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ABSTRACT 

To better prepare the offshore workforce for emergencies, operators and regulators need to 

use evidence-based safety training. This research aims to provide such evidence by 

employing an experimental program to evaluate virtual environment (VE) training as a 

plausible means to enhance mandatory offshore egress training. Combining VE technology 

with a well-designed, pedagogically informed training program, and carefully selected 

data-mining tools, can support the development of trainee competence in emergencies by 

providing artificial experience in credible situations and tracking trainee performance 

throughout the VE training.  

Evidence from this research supports the use of VE training to address pedagogical gaps in 

the training. Key gaps include the following: 1) conventional training is predominantly 

provided by fixed-time instruction, which results in crews with nominal competence, 2) the 

frequency of recurrency training is not informed by evidence on crews’ susceptibility to 

forget training, 3) crews’ learning outcomes are not measured or monitored, which results 

in no information to assess training transfer, and 4) due to safety constraints, muster drills 

lack the realism of how emergency situations unfold in real life.  

Lessons from pedagogical theory and data-mining methodology were used to provide 

empirical and modeling evidence to inform offshore and maritime domains on the 

application of VE training. The scope of the research involved using the VE training as a 

human behaviour laboratory during a longitudinal study. The context of the study was to 

teach the necessary egress skills to evacuate a virtual oil platform during an emergency.  
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To address the pedagogical gaps and evaluate VE training, this thesis is comprised of four 

research papers. The first paper investigates the influence of the simulation-based mastery 

learning (SBML) pedagogical framework on the development of competence at the 

different learning phases, specifically the acquisition, retention, and transfer of egress 

skills. The second paper uses human performance data from the VE training to develop a 

decision tree (DT) diagnostic tool to compare the efficacy of different delivery methods for 

VE training. The third paper evaluates the retention and maintenance of the VE training 

after a period of 6 to 9-months. The fourth paper uses DT modeling to evaluate skill transfer 

and develop a predictive tool to analyze the efficacy of VE training on a systemic level to 

support future adaptive training programs. 

The overall contribution of this research is the use of pedagogical frameworks and data-

mining tools to improve the design, delivery, and assessment, of VE training. The concept 

of this work is established in the context of offshore and maritime safety, however the 

approaches are generalizable to many virtual training applications in other domains.  
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1. INTRODUCTION 

1.1. Problem & Purpose Statement 

Pedagogical gaps in offshore safety training bring to question the petroleum industry’s 

preparedness for major emergencies. Emergencies offshore present complex, time-

sensitive situations that can make evacuations difficult to execute. These safety-critical 

egress situations do not afford second chances and require the prompt response of prepared 

crews to ensure that all personnel onboard have been accounted for in an emergency. 

Conventional emergency egress training is often participatory in nature and is provided 

using fixed-time instruction, resulting in a workforce with nominal certification and 

variable competence. Thus, depending on the training received, how people respond to 

emergencies can vary. This variability in procedure compliance is a safety concern for the 

offshore workplace, especially during critical operations or emergencies. One of the 

reasons conventional training is not properly preparing crews for emergency response is 

that this form of training lacks the pedagogical structure to assure crew competence is 

acquired and maintained. There are four problems with conventional training methods:  

(1) the training does not address individual variability in learning skills,  

(2) the training is often forgotten before the mandated recurrency training is 

scheduled,  

(3) the training does not measure learning outcomes and as a result does not 

inform the transfer of training, and 

(4) the training is not representative of the conditions in real emergencies. 
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The purpose of this research is to address the pedagogical gaps in conventional 

training by investigating the efficacy of virtual environment (VE) training in the offshore 

safety domain. More specifically, this research draws on pedagogical frameworks and data-

mining methodologies to empirically evaluate the efficacy of VE training for offshore 

emergency egress, and to provide a data-driven diagnostic lens for a more thorough 

assessment of different VE training interventions. A human behaviour laboratory, in the 

form of a VE training setting, is used to measure trainee competence and evaluate new 

training interventions. From a pedagogical perspective, a simulation-based mastery 

learning (SBML) framework is explored. This research provides empirical evidence of VE 

training efficacy at three stages of learning to improve the delivery (acquisition), 

maintenance (retention), and application (transfer) of emergency egress skills. From a data-

mining perspective, a method called decision tree (DT) modeling is applied and evaluated. 

This research provides modeling evidence to assess the diagnostic and predictive 

capabilities of DT tools for individual competence assessment and to diagnose the strengths 

and weaknesses of the VE training at a systemic level. This work is a precursor to the 

development of future adaptive VE training programs in the offshore safety domain. 

This chapter describes the rationale for the research (Section 1.2), explains the VE 

training applied for offshore emergency egress (Section 1.3), and outlines the scope of work 

including the research questions, hypotheses, and methods used to test the hypotheses 

(Section 1.4). This chapter also presents relevant literature on pedagogical theories and 

data-mining methodologies and outlines the knowledge gaps related to these domains 

(Section 1.5). The rest of the chapter discusses the contributions of the work (Section 1.6), 

and explains the organization of the thesis (Section 1.7). 
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1.2. Gaps in Current Training and the Potential of Virtual Training 

Conventional training in many industries tends to set fixed instructional time due to 

regulatory, logistical, and financial constraints. Fixed-time instruction contributes to 

learning outcome variance because individual learning needs are not adequately addressed 

(Cook et al., 2013). In the context of offshore safety training, new personnel or short-term 

contractors who arrive on an offshore platform are provided with conventional training (e.g. 

videos and walk-throughs). As a result, the competence of each individual participating in 

the same training program can be very different. The initial variability in acquired 

competence can have long lasting repercussions on maintaining egress skills.   

In a review of multi-day safety training courses in medical, military, and marine 

domains, Sanli and Carnahan (2018) concluded that complex skills could be remembered 

for at most a six-month period following training. Knowing that egress skills deteriorate 

over time without practice, offshore industry standards require personnel to undergo 

recurrency training if they have been away from the platform for an extended period. For 

example, regulations for the Canadian offshore industry dictate mandatory retraining if 

personnel have been away from the platform for a period of 6 months or more (CAPP, 

2015). However, these regulations are not evidence-based and do not provide 

recommendations on how training maintenance schedules should account for individual 

differences in relearning forgotten egress skills. The expectation is that any existing training 

gaps will be addressed through on-the-job training. Regulations require crews working 

offshore to practice egress skills in the form of routine muster and evacuation drills 

offshore. The drills typically occur at a regularly scheduled time each week and are usually 
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performed in calm, non-risky situations that do not mimic real emergencies. Over time, this 

form of routine drill in benign conditions can cause negative learning and complacency 

amongst the crew.  

Experience from the medical domain indicates that well-designed training programs 

using simulation and virtual environment (VE) technologies can address pedagogical gaps 

and provide competence assurance (McGaghie et al., 2006; Barsuk et al., 2010; Cohen et 

al., 2013; Moazed et al., 2013; McGaghie et al., 2014; Barsuk et al., 2016). For the offshore 

industry, VE training has been proposed as a training solution because it can provide a safe 

means to practice emergency evacuation exercises and help prepare personnel to respond 

effectively to realistic emergencies. VE technology can enhance conventional classroom 

and on-the-job training by teaching basic offshore safety protocols, such as onboard 

familiarization and emergency evacuation, before crews have been deployed offshore. This 

technology can be used to test new training protocols to determine if the intervention in 

training can improve competence and compliance (e.g. to improve safety behaviours in 

offshore emergencies). However, before offshore and maritime industries can adopt 

simulation-based training, its training utility should be evaluated from a pedagogical 

perspective to ensure it is properly teaching workers. 

Although simulation and VE training technologies are being used in offshore and 

maritime education, few pedagogical studies have been conducted to examine the training 

efficacy (Sellberg et al., 2017). This shows that maritime and offshore sectors are gradually 

transitioning, shifting from passive training to simulation-based training methods. While 

this transition is positive because it recognizes the need to improve how training is provided 

in these domains, the lack of evidence-based pedagogical studies using simulation in 
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offshore safety training presents a lingering problem that must be addressed. There is a 

need in offshore and maritime domains to provide guidance on how to deliver training and 

how to assess performance using simulation technology (Sellberg et al., 2017).  

To optimize VE training for offshore egress, operators and regulators need to 

determine how comprehensive VE training should be to prepare crews for the multitude of 

emergencies that could arise. Virtual practice exercises should match the conditions (i.e. 

high risk, time pressure, and complexity) crews would be expected to experience in real 

emergencies. This would enhance routine drills that cannot otherwise replicate these 

conditions due to the ethical, logistical, and financial constraints. However, it is 

impracticable to rehearse for all possible situations in VE training.  Virtual training should 

focus on supporting the transfer ability of training, specifically, the application, 

generalization, and maintenance of skills learned in one training context to new situations 

(Blume et al., 2010). Therefore, VE training should measure learning outcomes as a way 

to determine when the trainee has achieved competence.  

Unlike conventional training, VE technology can collect human performance data 

during the virtual training (e.g. how people responded to cues from a situation). VE 

technology combined with data-mining methods can be used to recognize behavioural 

patterns and inform how people make decisions (Musharraf et al., 2018). This information 

can be used on an individual level to diagnose a person’s strengths or weaknesses in 

performing a particular task in the VE training. It can also be used to detect when the person 

has achieved competence and predict when that person is sufficiently equipped to apply 

their skills to new situations (e.g. predicting their future decisions based on the value of the 

attributes in a given VE scenario). At a systemic level, data-mining methods can be used to 
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diagnose the strengths and weaknesses of the VE training as a whole. This analysis could 

help inform instructional designers on how to design, deliver, evaluate and improve VE 

training.  

1.3. Overview of Virtual Environment Training for Offshore Egress 

To investigate the efficacy of VE training in the offshore domain, this research uses the 

All-hands Virtual Emergency Response Trainer (AVERT) developed at Memorial 

University. AVERT is a first-person perspective desktop VE that provides participants with 

a naturalistic representation of an offshore Floating Production Storage and Offloading 

(FPSO) vessel (House et al., 2014). AVERT provides a variety of emergency preparedness 

training exercises, from basic muster drills to full emergency evacuation scenarios (e.g. on 

board fires, blackouts, and explosions). Participants can move within the FPSO by 

controlling a first-person perspective avatar of an offshore worker using a gamepad 

controller (Xbox). AVERT is intended to train personnel in safe work practices and how to 

muster at their designated muster stations in the event of an emergency. The training 

curriculum for AVERT is based on subject matter expert guidance and industry regulations 

(Transport Canada 2007; International Maritime Organization 2001; Canadian Association 

of Petroleum Producers 2015; International Association of Drilling Contractors 2009; 

International Association of Oil and Gas Procedures 2010). The core learning objectives 

include familiarity with the platform layout, emergency alarms, egress routes, safety 

protocols, and mustering procedures.  
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1.4. Scope of Work and Research Objectives 

This doctoral thesis encompasses four papers to address the following research objectives: 

(1) determine how to design and deliver VE training to assure demonstrable competence in 

the workforce, (2) assess data modeling tools to improve the assessment of different VE 

training interventions, (3) evaluate the retention and maintenance of VE training, and (4) 

improve VE training to foster skill transfer and prepare the workforce for a wide variety of 

emergencies. The following questions directed the research for each paper: 

Q1. How to design and deliver VE training: Can the simulation-based mastery 

learning (SBML) framework be used to effectively deliver virtual offshore 

emergency egress training? Does the SBML approach yield quantitatively better 

results when compared to the lecture-based teaching (LBT) alternative in terms 

of bringing participants to competence? 

Q2. How to assess VE training using data-mining tools: Can decision trees (DTs) be 

used to evaluate the efficacy of virtual training at a systemic level (e.g. diagnose 

the strengths and weaknesses of different pedagogical approaches to VE 

training)? Can DT modeling provide improved diagnostics compared to 

traditional performance scores on participants’ competence and compliance?  

Q3. How to evaluate the retention of VE training: Can egress skills acquired using 

SBML training be remembered after a period of 6 to 9-months (without any 

other form of training intervention)? Can the VE-based retraining bring 

participants back up to competence in all learning objectives?  
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Q4. How to improve VE training to foster skill transfer: Can the SBML training 

prepare participants to demonstrate the transfer of their egress skills to novel 

emergency scenarios? Can DTs predict when participants have sufficiently 

learned enough to apply their skills to new emergencies within the scope of the 

training? Can the collection of DTs from a group of participants’ data be used 

to identify group patterns in performance and predict the preparedness of the  

participants (e.g. assessing the VE training at a systemic level)? 

 

The following hypotheses were posed to inform the research questions: 

H1. The SBML framework can be used to provide virtual offshore emergency egress 

training. The SBML approach can improve learning outcomes (e.g. competence 

and compliance) when compared with the LBT approach.   

H2. DT modeling is a useful data classification tool to evaluate the efficacy of a VE 

training program. The visual representation of the DTs can identify gaps in the 

training, which traditional performance metrics lack, by comparing the DT 

depiction of the participant’s understanding of emergency egress to the intended 

learning objectives of the VE training program. 

H3. The SBML trained participants can retain egress skills over a period of 6 to 9-

months. The retraining matrix can address participants’ deficiencies and return 

them to demonstrable competence in all learning objectives. 

H4. The SBML training adequately prepares participants to demonstrate 

competence in novel emergencies. DTs can help predict participants’ future 

decisions in scenarios by comparing the DT depiction of the participants’ 
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understanding of an emergency to the value of the attributes in a given new 

scenario. DTs are useful for evaluating training transfer (e.g. detecting when 

participants have achieved competence and predicting when they are prepared 

to apply their skills to new situations).  

 

Several methods were used to test these hypotheses. The first and third goals of this 

research were to determine how to design and deliver VE training and how to evaluate the 

retention and maintenance of VE training in order to address variability and assure 

demonstrable competence in the workforce. To investigate the efficacy of VE training, the 

pedagogical theory of simulation-based mastery learning (SBML) is explored. SBML is an 

established framework from medical education (McGaghie et al. 2014) and is grounded in 

Benjamin Bloom’s (1971) mastery learning theory. Mastery learning is an approach that 

tailors the instruction and pace to each individual learner (Bloom 1971; Gusky, 2007). This 

is achieved by using variable instruction time to accommodate different learning paces (e.g. 

allowing everyone to reach competence by meeting their individual needs). This framework 

is a suitable for behavioural learning and procedural skills (e.g. safety training tasks). The 

VE training is used as a human behaviour laboratory in order to determine the impact of 

the different pedagogical frameworks on competences. 

The evaluation of VE training was divided into four parts. The first part focuses on 

comparing the SBML approach to a conventional lecture-based teaching (LBT). Both the 

LBT and SBML approaches are applied to the same virtual environment to teach 

participants evacuation procedures for an offshore petroleum installation. Chapter 2 reports 

the results of this comparison.  
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A longitudinal study encompasses the second, third, and fourth parts of this research 

as depicted in Figure 1.1. The longitudinal study investigates the training efficacy of VE 

training empirically at three critical learning stages: 1) a skill acquisition phase; 2) a skill 

retention assessment and retraining phase; and 3) a transfer of training to novel situations 

phase. The scope of the work involves collecting performance metrics from the VE training 

at each of the learning phases. The empirical evidence reported from this portion of the 

research offers one approach to evaluate the training efficacy. Chapter 2 reports on the skill 

acquisition phase, chapter 3 reports the skill retention and retraining phase, and chapter 5 

reports the training transfer phase. 

 

 

Figure 1.1: Longitudinal Experiment Timeline 

The second goal of this research is to assess data modeling tools to improve the VE 

training capabilities to assess competence in the offshore safety domain. To determine ways 

to improve competence assessment, a data-mining method called decision tree (DT) 

modeling is used. DTs offer a pattern recognition lens to assess the training efficacy that 

goes beyond performance metrics. Unlike conventional training, VE technology can easily 

collect human performance data during the virtual training (e.g. how people responded to 
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cues from a situation). DTs are based on supervised learning theory and use classification 

to visualize data patterns from data collected from VE training. Figure 1.2 depicts the 

process used to develop decision trees from the human performance data recorded from the 

VE training.  

 

Figure 1.2: Process used to develop DTs and assess training efficacy. 

The data-driven behavioural or learning patterns from the DTs can be used to inform 

how people make decisions. Musharraf et al. (2018) used DTs to model participants’ route 

selection strategies from recorded evidence in the VE training. DT modeling in educational 

contexts often provide methods to diagnose the strengths and weaknesses of individuals. 

This research extends Musharraf et al. (2018) methodology beyond assessing individual 

learners’ strengths and weaknesses, to focus on evaluating the effectiveness of an entire VE 

training program. The intention is to use DT modeling to develop adaptive training tools. 

This research investigates DT modeling as a complementary measure to conventional 
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empirical evidence to improve both the delivery and assessment of competence in VE 

training. The diagnostic and predictive capabilities of the DTs are used to systemically 

assess the strengths and weaknesses of the two pedagogical approaches, SBML and LBT. 

Chapter 3 reports the results of this analysis.  

The fourth goal of this research is to improve VE training from the perspective of 

fostering training transfer. DTs have the potential to predict when a trainee is sufficiently 

equipped to apply their skills to new situations. Following the findings from Musharraf et 

al. (2018), DTs constructed from information collected during VE training exercises can 

predict how a trainee will perform in similar circumstances. Similarly, visually representing 

trainees’ decision strategies based on prior performance in VE training can inform the 

effectiveness of the training program (e.g. did participants develop strategies that match the 

intentions of the training). This research investigates the utility of DTs to diagnose the 

strengths and weaknesses of VE training at a systemic level. This is accomplished by using 

the DTs to evaluate the efficacy of VE training at the three learning phases in the 

longitudinal study: skill acquisition, skill retention and skill transfer. The results of this 

work can inform the development of future adaptive training programs in the offshore 

safety domain. Chapter 5 reports the results of this work.  
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1.5. State of Knowledge and Gaps 

Two theoretical frameworks constitute the foundation of this doctoral research: 

pedagogical theory of mastery learning (Bloom, 1971), and data-mining methodology of 

decision trees (Quinlan, 1986; Han et al., 2012). The literature review below provides an 

overview of the pedagogy framework, and the data-mining methodology used to investigate 

the efficacy of training from training design, delivery, and assessment perspectives.  

1.5.1. Pedagogical Theory  

This section describes three pillars for assessing training: 1) acquiring skills – learning, 2) 

retaining skills and fending off forgetting, and 3) transferring skills – the versatility of 

training to apply lessons learned to new situations.  

1.5.1.1. Skill Acquisition (Learning)  

Benjamin Bloom’s learning for mastery is an instructional paradigm that ensures all 

learners achieve competence by providing them with individualized feedback and 

corrective measures (Bloom, 1971; Gusky, 2007). Mastery learning, by design, has a fixed 

competence threshold for learners to achieve, and the instruction time required to achieve 

that threshold usually varies due to individual variability (Cook et al., 2013). Mastery 

learning adapts the pace of instruction for each learner by monitoring learner progress 

through formative assessment and feedback (see Figure 1.3).  Formative assessments help 

determine if learners have mastered the material sufficiently to move on to enrichment 

activities, or if they require corrective exercises before advancing to more difficult 

concepts.  
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Figure 1.3: Bloom’s mastery learning framework (after Gusky, 2007) 

Simulation based mastery learning (SBML) is a pedagogical approach developed 

within the medical education field (McGaghie et al., 2006; Barsuk et al., 2010; Cohen et 

al., 2013; Moazed et al., 2013; Barsuk et al., 2016) and is based on Bloom’s competence-

based theory of learning for mastery. The SBML protocol gradually guides learners through 

the learning objectives, assesses their performance, provides corrective feedback, and 

allows the learners to proceed to the next level of training once they have demonstrated 

proficiency in the basic concepts. McGaghie et al. (2014) described seven aspects of SBML 

as follows: 

(1) Assess the learner’s entry level; 

(2) Provide clear learning objectives that are arranged in increasing difficulty; 

(3) Provide training exercises that are engaging and focused on each learning 

objective; 

(4) Set a minimum pass standard for each unit; 

(5) Provide a formative assessment of the learner’s progress with feedback so they 

can gauge their progress and recognize where their proficiency level is in relation 

to the standard; 
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(6) Allow learners to advance to the next unit once they have reached the mastery 

standard (i.e. met or exceeded the mastery competence level); and 

(7) Encourage learners to continue their practice on the unit until they have achieved 

the mastery standard. 

The advantages of SBML are illustrated in the Dreyfus/Benner five-staged skill 

acquisition framework (see Figure 1.4). Dreyfus (1980), Benner (1982), and Griswold-

Theodorson et al. (2015) have described the five-staged framework of training: 1) novice, 

2) advanced beginner, 3) competent, 4) proficient, and 5) expert. According to Griswold-

Theodorson et al. (2015), SBML training brings learners from stage 2 to stage 3 on the skill 

acquisition model (advanced beginner to competent).  

 

 

Figure 1.4: Stages of skill acquisition (after Griswold-Theodorson et al., 2015) 
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This framework describes how that SBML training can bring all learners to a 

standardized competence, especially for procedural tasks (e.g. where rules must be 

remembered and followed).  

The SBML approach has been tested in the medical field with generally positive 

results (McGaghie et al., 2014; Griswold-Theodorson et al., 2015), although some evidence 

is mixed (Cook et al., 2013). Cook et al. (2013) concluded in their systematic review and 

meta-analysis that mastery learning in simulation-based medical education showed limited 

evidence of improved outcomes compared to non-mastery instruction, and that the mastery 

learning method takes longer than other training methods. 

1.5.1.2. Retention & Forgetting  

Many factors influence how well skills are remembered. Arthur et al. (1998) performed a 

meta-analysis of skill retention literature and described seven factors that influence skill 

decay and retention: i) length of time elapsed of non skill use during retention interval, ii) 

the quality of the original skill acquisition and the amount of overlearning that occurred; 

iii) skill type and task characteristics (e.g. physical versus cognitive tasks); iv) the methods 

used to test learning and retention; v) conditions of retrieval or specificity of training (i.e. 

the similarity of learning and testing contexts); vi) the instructional strategies or methods 

used to teach the skills; and vii) individual differences in acquiring and retaining skills.  

Sanli and Carnahan (2018) in their review of multi-day training courses in medical, 

military, marine, and offshore safety fields discussed five similar factors that influence skill 

retention.  According to Sanli and Carnahan (2018), the factors that influence skill and 

knowledge retention in these safety-critical domains include: a) type of skill (e.g. practical 
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and declarative knowledge); b) task complexity and difficulty (e.g. number of steps and 

order of tasks); c) individual differences and the experience of the learner; d) specificity of 

training (i.e. closeness of the learning and testing contexts); e) the amount of practice and 

on the job exposure provided; and f) the frequency that refresher interventions are 

delivered. 

Two main topics will be discussed in the context of virtual offshore egress training: 

(1) the impact of skill type, such as declarative and procedural knowledge, on forgetting, 

and (2) the frequency of practice, that is, how often recurrency training is provided and the 

length of time that passes between the training sessions (Schmidt & Lee, 2005; Wickens et 

al., 2013).  

Skill Type:  

Kim et al.’s (2013) learning theories model  provides a framework to help explain how 

skills are learned and forgotten. Kim et al. (2013) integrated four learning theories (Fitts, 

1964; Anderson, 1982; Rasmussen, 1986; and VanLehn, 1996) into a three-staged skill 

acquisition process: 1) declarative stage, 2) mixed stage, and 3) procedural stage. The 

declarative stage involves learning information or facts. Declarative knowledge can be 

attained through rote memorization. However, declarative knowledge will degrade with the 

lack of use (e.g. information will no longer be available in memory for retrieval).  The 

mixed stage involves consolidating information related to the task into a mix of declarative 

and procedural knowledge. This mix of knowledge occurs when declarative knowledge is 

transformed into procedural knowledge over time (e.g. gradually associating knowledge, 

transforming it into rules, and developing heuristics and biases). Therefore, with time and 

practice, the procedural stage transforms the mixed knowledge into predominantely 
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procedural knowledge. This final procedural knowledge stage is often achieved through 

overlearning.  

According to Kim et al.’s (2013) learning theories model, frequent practice and 

contextual experience allow experts to proceduralize skills so that they rely less on 

declarative knowledge and are able to perform the task automatically in response to a 

situation. Procedural knowledge is implicit as experts possessing the knowledge are able to 

perform the actions without effort, but are unable to verbalize the knowledge (Wickens et 

al., 2012). Siu et al. (2016) suggest that learners should be provided with sufficient practice 

to allow them to reach the proceduralization stage, thereby increasing likelihood of skill 

retention.  

Frequency of Retraining:  

The amount of time that elapses between retraining sessions is an important factor to 

investigate in order to ensure safety-critical skills are maintained. Predicting the rate at 

which skills will be forgotten can help inform the frequency with which recurrency training 

should be provided (Wickens et al., 2012).  

In a review of multi-day safety training courses, Sanli and Carnahan (2018) 

concluded that complex skills could be remembered for at most a six-month period without 

any form of training interventions. Dunlosky et al. (2013) reviewed the common learning 

techniques in education and found the most effective techniques for retention were self-

testing and distributed practice. Similarly, Atesok et al. (2016) reviewed literature on the 

retention of SBML trained orthopaedic surgery skills and found that repetitive practicing 

of skills learned in a simulator helped mitigate skill decay even after some time had elapsed 
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(these studies ranged in time elapsed; e.g. follow-up retention assessments occurred at 1 

month, 3 months, 6 months, to a maximum of 30 months).  

1.5.1.3. Training Transfer 

Training should support transferability, specifically, the application, generalization, and 

maintenance of knowledge and skills learned in one training context to new contexts or 

situations (Blume et al., 2010). Ideally, the transfer of training is measured by first training 

skills using a VE or simulator, and then evaluating the skills in the real environment. For 

example, Magee et al. (2012) conducted a forward and reverse transfer of training 

experiment to evaluate VE training in the context of developing spatial knowledge for 

emergency drills on a submarine. The results found positive training benefits from the VE 

training. However, this form of training transfer study is logistically challenging because 

of the same issues that make the real world training difficult: limited access, ethical and 

safety concerns, logistical and financial constraints, in addition to difficulties in ensuring 

experimental control.  

The purpose of training transfer studies is to assess the learners’ performance of a 

practiced task in a new context, or how learning the practiced task helped improve their 

performance of a new version of the task (Sanli and Carnahan, 2018). Therefore, training 

transfer can also be evaluated by comparing how knowledge learned in one context or 

environment can help when applying the skills (or even learning new skills) in a novel or 

unforeseen context (Wickens et al. 2012). This logic justifies evaluating training transfer 

using the same environment. Therefore, a VE or simulator can be used as a substitute to the 

real environment and be used as a human behaviour laboratory to investigate the versatility 
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and transfer of training. However, it is important to consider transfer proximity as it relates 

to how far reaching the scope of the training is to different contexts. Training transfer is 

considered near transfer when the test setting is very similar (or has a close proximity) to 

the knowledge covered in the training. Far transfer occurs when the test setting is very 

different from the training context (Barnett and Ceci, 2002; Ford et al., 2018).   

According to Grossman and Salas (2011), training organizations consider three 

factors that influence the transfer of training: 

(1) Trainee characteristics, such as the learner’s cognitive ability, self-efficacy, 

motivation, and their perceived utility of training;  

(2) Training design, such as behavioural modeling, error management, and 

realism of training environment; and  

(3) The work environment, such as transfer climate, as well as the opportunity and 

support from management to allow workers to apply their training.  
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1.5.2. Data-Mining (Classification and Visualization) 

This section (1) provides an overview of data-mining and learning analytics and their 

educational applications, (2) describes supervised machine learning, and (3) explains the 

application of decision tree modeling for VE training data.  

1.5.2.1. Data-Mining in Education 

Conventional data-mining (DM) tools were not designed for educational purposes 

and as a result, DM methods are often too technical for non-experts (Romero and Ventura, 

2010). The concept of applying data-mining to provide insight into learning processes 

stems from two domains: learning analytics and educational data-mining. Learning 

analytics (LA) focuses on the use of data collection and analysis to understand and optimize 

learning (Papamitsiou and Economides, 2014). Educational data-mining (EDM) takes this 

a step further and involves research and innovation in applying computerized methods to 

detect patterns in large collections of educational data (Romero and Ventura, 2013). Baker 

and Yacef (2009) summarize the scope of EDM in a taxonomy, which includes using data-

mining for prediction, clustering, relationship mining, refinement of data for human 

judgement, and discovery with models. Both domains have grown in the last decade in 

response to the increased use of technology in education and the availability of big data 

from the online learning sector. In general, data-mining for learning-specific applications 

can assist with pedagogical decisions and improve the overall instructional design of 

training (Romero et al., 2010).  

The scope of this literature review will focus on EDM methodology because it is 

more applicable to assessing the efficacy of virtual training. Researchers Aldowah et al., 
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(2019) and Papamitsiou et al. (2014) recommended supporting virtual learning 

environments with EDM tools to broaden the technologies’ capabilities of addressing 

learning-related issues. Such EDM capabilities include the ability to assess the teaching 

and learning effectiveness and to optimize the training through mapping the student and 

instructor performance (Aldowah et al., 2019). The following is a list of relevant 

applications selected from Romero and Ventura’s (2010) review of EDM applications, 

which illustrates the link between EDM methods and VE training: 1) visualizing and 

analyzing data, 2) student modeling, 3) providing recommendations for students, 4) 

predicting students’ performance, 5) detecting undesirable student behaviours, 6) providing 

feedback for instructors, and 7) constructing course material. Augmenting virtual learning 

environments with these EDM applications could lead to making VE training more 

interactive, adaptive, and personalized (Papamitsiou et al., 2014). 

1.5.2.2. Supervised Learning  

Within the scope of data-mining, there are two machine-learning categories applicable to 

the analysis of human performance data collected from VE training: 1) supervised learning, 

and 2) unsupervised learning (Kotsiantis, 2007). Both machine-learning methods use a 

repository of data to form classifications, although they employ different techniques to 

classify the data. Supervised learning is a classifier that uses a repository of solved 

problems to draw inferences. This means the data in the repository has known class labels 

(or attributes) that help the classifier identify to what class the data belongs (Han et al., 

2012). Unsupervised learning uses a cluster analysis on repository data that is not labeled 
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(or when the class labels are unknown) in order to partition data into similar groups, and in 

doing so discovers new classifications of the data (Kotsiantis, 2007; Han et al., 2012).  

The focus of this research is to apply DM methods to help instructors interpret the 

trainee performance data from the VE training. Supervised learning is the most suitable for 

this application, thus the remainder of this review will focus on supervised learning 

methods. Supervised learning is a two-step process: (1) learning – building the model or 

classifier using a training data set; and (2) classification accuracy – determining the 

accuracy of the model by testing the decision tree’s classification rules on test data (Han et 

al., 2012). Both steps will be discussed in detail. 

Within supervised learning, there are three techniques: logic, perceptron, and 

statistics (Kotsiantis, 2007). Logic-based algorithms group instances by sorting them based 

on class labels (or attributes). Common types of logic-based supervised learning include 

rule-based classifiers (e.g. IF-THEN rules) and decision trees. Perceptron-based techniques 

iteratively run through batches of training datasets to define a prediction vector or rule 

(Kotsiantis, 2007). Examples of perceptron-based supervised learning include artificial 

neural networks (ANN) and support vector machines (SVM). Statistical learning 

algorithms focus on modeling the probability relationship among the attributes of the 

dataset. An example of statistical supervised learning is Bayesian networks (BN).  

Each technique has its own benefits and drawbacks. Selecting a DM technique 

largely depends on the intended application and the characteristics of the dataset. For 

assessing VE training, the goal of using supervised learning methods is to assist in 

understanding what trainees learned from the VE and to determine how to modify the 

training curriculum based on trainee behaviours. VE technology already tracks and records 
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in-simulation performance. Decision trees (DT) are an example of logic-based supervised 

learning that is particularly well suited for VE training applications. DTs are commonly 

used for their visual simplicity and diagnostic capabilities. In addition, DTs can be 

constructed quickly and do not require prior assumptions about the data, particularly when 

compared to other methods, such as artificial neural network or support vector machines 

(Liu, 2009). 

1.5.2.3. Decision Trees  

Decision trees (DT) are well suited to VE training applications because of the 

characteristics of the VE training datasets.  For instance, VE training can record each user’s 

in-simulation performance during practice exercises and store this data in a user specific 

database (e.g. a repository of solved problems with labelled data). DT modeling applies an 

algorithm to the observed performance data in order to draw inferences and develop 

generalized decision rules (Badino, 2004). These generalized rules can be used for many 

applications. For example, researchers have used DTs to inform learning analytics and to 

develop artificially intelligent (AI) agents. Musharraf et al. (2018) used DTs to model 

participants’ route selection strategies from recorded evidence in VE training in the context 

of selecting safe egress routes in virtual offshore emergencies. The main benefits of DTs 

for this application were that the DTs were easy to interpret, useful in identifying patterns 

in participants’ performance, and had diagnostic potential for determining the strengths and 

weaknesses of different decision-making strategies.  

From a diagnostic perspective, the DT model of participants’ decision strategies can 

determine whether participants have achieved competence. DTs provide the transparency 
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and high interpretability (Romero and Ventura, 2010) needed for instructional designers to 

understand the VE data and make informed decisions about the design of the training 

curriculum. DTs can model behavioural patterns, which is a capability that goes beyond 

conventional methods of tracking trainee progress and performance outcomes, and offers 

another lens to assess training efficacy. DT modeling allows instructional designers to 

observe patterns in peoples’ data to identify their learning heuristics. These learning 

heuristics are otherwise not easy to identify using conventional performance assessment 

methods. In Romero and Ventura’s (2010) review of EDM methods, DTs were commonly 

used for the following applications: visualizing data, modeling student behaviours, 

detecting undesirable behaviours, and predicting performance. These applications are 

especially important for helping instructional designers to assess the efficacy of different 

training methods.  

The following sections describe the two-step process used to develop the decision 

trees: the DT algorithm and the classification accuracy. 

1.5.2.1. Step 1: Modeling Decision Trees  

Figure 1.5 shows the supervised learning process for developing decision trees. This 

process starts with a database, known as the training dataset, that consists of a list of labeled 

attributes and actions. This database is created following the rule-based methodology 

(Cacciabue et al., 1992) using the human performance data from the VE training. Each row 

represents a record (e.g. an individual’s characteristics or performance in specific 

situations). In the case of VE training data, information from each participant’s 

performance in VE scenarios is used to populate a database consisting of scenarios (S1-Sn), 
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attributes (A1-An), values (V11-Vnn), and actions (E1-En). The scenarios and attributes are 

labelled inputs to the database and the participants’ corresponding actions in the scenarios 

are known as classes.  

 

Figure 1.5: Supervised learning process for decision trees (after Han et al., 2012). 

The DT algorithm uses induction to create generalized decision rules by classifying 

the information in the database into groups such that the dataset in each group belongs to 

the same class. The output is a DT that visually describes the individual’s decision rules 

based on the content in the database. This DT can be used to predict their future decisions 

based on the value of the attributes in a given scenario. 

Decision Tree Algorithm: 

The DT algorithm is applied to observed performance data in order to develop generalized 

decision rules (Badino, 2004). This decision rule classification is based on the attribute 

selection method. Han et al. (2012) describes three DT algorithms and each uses a different 

attribute selection measure: ID3 (Iterative Dichotomiser uses information gain), C4.5 (a 
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revised version of ID3 uses a gain ratio), and CART (Classification and Regression Trees 

uses Gini index). All three use a non-backtracking method to construct the decision trees 

(Han et al., 2012). According to Kotsiantis’ (2007) review of classification techniques, the 

C4.5 algorithm appears to be the most commonly used DT algorithm.  

Musharraf et al. (2018) used the ID3 algorithm (Quinlan, 1986) to develop AI agents 

for VE training and to investigate how changing attributes of virtual emergency scenarios 

influenced participants’ decisions on egress routes. This demonstrated the diagnostic utility 

of DTs in determining the strengths and weaknesses of participants’ performance during 

emergency scenarios (Musharraf et al., 2018). Musharraf et al. (2018) recommended that 

the diagnostic and predictive capabilities of DTs can be used to evaluate the effectiveness 

of a training program and to develop adaptive training tools.  

The ID3 decision tree algorithm takes two basic inputs: the performance database 

from the VE scenarios, and the list of attributes that were varied in each scenario. During 

the DT induction, data are iteratively classified using the attribute that has the highest 

information gain. The ID3 algorithm calculates the highest information gain using three 

main calculations: 1) the entropy of the dataset, 2) the average information entropy of 

attributes, and 3) the information gain for each attribute. 

First, the entropy of the entire dataset is calculated as a measure of the uncertainty 

of the data (Liu, 2009). This is achieved by defining the training set as S, where S contains 

m class labels and Si is a subset of scenarios within the training set S. Then the entropy of 

S is calculated using Eq. 1.   
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  − ∑
|𝑆𝑖|

|𝑆|
log2

|𝑆𝑖|

|𝑆|

𝑚

𝑖=1

  (1) 

 

Second, the training set S is partitioned using attribute A, where A has k distinct 

outcomes. This partition will result in subset Sj with j to k values.  The average information 

entropy for all attributes (A1-An) in Sj is calculated using Eq.2. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) = ∑
|𝑆𝑗|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑗)

𝑘

𝑗=1

  (2) 

 

Finally, the information gain, which is the difference in entropy before and after 

splitting the dataset on the attribute A, is calculated for each attribute in the database using 

Eq. 3.  

𝐺𝑎𝑖𝑛 (𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐴)  (3) 

 

The attribute with the highest information gain is selected as the root node, which 

begins the partition of the dataset. The root node represents the attribute that minimizes the 

information needed and reduces the randomness of the partitions (Han et al. 2012). This 

process repeatedly splits the data subsets at each internal node until no attributes are left 

for classification, or the data set is empty, or data in each group belong to the same class 

and no further classification is needed (Musharraf et al., 2018). A complete tree has 

branches to leaf nodes (that represent the class label or final action of the participant). 

Algorithm 1 describes the iterative steps used to develop a decision tree. 
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Algorithm 1. General algorithm to generate a DT from the database (Han et al., 2012) 

Inputs: database; attribute list; information gain attribute selection method 

Output: a decision tree 

Method:  

Start 

(1) Create a node, Ai 

(2) If all scenario examples at the current node are of the same class, then label the leaf 

nodes with the class labels and stop (e.g. branch, Vn; leaf node, En). 

(3) If the data subset at the current node is empty then label the node with the majority 

class label in its parent data set (e.g. branch, Vn; internal node, An). 

(4) If no attributes are left for further classification, then label the leaf node with the 

majority class label in the current data subset and stop (e.g. branch, Vn; leaf node, En). 

(5) For each remaining attribute An, compute the value of information gain Gain(An) 

(6) Choose the attribute with the highest Gain(An) to branch the current node. 

(7) For each branch node, go to step 2. 

End 

 

The output of this process is a DT that visually describes the VE user’s decision preferences 

based on their performance data. The resulting DT can be used to diagnose the person’s 

strengths or weaknesses in performing a particular task in the VE training, as well as for 

predicting their future decisions based on the value of the attributes in a given scenario. 

Instructional designers can use the collection of DTs from a cohort of trainees’ data to 

identify group patterns in the performance outcomes and use this information to diagnose 

the strengths and weaknesses of the VE training at a systemic level.  

1.5.2.2. Step 2: Calculating the Classification Accuracy: 

Before DTs can be applied to make decisions on new data, the fit of the classification 

method needs to be verified. This can be done by calculating the DT classifier accuracy 
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(i.e. prediction accuracy). Kotsiantis (2007) describes three methods to calculate the 

classifier accuracy: 1) split training sets, 2) cross validation, and 3) leave-one-out 

validation. This research applied split training set approach to calculate the classification 

or prediction accuracy. The split training set approach divides the dataset and uses 2/3 of 

the dataset for training and the other 1/3 of the dataset to test the classifier’s performance. 

The classification accuracy of the DTs is the percentage of test sets that are correctly 

classified using the DT. The accuracy is calculated by comparing the DT prediction to the 

test data set as depicted in Figure 1.5. If the accuracy is considered acceptable, then the DT 

can be used to make decisions on new data (Han et al., 2012).  

 

1.6. Novelty and Contribution 

There are three main contributions of this research: 

1. The longitudinal pedagogical study provides empirical evidence on learning, 

retention, and transfer to support a shift in the offshore safety domain, specifically 

in: (a) how VE training is designed and delivered; (b) how VE training interventions 

are assessed using data modeling tools; (c) how VE training is evaluated from a 

retention and maintenance perspective; (d) how VE training is improved to prepare 

all personnel to respond to a wide variety of emergencies.  

 

2. Without a supporting pedagogical framework, simulation-based training is not 

being used to its full potential. Combining VE technology with a well-designed 

training approach, like SBML, can support the development of trainee competence 
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in emergencies. The SBML framework can also provide standardization and 

accountability to offshore safety training. Although this work demonstrated the 

applicability of the SBML pedagogical framework in the context of offshore oil and 

gas safety training, these methods are generalizable to other tasks and domains. 

 

3. VE and simulation-based training should move beyond traditional forms of 

performance assessment and employ data driven diagnostics and learning analytics. 

This work aims to demonstrate that decision trees are useful for evaluating training 

efficacy. Data classification methods will be the foundation of future adaptive 

training tools for simulation-based training. The diagnostic capabilities of decision 

trees can be used to find systemic gaps in future automated VE training. Similarly, 

the predictive capabilities of decision trees can be used to predict how people will 

perform in unforeseen situations, offering further potential to optimize how 

recurrency training is delivered and monitored.  
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1.7. Organization of the Thesis 

The PhD thesis is written in manuscript format and includes the following four journal 

papers as chapters:   

Ch 2. Smith, J., and Veitch, B. (2018). A better way to train personnel to be safe in 

emergencies. ASCE-ASME Journal of Risk and Uncertainty in Engineering 

Systems Part B, 5(1), 011003.  

 

Ch 3. Smith, J., Musharraf, M., Veitch, B., and Khan, F. Diagnosing the efficacy of 

virtual offshore egress training using decision trees. (Unpublished Manuscript) 

Submitted to IEEE Transactions on Learning Technologies. 

 

Ch 4. Smith, J., Doody, K., and Veitch, B. (2019). Being prepared for emergencies: 

A virtual environment experiment on the retention and maintenance of egress 

skills. WMU Journal of Maritime Affairs, 18(3), 425-449. 

 

Ch 5. Smith, J., Musharraf, M., Blundon, A., and Veitch, B. Preparing for skill 

transfer: a decision tree tool for curriculum design and assessment of virtual 

offshore emergency egress training. (Unpublished Manuscript) Submitted to the 

International Journal of Training Research. 
 

 

Figure 1.6 shows the organization of research. Table 1.1 connects the papers, specific 

research objectives, and task descriptions for each paper related to this research.  

 

 

Figure 1.6: Organization of Research into Four Manuscripts 
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Table 1.1: Organization of manuscript thesis 

Papers as Chapters Research Objectives Task Descriptions 

Chapter 2:  

A better way to train 

personnel to be safe in 

emergencies 

 Determine suitability of Simulation-

Based Mastery Learning (SBML) 

pedagogical approach for delivering 

virtual egress training from the 

perspective of skill acquisition.  

 Compare the performance outcomes 

of the SBML approach with the 

outcomes from the early Lecture-

Based Teaching (LBT) study. 

 

 Consult with subject matter experts (SMEs) on training 

scope, learning objectives, and development of credible test 

scenarios in the virtual environment (VE). 

 Implement the SBML framework by creating training 

scenarios with built in guidance and feedback in the VE.  

 Verify test scenarios match earlier experiment to allow for 

comparison between the two experiments. 

 Conduct SBML experiment with human subjects. 

 Collect data on participants’ performance in the scenarios. 

 Discuss the efficacy of the SBML approach. 

Chapter 3: Diagnosing 

the efficacy of virtual 

offshore egress 

training using 

decisions trees 

 Understand learning behavior 

during VE-based training. 

 Determine utility of decision tree 

(DT) modeling for diagnosing the 

strengths and weaknesses of the 

SBML training program. 

 

 Select scenario attributes and populate the SBML 

knowledge base with data from the acquisition phase. 

 Apply DT algorithm to the SBML dataset. 

 Use DTs to identify SBML group’s egress strategies 

 Compare DTs from the SBML and LBT datasets. 

 Use DTs to diagnose the strengths and weaknesses of the 

SBML training. 

 Discuss the value of DTs at diagnosing training efficacy. 
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Chapter 4:  

Being prepared for 

emergencies: a virtual 

environment 

experiment on the 

retention and 

maintenance of egress 

skills 

 

 

 Measure the retention of egress 

skills after a period of 6 to 9-months 

(without any training interventions). 

 Assess the utility of the adaptive 

retraining matrix at bringing 

participants back to competence in 

all learning objectives. 

 Verify test scenarios match earlier experiment phase to 

allow for comparison between phases. 

 Collect data on participants’ performance in the scenarios 

 Conduct retention and retraining phase with same human 

subjects and collect data on participants’ performance in the 

scenarios. 

 Discuss the results of the retention assessment and the 

efficacy of the retraining. 

Chapter 5: Preparing 

for skill transfer: a 

decision tree tool for 

curriculum design and 

assessment of virtual 

offshore emergency 

egress training 

 Empirically measure the transfer of 

egress skills to novel emergency 

scenarios. 

 Model participants DTs to determine 

capabilities to predict training 

transfer. 

 Assess the change in participants 

DTs as they transition from the skill 

acquisition, retention and transfer 

phases of the experiment. 

 

 Populate the knowledge base with SBML data from the 

retention and transfer phases. 

 Apply DT algorithm to new dataset and use output DTs to 

observe changes in the SBML group’s egress strategies. 

 Compare DTs from the SBML dataset at the skill 

acquisition, retention, and transfer phases of the experiment.  

 Use DTs to predict participants’ performance in novel 

emergency scenarios. 

 Discuss this methods efficacy at predicting training transfer. 
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1.7.1. Chapter Descriptions 

A statement of co-authorship is provided at the beginning of each chapter to describe the 

contribution of the authors throughout the stages of the research. 

 

Chapter 2 presents the empirical results of two experiments that investigated the delivery 

methods of VE training for offshore emergency egress. The first experiment (Smith, 2015) 

used the LBT approach and the second experiment (Smith & Veitch, 2019) investigated the 

utility the SBML pedagogical framework. Efficacy of both training methods was measured 

by comparing the time spent training and the performance achieved by each training group 

(SBML & LBT). The results from this comparison corroborate the findings in the literature, 

that SBML training can address individual variability in competence. VE training using the 

SBML approach reinforced the learning objectives through guided practice and feedback. 

The SBML framework also provided the tools to standardize competence assessment and 

ensure that all participants of the VE training program reached the intended demonstrable 

competence.  

 

Chapter 3 examines the efficacy of the SBML approach to VE training by using decision 

tree modeling. The SBML training was evaluated in two ways: 1) by comparing the 

decision tree depiction of the participants’ understanding of emergency egress to the 

intended learning objectives, and 2) by comparing the SBML decision strategies with those 

developed under lecture-based teaching (LBT). The decision tree analysis identified 

deficiencies in the VE training. The comparison of the decision trees generated from SBML 
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and LBT performance data showed that different training methods influenced the 

participants’ egress strategies. The SBML approach resulted in decision trees with better 

route selection strategies compared to the LBT approach.  This work demonstrated the 

diagnostic capabilities of decision trees and highlighted the value of integrating decision 

trees into the VE training as built-in tools to support adaptive training programs that could 

better meet the training needs of individuals.  

 

Chapter 4 investigates the long-term retention and maintenance of emergency egress 

competence obtained through SBML training (Smith, Doody, & Veitch 2019). In particular, 

this chapter focuses on answering two questions: 1) what egress skills can be remembered 

after a period of 6-months? and 2) how effective is a VE-based retraining matrix at 

maintaining egress skills? Two main performance metrics were used to investigate 

retention and impact of retraining: 1) the overall competence (performance scores) 

demonstrated after the retention period, and 2) the performance by each learning objective 

after the retention period. The results of the experiment indicated that emergency egress 

skills (both spatial and procedural knowledge) are susceptible to skill decay over a period 

of 6 to 9-months. The overall performance scores in the participants’ first test attempt 

showed an initial skill fade in the first two test scenarios and provided less evidence of skill 

fade in the latter two test scenarios. Participants’ performance in terms of learning objective 

showed that most of the participants (89%) did not retain the full requisite skill set over the 

retention interval. Although skill decay occurred, the adaptive retraining matrix employed 

in the study was successful in bringing all participants back to demonstrable competence 

at the end of the experiment. 
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Chapter 5 describes the process of using decision trees as a data-informed curriculum 

design and assessment tool to evaluate the transferability of virtual offshore training. 

Visualizing participants’ decision strategies can help instructional designers determine if 

participants are adequately prepared for new training transfer situations. In particular, this 

chapter extends the capabilities of DTs beyond individual performance assessment and 

demonstrates the use of DTs as an indicator of curriculum suitability. At a systemic level, 

decision trees can identify emerging group patterns in performance that help evaluate the 

efficacy of the training curriculum (e.g. diagnose the strengths and weaknesses of the VE 

training). The results of this work showed that DTs can model participants’ decision-

making strategies throughout the acquisition, retention and retraining, and transfer phases 

of the experiment. Modeling participants’ DTs throughout the VE training helped to 

determine when the right amount of training had been achieved for each participant, or if 

further training was required. The results showed the potential of DTs to predict when a 

person is capable of transferring their skills to a variety of emergencies using inference. 

Overall, this work demonstrated that these DT tools play an important role in learning 

analytics but they have some limitations (e.g. DTs can only infer and not project the transfer 

of skills beyond the context of the training). This work further presents the DTs’ potential 

as a tool for future learning applications, specifically to support intelligent or adaptive 

training programs. 

 

Chapter 6 summarizes and concludes the thesis. It emphasizes the significance of the work, 

discusses the technical challenges and limitations, and offers some lines of inquiry for 

future research.   
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2.2. Abstract 

Offshore petroleum platforms present complex, time-sensitive situations that can make 

emergency evacuations difficult to manage. Virtual environments (VE) can train safety 

critical tasks and help prepare personnel to respond to real-world offshore emergencies. 

Before industries can adopt VE training, its utility must be established to ensure the 

technology provides effective training. This paper presents the results of two experiments 

that investigated the training utility of VE training. The experiments focused particularly 

on determining the most appropriate method to deliver offshore emergency egress training 

using a virtual environment. The first experiment used lecture-based teaching (LBT). The 
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second experiment investigated the utility of a simulation-based mastery learning (SBML) 

pedagogical method from the medical field to address offshore emergency egress training. 

Both training programs (LBT and SBML) were used to train naive participants in basic 

onboard familiarization and emergency evacuation procedures. This paper discusses the 

training efficacy of the SBML method in this context and compares the results of the SBML 

experimental study to the results of the LBT training experiment. Efficacy of the training 

methods is measured by a combination of time spent training and performance achieved by 

each of the training groups. Results show that the SBML approach to VE training was more 

time effective and produced better performance in the emergency scenarios. SBML training 

can help address individual variability in competence. Limitations to the SBML training 

are discussed and recommendations to improve the delivery of SBML training are 

presented. Overall, the results indicate that employing SBML training in industry can 

improve human reliability during emergencies through increased competence and 

compliance. 

 

2.3. Introduction 

Offshore petroleum platforms are complex, safety-critical working environments. These 

platforms are characterized by their isolation and harsh marine weather. Emergencies on 

offshore petroleum platforms are time-sensitive situations and the safe evacuation of the 

platform can be challenging to manage. Offshore management teams rely on personnel to 

follow emergency protocols to help account for everyone in the emergency. During an 

emergency, all personnel onboard are required to muster at a temporary safe refuge (TSR) 
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area to be accounted for. Assuring the compliance and competence of general personnel in 

responding to emergencies can help improve the overall emergency preparedness of the 

platform. There are two problems with conventional training methods: (1) they do not 

address individual variability and (2) they are not representative of the conditions in real 

emergencies. New personnel or short-term contractors who arrive on an offshore platform 

are provided with conventional safety training. Operational regulations typically require 

that these individuals complete an orientation period where they are supervised or 

accompanied by a full-time crew member for their own safety. This orientation period 

depends on the jurisdiction. For example, the orientation period can extend over two shift-

turn overs, or six weeks, before the personnel can be unaccompanied on the platform. The 

amount of training time is usually fixed according to regulatory, logistical, and cost 

constraints. As a result, the competence of each individual participating in the same training 

program can be very different. This highlights a key problem: conventional training tends 

to fix the instructional time and as a result learning outcomes vary because individual 

learning needs are not adequately addressed (Cook et al., 2013).  

Routine muster and evacuation drills offshore are required by regulations. The drills 

typically occur at a regularly scheduled time each week and require all personnel to muster 

at their designated muster stations in response to emergency alarms. The drills are usually 

performed in calm, nonrisky situations, and do not mimic real emergency situations. 

Practicing emergency evacuations in conditions that replicate real emergencies (high risk, 

stress) is not practicable due to the ethical, logical, and financial constraints. As a result, 

there is little variation in the muster drills and they do not represent the conditions that exist 

in real emergencies. Over time, this form of routine drill can cause complacency as 
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personnel practice in benign conditions, rather than in the emergency conditions that the 

drills are intended to practice. This gap in the conditions of conventional training is 

concerning and highlights a second key problem: the gap between real emergency 

conditions and the conditions in which conventional training is performed undermines the 

contextual validity of conventional training. Virtual environment (VE) training has the 

potential of providing personnel with artificial experience in how to respond to situations 

in emergency conditions. VE training discussed in this paper focuses on two main areas: 

onboard familiarization and emergency egress. 

2.3.1. Onboard Familiarization 

VEs can be used to train personnel onshore before they are deployed offshore. Training 

with a VE can focus on “know your workplace training” and can familiarize personnel with 

the work environment and the safety procedures in a virtual setting before physically 

stepping foot offshore. 

2.3.2. Emergency Egress Training 

VEs are a safe means to practice emergency evacuation exercises and can help prepare 

personnel to respond effectively to realistic offshore emergencies. They can also be used 

to test new training protocols to determine if the interventions in a training program 

improve crew compliance and competence.  

Before industries can adopt VE training, its utility must be established. The present 

work investigates the training utility of two different training methods: a conventional 

lecture based training (LBT) approach, and a simulation based mastery learning (SBML) 
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approach. Both training methods were developed in the same VE and for the same learning 

objectives: basic onboard familiarization and emergency evacuation procedures. 

 

2.4. Background 

In general, conventional training tends to fix instructional time, allowing the learning 

outcomes to vary. Mastery learning, by design, has a fixed competence threshold for 

learners to achieve, and the instructional time required to achieve that threshold usually 

varies due to individual variability (Cook et al., 2013). Therefore, to determine the more 

appropriate method to deliver offshore emergency egress training using a virtual 

environment, two experiments were conducted. The first experiment looked at using LBT 

to deliver the VE training (Smith, 2015). The second experiment applied the SBML 

pedagogical approach to the VE training. 

2.4.1. Simulation-Based Mastery Learning 

Simulation-based mastery learning is a pedagogical approach developed in the medical 

field (McGaghie, et al., 2006; Barsuk et al., 2010; Cohen et al., 2013; Moazed et al., 2013; 

Barsuk et al., 2016). The SBML protocol gradually guides trainees through the learning 

objectives, assesses their performance, provides corrective feedback, and allows the 

trainees to proceed to the next level of training once they have demonstrated proficiency in 

the basic concepts. McGaghie et al. (2014) describe seven aspects of mastery learning as 

follows: 

(1) Baseline or diagnostic assessment;  

(2) Clear learning objectives, sequenced as units in increasing difficulty;  
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(3) Engagement in powerful and sustained educational activities focused on 

reaching the objectives (e.g., deliberate skills practice);  

(4) A fixed minimum pass standard for each unit (e.g., test score, checklist 

percentage);  

(5) Formative assessment with specific feedback to gauge unit completion at the 

minimum passing standard for mastery;  

(6) Advancement to the next educational unit once competence is achieved at or 

above the mastery standard; and  

(7) Continued practice or study on an educational unit until mastery standard is 

reached. 

The SBML approach has been tested in the medical field with generally positive 

results (McGaghie et al., 2014; Griswold-Theodorson et al., 2015), although some evidence 

is mixed (Cook et al., 2013). For example, Cook et al. (2013) in their systematic review 

and meta-analysis concluded that mastery learning in simulation based medical education 

showed limited evidence of improved outcomes compared to nonmastery instruction, and 

that the mastery learning method takes longer than other training methods. The focus of 

this paper is to test the efficacy of the SBML pedagogical approach as applied to offshore 

safety training, particularly in the context of general personnel working offshore (i.e., 

individuals whose responsibility during an emergency is to muster at their designated 

muster stations). 
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2.5. Methodology 

Two experiments were conducted to evaluate training methods using virtual environments 

to train offshore emergency egress. The first experiment evaluated LBT; the second 

experiment investigated SBML. This section will first explain the common elements of 

both experiments and then describe the methods used to deliver the training for each 

experiment. 

2.5.1. All-Hands Virtual Emergency Response Trainer.  

An emergency preparedness training simulator called all-hands virtual emergency response 

trainer (AVERT) was used in both experiments. AVERT is a first person perspective virtual 

environment that was developed to train personnel in basic offshore emergency duties 

within a naturalistic representation of the offshore work setting (House et al., 2014). The 

current configuration of AVERT is intended to train personnel in safe work practices and 

how to muster at their designated muster stations in the event of an emergency. 

2.5.2. Task: Training Objectives and Test Scenarios 

2.5.2.1. Learning Objectives.  

Both experiments taught the same training content (basic offshore safety practices) using 

the AVERT virtual environment, but used different training delivery methods. Both 

training programs were designed to train and test six learning objectives in AVERT. The 

learning objectives were developed to address two knowledge dimensions: spatial 

knowledge and procedural knowledge. The spatial learning objectives included familiarity 

with the platform layout, and knowledge of the egress route options. The procedural 
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learning objectives included recognizing emergency alarms, assessing the emergency 

situation, avoiding hazards, safety protocols, and mustering procedures. 

2.5.2.2. Test Scenarios.  

After completing the training, participants were tested in AVERT on their ability to respond 

to a variety of emergency preparedness exercises, from basic muster drills to full 

emergency evacuations. Table 2.1 provides a description of a selection of the test scenarios 

discussed in this paper. Participants were required to recognize the emergency situation 

based on immediate hazards, alarm type, and public address (PA) announcements (House 

et al., 2014). Depending on the alarm type that was sounded, personnel were required to 

either: (a) gather at the primary muster point, or (b) go to their secondary muster point, the 

lifeboat station. Following the alarm, participants were required to respond to the situation 

by selecting the safest route available to the TSR. The test scenarios gradually increased in 

difficulty based on how much training the participant had completed and the overall number 

of learning objectives being assessed. 

  



50 

Table 2.1 Scenarios used for the experiment 

Test Scenario  Scenario Description 

S1 

(Wayfinding 

Drill) 

Meet their supervisor at their designated lifeboat station by following 

their primary or secondary egress routes. 

S2 

(Muster Drill) 

Respond to a muster drill (General Platform Alarm). During this alarm 

all personnel are required to muster at their primary muster station. 

S3 

(Emergency) 

Respond to an emergency situation involving a General Platform Alarm 

(GPA) due to fire in the galley compromising the primary muster station 

with smoke. The situation escalates to a Prepare to Abandon Platform 

Alarm (PAPA) alarm. All personnel must head to the primary muster 

station but are forced to re-route to the lifeboat station as a result of the 

alarm change and compromised muster point.  

S4 

(Emergency) 

Respond to an emergency situation involving a General Platform Alarm 

(GPA) due to an explosion and fire on the helideck. Smoke from heavy 

winds is blocking access to the secondary egress route. All personnel 

must go to the primary muster station. The situation escalates to a 

Prepare to Abandon Platform Alarm (PAPA) alarm, requiring all 

personnel to re-route and muster at their lifeboat station.  

 

2.5.3. Experiment 1: Lecture Based Teaching (LBT) in AVERT 

2.5.3.1. Participants 

Forty participants were recruited for the study. Thirty-six participants completed the LBT 

experiment and four people withdrew from the study due to scheduling conflicts and 

symptoms of simulator sickness. Of the participants that completed the experiment, 27 

participants were male and 9 participants were female. The participants’ ages ranged from 

19 to 39 years with the mean age of 26 years, (standard deviation (SD) of ± 4.4 years). 

Participants were divided into two groups: LBT1 and LBT2. Due to participant 

withdrawals, the two training groups had an uneven number of participants. LBT1 had 17 

participants and LBT2 had 19 participants.  
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2.5.3.2. LBT Training 

The training scenarios in AVERT were designed to be similar to the orientation received 

by offshore personnel during their first experience onboard an offshore platform. The scope 

of the training included safety protocols for the offshore platform’s Accommodation Block 

and the Engine Room (which was designated as the participant’s worksite). The training 

and testing took place in three separate sessions: S1 – basic safety induction training, S2 – 

advanced alarm recognition, S3 – advanced hazard awareness. The participants were 

assigned to one of two groups, differentiated by the amount of exposure the participants 

were given to training in AVERT. One group of participants (LBT2) was given a single 

exposure to training. The other group (LBT1) was given multiple exposures. Both groups 

received initial training consisting of a training tutorial and an orientation scenario in 

AVERT that encouraged each participant to navigate areas of the vessel including their 

cabin, common rooms in the Accommodation Block, exterior vessel decks, and an assigned 

worksite in the Engine Room. LBT1 received repeated exposure to the training tutorials 

and were provided with practice scenarios in AVERT.  LBT2 received one exposure to the 

initial training and did not receive any practice in AVERT. After the LBT1 group 

completed the training, participants performed a series of test scenarios to determine how 

well they were able to demonstrate their competence in AVERT. The LBT2 group did not 

receive any other form of training and returned for each session to perform the test scenarios 

to determine how much of the initial training they were able to retain and demonstrate in 

AVERT. The full experimental design and results of the LBT study are reported (Smith, 

2015). 
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2.5.4. Experiment 2: Simulation Based Mastery Learning (SBML) in AVERT 

2.5.4.1. Participants 

Sixty participants were recruited in the study based on a priori power analysis to address 

participant attrition for a planned longitudinal study. Fifty-five people participated in the 

SBML experiment and five people withdrew from the study due to symptoms of simulator 

sickness and difficulty learning the control interface. Of the participants that completed the 

experiment, 42 participants were male and 13 participants were female. The participants’ 

ages ranged from 18-54 years with a mean age of 27 years (SD of ± 7.9 years). The majority 

of participants for both experiments were undergraduate and graduate students. All 

volunteers who participated were naïve subjects with no prior offshore experience and no 

exposure to the AVERT simulator prior to the study. 

2.5.4.2. SBML applied to AVERT  

The SBML approach involved a series of training modules as depicted in Figure 2.1. All 

modules were completed during one session in the lab. Each module was designed to train 

specific learning objectives and gradually taught participants the platform layout, how to 

recognize alarms, what to do in the event of blocked routes, as well as how to assess the 

situation and avoid hazards while evacuating the platform.  
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Figure 2.1: SBML training and testing stages 

 

As depicted in Figure 2.1, the SBML experiment involved an habituation stage and 

four training and testing modules. The habituation stage was designed to provide 

participants with an initial exposure to the AVERT controls and introduced participants to 

the offshore platform. The SBML training and testing involved 8 training scenarios 

distributed across the four modules and test scenarios. Module 1 was designed to teach 

participants the platform layout. Module 2 provided lessons on different alarm types, 

muster locations, and muster procedures at the temporary safe refuge. Module 3 provided 

lessons on assessing the emergency situation and being prepared to re-route in the event 

that an egress route is blocked or muster point is compromised. Module 4 focused on 

situation assessment, hazard avoidance, and re-routing in the event that the primary or 

secondary egress route is obstructed due to poor lighting, or barriers. In this case, if the 
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participant selected a route that was obstructed, then they were required to find an alternate 

route to their muster location.  

As part of the SBML training, participants were required to demonstrate 

competence in all training and testing scenarios. After each training module in AVERT, the 

participant’s performance was assessed using test scenarios. Participants received detailed 

feedback on their performance immediately after each attempt of a scenario. To achieve 

demonstrated competence, some participants required multiple attempts at the training 

scenarios. 

 

2.6. Results & Discussion 

To compare the efficacy of the training delivery methods, three measures were used: 1) the 

competence achieved, 2) the overall time spent training, and 3) the performance scores for 

each learning objective. This section presents the results of each measure. 

2.6.1. Competence  

The SBML training was successful in bringing all participants to competence in the targeted 

learning objectives. SBML participants were required to achieve a performance score of 

100% in each test scenario (i.e. a passing score in all learning objectives) in order to 

continue with the training program. Seventy-one percent of participants successfully 

completed all the test scenarios on their first attempt. Some participants required multiple 

attempts to achieve competence. Conversely, only one participant demonstrated 

competence using the LBT training method. Forty-four percent of participants in the LBT 
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training were able to achieve a score of 80% (or higher) in two or more of the test scenarios. 

The results of the LBT study also showed few differences in performance between the 

single and repeated exposure training groups. The results of the LBT study are reported in 

(Smith, 2015; Smith et al., 2015).  

The efficacy of training was measured by comparing the level of competence 

achieved in terms of the participants’ performance scores in the test scenarios by the LBT 

training and the SBML training. To compare the methods, the scoring rubric from the 

SBML study was applied to the LBT data. Figure 2.2 depicts the mean performance scores 

for the SBML, LBT1, and LBT2 groups.  Participants in the LBT training were only tested 

once on their performance of the test scenarios. Therefore, the SBML participants’ first 

attempt at the test scenarios is compared with the performance of the LBT participants’ in 

Figure 2.2.  
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Figure 2.2: Comparison of the mean performance scores of SBML & LBT groups 

The first two test scenarios focused on the basic procedures to perform muster drills. 

Test scenario S1 assessed participants on their knowledge of the platform layout. For S1, 

the average score of the SBML participants on their first attempt was 93.6% (SD = 16.6%). 

In comparison, the average score of the LBT groups (repeated and single exposure) were 

57.2% and 47.6% (SD = 23.0% and 26.6%), respectively. The second test scenario, S2, 

assessed participants on their understanding of alarms and mustering at their designated 

muster stations.  For S2, the average score of the SBML participants was 98.8% (SD = 

4.4%). In comparison, the average scores of the LBT groups (repeated and single exposure) 

were 78.8 % and 79.7% (SD = 19.8% and 10.1%), respectively. The last two test scenarios 

focused on emergency situations. Participants were tested on their ability to assess the 
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emergency situation and avoid hazards along their path. For S3, the average score of the 

SBML participants was 88.7% (SD = 17.8%). In comparison, the average scores of the 

LBT groups were 61.8% and 61.5% (SD = 24.2% and 28.7%), respectively. For S4, the 

average score of the SBML participants was 90.0% (SD = 15.1%). In comparison, the 

average scores of the LBT groups were 76.2% and 65.8% (SD = 26.3% and 24.8%), 

respectively.  

The mean performance scores of the subgroups of LBT training were compared by 

(Smith, 2015). The results showed that there were no statistical differences between the 

two subgroups of LBT training for all four test scenarios.  To compare the performance of 

the SBML-trained group to each of the LBT-trained subgroups, a Mann Whitney U test 

was used. The Mann-Whitney U test compares the median scores of two independent 

samples and is the non-parametric equivalent of a t-test (Corder & Foreman, 2014). A p-

value of less than 0.05 was used to signify a statistical significance between the groups (i.e. 

the probability that the performance scores of the training groups were different). The Mann 

Whitney U tests showed significant statistical differences between the performance of the 

SBML group and the LBT subgroups for all four test scenarios (p < 0.05).   

2.6.2. Time Spent Training   

Not only did the SBML training successfully bring all participants to competence, it did so 

in less time. Table 2.2 summarizes the average total time spent by participants for each 

training method (including reviewing tutorials, performing practice scenarios, and 

completing test scenarios). The SBML training focused on teaching egress routes from the 

trainee’s cabin in the accommodation block. The LBT training involved teaching egress 
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routes from the cabin and worksite. For comparison purposes, only the time the LBT groups 

spent on learning the cabin egress routes are included in the calculations of the time spent 

training. 

Table 2.2: Mean total time spent training by each group 

Category 
Mean Time Spent Training (minutes) 

SBML  LBT1 LBT2 

Tutorials  20.0 125.3 75.4 

Practice Scenarios 63.6 42.5 30.0 

Evaluation Scenarios 12.6 11.4 13.2 

Total Training Time 96.3 179.2 118.6 

 

On average, the SBML group required less time than the LBT trained groups 

(approximately 40% less time than LBT1 and 20% less time for LBT2). This difference in 

time shows that SBML training uses the available training time more effectively. 

The LBT training focused on computer based training tutorials, so the majority of 

the training time (125 minutes for LBT1 and 75 minutes for LBT2) was spent on viewing 

lectures and videos. Consequently, a relatively short amount of LBT training time was spent 

on actual practice of egress tasks in AVERT.  The LBT participants completed a 30 minute 

practice scenario designed to orientate them to the platform. The LBT2 group received 

initial tutorial training and was subsequently repeatedly tested. The LBT1 group received 

practice opportunities to help prepare for the test scenarios, but was not required to repeat 

scenarios until they reached competence. Therefore, there was very little time provided to 

the LBT1 group (repeated training exposure) for practice. 

The SBML training was structured to provide participants with practice and 

feedback in AVERT. The bulk of the training time (64 minutes on average) was spent on 
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these activities. The tutorial material was embedded into the training scenarios so more 

time was spent learning the task in AVERT. The practice scenarios were designed to 

gradually teach participants the learning objectives through in-simulation instructions and 

feedback. The SBML training required participants to demonstrate a minimum passing 

standard in the training and testing scenarios before progressing to the next training 

scenario or testing block. This approach resulted in participants taking multiple attempts to 

reach competence.  

Even though the SBML participants repeated practice scenarios until competence 

was achieved, the overall combined training time was still shorter than LBT training time. 

This is due to the fact that SBML training focused less on instructing participants what to 

do in the event of emergency and instead offered opportunities to practice emergency egress 

procedures in a variety of situations. From this perspective, the SBML training was a more 

effective use of training time in comparison to the LBT training.  

2.6.3. Comparing SBML and LBT Performance by Learning Objective 

Tables 2.3 and 2.4 show the percentage of participants by training group who were 

successful in demonstrating the learning objectives on their first attempt at the test scenarios 

(drill and emergency scenarios, respectively). The learning objectives were categorized as 

spatial performance and procedural performance; each will be discussed separately. 

2.6.3.1. Spatial Performance  

Effective wayfinding in emergencies depends on an individual’s spatial knowledge of the 

platform layout. Seigel and White (1975) describe a spatial knowledge acquisition model 
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known as Landmark-Route-Survey. This model provides one explanation for how 

individuals develop a spatial understanding of an environment. Spatial knowledge usually 

starts with the recognition of salient landmarks, followed by connecting the landmarks with 

learned routes. Over time, individuals develop a map-like representation of an environment 

(e.g. learning how landmarks and routes are interconnected) known as survey knowledge.  

The basic muster drill scenarios tested the participants’ recognition of landmarks 

and their ability to follow designated routes. Table 2.3 shows the percentage of participants 

who reached competence for each learning objective in the two muster drill scenarios. A 

clear difference between SBML and LBT groups is seen in the first test scenario (S1) for 

reaching the correct location and correctly following the egress routes. This difference is 

less prominent in the second test scenario (S2). The LBT trained groups matched the 

performance of the SBML group in reaching the correct location and showed improvements 

in following the designated egress route during the alarm recognition muster drill scenario.  

Table 2.3: Percentage of successful participants for drill scenarios 

Performance Measures 

Basic Wayfinding  

(S1) 

Alarm Recognition  

(S2) 

SBML LBT1 LBT2 SBML LBT1 LBT2 

Spatial Performance:       

1. Reached correct location 93% 82% 63% 100% 94% 100% 

2. Correctly following egress route 85% 65% 53% 98% 88% 74% 

Procedural Performance:       

3. Recognized alarm & registered at TSR n/a n/a n/a 98% 94% 100% 

4. Avoided running 100% 12% 21% 100% 18% 16% 

5. Closed all fire and watertight doors 95% 35% 21% 96% 59% 53% 

n/a = not applicable. Some performance metrics are not applicable for all test scenarios.  

 

The participants’ route selection and re-routing in the emergency scenarios are good 

measures of how effective the training was in preparing participants for emergency 
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situations. The emergency scenarios tested the participants’ route and survey knowledge 

by forcing them to reroute after they encountered an obstructed path. Table 2.4 shows the 

percentage of participants who were successful at each learning objective in the two 

emergency scenarios. For these test scenarios, the route selection learning objective was 

divided into four subcategories, which are listed as items 2 to 5 in Table 2.4. The correct 

behaviours for the emergency scenarios were to select the safest route or re-route based on 

the PA information. Individuals who did not re-route until they encountered the hazard and 

those who did not re-route at all failed the test scenario. This categorization was designed 

to determine: 1) what information the participants were using to select their egress route, 

2) the level of risk the participants were willing to take, and 3) if the participants had 

sufficient survey knowledge of the platform to re-route if their designated route was 

compromised by a hazard.  

Table 2.4: Percentage of successful participants for emergency scenarios 

Performance Measures 

Emergency Situation  

(S3) 

Emergency Situation  

(S4) 

SBML LBT1 LBT2 SBML LBT1 LBT2 

Spatial Performance:       

1. Reached correct location 93% 94% 89% 91% 94% 89% 

2. Selected safest route available 55% 35% 47% 62% 76% 47% 

3. Re-routed based on PA information 22% 0% 0% 22% 0% 0% 

4. Re-routed if path blocked (encountered 

hazard) 
16% 18% 16% 14% 12% 21% 

5. Did not re-route (opened door to hazard 

and/or went through the hazard) 
7% 47% 37% 2% 12% 32% 

Procedural Performance:       

6. Recognized alarm & registered at TSR 100% 94% 89% 95% 94% 89% 

7. Avoided Hazard Exposure 93% 53% 63% 98% 76% 47% 

8. Avoided Running 100% 24% 5% 100% 24% 11% 

9. Closed all fire and watertight doors 93% 65% 47% 100% 47% 79% 
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The overall percentage of participants who selected the safest route for a given 

scenario is one indicator of the training efficacy and how well the training helped 

participants develop egress strategies. As shown in Table 2.4, the SBML trained group was 

more successful at selecting the safest route at the onset of the emergency situation in 

scenario S3. The LBT1-trained group was more successful at selecting the safest route in 

scenario S4. In this case, the SBML trained group did not outperform the LBT1-trained 

group on their first attempt at the scenario in terms of reaching the correct location and 

selecting the safest egress route (item 1 and 2 in Table 2.4). This highlights some limitations 

in the SBML training for developing spatial knowledge. Two possible reasons for the 

performance variability are: 1) developing survey knowledge takes time and this process is 

subject to individual variability regardless of training method, and 2) the different training 

methods (SBML and LBT) resulted in different decision making strategies.   

To better understand the limitations of the SBML and LBT training methods, Smith 

et al. (2017) investigated participants’ decision making strategies in the virtual emergency 

scenarios using decision tree modeling. This analysis showed that the SBML-trained group 

tended to employ route selection strategies that involved listening to the PA announcement 

and taking into consideration information from the announcement. While these route 

strategies were more successful in general, this does highlight a limitation of the delivery 

of the training.  The SBML training could be improved by focusing more attention to the 

development of survey knowledge and teaching participants on how to select routes and 

how to reroute due to blocked routes in the absence of PA announcements. Implementing 

improved performance assessment and built-in diagnostic tools into the VE, such as 
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decision tree modeling, could help improve the implementation of the SBML training by 

addressing each individual’s learning needs.  

2.6.3.2. Procedural Performance  

The biggest difference between the SBML and LBT training groups was the participants’ 

compliance (or lack thereof) with safe practices. The SBML group was more compliant 

with safe practices and showed more risk adverse behaviours than the LBT groups. The 

majority of SBML participants were able to successfully avoid hazard exposure, close fire 

doors, and avoid running on the platform. These behaviours were not demonstrated by the 

LBT training groups.  

Overall, the difference in competence and compliance between the SBML and LBT 

groups is attributed to the delivery of the training. There are two main reasons why the 

SBML participants outperformed the LBT trained participants: 1) SBML participants 

received an informative assessment with specific corrective feedback in the training 

scenarios, and 2) SBML training’s fixed minimum passing standard for each scenario 

forced the participants to repeat scenarios until competence was demonstrated.  

With regards to informative assessment, the SBML training group completed 

practice scenarios and had in-simulation instructions and feedback. During the SBML 

training scenarios, participants received immediate in-scenario feedback if they performed 

the safe practices incorrectly. This allowed the participants to recognize what was correct 

or incorrect performance. The LBT training groups both received instructions through 

lecture-style tutorials, followed by after scenario feedback. In the absence of corrective 
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feedback, the LBT participants repeated the same errors throughout the training and testing 

scenarios.  

Another aspect of SBML training that impacted performance on compliance to 

safety procedures was the use of a fixed minimum passing score for the training and testing 

scenarios. The SBML trained participants were only able to proceed to the next training 

scenario if they reached a minimum passing score in the learning objectives. This restriction 

in the training ensured all the participants complied with the safety procedures. The SBML 

participants had more opportunities to learn from their mistakes and adjust their strategy to 

respond to the emergency situations. 

 

2.7. Conclusion 

As shown by the results of these two experiments, how people respond to emergency 

situations can vary depending on the training they have received. Human variability in the 

workplace, especially during an emergency or other safety critical operation, is a safety 

concern. Virtual environment training using the SBML approach has been shown to address 

human variability and provide a means to reach demonstrable competence.  Further, in the 

cases of LBT and SBML presented here, the SBML approach was more time effective. 

SBML training addresses individual differences and reinforces the learning objectives 

through feedback and practice. It also provides the tools to standardize competence 

assessment to ensure that all participants of a training program reach the intended 

competence. Evidence from this study indicates that SBML training is a suitable training 

method to provide structure, standardization, and accountability to offshore egress training. 
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Employing SBML training in industry has the potential to lower risks and improve the 

overall safety of operations. 
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3.2. Abstract 

For the offshore energy industry, virtual environment (VE) technology can enhance 

conventional training by teaching basic offshore safety protocols such as onboard 

familiarization and emergency evacuation. Combining VE technology with well-designed 

training can support the development of trainee competence in simulated emergencies. VEs 

can also act as human behavior laboratories to investigate the impact of different 

pedagogical approaches on competence.  This paper examines the training efficacy of the 
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simulation-based mastery learning (SBML) approach in a VE using decision tree modeling. 

Decision trees (DTs) are an inductive reasoning approach that can identify participants’ 

egress strategies in offshore emergencies subsequent to training. The efficacy of the SBML 

training program is evaluated in three ways: 1) analyzing participants’ performance scores 

in test scenarios, 2) comparing the DT depiction of participant’s understanding of 

emergency egress to the intended learning objectives, and 3) comparing the SBML decision 

strategies with those developed under a different pedagogical approach - lecture based 

teaching (LBT). The results from the empirical study show that the SBML pedagogical 

approach was successful in bringing all participants to competence and this training 

resulted in concise DTs. A comparison of the resulting SBML training DTs with trees 

generated from a LBT approach show that the different training methods influenced the 

participants’ egress strategies. The SBML approach resulted in better route selection 

strategies compared to the LBT approach. This paper demonstrates the diagnostic 

capabilities of decision trees as training assessment tools and recommends integrating DT 

tools into adaptive VE training programs to better support the training needs of individuals.   

 

3.3. Introduction 

Virtual environments (VE) can enhance conventional training for offshore energy and 

maritime industry personnel by providing crews with worksite familiarization, practice 

with safety-critical operations, and experience in responding to emergencies. To assess 

whether crews are adequately prepared for real-life emergencies, VE technology can track 
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in-simulation performance metrics, provide corrective feedback, and deliver adaptive 

training scenarios.  

Decision trees (DT) are an example of data-mining tools with behavioural pattern 

recognition capabilities that go beyond conventional methods of tracking trainee progress 

and performance outcomes, and offer another lens to assess training efficacy. DT modeling 

is a classification method that is particularly well suited for VE training applications 

because DTs employ supervised learning, which requires a repository of solved problems 

to draw inferences. For instance, VE training can record each user’s in-simulation 

performance data during practice exercises and store this data in a user specific data 

repository.  DT modeling applies an algorithm to the observed performance data (i.e. 

collected during VE training) in order to develop generalized decision rules (Badino, 2004). 

These generalized rules can be used for many applications. As an example, Musharraf et 

al. (2018) used DTs to identify individuals’ decision-making strategies in the context of 

selecting safe egress routes in virtual offshore emergencies. The main benefits of DTs for 

the offshore emergency egress application were that the DTs were easy to interpret, useful 

in identifying patterns in participants’ performance, and had diagnostic potential for 

determining the strengths and weaknesses of different decision-making strategies. This 

paper builds on the research from Musharraf et al. (2018) by using the diagnostic 

capabilities of DT modeling, as a complement to conventional performance metrics, to 

investigate the efficacy of pedagogical approaches applied to VE training. 
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3.3.1. Related Work 

An earlier experiment by Smith et al. (2015) investigated the efficacy of VE training on 

competence using conventional lecture-based teaching (LBT). LBT is a passive learning 

approach that is instructor-centered and in line with traditional lecture-style instruction 

(Wingfield, 2005). This LBT method is a participatory form of training in which learners 

are exposed to the content through video instructions, demonstrations, and practice 

exercises (i.e. similar to conventional orientation training). Following this setup, the LBT 

training exposed participants to the emergency egress training content using video tutorials, 

platform walkthroughs, practice scenarios, and test scenarios in a first-person perspective 

virtual environment. This method does not have a formative assessment or a fixed 

minimum passing component, thereby leaving the participants with no means to assess their 

comprehension or gauge their progress. As a result, it was observed that the majority of 

participants in the LBT training failed to learn successful problem-solving strategies for 

emergency situations, which cast doubt on the efficacy of the LBT training approach, and 

its suitability to VE modes of training (Smith, 2015).  Data collected during the study was 

used by Musharraf et al. (2018) to identify the problem-solving strategies of general 

personnel in emergency egress situations. The results showed that given the same training, 

people employed different learning strategies and developed their understanding of 

emergency protocols differently. In particular, decision-making in high-stress emergencies 

varied from person to person. These results coincide with those from (Smith, 2015), which 

found that the LBT training did not provide adequate assessment in the form of practice 

and feedback to ensure all participants gained competence. 
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Based on those findings, a new experimental study was conducted to assess the 

relative merits of another pedagogical approach: simulation-based mastery learning 

(SBML). The SBML framework was selected due to its reported effectiveness by the 

medical education field (Barsuk et al. 2010; Cohen et al. 2013; Moazed et al. 2013; 

McGaghie et al. 2014; Barsuk et al. 2016). SBML is a method designed to meet the needs 

and pace of the individual learner. The SBML approach gradually walks learners through 

the content and requires that they practice the exercises until they demonstrate competence. 

Learners are provided with formative assessments throughout the SBML training, which 

provides constructive feedback for them to improve or correct their performance. Once 

learners have demonstrated their understanding in test exercises, they are able to move on 

to more advanced content. Applying the SBML framework in this experiment, the SBML 

training repeatedly exposed participants to the emergency egress training content using 

platform walkthroughs, practice scenarios, and test scenarios in the same first-person 

perspective virtual environment. The same learning objectives, testing scenarios and 

performance metrics were used in both the SBML and the earlier LBT studies. The key 

difference between the two was the pedagogical approach, which included the delivery 

framework, formative assessment, and feedback method. This was intentionally controlled 

so the results from both experiments could be compared in terms of pedagogy.  

3.3.2. Objectives 

This paper uses DTs to evaluate how well the SBML training prepared participants for 

emergency scenarios. We apply the decision tree induction approach to the SBML dataset 

and compare the resulting DTs against the intended learning objectives. We compare 
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participants’ performance in test scenarios with the performance predicted by their DTs, 

which illustrates the utility of DTs as a predictive tool. We also compare the DTs generated 

from the SBML study with those from the earlier LBT study as a way of assessing the 

relative merits of the two pedagogical approaches in terms of improving the performance 

of participants. Partial results of this comparison were presented by Smith et al. (2017). 

3.3.3. Organization 

Section 2 presents the theoretical framework of SBML and the decision tree induction 

process. Section 3 explains the experimental design and the application of decision tree 

modeling to the SBML dataset. Sections 4 and 5 present the performance results and 

subsequent decision trees from the SBML and LBT training and discuss the strengths and 

weaknesses of the SBML training.   

 

3.4. Theoretical Background 

3.4.1. Simulation-Based Mastery Learning 

SBML is a pedagogical approach developed in the medical education field (McGaghie et 

al. 2006; Barsuk et al. 2010; Cohen et al. 2013; Moazed et al. 2013; Barsuk et al. 2016) and 

is based on Bloom’s competence-based theory of learning for mastery. Bloom’s mastery 

learning is an instructional strategy that ensures all learners achieve competence by 

providing them with formative assessment, individualized feedback, and corrective 

measures (Bloom 1971; Gusky 2007). The SBML protocol builds on Bloom’s framework 

and uses simulation to provide instruction at the learner’s pace by gradually guiding them 
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through the learning objectives, assessing their performance, providing corrective 

feedback, and allowing them to proceed to the next level of training once they have 

demonstrated proficiency in the basic concepts. McGaghie et al. (2014, p.376) describe 

seven aspects of simulation-based mastery learning as follows:  

(1) Assess the learner’s entry level; 

(2) Provide clear learning objectives that are arranged in increasing difficulty; 

(3) Provide training exercises that are engaging and focused on each learning 

objective; 

(4) Set a minimum pass standard for each unit; 

(5) Provide a formative assessment of the learner’s progress with feedback so 

they can gauge their progress and recognize where their proficiency level is 

in relation to the standard; 

(6) Allow learners to advance to the next unit once they have reached the 

mastery standard (i.e. met or exceeded the mastery competence level); and 

(7) Encourage learners to continue their practice on the unit until they have 

achieved the mastery standard. 

 

The advantages of SBML are illustrated in the Dreyfus/Benner five-staged skill 

acquisition framework. Dreyfus (1980) and Benner (1982) described the five-staged 

framework of training as: 1) novice, 2) advanced beginner, 3) competent, 4) proficient, and 

5) expert. According to Griswold-Theodorson et al. (2015), SBML training brings learners 

from stage 2 to stage 3 on the Dreyfus/Benner skill acquisition model (i.e. from advanced 

beginner to competent). To illustrate this improvement in learning, advanced beginners 

tend to see their actions as a series of steps and are able to achieve some steps using their 

own judgement. However, advanced beginners usually require supervision for most tasks. 

Conversely, competent learners have established a working knowledge, they are able to use 
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their own judgement when responding to a problem and can usually foresee the impact of 

their actions on long-term goals (Griswold-Theodorson et al. 2015). This is an important 

distinction for instructional designers aiming to establish competent workers.  

Although the SBML pedagogical approach was been predominately reported from 

the medical education field (Cook et al. 2013; McGaghie et al. 2014; Griswold-Theodorson 

et al. 2015; Barsuk et al. 2016), it has the potential to be applied to any discipline to ensure 

learners are trained to competence. For this work, the SBML approach was applied to train 

participants in offshore emergency egress in a VE. Section 3 provides a detailed description 

of the SBML offshore egress training. 

3.4.2. Decision Tree Induction 

Among the different supervised machine learning techniques, this paper uses decision trees. 

DTs can be constructed quickly and do not require prior assumptions about the data, 

particularly when compared to other methods, such as artificial neural network or support 

vector machines (Duffy 2009). DTs were selected for their visual simplicity and diagnostic 

capabilities. From a diagnostic perspective, the DT model of participants’ decision 

strategies can determine whether participants have achieved competence. This was 

especially important for assessing the efficacy of different training methods because the 

goal of this research was to provide a training diagnostic lens for instructional designers 

who do not have domain expertise in data-mining.  

The decision tree algorithm is based on an induction process whereby 

generalizations are made based on observed phenomena (Badino 2004). Following the rule-

based methodology (Cacciabue et al. 1992), a data matrix is first created using human 
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performance data from simulation training. In this paper, information from each 

participant’s performance in VE scenarios is used to populate a data matrix consisting of 

scenarios (S1-Sn), attributes (A1-An), values (V11-Vnn), and actions (E1-En). The scenarios 

and attributes are labelled inputs to the matrix and the participants’ corresponding actions 

in the scenarios are known as classes. As depicted in Figure 3.1, the induction process 

creates generalized decision rules based on the content of the data matrix. The goal of the 

induction process is to classify the data in the matrix into groups such that the dataset in 

each group belongs to the same class. This paper uses the ID3 decision tree algorithm, 

which uses information gain as an attribute selection method, the means to classify the data 

into groups (Han et al. 2011). 

 

Figure 3.1: Decision tree development framework. 

The ID3 decision tree algorithm takes two basic inputs: the performance data matrix 

from the VE scenarios, and the list of attributes that were varied in each scenario. The 

output is a decision tree that describes a participant’s decision preferences and can also be 

used to predict their future decisions based on the value of the attributes in a given scenario. 

During the decision tree induction, data are iteratively classified using the attribute that has 

the highest information gain. The ID3 algorithm calculates the highest information gain 
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using three main calculations: 1) the entropy of the dataset, 2) the average information 

entropy of attributes, and 3) the information gain for each attribute. 

First, the entropy of the entire dataset is calculated as a measure of the uncertainty 

of the data (Duffy 2009). This is achieved by defining the data matrix training set as S, 

where S contains m class labels and Si is a subset of scenarios within the training set S. Then 

the entropy of S is calculated using Eq. 1.   

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) =  − ∑
|𝑆𝑖|

|𝑆|
log2

|𝑆𝑖|

|𝑆|

𝑚

𝑖=1

  (1) 

Second, the training set, S is partitioned using attribute A, where A has k distinct 

outcomes. This partition will result in subset Sj with j to k values.  The average information 

entropy for all attributes (A1-An) in Sj are calculated using Eq.2. 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐴) = ∑
|𝑆𝑗|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝑗)

𝑘

𝑗=1

  (2) 

 

Finally, the information gain, which is the difference in entropy before and after 

splitting the dataset on the attribute A is calculated for each attribute in the data matrix using 

Eq. 3.  

𝐺𝑎𝑖𝑛 (𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐴)  (3) 

 

The attribute with the highest information gain is selected as the root node, which 

begins the partition of the dataset. The root node represents the attribute that minimizes the 

information needed and reduces the randomness of the partitions (Han, et al. 2011). This 

process repeatedly splits the data subsets at each internal node until no attributes are left 
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for classification, or the data set is empty, or data in each group belong to the same class 

and no further classification is needed (Musharraf et al. 2018). A complete tree has branches 

to leaf nodes (that represent the class label or final action of the participant). Algorithm 1 

describes the iterative steps used to develop a decision tree. 

Algorithm 1. General algorithm to generate DT from data matrix (Han et al. 2011) 

Inputs: data matrix; attribute list; information gain attribute selection method 

Output: a decision tree 

Method:  

Start 

(8) Create a node, Ai 

(9) If all scenario examples at the current node are of the same class, then label the leaf 

nodes with the class labels and stop (e.g. branch, Vn; leaf node, En). 

(10) If the data subset at the current node is empty then label the node with the majority 

class label in its parent data set (e.g. branch, Vn; internal node, An). 

(11) If no attributes are left for further classification, then label the leaf node with the 

majority class label in the current data subset and stop (e.g. branch, Vn; leaf node, En). 

(12) For each remaining attribute An, compute the value of information gain Gain(An) 

(13) Choose the attribute with the highest Gain(An) to branch the current node. 

(14) For each branch node, go to step 2. 

End 
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3.5. Methodology 

The decision tree development and analysis framework used in this paper is depicted in 

Figure 3.2. First, a pedagogical experiment was conducted in the VE with 55 participants. 

These participants were trained using the SBML approach. The participants’ performance 

data was collected and divided into two datasets: a training and a testing dataset. The 

training data was stored in a repository in the form of a data matrix. The test scenarios were 

set aside to form the testing dataset. The data matrix was used to train the DT algorithm 

and form the decision trees, which represent participants’ behavioural pattern for route 

selection (Musharraf et al. 2018). The testing dataset was used to calculate the prediction 

accuracy of the newly formed DTs. The resulting DTs were used to compare participants’ 

understanding of the training with the intended learning objectives and to assess the 

efficacy of different training techniques. Section 3.1 describes the experimental design, 

including a description of the participants, the AVERT simulator, and how the SBML 

training was applied to VE. Section 3.2 describes the decision tree modeling from the 

SBML data, including the development of the data matrices, how scenario frames were 

used from dynamic scenarios, and an illustration of the DT development.  
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Figure 3.2: Process used to develop decision trees and assess training efficacy (after 

Musharraf et al. 2018). 

3.5.1. Experimental Design 

The DT methodology was applied to the new SBML dataset as a means to evaluate the 

effectiveness of this training approach. The efficacy of the SBML training program can be 

determined in three ways: 1) analyzing the SBML trained participants’ performance scores 

in the test scenarios, 2) by comparing the decision tree depiction of the participant’s 

understanding of emergency egress to the intended learning objectives, and 3) by 

comparing the SBML decision strategies with those identified by Musharraf et al. (2018) 

for the LBT experiment. The two decision tree comparisons are explored in this paper. This 

section describes the participants, AVERT simulator, how the SBML training was applied 

to AVERT, and the process used to develop the DTs. 
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3.5.1.1. Participants 

Two separate experiments were used to test the SBML and LBT pedagogical approaches. 

Fifty-five naïve participants were trained using the SBML approach (42 participants were 

male and 13 participants were female). The SBML participants’ ages ranged from 18-54 

years (M = 27 years, SD = ± 7.9 years). The LBT experiment had 36 participants. These 

participants were divided into two treatment groups for different training exposures: LBT1, 

which represented multiple training exposures, and LBT2, which represented a single 

training exposure. This paper includes the results of 17 participants from LBT1 (13 

participants were male and 4 participants were female). The LBT participants’ ages ranged 

from 19-39 years (M = 27 years, SD = ± 5.0 years).  All participants had no prior offshore 

experience and no exposure to the simulator prior to the study. The majority of participants 

for both experiments were undergraduate and graduate students. 

3.5.1.2. AVERT Simulator 

Both the SBML and LBT experiments trained participants in offshore emergency egress 

using the All-hands Virtual Emergency Response Trainer (AVERT). AVERT is a first-

person perspective desktop VE that provides participants with a naturalistic representation 

of an offshore Floating Production Storage and Offloading (FPSO) vessel (House et al., 

2014). Participants use a gamepad controller (Xbox) to control their avatar of an offshore 

worker and interact with the virtual FPSO platform. Participants were provided with 

general instructions by reading short tutorial slides before starting the in-simulation training 

scenarios. The current configuration of AVERT is intended to train general personnel in 

basic offshore emergency egress duties. General personnel are individuals whose 
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responsibility during an emergency is to muster at their designated muster stations. The 

core learning objectives include familiarity with the platform layout, emergency alarms, 

egress routes, safety protocols, and mustering procedures.  

3.5.1.3. SBML applied to AVERT  

The SBML training involved an initial habituation stage and four training and testing 

modules as depicted in Figure 3.3. The habituation stage trained participants on how to use 

the AVERT controls and introduced participants to the offshore platform. Subsequent to 

the habituation stage, participants proceeded to the training and testing modules. Each 

module was designed to train specific learning objectives and gradually taught participants 

the platform layout, how to recognize alarms, what to do in the event of blocked routes, 

and how to assess the situation and avoid hazards while evacuating the platform. The 

learning objectives were developed with guidance from subject matter experts to address 

both spatial and procedural knowledge. 
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Figure 3.3: SBML training and testing stages 

Each training and testing module involved 1 to 3 training scenarios and 1 test 

scenario. As shown in Figure 3.3, the SBML training consisted of 12 scenarios in total (8 

practice and 4 testing scenarios). As part of the SBML training, participants were required 

to demonstrate competence in each scenario before they could advance to scenarios that 

were more complex. Module 1 taught participants the platform layout and all the available 

egress routes from the cabin. Participants were tested on their spatial knowledge in scenario 

T1 by asking them to meet their supervisor at their designated lifeboat station. Module 2 

taught participants the different alarm types on the platform: general platform alarm (GPA), 

prepare to abandon platform alarm (PAPA), and mustering procedures.  Participants were 

tested on their spatial and procedural knowledge in scenario T2 by asking them to safely 

respond to a muster drill. Module 3 reminded participants of the alternative routes from the 

cabin to ensure they knew the available route options in the event their egress route was 
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obstructed. Module 4 taught participants the emergency protocols necessary to respond to 

emergency scenarios with hazards such as smoke and fire. Test scenarios T3 and T4 tested 

the participants’ ability to respond to emergency conditions and re-route if their planned 

route was blocked by hazards.   

After each training module in AVERT, the participants’ performance was assessed 

using test scenarios. In the scenarios, participants were tasked with responding to muster 

drills or emergency alarms and selecting the safest egress route from their cabin. There 

were two main routes for participants to choose from: primary or secondary. Each route 

had multiple decision points along the path. Participants were instructed to listen to the 

alarm, pay attention to the public address (PA) announcements, and follow the safest route 

to their muster or lifeboat station. Participants were assessed on their ability to recognize 

the alarm, take their safety equipment, follow the safest egress route, avoid exposure to 

hazards, reach the correct muster location, and register at the temporary safe refuge area. 

Participants received corrective feedback on their performance after each scenario attempt. 

To achieve demonstrated competence, some participants required multiple attempts at the 

scenarios. 

3.5.2. Decision Tree Modeling for SBML Data 

The DT development and analysis, as depicted in Figure 3.2, involves six steps. First, the 

human performance data from the SBML virtual environment scenarios were separated into 

training and testing data sets. Second, the training data set was used to develop a data matrix 

consisting of scenarios, attributes, values, and actions. Third, the decision tree algorithm 

was applied to the data matrix to identify each participant’s problem-solving strategies. 
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Once the DTs were generated, the fourth step involved using the testing data set to check 

the prediction accuracy of the DTs. In step five, the resulting SBML decision trees of each 

participant were compared to the intended learning objectives for each test scenario. 

Finally, in step six, the SBML decision strategies were compared with the DTs generated 

using data from the earlier LBT experiment (Musharraf et al., 2018). 

3.5.2.1. Data Collected from the VE Scenarios 

As participants completed the VE scenarios, their performance data was collected. 

Participants’ performance during the scenarios was recorded in AVERT report files for 

each scenario. Observation logs were kept by the researcher to note any details that were 

not recorded in the automated report files. The participants’ data was organized into 

training and testing datasets. Of the twelve scenarios, 11 were used for the decision tree 

development. One training scenario was an orientation scenario and was not used in the 

analysis. Among the remaining 11 scenarios, 9 were used to populate the data matrix that 

was used to train the decision tree algorithm and form the DTs. These scenarios are referred 

to as the training dataset. Two test scenarios were set aside to form the testing dataset. The 

testing dataset was used to calculate the prediction accuracy of the DTs. 

3.5.2.2. Data Matrix 

A two-dimensional data matrix (DM) was created using each participant’s performance in 

the training scenarios. To populate the matrix, data was collected from the AVERT report 

files and from observations logged in-situ. The data matrix consisted of a combination of 

programmed attributes and the participants’ actions. The programmed scenario attributes 
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were varied for each scenario, such as the end location, alarm type, information presented 

in the PA announcements, presence of hazards, and location of obstructed routes. For each 

scenario, the data matrix included a record of the participants’ actions, such as their route 

choices in the current and previous scenarios. Table 3.1 lists the attributes varied in the 

scenarios and their possible values.  

Table 3.1: Description of scenario attributes. 

Attribute Possible Values 

End location Muster, Lifeboat 

Alarm type None, General Platform Alarm (GPA), Prepare to 

Abandon Platform Alarm (PAPA) 

Hazard presence No, Yes 

Route directed by PA None, Primary route, Secondary route 

Obstructed route None, Primary route, Secondary route 

Previous route taken N/A, Primary route, Secondary route 
 

The data matrices were developed to correspond with the training scenarios that 

were completed in two training modules: module 2 (Alarm Recognition) and module 4 

(Assessing the Situation). The first half of the scenarios were used to generate the data 

matrix for module 2 (denoted DM1). The full suite of training scenarios was used for the 

data matrix to represent module 4 (denoted DM2).  Two scenarios, T2 and T4, were selected 

to test the classification accuracy of the DTs for these modules and are described in Table 

3.2. Test scenario T2 occurred at the halfway mark of the SBML training. By T2, 

participants had familiarized themselves with the platform layout, the different alarm types, 

and the mustering procedures at the temporary safe refuge area. Test scenario T4 occurred 

at the end of the SBML training. By T4, participants were able to assess the emergency, 

listen to cues in the PA announcement, recognize the tenability of the egress routes, and re-
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route if the primary or secondary egress route was obstructed due to poor lighting or other 

barriers.  

Table 3.2: Description of the test scenarios (After Smith & Veitch, 2018) 

Test 

Scenario  
Scenario Description 

T2 

Muster Drill 

This scenario assessed the participants’ understanding of alarms and muster 

procedures. Participants responded to a muster drill (General Platform 

Alarm). During this alarm, all personnel were required to collect their safety 

equipment and muster at their primary muster station. 
 

T4 

Emergency 

Situation 

This scenario assessed the participants’ ability to avoid hazards and follow 

the safest route to their lifeboat station. Participants responded to an 

emergency involving a General Platform Alarm due to fire in the galley. The 

fire compromised the muster station with smoke and the situation escalated 

to a Prepare to Abandon Platform Alarm. Initially all personnel were required 

to go to the muster station but were forced to re-route to the lifeboat station 

because of the compromised muster station. 
 

 

Based on the value of the scenario attributes, the participant’s goal was to select a 

safe egress route. Since the SBML training required participants to reattempt the scenarios 

until they demonstrated competence, the data matrix was updated after each attempt and 

only the participant’s successful final attempt was stored in the data matrix. Table 3.3 

shows the state of the data matrix for a sample participant after finishing all of the training 

modules. Each row in the matrix contains the different attribute values for the scenario and 

the corresponding route choice.  
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Table 3.3: Sample data matrix for training modules 2 (DM1) and 4 (DM1 and DM2). 

Category Scenario 

Attributes 
Route 

choice End 

Location 
Alarm 

Route by 

PA 
Hazard 

Blocked 

Route 

Previous 

Route 

 

 

 

DM1 

P1 Muster None Primary No None N/A Primary 

P3 (F1) Lifeboat None Primary No None Primary Primary 

P3 (F2) Muster None Secondary No None Primary Secondary 

T1  Lifeboat None None No None Secondary Primary 

P4 Muster GPA Primary No None Primary Primary 

P5 Muster GPA None No None Primary Primary 

Test 1 T2 Muster GPA None No None Primary Primary 

DM2 

P6  Lifeboat PAPA Primary No Secondary Primary Primary 

T3 Muster GPA Secondary No Primary Primary Secondary 

P7 Lifeboat PAPA Secondary Yes Primary Secondary Secondary 

P8 (F1) Muster GPA Primary Yes Secondary Secondary Primary 

P8 (F2) Lifeboat PAPA Primary Yes Secondary Secondary Primary 

 T4 (F1) Muster GPA Secondary Yes Primary Primary Secondary 

Test 2 T4 (F2) Lifeboat GPA Secondary Yes Primary Primary Secondary 

 T4 (F3) Lifeboat PAPA Secondary Yes Primary Primary Secondary 

* Highlighted rows represent the scenarios used to test the DTs classification accuracy. 

 

As a basic example, scenario P4 from Table 3.3 is a muster situation in which 

participants practiced their egress routes and muster procedures. For a sample participant 

(A45), the scenario attributes were recorded as: End location = Muster; Alarm type = GPA; 

Route directed by PA = Primary, Hazard presence = No, Blocked route = none, and 

Previous route = Primary. In this case, the participant’s choice of route was the primary 

route. 

3.5.2.3. Scenario Frames  

Complex emergency scenarios were dynamic in the sense that the value of some attributes 

changed during the scenarios. To capture the dynamic aspect, these scenarios were divided 

into multiple frames so that the value of the attributes in each frame remained static (e.g. 

the first frame F1 depicted the initial conditions and the second frame F2 depicted the 
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changed conditions of the scenario). Consequently, many of the emergency scenarios were 

multi-frames scenarios. Figure 3.4 shows an example of a two-framed training scenario 

(P8) and how the data matrix was updated to reflect the change in scenario attributes.  

 

Figure 3.4: Example of scenario frames 1 and 2 for P8. 

As a dynamic example, scenario P8 is an emergency in which participants 

responded to changing conditions. For a sample participant (A16), the scenario attributes 

in F1 were initially recorded as: End location = Muster; Alarm type = GPA; Route directed 

by PA = None, Hazard presence = No, Blocked route = None, and Previous route = 

Secondary. However, the severity of the situation escalated in F2 and some attributes 

changed: End location = Lifeboat; Alarm type = PAPA, Route directed by PA = Primary, 

Hazard presence = Yes, and Blocked route = Secondary. In this case, the participant’s 

choice of route was originally the primary route, but they re-routed to the secondary route 

when the value of the attributes changed.  
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3.5.2.4. Decision Trees 

The data matrix generated in the previous step was used as an input for the decision tree 

algorithm. The resulting DTs were used to visualize how participants formed emergency 

egress decision rules based on the content in the data matrix. The DTs provided insight as 

to which attributes had the biggest impact on participants’ decision-making. Figure 3.5 

shows a decision tree based on the matrix in Table 3.3, sample participant A45.  

 

 

Figure 3.5: Example decision tree developed after DM1 and DM2 in Table 3. 

 

The DT is based on evidence from the participant’s performance in a series of 

virtual scenarios. The DT can be used to predict a participant’s choice of route for a given 

future scenario. In this case, the participant’s route selection was decided based on their 

understanding of the PA announcement. In future scenarios, if the PA directs them to a 

safest route then the participant will likely take that route. If the PA does not provide any 

information regarding the safest route, then the participant’s choice will likely default to 

their primary egress route. 

3.5.2.5. Testing the DTs Classification Accuracy 

To evaluate the classification accuracy of the DT models, the predicted routes of the DTs 

for the two test scenarios (T2 and T4) were compared to the routes actually taken by the 
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participants. The classification accuracy was calculated based on the average number of 

successful matches between the outcomes predicted by the decision tree and the observed 

outcomes. For the muster drill scenario (T2), the decision tree accurately predicted all the 

participants’ behaviour. Errors in classification occurred for the emergency evacuation 

scenario (T4), where the DTs were able to predict the route selection with an accuracy of 

96% on average. This classification accuracy shows the predictive potential of the DTs.  

 

3.6. Results & Discussion 

The efficacy of the SBML training was assessed using three measures: 1) analyzing the 

SBML trained participants’ performance scores in the test scenarios, 2) comparing the 

participants’ DTs to the intended learning objectives, and 3) comparing the SBML groups’ 

decision strategies with those developed by the LBT group. The following subsections 

summarize the findings. 

3.6.1. Empirical Results of SBML Training  

Table 3.4 shows the percentage of participants who successfully completed each learning 

objective for test scenarios T2 and T4. These results compare the SBML trained 

participants’ ability to respond to emergencies against the LBT trained participants.  

As shown in Table 3.4, there were differences in the SBML participants’ 

compliance for both the spatial and procedural learning objectives when compared to the 

LBT participants’ performance in the same scenarios. Overall, the training that SBML 

participants received helped improve their spatial competence (LO2, LO3, and LO4) and 

their procedural safety compliance (LO8 and LO9). 
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Table 3.4: Percentage of successful participants by learning objective (after Smith & 

Veitch, 2018). 

Performance Measures 

T2 

Muster Drill 

T4 

Emergency Situation 

SBML 

n = 55 

LBT1 

n = 17 

SBML 

n = 55 

LBT1 

n = 17 

Spatial Performance:     

LO1. Reached correct location 100% 94% 93% 94% 

LO2. Correctly selected and followed safest 

egress route  
98% 88% 55% 35% 

LO3. Re-routed based on PA information n/a n/a 22% 0% 

LO4. Re-routed if path blocked (encountered 

hazard) 
n/a n/a 16% 18% 

LO5. Did not re-route (opened door to hazard 

and/or went through the hazard) 
n/a n/a 7% 47% 

Procedural Performance:     

LO6. Recognized alarm & registered at TSR 98% 94% 100% 94% 

LO7. Avoided Hazard Exposure n/a n/a 93% 53% 

LO8. Avoided Running 100% 18% 100% 24% 

LO9. Closed all fire and watertight doors 96% 59% 93% 65% 

n/a = not applicable. Some performance metrics are not applicable for all test scenarios.  

 

From a spatial competence perspective, both the SBML and LBT trained groups 

were able to locate the correct muster location (LO1) and follow the egress routes (LO2) in 

benign conditions. This is shown in the results from the muster drill scenario (T2 in Table 

3.4).  In the T2 scenario, 55 participants in the SBML group reached the correct muster 

station and 54 participants (representing 98%) were able to follow the safest egress route. 

For the LBT group, 16 participants reached the correct location and 15 (representing 88%) 

were able to follow the safest route. The main spatial competence differences between the 

SBML and LBT groups were observed in the emergency scenario (T4 in Table 3.4), 

specifically in route selection (LO2) and rerouting when the egress path was blocked by 

hazards (LO3, LO4, and LO5). Thirty participants (representing 55%) in the SBML group 

selected the safest route while only six participants (representing 35%) in the LBT group 
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selected the safest route from onset of the emergency. Twelve participants (representing 

22%) in the SBML group were able to avoid hazards by using information from PA 

announcement to re-route to the safest egress route. Nine participants (representing 16%) 

in the SBML group were forced to re-route when their path was blocked while three 

participants (representing 18%) in the LBT group were forced to re-route when they 

encountered the hazard blocking their path. Four participants from the SBML group 

(representing 7%) and eight participants from the LBT group (representing 47%) continued 

on the unsafe route and went directly through the smoke hazard.  

This work focused mainly on the spatial learning objectives LO1 to LO5 in Table 

3.4. However, large differences were also observed between the trained groups in the 

procedural performance, specifically learning objectives LO7, LO8, and LO9 (i.e. avoiding 

hazards, refraining from running, and remembering to close the fire and watertight doors). 

3.6.2. Comparing the SBML group’s DTs to the intended learning objectives 

The DTs were used to judge the efficacy of the SBML training by comparing the SBML 

trained group’s DTs to the intended learning objectives at two stages of the training 

program. The SBML trained participants’ DTs were developed using data from modules 2 

and 4 to see how the trees evolved as more training content was added to the participants’ 

data repository. The different DTs for the SBML training are summarized in Table 3.5.  
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Table 3.5: Types of DTs formed after SBML training modules 2 and 4 (DM1 & DM2). 

Type Decision Rules 
% Participants 

Learning 

Objective 

Comparison DM1 DM2 

1 

 

73% 
(40 

participants) 

64% 
(35 

participants) 
Correct 

2 

 

27% 
(15 

participants) 

16% 
(9 

participants) 
Correct 

3.1 

 

0% 
5% 
(3 

participants) 
Correct 

3.2 

 
*One participant A10 had a similar DT but reversed rules for 

PAPA & None 

0% 
5% 
(3 

participants) 
Correct 

4 

 

0% 
2% 
(1 

participant) 
Incomplete 
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5 

 

0% 
5% 
(3 

participants) 
Incorrect 

6 

 

0% 
2% 
(1 

participant) 
Incorrect 

 

3.6.2.1. Alarm Recognition Decision Tree (DM1) 

In the muster drill (T2) and the emergency (T4), the alarm type indicated the severity of 

the situation and dictated the final muster location (e.g. muster or lifeboat station). During 

the GPA alarm, personnel were required to gather at the muster station. During the PAPA 

alarm, personnel were required to muster at the lifeboat station. The main learning objective 

for module 2 was for participants to listen to the alarm and relevant instructions from the 

PA announcement and take the safest route available in response to the situation. Table 3.5, 

column DM1 shows the intended decision tree that was taught for a muster drill situation 

(denoted as Type 1).  Seventy-three percent of participants achieved this type of decision 

tree before the test scenario (T2). The remaining 27% of participants also formed their route 

selection based on the PA announcement, but when the PA provided no route information, 
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they relied on their intended end location, which was dictated by the alarm type. For these 

participants, the muster station meant taking the primary route and the lifeboat station 

meant taking their secondary route (denoted as Type 2). The formation of both DTs (Type 

1 and 2) after module 2 demonstrated that all participants achieved the intended learning 

objectives and were adequately prepared to respond to the muster drill test scenario (T2).  

3.6.2.2. Assess Emergency Situation Decision Tree (DM2) 

Building on earlier learning objectives, module 4 trained participants how to assess the 

situation, avoid hazards, and follow the safest egress path to the designated muster or 

lifeboat station. In an emergency, if personnel encountered an obstructed route, they were 

required to re-route in response to the hazardous situation. A variety of DTs were developed 

after module 4. Table 3.5, column DM2 shows that there were six different strategies used 

by participants at the end of training. Sixty-four percent of participants continued to use the 

same decision tree in which they selected their egress route based on information from the 

PA (Type 1). Sixteen percent of participants continued to use the strategy in which the end 

location (dictated by the alarm type) indicated the route choice in the absence of a PA (Type 

2). Ten percent of participants followed the alarm type and PA (Type 3). If no clear route 

direction was provided over the PA, the participants would link the alarm type to an egress 

route. For example, if the GPA or PAPA alarm sounded, the participants would take the 

primary route. However, in the event of no alarm, they would take their secondary route. 

The remaining 10% of participants demonstrated more varied behaviours. In these cases, 

when the PA did not provide a route direction, some individuals put emphasis on different 

attributes to make their decision. One participant’s data (representing 2%) formed a correct 
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but incomplete DT where the route decision was based solely on whether the route was 

obstructed or not (Type 4). The remaining four participants’ data (representing 8%) formed 

incorrect DTs that wrongly considered the presence of hazards (Type 5) and the previous 

route taken (Type 6).  

When comparing the DT variations with the learning objectives, some weaknesses 

in the training and the participants were identified. The formation of an incomplete DT (e.g. 

Type 4) suggests that this participant required more targeted scenarios to focus on the 

missing decision rules (e.g. additional practice variations for situations to create the 

intended PA decision rules). The incorrect DTs (e.g. Types 5 and 6) show that some 

participants (7%) require additional practice opportunities and feedback to ensure they 

reach the intended competence. If incorrect trees persist, then it is possible the participants 

are not suitable for VE training or are not taking the training seriously (e.g. Type 6 where 

the participant’s decision involved their previous route taken). 

3.6.2.3. DTs In-depth Analysis of SBML Training 

The decision tree analysis revealed information about the participants’ performance that 

would otherwise not be apparent when looking solely at performance metrics in relation to 

the learning objectives. The diagnostic capabilities of DTs allowed for a more in-depth 

performance analysis because DTs can identify the strengths and weaknesses of 

participants’ decision-making strategies.  

The majority of participants’ DTs matched the intended learning objectives (100% 

for DM1 and 90% for DM2). These participants, whose data formed DT types 1, 2, and 3, 

demonstrated the decision-making skills taught by the SBML training program. They were 
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able to identify attributes that were critical to success and come up with strategies that led 

to safe egress. The DTs also provided indications of deficiencies in the training, such as the 

over reliance on PA announcements during emergencies, and the need to provide 

participants with sufficient spatial knowledge and re-routing strategies. For example, the 

DTs of some participants revealed that their decision strategies centered on the PA 

announcement (Types 1, 2, and 3). In the absence of a PA announcement, some participants 

focused their attention on a variety of different attributes (e.g. presence of hazards), which 

were useful in terms of their performance in making effective egress decisions. However, 

this variability in DTs formation due to missing or unclear PA announcements provides 

valuable information on whether the decision-making skills taught were sufficient for all 

emergencies. These are areas that could be improved in future iterations of the training. 

Adaptive training could recognize these deficiencies in real-time and focus further training 

on teaching participants what to do in the event that there is no PA announcement or 

instructions on what is happening during the emergency.  

3.6.3. Comparison of SBML and LBT Trees 

As another lens through which to observe the training efficacy of the SBML approach, the 

DT results from both experiments were compared directly. The DTs modelled from the 

SBML training data are summarized in Table 3.6.  The DTs modelled from the LBT 

training data are summarized in Table 3.7. 
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Table 3.6: Resulting SBML DTs for all 55 participants after finishing modules 2 and 

4 (DM1 & DM2). 

% 

Participants  

Decision rules from DM1 

(until test scenario T2) 

Decision rules from DM2 

(until test scenario T4) 

64% 
(35 

participants) 

 

Remained the same. 

 

16% 
(9 

participants) 

 

Remained the same. 

 

5% 
(3 

participants) 

 

 

 

 

4% 
(2 

participants) 

 
 

2% 
(1 

participant) 

 

 

2% 
(1 

participant) 
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4% 
(2 

participants) 

 

 

2% 
(1 

participant) 

  

2% 
(1 

participant) 
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Table 3.7: Resulting LBT DTs for all 17 participants for test scenarios T2 and T4 

(Musharraf et al., 2018). 

% 

Participants  

Decision rules from DM1  

(until test scenario T2) 

Decision rules from DM2  

(until test scenario T4) 

*29% 
(5 

participants) 

 

 

 
Remained the same. 

 

 

*One participant had a slightly different DT for part 2. Depending 

on whether the participant understood the PA, they either followed 
the same DT or made a choice based on the obstructed route. If no 

route was obstructed, they would take the primary route. However, 

if the primary route was obstructed then they would take the 
secondary route.  

17% 
(3 

participants) 
 

 

 

6% 
(1 

participant) 

 

 

6% 
(1 

participant) 

 

 

6% 
(1 

participant) 
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6% 
(1 

participant) 

At any condition, the participant’s choice of route was 

the primary route. 

 

6% 

(1 

participant) 

At any condition, the participant’s choice of route was 

the secondary route. 
Remained the same. 

*24% 
(4 

participants) 

No behavioral pattern or strategy was identified. The participants’ choice of route was random and as a result the decision 
tree could not provide any more generalization than the data matrix. *One participant had trouble with the controls to 

open/close doors and chose a route with fewer doors. This participant was excluded because the behaviour specific to 

AVERT and not realistic to real evacuations. 

 

Comparing the resulting DTs generated from the SBML and LBT data showed that 

the different training methods influenced the participants’ egress strategies. Over the course 

of the SBML training, the SBML-trained participants’ behaviours in responding to 

emergencies gradually converged to a few expected DTs (with the exception of a few 

participants). Ninety percent of SBML trained participants achieved the intended learning 

objectives as demonstrated by the DTs (Types 1, 2, and 3). Only 10% of SBML trained 

participants displayed varied behaviours that could be addressed with targeted training. 

Conversely, the DTs of the LBT-trained participants’ behaviours for the emergency 

response scenarios diverged. Only twenty-nine percent of LBT trained participants 

achieved the intended learning objectives as demonstrated by the DTs (Type 1). Many of 

the remaining LBT participants had a poor understanding of the egress procedures and were 

not compliant. Thirty-five percent of the LBT participants’ data presented DT strategies 

that included special conditions for PA announcements, alarm type, obstructed routes, and 

hazards. The DTs for two participants (representing 12% of LBT trained participants) 

showed how inflexible they were on their route choice. For example, their DT represented 

behaviours of taking the same route regardless of the emergency condition. For twenty-
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four percent of LBT trained participants, the choice of route was random and the DTs could 

not provide any more generalization than the data matrix. Overall, the LBT participants’ 

DTs weighted attributes of the scenario that were not useful for making effective egress 

decisions (Musharraf et al., 2018). The variability and incorrect behaviours observed in the 

LBT decision trees show that this method of training was inadequate for preparing 

participants for emergency conditions. 

The SBML approach resulted in better route selection strategies compared to the 

LBT approach. As shown in section 4.2, the majority of the observed route strategies for 

the SBML trained participants (representing 90%) led to the successful completion of the 

test emergency scenario. Conversely, the majority of LBT trained participants (representing 

71%), displayed incomplete or incorrect DTs. Therefore, the SBML training resulted in 

higher safety compliance and more concise DTs than the LBT training. This indicates that 

participants from SBML training were generally better equipped for managing the 

emergency scenarios.  

 

3.7. Conclusion 

The training efficacy of two pedagogical approaches, SBML and LBT, were assessed 

experimentally using performance outcomes and decision tree modeling in the context of 

training naïve personnel for basic emergency duties. Overall, the decision tree modeling 

provided a more comprehensive analysis of the participants’ route performance than the 

conventional performance outcomes. In terms of measured performance, the SBML 

pedagogical approach was clearly better than the alternative LBT approach. The 
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comparison of performance metrics in both studies indicated that the SBML-trained 

participants performed better than the LBT-trained participants did; however, the 

performance metrics did not offer information as to why one group outperformed the other. 

Conversely, the DTs generated by the participants’ data in both studies provided an 

explanation as to how the route selection performance in the SBML and LBT trained groups 

differed. The DTs showed that when selecting egress routes in virtual emergencies the 

decision-making strategies of the SBML-trained participants were more consistent with the 

intended learning objectives and represented safer behaviours than the DT strategies of 

LBT-trained participants.  

This paper demonstrated the diagnostic capabilities of DTs as training assessment 

tools. In both training cases, the DTs provided a convenient visual representation of the 

individual strategies employed by participants. As illustrated in this work, this feature of 

the DTs can be useful for identifying systemic deficiencies in training (and even in how 

procedures are designed). They can also be used to diagnose the strengths and weaknesses 

of individual trainees, a capability that has additional value in terms of adapting training to 

meet the needs of individuals. This adaptive training potential could be realized by coupling 

the SBML approach to a virtual environment mode of training in which performance can 

be tracked and assessed automatically and in real-time, thereby providing the data required 

by a built-in decision tree diagnostic tool. For this to work in practice, the training scenarios 

must be carefully designed, as they are, in effect, experiment conditions for the diagnostic 

DTs. Additional training scenarios would also be required to provide sufficiently specific 

pathways for adaptive training. 
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Finally, the DTs were shown to have considerable predictive capability. This feature 

could also be useful in terms of pedagogical strategies, such as determining when personnel 

are likely to be sufficiently capable of responding to a wide variety of potential 

emergencies, without necessarily training them for all potential eventualities.  
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4.2. Abstract 

The retention of safety-critical egress skills is an essential part of emergency preparedness 

on offshore petroleum platforms. Virtual environment (VE) training has been shown to be 

an effective method for teaching basic onboard familiarization and offshore emergency 

evacuation procedures. This technology has the potential to train crews before they are 

deployed offshore. This paper investigates the long-term retention and maintenance of 
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emergency egress competence obtained using a virtual offshore platform. In particular, the 

research aimed to answer two questions: 1) what egress skills can be remembered after a 

period of 6-months? and 2) how effective is a VE-based retraining program at maintaining 

egress skills? A two-phased experiment was designed to first teach basic egress skills and 

subsequently assess skill retention after a 6 to 9-month period. The first phase of the 

experiment used a simulation-based mastery learning (SBML) pedagogical approach to 

teach naïve subjects the necessary spatial and procedural skills to evacuate safely. In the 

second phase of the experiment, the same 36 participants were tested after the retention 

interval on their ability to respond to a series of egress test scenarios. Participants who had 

trouble remembering the egress procedures were provided retraining on deficient skills. 

The results of the experiment indicate that emergency egress skills (both spatial and 

procedural knowledge) are susceptible to skill decay. This paper will highlight the skills 

that were most susceptible to skill fade after a period of 6 to 9-months and discuss the 

efficacy of the retraining participants received to return to competence.  

 

4.3. Introduction 

Offshore emergencies require the prompt response of prepared crews. Emergencies do not 

afford second chances. Thus, the retention of safety-critical emergency response skills is 

an essential part of an offshore emergency preparedness plan. Offshore emergency 

response teams rely on individuals to follow egress protocols to ensure that all personnel 

onboard have been accounted for in an emergency.  
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Workers typically acquire egress skills through conventional safety induction 

training on their first deployment offshore. This training involves watching safety videos 

followed by a supervised orientation period for their own safety. Crew are typically 

required to participate in induction training for a designated time period, but no formal 

assessment is performed to assure competence has been achieved. This form of training 

does not address individual learning requirements and allows learning outcomes to vary 

amongst inductees. To maintain competence while offshore, workers are required to 

perform weekly muster drills and quarterly evacuation drills.  Due to safety constraints, the 

drills are not representative of real emergency conditions. This disconnect between drills 

and emergencies can result in negative training transfer (Wickens et al. 2013).  

According to industry standards (e.g. CAPP, 2015), personnel who return to work 

on a platform after an extended period (e.g. 6 months or more) are required to undergo 

safety training again, regardless of their previous experience. This requirement is based on 

the understanding that egress skills deteriorate over time without practice. The mandated 

recurrency schedule is not informed by the individual skill retention abilities. The lack of 

personalized training can result in a recurrency schedule that is too infrequent for some, 

causing training to be forgotten, or conversely, a recurrency cycle that is too frequent for 

others, which can undermine the training by causing worker complacency. 

Virtual environment (VE) training can address weaknesses in conventional safety 

training and provide a way to practice emergency egress skills regularly, unconstrained by 

safety, logistical, or financial concerns. VEs are effective at teaching basic onboard 

familiarization and emergency evacuation procedures for offshore petroleum platforms 

(Smith and Veitch 2018). Specifically, VE training can provide assurance that all 
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individuals have at least achieved the same minimum standard of competence. VE training 

also provides practice in situations that muster drills onboard cannot replicate, such as the 

high-stress, dynamic, and hazardous conditions of emergency situations.  

For safety-critical skills, training is only effective if the skills can be recalled and 

used in a real emergency. This brings to question: 1) can egress skills acquired using VE 

training be remembered after a period of 6-months without any other form of training? 2) 

can a VE-based retraining program help maintain egress skills by returning participants to 

competence? To inform these questions, this paper presents a two-phased experiment to 

investigate the long-term retention of offshore egress skills attained using a virtual 

environment.  

The first phase, skill acquisition, was conducted using the simulation-based mastery 

learning (SBML) pedagogical framework to teach virtual offshore emergency egress 

training (Smith and Veitch 2018). Fifty-five novice participants participated in the skill 

acquisition phase of the experiment. All participants who completed the SBML training 

achieved the targeted performance outcomes and demonstrated competence at the end of 

the program. Smith and Veitch (2018) compared the SBML approach to a benchmark 

training program called lecture-based teaching (LBT). The LBT training program 

represented the existing safety protocols used offshore for egress training (Smith 2015). 

The results of this comparison showed that SBML training was more effective at bringing 

all participants to competence and did so in less time than the LBT methods. This phase of 

the experiment established a benchmark of competent performance and corresponding 

times required to achieve competence (i.e. for comparison with the retention phase 

measurements). All fifty-five participants were invited to return to participate in the second 
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phase, skill retention, of the experiment. The second phase evaluated the retention of skills 

attained by the same participants who completed virtual offshore egress training in the first 

phase SBML experiments. After the retention interval of 6 to 9-months, thirty-six 

participants returned to complete the same test scenarios used in the SBML experiment. 

The participants’ performance in the test scenarios at the end of the skill acquisition phase 

was compared to their first attempt performance in the same test scenarios at the beginning 

of the retention phase. This comparison assesses the retention of egress skills required to 

evacuate an offshore platform in an emergency. Participants in the retention study who 

failed to complete the test scenarios were retrained using exercises that focused on the 

particular skills they failed to demonstrate. The impact of retraining was measured to 

determine how well retraining improved participants’ performance in subsequent test 

scenarios. The goals of this research were to: 1) determine if egress skills were retained for 

a period of 6 months without other training interventions, 2) identify the learning objectives 

that were more susceptible to skill degradation, and 3) determine the efficacy of the 

retraining in bringing participants back to competence. All three aspects are discussed in 

this paper.  

 

4.4. Overview of Factors that Influence Skill Retention  

Many factors influence how well skills are remembered. Arthur et al. (1998) performed a 

meta-analysis of skill retention literature and described seven factors that influence skill 

decay and retention: i) length of time lapsed of non-skill use during retention interval, ii) 

the quality of the original skill acquisition and the amount of overlearning that occurred; 
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iii) skill type and task characteristics (e.g. physical versus cognitive tasks); iv) the methods 

used to test learning and retention; v) conditions of retrieval or specificity of training (i.e. 

the similarity of learning and testing contexts); vi) the instructional strategies or methods 

used to teach the skills; and vii) individual differences in acquiring and retaining skills.  

Sanli and Carnahan (2018) in their review of multi-day training courses in medical, 

military, marine and offshore safety fields discussed similar factors that influence skill 

retention.  According to Sanli and Carnahan (2018), the factors that influence skill and 

knowledge retention in these safety-critical domains include: a) type of skill (e.g. practical 

and declarative knowledge); b) task complexity and difficulty (e.g. number of steps and 

order of tasks); c) individual differences and the experience of the learner; d) specificity of 

training (i.e. closeness of the learning and testing contexts); e) the amount of practice and 

on the job exposure provided; and f) the frequency that refresher interventions are 

delivered. 

Three main topics will be discussed in the context of virtual offshore egress training: 

1) the influence of instructional or pedagogical strategies on skill acquisition, 2) the impact 

of skill type on forgetting (such as spatial, declarative, and procedural knowledge), and 3) 

the frequency of practice (e.g. how often recurrency training is provided and the length of 

time that passes between training sessions).  

4.4.1. Strategies for Improved Skill Acquisition  

In emergency response domains, the amount of training provided is typically dictated by 

fixed timelines and does not take into consideration individual differences in learning. 

Training dictated by a fixed timeline refers to limiting the training material and/or 
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opportunities to practice to within the allocated time of the course. In the medical field, 

fixed training times have been found to cause performance outcomes to vary (Cook et al. 

2013; Gallagher et al. 2005). To assure skills are properly acquired in the first place, 

training programs are shifting from time-based frameworks to competence-based models. 

Virtual environment training using the pedagogical frameworks developed by the medical 

education field can assist offshore operators in transitioning from a fixed-time training 

model to competence-based training. For example, McGaghie et al. (2014) developed the 

simulation-based mastery learning (SBML) pedagogical framework for the medical 

education field.  The SBML method accommodates different learning styles and paces by 

ensuring all individuals reach a minimum competence standard by the end of the training 

program. It achieves this using two main features: 1) opportunities to practice and receive 

formative corrective feedback until competence is demonstrated, and 2) allowing trainees 

to advance to more complicated training material only once foundational skills are 

demonstrated.  

4.4.2. Skill Type - Spatial and Procedural Skills for Retention 

Offshore egress training is provided with the expectation that egress skills remain current 

in the event of an emergency so that individuals are prepared to take action. The type of 

task influences how well skills are retained after a period of non-use.  The safe evacuation 

of an offshore platform requires two types of skills: spatial knowledge of the platform to 

assist in wayfinding, and procedural knowledge of the protocols in place to protect 

personnel from harm in an emergency. Thus, understanding the retention of spatial and 

procedural skills is important for providing adequate training for real emergency situations. 
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This section will discuss the differences in acquiring and retaining spatial, declarative, and 

procedural knowledge. 

4.4.2.1. Spatial Knowledge 

Landmark-Route-Survey (LRS) is a spatial knowledge acquisition model (Seigel and White 

1975) that explains how people develop their understanding of an environment. People first 

recognize landmarks, then learn the routes that connect landmarks, and over time they 

develop survey knowledge of how the landmarks and routes are interconnected. 

Developing a spatial understanding of an environment on all three levels (landmark, route, 

and survey) can also develop concurrently (Taylor, Brunye, and Taylor 2008). However, 

survey knowledge often requires longer exposure to the environment to gain a map-like 

representation of the environment (e.g. learning how landmarks and routes are 

interconnected).  

Survey knowledge is important for evacuating an offshore platform because a well-

known route may not always be available in an emergency, leaving personnel to find a less 

traversed tenable path to their muster stations. For example, researchers observed that in 

emergency situations, people tend to evacuate buildings by taking the known main exit 

instead of the nearest fire exit (Kobes et al. 2010). This risky behaviour can be addressed 

by providing people with more time to learn survey knowledge of an environment. 

4.4.2.2. Declarative & Procedural Knowledge 

Kim, Ritter, and Koubek (2013) integrated four learning theories (Fitts 1964; Anderson 

1982; Rasmussen 1986; VanLehn 1996) into a three-staged skill acquisition process: 1) 
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declarative stage – learning declarative knowledge (i.e. information or facts), 2) mixed 

stage – consolidating the acquired task knowledge to form a mix of declarative and 

procedural knowledge, and 3) procedural stage – tuning the knowledge towards 

predominately procedural knowledge through overlearning. This model provides a 

framework to help explain how skills are learned and forgotten.  

Declarative knowledge will degrade with the lack of use (e.g. information will no 

longer be available in memory for retrieval).  Declarative knowledge can be transformed 

into procedural knowledge over time (e.g. gradually associating knowledge, transforming 

it into rules, and developing heuristics and biases). Frequent practice and contextual 

experience allow experts to proceduralize skills so that they rely less on declarative 

knowledge and are able to perform the task automatically in response to a situation (Kim 

et al. 2013). Procedural knowledge is implicit as experts possessing the knowledge are able 

to perform the actions without effort but are sometimes unable to verbalize the knowledge 

(Wickens et al. 2013). Siu et al. (2016) suggest that trainees should be provided with 

sufficient practice to allow them to reach the proceduralization stage, thereby increasing 

likelihood of skill retention. 

4.4.3. Frequency of Retraining  

The amount of time that lapses between retraining sessions is an important factor to 

investigate in order to ensure safety-critical skills are maintained. Predicting the rate at 

which skills will be forgotten can help inform the frequency with which recurrency training 

should be provided (Wickens et al. 2013).  
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In the review of multi-day safety training courses, Sanli and Carnahan (2018) 

concluded that complex skills could be remembered for at most a six-month period without 

any form of training interventions. Atesok et al. (2016) reviewed literature on the retention 

of simulation-based trained orthopaedic surgery skills and found that repetitive practicing 

of skills learned in a simulator helped mitigate skill decay even after some time had lapsed 

(these studies ranged in amount of time lapsed; e.g. follow-up retention assessments 

occurred at 1 month, 3 months, 6 months, to a maximum of 30 months). 

Knowing that egress skills (i.e. spatial, declarative, and procedural knowledge) 

deteriorate over time without practice, the offshore industry standards require personnel to 

undergo recurrency training if they have been away from the platform after an extended 

period (e.g. 6 months or more). This brings to question: how well are egress skills retained 

in a 6-month period? and how effective is a VE-based retraining program at maintaining 

egress skills? This paper presents results to answer these questions. 

 

4.5. Methods 

The experiment consisted of two phases: 1) a skill acquisition phase using the simulation-

based mastery learning (SBML) approach, and 2) a skill retention assessment and retraining 

phase, which took place after a period of 6 to 9-months. Figure 4.1 depicts phases I and II 

of the experiment. Both phases of the experiment consisted of a habituation stage followed 

by a series of modules with practice scenarios and testing scenarios (denoted in Figure 4.1 

as P1-P8 and T1-T4, respectively). In phase I, participants were tasked in each module with 

completing the practice scenario correctly (i.e. to criterion) before advancing to the test 
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scenarios (Figure 4.1a). In phase II, participants were re-tested on the same test scenarios 

and were re-trained if they made any errors made in the test scenario. The retraining 

consisted of specific practice scenarios (Figure 4.1b). 

 
                                    (a)                            (b) 

Figure 4.1: AVERT Skill Acquisition (phase I) and Retention & Retraining (phase 

II) (after Smith, Doody, and Veitch, 2018) 

 

This section will briefly describe the effect size and power analysis, participants, 

the AVERT simulator, skill acquisition and test scenarios, and the retention assessment and 

retraining matrices. A detailed description of the methods used in phase I can be found in 

Smith and Veitch (2018). A description of the methods used in phase II can be found in 

Doody (2018). 

4.5.1. Estimated Effect Size and Power Analysis 

The effect of interest in this experiment was the change in performance score from the skill 

acquisition phase to the retention phase. The effect size was calculated based on an 

estimated drop in performance of 15% or greater due to skill fade and was informed by 
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previous experiments (Smith 2015; Smith and Veitch 2018). Based on the estimated 

minimum amount of skill degradation to be detected, the effect size calculation resulted in 

an effect size d = 0.6. This is a large effect based on Cohen’s convention for t-test on means 

of two dependent (or paired) samples (Cohen 1988).  

A priori power analysis was performed using G*Power3 (version 3.1.9.2) software 

(Faul et al. 2007) to determine the required sample size for the retention portion of the 

longitudinal experiment. For the repeated measures design, the following specifications 

were used: a matched pairs Wilcoxon signed-rank test (the non-parametric equivalent of a 

two dependent samples t-test), one-tailed (for directional hypothesis that some egress skills 

will be lost), with input parameters: significance level α = 0.05, power level (1 – β) = 0.95, 

and effect size d = 0.60. For the Wilcoxon signed-rank test, G*Power3 returned a sample 

size of N = 33 participants to achieve a power level of 0.95 with critical t = 1.696 and non-

centrality parameter δ = 3.389. This result indicated that the retention portion of the 

longitudinal study required at least 33 participants to return and complete the test scenarios 

in order to maintain a statistical power of 0.95 (i.e. 95% chance of the result was not due to 

a type II error).  

4.5.2. Participants  

Memorial University’s Interdisciplinary Committee on Ethics in Human Research 

approved the experimental protocol. Following the approved research protocol, the 

recruitment strategy focused on naïve participants (to control for spatial knowledge and 

experience) and this translated into recruiting undergraduate and graduate students. 

Participants were recruited from the university’s campus by email, posters, and by word of 
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mouth. All volunteers who participated were naïve to the experimental design, had no prior 

experience working offshore and had no exposure to the simulator prior to the study. All 

volunteers provided their informed consent before participating in the experiment. 

Sixty participants were recruited for the first phase of the study with an expectation 

of 25% attrition for the longitudinal portion of the study. Five participants withdrew at the 

onset, due to simulator sickness or difficulty with the controller. Fifty-five participants 

completed the skill acquisition training (phase I) and were invited to return after a period 

of six months to participate in the retention assessment (phase II). Seventeen participants 

opted out of the longitudinal study during the 6 to 9-month retention interval. The 

remaining 38 participants completed the retention phase. Two were identified as outliers 

(completed the retention assessment at 4 and 10 months) and were removed from the 

retention analysis. Thirty-six participants completed the retention phase within the 

designated 6 to 9-month period. Twenty-seven participants were male and nine participants 

were female. Participants ranged in age from 19 to 54 years (M = 29 years, SD = ±8.8 

years).  

4.5.3. AVERT Simulator  

Emergency egress training was provided using the All-hands Virtual Emergency Response 

Trainer (AVERT). The AVERT simulator is a desktop virtual environment that allows 

participants to interact with the virtual offshore platform using a gamepad controller 

(Xbox). The virtual environment depicts a realistic representation of an offshore Floating 

Production Storage and Offloading (FPSO) vessel, similar to those used in the 
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Newfoundland offshore area. A generic virtual FPSO platform was chosen for its relevance 

to the local offshore industry.  

Participants moved within the FPSO by controlling a first-person perspective avatar 

of an offshore worker. Participants were first provided with habituation scenarios for 

orientation with the simulator controls. The AVERT training provided a series of training 

scenarios with built-in guidance, multiple opportunities to practice, and test scenarios with 

after-action feedback. Participants were tasked with learning their way around the 

accommodation block of the platform, and the safety protocols for responding to 

emergency situations.  

4.5.4. Skill Acquisition and Test Scenarios 

A previous virtual environment training experiment by Smith (2015) used lecture-based 

teaching (LBT) methods with the AVERT simulator and found that fixed instructional time 

was ineffective at ensuring participants acquired the necessary skills to respond to virtual 

emergency situations. Individual learning differences, such as style and pace, were believed 

to contribute to the failure of participants to reach competence using conventional LBT 

training. The simulation-based mastery learning (SBML) pedagogical framework 

(McGaghie et al. 2014) was adopted for the first phase of the longitudinal experiment to 

accommodate for individual differences. The SBML framework was used to deliver 

offshore emergency egress training in the AVERT simulator.  

The training curriculum and assessment criteria for the experiment were developed 

based on subject matter expert guidance and industry regulations (Transport Canada 2007; 

International Maritime Organization 2001; Canadian Association of Petroleum Producers 
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2015; International Association of Drilling Contractors 2009; International Association of 

Oil and Gas Procedures 2010). The learning objectives for the AVERT simulator were 

outlined by industry representatives in a workshop and the objectives were verified against 

the functionality and capabilities of the AVERT simulator. Table 4.1 provides a list of the 

learning objectives taught using AVERT. 

Table 4.1: Learning objectives for AVERT (Smith, Doody, & Veitch 2018) 

No. Learning Objectives Skill Type 

LO1 Reach correct location Spatial 

LO2 Recognize alarm   Procedural 

LO3 Select safest egress route Spatial 

LO4 Re-route based on PA information or if path blocked Spatial 

LO5 Avoid exposure to hazards Procedural 

LO6 Take safety equipment Procedural 

LO7 Register at the correct muster station Procedural 

LO8 Avoid running Procedural 

LO9 Close all fire and watertight doors Procedural 

 

The US Coast Guard’s method for developing mariner assessments was used to 

develop the assessment criteria, proficiency standard, and performance scoring system 

(McCallum et al. 2000). Subject matter experts in offshore training were consulted in the 

development of the performance measures and test scenarios to assess trainee competency. 

The experts provided credible real-world emergency scenarios for the research team to 

model in AVERT so that trainees could demonstrate their understanding of the learning 

objectives. The test scenarios covered a range of activities, from basic muster drills that 

required the trainees to go to their muster station, to a full emergency evacuation that 

required trainees to avoid hazards that blocked their paths and then to muster at their 

lifeboat stations. Hazard types and likely locations for the hazards to occur on the platform 

were based on the circumstances provided by the subject matter experts. Detailed public 
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address announcements were recorded to describe important information about the 

emergency to the participants for each scenario. The scenarios were tested and refined prior 

to starting the experiment.   

This research looked at the retention of spatial and procedural skills in the context 

of emergency egress. The spatial learning objectives for this experiment included 

familiarity with the platform layout, and knowledge of the egress route options. The 

procedural skills were defined as a combination of declarative and procedural knowledge 

(e.g. remembering facts and formulating rules to follow). The training in the experiment 

aimed to teach personnel to comply with safety protocols. The procedural learning 

objectives included recognizing emergency alarms, assessing the emergency situation, 

avoiding hazards, following safety protocols, and mustering procedures. 

As depicted in Figure 4.1a, participants were taught the learning objectives using 

four modules. Each module had training scenarios (depicted in Figure 4.1a, as P1, P2, P3, 

P4, P5, P6, P7 and P8) to teach participants how to accomplish the egress tasks, and 

subsequent test scenarios (depicted in Figure 4.1a, as T1, T2, T3, and T4) to assess 

participants’ competence. The modules gradually increased in difficulty, building on 

previously presented learning objectives. Module 1 taught the spatial layout of the platform 

(LO1), the different egress routes available from the trainee’s cabin (LO3), and how to 

safely move within the platform by avoiding running and remembering to close fire and 

watertight doors (LO8 & LO9). Module 2 taught trainees how to respond to different alarm 

types (LO2), and the mustering procedures at the temporary safe refuge (TSR) on the 

platform (LO6 & LO7). Module 3 taught trainees how to assess the emergency situation 

and to listen to the public address (PA) announcement for information on the tenability of 
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the egress routes (LO4). Module 4 taught hazard avoidance and what to do when an egress 

route was obstructed (LO5).   

Participants were required to complete each training scenario correctly before 

moving on to the next scenario. Participants who made errors in a particular training 

scenario were required to repeat the scenario until competence was demonstrated. This 

protocol of training until competent is referred to as trials to criterion. After each training 

module, the participants’ performance was assessed using a test scenario. Table 4.2 

provides a detailed description of the four test scenarios.  

Table 4.2: Description of the test scenarios (Smith, Doody, & Veitch 2018) 

Test 

Scenario  
Scenario Description 

T1 

Wayfinding 

Drill 

This scenario assessed the participants’ spatial knowledge of the platform. 

Participants were asked to meet their supervisor at their assigned lifeboat 

station by following their primary or secondary egress routes. 

T2 

Muster Drill 

This scenario assessed the participants’ understanding of alarms and muster 

procedures. Participants were tasked with responding to a muster drill 

(General Platform Alarm). During this alarm, all personnel were required to 

collect their safety equipment and muster at their primary muster station. 

T3 

Blocked 

Route 

This scenario assessed the participants’ ability to deal with obstructions to 

their planned egress route. Participants were required to respond to the alarm, 

listen to the announcement, and follow the muster procedures.  The PA 

announcements provided information to help the participants select the most 

effective route. 

T4 

Emergency 

This scenario assessed the participants’ ability to avoid hazards and follow 

the safest available route to their lifeboat station. Participants were tasked 

with responding to an emergency involving a General Platform Alarm due to 

fire in the galley. The fire compromised the muster station with smoke and 

the situation escalated to a Prepare to Abandon Platform Alarm. Initially all 

personnel were required to go to the muster station but were forced to re-

route to the lifeboat station because of the compromised muster station. 
 

The test scenarios required participants to use the knowledge learned in the module. 

Each module built upon the learning objectives taught in prior modules, and as a result, the 
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corresponding test scenarios became more comprehensive. Following the same trials to 

criterion protocol as the training scenarios, participants who made errors in the test 

scenarios were required to repeat the scenarios until competence was demonstrated.  

4.5.5. Retention Assessment and Adaptive Retraining Matrices 

After a retention interval of 6 to 9-months, participants were given the opportunity to 

demonstrate their retention of offshore emergency egress skills by performing the same 

four test scenarios that they had successfully mastered in the skill acquisition phase. Figure 

4.1b depicts the retention assessment and retraining phase in AVERT. The figure shows 

the test scenarios for each of the modules.  Participants who were successful at completing 

a test scenario advanced to the next test scenario. This process continued until all the test 

scenarios were completed. A failure to complete a test scenario resulted in participants 

being required to do corrective training exercises. After successfully completing the 

retraining exercises, these participants were required to reattempt and pass the test scenario 

before moving on to subsequent test scenarios.  

A series of adaptive training matrices were used to assign the participants the 

corrective training scenarios to address the specific errors they made in the test scenarios. 

Each learning objective that participants failed had a corresponding corrective training 

scenario. Figures 4.2 and 4.3 provide examples of the retraining matrices used for test 

scenarios T2 and T4, respectively.  
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Figure 4.2: Example of the retraining matrix for test scenario T2 

In this example of test scenario T2, a participant who failed to identify the alarm 

(LO2), and forgot how to register at the temporary safe refuge area (LO7), was required to 

complete one corrective training scenario focused on teaching the different alarms and the 

corresponding muster station for each alarm (P4), and another corrective training scenario 

that reinforced the importance of registering at your designated muster station to ensure all 

personnel onboard are accounted for during an emergency (P5). Once all prescribed 

retraining exercises were completed correctly, the participant was required to reattempt and 

pass test scenario T2 before moving on to the test scenario in module 3. 
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Figure 4.3: Example of the retraining matrix for T4, used for the final test scenario 

As illustrated in Figure 4.3 for the final test scenario, a participant who failed to 

select the safest route (LO3), forgot to close fire doors (LO9), and encountered a smoke 

hazard (LO5), was required to complete three retraining scenarios. One corrective training 

scenario focused on teaching the available egress routes from the cabin to the muster station 

(P3). Another corrective training scenario reinforced the importance of keeping fire and 

water-tight doors closed (P1). The last corrective training scenario highlighted the 

importance of being aware of the surroundings and of avoiding exposure to hazards during 

emergencies (P7). Due to individual differences in the errors made in the test scenarios, 

participants received specific training scenarios to meet their individual needs.  
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4.6. Results & Discussion 

To measure the retention of basic offshore emergency egress skills acquired using a virtual 

environment, the participants’ performance in the skill acquisition phase was used as a 

benchmark to compare with the performance achieved after the retention interval.  Several 

metrics were used to investigate retention and impact of retraining: 1) the overall 

competence demonstrated after the retention period, 2) the performance of each learning 

objective after the retention period, 3) the overall time spent retraining, and 4) the influence 

of the time lapsed on performance after the retention interval. This section presents the 

performance results as participants first encountered each test scenario. This section 

discusses which learning objectives were found to be more susceptible to degradation, and 

how quickly participants were able to return to competence following the retraining 

program.  

4.6.1. Impact of Retention Period on Overall Competence Retention 

To investigate the group’s average competence after a period of 6 to 9-months, the final 

performance scores of the skill acquisition phase (Phase I) were compared with the first 

attempt performance scores of the retention phase (Phase II) for each of the four test 

scenarios. Table 4.3 shows the descriptive statistics for the performance in the skill 

acquisition and retention phases for all four test scenarios.  
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Table 4.3: Descriptive statistics of the performance scores for skill acquisition and 

retention phases 

Test n 

Phase I: SBML Performance Scores 

(%) 

(Final attempt) 

Phase II: Retention Performance 

Scores (%) 

(1st attempt) 

Mean St. 

Dev 

Median Min Max Mean St. 

Dev 

Median Min Max 

T1 35 99.5 2.1 100 91.0 100 72.3 26.9 81.0 9.0 100 

T2 35 100 - 100 100 100 83.7 18.0 91.0 35.0 100 

T3 36 100 - 100 100 100 96.8 8.0 100 63.0 100 

T4 34 97.3 4.3 100 89.0 100 95.7 13.4 100 29.0 100 

 

Figure 4.4 provides a visual representation of the data in Table 4.3 using boxplots. 

The boxplots are grouped by the four test scenarios and experiment phases. Phase I data 

(skill acquisition) are denoted by ACQ, and phase II data (retention) are denoted by RET 

in the figure. Boxplots indicate the data distribution, including the median, first quartile, 

third quartile, minimum and maximum values of the data set, as well as outliers. The 

median is represented in the box, which is bounded by the first and third quartiles 

(interquartile range). The minimum and maximum values are represented by the whiskers. 

Outliers are represented as individual points and are defined as values outside the range of 

1.5 times the first and third quartile.  
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Figure 4.4: Boxplots of performance scores at the skill acquisition and retention 

phases for all test scenarios 

 

As shown in Table 4.3 and Figure 4.4, the SBML training brought all participants 

to demonstrable competence at the end of the skill acquisition phase of the experiment. 

When 36 of the participants were reassessed after a period of 6 to 9-months, skill fade was 

observed. Only 4 participants (11%) were able to successfully complete all the test 

scenarios without making any errors. The average performance of participants drops from 

the skill acquisition phase in test scenarios T1 and T2 after the retention interval. Only 10 

participants (28%) in T1, and 13 participants (36%) in T2, were successful in demonstrating 

competence in test scenarios T1 and T2, respectively.  There appears to be little appreciable 

difference in average performance for test scenarios T3 and T4. Thirty-one participants 
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(86%) in T3, and 33 participants (92%) in T4 were successful in demonstrating competence 

in test scenarios T3 and T4, respectively, after the retention interval.  

RStudio (version 3.5.0) software was used for statistical analysis (RStudio 2016). 

The data was tested for normality and found to be positively skewed, so non-parametric 

statistical tests were performed. The Wilcoxon signed-rank test is the non-parametric 

equivalent to a paired t-test and uses the median scores of two dependent samples (Corder 

and Foreman 2014). The Wilcoxon signed-rank test (using the Pratt method for pairs with 

ties) was used to compare the performance scores of the test scenarios (T1, T2, T3, and T4) 

before (pre-interval) and after the retention interval (post-interval). For each comparison, 

the statistical test (Z), p-value (p), and effect size (r) are reported. 

The results showed significant differences between skill acquisition and retention 

phases. The output of the Wilcoxon-Pratt signed-rank indicated that the post-interval 

retention scores were statistically lower than the pre-interval acquisition scores, for three 

test scenarios, T1 (Z = 4.67, p < .001, r = .79),  T2 (Z = 4.55, p < .001, r = .77), and T3 (Z 

= 2.64, p = .008, r = .44 ). No statistical differences between the acquisition and the 

retention scores were found for the final test scenario T4 (Z = 0.05, p = .964, r = .008).  

These results indicate that participants had difficulties recalling the egress protocol, 

specifically the learning objectives that were tested in the first three scenarios (T1, T2, and 

T3). It also suggests that the combination of the retraining and exposure to the test scenarios 

helped the participants regain the competence required to correctly perform the final test 

scenario (T4). Further investigation into how participants performed when they first 

encountered each learning objective in the test scenarios provides more information on 

what skills were retained or lost during the 6 to 9-month period. 
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4.6.2. Performance by Learning Objective after Retention Period 

The first time that the participants were tested on an individual learning objective after the 

retention interval is an important measure of how well the particular skill was retained for 

the learning objective. In the skill acquisition phase, participants were tested on an 

increasing number of learning objectives as they completed each additional module. In the 

retention phase, the learning objectives were again tested in a cascading format, each test 

scenario building on the previous scenario. In the first test scenario (T1 - Wayfinding), the 

retention of four learning objectives was assessed (LO1, LO3, LO8 and LO9).  All three 

subsequent test scenarios tested these same learning objectives. The second test scenario 

(T2 – Muster drill), assessed the retention of three new learning objectives (LO2, LO6, and 

LO7). These learning objectives were tested again in the subsequent scenarios, T3 and T4. 

The third and fourth test scenarios assessed the retention of one more new learning 

objective each. The third test scenario (T3 – Blocked route) assessed the retention of 

learning objective LO4 for the first time in the retention phase. Learning objective LO4 

was tested again in the final test scenario. The final test scenario (T4 - Emergency 

evacuation) assessed the retention of learning objective LO5 for the first time, as well as 

all the other learning objectives that had already been introduced in previous test scenarios. 

Table 4.4 shows the percentage of participants who were successful at completing 

each learning objective for each of the test scenarios in the retention phase. The numbers 

in bold represent the first time the corresponding learning objective was assessed in the 

retention study.   
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Table 4.4: Percentage of participants who passed the learning objectives in each test 

scenario after the retention period 

No. Learning Objectives 

 

Knowledge 

Type 

Percentage of participants who passed at 

first attempt is shown in bold 

T1 T2 T3 T4 

LO1 Reach correct location Spatial 81% 100% 97% 100% 

LO2 Recognize alarm   Procedural - 92% 100% 97% 

LO3 Select safest egress route Spatial 42% 94% 89% 92% 

LO4 
Re-route based on PA or if path 

blocked 

Spatial 
- - 92% 92% 

LO5 Avoid exposure to hazards Procedural - - - 94% 

LO6 Take safety equipment Procedural - 50% 100% 97% 

LO7 Register at the correct muster station Procedural - 58% 97% 97% 

LO8 Avoid running Procedural 61% 100% 100% 100% 

LO9 Close all fire and watertight doors Procedural 86% 94% 100% 100% 

 
 

None of the nine learning objectives was successfully demonstrated by all 36 

participants when first encountered in the test scenarios. All participants who were 

unsuccessful at completing a test scenario were re-trained using exercises that focused on 

the particular errors they made as prescribed by the adaptive training matrix (as described 

in section 3.4). Depending on the errors made, they received specific training scenarios to 

help improve their performance in subsequent attempts at the test scenarios. 

In general, the retraining exercises were effective at returning participants to 

competence in specific skills. The skill retention of spatial (LO1, LO3 and LO4) and 

procedural (LO2, LO5, LO6, LO7, LO8, LO9) skills will be discussed separately by 

scenario. 

4.6.2.1. Retention of Spatial Learning Objectives  

The wayfinding test scenario (T1) focused on spatial knowledge and assessed participants 

on their ability to find their way around the platform (specifically testing spatial learning 

objectives LO1, and LO3). At the end of the skill acquisition phase, the participants were 
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successful in all performance metrics. In the retention phase, not all participants retained 

the skills associated with the same learning objectives. Spatially, 81% of participants were 

able to recognize the correct muster location (LO1) and only 42% of participants were 

successful in following their egress route (LO3). In terms of the LRS model (Seigel and 

White 1975) this result suggests that participants remembered landmark knowledge, such 

as recognizing muster locations, better than route or survey knowledge of the environment 

after the retention period.  

The muster drill test scenario (T2) retested participants’ spatial knowledge of their 

designated muster locations (LO1) and the available egress routes from their cabin (LO3). 

The percentage of participants who were successful at the spatial aspects improved in this 

scenario: 100% of participants were able to recognize the correct muster location and 94% 

of participants were successful in following their egress route. This suggests that a 

combination of the testing that participants completed in the first scenario and the retraining 

received after the first scenario helped the majority of participants return to competence in 

route knowledge of the platform.  

The final two test scenarios (T3 and T4) assessed participants on their survey 

knowledge of the platform by blocking known egress routes, requiring participants to 

reroute to find their muster stations. The blocked route test scenario (T3) assessed 

participants’ ability to re-route in the event that their egress route was obstructed. This was 

the first-time participants were assessed on LO4 in the retention phase. In this scenario, 

75% of participants selected the safest egress route and 8% of participants re-routed based 

on information from the PA. Some participants still experienced difficulties with route and 

survey knowledge; 11% of participants had trouble following their egress routes (they 
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deviated from their routes) and 6% of participants had difficulties finding an alternate route 

when their path was disrupted, requiring them to re-route after encountering the blocked 

route.  

The emergency test scenario (T4) assessed participants on their procedural 

knowledge to assess the situation, and on their survey knowledge of the platform to avoid 

hazardous egress routes and re-route effectively if their chosen egress route was obstructed. 

This scenario was the second time participants were assessed on LO4. In this scenario, 82% 

of participants took the safest route available for the situation. Another 9% of participants 

attempted to follow the safest route but had some difficulty and deviated at various points 

along the route. Only one participant followed the less optimal route, but re-routed 

effectively to avoid hazards by listening to the PA. Two participants (representing 6% of 

participants) followed an unsafe route and encountered the hazard (failing both spatial and 

procedural learning objectives).   

4.6.2.2. Retention of Procedural Learning Objectives 

The wayfinding test scenario (T1) focused on spatial knowledge, but also assessed 

participants on their ability to follow safety protocols on the platform (specifically testing 

procedural learning objectives LO8, and LO9). In this test scenario, 61% of participants 

remembered not to run on the platform (LO8) and 86% of participants remembered to close 

all the watertight doors (LO9).  

The adaptive training matrix was used to retrain all participants who were 

unsuccessful at completing test scenarios (as described in section 3.4). The retraining for 

the procedural learning objectives appeared to correct participants’ performance. For 
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example, after the errors made in LO8 for T1, no one failed this learning objective in the 

three subsequent test scenarios.  

The muster drill test scenario (T2) assessed participants on their understanding of 

alarms and basic muster procedures at their designated muster stations. The percentage of 

participants who were successful increased from scenario T1 to T2 for both the spatial 

(LO1, LO3) and procedural (LO8, LO9) elements that recurred in T2 (after being first 

assessed in T1). This may be a result of the re-training that took place after the first test 

scenario. However, there were still deficiencies in remembering procedural steps. The three 

procedural tasks (LO2, LO6, and LO7) that were first assessed in the muster drill scenario 

were forgotten by many participants. Some participants forgot that the alarm type dictated 

the muster location (8%), others forgot to take their personal protective equipment from 

their cabin (50%), and some forgot the mustering or unmuster procedures (42%). These 

skills were not practiced during scenario T1 or during the retraining associated with T1.  

The blocked route test scenario (T3) did not assess any new procedural learning 

objectives. The emergency test scenario (T4) assessed participants on their procedural 

knowledge to assess the situation and avoid hazards (LO5) for the first time in the retention 

phase. The majority of participants did not make procedural errors in T3 and T4. Errors 

made by some individuals in these scenarios were in remembering safety equipment (LO6), 

registering at the TSR (LO7), and avoiding hazard exposure (LO5).  
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4.6.3. Time Spent Retraining  

The retraining helped participants return quickly to competence. Table 4.5 provides a 

comparison between the mean time spent training in the skill acquisition phase and the 

mean time spent retraining in the retention assessment phase.  

Table 4.5: Mean total time spent training and retraining by each group 

Category 

Time in minutes spent training 

Skill Acquisition  

Mean (St. Dev) 

Retention & Retraining  

Mean (St. Dev) 

Habituation 16.7 (4.0) 7.9 (4.4) a 

Tutorials 20.5 (8.9) 4.6 (3.8) 

Practice Scenarios 45.6 (17.0) 15.9 (13.2) 

Evaluation Scenarios 12.9 (4.3) 18.3 (6.3) 

Total Training Time 95.6 (29.9) 46.9 (25.3) a 
a Three participants’ habituation scenario time was not recorded. 

 

Overall, compared to the initial training, 47% less time was spent in the retention 

phase to return participants to demonstrable competence in egress skills. During the 

retraining, participants took less time reviewing tutorial material (4.6 minutes compared to 

20.5 minutes) and training in AVERT (15.9 minutes compared to 45.6 minutes). However, 

participants spent more time demonstrating retention of competence in test scenarios (18.3 

minutes compared to 12.9 minutes).  

4.6.4. Influence of Retention Interval on Overall Competence Retention 

The experiment was designed to evaluate retention after a 6-month interval (time lapsed). 

Due to logistical constraints, participants returned to complete the retention phase of the 

experiment after a period of 6 to 9-months. The average elapsed time between phases was 

7.42 months (SD = 0.91 months). Participants were grouped based on the time that lapsed 
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between phases (6, 7, 8 or 9 months) to determine if the difference in the retention interval 

impacted skill degradation. Five participants were assessed at 6 months, 16 participants 

were assessed at 7 months, 10 participants were assessed at 8 months, and 5 participants 

returned at 9 months. Of the four participants who were successful in all test scenarios, two 

completed the retention assessment at 6 months, and the remaining two participants 

completed the retention assessment at 7 months.  

Due to the small sample size in months 6 and 9, the participants were grouped into 

two separate groups: group 1) time lapse of 6-7 months (n=21), and group 2) time lapse of 

8-9 months (n=15). Figure 4.5 shows the distribution of performance by the participants in 

each retention interval for all test scenarios.  
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      Test Scenario T1 

 

       (a) 

Test Scenario T2     

 

                                            (b) 
 

      Test Scenario T3 

 

       (c) 

   Test Scenario T4   . 

 

                                              (d) 

Figure 4.5 a, b, c, & d: Boxplots of the performance scores in all test scenarios for 

the skill acquisition and retention phases separated by retention interval 

 

To compare the performance of the two groups’ elapsed time, the Mann-Whitney 

U-test was performed in RStudio. Performing multiple tests on the same data inflates the 

type I error, therefore the Bonferroni procedure was used to correct α = 0.05 for determining 
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the significant differences between the samples (Corder and Foreman 2014). The adjusted 

significance level was determined to be αB = 0.025. For each comparison, the statistical 

test (U), p-value (p), and effect size (r) are reported. 

No statistical difference was found for test scenarios T1 (U = 150.5, p < .05, r = 0), 

T3 (U = 139.5, p = .416, r = .14), and T4 (U = 134.5, p = .833, r = .04). A statistical 

difference in the performance between the groups was found for test scenario T2 (U = 50.5, 

p = .0006, r = .58).  This result indicates that the difference in time that elapsed for the 

retention interval affected participants’ performance in the second test scenario. 

Participants who completed the retention assessment at 8 and 9-months performed worse 

on T2 than those who completed the assessment at 6 and 7-months. 

Tables 4.6-4.9 provide the distribution of spatial and procedural errors by learning 

objective for the four test scenarios for each group (6-7 months and 8-9 months). The 

majority of errors occurred in the first two test scenarios (T1 and T2). Spatial errors in test 

scenario T1 were equally distributed across all groups, regardless of the time lapse between 

skill acquisition and retention assessment. The majority of errors made in test scenario T2 

were procedural errors (shown in Table 4.7), such as forgetting to take safety equipment 

(LO6) and difficulties remembering how to register at the designated muster station (LO7). 

This result indicates that the longer participants waited to be assessed, the more likely 

participants forgot these tasks. All other errors made throughout the retention phase were 

not found to be statistically different amongst the groups. 
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Table 4.6: Number of failed LOs after retention for T1 (by time lapsed in months) 

No. Learning Objectives 

Number of participants who failed T1 after 

retention interval 

6m 7m 8m 9m 
Total 

Sample 

n=5 n=16 n=10 n=5 n=36 

LO1 Reach correct location 0 6 0 1 7 

LO2 Recognize alarm   - - - - - 

LO3 Select safest egress route 2 12 4 3 21 

LO4 
Re-route based on PA or if path 

blocked 
- - - - - 

LO5 Avoid exposure to hazards - - - - - 

LO6 Take safety equipment - - - - - 

LO7 
Register at the correct muster 

station 
- - - - - 

LO8 Avoid running 0 7 4 2 14 

LO9 Close all fire and watertight doors 0 2 2 1 5 

 

 

Table 4.7: Number of failed LOs after retention for T2 (by time lapsed in months) 

No. Learning Objectives 

Number of participants who failed T1 after 

retention interval 

6m 7m 8m 9m 
Total 

Sample 

n=5 n=16 n=10 n=5 n=36 

LO1 Reach correct location 0 0 0 0 0 

LO2 Recognize alarm   0 0 1 2 3 
LO3 Select safest egress route 0 1 1 1 2 

LO4 
Re-route based on PA or if path 

blocked 
- - - - - 

LO5 Avoid exposure to hazards - - - - - 

LO6 Take safety equipment 2 6 5 5 18 

LO7 
Register at the correct muster 

station 
0 3 7 5 15 

LO8 Avoid running 0 0 0 0 0 

LO9 Close all fire and watertight doors 0 1 0 1 2 
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Table 4.8: Number of failed LOs after retention for T3 (by time lapsed in months) 

No. Learning Objectives 

Number of participants who failed T1 after 

retention interval 

6m 7m 8m 9m 
Total 

Sample 

n=5 n=16 n=10 n=5 n=36 

LO1 Reach correct location 0 1 0 0 1 

LO2 Recognize alarm   0 0 0 0 0 

LO3 Select safest egress route 0 1 2 1 4 

LO4 
Re-route based on PA or if path 

blocked 
0 1 1 1 3 

LO5 Avoid exposure to hazards - - - - - 

LO6 Take safety equipment 0 0 0 0 0 

LO7 
Register at the correct muster 

station 
0 1 0 0 1 

LO8 Avoid running 0 0 0 0 0 

LO9 
Close all fire and watertight 

doors 
0 0 0 0 0 

 

 

Table 4.9: Number of failed LOs after retention for T4 (by time lapsed in months) 

No. Learning Objectives 

Number of participants who failed T1 after 

retention interval 

6m 7m 8m 9m 
Total 

Sample 

n=5 n=16 n=10 n=5 n=36 

LO1 Reach correct location 0 0 0 0 0 

LO2 Recognize alarm   0 0 1 0 1 

LO3 Select safest egress route 0 1 1 1 3 

LO4 
Re-route based on PA or if path 

blocked 
0 1 1 1 3 

LO5 Avoid exposure to hazards 0 1 1 0 2 

LO6 Take safety equipment 0 0 1 0 1 

LO7 
Register at the correct muster 

station 
0 0 1 0 1 

LO8 Avoid running 0 0 0 0 0 

LO9 Close all fire and watertight doors 0 0 0 0 0 
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4.7. Conclusions 

The results of this retention study show that emergency egress skills attained using a virtual 

environment are susceptible to skill decay over a period of 6 to 9-months. Although skill 

decay occurred, the adaptive retraining matrix employed in the study was successful in 

bringing all participants back to demonstrable competence at the end of the experiment. 

This section will discuss the answers to two questions: 1) what egress skills degraded after 

a period of 6 to 9-months? and 2) how effective was the VE-based retraining program at 

maintaining egress skills? 

4.7.1. What Egress Skills Degraded After a Period of 6 to 9-Months? 

Two indicators were used to understand the retention of egress skills acquired using a 

virtual environment: 1) the overall performance scores in each test scenario, and 2) the 

performance of participants in their first test attempt at each learning objective. The first 

indicator was useful in showing the initial skill fade in the first two test scenarios and 

provided less evidence of skill fade in the latter test scenarios. This result was interesting 

because the first two test scenarios were foundational scenarios that tested participants’ 

basic knowledge of the platform and their understanding of the safety protocols in benign 

conditions. The latter test scenarios were more complex scenarios and assessed 

participants’ survey knowledge of the platform and their ability to respond to emergency 

conditions, including blocked routes and hazards.  

The first two test scenarios (T1 and T2) are the most important in terms of retention 

assessment because seven of the nine learning objectives were encountered for the first 

time in these test scenarios. The subsequent test scenarios (T3 and T4), although more 
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complex emergency situations, built on the foundational learning objectives from early test 

scenarios and tested fewer new learning objectives. The results provided evidence that 

participants forgot foundational skills needed to perform in simple scenarios. Participants 

regained these skills and performed better in the more complex emergency test scenarios 

due to a combination of the exposure to the test scenarios and the corrective retraining they 

received.  

The second indicator – participants’ performance in terms of learning objective – 

provided more practical information about the loss of specific egress skills (i.e. identifying 

which skills were most susceptible to skill fade). Participants’ performance in terms of 

learning objective showed that most of the participants (89%) did not retain the full 

requisite skill set over the study interval. It also identified which of the learning objectives 

were relatively more or less susceptible to skill fade, which is important in determining 

training interventions. This method is supported by other researchers, such as Atesok et al. 

(2016), who broke down orthopaedic surgery procedural skills into smaller components to 

investigate the decay of skills and identify how to improve long-term retention. 

4.7.1.1. Spatial Skills  

The learning objective that scored worst in terms of retention was remembering egress 

routes (LO3). The majority of participants failed to remember their egress routes when they 

first encountered this decision in the retention study (test scenario T1). Choosing the safest 

egress route also had the most persistent failures across test scenarios. Once the skills were 

forgotten, it took longer to retrain spatial skills than some of the procedural skills. This 

suggests that spatial competence needs relatively more training than the other skills, and 
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that a shorter retraining interval is required to reduce spatial skill decay. There are some 

limitations of using a virtual setting to learn spatial skills when compared to the real 

environment. VEs often take longer to learn survey knowledge compared with the 

traditional maps or the real world for short-term exposures (Waller et al. 1998; Witmer et 

al. 2002; Darken and Peterson 2001). However, VEs are useful for longer-term exposures 

and for situations when the real-world environment is not easily accessible, which is the 

case for all offshore platforms. 

4.7.1.2. Procedural Skills 

Compliance with procedures was an issue for the first two test scenarios (T1 and T2) but 

was less so in the latter two test scenarios (T3 and T4). When the procedural learning 

objectives were first encountered, half the participants forgot to take their safety equipment, 

and about 40% did not follow the muster procedures, and about 40% forgot to refrain from 

running on the platform. As for retraining procedural skills, most participants only needed 

to be reminded of the protocols once in order to complete them successfully in the 

subsequent scenarios. In the cases where participants failed to complete procedural tasks, 

it is possible that the initial training did not provide adequate practice (or frequency of 

practice) for all participants to proceduralize the declarative knowledge related to these 

tasks. Since procedural knowledge takes time to develop, the retention assessment in this 

study may not have solely assessed participants’ procedural knowledge, but also their 

ability to retrieve declarative knowledge (which is more susceptible to decay over time). 

Therefore, a shorter retraining interval would be beneficial for most participants. More 
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frequent practice would help participants maintain declarative knowledge long enough to 

develop procedural skills. 

4.7.2. How Effective was the Retraining at Maintaining Egress Skills? 

This experiment demonstrated that the VE-based training can retrain participants who have 

lost egress skills after a period of 6 to 9-months. Only 11% of participants completed all 

test scenarios without errors and so did not require retraining. Eighty-nine percent of 

participants failed one or multiple test scenarios in this experiment and were required to 

complete corrective exercises. These participants regained foundational skills and 

performed better in the more complex emergency test scenarios due to a combination of 

the exposure to the test scenarios and the corrective retraining they received after the first 

test scenarios.  

Most egress skills that were forgotten were quickly addressed with minimal 

retraining. A series of adaptive matrices were used to assign participants their corrective 

retraining scenarios based on their errors they made. Participants received a specific 

sequence of retraining scenarios based on the areas with which they had difficulty. For 

participants with spatial deficiencies, such as remembering their egress route (LO3), the 

spatial skills took the longest to relearn. Some participants required multiple iterations of 

the adaptive training matrix to re-acquire the forgotten spatial layout of the platform.  For 

participants having difficulty with procedural skills, such as remembering not to run on the 

platform (LO8), and remembering to close fire doors (LO9), many participants only needed 

to be reminded of procedures in order to correct their behaviour. This finding is supported 
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by other researchers (Hein et al., 2010) who found that minimal practice before performing 

a task can help improve performance after time has passed.  

Overall, the adaptive retraining matrix was an integral part of accommodating 

different individual learning paths and an effective method to return all participants to 

demonstrable competence by the end of the experiment. This experiment demonstrated that 

VE-based training can help workers maintain their egress skills even if they have been 

absent from the platform for 6 months. 

4.7.3. Limitations 

The experiment was designed to combine the assessment of retention and retraining (a 

cascade format was used to measure the retention of targeted learning objectives for each 

test scenario and retraining was provided between test scenarios to address errors in prior 

tested learning objectives). This design was used to strike a balance between experimental 

control, ecological validity, and the practicality of training delivery.  The authors recognize 

this design limits the conclusions that can be made from this work in the sense that it did 

not investigate only retention. 

4.7.4. Future Work 

Two questions arising from this research open new lines of inquiry. One question is: what 

is the most practical retention interval to maintain offshore egress skills? Industry standards 

require personnel to undergo safety training if they have been absent from the offshore 

platform for an extended period (e.g. 6 months or more). This experiment demonstrated 

that egress skills can be lost by the 6-month period. Therefore, a shorter retention interval 
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is necessary to maintain egress skills, but what is the ideal frequency? Although this 

experiment did not examine the retention of skills between initial training and the 6-months 

interval, it would be interesting to look at the rate of decay of skills at shorter retention 

intervals (e.g. 1 month, 3 months). Investigating a shorter retention interval would help 

determine the appropriate recurrency training interval to maintain egress competence. This 

information would help inform the retention rate (e.g. predict the rate of decay) and estimate 

a suitable frequency for retraining.  

The second question is: should recurrency training be competence driven as 

opposed to time based?  In this experiment, the observed differences in individuals’ 

performance (both in learning and retaining skills) indicate that a fixed or standardized 

retraining interval may not be the best solution. Rather than identifying a standardized 

retention interval, further investigation should focus on evaluating the on-demand feature 

of simulation-based training (i.e. customize the frequency of training). Sui et al. (2016) 

suggest using metric driven scheduling to train and maintain skills. VE training has the 

flexibility to provide people with practice, assessment, and corrective feedback at 

customized scheduling to meet individual needs of each learner. Competence-driven VE 

training could reshape how recurrency training is provided for offshore egress. VE training 

could help transition recurrency programs from fixed-interval training (i.e. only meeting 

the needs of some individuals) to tailored training for individuals (i.e. adaptive training to 

meet each individual’s learning needs) by providing custom frequency of practice intervals 

to maintain skills. This would provide the groundwork for a competence-driven training 

frequency based on participants’ needs.  
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5.2. Abstract 

To prepare personnel for offshore emergencies, safety training should focus on 

transferability. Virtual environment (VE) training is designed to support the transfer of 

acquired egress skills to novel offshore emergencies. Decision trees (DT) are useful tools 

to evaluate the transfer of training from both an individual learner and a systemic 

perspective. DTs use human performance data collected during VE training to model 

participants’ behavioural patterns. An ideal decision strategy is used as a benchmark to 
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compare the correctness of the participants’ data-informed behavioural patterns. 

Employing the diagnostic and predictive capabilities of DTs can indicate when a person is 

capable of responding to a wide variety of emergencies using inference. VE training 

efficacy is assessed by modeling participants’ trees throughout the program as an indication 

of when the right amount of training has been achieved for each individual, or if further 

training is required. This study uses DTs as curriculum design and assessment tools to 

determine if the training curriculum adequately prepares participants to transfer their egress 

skills to new emergencies in the same virtual setting.  

 

5.3. Introduction 

Mandatory offshore safety training has predominantly been participatory-based and the 

resulting certification often represents nominal competence. To better prepare the offshore 

workforce for emergencies, operators and regulators need to pursue evidence-based safety 

training to guarantee workers achieve demonstrable competence. This gap in offshore 

training can be addressed by combining simulation technology with a well-designed, 

pedagogically informed, and data driven training program. Training simulators, such as 

virtual environments (VE), allow workers to rehearse safety protocols in various 

emergency conditions and provide formative feedback to help personnel learn and improve 

their performance. Simulation and VE technology collect performance data during the 

training that can provide valuable insight into the quality of learning that takes place and 

the efficacy of the training program as a whole. Training simulators are widely used for 

maritime education, however, few studies have considered the pedagogical aspects of 
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simulation-based training (Sellberg et al., 2017). This paper draws on pedagogical 

frameworks and data-mining methodology to provide empirical and modeling evidence to 

inform the offshore and maritime industries on how to deliver training and how to assess 

trainee performance using VE technology.  

To optimize VE training for offshore egress, regulators must determine how 

comprehensive, yet focused virtual offshore egress training should be to prepare personnel 

for the multitude of emergencies that could arise. Virtual practice exercises should match 

the conditions the workers are expected to experience in real situations. However, it is 

impracticable to rehearse for all possible situations. As a guiding pedagogical principle, VE 

technology should be designed to support the transferability of training specifically, the 

application, generalization, and maintenance of knowledge and skills learned in a training 

context to new situations (Blume et al., 2010). Therefore, VE training and supporting tools 

should assess when the trainee has achieved competence and is sufficiently equipped to 

apply their skills to new situations within the context of the training. Many factors influence 

the transfer of training, Grossman and Salas (2011) outlined three factors that are most 

relevant to training organizations:  

(1) Trainee characteristics such as the learner’s cognitive ability, self-efficacy, 

motivation, and their perceived utility of training;  

(2) Training design such as behavioural modeling, error management, and realism 

of training environment; and  

(3) The work environment such as transfer climate as well as the opportunity and 

support from management to allow workers to apply their training.  
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This paper focuses on factors that affect the training design, specifically the use of 

behavioural modeling to inform the design and assessment of VE training transfer. Decision 

trees (DT) are useful behavioural modeling tools to evaluate the efficacy of training transfer 

from both the individual and systemic perspectives. At an individual level, DTs can be used 

to inform how much training is needed to achieve competence for each learner. Musharraf 

et al. (2018) demonstrated the utility of DTs for identifying trainees’ strategies and 

recommended ways to use DTs to assess individual learning as well as pedagogical 

approaches. The aim of Musharraf’s et al. (2018) work was to understand how people made 

decisions in emergency egress in order to improve training and to create artificially 

intelligent agents with similar behaviours (Musharraf et al., 2018). DTs provide a visual 

representation of participants’ decision-making strategies in the context of choosing the 

safest egress routes in emergencies.  Decision tree modeling was selected for its visual 

simplicity and diagnostic capabilities when dealing with sparse data and categorical 

variables (Duffy, 2009; Musharraf et al., 2018).  DTs employ supervised learning, which 

requires a repository of attributes of solved problems to draw inferences. From the 

individual learner perspective, the supervised learning mechanism of DTs help inform 

learning analytics by developing generalized decision rules from each participant’s 

behavioural data collected during the scenarios in the VE training. At a systemic training 

level, the collection of DTs developed from the participants’ data throughout the VE 

training help to identify emerging patterns of successful or unsuccessful behaviours. 

Musharraf et al. (2018) suggested that an effective training curriculum would result in the 

convergence of participant’s DTs to strategies that lead to success and that systemic 

exceptions indicate gaps in the training approach itself. 
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This paper uses decision trees for their diagnostic and predictive capabilities to 

determine if a virtual offshore platform-training program has adequately prepared learners 

to transfer their egress skills to new emergencies in the same virtual setting. In particular, 

the research aims to answer the following questions:  

(1) Can DTs help determine when participants are sufficiently prepared for training 

transfer at an individual and a systemic level?  

(2) Can DTs show the development of credible heuristics throughout the VE training? 

and  

(3) Can DTs predict participants’ performance in new situations?  

 

This study demonstrates the use of DTs as data-informed curriculum design and 

assessment tools. The scope of the research involves a longitudinal experiment using the 

AVERT simulator as a human behaviour laboratory. The three-phased experiment collected 

performance data during the skill acquisition (phase 1), retention and retraining (phase 2), 

and transfer of training to new emergencies (phase 3). The context of the study was to teach 

naïve participants the necessary egress skills to evacuate a virtual oil platform during an 

emergency. The experiment first taught basic egress skills, then assessed skill retention 

after a 6 to 9-month period, and subsequently tested the transfer of egress skills to new 

emergencies. The novel emergency scenarios differed from the training exercises by 

varying conditions such as the participants’ proximity to hazards, their familiarity with the 

scenario’s starting locations on the platform, and the availability of information (or lack 

thereof) about the situation. The AVERT simulator collected participants behavioural data 

in the training and testing scenarios throughout each phase of the experiment. 
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Portions of the participants’ performance data were used to iteratively create DTs 

for each phase of the experiment. Multiple DTs were developed for each participant to 

determine if the participant’s strategies changed from the skill acquisition, retention, and 

transfer phases. This process was used to see how people develop and modify their route 

strategies or heuristics throughout training. An ideal decision strategy for responding to 

offshore egress emergencies was defined based on the results from Smith et al. (2017). The 

ideal DT depicted in Figure 5.1 was created to guide the development of the curriculum 

and used as a benchmark to assess the correctness of the participants’ DT behavioural 

patterns. As shown in Figure 5.1, the expected strategy was for the participant was to listen 

to the public address (PA) announcement for the safest route and choose a route 

accordingly. If the PA indicated that the primary route was the safest option, then the 

participant would follow the primary route. Alternatively, if the PA indicated that the 

secondary route was the safest option then the participant would follow the secondary route. 

When no route direction was provided in the PA, the participant was expected to follow 

their preferred route. The training curriculum was designed to encourage participants to 

develop the intended decision strategy. 

 

 

Figure 5.1: Curriculum Design – Ideal decision tree for emergency egress 
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The ideal decision strategy was used as a benchmark to compare the participants’ 

behavioural patterns identified by their DTs to check their competence. Figure 5.2 

summarizes the DT comparison process and the expected outcomes from the comparison. 

This comparison determined whether the amount of training the participants received was 

sufficient to prepare them for emergencies. The compilation of DTs developed throughout 

the VE training program were used to identify emerging group patterns and to evaluate the 

efficacy of the training curriculum. The final DTs at the end of the VE training were used 

to predict the transfer of skills to new emergency scenarios (e.g. how people will perform 

in new situations).  

 

Figure 5.2: Process for comparing participants’ route strategies with ideal DT 

 

Section 2 of the paper describes the longitudinal study and the DT development. 

Section 3 describes the DT curriculum design and assessment methodology. 

Section 4 presents and discusses the results. Section 5 summarizes and concludes the 

findings. 

https://www.sciencedirect.com/science/article/pii/S0951832017312516?via%3Dihub#sec0003
https://www.sciencedirect.com/science/article/pii/S0951832017312516?via%3Dihub#sec0007
https://www.sciencedirect.com/science/article/pii/S0951832017312516?via%3Dihub#sec0010
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5.4. Background 

5.4.1. Longitudinal Pedagogical Experiment 

The longitudinal experiment was conducted in 3 phases to investigate the skill acquisition, 

retention, and transfer of egress skills taught using a virtual offshore platform. The 

experiment first taught participants basic egress skills in phase 1, then assessed their skill 

retention after a 6 to 9-month period in phase 2, and subsequently tested their transfer of 

egress skills to novel emergencies in phase 3.  Figure 5.3 depicts the three phases of the 

experiment.  

 

Figure 5.3: Longitudinal Experiment Timeline 

 

The first phase of the experiment used a simulation-based mastery learning (SBML) 

pedagogical approach to teach naïve participants the necessary skills to evacuate safely 

(McGaghie et al., 2014; Smith & Veitch, 2018). The core learning objectives included 

familiarity with the platform layout, emergency alarms, egress routes, safety protocols, and 

mustering procedures. Participants were required to repeat the practice and testing 

scenarios until they demonstrated competence in all performance criteria. The practice and 
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test scenarios are denoted in Figure 5.3 as P1-8 and T1-4, respectively. The scenarios 

involved participants practicing their egress routes in varying conditions from muster drills 

(T1 & T2) to emergency evacuation (T3 & T4). Table 5.1 provides a detailed description 

of the four test scenarios. Full details of the skill acquisition phase, including the training 

curriculum and performance metrics are described in Smith & Veitch (2018).  

In the second phase of the experiment, participants returned after the retention 

interval and were tested on their ability to respond to the same egress scenarios (T1-4).  

Participants who had trouble remembering the egress procedures were provided retraining 

on deficient skills (e.g. practice scenarios P1-8). Participants were required to complete 

retraining for any deficiencies before moving on to the third phase. Full details of the 

retention phase are described in Smith, Doody & Veitch (2019). 

The third phase of the experiment involved testing participants on emergency 

scenarios that differed from the training exercises to which they were exposed in the 

acquisition and retention phases. As depicted in Figure 5.3, after completing phase 2 of the 

experiment, participants performed the transfer scenarios in a random order.  The 

emergency scenarios in phase 3 differed from the training exercises in the earlier phases by 

varying conditions such as the participants’ proximity to hazards, their familiarity of the 

scenario’s starting locations on the platform, and the availability of information (or lack 

thereof) about the situation. Phase 2 and 3 are explained in more detail in Section 5.5.  
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Table 5.1: Description of the test scenarios (after Smith, Doody, & Veitch, 2019) 

Test Scenario  Scenario Description 

T1 

Wayfinding Drill 

This scenario assessed the participants’ spatial knowledge of the platform. 

Participants were asked to meet their supervisor at their assigned lifeboat 

station by following their primary or secondary egress routes. 
 

T2 

Muster Drill 

This scenario assessed the participants’ understanding of alarms and muster 

procedures. Participants were tasked with responding to a muster drill (General 

Platform Alarm). During this alarm, all personnel were required to collect their 

safety equipment and muster at their primary muster station. 
 

T3 

Blocked Route 

This scenario assessed the participants’ ability to deal with obstructions to their 

planned egress route. Participants were required to respond to the alarm, listen 

to the announcement, and follow the muster procedures.  The PA 

announcements provided information to help the participants select the most 

effective route. 
 

T4 

Emergency 

This scenario assessed the participants’ ability to avoid hazards and follow the 

safest available route to their lifeboat station. Participants were tasked with 

responding to an emergency involving a General Platform Alarm (GPA) due 

to fire in the galley. The fire compromised the muster station with smoke and 

the situation escalated to a Prepare to Abandon Platform Alarm (PAPA). 

Initially all personnel were required to go to the muster station, but were forced 

to re-route to the lifeboat station because of the compromised muster station. 
 

5.4.2. Decision Tree Development for Phase 1: 

Decision tree models depicted participants’ decision-making in selecting the safest egress 

route during an emergency. The participants’ performance data recorded during the practice 

scenarios in the VE training (phase 1 of the experiment) was separated into training and 

testing datasets used to develop and verify generalized decision rules. The training dataset, 

which consisted of a knowledge base (KB) was used to ‘train’ the decision tree algorithm.  

The testing dataset was put aside to check the accuracy of the trees to predict the 

participants’ route choice in future scenarios. 
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An individual KB was developed for each participant by tabulating the participant’s 

successful performance in the practice scenarios and storing it in a two-dimensional matrix. 

Each row in the KB contained the different programmed attribute values and the 

corresponding route choice taken by the participants in the scenarios. Table 5.2 provides a 

list of attributes and the possible values. Table 5.3 provides an example of the KB for a 

sample participant after finishing all of the training in phase 1. Each row in the KB contains 

the different attribute values for the scenario and the corresponding route choice. The KB 

was a single data file for each participant.  

Table 5.2: Description of scenario attributes (Smith et al., 2017) 

Attributes Possible Values 

End Location Muster, Lifeboat 

Alarm type None, GPA, PAPA 

Route directed by PA None, 1st, 2nd 

Hazard presence No, Yes 

Obstructed route None, 1st, 2nd 

Previous route selected  1st, 2nd 
 

 

Musharraf et al.’s (2018) decision tree algorithm was applied to the KBs to identify 

participants’ egress route selection strategies. During the decision tree induction, the 

algorithm (employing the ID3 engine) iteratively classified data using the attribute that has 

the highest information gain. This process was repeated until no attributes were left for 

classification, or the dataset was empty, or data in each group belonged to the same class 

and no further classification was needed. Methodology for DT development is described in 

detail in Musharraf et al. (2018) and Smith et al. (2017).  
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Table 5.3: Sample participant knowledge base (KB) developed from data in phase 1 

Scenario 

Attributes 
Route 

choice 
End 

Location 
Alarm 

Route by 

PA 
Hazard 

Obstructe

d Route 

Previous 

Route 

P1 Muster None 1st No None N/A Primary 

P3 (F1) Lifeboat None 1st No None 1st Primary 

P3 (F2) Muster None 2nd No None 1st Secondary 

T1  Lifeboat None None No None 2nd Secondary 

P4 Muster GPA 1st No None 2nd Primary 

P5 Muster GPA None No None 1st Primary 

T2 Muster GPA 1st No None 1st Primary 

P6 Lifeboat PAPA 1st No 2nd 1st Primary 

T3 (F1) Muster GPA None No None 1st Primary 

T3 (F2) Muster GPA 2nd No 1st 1st Secondary 

P7 Lifeboat PAPA 2nd Yes 1st 2nd Secondary 

P8 (F1) Muster GPA 1st Yes 2nd 2nd Primary 

P8 (F2) Lifeboat PAPA 1st Yes 2nd 2nd Primary 

T4 (F1) Muster GPA None Yes None 1st Primary 

T4 (F2) Lifeboat GPA 2nd Yes 1st 1st Secondary 

T4 (F3) Lifeboat PAPA 2nd Yes 1st 1st Secondary 
 

 

The DTs provided a depiction of the participants’ understanding of emergency 

egress. Figure 5.4 shows the strategy of the sample participant. This participant’s strategy 

was to listen to the public address (PA) announcement for information regarding the safest 

route direction and choose a route accordingly. When no route direction was provided in 

the PA, the participant followed the primary or secondary route based on their intended end 

location. If they were required to go to the muster station, then they would take the primary 

route, and if they were required to go to the lifeboat station, then they would take their 

secondary route.  
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Figure 5.4: Sample participant DT developed from the KB shown in Table 5.3 

 

5.5. Methods 

This paper focuses on the retraining and transfer results from phase 2 and 3 of the 

longitudinal experiment.  The goal was to use data from phase 2 of the experiment to 

iteratively model participants’ decision strategies in the form of DTs and use these DTs to 

predict training transfer in phase 3. This section describes the details of phase 2 and 3 of 

the experiment including the participants, AVERT simulator, experimental design, 

updating the decision trees, and application of the decision trees. 

5.5.1. Participants 

Participants from the skill acquisition phase (n = 55) were invited to return after a period 

of six months to participate in the retention assessment and transfer phases of the 

experiment. Thirty-eight participants completed the retention and transfer phases. Twenty-

eight participants were male and ten participants were female. Participants ranged in age 

from 19 to 54 years (M = 28 years, SD ±8.7 years).  



164 

5.5.2. AVERT Simulator 

All phases of the experiment used the same emergency preparedness training simulator 

called AVERT. AVERT is a desktop virtual environment that allows participants to interact 

with the virtual offshore platform using a gamepad controller (Xbox). The virtual 

environment depicts a realistic representation of an offshore Floating Production Storage 

and Offloading (FPSO) vessel (Smith et al., 2019). Participants can move onboard the 

FPSO by controlling a first-person perspective avatar of an offshore worker.  AVERT was 

designed as a human behaviour virtual laboratory to train people in basic offshore 

emergency duties such as how to navigate the platform and muster at their designated 

stations during an emergency.  

5.5.3. Experimental Design  

5.5.3.1. Phase 2: Retention and Retraining 

The objective of phase 2 of the experiment was to investigate the long-term retention of 

emergency egress competence obtained using a virtual offshore platform and determine the 

efficacy of the VE-based retraining on maintaining egress skills. In phase 2, the participants 

from phase 1 returned and were tested on the same test scenarios from phase 1 to assess 

their retention of egress skills. If participants were successful at demonstrating competence 

in the test scenario, they advanced to the next test scenario. If participants forgot skills or 

made errors in performing the task in the test scenarios, then they were required to complete 

retraining scenarios specific to the errors they made. Participants repeated the test scenarios 

and practiced the retraining scenarios until they reached competence in all tasks. The 
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retraining dataset served an additional purpose to iteratively model participants’ heuristics 

and identify emerging group behaviours to inform the efficacy of the training curriculum. 

5.5.3.2. Phase 3: Transfer Scenarios 

Phase 3 of the experiment was designed to collect quantitative human performance data for 

human reliability analysis (HRA) in emergencies in a virtual environment using Bayesian 

network (BN) modeling (Musharraf et al., 2019). As an alternative to expert judgement 

VEs can be used to collect data for human reliability assessment (HRA), a technique used 

to predict how people would respond to situations (Musharraf et al., 2014). The HRA 

experiment used the same participants and AVERT simulator as phases 1 and 2 to 

investigate participants’ sensitivity to different scenario attributes. Consequently, the HRA 

dataset served an additional purpose to inform the transferability of the participants’ 

training to new emergencies. This HRA dataset was repurposed to perform the decision 

tree analysis retroactively. A two-state, three-factor experiment in AVERT was designed 

to investigate the interdependencies amongst the scenario attributes and the participants’ 

task performance in the emergencies. Three attributes were varied, including: (1) the 

amount of information (or lack thereof) provided over the PA announcements, (2) the 

participants’ proximity to hazards during the emergency, and (3) the participants’ 

familiarity to the starting locations on the platform. Each of the attributes were assigned a 

high and low level. Eight scenarios were developed to incorporate all the high and low level 

combinations of the attributes (as shown in Table 5.4).  
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Table 5.4: Phase 3 Scenarios for AVERT (after Musharraf et al., 2019) 

# Set Quality of Communication Proximity to Hazards Situation Familiarity 

U1 

1 

+ 
Clear PA with all 

relevant info 
+ 

Hazard not 

accessible 
+ Starts in cabin 

U2 - Poor PA that lacked info + 
Hazard not 

accessible 
+ Starts in cabin 

U3 + 
Clear PA with all 

relevant info 
- 

Hazard blocking 

route  
+ Starts in cabin 

U4 - Poor PA that lacked info - 
Hazard blocking 

route  
+ Starts in cabin 

U5 

2 

+ 
Clear PA with all 

relevant info 
+ 

Hazard not 

accessible 
- Starts in Bridge 

U6 - Poor PA that lacked info + 
Hazard not 

accessible 
- Starts in Bridge 

U7 + 
Clear PA with all 

relevant info 
- 

Hazard blocking 

route  
- Starts in Bridge 

U8 - Poor PA that lacked info - 
Hazard blocking 

route  
- Starts in Bridge 

 

Varying the high and low values of the attributes affected the scenario difficulty. 

The scenario difficulty is related to the transfer proximity as defined by Barnett and Ceci 

(2002). Training transfer is considered near transfer when the test setting is very similar to 

the knowledge covered in the training and far transfer occurs when the test setting is very 

different from the training (Ford et al., 2018).  For example, in Table 5.4, the scenarios are 

listed in increasing order of difficulty by design, (scenario U1 being the least difficult or a 

near transfer setting and scenario U8 being the most difficult or a far transfer setting from 

the training). The first set of four scenarios (U1-4) had the same starting location that 

participants had trained for in the skill acquisition phase. The second set of four scenarios 

(U5-8) had a new starting location, different from where participants had practiced, but a 

location they had seen before.  
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Scenarios U1 and U2 closely resembled the conditions of the skill acquisition and 

retention test scenarios. The scenarios gradually increased in difficulty by removing 

information from the PA announcement and adding hazards to block viable routes. For 

example, scenario U3 assessed the participants’ egress skills associated with listening to 

the PA and avoiding obstructed routes. Scenarios U7 and U8 were the most different from 

the conditions of the training and retention scenarios. For example, scenario U8 assessed 

the participants’ ability to respond to a situation where they started in an unfamiliar 

location, were provided little information from the PA, and had to manage hazards blocking 

their egress path. Table 5.5 shows the context for each of the transfer test scenarios.  

 

Table 5.5: Description of the transfer scenarios (after Blundon, 2019) 

Test 

Scenario  
Scenario Description 

U1 

 

Starting in their cabin, participants had to respond to a GPA alarm followed by a PA 

announcement about reports of smoke in the turret. All personnel were required to go 

to their muster station by following either the primary or secondary egress routes. 
 

U2 

 

Starting in their cabin, participants had to respond to a GPA alarm followed by a PA 

announcement with no information about the situation. Participants were unaware of 

an explosion and fire in the process module. All personnel were required to go to their 

muster station by following their primary or secondary egress routes.  
 

U3 

 

Starting in their cabin, participants had to respond to a GPA alarm followed by a PA 

announcement about a gas leak in the external stairway of the accommodation block 

near B-deck. All personnel were required to go to their muster station by following 

their primary route. 
  

U4 

 

Starting in their cabin, participants had to respond to a GPA alarm followed by a PA 

announcement with no information about the situation. All personnel were required to 

go to their muster station. Participants were unaware of a fire in the stairwell on C-

deck that blocked the primary egress route. Participants had to re-route from the 

obstructed route and take their secondary route to the muster station.  
 

U5 

 

Starting in the bridge of the vessel, the GPA alarm sounded followed by a PA 

announcement about a gas leak in the wellhead bay. Participants were required to go 

to their muster station by following their primary or secondary egress route. Once at 
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the muster station, the situation escalated to a PAPA alarm. Participants were required 

to muster at their lifeboat stations and don their immersion suit. 
 

U6 

 

Starting in the bridge of the vessel, the GPA alarm sounded followed by a PA 

announcement with no information about the situation. Participants were required to 

go to their muster station by following their primary or secondary egress route. 

Participants were unaware of an explosion in the engine room. Once at the muster 

station, the situation escalated to a PAPA alarm. Participants were required to muster 

at their lifeboat stations and don their immersion suit.  
 

U7 

 

Starting in the bridge of the vessel, the GPA alarm sounded followed by a PA 

announcement about smoke in office space on D-Deck and that the internal stairs were 

filled with smoke. Participants were required to go to their muster station by following 

their secondary egress route. Once at the muster station, the situation escalated to a 

PAPA alarm. Participants were required to muster at their lifeboat stations and don 

their immersion suit. 
 

U8 

 

Starting in the bridge of the vessel, the GPA alarm sounded followed by a PA 

announcement with no information about the situation. All personnel were required to 

go to their muster station. Participants were unaware of smoke and fire on external 

stairway of C-deck that activated the deluge system and blocked the secondary egress 

route. Participants were required to re-route from the obstructed route and take their 

primary route to the muster station. Once at the muster station, the situation escalated 

to a PAPA alarm. Participants were required to muster at their lifeboat stations and don 

their immersion suit. 
 

 

5.5.4. Decision Tree Modeling for Phases 2 & 3 

A 3-step process was used to develop and validate the DTs that involved: (1) updating the 

existing KB with retraining data, (2) using the decision tree algorithm to form new DTs, 

and (3) testing the classification accuracy of the DTs against the retention test scenarios. 

Each step is described. 

5.5.4.1. Step 1: Iteratively Update the KB with Retraining Data 

Participants completed the same test scenario from phase 1 in phase 2 after the retention 

interval. Thus, the KB was gradually updated with new information as participants 
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completed the retention and retraining. Throughout phase 2, it was assumed that 

participants remembered what they had learned 6 months prior. If participants showed 

evidence of forgetting by making mistakes in a test scenario, they were retrained and their 

KB was updated accordingly. Only the participants’ successful attempts at the scenarios 

were stored in the new KB. The phase 2 entries replaced the participant’s past attempts at 

the scenarios from phase 1 (as depicted in Figure 5.5). Other records in the KB remained 

unchanged as they were assumed to be remembered by the participant.  

 

 

Figure 5.5: Process for updating the KB with retraining data 
 

5.5.4.2. Step 2: Form New Decision Trees Using the DT Algorithm  

Similar to the methods used in phase 1, the performance data from the VE scenarios were 

separated into training and testing datasets. The KB was divided into two training segments; 

after the initial acquisition and after the refresher training (respectively denoted ‘End of 
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ACQ’ and ‘End of RET’). Each segment captured the participant’s prior performance in 

scenarios they completed leading up to the next test. The retention test scenarios (phase 2) 

were set aside to check the predictive validity of the current DT. Once the performance 

from the test scenario was used to check the validity of the DTs, the data was used to update 

the KB. The segments of the KB were gradually updated with information from the 

participant’s performance in the test and retraining scenarios. The decision tree induction 

process classified the content in the KB to create generalized decision rules. The output 

was a DT that could predict the participant’s choice of route (i.e. primary or secondary) 

based on the value of the programmed attributes of a new emergency scenario. The decision 

tree algorithm produced multiple DTs that described the participant’s behavioural pattern 

prior to the test scenarios (T1, T2, T3, T4 in phase 2 and the suite of transfer scenarios in 

phase 3). The extent of the updating depended on the amount of retraining the participants 

received. The resulting DTs were used to visualize how participants formed emergency 

egress decision rules based on the content in the KB.  

5.5.4.3. Step 3: Test Classification Accuracy  

Once the DTs were generated based on the retention and retraining dataset, the testing 

dataset was used to check the prediction accuracy of the decision trees. The DTs were 

compared against the participants’ route choices in the four retention test scenarios. The 

prediction accuracy was calculated as a percentage of correctly matched trees for each test 

scenario.   
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5.5.5. Application of Decision Trees 

Three applications of DTs were used to assess the training curriculum: (1) comparing the 

participants’ DTs to the ideal DT as an indicator of whether learning occurred, (2) 

tabulating the different DTs formed throughout retraining as an indicator of whether the 

curriculum adequately prepared participants for transfer,  and (3) using the DTs at the end 

of the retraining (phase 2) to predict performance in the transfer scenarios (phase 3).  

5.5.5.1. Comparing Participants DTs with Ideal DT 

The ideal design strategy (depicted in Figure 5.1) was used as benchmark to compare with 

each participants’ behavioural patterns. The participants’ DTs at the end of the acquisition 

phase and at the end of the retraining dataset were compared to the intended DT. Figure 5.6 

shows an example of the possible outcomes of the comparison. This comparison was 

performed to check that the participants’ DTs met the curriculum criteria. 

 

Figure 5.6: Comparing ideal DT to participants DT at end of phase 2 
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As shown in Figure 5.6, if a participant’s DT matched the ideal DT, this was a 

predictor that the participant had reached the desired competence and was ready for training 

transfer scenarios. If a participant’s DT did not match the ideal DT, this was a predictor 

that the participant was not prepared for the new transfer scenario. The incomplete or 

incorrect trees were an indicator that the participant required additional adaptive training 

before they would be successful in the transfer scenarios. If no behavioural pattern could 

be determined from the participant’s performance data, it was likely that the training was 

not suitable for this person.  

5.5.5.2. Tabulating DTs to Evaluate Training Curriculum   

As participants completed the retraining, data in their KB was updated. This iterative 

updating resulted in the formation of different DTs throughout the retraining. The DTs were 

tabulated to identify emerging group patterns to inform the training curriculum efficacy.  

Several heuristics or strategies emerged from the participant performance data. 

Figure 5.7 shows possible heuristics developed by participants during the retraining (Smith 

et al., 2017). These heuristics represent decision rules that were directed by the end location, 

the alarm type, and whether or not the travelled route is obstructed. These heuristics were 

not explicitly taught in the training but are acceptable decision rules in many situations. 

 

 

Figure 5.7: Curriculum Design - Accepted heuristics for emergency egress 
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The percentage of participants whose DT converged to the ideal DT or an accepted 

heuristics (shown in Figure 5.7) were tabulated. This grouping of DTs was used to 

determine if the training program adequately prepared participants to apply their egress 

skills to new emergencies. If the participants’ DTs converged to the ideal DT or accepted 

heuristics, this was an indicator that the training curriculum was successful in preparing 

participants for the new transfer scenario. If the participants’ DTs diverged from the ideal 

DT or developed unacceptable decision rules, this was an indicator that there were gaps in 

the training curriculum. 

5.5.5.3. Use of DTs to Predict Skill Transfer to New Scenarios  

The resulting DT, formed from the full retraining dataset, represented the participants 

understanding of egress procedures. Therefore, the DTs can also be used to predict the 

participants’ choice of route for a given transfer scenario in phase 3. The final tree from the 

retraining dataset shows the decision rules a participant is expected to follow based on their 

previous performance in similar scenarios. To predict how the participants would perform 

in the eight phase 3 transfer scenarios, the modelled DTs from ‘End of RET’ were used. 

The predicted performance was compared against the participants’ actual route choices in 

the transfer scenarios, which was the basis of a prediction accuracy calculation.  The 

prediction accuracy was the calculated for the eight scenarios.   
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5.6. Results & Discussion 

A combination of DT modeling and empirical results were used to investigate the 

transferability of the training. To inform training transfer from the perspective of the 

individual learner and systemically the training curriculum, three metrics were used: (1) the 

DTs diagnostic assessment of participants’ performance and the training curriculum 

efficacy; (2) the overall performance scores in the retention and transfer scenarios; and (3) 

the DTs prediction of participants’ performance in the transfer scenarios. 

5.6.1. Learning Analytics and Curriculum Assessment with DTs  

At an individual level, comparing participants’ DTs with the intended decision rules is a 

useful indicator of how much each participant learned from the retraining in phase 2. At a 

systemic level, grouping emergent DT patterns is also useful predictor of how well the 

training curriculum equipped participants to apply their egress skills to new situations in 

phase 3 of the experiment. This section describes the iterative transformation of the 

participants’ DTs as they completed the retraining, provides a comparison of the 

participants’ DTs with the curriculum designed ideal tree and discusses the implications of 

emergent DT patterns on the efficacy of the training curriculum. 

As each participant completed the retraining scenarios in phase 2, their 

corresponding KB was updated with their performance. Applying the decision tree 

algorithm to the iteratively updated KB produced either the same or new decision rules. For 

55% of participants, the updated data produced the same DT throughout the updating in 

phase 2. For 42% of participants, the modelled DTs changed between each of the retention 
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tests in phase 2. For some participants, the KB did not have a recognizable pattern and the 

decision rules were not drawn. 

DT patterns that emerged from the training were tabulated. Eight different types of 

DTs were modelled using the DT updating process throughout the retraining in phase 2. 

Table 5.6 shows the percentage of participants who formed each type of DT at the 

beginning and the end of the retraining in phase 2. The column ‘End of ACQ’ depicts the 

percentage of participants who formed each DT developed from data collected at the end 

of the acquisition phase. The column ‘End of RET’ depicts the percentage of participants 

who formed each DT developed from data collected at the end of the retraining phase.  

Table 5.6: Decision trees after acquisition (ACQ) and retraining (RET) phases 

Type Decision Rules 

% Participants 
Compared to  

Ideal DT End ACQ 
End 

RET 

1 

 

 

60% 68% Match 

2 

 

 

16% 10% Match 

3  

 

 
*One participant had a similar tree but reversed rules for 

PAPA and None 

10% 13% Match 
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4 

 

3% 0% Match 

5 

 

 

3% 0% Incomplete 

6 

 

 

3% 0% Incorrect 

7 

 

  

0% 3% Incorrect 

8 

 

 

0% 3% Incorrect 

 
*No behavioural pattern or strategy identified  

5% 3% 
Trainees not 

suitable 

 

The ideal DT, depicted in Figure 5.1, represents what was envisioned as the correct 

decision rules needed to respond to a multitude of emergencies. The ideal DT was used as 

a benchmark for comparison to determine if the participants’ behavioural patterns, 

identified by their DTs, converged to the intended strategies. This comparison was 

performed to determine if the participants achieved the target competence. The ideal DT 
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was compared to participants’ modelled DTs at two stages: after the initial acquisition (End 

of ACQ) and at the end of the refresher training (End of RET). Four types of DTs were 

identified as successful matches: types 1, 2, 3, and 4 (depicted in Table 5.6, column 

‘Match’). Four other DTs did not meet the requirements for safe evacuation: types 5, 6, 7, 

and 8 (depicted in Table 5.6, column ‘Incomplete’ or ‘Incorrect’).  

Grouping emergent DT patterns (as shown in Table 5.6) provided an indication of 

whether the training curriculum adequately prepared participants to apply their egress skills 

to new emergencies in the virtual offshore platform. At the end of skill acquisition, 89% of 

participants’ behaviour represented the ideal DT or an accepted variation of the tree, and 

the remaining 11% of participants (four participants) did not form a tree to match the 

intended decision strategy. At the end of retraining, 91% of participants’ behaviour 

represented the ideal DT or accepted variation of the tree and the remaining 9% of 

participants (three participants) formed incorrect trees. The following subsections discuss 

the implications of the emergent DT patterns on measuring participants’ competence and 

assessing the efficacy of the training curriculum. 

5.6.1.1. Description of Successful Decision Trees 

The training curriculum taught participants three main tasks for responding to emergencies: 

(1) to listen to the alarm type as it indicated the severity of the situation, and indirectly, the 

muster location; (2) to listen for the PA announcement as it sometimes provided 

information on the safest egress route; and (3) to re-route if their egress route was 

obstructed by hazards. From the perspective of the individual learner, successful decision 

rules included the DTs that all started with information for the PA announcement (e.g. types 
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1, 2, 3, and 4). For these types of DTs, the participant’s route selection was decided based 

on their understanding of the PA announcement. For example, the type 1 decision rules 

specified that if the PA directed them to the safe route, then the participant followed that 

route. If the PA did not provide information about the safest route, then the participant’s 

choice defaulted to their primary egress route. The majority of participants’ DTs relied on 

information from the PA in choosing the egress route (type 1), representing 68% of 

participants at the end of retraining.  

From the systemic perspective of the training curriculum, three DTs developed 

contingency branches for situations where the PA provided little route information. In such 

cases, the decision rules included using attributes such as the end location (type 2), alarm 

type (type 3), and route obstructions (type 4) in making the route choice. These three types 

of DTs represent heuristics that participants formed throughout the training. Although they 

were not explicitly taught, these DTs are acceptable route selection strategies for most 

situations. From a systemic training perspective, these emerging behavioural patterns show 

how the training resulted in learning strategies that surpassed the intended learning 

objectives.  

The decision rules for type 2, 3 and 4 emerged from the performance data and are 

good examples of decision strategies that participants developed on their own in the training 

program. For type 2 decision rules, in circumstances when the PA did not provide 

situational information, the participant’s choice was based on the intended end location. If 

the participant was required to go to the muster station, they would take the primary route, 

and if the participant was required to go to the lifeboat station, they would take their 

secondary route. For type 3 decision rules, the participant’s choice was based on the 
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presence of an alarm. If the General Platform Alarm (GPA) or Prepare to Abandon Platform 

Alarm (PAPA) sounded, the participant would take the primary route, and if there was no 

alarm, they would take their secondary route. Some participants’ DTs relied on the end 

location (type 2) and alarm type (type 3), representing 10% and 13% of participants 

respectively at the end of retraining. For type 4 decision rules, in the absence of a PA 

announcement the participant’s choice was based on whether the route was obstructed by 

a hazard. If the primary egress route was obstructed, the participant would re-route to the 

secondary route, and if the secondary egress route was obstructed they would re-route the 

primary route. Only 3% of participants at end of the acquisition phase modelled decision 

rules that focused on the obstructed route. 

5.6.1.2. Description of Incorrect Trees 

Four other trees developed from the participants’ data represented decision rules that were 

either incomplete, too specific, or incorrect (types 5, 6, 7, and 8). From the perspective of 

the individual learner, these are examples in which the participants may not have received 

sufficient training to develop the ideal DT, or they developed their own heuristics that are 

not safe strategies for emergency egress. For these types of DTs, there was too much 

emphasis placed on incorrect attributes. For example, the type 5 decision rules were 

incomplete and focused solely on whether or not the egress routes were obstructed. Type 6 

decision rules had too many specific branches due to overfitting the data (i.e. representing 

a specific rule for each scenario attribute). For type 7 decision rules, the participant’s choice 

was based on the presence of hazards. If the scenario had a hazard, the participant would 

take the primary route, and if there was no hazard, they would take their secondary route. 
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This rule suggests that the primary route is the only safe route if there are hazards in the 

scenario and incorrectly presumes that there will never be hazards in the accommodation 

block. For type 8 decision rules, the participant’s choice was based on the last route taken 

in the previous scenario. This participant would indiscriminately alternate between egress 

routes regardless of the scenario attributes. If the participant had taken the primary route in 

the previous scenario, then the participant would alternate and take the secondary route in 

the next scenario and vice versa. Rules based on previous route choices provided no 

advantage in responding to emergencies.  

These unsatisfactory trees identify weaknesses in the individual trainee as well as 

training curriculum. From the systemic perspective of the training curriculum, these 

weaknesses can be addressed by providing individuals with more practice exercises to 

target the errors they are making and reinforce the decision rules of what to do in these 

circumstances (e.g. offering experience to build the correct contingency branches). In the 

case of building decision rules based on the presence of hazards (type 7), this is an indicator 

that the participant has not received enough practice scenarios to know what to do if a 

hazard occurs on their secondary route. Additional training scenarios should be provided 

to modify the branches on this participant’s DT. Similarly, in the case of type 8 decision 

rules, this is evidence that the participant might not be challenged by the exercise and is 

simply gaming the experiment, by taking the opposite route for each scenario. This 

participant should receive training scenarios to challenge them and reinforce the importance 

of the training.  

In a few situations, the VE training was not compatible with the learner. Some 

participants’ performance data did not have a recognizable pattern and the decision rules 
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were not drawn. If no behavioural pattern could be determined from the participant’s 

performance data, it was likely that the trainee was not suitable for this type of VE training. 

5.6.2. Empirical Results: Performance in Transfer Scenarios 

The performance scores provided another indicator of how well participants were able to 

apply their egress skills to new situations in phase 3 of the experiment. Table 5.7 shows the 

descriptive statistics for participants’ performance in the four retention and eight transfer 

scenarios. Figures 5.8 and 5.9 provide a visual representation of the retention and transfer 

data in Table 5.6 using boxplots.  

Table 5.7: Performance scores for all the phase 3 test scenarios 

Test Phase n 
Performance Scores (%) 

Mean St. Dev Median Min Max 

T1 

2 

35 72.3 26.9 81.0 9.0 100 

T2 35 83.7 18.0 91.0 35.0 100 

T3 36 96.8 8.0 100 63.0 100 

T4 34 95.7 13.4 100 29.0 100 

U1 

3 

38 98.5 5.1 100 78.3 100 

U2 38 99.1 4.1 100 78.3 100 

U3 38 95.8 14.3 100 28.6 100 

U4 38 80.8 4.8 82.1 66.1 100 

U5 37 93.4 11.7 100 59.5 100 

U6 36 96.2 7.9 100 66.7 100 

U7 36 92.4 10.8 100 75.0 100 

U8 37 77.0 19.7 80.8 19.2 100 

 

As shown in Figure 5.8, the elapsed time (of 6 to 9-months) between phase 1 and phase 2 

affected the performance of participants in the first two retention scenarios (T1 & T2). The 

participants returned to competence in the final two retention scenarios (T3 & T4).  
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Figure 5.8: Boxplot of performance scores for the 1st attempt of retention scenarios 

 

As shown in Figure 5.9, the retraining prepared participants to demonstrate skill 

transfer for the majority of the phase 3 scenarios. The overall performance showed that 

participants successfully applied their egress skills in the transfer scenarios that were 

similar to the training conditions (e.g. near transfer for test scenarios U1, U2, and U3). The 

conditions of these scenarios involved egress from the cabin. If there was a hazard in the 

scenario, its location was often identified in the PA announcement. The participants’ 

performance dropped in scenario U4. This scenario also involved egress from the cabin and 

a hazard blocking the primary egress route, but in this case, there was no information from 

the PA announcement about the hazard. The 97% of participants came across the fire in the 
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main stairwell, blocking their primary egress route, and were forced to re-route to the 

secondary egress route to their muster station. 

 

Figure 5.9: Boxplot of performance scores for the transfer scenarios 
 

As the conditions in the transfer scenarios moved beyond the scope of the training, 

the overall performance of the participants decreased (e.g. for far transfer test scenarios U5, 

U6, U7, and U8). The conditions in these scenarios involved egress from a less familiar 

starting location, the bridge. The high and low values of the scenario attributes for hazards 

and the PA were also varied (e.g. scenario U6 provided little information about the 

emergency over the PA and scenario U7 had a major egress route obstructed by hazardous 
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conditions). In particular, participants’ performance dropped in scenario U8. This scenario 

deviated the most from the training conditions. U8 assessed the participants’ ability to 

respond to a situation starting in the bridge, with smoke and fire hazards blocking their 

egress path and little information from the PA. Seventy-nine percent of participants came 

across the fire and the deluge system in the external stairway, blocking their secondary 

egress route, and were forced to re-route to the primary route to reach their muster station.  

5.6.3. DTs to Predict Training Transfer 

The DTs from phase 2 (depicted in Table 5.6, column ‘End of ACQ’) were used to predict 

the participants’ route choices in the retention scenarios. The final DTs from the retraining 

(depicted in Table 5.6, column ‘End of RET’) were used to predict participants’ route 

choices in the transfer scenarios. The prediction accuracies were the calculated for the 

retention and transfer scenarios by comparing the modelled DTs to the participants’ 

corresponding route choices in the 12 scenarios. Table 5.8 shows the percentage of DTs 

that predicted the participants’ successful performance in phases 2 and 3.  

Table 5.8: Percentage of DTs that predicted participants’ successful performance 

Decision 

Tree Type 

% DTs predicted successful performance 

Phase 2 Phase 3 

Retention Near transfer Far transfer 

T1 T2 T3 T4 U1 U2 U3 U4 U5 U6 U7 U8 

All Types 22 27 79 77 66 85 82 87 13 16 53 16 

Type 1 11 18 55 61 47 66 58 63 5 13 40 8 

Type 2 3 3 13 8 8 8 11 11 0 0 5 3 

Type 3 5 3 8 5 11 11 13 13 8 3 8 5 

Type 4 3 3 3 3 - - - - - - - - 

 



185 

5.6.3.1. Classification Accuracy of Decision Trees 

The DTs at the initial stage of the retraining phase (from ‘End of ACQ’) produced low 

classification accuracy for the first two test scenarios (T1, T2). This poor accuracy is not a 

reflection of the prediction capabilities of DTs, but is a direct result of participants’ weak 

performance in the retention scenarios (e.g. due to forgetting their egress routes after the 

long retention interval). As an example, in scenario T1 the decision trees were compared 

to the participants’ route choice after 6 to 9-months.  Thirty-two percent of participants (12 

people) passed scenario T1 and the DTs predicted the route choice of 55% of participants 

(21 people). However, only 22% of participants (8 people) passed the scenario and had 

their DT predict their performance in T1. This low percentage is likely due to participants 

forgetting their egress route. Eighteen percent of participants (7 people) DT correctly 

predicted their route choice but they were unable to continue to follow their route because 

they forgot the full route. The DTs do not have a mechanism to model forgetting, so this 

result affected the classification accuracy of the trees in the retention phase. This is not a 

limitation of DTs, but an example of how DTs can help diagnose the strengths and 

weaknesses of individuals completing the VE training. 

After participants received sufficient retraining, their performance improved in the 

last two retention scenarios (T3, T4). Similarly, the participants’ corresponding KB was 

updated with the full dataset from the retraining and the classification accuracy of the 

revised DTs improved. For example, in scenario T4 the DTs were compared to the 

participants’ route choice after receiving retraining. Eighty-nine percent of participants (34 

people) passed the scenario T4 and the DTs predicted the route choice of 87% of 
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participants (33 people). However, only 77% of participants (29 people) passed the scenario 

and had their DT predict their performance in T4.  

5.6.3.2. Decision Trees to Predict Transfer 

The DTs at the end of the retraining (depicted in Table 5.6, column ‘End of RET’) had 

mixed success in predicting the route selection choices of participants in the phase 3 

scenarios. The prediction accuracy of the DTs for phase 3 was sensitive to the degree of 

transfer (i.e. near and far transfer). Near transfer scenarios tested participants’ application 

of egress skills in a transfer setting that was very similar to the training (e.g. the participants’ 

familiarity to the scenarios start location). All the training (phase 1) and retraining (phase 

2) scenarios were designed to teach participants egress route from their cabin. The first set 

of four scenarios (U1-4) in phase 3 tested near transfer and started in the cabin, the same 

location as the training scenarios. Far transfer scenarios tested participants’ generalization 

of egress skills in a transfer setting that was very different from the training. The second 

set of four scenarios (U5-8) in phase 3 tested far transfer and started in the bridge. The DT 

prediction accuracy was higher for the scenarios that started in the cabin (66-87%) than the 

scenarios that started in the bridge (13-53%). As a result, the DTs could not predict 

successful performance in all the transfer scenarios.  

The poor prediction accuracy of the second set of transfer scenarios is not a 

reflection of the assessment quality of the DT modeling approach, but an indicator of the 

gaps in the training curriculum. This indicator shows that the VE training did not adequately 

prepare participants to respond to the emergency scenarios in the transfer phase because 

some of the training transfer scenarios (U5-8) were beyond the scope of the training. DTs 
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use supervised learning, which involves a database of solved examples to infer choices or 

actions in future cases. Supervised learning is applicable when the future cases are within 

the same parameters of the trained model. Therefore, if the scope of the transfer scenarios 

reach beyond the training context, the DTs will not be able to predict actions for unforeseen 

or ill-defined future states. This can be considered a similar mechanism to how trainees 

learn, apply, and generalize knowledge. Trainees learn information in training context and 

they are expected to apply their skills to real-world situations. It is unreasonable to expect 

a trainee to transfer skills to situations well beyond what they have been trained for. Thus, 

if the DT depiction of the participants’ training experience cannot adequately predict their 

performance in the transfer scenarios, it is possible that the reason for the poor prediction 

is that the training did not adequately prepare the participants for the new emergency 

scenarios. From a systemic perspective, the DT prediction analysis provides a valuable 

diagnostic lens to assess the efficacy of a training program.  

5.6.4. Recommendations to Improve Transferability  

The diagnostic DT comparison, tabulated emergent DTs, and prediction methods in this 

paper identified gaps in the design of the VE training curriculum. This process helped 

identify the limitations of the benchmark DT and the size of the participants KB, both of 

which inform the design and assessment of the curriculum.  

The ideal DT must be improved to address the participants’ deteriorating 

performance and the reduced DT prediction accuracy for complex transfer scenarios. A 

way forward is to modify the ideal DT to improve the learners’ preparedness for both near 

and far transfer scenarios. Figure 5.10 provides an example of an improved DT with 
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additional branches to address the situations participants faced in the far transfer scenarios 

(e.g. U5-8, when the PA does not provide information about the situation and the participant 

is required to make a decision based on obstructed egress routes).   

 

Figure 5.10: Revised decision tree for emergency egress 

 

To achieve the revised DT, participants should be provided with more training 

scenarios to target the intended decision strategies and thereby increase the number of 

entries in their corresponding KB. Adding more practice scenarios (e.g. situations without 

a PA announcement and obstructed routes) will improve the participants’ repository of 

solved examples, which is necessary to develop the contingency branches to match the 

revised DT (in Figure 5.10). However, practice scenarios should target the needs of each 

individual leaner. Combining DT modeling with adaptive training would provide a 

customized tool to ensure each learner achieves demonstrable competence by developing a 

DT to match the intended decision strategies (e.g. developing the contingency branches 

needed to help learners respond to many plausible emergencies).  

Another gap identified by this process was that the existing DT target captured the 

protocols as defined by regulations. However, this DT was found to be not comprehensive 
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enough to predict performance in the complex transfer scenarios. The transfer scenarios in 

this experiment were plausible scenarios that challenged the scope of the VE training by 

testing situations that go beyond the competencies dictated by industry regulations in order 

to measure human reliability in emergency conditions. This is important to highlight 

because emergencies are characterized by complexity, time pressure, and uncertainty. 

Offshore safety training must be robust enough to apply to a wide range of circumstances 

and therefore VE training should be designed to encourage training transferability.  

 

5.7. Conclusion 

This research used decision trees as data-informed curriculum design and assessment tools 

to evaluate the transferability of virtual offshore training. Visualizing participants’ decision 

strategies can help instructional designers determine if participants are adequately prepared 

for new training transfer situations. The results of this work showed that DTs can model 

participants’ decision making strategies throughout the acquisition, retention and 

retraining, and transfer phases of the experiment. The majority of participants demonstrated 

training transfer in test scenarios that were similar to the training conditions (near transfer 

test scenarios U1-4). Similarly, the majority of participants’ DTs converged on intended 

strategies. From the individual learner perspective, this convergence is an indicator that the 

participants achieved the intended demonstrable competence. DT analysis provided 

evidence that participants accrued sufficient training to transfer their skills (e.g. promote 

the application and generalization of skills).  

https://www.sciencedirect.com/topics/social-sciences/convergence
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However, not all participants developed the ideal DT which shows the limitations 

of the trainee and the training.  For some participants, their performance data developed 

credible heuristics (e.g. specific decision rules that were not explicitly taught). This finding 

highlights the diagnostic utility of DTs as they show how participants develop strategies 

that do not always match the intended training material. From a systemic perspective, DTs 

are useful for identifying the strengths and weaknesses of a training curriculum. In this 

case, some participants required more opportunities to practice scenarios with varied 

attributes to ensure they develop the targeted route selection strategies. This retroactive 

analysis could be performed in real time as a basis of adaptive training. VE training can be 

further optimized by combining DT methodology with adaptive training mechanisms to 

provide participants with customized scenarios to meet their specific learning need and to 

prepare them for training transfer. 

Decision trees also have the potential to predict when a person is prepared or not 

prepared for more advanced situations. Overall, the participants’ data-informed DTs were 

successful in predicting the participants’ performance in new scenarios that represented 

near training transfer (U1-4). As a group, the performance decreased as scenario conditions 

moved beyond the scope of the initial training (far transfer test scenarios U5-8). Similarly, 

the decision rules developed throughout the training were not good at predicting 

participants’ route selection strategies in situations that went beyond the training context. 

The poor DT prediction of participant performance in the transfer scenarios is an indicator 

of gaps in the VE training. The far transfer scenarios were plausible scenarios that 

challenged the scope of the VE training by testing situations that go beyond the 

competencies prescribed by regulations.  This finding suggests that DT can push the 
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boundaries of existing training by highlighting its shortcomings and challenging 

instructional designers to develop training that prepares people for emergencies, rather than 

for the somewhat nominal requirements of regulations.  
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6. CONCLUSIONS 

6.1. Conclusions 

VE training will probably not replace conventional offshore safety training used in the real-

world operating environment. However, the results of this research demonstrated that 

pedagogically designed and data-informed VE training technology can enhance 

conventional training. This work provided evidence for operators and regulators in offshore 

and maritime domains to support the adoption of VE training to improve workers’ overall 

competence and compliance during emergencies. More specifically, VE training was used 

in this research for dual purposes: to provide trainees with artificial experience to fill in 

competency gaps, and as a human behaviour laboratory to assess the implications of new 

training interventions prior to implementing them offshore.  

To evaluate VE training, a longitudinal experimental program was used to provide 

empirical and modeling evidence as a means to address pedagogical gaps in conventional 

training. Four main research questions within VE training were the foci of this work:  

(1) how to design and deliver VE training to address individual variability in 

learning skills and assure demonstrable competence in the workforce,  

(2) how to assess data modeling tools to improve the assessment of different VE 

training interventions, 

(3) how to evaluate VE training to address skill retention and better inform the 

mandated recurrency training schedule, and  

(4) how to improve VE training to foster skill transfer and prepare the workforce 

for a wide variety of emergencies. 
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Two perspectives  were used to structure the evaluation of the VE training efficacy: 

1) pedagogical theory of simulation-based mastery learning, and 2) data-mining 

methodology of decision tree modeling. The investigation first evaluated the design and 

delivery of VE training using the simulation-based mastery learning pedagogical approach 

by collecting trainees’ performance data over the course of the longitudinal study at three 

critical learning phases: skill acquisition, skill retention, and skill transfer. The 

investigation then examined methods from the data-mining domain to support the 

assessment and optimization of VE training. Decision tree modeling was used to identify 

participants’ data patterns (as a proxy to understanding their learning strategies) and to 

inform the efficacy of VE training on a systemic level. This analysis uncovered 

participants’ heuristics that are otherwise not easy to identify using conventional 

assessment methods. By using decision trees to mine the performance data, the efficacy of 

VE training could be assessed more thoroughly at three critical learning phases. Results of 

the analysis were reported using a combination of performance metrics and decision tree 

models of participants’ data patterns. The significance of the main empirical and modeling 

findings are summarized below.  

6.1.1. Empirical Evidence 

Empirical evidence from this work offered a conventional approach to evaluate the efficacy 

of VE training. Overall, the SBML framework applied to the VE training was effective 

during the skill acquisition and retraining phases; however, some limitations were observed 

at the skill retention and transfer phases of the experimental program.  
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At the skill acquisition phase, the SBML framework reinforced learning, addressed 

performance variability, and assured competence. This addresses the first pedagogical gap 

in offshore safety training that conventional training does not account for individual 

variability in learning styles and paces. Due to regulatory, logistical, and financial 

constraints, conventional safety training is often provided using fixed-time instruction and 

lacks the structure and resources to assure competence is acquired and maintained. 

However, a workforce with unknown or variable competence is a safety concern. 

Conversely, the VE training recorded participants’ performance and monitored their 

progress through the training. As a direct result, the SBML guided VE training assured that 

all participants’ achieved competence upon the completion of the training. Overall, 

evidence from this experiment demonstrated the utility of VE training in providing 

structure, standardization, and accountability to offshore egress training. Employing VE 

training in industry has the potential to improve the overall safety of offshore operations.  

At the skill retention phase, the performance results indicated that emergency egress 

skills taught using the VE training were susceptible to skill decay over a period of 6 to 9 

months. The decay in performance was largely due to a reduction in procedural compliance 

and the degradation of spatial knowledge (e.g. remembering vital egress routes). Therefore, 

a shorter retention interval is necessary to maintain egress skills. This evidence should 

encourage operators and regulators to address the second pedagogical gap in offshore safety 

training that conventional training is forgotten before the mandated recurrency training is 

scheduled. The findings from the second phase of the experiment challenge the convention 

that recurrency training should be administered at a standardized or fixed-interval 

regardless of individual’s learning and retention tendencies. This research demonstrated the 
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potential of VE training as an alternative on-demand training solution (i.e. a customized 

retraining frequency). 

To address the degradation of participants’ egress skills in the experiment, the 

mastery-learning theory (Bloom, 1971; Gusky, 2007) was used to develop an adaptive 

retraining matrix. The adaptive matrix assigned participants to VE training exercises based 

on the specific errors they made (Doody, 2018). This approach accommodated the different 

learning paths and paces of participants. As a direct result, the retraining was successful in 

bringing all participants back to demonstrable competence, and did so quickly. These 

results show that the VE training can help maintain egress skills for workers who have been 

away from the platform for an extended period. Employing VE training in industry has the 

potential to change how recurrency training is provided. VE technology can facilitate a shift 

in safety operations from fixed-interval training to a competence-driven training at an on-

demand frequency that is based on each individual workers’ needs.  

At the skill transfer phase, the VE training was able to provide participants with 

sufficient artificial experience to apply their knowledge and skills to multiple emergencies. 

This phase of the experiment supports the conclusion that VE training addresses the third 

pedagogical gap in conventional offshore safety training that the training does not measure 

learning outcomes and as a result does not inform the transfer of training. From a training 

transfer perspective, the efficacy of VE training could be measured by employing 

capabilities of VE training to record and track participants’ performance throughout the 

training. The performance results in the transfer scenarios revealed that participants were 

able to apply their egress skills to new situations in the same virtual setting. However, there 

were limitations to the extent participants could transfer their training to novel emergencies. 
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The overall performance results showed that participants successfully applied their egress 

skills in the transfer scenarios that were similar to the training conditions, but that the 

participants’ performance decreased as the conditions in the emergency scenarios moved 

beyond the scope of the training, as expected. This represents a gap in the training 

curriculum scope that trainees should not be expected to fill on their own. These results 

provide evidence to highlight the importance of addressing the fourth pedagogical gap in 

mandatory offshore safety training that conventional training is not representative of the 

conditions in real emergencies. The finding that participant performance decreased as the 

complexity of the test scenarios increased and deviated from the training context is not 

surprising. It is unrealistic to expect people to apply skills to situations that differ drastically 

from the training. Therefore, it is naive to assume that muster drills in benign conditions 

adequately prepare offshore workers for the complexities and time-sensitive procedures 

required of real emergencies offshore. Although this experimental program revealed 

limitations in how the VE training was delivered from a training transfer perspective, 

overall the VE technology and experimental design employed in this research were 

effective at identifying deficiencies in the assumptions of conventional offshore training 

and offering recommendations on how to use VE training to improve offshore safety. 

Employing VE training in industry has the potential to provide transferable experience with 

plausible emergency conditions that cannot be practiced safely in offshore evacuation 

exercises. 
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6.1.2. Modeling Evidence 

This research applied a data-mining technique to expand the capabilities of VE training. 

Building on the work of Musharraf et al. (2018), who demonstrated the utility of DT 

modeling to assess training at an individual level, DT modeling was used to evaluate VE 

training at a systemic level. The modeling evidence from this work offered a more 

comprehensive assessment of the VE training at the three learning phases. Overall, the DT 

modeling was effective at diagnosing the strengths and weaknesses of the VE training at 

the skill acquisition phase and was able to provide a means to diagnose and predict when 

individuals received sufficient training to use their skills efficiently in multiple emergencies 

at the skill retention and transfer phases. However, some limitations were observed at the 

retention and transfer phases of the experimental program.  

At the skill acquisition phase, the DT modeling results identified systemic strengths 

and weaknesses in the delivery of VE training. This was identified by comparing the DTs 

from two groups training using different methods: LBT and SBML training. The DTs were 

able to diagnose when participants received sufficient training to be competent and were 

able to predict participants’ behaviours in the test scenarios (e.g. egress route choices). The 

results of the DT analysis also showed that DTs were useful tools for the design and 

assessment of VE training because they offered a visual representation of an individual’s 

heuristics that was easy to interpret. Overall, decision trees were shown to improve the 

design and delivery of VE training by comparing the changes in trainees’ decision-making 

patterns, in response to different training interventions, to the intended learning objectives. 

This is a key finding because understanding how trainees develop learning strategies or 
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heuristics is important for addressing individual variability and assuring demonstrable 

competence in the workforce. 

At the skill retention and transfer phases, the DT modeling results again identified 

systemic strengths and deficiencies in the SBML approach applied to VE training. The DTs 

were able to diagnose when the SBML-trained participants received sufficient retraining to 

be competent (e.g. when DTs converged on the intended learning objectives and 

represented safe behaviours). However, the DTs were limited in predicting when 

participants were ready to transfer skills to new situations (e.g. test scenarios different from 

the training context). The poor prediction accuracy of the DTs in forecasting training 

transfer was an indicator of gaps in the VE training. The transfer scenarios were plausible 

scenarios that challenged the scope of the VE training by testing situations that go beyond 

the competencies prescribed by regulations. Additionally, the DT algorithm uses inference 

to predict possible choices to future events, thus some of the training transfer test scenarios 

were misaligned or outside the scope of the training (e.g. the trainees were not sufficiently 

trained for test scenarios that were too advanced). This disconnect between the DTs and the 

transfer scenarios can be addressed by making modifications to the design of the VE 

training (specifically the practice scenarios). Overall, the DT analysis demonstrated that 

these data-mining tools play an important role in learning analytics, but have some 

limitations (e.g. can only infer and not predict the transfer of skills beyond the context of 

the training).  

DT modeling can improve the assessment of VE training by identifying when the 

prescribed VE training does not match the difficulty level of the test scenarios. This is 

especially important when the goal of VE training is to prepare the workforce for a wide 
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variety of emergencies (as conventional safety training does not represent the conditions of 

real emergencies). Incorporating DT modeling into VE training can push the boundaries of 

existing training by highlighting its shortcomings and by challenging instructional 

designers to develop training that prepares people for emergencies, rather than for the 

somewhat nominal requirements of regulations. These DT tools have potential to improve 

future learning applications, specifically to support adaptive training programs. Pairing 

DTs’ diagnostic and predictive tools with VE training offers the flexibility to provide 

people with practice, assessment, and corrective feedback on-demand and at a customized 

schedule that meets the needs of each learner. This work provides evidence to operators 

and regulators in offshore and maritime domains to support the adoption of VE training to 

improve workers’ overall competence and compliance during emergencies.  

 

6.2. Technical Challenges and Limitations 

The following describes the technical challenges and limitations that arose from this 

research. Explanations for the design choices are provided and recommendations are made 

for future studies.  

1. This study used a convenience sample in that the recruited participants did not 

directly represent the target population (Ritter et al., 2013). Most of the participants 

in the experiments were undergraduate and graduate students. All participants had 

no prior offshore experience and no exposure to the AVERT simulator prior to the 

study. The decision to limit recruitment to naïve subjects was made to control for 

experience (e.g. remove past spatial and procedural experience from the study). As 
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such, people who worked in the offshore oil and gas industry were excluded because 

their prior offshore experience would confound the measurements of learning 

egress skills in the VE training (e.g. it would be difficult to discern if the participants 

learned the egress skills from VE training or applied their prior knowledge when 

performing in the scenarios). Controlling for experience does have its trade-offs. 

The data collected from naïve participants (convenience sample) limits the 

generalization of the results, as it may not provide the same conclusions as testing 

with the offshore workforce population. If the experiment were repeated with 

experienced offshore workers the outcomes could be different. 

 

2. Designing and managing the logistics of a longitudinal experiment presented 

participant attrition challenges.  Efforts were made to recruit a sufficient number of 

participants at the initial phase of the experiment to accommodate the anticipated 

attrition so that the statistical power was maintained at the retention phase of the 

experiment.  The target sample size for the retention phase of the study was 40 

participants. Sixty participants were recruited for the first phase of the study with 

an expectation of 25% attrition for the longitudinal portion of the study (e.g. loss of 

15 participants). Fifty-five participants completed the skill acquisition phase. Five 

participants withdrew at the onset, due to simulator sickness and difficulty with the 

controller. Seventeen participants opted out of the longitudinal study during the 6 

to 9-month retention interval. The remaining 38 participants completed the 

retention phase. Two were identified as outliers (completed the retention 

assessment at 4 and 10 months) and were removed from the retention analysis. 
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3. In the peer-review of this research, it was identified that combining the retention 

assessment and retraining into one phase was a limitation in the experimental 

design. This experiment used an adaptive retraining matrix to retrain participants 

directly after they failed the test scenarios. Merging the methods made testing the 

retention of complex skills difficult because participants were brought back to 

competence in foundational skills before being tested on more advanced emergency 

scenarios. As a result, this design did not allow for conclusive answers as to why 

participants performed well in the more complex test scenarios. The reviewer 

suggested that a better design would be to separate the retention assessment from 

the retraining (as opposed to weaving them together). This experiment may have 

benefitted from a separate baseline group to test retention (e.g. assessing 

participants on all 4-test scenarios before the retraining them). However, a 

substantially larger sample size would have been necessary at the initial skill 

acquisition phase to ensure the returning sample for the retention phase was large 

enough to accommodate a separate group to test baseline retention. Recruiting a 

larger sample size for a longitudinal study was not feasible due to logistical and 

attrition implications. The decision to combine the retention assessment and 

retraining into one phase was made in an effort to strike a balance between 

experimental control, ecological validity, and practicality of the training delivery.  

 

4. This experiment used a proxy measure of training transfer by comparing how 

training in a VE in one context helped participants apply their newly acquired skills 

to a novel or unforeseen context in the same virtual setting (Wickens et al., 2012). 
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Traditional training transfer studies measure skill transfer by first training skills, for 

example using a VE or simulator, and then evaluating the skills in the real 

environment. This was a limitation to the experimental design due to ethical, safety, 

and logistical constraints. It was not feasible or safe to assess trained participants 

on how their skills transferred to the real environment (on an offshore platform). 

Therefore, the study was designed around measuring training transfer using novel 

situations in the same virtual setting. This was accomplished by repurposing the 

scenarios and data collected originally for human reliability analysis (Blundon, 

2019; Musharraf et al., 2019).  

 

5. Decision trees are one of many data-mining methods that are useful for decision 

modelling. There are other data-mining approaches that could be used to make VE 

training more adaptive, such as Bayesian network (BN), artificial neural networks 

(ANN), and support vector machines (SVM). In some cases, these methods have 

better diagnostic capabilities and higher prediction accuracy, however, they are 

harder to interpret and communicate to non-domain experts such as instructional 

designers. One such example is Bayesian Networks (BN), a statistical learning 

method that models the probability relationship based on performance data (i.e. the 

likelihood of outcomes). Musharraf et al. (2017) and Blundon (2019) used BN to 

investigate human reliability in emergency egress tasks using a virtual environment. 

Decision trees were well suited for the application of evaluating training efficacy 

because of their relative ease of construction, visual simplicity, high interpretability, 

and transparency compared to the other data-mining methods (Liu, 2009; Romero 
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and Ventura, 2010). Decision trees are especially suited to assist instructional 

designers in the interpretation of the VE performance data (e.g. understand the 

participants’ behavioural patterns or strategies) and to make design changes to the 

training curriculum (e.g. revise the content, structure, and delivery of the training 

accordingly).  

 

6. This experiment used decision trees, which are a logic-based supervised learning 

approach to modeling decision-making. This approach resulted in a simplified 

representation of decision-making that may not accurately reflect how people 

actually learn or make complex decisions. Klein (2008) suggests that people tend 

to develop heuristic approaches to decision-making (e.g. simplified intuitive 

responses or rules) instead of optimal judgement or systematic strategies. Insights 

into complex decision-making in emergencies may not be easily modeled using 

performance data and decision tree modeling. Although DTs do not replicate how 

people actually form decisions, they do provide perspective on patterns in the data 

that can be used as a proxy for participants’ strategies. DTs are useful decision-

making representation tools to help understand what information people might be 

attending to when making decisions in emergencies. That is valuable in 

understanding when participants have reached competence or when they might 

require more training. 

 

7. For the decision tree modeling, a split training set approach was used to calculate 

the classification or prediction accuracy of the decision trees. The split training set 

approach divides the dataset, uses 2/3 of the dataset for training, and holds the other 
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1/3 of the dataset to test the classifier’s performance. In the peer-review process 

reviewers expressed limitations with the split training set method and suggested 

that cross-validation would be a more suitable method for evaluating the DT 

classification accuracy. The cross-validation approach involves dividing the data 

set into mutually exclusive, equal sized, training subsets for which the DT algorithm 

is trained and then the resulting DT model is tested on all of the subsets (Kotsiantis, 

2007; Han et al. 2011).  

 

6.3. Future Work 

This research has opened two important lines of inquiry to improve offshore emergency 

training. Future work should address: 1) implementation of decision trees into VE training 

to support adaptive training, 2) investigation of the implications of VE training on more 

complex decision-making tasks.  

1. Adaptive offshore egress training can be achieved by implementing decision tree 

modeling into the VE technology. This integration would provide real-time 

performance assessment and customized training exercises for each trainee (i.e. to 

better meet the individual’s learning style and pace). As a result, safety training 

could be provided on demand as opposed to crews waiting for the next recurrency 

interval. The very idea of this could change how training is provided to the offshore 

industry. Decision tree informed adaptive VE training has the potential to shift 

recurrency training from a standard frequency to an individualized maintenance 

schedule that reflects each person’s tendencies to remember or forget training. Since 
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this research has demonstrated the utility of applying DTs to VE training, future 

work should focus on embedding decision tree analysis into an adaptive VE training 

model.  

 

2. VE training has the potential to teach complex decision-making in multiple 

emergency contexts. This research demonstrated the utility of VE training for 

teaching decision-making skills that were mostly procedural based (e.g. easy to 

follow safety protocols and selecting the safest egress route for the emergency 

conditions). The targeted VE training brought trainees competence in these simple 

decision-making tasks.  

The next step is to investigate VE training for more complex tasks that 

require a higher order decision-making. For example, members of the emergency 

response team offshore have larger responsibilities during emergencies and require 

a higher level of proficiency and expertise, as described by Dreyfus (1997) and 

Griswold-Theodorson et al. (2015) as a five-staged training framework. Training 

emergency response teams is not as straightforward as teaching general personnel 

basic emergency egress skills because emergency situations are always different 

and preparing people for a variety of possible scenarios is difficult (if not 

impossible) by just providing practice.   

To provide a more holistic training experience with VE training, research 

should focus on teaching transferable emergency response skills, such as 1) how to 

recognize important cues, and 2) how decision-making strategies may change in 

various emergency contexts. Teaching to competence is not enough for complex 
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situations as this form of training only establishes the rules and may not provide 

enough exposure (or experiential learning) for people to practice testing the rules in 

various situations in order to see what works, what does not, and what the 

consequences of the actions are in different situations.  

Recognition-primed decision making (RPDM) is a framework that describes 

how expert operators collect and store patterns during complex situations (e.g. 

storing information like the causation, expectancies, goals, and reactions to the 

situations) and how experts revert to this information to help make decisions in new 

situations (Klein, 2008). RPDM is applicable to complex offshore emergency 

decision-making situations and these training methods are needed to target 

proficiency (i.e. recognizing the situation) and expertise (i.e. knowing what 

strategies are suited to the situation). To close performance gaps with emergency 

response teams, researchers should investigate the use of VE technology and RPDM 

theory for training complex decision-making.  
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