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ABSTRACT 

Wireless Power Transmission (WPT) systems are becoming rapidly mature and accessible 

to customers, and it is expected that they are going to take a large share of the electrical 

equipment market around the world in the near future. Many tech companies and university 

research labs have recently focused on design, development, and optimization of different 

blocks of these systems. WPT systems can be designed to transfer power either through 

electric fields or magnetic fields. Operating at the multi-MHz frequency will bring about 

the smaller size of the wireless link for both types of WPT systems.  

The advent of Wide Bandgap (WBG) devices like Gallium Nitride (GaN) FETs and Silicon 

Carbide (SiC) MOSFETs has paved the road to design multi-MHz inverters and use them 

as the Radio Frequency (RF) power source in the transmitter of WPT systems. Designing 

an efficient inverter which can maintain its soft-switching performance while facing 

variable load or delivering variable output power is one of the major design challenges in 

this field. The second challenge in this area is related to the difficulties of Electromagnetic 

Compatibility (EMC) of the inverter, which is the direct result of operating at MHz 

switching frequency range. The Electromagnetic Interference (EMI) level can be reduced 

by designing a stronger filter or trying to remove the harmonics from the switching source.  

In this thesis, to tackle the first challenge mentioned above regarding soft switching, the 

Dynamic Dead-Time Control (DDTC) approach is proposed and utilized to sustain the 

soft-switching of a multi-MHz Full-Bridge (FB) Class-D inverter over the full range of 

active load and output power. Simulation results are presented to show that dynamically 

controlling the Dead-Time (DT) during input DC voltage control and load variations, 
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reduces switch-node voltage overshoot, prevents large current spikes in the switching 

devices, and reduces associated high switching loss. Finally, experimental results obtained 

from the prototype of the system are provided to validate the effectiveness of the proposed 

approach. 

Then, a soft-switching multi-MHz multi-level Class-D inverter is developed to address the 

second challenge of EMI issues associated with MHz switching frequency operation.The 

inverter is designed to eliminate the 3rd and 5th harmonics from its output voltage waveform. 

This will, in turn, make it possible to meet EMC and achieve the same level of harmonic 

attenuation on the output of the inverter with a smaller size and more efficient output EMI 

filter as opposed to utilizing a bulky, high-order, High-Quality (HQ) filter. The impact of 

DT on the modulation parameters of the multi-level inverter is investigated through 

mathematical analysis, and the results are utilized during the system simulations and 

practical implementation. A prototype is built to validate the theoretical and simulation 

analysis on a practical testbed. The harmonic analysis comparison carried out between the 

experimental results obtained from the multi-level inverter and FB Class-D inverter 

prototypes shows how the multi-level inverter is capable of suppressing unwanted 3rd and 

5th harmonic to a much lower level which in turn leads to smaller size and more efficient 

output filter.   
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CHAPTER 1 

1 Introduction 

 

 

1.1 Background 

Power converters are one of the most important blocks of numerous electrical equipment. 

There has always been a high demand to increase the efficiency of power converters while 

reducing their size, which means raising their power density. A power inverter basically 

refers to any power electronic circuit that changes DC voltage to AC. Conventional power 

inverters have been mainly designed in tens or hundreds of KHz switching frequency and 

not much higher. Although higher switching frequency implies higher switching loss, the 

reduction in the size of power inductors as the direct result of higher switching frequency 

can increase the overall power density of the converter. The switching frequency of an 

inverter can be increased until the core of the inductor can tolerate the higher core loss 
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associated with the higher rate of the change in the magnetic flux. In other words, there is 

an optimal point for switching frequency of an inverter at which going beyond reduces 

adversely the power density. Considering the existing core material technology, the 

mainstream of the research and development in power converters, and commercially 

available products in the market, it can be said that the highest switching frequency of a 

power converter to achieve the highest power density cannot be higher than a few MHz. 

Inductor core technology should be mainly blamed for this problem, as it has not caught up 

yet with the rapid progress of switching devices. All existing materials which are used for 

building inductor cores experience very high core loss at frequencies higher than a few 

MHz. 

Going back to the switching devices, silicon MOSFETs can operate at multi-MHz 

switching frequencies, but they undergo very high switching loss because of their relatively 

high input and output capacitance. The advent of Wide Bandgap (WBG) devices such as 

Gallium Nitride (GaN) FETs and Silicon Carbide (SiC) MOSFETs, however, has facilitated 

increasing the switching frequency to multi-MHz, while keeping the switching loss in the 

devices to an acceptable range. The main characteristics of these devices which have made 

them as powerful competitors to silicon MOSFETs at high-frequency applications are their 

much higher breakdown voltage, lower input and output capacitances, and lower drain-

source on-resistance.  

Considering the facts mentioned above about the current advancements and limitations of 

switching devices and inductor cores means that increasing the switching frequency of a 

power converter beyond a few MHz does not necessarily result in higher power density. As 
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a result, designing a power inverter at multi-MHz switching frequency can only be justified 

if there is an application that needs a switchmode multi-MHz power inverter. Non-efficient 

conventional active power amplifiers were traditionally the power source for applications 

that needed the power to be delivered in multi-MHz frequency. Nevertheless, there are now 

some applications in which the efficiency of the power source is extremely important. It 

can be said that Wireless Power Transmission (WPT) systems have changed the game in 

favor of multi-MHz switch-mode power inverters, as one of the most important features of 

a power transmission system is its overall high efficiency.  

Conventional WPT systems can be divided into two main categories: capacitive and 

inductive coupled systems. Capacitive coupled systems use electric field to transfer power, 

as a result the mutual component between the transmitter and receiver electrodes is a 

capacitor. Inductive coupled systems, in contrast, use the magnetic field for power 

transmission; therefore, the mutual component between the electrodes is an inductor. Each 

system has its own strengths and weaknesses, meaning they should be selected based on 

the requirements and limitations of any particular application. In general, capacitive 

coupled WPT systems are lighter, more conformal from the physical shape point of view, 

and capable of operating at higher frequencies. The most important limitation of these 

systems, however, is the high sensitivity of the electrodes to the surrounding environment.  

Inductive coupled systems are generally heavier, less flexible in terms of the physical shape 

of the electrodes, and are operated at lower frequency due to the self-resonance of the 

inductive electrodes at high frequencies. The most important strengths of these systems, 

however, are their capability to operate in different environments and higher power levels. 
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1.2 Motivation 

Designing a WPT system at multi-MHz as opposed to KHz switching frequency results in 

increasing power transfer distance, improving the misalignment range, and reducing the 

size of the resonators. A block diagram of a typical WPT system is presented in Figure 1-1. 

 

 

Figure 1-1: Typical wireless power system block diagram 

Figure 1-1 shows that a typical wireless power system transfers power using either electric 

or magnetic fields through the wireless link or resonators. Using an efficient multi-MHz 

switch-mode inverter as the Radio Frequency (RF) power source in the transmitter 

electronics of a WPT system can considerably boost the overall efficiency of the entire 

system.  

Different topics and areas can be explored while doing research in multi-MHz power 

inverters including but not limited to the converter topologies, soft-switching techniques, 

EMI and filtering, and switching devices. 

Generally, Class-E and Class-D resonant inverters are the two types of topologies most 

referred to in the literature for multi-MHz switching frequency applications. The Class-E 

inverter with a ground-referenced switching device seems very practical to operate at multi-
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MHz range because of its simple gate drive circuit and low Total Harmonic Distortion 

(THD). The classic Class-E inverter acts normally like an independent current source, 

making it desirable for certain types of applications. However, high drain voltage ringing 

and current stress and high dependency of the soft-switching performance on the switch-

node capacitance, DC voltage fed to the inverter, and the load are the main disadvantages 

of this topology.  

In contrast, the Class-D inverter has lower voltage and current stress (peak voltage across 

and maximum current through the device) and acts inherently like an independent voltage 

source, which makes it a suitable topology for certain types of applications. However, a 

complex gate drive circuit, a higher number of switching devices, sensitive soft-switching 

to the input DC voltage, and higher THD are the drawbacks of this topology. 

Two main challenges in designing multi-MHz power inverters are maintaining 

soft-switching during output power control under different operating and loading 

conditions, on the one hand, and achieving an acceptable THD level on the output voltage 

on the other hand. An inverter design that overcomes these challenges can be used reliably 

as the power source in the transmitter electronics of a WPT system.  

 

1.3 The focus of the Thesis 

The two main challenges of designing a multi-MHz power inverter mentioned in 

Section 1.2 are addressed in this thesis by theoretical analysis, simulation, and 

experimentally developing two multi-MHZ power inverter topologies. The first inverter is 

a Zero Voltage Switching (ZVS) Full-Bridge (FB) Class-D inverter with controllable 
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output power. The input DC voltage fed to the inverter is the controllable parameter for 

output power regulation. Changing the input DC voltage while keeping the gate drive Dead-

Time (DT) fixed forces the inverter to enter a partial ZVS operation. As a result, the first 

effort is to propose a control scheme called Dynamic Dead-Time Control (DDTC) that can 

maintain ZVS while regulating the output power.  

Then, the challenge of the high THD level of the FB Class-D inverter is investigated by 

designing a multi-MHz Class-D based multi-level inverter. It is shown by mathematical 

analysis and simulation how a stepped waveform is capable of suppressing the level of the 

aggravating harmonics on the output voltage waveform. The experimental results obtained 

from the prototype built show the effectiveness of the approach. 

 

1.4 Thesis Organization 

The organization of this thesis is as follows: 

Chapter 2 presents the literature review of WPT systems and different technologies being 

used for wireless power transfer. Different inverter topologies suitable for operating at 

multi-MHz frequency are discussed and pros and cons are mentioned. Different families of 

WBG devices are compared and a suitable switch is selected to be used in the simulation 

modeling and experimental implementation of the inverters.     

Chapter 3 discusses the theory and formulations of the Class-D inverter with the ZVS tank, 

and simulation results are presented to describe the performance of the inverter. 

Chapter 4 starts with an explanation of the different approaches for controlling the output 

power of a Class-D inverter. Then, the DDTC approach is proposed and experimentally 
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implemented on an inverter prototype built for this purpose. Experimental results are then 

presented to verify the assumptions, analysis, and simulation results provided earlier. 

Output voltage harmonic analysis concludes this chapter  

Chapter 5 begins with the mathematical analysis of the stepped waveform with DT. Then, 

a Class-D multi-MHz multi-level inverter topology that can create the stepped waveform 

voltage on its output is discussed. After presenting simulation results of output power 

regulation with DDTC and output voltage harmonic analysis, hardware design for 

implementation of the system is proposed. The experimental results obtained are finally 

utilized to verify the capability of the proposed topology for soft switching and harmonic 

elimination. 

Chapter 6 concludes the thesis, highlights the contribution of the research, and discusses 

future open research topics in this field. 
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CHAPTER 2 

2 Review of the Literature 

 

 

2.1 Wireless Power Transmission (WPT) Systems 

Wireless Power Transmission or Transfer (WPT) systems are being developed at a much 

faster pace these days, making them mature enough to be integrated into electronic products 

in different industrial sectors such as telecommunication, automotive, medical, office 

interior, and aerospace. Several approaches have been proposed by researchers to transmit 

power wirelessly [1]; however, capacitive [2-8] and inductive resonant coupling [9-14] 

among all of the other approaches seem more attractive because they are less sensitive to 

displacement and misalignment of the transmitter and the receiver electrodes. These two 

techniques are compared in [15, 16], and the pros and cons of each method are highlighted. 

Inductive coupling is less sensitive to the environment and the medium that the power is 
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being transferred as it utilizes magnetic fields for power transfer. In contrast, capacitive 

coupling is very sensitive to the environment as the medium between the transmitter and 

receiver is the dielectric of the mutual capacitance between the transmitter and receiver. 

However, capacitive coupling can be implemented using much smaller resonators and at 

much higher operating frequency compared to the inductive coupling. F. Lu, et al. [17], 

studied an inductive and capacitive combined WPT system and experimentally verified the 

system to validate the idea of a hybrid arrangement. The hybrid systems provide more 

flexibility in terms of the environment that WPT systems can operate, yet the electronic 

design for both transmit and receive side are not that different than capacitive or inductive 

systems. The main drawback of resonant coupling systems is the requirement for relatively 

high operating frequency. Some works in this area have focused on the design and analysis 

of a WPT system at tens of KHz switching frequency and KW power range [18-24]. 

Considering existing technologies in inductor core materials, capacitor dielectric, and 

switching devices, this approach keeps the switching device and inductor core losses much 

lower and prevents challenges of operating near the self-resonant frequency of the passive 

components, which altogether brings about a cheaper solution. However, the bottleneck of 

KHz WPT systems is the relatively large size of the converters of the transmitter and 

receiver electronics and the wireless link. In recent years, the multi-MHz WPT applications 

have received a lot of attention, thanks to the progress in the switching device and drive 

circuit technologies [25, 26].  

Increasing the switching frequency results in the higher cost of the design and components 

on one hand, but on the other hand, it lowers the overall size of the entire system. Operating 
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at multi-MHz switching frequency needs much more effort to deal with component 

parasitic elements and self-resonant frequency, as well as PCB design constraints at high 

frequencies. In [27-30], the effects of the component and PCB trace parasitics of a multi-

MHz inverter are addressed, and optimized PCB layout and damping circuits are proposed 

to reduce the high-frequency ringing of the power loop. 

In general, multi-MHz resonant coupled WPT systems can be divided into two categories 

in terms of resonators movements: stationary systems, and dynamically moving systems. 

 Stationary wireless power systems can be divided into two groups: 

I. The systems without power regulation on the transmission side and with or without 

impedance control on the receiver side. These types of systems present a broad 

range of resistive loads to the inverter from short circuit to the nominal resistive 

load, and from there to open circuit, depending on the power consumption on the 

receiver side. 

II. The systems with power regulation on the transmission side and impedance control 

on the receiver side. These types of systems present a fixed resistive load to the 

inverter no matter the loading condition on the receiver side. 

 Dynamically moving wireless power systems also can be divided into two main 

groups: 

I. The systems with power regulation and dynamic matching networks on the 

transmission side, and impedance control on the receiver side. A proper design of 

the matching network can compensate impedance for an acceptable range of 

positions between the resonators and load variation on the receiver side. This will, 



25 

 

 

in turn, guarantee that the load presented to the inverter is almost always fixed and 

resistive.  

II. The systems without matching network which can present a broad range of 

capacitive, resistive, and inductive loads to the inverter. 

The work presented in this thesis can be used in both categories of stationary WPT systems 

and for the first category of dynamic WPT systems. There is currently no power inverter, 

to be used in the 2nd type of dynamically moving wireless link at the multi-MHz switching 

frequency, capable of handling active and reactive (capacitive and inductive) load at the 

nominal power and maintain soft switching. Using dynamic matching networks or other 

sorts of smart control is mandatory for this type of systems. Designing a matching network 

to compensate for the effects of wireless link displacement on the load presented to the 

transmitter is a very challenging subject that is investigated in the literature by some 

researchers [31-33]. Limited range of operation and high cost are among the major issues 

of the matching networks designed to operate in series with multi-MHz inverters in WPT 

systems.  

 

2.2 Multi-MHz Power Inverters Applicable to WPT Systems 

Conventional linear RF amplifiers like Class-A, Class-B, Class-AB, and Class-C are not 

suitable candidates for the power source on the transmitter side of a multi-MHz WPT 

system because of their low efficiency [34]. Instead, high-frequency switch-mode power 

converters can be appropriate replacements as their efficiency exceeds 90%. Class-E and 

Class-D inverters are the two most referenced topologies in the literature that can operate 
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at multi-MHz frequency. The higher efficiency of these power electronics modules is 

related to their soft-switching performance. In general, hard switching refers to switching 

a device while there is voltage across or current through the device. In contrast, either zero 

voltage or zero current during the state transition of the switch is enough to achieve soft-

switching. 

 

2.2.1 Class-E Power Inverter 

Soft-switching Class-E inverters can be considered as the most efficient existing topology 

mainly because of their low number of switching devices [35, 36]. Generally, Class-E 

inverters provide less complexity in the design of the gate drive circuits by having only one 

switching device which is connected in such a way that the gate drive signal is referenced 

to the same ground of the entire circuit. The voltage ringing across the switching device, 

which is an almost half-sinusoidal waveform with low time derivatives on both turn-on and 

turn-off, also leads to low THD for this topology which is very important for Electro 

Magnetic Compatibility (EMC). However, high voltage and current stress on the switching 

device and large sensitivity of the soft-switching to the DC voltage and off-capacitance of 

the switching device are the main drawbacks of the Class-E inverters. This topology has 

been utilized several times in the design of multi-MHz WPT systems [37-40] as well as 

other applications [41]. A circuit diagram of a conventional Class-E inverter is presented 

in Figure 2-1.  
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Figure 2-1: Circuit diagram of the classic Class-E inverter 

Figure 2-1 shows a single-ended Class-E inverter that can practically operate at multi-MHz 

applications. The conventional Class-E inverter suffers from a high level of 2nd harmonic 

[42]. Proper tuning of the output filter along with choosing the right value for capacitance 

seen by switch node results in a full voltage ringing across the drain-source of the switch. 

This voltage ringing on the switch-node results in full soft-switching for the inverter. 

Waveforms of the gate signal and switch-node voltage of the inverter with full voltage 

ringing are shown in Figure 2-2.  

 

Figure 2-2: Class-E inverter gate-source and switch-node waveforms    
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Figure 2-2 shows one of the main drawbacks of the Class-E design which is its high drain-

source voltage ringing reaching up to 4 times the input DC voltage. This means a high-

voltage switch is required for a relatively low power inverter if Class-E topology is utilized. 

The conventional Class-E inverter acts like a current source, which means it can easily 

handle the nominal load and short circuit, but the open circuit can be detrimental [35]. New 

topologies are presented in [43-45] to convert a current source multi-MHz classic Class-E 

inverter to a voltage source or in other words making the inverter load independent. These 

new topologies can provide constant voltage to a resistive load, meaning that the inverter 

will not break down because of an open circuit. However, circulating current going through 

the added parallel inductor and the switch reduces the overall efficiency of the inverter.  

Doubling the circuit presented in Figure 2-1 and adding a 180° phase shift between the gate 

signals applied to the switching devices results in a differential or push-pull Class-E 

topology. The first advantage of this extended topology is its higher power, but probably 

the more important one is providing a balanced output with eliminated 2nd harmonic. 

Improving the efficiency of a push-pull Class-E inverter by adding a differential capacitor 

is explored in [46]. In [42, 47] new Class-E based inverter topologies are proposed to reduce 

the level of 2nd harmonic on the switch node voltage, resulting in less voltage stress on the 

drain-source. Nevertheless, the soft-switching of these Class-E inverters are very sensitive 

to the off-capacitance seen by the drain of the switch and the current being injected to the 

switch-node, making tuning of the inverter very difficult. A detailed model of a Class-E 

inverter using the state-space technique is presented in [48] to achieve optimum switching 

operation.  
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2.2.2 Class-D Power Inverter 

Hard-switching Class-D inverters suitable to operate in tens of KHz switching frequency 

are comprehensively discussed in [35]. A circuit diagram of a half-bridge Class-D inverter 

with output resonant filter and resistive load is shown in Figure 2-3. 

 

Figure 2-3: Circuit diagram of the Class-D half-bridge inverter 

By applying non-overlapping gate signals with a 180° phase shift to Q1 and Q2, a square 

waveform is generated on the switch node. The gate signals and switch node voltage of this 

topology are presented in Figure 2-4.  
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Figure 2-4: Class-D gate and switch-node waveforms 

Using two half-bridge inverters in differential mode results in a full-bridge Class-D inverter 

which is presented in Figure 2-5. 

 

Figure 2-5: FB Class-D inverter 

An analytical solution for Class-D inverter considering the switching transient time is 

presented in [49]. An improved Class-D inverter topology with an efficient snubber 
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network is proposed in [50] to address switching loss. In [51], the effect of non-idealities 

of a Class-D inverter operating at 500 KHz is explored. This topology operating at 200 

KHz with an irregular driving pattern is the topic explored in [52]. The major constraint of 

these works is their relatively limited switching frequency which can not be increased to 

the MHz range.  

The hard-switching Class-D inverter presented in Figure 2-3 cannot be used in MHz 

switching frequency and above due to the high switching loss. Soft-switching Class-D 

inverters operating up to 1 MHz switching frequency range are discussed in [53-56]. The 

Class-D soft-switching multi-MHz resonant inverter suitable to be used as RF source in the 

transmitter of WPT systems has recently been investigated in the literature [57-60]. An 

asymmetrical duty-cycle controlled soft-switching Class-D is analyzed in [61]. Steady-state 

analysis of this topology at any duty ratio and effect of the nonlinear parasitic capacitance 

of the switching device is also addressed in [62, 63].  

The Class-D inverter, either half-bridge or full-bridge, operates at a much lower voltage 

and current stress on the switches compared to their Class-E counterparts. Robust soft-

switching performance can also be achieved in Class-D easier than Class-E as it is less 

sensitive to the off-capacitance of the switching devices. Nevertheless, the Class-D 

topology needs a more complicated gate drive circuit, as the gate circuit of the top switch 

is referenced to the floating switch-node and not to the ground of the system. Improving 

the performance of the gate drive circuit of a Class-D topology in the MHz range is studied 

in [64-66]. Reverse recovery loss of the bootstrap diode used in the drive circuit of the top 

switch presents one of the major challenges in the design of Class-D inverters at multi-MHz 
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switching frequencies. A synchronous bootstrap technique to replace the diode with an 

eGaN FET with zero reverse recovery is presented in [67].  

Class-D topology is extremely sensitive to the Common Source Inductance (CSI) of the 

power loop; therefore, the physical size of the loop on the PCB and parasitic inductance of 

the series switching devices have a significant impact on the performance of the inverter 

[68-74]. 

The THD of the output voltage of the Class-D topology is also higher than Class-E. This is 

basically related to the square waveform of the switch-node voltage which is rich in high-

frequency harmonics due to the very fast rise and fall-time of the voltage. The output 

voltage of the Class-D inverter is naturally free of even harmonic, but the Class-E inverter 

suffers from the high amplitude of these harmonics. It is mentioned in Section 2.2.1 that 

2nd harmonic can be eliminated from the output voltage by using a differential Class-E 

topology. Figure 2-6 presents a harmonic level comparison between FB Class-D and Class-

E push-pull inverters up to 200 MHz. The simulation is carried out with VDD = 40 V and fsw 

= 13.56 MHz. 
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Figure 2-6: FB Class-D and Class-E push-pull output voltage harmonic analysis 

Figure 2-6 shows that the differential Class-E inverter has lower harmonics level compared 

to the FB Class-D inverter. Using the basic definition of THD presented in Equation 2-1 

[35], the THD of Class-D and Class-E inverters can be calculated as 42.1% and 26.5%, 

respectively.  

 

𝑇𝐻𝐷 = √
𝑉𝑅2𝑟𝑚𝑠
2 + 𝑉𝑅3𝑟𝑚𝑠

2 + 𝑉𝑅4𝑟𝑚𝑠
2 +⋯

𝑉𝑅1𝑟𝑚𝑠
2  

2-1 

 

The THD levels mentioned above imply that a lower Q output filter is needed for Class-E 

compared to Class-D topology to achieve the same suppression level on the high-frequency 

harmonics of the output voltage. 

Soft-switching performance of both Class-D and Class-E inverters is sensitive to the 

amplitude and phase of the load attached to the output. WPT systems with or without 
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impedance matching network might present different loading conditions (active or reactive) 

to the power inverter because of relative movement of the resonators or change in the power 

consumption in the receiver side, as explained in Section 2.1. Load independent power 

inverters [43, 44, 47] can handle a broad range of resistive load, but they are vulnerable to 

reactive load. In [75-78], attempts are made to design an inverter that can compensate for 

a large range of resistive, capacitive and inductive loads. The main idea here is to use two 

parallel inverters that share a load through a capacitive and inductive link and control phase 

shift between the inverters and individual DC voltages applied to the inverters so that the 

impedance presented to the inverters remains resistive all the time. The main challenges for 

this approach are real-time load detection and closed-loop control stability.  

Considering all the pros and cons of the two topologies explained in Section 2.2, the Class-

D topology is selected in the first step because of its lower voltage and current stress on the 

switches and easier soft-switching tuning. Also, Class-D topology can be extended to a 

multi-level inverter to achieve a lower harmonic level on the output voltage waveform 

which finally results in improved EMC [79]. This development is investigated in the second 

step in this research.  

2.3 Wide-Bandgap Devices Suitable for Multi-MHz Switching Frequency 

Until recently, one of the biggest challenges in the design of multi-MHz inverters had been 

finding switching devices capable of operating efficiently in this range of frequency. Large 

input-output capacitances, slow rise and fall times, and package parasitic inductance 

associated with silicon MOSFETs limit their operating frequency to few MHz. WBG 

devices, however, have made it easier to design high-frequency high-power inverters, 
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thanks to their much higher breakdown voltage, lower input and output capacitances, and 

lower drain-source on-resistance [68-80]. Two main families of WBG devices, GaN FETs 

and SiC MOSFETs, are compared in [81].  

The package design of Enhancement-Mode GaN (eGaN) FETs, including the size, shape, 

and terminal directions significantly reduces the parasitic inductance of the device [70]. 

The lower input and output capacitance of eGaN FETs result in lower current demand for 

turning on and off, hence faster rise and fall time. One of the most important targets in the 

design of an inverter is to achieve high efficiency. Conduction loss due to the on-resistance 

of a switching device can be considerably reduced by driving the device with higher 

gate-source voltage, as the on-resistance is inversely proportional to this voltage. The 

maximum gate-source voltage of eGaN FETs is 5 V whereas it is 15 V for MOSFETs, 

which means less complexity in the gate drive circuit of eGaN FETs. 

SiC MOSFETs have higher on-resistance stability at a higher temperature and higher 

breakdown voltage compared to eGaN FETs. The thermal conductivity of SiC MOSFETs 

is better than eGaN FETs and MOSFETs, resulting in more effective heat transfer from the 

switching device to PCB and heatsink, and eventually higher power density of the 

converter. The maximum gate-source voltage of SiC MOSFETs is also 15 V, implying a 

more difficult drive circuit [68, 69]. The input and output capacitance and package parasitic 

inductance of SiC MOSFETs are also higher than eGaN FETs. Modeling and dynamic 

characterization of WBG devices is studied in [82-84]. 

By taking into account the characteristics of WBG devices explained in this section, eGaN 

FET is an ideal candidate to be used in the design of both inverter topologies throughout 
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this research mainly because it has the lowest package intrinsic inductance compared to the 

other switch families. 
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CHAPTER 3 

3 Multi-MHz Full-Bridge Class-D Inverter with Soft-

Switching 

 

 

3.1 Introduction 

This chapter starts with an explanation of the circuit and operation of a Full-Bridge (FB) 

Class-D inverter. A switch with appropriate electrical characteristics is then selected to 

enable operating the inverter at 13.56 MHz switching frequency. The circuit diagram, 

theoretical analysis, and different modes of operation of a soft-switching FB Class-D 

inverter are then discussed, and the effects of power regulation with input DC voltage and 

load variations on the soft-switching are examined through simulations.  
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3.2 FB Class-D Power Inverter 

The FB Class-D power inverter, which consists of two half-bridge inverters operating in 

differential mode, along with the series resonant filter and the load is presented in Figure 

3-1.  

 

Figure 3-1: FB Class-D inverter with series resonant filter and load 

Non-overlapping switching of Q1-Q4 and Q2-Q3 with 50% duty cycle less the dead-time 

(DT), provides almost a full square waveform between Switch-Node 1 (SwN1) and Switch-

Node 2 (SwN2). The DT is a short period of time compared to the switching cycle in which 

both series switches (Q1-Q2 or Q3-Q4) are OFF to avoid half-bridge shoot-through. 

Neglecting the effect of DT on the differential output waveform and using Fourier series 

theory, the differential voltage (𝑣𝑆𝑤) delivered to the output filter  can be expressed as 

follows [35]: 

𝑣𝑆𝑤 = 𝑣𝑆𝑤𝑁1 − 𝑣𝑆𝑤𝑁2 =
4𝑉𝐷𝐷
𝜋

∑
1 − (−1)𝑛

2𝑛

∞

𝑛=1

𝑠𝑖𝑛 (𝑛𝜔𝑡) 3-1 
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3.3 Selecting the Switching Device  

From the point of view of miniaturization and high power density, selecting a device with 

the appropriate voltage and current ratings which is capable of operating in a Class-D 

configuration and at multi-MHz switching frequency is a design challenge, and the 

following points should be considered in the selection of the device.  

 

3.3.1 Source and Sink Current of Gate Drivers 

The maximum source and sink current of commercially available bridge gate drivers in the 

market in the multi-MHz range are 1.2 A and 5 A, respectively (e.g. LM1205). These values 

determine the rise and fall times of the gate signal which are important in the performance 

of the inverter. Rise-time determines the maximum operating frequency of the inverter and 

fall-time governs the turn-off loss of the switch. Assuming 1 nsec to be the target for the 

rise-time and maximum 1.2 A constant current being sourced from the gate driver means 

the total charge that can be delivered to the gate cannot go higher than 1200 pC. From the 

gate voltage perspective, Silicon MOSFETs can operate with gate voltage ranging from 

5 V to 15 V. However, they are better to be driven with the higher voltage to achieve higher 

channel enhancement and lower drain-source resistance (RDS-ON). This situation is the same 

for SiC MOSFETs among WBG devices. However, assuming a fixed total charge required 

to be delivered from the driver to the switch for turning on, higher gate voltage would imply 

smaller gate capacitance that can be supported by the driver. As a result, eGaN FETs are 

better candidates for multi-MHz Class-D inverters because of their smaller input 

capacitance and lower maximum gate voltage (6V) associated with the lowest RDS-ON. Table 
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3-1 provides an electrical characteristic comparison between samples of a Silicon 

MOSFET, a SiC MOSFET, and two eGaN FETs which can operate in multi-MHz 

switching frequency. 

Table 3-1: Electrical characteristic comparison between different switching devices 

 Vendor 

VDS 

(V) 

Drain 

Current 

(A) 

RDS-

ON 

(mΩ) 

Total Gate 

Charge 

(nC) 

Input 

Capacitance 

(pF) 

Output 

Capacitance 

(pF) 

Dimension 

(mm × mm 

× mm) 

EPC8009 

(eGaN FET) 

EPC 65 4 130 0.37 45 19 

2.05 × 0.85 

× 0.68 

GS66504B 

(eGaN FET) 

GaN 

Systems 

650 15 100 3.0 130 33 

5.0 × 6.5 

×0.51 

C3M0120090J 

(SiC MOSFET) 

CREE 900 22 120 17.3 350 40 

16.9 × 10.4 

× 4.3 

FDMC86116LZ 

(Si MOSFET) 

Fairchild 100 7.5 103 4.0 232 45 

3.3 × 3.3 × 

0.8 

 

Assuming a FB Class-D inverter with a maximum 45V input DC voltage and operating 

below 50W output power, the data provided in Table 3-1 shows that EPC8009 has the 

optimum electrical characteristics to be used in the inverter to operate at multi-MHz 

frequency.  
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3.3.2 Intrinsic Inductance of the Switch 

The intrinsic inductance of the switch is mainly dictated by the physical size of the device. 

The intrinsic inductance of the switches and the power loop on the PCB determine the total 

Common Source Inductance (CSI), which in turn governs the maximum switch-node 

voltage overshoot. According to Table 3-1, eGaN FETs designed and developed by EPC 

have the smallest physical size and hence lowest package inductance, among all other 

counterparts. The package size and the shape and direction of terminals on EPC 8009 are 

designed to reduce the parasitic inductance of the component, considerably.  

 

3.4 Soft-Switching in Class-D Inverters 

High efficiency can only be achieved in a switching power inverter with a proper soft-

switching technique. As the switching frequency increases, the soft-switching becomes 

even more important to attain high efficiency. One of the approaches referred to in the 

literature for ZVS in Class-D inverter with a series resonant filter utilizes a shunt capacitor 

along with inductive tuning of the resonant filter [56]. While this approach is very useful 

for applications in the KHz switching frequency range, it cannot be utilized at multi-MHz 

switching frequency as the duty cycle and, consequently, the associated dead time (DT) – 

the interval during which all the switches are OFF -  is not long enough for the switching 

device off-capacitance and the shunt capacitor to be charged and discharged. Therefore, in 

the next section, a soft-switching circuit which is suitable to operate at multi-MHz 

switching frequency is investigated in detail. 
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3.4.1 Description and Operation of Parallel LC ZVS Circuit 

M. d. Rooij [67] proposed a passive LC ZVS tank for a FB Class-D inverter operating in 

multi-MHz switching frequency. The LC circuit proposed provides a smooth drain-source 

voltage transition during switching cycles. The FB Class-D power inverter with the soft-

switching circuit is shown in Figure 3-2.  

 

Figure 3-2: FB Class-D inverter with ZVS LC tank (LZVS and CZVS) 

The LC tank, shown in Figure 3-2, is designed so that its resonant frequency is much lower 

than the switching frequency of the inverter. This presents a purely inductive load to the 

switch-node at the actual switching frequency. As a result, the ZVS inductor charges and 

discharges linearly while the top or bottom switches are ON, respectively. At high 

switching frequencies, the inductor current during DT is approximately constant, providing 

enough current to achieve soft-switching, which eventually results in higher efficiency. 

The ZVS capacitors, C1ZVS and C2ZVS, charge up to VDD/2 which is the DC voltage offset 

on both switch-node voltage waveforms. All the switches are OFF during the DT interval, 
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and the off-capacitance voltages of the eGaN FETs swap almost linearly between 0 and 

VDD, depending on the switch state before the commencement of the DT. Otherwise stated, 

if a switch is OFF before the DT, the output capacitance discharges during the DT and if a 

switch is ON before, the output capacitance charges. The sinking or sourcing current 

needed for the charging and discharging of the off-capacitances is provided by the ZVS 

inductor (L1ZVS). Four operation modes of the left half-bridge inverter are presented in 

Figure 3-3 during one switching cycle. 

 

Figure 3-3: Operation modes of the half-bridge inverter with ZVS tank 

Mode 1 and Mode 3 represent the DT interval, and Mode 2 and Mode 4 refer to the two 

intervals during which Q1 is ON and Q2 is OFF, and Q2 is ON and Q1 is OFF, respectively. 

The ZVS inductor L1ZVS absorbs magnetic energy during the switching cycles in different 

directions and releases the energy during the DT interval.  

 



44 

 

3.4.2 Theoretical analysis of the ZVS inductor current 

Equation 3-2 defines the current passing through both ZVS inductors during one switching 

cycle. 

 

𝑖𝐿𝑍𝑉𝑆(𝑡) =

{
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The minimum and maximum values of the ZVS inductor current can be expressed as 

 

{
 

 𝐼𝑚𝑖𝑛 = −
𝑉𝐷𝐷

4 ∗ 𝐿𝑍𝑉𝑆
(
𝑇

2
− 𝐷𝑇)

𝐼𝑚𝑎𝑥 = +
𝑉𝐷𝐷

4 ∗ 𝐿𝑍𝑉𝑆
(
𝑇

2
− 𝐷𝑇)
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Where T is the switching period and DT is the dead-time interval. The ZVS inductor current 

alternates linearly between the minimum and maximum values shown in Equation 3-3 

when either of the switches on each half-bridge inverter is ON and can be assumed with 

high accuracy to remain nearly constant during the DT. In other words, the ringing of the 

inductor current with the off-capacitance voltages of both series switches during DT is 

ignored assuming a large enough inductor current and adequately short DT. Equation 3-3 

implies that (a) the maximum and minimum current of the ZVS inductors depend directly 

on VDD and inversely on 𝐿𝑍𝑉𝑆, and (b) lower peak-to-peak inductor current swing can be 

achieved by higher DT. 
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The Class-D inverter topology is very sensitive to CSI of the power loop due to the 

resonance between the off-capacitance of the switches and CSI. This ringing can create a 

large voltage overshoot on the switch nodes during each voltage transition. CSI can be 

reduced considerably by selecting a switching device with smaller package size and 

parasitic inductance as previously discussed. The EPC8009 eGaN FET has very low input 

and output capacitances, making it suitable for switching at 13.56 MHz. Its smallest 

package size compared to its counterparts, results in extremely low parasitic inductance 

and it meets the acceptable voltage and current ratings for the power level needed for this 

design. The effect of CSI on the switching performance is addressed by adding LCSI  to the 

simulation circuit in the next section. 

It is worth noting that the output capacitance of EPC8009 decreases almost linearly from 

45 pF to 15 pF during which the drain-source voltage increases from 0V to 45V [70]. Thus, 

at higher voltages across the eGaN FETs, lower sinking or sourcing inductor current is 

required for charging and discharging the off-capacitance of the switches to maintain soft-

switching. Assuming almost constant ZVS inductor current during DT and by considering 

Equations 3-2 and 3-3, the only parameter that can be used to control the inductor current 

during output power regulation while maintaining soft-switching is the DT. 

 

3.5 Soft-Switching Analysis with Simulation 

The input DC voltage of the inverter can be a control parameter for output RF power 

regulation. The effects of this parameter variation on the soft-switching of the inverter are 

analyzed and simulated in Section 3.5.1. In the next sub-section, inductive and capacitive 
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loads are presented to the inverter to evaluate the effects of reactive loads on the 

soft-switching performance of the Class-D inverter.   

 

3.5.1 Soft-Switching and DC Voltage Variations 

In this section, the inverter topology presented in Figure 3-2 is simulated in LTSpice, using 

EPC8009 SPICE model created by EPC. Table 3-2 presents the circuit parameters deployed 

in the simulation. 

Table 3-2: Simulation parameters of the ZVS FB Class-D inverter in LTSpice 

Parameter Value Description 

fsw 13.56 MHz Switching frequency 

f0 13.56 MHz Filter resonant frequency 

LS 1 µH Series resonant inductor 

CS 137 pF Series resonant capacitor 

RL 25 Ω Output Load 

VDD 7.5 V - 45 V DC Voltage 

QL 3.4 Loaded quality factor 

L1ZVS & L2ZVS 300 nH ZVS inductors 

C1ZVS & C2ZVS 1 µF ZVS capacitors 

LCSI 0.2 nH Common Source Inductance 

DT 4-7 ns Dead-Time range 

TSMax 1 ps The maximum simulation time step 

 

The vSwN1 waveform and the corresponding ZVS inductor current 𝑖𝐿1𝑍𝑉𝑆 at VDD =45V are 

shown in Figure 3-4 based on the four operation modes presented in Figure 3-3. 
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Figure 3-4: vSwN1 and iL1ZVS waveforms 

Due to the directly proportional dependency of the amplitude of the differential output 

voltage of the inverter on the input DC voltage, VDD is the control parameter used here for 

output RF power regulation. A 0.2 nH inductor is added to each inverter channel to model 

CSI (LCSI) which practically exists in the implementation of the inverter due to the parasitic 

inductance of the switching device package and PCB routing [85]. By taking into account 

the charge and discharge transitions of the off-capacitance presented in Figure 3-4 during 

DT period, an equation for DT can be calculated as follows: 

𝐷𝑇 = (2𝐶𝑜𝑓𝑓)
𝑉𝐷𝐷
𝐼𝑚𝑎𝑥

 3-4 

In Equation 3-4, Coff is the off-capacitance of the eGaN FET. Using Equation 3-4 and the 

nonlinear off-capacitance versus drain-source voltage characteristic of the eGaN FET [70], 

an optimal value is calculated for DT at each VDD level to maintain ZVS while VDD is 

varied. The range of DT utilized throughout the simulations is 4–7 ns. Variable DT is 
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carried out in the simulation while the input DC voltage is linearly regulated from 45V to 

7.5V. The simulation results are shown in Figure 3-5 to Figure 3-9. 

 

Figure 3-5: G1 and G2 gate signals at VDD = 7.5V and 45V 

 

Figure 3-6: Q1 and Q2 drain-source voltage at VDD = 7.5V and 45V 
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Figure 3-7: L1ZVS current at VDD = 7.5V and 45V 

 

Figure 3-8: Switch-node differential voltage (vSw) at VDD = 7.5V and 45V 

 

Figure 3-9: Load voltage at VDD = 7.5V and 45V 
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Figure 3-5 presents the minimum and maximum DT required for the highest and the lowest 

level of VDD, respectively. The Q1 and Q2 drain-source voltage at VDD = 7.5V and 45V with 

maximum and minimum DT are shown in Figure 3-6. It can be seen in this figure that 

enough time is provided for the off-capacitances of eGaN FETs to charge and discharge 

linearly by controlling DT. The ZVS inductor current of the left half-bridge inverter at the 

minimum and maximum DC voltage and the maximum and minimum DT is presented in 

Figure 3-7. The differential switch-node and load voltages during input DC voltage 

regulation are also demonstrated in Figure 3-7 and Figure 3-8. 

In this section, it is assumed that the inverter starts operating at VDD = 45V; then, VDD is 

reduced to 25V. The switch-node 1 voltage (vSwN1) and Q1 drain-source current at 

VDD = 25V at fixed DT and DDTC are compared in Figure 3-10 and Figure 3-11. 

 

Figure 3-10: vSwN1 at VDD = 25V with fixed DT and DDTC 
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Figure 3-11: Q1 drain-source current at VDD = 25V with fixed and variable DT 

Figure 3-10 indicates that fixed DT results in a large voltage overshoot on vSwN1 when the 

DC voltage is dropped from 45V to 25V. The large ringing in the voltage waveform is 

minimized when variable DT is used by increasing DT from 4 ns to 5.5 ns. Figure 3-11 

indicates that early switching, due to the fixed DT, leads to large current spikes and 

consequently large instantaneous power loss on the switch, which are associated with the 

fast discharge of the off-capacitance of the switching device. Figure 3-12 demonstrates how 

DT is adjusted in the simulation to sustain soft-switching while VDD is controlled. 
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Figure 3-12: The range of DT for soft-switching vs. VDD 

Figure 3-13 and Figure 3-14 present the overshoot on vSwN1 and the ratio of the Q1 drain-

source peak current over the inverter RMS load current (𝑖𝐷𝑆−𝑀𝑎𝑥 𝑖𝐿−𝑟𝑚𝑠⁄ ) under fixed and 

variable DT at different VDD levels. These comparisons can be used to evaluate the 

soft-switching performance of the inverter. 

 

Figure 3-13: Switch-node 1 voltage (vSwN1) overshoot at different VDD levels 
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Figure 3-14: Q1 drain-source peak current over the RMS load current (𝒊𝑫𝑺−𝑴𝒂𝒙 𝒊𝑳−𝒓𝒎𝒔⁄ ) 

Figure 3-13 and Figure 3-14 show that dynamically varying the DT can prevent large 

voltage overshoot on the switch-node while limiting the drain-source current spike during 

switching transitions. The large current spikes shown in Figure 3-14 results in lower 

efficiency and higher steady-state temperature, which can lead to permanent failure of the 

eGaN FETs unless larger heatsink is utilized for improved heat transfer. 

 

3.5.2 Reactive load effect on Soft-Switching 

The simulations presented in Section 3.5.1 were carried out under a fixed resistive load and 

variable DC voltage. In this section, the effect of capacitive or inductive load on the 

soft-switching is simulated. It is explained in Section 3.4 that the ZVS tank is designed with 

a resonant frequency much lower than the switching frequency (e.g. a couple of hundred 

KHz). As a result, the ZVS tank is presented as a purely inductive load to the switch node 

at the switching frequency, and the capacitor acts like a short circuit. As a result, any 

inductive load presented to the switch node results in a more lagging sinusoidal current 
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being drawn from or injected to the switch-node in every cycle. In other words, an inductive 

load can intensify the minimum or maximum ZVS inductor current seen by the switch-

node (Equation 3-3). In contrast, a capacitive load draws a leading current from the switch 

node which reduces the maximum and minimum values of the ZVS inductor current. The 

effects of capacitive and inductive loads on the switch-node waveform at VDD = 45 V are 

shown in Figure 3-15.  

 

 

Figure 3-15: Switch-node 1 voltage (VSwN1) under different loading conditions    

In Figure 3-15, the blue, red, and green waveforms correspond to resistive, inductive, and 

capacitive loads, respectively. As it is expected for a tuned inverter with the ZVS tank, 

complete soft-switching occurs for the resistive load. The inductive load intensifies the 

lagging current drawn from the switch-node; as a result, the off-capacitances of the 

switches are charged and discharged rapidly, leading to anti-parallel diode conduction. The 
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leading capacitive load current cancels the lagging ZVS tank inductive current injected into 

the switch-node; thus, the inverter enters a hard-switching mode. The destructive effect of 

this type of load on the soft-switching of the Class-D inverter can be seen on the green 

waveform.  

 

3.6 Summary 

This chapter starts with a brief discussion of the basic operation of the FB Class-D inverter 

and formulations. Selecting a switching device for operating in a multi-MHz switching 

range is then discussed by comparing different available switch technologies from different 

vendors and from their electrical characteristic perspective. Theoretical analysis of a 

passive LC ZVS tank, modes of operation, and necessary formulation of a ZVS FB Class-

D inverter are then presented. Simulation results and necessary formulations are presented 

to provide an insight into the effect of DT variation on the soft-switching. These results 

show how varying DT during input DC voltage variation can prevent large current spikes 

and associated high switching loss on the switches during output power regulation. The 

effects of capacitive or inductive load on the soft-switching of the inverter are finally 

examined through simulation. It is shown that the ZVS tank operates properly, resulting in 

complete soft-switching when the load is resistive; the off-capacitance charge and 

discharge quicker, leading to anti-parallel diode conduction when the load is inductive; and 

the ZVS tank become almost ineffective due to the leading current injected to the switch-

node by the capacitive load, resulting in hard-switching.  
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CHAPTER 4 

4 Full-Bridge Class-D Inverter with Dynamic Dead-Time 

Control 

 

 

4.1 Introduction 

In this chapter, different control methods for regulating the output RF power of a FB Class-

D inverter are reviewed, firstly. Then, a hardware block diagram for the implementation of 

a soft-switching Class-D inverter with input DC voltage control is presented. The goal of 

this Chapter is to demonstrate that the soft-switching of a FB Class-D inverter can be 

sustained at 13.56 MHz switching frequency using Dynamic Dead-Time Control (DDTC) 

approach during output power regulation by input DC voltage variation. A prototype 

converter is developed and experimental results from the prototype converter are provided 
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in the last section to validate the effectiveness of the proposed approach and the improved 

performance from the point of view of the converter efficiency and temperature.  

 

4.2 Different Methods for Output Power Control 

Different approaches have been investigated in the literature to control the output power of 

a Class-D inverter [86-88]. As explained in Section 3.2, a Class-D inverter acts naturally 

like an ideal voltage source. As a result, the first and easiest way to control the output power 

is by changing the value of the load presented to the inverter. In other words, if the system 

can be designed in such a way that the load value varies from nominal load to open circuit, 

it is guaranteed naturally that the power can be regulated from maximum to zero by load 

modulation. However, this is not the practical scenario for many applications, and the 

inverter needs to be able to regulate the power no matter the load presented to the inverter.  

The second method for controlling the output voltage of a Class-D inverter is to change the 

switching frequency. As the output filter of this inverter is a High-Quality (HQ) resonant 

filter, by moving the switching frequency from the resonant frequency of the filter the 

output power will drop. Output power regulation using frequency modulation for an 

inverter operating at 13.56 MHz switching frequency, VDD = 45V, series filter loaded 

quality factor of QL=3.4, and a differential load of RL=25Ω is presented in Figure 4-1.  
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Figure 4-1: Class-D inverter output voltage regulation with switching frequency modulation, 13.56 

MHz center frequency 

Figure 4-1 shows that the output voltage amplitude can be regulated in a broad range by 

changing the switching frequency from 0.5 f0 to 1.5 f0, where f0,  the center frequency is 

13.56 MHz. The main issue with this control method is EMI, as the range of frequency 

change is very wide which makes it extremely difficult to meet EMC. In general, it is more 

convenient to design the EMI filter for a system at a fixed operating frequency, as this will 

provide fixed criteria for the cut-off frequency of the input and output filters. In contrast, 

designing an EMI filter for a variable frequency system will impose more challenges as the 

filter needs to have enough attenuation over a much broader frequency range. Frequency 

control also changes the load at the switch node from resistive at the center frequency to 

capacitive (when the switching frequency is below the center frequency) or inductive (when 

the switching frequency is above the center frequency). As noted in Chapter 3, this has a 

detrimental effect on the ZVS operation of the inverter. 
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The third approach for output voltage control in Full-Bridge (FB) Class-D inverters is by 

changing the phase-shift between the switch-node voltages. The two Half-Bridge (HB) 

inverters with a series-balanced filter act like two sinusoidal voltage sources (v1 and v2). 

The circuit diagram of the FB Class-D inverter with controllable phase-shift is presented in 

Figure 4-2.   

 

Figure 4-2: ZVS FB Class-D inverter with phase-shift control 

Using trigonometric identities, the differential output voltage across the load can be written 

as follows: 

 

𝑣𝑜𝑢𝑡 = 𝑣1 − 𝑣2 =
2𝑉𝐷𝐷
𝜋
(cos(𝜔𝑡) − cos(𝜔𝑡 + 𝜑)) =

4𝑉𝐷𝐷
𝜋
sin(𝜔𝑡 +

𝜑

2
)sin (

𝜑

2
) 4-1 
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For 𝜑 = 0 ,
𝜋

2
 , 𝑎𝑛𝑑 𝜋, the amplitude of the differential output voltage is 𝑉𝑜𝑢𝑡 = 0 ,

2√2𝑉𝐷𝐶

𝜋
 , 𝑎𝑛𝑑 

4𝑉𝐷𝐶

𝜋
, respectively. Figure 4-3 shows the differential output voltage regulation 

with respect to the phase-shift of the inverter assuming VDD = 45V.  

 

 

Figure 4-3: FB Class-D inverter output voltage control with phase-shift 

Figure 4-3 shows that with a fixed DC input voltage (VDD), the output voltage can be 

regulated from zero to maximum while the phase-shift is varied from 0° to 180°. The main 

drawback of this control method is that as the input DC voltage is kept constant in this 

control scheme for the entire range of the output power, the output capacitances of the 

switching devices charge and discharge to maximum input DC voltage no matter the level 

of the output power. The ZVS inductor rms current also remains constant according to 

Equation 3-3 when the input DC voltage is fixed. As a result, switching losses related to 

off-capacitance charge and discharge and the ZVS inductor current do not change during 

phase shift. In general, the losses in the inverter under phase-shift control remain constant, 

resulting in very low efficiency at light loads.   
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In this study, the output voltage is regulated using input DC voltage as the fixed frequency 

scheme results in easier EMI compliance, and the lower input DC voltage at lower output 

power results in less switching loss and consequently higher efficiency. The main important 

challenge of output power regulation using input DC voltage is the possible loss of 

soft-switching at lower voltages. This issue is addressed by employing Dynamic Dead-time 

Control (DDTC), which is presented in the next section.   

 

4.3 Dynamic Dead-Time Control Hardware Implementation 

In this section, hardware implementation of a fixed-frequency, power controllable FB 

Class-D inverter which can maintain soft-switching over a wide range of input DC voltage 

with minimum switching loss is presented. The output RF power is regulated by changing 

the input DC voltage applied to the inverter. As explained in Section 3.5.1, the inverter 

enters partial ZVS mode during output power regulation with input DC voltage variation if 

the DT remains fixed.  

Dead-time (DT) control and related effects on the switching performance of power 

converters have been the subject of some research works in the literature [89-92]. However, 

the issue of DT control and related effects on the overall efficiency of multi-MHz inverters 

has not been addressed in the literature. In order to sustain ZVS during input DC voltage 

variations, the DDTC approach is proposed in this section for an inverter at 13.56 MHz. 

DDTC can be implemented on an inverter at 13.56 MHz switching frequency using a costly 

digital control platform such as DSP or FPGA. However, in this study, a low-cost and 

practical circuit using a microcontroller and an array of digital potentiometers are deployed. 
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The technique can be easily incorporated into a multi-MHz Class-D inverter design without 

the need to fully change the control platform or add unnecessary cost to the design. The 

proposed system is experimentally verified on a laboratory prototype built for this purpose. 

Figure 4-4 shows the block diagram of the entire system used to implement DDTC, 

including the Micro-Controller Unit (MCU), digital DT circuit, DC-DC buck-boost 

converter, DC/AC 13.56 MHz FB Class-D inverter, series resonant filter, and RF load. 

 

Figure 4-4: DDTC hardware block diagram 

The basic idea is to simultaneously control VDD and the DT between the gate signals being 

sent to the switches of the inverter. The MCU provides an analog signal to linearly control 

the output voltage of the DC-DC converter. It also sends digital commands to a 4-channel 

digital-potentiometer to adjust the DT of each switch gate signal. As shown in Figure 4-4, 

the circuit used for DT adjustment of each gate signal consists of a parallel reverse-

connected Schottky diode and one of the channels of the digital-potentiometer (RDT) 

connected in series with a capacitor (CDT) which determines the discharge time constant of 
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the capacitor (RDTCDT). Diodes connected across each digitally controllable resistive 

channel of the potentiometer (RDTn, n = 1-4) provide a fast discharging path for CDTn while 

blocking the charging current. Accordingly, the CDTn charging currents need to pass 

through RDTn, resulting in a charging time constant which corresponds to DT. The DT 

circuit receives two non-overlapping 13.56 MHz clock signals (G1-Ref, G2-Ref) with 50% 

duty cycle and delivers four reference gate signals (G1, G2, G3, and G4) with controllable 

rise-time. These signals are then delivered to the eGaN FET drivers to be converted to the 

actual gate signals. The circuit has a negligible impact on the gate signals’ fall-time because 

of the Schottky diodes that are utilized in parallel with RDTn. Dynamically adjusting RDTn 

through MCU results in variable CDTn charging time constant and hence controllable DTn. 

The MCU sends digital codes to the DT circuit to set the required DTn which is required to 

maintain ZVS at a certain VDD. As a first step, the value of DTn is calculated using 

Equations 3-3 and 3-4. The value is then optimized in the real system to compensate for 

the practical tolerance that exists in LZVS and the off-capacitance of the eGaN FETs. In this 

research, the optimization is carried out by modifying the DT values obtained using 

Equations 3-3 and 3-4 to achieve the lowest overshoot on the switch-nodes. The modified 

values of DT are then stored in a DT lookup table for different VDD levels. After 

programming the MCU with the modified lookup table, DT is set during the operation of 

the inverter for the desired VDD level needed for delivering a certain power to the RF load. 

The circuit presented for DDTC implementation is low cost and can be easily integrated 

into a fixed DT system compared to migration to a DSP or FPGA based control system. 

Also, an oscillator with very high phase stability is used in this design, which makes dealing 

with the total jitter level of the design easier compared to a full high-speed digital controller. 



64 

 

4.4 Experimental Setup and Results 

An experimental prototype of the DC/AC converter proposed in the block diagram shown 

in Figure 4-4 and the experimental results of representative waveforms, efficiency, and 

temperature of the converter are presented in this section. 

 

4.4.1 Experimental Prototype 

Figure 4-5 shows the PCB implementation of the DC/AC converter proposed in the block 

diagram shown in Figure 4-4. It is a 4-layer PCB with two ground planes on layers 2 and 4 

and signals on layers 1 and 3 that are laid out manually using Altium Designer software. A 

4-channel 1kΩ digital-potentiometer is utilized which represents RDTn in the DT circuit.  

The PCB is optimally designed to keep the parasitic inductance of the inverter power loops 

at the lowest possible level which leads to a smaller voltage ringing on the switch node. 

The optimal layout is achieved by proper placement of switching components and high-

frequency decoupling ceramic capacitors providing VDD to the eGaN FETs of each half-

bridge in very close proximity. The return current paths for the power loops of both half-

bridges are also placed on the first internal layer to achieve the lowest CSI [27]. The optimal 

PCB layout helps, in that the effect of DDTC on the switch-node voltage overshoot can be 

measured more accurately.  
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Figure 4-5: Experimental prototype of the DC/AC converter, 61 mm × 54 mm: (a) top layer, (b) 

bottom layer 

Figure 4-6 shows the complete experimental set-up of the system shown in Figure 4-4. The 

computer is used as a master controller. 
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Figure 4-6: Experimental test setup including MCU, inverter, resonant filter, and RF load 

The role of the master controller is to send high-level commands to the MCU board. These 

commands include turning on and off of the entire system and setting the level of the output 

RF power. The MCU, which is an Atmel AT32UC3C2512C-Z2U, controls the system 

locally as shown in the system block diagram of Figure 4-4. A 1GHz-5GS/s Tektronix 

oscilloscope series 4104-6 and single-ended 300V-1GHz passive probes with 3.9 pF input 

capacitance and very short ground leads (lowest probing inductance impact) are used for 

more accurate signal measurement at high-frequency. The same probes are also used in the 

differential mode to measure the differential voltage delivered to the RF load (see Figure 

4-6). The parameters of the experimental setup are identical to the simulation parameters 

listed in Table 3-2, except for the DT range which is different due to the practical tolerance 

of the components and parasitics on the PCB. 

The MCU firstly loads the digital-potentiometer with values calculated for RDTn using 

Equation 4-2 which is derived by equating DT calculated from Equation 3-4 to the time 
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needed to charge CDTn ( = 22pF) up to the high voltage threshold of the gate driver (VTH = 

2.18 V), considering that the peak Gn-Ref voltage is 5V. 

 

𝑅𝐷𝑇𝑛  =  
𝐷𝑇

0.57 𝐶𝐷𝑇𝑛
 4-2 

 

The RDTn is then optimized based on the switch-nodes overshoot and the overall inverter 

no-load power consumption. Switch-node voltage overshoot clearly shows if the off-

capacitance of the switching devices are charging or discharging with the right pace within 

the DT, and the no-load power consumption of the inverter is mostly dominated by 

switching loss. As a result, making these two parameters minimum results in the best 

switching performance at different VDD levels. Figure 4-7 shows the optimized values for 

RDT1 and RDT2 at different VDD levels. The resistance values of the DT circuit of the second 

half-bridge inverter (RDT3 and RDT4) follow a similar pattern because of the symmetry in 

the PCB layout resulting in almost similar layout parasitics. 

 

Figure 4-7: RDT1 and RDT2 optimized values vs. VDD 

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

0 10 20 30 40 50

R
D

T
n

(Ω
)

VDD (V)

RDT1

RDT2



68 

 

4.4.2 Experimental Prototype Results 

Figure 4-8 shows the real-time measurement of G1-Ref, G2-Ref, G1, and G2 signals during 

DDTC while VDD is set at five different voltage levels. At each VDD level setpoint, an 

optimized DT is obtained based on the lowest voltage overshoot on the switch-node and 

the lowest no-load power consumption. For each VDD level, the waveforms of G1, and G2 

gate signals are saved on the oscilloscope. The data obtained at different VDD levels is 

eventually superimposed in MATLAB to provide a better overall picture of practical DT 

needed to achieve soft-switching. As the eGaN FETs are physically placed very close to 

the drivers and the decoupling capacitors to keep the gate and power loops very small (less 

than 0.2 mm space between the cases), there is no practical way to probe the actual gate 

signals to the eGaN FETs. Instead, the DT circuit output signals are probed, and the DT is 

calculated based on the input voltage threshold of the gate driver (VTH = 2.18 V), as shown 

in Figure 4-8. 

 

Figure 4-8: G1-Ref, G2-Ref, G1, and G2 references and gate signals at different VDD levels 
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The RDTn lookup table can be extended to a higher resolution at a higher number of steps 

for VDD in case higher accuracy is required for a particular application. While regulating 

the RF output power, the digital-potentiometer is first loaded with RDTn which is the optimal 

value for DT at a certain VDD level. VDD is then stepped up or down to provide the desired 

level of RF power to the load. 

Switch-node 1 voltage (𝑣𝑆𝑤𝑁1) waveforms at different voltage levels with fixed DT and 

DDTC are presented in Figure 4-9 and Figure 4-10. 

 

Figure 4-9: vSwN1 waveform at different VDD levels with fixed DT 
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Figure 4-10: vSwN1 waveform at different VDD levels with DDTC 

The RDTn values corresponding to VDD = 45V are loaded and kept constant during VDD 

regulation to obtain the experimental results for the fixed DT scenario. As a result, the soft-

switching scheme of the inverter gradually phases out by decreasing the VDD level (See 

Figure 4-9). It can be seen in Figure 4-10 that changing RDTn dynamically and consequently 

DTn helps the inverter to sustain soft-switching over the full range of VDD. The test with 

fixed DT can also be performed by setting the DT for the lowest VDD level instead of the 

highest. While this approach will guarantee enough time for soft-switching at all VDD 

levels, the anti-parallel diode of the eGaN FET will conduct during the excessive DT 

interval, making the inverter extremely inefficient as the source-drain voltage of eGaN FET 

is very high (2.2 V in EPC8009). This issue is explained in Section 3.5.2 in detail. Adding 

external parallel Schottky diode with lower forward voltage to the eGaN FET to address 

this problem as suggested in [93] is also not practical because of the diode reverse recovery 
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and extra capacitance that will be introduced to the switch node. The 𝑣𝑆𝑤𝑁1 overshoot 

percentage under the two test scenarios are compared in Figure 4-11. 

 

Figure 4-11: Switch-node 1 (vSwN1) overshoot at different VDD levels 

Figure 4-11 shows that a lower switch-node voltage overshoot can be achieved when the 

DT is dynamically controlled during VDD variations. The overshoot levels confirm the value 

that was used for LCSI in Table 3-2.  

Measuring the drain-source current of eGaN FET is practically impossible because of the 

extremely close proximity of the components on the PCB and high sensitivity of the power 

loop to parasitic inductance which can increase dramatically by a current probe. As a result, 

the simulation results provided in Figure 3-11 cannot be experimentally verified. Instead, 

in this section, the inverter is tested with both fixed DT and DDTC while changing the input 

DC voltage from 7.5V to 45V to examine its performance. The RF output power delivered 

to the 25 Ω load is regulated almost linearly from 1.68W to 59.36W, while the steady-state 

efficiency and temperature of the custom-designed heatsink attached to the eGaN FETs are 

measured. It is worth noting that EPC8009 is a top cooling device; so a proper heatsink 
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needs to be selected and attached to the top of the device. A very thin layer of thermal paste 

with very high thermal conductivity (5 W/mK) is also used to provide effective heat transfer 

between the body of the device and the heatsink. The results obtained from both tests are 

presented in Figure 4-12. 

 

 

Figure 4-12: FB Class-D power inverter efficiency and heatsink temperature with fixed DT and 

DDTC at different DC voltage levels 

Figure 4-12 shows how the inverter can sustain higher steady-state efficiency, determined 

as the ratio of the measured output power to input power. The lower operation temperature 

on the attached heatsink under DDTC compared to fixed DT while delivering regulated 

power to the RF load is alo shown in Fig. 4-12. The higher efficiency and lower overall 

PCB temperature shown in this figure is a direct result of complete ZVS under DDTC as 

opposed to partial ZVS with fixed DT. The efficiency of the inverter during load 

modulation is also shown in Figure 4-13. 
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Figure 4-13: FB Class-D power inverter efficiency at fixed 40W output power delivered to various RL 

Figure 4-13 shows how the inverter can sustain higher efficiency under DDTC compared 

to fixed DT while delivering a fixed 40 W during load modulation. 

 

4.5 Class-D Inverter Harmonic Analysis 

One of the most important parameters in the performance evaluation of a power inverter is 

the harmonic content of the output voltage, measured as the total harmonic distortion. The 

harmonic analysis of the differential switch-node voltage of the FB Class-D inverter built 

and tested in this chapter with VDD = 45V is demonstrated in Figure 4-14. The harmonic 

content of the output voltage of the inverter determines the cost and complexity of the 

output filter and the amount of effort needed to meet EMC regulations. The relatively high 

amplitude of the 3rd and 5th harmonics of the inverter differential switch-node voltage can 

only be attenuated with a high order or High Quality (HQ) resonant filter.  
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Figure 4-14: Class-D inverter output voltage harmonic analysis 

Frequency tuning, large inductor size, and low efficiency are the main drawbacks of HQ 

resonant filters. As a result, an inverter which generates much lower unwanted harmonics 

on its output voltage and hence meets EMC requirements with a smaller size and more 

efficient output filter, is introduced in Chapter 5. 

 

4.6 Summary 

In this chapter, different approaches to control the output power of a FB Class-D inverter 

are firstly explained. By considering the challenges of maintaining soft-switching during 

output power regulation using input DC voltage (VDD) control, the DDTC method is 

proposed and utilized to sustain soft-switching during output power regulation. A practical, 

low-cost circuit is then proposed for a more convenient integration of the control method 

to an inverter with fixed DT at 13.56 MHz. The DDTC scheme can be implemented in a 
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fixed DT inverter without the need to migrate to expensive high-speed controllers and 

related clock stability and jitter issues. An experimental testbed is then built which includes 

the prototype of the DC/AC converter, digital DT circuit, MCU, output resonant filter, and 

RF load to experimentally validate the effectiveness of the DDTC approach. The 

experimental results show that adjusting DT during VDD control for output power regulation 

results in less voltage overshoot on the switch-nodes and consequently less switching loss. 

It is also shown that the inverter with DDTC can achieve higher steady-state efficiency and 

lower operating temperature compared to the system with fixed DT while delivering 

regulated power to 25 Ω RF load. The last section of this chapter presents the harmonic 

content of the Class-D FB inverter. The harmonic content shows that the inverter requires 

a filter with high attenuation level to suppress the 3rd and 5th harmonics to a level that can 

pass EMC regulations.  
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CHAPTER 5 

5 Development of a Multi-MHz Multi-Level Class-D Inverter 

with Low Harmonics and Zero Voltage Switching 

 

 

5.1 Introduction 

Any power converter needs to be designed to meet EMC to be used as stand-alone or as a unit 

in a bigger electric system. Resonant coupled WPTSs are designed at multi-MHz frequency 

ranges to reduce the size of their transmitters and receivers. As a result, they need a low EMI 

power source on the transmit side capable of providing RF power at their operating 

frequencies. There are essentially two approaches for meeting EMC requirements in power 

inverters. The first approach is to design a power inverter which naturally generates higher 

frequency harmonics in the switching block and filtering them out in the next stage using an 

HQ EMI filter. The filter should have enough attenuation capability in the desired frequency 
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band to deliver clean power to the rest of the system. The main drawbacks of this approach 

are the large size and high loss of the filter inductor which results in a low overall efficiency 

of the filter block and consequently the power inverter.   

The second approach is to avoid generating unwanted harmonics in the first place in the 

inverter and achieve the same EMC performance with less complex and less costly EMI filter 

design. The latter approach is explored in this Chapter using multi-level topology. This 

topology has been used for low switching frequency applications for a long time [94-97]. 

However, they were never investigated for multi-MHz application until recently [98, 99]. The 

topology investigated in this chapter is a Class-D multi-level inverter which produces stepped 

voltage waveform with very low 3rd and 5th harmonics, eventually allowing for much more 

flexibility in the design of the EMI filter. The topology also makes it possible for higher output 

power levels to be achieved as opposed to single-stage Class-D inverter.  

The mathematical analysis of the stepped voltage waveform with low harmonics is presented 

in the next sections and derived equations are solved to calculate the modulation parameters 

required to suppress the level of the unwanted harmonics. The mathematical analysis is then 

used to simulate and experimentally implement a 3rd and 5th harmonic-free multi-MHz multi-

level inverter. The feasibility of the approach, soft-switching performance, and harmonic 

elimination capability of the inverter during output power regulation are demonstrated through 

simulation results. More investigation is then carried out using experimental results obtained 

from a prototype PCB built.  
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5.2 Stepped Waveform with Zero 3rd and 5th Harmonics 

Figure 5-1 demonstrates a stepped waveform without DT, which can theoretically generate 

zero 3rd and 5th harmonics with certain modulation index (m) and trigger angle (𝛼) [100]. m 

and 𝛼 as the main parameters of the stepped waveform are shown in Figure 5-1. For a general 

stepped waveform, m is a fraction of the top-level voltage (VDD) and has a value in the range 

0 < m < 1. 𝛼 defines the start point or trigger angle of the top-level voltage and can 

theoretically have values in the range 0° < 𝛼 < 90°.  

 

 

Figure 5-1: Half cycle demonstration of an ideal stepped waveform with the possibility of zero 3rd and 5th 

harmonics  

Using Fourier expansion, the sine coefficients of the signal can be defined as follows: 

 

𝑣𝑜𝑛 =
2

𝜋
∫ 𝑣𝑜(𝜔𝑡) sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝜋

0

=
2𝑉𝐷𝐷
𝑛𝜋

(𝑚 + (1 − 𝑚) cos(𝑛𝛼) + (𝑚 − 1) cos(𝑛(𝜋 − 𝛼)) −𝑚 cos(𝑛𝜋)) 

5-1 

 

As a result, the 1st harmonic amplitude of 𝑣𝑜 can be written as follows: 
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𝑣𝑜1 =
4𝑉𝐷𝐷
𝜋
(𝑚 + (1 −𝑚) cos(𝛼)) 5-2 

 

The 3rd and 5th harmonics are zero if 𝑣o3 = 𝑣o5 = 0; which results in  𝑚 = 0.413 and 𝛼 =

45.05° [100]. 

As discussed in Chapter 3, for multi-MHz switching frequency operation, DT is comparable 

with the overall period of the signal; therefore, it can have an important impact on the level of 

the harmonics if not appropriately modeled. A detailed analysis of the effect of DT on the 

harmonic distortion of a Class-D inverter operating in KHz switching frequency is presented 

in [101]. Figure 5-2 shows a stepped waveform that incorporates the effect of DT to more 

accurately reflect the impact of this parameter on the level of the harmonics. Parameter D, 

shown in this figure, represents the DT in radians.   

 

Figure 5-2: Half cycle of the stepped waveform with the possibility of zero 3rd and 5th harmonics  

The waveform of Figure 5-2 is described by the following functions: 
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𝑣𝑜(𝜔𝑡) =

(

 
 
 
 
 
 
 
 
 

𝑚𝑉𝐷𝐷
𝐷

𝜔𝑡 0 ≤ 𝜔𝑡 < 𝐷

𝑚𝑉𝐷𝐷 𝐷 ≤ 𝜔𝑡 < 𝛼
(1 −𝑚)𝑉𝐷𝐷

𝐷
(𝜔𝑡 − 𝛼) +𝑚𝑉𝐷𝐷 𝛼 ≤ 𝜔𝑡 < 𝛼 + 𝐷

𝑉𝑑𝑑 𝛼 + 𝐷 ≤ 𝜔𝑡 < 𝜋 − 𝛼 − 𝐷
(𝑚 − 1)𝑉𝐷𝐷

𝐷
(𝜔𝑡 − 𝜋 + 𝛼 + 𝐷) + 𝑉𝐷𝐷 𝜋 − 𝛼 − 𝐷 ≤ 𝜔𝑡 < 𝜋 − 𝛼

𝑚𝑉𝐷𝐷 𝜋 − 𝛼 ≤ 𝜔𝑡 < 𝜋 − 𝐷
−𝑚𝑉𝐷𝐷
𝐷

(𝜔𝑡 − 𝜋 + 𝐷) +𝑚𝑉𝐷𝐷 𝜋 − 𝐷 ≤ 𝜔𝑡 < 𝜋 )

 
 
 
 
 
 
 
 
 

 

 

5-3 

The cosine coefficients (𝑎𝑛) are zero because the signal is odd and has a ¼-wave symmetry. 

Fourier analysis can then be applied over half a period of the signal to obtain the sine 

coefficients (𝑏𝑛) as follows: 
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𝑣𝑜𝑛(𝜔𝑡) =
2

𝜋
∫ 𝑣𝑜(𝜔𝑡) sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝜋

0

= 
2

𝜋
[
 
 
 
∫
𝑚𝑉𝐷𝐷
𝐷

𝜔𝑡 sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝐷

0⏟                

𝐼

+
∫𝑚𝑉𝐷𝐷 sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝛼

𝐷⏟              

𝐼𝐼

+
∫ (

(1 −𝑚)𝑉𝐷𝐷
𝐷

(𝜔𝑡 − 𝛼) +𝑚𝑉𝐷𝐷) sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝛼+𝐷

𝛼⏟                                

𝐼𝐼𝐼

+
∫ 𝑉𝐷𝐷 sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝜋−𝛼−𝐷

𝛼+𝐷⏟                

𝐼𝑉

+
∫ (

(𝑚 − 1)𝑉𝐷𝐷
𝐷

(𝜔𝑡 − 𝜋 + 𝛼 + 𝐷) + 𝑉𝐷𝐷) sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝜋−𝛼

𝜋−𝛼−𝐷⏟                                        

𝑉

+
∫ 𝑚𝑉𝐷𝐷 sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝜋−𝐷

𝜋−𝛼⏟                

𝑉𝐼

+
∫ (

−𝑚𝑉𝐷𝐷
𝐷

(𝜔𝑡 − 𝜋 + 𝐷) +𝑚𝑉𝐷𝐷) sin(𝑛𝜔𝑡) 𝑑𝜔𝑡

𝜋

𝜋−𝐷⏟                                

𝑉𝐼𝐼 ]
 
 
 

 

 

5-4 

Integrals I to VII in Equation 5-6 are evaluated separately as follows: 

𝐼
→ [
𝑚𝑉𝐷𝐷
𝐷

(
−𝐷

𝑛
cos(𝑛𝐷) +

1

𝑛2
sin(𝑛𝐷))]

𝑛=3
=
−𝑚𝑉𝐷𝐷
3

cos(3𝐷) +
𝑚𝑉𝐷𝐷
9𝐷

sin(3𝐷) 5-5 

 

𝐼𝐼
→[
−𝑚𝑉𝐷𝐷
𝑛

(cos(𝑛𝛼) − cos(𝑛𝐷))]
𝑛=3

=
𝑚𝑉𝐷𝐷
3

cos(3𝐷) −
𝑚𝑉𝑑𝑑
3

cos(3𝛼) 5-6 

 



82 

 

𝐼𝐼𝐼
→ [
(1 − 𝑚)𝑉𝐷𝐷

𝐷
(
−(𝛼 + 𝐷)

𝑛
cos(𝑛(𝛼 + 𝐷)) +

1

𝑛2
sin(𝑛(𝛼 + 𝐷))

+
𝛼

𝑛
cos(𝑛𝛼) −

1

𝑛2
sin(𝑛𝛼))

+
1

𝑛
(
(𝑚 − 1)𝑉𝐷𝐷𝛼

𝐷
+𝑚𝑉𝑑𝑑) (cos(𝑛𝛼) − cos(𝑛(𝛼 + 𝐷)))]

𝑛=3

=
−𝑉𝐷𝐷
3

cos(3(𝛼 + 𝐷)) +
(1 −𝑚)𝑉𝐷𝐷

9𝐷
sin(3(𝛼 + 𝐷))

−
(1 − 𝑚)𝑉𝐷𝐷

9𝐷
sin(3𝛼) +

𝑚𝑉𝐷𝐷
3

cos(3𝛼) 

5-7 

 

𝐼𝑉
→[
𝑉𝐷𝐷
𝑛
(cos((𝛼 + 𝐷)) − cos(𝑛(𝜋 − 𝛼 − 𝐷)))]

𝑛=3
=
2𝑉𝐷𝐷
3
cos(3(𝛼 + 𝐷)) 5-8 

 

𝑉
→[
(𝑚 − 1)𝑉𝐷𝐷

𝐷
(
−(𝜋 − 𝛼)

𝑛
cos(𝑛(𝜋 − 𝛼)) +

1

𝑛2
sin(𝑛(𝜋 − 𝛼))

+
(𝜋 − 𝛼 − 𝐷)

𝑛
cos(𝑛(𝜋 − 𝛼 − 𝐷)) −

1

𝑛2
sin(𝑛(𝜋 − 𝛼 − 𝐷)))

+
(1 − 𝑚)𝑉𝐷𝐷(−𝜋 + 𝛼 + 𝐷) − 𝑉𝐷𝐷𝐷

𝑛𝐷
(cos(𝑛(𝜋 − 𝛼))

− cos(𝑛(𝜋 − 𝛼 − 𝐷)))]
𝑛=3

=
−𝑉𝐷𝐷
3

cos(3(𝛼 + 𝐷)) +
(1 −𝑚)𝑉𝐷𝐷

9𝐷
sin(3(𝛼 + 𝐷))

−
(1 − 𝑚)𝑉𝐷𝐷

9𝐷
sin(3𝛼) +

𝑚𝑉𝐷𝐷
3

cos(3𝛼) 

5-9 

 

𝑉𝐼
→[
𝑚𝑉𝐷𝐷
𝑛

(cos(𝑛(𝜋 − 𝛼)) − cos(𝑛(𝜋 − 𝐷)))]
𝑛=3

=
𝑚𝑉𝐷𝐷
3

cos(3𝐷) −
𝑚𝑉𝐷𝐷
3

cos(3𝛼) 5-10 
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𝑉𝐼𝐼
→ [

−𝑚𝑉𝐷𝐷
𝐷

(
−𝜋

𝑛
cos(𝑛𝜋) +

1

𝑛2
sin(𝑛𝜋) +

𝜋 − 𝐷

𝑛
cos(𝑛(𝜋 − 𝐷)) −

1

𝑛2
sin(𝑛(𝜋 − 𝐷)))

+
𝑚𝑉𝐷𝐷(−𝜋 + 𝐷) − 𝑉𝐷𝐷𝐷

𝑛𝐷
(cos(𝑛𝜋) − cos(𝑛(𝜋 − 𝐷)))]

𝑛=3

=
−𝑚𝑉𝐷𝐷
3

cos(3𝐷) +
𝑚𝑉𝐷𝐷
9𝐷

sin(3𝐷) 

5-11 

 

Substituting Equation 5-5 to Equation 5-11 into Equation 5-4 and setting n = 1, 3 and 5, the 

sine coefficients of the 1st, 3rd, and 5th harmonics of the stepped waveform with DT are 

obtained as follows: 

 

𝑣𝑜1 =
2

𝜋
(
2(1 −𝑚)𝑉𝐷𝐷

𝐷
sin(𝛼 + 𝐷) −

2(1 −𝑚)𝑉𝐷𝐷
𝐷

sin(𝛼) +
2𝑚𝑉𝐷𝐷
𝐷

sin(𝐷)) 5-12 

 

𝑣𝑜3 =
2

𝜋
(
2(1 −𝑚)𝑉𝐷𝐷

9𝐷
sin(3(𝛼 + 𝐷)) −

2(1 −𝑚)𝑉𝐷𝐷
9𝐷

sin(3𝛼) +
2𝑚𝑉𝐷𝐷
9𝐷

sin(3𝐷)) 5-13 

 

𝑣𝑜5 =
2

𝜋
(
2(1 −𝑚)𝑉𝐷𝐷

25𝐷
sin(5(𝛼 + 𝐷)) −

2(1 −𝑚)𝑉𝐷𝐷
25𝐷

sin(5𝛼) +
2𝑚𝑉𝐷𝐷
25𝐷

sin(5𝐷)) 5-14 

 

By setting Equation 5-13 and Equation 5-14 to zero and numerically solving the resultant 

equations, a set of values for m and 𝛼 at different DT values can be obtained and demonstrated 

on a 3D plot in Figure 5-3. 
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Figure 5-3: 3D plot of DT, m, and 𝜶 variation  

In Figure 5-3, α is in the range of 35° < α < 44°. Therefore, the top voltage level duty cycle of 

the stepped waveform can vary from 25% to 30%. Considering the period of the signal at 

13.56 MHz (73 ns), the minimum time period for the top voltage signal including the DT is 

17.6 ns at 25% duty cycle. Thus, DT values over 8.8 ns are not practical as it results in rising 

edge and falling edge overlap or no top voltage flat piece (D + α < ωt < π - D – α). DT cannot 

be shorter than 4 ns either, due to the practical limitations on the rise time and fall time of 

digital controllers. Short DT also results in small ZVS inductors and high AC current going 

through the inductor, which may cause high core loss and saturation at 13.56 MHz switching 

frequency. As a result, considering the DT range presented in Figure 5-3 (0.1 ~ 9 ns), 6 ns is 

considered as a typical value for DT and is utilized in the next section for simulation purposes. 
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Considering the values presented in Figure 5-3, other modulation parameters of the stepped 

waveform utilized for simulations at DT = 6 ns in the next section are presented in Table 5-1.  

Table 5-1: Zero 3rd and 5th harmonic stepped waveform parameters at DT = 6 ns 

DT (ns) Trigger Angle 𝜶 (deg) Modulation Index (m) Duty Cycle (
𝟏𝟖𝟎−𝟐𝜶

𝟑𝟔𝟎
× 𝟏𝟎𝟎%) 

6 35.23 0.5442 30.4% 

 

5.3 Multi-MHz Multi-Level Inverter Circuit Model 

A multi-level inverter circuit model that is capable of creating an output voltage waveform 

similar to the stepped waveform shown in Figure 5-2 is presented in Figure 5-4.  

 

Figure 5-4: Multi-level ZVS inverter with DDTC, Inverter II gate signals at 𝜶 = 35°  

The topology consists of two ZVS FB Class-D inverters with different duty cycles. Inverter I 

has 50% duty cycle and Inverter II can operate with a variable duty cycle to generate the top 



86 

 

level of the stepped waveform. The topology also consists of a high-speed digital controller 

providing gate signals to the switching components; two high-frequency transformers used 

for adding up the output voltage of the inverters; and an output EMI filter to suppress 

unwanted harmonics.  

The switching cycles and ZVS performance of both Class-D inverters shown in Figure 5-4 are 

identical to those of the single FB Class-D inverter explained in Section 3.4. Nevertheless, the 

switching performance of the inverter is simulated later in Section 5.4 of this chapter. As 

inverter II has a variable and less than 50% duty cycle, the upper switches (Q5 and Q7) conduct 

for less than 180º with 180º phase shift. The lower switches are OFF for the rest of the period 

to provide a path for the current of the ZVS inductors L3ZVS and L4ZVS.  

VDC1 is the DC supply applied to inverter I and VDC2 is the DC supply applied to inverter II. 

The modulation index (𝑚) shown in Figure 5-1 and Figure 5-2 is practically the ratio of the 

DC supply applied to inverter I (VDC1 = m VDD ) over the summation of the DC supplies applied 

to both inverters (VDC1+VDC2  = VDD). As a result, m can be rewritten as follows: 

 

𝑚 = 𝑉𝐷𝐶1/(𝑉𝐷𝐶1 + 𝑉𝐷𝐶2) 5-15 

 

Using the value provided in Table 5-1 for m at DT = 6 ns to achieve zero  3rd and 5th harmonics, 

and assuming VDC1 = 15V, VDC2 can be calculated as 12.6V by utilizing Equation 5-15. These 

two values for VDC1 and VDC2 will be used for simulation purposes in the next section.  
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5.4 Multi-MHz Multi-Level Inverter Simulation Results 

The simulations in this section are carried out in LTSpice and using EPC8009 switching 

device model. The system is first simulated at 13.56 MHz switching frequency and no-load to 

show the soft-switching performance of the inverter. Then, in Section 5.4.1, harmonic analysis 

is carried out on the output voltage of the inverter, and the results are compared with FB Class-

D topology to show the effectiveness of the harmonic elimination approach. Then, output 

voltage regulation using DDTC is simulated in Section 5.4.2, and harmonic analysis and 

loading effect on the soft-switching are discussed. The circuit parameters used in the 

simulations are presented in Table 5-2.  

Table 5-2: Multi-MHz multi-level inverter simulation parameters in LTSpice 

Description Parameter Value 

Switching frequency fsw 13.56 MHz 

Output filter cut-off frequency fc 33 MHz 

Inverter (I) ZVS inductors L1ZVS, L2ZVS 800 nH 

Inverter (II) ZVS inductor L3ZVS, L4ZVS 500 nH 

ZVS capacitors C1ZVS, C2ZVS, C3ZVS, C4ZVS 1 µF (100V) 

Dead-Time range DT 4.5~8 ns 

The maximum simulation time step TsMax 1 ps 

 

The FB inverters operate at different VDC levels and with different duty cycles but the same 

DT. This results in different values of ZVS inductors for Inverter I and Inverter II to achieve 

soft-switching. The ZVS inductor values are presented in Table 5-2.  
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The multi-level inverter no-load simulation is carried out, and the gate signals, drain-source 

voltages of the switches at one leg of each inverter, and output voltage of the multi-level 

inverter (vo) at DT = 6 ns are presented in Figure 5-5 to Figure 5-7, respectively. 

 

 

Figure 5-5: Gate and drain-source voltages of Q1 and Q2 

 

Figure 5-6: Gate and drain-source voltages of Q5 and Q6 
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Figure 5-7: Output voltage of the multi-level inverter, DT = 6 ns, m = 0.5442, and α = 35.23° 

Referring to the soft-switching analysis and the simulation results presented in Section 3.5 for 

FB Class-D topology (Figure 3-6 and Figure 3-10), it can be concluded that the absence of 

voltage ringing on the drain-source voltage of the eGaN® FETs during each transition shown 

in Figure 5-5 and Figure 5-6 implies that the off-capacitances of the switching devices in both 

inverters are fully discharged before turning on using ZVS inductor currents. This means soft-

switching is achieved for both inverters in the multi-level topology. Figure 5-7 shows the 

stepped output voltage of the inverter with 6 ns rise and fall time at each transition.  

 

5.4.1 Multi-MHz Multi-Level Inverter Harmonic Content 

In this section, harmonic analysis is performed on the stepped waveform output voltage of the 

multi-level inverter presented in Figure 5-7. The analysis is carried out for 1st, 3rd, and 5th 

harmonics, and the results are then normalized over the 1st harmonic amplitude. A comparison 

is then demonstrated in Figure 5-8 between the normalized harmonic content of the output 

voltage of the multi-level inverter and the normalized data obtained in Section 4.5 for the FB 
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Class-D inverter. Figure 5-8 shows that the level of the 3rd and 5th harmonics are considerably 

lower on the output voltage of the multi-level inverter compared to the FB Class-D inverter. 

The lower amplitudes of the 3rd and 5th harmonics on the stepped output voltage of the multi-

level inverter imply that a resonant filter with much lower Quality (Q) factor or even a low 

pass filter can be utilized to suppress unwanted harmonics, compared to the FB inverter that 

needs a more complex output filter. As a result, the analysis presented in this section confirms 

how it would be easier to design the output filter to meet EMC requirements using a multi-

level inverter as opposed to FB Class-D topology discussed in Chapter 4.  

 

Figure 5-8: Comparing normalized harmonic analysis on the output voltage between multi-level and FB 

Class-D inverters 
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5.4.2 Multi-Level Inverter Output Power Control Using DDTC 

In this section, the inverter is loaded with a 25Ω resistive load and the output power is 

regulated from 10% of the nominal output power (50W) to full load, in 5 steps. The optimum 

value for DT at different VDC levels to achieve ZVS is determined based on the approach 

explained in Sections 3.5 and 4.4 which correlates the soft-switching of the inverter to the 

lowest ringing on the switch-node voltage and minimum no-load power consumption. Using 

this approach and changing VDC from 0 to 45 V, DT values for ZVS are determined and the 

results are presented in Figure 5-9.  

 

Figure 5-9: DT variation at different VDC levels for soft-switching 

The parameters of the multi-level inverter need to be calculated for DDTC to achieve proper 

soft-switching, the highest level of harmonic elimination, and accurate output voltage level 

during output power regulation. The first step is to initialize m and 𝛼 with a proper start point 

value. Assuming that DT is going to change over the entire range, the best starting point would 

be the average of the values shown in Figure 5-3, resulting in m0 = 0.5 and 𝛼0 = 40°. Then, 
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knowing the output power and the attached load, the load voltage vL can be determined. 

Assuming that the multi-level inverter is eliminating the unwanted 3rd and 5th harmonic and 

the rest of the harmonics are also suppressed to a very low level, vL can be considered equal 

to the 1st harmonic of the inverter output voltage vo1. Using the formulation provided in 

Section 5.2 for ideal stepped waveform without the DT, the initial value of DC supply (VDD0) 

can now be initialized using Equation 5-2 by substituting values calculated for vo1, m0, and 𝛼0. 

Initial values for the two DC supplies, VDC10 and VDC20 can now be derived using Equation 

5-15. DT value is specified at this stage using Figure 5-9 based on VDC10 and VDC2 levels. As 

VDC1 and VDC2 are not going to change considerably during the updates considering the entire 

range of m shown in Figure 5-3, DT is not updated after the initial assignment and is treated 

as a fixed parameter in determining the rest of the parameters. To achieve zero 3rd and 5th 

harmonics, m and 𝛼 can now be updated by setting Equation 5-13 and Equation 5-14 to zero 

and solving the resultant two equations. DT, vo1 and the updated m and 𝛼 are then inserted in 

Equation 5-12 to update VDD. The final values for VDC1 and VDC2 are then determined using 

Equation 5-15 for the fine-tuning of the output voltage. The complete algorithm for multi-

level inverter parameter selection is demonstrated in Figure 5-10. Using this algorithm, the 

multi-level inverter parameters for simulating output voltage regulation using DDTC are 

derived and the values are presented in Table 5-3 at different output power levels.  
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Figure 5-10: Multi-level inverter output voltage regulation algorithm using DDTC 
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Table 5-3: Simulation parameters of the multi-level inverter for output voltage regulation using DDTC, 

nominal output power (Po-Nom) = 50W, RL = 25Ω 

Output power (W) DT (ns) m (V/V) α (degree) VDC1 (V) VDC2 (V) 

10% Po-Nom 8.0 0.65 37.3 10.2 5.4 

25% Po-Nom 6.5 0.56 35.2 13.8 10.4 

50% Po-Nom 5.5 0.52 
35.5 17.8 16.2 

75% Po-Nom 5.0 0.50 35.8 20.9 20.7 

Po-Nom 4.5 0.48 36.4 23.2 24.6 

 

The multi-level inverter is simulated with parameters presented in Table 5-3 and the inverter 

output voltage (vo) waveforms at different output power levels are presented in Figure 5-11. 

Harmonic analysis is then carried out on vo at different output power levels to investigate the 

inverter’s ability to eliminate unwanted harmonics. The results of the harmonic analysis 

carried out are presented in Figure 5-12. The results shown in this figure confirm that the 

algorithm presented in this section for calculating the inverter’s parameter is valid, as the 

average level of 3rd and 5th harmonics at all different output power levels is at least 38.9 dBV 

lower than the level of the 1st harmonic. This frequency response will give much more 

flexibility in the design of the output EMI filter and help to reduce the size of the filter, 

considerably. 
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Figure 5-11: Multi-level inverter output voltage regulation with DDTC 

 

 

Figure 5-12: Multi-level inverter output voltage harmonic analysis during output power regulation 
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In this part, the loading effect on the soft-switching of the multi-level inverter is examined 

closely by demonstrating the drain-source current waveforms of two series switches from each 

inverter. These waveforms are shown in Figure 5-13. As the two Class-D inverters used in the 

multi-level topology have dedicated ZVS tanks, their operation from the soft-switching 

perspective is independent of each other. As a result, the same approach deployed in Section 

3.5.1 to determine the soft-switching of the FB Class-D inverter from the current spike and 

the switch-node voltage ringing can be applied to the inverters in this section.  

 

Figure 5-13: Drain-source currents of the switches at full load (Po-Nom) 

Figure 5-13 shows that the ZVS performance of Inverter I is not affected by the loading; as 

there is no spike on the Q1 and Q2 drain-source currents. However, to some extent, Inverter II 

loses the soft transition during turn on, as demonstrated by the current spike shown in Figure 

5-13 at t = 45 ns. The current spikes of switch Q5 and Q6 in this figure indicate that Inverter II 

experiences some switching loss which is related to different load sharing percentages 

between the inverters. However, the current spikes and related time intervals are still well 

within the maximum tolerable electrical characteristics of EPC8009 (IpulsedMax=7.5 A, 
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Tpulse=300 µsec). As the multi-level inverter consists of two Class-D inverters operating 

independently with dedicated ZVS tanks, the effect of capacitive and inductive load on the 

soft-switching follows the same pattern explained in Section 3.5.2. As a result, the simulation 

waveforms for these types of loads are not demonstrated in this section to avoid unnecessary 

duplication. 

 

 

5.5 Practical Implementation 

A system block diagram is proposed in Figure 5-14 for hardware implementation of a multi-

MHz multi-level inverter.   

 

Figure 5-14: Multi-MHz multi-level inverter hardware block diagram  



98 

 

The system is composed of two DC-DC buck-boost converters to provide two separate sources 

of controlled DC voltages; two FB Class-D inverters to operate with different duty cycles; two 

isolation transformers to add up the differential switch-node signals; a dsPIC controller to 

control the DC-DC converters and provide phase-shift and duty cycle controllable gate signals 

to the inverters; output EMI filter to eliminate high-frequency harmonics; and RF load. The 

load is single-ended as the isolation transformer is utilized between the inverter and EMI filter. 

 

5.5.1 PCB Layout of the Multi-MHz Multi-Level Inverter 

A 6-layer PCB is built for the purpose of practical implementation of this system. Figure 5-15 

shows the fully populated PCB with the different blocks highlighted.  

 

Figure 5-15: Multi-level prototype PCB implementation, 204 mm × 189 mm 
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The same design practice explained in Section 4.4 to achieve low CSI and a very small power 

loop is deployed here in the design of the PCB layout of both Class-D inverters. As the size 

of the PCB is relatively large at 13.56 MHz switching frequency, an attempt is made to match 

the transmission line impedance with the output load from the switch-nodes to the output 

connectors. Considering the two inverters as two single-ended power sources terminated to 

half of the output load (RL/2), both transmission lines are designed to match to 12.5 Ω for the 

entire path by proper selection of trace width and the thickness of the dielectric between the 

top layer and first internal layer.  

Except for the high-frequency isolated transformers, all the other blocks of the system 

presented in Figure 5-15 performed as expected according to the simulation and design 

specifications. The operational issues of the isolation transformers are explained in Section 

5.6. 

 

5.5.2 Experimental Results 

In this section, the multi-level inverter is tested at no-load and without the output EMI filter. 

The reason is related to the operational issues of the isolation transformers which will be 

discussed in Section 5.6 in detail. The test setup used for the system verification is presented 

in Figure 5-16.  
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Figure 5-16: Multi-level inverter experimental setup 

The voltage probes used for measuring the switch-nodes waveforms and transformer output 

voltage have 500 MHz bandwidth to provide more accurate measurements for harmonic 

analysis. The PC is used to send high-level commands to the dsPIC to control the DC voltage 

levels and gate signals’ duty cycles and phase shifts. Figure 5-17 shows the switch-nodes of 

the multi-level inverter with values of m and 𝛼 as provided in Table 5-1.  
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Figure 5-17: Multi-level inverter individual Switch-nodes, m = 0.54, α = 35.32°, VDC1 = 15V, and VDC2  = 

12.6V 

The stepped waveform of the output voltage of the transformer and related harmonic analysis 

are shown in Figure 5-18.  

 

Figure 5-18: Multi-level inverter output voltage waveform and harmonic analysis  
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Figure 5-18 shows that the level of both 3rd and 5th harmonics are significantly reduced as 

expected, based on the theoretical analysis and simulation results presented in Section 5.2 and 

Section 5.4. The normalized harmonic content of the output voltage of the multi-level inverter 

shown in Figure 5-18 are compared with the normalized results obtained in Section 4.5 for FB 

Class-D inverter, and the results are shown in Figure 5-19.  

 

Figure 5-19: Normalized output voltage harmonic comparison between multi-level and FB Class-D 

inverter using experimental results 

Figure 5-19 shows that the suppression capability of the multi-level inverter at 3rd and 5th 

harmonic of the output voltage is 23.8 dBV and 15.5 dBV higher than FB Class-D inverter. 
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5.6 Multi-MHz Isolation Transformer Design Issues 

In this section, the issues related to the design of a multi-MHz isolation transformer are 

discussed. The core used in this design is the Material 67 from Fair-rite company. The relative 

permeability of this material is 40 and it is designed to have very low core loss at applications 

in tens of MHz. The core characteristics provided by the manufacturer show that the core loss 

will remain in an acceptable range while being used in multi-MHz applications as long as the 

magnetic flux stays below the saturation level. Figure 5-20 shows the Smith Chart of the 

impedance measurement of the transformer with a frequency sweep from 1 MHz to 500 MHz 

and a 50 Ω load.   

 

Figure 5-20: Transformer input impedance on Smith Chart, secondary winding loaded with 50Ω  

The impedance Smith Chart provided in Figure 5-20 shows that the transformer has an 

acceptable inductive impedance level at 6.78 MHz which stays in the acceptable range up to 

20 MHz. The impedance increases with increasing frequency, demonstrating an acceptable 

behavior as it acts more or less like a filter. The analysis carried out on the design of the 
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transformer before the final PCB implementation was with the transformer loaded with 50 Ω 

load. When the board was built and populated with all the blocks, including the isolation 

transformers, it was noticed that the transformer performance was not as expected according 

to the impedance analysis. The voltage waveform on the output of the transformer had a large 

amplitude oscillation at about 66 MHz undamped frequency. After more careful consideration, 

it was realized that the frequency analysis of the transformer with a fixed load does not 

represent the practical scenario when the transformer is connected to the fixed load through 

the output EMI filter. The EMI filter block attached to the secondary side of the transformer 

presents a 50 Ω load to the transformer at resonant frequency but it transforms the load to an 

almost open circuit at all higher frequencies. As a result, a new impedance analysis was carried 

out to observe the impedance characteristic of the transformer while it is open-circuited or 

loaded with very high impedance at frequencies higher than the resonant frequency. The Smith 

Chart of this analysis obtained from Rohde and Schwarz VNA is presented in Figure 5-21. 

 

Figure 5-21: Transformer input impedance on Smith Chart, secondary winding open-circuited 
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Figure 5-21 shows that when the transformer is presented with a large impedance on its 

secondary side, it starts to self-resonate at 66.8 MHz which is the resonant frequency between 

the leakage inductance and inter-winding capacitance of the transformer winding. A more 

accurate model of the transformer was then developed to incorporate all the parasitic 

components. A simulation was then carried out using the detail transformer model attached to 

a Class-D inverter on the primary side and an output EMI filter and load on the secondary 

side. The circuit diagram of the detailed model developed in this section is presented in Figure 

5-22. The parameters of the detailed model of the transformer can be determined using short 

circuit and open circuit tests, and oscillation analysis. These parameters are measured on the 

isolation transformer built for the multi-level inverter prototype shown in Figure 5-1, and the 

measurement results are presented in Table 5-4.  

 

Figure 5-22: Isolation transformer detailed circuit modeling with parasitic components 
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Table 5-4: Isolation transformer electrical characteristic, material 67, toroid 7967001801, relative 

permeability (µr) = 40, diameter = 22.1 mm 

Description Parameter Value Comment 

Leakage inductance Ll 100 nH Measured using the short-circuit test 

Magnetizing inductance Lm 8.5 µH Measured using the open-circuit test 

Inter-winding capacitance Cw 28.3 pF 

Measured using self-resonant frequency at 66.8 

MHz (Figure 5-21) 

 

The simulated waveforms of the output voltage (vo) of the transformer with and without the 

effect of the EMI filter are presented in Figure 5-23.  

 

Figure 5-23: Simulating EMI filter impact on the isolation transformer output voltage (vo) waveform 

using the transformer detailed model 

The waveform presented in Figure 5-23 shows how the output EMI filter impedance 

transformation results in large oscillation on the output voltage of the transformer which is 

related to the frequency response of the transformer at no-load. The above analysis of the 
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issues related to the isolation transformer at muti-MHz operation requires detailed and further 

investigation. This was considered beyond the scope of the work and explains why the 

experimental results were performed for the no-load case. 

 

5.7 Summary 

In this chapter, after introducing the importance of harmonic suppression for achieving 

acceptable EMC performance, a mathematical analysis is presented for an ideal stepped 

waveform which can theoretically have zero levels at 3rd and 5th harmonics. Switching 

converters are not ideal and their output waveforms always suffer from these nonidealities. 

One of these nonideal conditions in switching converters is the effect of DT on the switch-

node voltage. Therefore, this effect on a stepped waveform is addressed next, and new 

mathematical analysis and formulation are provided to achieve unwanted harmonic 

elimination. An analysis is also done in this section to demonstrate the relationship between 

the modulation parameters of the stepped waveform and DT. A circuit diagram for a multi-

level inverter is then proposed to create the stepped waveform voltage on the output at 13.56 

MHz. Simulation is then carried out in LTSpice using the multi-level inverter circuit model, 

and soft-switching, harmonic elimination capability, and output power regulation using 

DDTC are investigated through simulation results. A prototype of the multi-level inverter is 

then built, and the system is experimentally tested to validate the simulation results. The 

experimental switch-node waveforms obtained from the multi-level inverter prototype are 

demonstrated to show the soft-switching performance of the inverter. The multi-level inverter 

capability for harmonic elimination is finally compared with that of the FB Class-D inverter. 
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The last section of this chapter addresses the practical issues of designing an isolation 

transformer at multi-MHz frequency. A detailed model is developed using the experimental 

measurements to simulate and analyze the behavior of the transformer while an EMI filter is 

attached to the output.  
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CHAPTER 6 

6 Conclusion and Future Works 

 

 

6.1 Conclusions 

The imminent need for transferring power wirelessly is bringing more resources to research 

in WPT systems and pushing the technology forward to make these systems cheaper, 

compact, reliable, safer, and more efficient. WPT systems are designed to operate at high 

frequency (hundreds of KHz, and multi-MHz) as this reduces the size of their transmitter 

and receiver electrodes and increases the physical range of their operation. As a result, the 

first challenge in developing these systems is to design efficient high-frequency DC/AC 

power inverters that can be used in the transmitter block. The high-efficiency power 

inverter makes it easier for the WPT system to meet the overall efficiency required for a 

power module. 
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Performance of the power inverter from the EMC perspective is the second challenge that 

determines if the inverter is suitable to be used in a WPT system. The EMI noise or the 

unwanted harmonics coming out of a power inverter finally find their way to radiate 

through the wireless link. A safe WPT system needs to pass EMC regulation, meaning that 

the harmonic contents of the output voltage of the power inverter need to be lower than a 

certain level. 

In this research, after providing a short overview of different inverter topologies and 

switching devices suitable to operate at the multi-MHz switching frequency, the design and 

development of two different Class-D based multi-MHz inverters that can be utilized on 

the transmitter of a WPT system are addressed.  

In the first step, a soft-switching FB Class-D inverter is simulated and the challenges of 

sustaining soft-switching during output power regulation are explained using behavioral 

analysis and simulation. Then, Dynamic Dead-Time Control (DDTC) approach is proposed 

to sustain soft-switching while controlling the output power. After presenting simulation 

results for the proposed approach, the experimental results obtained from a 13.56 MHz FB 

Class-D inverter prototype that is built for this purpose are presented to validate the 

theoretical assumption and simulation results. The experimental results prove that 

dynamically controlling the DT using the circuit proposed in this research can increase the 

overall efficiency of the inverter, reduce the temperature of the components and PCB, and 

reduce the voltage ringing on the switch-node waveforms. In the last part of this chapter, 

harmonic analysis is carried out to show that the high level of 3rd and 5th harmonic that exist 

on the output voltage of the FB Class-D inverter makes it inevitable to use a high-order or 

High-Quality (HQ) filter to meet EMC.  
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In the last chapter of this study, a multi-MHz multi-level inverter is developed that can 

eliminate the unwanted harmonics of the output voltage to a considerably lower level than 

the FB Class-D inverter. A mathematical analysis is carried out in the first step to show 

how a stepped waveform can have zero level on the 3rd and 5th harmonic of its fundamental 

frequency. As the DT in multi-MHz switching frequency covers an important portion of 

the switching cycle, a mathematical formulation that includes the effects of the DT on the 

modulation parameters of the stepped waveform is provided. Then, a set of modulation 

parameters is calculated for the stepped waveform at different DT values which can 

maintain zero levels of the unwanted 3rd and 5th harmonics. After introducing an inverter 

topology capable of making the stepped waveform on its output, the most practical DT 

value and related values of modulation parameters are used to simulate the inverter in 

LTSpice software. A full simulation is carried out to cover harmonic analysis and output 

power regulation of the multi-level inverter using DDTC, and the results are presented. A 

prototype PCB is then built and used for practical verification of the idea. Harmonic 

analysis is carried out on the experimental results obtained from the prototype in the next 

step. It is shown using the experimental results that the multi-level inverter can suppress 

the 3rd and 5th harmonics to much lower levels compared to FB Class-D inverter. This will, 

in turn, simplify the design of the output filter needed to meet EMC from a HQ resonant 

filter to a resonant filter with a much lower quality factor or even to a low pass filter. 

Finally, the design issues of the isolation transformer are addressed, and a detailed model 

for the multi-MHz isolation transformer is developed to explain the practical issues 

observed during the practical tests. 
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6.2 Contributions of the Thesis 

This research provides an overview of different types of WPT systems, and the challenges 

that need to be overcome to design multi-MHz power inverters that are capable of operating 

efficiently and with the least amount of harmonic in these systems. Two inverter topologies 

that can be used for this purpose are addressed and their performance is compared. Also, 

different families of the switches which can be used in the design of the multi-MHz 

inverters are covered. 

Behavioral analysis, mathematical formulation, and comprehensive simulation of a 13.56 

MHz FB Class-D inverter is provided in this research paving the road for the development 

section. The first important contribution of this work is proposing and experimentally 

developing the DDTC approach for sustaining the soft-switching of a multi-MHz Class-D 

inverter during output power control. The simulation analysis and experimental results 

obtained from the inverter prototype are essentially presented for the first time in the field 

of multi-MHz power inverters  

The second important contribution of this thesis is presented in Chapter 5. The detailed 

mathematical analysis of a stepped waveform including the effect of DT on the modulation 

parameters is fully addressed for the first time in the literature. The multi-MHz multi-level 

inverter PCB prototype is one-of-a-kind that is built during this research. The experimental 

results obtained from this prototype provide valuable insight into the practical feasibility of 

harmonic elimination in multi-MHz multi-level inverter designs. 
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6.3 Future Works 

The next step that can be considered as a continuation of this work is to increase the power 

density of the existing multi-MHz FB Class-D and multi-level inverter by going to higher 

switching frequency bands, i.e., 27.12 and 40.68 MHz. Although increasing the frequency 

will increase the switching loss and make the hardware design much more challenging, the 

higher switching frequency reduces the amount of inductance needed in the filtering stage 

to achieve the same filter quality factor. The most important challenges in going to these 

higher switching frequencies, however, are designing a low loss gate driver and bootstrap 

circuits for the top switches of the Class-D topology, and appropriately dealing with high-

frequency core loss of the inductors.  

Another interesting future topic related to the multi-MHz multi-level inverter is to utilize 

isolated DC-DC converter and have the inverter blocks operating on isolated system 

grounds. This helps to avoid the challenges regarding the design of isolation multi-MHz 

transformer explained in Section 5.6 and, instead, designing isolation transformers at much 

lower switching frequencies (i.e. KHz) for the isolated DC-DC converters. 

The next topic that can be considered in this field is the analysis and design of different 

EMI filter topologies that can be used exclusively on the output of multi-MHz inverters 

that are operating in the transmitter of WPT systems to achieve higher power density. 

Studying different filter topology, providing mathematical analysis, doing research on the 

component selection specifically the inductors, and proposing an optimized solution based 

on size and performance would have a great value in this field.  
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Another interesting topic in this filed is designing a multi-MHz inverter capable of handling 

a broad range of resistive, capacitive, and inductive loads. The system basically can consist 

of two internal inverters connected in parallel and controlled through their phase shift and 

individual input DC voltage. Soft-switching of the inverters, high-frequency 

instrumentation, load detection circuits, and the closed-loop control stability of the entire 

system are among the topics that can be investigated in this area, as well. 
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