


Abstract

Many infectious diseases have seasonal trends and exhibit variable periods of peak

seasonality. Understanding the population dynamics due to seasonal changes becomes

very important for predicting and controlling disease transmission risks. For some

directly transmitted and vector-borne diseases, the length of the incubation period

strongly depends on the temperature.

This thesis is devoted to the study of the global dynamics of some periodic epidem-

ic models with periodic incubation periods. We start with a classical SEIRS epidemic

model with a time-dependent latent period in Chapter 2. Moreover, vector-borne dis-

eases, such as West Nile virus, bluetongue, and malaria, are always highly dependent

on seasonal change, especially the temperature. To investigate the seasonal effects and

temperature-dependent delays on West Nile virus, we present a periodic functional

differential equations model with the vertical transmission, the periodic maturation

delay, and the periodic extrinsic incubation period in Chapter 3. In Chapter 4, we

propose a bluetongue model with seasonality and temperature-dependent incubation

period, which describes the dynamics of bluetongue transmission via cattle and sheep

as hosts and midges as vectors. To explore the effects of the spatial and temporal

heterogeneity in hosts and vectors, and only vector movements on the spread of blue-

tongue, we develop a nonlocal periodic reaction-diffusion model of bluetongue disease

with periodic time delays in Chapter 5.

Based on the theory of the basic reproduction ratio, we derive and numerically

compute the basic reproduction ratio for our models. By the theory of dynamical

systems, we show that the basic reproduction ratio acts as a threshold parameter for

the global dynamics for each model. Numerical simulations or case studies are carried

out to illustrate the analytic results and help us provide some new findings. At the

end of this thesis, we present a brief summary and some interesting future works.
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Lay summary

The emergence or resurgence of the directly transmitted diseases and vector-borne

diseases of humans or animals has brought serious consequences for human and ani-

mal health, and economics, and is taking more and more attention in mathematical

epidemiology. This thesis focuses on the global dynamics of four periodic disease

models with time-dependent delays.

To understand the seasonality of disease, we first considered a periodic SEIRS

epidemic model with a periodic time delay. We then derived the basic reproduction

ratio and obtained that it acts as a threshold parameter for the uniform persistence

and global extinction of the disease. For vector-borne diseases, we considered a peri-

odic West Nile virus model with the vertical transmission, periodic maturation delay

and periodic extrinsic incubation period (EIP). We studied its global dynamics and

conducted a case study in Orange County, California, USA. We showed that the

model-simulated result matches with the reported data well.

Moreover, we presented a bluetongue transmission model accounting for midges

with a time-dependent EIP as vectors, and cattle and sheep as hosts. We derived the

basic sheep/midges reproduction ratio, the basic reproduction ratio without sheep,

and the basic disease reproduction ratio for the whole system, which serve as importan-

t threshold parameters for the persistence and extinction of the disease (population).

Bluetongue affects the life cycles of two host species very differently. Then uniform

disease persistence occurs in two different scenarios, which are distinguished by the

basic reproduction ratio without sheep. Further, we incorporated the spatial hetero-

geneous structure and temperature-dependent EIP into a nonlocal reaction-diffusion

model. We established its global dynamics in terms of the basic reproduction ratio.

Numerically, we studied the bluetongue transmission in Corsica Island, France, and

investigated the impact of some model parameters on the basic reproduction ratio.
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Chapter 1

Preliminaries

In this chapter, we introduce some terminologies and known results which will be

used in this thesis. They are involved in chain transitivity, global attractor, uniform

persistence, monotone dynamics, and the theory of basic reproduction ratio.

1.1 Chain transitivity and global attractor

Let X be a metric space with metric d and f : X → X a continuous map. For

a nonempty invariant set M (i.e., f(M) = M), the set W s(M) := {x ∈ X :

limn→∞ d(fn(x),M) = 0} is called the stable set of M . The omega limit set of x

is defined as ω(x) = {y ∈ X : fnk(x) → y, for some nk → +∞}. A negative orbit

through x = x0 is a sequence γ−(x) = {xk}
0
−∞ such that f(xk−1) = f(xk) for integers

k ≤ 0. If γ+(x) = {fn(x) : n ≥ 0} (γ−(x)) is precompact (i.e., it is contained in a

compact set), then ω(x) is nonempty, compact, and invariant [151, Section 1.1].

Recall that for any subsets A,B ⊆ X, we define d(x,A) := infy∈A d(x, y) and

δ(B,A) := supx∈B d(x,A). The Kuratowski measure of noncompactness, α, is defined

by

α(B) = inf{r : B has a finite cover of diameter ≤ r},

for any bounded set B of X. A continuous map f : X → X is said to be compact

(completely continuous) is f maps any bounded set to a precompact set in X.

Lemma 1.1.1. [151, Lemma 1.1.2] The following statements are valid:
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(a) Let I ⊆ [0,∞) be unbounded, and {At}t∈I be a nonincreasing family of nonempty

closed subsets (i.e., t ≤ s implies At ⊆ As). Assume that α(At) → 0 as t→ ∞.

Then A∞ = ∩t≥0At is nonempty and compact, and δ(At, A∞) → 0 as t→ ∞.

(b) For each A ⊆ X and B ⊆ X, we have α(B) ≤ α(A) + δ(B,A).

For a subset B ⊆ X, let γ+(B) :=
⋃
m≥0 f

m(B) be the positive orbit of B for f ,

and

ω(B) :=
⋂

n≥0

⋃

m≥n

fm(B)

the omega limit set of B. We say that a subset A ⊆ X attracts a subset B ⊆ X for

f if limn→∞ δ(fn(B), A) = 0.

Definition 1.1.1. A continuous mapping f : X → X is said to be point dissipative if

there is a bounded set B0 in X such that B0 attracts each point in X; α-condensing

(α-contraction of order k, 0 ≤ k < 1) if f takes bounded sets to bounded sets and

α(f(B)) < α(B) (α(f(B)) < kα(B)) for any nonempty closed bounded set B ⊆ X

with α(B) > 0; α-contracting if limn→∞ α(fn(B)) = 0 for any bounded subset B ⊆

X; asymptotically smooth if for any nonempty closed bounded set B ⊆ X for which

f(B) ⊆ B, there is a compact set J ⊆ B such that J attracts B.

Definition 1.1.2. A subset A ⊆ X is said to be an attractor for f if A is nonempty,

compact, and invariant, and A attracts some open neighborhood U of itself; a global

attractor for f : X → X is an attractor that attracts every point in X; and a strong

global attractor for f if A attracts every bounded subset of X.

Definition 1.1.3. Let A ⊆ X be a nonempty invariant set. A is said to be internally

chain transitive if for any a, b ∈ A and any ǫ > 0, there is a finite sequence x1, . . . , xm

in A with x1 = a, xm = b such that d(f(xi), xi+1) < ǫ, 1 ≤ i ≤ m − 1. The sequence

{x1, . . . , xm} is called an ǫ-chain in A connecting a and b.

Lemma 1.1.2. [151, Lemma 1.2.1] Let f : X → X be a continuous map. Then the

omega (alpha) limit set of any precompact positive (negative) orbit is internally chain

transitive.

Definition 1.1.4. The process {Tn : X → X} is asymptotically autonomous if there

exists a continuous map S : X → X such that

nj → ∞, xj → x⇒ lim
j→∞

Snj
(xj) = S(x).

We also say that {Tn} is asymptotic to S.
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Lemma 1.1.3. [151, Lemma 1.2.2] Let Tn : X → X, n ≥ 0, be an asymptotically

autonomous discrete process with limit S : X → X. Then the omega limit set of any

precompact orbit of {Tn} is internally chain transitive for S.

Theorem 1.1.1. [151, Theorem 1.2.1] Let A be an attractor and C a compact

internally chain transitive set for f : X → X. If C ∩W s(A) 6= ∅, then C ⊆ A.

Theorem 1.1.2. [151, Theorem 1.2.2] Assume that each fixed point of f is an

isolated invariant set, that there is no cyclic chain of fixed points, and that every

precompact orbit converges to some fixed point of f . Then any compact internally

chain transitive set is a fixed point of f .

Theorem 1.1.3. [151, Theorem 1.1.3] Let f : X → X be a continuous map.

Assume that f is point dissipative on X, and one of the following condition holds:

(i) fn0 is compact for some integer n0 ≥ 1, or

(ii) f is asymptotically smooth, and for each bounded set B ⊆ X, there exists k =

k(B) ≥ 0 such that the positive orbit γ+(fk(B)) is bounded.

Then there is a strong global attractor A for f .

1.2 Uniform persistence and coexistence states

Let f : X → X be a continuous map and X0 ⊆ X an open set. Define ∂X0 := X \X0,

and M∂ := {x ∈ ∂X0 : fn(x) ∈ ∂X0, n ≥ 0}, which may be empty.

Theorem 1.2.1. [151, Theorem 1.3.1 and Remark 1.3.1] Assume that

(C1) f(X0) ⊆ X0 and f has a global attractor A;

(C2) There exists a finite sequence M = {M1, . . . ,Mk} of disjoint, compact, and

isloated invariant sets in ∂X0 such that

(a) Ω(M∂) := ∪x∈M∂
ω(x) ⊆ ∪ki=1Mi;

(b) No subset of M forms a cycle in ∂X0;

(c) Each Mi is isolated in X;
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(d) W s(Mi) ∩X0 = ∅ for each 1 ≤ i ≤ k.

Then there exists δ > 0 such that for any compact internally chain transitive set L

with L 6⊆Mi for all 1 ≤ i ≤ k, we have infx∈L d(x, ∂X0) > δ.

Definition 1.2.1. A function f : X → X is said to be uniformly persistent with

respect to (X0, ∂X0) if there exists η > 0 such that lim infn→∞ d(fn(x), ∂X0) ≥ η for

all x ∈ X0. If “ inf ”in this inequality is replaced with “ sup ”, then f is said to be

weakly uniformly persistent with respect to (X0, ∂X0).

Theorem 1.2.2. [151, Theorem 1.3.3] Let f : X → X be a continuous map with

f(X0) ⊆ X0. Assume that f has a global attractor A. Then weak uniform persistence

implies uniform persistence.

Theorem 1.2.3. [151, Theorem 1.3.6] Assume that f is asymptotically smooth

and uniformly persistent with respect to (X0, ∂X0), and that f has a global attractor

A. Then f : (X0, d) → (X0, d) has a global attractor A0. Moreover, if a subset B

of X0 has the property that γ+(fk(B)) is strongly bounded for some k ≥ 0, then A0

attracts B for f .

In order to establish the existence of coexistence steady state (i.e., the fixed point

in X0) for uniformly persistent dynamical systems, we always assume that X is a

closed subset of a Banach space E, and that X0 is a convex and relatively open subset

of X. Then ∂X0 := X \X0 is relatively closed in X.

Theorem 1.2.4. [151, Theorem 1.3.8] Assume that f is α-condensing. If f :

X0 → X0 has a global attractor A0, then f has a fixed point x0 ∈ A0.

Theorem 1.2.5. [151, Theorem 1.3.10] Assume that

(1) f is point dissipative and uniformly persistent with respect to (X0, ∂X0);

(2) One of the following two conditions holds:

(i) fn0 is compact for some integer n0 ≥ 1, or

(ii) Positive orbits of compact subsets of X are bounded;

(3) f is α-condensing.
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Then f : X0 → X0 admits a global attractor A0, and f has a fixed point in A0.

Remark 1.2.1. Theorems 1.2.4 and 1.2.5 are still valid if we assume that X is an

open subset of a Banach space E and f : X → X is α-condensing.

Let X be a metric space with metric d, and let ω > 0. A family of mappings

Φ(t) : X → X, t ≥ 0, is called an ω-periodic semiflow on X if it admits the following

properties:

(i) Φ(0) = I, where I is the identity map on X;

(ii) Φ(t+ ω) = Φ(t) ◦ Φ(ω), ∀t ≥ 0;

(iii) Φ(t)x is continuous in (t, x) ∈ [0,∞) ×X.

The mapping Φ(ω) is called the Poincaré map associated with this periodic semiflow.

In particular, if (ii) holds for any ω > 0, Φ(t) is called an autonomous semiflow.

Definition 1.2.2. A periodic semiflow Φ(t) is said to be uniformly persistent with

respect to (X0, ∂X0) if there exists η > 0 such that for any x ∈ X0,

lim inf
t→∞

d(Φ(t)x, ∂X0) ≥ η.

Theorem 1.2.6. [151, Theorem 3.1.1] Let Φ(t) be an ω-periodic semiflow on X

with Φ(t)X0 ⊆ X0, t ≥ 0, and Φ = Φ(ω). Assume that Φ : X → X is asymptotically

smooth and has a global attractor. Then uniform persistence of Φ with respect to

(X0, ∂X0) implies that of Φ : X → X. More precisely, Φ(t) : X0 → X0 admits a

global attractor A0 ⊆ X0, and the compact set A∗
0 =

⋃
0≤t≤ω Φ(t)A0 ⊆ X0 attracts

every point in X0 for Φ(t) in the sense that lim inft→∞ d(Φ(t)x,A∗
0) = 0 for any

x ∈ X0.

1.3 Monotone dynamics

In this section, we present the comparison principles for ordinary differential equa-

tions, delay differential equations and reaction-diffusion equations, and the theories

of global attractivity and convergence.
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1.3.1 The comparison principle

For x, y ∈ R
n, we write

x ≤ y ⇔ xi ≤ yi ∀ i ∈ N and x≪ y ⇔ xi < yi ∀ i ∈ N,

where N = {1, . . . , n}. The spaces AC(J) and L(J) consist of all functions from J to

R
n that are absolutely continuous or integrable in J , respectively. Here and below,

J = [a, b], J0 = (a, b]. A measurable set M ⊆ J is said to be dense at a if the set

M ∩ [a, a + ǫ] has positive measure for every ǫ > 0. For measurable vector-valued

functions ϕ, ψ we write ϕ≪ ψ at a+ if the set {t ∈ J : ϕ(t) ≪ ψ(t)} is dense at a.

Consider the nonlinear equation

∂u(t)

∂t
= f(t, u(t)) a.e. in J (1.1)

and assume for simplilcity that f(t, x) is defined in the strip S = J ×R
n and satisfies

the following conditions: f(t, ·) is continuous in R
n for almost all (fixed) t ∈ J , f(·, x)

is measurable in J for all (fixed) x ∈ R
n, f(·, 0) ∈ L(R), and for each constant A > 0

there is a function m(·) ∈ L(J) such that

|f(t, x) − f(t, y)| ≤ m(t)|x− y| for t ∈ J and |x|, |y| ≤ A.

The defect P of a function v ∈ AC(J) with respect to equation (1.1) is defined by

(Pv)(t) = v′(t) − f(t, v(t)).

The function f is said to be quasimonotone increasing in x if fi(t, x) is (weakly)

increasing in xj for all j 6= i, or equivalently, if

x ≤ y, xi = yi ⇒ fi(t, x) ≤ fi(t, y) a.e. in J (i = 1, . . . , n).

Theorem 1.3.1. [131, Theorem 4] Assume that the function f(t, x) satisfies the con-

ditions given above and is quasimonotone inceasing in x, and let v, w ∈ AC(J) satisfy

v(a) ≤ w(a) and Pv ≤ Pw a.e. in J.

Then each of the following conditions is sufficient for the strong inequality v ≪ w in

J0:

(i) v(a) ≪ w(a);
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(ii) Pv ≪ Pw at a+;

(iii) For every pair (α, β) of nonempty, disjoint index sets with α ∪ β = N , there

are j ∈ β, k ∈ α such that fj(t, x) is strictly increasing in xk for t ∈ M,x ∈ U ,

where M ⊆ J is dense at a and U is a neighborhood of v(a).

For a given τ > 0, let C = C([−τ, 0],Rn) and C+ = C([−τ, 0],Rn
+). Then (C,C+)

is an order Banach space equipped with the maximum norm ‖φ‖ = maxθ∈[−τ,0] ‖φ(θ)‖Rn ,

∀φ ∈ C. For any given continuous function u : [−τ, σ) → R with σ > 0, we define

ut ∈ C by ut(θ) = u(t+ θ), ∀θ ∈ [−τ, 0], for any t ∈ [0, σ).

Consider the nonautonomous equation

du(t)

dt
= g(t, ut), (1.2)

where g : Ω → R
n is continuous on Ω, an open subset of R× C.

Equation (1.2) is a very general type of equation, for example, ordinary differential

equations (τ = 0) and delay differential equations

x(t) = g(t, x(t), x(t− τ1(t)), ..., x(t− τp(t)))

with 0 ≤ τj(t) ≤ τ , j = 1, 2, ..., p.

Definition 1.3.1. g is called quasimonotone if for any φ ≤ ψ with φi(0) = ψi(0) for

some integer i, then gi(t, φ) ≤ gi(t, ψ) for all t.

Theorem 1.3.2. [116, Theorem 5.1.1] Let g, h : Ω → R
n be continuous, Lipschitz

on each compact subset of Ω, and assume that either g or h satisfies quasimonotone

condition. Assume also that g(t, φ) ≤ h(t, φ) for all (t, φ) ∈ Ω. If (t0, φ), (t0, ψ) ∈ Ω

satisfy φ ≤ ψ, then

u(t, t0, φ, g) ≤ u(t, t0, ψ, h)

holds for all t ≥ t0 for which both are defined.

Consider a reaction-diffusion system with delays on Ω,

∂ui(t,x)
∂t

= di∆u
i(t, x) + gi(t, x, u

1
t (·, x), ..., unt (·, x)), t > a, x ∈ Ω,

αi(x)ui(t, x) + ki
∂ui(t,x)
∂ν

= βi(t, x), t > a, x ∈ ∂Ω,

ui(a+ θ, x) = φi(θ, x),−τ ≤ θ ≤ 0, x ∈ Ω,

(1.3)
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where Ω is a bounded domain in R
n with ∂Ω smooth, ∆ is the Laplacian operator

on Ω, and ∂
∂ν

is the outward normal derivative on ∂Ω, a ≥ 0 and i = 1, ..., n. It is

assumed that the coefficients in system (1.3) satisfy the following:

(a) There is a subset
∑

0 of {1, ..., n} such that di = 0 for all i ∈
∑

0 and di > 0

for all i ∈
∑c

0;

(b) αi : Ω̄ → [0,∞) is C1 and βi : [0,∞) × Ω̄ → R is C2 for i = 1, ..., n;

(c) If i ∈
∑c

0 then ki = 1 and if i ∈
∑

0 then αi = 0, di ≡ 0, and βi ≡ 0.

(1.4)

The underlying assumptions on g are as follows:

(a) g is continuous from [0,∞) × Ω̄ × Cn
Λ into R

n, where Cn
Λ = {φ ∈ C([−τ, 0],Rn) :

φ(θ) ∈ Λ, a closed convex subset of R
n, ∀ − τ ≤ θ ≤ 0};

(b) For each R > 0, there exist υ = υ(R) ∈ (0, 1] and L = L(R) ∈ (0,∞) such

that |gi(t, x, φ) − gi(s, x, ψ)| ≤ L(|t− s|υ +
∑n

j=1 |φj − ψj|), ∀t, s ∈ [0, R], x ∈ Ω̄,

φ, ψ ∈ C([−τ, 0],Rn) with ‖φ‖, ‖ψ‖ ≤ R, and i = 1, ..., n;

(c) limk→0+
1
k
d(φ(0) + kg(t, x, φ); Λ) = 0, ∀(t, x, φ) ∈ [0,∞) × Ω̄ × Cn

Λ.

(1.5)

Suppose v± = (v±i )n1 are continuously differentiable functions from [a− τ, c) × Ω̄ into

Λ, where a < c ≤ ∞, that they are C2 in x ∈ Ω, i ∈
∑c

0, and that

v−(t, x) ≤ v+(t, x), [v−(t, x), v+(t, x)] ⊆ Λ, ∀(t, x) ∈ [a− τ, c) × Ω̄.

Let g± = (g±i )n1 be continuous functions from [0,∞)× Ω̄×C([−τ, 0],Rn) into R
n and

assume the following differential inequalities are satisfied:

∂v+i (t,x)

∂t
≥ di∆v

+
i (t, x) + g+i (t, x, v+t (·, x)), a < t < c, x ∈ Ω,

αi(x)v+i (t, x) +
∂v+i (t,x)

∂ν
= β+

i (t, x) ≥ βi(t, x), a < t < c, x ∈ ∂Ω,

v+i (a+ θ, x) = φ+
i (θ, x) ≥ φi(θ, x),−τ ≤ θ ≤ 0, x ∈ Ω,

(1.6)

and
∂v−i (t,x)

∂t
≤ di∆v

−
i (t, x) + g−i (t, x, v−t (·, x)), a < t < c, x ∈ Ω,

αi(x)v−i (t, x) +
∂v−i (t,x)

∂ν
= β−

i (t, x) ≤ βi(t, x), a < t < c, x ∈ ∂Ω,

v−i (a+ θ, x) = φ−
i (θ, x) ≤ φi(θ, x),−τ ≤ θ ≤ 0, x ∈ Ω.

(1.7)

Proposition 1.3.1. [87, Proposition 1] Suppose that v± and f± are as in (1.6),

(1.7), and that (1.4) and (1.5) are satisfied with (1.5c) replaced by the following:

if k ∈ {1, ..., n} and (t, x, φ) ∈ [a, c) × Ω̄ × C([−τ, 0],Rn) with v−(t + θ, x) ≤ φ(θ) ≤
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v+(t+ θ, x) for all −τ ≤ θ ≤ 0, then

(a) φk(0) = v+k (t, x) implies that gk(t, x, φ) ≤ g+k (t, x, v+t (·, x)), and

(b) φk(0) = v−k (t, x) implies that gk(t, x, φ) ≥ g−k (t, x, v−t (·, x)).

Then system (1.3) has a unique noncontinuable mild solution u on [a, b), where b ≥ c,

and this solution satisfies

v−(t, x) ≤ u(x, t) ≤ v+(t, x), ∀(t, x) ∈ [a, c) × Ω̄.

1.3.2 Global attractivity and convergence

Let E be an ordered Banach space with positive cone P such that Int(P ) 6= ∅. For

any x, y ∈ E, we write x ≥ y if x − y ∈ P , x > y if x − y ∈ P \ {0}, and x ≫ y if

x− y ∈ Int(P ). If a < b, we define [a, b]E := {x ∈ E : a ≤ x ≤ b}.

Definition 1.3.2. A linear operator L : E → E is said to be positive if L(P ) ⊆ P ;

strongly positive if L(P \ {0}) ⊆ Int(P ).

Definition 1.3.3. Let E be a Banach space, K ⊆ E be a cone with K 6= {0}, and

L be a positive and bounded linear operator. r(L) is called the principal eigenvalue if

there exists some x ∈ K\{0} such that Lx = r(L)x.

Theorem 1.3.3. (Krein-Rutman theorem) [52, Theorems 7.1 and 7.2] As-

sume that a compact operator L : E → E is positive and r(L) is the spectral radius

of L. If r(L) > 0, then r(L) is an eigenvalue of L with an eigenfunction x > 0.

Moreover, if L is strongly positive, then r(L) > 0 and it is an algebraically simple

eigenvalue with an eigenfunction x≫ 0; there is no other eigenvalue with the associ-

ated eigenfunction x≫ 0; |λ| < r(L) for all eigenvalues λ 6= r(L).

Theorem 1.3.4. (Weak version of the Generalized Krein-Rutman theo-

rem) [98, Corollary 2.2] Let E be a Banach space with a total cone K ⊆ E (i.e.,

E = K −K), and L be a positive and bounded linear operator on E. If the essential

spectral radius re(L) of L is less than the spectral radius r(L) of L, then there exists

some x ∈ K\{0} such that Lx = r(L)x.

Theorem 1.3.5. (Generalized Krein-Rutman theorem) [98,151] Let E be a

Banach space, K ⊆ E be a cone with nonempty interior, and L : E → E be a strongly

positive and bounded linear operator. If re(L) < r(L), then r(L) is an algebraically
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simple eigenvalue of L with an eigenvector v ∈ Int(K), and all other eigenvalues of L

have their absolute values less than r(L).

Definition 1.3.4. Let U be a subset of E, and f : U → U a continuous map. The

map f is said to be monotone if x ≥ y implies that f(x) ≥ f(y); strictly monotone if

x > y implies that f(x) > f(y); strongly monotone if x > y implies that f(x) ≫ f(y).

Recall that a subset K of E is said to be order convex if [u, v]E ∈ K whenever

u, v ∈ K satisfy u < v.

Definition 1.3.5. Let U ⊆ P be a nonempty, closed and order convex set. A contin-

uous map f : U → U is said to be subhomogeneous if f(λx) ≥ λf(x) for any x ∈ U

and λ ∈ [0, 1]; strictly subhomogeneous if f(λx) > λf(x) for any x ∈ U with x ≫ 0

and λ ∈ (0, 1); strongly subhomogeneous if f(λx) ≫ λf(x) for any x ∈ U with x≫ 0

and λ ∈ (0, 1).

Denote the Fréchet derivative of f at u = a by Df(a) if it exists, and let r(Df(a))

be the spectral radius of the linear operator Df(a) : E → E.

Theorem 1.3.6. (Threshold dynamics) [151, Theorem 2.3.4] Let either V =

[0, b]E with b≫ 0 or V = P . Assume that

(1) f : V → V satisfies either

(i) f is monotone and strongly subhomogeneous, or

(ii) f is strongly monotone and strictly subhomogeneous;

(2) f : V → V is asymptotically smooth, and every positive orbit of f in V is

bounded;

(3) f(0) = 0, and Df(0) is compact and strongly positive.

Then exists threshold dynamics:

(a) If r(Df(0)) ≤ 1, then every positive orbit in V converges to 0.

(a) If r(Df(0)) > 1, then there exists a unique fixed point u∗ ≫ 0 in V such that

every positive orbit in V \ {0} converges to u∗.
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Theorem 1.3.7. [151, Generalized Arzela–Ascoli Theorem] Let a < b be two

real numbers and X be a complete metric space. Assume that a sequence of functions

{fn} in C([a, b], X) satisfies the following conditions:

(1) The family {fn(s)}n≥1 is uniformly bounded on [a, b];

(2) For each s ∈ [a, b], the set {fn(s) : n ≥ 1} is precompact in X;

(3) The family {fn(s)}n≥1 is equi-continuous on [a, b].

Then {fn} has a convergent subsequence in C([a, b], X), that is, there exists a subse-

quence of functions {fnk
(s)} which converges in X uniformly for s ∈ [a, b].

1.4 Basic reproduction ratio

The basic reproduction ratio (number) R0 is a very important parameter in population

biology. In epidemiology, R0 is the expected number of secondary cases produced,

in a completely susceptible population, by a typical infected individual during its

entire period of infectiousness [31]. R0 serves as a threshold value to measure the

effort needed to control the infectious disease and this threshold criterion states that

the disease can invade if R0 > 1, whereas it cannot if R0 < 1. Since then the

celebrated works by Diekmann, Heesterbeek and Metz [31] and by van den Driessche

and Watmough [129], there have been numerous works on the analysis of R0 for

various autonomous infectious disease models. To study the population models in

a periodic environment, several works about the theory and applications of R0 for

model systems have been proposed (see, e.g., [6–8, 58, 124, 133] and the references

therein). Recently, the theory of R0 has been developed for periodic and time-delayed

compartmental population models in [150]. And then Liang, Zhang and Zhao [75]

extended such a theory to abstract functional differential equations whose solution

maps may be noncompact. In this section, we present the theory of R0 for periodic

and time-delayed models developed by [75, 150] and the numerical algorithm for the

computation of R0.



12

1.4.1 Definition of R0

Let τ be a nonnegative real number and m be a positive integer, C = C([−τ, 0],Rm),

and C+ = C([−τ, 0],Rm
+ ). Then (C,C+) is an ordered Banach space equipped with

the maximum norm and the positive cone C+. Let F : R → L(C,Rm) be a map and

V (t) be a continuous m×m matrix function on R. Assume that F (t) and V (t) are ω-

periodic in t for some real number ω > 0. For a continuous function u : [−τ, σ) → R
m

with σ > 0, define ut ∈ C by

ut(θ) = u(t+ θ), ∀θ ∈ [−τ, 0]

for any t ∈ [0, σ).

We consider a linear and periodic functional differential system on C:

du(t)

dt
= F (t)ut − V (t)u(t), t ≥ 0. (1.8)

System (1.8) may come from the equations of infectious variables in the linearization of

a given ω-periodic and time-delayed compartmental epidemic model at a disease-free

ω-periodic solution. As such, m is the total number of the infectious compartments,

and the newly infected individuals at time t depend linearly on the infectious indi-

viduals over the time interval [t − τ, t], which is described by F (t)ut. Further, the

internal evolution of individuals in the infectious compartments (e.g., natural and

disease-induced deaths, and movements among compartments) is governed by the

linear ordinary differential system:

du(t)

dt
= −V (t)u(t). (1.9)

Let Φ(t, s), t ≥ s, be the evolution matrices associated with system (1.9), that is,

Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I, ∀s ∈ R,

and ω(Φ) be the exponential growth bound of Φ(t, s), that is,

ω(Φ) = inf
{
ω̃ : ∃M ≥ 1 such that ‖Φ(t+ s, s)‖ ≤Meω̃t, ∀s ∈ R, t ≥ 0

}
.

We assume that



13

(H1) Each operator F (t) : C → R
m is positive in the sense that F (t)C+ ⊆ R

m
+ .

(H2) Each matrix −V (t) is cooperative, and ω(Φ) < 0.

We supposed that the ω-periodic function v(t) is the initial distribution of in-

fectious individuals. For any given s ≥ 0, F (t − s)vt−s is the distribution of newly

infected individuals at time t− s, which is produced by the infectious individuals who

were introduced over the time interval [t− s− τ, t− s]. Then Φ(t, t− s)F (t− s)vt−s

is the distribution of those infected individuals who were newly infected at time t− s

and remain in the infected compartments at time t. It follows that
∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those

infectious individuals introduced at all previous time to t. Note that for any given s ≥

0, Φ(t, t−s)v(t, t−s) is the distribution of those infectious individuals at time t−s and

remain in the infected compartments at time t, and hence
∫∞

0
Φ(t, t−s)v(t−s)ds is the

distribution of accumulative infectious individuals who were introduced at all previous

time to t and remain in the infected compartments at time t. Thus, the distribution

of newly infected individuals at time t is F (t)
∫∞

0
Φ(t+ ·, t− s+ ·)v(t− s+ ·)ds.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R
m, which is equipped with the maximum norm and the positive cone

C+
ω := {v ∈ Cω : v(t) ≥ 0, ∀t ∈ R}. Then we define two linear operators on Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω,

and

[L̂v](t) = F (t)

∫ ∞

0

Φ(t+ ·, t− s+ ·)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.

Let A and B be two bounded linear operators on Cω defined by

[Av](t) =

∫ ∞

0

Φ(t, t− s)v(t− s)ds, [Bv](t) = F (t)vt, ∀t ∈ R, v ∈ Cω.

It then follows that L = A ◦ B and L̂ = B ◦ A, and hence L and L̂ have the same

spectral radius. Motivated by the concept of next generation operators (see, e.g., [8,31,

124,129,133,150]), we define the spectral radius of L and L̂ as the basic reproduction

number R0 := r(L) = r(L̂) for periodic system (1.8).
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Let P be the Poincaré map of system (1.8) on C, that is, Pφ = uω(φ), where

u(t, φ) is the unique solution of system (1.8) with u0 = φ. The following result shows

that R0 is a threshold value for the stability of the zero solution for periodic system

(1.8).

Theorem 1.4.1. [150, Theorem 2.1] Let (H1) and (H2) hold. The following state-

ments are valid:

(i) R0 = 1 if and only if r(P ) = 1.

(ii) R0 > 1 if and only if r(P ) > 1.

(iii) R0 < 1 if and only if r(P ) < 1.

Thus, R0 − 1 has the same sign as r(P ) − 1.

In the case where τ = 0, we have the following result for a periodic ordinary

differential system.

Lemma 1.4.1. [133, Lemma 2.2] The following statements are valid:

(i) If V (t) = diag(V1(t), ..., Vm(t)) and F (t) = diag(F1(t), ..., Fm(t)), then R0 =

max1≤i≤m{
[Fi]
[Vi]

}.

(ii) If V (t) = V and F (t) = F are constant matrices, then R0 = ρ(V −1F ) =

ρ(FV −1).

The above results in [150] can also be employed for the periodic and time-delayed

reaction-diffusion models whose solution maps are eventually compact. If solution

maps are noncompact, we need to use the following theory of R0 developed in [75].

Let X be a Banach space with a normal and reproducing cone X+, and X̃ be a

Banach space with X̃ →֒ X. Let τ ≥ 0 be a given number, and C = C([−τ, 0], X)

equipped with the maximum norm ‖ · ‖C and a positive cone C+ = C([−τ, 0], X+).

Let (V (t))0≤t≤w be a family of ω-periodic closed linear operators with the following

properties:

(i) D(V (t)) = X̃, ∀t ∈ [0, ω].
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(ii) There is some λ0 ∈ R such that {λ ∈ C : ℜeλ ≥ λ0} ⊆ ρ(−V (t)), ∀t ∈ [0, ω]

and ‖(λ+ V (t))−1‖X ≤ c
1+|λ|

, ∀λ ∈ C with ℜeλ ≥ λ0, ∀t ∈ [0, ω].

(iii) V (·) : [0, ω] → L(X̃,X) is Hölder continuous.

Assume that F (·) : R → L(C,X) is ω-periodic, F (t)φ is continuous jointly in (t, φ) ∈

R× C and the operator norm of F (t) is uniformly bounded for all t ∈ [0, ω].

We consider a linear and ω-periodic functional differential system:

du(t)

dt
= F (t)ut − V (t)u(t), t ≥ 0. (1.10)

Let Φ(t, s), t ≥ s, be the evolution operators associated with the following system

du(t)

dt
= −V (t)u(t). (1.11)

Let Cω(R, X) be the ordered Banach space of all continuous and ω-periodic functions

from R to X, with the maximum norm. Then we define two linear operators on

Cω(R, X) by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω(R, X),

and

[L̂v](t) = F (t)

∫ ∞

0

Φ(t+ ·, t− s+ ·)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω(R, X).

Similarly, we define the spectral radius of L and L̂ as the basic reproduction number

R0 := r(L) = r(L̂) for periodic system (1.10).

Let {U(t, s, λ) : t ≥ s} be the evolution operators on C of the following linear

periodic system with λ ∈ (0,+∞):

du(t)

dt
=

1

λ
F (t)ut − V (t)u(t), t ≥ 0. (1.12)

Then U(ω, 0, 1) = U(ω, 0) be the Poincaré map of system (1.10) on C. We present

the following assumptions:

(H1) Each operator F (t) : C → X is positive in the sense that F (t)C+ ⊆ X+.

(H2) Each operator −V (t) is resolvent positive in the sense that there is γ ∈ R such

that (γ,+∞) ⊆ ρ(−V (t)) and (λ+ V (t))−1 is positive λ > γ, and ω(Φ) < 0.
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(H3) The positive linear operator L possesses the principal eigenvalue.

(H4) The positive linear operators U(ω, 0, λ) possesses the isolated principal eigen-

value with finite multiplicity for any λ ∈ [0,+∞) whenever r(U(ω, 0, λ)) ≥ 1.

(H5) Either the principal eigenvalue of L is isolated, or there exists an integer n0 > 0

such that Ln0 is strongly positive.

(H6) Each operator Φ(t, s) is compact on X for t > s.

Note that under the assumptions (H1) and (H2), (H6) is sufficient for (H3)-(H5) to

hold.

Theorem 1.4.2. [75, Theorem 3.7] Let (H1)-(H5) hold. The following statements

are valid:

(i) R0 = 1 if and only if r(U(ω, 0)) = 1.

(ii) R0 > 1 if and only if r(U(ω, 0)) > 1.

(iii) R0 < 1 if and only if r(U(ω, 0)) < 1.

Thus, R0 − 1 has the same sign as r(U(ω, 0)) − 1.

1.4.2 Computation of R0

Theorem 1.4.3. [150, Theorem 2.2] and [75, Theorem 3.8] If R0 > 0, then

λ = R0 is the unique solution of r(U(ω, 0, λ)) = 1.

Lemma 1.4.2. [75, Lemma 2.5] Assume that (C,C+) is an ordered Banach space

with C+ being normal and Int(C+) 6= ∅, which is equipped with the norm ‖ · ‖C. Let L

be a positive bounded linear operator. Choose v0 ∈ Int(C+) and define an = ‖Lvn−1‖C,

vn = Lvn−1

an
, ∀n ≥ 1. If limn→∞ an exists, then r(L) = limn→∞ an.

For any given λ ∈ (0,+∞), we choose v0 ∈ Int(C+) and define

an = ‖U(ω, 0, λ)vn−1‖C , vn =
U(ω, 0, λ)vn−1

an
, ∀n ≥ 1.

By Lemma 1.4.2, it then follows that if limn→+∞ an exists, then r(U(ω, 0, λ)) =

limn→+∞ an. Thus, we can solve r(U(ω, 0, λ)) = 1 for λ numerically via the bisec-

tion method, which is an approximation of R0.



Chapter 2

A periodic SEIRS epidemic model

with a time-dependent latent

period

2.1 Introduction

Mathematical models provide powerful tools to explain and predict the spread of in-

fectious diseases, and to test control strategies. One of the earliest models in epidemi-

ology was introduced in 1937 [65]. Since then, numerous mathematical models for in-

fectious diseases have been described by autonomous systems of differential equations,

e.g., the dynamics of SIS, SIR, SIRS, SEI, SEIR and SEIRS epidemic models were

intensively investigated in the last few decades (see, e.g., [4,24,39,53,56,66,86,144]).

In fact, many diseases show seasonal behaviors (see, e.g., [3, 33, 38, 46]). From

[2,37,46,81,91,101], we have known that Ebola, measles, diphtheria, chickenpox, tu-

berculosis, influenza, cholera and malaria in humans, bluetongue in cattle and sheep,

viral haemorrhagic septicaemia and furunculosis in fish, are recognized as having sea-

sonal trends and show variable periods of peak seasonality. The causes of seasonal

patterns for different diseases are complex, such as temperature, humidity, photoperi-

od, host aggregation, and resource availability. For example, there is a strong relation-

ship between the seasonal outbreaks of meningococcal meningitis disease and climate,

e.g., wind speed and low absolute humidity affect respiratory transmission [119]. As
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mentioned in [34], the seasonal patterns of invasive pneumococcal disease in human-

s correlate with the photoperiod-dependent variation in host susceptibility and fall

aggregation among school children were considered. In [128], a mathematical model

of low pathogenic avian influenza dynamics that includes both time-varying environ-

mental effects and seasonal migration. In addition, unlike warm-blooded animals,

temperature has a particularly important influence on fish diseases in areas where

there is a wide amplitude in daily and seasonal temperature changes because it af-

fects the rate of metabolism, immunologic response, reproduction, amount of oxygen

dissolved in water, biological oxygen demand, toxicity of pollutants, and growth of

fish pathogens and parasites (see, e.g., [91, 104,117]).

Annual changes in host and parasite biology can generate outbreaks that occur

around the same time each year, and there is the growing awareness that seasonality

can cause population fluctuations ranging from annual cycles to multiyear oscillations,

and even chaotic dynamics (see, e.g., [1, 3, 5, 47]). It thus becomes natural to model

these diseases by incorporating periodic variations into epidemic models. For example,

Liu et al. [78] studied the global dynamics of a non-autonomous SEIR system for tu-

berculosis with seasonality by introducing a possible seasonal variation in pulmonary

tuberculosis. Towers et al. [125] proposed an SIR epidemic model with periodic trans-

mission rate to assess the efficacy of control strategies via antiviral drug treatment

during an outbreak of pandemic influenza. Zhang and Teng [149] considered a non-

autonomous SEIRS epidemic model and established some sufficient conditions for the

permanence and extinction of the disease. Later, Nakata and Kuniya [95] improved

the results in a periodic environment.

Cooke and Driessche [24] proposed an SEIRS epidemic model with two time de-

lays. Since then, a number of the dynamic behaviors of SEIRS epidemic models

with constant delays have been studied (see, e.g., [63, 102, 132, 146, 150]). Mean-

while, many population models with time-dependent delays have been developed (see,

e.g., [12,82,100,136,143]). Recently, Lou and Zhao [82] proposed a host-macroparasite

model with seasonal developmental durations and time-dependent delays, and studied

the global dynamics by introducing a periodic semiflow on a suitably chosen phase

space. Wang and Zhao [136] studied the global dynamics of a malaria transmission

model with a time-dependent incubation period by using the same theoretical ap-

proach as in [82]. Indeed, the latent (or incubation) periods of quite a few diseases

are related to seasonal changes. For some vector-borne diseases, there is considerable
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evidence to show that the extrinsic incubation period of the parasite is always sensi-

tive to temperature. Similarly, for the directly transmitted diseases, the length of the

latent period depends not only on the strength of the individual’s immune system,

but also on the climate changes, especially for the aquatic animal and plant disease

epidemics (see, e.g., [48, 57, 85, 91, 100]). For example, the incubation period for fish

furunculosis ranges probably from 2 to 4 days. However, at lower temperatures, the

incubation period may be extended by several weeks [48]. In [100], Omori and Adams

developed a mathematical model with time-dependent delays to analyse the effect

of seasonal temperature cycles on koi herpes virus (KHV) in common carp due to

the time delays depending on water temperature. Therefore, it is more reasonable to

incorporate this seasonally forced latent period into the disease transmission models.

Motivated by the above works, the purpose of this chapter is to develop a class

of periodic SEIRS epidemic models that, for the first time, incorporates the time-

dependent latent period. We will use the theoretical approach developed in [82] and

the theory of uniform persistence for periodic semiflows to study our model system.

The organization of the chapter is as follows. In Section 2.2, we formulate the

model and give the underlying assumptions. In Section 2.3, we introduce the basic

reproduction ratio R0 for the model system and show that R0 acts as a threshold

parameter for the uniform persistence and global extinction of the disease. In Section

2.4, some numerical simulations are presented to illustrate the main results.

2.2 Model formulation

In order to formulate the model, we first consider a classical SIRS epidemic model in

a population. Let N(t) be the total population number at time t which is divided

into three classes: susceptible population, infectious population, and recovered (or

removed) population (i.e., who have been infected and then removed from the possi-

bility of infection through the temporary immunity). Let S(t), I(t), and R(t) be the

total number of the susceptible, infectious, and recovered (or removed) populations

at time t, respectively. Anderson and May [4] proposed the following famous SIRS
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model:
dS(t)
dt

= Λ − βS(t)I(t) − µS(t) + αR(t),
dI(t)
dt

= βS(t)I(t) − (µ+ d+ γ)I(t),
dR(t)
dt

= γI(t) − µR(t) − αR(t).

(2.1)

Here the constant Λ is the recruitment rate, β is the disease transmission coefficient,

µ is the natural death rate of the population, d is the disease-induced death rate, γ

is the recovery rate of the infectious population, and α is the lose of immunity rate.

In fact, upon infection, the susceptible individuals become exposed for some dis-

eases (e.g., tuberculosis, influenza, measles, KHV epidemiology), that is, infected but

not yet infective. These individuals remain in the exposed class for a certain latent

period before becoming infective. Thus it is natural to introduce a latent delay into

system (2.1) and consider an SEIRS epidemic model. Let E(t) be the total number

of the exposed population at time t, and M(t) be the number of newly occurred in-

fectious population per unit time at time t. We assume that the latent period of the

disease is time-periodic due to the seasonal weather changes, denoted by τ(t). Moti-

vated by [78, 82, 88, 95, 100, 125, 136, 149], we propose the following evolution system

with general incidence rate:

dS(t)
dt

= Λ(t) − f(t, S(t), I(t)) − µ(t)S(t) + α(t)R(t),
dE(t)
dt

= f(t, S(t), I(t)) − µ(t)E(t) −M(t),
dI(t)
dt

= M(t) − (µ(t) + d(t) + γ(t))I(t),
dR(t)
dt

= γ(t)I(t) − µ(t)R(t) − α(t)R(t),

(2.2)

where Λ(t), µ(t), α(t), d(t), and γ(t) have the same biological meanings as Λ, µ, α,

d, and γ in system (2.1), respectively. The incidence function f(t, S, I) depends on

time t and variables S and I. In the following, we will use the same arguments as

in [96, 100].

Let q represent the development level of infection such that q increases at a time-

dependent rate κ(t) (i.e., dq/dt = κ(t)), and assume that q = qE = 0 at the transition

from S to E, and q = qI at the transition from E to I. The variable q describes how

complete the latency stage is. Let ρ(q, t) be the density of individuals with infection

development level q at time t. Then M(t) = κ(t)ρ(qI , t).

Let J(q, t) be the flux, in the direction of increasing q, of individuals with infection

development level q at time t. Thus, we have the following equation (see, e.g., [68])

∂ρ(q, t)

∂t
= −

∂J

∂q
− µ(t)ρ.
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Since J(q, t) = κ(t)ρ(q, t), we have

∂ρ(q, t)

∂t
= −

∂[κ(t)ρ(q, t)]

∂q
− µ(t)ρ(q, t). (2.3)

For the state E, system (2.3) has the boundary condition

ρ(qE, t) =
f(t, S(t), I(t))

κ(t)
.

In order to solve system (2.3) with the above boundary condition, we introduce a new

variable

η = h(t) := qE +

∫ t

0

κ(s)ds.

Let h−1(η) be the inverse function of h(t), and denote

ρ̂(q, η) = ρ(q, h−1(η)), µ̂(η) = µ(h−1(η)), κ̂(η) = κ(h−1(η)).

From system (2.3), we have

∂ρ̂(q, η)

∂η
= −

∂ρ̂(q, η)

∂q
−
µ̂(η)

κ̂(η)
ρ̂(q, η).

Let V (s) = ρ̂(s+ q − η, s). Then

dV (s)

ds
= −

µ̂(s)

κ̂(s)
V (s).

Since η − (q − qE) ≤ η, we have

V (η) = V (η − (q − qE))e
−

∫ η

η−(q−qE)
µ̂(s)
κ̂(s)

ds
.

Then

ρ̂(q, η) = ρ̂(qE, η − (q − qE))e
−

∫ η

η−(q−qE)
µ̂(s)
κ̂(s)

ds
.

Let τ(q, t) be the time taken to grow from infection development level qE to level q by

a individual who arrives at infection development level q at time t. Since dq/dt = κ(t),

we have

q − qE =

∫ t

t−τ(q,t)

κ(s)ds, (2.4)

and hence,

h(t− τ(q, t)) = qE +

∫ t−τ(q,t)

0

κ(s)ds = h(t) −

∫ t

t−τ(q,t)

κ(s)ds = h(t) − q + qE.



22

Letting s = h(r), we then obtain

∫ η

η−(q−qE)

µ̂(s)

κ̂(s)
ds =

∫ t

t−τ(q,t)

µ(r)dr.

It follows that

ρ(q, t) = ρ̂(q, h(t))

= ρ(qE, t− τ(q, t))e−
∫ t
t−τ(q,t) µ(r)dr

=
f(t− τ(q, t), S(t− τ(q, t)), I(t− τ(q, t)))

κ(t− τ(q, t))
e−

∫ t
t−τ(q,t) µ(r)dr.

Let τ(t) = τ(qI , t). Then we have

κ(t)ρ(qI , t) = f(t− τ(t), S(t− τ(t)), I(t− τ(t)))
κ(t)

κ(t− τ(t))
e−

∫ t
t−τ(t) µ(r)dr.

Letting q = qI and qE = 0 in (2.4), we then obtain

qI =

∫ t

t−τ(t)

κ(s)ds,

where κ(s) is ω-periodic in s. Clearly, τ(t) is an implicitly defined function of t. The

periodicity of κ(s) in s implies the periodicity of the delay τ(t) in time variable t.

Taking the derivative with respect to t, we have

1 − τ ′(t) =
κ(t)

κ(t− τ(t))
> 0.

Substituting M(t) = κ(t)ρ(qI , t) into system (2.2), we obtain the following system:

dS(t)
dt

= Λ(t) − f(t, S(t), I(t)) − µ(t)S(t) + α(t)R(t),
dE(t)
dt

= f(t, S(t), I(t)) − µ(t)E(t)

−(1 − τ ′(t))e−
∫ t
t−τ(t) µ(r)drf(t− τ(t), S(t− τ(t)), I(t− τ(t))),

dI(t)
dt

= (1 − τ ′(t))e−
∫ t
t−τ(t) µ(r)drf(t− τ(t), S(t− τ(t)), I(t− τ(t)))

−(µ(t) + d(t) + γ(t))I(t),
dR(t)
dt

= γ(t)I(t) − µ(t)R(t) − α(t)R(t).

(2.5)

We assume that f(t, S, I) and all these time-dependent coefficients are ω-periodic in

t for some real number ω > 0. Then it is easy to see that the function

a(t) := e−
∫ t
t−τ(t) µ(r)dr
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is also ω-periodic, and hence system (2.5) is an ω-periodic functional differential sys-

tem.

In view of biological meanings, we should impose the following compatibility con-

dition:

E(0) =

∫ 0

−τ(0)

e−
∫ 0
s
µ(r)drf(s, S(s), I(s))ds. (2.6)

By the uniqueness of solutions, we then have

E(t) =

∫ t

t−τ(t)

e−
∫ t
s
µ(r)drf(s, S(s), I(s))ds.

To study the evolution dynamics of system (2.5), we make the following assump-

tions:

(A1) Λ(t), µ(t), α(t), d(t), and γ(t) are all non-negative and continuous functions

with Λ(t) > 0,
∫ ω
0
µ(t)dt > 0, and

∫ ω
0
γ(t)dt > 0;

(A2) f(t, S, I) is a C1-function with the following properties:

(i) f(t, S, 0) ≡ 0, f(t, 0, I) ≡ 0, and ∂f(t,S,0)
∂I

is positive and non-decreasing for

all S > 0.

(ii) ∂f(t,S,I)
∂S

≥ 0 and f(t, S, I) ≤ ∂f(t,S,0)
∂I

I for all (t, S, I) ∈ R× R
2
+.

A prototypical example for incidence function is f(t, S, I) = β(t)SI
1+ε(t)I

with ε(t) ≥ 0.

2.3 Threshold dynamics

In this section, we first introduce the basic reproduction ratio R0 and then study

the global dynamics of system (2.5). Since the second equation of system (2.5) is

decoupled from the other equations, it suffices to study the following system:

dS(t)
dt

= Λ(t) − f(t, S(t), I(t)) − µ(t)S(t) + α(t)R(t),
dI(t)
dt

= (1 − τ ′(t))e−
∫ t
t−τ(t) µ(r)drf(t− τ(t), S(t− τ(t)), I(t− τ(t)))

−(µ(t) + d(t) + γ(t))I(t),
dR(t)
dt

= γ(t)I(t) − µ(t)R(t) − α(t)R(t).

(2.7)
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It is easy to see that the scalar linear periodic equation

dS(t)

dt
= Λ(t) − µ(t)S(t) (2.8)

has a unique positive ω-periodic solution

S∗(t) =

[∫ t

0

Λ(r)e
∫ r
0 µ(s)dsdr +

∫ ω
0

Λ(r)e
∫ r
0 µ(s)dsdr

e
∫ ω
0 µ(s)ds − 1

]
e−

∫ t
0 µ(s)ds,

which is globally stable in R.

Linearizing system (2.7) at the disease-free periodic solution (S∗(t), 0, 0), we obtain

the following periodic linear equation for the infective variable I:

dI(t)

dt
= c(t)I(t− τ(t)) − b(t)I(t), (2.9)

where c(t) = (1 − τ ′(t))a(t)∂f(t−τ(t),S
∗(t−τ(t)),0)
∂I

and b(t) = µ(t) + d(t) + γ(t).

Let τ̂ = max0≤t≤ωτ(t), C = C([−τ̂ , 0],R), and C+ = C([−τ̂ , 0],R+). Then (C,C+)

is an ordered Banach space equipped with the maximum norm and the positive cone

C+. For any given continuous function v : [−τ̂ , σ) −→ R with σ > 0, we define vt ∈ C

by vt(θ) = v(t + θ), ∀θ ∈ [−τ̂ , 0], for any t ∈ [0, σ). Let F : R −→ L(C,R) be a map

and V (t) be a continuous function on R defined as follows:

F (t)φ = c(t)φ(−τ(t)), V (t) = b(t).

Then the linear system (2.9) can be written as

dv(t)

dt
= F (t)vt − V (t)v(t).

Then the internal evolution of infective compartment I is described by the following

evolution system
dv(t)

dt
= −V (t)v(t).

Let Φ(t, s), t ≥ s, be the evolution operator of the above linear system, that is, Φ(t)

satisfies
∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I, ∀s ∈ R.

It then easily follows that

Φ(t, s) = e−
∫ t
s
b(r)dr, ∀t ≥ s, s ∈ R.
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Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R, equipped with the maximum norm and the positive cone C+
ω = {v ∈

Cω : v(t) ≥ 0, ∀t ∈ R}.

Suppose that v ∈ Cω is the initial distribution of infectious individuals. Then for

any given s ≥ 0, F (t − s)vt−s is the distribution of newly infectious individuals at

time t− s, which is produced by the infectious individuals who were introduced over

the time interval [t− s− τ̂ , t− s]. Then Φ(t, t− s)F (t− s)vt−s is the distribution of

those infectious individuals who newly became infectious at time t− s and remain in

the infectious compartments at time t. It follows that
∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infectious at time t produced by all those

infectious individuals introduced at all previous time to t.

We define the next generation operator L : Cω −→ Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.

Following [150], we define R0 = r(L), the spectral radius of L. For any given t ≥ 0,

let P̂ (t) be the solution map of system (2.9), that is, P̂ (t)ψ = ut(ψ), where u(t, ψ) is

the unique solution of system (2.9) with u0 = ψ ∈ C. Then P̂ := P̂ (ω) is the Poincaré

(period) map associated with linear system (2.9). Let r(P̂ ) be the spectral radius of

P̂ . In view of Theorem 1.4.1, we have the following result.

Lemma 2.3.1. R0 − 1 has the same sign as r(P̂ ) − 1.

Let X = C([−τ̂ , 0],R3
+). Then we have the following result for system (2.7).

Lemma 2.3.2. For any ϕ ∈ X, system (2.7) has a unique nonnegative solution u(t, ϕ)

with u0 = ϕ for all t ≥ 0, and solutions are also ultimately bounded.

Proof. For any ϕ = (ϕ1, ϕ2, ϕ3) ∈ X, we define

f̃(t, ϕ) =




Λ(t) − f(t, ϕ1(0), ϕ2(0)) − µ(t)ϕ1(0) + α(t)ϕ3(0)

(1 − τ ′(t))e−
∫ t
t−τ(t) µ(r)drf(t− τ(t), ϕ1(−τ(t)), ϕ2(−τ(t)))

−(µ(t) + d(t) + γ(t))ϕ2(0)

γ(t)ϕ2(0) − µ(t)ϕ3(0) − α(t)ϕ3(0)



.
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Note that f̃(t, ϕ) is continuous in (t, ϕ) ∈ R+ × X and f̃(t, ϕ) is Lipschitz in ϕ on

each compact subset of X. By [50, Theorems 2.2.1 and 2.2.3], it then follows that

system (2.7) has a unique solution u(t, ϕ) on its maximal interval [0, σϕ) of existence

with u0 = ϕ.

Let ϕ = (ϕ1, ϕ2, ϕ3) ∈ X be given. If ϕi(0) = 0 for some i ∈ {1, 2, 3}, then

f̃i(t, ϕ) ≥ 0. By [116, Theorem 5.2.1], it follows that for any ϕ ∈ X, the solution

u(t, ϕ) of system (2.7) with u0 = ϕ is nonnegative for all t ∈ [0, σϕ). Define

D :=

{
ψ ∈ C([−τ̂ , 0],R4

+) : ψ2(0) =

∫ 0

−τ(0)

e−
∫ 0
s
µ(r)drf(s, ψ1(s), ψ3(s))ds

}
.

It then easily follows that for any ψ ∈ D, system (2.5) has a unique nonnegative

solution v(t, ψ) = (S(t), E(t), I(t), R(t)) satisfying v0 = ψ for all t ∈ [0, σϕ).

Let N(t) = S(t) + E(t) + I(t) +R(t). Then we have

dN(t)

dt
= Λ(t) − µ(t)N(t) − d(t)I(t) ≤ Λ(t) − µ(t)N(t),

for all t ∈ [0, σϕ). Thus, S(t), E(t), I(t), and R(t) are bounded on t ∈ [0, σϕ).

Therefore, [50, Theorem 2.3.1] implies that σϕ = ∞. It follows that

dN(t)

dt
= Λ(t) − µ(t)N(t) − d(t)I(t) ≤ Λ(t) − µ(t)N(t), t ≥ 0. (2.10)

Then the global attractivity of S∗(t) for system (2.8), together with the comparison

argument, implies that solutions of system (2.5) with initial data in D, and hence

system (2.7) in X, exist globally on [0,∞) and are also ultimately bounded.

Let

Y := C([−τ(0), 0],R2
+) × R+.

Lemma 2.3.3. For any ϕ ∈ Y , system (2.7) has a unique nonnegative solution u(t, ϕ)

with u0 = ϕ for all t ≥ 0.

Proof. Let τ̄ = mint∈[0,ω]τ(t). For any t ∈ [0, τ̄ ], since t− τ(t) is strictly increasing in

t, we have

−τ(0) = 0 − τ(0) ≤ t− τ(t) ≤ τ̄ − τ(τ̄) ≤ τ̄ − τ̄ = 0,

and hence,

S(t− τ(t)) = ϕ1(t− τ(t)) and I(t− τ(t)) = ϕ2(t− τ(t)).
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Therefore, we have the following ordinary differential equations for t ∈ [0, τ̄ ] :

dS(t)
dt

= Λ(t) − f(t, S(t), I(t)) − µ(t)S(t) + α(t)R(t),
dI(t)
dt

= (1 − τ ′(t))e−
∫ t
t−τ(t) µ(r)drf(t− τ(t), ϕ1(t− τ(t)), ϕ2(t− τ(t)))

−(µ(t) + d(t) + γ(t))I(t),
dR(t)
dt

= γ(t)I(t) − µ(t)R(t) − α(t)R(t).

Given ϕ ∈ Y , the solution (S(t), I(t), R(t)) of the above system exists for all t ∈ [0, τ̄ ].

In other words, we have obtained the values of ψ1(θ) := S(θ), ψ2(θ) := I(θ) for

θ ∈ [−τ(0), τ̄ ] and ψ3(θ) := R(θ) for θ ∈ [0, τ̄ ].

For any t ∈ [τ̄ , 2τ̄ ], we have

−τ(0) = 0 − τ(0) ≤ τ̄ − τ(τ̄) ≤ t− τ(t) ≤ 2τ̄ − τ(2τ̄) ≤ 2τ̄ − τ̄ = τ̄ ,

and hence,

S(t− τ(t)) = ψ1(t− τ(t)) and I(t− τ(t)) = ψ2(t− τ(t)).

Solving the following ordinary differential equations for t ∈ [τ̄ , 2τ̄ ] with S(τ̄) = ψ1(τ̄),

I(τ̄) = ψ2(τ̄), R(τ̄) = ψ3(τ̄),

dS(t)
dt

= Λ(t) − f(t, S(t), I(t)) − µ(t)S(t) + α(t)R(t),
dI(t)
dt

= (1 − τ ′(t))e−
∫ t
t−τ(t) µ(r)drf(t− τ(t), ψ1(t− τ(t)), ψ2(t− τ(t)))

−(µ(t) + d(t) + γ(t))I(t),
dR(t)
dt

= γ(t)I(t) − µ(t)R(t) − α(t)R(t),

we get the solution (S(t), I(t), R(t)) on [τ̄ , 2τ̄ ]. Repeating this procedure for t ∈

[2τ̄ , 3τ̄ ], [3τ̄ , 4τ̄ ],..., it then follows that for any ϕ ∈ Y , system (2.7) has a unique

solution u(t, ϕ) with u0 = ϕ for all t ≥ 0.

Remark 2.3.1. By the uniqueness of solutions in Lemmas 2.3.2 and 2.3.3, it follows

that for any ψ ∈ X and φ ∈ Y with ψ1(θ) = φ1(θ), ψ2(θ) = φ2(θ), for all θ ∈ [−τ(0), 0]

and ψ3 = φ3, we have w(t, ψ) = ν(t, φ) for all t ≥ 0, where w(t, ψ) and ν(t, φ) are

solutions of system (2.7) satisfying w0 = ψ and ν0 = φ, respectively.

Let

W = C([−τ(0), 0],R), W+ = C([−τ(0), 0],R+).

For any given t ≥ 0, let P (t) be the solution map of the scalar linear periodic system

(2.9) on W , that is, P (t)φ = vt(φ), t ≥ 0, where v(t, φ) is the unique solution of

system (2.9) satisfying v0 = φ ∈ W. By similar arguments to those in [82, Lemma

3.5], we have the following result.
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Lemma 2.3.4. P (t) is an ω-periodic semiflow on W in the sense that (i) P (0) = I;

(ii) P (t + ω) = P (t) ◦ P (ω) for all t ≥ 0; and (iii) P (t)φ is continuous in (t, φ) ∈

[0,∞) ×W.

Let P := P (ω) be the Poincaré map associated with system (2.9) on W and r(P )

be its spectral radius. We first prove that the solution map P (t) is monotone for each

t ≥ 0. For any given ϕ, ψ ∈ W with ϕ ≥ ψ, let v̄(t) = v(t, ϕ) and v(t) = v(t, ψ) be

the unique solution of system (2.9) with v̄0 = ϕ and v0 = ψ, respectively. Since

−τ(0) = 0 − τ(0) ≤ t− τ(t) ≤ τ̄ − τ(τ̄) ≤ τ̄ − τ̄ = 0, ∀t ∈ [0, τ̄ ],

we have

v̄(t− τ(t)) = ϕ(t− τ(t)) and v(t− τ(t)) = ψ(t− τ(t)), ∀t ∈ [0, τ̄ ].

Therefore, we have the following ordinary differential equations for ∀t ∈ [0, τ̄ ],

dI(t)
dt

= c(t)ϕ(t− τ(t)) − b(t)I(t),
dI(t)
dt

= c(t)ψ(t− τ(t)) − b(t)I(t).

Given ϕ, ψ ∈ W , the solution I(t) of the above equations exists for all t ∈ [0, τ̄ ].

In the view of v̄(0) = ϕ(0) ≥ ψ(0) = v(0), the comparison theorem for cooperative

ordinary differential systems implies that v̄(t) ≥ v(t) for all t ∈ [0, τ̄ ]. Repeating this

procedure for t ∈ [τ̄ , 2τ̄ ], [2τ̄ , 3τ̄ ],..., it follows that v(t, ϕ) ≥ v(t, ψ) for all t ∈ [0,∞).

This implies that the solution map P (t) is monotone for each t ≥ 0. Now we show

that the solution map P (t) is eventually strongly monotone.

Lemma 2.3.5. For any ϕ and ψ in W with ϕ > ψ (that is, ϕ ≥ ψ, but ϕ 6= ψ), the

solutions v̄(t) and v(t) of system (2.9) with v̄0 = ϕ and v0 = ψ, respectively, satisfy

v̄(t) > v(t) for all t ≥ τ̂ , and hence, P (t)ϕ≫ P (t)ψ in W for all t ≥ τ̂ + τ(0).

Proof. We first show that v̄(t0) > v(t0) for some t0 ∈ [0, τ̂ ]. Assume, by contradiction,

that v̄(t) = v(t) for all t ∈ [0, τ̂ ]. Then dv̄(t)
dt

= dv(t)
dt

for all t ∈ [0, τ̂ ], and hence,

dv̄(t)

dt
= (1−τ ′(t))a(t)

∂f(t− τ(t), S∗(t− τ(t)), 0)

∂v̄
v̄(t−τ(t))− (µ(t)+d(t)+γ(t))v̄(t),

dv(t)

dt
= (1−τ ′(t))a(t)

∂f(t− τ(t), S∗(t− τ(t)), 0)

∂v
v(t−τ(t))− (µ(t)+d(t)+γ(t))v(t),
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that is,

(1 − τ ′(t))a(t)
∂f(t− τ(t), S∗(t− τ(t)), 0)

∂v̄
[v̄(t− τ(t)) − v(t− τ(t))] = 0, ∀t ∈ [0, τ̂ ].

It follows that v̄(t − τ(t)) = v(t − τ(t)) for all t ∈ [0, τ̂ ]. Since −τ(0) = 0 − τ(0) ≤

t − τ(t) ≤ τ̂ − τ(τ̂), ∀t ∈ [0, τ̂ ], and τ̂ − τ(τ̂) ≥ 0, we have ϕ(θ) = ψ(θ) for all

θ ∈ [−τ(0), 0], which is a contradiction to the assumption ϕ > ψ in W .

Let

g(t, ξ) := (1 − τ ′(t))a(t)
∂f(t− τ(t), S∗(t− τ(t)), 0)

∂v
v(t− τ(t)) − (µ(t) + d(t) + γ(t))ξ.

By (A2), ∂f(t,S,0)
∂I

is positive for all S > 0. It then follows that for all t ≥ t0,

dv̄(t)

dt
=(1 − τ ′(t))a(t)

∂f(t− τ(t), S∗(t− τ(t)), 0)

∂v̄
v̄(t− τ(t))

− (µ(t) + d(t) + γ(t))v̄(t)

≥(1 − τ ′(t))a(t)
∂f(t− τ(t), S∗(t− τ(t)), 0)

∂v
v(t− τ(t))

− (µ(t) + d(t) + γ(t))v̄(t) = g(t, v̄(t)),

and hence,
dv̄(t)

dt
− g(t, v̄(t)) ≥ 0 =

dv(t)

dt
− g(t, v(t)), ∀t ≥ t0.

Since v̄(t0) > v(t0), the comparison theorem for ordinary differential equations (see

Theorem 1.3.1) implies that v̄(t) > v(t) for all t ≥ t0. Since t0 ∈ [0, τ̂ ], v̄(t) > v(t) for

all t ≥ τ̂ , and hence, P (t)ϕ≫ P (t)ψ for all t ≥ τ̂ + τ(0).

Let Q(t) be the solution maps of system (2.7) on Y , that is, Q(t)φ = νt(φ),

t ≥ 0, where ν(t, φ) is the unique solution of system (2.7) satisfying ν0 = φ ∈ Y. By

arguments similar to those in [82, Lemma 3.5], we have the following result.

Lemma 2.3.6. Q(t) is an ω-periodic semiflow on Y in the sense that (i) Q(0) = I; (ii)

Q(t+ω) = Q(t)◦Q(ω) for all t ≥ 0; and (iii) Q(t)φ is continuous in (t, φ) ∈ [0,∞)×Y.

We also need the following observation in our analysis of system (2.7).

Lemma 2.3.7. Assume that f(t) is a nonnegative continuous and ω-periodic function

on R+ with
∫ ω
0
f(t)dt > 0, and g(t) is a continuous function on R+. If limt→∞ g(t) =

0, then any solution u(t) of the linear non-homogeneous equation

u′(t) = −f(t)u(t) + g(t), t ≥ 0 (2.11)

satisfies limt→∞ u(t) = 0.
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Proof. Let U(t, s) = e−
∫ t
s
f(r)dr and M := 1

ω

∫ ω
0
f(t)dt. For any t ≥ s ≥ 0, letting

n =
[
t−s
ω

]
, we then have

∫ t

s

f(r)dr =

∫ s+nω

s

f(r)dr +

∫ t

s+nω

f(r)dr

=n

∫ ω

0

f(r)dr +

∫ t

s+nω

f(r)dr

=nωM +

∫ t−nω

s

f(r)dr.

Let K := eMω. Since M > 0 and nω ≤ t− s < (n+ 1)ω, it follows that

U(t, s) = e−nωMe−
∫ t−nω
s

f(r)dr ≤ e−(t−s−ω)M = Ke−M(t−s), ∀t ≥ s ≥ 0.

Let ε > 0 be given. Since limt→∞ g(t) = 0, there exists a sufficiently large t0 > 0

such that |g(t)| < ε, ∀t ≥ t0. It then follows that the solution u(t) of equation (2.11)

satisfies

u(t) = U(t, t0)u(t0) +

∫ t

t0

U(t, s)g(s)ds, ∀t ≥ t0,

and hence,

|u(t)| ≤Ke−M(t−t0)|u(t0)| + ε

∫ t

t0

Ke−M(t−s)ds

≤Ke−M(t−t0)|u(t0)| +
εK

M
(1 − e−M(t−t0)), ∀t ≥ t0.

This implies that limt→∞ u(t) = 0.

Now we are ready to prove the main result of this section.

Theorem 2.3.1. Let (A1) and (A2) hold. Then the following statements are valid:

(i) If r(P ) < 1, then the disease-free periodic solution (S∗(t), 0, 0) is globally attrac-

tive for system (2.7) in Y.

(ii) If r(P ) > 1, then system (2.7) admits a positive ω-periodic solution (S̄(t), Ī(t),

R̄(t)) and there exists a real number η > 0 such that for any φ ∈ Y with

φ2(0) > 0, the solution ν(t, φ) = (S(t), I(t), R(t)) satisfies lim inft→∞ I(t) ≥ η.



31

Proof. Our proof is motivated by the arguments in [150, Theorem 3.1]. By [50, The-

orem 3.6.1], it follows that for each t ≥ τ̂ , the linear operator P̂ (t) is compact on C,

and hence P (t) is also compact on W for any t ≥ τ̂ . In view of Lemma 2.3.5, P (t) is

strongly positive on W for any t ≥ τ̂ + τ(0). Thus, for any t ≥ τ̃ = τ̂ + τ(0), P (t) is

compact and strongly positive on W . Choose an integer n0 > 0 such that n0ω ≥ τ̃ .

Since P n0 = P (n0ω), [74, Lemma 3.1] implies that r(P ) is a simple eigenvalue of P

having a strongly positive eigenvector, and the modulus of any other eigenvalue is

less than r(P ). Let µ = ln r(P )
ω

. By [135, Lemma 1 ], it then follows that there is

a positive ω-periodic function v(t) such that u(t) = eµtv(t) is a positive solution of

linear equation (2.9).

In the case where r(P ) < 1, let Pǫ(t) be the solution maps of the following per-

turbed linear periodic equation on W :

dI(t)

dt
=(1 − τ ′(t))a(t)

∂f(t− τ(t), S∗(t− τ(t)) + ǫ, 0)

∂I
I(t− τ(t))

− (µ(t) + d(t) + γ(t))I(t), (2.12)

and Pǫ := Pǫ(ω). Since limǫ→0 r(Pǫ) = r(P ) < 1, we can fix a sufficiently small number

ǫ > 0 such that r(Pǫ) < 1. It is easy to verify that Pǫ(t) is also compact and strongly

monotone on W for each t ≥ τ̃ . As discussed above, there is a positive ω-periodic

function vǫ(t) such that uǫ(t) = eµǫtvǫ(t) is a positive solution of system (2.12), where

µǫ = ln r(Pǫ)
ω

< 0. Clearly, limt→∞ uǫ(t) = 0.

In view of (2.10) and the global attractivity of S∗(t) for system (2.8), there exists a

sufficiently large integer N1 > 0 such that N1ω ≥ τ̂ and S(t) ≤ S∗(t)+ǫ, ∀t ≥ N1ω−τ̂ .

By assumption (A2), we then have

dI(t)

dt
≤

(
(1 − τ ′(t))a(t)

∂f(t− τ(t), S∗(t− τ(t)) + ǫ, 0)

∂I
I(t− τ(t))

)

− (µ(t) + d(t) + γ(t))I(t),

for all t ≥ N1ω. Choose a sufficiently large number k > 0 such that I(t) ≤ kuǫ(t),

∀t ∈ [N1ω,N1ω + τ̂ ]. Thus, the comparison theorem for delay differential equations

(see Theorem 1.3.2) implies that I(t) ≤ kuǫ(t), ∀t ≥ N1ω+ τ̂ . Thus, limt→∞ I(t) = 0.

By Lemma 2.3.7 with f(t) = µ(t) + α(t) and g(t) = γ(t)I(t), as applied to the

third equation of system (2.7), it then follows that limt→∞R(t) = 0. Let w(t) :=

S(t) − S∗(t). In view of (2.7) and (2.8), we have

w′(t) = −µ(t)w(t) + (α(t)R(t) − f(t, S(t), I(t))).
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Since limt→∞ I(t) = 0 and limt→∞R(t) = 0, it follows that

lim
t→∞

(α(t)R(t) − f(t, S(t), I(t))) = 0.

Now Lemma 2.3.7 implies that limt→∞w(t) = 0, that is, limt→∞(S(t) − S∗(t)) = 0.

This proves statement (i).

In the case where r(P ) > 1, we will apply the persistence theory for periodic

semiflows. Let Y0 = {φ = (φ1, φ2, φ3) ∈ Y : φ2(0) > 0} and ∂Y0 := Y \Y0 = {φ =

(φ1, φ2, φ3) ∈ Y : φ2(0) = 0}. Let Q(t)φ = νt(φ), ∀φ ∈ Y . Then Q := Q(ω) is the

Poincaré map associated with system (2.7) on Y and Qn = Q(nω), ∀n ≥ 0.

From the second equation of system (2.7), it is easy to see that Q(t)Y0 ⊆ Y0 for all

t ≥ 0. By Lemma 2.3.2 and Remark 2.3.1, the discrete-time system {Qn : Y → Y }n≥0

is point dissipative. By [50, Theorem 3.6.1] and Remark 2.3.1, for each t ≥ τ̂ , Q(t)

is compact, and hence Qn is compact for sufficiently large n. It then follows from

Theorem 1.1.3 that Q admits a strong global attractor in Y . Now we prove that Q is

uniformly persistent with respect to (Y0, ∂Y0).

Let Mδ be the Poincaré map of the following perturbed linear periodic equation:

dI(t)

dt
=(1 − τ ′(t))a(t)

(
∂f(t− τ(t), S∗(t− τ(t)), 0)

∂I
− δ

)
I(t− τ(t))

− (µ(t) + d(t) + γ(t))I(t). (2.13)

Since limδ→0 r(Mδ) = r(P ) > 1, we can fix a sufficiently small δ such that r(Mδ) > 1.

It follows that there is a small number η0 > 0 such that

f(t− τ(t), S∗(t− τ(t)) − η0, I) ≥

(
∂f(t− τ(t), S∗(t− τ(t)), 0)

∂I
− δ

)
I, ∀I ∈ [0, η0].

Let M1 = (S∗
0 , 0, 0), where S∗

0(θ) = S∗(θ) for all θ ∈ [−τ(0), 0]. Then Q(t)M1 =

(S∗
t , 0, 0), ∀t ≥ 0, and Q(M1) = M1. Since limφ→M1 ‖Q(t)φ − Q(t)M1‖=0 uniformly

for t ∈ [0, ω], there exists η1 = η1(η0) > 0 such that for any φ ∈ Y0 with ‖φ−M1‖ < η1,

we have ‖Q(t)φ−Q(t)M1‖ < η0 for all t ∈ [0, ω]. We further have the following claim.

Claim. lim supn→∞ ‖Qn(φ) −M1‖ ≥ η1 for all φ ∈ Y0.

Suppose, by contradiction, that lim supn→∞ ‖Qn(ψ) −M1‖ < η1 for some ψ ∈ Y0.

Then there exists an integer N2 ≥ 1 such that ‖Qn(ψ)−M1‖ < η1 for all n ≥ N2. For

any t ≥ N2ω, we have t = nω + t′ with n ≥ N2 and t′ ∈ [0, ω], and hence,

‖Q(t)ψ −Q(t)M1‖ = ‖Q(t′)(Qn(ψ)) −Q(t′)M1‖ < η0, ∀t ≥ N2ω.
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It follows that S(t− τ(t)) > S∗(t− τ(t))− η0 for all t ≥ N2ω+ τ̂ . In view of (A2), we

see that f(t, S, I) is nondecreasing in S. Thus, ν(t, ψ) = (S(t), I(t), R(t)) satisfies

dI(t)

dt
=(1 − τ ′(t))a(t)f(t− τ(t), S(t− τ(t)), I(t− τ(t))) − (µ(t) + d(t) + γ(t))I(t)

≥(1 − τ ′(t))a(t)f(t− τ(t), S∗(t− τ(t)) − η0, I(t− τ(t)))

− (µ(t) + d(t) + γ(t))I(t)

≥(1 − τ ′(t))a(t)

(
∂f(t− τ(t), S∗(t− τ(t)), 0)

∂I
− δ

)
I(t− τ(t))

− (µ(t) + d(t) + γ(t))I(t),

for all t ≥ N2ω + τ̂ . Note that r(Mδ) > 1. As discussed earlier, there is a positive

ω-periodic function vδ(t) such that uδ(t) = eµδtvδ(t) is a positive solution of system

(2.13), where µδ = ln r(Mδ)
ω

> 0. Since Q(t)(Y0) ⊆ Y0, I(t) > 0 for all t ≥ 0. We can

choose a sufficiently small k > 0 such that I(t) ≥ kuδ(t), ∀t ∈ [N2ω+ τ̂ , N2ω+2τ̂ ]. By

the comparison theorem for delay differential equations (see Theorem 1.3.2), it follows

that I(t) ≥ kuδ(t), ∀t ≥ N2ω + 2τ̂ . Clearly, limt→∞ uδ(t) = ∞. Thus, limt→∞ I(t) =

∞, which is a contradiction.

The above claim implies that M1 is an isolated invariant set for Q in Y and

W S(M1)
⋂
Y0 = ∅, where W S(M1) is the stable set of M1 for Q. Define

M∂ := {φ ∈ ∂Y0 : Qn(φ) ∈ ∂Y0, ∀n ≥ 0}.

Since
dI(t)

dt
≥ −(µ(t) + d(t) + γ(t))I(t), ∀t ≥ 0,

it is easy to see that if I(t0) > 0 for some t0 ≥ 0, then I(t) > 0 for all t ≥ t0. This

implies that I(t) = 0, ∀t ≥ 0, whenever φ ∈ M∂ . It then follows that ω(φ) = M1 for

any φ ∈M∂ , and M1 cannot form a cycle for Q in ∂Y0. By the acyclicity theorem on

uniform persistence for maps (see Theorem 1.2.1 ), Q : Y → Y is uniformly persistent

with respect to (Y0, ∂Y0).

Define

X0 = {ψ = (ψ1, ψ2, ψ3) ∈ X : ψ2(0) > 0},

∂X0 := X\X0 = {ψ = (ψ1, ψ2, ψ3) ∈ X : ψ2(0) = 0}.

Let Q̂(t) be the solution maps of system (2.7) on X, that is, Q̂(t)ψ = wt(ψ), ∀t ≥ 0,

where w(t, ψ) is the unique solution of system (2.7) satisfying w0 = ψ ∈ X. Then
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Q̂ := Q̂(ω) is the Poincaré map associated with system (2.7) and Q̂n := Q̂(nω),

∀n ≥ 0.

From [50, Theorem 3.6.1], we know that Q̂(t) is compact on X for each t ≥ τ̂ , and

hence Q̂n is compact for sufficiently large n. By Lemma 2.3.2, solutions w(t, ψ) are

ultimately bounded on [0,∞), and hence, the discrete-time system {Q̂n : X → X}n≥0

is point dissipative. By Remark 2.3.1, it follows that Q̂ is uniformly persistent with

respect to (X0, ∂X0).

Note that for any integer n̂0 with n̂0ω ≥ τ̂ , Q̂n̂0 = Q̂(n̂0ω) : X → X is compact.

By [151, Theorem 3.5.1], Q̂(t) is an α-contraction with respect to an equivalent norm

in C([−τ̂ , 0],R3) for any t > 0. It then follows from Theorem 1.2.5 that there exists

a global attractor A for Q̂ : X0 → X0 and Q̂ has a fixed point ψ∗ ∈ A, and hence,

w(t, ψ∗) = (S̄(t), Ī(t), R̄(t)) is an ω-periodic solution of system (2.7) with ψ∗ ∈ X0.

By Remark 2.3.1, ν(t, φ∗) = (S̄(t), Ī(t), R̄(t)) is also an ω-periodic solution of system

(2.7) with φ∗ ∈ Y0, where φ∗
1(θ) = ψ∗

1(θ), φ∗
2(θ) = ψ∗

2(θ), for all θ ∈ [−τ(0), 0] and

φ∗
3 = ψ∗

3. Then S̄(t) ≥ 0, Ī(t) > 0 and R̄(t) ≥ 0.

We claim that there exists some t̄ ∈ [0, ω] such that S̄(t̄) > 0. If not, then S̄(t) ≡ 0

for all t ≥ 0, due to the periodicity of S̄(t). Since Λ(t) > 0 and f(t, 0, I) ≡ 0, we

see from the first equation of system (2.7) that 0 = Λ(t) + α(t)R̄(t) > 0, which is a

contradiction. Since S̄(t̄) > 0 for some t̄ ∈ [0, ω], and

dS̄(t)

dt
|S̄(t)=0 =Λ(t) − f(t, S̄(t), Ī(t)) − µ(t)S̄(t) + α(t)R̄(t)

=Λ(t) + α(t)R̄(t) > 0, ∀t ≥ t̄,

it follows that S̄(t) > 0 for all t ≥ t̄. Now the periodicity of S̄(t) implies that S̄(t) > 0

for all t ≥ 0. We claim that there exists some t̂ ∈ [0, ω] such that R̄(t̂) > 0. If not, then

R̄(t) ≡ 0 for all t ≥ 0, due to the periodicity of R̄(t). Since γ(t) ≥ 0 and
∫ ω
0
γ(t)dt > 0,

γ(t) 6≡ 0, the third equation of system (2.7) implies that 0 = γ(t)I(t) 6≡ 0 for all t ≥ 0,

which is a contradiction. Since R̄(t̂) > 0 for some t̂ ∈ [0, ω] and

dR̄(t)

dt
≥ −(µ(t) + α(t))R̄(t),

it follows that R̄(t) > 0 for all t ≥ t̂. Now the periodicity of R̄(t) implies that R̄(t) > 0

for all t ≥ 0. Therefore, ν(t, φ∗) = (S̄(t), Ī(t), R̄(t)) is a positive ω-periodic solution

of system (2.7) with φ∗ ∈ Y0.
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By Theorem 1.2.3, it then follows that Q : Y0 → Y0 has a global attractor A0.

Since A0 = Q(A0) = Q(ω)A0, we have φ2(0) > 0, ∀φ ∈ A0. Let B0 :=
⋃
t∈[0,ω]Q(t)A0.

Then ψ2(0) > 0 for all ψ ∈ B0. Moreover, B0 ⊆ Y0, and Theorem 1.2.6 implies that

limt→∞ d(Q(t)φ,B0) = 0 for all φ ∈ Y0. Define a continuous function p : Y → R+ by

p(φ) = φ2(0), ∀φ ∈ Y.

Since B0 is a compact subset of Y0, we have infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0. Conse-

quently, there exists η > 0 such that

lim inf
t→∞

I(t, φ) = lim inf
t→∞

p(Q(t)φ) ≥ η, ∀φ ∈ Y0.

This completes the proof.

By the same arguments as in [82, Lemma 3.8], we have r(P ) = r(P̂ ). Combining

Lemma 2.3.1 and Theorem 2.3.1, we have the following result on the global dynamics

of system (2.7).

Theorem 2.3.2. Let (A1) and (A2) hold. Then the following statements are valid

for system (2.7):

(i) If R0 < 1, then the disease-free periodic solution (S∗(t), 0, 0) is globally attractive

for system (2.7) in Y.

(ii) If R0 > 1, then system (2.7) admits a positive ω-periodic solution (S̄(t), Ī(t),

R̄(t)) and there exists a real number η > 0 such that for any φ ∈ Y with

φ2(0) > 0, the solution ν(t, φ) = (S(t), I(t), R(t)) satisfies lim inft→∞ I(t) ≥ η.

In the rest of this section, we derive the asymptotic behavior of the variable E(t)

in system (2.5). We have known that

E(t) =

∫ t

t−τ(t)

e−
∫ t
s
µ(r)drf(s, S(s), I(s))ds. (2.14)

In the case where R0 < 1, we have

lim
t→∞

[(S(t), I(t), R(t)) − (S∗(t), 0, 0)] = 0.

It then follows from equation (2.14) that limt→∞E(t) = 0.
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In the case where R0 > 1, we have known that system (2.7) admits a positive

ω-periodic solution (S̄(t), Ī(t), R̄(t)). By using the integral form (2.14), we obtain

Ē =

∫ t

t−τ(t)

e−
∫ t
s
µ(r)drf(s, S̄(s), Ī(s))ds

is also a positive ω-periodic function. Consequently, we have the following result on

the global dynamics of system (2.5).

Theorem 2.3.3. Let (A1) and (A2) hold. Then the following statements are valid

for system (2.5):

(i) If R0 < 1, then the disease-free periodic solution (S∗(t), 0, 0, 0) is globally attrac-

tive for system (2.5) in D.

(ii) If R0 > 1, then system (2.5) admits a positive ω-periodic solution (S̄(t), Ē(t),

Ī(t), R̄(t)) and there exists a real number η > 0 such that for any initial value φ ∈

D with φ3(0) > 0, the solution (S(t), E(t), I(t), R(t)) of system (2.5) satisfies

lim inf
t→∞

I(t) ≥ η.

2.4 Numerical simulations

To illustrate our results, in this section we apply our results to a special case and

reveal the influence of the periodic time delay.

Let us choose f(t, S, I) = β(t)SI
1+ε(t)I

and ω = 365 days. Based on the data of [88], we

take the following parameter values,

Λ(t) = 1000/25550(1 + 0.2 cos(2πt/365))day−1,

µ(t) = 1/25550(1 + 0.2 cos(2πt/365))day−1,

α(t) = 1/7(1 + 0.5 cos(2πt/365))day−1, γ(t) = 1/2.2(1 + 0.1 cos(2πt/365))day−1.

Any periodic function can be expressed as a sum of harmonic terms. For the sake of

convenience, we assume that the periodic time delay is τ(t) = 23(1+0.8 cos(2πt/365))

day, the disease-induced death rate is d(t) = 0.00079(1 + 0.2 cos(2πt/365)) day−1, the

transmission coefficient is β(t) = 0.0015(1+0.2 cos(2πt/365)) day−1, and ε(t) = 0.011.

It should be pointed out these parameters are chosen for illustrative purpose only, and

may not be meaningful biologically.
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Firstly, to compute the basic reproduction ratio R0 numerically, we apply Lemma

1.4.2. With the above set of parameters, we obtain R0 = 3.1263 > 1. When the initial

functions are chosen as S(θ) = 550, I(θ) = 1, R(0) = 50 for all θ ∈ [−τ̂ , 0], we calculate

E(0) ≈ 39.9441. The model is simulated by using ddesd in MATLAB software. In

this case, all compartments fluctuates periodically, which implies that the disease will

persist and exhibit periodic fluctuations eventually. Figure 2.1 illustrates the result

and is coincident with Theorem 2.3.3 (ii). In order to understand the seasonal patterns

of disease risk, we only consider the number of the infectious population in one year.

Figure 2.2 shows that the number of infectious individuals is expected to peak between

840th day (April) and 910th day (June). Hence control strategies should aim to lower

the number of infections during the course of a pandemic and postpone the timing

of the peaks so that people have enough time to take appropriate measures. If we

decrease the transmission coefficient to 0.2β(t), and the initial functions are chosen as

S(θ) = 550, I(θ) = 73, R(0) = 50 for all θ ∈ [−τ̂ , 0], and hence E(0) ≈ 327.0103, then

we calculate R0 = 0.6253 < 1. In this case, from Theorem 2.3.3 (i), the susceptible

population exhibits periodic fluctuations (constant as a special case), and the exposed,

infectious and recovered populations all converge to zero, which means that the disease

will be eliminated. Figure 2.3 illustrates the results above.

Secondly, we explore the influence of the transmission coefficient on R0. Let β(t) =

a(1 + b cos(2πt/365)), 0 ≤ b ≤ 1, where a is the mean contact rate and b is the

amplitude of fluctuations (or the strength of seasonal forcing). For fixed b = 0.2, R0

is strictly increasing with respect to the mean contact a from Figure 2.4. For fixed

a = 0.0015, R0 is decreasing with respect to the amplitude of fluctuations b from

Figure 2.5. That is, the basic reproduction ratio R0 depends not only on the mean

contact rate, but also on the amplitude of fluctuations. Then we see that R0 is highly

sensitive to β(t). This also shows that the transmission rate has an important role in

the spread of the disease. Clearly, by taking some control measures such as isolation

or vaccination effort, we assume that the control effort is k (0 ≤ k ≤ 1), that is, the

transmission rate becomes (1− k)β(t). If we can decrease the transmission coefficient

to 0.31β(t), then R0 < 1, which implies that the disease will die out, see Figure 2.6.

Thirdly, we define the time-averaged latent period as

[τ ] :=
1

ω

∫ ω

0

τ(t)dt.

It follows that [τ ] = 23 day. Figure 2.7 compares the long-term behavior of the
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infectious population of system (2.5) with different values of the latent period: the

periodic τ(t) and the constant [τ ]. Furthermore, fixed b = 0.2 and a = 0.0015,

Figures 2.8 and 2.9 compare the effect of periodic τ(t) and constant [τ ] on R0 in these

parameter values, respectively. This implies that the use of the time-averaged latent

period may underestimate or overestimate the value of R0.
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Figure 2.1: Long-term behavior of the solution of system (2.5) when R0 = 3.1263 > 1.

2.5 Discussion

In this chapter, we have proposed a class of periodic SEIRS epidemic models with

general incidence rate by incorporating seasonality into the model so that the param-

eters are periodic functions and the time-dependent delay describes the latent period.
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Figure 2.2: The curve of the number of the infectious population of system (2.5) when R0 =
3.1263 > 1 in one year.
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Figure 2.3: Long-term behavior of the solution of system (2.5) when R0 = 0.6253 < 1.
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Figure 2.4: R0 as a function of a for system (2.5)
fixed b = 0.2.
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fixed a = 0.0015.
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Figure 2.6: R0 as a function of k for system (2.5).
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Figure 2.7: Comparison of the long-term behav-
iors of the infectious population of system (2.5)
with different latent periods.
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Figure 2.8: R0 as a function of a for system (2.5)
with τ(t) and [τ ] when b = 0.2.
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By using the theory developed in [150], we have derived the basic reproduction ratio

R0 for our model system. Following the theoretical approach in [82], we define a new

phase space on which the periodic linear system (2.9) generates an eventually strong-

ly monotone periodic semiflow. By applying the theorem of uniform persistence for

periodic semiflows, we have obtained that the basic reproduction ratio R0 acts as a

threshold parameter for the uniform persistence and global extinction of the disease.

If R0 < 1, then the disease-free periodic solution is globally attractive and the disease

will be eliminated. If R0 > 1, then there is a positive periodic solution, and the disease

is uniformly persistent and exhibits seasonal fluctuations.

For periodic models with time-dependent delays, the numerical approximation of

R0 is challenging. We have numerically calculated R0 and explored the influences of

some key parameters in system (2.5) on R0. The numerical simulations about the

long-term behavior of solutions are consistent with the obtained analytic results. We

have observed that the increase of the transmission coefficient has a negative impact

for disease eradication. Therefore, we should make some measures to control disease

through decreasing the transmission coefficient for certain parameters.

Furthermore, we have found that there is a difference of the values of R0 between

the use of τ(t) and its average [τ ]. Using the time-averaged latent period may under-

estimate or overestimate the value of R0. Therefore, in order to find more effective

preventive measures during an outbreak of disease, the time-dependent latent delay

is important to be considered for some seasonal infectious diseases. Obviously, it is

important to acquire some epidemiologically realistic data and to investigate sensitiv-

ity studies for the parameters. From the practical viewpoint, our proposed periodic

SEIRS epidemic model may be used to understand and predict the outbreak of sea-

sonal infectious diseases.



Chapter 3

A West Nile virus model with

vertical transmission and periodic

time delays

3.1 Introduction

West Nile virus (WNV) is a flavivirus of emerging public health relevance. It is

transmitted among mosquitoes, birds, humans and other animals. Mosquitoes are

the vector of the virus and birds are its natural reservoir, whereas humans and other

vertebrates are dead-end hosts, that is, they can be infected by an infectious mosquito,

but they do not transmit the disease. Thus, in nature the virus is maintained in

enzootic cycles between bird reservoir hosts and mosquitoes [107]. The first WNV

case in the United States occurred at the Bronx Zoo, New York, in 1999 [60], and

then the virus subsequently spread into many US states and became endemic in few

years.

Only the adult female mosquitoes bite humans and animals in order to take blood

meals, and the male mosquitoes feed only on plant juices, nectar. Mosquitoes become

infected when they feed on infected birds. Infected mosquitoes then spread WNV to

humans and other animals by biting them. The WNV can also be passed via vertical

transmission from a mosquito to its offspring [10, 121] and this increases the survival

of WNV in nature. WNV transmission models involving vertical transmission have
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also been recently studied in [26, 36,93,140].

Compartmental models play an important role in understanding and predicting

WNV transmission trend. Much has been done in terms of modeling transmission dy-

namics of WNV. For example, Bowman et al. [16] formulated a single-season ordinary

differential equation model to assess the anti-WNV preventive strategies. Jiang et

al. [61,62] further analyzed this model and gave a complete classification of its global

dynamics. Liu et al. [79] also studied the directional dispersal of birds and its impact

on the virus spread. To take into account the movement of birds and mosquitoes,

Lewis et al. [71] developed a reaction-diffusion model for the spatial spread of WNV,

and they proved the existence of traveling waves and calculated the spatial spread

rate of infection for a simplified version of the model. Kou et al. [69] also studied

the local stability and Hopf bifurcation for a time-delayed WNV model. For other

works on the WNV transmission dynamics, we refer to [22,77,140] and the references

therein. However, the following three biological factors related to WNV transmission

seem to have received little attention:

(i) The effect of climate on the transmission of the virus spread. Temperature is a

particularly important factor for mosquitoes, as it directly affects rates of immature

development, survival of immature stages, adult size, adult longevity, blood feeding,

and fecundity of mosquitoes [23]. Although climate and weather strongly influence

the biology of vectors in different forms, few papers take into account the seasonality

of the species involved in the transmission. In [27], seasonality has been introduced by

simply assuming that the total mosquito population follows a sinusoidal fluctuation.

In [93], seasonal changes in host and vector densities have been considered, and over-

wintering of infection is assumed to occur through diapausing mosquito females, with

or without vertical transmission.

(ii) Maturation time. The mosquito life cycle is composed of four main life stages:

egg, larval, pupa and adult. The first three stages take place in the water, so they are

also known as immature stages or aquatic forms while adults (mature mosquitoes)

live on land in the air. It usually takes 1-2 weeks from eggs to adults, which is

large compared to the average life span (about 3 weeks) of an adult mosquito [36].

So it is important and necessary to consider the maturation time, the length from

eggs to adult mosquitoes. Fan et al. [36] considered a delay differential equation

model including a constant maturation time of mosquitoes. Increasing temperature is
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known to decrease the length of time spent in each of the immature stages [80] since

the maturation time is sensitive to temperature.

(iii) Extrinsic incubation period (EIP). The EIP is the length of time between an

adult vector contracting a pathogen and becoming infectious [51]. Increasing temper-

ature leads to decreases in the EIP of the virus [51], which means that vectors become

infectious more quickly than at cooler temperatures. Thus, the EIP is an important

parameter in measuring the rate of virus transmission. Recently, researchers have

started to introduce the temperature-dependent time delays into delay differential

models (see, e.g., [72, 82, 136]).

Motivated by the works of [27, 36, 93], in this chapter we formulate a periodic

time-delayed model by taking into account the seasonality. This model contains the

maturation time and the EIP in mosquitoes, and both of these delays are periodic in

time. Vertical transmission of virus is also incorporated into the model.

The rest of the chapter is organized as follows. In Section 3.2, we derive a WNV

transmission model with periodic time delays and study its well-posedness. In Section

3.3, we introduce the reproduction ratio R0 for this model and then establish the

threshold dynamics in terms of R0. In Section 3.4, we prove the global attractivity

for the model system without seasonality. In Section 3.5, we carry out a case study

for WNV transmission in Orange County, California. A brief discussion completes

the chapter.

3.2 The model

Let Ms(t), ML(t) and Mi(t) denote the numbers of susceptible, exposed and infectious

female adult mosquitoes at time t, respectively. The total female adult mosquito

population is M(t) = Ms(t) + ML(t) + Mi(t). Let Bs(t), Bi(t) and Br(t) be the

numbers of susceptible, infectious, and recovered birds at time t, respectively. The

total bird population is NB(t) = Bs(t) + Bi(t) + Br(t). We divide the mosquitoes

into two stages: immature and mature, and assume that the maturation time is

temperature-dependent. The temperature T can be assumed to vary as a function

of time t. Let τA(t) be the maturation time at time t. For the immature stage,

we suppose that the egg, larva, and pupa have the same development rate with the

death rate dA(t) at time t, where dA(t) is determined by the climate profile. Since the
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Table 3.1: Biological interpretations for variables and parameters in system (3.1)

Parameter Description
Ms(t), ML(t), Mi(t) Numbers of susceptible, exposed and infectious female

adult mosquitoes at time t
Bs(t), Bi(t), Br(t) Numbers of susceptible, infectious and recovered birds

at time t
M(t) = Ms(t) +ML(t) +Mi(t) Total number of female adult mosquitoes at time t
NB(t) = Bs(t) +Bi(t) +Br(t) Total number of birds at time t
rm(t) Per capita mosquito egg production rate at time t
α(t) Strength of density dependence for adult mosquitoes at time t

(1/α(t) is the size of mosquito population at which egg laying
is maximized)

q Vertical transmission fraction in mosquitoes
dA(t), dM (t) Per capita mortality rate for immature mosquitoes and adult

mosquitoes at time t
b, c Probability transmission per bite to mosquitoes and to birds
β(t) Per capita biting rate of mosquitoes at time t
τA(t) Duration of the immature stage of mosquitoes at time t
τL(t) Extrinsic incubation period at time t
Λ(t) Recruitment rate of birds at time t
dB(t) Per capita natural death rate of birds at time t
µB(t) Per capita disease-induced mortality rate of birds at time t
γ(t) Per capita recovery rate of birds at time t

of birds at time t, and dB(t) and µB(t) be the natural and disease-induced death rates

of birds at time t, respectively. We assume that the birds recover at the rate γ(t).

The features of transmission are illustrated in Figure 3.1. Accordingly, we obtain the

following WNV transmission model with periodic time delays:

dMs(t)
dt

= (1 − τ ′A(t))B(t− τA(t),M(t− τA(t)))(Ms(t− τA(t)) +ML(t− τA(t))

+(1 − q)Mi(t− τA(t)))e
−

∫ t
t−τA(t) dA(ξ)dξ

− dM(t)Ms(t) −
bβ(t)Ms(t)Bi(t)

NB(t)
,

dML(t)
dt

= (1 − τ ′A(t))B(t− τA(t),M(t− τA(t)))qMi(t− τA(t))e
−

∫ t
t−τA(t) dA(ξ)dξ

−dM(t)ML(t) + bβ(t)Ms(t)Bi(t)
NB(t)

−H(t),

dMi(t)
dt

= H(t) − dM(t)Mi(t),

dBs(t)
dt

= Λ(t) − cβ(t)Mi(t)Bs(t)
NB(t)

− dB(t)Bs(t),

dBi(t)
dt

= cβ(t)Mi(t)Bs(t)
NB(t)

− (dB(t) + µB(t) + γ(t))Bi(t),

dBr(t)
dt

= γ(t)Bi(t) − dB(t)Br(t).

(3.1)



47

By arguments similar to those in [72, 136], it follows that

H(t) =(1 − τ ′L(t))
[
(1 − τ ′A(hL(t)))B(gA(t),M(gA(t)))qMi(gA(t))e

−
∫ hL(t)

gA(t)
dA(ξ)dξ

+
bβ(hL(t))Ms(hL(t))Bi(hL(t))

NB(hL(t))

]
e
−

∫ t
hL(t) dM (ξ)dξ

,

and 1 − τ ′L(t) > 0, where hL(t) = t− τL(t), MA(t) = t− τA(t), gA(t) = MA(hL(t)) =

t− τL(t) − τA(t− τL(t)). We assume that all parameters in system (3.1) are positive

and ω-periodic functions with the same period ω for some real number ω > 0. The

biological interpretations for all variables and parameters can be found in Table 3.1.

For notational simplicity, we rewrite system (3.1) into

dMs(t)
dt

= b1(t)B(t− τA(t),M(t− τA(t)))(Ms(t− τA(t)) +ML(t− τA(t))

+(1 − q)Mi(t− τA(t))) − dM(t)Ms(t) −
bβ(t)Ms(t)Bi(t)

NB(t)
,

dML(t)
dt

= b1(t)B(t− τA(t),M(t− τA(t)))qMi(t− τA(t)) − dM(t)ML(t)

+ bβ(t)Ms(t)Bi(t)
NB(t)

−H(t),

dMi(t)
dt

= H(t) − dM(t)Mi(t),

dBs(t)
dt

= Λ(t) − cβ(t)Mi(t)Bs(t)
NB(t)

− dB(t)Bs(t),

dBi(t)
dt

= cβ(t)Mi(t)Bs(t)
NB(t)

− (dB(t) + µB(t) + γ(t))Bi(t),

dBr(t)
dt

= γ(t)Bi(t) − dB(t)Br(t),

(3.2)

where

H(t) = b2(t)B(gA(t),M(gA(t)))Mi(gA(t)) + b3(t)
β(hL(t))Ms(hL(t))Bi(hL(t))

NB(hL(t))
,

b1(t) = (1 − τ ′A(t))e
−

∫ t
t−τA(t) dA(ξ)dξ

,

b2(t) = (1 − τ ′L(t))(1 − τ ′A(hL(t)))qe
−

∫ hL(t)

gA(t)
dA(ξ)dξ

e
−

∫ t
hL(t) dM (ξ)dξ

,

b3(t) = (1 − τ ′L(t))be
−

∫ t
hL(t) dM (ξ)dξ

.

Clearly, b1(t), b2(t) and b3(t) are all positive ω-periodic functions. For a given contin-

uous ω-periodic function g(t), we define ĝ := maxt∈[0,ω] g(t) and ḡ := mint∈[0,ω] g(t).

To address the well-posedness of system (3.2), we introduce some notations. Let

τ̂ = max{τ̂A, τ̂L, maxt∈[0,ω]{τL(t) + τA(t − τL(t))}}, C̄ := C([−τ̂ , 0],R6), and C̄+ :=
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C([−τ̂ , 0],R6
+). Then (C̄, C̄+) is an ordered Banach space equipped with the maximum

norm. For any given continuous function x : [−τ̂ , σ) → R
6
+ with σ > 0, we define

xt ∈ C̄ as xt(θ) = x(t+ θ), ∀θ ∈ [−τ̂ , 0], for any t ∈ [0, σ).

Define

Γδ :=
{
ϕ ∈ C̄+ :

6∑

i=4

ϕi(s) ≥ δ, ∀s ∈ [−τ̂ , 0], ϕ2(0) =

∫ 0

hL(0)

e−
∫ 0
ξ
dM (r)dr[

bβ(ξ)ϕ1(ξ)ϕ5(ξ)∑6
i=4 ϕi(ξ)

+ b1(ξ)B(ξ − τA(ξ),
3∑

i=1

ϕi(ξ − τA(ξ)))qϕ3(ξ − τA(ξ))]dξ
}
,

for any given δ ∈
(

0, Λ̄

d̂B+µ̂B

)
.

Lemma 3.2.1. For any ϕ ∈ Γδ, system (3.2) has a unique nonnegative solution

u(t, ϕ) with u0 = ϕ such that ut(ϕ) ∈ Γδ for all t ≥ 0, and solutions are ultimately

bounded and uniformly bounded.

Proof. For any ϕ ∈ Γδ, we define f̄(t, ϕ) = (f̄1(t, ϕ), f̄2(t, ϕ), f̄3(t, ϕ), f̄4(t, ϕ), f̄5(t, ϕ),

f̄6(t, ϕ)) with

f̄1(t, ϕ) =b1(t)B(t− τA(t),
3∑

i=1

ϕi(−τA(t)))(ϕ1(−τA(t)) + ϕ2(−τA(t))

+ (1 − q)ϕ3(−τA(t))) − dM(t)ϕ1(0) −
bβ(t)ϕ1(0)ϕ5(0)∑6

i=4 ϕi(0)
,

f̄2(t, ϕ) =b1(t)B(t− τA(t),
3∑

i=1

ϕi(−τA(t)))qϕ3(−τA(t)) − dM(t)ϕ2(0)

− b2(t)B(gA(t),
3∑

i=1

ϕi(−τL(t) − τA(hL(t))))ϕ3(−τL(t) − τA(hL(t)))

+
bβ(t)ϕ1(0)ϕ5(0)∑6

i=4 ϕi(0)
−
b3(t)β(hL(t))ϕ1(−τL(t))ϕ5(−τL(t))∑6

i=4 ϕi(−τL(t))
,

f̄3(t, ϕ) =b2(t)B(gA(t),
3∑

i=1

ϕi(−τL(t) − τA(hL(t))))ϕ3(−τL(t) − τA(hL(t)))

+
b3(t)β(hL(t))ϕ1(−τL(t))ϕ5(−τL(t))∑6

i=4 ϕi(−τL(t))
− dM(t)ϕ3(0),

f̄4(t, ϕ) =Λ(t) −
cβ(t)ϕ3(0)ϕ4(0)∑6

i=4 ϕi(0)
− dB(t)ϕ4(0),

f̄5(t, ϕ) =
cβ(t)ϕ3(0)ϕ4(0)∑6

i=4 ϕi(0)
− (dB(t) + µB(t) + γ(t))ϕ5(0),
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f̄6(t, ϕ) =γ(t)ϕ5(0) − dB(t)ϕ6(0).

Since f̄(t, ϕ) is continuous in (t, ϕ) ∈ R+ × Γδ and Lipschitz in ϕ on each compact

subset of Γδ. It follows from [50, Theorems 2.2.1 and 2.2.3] that system (3.2) has a

unique solution u(t, ϕ) with u0 = ϕ on its maximum interval [0, σϕ) of existence.

With the compatibility condition on ϕ2 in Γδ, it follows from the second equation

in system (3.2) that

ML(t) =

∫ t

hL(t)

e−
∫ t
ξ
dM (r)dr

[
b1(ξ)B(MA(ξ),M(MA(ξ)))qMi(MA(ξ))

+
bβ(ξ)Ms(ξ)Bi(ξ)

NB(ξ)

]
dξ. (3.3)

We also observe that u2(t) ≥ 0, ∀t ∈ [0, t0] whenever ui(t) ≥ 0 for all i 6= 2 and

t ∈ [0, t0] ⊆ [0, σϕ). Let ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6) ∈ Γδ be given. If ϕi(0) = 0 for

some i ∈ {1, 3, 4, 5, 6}, then f̄i(t, ϕ) ≥ 0. By [116, Theorem 5.2.1] and its proof, it

follows that for any ϕ ∈ Γδ, ui(t, ϕ) ≥ 0 for i = 1, 3, 4, 5, 6, for all t ∈ [0, σϕ). From

the integral form (3.3) of ML(t) and the above observation, we have ML(t) ≥ 0 for all

t ∈ [0, σϕ). Therefore, it follows that for any ϕ ∈ Γδ, the solution u(t, ϕ) of system

(3.2) with u0 = ϕ is nonnegative for all t ∈ [0, σϕ). Clearly, the total number NB(t)

of vectors satisfies

dNB(t)

dt
≥ Λ(t) − (dB(t) + µB(t))NB(t) ≥ Λ̄ − (d̂B + µ̂B)NB(t).

Note that the linear equation dy
dt

= Λ̄ − (d̂B + µ̂B)y(t) has a globally asymptotically

stable equilibrium Λ̄

d̂B+µ̂B
, and for any 0 < δ < Λ̄

d̂B+µ̂B
, dy

dt
|y=δ = Λ̄ − (d̂B + µ̂B)δ > 0.

It then follows that if y(0) ≥ δ, then y(t) ≥ δ, ∀t ≥ 0. By the comparison principle,

NB(t) ≥ δ if NB(0) =
∑6

i=4 ϕi(0) ≥ δ. This implies that ut(ϕ) ∈ Γδ for all t ∈ [0, σϕ).

Since the total numbers for vectors and hosts, M(t) and NB(t), satisfy

dM(t)
dt

≤
(1−τ ′A(t))rm(t−τA(t))

α(t−τA(t))
e−1e

−
∫ t
t−τA(t) dA(ξ)dξ

− dM(t)M(t),

dNB(t)
dt

= Λ(t) − dB(t)NB(t) − µB(t)Bi(t) ≤ Λ(t) − dB(t)NB(t)
(3.4)

for all t ∈ [0, σϕ), it follows that both M(t) and NB(t) are bounded on [0, σϕ), and

hence, [50, Theorem 2.3.1] implies that σϕ = ∞, and solutions are ultimately bounded.

In view of system (3.4), it is easy to see that dM(t)
dt

< 0 and dNB(t)
dt

< 0 whenever

M(t) > max{ B̂1

d̄M
, Λ̂
d̄B
} and NB(t) > max{ B̂1

d̄M
, Λ̂
d̄B
}, where B1(t) =

(1−τ ′A(t))rm(t−τA(t))

α(t−τA(t))

e−1e
−

∫ t
t−τA(t) dA(ξ)dξ

. This implies that solutions are uniformly bounded.
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3.3 Threshold dynamics

In order to study the dynamics for Ms(t), we consider the scalar delay equation on

the total vector population M(t) = Ms(t) +ML(t) +Mi(t):

dM(t)

dt
=(1 − τ ′A(t))rm(t− τA(t))e−α(t−τA(t))M(t−τA(t))M(t− τA(t))e

−
∫ t
t−τA(t) dA(ξ)dξ

− dM(t)M(t). (3.5)

In Appendix A, it is shown that system (3.5) has a globally attractive positive ω-

periodic solution M∗(t) in C([−τ̂A, 0],R+) \ {0} under the following conditions:

(C1) r(P̃ ) > 1, where r(P̃ ) is the spectral radius of the Frechét derivative P̃ of the

Poincaré map associated with system (3.5) on C([−τ̂A, 0],R) at zero.

(C2) M̄∗(t − τA(t)) < 1
α(t−τA(t))

for all t ∈ [0, ω], where M̄∗(t) is the unique positive

ω-periodic solution of the nonhomogeneous ordinary differential equation:

dM̄(t)

dt
=

(1 − τ ′A(t))rm(t− τA(t))

α(t− τA(t))
e−1e

−
∫ t
t−τA(t) dA(ξ)dξ

− dM(t)M̄(t).

Let N∗
B(t) be the globally asymptotically stable positive ω-periodic solution of

dBs(t)
dt

= Λ(t) − dB(t)Bs(t). It is easy to see that system (3.2) has a unique disease-

free periodic solution (M∗(t), 0, 0, N∗
B(t), 0, 0) under the conditions (C1) and (C2).

Linearizing system (3.2) at the disease-free periodic solution (M∗(t), 0, 0, N∗
B(t), 0, 0),

we then obtain the following periodic linear system for the infective variables Mi and

Bi:

dMi(t)
dt

= b2(t)B(gA(t),M∗(gA(t)))Mi(gA(t)) + b3(t)β(hL(t))M
∗(hL(t))

N∗

B(hL(t))
Bi(hL(t))

−dM(t)Mi(t),

dBi(t)
dt

= cβ(t)Mi(t) − (dB(t) + µB(t) + γ(t))Bi(t).

(3.6)

Let τ̂1 = maxt∈[0,ω]{τL(t) + τA(t − τL(t))}, τ̂0 = max{τ̂A, τ̂1}, and τ̂2 = max{τ̂1, τ̂L},

C := C([−τ̂2, 0],R2) and C+ := C([−τ̂2, 0],R2
+). Define a map F : R → L(C,R2) and

a matrix function V (t) as follows:

F (t)

(
φ1

φ2

)
=




b2(t)B(gA(t),M∗(gA(t)))φ1(−τL(t) − τA(hL(t)))

+b3(t)β(hL(t))M
∗(hL(t))

N∗

B(hL(t))
φ2(−τL(t))

cβ(t)φ1(0)



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and

V (t) =

(
dM(t) 0

0 dB(t) + µB(t) + γ(t)

)
.

Then the linear system (3.6) can be written as

du(t)

dt
= F (t)ut − V (t)u(t), ∀t ≥ 0.

The internal evolution of the infective compartments Mi and Bi can be expressed by

du(t)

dt
= −V (t)u(t).

Let Z(t, s), t ≥ s, be the evolution matrix of the above linear system, that is, for

each s ∈ R, Z(t, s) satisfies

∂

∂t
Z(t, s) = −V (t)Z(t, s), ∀t ≥ s, and Z(s, s) = I,

where I is a 2×2 identity matrix. It then easily follows that

Z(t, s) =

(
e−

∫ t
s
dM (ξ)dξ 0

0 e−
∫ t
s
(dB(ξ)+µB(ξ)+γ(ξ))dξ

)
.

Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R
2, which is equipped with maximum norm ‖ · ‖∞ and the positive cone

C+
ω = {v ∈ Cω : v(t) ≥ 0, for any t ∈ R}. Suppose v ∈ Cω is the initial distribution

of infectious mosquitoes and birds. Then for any given s ≥ 0, F (t − s)vt−s is the

distribution of newly infectious mosquitoes and birds at time t− s, which is produced

by the infectious mosquitoes and birds who were introduced over the time interval

[t − s − τ̂2, t − s]. Then Z(t, t − s)F (t − s)vt−s is the distribution of those infectious

mosquitoes and birds who were newly infected at time t−s and remain in the infectious

compartments at time t. Hence,
∫ ∞

0

Z(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Z(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those

infectious mosquitoes and birds introduced at all previous time to t. Define a linear

operator L : Cω → Cω by

[Lv](t) =

∫ ∞

0

Z(t, t− s)F (t− s)v(t− s+ ·)ds.
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According to [150], we define the basic reproduction ratio as R0 := r(L), the spectral

radius of L.

For any given t ≥ 0, let P̂ (t) be the solution map of system (3.6), that is, P̂ (t)φ =

ut(φ), where u(t, φ) is the unique solution of system (3.6) with u0 = φ ∈ C. Then

P̂ := P̂ (ω) is the Poincaré map associated with (3.6). Let r(P̂ ) be the spectral radius

of P̂ . By Theorem 1.4.1, we have the following result.

Lemma 3.3.1. R0 − 1 has the same sign as r(P̂ ) − 1.

Let τ̃ = τL(0) + τA(−τL(0)), and define

Ω := C([−τ̃ , 0],R) × C([−τL(0), 0],R), Ω+ := C([−τ̃ , 0],R+) × C([−τL(0), 0],R+).

By the method of steps, we then have the following result.

Lemma 3.3.2. For any ϕ ∈ Ω+, system (3.6) has a unique nonnegative solution

v(t, ϕ) with v0 = ϕ for all t ≥ 0.

Remark 3.3.1. By the uniqueness of solutions in Lemmas 3.2.1 and 3.3.2, it follows

that for any ψ ∈ C+ and φ ∈ Ω+ with ψ1(θ) = φ1(θ) for all θ ∈ [−τ̃ , 0], ψ2(θ) = φ2(θ)

for all θ ∈ [−τL(0), 0], we have w(t, ψ) = ν(t, φ) for all t ≥ 0, where w(t, ψ) and

ν(t, φ) are solutions of system (3.6) satisfying w0 = ψ and ν0 = φ, respectively.

For any given t ≥ 0, let P (t) be the solution map of system (3.6) on Ω. Then

P := P (ω) is the Poincaré map associated with linear system (3.6). Let r(P ) be

its spectral radius. The following lemma indicates that the periodic semiflow P (t) is

eventually strongly positive.

Lemma 3.3.3. For any ϕ and ψ in Ω with ϕ > ψ (that is, ϕ ≥ ψ, but ϕ 6= ψ), the

solutions v̄(t) and v(t) of system (3.6) with v̄0 = ϕ and v0 = ψ, respectively, satisfy

v̄i(t) > vi(t) for all t > τ̌ , i = 1, 2, and hence, P (t)ϕ≫ P (t)ψ in Ω for all t > τ̌ + τ̃ ,

where τ̌ = min{τ̄L,mint∈[0,ω]{τL(t) + τA(hL(t))}}.

Proof. Using a simple comparison argument on each interval [nτ̌ , (n+ 1)τ̌ ], n ∈ N, we

can show that v̄i(t) ≥ vi(t) for all t ≥ 0, i = 1, 2. Next we show that P (t) : Ω → Ω is

eventually strongly monotone. Let ϕ, ψ ∈ Ω satisfy ϕ > ψ. Denote v̄(t) = v(t, ϕ) =

(y1(t), y2(t)) and v(t) = v(t, ψ) = (y1(t), y2(t)). Without loss of generality, we assume
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that ϕ2 > ψ2.

Claim 1. There exists t0 ∈ [0, τ̌ ] such that y1(t) > y1(t) for all t ≥ t0.

We first prove that y1(t0) > y1(t0) for some t0 ∈ [0, τ̌ ]. Otherwise, we have

y1(t) = y1(t), ∀t ∈ [0, τ̌ ], and hence dy1(t)
dt

= dy1(t)
dt

for all t ∈ [0, τ̌ ]. Thus, for any

t ∈ [0, τ̌ ], we have

b2(t)B(gA(t),M∗(gA(t)))[y1(gA(t)) − y1(gA(t))]

+ b3(t)β(hL(t))
M∗(hL(t))

N∗
B(hL(t))

[y2(hL(t)) − y2(hL(t))] = 0. (3.7)

Since for all t ∈ [0, τ̌ ], −τL(0) ≤ hL(t) ≤ τ̌−τL(τ̌) ≤ 0, −τL(0)−τA(−τL(0)) ≤ gA(t) ≤

τ̌ − τL(τ̌) − τA(τ̌ − τL(τ̌)) ≤ 0, it follows that y1(gA(t)) = ϕ1(gA(t)), y1(gA(t)) =

ψ1(gA(t)), y2(hL(t)) = ϕ2(hL(t)), y2(hL(t)) = ψ2(hL(t)). Since ϕ2 > ψ2, by (3.7), we

have y1(gA(t)) = ϕ1(gA(t)) < y1(gA(t)) = ψ1(gA(t)), which contradicts the fact that

ϕ > ψ. Then there exists some t0 ∈ [0, τ̌ ] such that y1(t0) > y1(t0).

Let g1(t, y) = b2(t)B(gA(t),M∗(gA(t)))y1(gA(t))+b3(t)β(hL(t))M
∗(hL(t))

N∗

B(hL(t))
y2(hL(t))−

dM(t)y. Since

dy1(t)
dt

= b2(t)B(gA(t),M∗(gA(t)))y1(gA(t)) + b3(t)β(hL(t))M
∗(hL(t))

N∗

B(hL(t))
y2(hL(t))

−dM(t)y1(t)

≥ b2(t)B(gA(t),M∗(gA(t)))y1(gA(t)) + b3(t)β(hL(t))M
∗(hL(t))

N∗

B(hL(t))
y2(hL(t))

−dM(t)y1(t) = g1(t, y1(t)),

we have dy1(t)
dt

− g1(t, y1(t)) ≥ 0 = dy1(t)
dt

− g1(t, y1(t)), ∀t ≥ t0. Since y1(t0) > y1(t0), it

follows from Theorem 1.3.1 that y1(t) > y1(t) for all t ≥ t0.

Claim 2. y2(t) > y2(t) for all t > t0.

Let g2(t, y) = cβ(t)y1(t) − (dB(t) + µB(t) + γ(t))y. Then for all t ≥ t0, we have

dy2(t)
dt

= cβ(t)y1(t) − (dB(t) + µB(t) + γ(t))y2(t)

> cβ(t)y1(t) − (dB(t) + µB(t) + γ(t))y2(t) = g2(t, y2(t)),

we have dy2(t)
dt

− g2(t, y2(t)) > 0 = dy2(t)
dt

− g2(t, y2(t)), ∀t ≥ t0. Since y2(t0) ≥ y2(t0), it

follows from Theorem 1.3.1 that y2(t) > y2(t) for all t > t0.

In view of the above two claims, we obtain (y1(t), y2(t)) ≫ (y1(t), y2(t)), ∀t > t0.

Since t0 ∈ [0, τ̌ ], it follows that (y1t, y2t) ≫ (y1t, y2t), ∀t > τ̌+ τ̃ , that is, vt(ϕ) ≫ vt(ψ)

for all t > τ̌ + τ̃ . This shows P (t) : Ω → Ω is strongly monotone for any t > τ̌ + τ̃ .
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By [50, Theorem 3.6.1], it follows that for each t ≥ τ̂2, the linear operator P̂ (t)

is compact on C([−τ̂2, 0],R2), and hence, P (t) is also compact on Ω for any t ≥ τ̂2.

Then P (t) is compact and strongly monotone on Ω for t > τ̂3 = max{τ̌ + τ̃ , τ̂2}.

Choose an integer n0 > 0 such that n0ω > τ̂3. Since P n0 = P (n0ω), [74, Lemma 3.1]

implies that r(P ) is a simple eigenvalue of P having a strongly positive eigenvector.

By [135, Lemma 1], we have the following observation.

Lemma 3.3.4. Let µ = ln r(P )
ω

. Then there is a positive ω-periodic function v∗(t) such

that u∗(t) = eµtv∗(t) is a positive solution of linear system (3.6).

By arguments similar to those in [82, Lemma 3.8], we have r(P̂ ) = r(P ). It then

follows from Lemma 3.3.1 that R0 − 1 has the same sign as r(P ) − 1.

Next we show that the disease is uniformly persistent in the case where R0 > 1.

Let

X := C([−τ̂ , 0],R+) × C([−τ̂0, 0],R2
+) × C([−τ̂L, 0],R3

+),

Xδ :=
{
ϕ ∈ X :

∑6
i=4 ϕi(s) ≥ δ, ∀s ∈ [−τ̂L, 0],

ϕ2(0) =
∫ 0

hL(0)
e−

∫ 0
ξ
dM (r)dr[ bβ(ξ)ϕ1(ξ)ϕ5(ξ)∑6

i=4 ϕi(ξ)
+ (1 − τ ′A(ξ))

×B(ξ − τA(ξ),
∑3

i=1 ϕi(ξ − τA(ξ)))qϕ3(ξ − τA(ξ))e
−

∫ ξ

MA(ξ)
dA(r)dr

]dξ
}
.

Theorem 3.3.1. Let (C1) and (C2) hold. If R0 > 1, then there exists a positive

constant η such that for any initial value φ ∈ Xδ with φ3(0) > 0 and φ5(0) > 0, the

solution (Ms(t, φ),ML(t, φ),Mi(t, φ), Bs(t, φ), Bi(t, φ), Br(t, φ)) of system (3.2) satis-

fies lim inft→∞(Mi(t, φ), Bi(t, φ)) ≥ (η, η).

Proof. Let

X0 := {φ = (φ1, φ2, φ3, φ4, φ5, φ6) ∈ Xδ : φ3(0) > 0 and φ5(0) > 0},

∂X0 := Xδ \X0 = {φ ∈ Xδ : φ3(0) = 0 or φ5(0) = 0}.

Let Q(t) : Xδ → Xδ be the solution maps of system (3.2), that is, Q(t)φ = ut(φ),

t ≥ 0, where u(t, φ) is the unique solution of system (3.2) with u0 = φ ∈ Xδ. Then

Q := Q(ω) is the Poincaré map associated with system (3.2). From the third and fifth

equations of system (3.2), it is easy to see that Q(t)X0 ⊆ X0 for all t ≥ 0. Lemma

3.2.1 implies that the discrete-time dynamical system {Qn : Xδ → Xδ}n≥0 is point

dissipative. By [50, Theorem 3.6.1], for each t ≥ τ̂ , Q(t) is compact, and hence, Qn
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is compact for sufficient large n. It follows from Theorem 1.1.3 that Q : Xδ → Xδ

admits a global attractor. Now we prove that Q is uniformly persistent with respect

to (X0, ∂X0).

Let M1 = (M∗
0 , 0, 0, N

∗
B0, 0, 0), M2 = (0, 0, 0, N∗

B0, 0, 0), where M∗
0 (θ) = M∗(θ) for

θ ∈ [−τ̂ , 0] and N∗
B0(θ) = N∗

B(θ) for θ ∈ [−τ̂L, 0]. Since limφ→M1 ‖Q(t)φ−Q(t)M1‖ = 0

uniformly for t ∈ [0, ω], for any given ε > 0, there exists an η1 > 0 such that for any

φ ∈ X0 with ‖φ−M1‖ < η1, we have ‖Q(t)φ−Q(t)M1‖ < ε for all t ∈ [0, ω].

Claim 1. lim supn→∞ ‖Q(nω)φ−M1‖ ≥ η1 for all φ ∈ X0.

Suppose not, then lim supn→∞ ‖Q(nω)ψ − M1‖ < η1 for some ψ ∈ X0. Then

there exists an integer N1 ≥ 1 such that ‖Q(nω)ψ − M1‖ < η1 for all n ≥ N1.

For any t ≥ N1ω, we have t = nω + t1 with n ≥ N1, t1 ∈ [0, ω], and ‖Q(t)ψ −

Q(t)M1‖ = ‖Q(t1)Q(nω)ψ − Q(t1)Q(nω)M1‖ = ‖Q(t1)Q(nω)ψ − Q(t1)M1‖ < ε.

Therefore, M∗(t)−ε < Ms(t) < M∗(t)+ε, 0 ≤ML(t) < ε, 0 < Mi(t) < ε, N∗
B(t)−ε <

Bs(t) < N∗
B(t) + ε, 0 < Bi(t) < ε, 0 ≤ Br(t) < ε for all t ≥ N1ω. Let Pε(t) be the

solution maps of the following perturbed linear system on Ω:

dMi(t)
dt

= b2(t)B(gA(t),M∗(gA(t)) + 3ε)Mi(gA(t))

+b3(t)β(hL(t)) M∗(hL(t))−ε
N∗

B(hL(t))+3ε
Bi(hL(t)) − dM(t)Mi(t),

dBi(t)
dt

= cβ(t)Mi(t) − (dB(t) + µB(t) + γ(t))Bi(t).

(3.8)

and Pε := Pε(ω). Since R0 > 1, limε→0+ r(Pε) = r(P ) > 1. Fix a sufficiently small

ε > 0 such that r(Pε) > 1, M∗(hL(t)) − ε > 0, N∗
B(t) − ε > 0 for all t ≥ 0. It is

easy to verify that Pε(t) is also compact and strongly monotone on Ω for t > τ̂3. By

Lemma 3.3.4, there is a positive ω-periodic function v∗ε(t) = (v1(t), v2(t)) such that

w∗
ε(t) = eλtv∗ε(t) is a positive solution of system (3.8), where λ = ln r(Pε)

ω
> 0. Then

limt→∞w∗
ε(t) = ∞. For all t ≥ N1ω + τ̂2, by system (3.2), we have

dMi(t)
dt

≥ b2(t)B(gA(t),M∗(gA(t)) + 3ε)Mi(gA(t))

+b3(t)β(hL(t)) M∗(hL(t))−ε
N∗

B(hL(t))+3ε
Bi(hL(t)) − dM(t)Mi(t),

dBi(t)
dt

≥ cβ(t)Mi(t) − (dB(t) + µB(t) + γ(t))Bi(t).

Since ψ ∈ X0, Mi(t, ψ) > 0 and Bi(t, ψ) > 0 for all t ≥ 0, and hence, we can choose a

sufficiently small k > 0 such that (Mi(t, ψ), Bi(t, ψ)) ≥ kw∗
ε(t), ∀t ∈ [N1ω+ τ̂2, N1ω+

2τ̂2]. By Theorem 1.3.2, it follows that

(Mi(t, ψ), Bi(t, ψ)) ≥ kw∗
ǫ (t), ∀t ≥ N1ω + 2τ̂2.
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Thus, we have Mi(t, ψ) → ∞, Bi(t, ψ) → ∞ as t→ ∞, a contradiction.

Since limφ→M2 ‖Q(t)φ−Q(t)M2‖ = 0 uniformly for t ∈ [0, ω], for any given η0 > 0,

there exists an η2 > 0 such that

‖Q(t)φ−Q(t)M2‖ < η0, ∀t ∈ [0, ω], ‖φ−M2‖ < η2.

Claim 2. lim supn→∞ ‖Q(nω)φ−M2‖ ≥ η2 for all φ ∈ X0.

Assume, by contradiction, that lim supn→∞ ‖Q(nω)ψ−M2‖ < η2 for some ψ ∈ X0.

Then there exists an integer N2 ≥ 1 such that ‖Q(nω)ψ−M2‖ < η2 for all n ≥ N2. For

any t ≥ N2ω, we have t = nω + t2 with n ≥ N2, t2 ∈ [0, ω], and ‖Q(t)ψ −Q(t)M2‖ =

‖Q(t2)Q(nω)ψ − Q(t2)M2‖ < η0. Hence, Ms(t) < η0, ML(t) < η0, Mi(t) < η0, and

M(t) < 3η0 for all t ≥ N2ω. Since M(0) = ψ1(0) + ψ2(0) + ψ3(0) > 0, we have

limt→∞(M(t) −M∗(t)) = 0, a contradiction.

Define

M∂ := {φ ∈ ∂X0 : Qn(φ) ∈ ∂X0, ∀n ≥ 0}.

Next we prove that

M∂ = {φ ∈ ∂X0 : φ3(0) = 0, φ5(0) = 0}.

Indeed, it suffices to show that for any φ ∈ M∂ , Mi(t, φ) = 0 and Bi(t, φ) = 0

for all t ≥ 0. Suppose not, then there exists some t0 ≥ 0 such that Mi(t0, φ) >

0 or Bi(t0, φ) > 0. We are left to consider two possibilities. In the case where

Mi(t0, φ) > 0 and Bi(t0, φ) > 0, we have Mi(t, φ) > 0 and Bi(t, φ) > 0 for all

t > t0, which contradicts φ ∈ M∂ . In the case where Mi(t0, φ) > 0 and Bi(t0, φ) =

0, or Bi(t0, φ) > 0 and Mi(t0, φ) = 0, without loss of generality, we assume that

Mi(t0, φ) > 0 and Bi(t0, φ) = 0. It follows from the third equation of system (3.2)

that dMi(t)
dt

≥ −dM(t)Mi(t), and hence, Mi(t, φ) ≥Mi(t0, φ)e
−

∫ t
t0
dM (r)dr

> 0 for t ≥ t0.

It is easy to see that Bs(t) > 0 for any t ≥ 0. Thus, by the fifth equation of system

(3.2), we get Bi(t, φ) =
∫ t
t0

cβ(r)Mi(r,φ)Bs(r,φ)
Bs(r,φ)+Bi(r,φ)+Br(r,φ)

e
∫ r
t
(dB(ξ)+µB(ξ)+γ(ξ))dξdr > 0 for t > t0.

Then Mi(t, φ) > 0 and Bi(t, φ) > 0 for t > t0. So we have some k1 > 0 with k1ω > t0

such that Qk1(φ) 6∈ ∂X0, a contradiction to the assumption φ ∈M∂ . If φ ∈M∂ , then

Mi(t, φ) = 0 and Bi(t, φ) = 0, ∀t ≥ 0. By the theory of internally chain transitive

sets (see, e.g., Theorems 1.1.1 and 1.1.2 ), we see that Qn(φ) → M1 as n → ∞, or

Qn(φ) → M2 as n → ∞. Thus,
⋃
φ∈M∂

ω(φ) = {M1,M2} and no subset of {M1,M2}

forms a cycle for Q in ∂X0.
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By Claims 1 and 2 above, we see that M1 and M2 are isolated invariant sets for

Q in Xδ, and W s(Mj)
⋂
X0 = ∅, j = 1, 2, where W s(Mj) is the stable set of Mj for

Q. By the acyclicity theory on uniform persistence for maps (see Theorem 1.2.1 ),

it follows that Q : Xδ → Xδ is uniformly persistent with respect to (X0, ∂X0) in the

sense that there exists η̃ > 0 such that

lim inf
n→∞

d(Qn(φ), ∂X0) ≥ η̃, ∀φ ∈ X0.

It remains to prove the practical uniform persistence. By Theorem 1.2.3, we know

that Q : X0 → X0 admits a global attractor A0. For any φ ∈ A0, we have φi(0) > 0

for all i = 3, 5. Let B0 :=
⋃
t∈[0,ω]Q(t)A0. Then φ3(0) > 0 and φ5(0) > 0 for all

φ ∈ B0. Moreover, B0 ⊆ X0 and limt→∞ d(Q(t)φ,B0) = 0 for all φ ∈ X0. Define a

continuous function p : Xδ → R+ by

p(φ) = min{φ3(0), φ5(0)}, ∀φ ∈ Xδ.

Clearly, p(φ) > 0 for all φ ∈ B0. Since B0 is a compact subset of X0, we have

infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0. By the attractiveness of B0, it then follows that

there exists an η > 0 such that

lim inf
t→∞

min(Mi(t, φ), Bi(t, φ)) = lim inf
t→∞

p(Q(t)φ) ≥ η, ∀φ ∈ X0.

This completes the proof.

For any given K > 0, denote

XK :=
{
φ ∈ C([−τ̂ , 0], [0, K]) × C([−τ̂0, 0], [0, K]2) × C([−τ̂L, 0], [0, K]3) :
∑6

i=4 ϕi(s) ≥ δ, ∀s ∈ [−τ̂L, 0], ϕ2(0) =
∫ 0

hL(0)
e−

∫ 0
ξ
dM (r)dr[ bβ(ξ)ϕ1(ξ)ϕ5(ξ)∑6

i=4 ϕi(ξ)

+(1 − τ ′A(ξ))B(ξ − τA(ξ),
∑3

i=1 ϕi(ξ − τA(ξ)))qϕ3(ξ − τA(ξ))

×e
−

∫ ξ

MA(ξ)
dA(r)dr

]dξ
}
.

Then we have the following result.

Theorem 3.3.2. Let (C1) and (C2) hold. If R0 < 1, then for every K > max{ B̂1

dM
,

Λ̂
dB
}, there exists a ζ = ζ(K) > 0 such that for any φ ∈ XK \ ({(0, 0, 0)} ×C([−τ̂L, 0],

[0, K]3)) with (φ3(θ), φ5(θ)) ∈ [0, ζ]2 for all θ ∈ [−τ̂ , 0], the solution u(t, φ) of system

(3.2) with u0 = φ satisfies limt→∞ ‖u(t, φ) − (M∗(t), 0, 0, B∗
s (t), 0, 0)‖ = 0.
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Proof. By Lemma 3.2.1 and its proof, we see that XK is positively invariant for the

periodic solution semiflow of system (3.2). We then have u(t, φ) ∈ [0, K]6, ∀t ≥ 0,

φ ∈ XK .

Let P̃ǫ(t) be the solution maps of the following perturbed linear periodic system

on Ω:

dM̃i(t)
dt

= b2(t)B(gA(t),M∗(gA(t)) − ǫ)M̃i(gA(t)) + b3(t)β(hL(t))M
∗(hL(t))+ǫ

N∗

B(hL(t))−ǫ
B̃i(hL(t))

−dM(t)M̃i(t),

dB̃i(t)
dt

= cβ(t)M̃i(t) − (dB(t) + µB(t) + γ(t))B̃i(t),

(3.9)

and P̃ǫ := P̃ǫ(ω). Since R0 < 1, limǫ→0+ r(P̃ǫ) = r(P ) < 1. Thus we can choose

sufficiently small ǫ > 0 such that r(P̃ǫ) < 1. It follows from Lemma 3.3.4 that there is a

positive ω-periodic function ṽ∗ǫ (t) = (ṽ∗ǫ1(t), ṽ
∗
ǫ2(t)) such that w̃∗

ǫ (t) = (w̃∗
ǫ1(t), w̃

∗
ǫ2(t)) =

eµǫtṽ∗ǫ (t) is a positive solution of system (3.9), where µǫ = ln r(P̃ǫ)
ω

< 0.

Consider another auxiliary system:

dW1(t)
dt

= b1(t)B(t− τA(t),W1(t− τA(t)))W1(t− τA(t)) − dM(t)W1(t),

dW2(t)
dt

= Λ(t) − dB(t)W2(t) − µB(t)ξ1.

We can choose small ξ1 > 0 and large T1 = T1(K) > τ̂2 such that for any solution

(W1(t),W2(t)) ∈ [0, K]2, we have

M∗(t) − ǫ < W1(t) < M∗(t) + ǫ and W2(t) > N∗
B(t) − ǫ, ∀t ≥ T1 − τ̂2.

Then for all t ≥ T1, Mi(t) and Bi(t) satisfy

dMi(t)
dt

≤ b2(t)B(gA(t),M∗(gA(t)) − ǫ)Mi(gA(t)) + b3(t)β(hL(t))M
∗(hL(t))+ǫ

N∗

B(hL(t))−ǫ
Bi(hL(t))

−dM(t)Mi(t),

dBi(t)
dt

≤ cβ(t)Mi(t) − (dB(t) + µB(t) + γ(t))Bi(t).

Choose ξ2 > 0 such that ξ2ṽ
∗
ǫj(t) < ξ1 for all t ≥ 0, j ∈ {1, 2}. Note that

(M̃i(t), B̃i(t)) = ξ2w̃
∗
ǫ (t) is also a solution of system (3.9). For a given solution

u(t, φ) of system (3.2) with u0 = φ, if we denote ū(t, φ) = (ū1(t, φ), ū2(t, φ)) =

(u3(t, φ), u5(t, φ)), then there exists a ζ = ζ(K) > 0 such that

ūj(t, φ) < ξ2w̃
∗
ǫj(t) ≤ ξ2ṽ

∗
ǫj(t) < ξ1, j ∈ {1, 2}, t ∈ [0, T1], (3.10)
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provided that φ3(θ) < ζ, φ5(θ) < ζ, ∀θ ∈ [−τ̂ , 0]. We further claim that

ū(t, φ) ≤ ξ2e
µǫtṽ∗ǫ (t), ∀t ≥ 0. (3.11)

Suppose not, it follows from the comparison principle and (3.10) that there exists

j ∈ {1, 2} and T2 = T2(φ) > T1 such that

ū(t, φ) ≤ ξ2e
µǫtṽ∗ǫ (t), 0 ≤ t ≤ T2,

ūj(T2, φ) = ξ2e
µǫT2 ṽ∗ǫj(T2),

ūj(t, φ) > ξ2e
µǫtṽ∗ǫj(t), 0 < t− T2 ≪ 1.

(3.12)

Since (Mi(T2, φ), Bi(T2, φ)) ≤ ξ2e
µǫT2 ṽ∗ǫ (T2), again by the comparison principle, it

follows that (Mi(t, φ), Bi(t, φ)) ≤ ξ2e
µǫtṽ∗ǫ (t), 0 < t − T2 ≪ 1, which is a contradic-

tion. This proves the claim. Then Mi(t, φ) → 0, Bi(t, φ) → 0 as t → ∞. By the

theory of chain transitive sets (see, e.g., Theorem 1.1.1 and [83]), we further obtain

that limt→∞ML(t) = 0, limt→∞(Ms(t) − M∗(t)) = 0, limt→∞(Bs(t) − N∗
B(t)) = 0,

limt→∞Br(t) = 0, that is, limt→∞ ‖u(t, φ) − (M∗(t), 0, 0, N∗
B(t), 0, 0)‖ = 0.

It seems difficult to prove the global attractivity of the disease-free periodic solu-

tion in the case where R0 < 1. However, we can do it under the additional condition

that the disease-induced death rate of birds is zero.

Theorem 3.3.3. Let (C1) and (C2) hold. If R0 < 1 and µB(t) ≡ 0, then the disease-

free periodic solution (M∗(t), 0, 0, N∗
B(t), 0, 0) is globally attractive for system (3.2) in

Xδ \ ({(0, 0, 0)} × C([−τ̂L, 0],R3
+)).

Proof. Consider the following system with parameter ǫ > 0:

dMi(t)
dt

= b2(t)B(gA(t),M∗(gA(t)) − ǫ)Mi(gA(t)) + b3(t)β(hL(t))M
∗(hL(t))+ǫ

N∗

B(hL(t))−ǫ
Bi(hL(t))

−dM(t)Mi(t),

dBi(t)
dt

= cβ(t)Mi(t) − (dB(t) + γ(t))Bi(t).

(3.13)

Let Pǫ(t) be the solution maps of the perturbed linear periodic system (3.13) on

Ω, and Pǫ := Pǫ(ω). Since R0 < 1, limǫ→0+ r(Pǫ) = r(P ) < 1. Thus, we can fix a

sufficiently small constant ǫ > 0 such that r(Pǫ) < 1. According to Lemma 3.3.4, there

is a positive ω-periodic function v∗ǫ (t) = (v∗ǫ1(t), v
∗
ǫ2(t)) such that u∗ǫ(t) = e

ln r(Pǫ)
ω

tv∗ǫ (t)
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is a positive solution of system (3.13). Since r(Pǫ) < 1, limt→∞ u∗ǫ(t) = 0. The

total number of vectors, M(t), satisfies system (3.5), and hence, Ms(t) ≤ M(t) and

limt→∞(M(t) − M∗(t)) = 0. The total number of hosts, NB(t), satisfies dNB(t)
dt

=

Λ(t) − dB(t)NB(t), which has a globally attractive ω-periodic solution N∗
B(t), that is,

limt→∞(NB(t) − N∗
B(t)) = 0. Then there exists a sufficiently large integer n1 > 0

such that n1ω > τ̂2 and 0 ≤ Ms(t) ≤ M(t) < M∗(t) + ǫ, M(t) > M∗(t) − ǫ > 0,

NB(t) > N∗
B(t) − ǫ > 0 for all t ≥ n1ω − τ̂2. We then have

dMi(t)
dt

≤ b2(t)B(gA(t),M∗(gA(t)) − ǫ)Mi(gA(t)) + b3(t)β(hL(t))M
∗(hL(t))+ǫ

N∗

B(hL(t))−ǫ
Bi(hL(t))

−dM(t)Mi(t),

dBi(t)
dt

≤ cβ(t)Mi(t) − (dB(t) + γ(t))Bi(t),

(3.14)

for all t ≥ n1ω.

Let Θ > 0 be large enough such that (Mi(t), Bi(t)) ≤ Θu∗ǫ(t) for t ∈ [n1ω, n1ω+τ̂2].

Then Theorem 1.3.2 implies that (Mi(t), Bi(t)) ≤ Θu∗ǫ(t) for t ≥ n1ω + τ̂2. Hence,

Mi(t) → 0, Bi(t) → 0 as t → ∞. By using the chain transitive sets arguments (see,

e.g., Theorem 1.1.1 and [83]), we have ML(t) → 0, Br(t) → 0, Ms(t) −M∗(t) → 0,

Bs(t) −N∗
B(t) → 0 as t → ∞. Thus, (M∗(t), 0, 0, N∗

B(t), 0, 0) is globally attractive in

Xδ \ ({(0, 0, 0)} × C([−τ̂L, 0],R3
+)).

3.4 Global attractivity in the case of constant co-

efficients

In this section, we study the global attractivity for the model system in the case where

all coefficients are constants and the disease-induced death rate of birds µB is zero.
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In this case, system (3.2) reduces to the following autonomous one:

dMs(t)
dt

= rme
−αM(t−τA)(Ms(t− τA) +ML(t− τA) + (1 − q)Mi(t− τA))e−dAτA

−dMMs(t) −
bβMs(t)Bi(t)

NB(t)
,

dML(t)
dt

= rme
−αM(t−τA)qMi(t− τA)e−dAτA − dMML(t) + bβMs(t)Bi(t)

NB(t)
−H(t),

dMi(t)
dt

= H(t) − dMMi(t),
dBs(t)

dt
= Λ − cβMi(t)Bs(t)

NB(t)
− dBBs(t),

dBi(t)
dt

= cβMi(t)Bs(t)
NB(t)

− (dB + γ)Bi(t),
dBr(t)

dt
= γBi(t) − dBBr(t),

(3.15)

where

H(t) =
[
rme

−αM(t−τL−τA)qMi(t− τA − τL)e−dAτA +
bβMs(t− τL)Bi(t− τL)

NB(t− τL)

]
e−dM τL .

There are two disease-free equilibria, E0 = (0, 0, 0, N∗
B, 0, 0) and E1 = (M∗, 0, 0,

N∗
B, 0, 0), where M∗ = 1

α
ln( rm

dMedAτA
) and N∗

B = Λ
dB

. In order to avoid the extinction

of the mosquito population, we assume that

(H1) dM < rme
−dAτA < edM .

It follows from Theorem A.4 that the scalar delay equation

dM(t)

dt
= rme

−αM(t−τA)M(t− τA)e−dAτA − dMM(t)

admits a globally attractive positive steady state M∗ in C([−τA, 0],R+)\{0} under

the assumption (H1).

In the case of constant coefficients, let

F1 =

[
rmqe

−dAτAe−dM τLe−αM
∗

0

0 0

]
, F2 =

[
0 bβM∗e−dMτL

N∗

B

0 0

]
, F3 =

[
0 0

cβ 0

]
.

It then follows that F (φ) = F1φ(−τA − τL) + F2φ(−τL) + F3φ(0), and

V =

[
dM 0

0 dB + γ

]
.

According to [150, Corollary 2.1], R0 = r(F̂ V −1), where F̂ = F1 + F2 + F3. Since

F̂ V −1 =

[
rmqe−dAτAe−dMτLe−αM∗

dM

bβM∗e−dMτL

N∗

B(dB+γ)

cβ
dM

0

]
,



62

we have

R0 =
1

2
(C1 +

√
C2

1 + 4C0),

where C0 = bβM∗e−dMτLcβ
N∗

B(dB+γ)dM
and C1 = rmqe−dAτAe−dMτLe−αM∗

dM
. Define

R̃0 =
M∗bβe−dM τLcβ + dMqe

−dM τLN∗
B(dB + γ)

dMN∗
B(dB + γ)

.

We can prove that R0 − 1 has the same sign as R̃0 − 1. When R0 > 1, system (3.15)

has a unique positive equilibrium E∗ = (M∗
s ,M

∗
L,M

∗
i , B

∗
s , B

∗
i , B

∗
r ), where

M∗
s =

dM (1−qe−dMτL )N∗

B(cβM∗

i +Λ)(dB+γ)

bβ2cΛe−dMτL
, M∗

L =
(1−e−dMτL )(dM qM∗

i N
∗

B+bβM∗

sB
∗

i )

N∗

BdM
,

M∗
i =

dMN∗

BΛ(dB+γ)(R̃0−1)

bcβ2Λ+(1−qe−dMτL )dMN∗

Bcβ(dB+γ)
, B∗

s =
ΛN∗

B

cβM∗

i +Λ
, B∗

i =
cβM∗

i Λ

(cβM∗

i +Λ)(dB+γ)
, B∗

r =
γB∗

i

dB
.

Define

Yδ :=
{
φ ∈ C([−τA − τL, 0],R6

+) : Σ6
i=4φi(s) ≥ δ, ∀s ∈ [−τA − τL, 0], ϕ2(0) =

∫ 0

−τL

edM ξ[
bβϕ1(ξ)ϕ5(ξ)∑6

i=4 ϕi(ξ)
+ e−dAτAB(ξ − τA,

3∑

i=1

ϕi(ξ − τA))qϕ3(ξ − τA)]dξ
}
.

Then we have the following results on the global dynamics of system (3.15).

Theorem 3.4.1. Let (H1) hold. If R0 < 1, then the disease-free equilibrium E1 is

globally attractive for system (3.15) in Yδ \ ({(0, 0, 0)} × C([−τA − τL, 0],R3
+)).

Proof. The total vector and host populations satisfy the following system:

dM(t)
dt

= rme
−αM(t−τA)M(t− τA)e−dAτA − dMM(t),

dNB(t)
dt

= Λ − dBNB(t).
(3.16)

Since (H1) holds, (M∗, N∗
B) is globally attractive for system (3.16) in (C([−τA, 0],R+)\

{0}) × R+. Then for any ǫ > 0, there exists T0 = T0(ǫ) > 0 such that

M∗ − ǫ ≤M(t) ≤M∗ + ǫ, N∗
B − ǫ ≤ NB(t) ≤ N∗

B + ǫ, ∀t ≥ T0.

Thus, for any t ≥ T0 + τA + τL,

dMi(t)

dt
≤[rme

−α(M∗−ǫ)qMi(t− τA − τL)e−dAτA +
bβ(M∗ + ǫ)Bi(t− τL)

N∗
B − ǫ

]e−dM τL

− dMMi(t),

dBi(t)

dt
≤cβMi(t) − (dB + γ)Bi(t).
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In the case where R0 < 1, by choosing sufficiently small ǫ > 0 and using the compari-

son arguments similar to those in Theorem 3.3.3, we then obtain limt→∞(Mi(t), Bi(t)) =

(0, 0). By the theory of asymptotically autonomous semiflows [123], it follows that

limt→∞(Ms(t),ML(t),Mi(t), Bs(t), Bi(t), Br(t)) = (M∗, 0, 0, N∗
B, 0, 0).

To obtain the global attractivity of the positive equilibrium, we need the following

additional assumption:

(H2) bβdB > dM(1 − qe−dM τL)(dB + γ).

Theorem 3.4.2. Let (H1) and (H2) hold. If R0 > 1, then system (3.15) admits a

unique positive equilibrium u∗ = E∗ such that for any φ ∈ Yδ with φ3(0) > 0 and

φ5(0) > 0, limt→∞ u(t, φ) = E∗.

Proof. Since (H1) holds, (M∗, N∗
B) is globally attractive for system (3.16) in (C([−τA, 0],

R+) \ {0}) × R+. Then we have the following limiting system:

dMs(t)
dt

= A− rme
−αM∗

qMi(t− τA)e−dAτA − dMMs(t) − bβ′Ms(t)Bi(t),
dML(t)

dt
= rme

−αM∗

qMi(t− τA)e−dAτA − dMML(t) + bβ′Ms(t)Bi(t)

−[rme
−αM∗

qMi(t− τA − τL)e−dAτA + bβ′Ms(t− τL)Bi(t− τL)]e−dM τL ,
dMi(t)

dt
= rme

−αM∗

qMi(t− τA − τL)e−dAτAe−dM τL + bβ′Ms(t− τL)Bi(t− τL)e−dM τL

−dMMi(t),
dBs(t)

dt
= Λ − cβ′Mi(t)Bs(t) − dBBs(t),

dBi(t)
dt

= cβ′Mi(t)Bs(t) − (dB + γ)Bi(t),
dBr(t)

dt
= γBi(t) − dBBr(t),

(3.17)

where A = dMM
∗ and β′ = β

N∗

B
. Since the second and sixth equations are decoupled

from others in system (3.17), we obtain the following system:

dMs(t)
dt

= A− rme
−αM∗

qMi(t− τA)e−dAτA − dMMs(t) − bβ′Ms(t)Bi(t),
dMi(t)

dt
= rme

−αM∗

qMi(t− τA − τL)e−dAτAe−dM τL + bβ′Ms(t− τL)Bi(t− τL)e−dM τL

−dMMi(t),
dBs(t)

dt
= Λ − cβ′Mi(t)Bs(t) − dBBs(t),

dBi(t)
dt

= cβ′Mi(t)Bs(t) − (dB + γ)Bi(t).

(3.18)

Let g(t) = Ms(t) + edM τLMi(t+ τL). Then

dg(t)

dt
=

dMs(t)

dt
+ edM τL

dMi(t+ τL)

dt
= A− dMg(t).
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It is easy to see that M∗ = A/dM is globally attractive for the above nonhomogeneous

equation. For system (3.18), we consider the following limiting system:

dM̄i(t)
dt

= rme
−αM∗

qM̄i(t− τA − τL)e−dAτAe−dM τL − dMM̄i(t)

+bβ′(M∗ − edM τLM̄i(t))B̄i(t− τL)e−dM τL ,
dB̄s(t)

dt
= Λ − cβ′M̄i(t)B̄s(t) − dBB̄s(t),

dB̄i(t)
dt

= cβ′M̄i(t)B̄s(t) − (dB + γ)B̄i(t).

(3.19)

From the discussion in Lemma 3.2.1, it is easy to verify that the set

D := C([−τA − τL, 0], [0,M∗e−dM τL ] × R
2
+)

is positively invariant for system (3.19).

By arguments similar to those in Theorem 3.3.1, we can show that system (3.19)

is uniformly persistent in the sense that there exists an η1 > 0 such that for any initial

value ψ = (ψ1, ψ2, ψ3) ∈ D with ψ1(0) > 0, ψ3(0) > 0, the solution (M̄i(t, ψ), B̄s(t, ψ),

B̄i(t, ψ)) of system (3.19) satisfies

lim inf
t→∞

(M̄i(t, ψ), B̄i(t, ψ)) ≥ (η1, η1).

Next we use the method of fluctuations (see, e.g., [147]) to prove the global at-

tractivity of the positive equilibrium for system (3.19). Given ψ ∈ D with ψ1(0) > 0,

ψ3(0) > 0, let (M̄i(t), B̄s(t), B̄i(t)) = (M̄i(t, ψ), B̄s(t, ψ), B̄i(t, ψ)). Define

M̄∞
i = lim sup

t→∞
M̄i(t), M̄i∞ = lim inf

t→∞
M̄i(t), B̄

∞
s = lim sup

t→∞
B̄s(t), B̄s∞ = lim inf

t→∞
B̄s(t),

B̄∞
i = lim sup

t→∞
B̄i(t), B̄i∞ = lim inf

t→∞
B̄i(t).

Clearly, M̄∞
i ≥ M̄i∞ ≥ η1 > 0, B̄∞

i ≥ B̄i∞ ≥ η1 > 0, B̄∞
s ≥ B̄s∞ > 0. Then there exist

sequences tjn → ∞ and sjn → ∞, j = 1, 2, 3, such that

lim
n→∞

M̄i(t
1
n) = M̄∞

i , M̄
′
i(t

1
n) = 0, lim

n→∞
M̄i(s

1
n) = M̄i∞, M̄

′
i(s

1
n) = 0, ∀n ≥ 1;

lim
n→∞

B̄s(t
2
n) = B̄∞

s , B̄
′
s(t

2
n) = 0, lim

n→∞
B̄s(s

2
n) = B̄s∞, B̄

′
s(s

2
n) = 0, ∀n ≥ 1;

lim
n→∞

B̄i(t
3
n) = B̄∞

i , B̄
′
i(t

3
n) = 0, lim

n→∞
B̄i(s

3
n) = B̄i∞, B̄

′
i(s

3
n) = 0, ∀n ≥ 1.

By the first equation of system (3.19), we have

B̄∞
i bβ

′(M∗ − edM τLM̄∞
i )e−dM τL + rme

−αM∗

qM̄∞
i e

−dAτAe−dM τL − dMM̄
∞
i ≥ 0
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≥ B̄i∞bβ
′(M∗ − edM τLM̄∞

i )e−dM τL + rme
−αM∗

qM̄∞
i e

−dAτAe−dM τL − dMM̄
∞
i ,

B̄∞
i bβ

′(M∗ − edM τLM̄i∞)e−dM τL + rme
−αM∗

qM̄i∞e
−dAτAe−dM τL − dMM̄i∞ ≥ 0

≥ B̄i∞bβ
′(M∗ − edM τLM̄i∞)e−dM τL + rme

−αM∗

qM̄i∞e
−dAτAe−dM τL − dMM̄i∞,

and hence,

B̄∞
i ≥

dMM̄
∞
i (1 − qe−dM τL)

bβ′(M∗ − edM τLM̄∞
i )e−dM τL

≥
dMM̄i∞(1 − qe−dM τL)

bβ′(M∗ − edM τLM̄i∞)e−dM τL
≥ B̄i∞. (3.20)

Similarly, by the second and third equations of system (3.19), we have

Λ

dB + cβ′M̄i∞

≥ B̄∞
s ≥ B̄s∞ ≥

Λ

dB + cβ′M̄∞
i

, (3.21)

cβ′M̄∞
i B̄

∞
s

dB + γ
≥ B̄∞

i ≥ B̄i∞ ≥
cβ′M̄i∞B̄s∞

dB + γ
. (3.22)

Thus, combining (3.21) and (3.22) together, we obtain

Λ

dB + cβ′M̄i∞

cβ′M̄∞
i

dB + γ
≥ B̄∞

i ≥ B̄i∞ ≥
Λ

dB + cβ′M̄∞
i

cβ′M̄i∞

dB + γ
. (3.23)

By (3.20) and (3.23), it follows that

Λ

dB + cβ′M̄i∞

cβ′M̄∞
i

dB + γ
≥

dMM̄
∞
i (1 − qe−dM τL)

bβ′(M∗ − edM τLM̄∞
i )e−dM τL

,

Λ

dB + cβ′M̄∞
i

cβ′M̄i∞

dB + γ
≤

dMM̄i∞(1 − qe−dM τL)

bβ′(M∗ − edM τLM̄i∞)e−dM τL
.

Therefore, (Λbβ′ − dM(1 − qe−dM τL)(dB + γ))M̄∞
i ≤ (Λbβ′ − dM(1 − qe−dM τL)(dB +

γ))M̄i∞. Since (H2) holds, we have M̄∞
i = M̄i∞. By (3.21) and (3.22), we get B̄∞

s =

B̄s∞ and B̄∞
i = B̄i∞. Then limt→∞(M̄i(t), B̄s(t), B̄i(t)) = (M∗

i , B
∗
s , B

∗
i ) := E2 for any

ψ ∈ D with ψ1(0) > 0 and ψ3(0) > 0. Thus, we have W S(E2) = D \ {(0, N∗
B, 0)},

where W S(E2) is the stable set of E2 for the solution semiflow of system (3.19).

For any given ϕ ∈ E := C([−τA− τL, 0],R4
+), let v(t, ϕ) = (v1(t), v2(t), v3(t), v4(t))

be the unique solution of system (3.18) with v0 = ϕ for all t ≥ 0. Then (v2(t), v3(t), v4(t))

satisfies the following nonautonomous system:

dMi(t)
dt

= rme
−αM∗

qMi(t− τA − τL)e−dAτAe−dM τL − dMMi(t)

+bβ′(g(t− τL) − edM τLMi(t))Bi(t− τL)e−dM τL ,
dBs(t)

dt
= Λ − cβ′Mi(t)Bs(t) − dBBs(t),

dBi(t)
dt

= cβ′Mi(t)Bs(t) − (dB + γ)Bi(t).
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Now we define

ω̃ ={(φ2, φ3, φ4) ∈ C([−τA − τL, 0],R3
+) :

lim
n→∞

(v2(tn + ·), v3(tn + ·), v4(tn + ·)) = (φ2, φ3, φ4) for some tn → ∞}.

In view of Lemma 3.2.1 and its proof, it is easy to see that ω̃ is a nonempty and

compact subset of C([−τA − τL, 0],R3
+). Since limt→∞ g(t) = M∗ and 0 ≤ v2(t) ≤

g(t − τL)e−dM τL for all t ≥ 0, we have ω̃ ⊆ D. By the continuous-time version of

Lemma 1.1.3 (see also [92, Theorem 1.8 (d)]), it then follows that ω̃ is an internally

chain transitive set for the solution semiflow of system (3.19) on D. We further have

the following observation.

Claim. limt→∞ v(t, ϕ) 6= (M∗, 0, N∗
B, 0) for any ϕ ∈ E with ϕ2(0) > 0 and ϕ4(0) > 0.

Suppose, by contradiction, that limt→∞ v(t, ψ) = (M∗, 0, N∗
B, 0) for some ψ ∈ E

with ψ2(0) > 0 and ψ4(0) > 0. Thus, for any σ > 0, there exists T1 = T1(σ) > 0 such

that |Ms(t) −M∗| < σ and |Bs(t) − N∗
B| < σ for all t ≥ T1. Consider the following

perturbed linear system with parameter σ > 0:

dMi(t)
dt

= rme
−αM∗

qMi(t− τA − τL)e−dAτAe−dM τL + bβ′(M∗ − σ)Bi(t− τL)e−dM τL

−dMMi(t),
dBi(t)

dt
= cβ′Mi(t)(N

∗
B − σ) − (dB + γ)Bi(t).

(3.24)

Let

F̂σ :=

[
rmqe

−dAτAe−dM τLe−αM
∗

bβ′(M∗ − σ)e−dM τL

cβ′(N∗
B − σ) 0

]
.

Then we have limσ→0+ r(F̂σV
−1) = r(F̂ V −1) = R0 > 1. Fix a sufficiently small σ > 0

such that r(F̂σV
−1) > 1. By arguments similar to those in Theorem 3.3.1, it follows

that there is a positive vector v∗σ such that w∗
σ(t) = eln r(F̂σV −1)tv∗σ is a positive solution

of system (3.24). Then limt→∞w∗
σ(t) = ∞. For all t ≥ T1 + τL, we see from system

(3.18) that

dMi(t)
dt

≥ rme
−αM∗

qMi(t− τA − τL)e−dAτAe−dM τL + bβ′(M∗ − σ)Bi(t− τL)e−dM τL

−dMMi(t),
dBi(t)

dt
≥ cβ′Mi(t)(N

∗
B − σ) − (dB + γ)Bi(t).

Since ψ2(0) > 0 and ψ4(0) > 0, Mi(t, ψ) > 0 and Bi(t, ψ) > 0. By the comparison

principle, it then easily follows that limt→∞(Mi(t, ψ), Bi(t, ψ)) = (∞,∞), which is a

contradiction.
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The above claim implies that for any given ϕ ∈ E with ϕ2(0) > 0 and ϕ4(0) > 0,

we have ω̃ 6= {(0, N∗
B, 0)}, and hence, ω̃ ∩ W S(E2) 6= ∅. By Theorem 1.1.1 and

[151, Remark 1.3.2], it follows that ω̃ = E2, and hence, limt→∞(v2(t), v3(t), v4(t)) =

(M∗
i , B

∗
s , B

∗
i ). Thus, we have limt→∞ v1(t) = limt→∞(g(t) − edM τLMi(t+ τL)) = M∗ −

edM τLM∗
i = M∗

s . Consequently, the solution of system (3.18) satisfies limt→∞ v(t, ϕ) =

(M∗
s ,M

∗
i , B

∗
s , B

∗
i ). By the theory of asymptotically periodic semiflows [151, Section

3.2] and the theory of chain transitive sets (see, e.g., Lemma 1.1.3, Theorems 1.1.1 and

1.2.1), we can further lift the global attractivity for system (3.18) to system (3.15).

It follows that limt→∞ u(t, φ) = E∗ for any φ ∈ Yδ with φ3(0) > 0 and φ5(0) > 0.

3.5 A case study

In this section, we study the WNV transmission case in Orange County, California,

United States. Since its arrival in California in 2003, WNV is now the most prevalent

mosquito-borne disease in the United States. In the following, we take January of

2003 as the start time of all simulations. Let the period ω = 12 months.

3.5.1 Parameter estimation

We first obtain and estimate the values for constant parameters in system (3.2) that

do not heavily depend on temperature. They are listed in Table 3.2. According to [22],

the recruitment rate of birds which can be infected by WNV in California is estimated

to be 31.5253 × 105 birds × year−1. The areas of California is 423970 km2, yielding

that the recruitment rate of birds is 7.4 birds × year−1 per square kilometer. The

areas of Orange County is 2455 km2, then the recruitment rate of birds in Orange

County is about 18000/12 birds × Month−1.

Next, we use the monthly mean temperature for Orange County (see https://en.

climate-data.org/north-america/united-states-of-america/california/orange-1441/), as

shown in Table 3.3, to evaluate the periodic parameters in system (3.2).

Estimation of rm(t). It follows from [17] that the temperature-dependent per

capita mosquito egg production rate per month can be expressed as

rm(T ) =
1

1432.5 × T−2.12
× 30.4,
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Table 3.2: Values (ranges) for constant parameters in system (3.2)

Parameter Value (range) Resource
α 0.00001 estimated
q 0.007 [32,42]
b 0.24(0.02 ∼ 0.24) [111,126,127,139]
c 1(0.80 ∼ 1.00) [111,126,127,139]
Λ 18000/12 birds × Month−1 see text
dB 1/(8× 12) Month−1 [22, 70]
µB 0.0014(0 ∼ 0.5)× 30.4 Month−1 [67, 93]
γ 0.102(0 ∼ 0.2)× 30.4 Month−1 [67]

Table 3.3: Monthly mean tempreature for Orange County (in ◦C)

Month January February March April May June
Temperature 13.2 14.1 14.4 15.9 17.8 19.9
Month July August September October November December
Temperature 22.4 23 22.1 19.5 15.9 13.2

where T is the temperature in ◦C. Therefore, the per capita mosquito egg production

rate rm(t) in Orange County can be approximated by:

rm(t) =(0.3202 − 0.1706 cos(πt/6) − 0.06493 sin(πt/6) + 0.01141 cos(2πt/6)

+ 0.04363 sin(2πt/6) + 0.003083 cos(3πt/6) + 0.002633 sin(3πt/6)

+ 0.004725 cos(4πt/6) + 0.004604 sin(4πt/6) − 0.00394 cos(5πt/6)

+ 0.001008 sin(5πt/6) + 0.0009417 cos(6πt/6)) × 30.4 Month−1.

Estimation of β(t) and τA(t). According to [70, 109], the temperature-dependent

gonotrophic period (the duration period between blood meals) is the reciprocal of the

biting rate, and the per capita biting rate of mosquitoes per month is given by

β(T ) =
0.344

1 + 1.231e−0.184(T−20)
× 30.4.

Then the per capita biting rate of mosquitoes β(t) in Orange County can be fitted

by:

β(t) =(0.1227 − 0.06352 cos(πt/6) − 0.02399 sin(πt/6) + 0.003592 cos(2πt/6)

+ 0.01537 sin(2πt/6) + 0.00145 cos(3πt/6) + 0.001967 sin(3πt/6)

+ 0.001942 cos(4πt/6) + 0.001342 sin(4πt/6) − 0.001482 cos(5πt/6)
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+ 0.0003116 sin(5πt/6) + 0.0002583 cos(6πt/6)) × 30.4 Month−1.

By [51], the gonotrophic period is the ovarian maturation rate plus two days for

oviposition and locating a blood meal host. Thus, we assume that the duration of

immature stage of mosquitoes is the gonotrophic period minus two days, that is,

τA(t) = 1/β(t) − 2/30.4 Month.

Estimation of dA(t) and dM(t). The per capita mortality rate for immature

mosquitoes dA(t) and for adult mosquitoes dM(t) per month can be evaluated as

the following functions of temperature [70, 109], respectively,

dA(T ) = (0.0025T 2 − 0.094T + 1.0257) × 30.4, dM(T ) = dA(T )/10.

Thus, the per capita mortality rate for immature mosquitoes dA(t) and for adult

mosquitoes dM(t) in Orange County are given by:

dA(t) =(0.1765 + 0.02346 cos(πt/6) − 0.001669 sin(πt/6) + 0.02157 cos(2πt/6)

+ 0.0101 sin(2πt/6) + 0.00105 cos(3πt/6) − 0.01402 sin(3πt/6)

− 0.00115 cos(4πt/6) − 0.004936 sin(4πt/6) − 0.00151 cos(5πt/6)

− 0.002448 sin(5πt/6) + 0.0005833 cos(6πt/6)) × 30.4 Month−1,

dM(t) =
dA(t)

10
Month−1.

Estimation of τL(t). By [29], the temperature-dependent EIP is estimated as

τL(T ) =
10.45 − 0.21T

(−0.27 + 0.03T ) × 30.4
.

Then the periodic EIP in Orange County can be approximated by:

τL(t) =(32.72 + 22.27 cos(πt/6) + 5.041 sin(πt/6) + 5.288 cos(2πt/6)

− 2.445 sin(2πt/6) + 1.109 cos(3πt/6) − 3.395 sin(3πt/6) − 0.2771 cos(4πt/6)

− 2.689 sin(4πt/6) − 0.05495 cos(5πt/6) − 1.347 sin(5πt/6)

− 0.1119 cos(6πt/6) + 0.4898 sin(6πt/6))/30.4 Month.

3.5.2 Model validation

From the California West Nile Virus Website (see http://www.westnile.ca.gov/), we

can obtain the monthly reported numbers of dead birds testing positive for WNV in
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Orange County from January 2015 to December 2018. We use the obtained parameter

values above. From Figure 3.2, the monthly reported numbers of WNV-positive dead

birds (stars in the dotted red curve) show an obvious seasonal fluctuation, with the

seasonality peak in the summer, which is consistent with the seasonal variation of

temperature in Orange County. The initial functions are chosen as the constant

functions Ms(θ) = 43000 for all θ ∈ [−τ̂ , 0], ML(θ) = 100 and Mi(θ) = 100 for all

θ ∈ [−τ̂0, 0], Bs(θ) = 18000, Bi(θ) = 2 and Br(θ) = 10 for all θ ∈ [−τ̂L, 0]. The

reported data and the simulation result based on our model in Orange County are

shown in Figure 3.2(a) and match well. Figure 3.2(b) gives the trends of the number of

dead birds for WNV in the future severals years if no further effective control measure

is taken in Orange County. In the year 2018, some personal protection measures may

be introduced, and we choose the biting rate as (1 − C)β(t), where C = 0.21 is the

control effort. Then the simulation result until the year 2022 is shown in Figure 3.3,

which has a less number of dead birds than that in Figure 3.2(b).
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Figure 3.2: Time series of monthly reported and model simulated dead birds cases. (a) From
January 2015 to December 2018. (b) From January 2015 to December 2022.

3.5.3 Long-term behavior

Using Lemma 1.4.2, we compute the basic reproduction R0 numerically under the

same set of parameter values as Figure 3.2. We obtain R0 = 1.3672 > 1 in Figure 3.2.

In this case, the disease will persist and shows periodic fluctuation eventually (see

Figure 3.4). By some WNV control measures to prevent bites, if we can decrease the
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biting rate to 0.6β(t), then R0 = 0.8217 < 1. In this case, the long-term behaviors of

the infectious mosquitoes and birds are shown in Figure 3.5, which implies that the

disease will die out eventually. These simulations are consistent with our theoretical

results.
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Figure 3.3: The monthly reported and model simulated dead birds cases from January 2018 to
December 2022 when β(t) is replaced by 0.79β(t).
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Figure 3.4: Long-term behaviors of the infectious compartments in system (3.2) when R0 =
1.3672 > 1.

3.5.4 Sensitivity analysis of R0

In order to reduce the WNV mortality and morbidity in birds, it is important to

explore the influence of different factors for WNV transmission. Then we explore the
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Figure 3.5: Long-term behaviors of the infectious compartments in system (3.2) when R0 =
0.8217 < 1.

relationship between some parameters and R0, and the possible measures to control

WNV transmission.

We first discuss the effect of temperature-dependent maturation time and EIP on

R0. By replacing τA(t) and τL(t) with kτA(t) and lτL(t), k ∈ [1, 3.5], l ∈ [0, 3.5],

respectively, and keeping the other parameter values the same as those in Figure 3.2,

we observe that R0 is a decreasing function of k (see Figure 3.6(a)). Figure 3.6(b)

shows that R0 declines sharply when l ∈ [2, 2.5] and reaches the relative minimum at

l = 2.5, which implies that it is the “sweet spot”. Hence, we may try the prolong the

maturation time and EIP to control WNV by using some drugs for mosquitoes. In the

immature stage before mosquitoes reach adulthood, we may use larvicides in breeds

areas which will kill the immature mosquitoes and reduce the mosquitoes population.

Secondly, we simulate the effect of the vertical transmission q on R0. Under

other parameter values the same as those in Figure 3.5, we observe that there is

a relative small change in R0 as q increases (see Figure 3.7(a)). A large enough

vertical transmission rate in mosquitoes can make R0 > 1, that is, the increase of

vertical transmission could cause an endemic state of WNV. This is probably because

the vertical transmission provides a survival mechanism for the virus during adverse

conditions.

Thirdly, the biting rate plays a very important role in the spread of WNV. To

simulate the effect of preventing bites, we replace β(t) with (1 − C)β(t) and other

parameters values the same as those in Figure 3.2. The blue curve in Figure 3.7(b)
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shows that R0 is a decreasing function of C. In order to eradicate disease, we should

keep C > 0.2673 such that R0 < 1.
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Figure 3.6: R0 vs k and l. (a) Relationship between R0 and k. (b) Relationship between R0 and l.
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Figure 3.7: R0 vs q and C. (a) Relationship between R0 and q. (b) Relationship between R0 and
C.

Finally, we explore the influence of the seasonality and the periodic time delays on

R0. Define the time-averaged time delay as [τ ] := 1
ω

∫ ω
0
τ(t)dt. Figure 3.7(b) compares

the effect of the periodic time delays, constant time delays, and without seasonality

on R0 keeping other parameters the same as those in Figure 3.2. We observe that the

use of constant time delays, without seasonality parameters may underestimate the

value of R0. This implies that we need to take much more effort to control the spread

of WNV. Figure 3.8 compares the long-term behaviors of mosquitoes and birds under

three scenarios: periodic time delays, constant time delays, and without seasonality,
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Figure 3.8: Comparison of the long-term behaviors of the infectious compartments in system (3.2)
with periodic time delay, time-averaged time delay, and without seasonality.

which implies that the amplitude of the periodic fluctuation of infectious mosquitoes

and birds are greater than that in the case of constant time delays and parameters.

3.6 Discussion

In this chapter, we formulated and analyzed a WNV transmission model between

mosquitoes and birds that includes the seasonal effects, the vertical transmission of

virus in mosquitoes, the temperature-dependent maturation time, and the temperature-

dependent EIP for mosquitoes. By the theory developed in [75, 150], we derived and

numerically computed the basic reproduction ratio R0. Since the maturation time

and EIP are periodic, we need to define a suitable phase space on which the linearized

system for infectious compartments generates an eventually strongly monotone peri-

odic semiflow. By the persistence theory for periodic semiflows, we showed that R0

is the threshold parameter for the extinction and persistence of the disease. More

precisely, if R0 > 1, then the disease will persist; if R0 < 1, then the disease will

be cleared provided that there is only a small invasion in infectious mosquitoes and

birds. We further established the global attractivity of the disease-free periodic so-

lution in the case where R0 < 1 and the disease-induced death rate is zero. When

all coefficients are constants and the disease-induced death rate of birds is zero, our

model reduces to an autonomous system. For such a model, we obtained an explic-

it expression of R0 and a threshold result on the global attractivity in terms of R0.
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By the perturbation method, we may prove the global attractivity of the disease-free

periodic solution when the disease-induced death rate is sufficiently small. However,

it remains an unsolved mathematical problem to prove it for the case of a general

disease-induced death rate.

We have estimated all constant and periodic parameters from some published data

and studied WNV transmission in Orange County, California, United States. The risk

of the disease is measured by R0. The simulated results based on our model exhibit

the seasonal fluctuation and match with the reported data well. In the year 2018,

since R0 = 1.0812 > 1, the disease will persist if the control effort keeps C = 21%.

However, the number of dead birds has decreased significantly. If the control effort

keeps C = 26.73% by reducing mosquitoes bites, then the disease will eventually be

controlled and eliminated. This means that people need to make greater efforts and

take more effective measures.

Our numerical simulations in Figures 3.6(a), 3.6(b), 3.7(a) indicate that an increase

of the maturation time and the EIP, a decrease of the vertical transmission rate and

the biting rate in mosquitoes could reduce the value of R0. Control strategies focus

mainly on the eradication of mosquitoes because birds’ behavior is hard to control

artificially. Therefore, we may try to prolong the maturation time, EIP, and reduce the

vertical transmission rate by developing new drugs for mosquitoes. Moreover, in order

to keep birds from mosquito bites, we may try to reduce the mosquito population.

For such a purpose, we may reduce mosquito breeding sites by eliminating culverts,

roadside ditches and standing water, or kill mosquito larvae by larvacides, or kill

adult mosquitoes by fogging and spraying adulticides [97]. In addition, our simulated

result shows that the risk of the disease will be underestimated if we only consider the

constant parameters or time-averaged time delays. Thus, the model incorporating the

seasonality and temperature-dependent time delays are more realistic for the control

of WNV transmission.

Appendix. A periodic delay differential equation

In this Appendix, we consider a scalar differential equation with periodic delay:

du(t)

dt
= a(t)e−α(t)u(t−τA(t))u(t− τA(t)) − d(t)u(t), (3.25)
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where all coefficients are positive ω-periodic functions. Let Z := C([−τ̂A, 0],R), Z+ :=

C([−τ̂A, 0],R+). For any ϕ ∈ Z+, define

f̃(t, ϕ) = a(t)e−α(t)ϕ(−τA(t))ϕ(−τA(t)) − d(t)ϕ(0).

It is easy to see that for any ϕ ∈ Z+ with ϕ(0) = 0, we have f̃(t, ϕ) ≥ 0. It then

follows from [116, Theorem 5.2.1] that for any ϕ ∈ Z+, system (3.25) has a unique

nonnegative solution w(t, ϕ) on its maximal interval [0, σϕ) of existence with w0 = ϕ.

Since
du(t)

dt
≤
a(t)

α(t)
e−1 − d(t)u(t),

system (3.25) is dominated by the following cooperative system:

dū(t)

dt
=
a(t)

α(t)
e−1 − d(t)ū(t). (3.26)

Clearly, system (3.26) has a globally attractive positive ω-periodic solution ū∗(t),

that is, limt→∞(ū(t) − ū∗(t)) = 0. Thus, solutions of system (3.26) are bounded and

ultimately bounded. By the comparison principle, solutions of system (3.25) exist

globally on [0,∞) and are ultimately bounded.

Let P1(t) be the solution maps of system (3.25), that is, P1(t)ψ = wt(ψ), ∀t ≥

0, where w(t, ψ) is the unique solution of system (3.25) satisfying w0 = ψ ∈ Z+.

Then P1 := P1(ω) is the Poincaré map associated with system (3.25) on Z+. Thus,

{P n
1 }

∞
n=0 is point dissipative on Z+. Let ρ(DP1(0)) be the spectral radius of the

Frechét derivative of P1 at zero. Note that the linearized system (3.25) at zero is

du(t)

dt
= a(t)u(t− τA(t)) − d(t)u(t). (3.27)

Let P̃ be the Poincaré map associated with system (3.27) on Z. By the continuity

and differentiability of solutions with respect to initial values, it follows that P1 is

differentiable at zero and DP1(0) = P̃ . Define

Z := C([−τA(0), 0],R), Z+ := C([−τA(0), 0],R+).

By the method of steps (see, e.g., [72, 82]), we have the following result.

Lemma A.1. For any ϕ ∈ Z+, system (3.25) has a unique nonnegative solution

w(t, ϕ) with w0 = ϕ for all t ≥ 0.
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For any given t ≥ 0, let S1(t) be the solution map of system (3.25) on Z+. Let S̃(t)

be the solution maps of linear system (3.27) on Z. Then S̃ := S̃(ω) is the Poincaré

map associated with linear system (3.27) and DS1(0) = S̃. It is easy to see that

r(P̃ ) = r(S̃) (see, e.g., [82]). Further, we have the following observations.

Remark A.2. By the uniqueness of solutions, it follows that for any ψ ∈ Z+ and

φ ∈ Z+ with ψ(θ) = φ(θ) for all θ ∈ [−τA(0), 0], we have w(t, ψ) = ν(t, φ) for all

t ≥ 0, where w(t, ψ) and ν(t, φ) are solutions of system (3.25) satisfying w0 = ψ and

ν0 = φ, respectively.

Lemma A.3. S1(t) is an ω-periodic semiflow on Z+ in the sense that (i) S1(0) = I;

(ii) S1(t + ω) = S1(t) ◦ S1(ω) for all t ≥ 0; and (iii) S1(t)ψ is continuous in (t, ψ) ∈

[0,∞) ×Z+.

To obtain the global dynamics of system (3.25), we need the following assumptions:

(A1) r(P̃ ) > 1, where r(P̃ ) is the spectral radius of P̃ .

(A2) ū∗(t− τA(t)) < 1
α(t)

for all t ∈ [0, ω].

Theorem A.4. Let (A1) and (A2) hold. Then system (3.25) admits a unique positive

ω-periodic solution u∗(t) which is globally attractive in Z+ \ {0}.

Proof. Define W := [0, ū∗0]Z , where ū∗0 ∈ Z, and ū∗0(θ) = ū∗(θ) for all θ ∈ [−τA(0), 0].

For any ψ ∈ Z+, we have 0 ≤ u(t, ψ) ≤ ū(t, ψ), ∀t ≥ 0. Then 0 ≤ ut(ψ) ≤ ūt(ψ),

∀t ≥ 0. Letting t = nω, we have

0 ≤ unω(ψ) ≤ ūnω(ψ), ∀n ≥ 0,

that is,

0 ≤ Sn1 (ψ) ≤ S̄n1 (ψ), ∀n ≥ 0, (3.28)

where S̄1 is the Poincaré map associated with linear system (3.26) on Z+.

Since limt→∞(ū(t)− ū∗(t)) = 0, limt→∞ ‖ūt(ψ)− ū∗t‖ = 0. Letting t = nω, we have

ū∗nω = ū∗0, and hence,

lim
n→∞

‖ūnω(ψ) − ū∗nω‖ = lim
n→∞

‖S̄n1 (ψ) − ū∗0‖ = 0.

Combining with (3.28), it follows that the omega limit set ω(ψ) of ψ for S1 satisfies

ω(ψ) ⊆ W for all ψ ∈ Z+.
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Let S̃ǫ(t) be the solution maps of the following perturbed linear periodic system

on Z:
du(t)

dt
= a(t)(1 − ǫ)u(t− τA(t)) − d(t)u(t), (3.29)

and S̃ǫ := S̃ǫ(ω). Since limǫ→0+ r(S̃ǫ) = r(S̃) > 1, we can fix a sufficiently small

number ǫ0 > 0 such that r(S̃ǫ0) > 1. It follows from [50, Theorem 3.6.1] and Remark

A.2 that the linear operator S̃ǫ0(t) is compact on Z for all t > τ̂A. By the same

arguments as in [72, Lemma 6], it follows that S̃ǫ0(t) is also strongly monotone on Z for

each t ≥ 2τ̂A. Choose an integer n0 > 0 such that n0ω ≥ 2τ̂A. Since S̃n0
ǫ0

= S̃ǫ0(n0ω),

[74, Lemma 3.1] implies that r(S̃ǫ0) is a simple eigenvalue of S̃ǫ0 having a strongly

positive eigenvector. By [135, Lemma 1], there is a positive ω-periodic function v∗(t)

such that w∗
ǫ0

(t) = e
ln r(S̃ǫ0 )

ω
tv∗(t) is a positive solution of system (3.29).

For the above fixed ǫ0 > 0, there exists a sufficiently small positive number δ0 =

δ0(ǫ0) < ǫ0 such that e−α(t)x ≥ 1 − ǫ0, ∀t ≥ 0, 0 ≤ x ≤ δ0. Since limφ→0 S1t(φ) = 0

uniformly for t ∈ [0, ω], there exists δ1 > 0 such that ‖S1t(φ)‖ ≤ δ0, ∀t ∈ [0, ω], ‖φ‖ ≤

δ1. We further have the following observation.

Claim 1. lim supn→∞ ‖Sn1 (ψ)‖ ≥ δ1 for all ψ ∈ Z+ \ {0}.

Suppose, by contradiction, that lim supn→∞ ‖Sn1 (φ)‖ < δ1 for some φ ∈ Z+ \ {0}.

Then there exists an integerN0 ≥ 1 such that ‖Sn1 (φ)‖ < δ1 for all n ≥ N0. For any t ≥

N0ω, we have t = nω + t′ with n ≥ N0, t
′ ∈ [0, ω], and ‖S1t(φ)‖ = ‖S1(t

′)S1(nω)φ‖ ≤

δ0. Then for all t ≥ N0ω + τ̂A, we have ‖u(t− τA(t), φ)‖ ≤ δ0. Then

du(t)

dt
≥ a(t)(1 − ǫ0)u(t− τA(t)) − d(t)u(t),

for all t ≥ N0ω + τ̂A. Since φ ∈ Z+ \ {0}, there exists t0 ∈ [0, τA(0)] such that

u(t0, φ) > 0. It then follows that u(t, φ) > 0 for all t ≥ t0, and hence, u(t, φ) > 0 for

all t ≥ τA(0). We can choose a sufficiently small number k > 0 such that u(t, φ) ≥

kw∗
ǫ0

(t), ∀t ∈ [N0ω + τ̂A, N0ω + 2τ̂A]. By Theorem 1.3.2, we have u(t, φ) ≥ kw∗
ǫ0

(t),

∀t ≥ N0ω + 2τ̂A. Thus, limt→0 u(t, φ) = ∞, which is a contradiction.

For any φ ∈ W , we have φ ≤ ū∗0. Since system (3.25) is dominated by system

(3.26), it follows that

u(t, φ) ≤ ū∗(t), ∀t ≥ 0, φ ∈ W.

For any given ϕ, ψ ∈ W with ϕ ≥ ψ, let v(t, ϕ) and v(t, ψ) be the unique solutions

of system (3.25) with v0 = ϕ and v0 = ψ, respectively. Define B(t, x) := a(t)e−α(t)xx.
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In view of (A2), we see that for any φ ∈ W ,

∂B

∂x
(t, u(t− τA(t), φ)) =a(t)e−α(t)u(t−τA(t),φ)[1 − α(t)u(t− τA(t), φ)]

≥a(t)e−α(t)u(t−τA(t),φ)[1 − α(t)ū∗(t− τA(t))] > 0.

By arguments similar to those in [72], it is easy to show that we have S1(t) : W → W

is monotone, that is, v(t, ϕ) ≥ v(t, ψ) for all t ≥ 0. Next we prove that S1(t) : W → W

is eventually strongly monotone. Let ϕ, ψ ∈ W satisfy ϕ > ψ. Define v̄(t) = v(t, ϕ)

and v(t) = v(t, ψ). By the same arguments as in [72, Lemma 6], we have the following

observation.

Claim 2. There exists t0 ∈ [0, τ̂A] such that v̄(t) > v(t) for all t ≥ t0.

Letting g(t, y) = B(t, v(t− τA(t))− d(t)y. Since ∂B
∂x

(t, u(t− τA(t), φ)) > 0, we then

have

dv̄(t)

dt
=B(t, v̄(t− τA(t)) − d(t)v̄(t)

>B(t, v(t− τA(t)) − d(t)v̄(t) = g(t, v̄(t)), ∀t > t0 + τ̂A,

and hence,

dv̄(t)

dt
− g(t, v̄(t)) > 0 =

dv(t)

dt
− g(t, v(t)), ∀t > t0 + τ̂A.

Since v̄(t0 + τ̂A) > v(t0 + τ̂A), it follows from Theorem 1.3.1 that v̄(t) > v(t) for all

t > t0 + τ̂A. Since t0 ∈ [0, τ̂A], it follows that Sn1 (t) : W → W is strongly monotone

for any nω > 3τ̂A.

For any given φ ≫ 0 in W and λ ∈ (0, 1), let z(t, φ) and z(t, λφ) be the solutions

of system (3.25) satisfying z0 = φ and z0 = λφ, respectively. Denote w(t) = λz(t, φ)

and v(t) = z(t, λφ). By the method of steps, w(t) > 0 and v(t) > 0 for all t ≥ 0.

For all θ ∈ [−τA(0), 0], we have w(θ) = λφ(θ) = v(θ). For any t ∈ [0, τ̄A], we

have −τA(0) = 0 − τA(0) ≤ t − τA(t) ≤ τ̄A − τA(τ̄A) ≤ τ̄A − τ̄A = 0, and hence,

w(t− τA(t)) = λφ(t− τA(t)) = v(t− τA(t)). Thus,

dw(t)

dt
|t=0 = a(0)e−α(0)z(−τA(0))w(−τA(0)) − d(0)w(0)

< a(0)e−α(0)w(−τA(0))w(−τA(0)) − d(0)w(0)

= a(0)e−α(0)v(−τA(0))v(−τA(0)) − d(0)v(0)

=
dv(t)

dt
|t=0 .
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Since w(0) = v(0) > 0, there must be an ξ ∈ (0, τ̄A) such that 0 < w(t) < v(t) holds

for all t ∈ (0, ξ). We further claim that w(t) < v(t) for all 0 < t ≤ τ̄A. Assume not,

then there exists t̄ ∈ (0, τ̄A] such that w(t) < v(t) for all t ∈ (0, t̄) and w(t̄) = v(t̄),

which implies that dw(t)
dt

|t=t̄≥
dv(t)
dt

|t=t̄. However, we have

dw(t)

dt
|t=t̄ = a(t̄)e−α(t̄)z(t̄−τA(t̄))w(t̄− τA(t̄)) − d(t̄)w(t̄)

< a(t̄)e−α(t̄)w(t̄−τA(t̄))w(t̄− τA(t̄)) − d(t̄)w(t̄)

= a(t̄)e−α(t̄)v(t̄−τA(t̄))v(t̄− τA(t̄)) − d(t̄)v(t̄)

=
dv(t)

dt
|t=t̄,

which is a contradiction. This shows that w(t) < v(t) for all 0 < t ≤ τ̄A. By the similar

arguments for any interval (nτ̄A, (n + 1)τ̄A], n = 1, 2, 3, · · · , we can get w(t) < v(t)

for all t > 0, that is, ut(λφ) ≫ λut(φ) for all t > τA(0).

Now we fix an integer n0 such that n0ω > 3τ̂A. It then follows that Sn0
1 is a

strongly monotone and strictly subhomogeneous map on W . Note that DSn0
1 (0) =

DS1(n0ω)(0) = S̃(n0ω) = (S̃(ω))n0 = S̃n0 and r(S̃n0) = (r(S̃))n0 . Since (A1) holds, it

follows from Theorem 1.3.6 that there exists a unique positive n0ω-periodic solution

w̄(t) = u∗(t) which is globally attractive for system (3.25) in W \ {0}.

Next we show that w̄(t) is also an ω-periodic solution of system (3.25). Let

w̄(t) = w(t, ψ∗). By the properties of periodic semiflows, we have Sn0
1 (S1(ψ

∗)) =

S1(S
n0
1 (ψ∗)) = S1(ψ

∗), which implies that S1(ψ
∗) is also a positive fixed point of Sn0

1 .

By the uniqueness of the positive fixed point of Sn0
1 , it follows that S1(ψ

∗) = ψ∗. Then

w̄(t) = M∗(t) is an ω-periodic solution of system (3.25).

For any ψ ∈ Z+, it follows from Lemma 1.1.2 that ω(ψ) is an internally chain

transitive set for S1 : Z+ → Z+. Since ω(ψ) ⊆ W , by Theorem 1.1.2, either ω(ψ) = 0

or ω(ψ) = ψ∗ for all ψ ∈ Z+. Claim 1 implies that ω(ψ) 6= 0 for all ψ ∈ Z+\{0}. Thus,

ω(ψ) = ψ∗ for all ψ ∈ Z+ \ {0}. Therefore, system (3.25) admits a unique positive

ω-periodic solution w(t, ψ∗) = u∗(t) which is globally attractive in Z+ \ {0}.



Chapter 4

A periodic Bluetongue model with

a temperature-dependent

incubation period

4.1 Introduction

Bluetongue virus (BTV) is the cause of bluetongue, an economically important,

reemerging vector-borne disease of ruminants transmitted to and from the affect-

ed hosts by the biting female midges of the Culicoides genus [21, 89] and it is not

transmitted by direct contact between animals in the absence of midges. BTV is

known to have infected several ruminants, and cattle and sheep are identified as pri-

mary reservoirs in several endemic areas worldwide [101]. The World Organization

for Animal Health (OIE) lists bluetongue as a notifiable disease.

Spreull [118] first reported the comprehensive clinical profile of the disease in 1905.

Since its arrival in Europe in 1998, there has been a dramatic northward extension of

the virus in Europe. In August 2006, the first outbreaks of bluetongue were reported

in northern Europe in Belgium, France, Germany, and The Netherlands [49]. More

recently, following initial elimination, BTV reemerged in France in 2015. There are

many different serotypes of BTV (currently up to 27) [113]. Once infected, animals

have high fever, swelling of the face and tongue, and cyanosis of the tongue.

Since 2008, numerous mathematical models for the time evolution of bluetongue
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disease have been developed (see, e.g., [21,49,89,122]). Gourley, Thieme, and van den

Driessche [45] studied an autonomous system with a distributed delay and obtained

necessary and sufficient conditions for local stability of the disease-free equilibrium and

for disease uniform weak persistence in midges. Gourley, Röst, and Thieme [99] further

improved the results in [45] and proved uniform persistence of the disease. Later, since

the outbreaks in Europe were seasonal due to the seasonal activity of midges as their

life cycle is temperature dependent [21,101,137], O’Farrell and Gourley [99] proposed

a periodic system with constant delays but only obtained the linear stablility of the

disease-free periodic solutions. However, few theoretical results are related to the

global dynamics, including the extinction, persistence, and the global stability of the

model system in terms of the basic reproduction ratio.

The life cycle of the Culicoides vector includes egg, larva, pupa, and adult. The

first three stages are known as immature stages and the last one is called the mature

stage. In general, adult Culicoides are short-lived and have an average life expectancy

of approximately 20 days, but may survive up to 90 days [90]. For BTV transmission

to occur, a midge must take a blood meal from an infected host and must ingest

sufficient BTV. In the process, there is an incubation period for the midge to develop

the disease and become infectious. More precisely, the time required for the entry

of virus into the midgut of the midge, dissemination through the haemocoel, and

subsequent infection of the salivary glands is termed the extrinsic incubation period

(EIP) of BTV. Many population models with temperature-dependent delays have been

developed (see, e.g., [12,72,82,100,136]). Indeed, the EIP of BTV is highly sensitive to

temperature [90,101], varying from 26 days at 15◦C to 4 days at 30◦C [138]. Therefore,

we should incorporate the temperature-dependent EIP into the mathematical model

in a more realistic way.

In this chapter, we present a model to describe the dynamics of bluetongue trans-

mission, which takes into account the seasonal effects, midges with a temperature-

dependent EIP as vectors, and cattle and sheep as hosts, and then give a complete

mathematical analysis. To our knowledge, this is the first research to incorporate the

temperature-dependent delay in the complex periodic system (two hosts, one vector,

and one infectious disease agent), which needs to define a new phase space. In addi-

tion, bluetongue affects the life cycles of two host species very differently, which gives

rise to new challenges, because cattle may even play the role of a reservoir based on

which bluetongue can eradicate the sheep without dying out itself.
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The rest of the chapter is organized as follows. In Section 4.2, we present the model

and study its well-posedness. In Section 4.3, we derive the basic disease reproduction

ratio R0 and the basic disease reproduction ratio in the absence of sheep R̃0, and prove

the threshold dynamics in terms of these two reproduction ratios. Uniform disease

persistence occurs in two different scenarios which are distinguished by R̃0 and need

different mathematical treatment. In Section 4.4, we give a case study for bluetongue

disease transmission in France. A brief discussion completes the chapter.

4.2 The model

The purpose of this section is to formulate a mathematical model of bluetongue trans-

mission, and discuss its well-posedness.

4.2.1 Model formulation

We refer the readers to [45, 72, 99, 136] for the detailed explanation of the model and

the derivation of the model system. Let Sc(t) and Ic(t) be the numbers of susceptible

and infectious cattle at time t, respectively. Assume that the total number of cattle,

Nc(t) = Sc(t) + Ic(t), is described by

dNc(t)

dt
= bc(t, Nc) − µc(t)Nc, t > 0,

where µc(t) is the per capita natural death rate of cattle; bc(t, Nc) is the birth rate

of cattle and is a nonnegative function. Since bluetongue generally does not cause

death in cattle, we assume that the total number of cattle stabilizes at a positive

periodic function N∗
c (t), that is, Nc(t) = N∗

c (t), ∀t ≥ 0. Let Ss(t), Is(t), Sm(t), and

Im(t) be the numbers of susceptible sheep, infectious sheep, susceptible, and infectious

adult female midges at time t, respectively. We incorporate seasonal factors into the

model by assuming all parameters are periodic functions. Let µl(t) be the per capita

mortality rate for immature midges at time t, and τl be the maturation period. Then

bm(t− τl, Sm(t− τl))e
−

∫ t
t−τl

µl(s)ds is the maturation rate at time t, which is produced

by the mature midges at time t−τl, and e
−

∫ t
t−τl

µl(s)ds is the probability of egg-to-adult

survival for midges. Here, bm(t, Sm) is the birth rate function of midges at time t, that

is, the egg laying rate, assuming that only susceptible midges reproduce and compete
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for reproductive resources. The transmission coefficient βmj(t) (βjm(t)) is a product of

the per capita biting rate a(t) of midges on hosts (i.e., the number of bites per midge

per unit time at time t) and the transmission probability β̄mj (β̄jm) from infectious

vectors to susceptible hosts (from infectious hosts to susceptible vectors) per bite,

where j = c, s, respectively. Since the temperature T can be assumed to vary as a

function of time t, we let τm(t) be the length of the EIP. Let Em(t) be the number

of the exposed midges at time t who are infected but not infectious yet. Let µem(t)

be the per capita mortality rate of exposed adult female midges at time t, then the

probability that a midge survives the EIP at time t is e−
∫ t
t−τm(t) µem(η)dη. Let γ(t) be

the per capita recovery rate of infectious sheep and bs(t, Ss) be the birth rate function

of sheep. Other assumptions are similar to those in [45,99], including that sheep can

recover from the disease, while midges and cattle do not (although cattle cannot show

clinical symptoms, they are the main amplifying hosts and tend to be long term virus

reservoirs [54]); only susceptible sheep produce offspring (since BTV tends to cause

abortion and congenital anomalies in sheep); only adult female midges can contract

the virus (since adult males and midges at immature stages do not take blood); there

is no biting bias for midges. Therefore, we can obtain the following system with the

temperature-dependent incubation period:

dIc(t)
dt

= βmc(t)(N∗

c (t)−Ic(t))Im(t)
Is(t)+Ss(t)+N∗

c (t)
− µc(t)Ic(t),

dSs(t)
dt

= bs(t, Ss(t)) −
βms(t)Ss(t)Im(t)
Is(t)+Ss(t)+N∗

c (t)
+ γ(t)Is(t) − µs(t)Ss(t),

dIs(t)
dt

= βms(t)Ss(t)Im(t)
Is(t)+Ss(t)+N∗

c (t)
− γ(t)Is(t) − µis(t)Is(t),

dSm(t)
dt

= bm(t− τl, Sm(t− τl))e
−

∫ t
t−τl

µl(s)ds − βcm(t)Ic(t)+βsm(t)Is(t)
Is(t)+Ss(t)+N∗

c (t)
Sm(t)

−µm(t)Sm(t),
dEm(t)

dt
= βcm(t)Ic(t)+βsm(t)Is(t)

Is(t)+Ss(t)+N∗

c (t)
Sm(t) − Sm(t− τm(t))e−

∫ t
t−τm(t) µem(η)dη

×(1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))+βsm(t−τm(t))Is(t−τm(t))
Is(t−τm(t))+Ss(t−τm(t))+N∗

c (t−τm(t))
− µem(t)Em(t),

dIm(t)
dt

= (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))+βsm(t−τm(t))Is(t−τm(t))
Is(t−τm(t))+Ss(t−τm(t))+N∗

c (t−τm(t))

×Sm(t− τm(t))e−
∫ t
t−τm(t) µem(η)dη − µim(t)Im(t),

(4.1)

with µem(t) ≥ µm(t), µij(t) = µj(t) + δj(t), where µij(t) is the per capita death rate

of infectious compartments (i.e., natural death rate µj(t) and disease-induced death

rate δj(t)) for j = s,m. We assume that all parameters are continuous and ω-periodic

functions in t for some ω > 0. And we assume that the temperature T (t) is ω-periodic,

then τm(T (t)) = τm(t) is ω-periodic and is continuously differentiable in [0,∞). Thus,

system (4.1) is an ω-periodic functional differential system. Here note that the term
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1 − τ ′m(t) is involved the development rate from the Em state to the Im state, and

1− τ ′m(t) > 0 [72,136]. In view of biological meaning, we should impose the following

compatibility condition:

Em(0) =

∫ 0

−τm(0)

βcm(η)Ic(η) + βsm(η)Is(η)

Is(η) + Ss(η) +N∗
c (η)

Sm(η)e−
∫ 0
η
µem(s)dsdη. (4.2)

By the uniqueness of solutions, and systems (4.1) and (4.2), we have

Em(t) =

∫ t

t−τm(t)

βcm(η)Ic(η) + βsm(η)Is(η)

Is(η) + Ss(η) +N∗
c (η)

Sm(η)e−
∫ t
η
µem(s)dsdη. (4.3)

In the biological literature, there are three types of time periodic birth rate functions

(see [25,84]): (C1) b(t, x) = l(t)e−m(t)xx with l(t) > 0, m(t) > 0; (C2) b(t, x) = p(t)x
q(t)+xn

with p(t) > 0, q(t) > 0, n > 0; (C3) b(t, x) = A(t) + C(t)x with A(t) > 0, C(t) ≥ 0.

To study the dynamics of system (4.1), we make the following assumptions:

(A1) βmc(t), βms(t), βcm(t), βsm(t), µc(t), µs(t), µis(t), µm(t), µem(t), µim(t), and γ(t)

are all nonnegative and continuous functions with
∫ ω
0
γ(t)dt > 0,

∫ ω
0
µa(t)dt > 0,

a = {c, s, is,m, em, im}.

(A2) bs(·, ·) ∈ C1(R× R+,R+) is ω-periodic in t and has the following properties:

(i) bs(t, 0) = 0 for all t ∈ R; supx≥0,t∈[0,ω] bs(t, x) = b̂s <∞;

(ii) for each t ≥ 0, bs(t, ·) is strictly subhomogeneous on R+ in the sense that

bs(t, αx) > αbs(t, x), ∀x > 0, α ∈ (0, 1).

(A3) bm(·, ·) ∈ C1(R× R+,R+) is ω-periodic in t and has the following properties:

(i) bm(t, 0) = 0, ∂bm
∂x

> 0 for all t ∈ R; supx≥0,t∈[0,ω] bm(t, x) = b̂m <∞;

(ii) for each t ≥ 0, bm(t, ·) is strictly subhomogeneous on R+;

(iii) there exists a positive number h0 such that bm(t − τl, L)e
−

∫ t
t−τl

µl(s)ds −

µm(t)L ≤ 0 for all L ≥ h0.

Clearly, the birth rate functions in (C1), (C2) and (C3) are strictly subhomogeneous

in x ∈ R+. Let

c(t) := e
−

∫ t
t−τl

µl(s)ds. (4.4)
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Since the fifth equation of system (4.1) is decoupled from the other equations, it

suffices to study the decoupled system:

dIc(t)
dt

= βmc(t)(N∗

c (t)−Ic(t))Im(t)
Is(t)+Ss(t)+N∗

c (t)
− µc(t)Ic(t),

dSs(t)
dt

= bs(t, Ss(t)) −
βms(t)Ss(t)Im(t)
Is(t)+Ss(t)+N∗

c (t)
+ γ(t)Is(t) − µs(t)Ss(t),

dIs(t)
dt

= βms(t)Ss(t)Im(t)
Is(t)+Ss(t)+N∗

c (t)
− γ(t)Is(t) − µis(t)Is(t),

dSm(t)
dt

= bm(t− τl, Sm(t− τl))c(t) −
βcm(t)Ic(t)+βsm(t)Is(t)
Is(t)+Ss(t)+N∗

c (t)
Sm(t) − µm(t)Sm(t),

dIm(t)
dt

= (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))+βsm(t−τm(t))Is(t−τm(t))
Is(t−τm(t))+Ss(t−τm(t))+N∗

c (t−τm(t))

×Sm(t− τm(t))e−
∫ t
t−τm(t) µem(η)dη − µim(t)Im(t).

(4.5)

4.2.2 The well-posedness

Let τ̂ = max{τl,maxt∈[0,ω]{τm(t)}}, C := C([−τ̂ , 0], R5), and C+ := C([−τ̂ , 0],R5
+).

Then (C,C+) is an ordered Banach space equipped with the maximum norm and the

positive cone C+. For any given continuous function u : [−τ̂ , σ) −→ R
5 with σ > 0,

we define ut ∈ C by ut(θ) = u(t+ θ), ∀θ ∈ [−τ̂ , 0], for any t ∈ [0, σ).

In view of the Em equation, we choose the initial data in the following set:

D :=

{
ψ ∈ C([−τ̂ , 0],R6

+) :

ψ5(0) =

∫ 0

−τm(0)

βcm(η)ψ1(η) + βsm(η)ψ3(η)

ψ2(η) + ψ3(η) +N∗
c (η)

ψ4(η)e−
∫ 0
η
µem(s)dsdη

}
.

We first verify the global existence, nonnegativity and boundedness of solutions of

system (4.5).

Lemma 4.2.1. For any φ ∈ C+, system (4.5) has a unique nonnegative solution

u(t, φ) with u0 = φ for all t ∈ [0,∞), and all solutions are ultimately bounded.

Proof. For any φ = (φ1, φ2, φ3, φ4, φ5) ∈ C+, we define

f(t, φ) =




βmc(t)(N∗

c (t)−φ1(0))φ5(0)
φ2(0)+φ3(0)+N∗

c (t)
− µc(t)φ1(0)

bs(t, φ2(0)) − βms(t)φ2(0)φ5(0)
φ2(0)+φ3(0)+N∗

c (t)
+ γ(t)φ3(0) − µs(t)φ2(0)

βms(t)φ2(0)φ5(0)
φ2(0)+φ3(0)+N∗

c (t)
− γ(t)φ3(0) − µis(t)φ3(0)

bm(t− τl, φ4(−τl))c(t) −
βcm(t)φ1(0)+βsm(t)φ3(0)
φ2(0)+φ3(0)+N∗

c (t)
φ4(0) − µm(t)φ4(0)

(1 − τ ′m(t))βcm(t−τm(t))φ1(−τm(t))+βsm(t−τm(t))φ3(−τm(t))
φ2(−τm(t))+φ3(−τm(t))+N∗

c (t−τm(t))

×φ4(−τm(t))e−
∫ t
t−τm(t) µem(η)dη − µim(t)φ5(0)




.
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Note that f(t, φ) is continuous in (t, φ) ∈ R+ × C+ and that f(t, φ) is Lipschitz in φ

on each compact subset of C+. By [50, Theorems 2.2.1 and 2.2.3] and [116, Theorem

5.2.1], it then follows that system (4.5) has a unique nonnegative solution u(t, φ) on

its maximal interval [0, σφ) of existence with u0 = φ.

For any ψ ∈ D, let v(t, ψ) = (Ic(t), Ss(t), Is(t), Sm(t), Em(t), Im(t)) be the unique

solution of system (4.1) satisfying v0 = ψ. In view of system (4.3), it follows that

v(t, ψ) are nonnegative on [0, σφ).

Since dIc(t)
dt

≤ βmc(t)Im(t) − µc(t)Ic(t), it follows that Ic(t) is bounded whenever

Im(t) is bounded on [0, σφ). For the total sheep population Ns(t) = Ss(t) + Is(t), we

have

dNs(t)

dt
=bs(t, Ss(t)) − µs(t)Ss(t) − µis(t)Is(t)

≤bs(t, Ss(t)) − µs(t)Ns(t) ≤ b̂s − µ̄sNs(t),

for all t ∈ [0, σφ), where µ̄s = mint∈[0,ω] µs(t). For the total midge population Nm(t) =

Sm(t) + Em(t) + Im(t), we have

dNm(t)

dt
=bm(t− τl, Sm(t− τl))c(t) − µm(t)Sm(t) − µim(t)Im(t) − µem(t)Em(t)

≤bm(t− τl, Sm(t− τl))c(t) − µm(t)Nm(t) ≤Mmc(t) − µ̄mNm(t),

for all t ∈ [0, σφ), where µ̄m = mint∈[0,ω] µm(t) and Mm = max{b̂m, supθ∈[−τl,0] Nm(θ)}.

Thus, the comparison argument implies that solutions of system (4.1) with initial data

in D, and hence system (4.5) in C+, exist globally on [0,∞) and also are ultimately

bounded.

4.3 Threshold dynamics

In this section, we first introduce the basic reproduction ratios and then study the

global dynamics of system (4.5). Let τ̂m = maxt∈[0,ω] τm(t) and τ̄m = mint∈[0,ω] τm(t).

For each t ≥ 0, we define

X(t) := [0, N∗
ct]C([−τ̂m,0],R) × C([−τ̂m, 0],R2

+) × C([−τ̂ , 0],R+) × R+,

where [0, N∗
ct]C([−τ̂m,0],R) = {φ ∈ C([−τ̂m, 0],R) : 0 ≤ φ ≤ N∗

ct} and N∗
ct(θ) = N∗

c (t+ θ),

−τ̂m ≤ θ ≤ 0.
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Lemma 4.3.1. For any φ ∈ X(0), system (4.5) has a unique nonnegative solution

u(t, φ) with u0 = φ for all t ∈ [0,∞), and all solutions ut(φ) = (u1t(φ), u2t(φ), u3t(φ),

u4t(φ), u5(t, φ)) ∈ X(t) are ultimately bounded.

Proof. Note that f(t, φ) is continuous in (t, φ) ∈ R+×X(0) and f(t, φ) is Lipschitz in φ

on each compact subset of X(0). By [50, Theorems 2.2.1 and 2.2.3] and [116, Theorem

5.2.1], it then follows that system (4.5) has a unique solution u(t, φ) on its maximal

interval [0, σφ) of existence satisfying ut(φ) ∈ C([−τ̂m, 0],R3
+) × C([−τ̂ , 0],R+) × R+

with u0 = φ.

It remains to prove that u1(t) ≤ N∗
c (t) for all t ∈ [0, σφ). Suppose this does

not hold. Then there exists t0 ∈ [0, σφ) and ǫ0 > 0 such that u1(t0) = N∗
c (t0) and

u1(t) > N∗
c (t), ∀t ∈ (t0, t0 + ǫ0). Since

du1(t0)

dt
= −µc(t0)u1(t0) = −µc(t0)N

∗
c (t0) ≤

dN∗
c (t0)

dt
,

there exists ǫ1 ∈ (0, ǫ0) such that u1(t) ≤ N∗
c (t) for all t ∈ (t0, t0 + ǫ1), which is a

contradiction. This proves that ut(φ) ∈ X(t) for all t ∈ [0, σφ).

From the proof of Lemma 4.2.1, the solution of system (4.5) is bounded on [0, σφ),

and hence, [50, Theorem 2.3.1] implies that σφ = ∞. Thus, solutions of system (4.5)

with initial data in X(0) exist globally on [0,∞) and are ultimately bounded.

4.3.1 The basic reproduction ratios

To find the disease-free state, letting Ic = Is = Im = 0, we then get

dSs(t)

dt
=bs(t, Ss(t)) − µs(t)Ss(t), (4.6)

dSm(t)

dt
=bm(t− τl, Sm(t− τl))c(t) − µm(t)Sm(t). (4.7)

We now introduce the basic reproduction radios Rs
0 for sheep and Rm

0 for midges.

Linearizing system (4.6) at 0, we obtain the following system:

dSs(t)

dt
=
∂bs(t, 0)

∂Ss
Ss(t) − µs(t)Ss(t).

From Lemma 1.4.1, we have Rs
0 =

∫ ω
0

∂bs(t,0)
∂Ss

dt∫ ω
0 µs(t)dt

. As a straightforward consequence

of [151, Theorem 3.1.2], we have the following result.
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Lemma 4.3.2. Let (A1) and (A2) hold. The following statements are valid:

(i) If Rs
0 ≤ 1, then 0 is a globally asymptotically stable periodic solution of system

(4.6) in R+.

(ii) If Rs
0 > 1, then system (4.6) has a unique positive ω-periodic solution S∗

s (t),

which is globally asymptotically stable in R+ \ {0}.

Similarly, linearizing system (4.7) at 0, we then obtain the following system:

dSm(t)

dt
=
∂bm(t− τl, 0)

∂Sm
Sm(t− τl)c(t) − µm(t)Sm(t). (4.8)

Let C̄ω be the ordered Banach space of all ω-periodic functions from R to R, which

is equipped with the maximum norm and the positive cone C̄+
ω = {v ∈ C̄ω : v(t) ≥

0, ∀t ∈ R}. Let F̄ (t)φ = ∂bm(t−τl,0)
∂Sm

φ(−τl)c(t) and V̄ (t) = µm(t). According to [150],

the next generation operator Lm : C̄ω → C̄ω is given by

[Lmv](t) =

∫ ∞

0

e−
∫ t
t−s

µm(r)drF̄ (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ C̄ω,

and hence, Rm
0 = r(Lm), the spectral radius of Lm. Let Pm be the Poincaré map

associated with system (4.8) on C([−τl, 0],R) and r(Pm) be the spectral radius of Pm.

By Theorem 1.4.1, Rm
0 − 1 has the same sign as r(Pm) − 1. Then the following result

is a straightforward consequence of [145, Theorem 2.1].

Lemma 4.3.3. Let (A1) and (A3) hold. The following statements are valid:

(i) If Rm
0 ≤ 1, then 0 is a globally asymptotically stable periodic solution of system

(4.7) in C([−τl, 0],R+).

(ii) If Rm
0 > 1, then system (4.7) has a unique positive ω-periodic solution S∗

m(t),

which is globally asymptotically stable for any φ ∈ C([−τl, 0],R+) \ {0}.

It then follows that there are four disease-free periodic solutions, (0, 0, 0, 0, 0), (0,

S∗
s (t), 0, 0, 0), (0, 0, 0, S∗

m(t), 0), and (0, S∗
s (t), 0, S

∗
m(t), 0), where S∗

s (t) and S∗
m(t) are

the positive ω-periodic solutions of systems (4.6) and (4.7), respectively. Linearizing

system (4.5) at the disease-free periodic solution (0, S∗
s (t), 0, S

∗
m(t), 0), we obtain the
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following periodic linear system for the infective variables Ic, Is, and Im:

dIc(t)
dt

= βmc(t)N∗

c (t)Im(t)
S∗

s (t)+N
∗

c (t)
− µc(t)Ic(t),

dIs(t)
dt

= βms(t)S∗

s (t)Im(t)
S∗

s (t)+N
∗

c (t)
− γ(t)Is(t) − µis(t)Is(t),

dIm(t)
dt

= (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))+βsm(t−τm(t))Is(t−τm(t))
S∗

s (t−τm(t))+N∗

c (t−τm(t))
S∗
m(t− τm(t))d(t)

−µim(t)Im(t),

(4.9)

where d(t) = e−
∫ t
t−τm(t) µem(η)dη.

Let E := C([−τ̂m, 0],R3) and E+ := C([−τ̂m, 0],R3
+). Then (E,E+) is an ordered

Banach space equipped with the maximum norm and the positive cone E+. For

any given continuous function v : [−τ̂m, σ) → R
3 with σ > 0, we define vt ∈ E by

vt(θ) = v(t + θ), ∀θ ∈ [−τ̂m, 0], for any t ∈ [0, σ). Let F : R → L(E,R3) be a map

and V (t) be a continuous 3 × 3 matrix function on R defined as follows:

F (t)φ =




βmc(t)N∗

c (t)φ3(0)
S∗

s (t)+N
∗

c (t)
βms(t)S∗

s (t)φ3(0)
S∗

s (t)+N
∗

c (t)

(1− τ ′m(t))
βcm(t−τm(t))φ1(−τm(t))+βsm(t−τm(t))φ2(−τm(t))

S∗

s (t−τm(t))+N∗

c (t−τm(t)) S∗
m(t− τm(t))d(t)


 ,

V (t) =



µc(t) 0 0

0 γ(t) + µis(t) 0

0 0 µim(t)


 .

Then the linear system (4.9) can be written as

dv(t)

dt
= F (t)vt − V (t)v(t).

Let Φ(t, s), t ≥ s, be the evolution matrix associated with the following system:

dv(t)

dt
= −V (t)v(t),

that is, Φ(t, s) satisfies

∂

∂t
Φ(t, s) = −V (t)Φ(t, s), ∀t ≥ s, and Φ(s, s) = I, ∀s ∈ R.

We then have

Φ(t, s) =



e−

∫ t
s
µc(r)dr 0 0

0 e−
∫ t
s
γ(r)+µis(r)dr 0

0 0 e−
∫ t
s
µim(r)dr


 .
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Let Cω be the ordered Banach space of all continuous and ω-periodic functions

from R to R
3, equipped with the maximum norm and the positive cone C+

ω = {v ∈

Cω : v(t) ≥ 0, ∀t ∈ R}.

Suppose that v ∈ Cω is the initial distribution of infectious cattle, sheep, and

midges. Then for any given s ≥ 0, F (t− s)vt−s is the distribution of newly infectious

cattle, sheep and midges, at time t − s, which is produced by the infectious cattle,

sheep and midges who were introduced over the time interval [t− s− τ̂m, t− s]. Then

Φ(t, t − s)F (t − s)vt−s is the distribution of those infected cattle, sheep, and midges

who were newly infected at time t− s and remain in the infectious compartments at

time t. It follows that
∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds

is the distribution of accumulative new infections at time t produced by all those

infectious cattle, sheep, and midges introduced at all previous time to t.

We define the next generation operator L : Cω −→ Cω by

[Lv](t) =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω.

Following [150], we define the basic disease reproduction ratio for the whole system

R0 = r(L), the spectral radius of L. For any given t ≥ 0, let P̂ (t) be the solution map

of system (4.9) on E given by P̂ (t)ψ = ut(ψ), where u(t, ψ) is the unique solution of

system (4.9) with u0 = ψ ∈ E. Then P̂ := P̂ (ω) is the Poincaré map associated with

linear system (4.9). Let r(P̂ ) be the spectral radius of P̂ . In view of Theorem 1.4.1,

we have the following result.

Lemma 4.3.4. R0 − 1 has the same sign as r(P̂ ) − 1.

Let Pλ be the Poincaré map on E of the following linear periodic system with

parameter λ ∈ (0,∞):

du(t)

dt
=

1

λ
F (t)ut − V (t)u(t), t ≥ 0.

The following observation comes from Theorem 1.4.3.

Lemma 4.3.5. If R0 > 0, then λ = R0 is the unique solution of r(Pλ) = 1.
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To study the global dynamics of system (4.5), the key idea is to show that system

(4.9) generates an eventually strongly monotone periodic semiflow on the following

phase space:

W := C([−τm(0), 0],R2) × R.

Let τ = max{τl, τm(0)} and, for each t ≥ 0, define

X (t) := [0, N∗
ct]C([−τm(0),0],R) × C([−τm(0), 0],R2

+) × C([−τ, 0],R+) × R+.

Then we have the following result.

Lemma 4.3.6. For any φ ∈ X (0), system (4.5) has a unique nonnegative solution

v(t, φ) with v0 = φ and all solutions vt(φ) = (v1t(φ), v2t(φ), v3t(φ), v4t(φ), v5(t, φ)) ∈

X (t) for all t ∈ [0,∞).

Proof. For any t ∈ [0, τ̄m], since t− τm(t) is strictly increasing in t, we have

−τ ≤ −τm(0) = 0 − τm(0) ≤ t− τm(t) ≤ τ̄m − τm(τ̄m) ≤ τ̄m − τ̄m = 0,

and hence,

Ic(t− τm(t)) = φ1(t− τm(t)), Ss(t− τm(t)) = φ2(t− τm(t)),

Is(t− τm(t)) = φ3(t− τm(t)), Sm(t− τm(t)) = φ4(t− τm(t)).

Therefore, we have the following ordinary differential equations for t ∈ [0, τ̄m]:

dIc(t)
dt

= βmc(t)(N∗

c (t)−Ic(t))Im(t)
Is(t)+Ss(t)+N∗

c (t)
− µc(t)Ic(t),

dSs(t)
dt

= bs(t, Ss(t)) −
βms(t)Ss(t)Im(t)
Is(t)+Ss(t)+N∗

c (t)
+ γ(t)Is(t) − µs(t)Ss(t),

dIs(t)
dt

= βms(t)Ss(t)Im(t)
Is(t)+Ss(t)+N∗

c (t)
− γ(t)Is(t) − µis(t)Is(t),

dSm(t)
dt

= bm(t− τl, φ4(t− τl))c(t) −
βcm(t)Ic(t)+βsm(t)Is(t)
Is(t)+Ss(t)+N∗

c (t)
Sm(t) − µm(t)Sm(t),

dIm(t)
dt

= (1 − τ ′m(t))βcm(t−τm(t))φ1(t−τm(t))+βsm(t−τm(t))φ3(t−τm(t))
φ1(t−τm(t))+φ2(t−τm(t))+N∗

c (t−τm(t))
φ4(t− τm(t))d(t)

−µim(t)Im(t).

Given φ ∈ X (0), the solution (Ic(t), Ss(t), Is(t), Sm(t), Im(t)) of the above system

exists for all t ∈ [0, τ̄m]. In other words, we have obtained the values of ψ1(θ) :=

Ic(θ), ψ2(θ) := Ss(θ), ψ3(θ) := Is(θ) for all θ ∈ [−τm(0), τ̄m], ψ4(θ) := Sm(θ) for all

θ ∈ [−τ, τ̄m] and ψ5(θ) := Im(θ) for all θ ∈ [0, τ̄m]. By the proof of Lemma 4.3.1,

v1(t, φ) ≤ N∗
c (t) for all t ∈ [0, τ̄m].

Repeating this procedure for t ∈ [τ̄m, 2τ̄m], [2τ̄m, 3τ̄m],· · · , it then follows that for

any φ ∈ X (0), the solution v(t, φ) with v0 = φ exists uniquely, and vt(φ) ∈ X (t) for

all t ≥ 0.
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Remark 4.3.1. By the uniqueness of solutions in Lemmas 4.3.1 and 4.3.6, it follows

that for any ψ ∈ X(0) and φ ∈ X (0) with ψ1(θ) = φ1(θ), ψ2(θ) = φ2(θ), ψ3(θ) = φ3(θ)

for all θ ∈ [−τm(0), 0], ψ4(θ) = φ4(θ) for all θ ∈ [−τ, 0], and ψ5 = φ5, we have

w(t, ψ) = ν(t, φ) for all t ≥ 0, where w(t, ψ) and ν(t, φ) are solutions of system (4.5)

satisfying w0 = ψ and ν0 = φ, respectively.

For any given t ≥ 0, let P (t) be the solution map of linear system (4.9) on W .

Then P := P (ω) is the Poincaré map associated with linear system (4.9). Let r(P )

be the spectral radius of P . The following lemma shows that the periodic semiflow

P (t) is eventually strongly monotone.

Lemma 4.3.7. For any ϕ and ψ in W with ϕ > ψ (that is, ϕ ≥ ψ, but ϕ 6= ψ), the

solutions v̄(t) and v(t) of system (4.9) with v̄0 = ϕ and v0 = ψ, respectively, satisfy

v̄i(t) > vi(t), i = 1, 2, 3, for all t > 2τ̂m, and hence, P (t)ϕ ≫ P (t)ψ in W for all

t > 3τ̂m.

Proof. By the proof of Lemma 4.3.6, it is easy to see that P (t) : W → W is monotone

for each t ≥ 0. Next we prove that the solution map P (t) is eventually strongly

monotone. Let ϕ > ψ and denote v̄(t) = v(t, ϕ) = (ȳ1(t), ȳ2(t), ȳ3(t)), v(t) = v(t, ψ) =

(y1(t), y2(t), y3(t)). We assume that ϕ1 > ψ1. For the case where ϕ2 > ψ2 or ϕ3 > ψ3,

we can do a similar analysis.

Claim 1. There exists t0 ∈ [0, τ̄m] such that ȳ2(t) > y2(t) for all t ≥ t0.

We first prove that ȳ2(t0) > y2(t0) for some t0 ∈ [0, τ̄m]. Otherwise, we have

ȳ2(t) = y2(t) for all t ∈ [0, τ̄m], and hence, dȳ2(t)
dt

= dy2(t)
dt

for all t ∈ [0, τ̄m]. Thus, we

have
βms(t)S

∗
s (t)

S∗
s (t) +N∗

c (t)
[ȳ3(t) − y3(t)] = 0, ∀t ∈ [0, τ̄m].

It follows that ȳ3(t) = y3(t) for all t ∈ [0, τ̄m]. Thus, dȳ3(t)
dt

= dy3(t)
dt

for all t ∈ [0, τ̂m].

Then for any t ∈ [0, τ̄m], we have

(1 − τ ′m(t))
S∗
m(t− τm(t))d(t)

S∗
s (t− τm(t)) +N∗

c (t− τm(t))
[βcm(t− τm(t))(ȳ1(t− τm(t))

− y1(t− τm(t))) + βsm(t− τm(t))(ȳ2(t− τm(t)) − y2(t− τm(t)))] = 0.

Since −τm(0) = 0 − τm(0) ≤ t − τm(t) ≤ τ̄m − τm(τ̄m) ≤ 0, ∀t ∈ [0, τ̄m], we have

ȳ1(t−τm(t)) = ϕ1(t−τm(t)), y1(t−τm(t)) = ψ1(t−τm(t)), ȳ2(t−τm(t)) = ϕ2(t−τm(t)),
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y2(t− τm(t)) = ψ2(t− τm(t)). Since ϕ1 > ψ1, we have ϕ2(t− τm(t)) < ψ2(t− τm(t)),

which contradicts the fact that ϕ > ψ.

Let

g1(t, y) :=
βms(t)S

∗
s (t)

S∗
s (t) +N∗

c (t)
y3(t) − (γ(t) + µis(t))y.

Since

dȳ2(t)

dt
=

βms(t)S
∗
s (t)

S∗
s (t) +N∗

c (t)
ȳ3(t) − (γ(t) + µis(t))ȳ2(t)

≥
βms(t)S

∗
s (t)

S∗
s (t) +N∗

c (t)
y3(t) − (γ(t) + µis(t))ȳ2(t)

=g1(t, ȳ2(t)),

we have
dȳ2(t)

dt
− g1(t, ȳ2(t)) ≥ 0 =

dy2(t)

dt
− g1(t, y2(t)), ∀t ≥ t0.

Since ȳ2(t0) > y2(t0), the comparison theorem for ordinary differential equations in

Theorem 1.3.1 implies that ȳ2(t) > y2(t) for all t ≥ t0.

Claim 2. ȳ3(t) > y3(t) for all t > t0 + τ̂m.

Let

g2(t, y) :=(1 − τ ′m(t))
βcm(t− τm(t))S∗

m(t− τm(t))

S∗
s (t− τm(t)) +N∗

c (t− τm(t))
d(t)y1(t− τm(t))

+ (1 − τ ′m(t))
βsm(t− τm(t))S∗

m(t− τm(t))

S∗
s (t− τm(t)) +N∗

c (t− τm(t))
d(t)y2(t− τm(t)) − µim(t)y.

It then follows that dȳ3(t)
dt

> g2(t, ȳ3(t)), ∀t ≥ t0 + τ̂m, and hence,

dȳ3(t)

dt
− g2(t, ȳ3(t)) > 0 =

dy3(t)

dt
− g2(t, y3(t)), ∀t ≥ t0 + τ̂m.

Since ȳ3(t0 + τ̂m) ≥ y3(t0 + τ̂m), it follows from Theorem 1.3.1 that ȳ3(t) > y3(t) for

all t > t0 + τ̂m.

Claim 3. ȳ1(t) > y1(t) for all t > t0 + τ̂m.

Let

g3(t, y) :=
βmc(t)N

∗
c (t)

S∗
s (t) +N∗

c (t)
y3(t) − µc(t)y.

Then we have dȳ1(t)
dt

> g3(t, ȳ1(t)), ∀t > t0 + τ̂m, and hence,

dȳ1(t)

dt
− g3(t, ȳ1(t)) > 0 =

dy1(t)

dt
− g3(t, y1(t)), ∀t > t0 + τ̂m.



95

Since ȳ1(t0 + τ̂m) ≥ y1(t0 + τ̂m), it follows from Theorem 1.3.1 that ȳ1(t) > y1(t) for

all t > t0 + τ̂m. In view of the above three claims, we obtain (ȳ1(t), ȳ2(t), ȳ3(t)) ≫

(y1(t), y2(t), y3(t)), ∀t > t0 + τ̂m. Since t0 ∈ [0, τ̂m], it follows that (ȳ1t, ȳ2t, ȳ3(t)) ≫

(y1t, y2t, y3(t)), ∀t > 2τ̂m + τm(0), that is, v̄t(ϕ) ≫ vt(ψ) for all t > 2τ̂m + τm(0). This

shows that the solution map P (t) is strongly monotone for any t > 3τ̂m.

By [50, Theorem 3.6.1] and Remark 4.3.1, it follows that for each t ≥ τ̂m, the linear

operator P (t) is compact on W . Then P (t) is compact and strongly monotone on W

for t > 3τ̂m. Choose an integer n0 > 0 such that n0ω > 3τ̂m. Since P n0 = P (n0ω), [74,

Lemma 3.1] implies that r(P ) is a simple eigenvalue of P having a strongly positive

eigenvector. By [135, Lemma 1], we have the following observation.

Lemma 4.3.8. Let µ = ln r(P )
ω

. Then there is a positive ω-periodic function v∗(t) such

that u∗(t) = eµtv∗(t) is a positive solution of linear system (4.9).

By arguments similar to those in [82, Lemma 3.8], we have r(P ) = r(P̂ ). As a

consequence of Lemma 4.3.4, we see that R0 − 1 has the same sign as r(P ) − 1.

4.3.2 Uniform persistence of midges

In order to obtain the uniform persistence of the bluetongue disease, we need to

establish the uniform persistence of susceptible midges.

For each t ≥ 0, we define

Y (t) := {φ ∈ X(t) : φ4(0) > 0}, Y(t) := {φ ∈ X (t) : φ4(0) > 0}.

Let Q(t) : X (0) → X (t) be the solution maps of system (4.5). Then Q := Q(ω)

is the Poincaré map associated with system (4.5). By arguments similar to those

in [82, Lemma 3.5], we have the following result.

Lemma 4.3.9. Q(t) : X (0) → X (t), ∀t ≥ 0, is an ω-periodic semiflow in the sense

that (i) Q(0) = I; (ii) Q(t + ω) = Q(t) ◦ Q(ω) for all t ≥ 0; and (iii) Q(t)φ is

continuous in (t, φ) ∈ [0,∞) ×X (0).

From the fourth equation of system (4.5), it is easy to see that Q(t)Y(0) ⊆ Y(t)

for all t ≥ 0. By Lemma 4.3.1 and Remark 4.3.1, the discrete-time system {Qn :
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X (0) → X (0)}n≥0 is point dissipative. By [50, Theorem 3.6.1] and Remark 4.3.1, for

each t ≥ τ̂ , Q(t) is compact, and hence Qn := Q(nω) is compact for sufficiently large

n. It then follows from Theorem 1.1.3 that Q : X (0) → X (0) admits a strong global

attractor. By the proof of [72, Lemma 8], we have the following observation.

Lemma 4.3.10. Assume that f(t) is a nonnegative, continuous and ω-periodic func-

tion on R+ with
∫ ω
0
f(t)dt > 0, and g(t) is a continuous and bounded function on R+.

Then any solution u(t) of the linear nonhomogeneous equation

u′(t) = −f(t)u(t) + g(t), t ≥ 0,

satisfies lim supt→∞ |u(t)| ≤ K
M

lim supt→∞ |g(t)|, where M = 1
ω

∫ ω
0
f(t)dt and K =

eMω.

Theorem 4.3.1. Let (A1)-(A3) hold. If Rm
0 > 1, then there exists some ζ1 > 0 such

that any solution of system (4.5) with φ ∈ Y(0) satisfies lim inft→∞ Sm(t, φ) ≥ ζ1.

Proof. We first prove the uniform weak persistence for susceptible midges. By Lemmas

4.3.1 and 4.3.10, there exists M > 0 such that

lim sup
t→∞

|Im(t)| ≤M lim sup
t→∞

|Sm(t)|, lim sup
t→∞

|Ic(t)| ≤M lim sup
t→∞

|Sm(t)|,

lim sup
t→∞

|Is(t)| ≤M lim sup
t→∞

|Sm(t)|.

Let P ǫ
m(t) be the solution maps of the following perturbed linear periodic system

on C([−τl, 0],R):

dSm(t)

dt
= (b′m(t− τl, 0) − ǫ)c(t)Sm(t− τl) − µm(t)Sm(t) −

(βcm(t) + βsm(t))Mǫ

N∗
c (t)

Sm(t),

and P ǫ
m := P ǫ

m(ω), where b′m denotes the derivative with respect to the second variable.

Since Rm
0 > 1, limǫ→0 r(P

ǫ
m) = r(Pm) > 1. We can fix a sufficiently small ǫ > 0

such that r(P ǫ
m) > 1. It is easy to verify that P ǫ

m(t) is also compact and strongly

monotone on C([−τl, 0],R) for each t ≥ 2τl. Choose an integer N0 > 0 such that

N0ω ≥ 2τl. Since P
ǫ(N0ω)
m = P ǫ

m(N0ω), [74, Lemma 3.1] implies that r(P ǫ
m) is a

simple eigenvalue of P ǫ
m having a strongly positive eigenvector. Let µǫ = ln r(P ǫ

m)
ω

.

By [135, Lemma 1 ], it then follows that there is a positive ω-periodic function v∗ǫ (t)

such that u∗ǫ(t) = eµǫtv∗ǫ (t) is a positive solution of the above linear system. Clearly,

limt→∞ u∗ǫ(t) = ∞. For the above fixed ǫ > 0, there exists ζ = ζ(ǫ) < ǫ such that
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bm(t − τl, x) ≥ (b′m(t − τl, 0) − ǫ)x, ∀x ∈ [0, ζ], ∀t ≥ τl. Since limφ→0 Smt(φ) = 0

uniformly for t ∈ [0, ω], there exists ζ0 > 0 such that

|Smt(φ)| ≤ ζ, ∀t ∈ [0, ω], ‖φ‖ ≤ ζ0.

Claim. lim supn→∞ Sm(nω)(φ) ≥ ζ0 for all φ ∈ Y(0).

Suppose, by contradiction, that lim supn→∞ Sm(nω)(ψ) < ζ0 for some ψ ∈ Y(0).

Then there exists an integer N0 ≥ 1 such that Sm(nω)(ψ) < ζ0 for all n ≥ N0.

For any t ≥ N0ω, we have t = nω + t′ with n ≥ N0, t
′ ∈ [0, ω], and |Smt(ψ)| =

|Sm(t′)Sm(nω)(ψ)| ≤ ζ. Then for all t ≥ N0ω, we have 0 ≤ Sm(t, ψ) ≤ ζ < ǫ. Then

there exists an integer N1 > N0 such that 0 ≤ Ic(t) ≤Mǫ, 0 ≤ Is(t) ≤Mǫ, ∀t ≥ N1ω.

Therefore, for any t ≥ N1ω + τl,

dSm(t)

dt
≥ (b′m(t− τl, 0) − ǫ)Sm(t− τl)c(t) − µm(t)Sm(t) −

(βcm(t) + βsm(t))Mǫ

N∗
c (t)

Sm(t).

Since ψ ∈ Y(0), Sm(t, ψ) > 0 for all t ≥ 0, and hence, there exists a sufficiently small

l > 0 such that Sm(t, ψ) ≥ lu∗ǫ(t), ∀t ∈ [N1ω + τl, N1ω + 2τl]. By Theorem 1.3.2, we

have Sm(t, ψ) ≥ lu∗ǫ(t), ∀t ≥ N1ω + 2τl. Since µǫ > 0, we have limt→∞ Sm(t, ψ) = ∞,

which is a contradiction.

By Theorem 1.2.2, it follows that Q : X (0) → X (0) is uniformly persistent with

respect to Y(0) in the sense that there exists ζ1 > 0 such that

lim inf
n→∞

Sm(nω)(φ) ≥ ζ1, ∀φ ∈ Y(0).

Furthermore, Theorem 1.2.3 implies that Q : Y(0) → Y(0) has a global attractor

A0. For any φ ∈ A0, we have φ4(0) > 0. Let B0 := ∪t∈[0,ω]Q(t)A0. Then φ4(0) > 0

for all φ ∈ B0. It is easy to see that limt→∞ d(Q(t)φ,B0) = 0 for all φ ∈ Y(0).

Let X+ := C([−τ̂m, 0],R3
+) × C([−τ̂ , 0],R+) × R+ and define a continuous function

p : X+ → R+ by p(φ) = φ4(0), ∀φ ∈ X+. Clearly, p(φ) > 0 for all φ ∈ B0. Since

B0 is a compact subset of X+, we have infφ∈B0 p(φ) = minφ∈B0 p(φ) > 0. By the

attractiveness of B0, it then follows that there exists ζ1 > 0 such that

lim inf
t→∞

Sm(t, φ) = lim inf
t→∞

p(Q(t)φ) ≥ ζ1, ∀φ ∈ Y(0).

This completes the proof.
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4.3.3 Uniform persistence of bluetongue without sheep

In this subsection, we consider the situation where there are no sheep, that is, Ss = 0,

Is = 0. Then the subsystem without sheep is given by

dIc(t)
dt

= βmc(t)(N∗

c (t)−Ic(t))Im(t)
N∗

c (t)
− µc(t)Ic(t),

dSm(t)
dt

= bm(t− τl, Sm(t− τl))c(t) −
βcm(t)Ic(t)
N∗

c (t)
Sm(t) − µm(t)Sm(t),

dIm(t)
dt

= (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))
N∗

c (t−τm(t))
Sm(t− τm(t))d(t) − µim(t)Im(t).

(4.10)

In the following, we investigate the dynamics of system (4.10). For each t ≥ 0, let

X̃(t) := [0, N∗
ct]C([−τ̂m,0],R) × C([−τ̂ , 0],R+) × R+,

Ỹ (t) := {φ ∈ X̃(t) : φ2(0) > 0}.

By arguments similar to those in Lemma 4.3.1, we have the following result.

Lemma 4.3.11. For any φ ∈ X̃(0), system (4.10) has a unique nonnegative solution

v(t, φ) with v0 = φ for all t ∈ [0,∞), and all solutions vt(φ) = (v1t(φ), v2t(φ), v3(t, φ))

∈ X̃(t) are ultimately bounded.

There are two disease-free periodic solutions, (0, 0, 0) and (0, S∗
m(t), 0), where S∗

m(t)

is globally attractive for system (4.7) in C([−τl, 0],R+)\{0} under assumptions (A1)

and (A3). Linearizing system (4.10) at the disease-free solution (0, S∗
m(t), 0), we obtain

the following periodic linear system for the infective variables Ic and Im:

dIc(t)
dt

= βmc(t)Im(t) − µc(t)Ic(t),
dIm(t)

dt
= (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))

N∗

c (t−τm(t))
S∗
m(t− τm(t))d(t) − µim(t)Im(t).

(4.11)

Set Ẽ := C([−τ̂m, 0],R2) and Ẽ+ := C([−τ̂m, 0],R2
+). Let C̃ω be the ordered Banach

space of all ω-periodic functions from R to R
2, which is equipped with the maximum

norm and the positive core C̃+
ω = {v ∈ C̃ω : v(t) ≥ 0, ∀t ∈ R}. Let F̃ : R → L(E,R2)

be a map and Ṽ (t) be a continuous 2 × 2 matrix function on R defined as follows:

F̃ (t)φ =

[
βmc(t)φ2(0)

(1 − τ ′m(t))βcm(t−τm(t))S∗

m(t−τm(t))φ1(−τm(t))
N∗

c (t−τm(t))
d(t)

]
,

Ṽ (t) =

[
µc(t) 0

0 µim(t)

]
.
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Let Φ(t, s), t ≥ s, be the evolution matrix associated with the following system:

dv(t)

dt
= −Ṽ (t)v(t).

Then the next generation operator L̃ : C̃ω → C̃ω is given by

[L̃v](t) =

∫ ∞

0

Φ(t, t− s)F̃ (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ C̄ω.

Following [150], the basic disease reproduction ratio in the absence of sheep is defined

as R̃0 = r(L̃), the spectral radius of L̃. For any given t ≥ 0, let Ŝ(t) be the solution

map of system (4.11) on Ẽ. Then Ŝ := Ŝ(ω) is the Poincaré map associated with

linear system (4.11) and r(Ŝ) is the spectral radius of Ŝ. In view of Theorem 1.4.1,

we have the following result.

Lemma 4.3.12. R̃0 − 1 has the same sign as r(Ŝ) − 1.

For each t ≥ 0, we define

X̃ (t) := [0, N∗
ct]C([−τm(0),0],R) × C([−τ, 0],R+) × R+,

Ỹ(t) := {φ ∈ X̃ (t) : φ2(0) > 0}, W̃ := C([−τm(0), 0],R) × R.

As argued in the proof of Lemma 4.3.6 and Remark 4.3.1, we have the following

results.

Lemma 4.3.13. For any φ ∈ X̃ (0), system (4.10) has a unique nonnegative solution

v(t, ϕ) with v0 = ϕ and all solutions vt(φ) = (v1t(φ), v2t(φ), v3(t, φ)) ∈ X̃ (t) for all

t ∈ [0,∞).

Remark 4.3.2. For any ψ ∈ X̃(0) and φ ∈ X̃ (0) with ψ1(θ) = φ1(θ) for all θ ∈

[−τm(0), 0], ψ2(θ) = φ2(θ) for all θ ∈ [−τ, 0], and ψ3 = φ3, we have w(t, ψ) = ν(t, φ)

for all t ≥ 0, where w(t, ψ) and ν(t, φ) are solutions of system (4.10) satisfying w0 = ψ

and ν0 = φ, respectively.

For any given t ≥ 0, let S(t) be the solution map of system (4.11) on W̃ . Then

S := S(ω) is the Poincaré map associated with linear system (4.11). Let r(S) be the

spectral radius of S. As argued for P (t), we can prove S(t) is strongly monotone for

t > 2τ̂m.
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By [50, Theorem 3.6.1] and Remark 4.3.2, it follows that for each t ≥ τ̂m, the linear

operator S(t) is compact on W̃ . Then S(t) is compact and strongly monotone on W̃

for t > 2τ̂m. Choose an integer n0 > 0 such that n0ω > 2τ̂m. Since Sn0 = S(n0ω), [74,

Lemma 3.1] implies that r(S) is a simple eigenvalue of S having a strongly positive

eigenvector. By [135, Lemma 1 ], we have the following observation.

Lemma 4.3.14. Let µ = ln r(S)
ω

. Then there is a positive ω-periodic function v∗(t)

such that u∗(t) = eµtv∗(t) is a positive solution of system (4.11).

By arguments similar to those in [82, Lemma 3.8], we have r(S) = r(Ŝ). As a

consequence of Lemma 4.3.12, we see that R̃0 − 1 has the same sign as r(S) − 1. By

arguments similar to those in Theorem 4.3.1, we have the following result.

Theorem 4.3.2. Let (A1) and (A3) hold. If Rm
0 > 1, then there exists some ζ̃ > 0

such that any solution of system (4.10) with φ ∈ Ỹ(0) satisfies lim inft→∞ Sm(t, φ) ≥ ζ̃ .

Let Q̃(t) : X̃ (0) → X̃ (t) be the solution maps of system (4.10). Then Q̃ := Q̃(ω)

is the Poincaré map associated with system (4.10) on X̃ (0) and Q̃n = Q̃(nω), ∀n ≥ 0.

Then {Q̃n : X̃ (0) → X̃ (0)}n≥0 defines a discrete-time dynamical system. By Lemma

4.3.11 and Remark 4.3.2, the discrete-time system {Q̃n} is point-dissipative. By

[50, Theorem 3.6.1] and Remark 4.3.2, for each t ≥ τ̂ , Q̃(t) is compact, and hence

Q̃n is compact for all sufficiently large n. It then follows from Theorem 1.1.3 that

Q̃ : X̃ (0) → X̃ (0) admits a strong global attractor. For each t ≥ 0, we define

Ỹ0(t) := {φ = (φ1, φ2, φ3) ∈ Ỹ(t) : φ1(0) > 0 and φ3(0) > 0},

∂Ỹ0(t) := Ỹ(t) \ Ỹ0(t) = {φ ∈ Ỹ(t) : φ1(0) = 0 or φ3(0) = 0}.

Theorem 4.3.3. Let (A1) and (A3) hold. Then the following statements are valid:

(i) If Rm
0 ≤ 1, then (0, 0, 0) is globally attractive for system (4.10) in X̃ (0).

(ii) If R̃0 < 1 and Rm
0 > 1, then the disease-free periodic solution (0, S∗

m(t), 0) is

globally attractive for system (4.10) in X̃ (0) \ {(0, 0, 0)}.

(iii) If R̃0 > 1 and Rm
0 > 1, then there exists some η̃ > 0 such that any solu-

tion v(t, φ) = (Ic(t), Sm(t), Im(t)) of system (4.10) with φ ∈ Ỹ0(0) satisfies

lim inft→∞(Ic(t), Im(t)) ≥ (η̃, η̃).
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Proof. In the case where Rm
0 ≤ 1, we first prove limt→∞ Sm(t) = 0 by a simple

comparison argument, and then obtain the global attractivity of (0, 0, 0) by the theory

of chain transitive sets.

In the case where R̃0 < 1, we have r(S) < 1. Consider the following system with

parameter δ > 0:

dIc(t)
dt

= βmc(t)Im(t) − µc(t)Ic(t),
dIm(t)

dt
= (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))

N∗

c (t−τm(t))
(S∗

m(t− τm(t)) + δ)d(t) − µim(t)Im(t).

(4.12)

Let Sδ : W̃ → W̃ be the Poincaré map of system (4.12) and r(Sδ) be the spectral

radius of Sδ. Since limδ→0 r(Sδ) = r(S) < 1, we can fix a sufficiently small number

δ > 0 such that r(Sδ) < 1. It is easy to see that Sδ(t) is also compact and strongly

positive for t > 2τ̂m. By Lemma 4.3.14, there is a positive ω-periodic function v∗δ (t)

such that u∗δ(t) = eµδtv∗δ (t) is a positive solution of system (4.12), where µδ = ln r(Sδ)
ω

.

Clearly, limt→∞ u∗δ(t) = 0.

By the global attractivity of S∗
m(t) for system (4.7) when Rm

0 > 1, and the com-

parison principle, there exists a sufficiently large integer Ñ1 > 0 such that Ñ1ω ≥ τ̂m

and Sm(t) ≤ S∗
m(t) + δ, ∀t ≥ Ñ1ω − τ̂m. Then we have

dIc(t)
dt

≤ βmc(t)Im(t) − µc(t)Ic(t),
dIm(t)

dt
≤ (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))

N∗

c (t−τm(t))
(S∗

m(t− τm(t)) + δ)d(t) − µim(t)Im(t),

for all t ≥ Ñ1ω. For any given φ ∈ X̃ (0), there exists a sufficiently large k̃ > 0

such that (Ic(t, φ), Im(t, φ)) ≤ k̃u∗δ(t), ∀t ∈ [Ñ1ω, Ñ1ω + τ̂m]. It then follows from

Theorem 1.3.2 that (Ic(t, φ), Im(t, φ)) ≤ k̃u∗δ(t), ∀t ≥ Ñ1ω+τ̂m. Then limt→∞ Ic(t, φ) =

limt→∞ Im(t, φ) = 0. By using the theory of internally chain transitive sets (see, e.g.,

[136,151]), we can prove statement (ii).

In the case where R̃0 > 1, we have r(P̃ ) > 1. From the first and third equations of

system (4.10), it is easy to see that Q̃(t)Ỹ0(0) ⊆ Ỹ0(t) for all t ≥ 0. Since susceptible

midges persist uniformly, it follows from Theorem 1.2.3 that Q̃ : Ỹ(0) → Ỹ(0) has a

global attractor. Now we prove that Q̃ : Ỹ(0) → Ỹ(0) is uniformly persistent with

respect to (Ỹ0(0), ∂Ỹ0(0)).

Let rη0 be the spectral radius of the Poincaré map associated with the following
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system:

dIc(t)
dt

= βmc(t)(N∗

c (t)−η0)Im(t)
N∗

c (t)
− µc(t)Ic(t),

dIm(t)
dt

= βcm(t−τm(t))Ic(t−τm(t))
N∗

c (t−τm(t))
(S∗

m(t− τm(t)) − η0)d(t) − µim(t)Im(t).
(4.13)

Then limη0→0 rη0 = r(P̃ ) > 1. Fix a sufficiently small η0 > 0 such that rη0 > 1.

By Lemma 4.3.14, system (4.13) has a positive ω-periodic function v∗η0(t) such that

w∗
η0

(t) = eµη0 tv∗η0(t) is a positive solution of system (4.13), where µη0 =
ln rη0
ω

. Clearly,

limt→∞w∗
η0

(t) = ∞.

Let M̃ = (0, S∗
m0, 0), where S∗

m0(θ) = S∗
m(θ) for all θ ∈ [−τ, 0]. Since limφ→M̃ ‖Q̃

(t)φ − Q̃(t)M̃‖=0 uniformly for t ∈ [0, ω], there exists η1 = η1(η0) > 0 such that for

any φ ∈ Ỹ0(0) with ‖φ − M̃‖ < η1, we have ‖Q̃(t)φ − Q̃(t)M̃‖ < η0 for all t ∈ [0, ω].

We further have the following claim.

Claim. lim supn→∞ ‖Q̃n(φ) − M̃‖ ≥ η1 for all φ ∈ Ỹ0(0).

Suppose, by contradiction, that lim supn→∞ ‖Q̃n(ψ) − M̃‖ < η1 for some ψ ∈

Ỹ0(0). Then there exists an integer Ñ ≥ 1 such that ‖Q̃n(ψ) − M̃‖ < η1 for all

n ≥ Ñ . For any t ≥ Ñω, we have t = nω + t′ with n ≥ Ñ and t′ ∈ [0, ω], and

hence, ‖Q̃(t)ψ − Q̃(t)M̃‖ = ‖Q̃(t′)(Q̃n(ψ)) − Q̃(t′)M̃‖ < η0, ∀t ≥ Ñω. It follows that

0 < Ic(t) < η0 and Sm(t) > S∗
m(t) − η0 for all t ≥ Ñω. For all t ≥ Ñω + τ̂m, we have

dIc(t)
dt

≥ βmc(t)(N∗

c (t)−η0)Im(t)
N∗

c (t)
− µc(t)Ic(t),

dIm(t)
dt

≥ (1 − τ ′m(t))βcm(t−τm(t))Ic(t−τm(t))
N∗

c (t−τm(t))
(S∗

m(t− τm(t)) − η0)d(t) − µim(t)Im(t).

Since ψ ∈ Ỹ0(0), Ic(t, ψ) > 0 and Im(t, ψ) > 0 for all t ≥ 0, and hence, we can choose

a sufficiently small k > 0 such that (Ic(t, ψ), Im(t, ψ)) ≥ kw∗
η0

(t), ∀t ∈ [Ñω+ τ̂m, Ñω+

2τ̂m]. By Theorem 1.3.2, it follows that (Ic(t, ψ), Im(t, ψ)) ≥ kw∗
η0

(t), ∀t ≥ Ñω + 2τ̂m.

Hence, limt→∞ Ic(t, ψ) = limt→∞ Im(t, ψ) = ∞, which contradicts the boundedness of

solutions of system (4.10).

The above claim implies that M̃ is an isolated invariant set for Q̃ in Ỹ(0) and

W S(M̃)
⋂

Ỹ0(0) = ∅, where W S(M̃) is the stable set of M̃ for Q̃. Define

M̃∂ = {φ ∈ ∂Ỹ0(0) : Q̃n(φ) ∈ ∂Ỹ0(0), ∀n ≥ 0}.

For any given ψ ∈ M̃∂ , Q̃
n(ψ) ∈ ∂Ỹ0(0), ∀n ≥ 0. Thus, for each n ∈ N, either

Ic(nω, ψ) ≡ 0 or Im(nω, ψ) ≡ 0. From the first and third equations of system (4.10),

it follows that for each t ≥ 0, Ic(t, ψ) ≡ 0 or Im(t, ψ) ≡ 0. If Im(t, ψ) ≡ 0 for all
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∀t ≥ 0, then the Ic equation of system (4.10) satisfies dIc(t,ψ)
dt

≤ −µ̄cIc(t, ψ), where

µ̄c = mint∈[0,ω] µc(t). By the comparison principle, we have limt→∞ Ic(t, ψ) = 0. Thus

by the theory of internally chain transitive sets [151], limt→∞(Sm(t) − S∗
m(t)) = 0

when Rm
0 > 1. In this case, Q̃n(ψ) → M̃ as n → ∞. If Im(t, ψ) 6≡ 0 for all ∀t ≥ 0,

there exists t0 ≥ 0 such that Im(t0, ψ) > 0. By the third equation of system (4.10),

Im(t, ψ) > 0 for all t ≥ t0. Thus, we have Ic(t, ψ) ≡ 0, ∀t ≥ t0. From the third

equation of system (4.10), we see that limt→∞ Im(t, ψ) = 0. Then the Sm equation of

system (4.10) is asymptotic to the periodic system (4.7). By the theory of internally

chain transitive sets [151], we can prove that limt→∞(Sm(t)−S∗
m(t)) = 0 when Rm

0 > 1.

In this case, Q̃n(ψ) → M̃ as n → ∞. Thus,
⋃
φ∈M̃∂

ω(φ) = M̃ and M̃ cannot form a

cycle for Q̃ in ∂Ỹ0(0). By the acyclicity theorem on uniform persistence for maps (see

Theorem 1.2.1), it follows that Q̃ : Ỹ(0) → Ỹ(0) is uniformly persistent with respect

to (Ỹ0(0), ∂Ỹ0(0)).

By taking p(φ) = min{φ1(0), φ3(0)} and using an argument similar to that for

Theorem 4.3.1, we can show that there exists η̃ > 0 such that

lim inf
t→∞

min(Ic(t, φ), Im(t, φ)) = lim inf
t→∞

p(Q̃(t)φ) ≥ η̃, ∀φ ∈ Ỹ0(0).

This completes the proof.

4.3.4 Uniform persistence of bluetongue

Theorem 4.3.4. Let (A1)-(A3) hold. If R0 > 1, R̃0 > 1, and Rm
0 > 1, then there

exists some η > 0 such that any solution u(t, ϕ) = (Ic(t), Ss(t), Is(t), Sm(t), Im(t)) of

system (4.5) with ϕ ∈ Y(0), ϕ5 > 0 satisfies lim inft→∞ Im(t) ≥ η. Moreover, for

some η̄ > 0, lim inft→∞ Ic(t) ≥ η̄; the disease persists proportionally in the sheep in

the sense that, for some η̂ > 0,

lim inf
t→∞

Is(t)

Ss(t) + Is(t)
≥ η̂.

Proof. For each t ≥ 0, define

Y0(t) := {ϕ ∈ Y(t) : ϕ5 > 0} and ∂Y0(t) := Y(t) \ Y0(t) = {ϕ ∈ Y(t) : ϕ5 = 0}.

From the fifth equation of system (4.5), it is easy to see that Q(t)Y0(0) ⊆ Y0(t) for all

t ≥ 0. Since susceptible midges persist uniformly, it then follows from Theorem 1.2.3
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that Q : Y(0) → Y(0) admits a global attractor. Now we prove that Q : Y(0) → Y(0)

is uniformly persistent with respect to (Y0(0), ∂Y0(0)).

Let M1 = (0, 0, 0, S∗
m0, 0) and M2 = (0, S∗

s0, 0, S
∗
m0, 0), where S∗

s0(θ) = S∗
s (θ) for all

θ ∈ [−τm(0), 0], S∗
m0(θ) = S∗

m(θ) for all θ ∈ [−τ, 0]. By Theorem 4.3.3 and arguments

similar to those for the claim in its proof, we have the following observations.

Claim 1. There exists δ1 > 0, lim supn→∞ ‖Qn(ϕ) −M1‖ ≥ δ1 for all ϕ ∈ Y0(0).

Claim 2. There exists γ1 > 0, lim supn→∞ ‖Qn(ϕ) −M2‖ ≥ γ1 for all ϕ ∈ Y0(0).

Define

M∂ = {ϕ ∈ ∂Y0(0) : Qn(ϕ) ∈ ∂Y0(0), ∀n ≥ 0}.

For any given ψ ∈M∂ , Q
n(ψ) ∈ ∂Y0(0), ∀n ≥ 0. Thus, for each n ∈ N, Im(nω, ψ) ≡ 0.

From the Im equation of system (4.5), it follows that for each t ≥ 0, Im(t, ψ) ≡ 0.

From the Ic equation of system (4.5) and the comparison principle, we have that

limt→∞ Ic(t, ψ) = 0. Similarly, from the Is equation of system (4.5), we see that

limt→∞ Is(t, ψ) = 0. Thus, Ss(t, ψ) and Sm(t, ψ) in system (4.5) are asymptotic to

the periodic systems (4.6) and (4.7), respectively. Thus by the theory of internally

chain transitive sets [151], limt→∞(Sm(t) − S∗
m(t)) = 0 when Rm

0 > 1. If Rs
0 ≤ 1,

then limt→∞ Ss(t) = 0. In this case, Qn(ψ) → M1 as n → ∞. If Rs
0 > 1, then

limt→∞(Ss(t)−S
∗
s (t)) = 0. In this case, Qn(ψ) →M2 as n→ ∞. Thus,

⋃
ϕ∈M∂

ω(ϕ) =

{M1,M2} and no subset of {M1,M2} forms a cycle for Q in ∂Y0(0).

With the above two claims, we see that M1 and M2 are isolated invariant sets for

Q in Y(0), and W S(Mi) ∩ Y0(0) = ∅, i = 1, 2, where W S(Mi) is the stable of Mi for

Q. By the acyclicity theorem on uniform persistence for maps (see Theorem 1.2.1), it

follows that Q : Y(0) → Y(0) is uniformly persistent with respect to (Y0(0), ∂Y0(0)).

By taking p(ϕ) = ϕ5, and using an argument similar to that for Theorem 4.3.1, there

exists η > 0 such that

lim inf
t→∞

Im(t, ϕ) = lim inf
t→∞

p(Q(t)ϕ) ≥ η, ∀ϕ ∈ Y0(0).

To show the uniform persistence in cattle, we consider the Ic equation of system

(4.5). From the nonnegativity and boundedness of solutions, there exist N̄c > 0,

N̂c > 0, N̄s ≥ 0, and N̂s ≥ 0 such that inft≥0N
∗
c (t) ≥ N̄c, supt≥0N

∗
c (t) ≤ N̂c,

inft≥0 (Is(t) + Ss(t)) ≥ N̄s, supt≥0 (Is(t) + Ss(t)) ≤ N̂s. Thus,

lim inf
t→∞

Ic(t) ≥
β̄mcN̄cη(N̄s + N̄c)

(N̂s + N̂c)(β̂mcη + µ̂c(N̄s + N̄c))
:= η̄,
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where β̄mc = mint∈[0,ω] βmc(t), β̂mc = maxt∈[0,ω] βmc(t), µ̂c = maxt∈[0,ω] µc(t).

To show proportional disease persistence in the sheep motivated by [99], we intro-

duce the proportion of infectious sheep: ps(t) = Is(t)
Ns(t)

. Letting b(t) := ∂bs(t,0)
∂Ss

, we then

have

dps(t)

dt
≥

βms(t)(1 − ps(t))Im(t)

Ns(t) +N∗
c (t)

− γ(t)ps(t) − δs(t)ps(t)(1 − ps(t)) − b(t)ps(t)

≥
β̄msη

N̂s + N̂c

−

(
β̂msη

N̄s + N̄c

+ γ̂ + δ̂s + b̂

)
ps(t),

where β̄ms = mint∈[0,ω] βms(t), β̂ms = maxt∈[0,ω] βms(t), γ̂ = maxt∈[0,ω] γ(t), δ̂s =

maxt∈[0,ω] δs(t), b̂ = maxt∈[0,ω] b(t). Thus,

lim inf
t→∞

ps(t) ≥
β̄msη(N̄s + N̄c)

(N̂s + N̂c)(β̂msη + (γ̂ + δ̂s + b̂)(N̄s + N̄c))
:= η̂.

This completes the proof.

4.3.5 Uniform disease persistence if sheep persist

The proof of uniform disease persistence needs to combine with the uniform persistence

for midges and sheep, which ensures the existence of a global attractor in a state

space. We first prove the uniform persistence in sheep when bluetongue cannot persist

without sheep. By the same arguments as in Theorem 4.3.1, we have the following

result.

Theorem 4.3.5. Let (A1)-(A3) hold. If Rs
0 > 1 ≥ R̃0, then there exists some ζ2 > 0

such that any solution u(t, φ) of system (4.5) with φ ∈ X (0), φ2(0) > 0 satisfies

lim inft→∞ Ss(t) ≥ ζ2.

Theorem 4.3.6. Let (A1)-(A3) hold. If R0 > 1 ≥ R̃0, R
s
0 > 1, Rm

0 > 1, then

system (4.5) admits a positive ω-periodic solution, and there exists some ζ̊ > 0 such

that any solution u(t, φ) of system (4.5) with φ ∈ X (0), φ2(0) > 0, φ4(0) > 0, φ5 > 0

satisfies lim inft→∞ Im(t) ≥ ζ̊ . Moreover, for some ζ̄ > 0 and ζ̂ > 0, lim inft→∞ Ic(t) ≥

ζ̄ and lim inft→∞ Is(t) ≥ ζ̂ .

Proof. For each t ≥ 0, we define Z(t) := {φ ∈ X (t) : φ2(0) > 0, φ4(0) > 0} and

Z0(t) := {φ ∈ Z(t) : φ5 > 0}, ∂Z0(t) := Z(t) \ Z0(t) = {φ ∈ Z(t) : φ5 = 0}.
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From the fifth equation of system (4.5), it is easy to see that Q(t)Z0(0) ⊆ Z0(t) for

all t ≥ 0. By Theorems 4.3.1 and 4.3.5, susceptible midges and susceptible sheep are

uniformly persistent, and hence, Q : Z(0) → Z(0) has a global attractor by Theorem

1.2.3. Now we prove that Q : Z(0) → Z(0) is uniformly persistent with respect to

(Z0(0), ∂Z0(0)).

Let M = (0, S∗
s0, 0, S

∗
m0, 0). By arguments similar to those for the claim in the

proof of Theorem 4.3.3, we have the following observation.

Claim. There exists σ1 > 0, lim supn→∞ ‖Qn(φ) −M‖ ≥ σ1 for all φ ∈ Z0(0).

This claim implies that M is an isolated invariant set for Q in Z(0), and W S(M)∩

Z0(0) = ∅, where W S(M) is the stable of M for Q. Define

M∂ = {φ ∈ ∂Z0(0) : Qn(φ) ∈ ∂Z0(0), ∀n ≥ 0}.

For any given ψ ∈M∂ , Q
n(ψ) ∈ ∂Z0(0), ∀n ≥ 0. Thus, for each n ∈ N, Im(nω, ψ) ≡ 0.

From the fifth equation of system (4.5), it follows that for each t ≥ 0, Im(t, ψ) ≡

0. By the Ic equation of system (4.5) and the comparison principle, we have that

limt→∞ Ic(t, ψ) = 0. Similarly, from the Is equation of system (4.5), we see that

limt→∞ Is(t, ψ) = 0. Then Ss(t, ψ) and Sm(t, ψ) are asymptotic to the periodic systems

(4.6) and (4.7), respectively. Thus, by the theory of internally chain transitive sets

[151], limt→∞(Sm(t) − S∗
m(t)) = 0 when Rm

0 > 1, limt→∞(Ss(t) − S∗
s (t)) = 0 when

Rs
0 > 1. In this case, Qn(ψ) →M as n→ ∞. Thus,

⋃
φ∈M∂

ω(φ) = M and M cannot

form a cycle for Q in ∂Z0(0). By the acyclicity theorem on uniform persistence for

maps (see Theorem 1.2.1), it follows that Q : Z(0) → Z(0) is uniformly persistent

with respect to (Z0(0), ∂Z0(0)). By letting p(φ) = φ5 and using an argument similar

to that for Theorem 4.3.1, we have that there exists ζ̊ > 0 such that

lim inf
t→∞

Im(t, φ) = lim inf
t→∞

p(Q(t)φ) ≥ ζ̊ , ∀φ ∈ Z0(0).

As argued in the proof of Theorem 4.3.4, we can prove the uniform persistence in

cattle and sheep. Let µ̂is = maxt∈[0,ω] µis(t). Then

lim inf
t→∞

Ic(t) ≥
β̄mcN̄cζ̊(N̄s + N̄c)

(N̂s + N̂c)(β̂mcζ̊ + µ̂c(N̄s + N̄c))
:= ζ̄ ,

lim inf
t→∞

Is(t) ≥
β̄msζ2ζ̊

(N̂s + N̂c)(γ̂ + µ̂is)
:= ζ̂ .
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Next we prove the existence of a positive periodic steady state. Let Q̂(t) : X(0) →

X(t) be the solution maps of system (4.5). For each t ≥ 0, let

Z(t) := {φ ∈ X(t) : φ2(0) > 0, φ4(0) > 0}, Z0(t) := {φ ∈ Z(t) : φ5 > 0},

and ∂Z0(t) := Z(t) \ Z0(t) = {φ ∈ Z(t) : φ5 = 0}. By [151, Theorem 3.5.1],

there exists an equivalent norm on C([−τ̂ , 0],R5) such that for each t > 0, the

solution map Q̂(t) : X(0) → X(t) is an α-contraction. Since Z(0) ⊆ X(0) and

Z(t) ⊆ X(t) (Z(t) is a closure of Z(t)), it follows that Q̂(t) : Z(0) → Z(t) is al-

so an α-contraction. Since susceptible midges and susceptible sheep are uniformly

persistent by Theorems 4.3.1 and 4.3.5, then Q̂ : X(0) → X(0) is uniformly persis-

tent with respect to (Z(0), ∂Z(0)), where ∂Z(0) := X(0) \ Z(0). By Theorem 1.2.3,

Q̂ : Z(0) → Z(0) has a global attractor. Similarly, Q̂ : Z0(0) → Z0(0) has a global

attractor A. According to the proof of Theorem 1.2.4, if Q̂ : Z(0) → Z(0) is an

α-condensing, Theorem 1.2.4 still holds. It then follows that Q̂ : Z0(0) → Z0(0) has

a fixed point ψ∗ ∈ A, and hence, w(t, ψ∗) = (Īc(t), S̄s(t), Īs(t), S̄m(t), Īm(t)) is an ω-

periodic solution of system (4.5) with ψ∗ ∈ Z0(0). By the uniqueness of solutions,

v(t, φ∗) = (Īc(t), S̄s(t), Īs(t), S̄m(t), Īm(t)) is also an ω-periodic solution of system (4.5)

with φ∗ ∈ Z0(0), where ψ∗ ∈ Z0(0) and φ∗ ∈ Z0(0) with ψi(θ) = φi(θ), i = 1, 2, 3, for

all θ ∈ [−τm(0), 0], ψ4(θ) = φ4(θ) for all θ ∈ [−τ, 0], and ψ5 = φ5. By the second and

fourth equations of system (4.5), it is also strictly positive.

With the integral form (4.3), we can easily obtain the uniform persistence for Em

from Theorems 4.3.4 and 4.3.6. Further, we can also discuss the attractivity of four

disease-free periodic solutions in the case where R0 < 1. We omitted details here.

4.4 A case study

In this section, we study the bluetongue transmission case in France, which has

reemerged in late 2015. In this study, we let the period ω = 12 months. Since
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some parameters do not vary too much with temperature, we assume they are tem-

perature independent (constant). According to OIE, France has a cattle popula-

tion of 19353497, which can be chosen as a constant value of N∗
c (t), and the to-

tal number of sheep is Ns = 5921047 in 2014. According to farm animal life ex-

pectancy (see http://www.four-paws.us/campaigns/farm-animals-/farm-animal-life-

expectancy/), the natural life expectancies of cattle and sheep are both 20 years. Then

we estimate the cattle and sheep natural death rate as µc = µs = 1
20×12

= 1
240

Month−1.

The survival probability c(t) = e
−

∫ t
t−τl

µl(s)ds is 0.57 (see [14]). By [108,135], we assume

that the birth rate of sheep with density-dependence is given by bs(t, Ss) = bse
− Ss

Ks Ss,

where bs is the maximal birth rate of sheep and Ks is the carrying capacity for sheep.

We estimate Ks = 2Ns. We give the temperature-independent parameters, as shown

in Table 4.1.

Table 4.1: Relevant variables and parameters values (ranges)

Parameter Value(range) Reference
N∗

c 19353497 see text
β̄mc 0.8 ∼ 1.0 [11]
β̄ms 0.8 ∼ 1.0 [11]
β̄cm 0.001 ∼ 0.15 [19,41]
β̄sm 0.001 ∼ 0.15 [19,41]
γ 1/16.4 × 30.4 Month−1 [43, 130]
δs (0.001 ∼ 0.01)× 30.4 Month−1 [35, 112]
µc 1/240 Month−1 see text
µs 1/240 Month−1 see text
µis µs + δs see text
bs 6.94× 10−4 × 30.4 Month−1 [21]
τl 0.5 ∼ 0.7 Month [105]
Ks 2× 5921047 see text

Next, we use the average monthly temperatures and the relationship between the

biting rate, vector mortality rate, EIP, and temperature to estimate the temperature-

dependent parameters. In this case study, the average monthly temperatures for

France from 1991-2015 (obtained from the Climate Change Knowledge Portal website:

http://sdwebx.worldbank.org/climateportal) is as shown in Table 4.2.

Estimation of the biting rate. It follows from [94] that the temperature-dependent

midge biting rate is given by

a(T ) = 0.000171 × T × (T − 3.6966) × (41.8699 − T )1/2.7056 × 30.4,
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where T is the temperature in ◦C. Then the temperature dependence of the duration of

the midge gonotrophic cycle (i.e., the duration period for oviposition) can be expressed

as the reciprocal of this rate, 1/a(T ). The biting rate of midges in France can be fitted

by

a(t) =30.4(0.07021 − 0.07731 cos(πt/6) − 0.01151 sin(πt/6) + 0.01452 cos(πt/3)

+ 0.00941 sin(πt/3) − 0.001083 cos(πt/2) − 0.001767 sin(πt/2)

+ 0.0006667 cos(2πt/3) − 0.0002021 sin(2πt/3) + 0.0008927 cos(5πt/6)

− 0.001902 sin(5πt/6) + 8.34 × 10−6 cos(πt)) Month−1.

Therefore, βmc(t) = β̄mca(t), βms(t) = β̄msa(t), βcm(t) = β̄cma(t), βsm(t) = β̄sma(t).

According to [64], the per capita oviposition rate is derived by dividing the fecundity

(number of eggs layed per oviposition) by the mean gonotrophic period and, further,

dividing by two (since half of the eggs laid are destined to emerge as males and are

not included in our adult population density measure which represents only females).

The number of eggs layed per oviposition is about 25 to 150. We assume that density-

dependence occurs, and it follows from [25, 84] that the birth rate of midges is given

by bm(t, Sm) = p(t)Sm

q(t)+Sr
m

, where the maximum per capita birth rate of midges p(t) =

150a(t), the maximum capacity related parameter q(t) = 5, and the dimensionless

parameter r = 0.196.

Table 4.2: Monthly mean temperatures for France (in ◦C)

Month January February March April May June
Temperature 5.8 6.0 8.5 10.6 13.9 17.1
Month July August September October November December
Temperature 19.3 19.2 16.3 12.7 8.5 6.2

Estimation of µm(t). The temperature-dependent midge mortality rate can be

approximated by [40]:

µm(T ) = 0.008941e0.1547×T × 30.4,

where T is the temperature in ◦C. We assume that the mortality rate of susceptible,

exposed, and infectious midges are the same, that is, µm(t) = µem(t) = µim(t). Hence,

the midge mortality rate in France can be fitted by

µm(t) =2.305 − 2.21 cos(πt/6) − 0.3654 sin(πt/6) + 0.6834 cos(πt/3)
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+ 0.3605 sin(πt/3) − 0.1704 cos(πt/2) − 0.159 sin(πt/2) + 0.04236 cos(2πt/3)

+ 0.05758 sin(2πt/3) + 0.02236 cos(5πt/6) − 0.06244 sin(5πt/6)

− 0.006183 cos(πt) Month−1.

Estimation of τm(t). According to [94], the temperature-dependent EIP is reflected

in the reciprocal of ν which is given by

ν = ν(T ) =





0 T ≤ Tmin,

0.0003 × T × (T − Tmin) × 30.4 T > Tmin,

where Tmin = 10.4057◦C. Temperatures only in the summer months for France are

above the baseline temperature for EIP of 10.4057 ◦C, see Figure 4.1. Low tempera-

tures mean that the period of virus replication (the EIP) is longer than the life span

of any midge and hence there is no incubation below Tmin. In the case of favorable

temperature, we take τm(T ) = 1
ν(T )

, while in the case of unfavorable temperature, we

assume that the EIP for the current month is longer than that for its last month by

about one month. For simplicity, we choose the EIP to be 2.0413 Month for October,

2.9413 Month for November, 3.7413 Month for December, 3.2575 Month for April,

3.7413 Month for January, February and March, respectively. It then follows that the

periodic time delay τm(t) in France can be approximated by

τm(t) =2.404 + 1.639 cos(πt/6) + 0.505 sin(πt/6) − 0.2357 cos(πt/3)

− 0.09017 sin(πt/3) − 0.03022 cos(πt/2) − 0.1513 sin(πt/2)

+ 0.01554 cos(2πt/3) + 0.001111 sin(2πt/3) − 0.05729 cos(5πt/6)

− 0.04817 sin(5πt/6) + 0.006067 cos(πt) Month.

In the following, we will present some numerical analyses based on the above

parameter values. Firstly, let us choose the following parameter values and the oth-

ers stay the same as above: βmc(t) = 0.8a(t), βms(t) = 0.8a(t), βcm(t) = 0.15a(t),

βsm(t) = 0.15a(t), δs(t) = 0.005 × 30.4, τl = 0.5. Using Lemmas 4.3.5 and 1.4.2, we

can numerically compute the basic reproduction ratios. We obtain Rm
0 = 14.9069 > 1,

R̃0 = 15.0391 > 1, and R0 = 7.5443 > 1. Setting the initial function values as

Ic(θ) = 41, Ss(θ) = 2664471, Is(θ) = 0 for all θ ∈ [−τ̂m, 0], Sm(θ) = 41071134 for all

θ ∈ [−τ̂ , 0], Im(0) = 6318636; in this case, the long term behaviors of the Ic, Ss, Is,

and Im are shown in Figure 4.4, which is coincident with Theorem 4.3.4. It shows
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that bluetongue can persist and exhibit periodic fluctuations in cattle and midges even

though it may eradicate the sheep. If we choose βcm(t) = 0.0005a(t), βms(t) = 1.4a(t),

and βsm(t) = a(t), then Rs
0 = 5.064 > 1, Rm

0 = 14.9069 > 1, R̃0 = 0.8674 < 1, and

R0 = 1.1762 > 1. In this case, a positive periodic solution is observed. The peri-

odic fluctuations of the infectious compartments are shown in Figure 4.3, which is

consistent with Theorem 4.3.6. This implies that bluetongue will persist and exhibit

periodic fluctuation in cattle, sheep, and midges if no further control measure is taken

in France. By taking some measures, if we can decrease the above contact rate βcm(t)

and βsm(t) to 0.0005a(t) and 0.001a(t) and keep other parameters as in Figure 4.4,

respectively, then R0 = 0.4366 < 1. In this case, the infectious compartments all tend

to zero, which implies that the disease will die out eventually (see Figure 4.4). We

also observe that a large first epidemic peak occurs in cattle and sheep populations

and subsequently continues to decline.
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Figure 4.1: Fitted curve of the average monthly temperature in France and the baseline tempera-
ture at which extrinsic incubation is possible.

Second, it is important to know the influences of different factors on the disease

transmission. It is well known that the disease transmission is directly related to R0,

then we will analyze the relationship between R0 and some coefficients in our system.

Increasing the mortality rate of adult midges. To explore the effect of the mortality

rate of adult midges, we replace µm(t) with kµm(t), k ∈ [1, 2], in our model and the

other parameter values are the same as those in Figure 4.4. Figure 4.5(a) shows that

R0 is an increasing function of k. Clearly, by taking some vectors control measures

such as the using of insecticides, if we can keep k > 1.7925, then R0 < 1, which

implies that it is effective to control BTV spread, see Figure 4.5(a).

Prolonging the duration of the EIP. By multiplying τm(t) by l, l ∈ [1, 5], we observe

that R0 and R̃0 are both decreasing functions of l as shown in Figure 4.5(b). Hence,

we can try to prolong the EIP duration to control BTV spread by developing some
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Figure 4.2: Long-term behaviors of the infectious compartments and susceptible sheep when R̃0 =
15.0391 > 1 and R0 = 7.5443 > 1.
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Figure 4.3: Long-term behaviors of the infectious compartments when R̃0 = 0.8674 < 1 and
R0 = 1.1762 > 1.
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Figure 4.4: Long-term behaviors of the infectious compartments when R0 = 0.4366 < 1.
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drugs. From the expression of τm(T ), we know that high temperatures can shorten the

duration of the EIP, and hence, global warming may facilitate the spread of disease.

Moreover, the blue curve always lies below the red one, which reveals that R0 for two

hosts tends to be lower than R̃0 for only cattle in these parameter values. This could

be because sheep are assumed to be a poorer host compared with cattle in terms of

the duration of infection.

Prevention of host-vector contact. Here we only consider the effect of βmc on R0.

Assuming that the control effort is c, c ∈ [0, 1], we replace βmc with (1 − c)βmc in

our model. The blue curve in Figure 4.5(c) shows that R0 is a decreasing function of

c and we should keep c > 0.9672 to control BTV spread by isolation or vaccination

effort.

Third, we explore the influence of the seasonality and the periodic EIP on R0.

Define the time-averaged EIP duration as [τm] := 1
ω

∫ ω
0
τm(t)dt. It follows that [τm] =

2.404 Month. Figures 4.5(c) and 4.5(d) compare the effect of periodic τm(t), constant

[τm], and without seasonality on R0 and R̃0, respectively, keeping the other parameter

values the same as those in Figure 4.4. They imply that the uses of the time-averaged

EIP, parameters without seasonality may both underestimate R0 and R̃0. If the

contact rate from midges to cattle is less than (1 − 0.7366)βmc without seasonality,

or (1 − 0.9576)βmc with constant [τm], or (1 − 0.9672)βmc with periodic τm(t), then

R0 < 1. This implies that the control efforts of 73.66%, 95.76% are not adequate to

control the BTV spread. For example, if vaccination covering 96.72% of susceptible

cattle and sheep would be needed, then the disease will be controlled.

4.5 Discussion

In this chapter, we developed and analyzed a bluetongue transmission model by in-

corporating the effect of seasonality and temperature-dependent EIP. By using the

theory developed in [133,150], we can derive the basic sheep reproduction ratio Rs
0, the

basic midge reproduction ratio Rm
0 , the basic disease reproduction ratio in the absence

of sheep R̃0, and the basic disease reproduction ratio for the whole system R0, which

serve as very important threshold parameters for the persistence and extinction of the

disease (population). Following the theoretical approach in [82], we define a suitable

phase space on which the linearized system of infectious compartments generates an
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eventually strongly monotone periodic semiflow. By using the theorem of uniform

persistence for periodic semiflows and the theory of chain transitive sets, we have

obtained a threshold dynamics of system in term of R0 and R̃0 under some additional

conditions. More precisely, if R0 > 1 and R̃0 > 1, then bluetongue can persist even

though it may eradicate the sheep; if R0 > 1 ≥ R̃0, then there is a positive periodic

solution, that is, bluetongue coexists with cattle, sheep, and midges, and the sheep

are not eradicated.

Numerically, we have estimated all constant and periodic parameters by using some

published data and simulated the BTV transmission case in France. We have numer-

ically calculated the basic reproduction ratios, and explored the relationship between

R0 and some parameters in our model. The numerical simulation results of the long

term behaviors of the infectious compartments are consistent with the obtained ana-

lytic results. In addition, we have observed that these three temperature-dependent

parameters, the mortality rate of midges, the duration of the EIP, and the host-vector

contact, have a strong influence on R0. This provides us three possible measures for

controlling BTV spread. The results predict that increasing the mortality rate of

midges, prolonging the duration of the EIP, and preventing host-vector contact are

effective measures in controlling BTV spread. Therefore, the use of insecticides in the

cattle and sheep premises and in the areas where these midges live, keeping cattle

and sheep in stables as adult midges cannot enter buildings very easily, restriction to

the movements of cattle and sheep from affected areas to noninfected regions where

the midges are present, and the use of vaccines are all helpful to reduce the trans-

mission of BTV. New control measures are urgently needed to completely eliminate

BTV and prevent reemergence of disease. Moreover, we observe that the adoption of

the time-averaged EIP and without seasonality parameters may both underestimate

R0. Therefore, in order to obtain more realistic and effective control measures, it is

important for the time-dependent EIP to be incorporated into models.



Chapter 5

A nonlocal periodic

reaction-diffusion model of

Bluetongue disease

5.1 Introduction

Bluetongue is a noncontagious midge-borne infectious disease of ruminants caused by

bluetongue virus (BTV) via vector-competent biting female midges in the Culicoides.

Bluetongue outbreaks cause substantial economic losses for farmers due to the direct

effects on livestocks, trade restrictions, and the cost of surveillance and control [59]. In

recent decades, bluetongue is one of the most common diseases of livestocks. To date,

27 BTV-serotypes have been identified [13] whose geographic distribution differs by

region. Since 1998 into Europe, BTV has caused a series of disease outbreaks across

the whole of Europe. In late 2000, BTV-2 was recorded in French Corsica Island, and

BTV-4 in 2003 and BTV-16 were detected in 2004. Since then, no other outbreaks

have been reported in Corsica. Until 2013, BTV-1 has been introduced to Corsica

from the island of Sardinia. In 2016, BTV-4 reemerged in Corsica and then has been

introduced to the mainland France [110].

Quite a few mathematical models have been developed to describe the spread of

BTV (see, e.g., [21,44,49,73,89,99]). Cattle and sheep are susceptible to BTV infec-

tion [49]. Gourley, Röst, and Thieme [44] proposed an autonomous delay differential
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equation model that includes cattle and sheep as hosts, midges as vectors. Seasonal

spread of bluetongue can be explained by seasonal activities of vectors since temper-

ature influences the midge developmental rate and life history parameters [94]. Then

bluetongue models with seasonality have been proposed in [49, 73, 99]. Gubbins et

al. [49] presented an ordinary differential equation model with explicit temperature-

dependent midge parameters and estimated the effect of each parameter on the basic

reproduction ratio. The extrinsic incubation period (EIP) describes the interval be-

tween virus ingestion and the subsequent ability to transmit virus (development time

of the virus in the vector). The EIP of BTV is strongly dependent on temperature,

varying from 26 days at 15◦C to 4 days at 30◦C [49]. Higher temperature can reduce

the duration of the EIP. Recently, Li and Zhao [73] introduced a periodic bluetongue

model with temperature-dependent EIP and investigated the effect of temperature-

dependent EIP on the basic reproduction ratio. The temperature-dependent EIP was

also incorporated in other vector-borne diseases (see, e.g., [82, 142]).

Spatiotemporal heterogeneity has a strong impact on the BTV spread. Sumner et

al. [120] found that about 90% of BTV transmission between farms is due to midge

dispersal. The vector spread pathways are the long-distance passive movements by

winds and the short-distance fights (about 100 metres per day) by active movements

[103]. Midge in the absence of winds or other directional stimuli, its active movements

perform randomly in all directions and regard as a local spread. Charron et al.

[20] proposed a spatiotemporal spread of bluetongue model which neglects the host

movements and wind-induced passive vector movements. These authors considered

the impact of spatiotemporal heterogeneities in abundance and distribution of vectors

and hosts on the occurrence and amplitude of epidemics, but they did not study the

global dynamics on persistence and extinction of bluetongue in terms of the basic

reproduction ratio.

In this chapter, we modify the bluetongue model in [20] by incorporating the

temperature-dependent EIP of BTV, seasonality in vectors, and spatial heterogene-

ity in hosts and vectors. Note that the modelling process is nontrivial because the

temperature-dependent EIP induces a new nonlocal term. Since livestock populations

are managed by farmers, host movements are controlled, and hence, the spatial spread

of BTV is due to only vector movements. This leads to the lack of compactness for

solution maps of our model system since some equations have no diffusion terms.

Thus, we need to prove the asymptotic compactness of solution maps to obtain the
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existence of the global attractor for the associated Poincaré map. Numerically, we

estimate the relevant model parameters and study the impact of the seasonal and

spatial heterogeneities in hosts and vectors on the spread of BTV.

The rest of the chapter is organized as follows. In Section 5.2, we present the model

and study its well-posedness. In Section 5.3, we derive the basic reproduction ratio

R0. In Section 5.4, we establish the threshold dynamics in terms of R0. In Section 5.5,

in the case where all coefficients are constants, we obtain a sufficient condition for the

global attractivity of the positive steady state for the autonomous system. In Section

5.6, a case study in French Corsica Island for BTV-4 transmission is presented. A

brief discussion then concludes the chapter.

5.2 The model

Cattle are much more attractive to midges than sheep and they show longer duration

of viraemia, and hence, cattle are a major reservoir of infection [15]. This may be

the reason why some models only chose cattle as hosts [21, 89]. To develop our

spatial model for the spread of bluetongue, we consider the dynamics of infection

in hosts (cattle) and vectors (midges). We assume that all populations remain in a

bounded spatial habitat Ω with smooth boundary ∂Ω. Since we focus on a local to

regional scale, the spatial spread of bluetongue is assumed to be only due to active

movements. The cattle population is divided into susceptible (Sh), infectious (Ih)

and recovered (Rh) classes. Let the density of total cattle population be Hp(t, x) =

Sh(t, x) + Ih(t, x) + Rh(t, x) at time t and location x. Since cattle’s movements are

controlled by farmers, the diffusion coefficient of cattle is zero. According to [20], we

assume that the per capita birth rate of cattle bh equals the per capita exit (mortality,

selling, culling) rate mh, and hence, Hp(t, x) stablizes at a positive steady state H∗
p (x).

Adult males and immature midges can not transmit and acquire the virus since

they do not take blood meals, thereby only female adult midges are modelled. The

vector population Vp is divided into susceptible, exposed (i.e., infected but not infec-

tive), infectious midges, and their densities are denoted by Sv, Ev and Iv, respectively,

and hence, Vp(t, x) = Sv(t, x) + Ev(t, x) + Iv(t, x), ∀t ≥ 0, x ∈ Ω.

For model parameters, since the impact of climate change on cattle is much less
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than that on midges activities, the parameters related to cattle are assumed be con-

stants. Let α1 be the per capita recovery rate of cattle. The seasonal and spatial

dependent parameters are as follows: the per capita biting rate n(t, x) of midges is

the average number of bites per midge per unit time at time t and location x; bv(t, x)

is the per capita birth rate of midges at time t and location x; mv(t, x) is the per capi-

ta natural mortality rate of midges; and kv(t, x) is the per capita density-dependent

mortality rate of midges at time t and location x. Then n(t, x)Iv/H
∗
p (x) is the average

number of infectious midge bites received by per cattle per unit time at time t and

location x. Thus, the force of infection for cattle and midges per unit time at time t

and location x are given, respectively, by

cvhn(t, x)
Iv

H∗
p (x)

Sh and chvn(t, x)
Ih

H∗
p (x)

Sv,

where cvh and chv represent the transmission probability of BTV per bite from in-

fectious midges to susceptible cattle and from infectious cattle to susceptible midges,

respectively. Similar to [20], we assume that the vector population has a logistic

growth with K = (bv − mv)/kv being the carrying capacity of the environment de-

pendent on the midge birth rate bv(t, x), mortality mv(t, x), and density-dependent

mortality rate kv(t, x), at the disease-free state and with seasonality. In order to

guarantee a positive growth rate of the midge population, we further assume that

(A1) bv(t, x) > mv(t, x) on R× Ω̄.

Since the temperature T is assumed to vary as a function of time t, we let τ(t)

be the length of the temperature-dependent EIP. Further, we consider the midge

active movements and assume that they perform an unbiased random walk and that

the dispersion of midges is homogeneous in space described by D > 0. We do not

consider immigration or emigration of individuals, that is, no population flux crosses

the boundary ∂Ω. Let ∆ be the Laplacian operator, ν be the outward unit normal

vector on ∂Ω, and M(t, x) be the density of newly occurred infectious midges per unit

time at time t and location x. By the same arguments as in [142], we can derive the

expression of M(t, x) as

M(t, x) = (1−τ ′(t))

∫

Ω

Γ(t, t−τ(t), x, y)chvn(t−τ(t), y)
Ih(t− τ(t), y)

H∗
p (y)

Sv(t−τ(t), y)dy,

where Γ(t, t0, x, y) with t > t0 ≥ 0 and x, y ∈ Ω is the Green function associated with
∂u
∂t

= D∆u − mv(t, ·)u subject to the Neumann boundary condition. Therefore, we
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have the following nonlocal reaction-diffusion system with the temperature-dependent

EIP:

∂Sh

∂t
= bhH

∗
p (x) − cvhn(t, x) Iv

H∗

p (x)
Sh −mhSh,

∂Ih
∂t

= cvhn(t, x) Iv
H∗

p (x)
Sh − (α1 +mh)Ih,

∂Rh

∂t
= α1Ih −mhRh,

∂Sv

∂t
= D∆Sv + bv(t, x)Vp − chvn(t, x) Ih

H∗

p (x)
Sv −mv(t, x)Sv − kv(t, x)VpSv,

∂Ev

∂t
= D∆Ev + chvn(t, x) Ih

H∗

p (x)
Sv −mv(t, x)Ev − kv(t, x)VpEv −M(t, x),

∂Iv
∂t

= D∆Iv +M(t, x) −mv(t, x)Iv − kv(t, x)VpIv,

∂Sv

∂ν
= ∂Ev

∂ν
= ∂Iv

∂ν
= 0, t > 0, x ∈ ∂Ω.

(5.1)

Let ρ(r) be the developmental proportion of bluetongue virus in midges at time r.

When the accumulative proportion from t− τ(t) to t reaches 1, the individual moves

to the next stage (see, e.g., [82, 143]). It follows that
∫ t

t−τ(t)

ρ(r)dr = 1. (5.2)

Differentiating both sides of (5.2) with respect to t, we then obtain 1 − τ ′(t) =
ρ(t)

ρ(t−τ(t))
> 0. Here we assume that τ(t) is ω-periodic in t and τ ′(t) is Hölder con-

tinuous on R. All constant parameters are positive, and functions n(t, x), bv(t, x) and

kv(t, x) are Hölder continuous and nonnegative nontrivial on R× Ω̄ and ω-periodic in

t. The function mv(t, x) is Hölder continuous and positive on R× Ω̄, and ω-periodic

in t.

Let X := C(Ω̄,R6) be the Banach space with the supremum norm ‖ · ‖X. Let τ̂ =

maxt∈[0,ω] τ(t). Define X := C([−τ̂ , 0],X) with the norm ‖φ‖ = maxθ∈[−τ̂ ,0] ‖φ(θ)‖X,

∀φ ∈ X. Define X
+ := C(Ω̄,R6

+) and X+ := C([−τ̂ , 0],X+), then (X,X+) and

(X,X+) are ordered spaces. As usual, we identity φ ∈ X defined by φ(θ, x) = φ(θ)(x),

∀θ ∈ [−τ̂ , 0], ∀x ∈ Ω̄. Given a function z : [−τ̂ , σ) → X for σ > 0, we define zt ∈ X

by zt(θ) = z(t+ θ), ∀θ ∈ [−τ̂ , 0], for any t ∈ [0, σ).

Let Y := C(Ω̄,R) and Y
+ := C(Ω̄,R+). Define the linear evolution operators

Ti(t, s), i = 1, 2, 3, on Y by T1(t, s)φ1 = e−mh(t−s)φ1, T2(t, s)φ2 = e−(α1+mh)(t−s)φ2 and

T3(t, s) = T1(t, s), ∀t ≥ s, respectively. Let T4(t, s) : Y → Y be the evolution operator

associated with ∂u
∂t

= D∆u −mv(t, x)u := A4(t)u, t ≥ s, x ∈ Ω̄, subject to the Neu-

mann boundary condition. Since mv(t, ·) is ω-periodic in t, [28, Lemma 6.1] implies
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that T4(t+ω, s+ω) = T4(t, s) for (t, s) ∈ R
2 with t ≥ s. Moreover, for (t, s) ∈ R

2 with

t > s, T4(t, s) is compact and strongly positive (see, e.g., [52, Chaper II] and [141, The-

orem 2.1.8]). Let T (t, s) = diag{T1(t, s), T2(t, s), T3(t, s), T4(t, s), T4(t, s), T4(t, s)} :

X → X, and A(t) = diag{A1, A2, A3, A4(t), A4(t), A4(t)}, where Ai (i = 1, 2, 3) is

defined by

D(Ai) = {ϕ ∈ C2(Ω̄) : ∂ϕ
∂ν

= 0 on ∂Ω}, i = 1, 2, 3,

A1ϕ = A3ϕ = −mhϕ, ϕ ∈ D(A1),

A2ϕ = −(α1 +mh)ϕ, ϕ ∈ D(A2).

Define F = (F1, F2, F3, F4, F5, F6) : [0,+∞) ×X+ → X by

F1(t, φ) = bhH
∗
p (·) − cvhn(t,·)φ1(0,·)φ6(0,·)

H∗

p (·)
,

F2(t, φ) = cvhn(t,·)φ1(0,·)φ6(0,·)
H∗

p (·)
,

F3(t, φ) = α1φ2(0, ·),

F4(t, φ) = bv(t, ·)(φ4(0, ·) + φ5(0, ·) + φ6(0, ·)) −
chvn(t,·)φ2(0,·)φ4(0,·)

H∗

p (·)

−kv(t, ·)(φ4(0, ·) + φ5(0, ·) + φ6(0, ·))φ4(0, ·),

F5(t, φ) = chvn(t,·)φ2(0,·)φ4(0,·)
H∗

p (·)
− kv(t, ·)(φ4(0, ·) + φ5(0, ·) + φ6(0, ·))φ5(0, ·)

−(1 − τ ′(t))
∫
Ω

Γ(t, t− τ(t), ·, y)chvn(t− τ(t), y)φ2(−τ(t),y)φ4(−τ(t),y)
H∗

p (y)
dy,

F6(t, φ) = (1 − τ ′(t))
∫
Ω

Γ(t, t− τ(t), ·, y)chvn(t− τ(t), y)φ2(−τ(t),y)φ4(−τ(t),y)
H∗

p (y)
dy

−kv(t, ·)(φ4(0, ·) + φ5(0, ·) + φ6(0, ·))φ6(0, ·),

for all t ≥ 0 and φ = (φ1, φ2, φ3, φ4, φ5, φ6) ∈ X+. Then system (5.1) can be written

as
du
dt

= A(t)u+ F (t, ut), t > 0,

u0 = φ ∈ X+.
(5.3)

From the expression of F , we see that F is locally Lipschitz continuous. For any

(t, φ) ∈ R+ ×X+, we have

lim
k→0+

1

k
dist(φ(0, ·) + kF (t, φ),X) = 0.

Obviously, T (t, s) : X → X, ∀t ≥ s ≥ 0. By [87, Corollary 4] with K = X and

S(t, s) = T (t, s), it then follows that for any φ ∈ X+, system (5.1) has a unique non-

continuable mild solution u(t, ·, φ) = (Sh(t, ·), Ih(t, ·), Rh(t, ·), Sv(t, ·), Ev(t, ·), Iv(t, ·))
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with u0 = φ on its maximal existence interval t ∈ [0, tφ), where tφ ≤ +∞, and

u(t, ·, φ) ∈ X, ∀t ∈ [0, tφ). Moreover, the semigroup theory arguments in [87, Theorem

1] implies that u(t, ·, φ) is a classical solution of system (5.1) for t > τ̂ .

Choose

K = {φ ∈ X : φi ≥ 0, ∀i 6= 5, φ4 + φ5 + φ6 ≥ 0}.

For any given (t, φ) ∈ R+×C([−τ̂ , 0], K), we have φ(0, ·)+kF (t, φ) ∈ K for sufficiently

small k > 0, and hence, limk→0+
1
k
dist(φ(0, ·)+kF (t, φ), K) = 0. Clearly, T (t, s) : K →

K, ∀t ≥ s ≥ 0. It follows from [87, Corollary 4] that for any φ ∈ C([−τ̂ , 0], K), the

solution u(t, ·, φ) with u0 = φ satisfies Sh(t, ·) ≥ 0, Ih(t, ·) ≥ 0, Rh(t, ·) ≥ 0, Sv(t, ·) ≥ 0

and Iv(t, ·) ≥ 0 for all t ∈ [0, tφ). In view of the biological meaning of τ(t), we impose

the following compatibility condition:

Ev(0, ·) =

∫ 0

−τ(0)

T4(0, s)chvn(s, ·)
Ih(s, ·)

H∗
p (·)

Sv(s, ·)ds. (5.4)

Define

D :=

{
φ ∈ X+ : φ5(0, ·) =

∫ 0

−τ(0)

T4(0, s)chvn(s, ·)
φ2(s, ·)φ4(s, ·)

H∗
p (·)

ds

}
.

By the uniqueness of solutions of system (5.1) and the compatibility condition (5.4),

it follows that

Ev(t, ·) =

∫ t

t−τ(t)

T4(t, s)chvn(s, ·)
Ih(s, ·)

H∗
p (·)

Sv(s, ·)ds, (5.5)

and hence, Ev(t, ·) ≥ 0 for all t ∈ [0, tφ). Therefore, for any φ ∈ D, u(t, ·, φ) with

u0 = φ is nonnegative for all t ∈ [0, tφ).

Note that the density of total vector population Vp(t, x) = Sv(t, x) + Ev(t, x) +

Iv(t, x) satisfies

∂Vp
∂t

= D∆Vp + bv(t, x)Vp −mv(t, x)Vp − kv(t, x)V 2
p , t > 0, x ∈ Ω, (5.6)

subject to the Neumann boundary condition. For system (5.6), we have

∂Vp
∂t

≤ D∆Vp + bvVp −mvVp − kvV
2
p ,

where bv = maxt∈[0,ω],x∈Ω̄ bv(t, x), kv = mint∈[0,ω],x∈Ω̄ kv(t, x), mv = mint∈[0,ω],x∈Ω̄mv(t,

x). Then Sv(t, ·), Ev(t, ·), and Iv(t, ·) are bounded on t ∈ [0, tφ). From the first three

equations of system (5.1), we see that the density of total cattle population satisfies

∂Hp(t, x)

∂t
= bhH

∗
p (x) −mhHp(t, x), (5.7)
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and hence, Sh(t, ·), Ih(t, ·), and Rh(t, ·) are bounded on t ∈ [0, tφ), which implies

tφ = ∞. Further, limt→∞(Hp(t, x) −H∗
p (x)) = 0 uniformly for x ∈ Ω̄. It then follows

from the comparison argument that solutions of system (5.1) with initial data in D,

and hence in X+, exist globally on [0,+∞) and are also ultimately bounded.

It is easy to see that there exists a positive vector ζ = (ζ1, ζ2) = ( bhH̄p

mh
,
bv−mv

kv
) such

that

bhH
∗
p (x) −mhζ1 ≤ 0, bv(t, x)ζ2 − (mv(t, x) + kv(t, x)ζ2)ζ2 ≤ 0,

where H̄p = maxx∈Ω̄H
∗
p (x). This implies that for any m ≥ 1, mζ is an upper solution

of systems (5.6) and (5.7). This implies that solutions of system (5.6) are uniformly

bounded. Thus, we have the following result.

Lemma 5.2.1. Let (A1) hold. For any φ ∈ X+, system (5.1) has a unique nonneg-

ative solution u(t, ·, φ) on [0,+∞) with u0 = φ, and solutions are ultimately bounded

and uniformly bounded.

5.3 The basic reproduction ratio

Now we define the basic reproduction ratio R0 by using the theory developed in

[75,150]. According to [52], let µ be the principal eigenvalue of the periodic parabolic

problem
∂Vp
∂t

= D∆Vp −mv(t, x)Vp + bv(t, x)Vp + µVp,

∂Vp
∂ν

= 0, t > 0, x ∈ ∂Ω.

From [52, Section 17.2], we have µ < 0 since (A1) holds. Then by a standard conver-

gence result on the periodic-parabolic logistic equations (see, e.g., [52, Theorem 28.1]

and [151, Theorem 3.1.5]), it follows that system (5.6) admits a globally asymptoti-

cally stable positive ω-periodic solution V ∗
p (t, ·) in Y

+ \ {0}. Thus, system (5.1) has
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the following limiting system:

∂Sh

∂t
= bhH

∗
p (x) − cvhn(t, x) Iv

H∗

p (x)
Sh −mhSh,

∂Ih
∂t

= cvhn(t, x) Iv
H∗

p (x)
Sh − (α1 +mh)Ih,

∂Rh

∂t
= α1Ih −mhRh,

∂Sv

∂t
= D∆Sv + bv(t, x)V ∗

p (t, x) − chvn(t, x) Ih
H∗

p (x)
Sv − (mv(t, x) + kv(t, x)V ∗

p (t, x))Sv,

∂Ev

∂t
= D∆Ev + chvn(t, x) Ih

H∗

p (x)
Sv − (mv(t, x) + kv(t, x)V ∗

p (t, x))Ev

−(1 − τ ′(t))
∫
Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (x)
Sv(t− τ(t), y)dy,

∂Iv
∂t

= D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv

+(1 − τ ′(t))
∫
Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (y)
Sv(t− τ(t), y)dy,

∂Sv

∂ν
= ∂Ev

∂ν
= ∂Iv

∂ν
= 0, t > 0, x ∈ ∂Ω.

(5.8)

Similarly, the fifth equation of system (5.8) can be rewritten as the integral form

(5.5). Since the third and fifth equations are decoupled from others, we focus on the

following system:

∂Sh

∂t
= bhH

∗
p (x) − cvhn(t, x) Iv

H∗

p (x)
Sh −mhSh,

∂Ih
∂t

= cvhn(t, x) Iv
H∗

p (x)
Sh − (α1 +mh)Ih,

∂Sv

∂t
= D∆Sv + bv(t, x)V ∗

p (t, x) − chvn(t, x) Ih
H∗

p (x)
Sv − (mv(t, x) + kv(t, x)V ∗

p (t, x))Sv,

∂Iv
∂t

= D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv

+(1 − τ ′(t))
∫
Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (y)
Sv(t− τ(t), y)dy,

∂Sv

∂ν
= ∂Iv

∂ν
= 0, t > 0, x ∈ ∂Ω.

(5.9)

Define Z := C(Ω̄,R4), Z := C([−τ̂ , 0],Z), Z+ := C(Ω̄,R4
+), and Z+ := C([−τ̂ , 0],Z+).

By arguments similar to those in the proof of Lemma 5.2.1, together with [87, Corol-

lary 4, Theorem 1 and Remark 1.1] and the proof of [148, Lemma 2.1], we have the

following result.

Lemma 5.3.1. Let (A1) hold. For any φ ∈ Z+, system (5.9) has a unique nonnega-

tive solution w(t, ·, φ) on [0,+∞) with w0 = φ, and solutions are ultimately bounded

and uniformly bounded. Moreover, system (5.9) generates an ω-periodic semiflow
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Q(t) := wt(·) : Z+ → Z+.

Let E := C(Ω̄,R2), E
+ := C(Ω̄,R2

+) and Cω(R,E) be the Banach space con-

sisting of all ω-periodic and continuous functions from R to E, where ‖φ‖Cω(R,E) :=

maxθ∈[0,ω] ‖φ(θ)‖E for any φ ∈ Cω(R,E). Setting Ih = Iv = 0 in system (5.9), we

obtain the equations for the density of susceptible populations:

∂Sh
∂t

= bhH
∗
p (x) −mhSh, (5.10)

∂Sv
∂t

= D∆Sv + bv(t, x)V ∗
p (t, x) − (mv(t, x) + kv(t, x)V ∗

p (t, x))Sv,

where Sv is subject to Neumann boundary condition. By [148, Lemma 2.1], it is

easy to see that system (5.10) admits a globally attractive positive ω-periodic solu-

tion (H∗
p (·), V ∗

p (t, ·)) in E
+. Linearizing system (5.9) at disease-free periodic solution

(H∗
p , 0, V

∗
p , 0), we then consider the following system of infectious compartments:

∂Ih
∂t

= cvhn(t, x)Iv − (α1 +mh)Ih,

∂Iv
∂t

= D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv

+(1 − τ ′(t))
∫
Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (y)
V ∗
p (t− τ(t), y)dy,

∂Iv
∂ν

= 0, t > 0, x ∈ ∂Ω.

(5.11)

Let E := C([−τ̂ , 0],E) and E+ := C([−τ̂ , 0],E+). We define the operator F (t) : E →

E by

F (t)φ = (F1(t)φ2, F2(t)φ1), ∀φ = (φ1, φ2) ∈ E, t ∈ R,

where F1(t)φ2 = cvhn(t, ·)φ2(0, ·) and F2(t)φ1 = (1− τ ′(t))
∫
Ω

Γ(t, t− τ(t), ·, y)chvn(t−

τ(t), y) ×φ1(−τ(t),y)
H∗

p (y)
V ∗
p (t− τ(t), y)dy. Let

−V (t)v = D∆v −W (t)v,

where D = diag(0,D) and

−[W (t)](x) =

(
−(α1 +mh) 0

0 −(mv(t, x) + kv(t)V
∗
p (t, x))

)
, ∀x ∈ Ω̄.

Then system (5.11) can be written as

dv

dt
= F (t)vt − V (t)v, t ≥ 0.
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Suppose that T5(t, s), t ≥ s, is the evolution operator on Y associated with

∂u

∂t
= D∆u− (mv(t, ·) + kv(t, ·)V

∗
p (t, ·))u, t > 0,

subject to the Neumann boundary condition. Let Φ(t, s) = diag(T2(t, s), T5(t, s)),

t ≥ s, be the evolution family on E associated with the following linear system:

dv

dt
= −V (t)v.

Recall that the exponential growth bound of Φ(t, s) is defined as

ω̃(Φ) = inf{ω̄ : ∃M0 ≥ 1 such that ‖Φ(t+ s, s)‖ ≤M0e
ω̄t, ∀s ∈ R, t ≥ 0}.

By [124, Proposition A.2], we have

ω̃(Φ) =
ln r(Φ(ω, 0))

ω
=

ln r(Φ(ω + ζ, ζ))

ω
, ∀ζ ∈ [0, ω].

From Theorem 1.3.3 and [52, Lemma 14.2], we have

0 < r(Φ(ω, 0)) = max{r(T2(ω, 0)), r(T5(ω, 0))} < 1,

where r(Φ(ω, 0)) is the spectral radius of Φ(ω, 0). It follows from [124, Proposition 5.6]

that ω̃(Φ) < 0. Note that Φ(t, s) is a positive operator in the sense that Φ(t, s)E+ ⊆

E
+ for all t ≥ s. Then [124, Theorem 3.12] implies that −V (t) is resolvent positive.

Therefore, F (t) and V (t) satisfy the following assumptions:

(H1) F (t) : E+ → E
+ is positive.

(H2) −V (t) is resolvent positive and ω̃(Φ) < 0.

Following [75,150], we introduce the basic reproduction ratio R0 for system (5.9).

Suppose that v ∈ Cω(R,E) and v(t) is the initial distribution of infectious cattle and

midges at time t ∈ R. Then for any given s ≥ 0, F (t−s)vt−s is the density distribution

of newly infectious cattle and midges at time t−s, which is produced by the infectious

cattle and midges who were introduced over the time interval [t− s− τ̂m, t− s]. Then

Φ(t, t− s)F (t− s)vt−s is the density distribution of those infected cattle and midges

who were newly infected at time t− s and remain in the infectious compartments at

time t. It follows that
∫ ∞

0

Φ(t, t− s)F (t− s)vt−sds =

∫ ∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds
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is the density distribution of accumulative new infectious at time t produced by all

those infectious cattle and midges introduced at all previous time to t. In fact, for any

given s ≥ 0, Φ(t, t−s)v(t−s) is the density distribution of those infectious individuals

who were introduced at time t− s and remain in the infectious compartments at time

t, and hence,
∫ +∞

0
Φ(t, t − s)v(t − s)ds is the density distribution of accumulative

infectious individuals who were introduced at all previous time to t and remain in the

infected compartments at time t. Then the density distribution of newly infectious

cattle and midges at time t is F (t)
∫ +∞

0
Φ(t+ ·, t− s+ ·)v(t− s+ ·)ds.

Now we define two linear next generation operators on Cω(R,E) by

[Lv](t) :=

∫ +∞

0

Φ(t, t− s)F (t− s)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω(R,E),

and

[Lv](t) := F (t)

∫ +∞

0

Φ(t+ ·, t− s+ ·)v(t− s+ ·)ds, ∀t ∈ R, v ∈ Cω(R,E).

Let A and B be two bounded linear operators on Cω(R,E) defined by

[Av](t) =

∫ +∞

0

Φ(t, t− s)v(t− s)ds, [Bv](t) = F (t)vt, ∀t ∈ R, v ∈ Cω(R,E).

Further,

Av = (A1v1, A2v2), Bv = (B1v2, B2v1), ∀v ∈ Cω(R,E),

where

[A1v1](t) =

∫ +∞

0

T2(t, t−s)v(t−s)ds, [A2v2](t) =

∫ +∞

0

T5(t, t−s)v(t−s)ds, ∀t ∈ R,

B1v2(t) = F1(t)v2t, B2v1(t) = F2(t)v1t, ∀t ∈ R, ∀vt = (v1t, v2t) ∈ E.

We then have L = A ◦ B and L = B ◦ A, and hence, L and L have the same

spectral radius. Motivated by [8, 124, 150], we define the basic reproduction ratio

as R0 := r(L) = r(L), where r(L) and r(L) are the spectral radius of L and L,

respectively.

For any given t ≥ 0, let P̂ (t) be the solution map of system (5.11) on E, that

is, P̂ (t)φ = vt(φ), where vt(φ)(θ, x) = v(t + θ, x, φ) = (v1(t + θ, x, φ), v2(t + θ, x, φ)),

∀(θ, x) ∈ [−τ̂ , 0] × Ω̄, and v(t, x, φ) is the unique solution of system (5.11) with

v(θ, x, φ) = φ(θ, x), ∀(θ, x) ∈ [−τ̂ , 0] × Ω̄. Then P̂ := P̂ (ω) is the Poincaré map

associated with system (5.11). Let r(P̂ ) be the spectral radius of P̂ .
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In order to apply the generalized Krein-Rutman theorem (see, e.g., [98, 151]), the

key idea is to prove that linear system (5.11) can generate an (eventually) strongly

monotone periodic semiflow on a suitable phase space. Since the periodic semiflow

P̂ (t) is monotone but not strongly monotone on E, we define

E := C([−τ(0), 0], Y ) × Y and E+ := C([−τ(0), 0], Y +) × Y +.

Then (E , E+) is an ordered Banach space. Given a function w : [−τ(0),+∞) ×

[0,+∞) → E, we define wt ∈ E by wt(θ) = (w1(t+ θ), w2(t)), ∀θ ∈ [−τ(0), 0], ∀t ≥ 0.

Lemma 5.3.2. Let (A1) hold. For any ψ ∈ E+, system (5.11) has a unique nonneg-

ative solution w(t, ·, ψ) on [0,+∞) with w0 = ψ.

Proof. Let τ̄ = mint∈[0,ω] τ(t). For any t ∈ [0, τ̄ ], since t − τ(t) is strictly increasing

in t, we have −τ(0) = 0 − τ(0) ≤ t − τ(t) ≤ τ̄ − τ(τ̄) ≤ τ̄ − τ̄ = 0, and hence,

Ih(t− τ(t), ·) = ψ1(t− τ(t), ·). Thus,

∂Ih
∂t

= cvhn(t, x)Iv − (α1 +mh)Ih,

∂Iv
∂t

= D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv

+(1 − τ ′(t))
∫
Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y)ψ1(t−τ(t),y)
H∗

p (y)
V ∗
p (t− τ(t), y)dy,

∂Iv
∂ν

= 0, x ∈ ∂Ω.

Given ψ ∈ E+, the solution (w1(t, ·), w2(t, ·)) of the above linear system exists uniquely

for t ∈ [0, τ̄ ]. This implies that Ψ1(θ, ·) := w1(θ, ·), ∀θ ∈ [−τ(0), τ̄ ] and Ψ2(θ, ·) :=

w2(θ, ·), ∀θ ∈ [0, τ̄ ].

We can repeat this procedure to [nτ̄ , (n + 1)τ̄ ] for all n ∈ N by the method of

steps. Thus, for any ψ ∈ E+, the solution w(t, ·, ψ) exists uniquely and is nonnegative

for all t ≥ 0.

Remark 5.3.1. By the uniqueness of solutions in Lemmas 5.3.1 and 5.3.2, it follows

that for any ϕ ∈ E+ and ψ ∈ E+ with ϕ1(θ, ·) = ψ1(θ, ·), ∀θ ∈ [−τ(0), 0], and

ϕ2(0, ·) = ψ2(·), then v(t, ·, ϕ) = w(t, ·, ψ), t ≥ 0, where v(t, ·, ϕ) and w(t, ·, ψ) are

solutions of system (5.11) satisfying v0 = ϕ and w0 = ψ, respectively.

For any given t ≥ 0, let P (t) : E → E be the solution map of system (5.11) on E ,

that is, P (t)φ = wt(φ), where wt(φ)(θ, x) = w(t+θ, x, φ) = (w1(t+θ, x, φ), w2(t, x, φ)),
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∀(θ, x) ∈ [−τ(0), 0] × Ω̄, and w(t, x, φ) is the unique solution of system (5.11) with

w(θ, x, φ) = φ(θ, x), ∀(θ, x) ∈ [−τ(0), 0] × Ω̄. Then P := P (ω) is the Poincaré map

associated with system (5.11). Let r(P ) be the spectral radius of P . Now we show

that the periodic semiflow P (t) is eventually strongly monotone.

Lemma 5.3.3. Let (A1) hold. For any ϕ and ψ in E with ϕ > ψ (that is, ϕ ≥ ψ,

but ϕ 6≡ ψ), the solutions w̄(t, ·, ϕ) and w(t, ·, ψ) of system (5.11) with w̄0 = ϕ and

w0 = ψ, respectively, satisfy w̄i(t, ·, ϕ) > wi(t, ·, ψ) for all t > τ̂ , i = 1, 2, and hence,

P (t)ϕ≫ P (t)ψ in E for all t > 2τ̂ .

Proof. Using a simple comparison argument on each interval [nτ̄ , (n + 1)τ̄ ], n ∈ N,

we can prove that w̄i(t, ·, ϕ) ≥ wi(t, ·, ψ) for all t ≥ 0, i = 1, 2.

Let ϕ, ψ ∈ E satisfy ϕ > ψ. Denote w̄(t, ·) = w̄(t, ·, ϕ) = (w̄1(t, ·), w̄2(t, ·)) and

w(t, ·) = w(t, ·, ψ) = (w1(t, ·), w2(t, ·)). Without loss of generality, we assume that

ϕ1 > ψ1.

Claim 1. There exists t0 ∈ [0, τ̂ ] such that w̄2(t, ·) > w2(t, ·) for all t ≥ t0.

We first prove that w̄2(t0, ·) > w2(t0, ·) for some t0 ∈ [0, τ̂ ]. Otherwise, we have

w̄2(t, ·) = w2(t, ·), ∀t ∈ [0, τ̂ ], and hence ∂w̄2

∂t
= ∂w2

∂t
for all t ∈ [0, τ̂ ]. Thus, we have

(1 − τ ′(t))

∫

Ω

Γ(t, t− τ(t), ·, y)chvn(t− τ(t), y)
V ∗
p (t− τ(t), y)

H∗
p (y)

× (w̄1(t− τ(t), y) − w1(t− τ(t), y))dy = 0,

for any t ∈ [0, τ̂ ]. It follows that w̄1(t− τ(t), ·) = w1(t− τ(t), ·) for all t ∈ [0, τ̂ ]. Since

−τ(0) ≤ t− τ(t) ≤ τ̂ − τ(τ̂), ∀t ∈ [0, τ̂ ], and τ̂ − τ(τ̂) ≥ 0, we have ϕ1(θ, ·) = ψ1(θ, ·)

for all θ ∈ [−τ(0), 0], which is a contradiction to the assumption ϕ1 > ψ1 in E .

Let

g1(t, x, ξ) : = D∆ξ − (mv(t, x) + kv(t, x)V ∗
p (t, x))ξ + (1 − τ ′(t))

∫

Ω

Γ(t, t− τ(t), x, y)

× chvn(t− τ(t), y)
w1(t− τ(t), y)

H∗
p (y)

V ∗
p (t− τ(t), y)dy, x ∈ Ω̄.

Since

∂w̄2

∂t
= D∆w̄2 − (mv(t, x) + kv(t, x)V ∗

p (t, x))w̄2 + (1 − τ ′(t))

∫

Ω

Γ(t, t− τ(t), x, y)

× chvn(t− τ(t), y)
w̄1(t− τ(t), y)

H∗
p (y)

V ∗
p (t− τ(t), y)dy,
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≥ D∆w̄2 − (mv(t, x) + kv(t, x)V ∗
p (t, x))w̄2 + (1 − τ ′(t))

∫

Ω

Γ(t, t− τ(t), x, y)

× chvn(t− τ(t), y)
w1(t− τ(t), y)

H∗
p (y)

V ∗
p (t− τ(t), y)dy = g1(t, x, w̄2),

we have ∂w̄2

∂t
−g1(t, x, w̄2) ≥ 0 = ∂w2

∂t
−g1(t, x, w2), ∀t ≥ t0, x ∈ Ω, with ∂w̄2

∂ν
= ∂w2

∂ν
= 0,

x ∈ ∂Ω. Since w̄2(t0, ·) > w2(t0, ·), it follows that w̄2(t, ·) > w2(t, ·) for all t ≥ t0 due

to the parabolic maximum principle.

Claim 2. w̄1(t, ·) > w1(t, ·) for all t > t0.

Let g2(t, x, ξ) := cvhn(t, x)w2 − (α1 +mh)ξ, ∀x ∈ Ω. Then for all t ≥ t0, we have

∂w̄1

∂t
=cvhn(t, x)w̄2 − (α1 +mh)w̄1

>cvhn(t, x)w2 − (α1 +mh)w̄1 = g2(t, x, w̄1).

Then ∂w̄1

∂t
− g2(t, x, w̄1) > 0 = ∂w1

∂t
− g2(t, x, w1), ∀t ≥ t0, x ∈ Ω, with ∂w̄1

∂ν
= ∂w1

∂ν
= 0,

x ∈ ∂Ω. Since w̄2(t0, ·) > w2(t0, ·), it follows that w̄1(t, ·) > w1(t, ·) for all t > t0 due

to the parabolic maximum principle.

From the above two claims, we obtain that w̄i(t, ·) > wi(t, ·), i = 1, 2, ∀t > t0.

Since t0 ∈ [0, τ̂ ], we have w̄i(t, ·) > wi(t, ·), i = 1, 2, for all t > τ̂ . This implies that

P (t) : E → E is strongly monotone for all t > 2τ̂ .

Since the first equation of system (5.11) has no diffusion term, its solution map

P̂ (t) is not compact. But we are able to prove that for each t > 0, P̂ (t) is α-contraction

on E, where α is the Kuratowski measure of noncompactness in the space E.

Lemma 5.3.4. Let (A1) hold. If r(P̂ ) ≥ 1, then r(P̂ ) is an eigenvalue of P̂ with a

strongly positive eigenvector on E. Moreover, r(P̂ ) = r(P ).

Proof. Let v(t, x, φ) = (v1(t, x, φ), v2(t, x, φ)) be the solution of system (5.11) with

v(θ, x, φ) = φ(θ, x), ∀(θ, x) ∈ [−τ̂ , 0] × Ω̄. We first prove that re(P̂ ) < 1, where re(P̂ )

is the essential spectral radius of P̂ .

Let Λ(t)φ = (T2(t, 0)φ1, T5(t, 0)φ2) is a linear semigroup on E. Define

J(t, φ) = (J1(t, φ), J2(t, φ)), ∀t > 0, φ = (φ1, φ2) ∈ E,

where

J1(t, φ)(x) :=cvhn(t, x)φ2(0, x), ∀x ∈ Ω̄,
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J2(t, φ)(x) :=(1 − τ ′(t))

∫

Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y)
φ1(−τ(t), y)

H∗
p (y)

× V ∗
p (t− τ(t), y)dy, ∀x ∈ Ω̄.

By the constant variation formula, we have

v(t, x, φ) = Λ(t)[φ(0, ·)] +

∫ t

0

Λ(t− s)J(s, vs(φ))ds, ∀t > 0.

Define a linear operator

(S1(t)φ)(θ) = (T2(t+ θ, 0)φ1(0, ·), 0), ∀φ ∈ E, t+ θ > 0, t ≥ 0, θ ∈ [−τ̂ , 0],

and a nonlinear operator

(S2(t)φ)(θ) = (

∫ t+θ

0

T2(t+ θ, s)J1(s, vs(φ))ds, v2(t+ θ, ·, φ)),

∀φ ∈ E, t + θ > 0, t ≥ 0, θ ∈ [−τ̂ , 0]. Then P̂ (t)φ = S1(t)φ + S2(t)φ, φ ∈ E, t ≥ 0. It

is easy to choose an integer K > 0 such that Kω > τ̂ and

‖T2(Kω + θ, 0)‖Y ≤
1

2
, ∀θ ∈ [−τ̂ , 0].

Since the boundedness of P̂ (t) and the compactness of T5(t, s) for all t > s, by the same

argument as in the proof of [75, Lemma 4.3], it then follows that for any bounded

subset B of E, S2(Kω)B is precompact, and hence, α(S2(Kω)B) = 0. Note that

there exists C0 > 0 such that ‖ d
dθ
T2(Kω + θ, 0)‖Y ≤ C0, ∀θ ∈ [−τ̂ , 0] due to Kω > τ̂ .

According to [30, Section 7.4], we have

α(S1(Kω)B) = max
θ∈[−τ̂ ,0]

α((S1(Kω)B)(θ)) = max
θ∈[−τ̂ ,0]

α(T2(Kω + θ, 0)[B(0)]),

where (S1(Kω)B)(θ) := {(S1(Kω)φ)(θ) : φ ∈ B} and B(0) := {φ(0) : φ ∈ B}. It

follows from the proof of [30, Section 7.4] that α(B(0)) ≤ α(B). Thus, we have

α(P̂ (Kω)B) ≤ α(S1(Kω)B)) + α(S2(Kω)B)) = α(S1(Kω)B))

≤ max
θ∈[−τ̂ ,0]

‖T2(Kω + θ, 0)‖α(B(0)) ≤
1

2
α(B).

This implies that re(P̂ (Kω)) ≤ 1
2

due to [30, Theorem 9.9], and hence, re(P̂ (ω)) ≤

(1
2
)

1
K < 1. Thus, re(P̂ ) < r(P̂ ).
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By the weak version of the generalized Krein-Rutman theorem in Theorem 1.3.4

(see also [76]), r(P̂ ) is an eigenvalue of P̂ with a positive eigenfunction φ∗ ∈ E. Now we

prove that φ∗ is strongly positive on E. Let ψ∗ = (ψ∗
1, ψ

∗
2) ∈ E with ψ∗

1(θ, ·) = φ∗
1(θ, ·)

for all θ ∈ [−τ(0), 0] and ψ∗
2(·) = φ∗

2(0, ·), and φ∗
1(θ) = ψ∗

1(−τ(0)), ∀θ ∈ [−τ̂ ,−τ(0)],

φ∗
2(θ) = ψ∗

2(0)), ∀θ ∈ [−τ̂ , 0]. By Remark 5.3.1, w(t, ·, ψ∗) = v(t, ·, φ∗) for all t ≥ 0,

where w(t, ·, ψ∗) and v(t, ·, φ∗) are solutions of system (5.11) satisfying w(θ, ·, ψ∗) =

ψ∗(θ, ·) ∈ E+ and v(θ, ·, φ∗) = φ∗(θ, ·) ∈ E+, respectively. From Lemma 5.3.3, we

obtain that w(t, ·, ψ∗) is strongly positive on E for any t > 2τ̂ , and hence, ψ∗ is

strongly positive on E due to [87, Theorem 3]. Since w(t, ·, ψ∗) = v(t, ·, φ∗) and the

uniqueness of eigenfunctions, φ∗ is also strongly positive on E.

Moreover, by arguments similar to those in [82, Lemma 3.8], we can obtain that

r(P̂ ) = r(P ).

Let {U(t, s, λ) : t ≥ s} be the evolution family on E of the following linear periodic

system with parameter λ ∈ [0,+∞):

dv(t)

dt
= λF (t)vt − V (t)v(t), t ≥ 0. (5.12)

In order to obtain the relationship between the sign of R0−1 and r(P̂ )−1, according

to Theorem 1.4.2, we only need to verify the following assumptions:

(H3) The positive linear operator L possesses the principal eigenvalue.

(H4) The positive linear operators U(ω, 0, λ) possesses the isolated principal eigen-

value with finite multiplicity for any λ ∈ [0,+∞) whenever r(U(ω, 0, λ)) ≥ 1.

(H5) Either the principal eigenvalue of L is isolated, or there exists an integer n0 > 0

such that Ln0 is strongly positive.

Lemma 5.3.5. R0 − 1 has the same sign as r(P̂ ) − 1.

Proof. Our arguments are motivated by [75, Lemma 4.7]. We have known that (H1)

and (H2) hold. Next we prove that (H3)-(H5) are valid.

Claim 1. L2 is compact on Cω(R,E).

Clearly, A1, B1, A2 and B2 are bounded in Cω(R,E). By [116, Chapter 7], A2 is

compact on Cω(R,E). Since A1B1A2B2 and A2B2A1B1 are compact on Cω(R,Y), we
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have L2 is compact on Cω(R,E) due to L2v = ABABv = (A1B1A2B2v1, A2B2A1B1v2).

Claim 2. L admits the principal eigenvalue.

Obviously, A1, B1, A2 and B2 are strictly positive and map Int(Y +) to Int(Y +).

Note that T5(t, s) is strongly positive on Y for any t > s. Then for any v2 ∈ Cω(R,Y+)\

{0},
∫ +∞

0
T5(t, t−s)v2(t−s)ds, t ∈ R is strongly positive on Y. That is, A2 is strongly

positive on Cω(R,Y), and hence, A2B2A1B1 are strongly positive on Cω(R,Y).

Now we prove that r(L) > 0. For a fixed v2 ∈ Cω(R,Y+) \ {0}, there exists

r > 0 such that A2B2A1B1v2 ≥ rv2 in Y. Then L2v ≥ rv, where v = (0, v2), and

hence, r(L2) > 0 due to the Gelfand’s formula. It follows from the Krein-Rutman

theorem (see, e.g., [30, Theorem 19.2]) that L2 possesses the principal eigenvalue with

an eigenfunction ṽ ∈ Cω(R,E+) \ {0}. Since r2(L) = r(L2) and (r2(L) − L2)ṽ = 0,

we have (r(L) − L)v̂ = 0, where v̂ = (r(L) + L)ṽ ∈ Cω(R,E+) \ {0}. This implies

that L possesses the principal eigenvalue with positive eigenfunction in Cω(R,E+).

Therefore, (H3) and (H5) hold true.

It remains to prove (H4). Let P̂λ := U(ω, 0, λ) be the Poincaré map on E associated

with system (5.12). We repeat the arguments in Lemma 5.3.4 to obtain that r(P̂λ)

is the principal eigenvalue whenever r(P̂λ) ≥ 1. Then (H4) holds. Thus, by Theorem

1.4.2, R0 − 1 has the same sign as r(P̂ ) − 1.

By Lemma 5.3.1, we can define the solution maps Q(t) : Z+ → Z+ associated

with system (5.9) by Q(t)φ = ut(φ), where ut(φ)(θ, x) = u(t+ θ, x, φ), t ≥ 0, (θ, x) ∈

[−τ̂ , 0]× Ω̄, and u(t, x, φ) is the unique solution of system (5.9) with u(θ, x) = φ(θ, x),

(θ, x) ∈ [−τ̂ , 0]×Ω̄. Then Q := Q(ω) is the Poincaré map associated with system (5.9).

Since the first two equations in system (5.9) have no diffusion terms, its solution map

Q(t) is not compact. Due to the lack of compactness, we need to prove the following

observation.

Lemma 5.3.6. Let (A1) hold. Then Q is α-contracting in the sense that

lim
n→∞

α(Qn(B)) = 0 for any bounded set B ⊆ Z+.

Proof. Let B be a given bounded subset of Z+. Motivated by [55, Lemma 4.1], we

first show that Qn = Q(nω) is asymptotically compact on B in the sense that for

any sequences ψk = (ψk1, ψk2, ψk3, ψk4) ∈ B and nk → ∞, there exist subsequences

kj → ∞ and ψkj ∈ B such that Qnkj (ψkj) converges in Z as j → ∞. By Lemma 5.3.1,
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the solution {u(nkω, ·, ψk)}k≥1 is uniformly bounded on Ω̄ for all k ≥ 1, and hence,

there exists an η > 0 such that

|Sh(t, x, ψk)| < η, |Ih(t, x, ψk)| < η,

|Sv(t, x, ψk)| < η, |Iv(t, x, ψk)| < η, ∀k ≥ 1, t ≥ 0, x ∈ Ω̄.

Since nkω > τ̂ for all sufficiently large k, in view of the generalized Arzela-Ascoli

theorem for space Z+ = C([−τ̂ , 0],Z+), it suffices to prove that (i) for each θ ∈

[−τ̂ , 0], the set {Qnk(ψk)(θ)}k≥1 is precompact in Z
+; (ii) the sequence {Qnk(ψk)}k≥1

is equicontinuous in θ ∈ [−τ̂ , 0].

Now we prove the statement (i). By the Arzela-Ascoli theorem, it suffices to prove

for any given θ ∈ [−τ̂ , 0], {Qnk(ψk)(θ, x)}k≥1 is equicontinuous in x ∈ Ω̄ for all k ≥ 1.

Note that {Sv(nkω + θ, x, ψk)}k≥1 and {Iv(nkω + θ, x, ψk)}k≥1 are equicontinuous in

x ∈ Ω̄ for all k ≥ 1, θ ∈ [−τ̂ , 0]. Then we first show that {Sh(nkω + θ, x, ψk)}n≥1 is

equicontinuous in x ∈ Ω̄ for all k ≥ 1, θ ∈ [−τ̂ , 0]. Let

gk(x, t) := bhH
∗
p (x) − cvhn(t, x)

Iv(t, x, ψk)

H∗
p (x)

Sh(t, x, ψk),

and hence, for each k ≥ 1, gk(x, t) is a continuous function on Ω̄×R+. Let vk(t, x) =

Sh(t, x, ψk), t ≥ 0, x ∈ Ω̄. Define vk(t, x) := vk(t + nkω, x), ∀t ≥ −nkω, x ∈ Ω̄.

Clearly,

∂

∂t
[(vk(t+ θ, x1) − vk(t+ θ, x2))

2]

=2(vk(t+ θ, x1) − vk(t+ θ, x2))
∂

∂t
[vk(t+ θ, x1) − vk(t+ θ, x2)]

=2(vk(t+ θ, x1) − vk(t+ θ, x2))[gk(x1, t+ nkω + θ) − gk(x2, t+ nkω + θ)

−mh(vk(t+ θ, x1) − vk(t+ θ, x2))]

≤4η|gk(x1, t+ nkω + θ) − gk(x2, t+ nkω + θ)| − 2mh[vk(t+ θ, x1) − vk(t+ θ, x2)]
2,

for all t ≥ −nkω − θ, θ ∈ [−τ̂ , 0], x1, x2 ∈ Ω̄. Set hk(t, x, y) := |gk(x, t + nkω + θ) −

gk(y, t+ nkω + θ)|. By the constant variation formula and the comparison argument,

we obtain

|vk(t+ θ, x1) − vk(t+ θ, x2)|
2 ≤e−2mh(t−s)|vk(s+ θ, x1) − vk(s+ θ, x2)|

2

+ 4η

∫ t

s

e−2mh(t−r)hk(r, x1, x2)dr, (5.13)
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for all t ≥ s ≥ −nkω − θ. Letting t = 0 and s = −nkω − θ in (5.13), we have

|vk(θ, x1) − vk(θ, x2)|
2 ≤e−2mh(nkω+θ)|vk(−nkω, x1) − vk(−nkω, x2)|

2

+ 4η

∫ 0

−nkω−θ

e2mhrhk(r, x1, x2)dr,

and hence,

|Sh(nkω + θ, x1, ψk) − Sh(nkω + θ, x2, ψk)|
2 ≤e−2mh(nkω+θ)|ψk1(0, x1) − ψk1(0, x2)|

2

+ 4η

∫ 0

−nkω−θ

e2mhrhk(r, x1, x2)dr,

(5.14)

for all k ≥ 1, x1, x2 ∈ Ω̄. We further prove that for any ǫ > 0, there exists δ > 0 such

that

|Sh(nkω + θ, x1, ψk) − Sh(nkω + θ, x2, ψk)| < ǫ, ∀k ≥ 1, ∀x1, x2 ∈ Ω̄ with |x1 − x2| < δ.

Suppose, by contradiction, that there exist ǫ0 > 0, kj → ∞, xj, yj ∈ Ω̄ with |xj−yj| <

1/j such that

|Sh(nkjω + θ, xj, ψnkj
) − Sh(nkjω + θ, yj, ψnkj

)| ≥ ǫ0, ∀j ≥ 1.

It then follows from (5.14) that

ǫ20 ≤ lim sup
j→∞

|Sh(nkjω + θ, xj, ψnkj
) − Sh(nkjω + θ, yj, ψnkj

)|2

≤ 4η lim sup
j→∞

∫ 0

−nkj
ω−θ

e2mhrhnkj
(r, xj, yj)dr. (5.15)

For each r ≤ 0, we can choose an integer k0 > 0 such that {Iv(r+nkω+ θ, x, ψk)}k≥k0
is equicontinuous in x ∈ Ω̄ for all k ≥ k0. It is easy to see that for each k ≥ 1, gk(x, t)

is uniformly continuous in (x, t) ∈ Ω̄ ×R+. Since limj→∞ |Iv(r + nkjω + θ, xj, ψnkj
) −

Iv(r+ nkjω+ θ, yj, ψnkj
)| = 0, for any given r ≤ 0, we have limj→∞ hnkj

(r, xj, yj) = 0.

According to Fatou’s lemma, (5.15) becomes

ǫ20 ≤ 4η

∫ 0

−∞

e2mhr lim sup
j→∞

hnkj
(r, xj, yj)dr = 0,

which is a contradiction. Similarly, we can verify that {Ih(nkω + θ, x, ψk)}k≥1 is also

equicontinuous in x ∈ Ω̄ for all k ≥ 1. This shows that statement (i) holds true.
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Next we prove statement (ii). Since nk → ∞, without loss of generality, we as-

sume that n1ω > τ̂ and nk ≥ n1, ∀k ≥ 1. By the mean value theorem, we easily

see that Sh(nkω + θ, ·, ψk) and Ih(nkω + θ, ·, ψk) are equicontinuous in θ ∈ [−τ̂ , 0] on

C(Ω̄,R). Since Qnk(ψk) = Qn1(Qnk−n1(ψk)) = Q(n1ω)(Qnk−n1(ψk)), ∀k ≥ 1, it follows

that the sequence {(Sv)nkω(ψk), (Iv)nkω(ψk)}k≥1 is precompact in C([−τ̂ , 0], C(Ω̄,R2))

(see, e.g., the proof of [151, Theorem 3.5.1]). This implies that the sequence of func-

tions {Sv(nkω + θ, ·, ψk), Iv(nkω + θ, ·, ψk)}k≥1 is equicontinuous in θ ∈ [−τ̂ , 0] on

C(Ω̄,R2). Consequently, the sequence {Sh(nkω+ θ, ·, ψk), Ih(nkω+ θ, ·, ψk), Sv(nkω+

θ, ·, ψk), Iv(nkω + θ, ·, ψk)}k≥1 is equicontinuous in θ ∈ [−τ̂ , 0] on C(Ω̄,R4). Thus, Qn

is asymptotically compact on B.

Now we consider the omega limit set of B for Q on Z+, defined by

ω(B) = {ψ ∈ Z+ : lim
k→∞

Qnk(ψk) = ψ for some sequence ψk ∈ B and nk → ∞}.

Since Qn is asymptotically compact on B, it follows that ω(B) is a nonempty, compact

and invariant set for Q in Z+, and ω(B) attracts B (see, e.g., the proof of [114, Lemma

23.1(2)]). By Lemma 1.1.1(b), we have

α(Qn(B)) ≤ α(ω(B)) + δ(Qn(B), ω(B)) = δ(Qn(B), ω(B)) → 0 as n→ ∞,

where δ(B,A) = supx∈B d(x,A) = supx∈B infy∈A d(x, y) for any subsets A, B of Ba-

nach space.

In view of Lemma 5.3.1, we see that Q is point dissipative on Z+, the positive

orbits of bounded subsets for Q are bounded, and Q is α-contracting on Z+. It follows

from Theorem 1.1.3 (ii) that Q has a global attractor that attracts each bounded set

in Z+.

5.4 Global dynamics

Now we are ready to prove the main results of the global dynamics for system (5.9).

Using the comparison principle and Lemma 5.3.1, we can obtain the following result.

Lemma 5.4.1. Assume that (A1) holds. Let u(t, ·, φ) be the solution of system (5.9)

with u0 = φ ∈ Z+. If there exists some t0 ≥ 0 such that ui(t0, ·, φ) 6≡ 0 for some

i ∈ {2, 4}, then ui(t, x, φ) > 0 for all t > t0, x ∈ Ω̄. Moreover, for any φ ∈ Z+, we
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have ui(t, x, φ) > 0, i = 1, 3, t > 0, x ∈ Ω̄, and lim inft→∞ ui(t, x, φ) ≥ η̄, i = 1, 3,

uniformly for x ∈ Ω̄, where η̄ is a φ-independent positive constant.

Proof. For any φ ∈ Z+, it is easy to see that u2(t, x, φ) and u4(t, x, φ) satisfy

∂u2
∂t

≥ −(α1 +mh)u2,

∂u4
∂t

≥ D∆u4 − (mv + kvV
∗

p)u4,

∂u4
∂ν

= 0, t > 0, x ∈ ∂Ω,

where

kv = max
t∈[0,ω],x∈Ω̄

kv(t, x),mv = max
t∈[0,ω],x∈Ω̄

mv(t, x), and V
∗

p = max
t∈[0,ω],x∈Ω̄

V ∗
p (t, x).

If ui(t0, ·, φ) 6≡ 0 for some t0 ≥ 0, i = 2, 4, then ui(t0, ·, φ) > 0 for all t > t0, x ∈ Ω̄

due to the comparison principle.

By Lemma 5.3.1, solutions of system (5.9) are uniformly bounded, and hence,

there exists a constant C > 0 such that u2(t, x, φ) < C and u4(t, x, φ) < C, ∀t > 0,

x ∈ Ω̄. Let v1(t, x, φ1) be the solution of

∂v1
∂t

= bhH
∗
p (x) − (cvhn(t, x) C

H∗

p (x)
+mh)v1, t > 0, x ∈ Ω,

∂v1
∂ν

= 0, t > 0, x ∈ ∂Ω,

v1(0, x) = φ1(0, x), x ∈ Ω.

(5.16)

Then we have u1(t, x, φ) ≥ v1(t, x, φ1) > 0, t > 0, x ∈ Ω̄. Since system (5.16) admits

a globally attractive positive periodic solution v∗1(t, x), we have

lim inf
t→∞

u1(t, x, φ) ≥ η̄1 := min
t∈[0,ω],x∈Ω̄

v∗1(t, x) > 0,

uniformly for x ∈ Ω̄. Similarly, we can obtain lim inft→∞ u3(t, x, φ) ≥ η̄2 > 0 uniformly

for x ∈ Ω̄. Setting η̄ := min{η̄1, η̄2}, this completes the proof.

Theorem 5.4.1. Let (A1) hold. The following statements are valid:

(i) If R0 < 1, then the disease-free periodic solution (H∗
p (x), 0, V ∗

p (t, x), 0) is globally

attractive for system (5.9) in Z+.
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(ii) If R0 > 1, then there exists an η̂ > 0 such that for any φ ∈ Z+ with φ2(0, ·) 6≡ 0

and φ4(0, ·) 6≡ 0, we have

lim inf
t→∞

min
x∈Ω̄

(Sh(t, x, φ), Ih(t, x, φ), Sv(t, x, φ), Iv(t, x, φ)) ≥ (η̂, η̂, η̂, η̂).

Proof. (i) In the case where R0 < 1, Lemmas 5.3.4 and 5.3.5 imply that r(P̂ ) < 1.

Consider the following system with parameter ε > 0:

∂Ih
∂t

= cvhn(t, x)
H∗

p (x)+ε

H∗

p (x)
Iv − (α1 +mh)Ih,

∂Iv
∂t

= D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv + (1 − τ ′(t))

∫
Ω

Γ(t, t− τ(t), x, y)

×chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (x)
(V ∗

p (t− τ(t), y) + ε)dy,

∂Iv
∂ν

= 0, t > 0, x ∈ ∂Ω.

(5.17)

For any ϕ ∈ E, let vε(t, s, ϕ) be the unique solution of system (5.17) with vεs(s, ϕ) = ϕ,

where vεt (s, ϕ)(θ, x) = vε(t + θ, s, x, ϕ), θ ∈ [−τ̂ , 0]. Let Vε(t, s), t ≥ s, be the

evolution operator of system (5.17) on E, and then Vε(t, s)ϕ = vεt (s, ϕ). Since

limε→0 r(Vε(ω, 0)) = r(P̂ ) < 1, we can fix a sufficiently small number ε > 0 such

that r(Vε(ω, 0)) < 1. Hence, the exponential growth bound ω̃(Vε) < 0, then there

exists γ > 0 such that ω̃(Vε) + γ < 0. By the definition of ω̃(Vε), there exists M0 > 0

such that

‖Vε(t+ s, s)ϕ‖E ≤M0e
(ω̃(Vε)+γ)t‖ϕ‖E, ∀t ≥ 0, ∀s ∈ R, ϕ ∈ E.

Then ‖Vε(t+ s, s)ϕ‖E → 0 as t→ ∞, ∀s ∈ R, and hence, ‖vε(t+ s+ θ, s, x, ϕ)‖ → 0

as t→ ∞, ∀s ∈ R, x ∈ Ω̄, θ ∈ [−τ̂ , 0].

By the global attractivity of (H∗
p (·), V ∗

p (t, ·)) for system (5.10) and the comparison

principle, there exists a sufficiently large integer N0 > 0 such that N0ω > τ̂ and

S∗
h(t, x) ≤ H∗

p (x) + ε and S∗
v(t, x) ≤ V ∗

p (t, x) + ε, ∀t ≥ N0ω − τ̂ , x ∈ Ω̄. Clearly, the

solution (Ih(t, x, φ), Iv(t, x, φ)) of system (5.9) satisfies

∂Ih
∂t

≤ cvhn(t, x)
H∗

p (x)+ε

H∗

p (x)
Iv − (α1 +mh)Ih,

∂Iv
∂t

≤ D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv + (1 − τ ′(t))

∫
Ω

Γ(t, t− τ(t), x, y)

×chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (y)
(V ∗

p (t− τ(t), y) + ε)dy,

∂Iv
∂ν

= 0, t > N0ω, x ∈ ∂Ω.
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For any given φ = (φ1, φ2, φ3, φ4) ∈ Z+, there exists m0 > 0 such that

(Ih(t, x, φ), Iv(t, x, φ)) ≤ m0v
ε(t, N0ω, x, ϕ0), ∀t ∈ [N0ω,N0ω+ τ̂ ], x ∈ Ω̄, ϕ0 = (φ2, φ4).

By the comparison principle, we have

(Ih(t, x, φ), Iv(t, x, φ)) ≤ m0v
ε(t, N0ω + τ̂ , x, ϕ0), ∀t ≥ N0ω + τ̂ , x ∈ Ω̄.

Then limt→∞(Ih(t, x, φ), Iv(t, x, φ)) = (0, 0) uniformly for x ∈ Ω̄, ∀φ ∈ Z+. Then the

Sh, Sv equations in system (5.9) are asymptotic to system (5.10). Now we use the

theory of internally chain transitive sets (see, e.g., [151]) to prove that

lim
t→∞

‖(Sh(t, x, φ), Sv(t, x, φ)) − (H∗
p (x), V ∗

p (t, x))‖ = 0 uniformly for x ∈ Ω̄.

For any ϕ ∈ E+, let ν(t, x, ϕ(0, ·)) be the solution of system (5.11) with ν(0, x) =

ϕ(0, x). Define a solution semiflow of system (5.11) on E+ by

νt(θ, x, ϕ) =

{
ν(t+ θ, x, ϕ(0, x)), if t+ θ > 0, t > 0, θ ∈ [−τ̂ , 0],

ϕ(t+ θ, x), if t+ θ ≤ 0, t > 0, θ ∈ [−τ̂ , 0].

Let P̄ (ϕ) = νω(ϕ). For convenience, we rewrite the solution map Q(t) for system

(5.9) as Q̂(t) in the following way:

Q̂(t)φ = (Sh(t+ θ, ·, φ), Sv(t+ θ, ·, φ), Ih(t+ θ, ·, φ), Iv(t+ θ, ·, φ)),

for any θ ∈ [−τ̂ , 0], t ≥ 0. Let W = ω(φ) be the omega limit set of φ ∈ Z+ for the

Poincaré map Q̂. Since limt→∞(Ih(t, x, φ), Iv(t, x, φ)) = (0, 0) uniformly for x ∈ Ω̄,

there holds W = ω̄ × {(0̂, 0̂)}, where 0̂(θ, ·) = 0, ∀θ ∈ [−τ̂ , 0]. By the proof of

Lemma 5.3.6, it follows that the discrete forward orbit γ+(φ) = {Q̂nω(φ) : n ≥ 0} is

asymptotically compact. Thus, its omega limit set ω(φ) is nonempty, compact and

invariant for Q̂. It then follows from Lemma 1.1.2 that W is an internally chain

transitive set for Q̂, and hence, ω̄ is an internally chain transitive set for P̄ . Define

(H∗
p , V

∗
p0) ∈ E+ by V ∗

p0(θ, ·) = V ∗
p (θ, ·), θ ∈ [−τ̂ , 0]. Since ω̄ 6= {(0̂, 0̂)} due to Lemma

5.4.1, and (H∗
p , V

∗
p0) is globally attractive in E+, we have ω̄

⋂
W S((H∗

p , V
∗
p0)) 6= ∅,

where W S((H∗
p , V

∗
p0)) is the stable set of (H∗

p , V
∗
p0). By Theorem 1.1.2, we get ω̄ =

{(H∗
p , V

∗
p0)}. Thus, W = {(H∗

p , V
∗
p0, 0̂, 0̂)}, and we have

lim
t→∞

‖(Sh(t, ·, φ), Ih(t, ·, φ), Sv(t, ·, φ), Iv(t, ·, φ)) − (H∗
p (·), 0, V ∗

p (t, ·), 0)‖ = 0.
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(ii) In the case where R0 > 1, we have r(P̂ ) > 1, and hence, ω̃(P̂ ) > 0. Let

Z0 := {ψ = (ψ1, ψ2, ψ3, ψ4) ∈ Z+ : ψ2(0, ·) 6≡ 0 and ψ4(0, ·) 6≡ 0},

and

∂Z0 := Z+ \ Z0 = {ψ ∈ Z+ : ψ2(0, ·) ≡ 0 or ψ4(0, ·) ≡ 0}.

For any ψ ∈ Z0, it then follows from Lemma 5.4.1 that Ih(t, x, ψ) > 0 and Iv(t, x, ψ) >

0, t ≥ 0, x ∈ Ω̄. This implies that Qn(Z0) ⊆ Z0, ∀n ∈ N. Now we prove that Q is

uniformly persistent with respect to (Z0, ∂Z0).

Let M = (H∗
p , 0, V

∗
p0, 0), where V ∗

p0(θ) = V ∗
p (θ) for θ ∈ [−τ̂ , 0]. Since limψ→M ‖Q(t)

ψ − Q(t)M‖ = 0 uniformly for t ∈ [0, ω], for any given δ > 0, there exists a δ0 > 0

such that for any ψ ∈ Z0 with ‖ψ −M‖ < δ0, we have ‖Q(t)ψ −Q(t)M‖ < δ for all

t ∈ [0, ω].

Claim 1. lim supn→∞ ‖Q(nω)ψ −M‖ ≥ δ0 for all ψ ∈ Z0.

Suppose, by contradiction, that there exists ψ0 ∈ Z0 such that lim supn→∞ ‖Q(nω)

ψ0 −M‖ < δ0. Then there exists an integer n0 ≥ 1 such that ‖Q(nω)ψ0 −M‖ < δ0

for all n ≥ n0. For any t ≥ n0ω, we have t = t′ + nω with n ≥ n0, t
′ ∈ [0, ω), and

‖Q(t)ψ0 −Q(t)M‖ = ‖Q(t′)Q(nω)ψ0 −Q(t′)M‖ < δ.

Therefore, Sh(t, x, ψ0) > H∗
p (x) − δ and Sv(t, x, ψ0) > V ∗

p (t, x) − δ for all t ≥ n0ω and

x ∈ Ω̄. Let P̂δ : E → E be the Poincaré map of the following perturbed linear system:

∂Ih
∂t

= cvhn(t, x)
H∗

p (x)−δ

H∗

p (x)
Iv − (α1 +mh)Ih,

∂Iv
∂t

= D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv + (1 − τ ′(t))

×
∫
Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (y)
(V ∗

p (t− τ(t), y) − δ)dy,

∂Iv
∂ν

= 0, t > 0, x ∈ ∂Ω.

(5.18)

Since limδ→0+ r(P̂δ) = r(P̂ ) > 1, we can fix a sufficiently small δ > 0 such that

δ < min{min
x∈Ω̄

H∗
p (x), min

t∈[0,ω],x∈Ω̄
V ∗
p (t, x)} and r(P̂δ) > 1.
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Thus, Ih(t, x, ψ0) and Iv(t, x, ψ0) in system (5.9) satisfy

∂Ih
∂t

≥ cvhn(t, x)
H∗

p (x)−δ

H∗

p (x)
Iv − (α1 +mh)Ih,

∂Iv
∂t

≥ D∆Iv − (mv(t, x) + kv(t, x)V ∗
p (t, x))Iv + (1 − τ ′(t))

×
∫
Ω

Γ(t, t− τ(t), x, y)chvn(t− τ(t), y) Ih(t−τ(t),y)
H∗

p (y)
(V ∗

p (t− τ(t), y) − δ)dy,

∂Iv
∂ν

= 0, t ≥ n0ω + τ̂ , x ∈ ∂Ω.

(5.19)

By repeating the arguments in Lemma 5.3.4, we can obtain that P̂δ possesses the

principal eigenvalue with strongly positive vector on E. Thus, by arguments similar to

[9, Lemma 5], there exists a positive ω-periodic function v∗δ (t, x) such that eµδtv∗δ (t, x)

is a solution of system (5.19), where µδ = ln r(P̂δ)
ω

.

Since ψ0 ∈ Z0, Ih(t, x, ψ0) > 0 and Iv(t, x, ψ0) > 0 for all t ≥ 0 and x ∈ Ω̄, and

hence, there exists a κ > 0 such that

(Ih(t, x, ψ0), Iv(t, x, ψ0)) ≥ κeµδtv∗δ (t, x), ∀t ∈ [n0ω − τ̂ , n0ω], x ∈ Ω̄.

By the comparison theorem, we have

(Ih(t, x, ψ0), Iv(t, x, ψ0)) ≥ κeµδtv∗δ (t, x), ∀t ≥ n0ω, x ∈ Ω̄.

Since µδ = ω̃(P̂ ) > 0, it follows that Ih(t, ·, ψ0) → ∞ and Iv(t, ·, ψ0) → ∞ as t → ∞,

a contradiction.

This claim implies thatM is an isolated invariant set forQ in Z+, andW S(M)
⋂
Z0

= ∅, where W S(M) is the stable set of M for Q. Let

M∂ := {ψ ∈ ∂Z0 : Qn(ψ) ∈ ∂Z0, ∀n ∈ N},

and ω(ψ) be the omega limit set of the forward orbit γ+(ψ) = {Qn(ψ) : ∀n ∈ N}.

Further we claim M cannot form a cycle for Q in ∂Z0.

Claim 2. The omega limit set ω(ψ) = M for any ψ ∈M∂ .

For any given ψ ∈ M∂ , Q
n(ψ) ∈ ∂Z0, ∀n ∈ N, that is, for each n ∈ N, either

Ih(nω, ·, ψ) ≡ 0 or Iv(nω, ·, ψ) ≡ 0. It follows that for each t ≥ 0, Ih(t, ·, ψ) ≡ 0 or

Iv(t, ·, ψ) ≡ 0. Otherwise, it contradicts Lemma 5.4.1. If Iv(t, ·, ψ) ≡ 0 for all t ≥ 0,

then limt→∞(Sh(t, x, ψ)−H∗
p (x)) = 0 uniformly for x ∈ Ω̄. Note that the Ih equation

in system (5.9) satisfies ∂Ih
∂t

= −(α1 +mh)Ih. It follows from the comparison principle
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that limt→∞ Ih(t, x, ψ) = 0 uniformly for x ∈ Ω̄. Then the Sv equation in system (5.9)

is asymptotic to

∂Sv
∂t

= D∆Sv + bv(t, x)V ∗
p (t, x) − (mv(t, x) + kv(t, x)V ∗

p (t, x))Sv, (5.20)

which admits a globally attractive positive ω-periodic solution V ∗
p (t, ·) in Y

+. By the

theory of internally chain transitive sets as argued in (i), we have limt→∞(Sv(t, x, ψ)−

V ∗
p (t, x)) = 0 uniformly for x ∈ Ω̄. If Iv(t, ·, ψ) 6≡ 0 for some t0 ≥ 0, then Iv(t, ·, ψ) > 0,

∀t ≥ t0. Then Ih(t, ·, ψ) ≡ 0, ∀t ≥ t0, and hence, limt→∞(Sv(t, x, ψ)−V ∗
p (t, x)) = 0 u-

niformly for x ∈ Ω̄. From the Iv equation in system (5.9), we have limt→∞ Iv(t, x, ψ) =

0 uniformly for x ∈ Ω̄ due to the comparison principle. Then the Sh equation is asymp-

totic to ∂Sh

∂t
= bhH

∗
p (x)−mhSh. Similarly, we obtain limt→∞(Sh(t, x, ψ)−H∗

p (x)) = 0

uniformly for x ∈ Ω̄. Therefore, ω(ψ) = M for any ψ ∈M∂ .

Since Q admits a global attractor on Z+, it then follows from the acyclicity theory

on uniform persistence for maps (see., e.g., Theorem 1.2.1) that Q : Z+ → Z+ is

uniformly persistent with respect to (Z0, ∂Z0) in the sense that there exists an η̃ > 0

such that

lim inf
n→∞

d(Qn(ψ), ∂Z0) ≥ η̃, ∀ψ ∈ Z0.

By Theorem 1.2.3, we obtain that Q : Z0 → Z0 admits a global attractor A0. Since

A0 = Q(ω)A0 = Q(A0), we have ψ2(0, ·) > 0 and ψ4(0, ·) > 0 for all ψ ∈ A0. Let

B0 :=
⋃
t∈[0,ω]Q(t)A0. Then B0 ⊆ Z0 and limt→∞ d(Q(t)ψ,B0) = 0 for all ψ ∈ Z0.

Define a continuous function p : Z+ → R+ by

p(ψ) = min{min
x∈Ω̄

ψ2(0, x),min
x∈Ω̄

ψ4(0, x)}, ∀ψ = (ψ1, ψ2, ψ3, ψ4) ∈ Z+.

Clearly, p(ψ) > 0 for all ψ ∈ B0. Since B0 is a compact subset of Z0, we have

infψ∈B0 p(ψ) = minψ∈B0 p(ψ) > 0. By the attractiveness of B0, it follows that there

exists an η̌ > 0 such that

lim inf
t→∞

min(min
x∈Ω̄

Ih(t, x, ψ),min
x∈Ω̄

Iv(t, x, ψ)) ≥ η̌, ∀ψ ∈ Z0.

Moreover, by Lemma 5.4.1, there exists an η̂ ∈ (0, η̌) such that

lim inf
t→∞

min
x∈Ω̄

(Sh(t, x, ψ), Ih(t, x, ψ), Sv(t, x, ψ), Iv(t, x, ψ)) ≥ (η̂, η̂, η̂, η̂), ∀ψ ∈ Z0.
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By the theory of asymptotically periodic semiflows [151, Section 3.2] and the theory

of chain transitive sets (see, e.g., Lemma 1.1.3 and Theorems 1.1.1 and 1.2.1), we can

lift the threshold type result for system (5.9) to system (5.1). Thus, we have the

following result.

Theorem 5.4.2. Let (A1) hold. The following statements are valid:

(i) If R0 < 1, then the disease-free periodic solution (H∗
p (x), 0, 0, V ∗

p (t, x), 0, 0) is

globally attractive for system (5.1) in D \ (C([−τ̂ , 0], C(Ω̄,R3
+)) × {(0, 0, 0)}).

(ii) If R0 > 1, then there exists an η̊ > 0 such that for any φ ∈ D with φ2(0, ·) 6≡ 0

and φ6(0, ·) 6≡ 0, we have

lim inf
t→∞

min
x∈Ω̄

(Sh(t, x, φ), Ih(t, x, φ), Rh(t, x, φ), Sv(t, x, φ), Ev(t, x, φ), Iv(t, x, φ))

≥ (η̊, η̊, η̊, η̊, η̊, η̊).

5.5 Global attractivity in the case of constant co-

efficients

In the case where all coefficients are positive constants and spatially homogeneous,

system (5.1) reduces to the following autonomous reaction-diffusion system:

∂Sh

∂t
= bhH

∗
p − cvhn

Iv
H∗

p
Sh −mhSh,

∂Ih
∂t

= cvhn
Iv
H∗

p
Sh − (α1 +mh)Ih,

∂Rh

∂t
= α1Ih −mhRh,

∂Sv

∂t
= D∆Sv + bvVp − chvn

Ih
H∗

p
Sv −mvSv − kvVpSv,

∂Ev

∂t
= D∆Ev + chvn

Ih
H∗

p
Sv −mvEv − kvVpEv

−e−mvτ
∫
Ω

Γ(Dτ, x, y)chvn
Ih(t−τ,y)

H∗

p
Sv(t− τ, y)dy,

∂Iv
∂t

= D∆Iv + e−mvτ
∫
Ω

Γ(Dτ, x, y)chvn
Ih(t−τ,y)

H∗

p
Sv(t− τ, y)dy −mvIv − kvVpIv,

∂Sv

∂ν
= ∂Ev

∂ν
= ∂Iv

∂ν
= 0, t > 0, x ∈ ∂Ω.

(5.21)
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where Γ(t, x, y) is the Green function associated with ∂u
∂t

= ∆u subject to the Neumann

boundary condition. It is easy to see that limt→∞ ‖Vp(t, x) − V ∗
p ‖ = 0 uniformly for

x ∈ Ω̄, where V ∗
p = bv−mv

kv
. In order to avoid the extinction of the vector population,

we assume that the vector birth rate bv is large enough, relative to its natural death

rate mv, that is,

(A2) bv > mv,

which corresponds to assumption (A1) for periodic system (5.1). We then have the

following limiting system:

∂Sh

∂t
= bhH

∗
p − cvhn

Iv
H∗

p
Sh −mhSh,

∂Ih
∂t

= cvhn
Iv
H∗

p
Sh − (α1 +mh)Ih,

∂Rh

∂t
= α1Ih −mhRh,

∂Sv

∂t
= D∆Sv + bvV

∗
p − chvn

Ih
H∗

p
Sv − (mv + kvV

∗
p )Sv,

∂Ev

∂t
= D∆Ev + chvn

Ih
H∗

p
Sv − (mv + kvV

∗
p )Ev

−e−mvτ
∫
Ω

Γ(Dτ, x, y)chvn
Ih(t−τ,y)

H∗

p
Sv(t− τ, y)dy,

∂Iv
∂t

= D∆Iv + e−mvτ
∫
Ω

Γ(Dτ, x, y)chvn
Ih(t−τ,y)

H∗

p
Sv(t− τ, y)dy − (mv + kvV

∗
p )Iv,

∂Sv

∂ν
= ∂Ev

∂ν
= ∂Iv

∂ν
= 0, t > 0, x ∈ ∂Ω.

(5.22)

Thus, we obtain the following decoupled limiting system:

∂Sh

∂t
= bhH

∗
p − cvhn

Iv
H∗

p
Sh −mhSh,

∂Ih
∂t

= cvhn
Iv
H∗

p
Sh − (α1 +mh)Ih,

∂Sv

∂t
= D∆Sv + bvV

∗
p − chvn

Ih
H∗

p
Sv − (mv + kvV

∗
p )Sv,

∂Iv
∂t

= D∆Iv + e−mvτ
∫
Ω

Γ(Dτ, x, y)chvn
Ih(t−τ,y)

H∗

p
Sv(t− τ, y)dy − (mv + kvV

∗
p )Iv,

∂Sv

∂ν
= ∂Iv

∂ν
= 0, t > 0, x ∈ ∂Ω.

(5.23)

By the arguments in [134, Theorem 3.4] and [150, Corollary 2.1], the basic reproduc-

tion ratio R0 is defined by the spectral radius of the following 2 × 2 matrix

M =

(
0 cvhn

bv
e−mvτ chvnV

∗

p

(α1+mh)H∗

p
0

)
,
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and hence,

R0 =

√
cvhchvn2V ∗

p e
−mvτ

bv(α1 +mh)H∗
p

.

When R0 > 1, system (5.23) has a unique positive equilibrium u∗ = (S∗
h, I

∗
h, S

∗
v , I

∗
v )

with

S∗
h =

bhH
∗
p

cvhn
I∗v
H∗

p
+mh

, I∗h =
cvhnI

∗
vS

∗
h

(α1 +mh)H∗
p

,

S∗
v =V ∗

p − I∗ve
mvτ , I∗v =

bhbv(α1 +mh)H
∗
p (R2

0 − 1)

bv(α1 +mh) + cvhchvn2bh
.

Define G := C(Ω̄,R), G+ := C(Ω̄,R+), and G := G
+ × C([−τ, 0],G+ ×G

+) ×G
+.

Theorem 5.5.1. Let (A2) hold. Let u(t, x, φ) be the solution of system (5.23) with

u0 = φ ∈ G. The following statements are valid:

(i) If R0 < 1, then the disease-free equilibrium (H∗
p , 0, V

∗
p , 0) is globally attractive

for system (5.23) in G.

(ii) If R0 > 1, then system (5.23) has a unique constant equilibrium u∗ = (S∗
h, I

∗
h, S

∗
v ,

I∗v ) such that for any φ ∈ G with φ2(0, ·) 6≡ 0 and φ4(·) 6≡ 0, we have

lim
t→∞

u(t, x, φ) = u∗ uniformly for all x ∈ Ω̄.

Proof. We return to system (5.22), and then find that

∂Hp

∂t
= bhH

∗
p −mhHp,

∂Vp
∂t

= D∆Vp + bvV
∗
p − (mv + kvV

∗
p )Vp,

∂Vp
∂ν

= 0, t > 0, x ∈ ∂Ω.

Therefore, the set

H :={φ ∈ G : φ1(0, x) ≤ H∗
p , φ2(θ, x) ≤ H∗

p , φ3(θ, x) ≤ V ∗
p , φ4(0, x) ≤ V ∗

p ,

∀θ ∈ [−τ, 0], x ∈ Ω̄}.

is positive invariant for the solution map Q(t) of system (5.23) and every forward orbit

of system (5.23) from G enters H eventually. Thus, it suffices to study the dynamics

of system (5.23) on H. In the case where R0 < 1, statement (i) follows from Theorem

5.4.1 (i).
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It remains to prove statement (ii). Since R0 > 1, Theorem 5.4.1 (ii) implies that

system (5.23) is uniformly persistent in the sense that there exists a ξ > 0 such that

for any φ = (φ1, φ2, φ3, φ4) ∈ H with φ2(0, ·) 6≡ 0 and φ4(·) 6≡ 0, the solution u(t, x, φ)

satisfies

lim inf
t→∞

(Sh(t, ·, φ), Ih(t, ·, φ), Sv(t, ·, φ), Iv(t, ·, φ)) ≥ (ξ, ξ, ξ, ξ). (5.24)

Let

H0 := {φ ∈ H : φi(0, x) > 0, ∀x ∈ Ω̄, i = 1, 2, 3, 4}.

Set f(u) = u−1−ln u, u ∈ (0,∞), with f(u) ≥ 0 for all u ∈ (0,∞) and min0<u<∞ f(u) =

f(1) = 0. Define a continuous functional V : H0 → R:

V (φ) =

∫

Ω

[V1(x, φ) + V2(x, φ)] dx,

where

V1(x, φ) =
H∗
p

cvhnI∗v
f
(φ1(0, x)

S∗
h

)
+

I∗hH
∗
p

cvhnI∗vS
∗
h

f
(φ2(0, x)

I∗h

)
,

and

V2(x, φ) =
H∗
p

chvnI∗h
f
(φ3(0, x)

S∗
v

)
+

H∗
pI

∗
v

e−mvτI∗hS
∗
vchvn

f
(φ4(0, x)

I∗v

)

+

∫ 0

−τ

∫

Ω

Γ(D(−s), x, y)f
(φ3(s, y)φ2(s, y)

S∗
vI

∗
h

)
dyds.

In what follows, we fix φ = (φ1, φ2, φ3, φ4) ∈ H with φ2(0, ·) 6≡ 0 and φ4(·) 6≡ 0. In

view of (5.24), without loss of generality, we assume that ut(φ) ∈ H0, ∀t ≥ 0. Let ω(φ)

be the omega limit set of the orbit γ+(φ) for the semiflow Q(t). Clearly, ω(φ) ⊂ H0.

Now we calculate the time derivative of V (ut(φ)) along the solution of system (5.23).

Note that

∂V1(x, ut(φ))

∂t
=

H∗
p

cvhnI∗v

(
1 −

S∗
h

Sh(t, x)

) 1

S∗
h

∂Sh(t, x)

∂t
+

I∗hH
∗
p

cvhnI∗vS
∗
h

(
1 −

I∗h
Ih(t, x)

) 1

I∗h

∂Ih(t, x)

∂t

= −
H∗
pmh(Sh(t, x) − S∗

h)
2

cvhnI∗vS
∗
hSh(t, x)

+
1

I∗vS
∗
h

(
1 −

S∗
h

Sh(t, x)

)
(I∗vS

∗
h − Iv(t, x)Sh(t, x))

+
1

I∗vS
∗
h

(
1 −

I∗h
Ih(t, x)

)(
Iv(t, x)Sh(t, x) −

I∗vS
∗
h

I∗h
Ih(t, x)

)

= −
H∗
pmh(Sh(t, x) − S∗

h)
2

cvhnI∗vS
∗
hSh(t, x)

+ 2 −
S∗
h

Sh(t, x)
+
Iv(t, x)

I∗v
−
Ih(t, x)

I∗h

−
Iv(t, x)Sh(t, x)I∗h
I∗vS

∗
hIh(t, x)

,
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and

∂V2(x, ut(φ))

∂t
=

H∗
p

chvnI∗h
(1 −

S∗
v

Sv(t, x)
)

1

S∗
v

∂Sv(t, x)

∂t
+

I∗vH
∗
p

e−mvτchvnI∗hS
∗
v

(1 −
I∗v

Iv(t, x)
)
∂Iv(t, x)

∂t

×
1

I∗v
+ [f(

Sv(t, x)Ih(t, x)

S∗
vI

∗
h

) −

∫

Ω

Γ(Dτ, x, y)f(
Sv(t− τ, y)Ih(t− τ, y)

S∗
vI

∗
h

)dy]

= −
H∗
p (mv + kvV

∗
p )(Sv(t, x) − S∗

v)
2

chvnI∗hSv(t, x)S∗
v

+
1

I∗hS
∗
v

(
1 −

S∗
v

Sv(t, x)

)
(I∗hS

∗
v

− Ih(t, x)Sv(t, x)) +
H∗
p

chvnI∗h

(
1 −

S∗
v

Sv(t, x)

) 1

S∗
v

D∆Sv +
H∗
p

e−mvτchvnI∗hS
∗
v

(
1

−
I∗v

Iv(t, x)

)
D∆Iv +

(∫

Ω

Γ(Dτ, x, y)
Ih(t− τ, y)Sv(t− τ, y)

I∗hS
∗
v

dy

−
Iv(t, x)

I∗v

)(
1 −

I∗v
Iv(t, x)

)
+
Sv(t, x)Ih(t, x)

S∗
vI

∗
h

− ln
Sv(t, x)Ih(t, x)

S∗
vI

∗
h

−

∫

Ω

Γ(Dτ, x, y)
(Sv(t− τ, y)Ih(t− τ, y)

S∗
vI

∗
h

− ln
Sv(t− τ, y)Ih(t− τ, y)

S∗
vI

∗
h

)
dy

= −
H∗
p (mv + kvV

∗
p )(Sv(t, x) − S∗

v)
2

chvnI∗hSv(t, x)S∗
v

+
H∗
p

chvnI∗hS
∗
v

(
1 −

S∗
v

Sv(t, x)

)
D∆Sv

+
H∗
p

e−mvτchvnI∗hS
∗
v

(
1 −

I∗v
Iv(t, x)

)
D∆Iv + 2 −

S∗
v

Sv(t, x)
+
Ih(t, x)

I∗h
−
Iv(t, x)

I∗v

− ln
Sv(t, x)Ih(t, x)

S∗
vI

∗
h

−

∫

Ω

Γ(Dτ, x, y)
(Sv(t− τ, y)Ih(t− τ, y)I∗v

S∗
vI

∗
hIv(t, x)

− ln
Sv(t− τ, y)Ih(t− τ, y)

S∗
vI

∗
h

)
dy

= −
H∗
p (mv + kvV

∗
p )(Sv(t, x) − S∗

v)
2

chvnI∗hSv(t, x)S∗
v

+
H∗
p

chvnI∗hS
∗
v

(
1 −

S∗
v

Sv(t, x)

)
D∆Sv

+
H∗
p

e−mvτchvnI∗hS
∗
v

(
1 −

I∗v
Iv(t, x)

)
D∆Iv + 1 −

S∗
v

Sv(t, x)
+ ln

S∗
v

Sv(t, x)

+
Ih(t, x)

I∗h
−
Iv(t, x)

I∗v
− ln

I∗v
Iv(t, x)

− ln
Ih(t, x)

I∗h
−

∫

Ω

Γ(Dτ, x, y)

×
(Sv(t− τ, y)Ih(t− τ, y)I∗v

S∗
vI

∗
hIv(t, x)

− ln
Sv(t− τ, y)Ih(t− τ, y)I∗v

S∗
vI

∗
hIv(t, x)

− 1
)
dy

= −
H∗
p (mv + kvV

∗
p )(Sv(t, x) − S∗

v)
2

chvnI∗hSv(t, x)S∗
v

+
H∗
p

chvnI∗hS
∗
v

(
1 −

S∗
v

Sv(t, x)

)
D∆Sv

+
H∗
p

e−mvτchvnI∗hS
∗
v

(
1 −

I∗v
Iv(t, x)

)
D∆Iv − f

( S∗
v

Sv(t, x)

)
+
Ih(t, x)

I∗h

−
Iv(t, x)

I∗v
− ln

I∗v
Iv(t, x)

− ln
Ih(t, x)

I∗h
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−

∫

Ω

Γ(Dτ, x, y)f
(Sv(t− τ, y)Ih(t− τ, y)I∗v

S∗
vI

∗
hIv(t, x)

)
dy.

Since ln v ≤ v
u

+ln u−1, ∀u, v > 0, we have 2−u− v
u

+ln v ≤ 0, and 2−u− v
u

+ln v = 0

if and only if u = v = 1. Recall that
∫
Ω

∆udx = 0 and
∫
Ω

∆u
u
dx =

∫
Ω

‖∇u‖2

u2
dx. It then

follows that

dV (ut(φ))

dt
= −

∫

Ω

H∗
pmh(Sh(t, x) − S∗

h)
2

cvhnI∗vS
∗
hSh(t, x)

dx−

∫

Ω

H∗
p (mv + kvV

∗
p )(Sv(t, x) − S∗

v)
2

chvnI∗hSv(t, x)S∗
v

dx

+
H∗
pD

chvnI∗hS
∗
v

∫

Ω

∆Svdx−
H∗
pD

chvnI∗h

∫

Ω

1

Sv(t, x)
∆Svdx

+
H∗
pDe

mvτ

chvnI∗hS
∗
v

∫

Ω

∆Ivdx−
H∗
pDe

mvτI∗v
chvnI∗hS

∗
v

∫

Ω

1

Iv(t, x)
∆Ivdx

−

∫

Ω

∫

Ω

Γ(Dτ, x, y)f
(Sv(t− τ, y)Ih(t− τ, y)I∗v

S∗
vI

∗
hIv(t, x)

)
dydx+

∫

Ω

(
2

−
S∗
h

Sh(t, x)
−
Iv(t, x)Sh(t, x)I∗h
I∗vS

∗
hIh(t, x)

− ln
I∗v Ih(t, x)

Iv(t, x)I∗h

)
dx−

∫

Ω

f
( S∗

v

Sv(t, x)

)
dx

= −

∫

Ω

H∗
pmh(Sh(t, x) − S∗

h)
2

cvhnI∗vS
∗
hSh(t, x)

dx−

∫

Ω

H∗
p (mv + kvV

∗
p )(Sv(t, x) − S∗

v)
2

chvnI∗hSv(t, x)S∗
v

dx

−
H∗
pD

chvnI∗h

∫

Ω

‖∇Sv(t, x)‖2

S2
v(t, x)

dx−
H∗
pDe

mvτI∗v
chvnI∗hS

∗
v

∫

Ω

‖∇Iv(t, x)‖2

I2v (t, x)
dx

−

∫

Ω

∫

Ω

Γ(Dτ, x, y)f
(Sv(t− τ, y)Ih(t− τ, y)I∗v

S∗
vI

∗
hIv(t, x)

)
dydx+

∫

Ω

(
2

−
S∗
h

Sh(t, x)
−
Iv(t, x)Sh(t, x)I∗h
I∗vS

∗
hIh(t, x)

− ln
I∗v Ih(t, x)

Iv(t, x)I∗h

)
dx−

∫

Ω

f
( S∗

v

Sv(t, x)

)
dx

≤−

∫

Ω

H∗
pmh(Sh(t, x) − S∗

h)
2

cvhnI∗vS
∗
hSh(t, x)

dx−

∫

Ω

H∗
p (mv + kvV

∗
p )(Sv(t, x) − S∗

v)
2

chvnI∗hSv(t, x)S∗
v

dx

−

∫

Ω

∫

Ω

Γ(Dτ, x, y)f
(Sv(t− τ, y)Ih(t− τ, y)I∗v

S∗
vI

∗
hIv(t, x)

)
dydx+

∫

Ω

(
2

−
S∗
h

Sh(t, x)
−
Iv(t, x)Sh(t, x)I∗h
I∗vS

∗
hIh(t, x)

− ln
I∗v Ih(t, x)

Iv(t, x)I∗h

)
dx−

∫

Ω

f
( S∗

v

Sv(t, x)

)
dx

:=Uφ(t).

Since V (ut(φ)) is nonincreasing and bounded below on [0,∞), it follows that there

exists a real number L ≥ 0 such that limt→∞ V (ut(φ)) = L. For any ψ ∈ ω(φ),

there exists a sequence tn → ∞ such that limn→∞ utn(φ) = ψ in H0. This implies

that V (ψ) = L, ∀ψ ∈ ω(φ). Since ut(ψ) ∈ ω(φ), we have V (ut(ψ)) = L, ∀t ≥ 0,

and hence, dV (ut(ψ))
dt

= 0. Replacing φ in the above inequality with ψ, we obtain

0 = dV (ut(ψ))
dt

≤ Uψ(t) ≤ 0. This gives rise to Uψ(t) = 0, ∀t ≥ 0. Combining with
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system (5.23), we have ut(ψ) = u∗, ∀t ≥ τ . Since ψ ∈ ω(φ) is arbitrary, there

holds ut(ω(φ)) = u∗, ∀t ≥ τ . It follows from the invariance of omega limit sets that

ω(φ) = uτ (ω(φ)) = u∗, which implies that limt→∞ ut(φ) = u∗.

It is easy to see that system (5.21) has a unique positive equilibrium E∗ =

(S∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v ) if R0 > 1, where R∗

h =
α1I∗h
mh

and E∗
v =

chvnI
∗

hS
∗

v (1−e
−mvτ )

mv+kvH∗

p
. By

the thoery of chain transitive sets, we can also lift the above threshold type result for

system (5.23) to system (5.21) to obtain the following result.

Theorem 5.5.2. Let (A2) hold. The following statements are valid:

(i) If R0 < 1, then the disease-free steady state (H∗
p , 0, 0, V

∗
p , 0, 0) is globally attrac-

tive for system (5.21) in D \ (C([−τ, 0], C(Ω̄,R3
+)) × {(0, 0, 0)}).

(ii) If R0 > 1, then there exists unique positive steady state (S∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v )

such that for any φ ∈ D with φ2(0, ·) 6≡ 0 and φ6(0, ·) 6≡ 0, the solution v(t, x, φ)

of system (5.21) with v0 = φ satisfies limt→∞ v(t, x, φ) = (S∗
h, I

∗
h, R

∗
h, S

∗
v , E

∗
v , I

∗
v )

uniformly for all x ∈ Ω̄.

5.6 A case study

In this section, we apply the model system (5.1) to study the bluetongue transmission

in French Corsica Island with an area of 8, 680 km2, lying in the Mediterranean Sea,

and the influence of some parameters on R0. Since the end of October 2016, a sheep

located in the south of Corsica island was found positive for BTV-4 [110]. And then

the first cattle case of BTV-4 was reported in March 2017. In the following, we choose

March to be the starting point. Set the period ω = 12 months.

According to the Weekly Disease Information of OIE World Organisation for Ani-

mal Health, we count the monthly new case data for Corsica which is given from March

2017 through December 2017 (see, Figure 5.1(a)), with the higher number of cases dur-

ing June-September. From the Map of Corsica (see, Figure 5.1(b)), the whole island

is much longer in the North-South direction. For the sake of convenience, we assume

that the spatial units are kilometers (km) and that the spatial domain Ω is one dimen-

sional. Without loss of generality, we set Ω = (0, π). The Office of Agricultural and

Rural Development of Corsica (see http://www.odarc.fr) estimated the total number
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of cattle herd is about 80,000 and about 2/3 of them on Haute-Corse. Balagne and the

Corsican Center contain 40% of the total population of the region. Then to describe

the spatial heterogeneity on domain Ω, we assume that the geographical cattle density

function is H∗
p (x) = 80,000

8,680
(1.0−0.4 cos(0.4−2x)) = 9.2166(1.0−0.4 cos(0.4−2x)). We

set the location-dependent fertility rate of midges bv = 6.1×30.4(1.0−0.3 cos(0.4−2x))

Month−1, where 6.1 × 30.4 Month−1 is the parameter in homogeneous environment

according to [20].
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Figure 5.1: (a) The monthly reported new cases for BTV-4 from March to December 2017. (b)
The map of Corsica (Source: https://www.lonelyplanet.com/maps/europe/france/corsica/).

Table 5.1: Values (ranges) for constant parameters in system (5.1)

Parameter Value(range) Reference
bh 6.94× 10−4 × 30.4 Month−1 [20]
mh bh [20]
α1 1/60× 30.4 Month−1 [20, 115]
cvh 0.8 ∼ 1.0 [11]
chv 0.001 ∼ 0.15 [41]
D 1.25× 0.01× 30.4 km2/Month [20]

The constant parameters are listed in Table 5.1 using some published data. For

four of these model parameters, the biting rate, the mortality rate of midges, the EIP

and the carrying capacity in vectors, they exhibit a strong temperature dependence.

We apply the given expression of temperature-dependent and location-independent

parameters in [73], including the biting rate n, the mortality rate of midges mv under
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Table 5.2: Monthly mean temperatures for Corsica (in ◦C)

Month March April May June July August
Temperature 9 12 16 20 22 22
Month September October November December January February
Temperature 19 17 12 9 8 8

the temperature T (in ◦C of month t), where

n(T ) = 0.000171 × T × (T − 3.6966) × (41.8699 − T )1/2.7056 × 30.4,

mv(T ) = 0.008941e0.1547×T × 30.4.

We use the mosquito temperature-dependent carrying capacity of the environment [51]

to evaluate that of the midge, which is given by

K(T ) = popbase × e
0.05326+ 3.11241

1+e
14.56325−T

2.93955 ,

where popbase is an arbitrary baseline that scaled annual fluctuations in abundance.

Using the mean monthly temperature at Corsica in Table 5.2 (see https://www.holiday-

weather.com /corsica/averages/), to evaluate the temperature-dependent coefficients,

we obtain

n(t) =(0.1008 − 0.06914 cos(πt/6) + 0.06848 sin(πt/6) − 0.001483 cos(2πt/6)

− 0.01452 sin(2πt/6) + 0.00095 cos(3πt/6) − 0.004233 sin(3πt/6)

− 0.0028 cos(4πt/6) + 0.002136 sin(4πt/6) + 0.003986 cos(5πt/6)

− 0.0003662 sin(5πt/6) − 0.002592 cos(6πt/6)) × 30.4 Month−1,

mv(t) =(0.1152 − 0.0819 cos(πt/6) + 0.08259 sin(πt/6) − 0.003242 cos(2πt/6)

− 0.03673 sin(2πt/6) + 0.009317 cos(3πt/6) + 0.00165 sin(3πt/6)

− 0.005608 cos(4πt/6) + 0.002555 sin(4πt/6) + 0.006086 cos(5πt/6)

− 0.0002893 sin(5πt/6) − 0.003833 cos(6πt/6)) × 30.4 Month−1,

K(t) =popbase × (7.875 − 6.516 cos(πt/6) + 6.411 sin(πt/6) − 0.1768 cos(2πt/6)

− 2.713 sin(2πt/6) + 0.1474 cos(3πt/6) − 0.5164 sin(3πt/6)

+ 0.176 cos(4πt/6) + 0.2812 sin(4πt/6) + 0.4105 cos(5πt/6)

+ 0.0474 sin(5πt/6) − 0.3319 cos(6πt/6) + 0.506 sin(6πt/6)).
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We use equation (5.2) to determine the EIP τ(t) at time t and hence, we need to

know the development rate of bluetongue virus (the virus replication rate) in midges

ρ(s) on the interval for s ∈ [t − τ(t), t]. According to [94], the development rate is

given by 0.0003 × T (s) × (T (s) − 10.4057) × 30.4, where 10.4057◦C is the threshold

temperature for virus replication. That is, the rate of virus replication below the

threshold temperature would be almost zero. Here we assume that the virus devel-

opment may not pause completely with the extreme weather while the development

rate is very small below the threshold temperature, which is given by

ρ(T ) =





0.0003 × T × (T − 10.4057) × 30.4, T > 10.4057,

0.0054 × 30.4, T ≤ 10.4057.

By discretizing the formula ∫ t

t−τ(t)

ρ(T (s))ds = 1,

we obtain the corresponding value of EIP for each day. Then the EIP τ(t) can be

approximated by the following periodic function in [0, 12] Month by using the cubic

spline fitting, see Figure 5.2(a).

τ(t) =





−0.6609t3 + 1.078t2 + 0.4053t+ 4.8026, 0 ≤ t < 1,

−0.6609(t− 1)3 − 0.9046(t− 1)2 + 0.5786(t− 1) + 5.6250, 1 ≤ t < 2,

2.1859(t− 2)3 − 2.8872(t− 2)2 − 3.2132(t− 2) + 4.6382, 2 ≤ t < 3,

−1.5037(t− 3)3 + 3.6704(t− 3)2 − 2.430(t− 3) + 0.7237, 3 ≤ t < 4,

0.4077(t− 4)3 − 0.8406(t− 4)2 + 0.400(t− 4) + 0.4605, 4 ≤ t < 5,

−0.1602(t− 5)3 + 0.3827(t− 5)2 − 0.058(t− 5) + 0.4276, 5 ≤ t < 6,

0.1015(t− 6)3 − 0.098(t− 6)2 + 0.2267(t− 6) + 0.5921, 6 ≤ t < 7,

0.0175(t− 7)3 + 0.2065(t− 7)2 + 0.3353(t− 7) + 0.8224, 7 ≤ t < 8,

−0.1386(t− 8)3 + 0.259(t− 8)2 + 0.8007(t− 8) + 1.3816, 8 ≤ t < 9,

0.0763(t− 9)3 − 0.1568(t− 9)2 + 0.9029(t− 9) + 2.3026, 9 ≤ t < 10,

−0.035(t− 10)3 + 0.0721(t− 10)2 + 0.8182(t− 10) + 3.125, 10 ≤ t < 11,

−0.035(t− 11)3 − 0.0329(t− 11)2 + 0.8574(t− 11) + 3.9803, 11 ≤ t < 12.

Figure 5.2(b) numerically validates that 1 − τ ′(t) > 0 holds. It can be also observed

that the derivative of τ(t) is very close to 1 under a low temperature period, which

implies low temperatures will slow the spread of the disease.
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Figure 5.2: The time-dependent EIP τ(t) and its derivative.

Choose cvh = 0.8, chv = 0.0035 and popbase = 107. With this set of parameters,

we numerically compute R0 = 3.6404 > 1. Applying the difference method to the

system with Neumann boundary condition, Figure 5.3 shows the evolution of each

compartment in system (5.1), with the initial data

Sh(θ, x) = 1 − 0.6 cos(0.4 − 2x), Ih(θ, x) = 1 − 0.2 cos(0.4 − 2x),

Rh(θ, x) = 7.2166 − 2.88664 cos(0.4 − 2x), Sv(θ, x) = 108 − 200 cos(0.4 − 2x),

Ev(θ, x) = 180 − 10 cos(0.4 − 2x), Iv(θ, x) = 15 − 2 cos(0.4 − 2x),

θ ∈ [−τ̂ , 0], x ∈ [0, π], which implies that the disease is persistent in cattle and midges.

If the biting rate reduces to 0.2n(t) by some preventive measures, e.g., keeping cattle

in stables, we numerically calculate R0 = 0.7281 < 1. In this case, Figure 5.4 shows

that the infectious cattle and midges both approach zero eventually. These simulation

results are consistent to Theorem 5.4.2. If Hp(x) ≡ 9.2166 and bv(x) ≡ 6.1 × 30.4,

we obtain R0 = 2.9379 and R0 = 0.5876 in the above two cases, respectively. This

implies that the spatial averaged system may be underestimate the disease risk.

Since R0 provides a powerful tool to assess the level of disease risk, we investigate

the influence of some model parameters on R0. Firstly, the biting rate has often

been regarded as a critical parameter for the transmission of vector-borne diseases.

To study the effect of preventing bites, we replace n(t) with (1 − C)n(t) and other

parameters are the same as those in Figure 5.3. Figure 5.5(a) shows that R0 is a

decreasing function of C on [0, 1). Thus in order to eliminate the disease, we should

reduce the biting rate to (1−72.53%)n(t) such that R0 < 1. Charron et al. [20] showed
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Figure 5.3: The evolution of Sh, Ih, Rh, Sv, Ev, and Iv when R0 = 3.6404 > 1.
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(a) (b)

Figure 5.4: The evolution of the infectious cattle and midges when R0 = 0.7281 < 1.

that a larger maximum of carrying capacity in vectors (i.e., maximum of K(t)) leads

to a higher disease risk and an earlier peak. Here, we give the relationship between

R0 and popbase. Figure 5.5(b) also shows that R0 decreases as popbase increases, which

highlights the importance of the carrying capacity in midges and its influence on the

spread of disease. Then we might not want a place where the carrying capacity in

vectors is large and we should reduce the areas suitable for midges living. In addition,

Figure 5.5(c) shows that R0 is a decreasing function of the diffusion coefficient D,

which means that the random diffusion movement of midges has an impact on the

control of disease, but there is only a relatively small change in R0.
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Figure 5.5: R0 as funtions of C, popbase and D with τ(t) and [τ ].

Secondly, to study the spatial heterogeneity effect on R0, we assume that the total

cattle density is H∗
p (x) = 9.2166(1.0 − δ1 cos(0.4 − 2x)) and that the fertility rate is

bv = 6.1 × 30.4(1.0 − δ2 cos(0.4 − 2x)) with δ1, δ2 ∈ [0, 1). Note that if δ1 = 0, cattle

is homogeneous distribution in Corsica. As δ1 increases from 0 to 1, more and more
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Figure 5.6: R0 as funtions of δ1, δ2 with τ(t) and [τ ], and the distribution of H∗

p .

cattle keep in the north of Corsica (i.e., x = π/2 + 0.4) (see, Figure 5.6(c)), but the

total cattle density on Ω is not changed (i.e.,
∫ π
0
H∗
p (x)dx = 9.2166π). Figure 5.6(a)

shows the relationship between R0 and δ1. In particular, there is a very sharp increase

after δ1 = 0.8. This figure implies that the spatial heterogeneity in cattle strongly

influences the value of R0. We also have a similar observation for spatial heterogeneity

in midges. Comparing the range of R0 as δi (i = 1, 2) changing form 0 to 1 in these two

figures, there is a difference between the impacts of cattle heterogeneity and midge

heterogeneity on R0 in this set of model parameters. Intensive farming promotes the

spread of the virus.

Thirdly, we analyse the seasonality of vectors in the spread of disease. Here we

focus on the impact of periodic EIP. Define the time-averaged EIP [τ ] as [τ ] :=
1
ω

∫ ω
0
τ(t)dt, which represents that the EIP is a constant and hence the development

rate of bluetongue virus has a constant development rate for a whole year. The green

curves in Figures 5.5(a), 5.5(b), and 5.5(c) 5.6(b) represent system (5.1) with a time-

averaged EIP [τ ] = 2.0202 Month, which always lies above the blue one in each case.

However, the blue curve crosses the green one when δ1 = 0.906 in Figure 5.6(a). These

means that the use of time-averaged EIP can either overestimate or underestimate

the value of R0.

5.7 Discussion

In this chapter, we proposed a nonlocal reaction-diffusion model of BTV spread which

accounts for the time-periodic EIP, the seasonality in vectors, the density-dependent

mortality in vectors and the spatial heterogeneity in hosts and vectors. Since host
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movements are controlled, the spatial spread of the disease is caused only by vector

movements, and hence, the solution maps of the model system are not compact since

some equations have no diffusion terms. Applying the theory developed in [75] and

[150], we derived the basic reproduction ratio R0 for this model. Since the time delay is

time-periodic, we constructed a new phase space, motivated by [82], and to prove that

the linearized system for infectious compartments can generate an eventually strongly

monotone periodic semiflow on it. We showed that R0 serves as a threshold value for

the extinction and persistence of the disease by the persistence theory for periodic

semiflows. More precisely, if R0 < 1, then the disease will be cleared; if R0 > 1,

then the disease will persist. On the other side, our numerical results suggest that

there exists a positive periodic solution when R0 > 1 (see, Figure 5.3), but we did not

prove it by Theorem 1.2.4 because we only proved that the Poincaré map of system

(5.9) is α-contracting but not is α-condensing. When H∗
p (x) and bv(x) are spatial

homogeneous, and all time-periodic coefficients are constants, we further obtained an

explicit formulation of R0 and the global attractivity of the positive steady state for

system (5.21) in terms of R0 by using the method of Lyapunov functionals.

From published works, we obtained some feasible coefficients and temperature-

dependent model parameters to study the spread of BTV-4 in Corsica, France. Our

numerical results showed that the biting rate strongly influences the value of R0.

If we can keep it less than (1 − 72.53%)n(t) through reducing the midges bites or

vaccination, then the disease will be controlled. We also highlighted the importance

of the environment carrying capacity in vectors and its influence on R0. If a region

possesses a larger environment carrying capacity in midges, then it might lead to a

larger epidemic when BTV outbreaks. Moreover, we found that the disease risk will

be highly underestimated if we ignore the spatial heterogeneity in hosts and vectors

since R0 is influenced by δi (i = 1, 2). When δi becomes closer and closer to 1, R0 will

grow several folds. Then the very high-density livestock farming makes the spread of

BTV easier. Lower livestock density might have restricted the spread of the disease.

The active dispersal of vectors (D) can also influence the disease risk and the high

dispersion of midges may help to reduce the spread of infections but it is hard to

control the midge mobility. In addition, the seasonality in vectors can not be ignored.

In particular, the periodic EIP brings us some difficulties in mathematical analysis

and numerical simulations. To distinguish between the time-averaged and periodic

EIP, we give Figures 5.5 and 5.6 to illustrate it, which shows that there is a difference
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of the values of R0 between the use of τ(t) and its average [τ ]. Thus, we should try

to avoid using the time-averaged EIP since it may lead to a bad estimate of the basic

reproduction ratio and cause an inaccurate prediction of disease transmission. Based

on the above analyses, in order to control the transmission of the disease, we should

clear the dirty water in bullpens, clear the weeds, and use the insecticides in cattle

premises and in midges habitats, to avoid midge bites and minimise the breeding

grounds of the midges. Culling the positive animals and reducing the cattle trade

exchange from BTV restricted areas, and vaccination measures are believed to be

effective methods.



Chapter 6

Summary and future works

In this chapter, we first briefly summarize the main results in this thesis, and then

present some possible future works.

6.1 Research summary

In Chapters 2-4, we studied the global dynamics of some time-delayed infectious dis-

ease models with seasonality and time-dependent delays in a spatially homogeneous

environment. In Chapter 5, we investigated the threshold dynamics for a nonlocal

and time-delayed reaction-diffusion bluetongue model with temporal and spatial het-

erogeneities in terms of its basic reproduction ratio.

In Chapter 2, we considered a class of periodic SEIRS epidemic models with the

general incidence rate and time-dependent delay. We first formulated the model and

derived the basic reproduction ratio R0 for this model system. By applying the

comparison argument and the theorem of uniform persistence for periodic semiflows,

we then established a threshold type result on its global dynamics in terms of R0,

that is, the disease-free periodic solution is globally attractive if R0 < 1, while the

system admits a positive periodic solution and the disease is uniformly persistent if

R0 > 1. Numerical simulations are also carried out to illustrate the analytic results.

In addition, we find that the use of the temporal average of the periodic delay may

underestimate or overestimate the real value of R0.
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In Chapter 3, we formulated and analyzed a West Nile virus transmission mod-

el between mosquitoes and birds, which includes seasonality, the vertical transmis-

sion of the virus, the temperature-dependent maturation delay, and the temperature-

dependent extrinsic incubation period (EIP) for mosquitoes. We first introduced the

basic reproduction ratio R0 for this model system, and then showed that the disease

is uniformly persistent if R0 > 1. It was also shown that the disease-free periodic

solution is attractive if R0 < 1, provided that there is only a small invasion in infec-

tious mosquitoes and birds. When R0 < 1 and the disease-induced death rate of birds

is zero, we could prove that the disease-free periodic solution is attractive. In the

case where all coefficients are constants and the disease-induced death rate of birds

is zero, we established a threshold result on the global attractivity in terms of R0.

Numerically, we carry out a case study for West Nile virus transmission in Orange

County, California, USA. Our numerical simulations indicate that it is important for

controlling West Nile virus spread to prolong the maturation time and EIP, reduce

the vertical transmission rate by developing new drugs for mosquitoes, and keep birds

from mosquito bites.

In Chapter 4, motivated by the autonomous time-delayed differential equation

model in [44], we proposed a bluetongue model with seasonality and temperature-

dependent incubation period. We introduced the basic disease reproduction ratio

for the whole system R0 and the basic disease reproduction ratio in the absence of

sheep R̃0, and obtained R0 and R̃0 serve as threshold parameters for the persistence

and extinction of the disease. Bluetongue affects the life cycles of two host species

very differently, which gives rise to new challenges. Then uniform disease persistence

occurs in two different scenarios which are distinguished by R̃0. Meanwhile, since the

disease can only persist if the vector is present, the state space for the semiflow must

be restricted to states where the vector (in another case also the sheep) is present. In

other words, the uniform persistence of midges and sheep first needs to be established,

which ensures the existence of a global attractor for this restricted semiflow in a state

space and then makes it possible to prove the uniform persistence of the disease.

More precisely, bluetongue persists in cattle and midges but it may eradicate the

sheep if R0 > 1 and R̃0 > 1; the system admits a positive periodic solution, the

disease is uniformly persistent in cattle, sheep, and midges, and bluetongue cannot

eradicate the sheep if R0 > 1 ≥ R̃0. As an application, we study the bluetongue virus

(BTV) transmission case in France. The simulation results predict that increasing the
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mortality rate of midges, prolonging the duration of the EIP, and preventing host-

vector contact are effective measures in controlling BTV spread. We also find that if

96.72% vaccination coverage for cattle and sheep is provided, then the disease will be

controlled.

In Chapter 5, we developed a nonlocal reaction-diffusion model of bluetongue dis-

ease with seasonality, spatial heterogeneous structure, and periodic EIP. Since live-

stock populations are managed by farmers, host movements are controlled, and hence,

the spatial spread of BTV is due to only vector movements. This leads to the lack

of compactness for solution maps of our model system since some equations have no

diffusion terms. Thus, we proved the asymptotic compactness of solution maps to

obtain the existence of the global attractor for the associated Poincaré map. Apply-

ing the theory developed in [75] and [150], we derived the basic reproduction ratio

R0 for this model system. By using the comparison argument, the theory of chain

transitive, and the theorem of uniform persistence for periodic semiflows, we showed

that the disease-free periodic solution is globally attractive if R0 < 1, while the disease

is uniformly persistent if R0 > 1. Further, we obtained the global attractivity of the

positive steady state in the case where all the coefficients are constants. Numerically,

we gave a case study for the bluetongue transmission in Corsica Island, France, and

investigated the impact of some model parameters on R0. We found that the disease

risk may be underestimated if the spatial heterogeneity is ignored.

6.2 Future works

Related to the projects in this thesis, there are some challenging issues for future

investigation.

In Chapter 2, we proposed a class of SEIRS epidemic model with the general inci-

dence rate f(t, S(t), I(t)). However, it is still a simple case of most general situations.

A possible extension of our model is to consider the case where the incidence rate

also depends on the total population size N(t) (see, e.g., [88]). As such, the incidence

function is of the form f(t, S(t), I(t), N(t)), which makes the mathematical analysis

of the resulting model more challenging.

To incorporate more biological factors, a West Nile virus model, as shown in Chap-

ter 3, should contain spatial diffusion of birds and mosquitoes, as well as latitudinal
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variation in host and vector population. In addition, the biting rates vary across

stages of birds, for example, juvenile birds are bitten at a higher rate than adult

birds [106]. Then to explore the effect of birds stage-structure (nestling, fledgling,

and adult) exposure to mosquitoes is important. Thus, it should be more reasonable

to consider a periodic WNV model with time-dependent delays accounting for bird

stage-structure and stage-specific biting rates of mosquitoes on birds.

In Chapter 4, the temperature-dependent EIP in midges is incorporated into BTV

transmission models. Indeed, the BTV transmission in cattle and sheep also undergoes

the intrinsic incubation period, so after that amount of time the infected cattle and

sheep become infectious and enter the Ic and Is compartments, respectively. From

Figures 4.2(d) and 4.3(c), we see that the number of infectious midges reaches an

extremely low minimum, which may be zero in reality. This also suggests that we

may take into account the case where the midge population is subject to an Allee

effect, see [18] for a related study.

In Chapter 5, our model has shown that the landscape heterogeneity, seasonal

pattern in abundance and activities of midge population, and the active dispersal of

midges all impact on the BTV spatial-temporal transmission. It was noticed in [64]

that the long distance, 100 km over water and lesser distances over land, is driven

by wind. This might be the reason why BTV-4 has been introduced to Corsica

from Italy, probably from Sardinia (12 km between the two islands); BTV-4 has been

introduced to mainland France from Corsica or Italy [110]. Therefore, when the spatial

scale is large enough, it would be interesting to incorporate host movements and the

long-range directed movement of midge population due to the wind-induced passive

movements into our model. And we leave the study of such a reaction-diffusion-

advection compartmental system in distant sites for further investigation.

Throughout this thesis, we assume that 1− τ ′(t) is positive which means that the

infection transmission takes place all time during the year. However, the development

rate of virus would cease at unfavorable environmental conditions such as harsh win-

ters. From the expression of the development rate function in Chapters 4 and 5, we

see that it is zero below some threshold temperature. In order to address this issue,

we may approximate these coefficients by strictly positive functions and then study

the limiting behaviors, or we may use the piecewise parameter functions to describe

the infection progress and the evolution dynamics in each interval.
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For almost all infectious diseases, vaccination is a pertinent strategy to control the

spread of diseases even through it is hard to eradication of the disease. Estimation the

critical vaccination coverage and vaccine efficacy is important. Thus, it is meaningful

to introduce the vaccination strategy into the existing model systems and to study

the best period of the year to implement a vaccination program. Moreover, it would

be interesting to study spreading speeds and traveling waves for some spatial models

of infectious diseases in unbounded domain.
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