. Parsons and Wand (2014) coined the open infor-

mation environment (OIE) to explain the characteristics of this new environment. In this

environment, “users have access to sources over which they may have no control; new

sources of data may emerge; applications of data might change radically over time; and

new uses of data might emerge” (Parsons & Wand, 2014. p. 2). In OIEs, support is needed

to enable users to apply their own conceptual models to the information coming from var-

ious data sources (Parsons & Wand, 2014).

9

Based on the premise that dependency on the schema of data sources is a barrier to

conceptual modeling for OIEs (Lukyanenko et al., 2019), I propose a schema-free (i.e., not

requiring or producing requiring a fixed schema) conceptual modeling grammar, which I

call attribute lattice grammar. This grammar, independent from the original schema of

data source, captures data semantics and represents the structure of data.

Conceptual models represent knowledge in a domain as understood by humans

(Hirschheim et al., 1995; Wand et al., 1995). As has been previously shown in the literature,

ontology and cognition are appropriate theoretical foundations to create, and evaluate con-

ceptual modeling grammars and scripts (e.g., Shanks et al., 2003; Parsons & Wand, 2008;

Burton-Jones et al., 2009; Recker et al., 2011). The notion of attribute lattice, as a theory-

based conceptual modeling grammar, is developed using principles from philosophical on-

tology and cognitive psychology. The components of this grammar are defined by elabo-

rating and differentiating various types of subsumption relationships. These types have

been defined such that the introduced grammar supports the meaningful classification of

data.

10

2.2 Related Research

In this section, I discuss principles from philosophical ontology and cognitive psy-

chology that offer guidance in defining the attribute lattice conceptual modeling grammar.

Then, I briefly present a review of approaches for resolving semantic heterogeneity through

data integration to highlight a common assumption underlying many approaches – the re-

liance on class-based schemas – and to point out that this dependency, in turn, leads to

several known challenges in these approaches. This is followed by elaborating the mathe-

matical foundation (i.e., graph theory) used to define the attribute lattice as a graph-based

grammar.

2.2.1 Principles from cognitive psychology and philosophical ontology

Ontology - the branch of philosophy which deals with the order and the structure of

reality (Angeles, 1981; Wand et al., 1995) – has been used as a foundation for prescribing

components of conceptual modeling grammars, as well as for analyzing and improving

conceptual models (Guizzardi & Wagner, 2010). In particular, Bunge’s ontology (Bunge,

1977) , as elaborated for conceptual modeling by Wand and Weber (1990, 1993), has been

popular in conceptual modeling research. Three ontological principles, which are widely

adopted in IS research, are central to our approach: (1) the world consists of, either tangible

or intangible, things that are assumed to exist; (2) things possess attributes; and (3) sub-

sumption relations between attributes can be expressed by attribute precedence (Wand &

Weber, 1990, 1993; Parsons & Wand, 2002, 2003; Chen & Parsons, 2008; Parsons, 2011)

11

The concept of attribute precedence2 -i.e., subsumption relationships between attrib-

utes - provides an essential foundation for the definition of attribute lattice. As has been

previously reported in the literature, this concept can be utilized to improve semantics cap-

tured and conveyed by conceptual models (Parsons & Wand, 2003; Parsons, 2011). To

elaborate on this concept, suppose r and s are two attributes, s precedes r means that any

instance possessing r also possesses s (Bunge, 1977; Parsons & Wand, 2000, 2003). For

example, suppose r is ‘is blue’ and s is ‘has a color’, every instance that ‘is blue’, also ‘has

a color’. Likewise, ‘is visible’ precedes ‘has a color’, which in turn, precedes ‘is blue’.

Cognitive psychology provides a guideline for the definition of attribute lattice. The

classical view of categories assumes classes independently exist and views them as abstract

containers with things either inside or outside of them (Lakoff, 1987). Along the same

lines, the inherent classification of data is a common assumption in conceptual modeling

and database design (Parsons & Wand, 2000).

Inherent classification entails that (1) each class is defined by its properties, (2) all

instances must belong to classes and (3) each instance of a class possesses the same set of

properties. Traditionally, identifying classes is an initial step in conceptual modeling, and

database design assumes (either explicitly or implicitly) that (1) instances are inherently

classified and must belong to at least one class to exist in a database (Parsons & Wand,

2000) and (2) there is a clear and fundamental distinction between classes and properties

of instances (i.e., instances belong to the classes and possess properties). As a result, the

2 The term “attribute precedence” refers to “property precedence” using the terminology in Parsons and Wand (2000)

12

main body of research on resolving semantic heterogeneity focuses on schema mapping

techniques, that is, the identification of similar schema elements in various data sources

(Rahm & Bernstein, 2001; Noy, 2004; Dong & Srivastava, 2013).

Parsons and Wand (1997, 2000, 2008) criticized the inherent classification assump-

tion in conceptual modeling and database design. They argued classification should be

guided by cognitive principles. Humans use concepts to classify phenomena they encounter

based on observable properties. In fact, without categorizing the world into concepts, hu-

mans cannot function at all (Lakoff, 1987). These concepts, which manifest as classes in

conceptual modeling and database design, enable us to understand and communicate the

phenomena of interest (Parsons & Wand, 2008)

It is commonly accepted that classification has two major functions. First, it promotes

cognitive economy. A class abstracts all the relevant attributes (properties) of its instances.

Hence, by classifying instances and assigning them to classes, humans decrease the amount

of information that is needed to perceive, learn and communicate about each individual

instance. Second, it supports inference – that is, it enables us to go beyond the information

given. When humans come across an instance, based on their direct (observed) knowledge,

they can infer the unobserved properties of instances (Smith & Medin, 1981; Smith, 1988;

Parsons, 1996; Parsons & Wand, 2000, 2008).

Parsons and Wand (2008), utilizing these functions, offers a model of “good” classi-

fication structure in conceptual modeling, and provides a set of rules for constructing such

structures. These rules provide a guideline to develop high-quality conceptual models in a

13

domain of interest, with meaningful classes, that better support and reflect users’ perspec-

tives. For instance, the good classification model emphasizes that a proper subset of a class

must exist that the class membership can be inferred from this subset. As will be discussed

in further detail in the attribute lattice component definition section (2.3.1), the model of

good classification guides the process of attribute lattice component development.

2.2.2 Resolving Semantic Data Heterogeneity via Data Integration

Semantic data modeling and integration is an active research area in several research

communities such as databases, domain ontologies and big data (Rahm & Bernstein, 2001;

Noy, 2004; Dong & Srivastava, 2013). Despite its pervasiveness and the substantial work

in this area, resolving semantic heterogeneity remains a key challenge in using data from

independent sources. The lack of deep data understanding, and a focus on syntax and struc-

ture, rather than on data semantics, hinders semantic data integration (Uschold &

Gruninger, 2004; Haas, 2007).

Semantic data integration is an approach for providing unified access to disparate

and semantically heterogeneous data (Bergamaschi et al., 1999). The field has been an

active area of research since the 1980s (Batini et al., 1986; Doan & Halevy, 2005). How-

ever, in spite of abundant literature, concerns have persisted about the lack of (1) consistent

theory and methodology, (2) in-depth understanding of semantics, and (3) a unified ap-

proach for integration (Sheth, 1999; Uschold & Gruninger, 2004; Haas, 2007; Hendler,

2014).

14

The aim of this section is not to review all approaches for semantic integration in all

disciplines. For example, Rahm (2011), and, Shvaiko and Euzenat (2005) provide a com-

prehensive review of integration approaches. Instead, I try to highlight the common as-

sumptions underlying many approaches (the reliance on class-based schemas) and provide

a general overview of the limitations arising from these assumptions.

• From Traditional to Domain Ontology-based Data Integration

Traditional semantic data integration can be divided into two main steps (Rahm &

Bernstein, 2001; Doan et al., 2004). The first step, a match operation, takes two schemas

as input and provides a semantic mapping between schema elements. The second step de-

fines mapping expressions formally. Depending on the context, the mapping can be

expressed using different approaches such as LAV (local as view), or GAV (global as

view). In these methods, the data reside in data sources, while the global schema provides

a unified, integrated, and virtual view (Lenzerini, 2002).

Generally speaking, matcher types can be categorized into schema level and data

(instance) level matchers (Rahm & Bernstein, 2001). As argued by Parsons and Wand

(2000), in traditional data models, classification is inherently part of data management and

storage. In this regard, schema reconciliation is a prerequisite to accessing data. Not sur-

prisingly, then, the main body of semantic data integration literature focuses on schema

integration and data integration based on a so-called global schema (or a mediated schema).

Match methods in the data level are often used as a complementary method, or for semi-

structured data when a schema cannot be constructed from data. These methods are either

based on linguistic characteristics (for text elements) such as keyword relative frequency

15

and string match (e.g., Clifton et al., 1998), or constraint characteristics (for more struc-

tured data), such as value ranges and averages (Rahm & Bernstein, 2001). Probabilistic

and statistical models are the key common approaches used in match methods in the data

level (e.g., Doan et al., 2003; Kang & Naughton, 2003).

The initial approach for data integration was hard-coding the integration points. In

this approach, developers were supposed to implement separate and specific code to get

access to components of other schemas. Therefore, it had no flexibility, and it was hard to

maintain. Although subsequent methods were loosely coupled and easier to manage, data

semantics was a missing component in the integration process (Uschold & Gruninger,

2004). Domain ontology-based approaches were introduced to address this lack of seman-

tics. Domain ontology has two primary roles to play in these methods (Wache et al., 2001):

first, map concepts in the content to fixed classes (an ontology); and second, integrate these

concepts from different ontologies.

Schemas and ontologies have different purposes: ontologies have been used for in-

teroperability, search, and automated reasoning purposes, while, schemas have been used

for structuring and querying data in a single database (for a detailed comparison see

Uschold & Gruninger, 2004). However, a common practice in both is to utilize fixed clas-

ses for structuring the data. As a result, similar techniques were used for schema mapping

and ontology mapping (Shvaiko & Euzenat, 2005). The ontology mapping techniques, like

their ancestors (schema mapping), still suffer from a lack of deep (cognitive) semantics -

that is, although ontology-based semantic data integration approaches reach the agreement

about the semantics of data within the individual ontology, their ties to the schema and

16

fixed classes makes defining a shared interlingua ontology challenging (Uschold &

Gruninger, 2004).

• Semantic Web and Linked Data

The notion of Semantic Web, first coined by Tim Berners-Lee (Berners-Lee et al.,

2001), has been used for semantically integrating semi-structured data on the web. To

achieve this goal, Linked Data provides a set of best practices, and offers principles (Bern-

ers-Lee, 2006; Heath & Bizer, 2011) to publish and interlink machine-readable data on the

web (Heath & Bizer, 2011). In brief, Linked Data uses URIs (Berners-Lee et al., 2005) to

define uniquely identifiable web resources and RDF (Consortium, 2014) triples (subject,

predicate, and object) to encode how these resources are related (Bizer et al., 2011).

As a semantic extension of the RDF data model, RDF schema (Brickley & Guha,

2014) provides a data model vocabulary (schema) for RDF-based data sets. It provides

mechanisms to describe groups of resources in terms of classes and properties by using the

RDF-based syntax (Brickley & Guha, 2014). RDF schema improves the capability of RDF

data sources in important ways such as adding subsumption hierarchy to the classes and

properties (Horrocks et al., 2003)

During the past two decades, multiple web ontology languages such as OIL (Fensel

et al., 2001), DAML + OIL (Connolly et al., 2001), OWL (McGuinness & Van Harmelen,

2004), and OWL2 (Hitzler et al., 2009) have been introduced. The latest version of OWL,

OWL2, is based on Description Logics (DL) - a family of class- and property-based (con-

cept-based) knowledge representation languages and a subset of first-order logic (Baader,

2003). It became a W3C recommendation in 2009 – W3C recommendations promote the

17

interoperability of Web technologies. OWL2 provides a richer vocabulary for describing

instances of RDF-based resources in comparison to RDFS, such as relations between clas-

ses, and characteristics of properties (e.g., symmetry). However, like other schema-based

approaches, there is a clear fundamental distinction between class and property in this lan-

guage. In the standard OWL2 semantics and reasoners, different usages of the same term

(e.g., both as a class and a property) will be considered different.

• Known Issues in Schema-Based Approaches

There are several well-known problems in schema-based approaches, which arise

because of their inherent classification assumption. I argue these longstanding problems

can be addressed by using attribute-lattice-based integration approach. First, in schema-

based approaches, there is a clear distinction between the concept of class and the concept

of property. With this assumption, it is not easy (if possible at all) to integrate a class from

one data source to a property in another (Omelayenko, 2002; Ghidini & Serafini, 2006;

Šváb-Zamazal & Svátek, 2009). For instance, faculty member or graduate student could

be a property (or property value) of the customer class in one data source, and each can be

separate classes in another source.

Second, concepts (either properties or classes) in distinct data sources may have var-

ious levels. This means a concept in one data source can be more general, or more specific

than a related concept in another data source. For instance, ‘person’ class in one data source

is more general than ‘student’ class in another. I refer to this as the “general/specific con-

cepts integration” problem (e.g., Barrasa Rodríguez et al., 2004; Dragut & Lawrence, 2004;

Lammari et al., 2007).

18

Finally, schema-based approaches are susceptible to the “complex matching prob-

lem”, in which possessing several concepts (class or property) at the same time in one

schema is semantically equal to possessing one concept (or several concepts) in the second

schema (e.g., Barrasa Rodríguez et al., 2004; Dragut & Lawrence, 2004). For instance, ‘is

a Ph.D. candidate’ could be a property of ‘Ph.D. students’ class in one data source, how-

ever, it might be semantically equivalent to and calculable from several properties of ‘stu-

dent’ class (‘is a Ph.D. student’, ‘has completed comprehensive exam’ and ‘has a thesis

topic’) in another data source.

2.2.3 Mathematical Foundation

Mathematically, an attribute lattice is a set of attributes and a set of precedences that

show the subsumption relationships among attributes. An attribute lattice can be

represented in a graph-like structure. The mathematical structure of attributes and pairwise

(precedence) relationships among them, however, can be modeled using graph theory. The

mathematical structure helps, first, to represent attribute lattices where the graphical model

is large, second, to make inferences based on known precedences, and finally, to develop

an artifact for representing and manipulating an attribute lattice. The aim of the following

brief review is to summarise digraph (directed graph) definitions needed for the

mathematical definition of an attribute lattice. These definitions are adopted from Agnars-

son and Greenlaw (2007).

A directed graph (Agnarsson & Greenlaw, 2007, p. 21) is an ordered triple !⃗ =

(%, ', (), where

19

%	 ≠ 	,
% ∩ '	 = ,
(∶ ' ↦ %	 × %	is	a	map.		

Here, , denotes an empty set, % a set of vertices, ' a set of directed edges (or just

edges) and ↦ a ‘maps to’ symbol. If ((7) = (8, 9), then 8 is called the tail of 7 and 9 the

head of 7. Also, 9 is called a successor of 8, and 8 is called predecessor of 9.

If ((7) = (8, 8), then 7 is called a directed loop. If !⃗ is a digraph, then %:!⃗; and

'(!⃗) will always denote the set of vertices and directed edges of !⃗, respectively. Two di-

rected edges 7 and 7́ are said to be parallel edges if ((7) = ((7́). That is, the edges are

mapped onto the same ordered pair of vertices.

Let !⃗ = (%, ', () be a digraph, and 8 ∈ % a vertex in !⃗, the indegree of 8 (Agnars-

son & Greenlaw, 2007, p. 24) denoted by >!(8), is the number of directed edges having 8

as head, that is,

>!(8) = |{7 ∈ ': ((7) = (B, 8)	for some	B ∈ %}|

The outdegree of 8, denoted by >"(8), is the number of directed edges having 8 , as

tail, that is,

>"(8) = |{7 ∈ ': ((7) = (8, D)	for some	D ∈ %}|

For a given vertex	8 ∈ %(!⃗), the inneighbours, denoted byE!(8), and the outneigh-

bours, denoted byE"(8), of 8	are given by the following:

E!	(8) = {B ∈ %:!⃗;:	((7) = (B, 8)	for some 7	 ∈ ':!⃗;},

E"	(8) = {D ∈ %:!⃗;:	((7) = (8, D)	for some 7	 ∈ ':!⃗;},

20

respectively.

This section reviewed mathematical and theoretical foundations – graph theory, cog-

nitive psychology and philosophical ontology – that will be used to develop a graph-based

attribute lattice grammar. This section also pointed out a common assumption in semantic

integration approaches, that is, schema dependency. Schema dependency, from traditional

data integration approaches to domain ontology-based data integration approaches to the

semantic web integration approaches, contributes to the known integration challenges. In

the following, I introduce the notion of attribute lattice, and I discuss how this grammar

offers a new approach for semantic data integration based on classes that are constructed

from the point of view of users of data.

21

2.3 Attribute Lattice Grammar Components and Characteristics

In traditional schema-based notation, classes are concepts to which instances belong

and properties are attributes of classes that are part of the class definition, and are possessed

by instances in the class. In contract with this approach, I argue attributes are statements

about instances, and whether a particular statement is considered a class or a property de-

pends on the relationship between attributes3.

Grounded in classification – d a human cognition process to understand the

semantics of instances (Parsons, 1996; Parsons & Wand, 1997, 2008) – d and the concept

of attribute precedence from philosophical ontology (Bunge, 1977; Parsons & Wand,

2003; Chen & Parsons, 2008; Parsons, 2011), this sections formally defines the concept of

attribute lattice as a graph-based conceptual modeling grammar that represents the class

structure of the subject domain from perspective of the users of data independent from a

data source schema. This modeling grammar focuses on attributes (not classes nor proper-

ties) and the relationship among attributes. However, the class structure of the domain can

be inferred from the pattern of precedences and attributes in the grammar.

A key contribution of an attribute lattice grammar is semantic relativism – that is,

the pattern of precedences around an attribute designates the attribute as a class, or a prop-

erty. A precedence relationship in an attribute lattice represents how a human (user of data)

perceives the relationship between two attributes (true statements) in the domain. For any

given attribute in a lattice, a set of precedences around it represent its relationship with

3 Hereafter in this thesis, attribute refers to the node itself, and property denotes one type of node.

22

other attributes. In other words, changing the pattern of precedences around an attribute

over time (i.e., adding/removing precedence relationships) may change the type of

attribute. For instance, the type of attribute may change from a property to a class by adding

new precedences.

2.3.1 Definition of Attribute Lattice and its Components

An attribute lattice is a representation of attributes linked to each other in a graph

like structure. It can be shown in a graphical representation in which each node represents

an attribute, and each directed arc represents a precedence relation between attributes indi-

cating subsumption relations between attributes. Here, the grammar is defined formally, a

mathematical notation for lattice structure presentation is introduced by expanding digraph

(directed graph) notation, and examples are used to elaborate each definition.

Definition 1 (Attribute): An attribute refers to any true statement (predicate) de-

scribing instances4.

Expr	1. F = 	 {	G#, G$, G%, … , G&};		

Definition 2 (Domain of interest): A domain of interest is a set of phenomena (in-

stances), X, and a set of attributes, A, possessed by the instances in X. D = (X, A) such that

each attribute in A is possessed by at least one instance in X.

Expr	2. J = 	 {	B#, B$, B%, … , B'}			

∀G(∈ F, ∃B) ∈ J	M8Nℎ	PℎGP	G(∈ Q:B);;

4 The “attribute” in this notation is equal to the definition of property in Parsons and Wand (2008)

23

Q is a function (map) from an instance to its attributes, that is, for any given instance

(B(), the output (F() of this function is a set of attributes possessed by this instance.

Expr	3. Q ∶ J	 ⟶ F	is	a	map	such	that	for	each	B(∈ J,Q(B() = F(⊆ F;

 Principles from philosophical ontology suggest that attribute precedence can repre-

sent the semantic relationship between attributes. Attribute precedence provides a formal-

ism to represent subsumption relations between attributes. Assume that r and s are two

attributes in a domain of interest; s precedes r (denoted as r → s) means any instance that

possesses r it also possesses s. For instance, we know that instances can be seen, if they

have colour. This relationship can be represented by attribute precedence formalism. In this

example, r is has a colour and s is visible; visible precedes has a colour which is denoted

as has a colour → visible (see Parsons and Wand (2008) for a detailed discussion).

The attribute precedence formalism can be used to represent the relationship between

specialized and general attributes (Parsons & Wand, 2003). Attributes in a lattice can be

manifestations of higher-level attributes (Parsons & Wand, 2003), and such higher-level

attribute supports the semantic integration of lattices (discussed in section 2.5). For in-

stance, both nurse and doctor, in a hospital context, are manifestation of a more general

attribute which is hospital staff, meaning that any individual who is either a nurse or a

doctor is a hospital staff (doctor → hospital staff and nurse → hospital staff).

Definition 3 (Attribute Precedence): Assume r and s are attributes such that r, s ∈	

A. A precedence exists between r and s (denoted by r → s) if and only if every instance

that possesses r also possesses s.

24

The set of all precedences in an attribute lattice is denoted by \], and is defined as

following:

Expr	4. \] = {	^]#, ^]$, ^]%, … , ^]*} =	

{(], M):], M	 ∈ F	, M8Nℎ	PℎGP	"	B(∈ J,] ∈ Q(B()	®	M ∈ Q(B()};			

For brevity, hereafter, the above expression will be presented as follows:

Expr	5. \] = {	^]#, ^]$, ^]%, … , ^]*} = {(], M):] → M};			

Definition 4 (Attribute lattice): In mathematical terms, an attribute lattice is a di-

rected acyclic graph which denoted by an ordered triple ` = (F, \], ℱ) where

Expr	6. F	 ≠ 	,	

\] ≠ 	,	

ℱ ∶ \] ↦ F	 × F	is	a	map;		

The set F	is the set of attributes, and the set \] the precedences. If 	ℱ(\]) = (], M),

then] is called the preceded and M the inferred (preceding) attribute. If ` is a acyclic di-

graph, then F(`) and \](`) will always denote the set of attributes and precedences of `,

respectively.

Following constraint (Expr 7) states that the lattice is acyclic, and loops and paral-

lel edges are not allowed in the lattice.

Expr	7. 	bc]	GdD] ∈ F,	∄	^]) 	such	that		ℱ:^]); = (],]).		

bc]	GdD	fg97d	^](, ^]) ∈ \]; 	ℱ	(^]() ≠ ℱ	:^]);.	

bc]	GdD	{]#,]$, . . . ,]'} ⊆ F, Gd>		{(]#,]$), (]$,]%), … , (]'!#,]')} ⊆ `,	∄	(]',]#) ∈ `.			

25

Parsons and Wand (2008) define the full expansion of a class as the set of all attrib-

utes common to all class members. In an attribute lattice, this definition is adopted to

formally define the expansion of an attribute.

Definition 5 (Expansion of an attribute): Expansion of an attribute G(, denoted as

G(
+, is a set of attributes such that possessing the given attribute G(is equivalent to pos-

sessing all attributes in the set (G(
+). In other words, any given attribute is semantically

equal to the union of attributes in its expansion.

Expr	8. G(
+ 	= 	⋃ G()

&
),# 		ic]	Mcj7	G() ∈ F(`)		

M8Nℎ	PℎGP	G(
+ ⊂ (F(`) − {G(})	

Gd>	G(∈ Q(B() ≈ {G(#, G($, … , G(&} 	 ∈ Q(B()	

where		

≈	represents	semantical	equivalency	

Parsons and Wand (1997, 2008) offer criteria for meaningful classification in con-

ceptual modeling. A set of attributes possessed by some instances in the domain (potential

class) is a class5 whenever it has a base - a strict subset of attributes that is sufficient to

identify an instance as a member of the class, and from which the remaining attributes of

the class can be inferred (Parsons & Wand, 1997, 2008). In other words, a class must pro-

vide information (in terms of new attributes) about its members beyond the attributes re-

quired to identify members as belonging to the class. Where a base provides sufficient

information to identify class membership, classes inferred from a single set of attributes

5 The concept of “class” in this thesis is equivalent to the definition of useful class in Parsons and Wand (2008)

26

(base) will be identical classes. Moreover, Parsons and Wand (2008) define a qualifying

set as a set of properties possessed by some instances in a class (not all) which provides

sufficient information to infer class membership.

Following the same principles and using the notion of expansion of attributes, three

types of attributes can be distinguished in the attribute lattice. Attributes can be designated

as either a class, a category or a property attribute. The pattern of precedences around an

attribute, which reflects its semantic relationships, is utilized for this designation. In the

following, each attribute type is defined, following by an explanation of how the pattern of

precedences specifies these types.

Definition 6 (Class): Let G(denote an attribute in an attribute lattice. G(is a class if

and only if: (1) the cardinality of its expansion is greater than one (|G(
+| > 1); (2) at least

one proper subset of G(
+ exists such that other attributes in G(

+can be inferred from it (∃	v ⊂

G(
+ 	M8Nℎ	PℎGP	v → {G(

+ − v}); and (3) at least one instance exists that possesses all attrib-

utes in G(
+.

Definition 7 (Category): Let G(denote an attribute in an attribute lattice. G(is a cat-

egory if and only if: (1) the cardinality of its expansion is greater than one (|G(
+| > 1); (2)

no proper subset of G(
+ exist such that other attributes in G(

+can be inferred from it; and (3)

at least one instance exists that possesses all attributes in G(
+.

Note that, a category is also referred to as a potential class using the terminology in

Parsons and Wand (2008).

Definition 8 (Property): Assume G(is an attribute in an attribute lattice. G(is a prop-

erty if and only if its expansion is an empty set (|G(
+| = 0).

27

To summarize, attributes in an attribute lattice can be designated as either a class, a

category or a property. The attribute is a property if the semantics of the attribute cannot

be represented by the union of other attributes in the domain (|G(
+| = 0). Otherwise, it is

either a class or a category. If all attributes in the expansion (G(
+) of a non-property attribute

can be inferred from a strict subset of it, the attribute is a class; otherwise, it is a category.

Mathematically, x is a function (map) from an attribute to its designated type. In

other words, for any given attribute (G)), the output of this function will be either class,

category or property.

Expr	9. x ∶ F(`) ⟶	{yzGMM, yGP7fc]D, \]c^7]PD}		

is	a	map,	such	that	for	each	G(∈ F(`), x(G()	is	a	designated	type	of	the	attribute	

For example, in a university context, assume that saying an individual is a student is

semantically equal to saying an individual has a student number, a program of study, a

degree, and a start date for her program. In this setting, student is an attribute in the attrib-

ute lattice, and its expansion is student number, program, degree, and start date. This at-

tribute, student, is a candidate to be a class or category. Also assume that possessing student

number is sufficient to infer that an individual is a student, and has a student number, a

program of study, a degree, and a start date for her program. This means a proper subset

of student expansion (student number) exist such that possessing other attributes in the

expansion can be inferred from possessing it. As a result, student is a class, and student

number is a base for this class. Expression 10 shows the mathematical representation of

this class.

28

Expr	10. F = 	 {	MP8>7dP, MP8>7dP	d8j~7], ^]cf]Gj, >7f]77, MPG]P	>GP7};

MP8>7dP ∈ Q(B() ≈ {	MP8>7dP	d8j~7], ^]cf]Gj, >7f]77, MPG]P	>GP7}	∈ Q(B()

MP8>7dP+ =	 {MP8>7dP	d8j~7], ^]cf]Gj, >7f]77, MPG]P	>GP7}

x(MP8>7dP) = yzGMM; Note	that	other	attributes	are	properties.

In addition, in the same context suppose that some graduate students are eligible for

teaching courses as a part-time instructor. These graduate instructors (not all graduate

students) are considered employees of the university. Thus, it is reasonable to define a new

attribute – that is, graduate instructor. Possessing graduate instructor, as an attribute in

the attribute lattice, is semantically equal to being a graduate student, and an instructor at

the same time. As a result, the expansion of graduate instructor is graduate student and

instructor. Since no proper subset of this expansion provides sufficient information to infer

other attributes in the expansion, graduate instructor is a category. Mathematical descrip-

tion of these relationships are given in Expression 11.

Expr	11. F = 	 {	f]G>8GP7	MP8>7dP, gdMP]8NPc], f]G>8GP7	gdMP]8NPc]};

f]G>8GP7	gdMP]8NPc] ∈ Q(B() ≈ {	f]G>8GP7	MP8>7dP, gdMP]8NPc]}	∈ Q(B()	

f]G>8GP7	gdMP]8NPc] → 7j^zcD77

f]G>8GP7	gdMP]8NPc]+ =	 {f]G>8GP7	MP8>7dP, gdMP]8NPc]}

x(f]G>8GP7	gdMP]8NPc]) = yGP7fc]D; Note	that	other	attributes	are	properties.

Semantic relativism states that a given attribute should be designated as a class, cat-

egory or property, based on the pattern of arc and attributes around it. To be able to, first,

capture the semantics of relationships between attributes, and second, infer the type of at-

tribute based on precedences, three types of precedences are introduced – simple prece-

dence, base precedence, and subcategory precedence.

29

In the following, the function which mathematically expresses the type of prece-

dence, Ä(^](), is formally defined. This is followed by the formal definition of the seman-

tics being represented by each precedence type.

Ä is a function (map) from a precedence to its type. For any given precedence rela-

tionship (^](), the output of this function will be either \ (simple precedence), Å (subcate-

gory precedence), or v (base precedence.)

Expr	12. Ä ∶ \]	(`) ⟶	 {\, Å, v}		

is	a	map,	such	that	for	each	^](∈ 	\]	(`), Ä(^]()	is	a	type	of	precedence	

Precedence relations with the type	\, provide semantics not further than simple prec-

edence which is defined earlier (Expr 4). It is worthwhile to note this relationship (simple

precedence) is a transitive relationship, that is, if] → 	M and	M → 	t, by definition] → 	P.

Expr	13. For	any	given	^](=	 (](, M(); 		if	Ä(^]() = \,	then](→ M(

Following simple precedence definition, the direct inference of any given attribute

(](), denoted by >^(](), refers to the union of attributes which are connected as inferred

attributes via simple precedence to the given attribute.

Expr	14. >^(]() = 	⋃ M()
*
),# 	ic]	Gzz	M() ∈ F(`), :](, M(); ∈ \](`),	and		Ä É	:](, M();Ñ = \.	

Definition 9 (Subcategory precedence): Assume r is a category and s is an attribute

in its expansion (M ∈]+). A subcategory precedence exists between r and s. This type of

precedence is denoted by an arc labeled with S (r s).

30

Subcategory precedence (s), declares that a preceded attribute is a category, and the

expansion of this attribute (category) is equal to the union of all attributes connected to it

via outgoing subcategory precedence.

Expr	15. For	any	given	^]) =	 (](, M(); 		if	Ä(^]() = Å,	then		

G)](→ M(

~)x	(]() = yGP7fc]D			

N)](
+ =	ÖM()

*

),#

	ic]	Gzz	M() ∈ F(`), :](, M(); ∈ \](`) Gd>		Ä É	:](, M();Ñ = Å	

Definition 10 (Base precedence): Assume r is a class and s is an attribute in its ex-

pansion (M ∈]+) such that other attributes in]+ 	can be inferred from it. A base precedence

exists between r and s. This type of precedence is denoted by an arc labeled with B (r

s).

Base precedence (B), declares that the inferred attribute (M() is a class, and the ex-

pansion of this attribute (class) is equal to the union of expansion of its bases and attributes

which are directly inferred from each base.

Expr	16. For	any	given	^]) =	 (](, M(); 		if	Ä(^]() = v,	then		

G)](→ M(

~)x	(M() = yzM			

N)	M(
+ =	Ö(]()

+ ∪ >^(]())

*

),#

)		

ic]	Gzz]() ∈ F(`), :]() , M(; ∈ \](`) Gd>		Ä É	:]() , M(;Ñ = v.	

31

To illustrate, consider the example mentioned above. The following base and sub-

category precedence relations exist:

Expr	17. f]G>8GP7	gdMP]8NPc]	 		f]G>8GP7	MP8>7dP

f]G>8GP7	gdMP]8NPc]	 		gdMP]8NPc]

MP8>7dP	d8j~7]	 	MP8>7dP

An attribute lattice can be represented as a graph in which nodes represent attributes

and directed arcs represent precedences. Directed arcs labeled with S and B are used in the

graphical representation to depict the subcategory and base precedence relationship, re-

spectively. The graphical representation of sample attributes with these three precedence

type are shown in Figure 1. Note that to be able to quickly identify various type of prece-

dences, three different arc styles are used to represent these types. Also, class, category,

and property attributes are represented by different colours.

a) Simple precedence b) Subcategory precedence c) Base precedence

 Three type of precedence relationships

Figure 2.a and 2.b represent the attribute lattice structure of the above discussed ex-

amples (Expressions 10 and 11, respectively.)

r s r sS sr B

32

a) Class attribute; student b) Category attribute; graduate instructor

 Class and category attribute

2.3.2 Attribute Lattice Grammar Characteristics

The previous section introduced the components of the attribute lattice grammar.

This section discusses attribute lattice characteristics. These characteristics explain the se-

mantic relativism in an attribute lattice – that is, how the pattern of precedences provide

sufficient information to: (1) identify attribute type; (2) validate an attribute lattice (section

2.3.3); and (3) integrate distinct lattices (section 2.5). To discuss these characteristics, the

immediate and semantic neighbourhood of attributes are defined by adopting neighbour

definitions in regular digraph (section 2.2.3). These neighbourhoods are used to designate

the attribute type, and to deduce the class structure of the domain represented by the attrib-

ute lattice.

In graph theory (Agnarsson & Greenlaw, 2007), specifically in digraphs,

inneighbours and outneighbours of a node refer to a set of nodes that have the given node

as a head or tail, respectively. An attribute lattice has two key differences from a regular

digraph. First, in contrast with a regular digraph, which has only one type of arc, the attrib-

ute lattice has three types of precedences (\, Å, v) with different semantics. Second, an

Student

Student
Number

B

Degree

Start
Date

Program

Instructor Graduate
Student

Graduate
Instructor

S S

Employee

33

attribute (a node) in the attribute lattice might have an expansion. Precedences that are

connected to attributes in its expansion might convey information that is of interest. As a

result, inneighbours and outneighbours of attributes in the attribute lattice are defined such

that they cover type of precedence, and whether the precedence is a direct precedence, or

a precedence through expansion of an attribute.

The following expressions provide formal definitions of inneighbours and outneigh-

bours in an attribute lattice. These expressions elaborate whether attributes are connected

to the given attribute directly or through its expansion (>	c]	7), the type of precedence

(\, Å, v), and whether the given attribute is a preceded or an inferred attribute (−	c] +) in

the relationship. For instance, for a given attribute G(, E!-. 	(G() is a set of attributes that

are directly connected to G(with a base precedence relationship, and G(appears as an in-

ferred attribute in the precedence relationship.

Expr	18. E!-/	(G() = {] ∈ F(`):	ℱ(^]) = (], G(), Ä(^]) = \,	 for some ^]	 ∈ \](`)}.

E!-0	(G() = {] ∈ F(`):	ℱ(^]) = (], G(), Ä(^]) = Å,		for some ^]	 ∈ \](`)}.

E!-. 	(G() = {] ∈ F(`):	ℱ(^]) = (], G(), Ä(^]) = v,	for some ^]	 ∈ \](`)}.

E"-/	(G() = {M ∈ F(`):	ℱ(^]) = (G(, M), Ä(^]) = \,		for some ^]	 ∈ \](`)}.

E"-0	(G() = {M ∈ F(`):	ℱ(^]) = (G(, M), Ä(^]) = Å,	for some ^]	 ∈ \](`)}.

E"-. 	(G() = {M ∈ F(`):	ℱ(^]) = (G(, M), Ä(^]) = v,	for some ^]	 ∈ \](`)}.

			E!1/	(G() = {] ∈ F(`):	ℱ(^]) = (], M),] ∉ G(
+ , M ∈ G(

+ , Ä(^]) = \,	

 for some ^]	 ∈ \](`)}.

E!10	(G() = {] ∈ F(`):	ℱ(^]) = (], M),] ∉ G(
+ , M ∈ G(

+ , Ä(^]) = Å,	

for some ^]	 ∈ \](`)}.

E!1. 	(G() = {] ∈ F(`):	ℱ(^]) = (], M),] ∉ G(
+ , M ∈ G(

+ , Ä(^]) = v,				

for	some	^]	 ∈ \](`)}.	

34

E"1/	(G() = {M ∈ F(`):	ℱ(^]) = (], M),] ∈ G(
+ , M ∉ G(

+ , Ä(^]) = \,				

for	some	^]	 ∈ \](`)}.	

E"10	(G() = {M ∈ F(`):	ℱ(^]) = (], M),] ∈ G(
+ , M ∉ G(

+ , Ä(^]) = Å,			

for	some		^]	 ∈ \](`)}.	

E"1. 	(G() = {M ∈ F(`):	ℱ(^]) = (], M),] ∈ G(
+ , M ∉ G(

+ , Ä(^]) = v,				

for	some	^]	 ∈ \](`)}.	

Using the same notation, relationships of a given attribute (G() to another attribute

in its neighbours (G)), denoted by	â7z(G(, G)) , can be abbreviated as follow:

Expr	19. â7z:G(, G); ∈

{−>\,−>Å,−>v,+>\,+>Å,+>v,−7\,−7Å,−7v,+7\,+7Å,+7v}

Where		

−	Gd>	 +	represents	whether	the	given	attribute	is	the	inferred	or	preceded	at-

tribute,		

>	Gd>	7	represents	whether	the	precedence	is	a	direct	precedence	or	precedence	

through	its	expansion,		

\, Å	Gd>	v	represents	the	type	of	precedence	

 Characteristic 1 (Immediate neighbourhood): The pattern of precedences around

each attribute can be represented by a set of paired elements in which the first component

is an attribute G) which is directly connected to the given attribute and the second compo-

nent is the type of this relationship, this pattern is called the immediate neighbourhood (çE)

of the given attribute (G().

Expr	20. çE(G() = {(G) , â7z:G(, G);: ic]	Gzz	G) 	éℎ7]7	:G(, G);	c]	:G) , G(; 	∈

\](`) , Gd>	â7z:G(, G); ∈ {−>\,−>Å,−>v,+>\,+>Å,+>v}}	

35

Characteristic 2 (Attribute type): Each attribute has one type at a time and this type

can be deduced based on its immediate neighbourhood.

The type of an attribute is defined based on the expansion of the attribute – that is, a

set of attributes that are semantically equal to the given attribute. If the cardinality of an

expansion of the attribute is zero, the attribute is a property. Also, if at least one proper

subset of the expansion exists such that other attributes in the expansion can be inferred

from it, the attribute is a class, otherwise it is a category. Hence, an attribute has only one

type at any time. By definition (Expr 15), the preceded attribute in a subcategory prece-

dence is a category, and the inferred attribute in the base precedence is a class. As a result,

the immediate neighbourhood of an attribute provides sufficient information to deduce the

type of attribute.

Corollary (Class attribute): An attribute G(in the lattice represents a class if and

only if it has at least one incoming base precedence. In other words, G(is a class if and only

if |E!-. 	(G()| ≥ 1.

Corollary (Category attribute): An attribute G(in the lattice represents a category if

and only if it has at least one outgoing category precedence. In other words, G(is a category

if and only if |E"-0	(G()| ≥ 1.

Corollary (Property attribute): An attribute G(in the lattice represents a property if

and only if it has neither incoming base precedence nor outgoing category precedence. In

other words, G(is a property if and only if |E"-0	(G()|= 0	and	|E!-. 	(G()| = 0.

Characteristic 3 (Expansion of each attribute): The expansion of each attribute can

be deduced based on its immediate neighbourhood.

36

The expansion of class and category attributes can be deduced by the pattern of prec-

edences in the immediate neighbourhood of attributes. Following subcategory precedence

definition (Expr 15), for a given category attribute, the union of all inferred attributes from

subcategory precedences defines the category expansion.

Expr	21. çi	|E"-0	(G()| ≥ 1	, Pℎ7d	N(G() = yGP7fc]D, Gd>	G(
+ = E"-0	(G()			

A class attribute in an attribute lattice has at least one base (Expr 16), and other at-

tributes of its expansion can be inferred from base attributes. Hence, the union of all bases

of a class, and attributes that can be directly inferred from these bases constitute the expan-

sion of a class. It is worthwhile to note that the base attribute can be a category or a property

attribute. The following expression shows the formal definition.

Expr	22. çi	|E!-. 	(G()| ≥ 1	, Pℎ7d	N(G() = yzGMM, Gd>		

G(
+ = ⋃êE!-. 	(G()	, E

"-/	:G();ë, ic]	Gzz	G() 	 ∈	 E
!-. 	(G()		

Figure 3a and 3b show the class structure in an attribute lattice with a property and

category attribute as a base, respectively.

a) Class with property as a base b) Class with category as a base

 Class structure in an attribute lattice

a2
a3

a1
B

a5

a4 a2

S

a3

a1
B

a4

S

a5

S

a7

a6

37

Corollary (Qualifying Attribute for a Class): An attribute G(in the lattice represents

a qualifying attribute for a class attribute G) if and only if G) is a class, and it can be inferred

with the direct precedence from	G(. In other words, G(is a qualifying attribute for G) if and

only if N:G); = yzGMM and â7z:G(, G); = 	+>\.

Characteristic 4 (Semantic neighbourhood): The pattern of precedences related to

each attribute and its expansion can be represented by the set of paired elements in which

the first component is an attribute (G*) that is connected to the given attribute either directly

or through its expansion and it is not part of its expansion. The second component is the

type of this relationship, this pattern is called the semantic neighbourhood (ÅE) of the given

attribute (G().

Expr	23. ÅE"(G() = {(G* , â7z(G(, G*): ic]	Gzz	G* ∉ G(
+ , G2 ∈ {G(∪ G(

+}, éℎ7]7	(G2 , G*) ∈

\](`)}.	

ÅE!(G() = {(G* , â7z(G(, G*): ic]	Gzz	G* ∉ G(
+ , G2 ∈ {G(∪ G(

+}, éℎ7]7	(G* , G2)

∈ \](`)}.

ÅE(G() = 	ÅE
"(G() 	∪ 	ÅE

!(G()

Note, immediate neighbourhood and semantic neighbourhood are defined to formal-

ize the relation of a given attribute to other attributes in the lattice. IN formalizes how an

attribute, individually, is related to other attributes. In contrast, SN encapsulates the expan-

sion of attributes and formalizes how the given attribute, directly and through its expansion,

is related to other attributes in its neighbourhood. Hence, to define the SN of an attribute,

the interrelationships among attributes that are part of the attribute expansion are excluded.

38

For attributes that are designated as a class, or category, not all pairs in the IN are in the

SN. However, the IN and SN of properties will be identical.

Expr	24. gi	x(G() ∈ {yzGMM, yGP7fc]D}, íℎ7d	çE(G() ⊄ ÅE(G().		

gi	x(G() = \]c^7]PD, íℎ7d	çE(G() = ÅE(G().	

As discussed later in section 2.5, the semantic neighbourhood of attributes is utilized

to integrate lattices and to suggest potential merge nodes based on the known merge nodes.

2.3.3 Attribute Lattice Validation

This section develops attribute lattice validation rules – that is, rules that can be used

to validate if the structure of a given attribute lattice is consistent with the basic attribute

lattice grammar component definitions. In other words, given an attribute lattice, these

rules can be utilized to verify that each attribute has only one type, to verify that the class

and category attributes are meaningful, to eliminate redundant precedences, and to elimi-

nate precedences that can be immediately inferred from other precedences in an attribute

lattice.

Rule 1 (Multiple precedence relationship): Following the lattice definition (Defini-

tion 4), multiple precedences (of any type) between two attributes are not permitted. That

is, ic]	GdD	fg97d	^](, ^]) ∈ \]; 	ℱ	(^]() ≠ ℱ	:^]);

Rule 2 (Attribute type): An attribute should be designated as either a class, a cate-

gory, or a property, that is, it cannot a class and a category at the same time. As a result, it

cannot have both direct incoming base precedence and outgoing subcategory precedence.

39

In other words, for any G(in the lattice, |E!-. 	(G()| ≥ 1 and |E"-0	(G()| ≥ 1 cannot hap-

pen at the same time.

Rule 3 (Class validation): Assume G(is designated as a class based on its immediate

neighbourhood – that is, |E!-. 	(G()| ≥ 1. There should be at least one attribute in its ex-

pansion such that it is inferred form one of its bases – that is, E!-. 	(G() ⊂ 	G(
+.

This rule ensures that the class provides information (in term of attributes) for class

members beyond what is needed to identify the members (base attributes).

Note that if a class attribute precedes another class attribute with a simple precedence

relationship, then a superclass/subclass relationship exists between them. Similarly, a su-

perclass/subclass can be represented by a base precedence - that is, a class could be a base

for another class. However, the structure is valid if and only if it satisfies above-mentioned

rule (class validation rule).

Rule 4 (Category validation): Assume G(is designated as a category based on its

immediate neighbourhood – that is, |E"-0	(G()| ≥ 1. There should be at least two attrib-

utes in its expansion – that is, G(
+ =	 |E"-0	(G()| > 1.	

Figure 4 shows invalid attribute lattice structures. In the first lattice (a), G$	has no

valid attribute type. It has both incoming base precedence and outgoing subcategory prec-

edence, hence, this structure violates attribute lattice definitions. Second and third partial

lattices (b and c) are invalid because no attribute can be inferred from G# bases. And finally,

in the last lattice (d), G#has only one subcategory precedence which is in contrast with

category definition. As a result, it is not a valid lattice structure.

40

One desirable quality (for simplicity) for an attribute lattice is to represent only non-

redundant relationships. The precedence relation (an arc) in the lattice is considered re-

dundant if it can be inferred from (i.e., is implied by) other precedence relations. The fol-

lowing guidelines provide mechanisms to eliminate unnecessary precedences in the lattice.

a) Invalid attribute type (No type for a2) b) Invalid class (No inferred attributes for a1)

c) Invalid class (No inferred attributes for a1) d) Invalid Category (a1)

 Invalid Attribute Lattice Structures

Rule 5 (Transitive Redundancy): The precedence between two attributes is redun-

dant if it can be inferred from a transitive chain of two simple precedences.

The simple precedence relationship is a transitive relationship, that is, if G# →	G$

and	G$ →	G%, by definition	G# →	G%. Representing all precedences that can be inferred

from the chain of two other simple precedences unnecessarily increases the number of

a2

S

a3

a1 B

a4
S a1

a2
B

a2

S

a3

a1 B

a4

S a5
S

a1

S

a2 a3

a4

41

precedences and decreases the attribute lattice clarity. Figure 5.a shows this redundant

precedence.

Rule 6 (Class Attribute Redundancy): Precedence from a class to an attribute that

can be immediately inferred from one of its bases (attributes in class expansion) is redun-

dant.

Possessing a class attribute is semantically equal to possessing all attributes in its

expansion. Following attribute characteristics (Characteristic 3), the expansion of a class

can be identified from the immediate neighbourhood of the class, and hence, precedence

from a class to its expansion provides redundancy. Figure 5.b shows a class attribute

(G#)	with a redundant precedence.

a) Redundant precedence b) Redundant class precedence

 Redundant Precedences

a1

a2

a3

Redundant

a2
S

a3

a1
B

a4

S

a5

S

a6

a7

Redundant

42

2.3.4 Attribute Lattice Grammar Comparison with Description Logics (DL)

The attribute lattice conceptual modeling grammar represents relations among attrib-

utes – true statements about instances – as perceived by users of data in the domain of

interest. This grammar is developed to provide an inferential representation scheme for

data sources. Moreover, this inferred scheme provides a semantic foundation to address

semantic data heterogeneity among various data sources. This grammar follows the as-

sumptions that (1) classification is a critical ability in humans to understand and communi-

cate about the world (Lakoff, 1987; Parsons & Wand, 2008), and (2) finding classes (cog-

nitive abstractions) in different data sources that refer to the same set of instances in the

real-world is key in data integration (Clifton et al., 1998). Following these assumptions,

this grammar offers a minimal set of components (i.e., attributes and three types of prece-

dences) to represent the class structure of the domain. Classification (in the sense of the

role of classification in human cognition) is central to the definition of this notion and

development of attribute lattice integration.

This section compares this conceptual modeling grammar with other knowledge rep-

resentation languages – that is, Description Logics (DL) based languages. The attribute

lattice grammar is translatable to DL; however this translation will lead to losing a part of

the semantics captured and represented in the attribute lattice.

Similar to Description Logics (DL), subsumption relations among attributes are used

to develop the attribute lattice grammar. Hence, this approach has some shared assumptions

with DL. However, grounded on different assumptions, the semantics represented by at-

tribute lattices and DL languages are different. DL languages offer a variety of constructors

43

to represent a knowledge base (Baader, 2003). Generally speaking, research in DL lan-

guages examines, first, the extent to which the constructors of languages can capture the

semantics of the knowledge base, and second, the trade off between language expressive-

ness and the complexity of reasoning (Brachman & Levesque, 1984). In the attribute lattice

grammar, however, we focus on the minimal set of components, constructed based on hu-

man cognition, to capture subsumption relationships among attributes as perceived by hu-

man users. This conceptual modeling grammar aims to represent the class structure of het-

erogeneous data sources from the perspective of users of data, independent from initial

(predefined) schema of data source, and to provide a basis for class-based data integration.

• Attributes (in an attribute lattice) are neither concepts nor roles (in DL)

In DL, concepts - unary predicates - refer to expressions that denote the set of indi-

viduals, and roles – binary predicates – express relationships between concepts. Attributes

in the attribute lattice grammar are true statements about instances, hence, they are compa-

rable with concepts. The notion of “concept” in description logic languages treats all the

concepts as classes. As a result, classification methods in this approach provide a class

lattice based on all unary predicates.

In the attribute lattice grammar, I follow classification guidelines (Parsons & Wand,

2008) for meaningful classification of instances in the domain. In other words, following

the principle that we form classes to allow us to infer attributes of an instance that are not

required to classify it (a key element of usefulness), not all attributes in a lattice are mean-

ingful domain classes. I f attributes are represented by concepts in a DL, the resulting lattice

44

will contain “unnecessary” concepts (that is, concepts that do not enable inferences), which

makes the conceptual model unclear for humans.

• Precedence relationship in the attribute lattice grammar is not necessarily IS-A re-

lation.

In the DL paradigm, statements can be divided into two groups; the TBox, general

properties of concepts, and the ABox, declaration of knowledge involving individuals. In-

tuitively, the notion of attribute lattice can be compared to TBox. Two primary types of

axiom exist in the terminology (TBox); inclusion axioms denoted by y ⊑ ï and equality

axioms denoted by y ≡ ï in which y	Gd>	ï are concepts. The subsumption relationship

(inclusion) declares that concept D (the subsumer) is considered more general than the

concept C (the subsumee.) This subsumption relationship further will be used to make in-

ferences related to IS-A relationships that are not directly declared in the knowledge base,

and to build the hierarchy of concepts.

The interpretation of subsumption relationship in the DL – any instance belong to

the subsumee, also belongs to subsumer - is similar to the interpretation of precedence

relationship in the attribute lattice grammar – any instances possessing preceded attributes

will possess inferred attributes. However, these two are not semantically equal.

Grounded on semantic networks, in the DL paradigm subsumption relationship re-

flects IS-A relation, where the attribute lattice grammar utilizes three types of precedence

relationships to capture the semantics of subsumption relationships among attributes.

45

Base precedence in the lattice, (r s) is crucial for meaningful classification (based

on classification guidelines (Parsons & Wand, 2008)) and provides information beyond the

simple subsumption relation (inclusion). Base precedence declares that s is a class attribute

and other attributes in the lattice exist such that possessing r is semantically equal to pos-

sessing them. This precedence also states a sufficient attribute, such that instances pos-

sessing the attribute are a member of class s and implies other attributes can be inferred

from this membership. Likewise, subcategory precedence provides semantics beyond the

simple subsumption relationship. In addition to simple subsumption, this precedence also

reflects that possessing the preceded attribute is semantically equal to possess all inferred

attributes with subcategory precedence relationship.

For instance, using the above-discussed example (2.3.1), the student (class) precedes

the student number (attribute) with the base precedence relationship. This base relationship

can be translated into DL with defining both student and student number as concepts and

defining an equivalence relationship between them. However, this translation miss captur-

ing part of the semantics which represented by base precedence in this attribute lattice

grammar.

To summarize, concept and inclusion in DL languages can be used to represent com-

ponents of attribute lattice (i.e., attributes and precedences). However, in the resulting

structure, all attributes will be considered as classes, all precedences will be considered as

IS-A relationships, and the class structure (meaningful class structure from the human point

of view) cannot be inferred.

46

2.4 Attribute Lattice Example

2.4.1 Attribute lattice creation

Extending the above example from a university context (section 2.3.1), this section

demonstrates how an attribute lattice represents the attributes and precedence relationships

among them, and how attribute lattice characteristics are used to infer the class structure

based on the pattern of precedences. In addition, I elaborate by an example how a given

attribute lattice can be validated using above discussed validation rules (section 2.3.3).

As discussed, let student be a class attribute in the attribute lattice with student num-

ber, program, degree, and start date in its expansion.

ÅP8>7dP+ =	 {ÅP8>7dP	d8j~7], \]cf]Gj,ï7f]77, ÅPG]P	>GP7}

Assume instructors, in the university context, have a separate contract for their

teaching that includes a course to teach, and a course-based salary. As a result, possessing

instructor attribute is semantically equal to possessing instructor contract, course to teach,

and course-based salary. In this setting, possessing instructor contract provides sufficient

information to infer that an instance is an instructor, and it possesses course to teach and

course-based salary. Hence, instructor contract is a base for instructor. Likewise, faculty,

person and graduate student are other class attributes in this domain.

çdMP]8NPc]	+ =	 {çdMP]8NPc]	NcdP]GNP, yc8]M7	Pc	P7GNℎ, yc8]M7	~GM7>	MGzG]D}

bGN8zPD+ =	 {óg]gdf	NcdP]GNP, bGN8zPD	MGzG]D}

!]G>8GP7	MP8>7dP+ =	 {ÅP8>7dP	égPℎ	i8d>, âF/íF	^cMgPgcd}

\7]Mcd+ =	 {ÅÅE, ïcv,EGj7}

47

As discussed (section 2.3.1), in this domain graduate instructors are considered to

be employees of the university. As a result, an attribute is defined to represent the graduate

instructor. Any instance that possesses this attribute possess both graduate student and

instructor attributes. However, no proper subset of the expansion of graduate instructor

exists such that other attributes in its expansion can be inferred from it. Hence, graduate

instructor is a category. Table 2 shows the list of class and category attributes with their

expansions. Note that underlined attributes in this table are base attributes.

Table 2. The list of class and category attributes and their expansions

Let assume, in addition to above discussed information, following precedence rela-

tionships are given in this domain.

!]G>8GP7	gdMP]8NPc] → 'j^zcD77

bGN8zPD → 'j^zcD77

çdMP]8NPc] → 'j^zcD77

!]G>8GP7	MP8>7dP → ÅP8>7dP

ÅP8>7dP	 → \7]Mcd

'j^zcD77	 → \7]Mcd

Attribute Type Attribute Expansion

Person Class SSN, DoB, Name

Faculty Class Hiring contract, Faculty salary

Student Class Student Number, Program, Start Date, Degree

Graduate student Class Student with fund, RA/TA position

Instructor Class Instructor Contract, Course based salary, Course to Teach

Graduate instructor Category Instructor, Graduate student

48

Finally, assume the university offers insurance for graduate students. However, not

all graduate students use this insurance.

!]G>8GP7	gdM8]GdN7 → !]G>8GP7	MP8>7dP

Using the above information, an attribute lattice can be created as in Figure 6.

 Attribute lattice

RA/TA
Position

Student
With
Fund

Instructor Graduate
Student

Graduate
Instructor

Faculty

S

Instructor
Contract

Course
to

Teach

Course
Based
Salary

B

Student

Student
Number

B Degree

Hiring
Contract

B

Start
Date

Faculty
Salary

Program

Employee

B

SSN B

DoB

Name

Person

Graduate
Insurance

S

49

The first characteristic of the attribute lattice describes how the immediate neigh-

bourhood of each node can be represented. Using this characteristic, the pattern of prece-

dences directly connected to the given attribute is represented as a set of pairs in which the

first element shows an attribute that is connected to the given attribute, and the second

element shows their relationship. Expression 25 shows the immediate neighbourhood of

some of the attributes in Figure 6.

Expr	25. çE(\7]Mcd) = {(ÅÅE,−>v), ('j^zc77, −>\), (ÅP8>7jP,−>\)}

çE(ÅÅE) = {(\7]Mcd,+>v), (EGj7,+>\), (ïcv,+>\)}	

çE(ïcv) = {(ÅÅE,−>\)}	

çE(EGj7) = {(ÅÅE,−>\)}	

çE('j^zcD77) = {(\7]Mcd,+>\), (bGN8zPD, −>\), (çdMP]8NPc], −>\),	

(!]G>8GP7çdP]8NPc], −>\)}	

çE(!]G>8GP7çdP]8NPc]) = {(!]G>8GP7ÅP8>7dP, −>Å), (çdP]8NPc], −>Å)}	

Using the second and third characteristics of the attribute lattice grammar, attribute

types and their expansion can be identified by the immediate neighbourhood of attributes.

For instance, in Expression 25, attribute Person has only one incoming direct base prece-

dence (−>v). This relationship reflect that this attribute is a class, with one base. The base

of this class (ÅÅE) has two outgoing direct simple precedences (+>\). The base attribute

(ÅÅE), and two attributes (EGj7, ïcv) which are connected with (+>\) precedence to

the base constitute the expansion of the class attribute (\7]Mcd).

50

2.4.2 Attribute lattice validation

Attribute lattice validation (Section 2.3.3) offers a set of rules to verify whether the

pattern of precedences in a given attribute lattice is consistent with the attribute lattice

principles.

The first four validation rules (Rules 1 to 4) discuss the correctness of the model and

assert that a model is correct if each attribute has only one type, and class/category attrib-

utes are meaningful. The last two rules (Rules 5, and 6) focus on the precedence redun-

dancy. This section elaborates these rules with an example.

Assume that the attribute lattice in Figure 7 is created based on domain knowledge

and we are interested in examining if the lattice structure (the pattern of precedences) is

valid. Table 3 shows the validation results for this attribute lattice.

Given an attribute lattice, finding patterns that lead to violating rules could be a cum-

bersome task. Hence, as will be discussed in Chapter 3, an artifact is developed to examine

validation rules for a given attribute lattice and to facilitate attribute lattice validation.

51

 Preliminary Attribute Lattice

Student
With
Fund

Instructor Graduate
Student

Graduate
Instructor

Faculty

S

Instructor
Contract

Course
to

Teach

Course
Based
Salary

B

Student

Student
Number

B Degree

Hiring
Contract

B

Start
Date

Faculty
Salary

Program

Employee

B

SSN B

DoB

Name

Person

Graduate
Insurance

S

52

Table 3. Validation results for Lattice in Figure 7

Rule No. Rule Name Result

Rule 1 Multiple precedence
relationship

Two precedences exist between Student Number and Student

Rule 2 Attribute type

Using the immediate neighbourhood of Faculty, this attrib-

ute has both incoming base precedence and outgoing subcat-

egory precedence. This means this attribute is a category at-

tribute, and class attribute at the same time.

Rule 3 Class validation

Graduate Student has an incoming base precedence. Hence,

it is designated as a class. However, no attribute can be in-

ferred from the attributes in its base.

Rule 4 Category validation

Graduate instructor is a category. However, it has only one

attribute in its expansion.

If Faculty is a category (it has two types for now), it cannot

have only one attribute in its expansion.

Rule 5 Transitive Redun-
dancy

Instructor precedes Graduate Instructor. Employee, in turn,

precedes Instructor. By definition, Employee precedes

Graduate instructor. As a result, Graduate instructor →

Employee is redundant.

Rule 6
Class Attribute

Redundancy

Faculty Salary is included in the expansion of Faculty at-

tribute. Any direct precedence between these two attributes

is redundant.

53

2.5 Attribute Lattice Integration

Given a structured, semi-structured, or even unstructured data source, an attribute

lattice can represent its semantic structure. Attribute lattice integration aims to: (1) define

the concept of similarity and merge nodes between attribute lattices; (2) show how similar

attributes in distinct attribute lattices can be merged to provide a federated (unified) attrib-

ute lattice; and (3) elaborate how attribute lattice grammar principles can be utilized to find

potential similar attribute nodes based on known merge nodes. In this context, a federated

(unified) attribute lattice is an attribute lattice that includes all attributes and precedences

from distinct lattices that represent a common underlying subject domain, and shows the

relationship between similar attributes in these distinct lattices. Let `# and `$be two dis-

tinct attribute lattices as follows:

Expr	26. ̀ # = (F#, \]#, ℱ#),	and		`$ = (F$, \]$, ℱ$)	are	two	distinct	attribute	lattices	

where	

F# = {G##, G#$, G#%, … , G#(}, Gd>	\]# = {	^]##, ^]#$, ^]#%, … , ^]#*}	

F$ = êG$#, G$$, G$%, … , G$)ë, Gd>	\]$ = {	^]$#, ^]$$, ^]$%, … , ^]$&}	

In the following I discuss how these lattices can be integrated to offer a federated

view over them.

54

2.5.1 Federated Attribute Lattice

The approach introduced in this section aims to find similar attributes (based on the

semantic neighbourhood of attributes) in distinct lattices and create a unified view over

these lattices by joining them on the merge nodes. This federated view, in turn, gives the

user of data the ability to query data from distinct sources.

Arguably, the most basic problem in semantic data integration is finding “similar”

attributes which state the same kind of real-world information about instances in distinct

data sources (Clifton et al., 1998). The definition of similarity varies greatly in different

schema-based approaches for data integration. These approaches employ various methods

(based on different similarity theories) to identify similar concepts (Evermann, 2008a,

2008b). Independent from the method employed to find similarity, the successfulness of

the approach is measured by the extent to which similar concepts identified by the approach

are perceived to be similar by a human user (Evermann, 2008a, 2008b).

To improve the similarity judgment quality, Evermann (2009) emphasizes the im-

portance of attributes of instances, suggesting that integration approaches should use the

most relevant attributes to find similar concepts. In the same line, the lattice integration

procedure emphasizes semantic relativism, i.e. the immediate neighbourhood and the se-

mantic neighbourhood of attributes, to find similar attributes.

In attribute lattice integration, following Parsons and Wand (2002, 2003) similar at-

tributes have been defined as attributes in distinct lattices which either represent the same

kind of real-world information about instances (i.e. semantically equal attributes) or repre-

sent the same kind of real-world information about instances in various levels. Based on

55

this definition, three types of similarity are envisioned – that is, semantically equal attrib-

utes, attributes that are a manifestation of the same higher-level attribute, and general/spe-

cific attributes.

First, attributes in distinct lattices are similar when they are semantically equivalent.

That is, possessing an attribute in the first lattice is semantically equal to possessing an

attribute in the second lattice. For instance, possessing teenager attribute in one lattice is

equal to say an instance possess the age group (13:19) in another one. It is worthwhile to

note that categories can be added to attribute lattices for cases in which possessing multiple

attributes (a set of attributes) are semantically equivalent. For example, attribute name in

lattice A is similar to attributes given name and surname in lattice B. In this case, a category

(such as full name) can be defined with given name and surname as its expansion. Next,

name in lattice A can be merged to the full name in lattice B (Figure 8a and 8b).

Second, similarity also refers to attributes that are a manifestation of the same higher-

level attribute. For instance, although being graduate student and being undergraduate

student are not semantically equivalent, these attributes are similar. These attributes can be

merged by introducing a higher-level attribute, student (Figure 8.c).

Finally, if an attribute in the first lattice is more general (or more specific) than an

attribute in the second lattice, these attributes are similar. For example, the attribute faculty

in the first lattice is similar to attribute employee in the second lattice. Although these two

attributes are not semantically equal, the faculty is a manifestation (a more specific attrib-

ute) of the employee (Figure 8.d).

56

Similar attributes in distinct lattices can be merged to provide a unified view over

data sources. Merge nodes in a federated attribute lattice refers to attributes that either 1)

represent higher-level attributes introduced for merging similar attributes or 2) attributes

connected to an attribute in another lattice either with semantic equivalency relationship or

precedence relationship. The merge nodes are represented in Figure 8.

a) Semantically equal attributes b) Semantically equal attributes

c) Similar attribute with the same higher-level attribute d) General/specific attributes

 Similar Attributes and Merge Nodes

age group
(13:19)teenager

Merge Nodes
Attribute Lattice 1

Attribute Lattice 2

Graduate
Student

Student

Undergrad
Student

Merge Nodes

Attribute Lattice 1

Attribute Lattice 2

Faculty Employee

Merge Nodes

Attribute Lattice 1 Attribute Lattice 2

57

2.5.2 Potential Merge Nodes in Attribute Lattice Integration

The majority of approaches in this area are manual (Spanos et al., 2012). However,

semi-automated approaches exist for schema-based semantic data integration (such as Volz

et al., 2004; Hu & Qu, 2007). Here, I argue the intrinsic characteristics of attribute lattice

can be utilized to semi-automatically integrate conceptual models that represent the

semantics of various data sources to provide a unified view for the semantic structure of

the subject domain.

As discussed earlier (section 2.3.2), the immediate and semantic neighbourhood of

attributes is defined to infer the class structure of the domain. In the following, lemmas that

suggest potential similar attributes based on the known merge nodes are proposed. That is,

given initial merge nodes in distinct lattices, these lemmas suggest new merge nodes based

on the immediate and semantic neighborhood of known merge nodes.

 Lemma 1: Let G#(and G$) be attributes in `# and	`$, respectively. Assume both at-

tributes are either category or class. If G#(is semantically equal to G$), attributes in their

expansion are candidates to be similar and new merge nodes.

Explanation: Attributes G#(and G$) are either class, or category, that is, there are

other attributes in the lattices which are semantically equal to them (their expansion). Since

G#(and G$) 	are semantically equal, the attributes that define these attributes (their expan-

sions) are potential candidates to be similar and new merge nodes. An example for this

lemma is presented in Figure 9.

58

 Potential merge nodes based on lemma 1

Lemma 2: Let G#(and G$) be attributes in `# and	`$, respectively. If G#(is semanti-

cally equal to	G$), attributes in their semantic neighbourhood with outgoing precedence

relation (ÅE"(G#() and	ÅE"(G$))) are candidates attributes to be similar and new merge

nodes.

 Explanation: Attributes G#(and G$) are either class, category, or property. If attrib-

ute is a class or category, any attribute that can be inferred from its expansion can be in-

ferred from the class or category itself. In all cases, if attributes in `# and	`$ can be inferred

from semantically equal attributes (G#(and	G$)), they are potentially merge nodes.

a11 a21

a23a22

SS

Attribute Lattice 1

Attribute Lattice 2

B

a12

a14

a13

Potential Merge Nodes

59

Figure 10 presents an example of this lemma. In this figure, G##	and	G$#are two se-

mantically equal attributes in distinct lattices. G##	is a class with three attributes in its ex-

pansion (G##
+ = {	G#$, G#%, G#3}.) In the first lattice, G#4 is inferred from G#%, and G#% is a

part of G## expansion, since possessing G## is semantically equal to possessing

	G#$, G#%, Gd>	G#3, G#4 can be inferred from G##itself. In this example G##and G$# are se-

mantically equal attributes, and, G#4 and G$$ are inferred from these two equal attributes,

respectively. Following lemma two, these two attributes (G#4 and G$$) are potential new

merge nodes.

 Potential merge nodes based on lemma 2

a11
a21

a22

Attribute Lattice 1
Attribute Lattice 2

Ba12

a14
a13

Potential Merge Nodes

a15

60

Lemma 3: Let G#(and G$) be attributes in `# and	`$, respectively. Assume both at-

tributes are either category or class. If	G#(and	G$) are manifestations of the same higher-

level attribute(j*), attributes in their expansion are potential merge nodes.

Explanation:	G#(and	G$) 	are either a class or a category. As a result, these attributes

can be represented as a union of other attributes in the lattice. On the other hand, these two

attributes (G#(and	G$)) are manifestations of the same higher-level attributes, which means

a proper subset of their expansions are semantically equal (Figure 11).

 Potential merge nodes based on lemma 3

The attribute lattice integration procedure starts with an initial list of merge nodes

and suggests new merge node based on known merge nodes. In this approach, attributes

can be merged independent from their types (class, category, or property). However, the

a11 a21

a23a22

SS

Attribute Lattice 1 Attribute Lattice 2

B

a12

a14

a13

Potential Merge Nodes

m1

61

immediate and semantic neighbourhood of attributes are utilized, through lemmas, to find

new merge nodes.

To elaborate these lemmas, consider the following example adopted from

Bergamaschi et al. (1999). Assume the following federated attribute lattice (Figure 12)

represents the partial lattices related to patients in two departments in a given hospital -

that is, intensive care department and cardiology department (showed by ID and CD pre-

fixes, respectively.) Let assume the only known merge nodes are patients in both lattices.

Given these merge nodes, Lemma 1 suggests that attributes in their expansion are

similar and potential merge nodes. Using this suggestion, patient name in cardiology de-

partment data set can be merged to patient first name and patient last name in intensive

care department (excluded from Figure 12). Moreover, Lemma 2 suggests that nurse and

doctor are potentially similar and potentially new merge nodes.

Let assume that user identified that nurse and doctor are actually similar and both

are manifestations of a higher-level attribute, hospital staff. Lemma 3, using this new merge

node, suggests that attributes in the expansion of nurse and doctor are potentially similar.

However, finding all potentially similar attributes and merge nodes could be a cum-

bersome and time-consuming task. Chapter 3 presents an artifact that utilizes these lemmas

to facilitate the integration process.

To summarize, a key contribution of attribute lattice is semantic relativism. Semantic

relativism makes possible to merge property attributes with category and class attributes.

In this context, the similarity is defined in a broader sense that covers semantically equal

62

attributes, attributes that are manifestations of a same higher-level attribute, and spe-

cific/general attributes. Using attribute lattice characteristics, I proposed lemmas that can

be utilized to find potential similar attributes based on the known merge nodes. In Section

3.4, details of the artifact developed to assist attribute lattice integration procedure are pre-

sented.

 Lattices Integration. Adopted Form Bergamaschi et al. (1999)

B

ID.patient

ID.patient
code

B

ID.dis_patient

B

ID.dis_patient
code

ID.date

ID.note

ID.doctor

ID.doctor_id

ID.doctor
first_name

ID. Doctor
last_name

ID.phone

ID.position

ID.doctor
address

ID.availability

ID.patient
first_name ID.patient

last_name

ID.patient
address

CD.nurseCD.nurse
name

CD.nurse
address

CD.level

B

CD.patient

CD.patient
name

BCD.patient
address

CD.room

CD.bed

hospital
staff

63

2.6 Discussion

The traditional paradigm of information system development considers conceptual

modeling as an important step in requirements engineering. This paradigm assumes that

data is created, stored, and queried for pre-defined purposes. However, in the era of Big

Data, this assumption often does not hold. In the current environment, users of data query

analyze it for purposes beyond what data contributor might anticipate. Here, I argue that

conceptual models can be utilized to understand the data semantics as perceived by users

of data.

In this thesis, I use principles from cognitive psychology, philosophical ontology,

and graph theory to define a lightweight graph-based conceptual modeling grammar, which

I call attribute lattice grammar. The attribute lattice grammar has several important char-

acteristics. First, it offers a minimal set of components designed to capture the class struc-

ture of the domain of interest. The attribute lattice grammar has two components: nodes

and directed arcs. Nodes represent attributes – true statements about some instances in a

domain – and directed arcs represent precedence relationships among attributes as per-

ceived by users of data.

Second, it represents precedences as perceived by the user of data. Defined by using

classification guidelines, three types of precedences are introduced in this conceptual mod-

eling grammar. These precedence types reflect how the users of data perceive the relation-

ship that exists between attributes. Hence, it is independent of the schema of the data source

that it presents.

64

Third, an attribute lattice grammar supports classifications – that is, the pattern of

precedences around attributes can be used to infer the class structure of the domain it rep-

resents. Following the assumption that the classes are constructed to provide useful ab-

stractions of similarity, we use the pattern of precedences (and their types) to designate an

attribute as a class, a category or a property.

Finally, an attribute lattice grammar provides a robust semantic foundation to inte-

grate various data sources. A key challenge in semantic data integration is to find similar

classes which refer to the same real-world concept. The attribute lattice grammar enables

users of data to construct their classes over heterogeneous data sources. This uniformity of

representation affords greater flexibility in viewing information (multiple perspectives can

co-exist), which in turn supports integration.

The first theoretical contribution of the attribute lattice modeling grammar is utilizing

conceptual models to understand the semantics of data sources that come from a developed

information system, and independent from the schema of the data source. This grammar

helps users of data to represent the class structure of based on the current purpose and sue.

The second contribution of this grammar is extending the concept of attribute prece-

dence to capture the type of subsumption relationship among attributes more clearly. The

base and subcategory precedences in this grammar convey semantics beyond the simple

precedence relationship. These types, in turn, are utilized to define semantic relativism in

an attribute lattice.

The third contribution is utilizing human view of classification to define semantic

relativism – whether a node represents a class or property depends entirely on its semantic

65

neighbourhood, the pattern of incoming and outgoing arcs and nodes connected to these

arcs. Semantic relativism frees instances from predefined (or undefined) schemas, and en-

ables users to query and analyze data based on their understanding of it.

Finally, this chapter suggests an attribute-lattice-based approach to provide a unified

view over distinct heterogeneous data sources. In this approach, attributes are similar when

referring to the same characteristics of instances, or convey the same kind of characteristics

in a different level. This approach iteratively finds similar attributes in separate data

sources and joins them on the merge nodes.

This grammar provides several core uses. First, attribute lattices are well-suited for

analysis. Given a lattice, it is possible to automatically analyze it to identify attributes that

represents meaningful abstraction – that is, classes. This, in turn, enables data users to

identify set of instances belonging to each class, and make inferences about instances using

these classes. These analyses are incorporated in a tool for lattice visualization (Chapter 3)

that enables users of data to view the data structure from various perspectives, thereby

contributing to gaining insights from data.

Second, lattices provide a strong semantic foundation for data integration. In tradi-

tional approaches, an impediment to data integration is structural heterogeneity between

independent data sources. However, this approach is built based on a class schema-free

artifact (attribute lattice) and can be used for integration of data from structured (e.g., tra-

ditional relational databases), semi-structured (e.g., web data which has no rigid structure),

and even unstructured data sources (e.g., text data).

66

3 Artifact Implementation

The previous chapter defined the attribute lattice grammar, its components, its char-

acteristics, and a set of rules to validate a given attribute lattice. Also, it suggested an ap-

proach to find potentially similar attributes and to create a unified view over distinct lattices

by joining the merge nodes. This chapter elaborates on the design and implementation of

the artifact that supports attribute lattice. Here, the programming language and functions

which are developed to implement the attribute lattice artifact are discussed. This imple-

mented artifact, which is available to the research community and accessible on the web6,

enables a wide range of empirical studies on the usefulness and adoption of the attribute

lattice.

This section presents a set of features implemented in the artifact that allows users to

create, update, represent, validate, and integrate lattices. These features aim to: (1) enable

users to create and manipulate an attribute lattice; (2) provide a graphical representation of

attribute lattices; (3) represent the expansion of attributes; (4) validate a given attribute

lattice; and (5) suggest similar attributes based on known merge nodes.

Later, section 4.4 explains how this artifact can be expanded for various attribute

lattice-based use cases. In particular, it will discuss additional features that have been im-

plemented to support attribute lattice-based topic modeling.

6 The application is available at this address (https://attribute-lattice.shinyapps.io/thesis/)

67

Table 4 summarizes the list of features covered in this chapter. Also, Appendix A

shows the user interfaces (screenshots) of the artifact.

Table 4. Artifact Features

Feature Category Main Features

1. Lattice Operation 1.1 Provide a mechanism to store, and manipulate attributes lattices

2. Lattice Representation and
Analysis

2.1 Illustrate an attribute lattice graphically

2.2 Represent expansion of attributes

2.3 Validate a given attribute lattice

3. Lattice Integration 3.1 Provide a mechanism to create a federated attribute lattice, and to
merge nodes

3.2 Suggest similar attributes based on known merge nodes

68

3.1 Programming language

Initially developed for statistical computation and graphics, R (R Core Team, 2000)

and its packages offer powerful sets of tools to handle graphical representation of the lat-

tice, lattice operation, and lattice integration. Therefore, R is used for the implementation

attribute lattice in three tiers – that is, storage, logic, and representation tiers. A web-based

structure has been used for implementation to make the attribute lattice available for future

studies.

The attribute lattice is structurally simple, that is, an attribute lattice is a set of

attributes and precedences relationships among them. Hence, there is no need to use data-

base management systems to store attribute lattices data, and it can be stored in files di-

rectly. These files are saved into cloud storage by using Dropbox services in R (rdrop27).

A combination of R packages (including igraph8, DT9, and dplyr10) is utilized to develop

required functions in the logical tier. Finally, the representation layer of the application is

developed using the shiny (Chang et al., 2015) package. This package provides an interac-

tive web-based environment for development.

The developed application has two panels – control panel and main panel (Figure

13). Located on the left-hand side of the screen, the control panel is used to capture users’

inputs and commands - that is lattice operation, lattice integration, similar attributes and

7 https://cran.r-project.org/web/packages/rdrop2/index.html
8 https://cran.r-project.org/web/packages/igraph/index.html
9 https://cran.r-project.org/web/packages/DT/index.html
10 https://cran.r-project.org/web/packages/dplyr/index.html

69

plot adjustment. The main panel, with five tab panels (lattice definition, plot, attribute

structure, lattice validation, and lattice integration), is used for attribute lattice represen-

tation purposes (graphical attribute lattice and report tables.)

 Control panel and main panel

Main panel

Control panel

70

3.2 Lattice Operation

3.2.1 Store, and manipulate attributes lattices

As discussed earlier (Expr 6), an attribute lattice is a set of attributes and precedences.

An attribute is a true statement about at least one instance in the domain of interest. Long

attribute names, in the attribute lattice, might make the graphical representation of the lat-

tice unreadable. Hence, attribute abbreviations are also stored in the application. The data-

frame object (R Core Team, 2000) with two columns (attribute itself, and its abbreviation)

is used to store attributes in each lattice. Similarly, the data-frame object with three col-

umns is used to store the precedence relationships, in which the first column stores the

abbreviation of the preceded attribute, the second one stores the precedence type, and the

last column stores the abbreviation of the inferred attribute.

The list object (R Core Team, 2000) is used to store each lattice. This R object can

contain many different types of elements, such as vectors, and data frames inside it. A list

object that stores a lattice in the application includes two data frame objects (R Core Team,

2000). The first one stores attributes with their abbreviations, and the second one stores

precedences of each lattice. The logical model of an attribute lattice is demonstrated in

Figure 14. A set of functions is developed to support lattice creation and manipulation. In

the following these functions are discussed.

71

Attribute Lattice Name

Abbreviation Attribute Label

Abb 1 Att Label 1
Abb 2 Att Label 2
Abb 3 Att Label 3
… …

Preceded

Attribute

Precedence Type Inferred

Attribute

Abb 1 S Abb 2

Abb 1 P Abb 3
… … …

 The logical model of list object to store attribute lattice

• Save and load attribute lattices

By default, the storage of a lattice is volatile and local. This means the attribute lat-

tices are accessible just for the current user, and only while the session is active. In other

words, as soon as the user closes the web browser, the existing lattices will be deleted.

However, the application provides the capability to store a lattice to the server. At the ap-

plication start-up, all server-saved lattices are accessible for users for manipulation, rea-

soning, and integration. Note that the application can store and manage multiple lattices;

however, at any point, there is only one active lattice, and all the tab panels in the main tab

represent different information about the active lattice.

• Create initial (empty) attribute lattice

This function takes an attribute lattice name as input. Using the user provided name,

it creates a list object (attribute lattice) with two data-frames in it – one for attributes in the

lattice, and one for the precedence relationships in the lattice.

72

• Add attributes to the lattice

This function takes an attribute name and abbreviation as input and adds a row to

attributes data-frame of the active lattice. It is worthwhile to note that attribute abbreviation

is utilized as an identifier for the attribute. That is, precedence relationships are stored,

queried, and analyzed using attribute abbreviations.

• Edit attributes in the lattice

This function takes an existing attribute and a new value for either attribute name or

attribute abbreviation and updates the attribute information with the given value. As men-

tioned earlier, precedence relationships are stored by using attribute abbreviations. As a

result, if the update happens on an attribute abbreviation, all the precedences will be up-

dated by the new value.

• Delete a given attribute from the lattice

This function is developed to delete an existing attribute. If an attribute has been used

as a preceded or an inferred attribute in any precedence relationship, it cannot be deleted.

In this case, this function returns an error to the user – “The attribute has been used in a

precedence relationship and cannot be deleted”.

• Add precedence to the lattice

Given a pair of existing attributes and a precedence type, this function adds a prece-

dence relationship to the current lattice by adding a row to the current attribute lattice prec-

edence data-frame.

73

• Delete a given precedence from the lattice

This function is developed to delete an existing precedence from the active attribute

lattice.

• Edit a given precedence

The precedence type of an existing precedence relationship can be edited by this

function.

• Import attributes and precedence relationships from Excel file

Using the above-discussed functions to add attributes and their precedence relation-

ship one by one could be a cumbersome task. This function is developed to facilitate at-

tribute lattice definition by adding both attributes and precedences from an Excel file. Note

that, using this function, attributes and precedences can be added either to an initial (empty)

attribute lattice, or lattices that already have attributes and precedences.

A predefined structure is defined for the excel file. There must be two pages in the

file in which the first page has two named columns (abbreviation and attribute) and the

second one has three named columns (precededAbr, prcType, and inferredAbr).

Given a file, this function first validates the file structure – that is, it verifies if the

file is an excel file with two pages and above mentioned named columns. Then, it adds all

attributes and precedences to the active attribute lattice. In case the function cannot find

the attribute name of attribute abbreviations that have been used in precedence relationship

definitions (neither in the excel file nor within existing attributes), it automatically adds an

74

attribute to the attributes data frame and sets attribute abbreviation as the attribute name as

well.

The functions discussed above are available for users through the lattice operation

section of the control panel. These functions enable users to create, store and modify an

attribute lattice. At any point, the detail of a defined attribute lattice can be viewed in the

lattice definition tab panel, which is located in the main panel. The lattice definition tab

panel represents the list of attributes and their precedence relationships. Figure 15 shows

the lattice definition tab panel for the attribute lattice discussed in section 2.3.4 (see Ap-

pendix A for user interfaces details).

 Lattice definition tab panel, in the artifact main panel

75

3.3 Lattice Representation and Analysis

An attribute lattice is a set of attributes and precedence relationships among them

which can be represented in a graph-like structure. A set of functions developed to repre-

sent the lattice graphically, represent the lattice structure, and validate a given attribute

lattice, is discussed in the following.

• Attribute type

Given an attribute lattice, this function return type of all attributes in the lattice. If an

attribute G(has either incoming base precedence (|E!-. 	(G()| ≥ 1), or outgoing subcate-

gory precedence (|E"-0	(G()| ≥ 1) in its immediate neighbourhood, it will be designated

as a class or a category, respectively. Otherwise, it will be designated as a property. This

function returns a list object with three vectors, that is, classes, categories, and properties

vectors.

• Illustrate an attribute lattice graphically

This function is developed to represent an attribute lattice graphically. This function

has two steps. First, it provides a list of arcs (precedence) with their types and nodes (at-

tributes) with their types. Second, it passes the arcs and nodes to the igraph (Csardi &

Nepusz, 2006) package for graph representation.

As discussed in Expression 12, three type of precedence relationships exist in the

attribute lattice. These three types of precedence are represented in the lattice with directed

arcs with various styles (Figure 1). The same styles have been used in the application to

76

represent precedences. This function passes precedences, their type and their style to the

igraph package. Moreover, using the above-discussed function (attribute type function),

this function creates a list of all attributes, with their types and their styles and passes them

to the igraph package as well.

To draw the attribute lattice, the Fruchterman-Reingold layout algorithm (Fruchter-

man & Reingold, 1991) has been used. This heuristic algorithm, which keeps the distance

of attributes as equal as possible and minimizes crossing edges, provides an intuitive rep-

resentation for the attribute lattice. Figure 16 shows the plotted lattice in the application for

the lattice introduced in section 2.3.4.

This function provides the capability to adjust the plotted attribute lattice as well.

Attributes (nodes) are represented by circles in the lattice, with an attribute name written

inside the circle. To improve graph clarity, node and font size of attributes can be adjusted

using plot adjustment section in the control panel.

77

 Graphical representation of Attribute lattice

78

• Semantic relations of attributes

This function summarizes the semantic relationships for each attribute G(- that is, it

extracts all attributes which are related to the given attribute G(, either directly or through

its expansion (as elaborated in Expression 19).

• Attribute expansion

Given an attribute lattice, using the third characteristic of attribute lattice (section

2.3.2), this function returns the expansion of class and category attributes. First, this func-

tion finds the expansion of category attributes by following subcategory precedences in

their immediate neighbourhood (Expr 21). Second, it identifies all bases for each class

attribute and uses these bases to determine inferred attributes for each base (Expr 22). The

result of this function, for the active attribute lattice, is represented in the attributes struc-

ture tab panel in the main panel (Figure 17).

 Attribute structure

79

• Validate a given attribute lattice

This function is developed to verify a given attribute lattice validity. Specifically,

this function uses the functions described above to determine if the active attribute lattice

violates any of the attribute lattice rules (discussed in section 2.3.3). This function has six

steps (for six rules). After each step, it creates a data-frame object with two columns –the

rule which is violated, and the message that represents how the pattern of precedences leads

to the violation. At the end, this function adds up all data-frame objects and represent the

result in the lattice validation tab panel in the main panel. Figure 18 shows the result for

the example discussed in section 2.3.4.

 Validating a given attribute lattice

80

3.4 Lattice Integration

The application supports attribute lattice integration through the following three

functions. The first function creates an initial federated lattice, the second function captures

the known merge nodes, and the third suggests similar attributes based on the known merge

nodes.

• Create initial federated attribute lattice

This function takes two attribute lattices and a name for the federated lattice and

creates a federated attribute lattice by first, adding a prefix to attributes abbreviations (l1

and l2) and second, adding all attributes and precedences from two attribute lattices.

• Capture merge nodes

This function takes two attributes (from distinct lattices in the federated attribute lat-

tice) and a merge type (Figure 8) as an input and creates a corresponding merge node in

the federated attribute lattice. If two attributes are semantically equal, this function adds a

row to the precedence data-frame of federated attribute lattice which represents semantic

equivalency (represented by a line with arrows at both ends). If one attribute is more gen-

eral (specific) than the other one, this function adds a precedence relationship (a row) be-

tween these two similar attributes with a different style. And finally, if both attributes are

manifestations of a higher-level attribute this function asks for a name for this higher-level

attribute and creates a new merge node. This new merge node precedes both given attrib-

utes.

81

• Suggest similar attributes based on known merge nodes

This function suggests potentially similar attributes based on known merge nodes.

Following Lemma 1, if merged nodes are semantically equal and both are either class or

category attributes, attributes in their expansion will be suggested as new similar attributes.

Also, this function uses the ‘semantic relations of attributes’ function (discussed in section

3.3) to find attributes with outgoing precedence relationship in the semantic neighbourhood

of merged nodes and suggests them as similar attributes (Lemma 2).

If given merged nodes are manifestations of the same higher-level attribute and both

are either a class or a category attribute, attributes in their expansion will be suggested as

potentially similar attributes based on the Lemma 3.

 Using lemmas to suggest attributes that are candidates to be similar

Finally, this function summarizes known merge nodes and potentially similar attrib-

utes in a data-frame object. The result of this function for the example discussed earlier

(section 2.5.2) is represented in Figure 19.

82

3.5 Discussion

This chapter describes the design and implementation of a web-based, publicly

available artifact that supports the attribute lattice conceptual modeling grammar. This

application provides significant benefits for users who wish to utilize the proposed

conceptual modeling grammar.

First, it represents graphically models created by the attribute lattices grammar. This

graphical representation will help users to gain insight into the data semantics of the

domain that the model represents.

Second, as discussed in the previous chapter, class bases and attribute expansions

explain inferences that can be made for instances in the domain. The implemented artifact

demonstrates the type of attributes, and their expansions by analyzing patterns of

precedences around attributes. Hence, it enables users to understand instance-related

inferences. Additionally, this artifact enables users to manipulate the model by adding

precedences to or removing precedences from the model. Through these manipulations,

users can conduct what-if analysis. That is, they can learn how changes in precedences will

affect instance-related inferences.

Further, the implemented artifact enables users to validate the captured class

structure of the domain. Users capture the precedences in the domain of interest, and these

precedences constitute an attribute lattice. The artifact enables users to examine if the

captured precedences create a meaningful class structure - that is, an inferred class structure

from the pattern of precedence represents a meaningful class structure of the subject

domain.

83

Finally, this application enables attribute lattice-based semantic data integration.

Given a set of known merge nodes, this artifact uses integration lemmas (section 2.5) to

suggest potentially new merge nodes. Hence, it enables users to create a federated view

over distinct lattices.

84

4 Attribute-lattice-based Topic Modeling

4.1 Introduction

The Big Data era brings new challenges for meaningful use of data, such as the in-

creasing number and heterogeneity of data sources (Dong & Srivastava, 2013). In contrast

to traditional approaches, which mainly focus on structured data, with the explosive num-

ber of unstructured data sources there is a growing interest in integrating unstructured data

(mostly text) for data-driven decision making (Russom, 2011). LaValle et al. (2011) argue

that more and more strategic information comes from unstructured data sources such as

social media. With the ever-increasing amount of data, the challenge is to understand the

content of unstructured data and to find relevant information.

The notion of attribute lattice is defined in Chapter 2 as a schema-free conceptual

modeling grammar. The attribute lattice has a simple structure and provides a foundation

for representing the semantics of the data source. However, building a lattice for unstruc-

tured data from the beginning can be a challenging and cumbersome process. This chapter

aims to elaborate how: 1) an initial lattice can be created automatically by analyzing the

content of unstructured data sources, and 2) this model can be used to find and retrieve

relevant information.

This chapter utilizes the concept of attribute lattice grammar for the task of topic

modeling of unstructured data – representing the latent semantics of unstructured data.

Twitter, the most popular micro-blogging site, which generates a massive amount of text

85

data every day, has been selected as the unstructured data source for this study. The attrib-

ute-lattice-based topic model, built based on content analysis of tweets, provides valuable

insight into the topic structure of tweets, and helps to identify related tweets and retrieve

the most relevant tweets on the topic of interest.

In the following, I begin by reviewing topic visualization approaches, and research

in which hashtags have been utilized for Twitter analysis. Then, I examine the use of at-

tribute lattice grammar principles for the task of topic modeling. This is followed by illus-

trating an artifact implemented for the task of Twitter topic modeling. Next, the result of

an empirical study in the domain of technology is presented. Finally, contributions, limita-

tions, and opportunities for future research are discussed.

86

4.2 Related Literature

Tweets have several properties such as user, geo-location, number of replies and

number of retweets. Also, tweets might include mentions, hashtags, and URLs to external

pages. Among the properties, hashtags provide valuable insight into the topic of a given

tweet. Given a set of tweets, attribute-lattice-based topic modeling aims to conceptualize

the topic structure of tweets by utilizing tweets’ hashtags and user-defined topics. In this

regard, after discussing general approaches for analyzing Twitter the review in this section

focuses on topic modeling, topic visualization approaches, and approaches that use

hashtags for Twitter analysis.

4.2.1 Twitter Analysis

Analyzing text data - all data in the form of natural language text - is an active re-

search area in both Information Retrieval (IR) and Text Mining (TM) research communi-

ties. Although these two areas of research address text analysis from two different points

of view, research conducted in these areas is highly related. In general, IR aims to find text

documents from large collections that satisfies an information need (Manning et al., 2008),

whereas the goal of TM is to extract and discover useful, actionable knowledge (Zhai &

Massung, 2016). IR and TM can be considered as two steps of finding relevant text data

from an extensive collection of text data (Zhai & Massung, 2016). The explosive growth

of tweets, a short text data, makes it impossible for people to retrieve all data related to

their interest. As a result, a wide range of IR and TM approaches have been applied to

87

Twitter for various analyses (Zimmer & Proferes, 2014), such as topic identification, event

detection, sentiment analysis, and user analysis.

4.2.2 Topic Modeling and Topic Classification

Both supervised and unsupervised techniques have been employed for analyzing the

topic of text data. Topic modeling approaches utilize unsupervised or weakly supervised

techniques. On the other hand, topic classification approaches employ supervised tech-

niques. Here, I review key research in both categories and point out how this research uses

predefined topics for analyzing topics of text data.

Topic modeling in the IR and TM literature refers to unsupervised and weakly su-

pervised mining methods that find latent topics in text documents. Probabilistic Latent Se-

mantic Analysis (PLSA) (Hofmann, 1999), Latent Dirichlet Allocation (LDA) (Blei et al.,

2003), Correlated Topic Modeling (CTM) (Blei & Lafferty, 2005), and labeled LDA

(Ramage et al., 2009) are the most well-known methods for topic analysis. Generally

speaking, these techniques reveal the latent topics by implicitly capturing word co-occur-

rence patterns at the document level (Yan et al., 2013).

The result of topic modeling tasks is the identification of topic words in given docu-

ments and the coverage of these topics in each document (Zhai & Massung, 2016). Tweets,

which contain less than 280 characters (140 characters before Nov 2017), and shortened

words that are not like standard written English, presented new challenges to topic model-

ing. As a result, several PLSA, and LDA extensions have been proposed (e.g., Hong &

Davison, 2010). To tackle these new challenges, PLSA and LDA extensions usually as-

sume that each tweet has only one topic (e.g., Zhao et al., 2011), and incorporate additional

88

tweets’ properties such as user information (e.g., Hong & Davison, 2010; Diao et al., 2012),

and time period of tweets (e.g., Diao et al., 2012).

Unsupervised topic modeling approaches represent each topic as a set of topic words

(a bag of words). However, these sets of words do not have explicit semantics (Lau et al.,

2010; Sun et al., 2015); as a result, these approaches suffer from the lack of semantic in-

terpretability for human users (Chang et al., 2009). Hence, in weakly supervised ap-

proaches, a common practice for labeling the topics is to map latent topics to a set of pre-

defined topics. Ramage et al. (2010), for instance, map the contents of tweets into four

classes (i.e. substance, social, status, and style topics). Zhao et al. (2011) assigns the result

of topic analysis to a set of predefined topic categories by extending LDA approach for

Twitter and comparing tweet topics with traditional media topics.

Topic classification approaches are supervised topic modeling techniques, similar to

weakly supervised approaches that map tweets to a set of predefined topics. Yang et al.

(2014) define approximately 300 topics in a hierarchical structure with six levels. Yang et

al. (2014) use a spectrum of topic modeling techniques and crowdsourced labelers to clas-

sify tweets. Sriram et al. (2010) proposed to use domain-specific features extracted from

author profile of tweets (eight features) to classify tweets to five general, high-level cate-

gories (i.e., news, events, opinions, deals, and private messages). And finally, Lee et al.

(2011) employ both tweets and Twitter users (tweeters11) network models to classify trend-

ing topics into 18 general categories.

11 In this thesis, “tweeter” refers to the Twitter user who wrote the tweet, and “user” refers to an individual who uses the
topic model for tweet retrieval.

89

In topic modeling and topic classification, independent of the employed technique, a

common practice is to map tweets to a set of predefined topics. This approach restricts

users in classifying and retrieving tweets – that is, users need to select the most relevant

topic among a set of pre-defined topics to retrieve tweets.

4.2.3 Topic Visualization

Text visualization, as an important subfield of information visualization, has gained

considerable attention in recent years (Liu et al., 2014a; Kucher & Kerren, 2015). The

focus of text visualization techniques is to assist users in exploring, understanding and an-

alyzing text data through visual representations (Liu et al., 2014a; Kucher & Kerren, 2015).

Several survey papers focus on characteristics of text and information visualization

techniques (for example, Šilić and Bašić (2010); Liu et al. (2014a); Kucher and Kerren

(2015)). A recent taxonomy (Kucher & Kerren, 2015) categorizes text visualization tech-

niques based on six dimensions - that is, analytic tasks, visualization tasks, domain, data

source and properties, and visualization type (dimensionality, representation, and align-

ment). The web-based version of this survey, as of June 2019, covers 440 text visualization

techniques.

Topic visualization, a common analytics task in text visualization, improves user ex-

perience regarding topic exploration, and provides a better understanding of evolutionary

patterns of the topics. In the context of Twitter, topic visualization practices either visualize

the topic information statically (e.g., Liu et al., 2014b), illustrate topic evolution over time

(e.g., Havre et al., 2000; Cui et al., 2014) or integrate both static and dynamic aspects of

90

topics (e.g., Dou et al., 2013). However, the semantics of the topics and their relationships

are not the focus of the research.

4.2.4 Hashtags

A hashtag is a word that starts with “#” symbol on Twitter. Hashtags are tweeter-

composed keywords for a tweet which can be included in tweets for various purposes.

Approximately one-tenth of tweets have hashtags; however, tweets with hashtags tend to

have more valuable information (Suh et al., 2010). Hashtags provide valuable insight into

the topic of a given tweet. However, their semantic interpretability is hindered by charac-

teristics such as shortened formation (Liu et al., 2011; Pöschko, 2011), conversational na-

ture (Huang et al., 2010) and sparseness (Yang et al., 2012). In some cases, it can be hard

or even impossible to understand the intended meaning of a given hashtag (Liu et al., 2011;

Pöschko, 2011). This happens not only because of words with multiple meanings (homo-

nyms) but also because words may have been written in a shortened format to fit into char-

acter count of Twitter. For instance, #ttot (a highly adopted hashtag in the Travel domain)

does not convey meaning clearly by itself.

The use of hashtags has attracted considerable interest and research attention. The

research in this area widely can be categorized into three topics. First, there is research in

which hashtags have been used for IR/TM tasks. For instance, Lin et al. (2011) use hashtags

for topic filtering, Livne et al. (2011) for community analysis, and, Liu et al. (2011) for

topic summarization. Second, some research addresses the low rate of hashtag adoption by

tweeters and offers hashtag recommendation (e.g., Godin et al., 2013). Finally, research

explores the characteristics of hashtags and how/why tweeters adopt hashtags. For instance,

91

Huang et al. (2010) look at the time series chart of traditional tagging platforms (such as

Delicious) and hashtags, and asserts that tagging nature of Twitter is different from tradi-

tional tags. Traditional tags have been widely utilized for organizational purposes whereas

hashtags have been used for conversational purposes, and filtering and directing the tweets.

Yang et al. (2012) argue that tweeters adopt hashtags to indicate their membership in a

community.

To summarize, hashtags are a potentially valuable source of information for topic

modeling and information retrieval. However, the semantic interpretation of hashtags

needs to be addressed to exploit this potential.

The proposed topic model aims to utilize attribute lattice grammar principles to im-

prove semantic interpretation of hashtags (tweeter-defined topics) and to visualize seman-

tics of topics and their relationships. Built based on tweeter-defined topics, this topic model

(a graph-like conceptual model) represents the topic structure of a given set of tweets and

enables users to incorporate their topics in the model. Hence, it frees users from pre-defined

topics and enables them to use topics that reflect their interest for tweet retrieval and anal-

ysis purposes.

92

4.3 Attribute-lattice-based Topic Model

The attribute lattice is a schema-free conceptual modeling grammar. Developed

based on IBDM principles, this model frees instances from predefined classes and offers

classification that relies on the relationship among attributes. Classes, useful cognitive ab-

stractions, can be defined and represented by the precedence relationship among the

attributes possessed by instances. These classes provide support for information retrieval

and semantic data integration. In this section, I first investigate how attribute lattice gram-

mar principles can be used to represent the latent semantics of unstructured data (i.e.,

tweets). Second, the automated topic model extraction procedure is discussed. Finally, I

illustrate how the topic model is utilized to represent the topic structure of the domain, to

find related information from a vast amount of data, to retrieve more related information,

and to gain insight into the meaning of unknown data.

4.3.1 Attribute-lattice-based Topic Model

In computational linguistic models, “topic” refers to a set of words that capture the

latent semantics of a document (Newman et al., 2010). Users of these models can interpret

the “topic label” by using the set of words in a topic (Mei et al., 2007). The topic label, in

turn, refers to the concept that provides meaning to the set of words and makes the latent

semantics explicit (Sun et al., 2015). Note that a topic is a set of words and should be

distinguished from a topic label, which is a single word that makes the latent semantics

explicit for users.

93

However, previous research suggests not all the words in a topic contribute equally

to the interpretation of the topic label. In other words, a set of words (which I call repre-

sentative words) in the topic can be found that contribute to this interpretation more than

others do. These words best summarize the latent semantics of the document (Lau et al.,

2010; Sun et al., 2015). For instance, Sun et al. (2015), given a set of topical words that

need to be covered, used data-driven semantic network to find a minimum set of words that

summarize the words in the topic and eventually extract the topic labels.

Twitter allows users to send tweets for all sorts of reasons in real time (Zhao & Ros-

son, 2009). The explosive growth of tweets makes them a valuable source of information.

According to a recent statistic, by the end of 2017 Twitter, had 330 million monthly active

users (Statista, 2018) who created an average 500 million tweets per day ("Twitter Usage

Statistics," 2018). In addition to text, tweets may include mentions of specific users (“@”

sign immediately followed by Twitter account), URLs to external pages, or user-specified

hashtags (single words with the symbol “#”).

Tweets cover a wide range of topics, from users’ opinions to users’ life events to

emerging political news. As a result, topic identification of tweets has attracted intensive

interest in recent years. Hashtags are tweeter-specified labels that convey the topic of the

tweet. Tweeters adopt existing hashtags or create new hashtags to associate their tweets

with other tweets with a similar topic. However, the shortened formation (Liu et al., 2011;

Pöschko, 2011) and conversational nature (Huang et al., 2010) of hashtags hamper their

semantic interpretation.

94

I argue the attribute lattice conceptual modeling grammar can be used to improve

semantic interpretability of hashtags (tweeter-specified topics) and to create a topic mod-

eling on Twitter. Although tweets (instances) possess several attributes such as author,

mentions, hashtags, URLs, and geo-location, in developing the topic model, I only consider

hashtags as attributes of tweets.

An attribute lattice can serve as a topic model to represent the topic structure of

tweets in a subject domain. This topic structure shows topic labels (a hashtag or a word),

topics (a set of frequent hashtags in the topic), and the representative hashtags for each

topic label. In this topic modeling approach, a topic label (like a class in the attribute lattice)

is a useful cognitive abstraction that meaningfully conveys the semantics of words in a

topic. The representative words for a topic label are semantically equal to bases of a class

in attribute lattice (i.e., they can be used to infer the topic). And finally, a topic (a set of

frequent hashtags) is semantically equal to class expansion in an attribute lattice.

For instance, assume the technology domain is the domain of interest. Also, assume

the set of hashtags, including Bigdata, Analytics, BI, Hadoop, MachineLearning, DataSci-

ence, and IoT, is the set of frequently used hashtags in Twitter to talk about this topic. For

this topic, Bigdata can be a topic label, and DataScience and Hadoop can be representative

hashtags – that is, if a tweeter adopts either DataScience or Hadoop in her tweet, it can be

inferred that the topic label of the tweet is Bigdata.

The following section (4.3.2) proposes a semi-automatic approach to extract the ini-

tial attribute lattice from Twitter. This section aims to represent how an initial topic model

can be created from data. This initial model can further be adjusted and modified by users

95

to include user-defined topics and relationships. This is followed by a discussion on the

practical usefulness of the topic model on section 4.3.3. The section elaborates how this

model enables users to predict the topics of emerging hashtags, facilitates finding domain-

related terms/hashtags among trending terms/hashtags, and improves information retrieval.

4.3.2 Constructing the Topic Model

As discussed earlier (section 4.2.4), hashtags provide valuable insight into the topic

of a tweet. However, they are extremely sparse and consequently not interpretable. Attrib-

ute-lattice-based topic modeling aims to utilize attribute lattice grammar principles to rep-

resent the topic structure of a given set of tweets on a subject domain. This topic model

shows the topic structure by identifying the most influential hashtags in the set12, concep-

tualizing the relationship among hashtags (attributes of tweets) and elaborating how these

hashtags contribute to the user-specified topics in the domain of interest. In this section, I

discuss how tweets related to a subject domain can be retrieved using the Twitter API, and

how the attribute-lattice-based model is constructed using this set of tweets.

The proposed topic modeling approach starts with identifying and refining tweeters

who are regularly tweeting about the topic of interest. Next, tweets of these tweeters are

retrieved to calculate the popularity and frequency of hashtags related to the topic of in-

terest. The popularity of a hashtag is defined as the number of unique tweeters who have

adopted the given hashtag in the retrieved tweets. The frequency of a hashtag is defined as

12 Note that if tweets are based on a highly specific subject domain (e.g., a specific fun activity or specific news category),
a single hashtag might become dominant and the topic structure will become ineffective.

96

the number of original tweets (not retweets or quotes) that have used a given hashtag in

the retrieved tweets. The popularity and frequency of co-occurrences of pairs of hashtags

are defined in the same manner.

Finally, the topic model is constructed by comparing popularity and frequency of

pairs with user-defined thresholds – that is, popularity rate, precedence threshold, topic

threshold, and frequency threshold (Table 5). The first two thresholds (popularity rate and

precedence threshold) are used to identify potentially meaningful subsumption relationship

among hashtags. The popularity threshold refers to the minimum number of tweeters who

need to adopt a pair to consider the pair as a meaningful co-occurrence. This threshold

depends on the number of tweeters who contribute to the tweet set. Hence, it is calculated

by multiplying the user-defined popularity rate by the number of tweeters who contributed

to the topic model. The precedence threshold refers to the minimum value of a conditional

probability that defines a meaningful subsumption relationship among hashtags in a pair.

The next two thresholds (topic threshold and frequency threshold) are used to suggest

potential topic labels, and to find the representative hashtags for each topic. The topic

threshold refers to the minimum number of hashtags that should co-occur with a given

hashtag to consider the given hashtag as a topic label. For each topic label, a minimum

frequency is defined by multiplying ‘the frequency of the most frequent hashtag for the

topic label’ by the ‘frequency threshold’. The most frequent hashtag and hashtags with a

frequency higher than the minimum frequency are potential representative hashtags for the

topic (Table 5).

97

Table 5. A summary of user-defined thresholds

Thresholds Definition

Popularity threshold
The minimum number of tweeters need to adopt a pair to consider it
meaningful

Popularity rate
A user-defined ratio to calculate the popularity threshold (popularity
threshold is equal to the number of tweeters in the tweets set multiplied
by the popularity rate)

Precedence threshold
The minimum value of a conditional probability that defines a mean-
ingful subsumption relationship

Topic threshold
The minimum number of hashtags that should co-occur with a topic
label

Frequency threshold A user-defined ratio to find representative hashtags of each topic

The following six steps elaborate the procedure (Figure 20).

4.3.2.1 Searching for known tweeters

Based on the assumption that Twitter users (tweeters) tend to tweet about a narrow

range of topics (Sriram et al., 2010; Yang et al., 2014), the first step in the procedure is to

find tweeters who are known for frequently tweeting about the topic of interest.

Given a topic of interest, two approaches can be used to identify known tweeters; the

published peer-reviewed list of tweeters (for instance Borison (2014)) and/or the “Twitter

List.” The former approach (using a peer-reviewed list of tweeters) might have two limita-

tions. First, they usually cover a limited number of tweeters for each topic of interest (rang-

ing from 10 to 100 tweeters.) Second, considering the growth rate of Twitter, the list might

become obsolete quickly. The Twitter list provides a social annotation (Bao et al., 2007)

mechanism to find tweeters who are known for tweeting about specific topics (Yang et al.,

98

2014). The latter approach provides a more updated list of tweeters; however, the list is not

peer-reviewed. For this procedure, I suggest utilizing both types of lists together.

 Twitter attribute-lattice-based topic modeling

4.3.2.2 Refining tweeters’ list

The Twitter API provides access only to the tweets of public accounts. As a result,

the initial list of tweeters should be pruned to include only tweeters whose accounts are

publicly available.

1) Searching for known
tweeters 2) Refining tweeters’ list 3) Extracting tweets

4) Refining tweets5)Calculating frequency and
popularity of hashtags6) Constructing the attribute lattice

99

4.3.2.3 Extracting tweets

Tweets of known tweeters can be retrieved at least by two approaches: borrowing

tweets from previously published and available studies, or extracting directly from Twitter

by the Twitter API. The former approach has several disadvantages. First, tweets in these

data sets will be limited in the time covered. Second, there is no guarantee we can find

tweets of all tweeters in the list in a specific data set. Third, considering the high rate of

tweets, an average 500 million tweets per day ("Twitter Usage Statistics," 2018), the data

sets might be obsolete, and they cannot reflect a recent topic structure of the domain. The

latter approach, on the other side, imposes some limitations to the tweet retrieval process.

The Twitter API provides the last 3200 tweets for each tweeter. Also, the service offers

only 32,000 tweets every 15 minutes. As a result, tweet retrieval will be a time-consuming

process (less than three million tweets can be retrieved each day.) Although using the Twit-

ter API imposes some limitations to tweet retrieval process, it provides the most recent

tweets to build the topic model. Hence, I use the Twitter API to directly retrieve the latest

tweets for the tweeters in the refined tweeters’ list for the empirical study.

4.3.2.4 Refining tweets

We are interested in tweets written in English, and tweets which have at least one

hashtag. Therefore, I will discard non-English tweets and tweets without hashtags.

100

4.3.2.5 Calculating frequency and popularity of hashtags

This step aims to summarize data (tweets) based on co-occurrences of hashtags and

to calculate the frequency and popularity of hashtag pairs. The output of this step is a sum-

mary table that contains pairs of hashtags and the popularity and frequency of each pair.

This table is used in the next step to estimate the conditional probability of hashtags and to

create the attribute-lattice-based topic model. Note that, for tweets with more than two

hashtags, all the pair combinations will be used to calculate the popularity and frequency.

For instance, if a given tweet has three hashtags (#h1, #h2, and #h3), the summary table

will include three pairs for this tweet {#h1,#h2} , {#h1,#h3}, and {#h2,#h3}.

4.3.2.6 Constructing the attribute lattice

The last step in the procedure is to extract suggested precedence relationships among

hashtags. The precedence relationship in the attribute lattice grammar reflects the sub-

sumption relation among attributes. This relationship can be represented mathematically

as follow:

Expr	27. J	M8~M8j7M	ô	çi:	

\(J|ô) = 1, \(ô|J) < 1;	

õℎ7]7	G|~]7^]7M7dPM	Pℎ7	Ncd>gPgcdGz	^]c~G~gzgPD	ci	G	fg97d	~	

Previous studies adopted the simple conditional statistical model to construct hierar-

chical organization of concepts from text data (Sanderson & Croft, 1999) and to find sub-

sumption relations among tags (Schmitz, 2006; Wu, 2015). Sanderson and Croft (1999)

101

argue a strict value (\(J|ô) = 1) will miss capture all meaningful pairs, hence, they pro-

pose to use relaxed conditional probability (\(J|ô) ≥ 0.8) to construct hierarchical organ-

ization of concepts from text data (Expr 28).

Expr	28. J	^cP7dPgGzzD	M8~M8j7M	ô	çi:(Sanderson	&	Croft,	1999)	

\(J|ô) ≥ 0.8, \(ô|J) < 1;	

Schmitz (2006) adopted the same statistical model to extract subsumption relation-

ship among Flickr tags. However, in this study, to filter meaningful tags, they use a lower

limit both for the number of documents in which a given tag occurs and for the number of

users that use a given tag, that is, Dmin, and Umin respectively.

Expr	29. J	^cP7dPgGzzD	M8~M8j7M	ô	çi:	(Schmitz,	2006)	

\(J|ô) ≥ P, \(ô|J) < P;		

ï5 ≥	ï&('	; ï6 ≥	ï&(';	

§5 ≥	§&('		; §6 ≥	§&('	

õℎ7]7:	

P	gM	Pℎ7	Nc − cNN8]]7dN7	Pℎ]7Mℎcz>	

ï5	gM	Pℎ7	d8j~7]	ci	>cN8j7dPM	gd	éℎgNℎ	P7]j	J	cNN8]M, Gd>	j8MP	~7	f]7GP7]		

PℎGd	G	jgdgj8j	9Gz87	ï&(',		

§5gM	Pℎ7	d8j~7]	ci	8M7]M	PℎGP	8M7	J	gd	GP	z7GMP	cd7	gjGf7	PGf, Gd>		

j8MP	~7	f]7GP7]	PℎGd	G	jgdgj8j	9Gz87	§&('	

In this model, the author utilizes a fixed range for Umin, and Dmin to find the most

meaningful subsumption relationships among tags. The evidence from this experiment in-

dicates, in comparison to the original model (Sanderson & Croft, 1999), the lower thresh-

olds - that is, between 0.7 and 0.8 - provides more meaningful subsumption relationships.

102

Following the relaxed statistical model offered by Sanderson and Croft (1999), I use

the same statistical model to extract potential meaningful precedences. In the context of

Twitter, tweeters adopt existing hashtags, or, create new hashtags freely and without any

constraints. As a result, hashtags are extremely sparse and we expect to see lower threshold

(t precedence) for the meaningfulness of precedences.

To identify meaningful tags, Schmitz (2006) offer to use a lower bound for each tag.

I use the same principles to extract meaningful hashtags, however, the adopted model needs

to be adjusted with the structural and semantical characteristics of hashtags (discussed in

section 4.2.4).

First, to create a topic model, I assume tweeters tend to tweet about a narrow range

of topics. Still, as reflected in the result of the experimental study, they might tweet about

trending social topics which are not necessarily related to their topic of interest. For in-

stance, #metoo is a popular hashtag among the tweeters who are known for tweeting about

the domain of technology even though this hashtag is not related to the domain of technol-

ogy. Hence, to eliminate hashtags that reflect topics that are not necessarily associated with

the domain of interest, the statistical model should focus on the co-occurrences of hashtags.

Note that, if tweeters adopt any hashtag, it is not an uncommon practice to adopt more than

one hashtag. My empirical study (section 4.5.1) suggests that in the domain of technology,

close to 65 percent of tweets have one hashtag and the rest have at least two hashtags.

Second, in contrast with Schmitz (2006), I argue the extent to which co-occurrence

of hashtags contributes to the topic model in the domain of interest should be measured

based on the ratio of known tweeters who adopt/use the hashtag rather than fixed lower

103

bounds. As a result, the lower bound for the meaningfulness of co-occurrence is defined

based on ratio of popularity, which is popularity rate (^c^89:1). This lower bound, mini-

mum popularity (^c^&('), is calculated by multiplying the popularity rate by the number

of tweeters who contribute to the topic model. For instance, if the tweet set include tweets

from one thousand tweeters (dc. ci	íé77P7]M = 1000), with the	^c^89:1 of one percent

(^c^89:1 = 0.01), a co-occurrence is meaningful if it is adopted/used by at least ten tweet-

ers (^c^&(' = 1000 ∗ 0.01 = 10). Expression 30 summarizes the adopted statistical

model.

Expr	30. óGMℎPGf	v	^cP7dPgGzzD	^]7N7>7M	óGMℎPGf	F	(F → v)	gi:	

\(v	|	F) ≥ 	 P	;81<1-1'<1 	

\(v	|	F) 	> 	\(F	|	v)	

^c^=,. ≥	^c^&('	

õℎ7]7:	

^c^&(' = 	dc. ci	íé77P7]M	 ∗ 	^c^89:1 	

P;81<1-1'<1 	gM	G	Pℎ]7Mℎcz>	ic]	j7Gdgdfi8z	^]7N7>7dN7	

A key contribution of the attribute lattice grammar is semantic relativism. Hashtags

(attributes) can be labeled as topic labels (classes) based on their semantic neighbourhood.

As discussed earlier (section 4.3.1), a topic is a set of words that are likely to appear in the

same context and the topic label provides a semantically clear and meaningful summary of

the words in the set.

Given the above definition, any hashtag that co-occurs with a set of other hashtags

in several tweets is a potential topic label for this set. In other words, the hashtag should be

identified as a potential topic label if it precedes at least a minimum number of other

104

hashtags. The topic threshold (t topic) is defined in the model to capture this minimum num-

ber that is required to identify a hashtag as a topic label. The number of identified potential

topic labels depends on this threshold. A low threshold (i.e., t topic = 1 or 2) identifies too

many hashtags as potential topic labels. On the other hand, a more restricted threshold (i.e.,

t topic > 5) misses capturing several potentially meaningful topic labels. Expression 31 rep-

resents the statistical model mathematically.

Expr	31. óGMℎPGf	v	gM	G	^cP7dPgGz	Pc^gN	zG~7z	gi:

∃	{F#, F$, … , F(}	G	M7P	ci	ℎGMℎPGfM	M8Nℎ	PℎGP		

∀F(gd	Pℎ7	M7P, F(→ v, Gd>	g ≥ 	 P:?;(<

õℎ7]7:	P:?;(<	gM	G	Pℎ]7Mℎcz>	ic]	Pℎ7	jgdgj8j	d8j~7]	ci	ℎGMℎPGfM	

PℎGP	d77>	Pc	~7	^]7N7>7>	~D	ℎGMℎPGf	v	Pc	zG~7z	ℎGMℎPGf	v	GM	G	Pc^gN.

Given hashtag B as a topic label, following the above expression, the next step is to

find base(s) of this topic. A base for a topic is a set of words that best summarizes the latent

semantics. If a preceded hashtag frequently appears with the given topic, we can assume

that the preceded hashtag provides a good summary of the topic; as a result, it is a base for

the topic label. The frequency of pairs (i]¶=,.) has been utilized in the model to identify

potential base precedences. In the proposed approach, for any given topic label, the most

frequent hashtag and hashtags with a close range of frequency are identified as bases for

topic labels.

Suppose hashtag v is identified as a topic label, and {F#, F$, … , F(} is a set of

hashtags preceded by hashtag v. Also, assume {i]¶=!,. , i]¶=",. , … , i]¶=#,.} is a set that

shows the frequency of pairs. F&, the hashtag with the highest pair frequency (i]¶&9@ =

105

i]¶=$,. = max 	{i]¶=!,. , i]¶=",. , … , i]¶=#,.}), is deemed a base for the topic. Also, if

there exists another hashtag, F', such that F' ∈ {F#, F$, … , F(} with a pair frequency close

to the maximum frequency, it will be deemed a base for the topic label as well. Frequency

threshold (t frequency) is defined to measure the closeness. The frequency of a pair of hashtags

considered to be close to the maximum frequency if it is higher than the frequency thresh-

old multiplied by the maximum frequency. For instance, let the frequency of the most fre-

quent pair be one thousand (i]¶&9@ = 1000), and the frequency threshold be 0.8, a

hashtag with the pair frequency of 850 has frequency close to maximum frequency, and it

is a base for the topic label (max 	{i]¶} ∗ PABCDECFGH = 1000 ∗ 0.8 = 800). The following

expression represents the mathematical model to extract potential bases for topic labels.

Expr	32. óGMℎPGf	F* 	gM	G	^cP7dPgGz	~GM7	ic]	Pc^gN	zG~7z	v	:F* 	v;gi:	

v	gM	G	^cP7dPgGz	Pc^gN	zG~7z	

F* ∈ F	

i]¶=%,. ≥	i]¶&('

õℎ7]7:		

F = 	 {F#, F$, … , F(}	gM	G	M7P	ci	ℎGMℎPGfM	^]7N7>7>	~D	ℎGMℎPGf	v	

i]¶&9@ = jGB 	êi]¶=!,. , i]¶=",. , … , i]¶=#,.ë

i]¶&(' = i]¶&9@ ∗ PI81JK1'<L

Finally, the last step is to find inferred hashtags for each base. Assume, hashtag v is

identified as a potential topic label in the model, F = 	 {F#, F$, … , F(} is a set of hashtags

that preceded by this topic label, and {F*#, F*$, … , F*)} ⊂ F	is a set of attributes identified

as bases for the topic label using Expression 32. Preceded hashtags that are not identified

106

as a base (F −	{F*#, F*$, … , F*)}) are qualifying hashtags for the topic label – the topic

label can be inferred from them, but they are not part of the topic. However, some of these

hashtags might be, indeed, part of the topic. In this step, we are interested to find attributes

that are potentially part of the topic among these hashtags.

For instance, assume bigdata, opendata, hadoop, datascience, and analytics are five

hashtags in the tweet set. Suppose, bigdata precedes other four hashtags (i.e. datascience,

hadoop, opendata, and analytics), bigdata is identified as a potential topic label, and ana-

lytics is identified as a potential base for it. In this step, we are interested to find if opendata,

hadoop, and datascience can be inferred from analytics, and as a result, be part of the

bigdata topic.

It is reasonable to assume that if a hashtag F& ∈ F −	{F*#, F*$, … , F*)} is a frequent

hashtag in a given topic (part of the topic expansion), there is a higher chance that tweeters

adopt hashtag F& and hashtag v (topic) for positioning their tweets rather than hashtag F&

and F*) (any of the bases). For instance, assume datascience is part of the bigdata topic. I

assume there is a higher chance for tweeter to adopt datascience with bigdata (the topic)

rather than with analytics (the base).

Following this assumption, if hashtag F& can be inferred from a base with a weak

precedence relationship, the model considers F& as a part of the topic. The weak prece-

dence relationship is a precedence with the probability not higher than precedence thresh-

old (PMBCGCNCFGC). The following expressions represent the mathematical model to extract

inferred hashtags for each base.

107

Expr	33. óGMℎPGf	F&	gM	^]7N7>7>	~D	F*) 	:F*) →	F&;	gi:	

v	gM	G	^cP7dPgGz	Pc^gN	zG~7z	

F&	Gd>	F*) 	 ∈ F

F*) 	gM	G	^cP7dPgGz	~GM7	ic]	v

\:F&ßF*); > 0

õℎ7]7:		

{F#, F$, … , F(}	gM	G	M7P	ci	ℎGMℎPGfM	^]7N7>7>	~D	ℎGMℎPGf	v	

While categories provide a mechanism to have shorthand access to a set of hashtags,

users might arbitrarily group hashtags and create categories. Hence, at this point, this pro-

cedure has no step to identify and extract potential categories.

To summarize, the procedure starts with identifying meaningful precedences to con-

struct a topic model from hashtag co-occurrences. Based on the semantic neighbourhood

of each hashtag (attribute) in the model, the procedure identifies potential topic labels. Fi-

nally, the procedure identifies bases, and hashtags that can be inferred from each base. The

function developed for this procedure is elaborated in section 4.4.1.

108

4.3.3 Topic Model Applications

There are several applications for the attribute-lattice-based topic model. First, it rep-

resents the topic structure of the domain. Second, it can be used to identify and keep track

of emerging and/or trending hashtags related to the domain of interest. Third, using the

immediate and sematic neighbourhoods of topics, the model can be used to retrieve more

tweets related to the hashtag and/or topic of interest. And finally, it can be used to accu-

rately position tweets by adopting an appropriate set of hashtags. These applications are

discussed in the following.

109

4.3.3.1 Topic structure of the domain

This model not only provides a mechanism to integrate tweeter (data contributor)

defined topic labels with user-defined (data user) topic labels, but also, using attribute lat-

tice grammar principles, it reflects how hashtags contribute to the topic structure of the

domain. The model represents: 1) topic labels, which presumably convey meaningful con-

cepts to users; 2) sets of hashtags that reflect the underlying semantics of topics; and 3) sets

of hashtags that best summarize the latent semantics. Also, based on attribute lattice prin-

ciples, the supertopic and subtopic relationship among topic labels can be inferred from the

model.

Note that a node in the model will be labeled as a topic label based on its immediate

neighbourhood. Labeling a node, either hashtag or user-defined node, as a topic label

changes the semantics of the node in two important ways. First, it declares that the node is

a meaningful concept for users rather than an atomic word. In other words, when a node

becomes a topic label, users potentially can define the topic hierarchy for it, can determine

its types, and assign tweets to it and so on. For example, in the domain of technology,

mobile (cellphone) can be an atomic word. However, if this word becomes a topic label, it

will convey a meaningful concept and can be considered as sub-topic of handheld devices.

Also, smartphone will be a type of mobile.

Second, labeling a node as a topic label states that a set of hashtags exists in the

model that capture the latent semantics of tweets belonging to this topic, and this set of

hashtags can be best summarized by the hashtags in the base.

110

4.3.3.2 Topic prediction and trend identification

A hashtag, either emerging or trending, might not be a meaningful word, and even

for meaningful words, the topic that hashtag represents might not be semantically clear for

users. Hashtags are conversational in nature – they can emerge at some point and may

vanish soon thereafter (Huang et al., 2010), and tweeters can freely adopt/use any set of

hashtags for their tweets. Considering the massive volume of tweets and the variety of

hashtags adopted in these tweets, it is not possible for the human user to identify and keep

track of all hashtags related to the domain of interest.

The attribute-lattice-based topic model offers mechanisms, first, to predict the topics

of a given set of tweets, and second, to identify trending hashtags/terms related to the do-

main of interest. These two mechanisms are enabled by modeling hashtags as term vectors.

The Vector Space Model (VSM) is a known model for representing text documents as a

vector (Turney & Pantel, 2010). Using this model, the tweets vector (%:O11:P) represents a

term vector of unique hashtags in a given set of tweets, and, the attribute lattice vector

(%&?-12) represents a term vector of the all the nodes in a given attribute lattice.

• Find topics of a given term/hashtag

The topic model of a domain enables mapping a set of tweets onto the known, user-

defined topics. Given a search term/hashtag, Twitter offers a set of tweets that contains the

search term/hashtag. This tweet retrieval comes in three modes – that is, popular, recent,

and mixed tweets. Here, the goal of topic prediction is to associate the search term/hashtag

with known topics in the topic model. Hence, the proposed method for topic prediction

111

collects recent tweets (rather than popular, or mixed tweets which are filtered by Twitter)

and uses them as a tweet set.

This set of tweets has been used to identify a vector of popular hashtags related to

the search term/hashtag (%:O11:P). The related topics can be identified by comparing

hashtags in the set vector with the nodes in an existing topic model (%&?-12), and following

the precedence relationships in the model. In section 4.5.2.2, I discussed how this mecha-

nism has been utilized to identify the related topics of selected hashtags.

• Find domain-related terms/hashtags among trending terms/hashtags

Twitter offers a set of trending hashtags/terms, every few minutes, in each geograph-

ical location and worldwide. For each trending hashtag/term, Twitter retrieves the top

tweets by real-time analysis of related conversations and using sophisticated Machine

Learning algorithms. Here, the proposed procedure uses top tweets for each trending

hashtag/term to create a term vector for each trending hashtag/term (%:O11:P). Using top

tweets improves the procedure in two ways. First, it allows retrieving tweets that are se-

mantically related to the current conversation, not all the tweets with the same

term/hashtag. Second, it enables to accelerate tweet retrieval, that is, even with the smaller

number of tweets, popular hashtags in the conversations can be retrieved.

Then, the cosine similarity (Han et al., 2011) has been used to compare the extent to

which a term vector of each trending hashtag/term is related to the topic model of interest.

The cosine similarity of two vectors is measured as indicated in Expression 34. A trending

hashtag/term with a higher similarity will be more related to the topic model.

112

In this expression, the numerator represents the number of shared terms between

%:O11:P and %&?-12, and the denominator represents the multiplication of the number of

terms in these vectors.

Expr	34. ÅgjgzG]gPD = 	
Q&'((&).		Q$*+(,

‖Q&'((&)‖.‖Q$*+(,‖
	

éℎ7]7	

%:O11:P]7^]7M7dPM	G	97NPc]	ci]7zGP7>	ℎGMℎPGfM	ic]	7GNℎ	P]7d>gdf	Pc^gN	

%&?-12]7^]7M7dPM	G	97NPc]	ci	dc>7M/ℎGMℎPGfM	gd	G	fg97d	Pc^gN	jc>7z	

||]7^]7M7dPM	Pℎ7	dc]j	(Mg®7)	ci	97NPc]	

	

4.3.3.3 Tweet retrieval

The model can be used to retrieve more related tweets. The topic structure in the

lattice (i.e., different types of hashtags and precedences) provides a mechanism to identify

the most relevant hashtags to the topic of interest, and therefore, to retrieve more related

tweets. This relationship leads to retrieving tweets that cannot be retrieved otherwise.

For instance, assume infosec and security are two hashtags in the domain of technol-

ogy and security precedes infosec. Users interested in tweets about security, can use this

precedence relationship and include tweets with infosec hashtag. Tweets which have in-

fosec hashtag but not security cannot be retrieved by overlooking the precedence relation-

ship.

113

4.3.3.4 Tweet positioning

Hashtags can be utilized to direct tweets (Huang et al., 2010). That is, a tweeter

adopts hashtags for her tweet in a way that the tweet will be seen in a specific stream. The

topic model provides necessary information for tweeters to position their tweets. The model

represents influential hashtags in a subject domain, frequent hashtags in a specific topic,

and subsumption relationships among hashtags. Using this information, selecting the

proper set of hashtags helps a tweeter to convey her message to the right audience.

For instance, suppose a tweeter wants to raise her concern about data security in a

tweet. Topic model extracted from tweets in the domain of technology (Figure 21) suggests

that security and, specifically, infosec are influential hashtags related to data security that

can be adopted.

114

4.4 Implementation of Attribute-lattice-based Topic Model

The artifact implementation chapter (chapter 3) discussed the design and implemen-

tation of the attribute lattice artifact. The artifact helps users of the conceptual modeling

grammar to create, update, visualize, and validate attribute lattices. This section aims to

present how the artifact can be expanded to support other attribute lattice-based use cases.

The proposed additional features help users to create an initial lattice from data, and to gain

new insight into data using the attribute lattice.

In particular, this section introduces a set of additional features that supports the task

of topic modeling. These features have been implemented in the artifact, and they are ac-

cessible to the research community13. These features enable users to use tweets to automat-

ically create an initial topic model, to find related topics among trending topics, and to

retrieve relevant tweets. Like before, using the domain knowledge, the automatically ex-

tracted model can be modified to reflect users’ perspectives more accurately. Similarly, the

model can be visualized and validated using basic features of attribute lattice artifact.

It is worthwhile to note that the model extraction and model modification procedures

are independent – that is, once an initial topic model has been extracted from tweets, any

update on the tweet set will not be reflected on the topic model, and vice versa. Table 6

summarizes implemented features that support attribute-lattice-based topic modeling.

13 The application is available at this address (https://attribute-lattice.shinyapps.io/thesis/)

115

Table 6. Artifact Features; Extended for Attribute-lattice-based topic Modeling

4.4.1 Implemented Functions to Extract Initial Topic Model

Following the topic model procedure (Figure 20), the Twitter API has been used to

retrieve the known tweeters based on user-provided lists. The developed function for re-

fining tweeters filters out tweeters whose accounts are not publicly available. This is fol-

lowed by the function that extracts recent tweets for tweeters in the list from the previous

step. The Twitter API has certain limits for tweet retrieval. First, it only provides the last

3200 tweets of each tweeter, second, it limits retrieval to 32,000 tweets every 15 minutes.

As a result, tweet retrieval is a time-consuming process.

The developed function splits the refined tweeters list and retrieves the maximum

number of tweets available for each tweeter – that is, max (number of tweeters’ tweet, and

3200). The function repeats the process every 15 minutes to retrieve latest tweets for all

tweeters. It is worthwhile to note that the Twitter API is configured, in this function, to

extract only the original tweets (not quotes nor retweets) and tweets written in English.

Feature Area Feature

4. Twitter Topic Modeling 4.1 Provide a mechanism to build the initial topic model from tweets
automatically

4.2 Provide a mechanism to manipulate and adjust the initial topic
model

4.3 Find topics related to the subject of interest among trending topics

4.4 Search Twitter for a given hashtag/term (either trending or emerg-
ing) and find related topics in an existing topic model

116

The Twitter API provides a variety of information about each tweet. In addition to

the tweeter and hashtags, it includes other information such as the location of the tweeter,

number of retweets and quotes, and whether the tweet is written to respond to another

tweet. The developed model focuses on the tweet itself, tweeter, and all the hashtags in the

tweet. The next function is developed to refine the tweets, that is, 1) to make sure all the

tweets are original tweets written in English, 2) to filter out tweets without any hashtags 3)

to remove special characters from hashtags, and 4) to change all the hashtags’ characters

to lower case. The result of this function will be an id for the tweet, the tweeter name, and

a list of hashtags for each tweet.

The next function summarizes tweets based on co-occurrences of hashtags and cal-

culates the frequency and popularity of them. The following pseudocode elaborates the

function.

Input:	Retrieved	tweets	(tweet	id,	tweeter	id,	hashtags’	list)	

	

Create	a	separate	row	for	each	hashtag	(the	result	will	be	tweet	id,	tweeter	id,	

hashtag)	

Group	by	tweet	id,	tweeter	id

Filter	out	tweets	with	less	than	two	hashtags	

Find	all	pairs	of	hashtags	for	tweets	with	more	than	two	hashtags	(hashtag	A,	

hashtag	B)	

Filter	out	pairs	in	which	hashtag	A	=	hashtag	B	(this	will	happen	if	the	tweeter	

uses	a	single	hashtag	more	than	once	in	a	single	tweet.)	

Group	by	hashtag	A,	hashtag	B		

Count	number	of	tweets	for	each	pair	

Add	Column	to	save	count	as	the	frequency	of	the	pair	

117

Group	by	hashtag	A,	hashtag	B,	tweeter	id,	frequency	

Remove	duplicates	

Group	by	hashtag	A,	hashtag	B,	frequency	

Count	number	of	pairs	(this	will	provide	the	number	of	unique	tweeters	for	each	

pair)	

Add	Column	to	save	count	as	the	popularity	of	the	pair	

Group	by	hashtag	A,	hashtag	B,	frequency,	popularity	

Remove	duplicates	

	

Output:	hashtag	co-occurrences	(hashtag	A,	hashtag	B,	frequency,	popularity)	

Finally, the last function creates a topic model based on the output of the above-

mentioned function (i.e., hashtag A, hashtag B, frequency, and popularity), the total num-

ber of tweeters in the refined tweeters’ lists, and a set of user-defined thresholds (i.e., pop-

ularity rate, precedence threshold, topic threshold, and frequency threshold). The following

pseudocode elaborates the topic model creation function.

Input:	hashtag	co-occurrences	(hashtag	A,	hashtag	B,	frequency,	popularity),	no.	of	

Tweeters,	pop	rate,	t	precedence,	t	frq,	t	topic	

	

Calculate	pop	min	=	no.	of	Tweeters	*	pop	rate	

Filter	out	pairs	with	popularity	less	than	pop	min	

Calculate	popularity	for	each	hashtag	(hashtag	A	and	hashtag	B	separately)	in	the	

remaining	pairs	(i.e.,	the	summation	of	the	popularity	of	the	pairs	that	have	the	

given	tag	as	hashtag	A	or	hashtag	B)	

Add	Columns	to	store	pop	hashtag	A,	and	pop	hashtag	B	

Find	rows	in	which	pop	hashtag	A	>	pop	hashtag	B		

118

Permute	(hashtag	A,	hashtag	B)	and	(pop	hashtag	A,	pop	hashtag	B).	To	make	sure	

hashtag	A	and	hashtag	B	are	always	arranged	in	a	way	that	pop	hashtag	A	<=	pop	

hashtag	B	

Calculate	conditional	probabilities	

° Calculate	p(hashtag	A	|	hashtag	B)	=	pop	hashtag	A,	hashtag	B/	pop	hashtag	B	

° Add	Column	to	store	p	(hashtag	A	|	hashtag	B)	

° Calculate	p(hashtag	B	|	hashtag	A)	=	pop	hashtag	A,	hashtag	B/	pop	hashtag	A	

° Add	Column	to	store	p	(hashtag	B	|	hashtag	A)14	

Find	precedence	relationships	from	pairs	

° Find	pairs	in	which	p	(hashtag	B	|	hashtag	A)>=	t	pop	and	p	(hashtag	A	|	

hashtag	B)	<	1	

Prune	the	topic	model		

° Filter	out	transitive	precedences	(for	instance,	If	hashtag	A	→	hashtag	B,	

hashtag	B	→	hashtag	C,	and	hashtag	A	→	hashtag	C	,	Then	filter	out	hashtag	

A	→	hashtag	C)	

Find	topic	labels	and	base	precedences	from	pairs	

° Group	by	hashtag	B	

° Calculate	Number	of	preceded	hashtags	for	each	hashtag	B	(B	input)	

° Calculate	the	maximum	frequency	for	each	hashtag	B	(frq	max)	

° Calculate	the	minimum	frequency	for	each	hashtag	B	(frq	min)	

° Find	precedences	in	which	B	input	>=	t	topic	

° Find	precedences	in	which	frq	hashtag	A,	hashtag	B	>=	frq	min	

° Label	pairs	as	base	precedence	

Find	inferred	hashtags	for	each	base	

14 Note that, the previous step ensures pop tag A <= pop tag B , as a result, p (tag B | tag A) >= p (tag A | tag B)

119

° Find	candidate	pair	for	weak	precedences	(pairs	in	which	the	first	hashtag,	

A,	is	a	base	for	topic	label	B,	and	the	second	hashtag,	C,	preceded	by	topic	

label	B)	

° Find	weak	precedences	p	(hashtag	A	|	hashtag	C)	>	0	

° Label	pairs	as	precedence	

Find	all	attributes	(hashtag	A,	hashtag	B)	from	the	precedence	

	

Output:	Topic	model	(attributes,	precedences)	

4.4.2 Topic Model Manipulation

The initial topic model has been built based on hashtag co-occurrences. Hashtags are

conversational in nature, and they are extremely sparse. As a result, the initial topic model

is not necessarily accurate. Moreover, users should be able to add/modify the topic labels

in the model. The basic functions discussed in Chapter 3 can be used to add hashtag/topic

label, add hashtag categories, and modify suggested precedences.

4.4.3 Trends - Topic Model Similarity

One application of the topic model is to track trending hashtags/terms and examine

if they are related to a user domain of interest. Using the Twitter API, the implemented

function retrieves the trending hashtags/terms in the user-specified location and measures

similarity of each hashtag/term to an existing topic model.

This function starts with getting a geographical location from the user. For each lo-

cation, the Twitter API provides a list of top 50 trending hashtags/terms. Hence, the result

of this step is a list of trending topics/terms based on a given location. Next, this function

retrieves a small sample of popular tweets for each term (e.g., one hundred popular tweets

120

for each hashtag/term). Twitter measures the popularity of tweets by the extent to which

they capture the attention of users. For this step, I retrieve a small sample of popular tweets

to rapidly retrieve tweets for all trending hashtags/terms without reaching to the API limits

(a hundred tweets for all trending hashtags/terms can be retrieved in a few seconds.) Next,

for each hashtag/term, the function defines a vector that represents a list of unique hashtags

in tweets retrieved for it. Finally, it measures the cosine similarity of vectors of

hashtag/term with the vector of an existing topic model.

4.4.4 Topics/Hashtags of a Given Search Term/Hashtag

The trends - topic model similarity, introduced in the previous section, aims to find

hashtags/terms that are potentially related to the domain of interest. The function measures

and compares similarities for trending hashtags/terms. However, since the similarity is

measured based on the small sample size, it might not be able to identify hashtags/topics

in an existing topic model accurately. As a result, another function is developed for in-

depth analyzing of tweets retrieved based on searching for a hashtag/term. This function

aims to find meaningful hashtags in the tweets and show how these hashtags are related to

the known hashtags/topics in a given topic model.

The function starts with a user-specified search term/hashtag and a popularity rate.

It retrieves the maximum number of tweets available for the term/hashtag. The latest

18,000 tweets for each search term/hashtag can be retrieved by using the Twitter API.

Tweets are refined to extract English tweets. Next, the function creates a list of hashtags

and their popularities. The function calculates the minimum popularity based on the num-

ber of tweeters who contribute to the retrieved tweets multiple by user-specified popularity

121

rate. Finally, it returns a list of hashtags for which popularities are higher than the minimum

popularity as meaningful hashtags in retrieved tweets. For instance, assume the given term

is bigdata, and the given popularity rate is one percent. This function, first, retrieves and

refines the latest 18,000 tweets related to this search term and calculates the number tweet-

ers in the tweet set. Assume 2000 tweeters contribute to this tweet set. Then, with the given

popularity rate, the function creates a list of hashtags that have been adopted by at least 20

unique tweeters and returns them as a set of meaningful hashtags for this search term. The

topic structure of the tweets will be presented to users by comparing this result with the

known hashtags in a given topic model.

122

4.5 Evaluation

This section presents the results of an evaluation of attribute-lattice-based topic mod-

eling in the domain of technology. The topic model described in this section is extracted

directly from tweets without user modification.

4.5.1 Topic Model for the Domain of Technology

4.5.1.1 Searching for known tweeters

For the first step, Google search is used to find known tweeters in the domain of

technology. Borison (2014) offers a peer-reviewed list of the most influential tweeters in

this domain. Although the report was written a couple of years ago, it still provides a val-

uable list of tweeters. Five other Twitter lists which represent influential tweeters in this

domain has been added to the initial list of tweeters. Table 7 represents six selected lists

and the number of tweeters in each list.

4.5.1.2 Refining tweeters’ list

The initial list was refined to filter out duplicate tweeters (the same tweeter appearing

in various lists) and to find tweeters who their accounts are publicly available. 1,533 unique

tweeters with the publicly available account were found after refining the initial tweeters’

list (Table 7).

123

4.5.1.3 Extracting tweets

The most recent 3,200 tweets for each tweeter can be retrieved via the Twitter API. How-

ever, not all tweeters have 3,200 tweets. For instance, Bill Gates is among the top 10 tweet-

ers in this domain (based on Business Insider peer-reviewed list (Borison, 2014)) and, as

of May 2018, he has posted only 2,681 tweets (Table 8). For this step, the maximum num-

ber of available tweets for each tweeter is retrieved.

Table 7. Lists of tweeters

List Type of list Owner No. of Tweeter

Most Influential in Tech Twitter List Scobleizer 404
Digital and Social Media Twitter List courtenaybird 483
Toptechbloggers Twitter List louisgray 116
CIO Twitter List abbielundberg 236
Legal tech thinkers Twitter List nikiblack 87
Cloud Twitter List GeorgeReese 288
Business Insider Peer reviewed List ---- 100

Total Number of Tweeters 1714
Unique Number of Tweeters (Public) 1533

124

Table 8. Top ten tweeters - based on peer reviewed list

 Name Twitter ID No. of Followers No. of Lists No. of Tweets

1 jack jack 4,195,463 27,395 23,463
2 Jeremiah Owyang jowyang 176,216 13,193 69,252
3 Aaron Levie levie 2,659,674 5,353 3,722
4 OM om 1,525,552 14,321 49,520
5 Robert Scoble Scobleizer 426,649 24,830 69,735
6 Elon Musk elonmusk 21,642,048 43,970 4,181
7 Mathew Ingram mathewi 86,865 5,978 221,083
8 Benedict Evans BenedictEvans 246,539 6,415 128,786
9 Bill Gates BillGates 45,996,671 121,953 2,681
10 Anil Dash anildash 630,855 8,914 168,723

4.5.1.4 Refining tweets

After filtering out retweets, non-English, and quoted tweet, 2,591,322 tweets were

retrieved for tweeters in the list. As demonstrated in Table 9, approximately 20 percent of

the remaining tweets have at least one hashtag. The distribution of hashtags is shown in

Table 10. In the attribute-lattice-based topic model, the co-occurrences of hashtags will be

used to create a topic model and to suggest the precedences relationship among hashtags.

As shown in the table, more than one-third of tweets containing hashtags have more than

one hashtag.

125

Table 9. Refining tweets

 No of Tweets No of Tweeters

Retrieved tweets 3,761,288 1533
Refined Tweets (eliminating quotes, retweets, non-
English tweets) 2,591,322 1532

tweets with hashtag 532,150 1491

Table 10. Distribution of Hashtags

No. of Hashtags No. of Tweets % of Tweets No. of Tweeters

1 344,771 64.79 1488
2 116,581 21.91 1351
3 41,031 7.71 1115
4 15,505 2.91 785
5 6,606 1.24 506
6 2,933 0.55 335

More than 6 4,723 0.89

TOTAL 532,150

4.5.1.5 Calculating frequency and popularity of hashtags

A meaningful co-occurrence refers to a pair of hashtags such that their popularities

are higher than minimum popularity. As shown in Table 11, low popularity rate (low min-

imum popularity) identifies a vast number of hashtags as meaningful. However, more re-

stricted popularity rates (high minimum popularity) recognizes only a few (or even no)

meaningful hashtags.

Table 10 reflects the sparseness of hashtags in the given set of tweets. It shows how

tweeters (even within the same subject domain) adopt/use a varied set of hashtags in their

tweets. Among 245,292 initial pairs of hashtags, only 326 pairs are adopted by more than

126

1 percent of tweeters. Where a pair of hashtags is adopted by more tweeters, there is higher

chance that users perceive the pair to be meaningful. By increasing the popularity rate, the

remaining pairs have more chance to be perceived as meaningful by the user. However, the

cost of this increase is a higher probability of missing some meaningful pairs.

Table 11. Meaningful co-occurrence

Popularity rate Minimum popularity Meaningful co-occurrence No. of hashtags

0 0 245,292 90,956

0.005 8 1140 579

0.01 16 326 212

0.02 31 83 84

0.05 77 2 3

127

 Topic Model; pop rate = 1%, t precedence = 0.3, t frq = 0.8, t topic = 3

128

 Topic Model; pop rate = 2%, t precedence = 0.4, t frq = 0.8, t topic = 3

129

4.5.1.6 Constructing the attribute lattice

The model uses a set of user-defined thresholds - popularity rate, precedence thresh-

old, topic threshold, and frequency threshold - to suggest initial relations and a topic model.

The number of identified attributes, topic labels, precedences and base precedences is sen-

sitive to these user-defined thresholds. Popularity rate and precedence threshold affect the

number of precedences that the model considers as meaningful.

As represented in Figures 21 and 22, independent from the topic threshold and fre-

quency threshold, increasing the popularity rate and precedence thresholds leads to identify

fewer precedence relationships. A low popularity rate (low popularity threshold) might

result in a very high number of hashtags being considered as meaningful. However, more

restrictive popularity rates (higher popularity threshold) might recognize only a few (or

even no) meaningful hashtags.

The number of potential subsumption relationships in the model depends on both

popularity rate and precedence threshold. Increasing the popularity rate and precedence

thresholds leads to identify fewer subsumption relationships (Table 12). Higher popularity

rates indicate that more tweeters adopted/used a pair. Hence, it has a higher chance to be

perceived as meaningful by users. Higher precedence thresholds indicate higher confidence

that a subsumption relationship exists between the hashtags in the pair. As a result, increas-

ing popularity rate and precedence threshold increases precision– that is, subsumption re-

lationship with higher confidence. However, this increase comes at a cost of decrease in

recall – that is, a cost of missing potentially meaningful precedences.

130

Table 12. Popularity rate and precedence threshold sensitivity analysis

 Popularity Rate

 0 0.005 0.01 0.02 0.05

 Minimum Popularity 0 8 16 31 77
 Unique co-occurrence 245,292 1140 326 83 2

Pr
ec

ed
en

ce
 T

hr
es

ho
ld

0.1
No. of Attributes 61,322 409 146 63 3
No. of Precedences 91,175 514 165 63 2

0.2
No. of Attributes 58,593 408 145 63 3
No. of Precedences 73,850 453 153 63 2

0.3
No. of Attributes 51,998 399 144 63 3
No. of Precedences 54,861 389 138 55 2

0.4
No. of Attributes 44,258 376 137 61 3
No. of Precedences 40,351 332 114 50 2

0.5
No. of Attributes 43,471 351 126 59 3
No. of Precedences 39,341 288 100 46 2

0.6
No. of Attributes 27,583 312 115 57 3
No. of Precedences 19,730 243 89 43 2

0.7
No. of Attributes 26,451 286 109 53 3
No. of Precedences 18,699 217 83 39 2

0.8
No. of Attributes 26,156 265 103 51 3
No. of Precedences 18,421 197 77 36 2

0.9
No. of Attributes 25,940 254 96 50 3
No. of Precedences 18,220 187 71 35 2

1
No. of Attributes 25,887 251 96 50 3
No. of Precedences 18,171 184 71 35 2

131

The topic threshold determines the number of attributes designated as topic labels.

Increasing the topic threshold results in a model that suggests fewer potential topic labels.

Conversely, relaxing topic thresholds produces a model that identifies more topic labels

but increases the risk of suggesting topics that might not be semantically clear for users.

Finally, the number of representative hashtags for each topic - that is, precedences

that are considered as base precedence- is influenced by frequency threshold. With a re-

stricted frequency threshold (i.e., frequency threshold of 1), the model identifies only one

representative hashtag for each topic label. However, with a more relaxed frequency

threshold, there is a chance to identify more representative hashtags (base precedences).

For instance, assume the frequency of three hashtags in a given topic are 1000, 950, and

700. With a restricted frequency threshold, only one hashtag with the frequency of 1000

will be identified as a representative hashtag. However, with the frequency threshold of

0.9, all hashtags that their frequencies are higher than 900 (1000 and 950 in this example)

will be identified as representative hashtags. Table 13 shows the number of identified topic

labels and representative hashtags with the fixed popularity rate and precedence threshold

(pop rate = 1%, t precedence = 0.3).

The unsupervised nature of the proposed topic modeling approach makes evaluating

the performance of user-defined thresholds a challenging task. Popularity rate and prece-

dence threshold contribute to identifying a hashtag as a topic and topic label and including

it in the model. It is reasonable to assume that user-defined thresholds are performing better

if they offer a more consistent topic model for the domain of interest. That is, topic models

created based on different subsets of tweets are similar.

132

Table 13. Topic and frequency thresholds sensitivity analysis

No. of Topic Labels and
Representative Hashtags

Frequency Thresholds

0.5 0.6 0.7 0.8 0.9

T
op

ic
 T

hr
es

ho
ld

1
Topic labels 35 35 35 35 35
Representative Hashtags 51 50 43 38 37

2
Topic labels 21 21 21 21 21
Representative Hashtags 37 36 29 24 23

3
Topic labels 14 14 14 14 14
Representative Hashtags 27 26 20 16 16

4
Topic labels 10 10 10 10 10
Representative Hashtags 22 21 15 12 12

5
Topic labels 6 6 6 6 6
Representative Hashtags 15 15 9 7 7

In this study, I randomly select and set aside 30% of the retrieved tweets as a test set

and use the rest of the tweets as a training set. Using training and testing sets, a series of

topic models were created by manipulating popularity rate and precedence threshold to

identify thresholds that provide a more consistent topic model. For each manipulation, the

cosine similarity (Expr 35) of the train and test models has been measured (Table 14).

Expr	35. ÅgjgzG]gPD = 	
Q&-.#/#/0.		Q&()&

TQ&-.#/#/0T.‖Q&()&‖
	

éℎ7]7	

%:89('('U]7^]7M7dPM	G	97NPc]	ci	dc>7M/ℎGMℎPGfM	gd	Pℎ7	P]Ggdgdf	Pc^gN	jc>7z	

%:1P:]7^]7M7dPM	G	97NPc]	ci	dc>7M/ℎGMℎPGfM	gd	Pℎ7	P7MP	Pc^gN	jc>7z	

||]7^]7M7dPM	Pℎ7	dc]j	(Mg®7)	ci	97NPc]

133

The results show that the popularity rate of 0.01 (i.e., co-occurrences that have been

adopted by at least one percent of tweeters) provides more similar models in comparison

to other popularity rates (Table 14, and Figure 23). Also, a precedence threshold between

0.1 and 0.4 offers a more consistent topic model for this domain. Although these thresholds

provide models with higher consistency for this specific domain, the results might not be

generalized to other domains.

Table 14. Performance analysis of popularity rate and Precedence threshold

Training/Test
Model Similarity

Popularity Rate

0 0.005 0.01 0.02

Pr
ec

ed
en

ce
 T

hr
es

ho
ld

0.1 0.43 0.69 0.73 0.61
0.2 0.41 0.71 0.78 0.57
0.3 0.37 0.71 0.73 0.58
0.4 0.34 0.65 0.72 0.52
0.5 0.32 0.57 0.68 0.6
0.6 0.27 0.49 0.5 0.61
0.7 0.25 0.54 0.54 0.61
0.8 0.25 0.43 0.53 0.5
0.9 0.24 0.46 0.46 0.5
1 0.24 0.44 0.45 0.44

134

 Performance analysis of popularity rate and Precedence threshold

135

4.5.2 Practical Applications of Topic Model

4.5.2.1 Topic structure of the domain

The topic model represents topics, topic labels, and representative hashtags for each

topic. Figure 24 a-d illustrates different parts of the topic model represented in Figure 21.

a) Topic structure for bigdata b) Topic structure for ai

c) Topic structure for security d) Topic structure for aws

 Topics, bases, and their expansions

136

In the technology domain, bigdata (Figure 24.a) is a topic label, and analytics is a

representative hashtag for this topic; that is, analytics can best summarize hashtags in the

bigdata topic. Also, bigdata, analytics, and bi are hashtags that frequently appear in this

topic. For this topic, both opendata, and hadoop are qualifying hashtags, that is, bigdata

can be inferred from these hashtags, but they are not part of the topic. As shown in Figure

24.b, ai is another topic label, machinelearning is a base for it, and ai, machinelearning,

deeplearning, and artificialintelligence are frequent hashtags in this topic.

Once again, this model has been built based on tweets without any adjustment. It can

be further adjusted to provide clearer semantic structure. For instance, based on tweets, we

do not have enough evidence to include hadoop as a frequent hashtag in the bigdata topic

however, users might be interested to include hadoop. The initial model can be adjusted to

include this hashtag as a part of topic as well.

The topic structure enables users to retrieve tweets on the topic of interest that cannot

be retrieved otherwise. Following precedences, specifically base precedences, users can

include other hashtags which contribute to the topic of interest to retrieve tweets. For in-

stance, as shown in Figure 24.c, infosec is preceded by security. Users interested retrieving

tweets related to security, can retrieve tweets with both infosec and security hashtags. In

the current dataset, 3420 tweets exist with security hashtag, 927 with infosec hashtag, and

194 with both hashtags. Including the infosec in the tweet retrieval will result to find 733

(21 percent more) tweets related to the topic that cannot be retrieved using only the security

hashtag. Figure 25 shows tweets related to the topic of security, which include infosec

137

hashtag but not security hashtag. Table 15 shows the number of tweets that can be retrieved

based on the representative words of the topics (base precedences) in the model.

In the topic model created by the above-discussed thresholds, assuming all the initial

base precedences are perceived as meaningful relationships by users, by following base

precedences, an average 24 percent more tweets can be retrieved. That is, using representa-

tive hashtags for topics leads to retrieve an average 24 percent more related tweets for each

topic.

Table 15. Increased number of tweet retrieval, using representative words

Topic Representative
Hashtag

Tweets with
both Hashtags

Tweets with
topic hashtag

Tweets without
topic hashtag

Increased
percentage

cio cto 2261 15054 122 0.81
iot smartcities 280 9284 161 1.73
iot internetofthings 274 9284 185 1.99
ai machinelearning 672 8163 774 9.48
mobile app 205 3422 351 10.26
cloud cloudcomputing 1407 15934 2063 12.95
bigdata analytics 473 4158 778 18.71
startups vc 129 2006 396 19.74
security infosec 194 3420 733 21.43
startup entrepreneur 367 2886 658 22.80
bitcoin cryptocurrency 133 1323 323 24.41
apple iphone 159 1858 549 29.55
aws reinvent 706 4892 1574 32.17
innovation digitaltransformation 864 4387 2084 47.50
innovation leadership 886 4387 2662 60.68
marketing socialmedia 205 3603 2294 63.67

Finally, the topic structure enables users to adopt a more accurate set of hashtags to

increase the chance of being seen in the right community. For instance, the aws topic struc-

ture suggests (Figure 24.d) that aws is a hashtag that tweeters adopt to talk about amazon

web services. Suppose, a tweeter has a comment on one of the amazon web services. The

138

tweeter can adopt this influential hashtag in her tweet to increase the chance of being seen

in the right stream.

 Examples of tweets related to security retrieved by infosec hashtag

To summarize, the topic model represents the topic structure of the domain - the

precedence relationship among hashtags, how hashtags can be grouped into topics, and

how each hashtag contributes to the topic. This topic structure improves semantic inter-

pretability of hashtags and information (tweets) retrieval based on hashtags.

139

4.5.2.2 Hashtag detection

Twitter provides a list of 50 trending hashtags/terms based on locations around the

world. These trending hashtags/terms are a valuable source of information for users to fol-

low their topics of interest. However, detecting hashtags/terms related to the domain of

interest is not a trivial task for three reasons. First, a massive number of tweets are created

every minute. As a result, Twitter updates the list of trending hashtags/terms frequently

and tracking all the trending hashtags/terms is a cumbersome (if not impossible) task for

the human user. Second, hashtags are mostly written in a shortened format, as a result, they

are not necessarily semantically clear for users. And third, even if a hashtag represents a

meaningful word, understanding topics that hashtag represents is not a trivial task, partic-

ularly when same hashtags (e.g., #apple) may appear in unrelated domains. This section

aims to describe how the initial topic model created from tweets can be used to identify

topics of emerging hashtags/terms.

Using the developed function (elaborated in section 4.4.4), I retrieved Canada trend-

ing hashtags/terms for two consecutive days (June 11 and 12, 2018), and measured the

similarity of hashtags/terms with the topic model represented in Figure 21. Figure 26 and

Figure 27 show the result of similarity analysis. Two hashtags on day 1 (#CLUS,

#TOIC2018), and one hashtag on day 2 (#ConfMTL) had similarity with the given topic

model. However, these hashtags are not among known hashtags in the given topic model.

Also, the meanings of these hashtags are not clear.

As represented in in Figures 28 and 29, the function identifies nine related nodes for

the first hashtag (#CLUS). Following the precedences, six topic labels and four hashtags

140

can be identified for this hashtag. Hashtags and topic labels suggest that #CLUS should be

related to cloud technology of cisco. In fact, this hashtag had been used by tweeters to talk

about Cisco live event in Orlando focusing on network and collaboration15.

The second hashtag (#TOIC2018) was related to TribalScale’s TakeOver Innovation

Conference in Toronto, focusing on innovation16. Identified hashtags and topics provide a

good insight into the topics of this hashtag (Figures 30 and 31.) Finally, the last hashtag

(Figures 32 and 33) was related to an annual economic event (Conference of Montreal)

organized by the International Economic Forum of the Americas17 (IEFA) which focuses

on major current economic issues. The identified hashtags and topic labels suggest that

tweeters had tweets related to technological issues of current economy (tech, fintech, inno-

vation, ai). Table 16 summarizes these three hashtags and identified hashtags and topic

labels for each one of them.

To summarize, the practical contribution of hashtag detection is twofold. First, it

provides a procedure to detect hashtags that are related to a given topic model. Tweeters

utilize hashtags and keywords to contribute to the discussion about an issue, an event or a

topic. Every day hundreds of hashtags/terms become trending on Twitter. The proposed

method measures the extent to which trending hashtag or keyword is related to users’ topic

model. Second, an in-depth analysis of a given hashtag finds co-occurring hashtags/topics

that are known to users. This enables users to infer the semantics of ambiguous hashtags.

15 https://www.ciscolive.com/us/attend/about
16 https://takeoverinnovationconference.com
17 http://forum-americas.org/montreal/home/

141

Table 16. Hashtag detection

Hashtag Identified Hashtags Identified Topic Labels

#CLUS cisco, automation, machinelearning, analytics bigdata, innovation, security,
iot, cloud, ai

#TOIC2018 ar, vr, healthcare, finetech, futureofwork, trans-
formation, blockchain, entrepreneurs, tech innovation, ai, startup

#ConfMTL tech, fintech, artificialintelligence ai, innovation

 Trends – topic model similarity, day 1

142

 Trends – topic model similarity, day 2

143

 Tweets’ topics and topic labels, #CLUS

144

 Tweets’ topics and topic labels; plot, #CLUS

145

 Tweets’ topics and topic labels, #TOIC2018

146

 Tweets’ topics and topic labels; plot, #TOIC2018

147

 Tweets’ topics and topic labels, #ConfMTL

148

 Tweets’ topics and topic labels; plot, #ConfMTL

149

4.6 Discussion

In the era of big data, decision-makers increasingly need to rely on data from external

data sources such as social media for decision making. Data heterogeneity is one of the

main challenges for the meaningful use of data. The concept of attribute lattice is intro-

duced chapter 2 as a schema-free conceptual modeling grammar to represent the semantic

structure of data from various data sources. This chapter elaborates how attribute lattice

principles can be adopted for the task of topic modeling, that is, representing the topic

structure of data.

One challenge of attribute lattices, and consequently for the attribute-lattice-based

topic model, is defining attributes and precedences from the beginning. Creating an attrib-

ute lattice (specifically for unstructured data) without an initial schema would be a cum-

bersome process. This chapter addressed this concern by offering an automated procedure

to extract an initial attribute lattice from unstructured data. Twitter data has been selected

to elaborate on how the initial topic model can be constructed from tweets.

In the context of Twitter, hashtags – tweeter defined labels for tweets – provide val-

uable insight into the topics of a given tweet. However, the structure of hashtags makes

them semantically unclear, and they cannot be used directly to retrieve tweets of interest.

This chapter argues, first, the attribute lattice approach can be used to mitigate the semantic

ambiguity of hashtags, and second, the topic model provides a semantic grounding for us-

ers to create the topic model of the domain of interest.

150

This chapter offers a mechanism to extract an initial attribute lattice from tweets. The

initial attribute lattice can be adjusted to include user-defined topic labels. The extracted

topic model from tweets not only provides a foundation for users to create the topic model

of the domain, but also improves the usefulness of hashtags for tweet retrieval in several

ways.

First, it can be used to identify hashtags/terms of interest among the vast amount of

trending hashtags/terms. Second, given an ambiguous hashtag, the topic model suggests

related topics/hashtags from known topics/hashtags. And third, the model can be used to

retrieve more related tweets.

151

4.7 Limitations

This chapter demonstrates how a topic model can be constructed from tweets auto-

matically. However, a limitation of this study is the user-defined thresholds (i.e., popularity

rate, precedence threshold, topic threshold, and frequency threshold). The procedure relies

on these thresholds to create the model, and the semantic clarity of the extracted model

depends on them. The sensitivity analysis of the extracted models suggests an initial value

for thresholds in the domain of technology. However, to be able to generalize the suggested

values future studies are needed. A potential future study in the attribute-lattice-based topic

model is to examine to what extent the extracted model is perceived as semantically clear

for various thresholds in different domains.

Another concern about the automated topic model extraction procedure is domain

selection. If retrieved tweets come from a specific and focused domain, a key hashtag might

become dominant, and the initial topic model becomes ineffective. For instance, the result

of an application to the travel domain shows that #travel is a dominant hashtag in this

domain (i.e., #travel appear in the majority of pairs). This leads to a topic model in which

#travel precedes most other hashtags. Hence, the initial model is ineffective. This problem

can be mitigated by two approaches. First, the topic model can be pruned to decrease the

effects of the dominant hashtag. Second, other sources of information (such as DBpedia)

can be incorporated into the model to identify more semantically clear topics. For instance,

in the travel domain, a part of the extracted hashtags are meaningful, known words such as

#paris, #cruise, #food, and so on). The DBpedia metadata, as an additional data source,

152

may help the initial lattice extraction procedure by defining new topics such as a place to

go, a place to stays, a way to travel and so on, and including them in the initial model.

153

5 Contributions, Future Work and Conclusion

In the era of Big Data, data comes from a wide variety of sources in different formats

and structures. In most cases, the data schema is unknown to the data users or data does

not have a schema. Where data users query and analyze these heterogeneous data sources

for purposes beyond what data contributor might anticipate, the ability to assigning con-

sistent and interoperable data semantics to data sources has become more important than

ever before. This thesis develops a conceptual modeling grammar to represent data seman-

tics of independent and heterogeneous (structured and unstructured) data sources. This the-

sis makes several contributions to theory and practice.

5.1 Contributions to Research and Practice

5.1.1 Developing a conceptual modeling grammar

This thesis conceptualizes an alternative role for conceptual modeling. In contrast

with the current information system development paradigm that considers conceptual mod-

eling as a part of requirements engineering, the proposed conceptual modeling grammar

has been developed to understand semantics of existing data.

Parsons and Wand (2014) suggest that in the environment in which data comes from

sources with unknown schema, conceptual model grammars need to enable users to apply

their own conceptual models to data. Hence, this thesis proposed a theory-based conceptual

154

modeling grammar for this purpose. This lightweight, graph-based grammar is: (1) devel-

oped based on principles from cognitive psychology, philosophical ontology, and graph

theory; and (2) independent from the schema of the data source that it presents.

An important contribution of the attribute lattice grammar is its semantic relativism.

Semantic relativism is enabled by extending the concept of attribute precedence to capture

subsumption relationships among attributes more distinctly. This grammar defines three

types of precedence relationships - that is, simple precedence, base precedence, and sub-

category precedence. The patterns of arcs and nodes (i.e., precedences and attributes)

around each attribute reflects how users of data perceive the subsumption relationships

related to the attribute. These patterns enable data users to infer the type of attributes, ex-

pansion of attributes, class bases, class properties and the class structure of the domain.

This inferential representation contributes to the meaningful use of data by enabling users

to define a schema based on the current data inquiry task and making data consumers in-

dependent from the structure of data source.

This thesis extends the concept of attribute similarity for attribute lattice-based se-

mantic data integration (Evermann, 2008a, 2008b). It defines similar attributes as attributes

that are: (1) semantically equal; (2) a manifestation of the same higher-level attribute; or

(3) in a generalization/specialization relation to each other. Using similar attributes as

merge nodes, the proposed semantic data integration approach provides a unified view over

varied and heterogeneous data sources, and hence, enables data consumers to identify re-

lated instances in different data sources.

155

5.1.2 Gaining insights from data

In open information environments (OIEs), users need to apply their own conceptual

model to data to gain insight into it (Parsons & Wand, 2014). The proposed grammar is

well suited for creating and analyzing the class structure of the data source and attaining

new knowledge about the domain that the model represents.

Enabled by the implemented artifact, given a set of precedences it is possible to au-

tomatically: (1) analyze the lattice to determine which nodes are classes and make infer-

ences about instances that belong to each of these classes; (2) validate the models (scripts)

against the model of good classification (Parsons & Wand, 2008); (3) visualize the model

and view the data structure from various perspectives; and finally (4) conduct what-if anal-

ysis.

The type of attributes may change by adding precedences to or removing precedences

from an attribute lattice. This means changes may affect the inferences that can be made

about instances. The implemented artifact helps users to understand how changing prece-

dences may affect class structure, and inferences more clearly.

5.1.3 Topic Modeling

This thesis further contributes by adopting the attribute lattice principles to concep-

tualize the topic structure of tweets related to a domain of interest and enhances information

retrieval by improving semantic interpretability of hashtags.

The proposed topic modeling approach contributes to the practical usefulness of this

grammar in two important ways. First, it represents a theory-based process through which

156

practitioners can create an attribute lattice model from unstructured (or semi-structured)

data itself. To create an attribute lattice model, users need to identify all precedence rela-

tionships. It might not be practically feasible to identify all these relationships only based

on domain knowledge and without incorporating the data. Here, based on the assumptions

that came from literature - assumptions such as using tweets with hashtags rather than all

tweets - a procedure has been defined through which an attribute lattice can be extracted

from data (Figure 20).

Second, attribute lattice-based topic modeling demonstrates how practitioners, using

the model, get a deeper understanding of the domain. Attribute lattice grammar can be

utilized to represent data semantics as perceived by the user of the data. The proposed topic

modeling approach elaborates on how practitioners can use this conceptual model to un-

derstand the topical structure of a domain and to use the model to improve information

retrieval (section 4.3.3).

157

5.2 Future Research

5.2.1 Expanding the grammar

This thesis proposes a lightweight conceptual modeling grammar with a minimum

set of components to understand data semantics. This grammar enables users to infer the

classes that an instance belong to based on the instance attributes. Based on philosophical

ontology guidelines the precedence relationship in this grammar is pairwise in the sense

that an attribute or a set of the attributes (class/category) precedes another attribute or a set

of attributes (class/category). However, utilizing a logic-based approach to develop this

grammar might lead to adding other components to it. For instance, the more logic-based

approach suggests adding ‘NOT’ and ‘XOR’ operators where the underlying ontology

deals only with the presence of properties (not their absence). Future research on attribute

lattice might expand this grammar to include logic-based components and examine if the

additional components improve the performance of the grammar.

5.2.2 Attribute lattice-based semantic data integration

Although the primary focus of the second chapter is defining attribute lattice as a

conceptual modeling language, it represents a procedure through which this grammar can

be utilized for the semantic data integration of heterogeneous data sources. This integration

process starts with an initial set of merge nodes and iteratively suggests new merge nodes

based on the immediate and semantic neighbourhoods of similar attributes. This procedure,

however, is subject to two limitations. It assumes the initial set of merge nodes is available

158

based on the domain knowledge, and, the process leaves users with the potential merge

nodes. A possible avenue for the future study in attribute lattice-based semantic data inte-

gration is to use multi-method integration approach (e.g., Li et al. (2008)) to create the

initial list of merge nodes, and to suggest more accurate and definite merge nodes at each

step.

5.2.3 An initial attribute lattice and model quality

The grammar is intrinsically simple, and it has only two components –nodes that

represent attributes, and arcs that represent subsumption relationships. However, because

data sources might have a huge number of attributes, creating an attribute lattice could be

a cumbersome task.

This study demonstrates how data can be used to create a conceptual model (the topic

model in this case), and how the model can improve the understanding of data users (com-

pared to not having such a model) by predicting the topic of trending hashtags, and im-

proving information retrieval. Here, based on the assumptions that come from literature -

assumptions such as using tweets with hashtags rather than all tweets - we define a proce-

dure to show the possibility of extracting an attribute lattice extraction from data. And, we

demonstrate that even this initial attribute lattice will provide new insight into data. How-

ever, an important open question is how to use a pre-existing schema and/or data itself to

create attribute lattice from other data sources. Future research can examine challenges

(i.e., the complexity of the lattice) that data consumers may face when creating an attribute

lattice from different data sources.

159

The similarity of the model created based on the train, and the test tweet sets have

been used to evaluate the consistency of the models and to offer a set of values for the user-

defined thresholds. However, it will be important that future research investigates the over-

all quality of the lattice. Two approaches can be envisioned to evaluate the lattice quality

in further research.

First, the study could use labeled data to examine the quality of the initially extracted

lattices. For example, the quality of lattices extracted from Twitter can be evaluated by

using a standardized set of tweets with “known” topics. Given a set of labeled tweets, and

using various thresholds, the quality of extracted lattices could be compared to each other,

or even this method can be compared to other methods. Second, the research can evaluate

how the quality of the created conceptual model can be measured based on the purpose of

the task at hand. For instance, the quality of a lattice created to summarize the topics in a

domain should be measured differently from a lattice created for improving information

retrieval. In the former case, the focus should be on human-readability of the model, how-

ever, in the latter on the adequacy of precedence threshold.

5.2.4 Improving the quality of decision-making

In the era of big data, organizations increasingly use external data sources, such as

social media data, to make strategic decisions (LaValle et al., 2011). Using social media,

all stakeholders can share information in a short time. This offers organizations a new op-

portunity to actively listen to their customers and other stakeholders and use their feedback

in the decision-making process (Power & Phillips-Wren, 2011; Malthouse et al., 2013). To

160

be able to capture this information and use it for decision making, decision-makers need a

tool to actively monitor social media (Del Giudice et al., 2016).

 The attribute lattice-topic modeling approach has provided evidence for using this

grammar to find the relevant information among the trending topics and to find more re-

lated data in social media. Future work can investigate the extent to which the proposed

conceptual modeling approach can benefit decision-makers to retrieve more related infor-

mation from external sources (especially social media) to make more informed decisions.

Moreover, this thesis provides a theoretical argument for integrating attribute lattices

representing distinct data sources. It elaborates rules to find potential attributes that are

candidates to be similar based on the known merge nodes. Another avenue for future re-

search is examining the extent to which the proposed semantic data integration approach

will improve meaningful use of data. For example, in the context of healthcare, previous

research suggests that both publicly available and patients’ social media data can be utilized

to predict the pattern of Emergency Department (ED) visits (Ram et al., 2015). As patients

are willing to share their social media data to compare it with their electronic medical rec-

ords (Padrez et al., 2016), future work can investigate whether and how the proposed topic

modeling approach for social media data can contribute to the understanding of the health-

related data and predicting patients patterns more accurately.

161

5.2.5 Incorporate topic identification approaches for topic modeling

Based on the assumption that tweets with hashtags tend to be more meaningful for

topic analysis, the procedure elaborated in Chapter four focuses on hashtags and their co-

occurrences to suggest potential precedence relationship and, consequently, to create an

initial topic model. A possible avenue for future study is to utilize existing topic identifi-

cation approaches, find keywords for tweets without hashtags and include all tweets in the

topic model.

162

5.3 Thesis Conclusions

This research focuses attention on the data variety aspect of big data. The meaningful

use of data that comes in different structures from varied data sources entails assigning

consistent and interoperable data semantics to it. This thesis argues conceptual models, in

contrast with their traditional roles, can be utilized to visualize data semantics of pre-exist-

ing data sources. In this regard, by using principles from philosophy and human cognition,

a conceptual modeling grammar has been introduced. The proposed grammar is independ-

ent of the data structure in the data source. This grammar provides data users with a data

consumer aimed schema to analyze data and integrate it with other sources.

This research adopts the grammar to visualize the topic structure of social media

content. The practical evaluation of the topic modeling approach confirms this modeling

grammar provides insight into data and improves information retrieval.

163

REFERENCES

Agnarsson, G., & Greenlaw, R. (2007). Graph theory: Modeling, applications, and algorithms:
Pearson/Prentice Hall.

Angeles, P. A. (1981). A dictionary of philosophy.

Baader, F. (2003). The description logic handbook: Theory, implementation and applications:
Cambridge university press.

Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., & Su, Z. (2007). Optimizing web search using social
annotations. Proceedings of the 16th international conference on World Wide Web.

Barrasa Rodríguez, J., Corcho, Ó., & Gómez-Pérez, A. (2004). R2O, an extensible and semantically
based database-to-ontology mapping language.

Batini, C., Lenzerini, M., & Navathe, S. B. (1986). A Comparative Analysis of Methodologies for
Database Schema Integration. ACM Comput. Surv., 18, 323–364.

Bergamaschi, S., Castano, S., & Vincini, M. (1999). Semantic integration of semistructured and
structured data sources. ACM SIGMOD Record, 28, 54-59.

Berners-Lee, T. (2006). Linked data-design issues. URL
http://www.w3.org/DesignIssues/LinkedData.html, 10, 11.

Berners-Lee, T., Fielding, R. T., & Masinter, L. (2005). Uniform resource identifier (URI): Generic
syntax.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web.

Bizer, C., Boncz, P., Brodie, M. L., & Erling, O. (2012). The meaningful use of big data: four
perspectives--four challenges. ACM SIGMOD Record, 40(4), 56-60.

Bizer, C., Heath, T., & Berners-Lee, T. (2011). Linked Data: The Story So Far. 205-227.

Blei, D. M., & Lafferty, J. D. (2005). Correlated topic models. Proceedings of the 18th International
Conference on Neural Information Processing Systems.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of machine
Learning research, 3(Jan), 993-1022.

164

Borison, R. (2014). The 100 Most Influential Tech People On Twitter. Retrieved from
http://www.businessinsider.com/100-influential-tech-people-on-twitter-2014-4#looking-for-
more-people-to-follow-on-twitter-101

Brachman, R. J., & Levesque, H. J. (1984). The tractability of subsumption in frame-based
description languages. AAAI.

Brickley, D., & Guha, R. (2014). RDF schema 1.1. W3c recommendation, W3C.

Bunge, M. (1977). Treatise on Basic Philosophy: Ontology I: The Furniture of the World.
Dordrecht: Springer Netherlands.

Burton-Jones, A., Wand, Y., & Weber, R. (2009). Guidelines for empirical evaluations of
conceptual modeling grammars. Journal of the Association for Information Systems, 10(6), 1.

Chang, J., Gerrish, S., Wang, C., Boyd-Graber, J., & Blei, D. M. (2009). Reading tea leaves: How
humans interpret topic models. Advances in neural information processing systems.

Chang, W., Cheng, J., Allaire, J., Xie, Y., & McPherson, J. (2015). Shiny: web application
framework for R. R package version 0.11, 1.

Chen, P. (1976). The entity-relationship model—toward a unified view of data. ACM Transactions
on Database Systems (TODS), 1(1), 9-36.

Chen, T., & Parsons, J. (2008). Using Property Precedence to Enhance The Effectiveness of
Queries of Unstructured Data. Workshop on Information Technologies and Systems.

Clifton, C., Housman, E., & Rosenthal, A. (1998). Experience with a combined approach to
attribute-matching across heterogeneous databases Data Mining and Reverse Engineering (pp.
428-451): Springer.

Connolly, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., Patel-Schneider, P. F., & Stein,
L. A. (2001). DAML+OIL (march 2001) reference description.

Consortium, W. W. W. (2014). RDF 1.1 concepts and abstract syntax.

Csardi, G., & Nepusz, T. (2006). The igraph software package for complex network research.
InterJournal, Complex Systems, 1695(5), 1-9.

Cui, W., Liu, S., Wu, Z., & Wei, H. (2014). How hierarchical topics evolve in large text corpora.
IEEE Transactions on Visualization and Computer Graphics, 20(12), 2281-2290.

165

Del Giudice, M., Caputo, F., & Evangelista, F. (2016). How are decision systems changing? The
contribution of social media to the management of decisional liquefaction. Journal of Decision
systems, 25(3), 214-226.

Diao, Q., Jiang, J., Zhu, F., & Lim, E.-P. (2012). Finding bursty topics from microblogs.
Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Long Papers-Volume 1.

Doan, A., & Halevy, A. Y. (2005). Semantic integration research in the database community: A
brief survey. AI magazine, 26, 83.

Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., & Halevy, A. (2003). Learning to match
ontologies on the semantic web. The VLDB Journal—The International Journal on Very Large
Data Bases, 12, 303-319.

Doan, A., Noy, N. F., & Halevy, A. Y. (2004). Introduction to the special issue on semantic
integration. ACM SIGMOD Record, 33, 11-13.

Dong, X. L., & Srivastava, D. (2013). Big data integration. 2013 IEEE 29th International
Conference on Data Engineering (ICDE).

Dou, W., Yu, L., Wang, X., Ma, Z., & Ribarsky, W. (2013). Hierarchicaltopics: Visually exploring
large text collections using topic hierarchies. IEEE Transactions on Visualization and
Computer Graphics, 19(12), 2002-2011.

Dragut, E., & Lawrence, R. (2004). Composing mappings between schemas using a reference
ontology. On the Move to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE,
783-800.

Evermann, J. (2008a). An exploratory study of database integration processes. IEEE Transactions
on Knowledge and Data Engineering, 20(1), 99-115.

Evermann, J. (2008b). Theories of meaning in schema matching: A review. Journal of Database
Management, 19(3), 55.

Evermann, J. (2009). Theories of meaning in schema matching: An exploratory study. Information
Systems, 34(1), 28-44.

Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D. L., & Patel-Schneider, P. F. (2001).
OIL: An ontology infrastructure for the semantic web. IEEE intelligent systems, 16(2), 38-45.

Fruchterman, T. M., & Reingold, E. M. (1991). Graph drawing by force‐directed placement.
Software: Practice and experience, 21(11), 1129-1164.

166

Ghidini, C., & Serafini, L. (2006). Reconciling concepts and relations in heterogeneous ontologies.
ESWC.

Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., & Van de Walle, R. (2013). Using topic
models for twitter hashtag recommendation. Proceedings of the 22nd International Conference
on World Wide Web.

Guizzardi, G., & Wagner, G. (2010). Using the unified foundational ontology (UFO) as a
foundation for general conceptual modeling languages Theory and applications of ontology:
computer applications (pp. 175-196): Springer.

Haas, L. (2007). Beauty and the beast: The theory and practice of information integration Database
Theory–ICDT 2007 (pp. 28–43): Springer.

Han, J., Pei, J., & Kamber, M. (2011). Data mining: concepts and techniques: Elsevier.

Havre, S., Hetzler, B., & Nowell, L. (2000). ThemeRiver: Visualizing theme changes over time.
Information visualization, 2000. InfoVis 2000. IEEE symposium on.

Heath, T., & Bizer, C. (2011). Linked data: Evolving the web into a global data space. Synthesis
Lectures on the Semantic Web: Theory and Technology, 1(1), 1-136.

Hendler, J. (2014). Data integration for heterogenous datasets. Big Data, 2(4), 205-215.

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems
Research. MIS Quarterly, 28, 75-105.

Hirschheim, R., Klein, H. K., & Lyytinen, K. (1995). Information systems development and data
modeling: conceptual and philosophical foundations: Cambridge University Press.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2009). OWL 2 web
ontology language primer. W3C recommendation, 27(1), 123.

Hofmann, T. (1999). Probabilistic latent semantic analysis. Proceedings of the Fifteenth
conference on Uncertainty in artificial intelligence.

Hong, L., & Davison, B. D. (2010). Empirical study of topic modeling in twitter. Proceedings of
the first workshop on social media analytics.

Horrocks, I., Patel-Schneider, P. F., & van Harmelen, F. (2003). From SHIQ and RDF to OWL:
the making of a Web Ontology Language. Web Semantics: Science, Services and Agents on
the World Wide Web, 1(1), 7-26.

167

Hu, W., & Qu, Y. (2007). Discovering simple mappings between relational database schemas and
ontologies. The Semantic Web, 225-238.

Huang, J., Thornton, K. M., & Efthimiadis, E. N. (2010). Conversational tagging in twitter.
Proceedings of the 21st ACM conference on Hypertext and hypermedia.

Kang, J., & Naughton, J. F. (2003). On schema matching with opaque column names and data
values.

Kucher, K., & Kerren, A. (2015). Text visualization techniques: Taxonomy, visual survey, and
community insights. Visualization Symposium (PacificVis), 2015 IEEE Pacific.

Kung, C., & Soelvberg, A. (1986). Activity modeling and behavior modeling. Proc. of the IFIP WG
8.1 working conference on Information systems design methodologies: improving the
practice.

Lakoff, G. (1987). Women, fire, and dangerous things: Chicago: University of Chicago Press.

Lammari, N., Comyn-Wattiau, I., & Akoka, J. (2007). Extracting generalization hierarchies from
relational databases: A reverse engineering approach. Data & Knowledge Engineering, 63(2),
568-589.

Lau, J. H., Newman, D., Karimi, S., & Baldwin, T. (2010). Best topic word selection for topic
labelling. Proceedings of the 23rd International Conference on Computational Linguistics:
Posters.

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics
and the path from insights to value. MIT Sloan Management Review, 52(2), 21.

Lee, K., Palsetia, D., Narayanan, R., Patwary, M. M. A., Agrawal, A., & Choudhary, A. (2011).
Twitter trending topic classification. Data Mining Workshops (ICDMW), 2011 IEEE 11th
International Conference on.

Lenzerini, M. (2002). Data integration: A theoretical perspective.

Li, J., Tang, J., Li, Y., & Luo, Q. (2008). Rimom: A dynamic multistrategy ontology alignment
framework. IEEE Transactions on Knowledge and Data Engineering, 21(8), 1218-1232.

Lin, J., Snow, R., & Morgan, W. (2011). Smoothing techniques for adaptive online language
models: topic tracking in tweet streams. Proceedings of the 17th ACM SIGKDD international
conference on Knowledge discovery and data mining.

168

Liu, F., Liu, Y., & Weng, F. (2011). Why is sxsw trending?: exploring multiple text sources for
twitter topic summarization. Proceedings of the Workshop on Languages in Social Media.

Liu, S., Cui, W., Wu, Y., & Liu, M. (2014a). A survey on information visualization: recent advances
and challenges. The Visual Computer, 30(12), 1373-1393.

Liu, S., Wang, X., Chen, J., Zhu, J., & Guo, B. (2014b). Topicpanorama: A full picture of relevant
topics. Visual Analytics Science and Technology (VAST), 2014 IEEE Conference on.

Livne, A., Simmons, M. P., Adar, E., & Adamic, L. A. (2011). The Party Is Over Here: Structure
and Content in the 2010 Election. ICWSM, 11, 17-21.

Lukyanenko, R., & Parsons, J. (2013). Is Traditional Conceptual Modeling Going to Become
Obsolete?

Lukyanenko, R., Parsons, J., & Samuel, B. M. (2019). Representing instances: the case for
reengineering conceptual modelling grammars. European Journal of Information Systems,
28(1), 68-90.

Malthouse, E. C., Haenlein, M., Skiera, B., Wege, E., & Zhang, M. (2013). Managing customer
relationships in the social media era: Introducing the social CRM house. Journal of interactive
marketing, 27(4), 270-280.

Manning, C., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval (Vol. 1):
Cambridge university press Cambridge.

March, S. T., & Smith, G. F. (1995). Design and natural science research on information
technology. Decision Support Systems, 15(4), 251-266.

McGuinness, D. L., & Van Harmelen, F. (2004). OWL web ontology language overview. W3C
recommendation, 10(10), 2004.

Mei, Q., Shen, X., & Zhai, C. (2007). Automatic labeling of multinomial topic models. Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining.

Moody, D. L. (2005). Theoretical and practical issues in evaluating the quality of conceptual
models: current state and future directions. Data & Knowledge Engineering, 55(3), 243-276.

Mylopoulos, J. (1992). Conceptual modelling and Telos. Conceptual Modelling, Databases, and
CASE: an Integrated View of Information System Development, New York: John Wiley & Sons,
49-68.

169

Mylopoulos, J. (1998). Information Modeling in the Time of the Revolution. Information Systems,
23(3-4), 127-155.

Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010). Automatic evaluation of topic
coherence. Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics.

Noy, N. F. (2004). Semantic integration: a survey of ontology-based approaches. ACM SIGMOD
Record, 33, 65–70.

Olivé, A. (2007). Conceptual modeling of information systems: Springer Science & Business
Media.

Omelayenko, B. (2002). RDFT: A mapping meta-ontology for business integration. Proc. of the
Workshop on Knowledge Transformation for the Semantic Web at the 15th European
Conference on Artificial Intelligence (KTSW2002).

Padrez, K. A., Ungar, L., Schwartz, H. A., Smith, R. J., Hill, S., Antanavicius, T., . . . Merchant, R.
M. (2016). Linking social media and medical record data: a study of adults presenting to an
academic, urban emergency department. BMJ Qual Saf, 25(6), 414-423.

Parsons, J. (1996). An information model based on classification theory. Management Science, 42,
1437–1453.

Parsons, J. (2011). An Experimental Study of the Effects of Representing Property Precedence on
the Comprehension of Conceptual Schemas*. Journal of the Association for Information
Systems, 12, 401.

Parsons, J., & Wand, Y. (1997). Choosing classes in conceptual modeling. Communications of the
ACM, 40, 63–69.

Parsons, J., & Wand, Y. (2000). Emancipating instances from the tyranny of classes in information
modeling. ACM Transactions on Database Systems (TODS), 25, 228–268.

Parsons, J., & Wand, Y. (2002). Property-Based Semantic Reconciliation of Heterogeneous
Information Sources. In S. Spaccapietra, S. T. March, & Y. Kambayashi (Eds.), Conceptual
Modeling — ER 2002 (pp. 351-364): Springer Berlin Heidelberg.

Parsons, J., & Wand, Y. (2003). Attribute-based semantic reconciliation of multiple data sources
Journal on Data Semantics I (pp. 21–47): Springer.

Parsons, J., & Wand, Y. (2008). Using cognitive principles to guide classification in information
systems modeling. MIS Quarterly, 839–868.

170

Parsons, J., & Wand, Y. (2014). A Foundation for Open Information Environments.

Pöschko, J. (2011). Exploring twitter hashtags. arXiv preprint arXiv:1111.6553.

Power, D. J., & Phillips-Wren, G. (2011). Impact of social media and Web 2.0 on decision-making.
Journal of Decision systems, 20(3), 249-261.

Prat, N., Comyn-Wattiau, I., & Akoka, J. (2014). Artifact Evaluation in Information Systems
Design-Science Research-a Holistic View. PACIS.

R Core Team. (2000). R language definition. Vienna, Austria: R foundation for statistical
computing.

Rahm, E. (2011). Towards large-scale schema and ontology matching Schema matching and
mapping (pp. 3-27): Springer.

Rahm, E., & Bernstein, P. A. (2001). A survey of approaches to automatic schema matching. The
VLDB Journal, 10, 334-350.

Ram, S., Zhang, W., Williams, M., & Pengetnze, Y. (2015). Predicting asthma-related emergency
department visits using big data. IEEE journal of biomedical and health informatics, 19(4),
1216-1223.

Ramage, D., Dumais, S., & Liebling, D. (2010). Characterizing microblogs with topic models.
ICWSM, 10(1), 16.

Ramage, D., Hall, D., Nallapati, R., & Manning, C. D. (2009). Labeled LDA: A supervised topic
model for credit attribution in multi-labeled corpora. Proceedings of the 2009 Conference on
Empirical Methods in Natural Language Processing: Volume 1-Volume 1.

Recker, J. (2015). Research on conceptual modelling: less known knowns and more unknown
unknowns, please. Proceedings of the 11th Asia-Pacific Conference on Conceptual Modelling.

Recker, J., Rosemann, M., Green, P., & Indulska, M. (2011). Do ontological deficiencies in
modeling grammars matter? MIS Quarterly, 35(1), 57-79.

Recker, J., Rosemann, M., Indulska, M., & Green, P. (2009). Business process modeling-a
comparative analysis. Journal of the Association for Information Systems, 10(4), 1.

Roussopoulos, N., & Karagiannis, D. (2009). Conceptual modeling: past, present and the
continuum of the future Conceptual modeling: Foundations and applications (pp. 139-152):
Springer.

171

Russom, P. (2011). Big data analytics. TDWI Best Practices Report, Fourth Quarter, 19(4), 1-34.

Sanderson, M., & Croft, B. (1999). Deriving concept hierarchies from text. Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in information
retrieval.

Schmitz, P. (2006). Inducing ontology from flickr tags. Collaborative Web Tagging Workshop at
WWW2006, Edinburgh, Scotland.

Shanks, G., Tansley, E., & Weber, R. (2003). Using ontology to validate conceptual models.
Communications of the ACM, 46(10), 85-89.

Sheth, A. (1997). Panel: Data semantics: what, where and how? Database Applications Semantics
(pp. 601-610): Springer.

Sheth, A. P. (1999). Changing Focus on Interoperability in Information Systems:From System,
Syntax, Structure to Semantics. In M. Goodchild, M. Egenhofer, R. Fegeas, & C. Kottman
(Eds.), Interoperating Geographic Information Systems (pp. 5-29): Springer US.

Shvaiko, P., & Euzenat, J. (2005). A survey of schema-based matching approaches Journal on data
semantics IV (pp. 146-171): Springer.

Šilić, A., & Bašić, B. D. (2010). Visualization of text streams: A survey. International Conference
on Knowledge-Based and Intelligent Information and Engineering Systems.

Smith, E. E. (1988). Concepts and thought. The psychology of human thought, 147.

Smith, E. E., & Medin, D. L. (1981). Categories and concepts (Vol. 9): Harvard University Press
Cambridge, MA.

Spanos, D.-E., Stavrou, P., & Mitrou, N. (2012). Bringing relational databases into the semantic
web: A survey. Semantic Web, 3(2), 169-209.

Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., & Demirbas, M. (2010). Short text
classification in twitter to improve information filtering. Proceedings of the 33rd international
ACM SIGIR conference on Research and development in information retrieval.

Statista. (2018). Dossier Details: Twitter. Retrieved from
https://www.statista.com/study/9920/twitter-statista-dossier/

172

Suh, B., Hong, L., Pirolli, P., & Chi, E. H. (2010). Want to be retweeted? large scale analytics on
factors impacting retweet in twitter network. Social computing (socialcom), 2010 ieee second
international conference on.

Sun, X., Xiao, Y., Wang, H., & Wang, W. (2015). On Conceptual Labeling of a Bag of Words.
IJCAI.

Šváb-Zamazal, O., & Svátek, V. (2009). Towards ontology matching via pattern-based detection
of semantic structures in owl ontologies. Proceedings of the Znalosti Czecho-Slovak
Knowledge Technology conference.

Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics.
Journal of artificial intelligence research, 37, 141-188.

Twitter Usage Statistics. (2018). Retrieved from http://www.internetlivestats.com/twitter-
statistics/.

Uschold, M., & Gruninger, M. (2004). Ontologies and semantics for seamless connectivity. ACM
SIGMOD Record, 33, 58-64.

Van der Aalst, W. M. (2013). Business process management: a comprehensive survey. ISRN
Software Engineering, 2013.

Volz, R., Handschuh, S., Staab, S., Stojanovic, L., & Stojanovic, N. (2004). Unveiling the hidden
bride: deep annotation for mapping and migrating legacy data to the semantic web. Web
Semantics: Science, Services and Agents on the World Wide Web, 1(2), 187-206.

Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., & Hübner, S.
(2001). Ontology-based integration of information-a survey of existing approaches.

Wand, Y., Monarchi, D. E., Parsons, J., & Woo, C. C. (1995). Theoretical foundations for
conceptual modelling in information systems development. Decision Support Systems, 15,
285–304.

Wand, Y., & Weber, R. (1990). An Ontological Model of an Information System. IEEE
Transactions on Software Engineering, 16, 1282-1292.

Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information systems analysis
and design grammars. Information Systems Journal, 3, 217–237.

Wand, Y., & Weber, R. (2002). Research commentary: information systems and conceptual
modeling—a research agenda. Information Systems Research, 13(4), 363-376.

173

Woods, W. A. (1975). What's in a link: Foundations for semantic networks Representation and
understanding (pp. 35-82): Elsevier.

Wu, F. (2015). Emergent ontology discovered from folksonomies. Memorial University of
Newfoundland. Primo database.

Yan, X., Guo, J., Lan, Y., & Cheng, X. (2013). A biterm topic model for short texts. Proceedings
of the 22nd international conference on World Wide Web.

Yang, L., Sun, T., Zhang, M., & Mei, Q. (2012). We know what@ you# tag: does the dual role
affect hashtag adoption? Proceedings of the 21st international conference on World Wide
Web.

Yang, S., Kolcz, A., Schlaikjer, A., & Gupta, P. (2014). Large-scale high-precision topic modeling
on twitter. Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining.

Zhai, C., & Massung, S. (2016). Text Data Management and Analysis: A Practical Introduction to
Information Retrieval and Text Mining: Morgan & Claypool.

Zhao, D., & Rosson, M. B. (2009). How and why people Twitter: the role that micro-blogging plays
in informal communication at work. Proceedings of the ACM 2009 international conference
on Supporting group work.

Zhao, W. X., Jiang, J., Weng, J., He, J., Lim, E.-P., Yan, H., & Li, X. (2011). Comparing twitter
and traditional media using topic models. European Conference on Information Retrieval.

Zimmer, M., & Proferes, N. J. (2014). A topology of Twitter research: disciplines, methods, and
ethics. Aslib Journal of Information Management, 66(3), 250-261.

174

APPENDIX A (Implemented Artifact; Chapter 3)

Show/hide control panels

Current (active) attribute lattice Main panel with 5 tab panels

175

Lattice modification (double click)

Attribute lattice manipulation

Lattice definition tab panel

176

Graphical representation adjustment

Graphical representation tab panel

177

Attribute lattice structure

178

Attribute lattice validation result

179

Federated lattice creation Federated lattice definition

180

Similar attribute definition

Similar attribute suggestion

181

APPENDIX B (Implemented Artifact; Topic modeling on Twitter)

Search for trending topics/hashtags

Trend-Topic model similarity

Trending topics/hashtags

Current (active) topic model

182

In-depth hashtag/topic search

Popular hashtags-Topic model similarity

Popular/frequent hashtags in retrieved tweets

Current (active) topic model

183

Topic model adjustment

Identified hashtags and topics

