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Abstract 

 Data storage tags (DSTs) are implantable devices that record and store 

physiological, environmental and/or behavioural data from free-living animals. A recently 

developed DST from Star-Oddi records heart rate (fH), electrocardiograms (ECGs), tri-

axial acceleration and temperature. In my first chapter, I found that parameters of 

acceleration could predict the swimming speed, tail beat frequency and behaviour of 

Atlantic salmon (Salmo salar), and that the DST could record changes in fH associated 

with recovery from surgery, the diurnal (day / night) cycle and temperature. In my second 

chapter, I used Star-Oddi’s micro fH logger to show that the lumpfish (Cyclopterus 

lumpus) has a low maximum fH compared to most fishes, experiences tachycardia when 

acutely exposed to increased hydrostatic pressure and for periods as long as one hour, and 

that hydrostatic pressure alters their fH response to decreasing oxygen levels (hypoxia). 

These data support the use of biologging tags (which have recently been miniaturized and 

made more affordable) to better understand how aquatic animals respond to changes in 

their environment, and their ecology. 

 

 

 

  



iii 
 

Acknowledgements 

 Thank you to my supervisor Dr. A. Kurt Gamperl for his mentorship, intellectual 

contributions, and support during all aspects of my degree. Thank you for aiding my 

growth as a young scientist. I am grateful for the opportunities that I had during my time 

at the Ocean Sciences Centre, and for the guidance of my supervisor committee members 

Dr. William Driedzic and Dr. Iain McGaw and external reviews from Dr. Erika Eliason 

and Dr. Travis VanLeeuwen. 

I am extremely grateful to every member of the Gamperl lab over the past two 

years, especially Rebeccah Sandrelli for her impeccable skills as a research assistant and 

Ellen Peroni for her expertise and help with animal care. From the Dr. Joe Brown Aquatic 

Research Building, I would like to thank Danny Boyce for providing me with lumpfish 

for my research, as well as Jessica Fry and Jennifer Monk for advice on fish care and 

husbandry. Lastly, I would like to thank Gord Nash and Steven Hill for training on, and 

assisting me with the use of, the IPOCAMP pressure chambers in the Cold-Ocean and 

Deep-Sea Research Facility. To all other students, staff and faculty at the Ocean Science 

Centre, who I have not personally named, please know that I am also thankful to you for 

creating an enjoyable and engaging scientific community. 

A special thanks to Asgeir Bjarnason from Star-Oddi for technical help with the 

heart rate and acceleration data storage tags. Finally, I am grateful for funding though the 

“Mitigating the Impacts of Climate-Related Challenges on Salmon Aquaculture” and 

NSERC Discovery programs (awarded to Dr. A. Kurt Gamperl), and for a MUN School 

of Graduate Studies Fellowship, for financially supporting my stipend and the research 

conducted in this thesis.  



iv 
 

Table of Contents 

Abstract ................................................................................................................................ ii 

Acknowledgements ............................................................................................................. iii 

Table of Contents ................................................................................................................ iv 

List of Tables ..................................................................................................................... vii 

List of Figures ..................................................................................................................... xi 

List of Abbreviations and Symbols ................................................................................... xxi  

Co-Authorship Statement ................................................................................................ xxiii 

 

Chapter 1: General Introduction .......................................................................................... 1 

 

Chapter 2: Validating Heart Rate and Acceleration Data Storage Tags for Use in Atlantic 

Salmon (Salmo salar) ........................................................................................ 6 

Abstract .................................................................................................................... 6 

Introduction .............................................................................................................. 7 

Methods .................................................................................................................. 12 

Animal Husbandry ..................................................................................... 12 

Data Storage Tag Implantation / Attachment ............................................ 12 

Experiment #1: Relationship Between Accelerometry Parameters and 

Swimming Speed ................................................................................ 18 

Experiment #2: Heart Rate and ‘Activity’ of Free-Swimming Fish for 

Seven Days Post-Surgery .................................................................... 19 

Experiment #3: Heart Rate, ‘Activity’ and Tag Retention in Free-

Swimming Fish for Six Weeks Post-Surgery ..................................... 21 

Calculation of Heart Rate Parameters ........................................................ 22 

Accelerometry Parameters ......................................................................... 24 

Statistics ..................................................................................................... 24 

Results .................................................................................................................... 28 

Relationship Between Accelerometry Parameters and Swimming Speed . 28 

Heart Rate and Activity During Post-Surgical Recovery .......................... 34 



v 
 

Diel Heart Rate and Activity Patterns Post-Surgery .................................. 42 

Measurement Quality and Tag Retention Post-Surgery ............................ 42 

Discussion .............................................................................................................. 43 

Relationship Between Accelerometry Parameters, Heart Rate and 

Swimming Speed ................................................................................ 43 

Heart Rate and Activity During Post-Surgical Recovery .......................... 47 

Consideration for Tag Use and Future Feasibility Studies ........................ 52 

Conclusions ............................................................................................................ 56 

 

Chapter 3: Using Data Storage Tags to Study the Effects of Hydrostatic Pressure on the 

Heart Rate of Lumpfish (Cyclopterus lumpus) ............................................... 58 

Abstract .................................................................................................................. 58 

Introduction ............................................................................................................ 59 

Methods .................................................................................................................. 62 

Animal Husbandry ..................................................................................... 62 

Data Storage Tag Implantation .................................................................. 63 

IPOCAMP Set-Up ..................................................................................... 66 

Experiment #1: Heart Rate Response to Hydrostatic Pressure and the Fish’s 

Maximum Post-Exercise Heart Rate ................................................... 68 

Experiment #2: Influence of Hydrostatic Pressure on Heart Rate and Its 

Response to Changes in Temperature and Hypoxia ........................... 70 

Experiment #3: The Normobaric Heart Rate Response to Increased 

Temperature ........................................................................................ 71 

Calculation of Heart Rate Parameters ........................................................ 72 

Lumpfish Activity ...................................................................................... 72 

Statistics ..................................................................................................... 73 

Results .................................................................................................................... 73 

Heart Rate Recovery and Diel Patterns Post-Surgery ................................ 74 

The Heart Rate Response to Hydrostatic Pressure and the Fish’s Maximum 

Post-Exercise Heart Rate .................................................................... 78 



vi 
 

Influence of Hydrostatic Pressure on Heart Rate and Its Response to 

Changes in Temperature and Hypoxia ................................................ 82 

The Normobaric Heart Rate Response to Increased Temperature ............. 97 

Discussion ........................................................................................................................ 100 

Post-Surgical Recovery and Diel Patterns in Heart Rate ......................... 100 

Heart Rate Response to Hydrostatic Pressure .......................................... 101 

Influence of Hydrostatic Pressure on Heart Rate and Its Response to 

Changes in Temperature and Hypoxia .............................................. 107 

Maximum Exercised and Temperature-Induced Heart Rate of Lumpfish

........................................................................................................... 109 

Considerations When Using Data Loggers .............................................. 111 

Conclusions ...................................................................................................................... 112 

 

Chapter 4: Summary and Perspectives ............................................................................ 114 

 

References ........................................................................................................................ 122 



vii 
 

List of Tables 

Table 2.1. Specifications of the Star-Oddi data storage tags used in Chapter 2 

experiments. ....................................................................................................................... 13 

 

Table 2.2. Relationships between external acceleration (EA, m-g) and swimming speed 

(BL sec-1) and tail beat frequency (tail beats min-1), and between the latter two parameters 

and variation in EA (VAR, minutes). The following equations were tested for each 

relationship: linear regression (LR), exponential growth (EG), one phase decay (D), 

second order polynomial / quadratic (2P), and third order polynomial / cubic (3P). 

Relationships with the resulting best fit (highest R2 value) are in bold. For data 

presentation (see Figure 2.5), EG was used for all relationships given that it had the best 

fit, or its fit was extremely similar to that obtained by 3P. ................................................ 25 

 

Table 2.3. Summary of the statistical outputs from linear mixed-effects models that were 

used to examine the effects of swimming speed on heart rate parameters in Atlantic 

salmon. Linear mixed-effects models were used to assess the effects of swimming speed 

(body lengths sec-1) on heart rate, heart rate variability and the percentage of quality index 

values equal to zero (QI = 0). ............................................................................................. 31 

 

Table 2.4. The percentage of ECGs of each quality index value (QI = 0 - 3), and 

percentage of heart rate (fH) values that could not be manually calculated due to ECG 

artefacts during the Ucrit test (n = 8), during one week of recovery (n = 10) and during six 

weeks of recovery (n = 10). ............................................................................................... 32 



viii 
 

Table 2.5. Summary of the statistical outputs from the linear mixed-effects models that 

examined the effects of night/day (photoperiod), days post-implantation (i.e., photoperiod 

order), and their interaction, on fH parameters [fH and percentage of quality index values 

equal to zero (QI = 0)] and external acceleration (EA) in salmon for 7 days post-surgery.

 ............................................................................................................................................ 38 

 

Table 2.6. Summary of the statistical output from the linear mixed-effects models that 

examined the effects of night/day (photoperiod), days post-implantation (i.e., photoperiod 

order), and their interaction, on fH parameters [fH and percentage of quality index values 

equal to zero (QI = 0)] and external acceleration (EA) in Atlantic salmon for 6 weeks 

post-implantation. Due to issues with facility temperature control, the data is separated 

into two trials with a tank temperature of 8°C in trial 1 (A) and 8-12°C in trial 2 (B)...... 40 

 

Table 3.1. Summary of the statistical outputs from the LME models which examined the 

effects of photoperiod (day-time / night-time), photoperiod order (days post-

implantation), and their interaction on the fH of lumpfish over 5 days of post-surgical 

recovery. ............................................................................................................................. 77 

 

Table 3.2. Summary of the statistical outputs from the LME models which examined the 

effects of treatment (control vs. pressure-exposed), pressure (0, 20, 35, 50, 65, 80 bar and 

decompression in the opposite sequence) and their interaction, on fH, the percentage 



ix 
 

change in fH (% of initial 0 bar values), heart rate variability (HRV) and the percentage of 

fH values that were of ‘good’ quality (i.e., QI = 0). ........................................................... 80 

 

Table 3.3. Summary of the statistical outputs from the LME models which examined the 

effects of treatment (control vs. pressure-exposed), pressure (20, 35, 50, 65, 80 bar and 

time at 80 bar), and their interaction, on fH and the percentage change in fH [i.e., % of 

initial (0 bar) values]. ......................................................................................................... 85 

 

Table 3.4. Summary of the statistical outputs from the ANOVA and Tukey’s post-hoc 

tests, unpaired t-tests and linear regressions performed in Prism 7. These tests examined 

the effect of sex (I = immature, F = female, M = male), acclimation temperature (10 or 

12°C), weight (g) and length (cm) on the initial fH and change in fH / percentage change 

in fH at 0 vs. 80 bar in pressure-exposed lumpfish from the experiments conducted in the 

IPOCAMP. Significant differences are indicated in bold type. ......................................... 87 

 
 
Table 3.5. Relationships between fH and percentage change in fH, and changes in 

environmental variables (decreased temperature, increased temperature, decreased 

oxygen, or increased temperature up to 20.8°C in a CTMAX experiment), for control and 

pressure-exposed / CTMAX groups. Significant relationships, and significant differences in 

slopes or intercepts, are indicated in bold type. ................................................................. 89 

 



x 
 

Table 3.6. Summary of the statistical outputs from the LME models which examined the 

effects of treatment (control vs. pressure-exposed), changes in environmental variables 

(decreased temperature, increased temperature, decreased oxygen or increased 

temperature in a CTMAX experiment), and their interaction, on the percentage of ECGs 

that were that of ‘good’ quality (QI = 0). ........................................................................... 95  



xi 
 

List of Figures 

Figure 2.1. The Star-Oddi centi-HRT ACT tag, which records heart rate, 

electrocardiograms, tri-axial acceleration and temperature, was prepared for implantation 

by tying two pieces of braided, non-absorbable and non-sterile, 2-0 silk suture around the 

tag (one near the front and one near the back). This was done with the tag either in the 

“sensors up” (A) or “label up” (B) orientation. ................................................................. 15 

 

Figure 2.2. A) A Star-Oddi milli-F tag, which measures depth and temperature, shown 

with the attachment kit (i.e., plastic mold and silicone pad) and the stainless steel wires 

that were used to secure the attachment kit to the tag. B) The tag was attached to the 

Atlantic salmon by inserting 15 gauge stainless steel needles through the fish’s dorsal 

musculature just below the dorsal fin, passing the stainless steel wire through the needles 

to the other side of the fish and then through another silicone pad and plastic mold, and 

then twisting the pairs of wires together so that the tag was firmly attached to the fish. .. 17 

 

Figure 2.3. A) A 2.64 m diameter x 2.50 m deep tank in the Dr. Joe Brown Aquatic 

Research Building at the Ocean Science Centre, Logy Bay, Newfoundland. B) Top view 

of the inside of the tank showing Atlantic salmon recovering from implantation / 

attachment of Star-Oddi centi-HRT ACT and milli-F tags. Fish were held in this tank for 

7 days with 30-35 conspecifics. ......................................................................................... 20 

 

Figure 2.4. An electrocardiogram recorded in a salmon during one week of recovery in a 

large tank in JBARB. The ECG was randomly chosen to represent the typical recording 



xii 
 

from a salmon, where Bin ECG represents the amplitude of the QRS waveform and 

ranges from 0 to 1000 mV. Heart rate was calculated from the ECGs as the time between 

R wave peaks (measured in seconds). These values were then averaged, and 60 was 

divided by the average to obtain the fish’s fH in bpm. Heart rate variability (HRV) was 

calculated as the standard deviation of the time between successive R wave peaks (in ms).

 ............................................................................................................................................ 23 

 

Figure 2.5. External acceleration (EA) and variation in EA (VAR) measured in Atlantic 

salmon during a critical swim speed (Ucrit) test (speed increments of 0.2 BL sec-1). Tail 

beat frequency (beats min-1) was determined from 30 second video clips recorded during 

each swimming speed. The data for all fish were fitted with a number of types of 

equations (see Table 2.2), and the exponential equations that fit each relationship (based 

on the data for individual fish) were as follows: (A) y = 3.528e0.954x, (B) y = 3.340e0.009x, 

(C) y = 0.364e3.911x and (D) y = 0.2610.040x. Data are means ± S.E.M.; n = 6 to 8. ........... 29 

 

Figure 2.6. Changes in heart rate (fH) and related parameters when Atlantic salmon were 

given a critical swim (Ucrit) test (speed increment of 0.2 BL sec-1). A) fH (in bpm) was 

measured every 2 minutes in salmon immediately prior to (resting values) and during the 

Ucrit test. Heart rate variability (HRV in ms; B) was manually calculated from the 

electrocardiograms and the percentage of ‘good’ quality index ECGs (QI = 0; C) was 

provided by the Star-Oddi Mercury software. Dissimilar lower-case letters indicate a 

significant difference between values, as determined by LME models. These models did 

not include the swimming speeds of 1.8 and 2.0 BL sec-1 due to low sample sizes. The 



xiii 
 

percentage of good quality ECGs did not change significantly with swim speed (P = 

0.074). Data are means ± S.E.M.; n = 6 to 8 except where indicated. ............................... 30 

 

Figure 2.7. Electrocardiograms (ECGs) recorded by the Star-Oddi centi-HRT ACT tag in 

Atlantic salmon during a critical swim (Ucrit) test. Heart rate (fH) was calculated by the 

Mercury software from the ECGs, which also provided a value to indicate the quality of 

the data (QI = 0 means great quality, 1 and 2 have decreasing quality and 3 means there is 

no R-R interval). A) Absolute differences in fH (bpm) between those recorded by the 

Mercury software and those same values calculated manually from raw ECGs. B) The 

percentage of ECGs designated as ‘good’ quality based on manual inspection as 

compared to the QI values provided by the Mercury software. Data are means ± S.E.M.

 ........................................................................................................................................... .33 

 

Figure 2.8. Heart rate (fH, bpm), external acceleration (EA, m-g), variation in EA (VAR, 

minutes) and temperature (°C) values in free-swimming Atlantic salmon (n = 10) for 1 

week following surgical implantation of the Star-Oddi centi-HRT ACT tag or the milli-

HRT tag. Salmon were held in a large tank following surgical implantation of the tags. 

Fish were on a 12-hour light: 12-hour dark photoperiod (grey bars represent periods of 

darkness / night-time), and data were collected at 10 minute intervals. ............................ 35 

 

Figure 2.9. Heart rate (fH, bpm), external acceleration (EA, m-g), variation in EA (VAR, 

minutes) and temperature (°C) values in free-swimming Atlantic salmon recorded for 6 

weeks following surgical implantation of the Star-Oddi centi-HRT ACT tag or the milli-



xiv 
 

HRT tag. Salmon were maintained at a constant temperature of 8°C in the first tagging 

trial (A; n = 5). In the 2nd trial (B; n = 5), temperature ranged between 8 and 12°C due to 

issues with facility temperature control. Fish were on a 12-hour light: 12-hour dark 

photoperiod (grey bars represent periods of darkness / night-time), and data were 

collected every 2 hours. ..................................................................................................... 36 

 

Figure 2.10. Average day-time and night-time heart rate (fH in bpm; A), percentage of 

‘good’ quality index ECG values (i.e., QI = 0; B) and external acceleration (EA in m-g; 

C) values in free-swimming Atlantic salmon (n = 10) recorded for 7 days following 

surgical implantation of the Star-Oddi centi-HRT ACT tag. Open symbols represent day-

time, whereas dark symbols represent periods of darkness / night-time. Dissimilar lower-

case letters indicate a significant difference within a photoperiod group (for night-time 

values the letters are bolded), while an asterisk (*) represents a significance difference 

between day-time and night-time values at each measurement period. Data are means ± 

S.E.M, with each value representing the average of n = 72 data points per fish. .............. 37 

 

Figure 2.11. Average heart rate (fH in bpm; A, B), percentage of ‘good’ ECGs (QI = 0; C, 

D) and external acceleration (EA in m-g; E, F) values in free-swimming Atlantic salmon 

held for 6 weeks following surgical implantation of the Star-Oddi centi-HRT ACT tag or 

milli-HRT tag. Salmon were maintained at a constant temperature of 8°C in the first 

tagging trial (A, C, E; n = 5), whereas temperature varied between 8 and 12°C in the 

second trial (B, D, F; n = 5) due to issues with facility temperature control. Open symbols 

represent day-time measurements, whereas dark symbols represent periods of night-time. 



xv 
 

Dissimilar lower-case letters indicate a significant difference within a photoperiod group 

(for night-time values the letters are in bold), while an asterisk (*) indicates a significant 

difference between day-time and night-time values. Data are means ± S.E.M, with each 

value representing the average of n = 6 data points per fish. ............................................. 39 

 

Figure 3.1. A) A 0.5 m3 tank in the Laboratory for Atlantic Salmon and Climate Change 

Research (LASCCR) at the OSC, Logy Bay, Newfoundland. B) After being implanted 

with micro-HRT tags and recovering in their tank for 48 hours, two tagged lumpfish were 

moved to fasting ‘baskets’ for 66 hours before being moved to the IPOCAMP pressure 

chamber. ............................................................................................................................. 64 

 

Figure 3.2. The Star-Oddi micro-HRT tag was prepared for implantation by tying one 

piece of black, braided, non-absorbable and non-sterile, 3-0 silk suture around the tag, 

and it was implanted into the lumpfish in a “sensors up” orientation. .............................. 65 

 

Figure 3.3. A) The IPOCAMP pressure chamber (19 L vessel, 60 cm high by 20 cm in 

diameter) in the Cold-Ocean and Deep-Sea Research Facility at the OSC. B) Lumpfish 

tagged with micro-HRT tags were placed, two at a time, onto platforms before being 

lowered into the IPOCAMP. The fish were acclimated to the chamber overnight at 10ºC 

and at 0 bar of pressure (i.e., equivalent to atmospheric pressure at the sea level). .......... 67 

 

Figure 3.4. Average heart rate (fH, bpm) values in free-swimming lumpfish (n = 14) 

recorded every 4 hours for 5 days post-surgery. Lumpfish were recovered in a tank in the 



xvi 
 

Laboratory for Atlantic Salmon and Climate Change Research (LASCCR) following 

surgical implantation of the Star-Oddi micro-HRT tag. After 48 hours (dotted line), two 

lumpfish were transferred to ‘baskets’ inside the tank to be fasted for an additional ~ 66 

hours. Fish were on a 14-hour light: 10-hour dark photoperiod (grey bars represent 

periods of darkness / night-time). ...................................................................................... 75 

 

Figure 3.5. Average day-time and night-time heart rate (fH, bpm) values in free-

swimming lumpfish (n = 14) for 5 days after being implanted with Star-Oddi micro-HRT 

tags. Open symbols represent day-time, while dark symbols represent night-time. 

Dissimilar lower-case letters indicate a significant difference within a photoperiod group 

(for night-time values the letters are bolded), while an asterisk (*) represents a 

significance difference between day-time and night-time values at each measurement 

point. The data were recorded every 4 hours and the symbols represent means ± S.E.M 

(with each value representing the average of n = 3 data points per fish). Linear mixed-

effects models, followed by Bonferroni’s post-hoc tests performed using emmeans, were 

used to identify significant differences (P < 0.05) in fH during surgical recovery. Note: N1 

was not included in the analysis. ........................................................................................ 76 

 

Figure 3.6. A) Heart rate (fH, in bpm) in lumpfish held in the IPOCAMP at atmospheric 

pressure (0 bar; grey symbols; n = 6) or exposed to hydrostatic pressure in a step-wise 

protocol (black symbols; n = 8). Pressure was initially increased to 20 bar over 2 minutes, 

then held for 8 minutes. Pressure was then increased in a similar manner to 35, 50, 65 and 

80 bar, followed by decompression in the opposite sequence. B) The percentage change 



xvii 
 

in fH (as a % of initial values at 0 bar) and C) heart rate variability (HRV in ms) were 

manually calculated from the electrocardiograms. D) the percentage of ‘good’ quality 

index ECGs (QI = 0) provided by the Star-Oddi Mercury software. Dissimilar lower-case 

letters indicate a significant difference within the pressure-exposed group (no differences 

existed in the control group), while an asterisk (*) indicates a significance difference (P < 

0.05) between the pressure-exposed and control groups at a particular pressure step. Data 

were recorded every 2 minutes, and the symbols represent means ± S.E.M (n = 5 per 

fish). ................................................................................................................................... 79 

 

Figure 3.7. The average activity rank of lumpfish held in the IPOCAMP at atmospheric 

pressure (0 bar, grey symbols) or exposed to hydrostatic pressure in a step-wise protocol 

(black symbols). Pressure was initially increased to 20 bar over 2 minutes, then held for 8 

minutes. Pressure was then increased in a similar manner to 35, 50, 65 and 80 bar, 

followed by decompression in the opposite sequence (A; n = 6 control and n = 8 pressure-

exposed fish) or holding at 80 bar for 1 hour (B; n = 19 control and n = 23 pressure-

exposed fish). The activity rank for each fish was determined from video recordings, 

where: 0 represents fish that were completely inactive; 1 represents fish that were mostly 

inactive but has some spontaneous activity; 2 represents fish that were mostly active but 

had some periods of inactivity; and 3 represents fish that were active for the entire 10 

minute period. The symbols represent means ± S.E.M. .................................................... 83 

 

Figure 3.8. A) Heart rate (fH in bpm) data recorded every 2 minutes in lumpfish held in 

the IPOCAMP at atmospheric pressure (0 bar; grey symbols; n = 22) or exposed to 



xviii 
 

hydrostatic pressure in a step-wise protocol (black symbols; n = 23) in Experiment #2. 

Pressure was initially increased to 20 bar over 2 minutes, then held for 8 minutes. 

Pressure was then increased in a similar manner to 35, 50, 65 and 80 bar, followed by 

exposure to 80 bar of pressure for 1 hour. B) The percentage change in fH (as a % of 

initial values at 0 bar) was manually calculated from the electrocardiograms. Dissimilar 

lower-case letters indicate a significant difference (P < 0.05) within the pressure-exposed 

group (no difference existed in the control group), while an asterisk (*) represents a 

significance difference between the pressure-exposed and control values within a pressure 

step. Data were recorded every 2 minutes, and the symbols represent means ± S.E.M (n = 

5 per fish). .......................................................................................................................... 84 

 

Figure 3.9. A) Heart rate (fH, bpm) in lumpfish exposed to decreasing (at 2ºC h-1; A, C, 

E) or increasing (at 2ºC h-1; B, D, F) temperature in the IPOCAMP chamber. Prior to the 

decrease in temperature, lumpfish were held at atmospheric pressure (black symbols; n = 

7) or exposed to 80 bar of pressure (grey symbols; n = 7). C, D) The percentage change in 

fH (as a % of initial values at 0 or 80 bar) was manually calculated from the 

electrocardiograms. Relationships between fH and the percentage change in fH with 

temperature were determined by linear regression analysis, and an asterisk (*) indicates a 

significant difference between the slopes for relationships between control and pressure-

exposed groups. E, F) The percentage of ‘good’ quality ECGs (i.e., with a QI = 0) were 

provided by the Star-Oddi Mercury software, and significant differences within the 

control (regular letters) or pressure-exposed groups (bold letters) are represented by 

dissimilar lower-case letters. No differences existed in the percentage of ‘good’ quality 



xix 
 

ECGs between pressure-exposed and control fish at any of the temperature steps. Data 

were recorded every 5 minutes, and the symbols represent means ± S.E.M (n = 6 values 

per fish). ............................................................................................................................. 92 

 

Figure 3.10. A) Heart rate (fH, bpm) in lumpfish exposed to decreasing oxygen levels (air 

saturation; %) in the IPOCAMP chamber over 3 to 4 hours. Prior to the decrease in 

oxygen levels, lumpfish were held at atmospheric pressure (black circles; n = 8) or 

exposed to 80 bar of pressure (grey circles; n = 8). B) The percentage change in fH (as a % 

of initial values at 0 or 80 bar) was manually calculated from the electrocardiograms. 

Relationships between fH and percentage fH with oxygen level were determined by linear 

regression analysis, and an asterisks represents a significant difference in the slopes of the 

relationships between control and pressure-exposed lumpfish. C) The percentage of 

‘good’ quality index ECGs (QI = 0) were provided by the Star-Oddi Mercury software, 

and in this panel, an asterisks represents a significant difference between pressure-

exposed and control groups at a particular oxygen level. Within each treatment group, 

there were no differences in percentage of ‘good’ quality index values. Data were 

recorded every 5 minutes, and the symbols represent means ± S.E.M (n = 6 values per 

fish). ................................................................................................................................... 94 

 

Figure 3.11. Electrocardiograms recorded in a lumpfish exposed to decreasing (at 2°C h-

1; left panel) or increasing (at 2°C h-1; right panel) temperature in the IPOCAMP chamber 

at atmospheric pressure (0 bar). This fish was chosen as its ECG recordings, and their 

response to temperature, were typical of what was observed for this species. Bin ECG 



xx 
 

represents the amplitude of the QRS waveform and ranges from 0 to 1000 mV, but only 

the range from 350 to 650 mV is presented. The quality index (QI) was assigned to ECG 

recordings (where 0 means great quality, 1 and 2 have decreasing quality and 3 means 

there is no R-R interval) by the Star-Oddi Mercury software............................................ 98 

 

Figure 3.12. A) Heart rate (fH, bpm) in lumpfish during a CTMAX experiment (black 

symbols; n = 12) in a water table, where temperature was increased at 2 °C h-1 vs. when 

fish were held at a constant temperature of 12ºC (grey symbols; n = 4). B) The percentage 

change in fH (as a % of initial values at 12.2°C) was manually calculated from the 

electrocardiograms. Relationships between fH and the percentage change in fH with 

temperature were determined by linear regression analysis for data up to 20.8°C, and an 

asterisk (*) indicates a significant difference (P < 0.05) in the slopes between control fish 

and those exposed to increasing temperature. C) The percentage of ‘good’ quality ECGs 

(i.e., with a QI = 0) were provided by the Star-Oddi Mercury software. Significant 

differences within the CTMAX group (there were no differences in the control group) are 

represented by dissimilar lower-case letters, and an asterisk represents a difference 

between the CTMAX and control group at a particular temperature. Data were recorded 

every 5 minutes, and the symbols represent means ± S.E.M (n = 6 per fish). The dotted 

line indicates the temperature of 20.8°C. Beyond this temperature the fH of the lumpfish 

began to decrease, and thus these data was not included in the linear regression. ............ 99  



xxi 
 

List of Abbreviations and Symbols 

2P  Second Order Polynomial / Quadratic Equation 

3P  Third Order Polynomial / Cubic Equation 

AA  Acceleration Activity 

ACT  Activity 

atm  Atmospheres 

BL  Body Lengths 

bpm  Beats per Minute 

CDRF  Cold-Ocean and Deep-Sea Research Facility 

COM-BOX Star-Oddi Tag-Computer Interface 

COT  Cost of Transport 

COX  Cytochrome C Oxidase 

CTMAX  Critical Thermal Maximum 

CTMIN  Critical Thermal Minimum 

D  One Phase Decay Equation 

DenDF  Degrees of Freedom of the Denominator 

DST  Data Storage Tag 

EA  External Acceleration 

ECG  Electrocardiogram 

EG  Exponential Growth Equation 

fH  Heart Rate 

HRT  Heart Rate 

HRV  Heart Rate Variability 



xxii 
 

IPOCAMP Incubatuer Pressurisé pour l’Observation et la Culture d’Animaux Marins 

Profonds 

JBARB Dr. Joe Brown Aquatic Research Building 

LASCCR Laboratory for Atlantic Salmon and Climate Change Research 

LME  Linear Mixed-Effects 

LR  Linear Regression 

ṀO2  Oxygen Consumption  

MS-222 Tricaine Methanesulfonate 

NumDF Degrees of Freedom of the Numerator 

ODBA  Overall Dynamic Body Acceleration 

OSC  Ocean Sciences Centre 

Pcrit  Critical Oxygen Tension 

PQRS  Cardiac electrical activity associated with atrial and ventricular contraction 

Q10  Temperature Coefficient 

QI  Quality Index 

S.E.M.  Standard Error of the Mean 

TBF  Tail Beat Frequency 

Ucrit  Critical Swim Speed 

VAR  Variation in External Acceleration  



xxiii 
 

Co-authorship Statement 

 Z. A. Zrini is the principal author, and made the main intellectual and practical 

contributions to the work reported in this thesis. The development of the research 

proposal for this work, and experimental design, were completed with assistance from A. 

K. Gamperl. All practical aspects of the research, data analysis and manuscript 

preparation were the responsibility of Z. A. Zrini. Assistance with data interpretation and 

writing of the thesis was primarily provided my supervisor (Dr. A. K. Gamperl), although 

Drs. W. R. Driedzic and I. J. McGaw (members of my supervisory committee) also made 

contributions. Z. A. Zrini will be the lead author, and Dr. A. K. Gamperl will be a co-

author, of Chapter 2. Ms. R. M. Sandrelli will also be a co-author of the manuscript to 

come from Chapter 3 given her assistance with conducting the experiments on lumpfish.



1 
 

Chapter 1: General Introduction 

 An urgent, and key, goal for marine scientists is to understand how aquatic 

animals respond to changes in their environment (Payne et al. 2014), and the ability of 

scientists to observe and understand these responses in free-swimming animals has been 

significantly enhanced by technology (Ropert-Coudert and Wilson 2005; Rutz and Hays 

2009). Such technologies began as simple capillary tube pressure gauges attached to a 

harpooned fin whale (Kooyman 2004), but have evolved into sophisticated tools like 

time-depth recorders, pop-up satellite tags and archival loggers (Ropert-Coudert et al. 

2012). The realization that animals can carry foreign objects attached to their bodies, and 

advancements in technology to transmit information, have led to the development of 

animal attached electronic devices (Ropert-Coudert and Wilson 2005). Microprocessor 

development assisted in the miniaturization of electronic recorders and their memory 

capacity increased throughout the 1900s (Kooyman 2004), allowing smaller sized species 

to be studied and more variables to be recorded (Ropert-Coudert et al. 2012; Hussey et al. 

2015; Wilson et al. 2015). Electronic tagging, or “bio-logging”, is now recognized across 

a wide range of scientific disciplines for its use in providing real-world measurements of 

free-ranging animals in their natural environment (Thorsteinsson 2002). 

The first use of the term “bio-logging” is attributed to Boyd et al. (2004), and 

many similar definitions have since been used (see Naito 2004; Ropert-Coudert and 

Wilson 2005; Rutz and Hays, 2009; Ropert-Coudert et al. 2012; Payne et al. 2014; 

Lowerre-Barbieri et al. 2019). Typically, biologging refers to the use of small animal-

borne devices that either log or transmit data (including physiology, behaviour, 

movement, and / or environmental parameters) collected from the tagged animals. While 
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biologging includes both logging and transmitting devices, definitions are often further 

separated into tags which store data in on-board memory (archival loggers or data storage 

tags) or those that transmit data (biotelemetry) via radio, acoustic or satellite transmission 

(Ropert-Coudert and Wilson 2005, Cooke 2008; Payne et al. 2014). Each device has pros 

and cons (reviewed in Cooke et al. 2004a), but ultimately tag choice should be based on 

the goals of the research being conducted (Arai and Okuyama 2012). 

Radio and acoustic transmission tags provide real-time information, but these data 

cannot be obtained when animals are outside the range of the receivers (Arai and 

Okuyama 2012). Additionally, radio waves cannot be transmitted through saltwater or at 

depth in freshwater, and this limits the environments in which these tags can be used 

(Cooke 2008). While acoustic tags can be used in estuarine or marine environments, their 

transmission range is < 1 km and acoustic receivers are more challenging and expensive 

to deploy and maintain (Hussey et al. 2015). Satellite tags eliminate the need for receivers 

and reduce labor, but satellite communication is expensive and lacks accuracy (Arai and 

Okuyama 2012). While archival loggers and data storage tags can be expensive, and must 

be collected to download the data (which is a major disadvantage), they allow for the 

monitoring of high-resolution data in animals with minimal labor and at sampling 

frequencies as short as every minute (Cooke et al. 2004a; Payne et al. 2014). All of these 

technologies provide researchers with the ability to study multiple scales of biology 

(Cooke et al. 2004a), measure responses of individuals in order to characterize plasticity 

(Cooke 2008; Chmura et al. 2018), and most importantly, study the response of free-

living animals to the abiotic / biotic conditions in their natural environment (Cooke et al. 

2004a; Cooke 2008; Ropert-Coudert et al. 2012; Hussey et al. 2015; Wilson et al. 2015). 
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To date, biologgers have been able to record several different parameters in a 

diverse range of environments and taxa (Cooke et al. 2004a; Wilson et al. 2015). Ropert-

Coudert and Wilson (2005) found papers describing twenty-four different types of 

biologging sensors, a number which is constantly growing. Among the most popular are 

those that measure movement (e.g., global location sensors and global positioning 

systems), activity or energetics (e.g., electromyograms, whole body acceleration, fin and 

wing beats), physiology (e.g., heart rate and neuro-loggers), environmental parameters 

(e.g., temperature, pressure, light levels, conductivity, salinity and dissolved oxygen) and 

on-board imagery (i.e., contain video sensors) (Cooke 2008; Ropert-Coudert et al. 2012). 

Further, biologging allows for the coupling of multiple sensors or tags to study nearly all 

aspects of an animal simultaneously (Wilmers et al. 2015), and thus, provides the 

opportunity to study animals with a more holistic and comprehensive approach (Cooke et 

al. 2004a; Chmura et al. 2018). 

Biologging can further knowledge in a wide range of scientific fields from 

physiology to ecology and evolution (Payne et al. 2014). A unique extension of 

biologging is using the animals to monitor the environment in areas that are difficult to 

survey or have not been surveyed (Block 2005; Ropert-Coudert and Wilson 2005; Rutz 

and Hays 2009; Wilmers et al. 2015). For example, crabeater (Loboson carcinophaga) 

and leopard seals (Hydruga leptonyx) were used to determine temperature profiles in the 

west Antarctic Peninsula (Costa et al. 2008). Monitoring the environment is clearly a 

valuable use of biologging tools as 1.4 million temperature and salinity profiles in the 

World Ocean Database are from animal-borne devices (Wilmers et al. 2015). Further, 

individual and population level responses to climate change can be monitored, and used 
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to predict further responses by combining physiological and behavioural data with 

changing environmental parameters (Ropert-Coudert and Wilson 2005; Chmura et al. 

2018). For example, by comparing the depth profiles of Atlantic blue marlin (Makaira 

nigricans) with oxygen concentration data, researchers found that marlin prefer highly 

oxygenated surface waters, and they used the results to predict the future distribution of 

marlin in response to expanding oxygen minimum zones (Stramma et al. 2012). As 

conservation strategies are informed by animal physiology and behaviour (Cooke et al. 

2014), biologging studies have the potential to advance our understanding of global 

climate change and other anthropogenic impacts on animals (Cooke et al. 2004a; Cooke 

2008; Wilson et al. 2015). Questions to be addressed in response to human-caused 

disturbances include changes in the phenology of migration, hibernation and 

reproduction, the thermal sensitivity and limits of species, mortality rates and causes, and 

micro / marco-habitat selection (Block 2005; Cooke 2008; Wilson et al. 2015; Chmura et 

al. 2018). 

Before utilizing the full potential of biologgers to answer such impactful 

questions, a few limitations must be addressed. For example, the large data sets provided 

by the tags are both an asset and a hindrance as the data can be difficult to analyze (Cooke 

et al. 2004a; Rutz and Hays 2009; Payne et al. 2014), and many tags require time-

consuming laboratory calibration before field application (Cooke et al. 2004a). 

Researchers are also concerned about the effects that the tags impose on the animals that 

transport them (Ropert-Coudert and Wilson 2005; Brown et al. 2013), and the potential 

abandonment of hypothesis testing caused by an over-abundance of data (Boyd et al. 

2004). For these reasons, physiological biologgers are probably underutilized despite their 
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ability to answer particularly difficult questions (Wilson et al. 2015). Fortunately, 

advances in the field, such as in data analysis and in laboratory calibrations continue 

alongside technological development and miniaturization. These advances are being 

hailed as ushering in the “biologging decade” (2018-2028), in which these tools will: 

become more popular and multidisciplinary; allow scientists to better understand animals 

and their environment; and lead to new fundamental theories about the movement, energy 

use and physiology of animals (Lowerre-Barbieri et al. 2019). 

In this thesis, I use biologging to understand two different aspects of fish 

physiology. Thus, my thesis is organized into two separate data chapters. In Chapter 2, I 

validated the use of Star-Oddi centi-HRT ACT data storage tags to record heart rate 

(electrocardiograms) and tri-axial acceleration in Atlantic salmon (Salmo salar). This 

research involved determining the duration of surgical recovery required, the 

effectiveness (accuracy) of these tags with respect to estimating the swimming speed and 

behaviour of free-swimming salmon, as well as how the recordings of these parameters 

change over long periods of time (i.e., up to 6 weeks post-surgery). In Chapter 3, I 

investigated how pressure (depth) affected the heart rate (fH) of lumpfish (Cyclopterus 

lumpus), and the fH responses of the lumpfish to changes in temperature and oxygen 

levels. In addition, I measured the maximum fH of lumpfish as induced by exercise and 

increased temperature, neither of which had previously been determined. Finally, in 

Chapter 4, I discuss the implications of my results, and highlight the flexibility of data 

storage tags to study various fields of animal biology, especially in relation to global 

climate change. 
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Chapter 2: Validating Heart Rate and Acceleration Data Storage Tags for Use in 

Atlantic Salmon (Salmo salar) 

 

Abstract 

Data storage tags (DSTs) record and store information about animals and their 

environment, and could provide important information relevant to the conservation and 

welfare of wild and cultured fish. Star-Oddi recently developed a DST that 

simultaneously records heart rate (fH), electrocardiograms, tri-axial acceleration and 

temperature. However, no studies have been performed using these tags in fish, or 

determined the quality of the data collected. Thus, my research asked: do these DSTs 

provide reliable and meaningful data? To examine this question, Atlantic salmon (1.4 ± 

0.7 kg) were surgically implanted with DSTs, then swam at increasing speeds in a swim 

tunnel after 1 week of post-surgical recovery. External acceleration (EA, acceleration 

above normal gravity) and variation in EA (VAR) increased exponentially with both 

swimming speed (body lengths sec-1) and tail beat frequency (tail beats min-1). The 

quality index (QI) assigned to ECG recordings (where 0 means great quality, 1 and 2 have 

decreasing quality and 3 means there is no R-R interval) did not change with increasing 

swimming speed. However, the accuracy of the Star-Oddi Mercury software in estimating 

fH from ECGs was reduced when QI > 0. In a separate experiment, salmon (2.4 ± 0.1 kg) 

were surgically implanted with DSTs and held in a large tank with conspecifics for 1 

week at 11°C or 6 weeks at 8-10°C. Diurnal patterns of fH and EA were evident from the 

time the fish were placed in the tank. Heart rate appeared to reach baseline values by 4 

days post-surgery in the first experiment, but extended holding showed that fH declined 
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for the first 21 days, depending on temperature. During the extended holding period, the 

tag had difficulty recording low fH values (i.e., < 30 bpm), and for this reason, in addition 

to the fact that the tag software can miscalculate fH when QI > 0, ECGs should be saved 

when possible for quality control and the manual calculation of fH. My results indicate 

that parameters of acceleration can be used to monitor the activity of free-swimming 

salmon, and that reliable measurements of fH, including diurnal rhythms and responses to 

temperature and stressors, can be recorded. However, it is highly recommended that fH 

values with QI > 1 be manually calculated. 

 

Introduction 

 The monitoring of animal physiology and behaviour allows researchers to study 

how animals cope with changes in environmental conditions, including those associated 

with global climate change (Block 2005; Wilson et al. 2008; Metcalfe et al. 2016). 

Historically, the recording of biological data from free-ranging animals has been very 

difficult. However, the integration of electronic engineering and biology has led to the 

creation of biologging technologies (Ropert-Coudert and Wilson 2005; Rutz and Hays 

2009). Biologging tags allow researchers to study animals that are untethered from 

stationary equipment and that are free to move in their natural environment (Cooke 2008; 

Ropert-Coudert et al. 2012). Initially, biologging devices primarily relied on acoustic and 

radio transmission, however, these technologies do not provide for the recording of high-

resolution data for prolonged periods (i.e., up to 15 sec.) due to the bandwidth limitations 

associated with transmission (Cooke et al. 2004a; Metcalfe et al. 2016). In contrast, 

archival loggers (also called data storage tags, DSTs) record high resolution data at 
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sampling frequencies as short as every minute that are stored into the logger, thereby 

eliminating the need for signal transmission and the manual labor involved in tracking 

and the installation of hydrophone arrays (Tanaka et al. 2001; Donaldson et al. 2010; 

Metcalfe et al. 2016; Cooke et al. 2016). However, the fish must be re-captured to obtain 

the data. 

 In fish, DSTs have traditionally been used to study thermal and depth profiles, 

activity, spatial use and behaviour (e.g., see Tanaka et al. 2000, 2001; Kawabe et al. 2003; 

Tsuda et al. 2006; Godfrey et al. 2015; Hedger et al. 2017a, b; Algera et al. 2017). 

However, they have recently been used to measure acceleration and heart rate (fH) to 

estimate energy use (Clark et al. 2010; Halsey et al. 2009; Gleiss et al. 2010, 2011; 

Wright et al. 2014), and to assess when fish are stressed (Laitinen and Valtonen 1994; 

Cooke et al. 2004b; Prystay et al. 2017, 2019; Brijs et al. 2018, 2019; Wallerius et al. 

2019).  

Two types of DSTs that measure fH exist: (1) heart rate recorders which detect and 

display the number of heart beats in a given sampling period; and (2) electrocardiogram 

(ECG) readers that record the electrical activity of the heart and store changes in cardiac 

electrical activity over the complete cardiac cycle (termed the ‘complete PQRS profile’; 

Ropert-Coudert et al. 2012). The visualization of the PQRS complex is more reliable and 

allows for manual calculation of fH as well as fH variability (HRV; Ropert-Coudert et al. 

2012; Cooke et al. 2016). Estimating the HRV of fish is important, as fH can be controlled 

on a beat-to-beat basis by autonomic innervation, and therefore, provides information on 

the cardiac output and the control of fH of free-swimming fish (Priede 1974; Altimiras et 

al. 1996; Altimiras 1999). Heart rate DSTs have been used to address concerns about the 
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conservation and welfare of both wild and cultured fish. For example, Donaldson et al. 

(2010) used ECG loggers to examine the recovery of coho salmon (Oncorhynchus 

kisutch) from predator and fisheries encounters, and Prystay et al. (2017) used fH DSTs to 

study the effects of temperature on fisheries interactions in sockeye salmon (O. nerka). 

Most recently, Brijs et al. (2018, 2019) used DSTs to examine the fH (stress) response of 

cultured rainbow trout (O. mykiss) to common aquaculture practices. 

 Accelerometers have the potential to inform conservation and management by 

providing information on the activity, behaviour and energy use of free-swimming fish 

(Rutz and Hays 2009; Ropert-Coudert et al. 2012; Algera et al. 2017). Accelerometry 

loggers and transmitters record either partial or whole-animal body acceleration in one, 

two or three spatial axes with piezoelectric sensors that generate a voltage signal 

proportional to the acceleration experienced by the sensor (Brown et al. 2013; Payne et al. 

2014). This includes both the gravitational and inertial acceleration caused by movement 

(Brown et al. 2013; Cooke et al. 2016). In several salmonid species, values of acceleration 

have been related to tail beat frequency and swimming speed (Tanaka et al. 2001; 

Kawabe et al. 2003; Wilson et al. 2013, 2014). Acceleration can even be used to classify 

types of behaviours such as routine, resting or burst swimming in male smallmouth bass 

(Micropterus dolomieu, Algera et al. 2017), feeding, escape and spontaneous movements 

in great sculpin (Myoxocephalus polyacanthoceaphalus, Broell et al. 2013), and spawning 

behaviours in female chum salmon (O. keta, Tsuda et al. 2006). However, most 

commonly, accelerometers are used to predict field metabolism and estimate energy use, 

due to the relationship between movement and metabolic rate (Clark et al. 2010; Gleiss et 

al. 2010, 2011). Acceleration DSTs have already been used to inform fisheries 
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management strategies and to provide information about the welfare of aquaculture 

species. For example, Brownscombe et al. (2013) assessed the use of recovery bags 

during bonefish (Albula vulpes) angling and Yasuda et al. (2012) monitored field 

metabolism in net-caged red sea bream (Pagrus major). 

Despite their potential applications, the use of DSTs is not without its challenges. 

Some studies have reported problems including technological failure of unknown causes, 

tag ejection, a chronic inflammatory response and premature mortality (Thorsteinsson 

2002; Johansson et al. 2009; Prystay et al. 2017, 2019; Semple et al. 2018). Further, 

methods for the implantation of these tags, and the tag’s settings, should be specific to the 

fish being studied, due to the anatomical and behavioural differences among species 

(Thorsteinsson 2002). Therefore, it is highly recommended that effective standardized 

protocols are developed for each tag type, size, attachment method and species being 

studied (Thorsteinsson 2002; Campbell et al. 2005; Ropert-Coudert and Wilson 2005; 

Cooke 2008; Ropert-Coudert et al. 2009; Arai and Okuyama 2012; Chmura et al. 2018). 

Likewise, feasibility (also called validation / calibration studies) are highly recommended 

prior to field deployment to assess the usefulness of various tags (Wilmers et al. 2015; 

Wilson et al. 2015). For example, Thorsteinsson (2002) suggests determining the duration 

of post-operative recovery because programmable start times can be delayed saving 

battery and memory in the field. During these validation studies, values of acceleration 

can be related to swimming speed, tail beat frequency, and swimming behaviours using a 

swim tunnel (Clark et al. 2010; Gleiss et al. 2011; Wilson et al. 2013). Overall, the goal of 

validation studies should be to establish effective attachment methods, and to calibrate 

parameters in order to get the most useful data out of the tags and to prevent false 
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conclusions caused by ‘tag effects’ in field situations (Wilmers et al. 2015). However, 

few studies have assessed the validity of data recorded using DSTs. 

Many companies are producing biologging equipment / sensors that require 

validation (Ropert-Coudert et al. 2012). A new DST developed by Star-Oddi (Iceland, 

https://www.star-oddi.com) can simultaneously measure fH, ECGs, tri-axial acceleration 

and temperature. There are few tags available with simultaneous measurement of both 

physiological and behavioural parameters, and only one study exists in which a tag 

recorded both parameters in fish. Clark et al. (2010) established the relationships between 

acceleration, fH, tail beat frequency, energy expenditure and swimming speed in free-

swimming sockeye salmon. However, the data logger used in their study (iLogR, B.D. 

Taylor, La Trobe University, Melbourne, Australia) is not commercially available. While 

a few studies have used Star-Oddi milli HRT tags to measure fH in fishes (Prystay et al. 

2017, 2019; Ekstrӧm et al. 2018; Brijs et al. 2018, 2019; Wallerius et al. 2019), it is not 

currently known how accurate or effective Star-Oddi centi-HRT ACT tags are in 

monitoring the fH and activity of free-swimming fish. 

This chapter evaluated the validity and reliability of Star-Oddi HRT-ACT tags for 

recording the physiology and behaviour of free-swimming Atlantic salmon (Salmo salar) 

by addressing four questions. First, do the acceleration parameters calculated with Star-

Oddi software produce meaningful estimates of swimming speed, tail beat frequency and 

swimming behaviour? Second, how long does it take fish to recover from the effects of 

surgery? Third, can the tags record subtle changes in fish physiology and behaviour (e.g., 

diel patterns)? And finally, over long periods of time (i.e., weeks to months), does the 

https://www.star-oddi.com/


12 
 

initial tag placement / orientation change and do tags continue to accurately record fH and 

acceleration? 

 

Methods 

Animal Husbandry 

 The Atlantic salmon used in the below studies were supplied by the Dr. Joe 

Brown Aquatic Research Building (JBARB) at the Ocean Science Centre (OSC), 

Memorial University. All experimental work described was approved by the Institutional 

Animal Care Committee of Memorial University of Newfoundland (Protocol #17-95-KG), 

and followed the standards and guidelines outlined by the Canadian Council on Animal 

Care. 

 

Data Storage Tag Implantation / Attachment 

Several Star-Oddi DSTs were used in these experiments (see Table 2.1.). The 

milli-F (depth and temperature) tag was used simultaneously in some experiments with 

the centi-HRT ACT tag (combined mass ≤ 31 g in air), whereas in other experiments only 

the centi-HRT ACT tag or milli-HRT tags were used (see below). In all experiments, the 

tags did not exceed 2% of the fish’s body mass, and therefore, the weight of the tags was 

not expected to disrupt fish behaviour, growth or activity (Lacroix et al. 2004; Snobl et al. 

2015). Prior to implantation, DSTs were inserted into the tag-computer interface (COM-

BOX) provided by Star-Oddi (this unit connected to a laptop computer), and the start 

time, start date, and sampling intervals were set using the tag’s corresponding computer 

software (Mercury for HRT and HRT ACT tags, and SeaStar for the milli-F tags). 
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Table 2.1. Specifications of the Star-Oddi data storage tags used in Chapter 2 

experiments. 

 

Tag Type 

Parameters 

Recorded 

Length (mm) 

Diameter 

(mm) 

Mass in Air 

(g) 

Centi-HRT 

ACT 

Heart Rate, ECGs, 

acceleration and 

temperature. 

 

50 15 19 

Milli-HRT 

Heart Rate, ECGs, 

and temperature. 

 

42 13 12 

Milli-F 

Pressure / depth 

and 

temperature. 

39.4 13 12 
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Atlantic salmon were implanted with centi-HRT ACT tags in one of two 

orientations: 1) with the positive and negative sensors facing the body wall (“sensors 

up”); or 2) with the label facing the body wall (“label up”). Preliminary trials determined 

that while the “label up” method was best for fish ranging in size > ~ 2 kg, implanting 

fish less than 1.7 kg with this method resulted in artefacts in the ECG recordings. Thus, 

fish less than 1.7 kg were implanted with tags in the “sensors up” orientation. Milli-HRT 

tags were always implanted in the “sensors up” orientation. To prepare the tags for 

implantation, two pieces of black, braided, non-absorbable and non-sterile, silk suture (2-

0) were tied around the body of the tag in the “sensors up” or “label up” orientation 

(Figure 2.1.). All tags and surgical equipment were cleaned thoroughly and sterilized in 

70% ethanol between uses. 

Previous studies have described methods for implanting tags into fish, and 

provided the basis for the methods detailed below (e.g., see Rikardsen and Thorstad 2006; 

Clark et al. 2010; Korsøen et al. 2012; Prystay et al. 2017). Fish were anaesthetized in 

seawater containing 0.2 g L-1 tricaine methanesulfonate (MS-222). After losing 

equilibrium, the salmon were moved to a wetted surgical sponge where their gills were 

irrigated with aerated, 6 °C, seawater containing 0.1 g L-1 MS-222. Beginning at the 

posterior margin of the pectoral fins, a small (~ 3 cm) mid-ventral incision was made 

through the skin and muscle using a scalpel. Blood from the muscle was cleaned and 

clotted with light pressure from Q-tips. Centi-HRT ACT or milli-HRT tags were then 

inserted blunt end towards the posterior of the fish, then pulled forward to within 0.5 cm 

of the pericardium. The sutures attached to the tag were then passed through the body 

wall at the anterior and posterior margins of the incision using a curved surgical needle,   
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Figure 2.1. The Star-Oddi centi-HRT ACT tag, which records heart rate, 

electrocardiograms, tri-axial acceleration and temperature, was prepared for implantation 

by tying two pieces of braided, non-absorbable and non-sterile, 2-0 silk suture around the 

tag (one near the front and one near the back). This was done with the tag either in the 

“sensors up” (A) or “label up” (B) orientation. 
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and tied to hold the DST in place and to start closure of the incision. Finally, the 

remaining incision was closed using continuous stitches (2-0 silk) and super glue was 

applied to the incision and allowed to dry. 

In some fish (see Experiments #2 and #3), milli-F tags were then attached to the 

fish externally using a “tag holder kit” provided by Star-Oddi and stainless steel wire 

(0.02” diameter); the kit consisting of two silicone pads and two plastic molds (Figure 

2.2). Tags were prepared for attachment by looping pre-sterilized stainless steel wire over 

the tag and passing the ends of the wire through a silicone pad and the pre-drilled holes in 

the plastic mold. Four pre-sterilized stainless steel hypodermic needles (15 gauge, 3.5” 

long) were then passed through the skin and muscle below the dorsal fin to allow the 

stainless-steel wire to be guided through. Then, the hypodermic needles were removed 

and the 4 wires exiting the muscle were passed through the other silicone pad and plastic 

mold, and the wires were twisted together (Figure 2.2). When fish were not equipped with 

the DST milli-F tag, two coloured beads or disc tags were attached near the dorsal fin for 

individual identification. 

After surgery, the salmon were recovered in anaesthetic-free water and returned to 

their holding tank (see below). Following all experiments, the fish were euthanized in 

seawater containing 0.3 g L-1 MS-222 in order to perform post-mortem dissections and to 

recover the tags / data. Post-mortem dissections were conducted to record incision length, 

the distance from the front of the tag to the pericardium, to note any signs of infection or 

inflammation, and to determine sex when possible. Data was retrieved using the COM-

BOX and Mercury or SeaStar software. 
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Figure 2.2. A) A Star-Oddi milli-F tag, which measures depth and temperature, shown 

with the attachment kit (i.e., plastic mold and silicone pad) and the stainless steel wires 

that were used to secure the attachment kit to the tag. B) The tag was attached to the 

Atlantic salmon by inserting 15 gauge stainless steel needles through the fish’s dorsal 

musculature just below the dorsal fin, passing the stainless steel wire through the needles 

to the other side of the fish and then through another silicone pad and plastic mold, and 

then twisting the pairs of wires together so that the tag was firmly attached to the fish.  
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Experiment #1: Relationship Between Accelerometry Parameters and Swimming 

Speed 

 The Atlantic salmon used in this experiment (range ~ 0.94 to 1.52 kg) were held 

in the Laboratory for Atlantic Salmon and Climate Change Research (LASCCR) at the 

OSC. The fish were maintained in 2.2 m3 tanks supplied with seawater at 11-13°C and 

100-120% air saturation, and a 14h light:10h dark photoperiod. The fish were fed daily, 

the amount of feed 1.5 x what they would eat in a single meal. This feed was provided by 

automatic feeders that distributed pellets every 30 minutes from 9:00 AM to 5:00 PM. 

These fish (n = 8; means ± S.E.M.; 1.35 ± 0.74 kg, 46.70 ± 0.79 cm in total 

length) were implanted with a centi-HRT ACT tag and returned to their tank in the 

LASCCR to recover for 6 days. The pre-programmed centi-HRT ACT tags were off for 

the first 5 days and began saving ECGs and recording fH (at 100 Hz for 6 seconds), tri-

axial acceleration (at 1 Hz for 60 seconds) and temperature at a sampling frequency of 2 

minutes on the sixth day at 12:00 PM. At 1:00 PM, the fish were netted, lightly 

anaesthetized in seawater containing 0.1 g L-1 MS-222 and transferred to an 81 L Blazka-

type swim tunnel. The swim tunnel was maintained at ~ 11°C by a temperature 

controlled, and aerated, external reservoir and set to a low current velocity (~ 0.2 body 

lengths sec-1, BL sec-1; ~ 10 cm sec-1). This allowed the fish to rest on the bottom of the 

swim tunnel and maintain an upright position. The front of the swim tunnel was covered 

with black plastic to encourage the fish to seek refuge near the front of the tunnel. 

At 11:00 AM the following day (i.e., after 21-22 hours of acclimation), a critical 

swim speed (Ucrit) test was performed on the fish. Specifically, the water velocity was 

increased to 0.6 BL sec-1 (a velocity at which the fish would start swimming), and then 
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increased by 0.2 BL sec-1 every 10 minutes until the fish fatigued and could no longer 

swim. When the fish’s tail entered the back 1/6th of the tunnel, the back of the swim 

tunnel was tapped to encourage the fish to swim forward. In some cases (n = 5), after fish 

had reached their Ucrit, they were given a short (~ 5 minute) rest period at low current 

velocity, and then the water velocity was rapidly increased back up and fish were briefly 

able to swim at speeds above their Ucrit. Only accelerometry data was used from these 

latter trials. The fish were continuously monitored during these swim trials, and only 

periods when fish were actively swimming were used in data analysis. Fish were given 1 

hour of recovery after the swim trial, then they were removed from the swim tunnel and 

euthanized. At each swimming speed, video was recorded for 30 seconds from the side of 

the swim tunnel using a GoPro (Model HERO5; San Mateo, CA) mounted on a tri-pod. 

From these videos, the number of full tail oscillations in 10 seconds was recorded, which 

were multiplied by 6 to get the fish’s tail beat frequency (TBF) in beats min-1. Three 

triplicate values were averaged to calculate the mean TBF of fish at each swimming 

speed.  

 

Experiment #2: Heart Rate and ‘Activity’ of Free-Swimming Fish for Seven Days 

Post-Surgery 

Atlantic salmon (range ~ 2.10 to 2.95 kg) were held in the JBARB of the OSC in a 

2.64 m diameter x 2.50 m deep tank (Figure 2.3 A). These tanks were supplied with 

seawater at 10-11°C and 100-120% of air saturation, and a 12h light: 12h dark 

photoperiod. The fish were fed a maintenance ration (1.0% body mass) of commercial 

salmon diet every other day. 
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Figure 2.3. A) A 2.64 m diameter x 2.50 m deep tank in the Dr. Joe Brown Aquatic 

Research Building at the Ocean Science Centre, Logy Bay, Newfoundland. B) Top view 

of the inside of the tank showing Atlantic salmon recovering from implantation / 

attachment of Star-Oddi centi-HRT ACT and milli-F tags. Fish were held in this tank for 

7 days with 30-35 conspecifics. 
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These fish (n = 10; 2.54 ± 0.92 kg; 62.23 ± 1.00 cm in total length) were 

implanted with centi-HRT ACT and milli-F tags and returned to their tank to recover for 

7 days with 30-35 conspecifics (Figure 2.3 B). Two fish were tagged weekly between 

January 18th and March 7th, 2018. The tags were pre-programmed to save ECGs and 

record fH (at 100 Hz for 6 seconds), tri-axial acceleration (at 1 Hz for 60 seconds) and 

temperature at a sampling frequency of 10 minutes, while the milli-F tags were set to 

record depth and temperature at a sampling frequency of 1 minute. On the 7th day, the fish 

were netted from their tank and euthanized. 

 

Experiment #3: Heart Rate, ‘Activity’ and Tag Retention in Free-Swimming Fish for 

Six Weeks Post-Surgery 

Atlantic salmon (range ~ 1.09 to 3.25 kg) were held in the JBARB of the OSC in a 

2.64 m diameter by 3.78 m deep tank with a volume of 30 m3. These tanks were supplied 

with seawater at 8-12°C and 100-120% of air saturation, and a 12h light: 12h dark 

photoperiod, and the fish were fed a maintenance ration (1.0% body mass) of commercial 

salmon diet on Mondays, Wednesdays and Fridays. 

These fish (2.27 ± 0.25 kg; 59.29 ± 1.38 cm in total length) were implanted with 

centi-HRT ACT and milli-F tags (n = 4), centi-HRT ACT tags alone (n = 4), or milli-

HRT tags (n = 2). Following implantation, fish were held for 6 weeks with 20-25 

conspecifics. Five fish were tagged on September 17th, 2019 and another 5 on December 

12th, 2019. The centi-HRT ACT tags were pre-programmed to store ECGs and record fH 

(at 100 Hz for 6 seconds), tri-axial acceleration (at 1 Hz for 60 seconds) and temperature 

at a sampling frequency of 2 hours, the milli-HRT tags were set to store ECGs and record 
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fH (at 100 Hz for 6 seconds) and temperature at a frequency of 2 hours, and the milli-F 

tags were set to record depth and temperature at a frequency 1 hour. At the end of 6 

weeks, the tagged fish were netted from their tank and euthanized. In these experiments, 

both centi-HRT ACT and milli-HRT tags were used as the latter tag was kindly provided 

by Star-Oddi for preliminary testing. 

 

Calculation of Heart Rate Parameters 

 All measurements of fH were provided with a unitless measurement known as the 

quality index (QI) determined by the Mercury software; this measurement representing 

the quality of the ECG signal where 0 means great quality, 1 and 2 have decreasing 

quality and 3 means there is no R-R interval. In Experiment #1, manual calculations from 

the stored ECGs were performed on all reported fH data. However, based on the results of 

Experiment #1, manual calculations in Experiments #2 and #3 were only performed on fH 

measurements less than 15 beats per minute (bpm) or greater than 85 bpm and when the 

associated QI values were greater than 0. All fH measurements between 15 and 85 bpm 

and with a QI value of 0 were accepted. To manually calculate fH from the stored ECGs, 

the time between R wave peaks was measured (in seconds) and averaged, and then 60 

was divided by the average to obtain the fish’s fH in bpm (Figure 2.4). Manual 

calculations of fH were not possible when there was only one QRS complex or when ECG 

artefacts made the QRS complex unidentifiable, and these data were not included. For 

Experiment #1, heart rate variability (HRV) was calculated as the standard deviation of 

the time between successive R wave peaks (in ms). 
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Figure 2.4. An electrocardiogram recorded in a salmon during one week of recovery in a 

large tank in JBARB. The ECG was randomly chosen to represent the typical recording 

from a salmon, where Bin ECG represents the amplitude of the QRS waveform and 

ranges from 0 to 1000 mV. Heart rate was calculated from the ECGs as the time between 

R wave peaks (measured in seconds). These values were then averaged, and 60 was 

divided by the average to obtain the fish’s fH in bpm. Heart rate variability (HRV) was 

calculated as the standard deviation of the time between successive R wave peaks (in ms).   
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Accelerometry Parameters 

The centi-HRT ACT tag measures acceleration in three dimensions in reference to 

the earth’s gravity. The Mercury software records and stores the raw data calibrated for 

gravitational acceleration. From these raw data, the software calculates external 

acceleration (EA), the variation in EA (VAR) and activity (ACT). Values of EA indicate 

when the sensor is measuring acceleration above normal gravity (measured in m-g at 1 Hz 

for 60 seconds, where g is the acceleration of gravity or 9.8 m s-2) and was averaged over 

1 minute samples. VAR is the variation in external acceleration over a set sampling 

period (1 Hz for 60 seconds). These two parameters were found to provide meaningful 

data related to activity in Experiments #1, 2 and 3. The parameter ACT (a threshold value 

derived from VAR) is less useful as it is a discrete measurement between 1 and 3, and 

thus, can only provide limited qualitative information. For this reason, it was not reported. 

 

Statistics 

 In Experiment #1, several types of equations were fitted to the data to determine 

the best relationship (based on the R2 values) between EA and swimming speed and TBF, 

and between VAR and the latter two parameters (see Table 2.2.). In some instances, 

exponential growth (EG) equations were given priority over polynomial (2P and 3P) 

equations with similar R2 values, because some 2P/3P equations had undefined 

confidence interval errors and EG equations are more comparable to the previous 

literature. Relationships were determined using Prism 7 (GraphPad Software, Inc., San 

Diego, CA, USA). Linear mixed-effects (LME) models in RStudio (v. 1.2.1335, RStudio 

Inc., Boston, MA; http://www.rstudio.com) were used to analyze the fH, HRV and the  

http://www.rstudio.com/
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Table 2.2. Relationships between external acceleration (EA, m-g) and swimming speed 

(BL sec-1) and tail beat frequency (tail beats min-1), and between the latter two parameters 

and variation in EA (VAR, minutes). The following equations were tested for each 

relationship: linear regression (LR), exponential growth (EG), one phase decay (D), 

second order polynomial / quadratic (2P), and third order polynomial / cubic (3P). 

Relationships with the resulting best fit (highest R2 value) are in bold. For data 

presentation (see Figure 2.5), EG was used for all relationships given that it had the best 

fit, or its fit was extremely similar to that obtained by 3P. 

 

Dependent Variable Independent Variable Equation Tested R2 

Tail Beat Frequency Speed in BL s-1 LR 0.7862 

  EG 0.7094 

  D 0.8385 

  2P 0.8293 

  3P 0.8469 

    

External Acceleration Speed in BL s-1 LR 0.5986 

  EG 0.6365 

  2P 0.6387 

  3P 0.6397 

    

External Acceleration Tail Beat Frequency LR 0.4998 

  EG 0.6033 

  2P 0.6347 

  3P 0.6406 
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Variation in EA Speed in BL s-1 LR 0.4677 

  EG 0.7971 

  2P 0.6921 

  3P 0.7840 

    

Variation in EA Tail Beat Frequency LR 0.3518 

  EG 0.8305 

  2P 0.6488 

  3P 0.8063 
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percentage of QI values = 0 data, with swimming speed (BL sec-1) as a fixed-effect and 

fish as a random factor. 

For Experiments #2 and #3, LME models in RStudio were also used to analyze fH, 

EA, and the percentage of QI values = 0 data, with photoperiod and photoperiod order as 

fixed-effects, an interaction term for the two parameters, and fish as a random factor, 

included in the model. A photoperiod of 12h light:12h dark was maintained for both 

experiments, therefore photoperiod was assigned as ‘day-time’ between 8:00 AM and 

7:59 PM or ‘night-time’ between 8:00 PM and 7:59 AM. Photoperiod order was used to 

described the daily values during each photoperiod, where N1 was the first night 

following surgery, and D1 through D6 or D42 represent the subsequent day-time and 

night-time values. In the second trial of Experiment #3 (n = 5 per trial), the temperature in 

the tank fluctuated between 8 and 12°C due to issues with facility temperature control, 

and thus, data for each trial was analyzed separately. 

For data analyzed in RStudio, assumptions of normality, homogeneity and 

independence were analyzed by visual inspection of Q-Q plots and histograms of the 

residuals, residual-fit plots and residual lag plots, respectively. The estimated marginal 

means, or emmeans, package (Singmann et al. 2019) was used to perform Bonferroni’s 

post-hoc tests on the LME models. The level of statistical significance was P < 0.05. All 

values presented in the text, and in figures and tables, are means ± standard errors of the 

mean (S.E.M). 
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Results 

Relationship Between Accelerometry Parameters and Swimming Speed  

Parameters of acceleration recorded in Atlantic salmon increased during the Ucrit 

swimming test. EA and VAR increased exponentially with both swimming speed and 

TBF (EA: y = 3.528e0.954x; R2 = 0.637; y = 3.340e0.009x; R2 = 0.603, respectively; and 

VAR: y = 0.3643.911x; R2 = 0.797; y = 0.2610.040x; R2 = 0.831, respectively; Figure 2.5; 

Table 2.2). EA ranged from 6.77 ± 1.45 at 0.6 BL sec-1 / ~ 24 tail beats min-1 to 16.77 ± 

1.86 at 1.6 BL sec-1 / ~ 180 tail beats min-1 (fold-change = 2.48), while VAR ranged from 

22.15 ± 4.88 to 416.49 ± 157.49 minutes (fold-change = 18.80). Tail beat frequency 

increased with swimming speed (data not presented; y = 297.6 + 802.1x – 503.7x2 + 

114.5x3; R2 = 0.847). 

During the Ucrit test, fH increased significantly from 61.1 ± 1.0 bpm at rest to 77.1 

± 0.7 bpm at 1.6 BL sec-1 (P < 0.0001), while HRV decreased significantly from 62.4 ± 

3.62 to 30.1 ± 4.30 ms (P < 0.0001; Figure 2.6; Table 2.3). The percentage of good 

quality ECGs (i.e., QI = 0) did not change significantly with swimming speed but 

decreased marginally from 83% at rest to ~ 60% while swimming (P = 0.074). An 

average of 68% of measurements were QI = 0 and only 0.1% of these data could not be 

calculated post-analysis (Table 2.4). The absolute difference in fH between manually 

calculated values and those calculated by the Mercury software increased with the 

reported QI value (i.e., 2.3 ± 8.0 bpm for QI = 0, 10.8 ± 27.2 bpm for QI = 1, 31.0 ± 63.0 

bpm for QI = 2, 39.5 ± 41.2 bpm for QI = 3; Figure 2.7. A). Further, when I visually 

inspected the ECGs, I would have only considered 73.3 ± 8.1% of QI = 0 fH recordings to 

be good quality, and recordings of QI = 1 and 2 to be of good quality 23.4 ± 9.1 and 19.6  
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Figure 2.5. External acceleration (EA) and variation in EA (VAR) measured in Atlantic 

salmon during a critical swim speed (Ucrit) test (speed increments of 0.2 BL sec-1). Tail 

beat frequency (beats min-1) was determined from 30 second video clips recorded during 

each swimming speed. The data for all fish were fitted with a number of types of 

equations (see Table 2.2), and the exponential equations that fit each relationship (based 

on the data for individual fish) were as follows: (A) y = 3.528e0.954x, (B) y = 3.340e0.009x, 

(C) y = 0.364e3.911x and (D) y = 0.2610.040x. Data are means ± S.E.M.; n = 6 to 8.  
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Figure 2.6. Changes in heart rate (fH) and related parameters when Atlantic salmon were 

given a critical swim (Ucrit) test (speed increment of 0.2 BL sec-1). A) fH (in bpm) was 

measured every 2 minutes in salmon immediately prior to (resting values) and during the 

Ucrit test. Heart rate variability (HRV in ms; B) was manually calculated from the 

electrocardiograms and the percentage of ‘good’ quality index ECGs (QI = 0; C) was 

provided by the Star-Oddi Mercury software. Dissimilar lower-case letters indicate a 

significant difference between values, as determined by LME models. These models did 

not include the swimming speeds of 1.8 and 2.0 BL sec-1 due to low sample sizes. The 

percentage of good quality ECGs did not change significantly with swim speed (P = 

0.074). Data are means ± S.E.M.; n = 6 to 8 except where indicated. 
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Table 2.3. Summary of the statistical outputs from linear mixed-effects models that were 

used to examine the effects of swimming speed on heart rate parameters in Atlantic 

salmon. Linear mixed-effects models were used to assess the effects of swimming speed 

(body lengths sec-1) on heart rate, heart rate variability and the percentage of quality index 

values equal to zero (QI = 0). 

 

Independent Factor Dependent Factor NumDF DenDF F P 

Heart Rate (Intercept) 1 230 1915.2032 <0.0001 

 Body Lengths Sec-1 6 230 45.8207 <0.0001 

 

Heart Rate 

Variability 

(Intercept) 1 228 49.84475 <0.0001 

 Body Lengths Sec-1 6 228 4.45037 3e-04 

 

Percentage of 

Quality Index 

Values = 0 

(Intercept) 1 35 49.96008 <0.0001 

 Body Lengths Sec-1 6 35 1.69760 0.1508 

NumDF and DenDF are the degrees of freedom of the numerator and denominator of 

the F distribution ratio. 
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Table 2.4. The percentage of ECGs of each quality index value (QI = 0 - 3), and 

percentage of heart rate (fH) values that could not be manually calculated due to ECG 

artefacts during the Ucrit test (n = 8), during one week of recovery (n = 10) and during six 

weeks of recovery (n = 10). 

 

 Experiment QI = 0 QI = 1 QI = 2 QI = 3 

Percentage 

of fH Data 

Ucrit 68.5 ± 9.2 13.1 ± 4.2 14.4 ± 4.4 3.9 ± 1.8 

 Recovery (1 week) 88.8 ± 2.8 5.4 ± 2.2 5.0 ± 0.9 0.9 ± 0.3 

 Recovery (6 

weeks) 

86.9 ± 4.7 3.5 ± 2.1 4.0 ± 1.5 5.6 ± 3.7 

Percentage 

Unable to 

Calculate fH 

Ucrit 0 0 1.7 ± 0.9 0.3 ± 0.3 

 Recovery (1 week) 0 0.1 ± 0.1 0.3 ± 0.1 0.1 ± 0.0 

 Recovery (6 

weeks) 

0.1 ± 0.0 0.4 ± 0.4 0.7 ± 0.6 4.7 ± 3.5 

 

 

 

 

 

 

 

 

 



33 
 

        

0 1 2 3

0

20

40

60

80

100

Quality Index

P
er

ce
n
ta

g
e 

o
f 

E
C

G
s

D
es

ig
n
at

ed
 a

s 
'G

o
o
d
' Q

u
al

it
y

n = 184

n = 33 n = 30

n = 9

0

10

20

30

40

50

60

A
b
so

lu
te

 D
if

fe
re

n
ce

 i
n

H
ea

rt
 R

at
e 

(b
p
m

)

n = 184

n = 33

n = 30

n = 9A

B

 
 

Figure 2.7. Electrocardiograms (ECGs) recorded by the Star-Oddi centi-HRT ACT tag in 

Atlantic salmon during a critical swim (Ucrit) test. Heart rate (fH) was calculated by the 

Mercury software from the ECGs, which also provided a value to indicate the quality of 

the data (QI = 0 means great quality, 1 and 2 have decreasing quality and 3 means there is 

no R-R interval). A) Absolute differences in fH (bpm) between those recorded by the 

Mercury software and those same values calculated manually from raw ECGs. B) The 

percentage of ECGs designated as ‘good’ quality based on manual inspection as 

compared to the QI values provided by the Mercury software. Data are means ± S.E.M. 
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± 11.5% of the time. On the other hand, I did not find any QI = 3 recordings to be good of 

quality (Figure 2.7. B). 

 

Heart Rate and Activity During Post-Surgical Recovery 

 Following tag implantation, fH, EA, VAR and temperature were recorded in 

salmon recovering in holding tanks with conspecifics for one week (Figure 2.8) and six 

weeks (Figure 2.9). Heart rate decreased (P < 0.0001; Figure 2.10; Table 2.5), and EA 

increased (P < 0.0001), over the one week recovery period; from 58.8 ± 0.8 and 47.4 ± 

0.9 bpm (day-time and night-time values, respectively) initially to 43.9 ± 0.7 and 36.9 ± 

2.7 bpm by the final day of recovery. In contrast, EA increased from 9.3 ± 0.3 and 8.5 ± 

0.4 m-g (~ 1.02 and 0.92 BL sec-1 as estimated from swim tunnel calibrations) to 10.5 ± 

0.4 m-g and 9.6 ± 0.4 m-g (~ 1.14 and 1.04 BL sec-1). Based on a visual inspection of this 

data, it appeared that the measured parameters began stabilizing after approx. 4 days of 

recovery (Figure 2.8). However, significant differences were observed until the final day 

of recovery (Day 7)(Figure 2.10). 

Data from the six week period of recovery are presented in Figures 2.9 and 2.11, 

and summarized in Table 2.6. In the first trial at 8°C, fH decreased significantly from 43.6 

± 1.4 and 31.2 ± 1.4 bpm to 29.1 ± 1.1 and 24.4 ± 0.9 bpm at 21 days post-surgery (P < 

0.0001). By 42 days, fH was ~ 30 bpm during the day and ~ 26 bpm during the night. EA 

increased slightly by 140% during the recovery period (P < 0.0001). Overall, salmon in 

this trial were less active (average EA = ~ 6.4 m-g; or 0.62 BL sec-1) than salmon held for 

one week of recovery (average EA = ~ 9.5 m-g; or 1.04 BL sec-1). Heart rate decreased 

and EA increased similarly in the second trial (P < 0.0001 and P = 0.0095, respectively). 
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Figure 2.8. Heart rate (fH, bpm), external acceleration (EA, m-g), variation in EA (VAR, 

minutes) and temperature (°C) values in free-swimming Atlantic salmon (n = 10) for 1 

week following surgical implantation of the Star-Oddi centi-HRT ACT tag or the milli-

HRT tag. Salmon were held in a large tank following surgical implantation of the tags. 

Fish were on a 12-hour light: 12-hour dark photoperiod (grey bars represent periods of 

darkness / night-time), and data were collected at 10 minute intervals. 
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Figure 2.9. Heart rate (fH, bpm), external acceleration (EA, m-g), variation in EA (VAR, 

minutes) and temperature (°C) values in free-swimming Atlantic salmon recorded for 6 

weeks following surgical implantation of the Star-Oddi centi-HRT ACT tag or the milli-

HRT tag. Salmon were maintained at a constant temperature of 8°C in the first tagging 

trial (A; n = 5). In the 2nd trial (B; n = 5), temperature ranged between 8 and 12°C due to 

issues with facility temperature control. Fish were on a 12-hour light: 12-hour dark 

photoperiod (grey bars represent periods of darkness / night-time), and data were 

collected every 2 hours. 
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Figure 2.10. Average day-time and night-time heart rate (fH in bpm; A), percentage of 

‘good’ quality index ECG values (i.e., QI = 0; B) and external acceleration (EA in m-g; 

C) values in free-swimming Atlantic salmon (n = 10) recorded for 7 days following 

surgical implantation of the Star-Oddi centi-HRT ACT tag. Open symbols represent day-

time, whereas dark symbols represent periods of darkness / night-time. Dissimilar lower-

case letters indicate a significant difference within a photoperiod group (for night-time 

values the letters are bolded), while an asterisk (*) represents a significance difference 

between day-time and night-time values at each measurement period. Data are means ± 

S.E.M, with each value representing the average of n = 72 data points per fish.  
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Table 2.5. Summary of the statistical outputs from the linear mixed-effects models that 

examined the effects of night/day (photoperiod), days post-implantation (i.e., photoperiod 

order), and their interaction, on fH parameters [fH and percentage of quality index values 

equal to zero (QI = 0)] and external acceleration (EA) in salmon for 7 days post-surgery. 

 

Independent Factor Dependent Factor 

Num

DF 

Den

DF 

F P 

Heart Rate (Intercept) 1 8560 510.753 <0.0001 

 Photoperiod 1 8560 3712.111 <0.0001 

 Photoperiod Order 5 8560 805.027 <0.0001 

 Interaction 5 8560 23.073 <0.0001 

 

Percentage of Quality 

Index Values = 0 

(Intercept) 1 98 923.827 <0.0001 

 Photoperiod 1 98 1.944 0.1664 

 Photoperiod Order 5 98 5.476 0.0002 

 Interaction 5 98 0.631 0.6762 

      

External Acceleration (Intercept) 1 8586 95.752 <0.0001 

 Photoperiod 1 8586 860.051 <0.0001 

 Photoperiod Order 5 8586 131.749 <0.0001 

 Interaction 5 8586 3.500 0.0018 

NumDF and DenDF are the degrees of freedom of the numerator and denominator of 

the F distribution ratio. 
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Figure 2.11. Average heart rate (fH in bpm; A, B), percentage of ‘good’ ECGs (QI = 0; C, 

D) and external acceleration (EA in m-g; E, F) values in free-swimming Atlantic salmon 

held for 6 weeks following surgical implantation of the Star-Oddi centi-HRT ACT tag or 

milli-HRT tag. Salmon were maintained at a constant temperature of 8°C in the first 

tagging trial (A, C, E; n = 5), whereas temperature varied between 8 and 12°C in the 

second trial (B, D, F; n = 5) due to issues with facility temperature control. Open symbols 

represent day-time measurements, whereas dark symbols represent periods of night-time. 

Dissimilar lower-case letters indicate a significant difference within a photoperiod group 

(for night-time values the letters are in bold), while an asterisk (*) indicates a significant 

difference between day-time and night-time values. Data are means ± S.E.M, with each 

value representing the average of n = 6 data points per fish. 
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Table 2.6. Summary of the statistical output from the linear mixed-effects models that 

examined the effects of night/day (photoperiod), days post-implantation (i.e., photoperiod 

order), and their interaction, on fH parameters [fH and percentage of quality index values 

equal to zero (QI = 0)] and external acceleration (EA) in Atlantic salmon for 6 weeks 

post-implantation. Due to issues with facility temperature control, the data is separated 

into two trials with a tank temperature of 8°C in trial 1 (A) and 8-12°C in trial 2 (B). 

 

Independent Factor Dependent Factor 

Num

DF 

Den

DF 

F P 

A. Trial 1      

Heart Rate (Intercept) 1 252 116.8220 <0.0001 

 Photoperiod 1 252 121.1120 <0.0001 

 Photoperiod Order 4 252 79.46901 <0.0001 

 Interaction 4 252 3.89345 0.0044 

Percentage of 

Quality Index 

Values = 0 

(Intercept) 1 35 67.76189 <0.0001 

 Photoperiod 1 35 1.54935 0.2215 

 Photoperiod Order 4 35 1.34151 0.2741 

 Interaction 4 35 0.09792 0.9824 

 

External 

Acceleration 

 

(Intercept) 

 

1 

 

225 

 

57.24601 

 

<0.0001 

 Photoperiod 1 225 0.70989 0.4004 

 Photoperiod Order 4 225 7.70921 <0.0001 
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 Interaction 4 225 0.65493 0.6240 

B. Trial 2       

Heart Rate (Intercept) 1 282 414.2493 <0.0001 

 Photoperiod 1 282 52.5477 <0.0001 

 Photoperiod Order 4 282 45.7455 <0.0001 

 Interaction 4 282 4.3768 0.0019 

Percentage of 

Quality Index 

Values = 0  

(Intercept) 1 35 3731.347 <0.0001 

 Photoperiod 1 35 0.317 0.5767 

 Photoperiod Order 4 35 1.210 0.3241 

 Interaction 4 35 1.654 0.1826 

 

External 

Acceleration 

 

(Intercept) 

 

1 

 

458 

 

104.4373 

 

<0.0001 

 Photoperiod 1 458 1.29215 0.2562 

 Photoperiod Order 4 458 3.38926 0.0095 

 Interaction 4 458 0.96735 0.4251 

NumDF and DenDF are the degrees of freedom of the numerator and denominator of 

the F distribution ratio. 
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However, fluctuations in temperature altered the daily averages as compared to the first 

trial. For example, day-time fH and EA on D21 were ~ 8 bpm and ~ 1 m-g higher in the 

second trial (at 9.3 ± 0.1°C) than in the first trial (at 8.1 ± 0.0°C). Indeed, when the fH 

data from the second trial (excluding data from the first week of recovery) were plotted 

against temperature, there was a significant relationship (data not presented; Y = 3.01x + 

2.64; R2 = 0.23; P < 0.0001). When temperature was 8.5°C, fH was on average 28.2 bpm 

whereas, at 12°C, fH averaged 38.8 bpm. 

 

Diel Heart Rate and Activity Patterns Post-Surgery 

 The effects of photoperiod on fH (i.e., diel variation) were consistent and 

significant in all recovery trials (P < 0.0001; Figures 2.10 and 2.11; Table 2.5, 2.6). 

Salmon held at 10-11°C had day-time fH values ~ 7 bpm higher than night-time values by 

one week post-surgery (Figure 2.10), while at 8°C, diel variation was ~ 4 bpm at 42 days. 

In salmon held at 10-11°C for one week, photoperiod also had a significant effect on EA 

(a difference of ~ 1 m-g, 0.09 BL sec-1 by one week post-surgery). However, there were 

no  significant effects of photoperiod on EA during Trial 1 (8°C) or Trial 2 (8-12°C) 

when the salmon were recovered for 6 weeks (P = 0.2562 and 0.4004, respectively). 

 

Measurement Quality and Tag Retention Post-Surgery 

 The percentage of good quality ECG values decreased significantly (by ~ 11%) 

over one week of recovery (P = 0.0002; Figure 2.10; Table 2.5), but did not change 

significantly over the six weeks of recovery (Trial 1: P = 0.2741; Trial 1: P = 0.3241; 

Figure 2.11; Table 2.6). There were also no significant diel patterns in ECG quality. 
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Throughout the experiments, the average percentage of good quality ECGs (i.e., QI = 0) 

was ~ 86 and 88%, and only a very small percentage of this fH data could not be manually 

calculated from the ECGs (~ 2 to 6%; Table 2.4). Following 6 weeks of holding, all tags 

remained within 0.7 cm of the pericardium, 80% of the incisions were fully healed, and 

80% of anterior suture knots and 70% of posterior suture knots were intact (see Figure 2.1 

for a review of tag preparation). However, only 10% of incision sutures remained. All 

milli-F tags remained securely attached to the dorsal muscle of the salmon. 

 

Discussion 

Relationship Between Accelerometry Parameters, Heart Rate and Swimming Speed 

A primary goal of this chapter was to establish relationships between the 

swimming speed of Atlantic salmon and the parameters of acceleration calculated by the 

Star-Oddi Mercury software. EA and VAR increased exponentially with swimming speed 

and TBF (Figure 2.5, Table 2.2), and the EA data were subsequently used to estimate the 

swimming speed of salmon in large tanks at the JBARB. Previous researchers have also 

recorded relationships between swimming speed and / or TBF and either acceleration 

(Kawabe et al. 2003; Clark et al. 2010; Wilson et al. 2013; Martos-Sitcha et al. 2019) or 

overall dynamic body acceleration (ODBA; Wright et al. 2014). For example, Clark et al. 

(2010) reported an exponential relationship between acceleration activity (AA; calculated 

as the sum of the X and Y acceleration values with no specific units) and TBF in sockeye 

salmon, and that there was a 7.2-fold change in AA from 40 to 170 tail beats min-1 (Clark 

et al. 2010). Similarly, Wright et al. (2014) reported that an exponential equation was the 

best fit between ODBA and swimming speed in European sea bass, Dicentrarchus labrax, 
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with a 6.1-fold increase in vectorial ODBA between 0.4 and 1.7 BL sec-1. ODBA is the 

sum of the absolute values of acceleration from all three spatial axes measured in 

gravitational acceleration (g; Wilson et al. 2006; Gleiss et al. 2011; Qasem et al. 2012; 

Wright et al. 2014). According to the Star-Oddi ACT manual and representatives (pers. 

comm.), EA is calculated in a similar way to ODBA, and thus, it is not surprising that it 

also provides a relationship with swimming speed and TBF. In contrast to the above 

studies, there was only a 2.5-fold change in EA in my Ucrit test between salmon at rest and 

those swimming at 1.6 BL sec-1. Despite this, the acceleration parameters as calculated by 

the Star-Oddi software (i.e., EA and VAR), were good predictors of salmon activity / 

swimming speed. 

Acceleration and ODBA have most often been related to metabolism, and used as 

a proxy for energy expenditure in freely swimming fish (Clark et al. 2010; Gleiss et al. 

2010, 2011; Wilson et al. 2013, 2014; Wright et al. 2014, Mori et al. 2015; Bouyoucos et 

al. 2017; Lear et al. 2017; Martos-Sitcha et al. 2019). Movement makes up a large portion 

of an animal’s energy budget because the lateral undulations of the tail that provide the 

propulsive force for swimming are fueled by muscular contraction. Therefore, 

acceleration and ODBA provide important information about a fish’s overall energy use 

(Kawabe et al. 2003; Wilson et al. 2006; Gleiss et al. 2010, 2011; Wright et al. 2014; 

Metcalfe et al. 2016). In this study, oxygen consumption (ṀO2) was not directly 

measured, however, fH is highly correlated metabolic rate in fish under most 

circumstances (Armstrong 1986; Lucas 1994; Claireaux et al. 1995; but see Thorarensen 

et al.1996). The fH of Atlantic salmon increased 1.26-fold during the swimming trial (i.e., 

from a resting value of 61 bpm to 77 bpm at 1.6 BL sec-1; Figure 2.6). This is within the 
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range of fold increases reported by other authors for adult salmonids during swimming 

trials (1.05 to 2.42; Altimiras and Larsen 2000; Gallaugher et al. 2001; Dunmall and 

Schreer 2003; Claireaux et al. 2005; Dussault et al. 2008; Steinhausen et al. 2008; Eliason 

et al. 2013a,b). Given the increase in fH in this study, and the well-established relationship 

between metabolism and acceleration, it is likely that EA would correlate with ṀO2 and 

that the centi-HRT ACT tags could be used as a tool to estimate the energy use of salmon 

in future studies. This, however, would require the establishment of a direct relationship 

between these parameters. 

Further, the centi-HRT ACT tag provides the opportunity to save and analyze 

ECGs, and thus, investigate additional aspects of cardiac physiology. HRV (i.e., the 

variation in time between heart beats) is influenced by the autonomic nervous system and 

contains valuable information on functioning of the heart and fish physiology (Campbell 

et al. 2004; Jeanne et al. 2009; Grӓns et al. 2014). For example, HRV measured in short-

horned sculpin (Myoxocephalus scorpius) was shown to be a more sensitive predictor of 

ṀO2 than fH (Campbell et al. 2004). However, it is not known whether this is true for 

other fish species. Studies quantifying HRV in fish are rare, probably due to the difficulty 

of recording ECGs for prolonged periods (Grӓns et al. 2014). Although the fH of salmon 

increased during the swim test, HRV decreased by approx. 52% (from resting values of 

62 ms to 30 ms at 1.6 BL sec-1; Figure 2.6). Since beat-to-beat variability is known to be 

predominantly regulated by cholinergic innervation of the cardiac pacemaker (Campbell 

et al. 2004), the decrease in HRV suggests enhanced parasympathetic control of fH during 

the exhaustive swimming test. 
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 Ucrit tests conducted in a swim tunnel or flume are commonly used to calibrate 

acceleration values from fish implanted with loggers / transmitters. Often, the objective of 

a Ucrit test is to determine the maximum swimming speed and aerobic performance of 

fishes (Brett 1964; Plaut 2001). In calibration studies, swimming fish at known speeds 

allows researchers to compare acceleration values to a given value of swimming speed, 

TBF or metabolism. However, it is important to recognize that some papers suggest that 

swim tunnels do not reflect the natural swimming behaviour or maximum swimming 

speed of fish (Nelson et al. 2002; Peake and Farrell 2006; Tudorache et al. 2007, 2010; 

Castro-Santos et al. 2013; Metcalfe et al. 2016). This is for two reasons: 1) the new 

environment (i.e., confinement in a swim tunnel) may lead to abnormal behaviour; and 2) 

short swim tunnels can limit the glide distance during burst-and-coast swimming which 

facilitates metabolic recovery. However, Wright et al. (2014) found that the range of 

activity levels of European sea bass in a swim tunnel were similar to those recorded in 

their holding tank. Likewise, the range of average EA values recorded from salmon in the 

swim tunnel (~ 6.0 to 22.5 m-g) were similar to those recorded in fish held for 1 week at 

11°C (~ 5.8 to 62.2 m-g) and 6 weeks at 8-12°C (~ 3.7 to 47.6 m-g). Only 0.22 and 0.43% 

of EA values recorded over 1 and 6 weeks of recovery were greater than the maximum 

EA value recorded in the swim tunnel. This indicates that the majority of the salmon’s 

range of swimming speeds were represented during the swim trial. 

A gait transition typically occurs in fish, from steady swimming at low speeds to 

burst-and-coast swimming at higher speeds approaching Ucrit, and signifies a switch from 

aerobic to anaerobic energy metabolism (Peake and Farrell 2004; Brown et al. 2013). 

This transition is meant to provide energy savings and increase endurance at higher 
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swimming speeds (Videler and Weihs 1982). In adult salmonids, the transition to burst-

and-coast swimming occurs a few minutes before Ucrit, typically between 1.6 and 2.2 BL 

sec-1 (e.g., see Tang and Wardle 1992; Booth et al. 1997; Lee et al. 2003b; MacNutt et al. 

2006; Wilson et al. 2013; Hvas et al. 2017). I found that extremely high values of VAR 

were recorded during periods of burst-and-coast swimming, which began after ~ 1.6 BL 

sec-1 in this group of salmon. Interestingly, Wilson et al. (2013) reported that high values 

of acceleration were not linearly related to swimming speed, which may provide further 

evidence to suggest that swimming behaviour alters the relationship between acceleration 

and swimming speed. Clearly, it would be valuable to include continuous video 

recordings in order to establish the impact of behaviour (i.e., steady or burst-and-coast 

swimming) when determining the relationships between acceleration and swimming 

speed.  

 

Heart Rate and Activity During Post-Surgical Recovery 

The implantation of tags requires that procedures such as netting, handling and 

anaesthesia be used, and that the fish undergo surgery, which are all known to be stressful 

on the fish being tagged (Altimiras and Larsen 2000; Hill and Forster 2004; Rothwell et 

al. 2005; Grӓns et al. 2014; Raby et al. 2015). Conveniently, the parameters being 

recorded by the centi-HRT ACT tag (i.e., fH and activity) provide information about the 

impact of surgery and can help to establish recommendations for recovery time. For 

instance, it is well known that fH indicates the level of stress experienced by fish, and 

thus, it is used to determine recovery time following a variety of stressors (e.g., see 

Anderson et al. 1998; Cooke et al. 2004b; Donaldson et al. 2010; Raby et al. 2015; 
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Prystay et al. 2017). In Experiment #2, it appeared that the salmon’s fH began to stabilize 

within the first 4 days following surgical implantation (Figure 2.10). This time-frame is 

similar to that reported by Brijs et al. (2018, 2019) for the fH of rainbow trout tagged with 

Star-Oddi milli-HRT tags with a 15 minute surgical time, whereas fH took between 8 and 

10 days to stabilize in Atlantic cod (Gadus morhua) implanted with ultrasonic flow-

probes placed on their ventral aorta by a 30 to 60 minute surgery (Webber et al. 1998). 

Further, it is consistent with Jepsen et al. (2001) found that cortisol in Chinook salmon 

smolts implanted with dummy tags took 7 days to return to normal, while Wagner et al. 

(2014) found that in juveniles implanted with micro-transmitters, it was still elevated 

above resting values by 14 days post-surgery. However, when holding salmon for 

extended periods during Experiment #3, it was revealed that the fH of the salmon actually 

continued to decline for up to 21 days (Figure 2.11). The reason(s) for this prolonged 

recovery period is / are not known. However, recent data suggests that the presence of 

tags inside the body cavity induces a long-term immune response (Semple et al. 2018), 

and this may provide an explanation for the lengthy period required for fH to achieve 

stable values. 

Despite repeated recommendations to allow fish several days to recover following 

surgery and prior to experimentation (Altimiras and Larsen 2000; Grӓns et al. 2014; Brijs 

et al. 2019), research recording fH continues to rely on, and often fall short of, a 48 to 72 

hours of recovery ‘rule’ (e.g., see Steinhausen et al. 2008; Grӓns et al. 2009; Ekstrӧm et 

al. 2016; Prystay et al. 2017; Cheng et al. 2017; Joyce et al. 2018). Logistical, financial 

and temporal restrictions are likely driving researchers to ignore the importance of 

recovery time. The lowered cost and simplistic use of fH biologgers can help to mediate 
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these constraints, and allow researchers to provide extended recovery periods for fish 

which have undergone surgery. As a recent example, rainbow trout implanted with Star-

Oddi milli-HRT tags were allowed 7 and 8 full days of recovery before experimental 

protocols were performed [Ekstrӧm et al. (2018) and Wallerius et al. (2019), 

respectively]. 

It has also been suggested that the presence or absence of diel variations in fH can 

provide important information about the welfare and recovery of fish (Brijs et al. 2018). 

Increased activity and ṀO2 stimulated by daylight results in altered circadian rhythms of 

cardiac output (Priede and Young 1977; Borch et al. 1993; Aissaoui et al. 2000). Diel 

patterns in fH have also been recorded in a variety of fish including carp (Cyprinus carpio; 

Kneis and Siegmund 1976; Williams et al. 1997), rainbow trout (De Vera and Priede 

1991; Borch et al. 1993; Brijs et al. 2018), brown trout (S. trutta; Priede and Young 

1977), gilthead seabream (Sparus aurata; Aissaoui et al. 2000) and zebrafish (Danio 

rerio; Zhang et al. 2015). In this study, diel variations in fH were recorded in salmon 

immediately following surgery and were maintained for the 7 day holding period in 

Experiment #2 (Figures 2.10 and 2.11; Table 2.5, 2.6); the mean difference in fH between 

day and night was ~ 7 bpm and the range of values over 24 hours was ~ 14 bpm (Figure 

2.8). Conversely, Brijs et al. (2018) reported that diel variations in fH were not apparent 

until 3 days post-surgery in rainbow trout implanted with Star-Oddi milli-HRT loggers, 

and that the average circadian fluctuations in fH was ~ 27 bpm. The reason for the delayed 

appearance of circadian rhythms in fH in Brijs et al. (2018) and the ~ 2-fold greater daily 

variation in fH in their study is not known. However, the fish in Brijs et al. (2018) 

underwent a prolonged fast prior to surgery (1 week) and their studies were conducted at 
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a warmer temperature (15 - 16°C vs. 10 - 11°C in the present study) and in a sea-cage. It 

is possible that these differences between the two studies influenced post-surgical 

recovery and the magnitude of the diel fluctuations in fH. Nonetheless, based on the above 

studies, it appears that biologgers which can record fH and EA continuously could be used 

to advance our understanding of circadian rhythms, which have major implications for the 

fitness of wild animals (Yerushalmi and Green 2009). For example, Payne et al. (2013) 

used depth and acceleration tags to study the activity of yellowfin bream, Acenthopagrus 

australis, and found that the fish switched from diurnal to nocturnal activity following a 

heavy rainfall. 

During one week of holding at 10-11°C (Experiment #2), diel patterns in EA were 

present immediately following surgery and were maintained throughout holding (Figure 

2.10; Table 2.5). In contrast, there were no significant diel variations in EA when salmon 

were held for 6 weeks at 8-12°C in Experiment #3 (Figure 2.11; Table 2.6). There are two 

possible explanations for the discrepancy in diel patterns of activity. First, during 

Experiment #2 the tags were programmed to record at a sampling frequency of 10 minutes 

(144 measurements per day for each fish). In contrast, the sampling rate was changed to 

every 2 hours (12 measurements per day for each fish) in order to save memory and 

battery life during the 6 week holding period in Experiment #3. This reduction in the 

amount (frequency) of data collected likely limited the ability to detect diel variations in 

EA. If the goal of future research is to study such fine scale patterns in swimming / 

behaviour, such as diel variations of activity in fish, it is imperative that researchers 

optimize their sampling rate given the length of experiment they intend to perform. 

Second, the two trials of Experiment #3 were conducted at colder temperatures, and the 
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salmon were less active overall. For example, average EA was 9.5 m-g (1.04 BL sec-1) in 

Experiment #2, whereas it was only ~ 6.4 m-g (0.62 BL sec-1) in the longer experiments. 

It is possible that this lower baseline activity contributed to the lack of detection of 

diurnal changes in EA. 

Interestingly, salmon at both temperatures had a faster average swimming speed in 

tanks than Atlantic cod and rainbow trout with speeds between 0.33 to 0.35 and 0.62 to 

0.68 BL sec-1, respectively (Kawabe et al. 2003, 2004; Gollock et al. 2009). However, the 

average TBFs of Atlantic salmon in Experiments #2 and 3 (9.5 m-g / 116.15 tail beats 

min-1 and 6.4 m-g / 72.26 tail beats min-1) were within the preferred swimming speed 

range of brown trout released to the wild (1 to 2 tail beats sec-1 or 60 to 120 tail beats min-

1; Ross et al. 1981). The minimum net cost of transport (COT) of cod is 0.3 BL sec-1, and 

therefore, it makes sense that they spent the majority of their time swimming at that speed 

(Gollock et al. 2009; Syme et al. 2009). In contrast, salmonids are reported to have a 

minimum net COT at 0.4 to 0.6 BL sec-1 (Lee et al. 2003 a, b; Hvas et al. 2017). Thus, it 

appears that the Atlantic salmon in this study were also swimming at an average speed in 

Experiments #2 and 3 within the range of their minimum net COT. 

Specific acceleration values or patterns can be used to estimate the amount of time 

fish spend exhibiting certain behaviours (Ropert-Coudert and Wilson 2005). For example, 

Tsuda et al. (2006) were able to determine that chum salmon could swim without tail 

beating in typical river flow conditions, and Kawabe et al. (2003) were able to distinguish 

between active swimming and inactive swimming / gliding in rainbow trout. In the swim 

tunnel, salmon began burst-and-coast swimming after ~ 1.6 BL sec-1, when VAR was 

greater than ~ 220 minutes (Figure 2.5). Based on this information, I estimate that the 
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salmon in the tanks only exhibited burst-and-coast swimming 2.8 ± 0.5% of the time (26 / 

962 VAR measurements were greater than 220 minutes; n = 10) during Experiment #2, 

and 3.6 ± 0.5% of the time (18 / 498 VAR measurements; n = 4) and 4.0 ± 0.6% of the 

time (20 / 498 VAR measurements; n = 4) during the two trials in Experiment #3. These 

data suggest that salmon spend the vast majority of their time swimming steadily in the 

tank environment, with few periods of rapid / burst swimming. Similarly, free-swimming 

Atlantic cod in tanks spend very little time burst swimming (Gollock et al. 2009). 

 

Considerations for Tag Use and Future Feasibility Studies 

The modified implantation method used in this study was effective for recording 

fH and acceleration in Atlantic salmon. In order to effectively record fH, the electrodes of 

fH loggers and transmitters must remain close to the pericardium throughout deployment 

(Cooke et al. 2016). Therefore, I chose to suture the centi-HRT ACT tag to the body wall 

before closing the incision. This resulted in good quality ECG recordings during both the 

exhaustive exercise (Ucrit) protocol and the 1 and 6 weeks that the salmon were held in the 

large tank; the average percentage of good quality ECGs (i.e., QI = 0) approximately 68, 

86 and 88%, respectively (Table 2.4). It has been reported that increased activity can 

interfere with ECG recordings due to potentials produced by the aerobic muscles 

(Altimiras and Larsen 2000). However, this was very rare in these studies. There were 

two instances when fH data was lost due to noisy signals and these corresponded with 

feeding activity. The positioning of the tag was also consistent with suggestions for 

implanting accelerometers, e.g. aligning the tag with the major plane of movement (i.e., 

the lateral movement of the tail) and placing the tags close to the animal’s center of 
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gravity (Gleiss et al. 2010, 2011). Further, suturing the tags to the body wall would have 

reduced the potential for variation in logger position between individuals, which can 

impact the interpretation of accelerometry data (Halsey et al. 2009).  

While previous research has reported issues with the retention of internally 

implanted tags and the survival of tagged salmonids (e.g., see Treasurer 1996; Welch et 

al. 2007; Ivasauskas et al. 2012; Smircich and Kelly 2014; Føre et al. 2017), all tags were 

found in their original position and survival was 100% for the Atlantic salmon tagged in 

this study. It is important to acknowledge that tag retention, healing and survival inside a 

tank or hatchery setting may not be representative of fish tagged in the wild or in the sea-

cage environment, and often varies between studies. For example, Føre et al. (2017) 

experienced problems with tag ejection and mortality in sea-caged Atlantic salmon that 

were implanted with Star-Oddi micro-TD tags and released back into their cages on the 

same day as surgery. On the other hand, sea-caged rainbow trout tagged with Star-Oddi 

milli-HRT tags and recovered in a facility for 2 days before re-entering the sea-cage had 

zero mortality over 21 days (Brijs et al. 2018). While the tagging method used in the 

present study was effective for salmon held in a tank, and it may hold true for other adult 

salmonids, experiments using different species or tag types / sizes may have varying 

results as effective tagging depends on a range of factors (Cooke et al. 2011). Therefore, 

it is strongly suggested that feasibility studies investigating tag retention and survival be 

performed prior to the extended use of biologgers. 

Overall, the ECGs recorded in the Atlantic salmon were of good quality, and the 

fH values recorded by the HRT ACT tags were quite sensitive (responsive) to biotic and 

abiotic changes. For example, the tags were able to detect increases in fH with swimming 
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speed (Figure 2.6), small diurnal changes in fH (Figure 2.10) and those associated with 

changes in temperature. However, there were some issues with the quality of the recorded 

ECGs. During the critical swim speed test, fH was sometimes miscalculated by as much as 

39 bpm by the Star-Oddi Mercury software when ECGs were of poor quality (QI ≥ 1; 

Figure 2.7). Due to this concern, Prystay et al. (2017, 2019), Brijs et al. (2018, 2019) and 

Wallerius et al. (2019) chose a highly conservative approach, and removed all poor 

quality fH values (QI ≥ 1). When manually examining the ECGs, I found that only approx. 

73% of those designated as QI = 0 were ‘good’ quality and that 23 and 19% of those 

determined to be QI = 1 and 2, respectively, were not of poor quality. Therefore, I chose 

to either manually calculate fH from all of the ECGs, or just those with poor quality, and 

as a result, very few data points had to be removed from each experiment (less than 1%). 

While the QI value does help identify ECGs with missing R-R peaks (QI = 3), and 

provides a rough estimate of ECG quality, I highly recommend that users of Star-Oddi fH 

loggers prioritize saving and inspecting ECGs prior to data analysis and interpretation. 

However, a centi-HRT ACT tag with a full battery can record fH, acceleration and 

temperature with a 2-hour sampling frequency for 230 days when all ECGs are saved, but 

the potential length of sampling is extended to 455 and 1838 days when 50% or no ECGs 

are saved. 

Star-Oddi fH loggers do not require external wires connected to recording devices, 

and thus, tagged fish are free to interact with conspecifics rather than be confined to a 

respirometer chamber. Research using non-invasive and un-tethered fH recording 

methods, including this paper, have recorded the lowest resting fH values in salmonids (~ 

20 to 37 bpm: Altimiras and Larsen 2000; Donaldson et al. 2010; Clark et al. 2010; Grӓns 
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et al. 2014). This research highlights the importance of using such technologies when 

trying to determine what cardiovascular parameters are in fish in the field (wild), but also 

some of the challenges when using these devices. Brijs et al. (2019) reported that the Star-

Oddi fH loggers were limited in their ability to record low resting fH values in rainbow 

trout due to the maximum sampling and recording periods permitted by the manufacturer 

(i.e., 600 measurements per sampling period or 100 Hz for 6 seconds). For example, in a 

trout with a mean resting fH of 23 bpm, these authors found that the milli-HRT logger 

only recorded 29% of fH measurements as QI = 0. This is because at fH values < 20 bpm 

the R-R interval is longer than the 6 sec. recording period. I observed a similar issue in 

salmon with low resting fH over the 6 week holding period at 8°C. With a long recovery 

period and the low temperature, fH was routinely reaching values lower than 20 bpm, 

especially during the night. For example, 75% of the fH data in one fish during the last 

week of holding was lost because of low fHs; i.e., QI was equal to 3 because a full R-R 

interval could not be recorded. As mentioned in Brijs et al. (2019), Star-Oddi has now 

released tags that have the option to record ECGs for longer periods and up to 1500 

measurements per sampling (i.e., 80 Hz for 18.8 seconds, 100 Hz for 15 seconds, or 125 

Hz for 12.5 seconds), and this should allow research to be conducted on cold water 

species and throughout the winter months. However, users should be aware that the 

ability to sample fH over prolonged periods is a tradeoff with increased battery 

consumption and memory usage when choosing to save ECGs. 

Debate exists over the sampling frequency required when using acceleration to 

determine the behaviour of animals (Broell et al. 2013; Wilson et al. 2013). I used a lower 

sampling frequency (1 Hz for 60 seconds every 2 minutes, 10 minutes or 2 hours) which 
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has been referred to as discrete or burst / epoch sampling (Brown et al. 2013). In this 

study, this lower frequency was useful in estimating swimming speed in Atlantic salmon 

and can indicate when salmon are burst-and-coast swimming. Similarly, Wilson et al. 

(2013) found that a frequency of 10 Hz for 10 seconds could be used to effectively 

estimate swimming speed and ṀO2 in sockeye salmon. However, in this research, 

acceleration was averaged over one minute and thus, maximum swimming speeds could 

be underestimated using this method. While low frequencies allow for the 

characterization of one behaviour type at a certain point in time, and can utilize fixed-

threshold manual behaviour referencing as previously described (e.g., Kawabe et al. 

2003; Tsuda et al. 2006), they do not continuously record all micro-behaviours (i.e., 

define detailed animal behaviours). For such purposes, acceleration data recorded with a 

high sampling frequency can be used to assign acceleration waveforms to complicated 

behaviours using unsupervised or supervised machine learning algorithms (Brown et al. 

2013). However, such recording requires significant memory and battery life, and thus 

once again, a user’s choice of sampling frequency should reflect their research objectives. 

 

Conclusions 

 There is a growing need for validation / feasibility studies prior to the use of 

biologgers (Wilson et al. 2015), especially those that record multiple parameters or when 

they are being used in previously untagged or rarely tagged species. Currently, 

physiological sensors are underutilized, but could be an extremely useful tool for 

advancing fish welfare and conservation. For example, the fH loggers in this paper 

effectively recorded good quality ECGs and measurements of fH in free-swimming 
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salmon and could record small changes in fH associated with exercise, diel variation and 

changes in temperature. With these tags, I found that salmon require a minimum of 4 

days, and up to 21 days, for fH to stabilize following the surgical procedures and 

implantation required for the use of the tag. Additionally, the loggers allowed for the 

quantification of HRV of salmon during a critical swim test, and thus, provide a new 

avenue of research for cardiac physiology. Lastly, the tags recorded values of acceleration 

that can be used to estimate salmon’s swimming speed and TBF, and indicated whether 

salmon were swimming steadily or burst swimming. It is my hope that future users of 

biologgers follow the recommendations highlighted in this chapter. To further advance 

the fields of biologging, and fish ecology and conservation, it is imperative that rigorous 

feasibility studies, with robust sample sizes, are completed prior to the use of tags in the 

field. 
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Chapter 3: Using Data Storage Tags to Study the Effects of Hydrostatic Pressure on 

the Heart Rate of Lumpfish (Cyclopterus lumpus) 

 

Abstract 

 Data on the effects of hydrostatic pressure on fish physiology are limited to a 

narrow range of species, and rarely consider the impact of this parameter on the effects of 

other environmental variables. In this study, lumpfish (Cyclopterus lumpus, 200 to 400 g), 

which can exhibit vertical migrations over 100 m daily and be found at depths up to 500 

m, were recovered for 6 days after surgically implanting them with Star-Oddi micro-HRT 

tags. Then, their heart rate (fH) response was measured in an IPOCAMP pressure chamber 

when exposed to: 1) increasing pressure (up to 80 bar; 800 m in depth) alone at 10°C; or 

2) increasing temperature (12 to 20°C), decreasing temperature (12 to 4°C) or decreasing 

oxygen levels (to 50% air saturation at 12°C) in the absence and presence of 80 bar of 

pressure. In addition, I investigated the effect of prior exposure to 80 bar of pressure on 

post-chase fH and determined the lumpfish’s fH response to increasing temperature up to 

their critical thermal maximum (CTMAX, 22°C) at atmospheric pressure. Hydrostatic 

pressure increased fH from 48 to 61 bpm, and increased the magnitude of the rise in fH 

with temperature (i.e., fH increased in control fish by ~ 30 bpm between 5 and 20°C vs. 45 

bpm when under pressure). However, it did not increase the Q10 value or the slope of the 

relationship between temperature and fH. In contrast, hydrostatic pressure eliminated the 5 

bpm increase in fH when control fish were exposed to hypoxia. Further, increasing 

temperature to CTMAX or exhaustive exercise resulted in a maximum fH of 81 and 77 bpm, 

respectively. My research suggests that pressure influences the fH response to 
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environmental challenges, and provides the first evidence that lumpfish have a limited 

capacity to increase fH. 

 

Introduction 

During vertical migrations to deeper waters, animals experience large changes in 

environmental conditions such as increases in hydrostatic pressure, and reductions in 

temperature, oxygen and light (Gross and Jaenicke 1994; Andrzejaczek et al. 2019). Data 

storage tags (DSTs) and other time-depth recording devices are improving our 

understanding of the vertical range of fishes (e.g., see De Pontual et al. 2012; Boje et al. 

2014; Thorrold et al. 2014; Einarsson et al. 2018). However, due to the difficulty and high 

costs of gaining biological information while animals are under pressure (Guerrero et al. 

2000; Shillito et al. 2014), there is still very little known about the physiological 

responses of fish to changing environmental conditions at depth (Andrzejaczek et al. 

2019). 

Early research on the effects of hydrostatic pressure focused on the pressure 

tolerance and behavioural response of a narrow range of fish species to acute increases in 

pressure (Brauer et al. 1974; Macdonald et al. 1987). Since then, the field has focused on 

the effects of acute and chronic pressure increases on the metabolic response of various 

fish species (e.g., see Sébert and Barthélémy 1985a,b; Simon et al. 1989; Sébert and 

Macdonald 1993; Sébert 2002; Speers-Roesch et al. 2004; and Vettier et al. 2005, 2006). 

However, to my knowledge, no studies have measured the physiological response of fish 

to hypoxia in combination with pressure, and very few studies have examined the 
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combined effects of temperature and pressure (Sébert et al. 1995a,b; Scaion et al. 

2008a,b). 

Further, even less is known about its effects on the cardiovascular system, and the 

published information is quite variable. For example, while compression to ~ 101 bar (≈ 

1000 m) caused bradycardia in European eels (Anguilla anguilla) when water 

temperatures were greater than 24.5°C, it resulted in tachycardia at temperatures < 24.5°C 

(Belaud et al. 1976; Sébert and Barthélémy 1985b). Sudden compression to 50 bar (≈ 500 

m) caused tachycardia, whereas acute exposure to pressures equal to 200 bar (≈ 2000 m) 

caused bradycardia in this species (reviewed in Sébert 2002). Finally, eels acutely 

exposed to 100 bar (≈ 1000 m) of pressure experienced hypotension in the dorsal aorta 

and hypertension in the mesenteric vein (reviewed in Sébert 2002), whereas ventral aortic 

relaxation was reduced in eels acclimated to this pressure for 21 days (Guerrero et al. 

2000). Heart rate (fH) and cardiac output are factors that limit the depth range of 

ecologically and economically important species such as tuna and billfishes (Brill et al. 

1998), and the physiological capacity of the cardiovascular system to respond to changes 

in pressure, temperature and oxygen could have implications for future shifts in the 

bathymetric distribution of fish faced with global ocean warming and oxygen minimum 

zone expansion (Morris et al. 2015a,b; Andrzejaczek et al. 2019). Thus, it is critical that 

we learn more about the effects of these interacting abiotic variables on fish 

cardiovascular function. 

 The common lumpfish (Cyclopterus lumpus) is an ecologically important marine 

species that it is widely distributed on both sides of the Atlantic Ocean; e.g., it is found 

around Portugal, Greenland and Iceland, and in the Barents, Baltic and North Seas in the 
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eastern Atlantic, as well as around Hudson Bay and Baffin Island, and in Newfoundland 

and Labrador, New Brunswick, Nova Scotia, the Gulf of St. Lawrence and Maine, and on 

Georges Bank in the western Atlantic (Blacker 1983; Davenport 1985; Simpson et al. 

2016; Powell et al. 2017). Further, it is a commercially important species due to its wide 

geographical range (Powell et al. 2017), the demand for their roe as a substitute for 

sturgeon caviar, and their use as a ‘cleaner fish’ in the Atlantic salmon (Salmo salar) 

aquaculture industry (Imsland et al. 2014; Powell et al. 2018). However, due to 

overfishing / harvesting, lumpfish are also considered to be ‘Near Threatened’ on the 

IUCN Red List (Lorance et al. 2015) and, more recently, were designated as Threatened 

by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC 2017). 

Clearly, information on the physiological limits of the species will be important for its 

future conservation and proper management in the roe fishery and in the aquaculture 

industry. However, there is a limited understanding of the basic physiology of lumpfish 

and its tolerance to different environmental conditions (Ern et al. 2016; Jørgensen et al. 

2017; Hvas et al. 2018). 

As solitary (mature) adults, lumpfish migrate into shallow, coastal, waters in the 

spring and summer to reproduce (Davenport 1985). However, once the young become 

juveniles (> 1 year of age), they migrate out to the open ocean (Davenport 1985). Most 

pelagic trawl records and video images suggest that lumpfish reside in the upper 60 m of 

the ocean, but that they can also frequently be found at deeper depths (Blacker 1983; 

Rosen and Holst 2013; Rosen et al. 2013). In order to better characterize their vertical 

distribution, researchers recently tagged Icelandic lumpfish with data storage tags (DSTs) 

which record depth and temperature (Kennedy et al. 2016). Their maximum recorded 
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depth and maximum extrapolated depth (from temperature data) were 309 and 498 m, 

respectively, and this species regularly engaged in daily vertical migrations greater than 

100 m (Kennedy et al. 2016). This led the authors to suggest that lumpfish should be 

considered a semi-pelagic / semi-demersal fish species (Kennedy et al. 2016).  

 Given that lumpfish can be found at a variety of depths, and the need to better 

understand how depth (hydrostatic pressure) affects the response of the fish’s 

cardiovascular system to other abiotic factors, I used two unique pieces of equipment 

(Star-Oddi micro-HRT DSTs, and the IPOCAMP pressure chamber; formally named 

“Incubateur Pressurisé pour l’Observation et la Culture d’Animaux Marins Profonds”) to 

examine: 1) the fH response of lumpfish to increasing hydrostatic pressure up to 80 bar 

(800 m in depth); 2) the effect of prior exposure to 80 bar of pressure on the post-chase fH 

of lumpfish; and 3) the fH response to increasing temperature (12 to 20°C), decreasing 

temperature (12 to 4°C) or decreasing oxygen levels (to 50% air saturation at 12°C) in the 

absence and presence of 80 bar of pressure. In addition, I measured the lumpfish’s fH 

response during an acute temperature increase (2 °C h-1) up to their critical thermal 

maximum (CTMAX) at atmospheric pressure. This latter experiment was performed to 

determine if the limited maximum fH observed for this species in the IPOCAMP was 

similar to that measured by a more standard protocol (the CTMAX test). 

 

Methods 

Animal Husbandry 

All experimental work described was approved by the Institutional Animal Care 

Committee of Memorial University (Protocol #17-95-KG), and followed the standards 
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and guidelines outlined by the Canadian Council on Animal Care. The lumpfish used in 

these studies were originally held in the Dr. Joe Brown Aquatic Research Building 

(JBARB) at the Ocean Science Centre (OSC) in 3 m3 tanks supplied with seawater at 6°C 

and 100-120% of air saturation and a 12h light:12h dark photoperiod, and fed at a ration 

of 1.0% body mass per day with 2.00 mm marine pellets (Skretting, Canada). The 

lumpfish were transferred to a 0.5 m3 tank in the Laboratory for Atlantic Salmon and 

Climate Change Research (LASCCR) on April 23rd, 2018 (n = 56), July 23rd, 2018 (n = 

22), and January 16th, 2019 (n = 20) that was supplied with seawater at ~ 7.5°C and 100-

120% of air saturation with a 14h light:10h dark photoperiod (Figure 3.1 A). The 

temperature in these tanks was raised to 10 or 12°C at a rate of 0.5°C per day. These 

lumpfish were then held in the LASCCR for a minimum of 14 days before use in 

experiments, and fed a ration of 0.75% body mass per day of 3.00 mm marine pellets. 

 

Data Storage Tag Implantation 

The following experiments used the Star-Oddi micro-HRT tag (25.4 mm in 

length, 8.3 mm in diameter, and 3.3 g in air) which records fH, electrocardiograms (ECGs) 

and temperature. In all experiments, the tags did not exceed 2% of the fish’s body mass. 

DSTs were inserted into the tag-computer interface (COM-BOX) provided by Star-Oddi 

prior to implantation, and the start time, start date and sampling intervals were set using 

their Mercury software. 

To prepare the tags, one piece of black, braided, non-absorbable and non-sterile 3-

O silk suture was cut to a length of 30 cm, then tied around the DST (Figure 3.2). All tags 

and surgical equipment were clean and sterilized in 70% ethanol between uses. The  
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Figure 3.1. A) A 0.5 m3 tank in the Laboratory for Atlantic Salmon and Climate Change 

Research (LASCCR) at the OSC, Logy Bay, Newfoundland. B) After being implanted 

with micro-HRT tags and recovering in their tank for 48 hours, two tagged lumpfish were 

moved to fasting ‘baskets’ for 66 hours before being moved to the IPOCAMP pressure 

chamber.  



65 
 

                

 

Figure 3.2. The Star-Oddi micro-HRT tag was prepared for implantation by tying one 

piece of black, braided, non-absorbable and non-sterile, 3-0 silk suture around the tag, 

and it was implanted into the lumpfish in a “sensors up” orientation. 
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lumpfish were anaesthetized in seawater containing 0.15 g L-1 tricaine methanesulfonate 

(MS-222), a suitable surgical dose given recent data (Skar et al. 2017). After losing 

equilibrium, the fish were moved to a wetted surgical sponge where their gills were 

irrigated with flowing and aerated ~ 10°C seawater containing 0.075 g L-1 MS-222. A 1.5 

to 2.0 cm mid-ventral incision was made in the fish’s body wall beginning immediately 

posterior to the sucker. The tag was then inserted (blunt end first) in a posterior direction 

and pulled anteriorly to within 0.5 cm of the pericardium using the attached suture. A 

cutting-edge needle was used to pass the suture threads through the skin to secure the tag 

to the body wall and begin closing the incision. Finally, the incision was closed with 

continuous stitches. One or two suture knots were attached to the dorsal muscle to allow 

for the identification of the fish once it was recovered and returned to its holding tank. 

Following all experiments, the fish were euthanized in 0.6 g L-1 MS-222 in order 

to perform post-mortem dissections and recover the data. Post-mortem dissections were 

conducted to record the distance from the front of the tag to the pericardium, the tag’s 

final position, to look for any signs of inflammation or infection, and to determine sex 

based on the absence (i.e., immature fish) or presence of eggs or testes. Data were 

retrieved using the COM-BOX and Star-Oddi’s Mercury software. 

 

IPOCAMP Set-Up 

Experiments #1 and 2 used the IPOCAMP chamber (Autoclave, France; 19 L 

vessel, 60 cm high by 20 cm in diameter) in the Cold-Ocean and Deep-Sea Research 

Facility (CDRF) at the OSC (Figure 3.3 A). The temperature in the chamber of the 

IPOCAMP was controlled by a heater / chiller that regulates the temperature of both the   
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Figure 3.3. A) The IPOCAMP pressure chamber (19 L vessel, 60 cm high by 20 cm in 

diameter) in the Cold-Ocean and Deep-Sea Research Facility at the OSC. B) Lumpfish 

tagged with micro-HRT tags were placed, two at a time, onto platforms before being 

lowered into the IPOCAMP. The fish were acclimated to the chamber overnight at 10ºC 

and at 0 bar of pressure (i.e., equivalent to atmospheric pressure at the sea level).  
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in-flowing water and the glycol jacket surrounding the chamber. The water flowing into 

the IPOCAMP came from a 50 L reservoir in which the oxygen level was controlled by a 

fibre-optic oxygen probe connected to a Witrox 1 oxygen system equipped with 

WitroxCTRL software (Loligo Systems, Denmark). This system regulated the reservoir’s 

water oxygen content within relatively narrow limits (± 2% air saturation) by bubbling air 

or nitrogen into the reservoir when water oxygen levels reached lower and upper set 

points, respectively. These set points were determined by monitoring the oxygen content 

in the water leaving the chamber, as recorded by a Fibox 3 LCD oxygen meter (PreSens, 

Germany). A pipe inspection camera was inserted into one of the viewports in the lid of 

the IPOCAMP to record the behaviour of the fish during all experiments, and red filters 

and adjustable lighting were inserted into the other two viewpoints in order to provide 

adequate light and to maintain photoperiod. 

 

Experiment #1: Heart Rate Response to Hydrostatic Pressure and the Fish’s 

Maximum Post-Exercise Heart Rate 

After implantation of the micro-HRT tag, lumpfish (n = 14, 237.8 ± 5.3 g, 18.1 ± 

0.3 cm) were returned to their tank in the LASCCR to recover. At approximately 48 hours 

post-surgery, two tagged fish were transferred to a ‘basket’ (38.7 cm in length x 24.8 cm 

in width x 29.2 cm in height) placed in the tank to be fasted for ~ 66 hours before being 

transferred to the IPOCAMP (Figure 3.1 B). This was necessary as water supplying the 

IPOCAMP passed through a fine filter that was easily clogged by fecal matter. Fish, two 

at a time, were placed on platforms of an insert that was lowered into the IPOCAMP 

(Figure 3.3 B) and acclimated to the chamber overnight at 10ºC and at 0 bar of pressure  
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(i.e., equivalent to atmospheric pressure at sea level).  

Immediately following surgery, the pre-programmed micro-HRT tags saved 

ECGS and recorded fH (100 Hz for 6 seconds) and temperature at a sampling frequency of 

4 hours during the recovery period. However, the morning following acclimation to the 

IPOCAMP, the tags began to save ECGs and record fH (100 Hz for 6 seconds) and 

temperature at a frequency of 2 minutes. After acclimation overnight, some lumpfish (n = 

8) were exposed to increasing levels of hydrostatic pressure. Hydrostatic pressure was 

initially increased to 20 bar over 2 minutes, then held at this pressure for 8 minutes. 

Thereafter, pressure was increased to 35, 50, 65 and finally 80 bar using the same 

protocol. This series of pressure changes equivalent to a fish descending from the ocean’s 

surface to 800 meters in 50 minutes. The lumpfish were then decompressed in the 

opposite sequence. Six lumpfish were held at 0 bar over the same timeframe to serve as 

time-matched controls. 

The lumpfish were allowed to recover for one hour after exposure to changes in 

pressure before being removed from the IPOCAMP. Some of these fish were immediately 

euthanized. However, a subset of the fish (4 from each treatment) were placed into a 

large, aerated bucket with 30 L of 10°C seawater for 30 minutes. These lumpfish were 

subsequently chased with a net for 1.5 minutes. This allowed for an estimation of the 

fish’s maximum fH in response to exercise at 10°C. After 30 minutes of recovery from 

being chased, these lumpfish were also euthanized, and data was retrieved using the 

COM-BOX and Mercury software. 
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Experiment #2: Influence of Hydrostatic Pressure on Heart Rate and Its Response to 

Changes in Temperature and Hypoxia 

 Lumpfish were recovered from surgery, fasted and transferred to the IPOCAMP 

chamber as described in Experiment #1. The micro-HRT tags were set to save ECGs and 

record fH (100 Hz for 6 seconds) and temperature at a sampling frequency of 4 hours on 

the day of being transferred to the IPOCAMP, every 2 minutes during the increase in 

hydrostatic pressure and when initially held at 80 bar (i.e. between 8:00 and 10:20 AM), 

and every 5 minutes for the rest of the duration of the experiment to save tag memory and 

battery. 

On the morning following acclimation to the IPOCAMP, lumpfish were exposed 

to increasing hydrostatic pressure to 80 bar (see protocol in Experiment #1) or maintained 

at atmospheric pressure (0 bar, control fish) for 1 hour. Upon acclimation to 80 bar for 1 

hour, the lumpfish were exposed to one of the following treatments. In the first trials, 

lumpfish were exposed to decreasing temperature from 12 to 4°C (n = 14, 350.1 ± 12.4 g, 

21.1 ± 0.2 cm). In the second set of trials, lumpfish (n = 15, 404.9 ± 14.1 g, 21.2 ± 0.3 

cm) were exposed to increasing temperature from 12 to 20°C (~ 2°C lower than the 

previously calculated CTMAX for lumpfish; Ern et al. 2016). The rate of temperature 

change in both trials was ~ 2°C h-1. Lastly, lumpfish (n = 16, 435.8 ± 23.9 g, 21.9 ± 0.4 

cm) were exposed to decreasing oxygen from 100% to 50% air saturation (~ 15% air 

saturation above their Pcrit calculated at 10°C; Ern et al. 2016). Temperature and oxygen 

were not brought close to the CTMAX or Pcrit of the lumpfish because they can attach to the 

platforms with their suckers even when unconscious, making loss of equilibrium difficult 

to determine (Ern et al. 2016). In addition, decompression and removal of fish from the 
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pressure chamber takes a considerable amount of time which posed ethical concerns for 

the welfare of the fish. A time-matched control (i.e., fish without exposure to pressure or 

changes in environmental parameters) was not included in these experiments as fH did not 

significantly change in lumpfish held at 0 bar for the duration of Experiment #1. 

Following the experiments, the fish were removed from the IPOCAMP and euthanized. 

 

Experiment #3: The Normobaric Heart Rate Response to Increased Temperature 

Lumpfish (n = 12, 544.5 ± 19.1 g, 23.7 ± 0.4 cm) were tagged, four at a time, then 

returned to their holding tank in the LASCCR to recover for 72 hours. After recovery, the 

fish were transferred into individual buckets (26.5 cm in diameter x 23.5 cm in height, 8 

L) in a water bath with flowing seawater and sufficient aeration to maintain water oxygen 

levels near 100% saturation. Seawater was supplied to the water bath from a temperature-

controlled aerated 80L reservoir. Lumpfish were given 24 hours at 12°C to acclimate to 

the buckets. Photoperiod was maintained at 14h light: 10h dark during this period. 

On the morning following acclimation, the pre-programmed micro-HRT tags 

began saving ECGs and recording fH (100 Hz for 6 seconds) and temperature at a 

sampling frequency of 5 minutes at 8:00 AM. At 9:00 AM, water temperature was 

increased by 2°C h-1 to a maximum of 22°C (n = 8). Some lumpfish were held at 12°C to 

serve as a time-matched controls (n = 4). Following the experiments, the lumpfish were 

euthanized. 
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Calculation of Heart Rate Parameters 

All reported measurements of fH were calculated manually using the method 

described for Atlantic salmon. Briefly, the average time between R wave peaks was 

measured (in sec), and then 60 was divided by this number to obtain the fish’s fH in beats 

per minute (bpm). Quality index (QI) measurements were provided by the Mercury 

software (0 means great quality, 1 and 2 have decreasing quality and 3 means there is no 

R-R interval). When ECG artefacts made the QRS complex unidentifiable, manual 

calculation was not possible, and the data were not included. Percentage change in fH was 

calculated for each fish based on initial fH values in each experiment (e.g., as a percentage 

of 0 bar values during exposure to hydrostatic pressure). Heart rate variability (HRV) was 

calculated as the standard deviation of time between each R wave peak (in ms). 

 

Lumpfish Activity 

Video was recorded during all experiments by connecting the pipe inspection 

camera in the viewports in the lid of the IPOCAMP to a laptop running VideoVelocity 

(CandyLabs, Vancouver, Canada). From these videos, the activity of all individuals was 

scored by assigning fish with a rank for each 10 minute period during exposure to 

pressure: 0 represented fish that were completely inactive; 1 represented fish that were 

mostly inactive but had some spontaneous activity; 2 represented fish that were mostly 

active, but had some periods of rest; and 3 represented fish that were active for the entire 

10 minute period. Activity in Experiment #1 was ranked for all steps of compression and 

decompression, while activity in Experiment #2 was only ranked at 0 bar, when pressure 

first reached 80 bar, and at 30 and 50 minutes after pressure reached 80 bar. 
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Statistics 

 To assess the effects of surgical recovery on fH, linear mixed-effects (LME) 

models were used with photoperiod (day-time between 6:00 AM – 7:59 PM; night-time 

between 8:00 PM – 5:59 AM) and photoperiod order (daily values during each 

photoperiod, where N1 was the first night following surgery and D1-D5 represent the 

subsequent days) as the fixed-effects, an interaction term for the two parameters, and fish 

as a random factor. 

The effects of hydrostatic pressure on fH, the percentage change in fH, HRV and 

the percentage of ‘good’ quality index ECGs (QI = 0) were assessed using LME models 

with pressure step (0, 20, 35, 50, 65 and 80 bar, and either the reverse during 

decompression or 10 minute increments when pressure was held at 80 bar) and treatment 

(control fish at 0 bar or pressure-exposed fish) as the fixed-effects, an interaction term for 

the two parameters, and fish as a random factor. The effect of sex (immature, female, 

male) and temperature (10 or 12°C) on resting fH, and the increase in fH or the percentage 

increase in fH at 0 vs. 80 bar in all pressure-exposed fish of all experiments, was 

determined using one-way ANOVAs and unpaired t-tests, while the relationship between 

weight / length was assessed using a linear regression. 

Linear regression analysis was also used to examine the relationships between fH 

and the percentage change in fH for each environmental parameter (decreased 

temperature, increased temperature, and decreased oxygen) for each treatment group; 

including determining whether the slopes and intercepts were different between treatment 

groups. Note: Prism would only compare intercepts when slopes were not significantly 

different. An LME model with temperature / oxygen and treatment as fixed-effects, an 
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interaction term for the two, and fish as a random factor was used to assess changes in the 

percentage of ‘good’ quality ECGs (QI = 0). Linear regression analysis (applied on the 

data up to 20.8°C) and an LME model were used to assess the same parameters for the 

CTMAX experiment, where the control group was held at 12ºC and the CTMAX group 

represented fish exposed to increasing temperatures up to 22°C. 

The LME models were performed using RStudio (v. 1.2.1335, RStudio Inc., 

Boston, MA; http://www.rstudio.com), while the one-way ANOVAs, t-tests and the linear 

regression analyses were performed using Prism 7 (GraphPad Software, Inc., San Diego, 

CA, USA). Assumptions of normality, homogeneity and independence were analyzed by 

visual inspection of Q-Q plots and histograms of the residuals, residual-fit plots and 

residual lag plots, respectively, for data analyzed in RStudio. The estimated marginal 

means, or emmeans, package (Singman et al. 2019) was used to perform Bonferroni’s 

post-hoc tests on all LME models and Tukey’s multiple comparison tests were performed 

on one-way ANOVAs in Prism. The level of statistical significance was P < 0.05. All 

values presented in the text are means ± standard errors of the mean (S.E.M). 

 

Results 

Heart Rate Recovery and Diel Patterns Post-Surgery 

 Following surgical implantation of the micro-HRT tags, the fH of lumpfish 

recovering in a holding tank at 10ºC was recorded for five days (Figure 3.4). Average 

daily fH decreased significantly during the recovery period (P < 0.0001; Figure 3.5; Table 

3.1), from 61.8 ± 0.9 and 59.1 ± 1.1 bpm (day-time and night-time values) on the first day 

to 54.4 ± 0.9 and 51.9 ± 1.0 bpm by the final day of recovery. There was also a significant  

http://www.rstudio.com/
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Figure 3.4. Average heart rate (fH, bpm) values in free-swimming lumpfish (n = 14) 

recorded every 4 hours for 5 days post-surgery. Lumpfish were recovered in a tank in the 

Laboratory for Atlantic Salmon and Climate Change Research (LASCCR) following 

surgical implantation of the Star-Oddi micro-HRT tag. After 48 hours (dotted line), two 

lumpfish were transferred to ‘baskets’ inside the tank to be fasted for an additional ~ 66 

hours. Fish were on a 14-hour light: 10-hour dark photoperiod (grey bars represent 

periods of darkness / night-time). 
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Figure 3.5. Average day-time and night-time heart rate (fH, bpm) values in free-

swimming lumpfish (n = 14) for 5 days after being implanted with Star-Oddi micro-HRT 

tags. Open symbols represent day-time, while dark symbols represent night-time. 

Dissimilar lower-case letters indicate a significant difference within a photoperiod group 

(for night-time values the letters are bolded), while an asterisk (*) represents a 

significance difference between day-time and night-time values at each measurement 

point. The data were recorded every 4 hours and the symbols represent means ± S.E.M 

(with each value representing the average of n = 3 data points per fish). Linear mixed-

effects models, followed by Bonferroni’s post-hoc tests performed using emmeans, were 

used to identify significant differences (P < 0.05) in fH during surgical recovery. Note: N1 

was not included in the analysis.     
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Table 3.1. Summary of the statistical outputs from the LME models which examined the 

effects of photoperiod (day-time / night-time), photoperiod order (days post-

implantation), and their interaction on the fH of lumpfish over 5 days of post-surgical 

recovery. 

 

Independent Factor Dependent Factor 

Num

DF 

Den

DF 

F-value P 

Heart Rate (Intercept) 1 285 2851.6346 <0.0001 

 Photoperiod Order 3 285 24.5178 <0.0001 

 Photoperiod 1 285 10.2754 0.0015 

 Interaction 3 285 0.5724 0.6336 

NumDF and DenDF are the degrees of freedom of the numerator and denominator of 

the F distribution ratio. 
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effect of photoperiod (P = 0.0015; Table 3.1). However, there was only a significant 

difference between day and night-time values on the first day following surgery and diel 

variation was relatively small (~ 2 - 4 bpm; Figure 3.5). 

 

The Heart Rate Response to Hydrostatic Pressure and the Fish’s Maximum Post-

Exercise Heart Rate 

 Heart rate, the percentage change in fH, HRV and percentage of ‘good’ quality 

ECGs remained constant in the control fish (Figure 3.6). At 10ºC, hydrostatic pressure 

had a significant effect on the fH and percentage change in fH of the lumpfish (P = 0.0025; 

P = 0.0012; Table 3.2). Heart rate began to increase between 35 and 50 bar, and while 

further increases were limited, fH reached 61.5 ± 1.7 bpm (129.1 ± 3.8 % of initial values) 

by 80 bar as compared to 48.1 ± 1.4 bpm in the control fish at that time point (Figure 3.6). 

The fH and percentage change in fH remained elevated in lumpfish during decompression. 

Following removal from the IPOCAMP, maximum post-exercise fH was 73.2 ± 1.4 and 

76.8 ± 1.2 bpm (in control and pressure-exposed fish, respectively), suggesting that the 

pressure-induced increase in fH was only ~ 47% of the fish’s scope for increases in fH 

(Figure 3.6). Statistical analysis was not performed due to the low sample sizes (n = 4), 

but the pressure-exposed group only had a ~ 3 bpm higher post-exercise fH. 

Overall, treatment did not significantly affect HRV or the quality of ECGs (P = 

0.2932 and P = 0.0519, respectively; Table 3.2). However, there was a significant 

interaction between treatment and ‘pressure step’ for HRV. Post-hoc testing revealed that 

HRV in the pressure-exposed group decreased throughout the experiment from 100.9 ± 

14.5 ms at the beginning to 71.4 ± 13.5 ms at 80 bar, and to 57.6 ± 8.5 ms after  
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Figure 3.6. A) Heart rate (fH, in bpm) in lumpfish held in the IPOCAMP at atmospheric 

pressure (0 bar; grey symbols; n = 6) or exposed to hydrostatic pressure in a step-wise 

protocol (black symbols; n = 8). Pressure was initially increased to 20 bar over 2 minutes, 

then held for 8 minutes. Pressure was then increased in a similar manner to 35, 50, 65 and 

80 bar, followed by decompression in the opposite sequence. B) The percentage change 

in fH (as a % of initial values at 0 bar) and C) heart rate variability (HRV in ms) were 

manually calculated from the electrocardiograms. D) the percentage of ‘good’ quality 

index ECGs (QI = 0) provided by the Star-Oddi Mercury software. Dissimilar lower-case 

letters indicate a significant difference within the pressure-exposed group (no differences 

existed in the control group), while an asterisk (*) indicates a significance difference (P < 

0.05) between the pressure-exposed and control groups at a particular pressure step. Data 

were recorded every 2 minutes, and the symbols represent means ± S.E.M (n = 5 per 

fish). 
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Table 3.2. Summary of the statistical outputs from the LME models which examined the 

effects of treatment (control vs. pressure-exposed), pressure (0, 20, 35, 50, 65, 80 bar and 

decompression in the opposite sequence) and their interaction, on fH, the percentage 

change in fH (% of initial 0 bar values), heart rate variability (HRV) and the percentage of 

fH values that were of ‘good’ quality (i.e., QI = 0). 

 

Independent Factor Dependent Factor 

Num

DF 

Den

DF 

F P 

Heart Rate (Intercept) 1 683 2007.1524 <0.0001 

 Treatment 1 12 14.4433 0.0025 

 Pressure Step 10 683 23.9438 <0.0001 

 Interaction 10 683 19.0484 <0.0001 

Percentage Change in 

Heart Rate 

(Intercept) 1 617 2209.5170 <0.0001 

 Treatment 1 12 17.8351 0.0012 

 Pressure Step 9 617 15.6858 <0.0001 

 Interaction 9 617 14.4017 <0.0001 

Heart Rate Variability (Intercept) 1 679 291.05371 <0.0001 

 Treatment 1 12 1.20865 0.2932 

 Pressure Step 10 679 5.09640 <0.0001 

 Interaction 10 679 3.71900 <0.0001 

Percentage of Quality 

Index Values = 0 

(Intercept) 1 119 409.5971 <0.0001 

 Treatment 1 12 4.6563 0.0519 
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 Pressure Step 10 119 2.4598 0.0104 

 Interaction 10 119 1.2864 0.2458 

NumDF and DenDF are the degrees of freedom of the numerator and denominator of 

the F distribution ratio. 
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decompression. Interestingly, HRV spiked to 172.5 ± 33.4 ms at 35 bar in this group, 

this value significantly higher than measured in the control group at the same point. The 

percentage of ‘good’ quality ECGs fell from 0 – 50 bar, and gradually returned to initial 

values (i.e., at ambient pressure) as pressure was increased to 80 bar and then the steps in 

pressure were reversed; the quality significantly different from initial values at 35 and 50 

bar, and from that of the control group at 50 bar (Figure 3.6. D). Interestingly, 35-50 bar 

of pressure corresponded with the beginning of fH increases, and the relationship between 

QI and pressure was a mirror image of that for activity (Figure 3.7. A). 

 

Influence of Hydrostatic Pressure on Heart Rate and Its Response to Changes in 

Temperature and Hypoxia 

 At 12ºC, the effects of hydrostatic pressure were similar to those at 10ºC. 

However, fH began to increase at 35 bar instead of 50 bar (Figure 3.8). Heart rate was 

significantly elevated by hydrostatic pressure (P = 0.0053) throughout the period of 

exposure, and this was also reflected in values of fH when expressed as a percentage of 

initial (i.e. 0 bar) values (P < 0.0001 for both parameters; Table 3.3). The fH, and the 

percentage change in fH, did not change over the experiment in control fish. When 

pressure reached 80 bar, fH was 67.7 ± 1.6 bpm compared to 57.7 ± 1.7 bpm in control 

fish at the same sampling point (i.e., 121.1 ± 4.1 % of initial values), and fH remained 

elevated above control values after the 1 hour of acclimation to 80 bar of pressure. 

Activity was also stable during exposure to 80 bar of pressure, with the average value for 

pressure-exposed lumpfish approx. 2-fold higher than that of control fish (Figure 3.7. B). 
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Figure 3.7. The average activity rank of lumpfish held in the IPOCAMP at atmospheric 

pressure (0 bar, grey symbols) or exposed to hydrostatic pressure in a step-wise protocol 

(black symbols). Pressure was initially increased to 20 bar over 2 minutes, then held for 8 

minutes. Pressure was then increased in a similar manner to 35, 50, 65 and 80 bar, 

followed by decompression in the opposite sequence (A; n = 6 control and n = 8 pressure-

exposed fish) or holding at 80 bar for 1 hour (B; n = 19 control and n = 23 pressure-

exposed fish). The activity rank for each fish was determined from video recordings, 

where: 0 represents fish that were completely inactive; 1 represents fish that were mostly 

inactive but has some spontaneous activity; 2 represents fish that were mostly active but 

had some periods of inactivity; and 3 represents fish that were active for the entire 10 

minute period. The symbols represent means ± S.E.M. 
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Figure 3.8. A) Heart rate (fH in bpm) data recorded every 2 minutes in lumpfish held in 

the IPOCAMP at atmospheric pressure (0 bar; grey symbols; n = 22) or exposed to 

hydrostatic pressure in a step-wise protocol (black symbols; n = 23) in Experiment #2. 

Pressure was initially increased to 20 bar over 2 minutes, then held for 8 minutes. 

Pressure was then increased in a similar manner to 35, 50, 65 and 80 bar, followed by 

exposure to 80 bar of pressure for 1 hour. B) The percentage change in fH (as a % of 

initial values at 0 bar) was manually calculated from the electrocardiograms. Dissimilar 

lower-case letters indicate a significant difference (P < 0.05) within the pressure-exposed 

group (no difference existed in the control group), while an asterisk (*) represents a 

significance difference between the pressure-exposed and control values within a pressure 

step. Data were recorded every 2 minutes, and the symbols represent means ± S.E.M (n = 

5 per fish). 
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Table 3.3. Summary of the statistical outputs from the LME models which examined the 

effects of treatment (control vs. pressure-exposed), pressure (20, 35, 50, 65, 80 bar and 

time at 80 bar), and their interaction, on fH and the percentage change in fH [i.e., % of 

initial (0 bar) values]. 

 

Independent Factor Dependent Factor 

Num

DF 

Den

DF 

F P 

Heart Rate (Intercept) 1 1923 3900.899 <0.0001 

 Treatment 1 43 8.539 0.0055 

 Pressure Step 10 1923 10.124 <0.0001 

 Interaction 10 1923 8.904 <0.0001 

Heart Rate 

(Percentage of Initial) 

(Intercept) 1 1719 2956.4579 <0.0001 

 Treatment 1 43 8.6105 0.0053 

 Pressure Step 9 1719 4.4402 <0.0001 

 Interaction 9 1719 6.8357 <0.0001 

NumDF and DenDF are the degrees of freedom of the numerator and denominator of 

the F distribution ratio. 
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Temperature significantly influenced resting fH, and at 0 bar the fH of the fish in 

these experiments was ~ 9 bpm higher than that measured in fish held at 10°C (P = 0.018; 

Table 3.4). Weight and length had no effect on resting fH (i.e., values at 0 bar), but sex 

significantly affected resting (initial) fH (P = 0.015), with females having a 14.6 and 14.1 

bpm higher fH than immature or male fish, respectively (P = 0.014 and P = 0.092; Table 

3.4). Neither sex, temperature, weight or length significantly affected the increase in fH or 

the percentage increase in fH at 80 bar (P > 0.05; Table 3.4). Further, it is unlikely sex 

impacted the overall results of the experiments. There was an equal distribution of known 

sexes between control and pressure-exposed groups (5 and 3 males, 5 and 5 females, 

respectively).  

In control and pressure-exposed fish, fH fell with decreasing temperature (Y = 

3.49x + 16.15, R2 = 0.92, P < 0.0001 and Y = 4.08x + 16.04, R2 = 0.94, P < 0.0001, 

respectively; Table 3.5; Figure 3.9. A, C, E). The fH of pressure-exposed fish was 7.0 bpm 

higher than that of control fish before the temperature began to decrease (i.e., at 80 bar), 

and the slopes of the relationship between fH and temperature were significantly different 

between the two groups (P = 0.007; Table 3.5) as fH reached a minimum of ~ 38 and 39 

bpm (Q10 = 2.10 and 2.07; in control and pressure-exposed fish, respectively) at ~ 5.7°C. 

In contrast, the slopes of the relationships between fH (as a percentage of the initial value) 

and temperature were not significantly different between the control and pressure-

exposed groups (P = 0.846). 

Heart rate was 16.0 bpm higher in the pressure-exposed group before temperature 

was increased, and increased in both control and pressure-exposed fish with rising 

temperature (Y = 1.53x + 33.17, R2 = 0.54, P < 0.0001 and Y = 2.81x + 28.07, R2 = 0.49,  
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Table 3.4. Summary of the statistical outputs from the ANOVA and Tukey’s post-hoc 

tests, unpaired t-tests and linear regressions performed in Prism 7. These tests examined 

the effect of sex (I = immature, F = female, M = male), acclimation temperature (10 or 

12°C), weight (g) and length (cm) on the initial fH and change in fH / percentage change in 

fH at 0 vs. 80 bar in pressure-exposed lumpfish from the experiments conducted in the 

IPOCAMP. Significant differences are indicated in bold type. 

 

  F R2 P N1 N2 

ANOVA and Tukey’s Post Hoc Summary      

Sex vs. Initial fH ANOVA 5.38 0.39 0.015   

 I vs. F   0.014 12 5 

 I vs. M   0.994 12 3 

 F vs. M   0.092 5 3 

Sex vs. Change in fH ANOVA 1.81 0.19 0.198   

 I vs. F   0.181 10 5 

 I vs. M   0.979 10 3 

 F vs. M   0.456 5 3 

Sex vs. % Change in fH ANOVA 2.19 0.23 0.147   

 I vs. F   0.128 10 5 

 I vs. M   0.935 10 3 

 F vs. M   0.448 5 3 

       

Unpaired T-Test       

Temperature vs. Initial fH 10 vs. 12 2.16 0.18 0.018 22 8 

Temperature vs. Change in fH 10 vs. 12 2.13 0.03 0.421 20 8 
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Temperature vs. % Change in fH 10 vs. 12 1.43 0.04 0.292 20 8 

       

Linear Regression       

Weight vs. Initial fH  1.45 0.05 0.239 27  

Weight vs. Change in fH  0.003 0.0001 0.956 27  

Weight vs. % Change in fH  0.05 0.002 0.826 27  

Length vs. Initial fH  0.84 0.03 0.367 30  

Length vs. Change in fH  0.15 0.006 0.702 30  

Length vs. % Change in fH  0.18 0.007 0.678 30  
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Table 3.5. Relationships between fH and percentage change in fH, and changes in 

environmental variables (decreased temperature, increased temperature, decreased 

oxygen, or increased temperature up to 20.8°C in a CTMAX experiment), for control and 

pressure-exposed / CTMAX groups. Significant relationships, and significant differences in 

slopes or intercepts, are indicated in bold type. 

 

Relationship Treatment Equation R2 P 

Decreased Temperature  

Heart  Rate x 

Temperature 

Control Y = 3.49x + 16.15 0.92 <0.0001 

 Pressure-Exposed Y = 4.08x + 16.04 0.94 <0.0001 

 Are the slopes equal?   0.007 

 

Are the intercepts 

equal? 

  NA 

Percentage Change 

in Heart Rate x 

Temperature 

Control Y = 5.93x + 27.14 0.90 <0.0001 

 Pressure-Exposed Y = 6.01x + 25.32 0.93 <0.0001 

 Are the slopes equal?   0.846 

 

Are the intercepts 

equal? 

  0.1319 

Increased Temperature  

Heart Rate x 

Temperature 

Control Y = 1.53x + 33.17 0.54 <0.0001 
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 Pressure-Exposed Y = 2.81x + 29.07 0.49 <0.0001 

 Are the slopes equal?   0.0078 

 

Are the intercepts 

equal? 

  NA 

Percentage Change 

in Heart Rate x 

Temperature 

Control Y = 3.34x + 58.73 0.53 <0.0001 

 Pressure-Exposed Y = 5.02x + 36.52 0.42 <0.0001 

 Are the slopes equal?   0.1069 

 

Are the intercepts 

equal? 

  0.0324 

Decreased Oxygen 

Heart Rate x 

Temperature 

Control 

Y = -1.31x + 

71.31 

0.39 <0.0001 

 Pressure-Exposed Y = 0.01x + 63.37 0.002 0.7859 

 Are the slopes equal?   0.0002 

 

Are the intercepts 

equal? 

  NA 

Percentage Change 

in Heart Rate x 

Temperature 

Control 

Y = -0.30x + 

132.4 

0.48 <0.0001 

 Pressure-Exposed Y = 0.01x + 100.6 0.002 0.7603 
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 Are the slopes equal?   <0.0001 

 

Are the intercepts 

equal? 

  NA 

CTMAX 

Heart Rate x 

Temperature 

Control Y = 0.29x + 52.83 0.02 0.0496 

 CTMAX Y = 3.41x + 11.16 0.50 <0.0001 

 Are the slopes equal?   <0.0001 

 

Are the intercepts 

equal? 

  NA 

Percentage Change 

in Heart Rate x 

Temperature 

Control Y = 0.56x + 88.85 0.02 0.037 

 CTMAX Y = 6.96x + 16.34 0.42 <0.0001 

 Are the slopes equal?   <0.0001 

 

Are the intercepts 

equal? 

  NA 
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Figure 3.9. A) Heart rate (fH, bpm) in lumpfish exposed to decreasing (at 2ºC h-1; A, C, 

E) or increasing (at 2ºC h-1; B, D, F) temperature in the IPOCAMP chamber. Prior to the 

decrease in temperature, lumpfish were held at atmospheric pressure (black symbols; n = 

7) or exposed to 80 bar of pressure (grey symbols; n = 7). C, D) The percentage change in 

fH (as a % of initial values at 0 or 80 bar) was manually calculated from the 

electrocardiograms. Relationships between fH and the percentage change in fH with 

temperature were determined by linear regression analysis, and an asterisk (*) indicates a 

significant difference between the slopes for relationships between control and pressure-

exposed groups. E, F) The percentage of ‘good’ quality ECGs (i.e., with a QI = 0) were 

provided by the Star-Oddi Mercury software, and significant differences within the 

control (regular letters) or pressure-exposed groups (bold letters) are represented by 

dissimilar lower-case letters. No differences existed in the percentage of ‘good’ quality 

ECGs between pressure-exposed and control fish at any of the temperature steps. Data 

were recorded every 5 minutes, and the symbols represent means ± S.E.M (n = 6 values 

per fish). 
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P < 0.0001, respectively; Table 3.5; Figure 3.9. B, D, F); the slopes of this relationship 

significantly greater in the pressure-exposed group (P = 0.0078; Table 3.5). Maximum fH 

was ~ 64 and 83 bpm (Q10 = 1.37 and 1.39; in the control and pressure-exposed groups, 

respectively) at ~ 19.6°C; the latter is a higher maximum fH than was reached when 

lumpfish were exposed to exercise (73-76 bpm) after removal from the IPOCAMP. 

Although fH (as a percentage of initial values) also increased with temperature (see Table 

3.5), the relationships for the two treatments did not have significantly different slopes (P 

= 0.1069). When the two temperatures challenges are considered together, the fH of 

control and pressure-exposed lumpfish increased from 38 to 64 bpm and 39 to 83 bpm 

over from ~ 5 to 20°C in the control and pressure-exposed fish, respectively.   

When held at atmospheric pressure in the IPOCAMP, the fH of lumpfish increased 

with decreasing oxygen levels (Y = -1.31x + 71.31, R2 = 0.39, P < 0.0001; Table 3.5; 

Figure 3.10); i.e., from 58.7 ± 3.2 bpm at 106 % air sat. to 62.3 ± 2.9 bpm at 57 % air sat. 

However, exposure to 80 bar of hydrostatic pressure eliminated the effect of decreasing 

oxygen levels as fH remained unchanged from 103 to 52 % air sat. (Y = 0.01x + 63.37; R2 

= 0.002, P = 0.7859; Table 3.5; Figure 3.10). The same relationships were evident when 

fH data was calculated as a percentage of initial values (see Table 3.5). 

Hydrostatic pressure did not have a significant effect on the percentage of ‘good’ 

quality ECGs in the decreasing or increasing temperature experiments (P = 0.9784 and P 

= 0.1939, respectively), but did significantly affect the quality of ECGs during the 

decreased oxygen experiments (P = 0.0292; Table 3.6; Figures 3.9 and 3.10). On average, 

ECGs with a QI = 0 were ~ 25% fewer in pressure-exposed fish compared to control fish 

in this experiment (48.4 vs. 23.6 %). Conversely, decreasing or increasing temperature,  



94 
 

                           

0

20

40

60

80

100

H
ea

rt
 R

at
e

(b
p
m

)

Pressure-Exposed

Control

0

50

100

150

200

H
ea

rt
 R

at
e

(%
 o

f 
1
0
4
%

 A
ir

 S
at

u
ra

ti
o
n
)

5060708090100110

0

20

40

60

80

100

Air Saturation (%)

P
er

ce
n
t 

o
f 

E
C

G
s 

w
it

h
 a

Q
u
al

it
y
 I

n
d
ex

 =
 0

*

*

A

B

C

Y = -1.31x + 71.31, P-value < 0.0001
Y = 0.01x + 63.37, P-value = 0.7859*

Y = -0.30x + 132.40, P-value < 0.0001
Y = 0.01x + 100.60, P-value = 0.7603*

 

 

Figure 3.10. A) Heart rate (fH, bpm) in lumpfish exposed to decreasing oxygen levels (air 

saturation; %) in the IPOCAMP chamber over 3 to 4 hours. Prior to the decrease in 

oxygen levels, lumpfish were held at atmospheric pressure (black circles; n = 8) or 

exposed to 80 bar of pressure (grey circles; n = 8). B) The percentage change in fH (as a % 

of initial values at 0 or 80 bar) was manually calculated from the electrocardiograms. 

Relationships between fH and percentage fH with oxygen level were determined by linear 

regression analysis, and an asterisks represents a significant difference in the slopes of the 

relationships between control and pressure-exposed lumpfish. C) The percentage of 

‘good’ quality index ECGs (QI = 0) were provided by the Star-Oddi Mercury software, 

and in this panel, an asterisks represents a significant difference between pressure-

exposed and control groups at a particular oxygen level. Within each treatment group, 

there were no differences in percentage of ‘good’ quality index values. Data were 

recorded every 5 minutes, and the symbols represent means ± S.E.M (n = 6 values per 

fish). 
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Table 3.6. Summary of the statistical outputs from the LME models which examined the 

effects of treatment (control vs. pressure-exposed), changes in environmental variables 

(decreased temperature, increased temperature, decreased oxygen or increased 

temperature in a CTMAX experiment), and their interaction, on the percentage of ECGs 

that were that of ‘good’ quality (QI = 0). 

 

Independent Factor Dependent Factor 

Num

DF 

Den

DF 

F-value P 

Decreased Temperature 

Percentage of 

Quality Index 

Values Equal  to 

Zero 

(Intercept) 1 83 253.00233 <0.0001 

 Temperature Step 7 83 4.62633 0.0002 

 Treatment 1 12 0.00076 0.9784 

 Interaction 7 83 0.99657 0.4397 

Increased Temperature 

Percentage of 

Quality Index 

Values Equal  to 

Zero 

(Intercept) 1 90 38.74583 <0.0001 

 Temperature Step 7 90 5.54831 <0.0001 

 Treatment 1 13 1.87718 0.1939 

 Interaction 7 90 1.13536 0.3483 
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Decreased Oxygen 

Percentage of 

Quality Index 

Values Equal  to 

Zero 

(Intercept) 1 111 46.92705 <0.0001 

 Oxygen Step 8 111 1.26361 0.2698 

 Treatment 1 14 5.90138 0.0292 

 Interaction 8 111 1.93140 0.0621 

CTMAX Experiment 

Percentage of 

Quality Index 

Values Equal  to 

Zero 

(Intercept) 1 89 42.41553 <0.0001 

 Treatment 1 10 13.74208 0.0041 

 Temperature Step 9 89 1.99405 0.0491 

 Interaction 9 89 3.33289 0.0015 

NumDF and DenDF are the degrees of freedom of the numerator and denominator of 

the F distribution ratio. 
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but not decreasing oxygen (P < 0.0001, P < 0.0001 and P = 0.2698, respectively; Table 

3.6; Figures 3.9 and 3.10) strongly effected the quality of the ECGs. Overall, the 

percentage of ‘good’ quality ECGs (i.e., with QI = 0) fell from 72.6% at 6.0°C to 12.3% 

at 19.4°C. In general, the R wave of lumpfish has a small average voltage amplitude (avg. 

~ 171 mV, range 430 to 600 mV; Figure 3.11), and this may have contributed to the 

decrease in the quality of ECGs that was observed. 

 

The Normobaric Heart Rate Response to Increased Temperature 

 When lumpfish underwent a CTMAX experiment (increasing temperature at 2°C h-1 

up to 22°C) under normobaric conditions (atmospheric pressure in a water table), fH was 

52.4 ± 2.5 bpm at 12.3°C, peaked at 81.0 ± 3.6 bpm at 20.8°C (the fH – temperature 

relationship between 12.3 and 20.8°C  Y = 3.41x + 11.16, R2 = 0.50, P < 0.0001), and 

then declined to 71.7 ± 3.6 bpm by 22.1°C (a scope of ~ 29 bpm between 12.3 and 

20.8°C; Q10 = 1.67) (Table 3.5; Figure 3.12). This value for maximum fH was ~ 17 bpm 

higher than the corresponding value reached in fish held at atmospheric pressure in the 

IPOCAMP (~ 64 bpm at 19.6°C), but comparable to the maximum fH recorded for 

lumpfish at 80 bar (~ 83 bpm at 19.6°C). The fH of the time-matched control fish (held at 

12°C) also increased significantly, but only by ~ 2 bpm (see Table 3.5 and Figure 3.12). 

Increasing temperature resulted in a significant decrease in the percentage of ‘good’ 

quality ECGs, and values were significantly lower than the time-matched control group at 

temperatures > 15°C (P = 0.0492 and P = 0.0041; Table 3.6; Figure 3.12). Similar to the 

IPOCAMP experiment, the quality of the recorded ECGs decreased from 45.8 % at 

12.3°C to 1.8 % at 21.6°C (compared to 41.7 and 67.9 % in the time-matched controls).                             
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Figure 3.11. Electrocardiograms recorded in a lumpfish exposed to decreasing (at 2°C h-

1; left panel) or increasing (at 2°C h-1; right panel) temperature in the IPOCAMP chamber 

at atmospheric pressure (0 bar). This fish was chosen as its ECG recordings, and their 

response to temperature, were typical of what was observed for this species. Bin ECG 

represents the amplitude of the QRS waveform and ranges from 0 to 1000 mV, but only 

the range from 350 to 650 mV is presented. The quality index (QI) was assigned to ECG 

recordings (where 0 means great quality, 1 and 2 have decreasing quality and 3 means 

there is no R-R interval) by the Star-Oddi Mercury software.  
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Figure 3.12. A) Heart rate (fH, bpm) in lumpfish during a CTMAX experiment (black 

symbols; n = 12) in a water table, where temperature was increased at 2 °C h-1 vs. when 

fish were held at a constant temperature of 12ºC (grey symbols; n = 4). B) The percentage 

change in fH (as a % of initial values at 12.2°C) was manually calculated from the 

electrocardiograms. Relationships between fH and the percentage change in fH with 

temperature were determined by linear regression analysis for data up to 20.8°C, and an 

asterisk (*) indicates a significant difference (P < 0.05) in the slopes between control fish 

and those exposed to increasing temperature. C) The percentage of ‘good’ quality ECGs 

(i.e., with a QI = 0) were provided by the Star-Oddi Mercury software. Significant 

differences within the CTMAX group (there were no differences in the control group) are 

represented by dissimilar lower-case letters, and an asterisk represents a difference 

between the CTMAX and control group at a particular temperature. Data were recorded 

every 5 minutes, and the symbols represent means ± S.E.M (n = 6 per fish). The dotted 

line indicates the temperature of 20.8°C. Beyond this temperature the fH of the lumpfish 

began to decrease, and thus these data was not included in the linear regression.  
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Discussion 

Post-Surgical Recovery and Diel Patterns in Heart Rate  

The methods used to surgically implant DSTs induce a physiological stress 

response in fish leading to increased fH (Altimiras and Larsen 2000; Hill and Forster 

2004; Rothwell et al. 2005; Grӓns et al. 2014; Raby et al. 2015). While not a primary goal 

of this research, the fH of lumpfish was recorded following the implantation of micro-

HRT tags to monitor recovery. Initially, the day-time fH of lumpfish was 62 bpm, but their 

fH declined in the days following surgery indicating recovery / partial recovery from this 

stressor (Figures 3.4 and 3.5; Table 3.1). After 48 hours of recovery, fH was 

approximately 60 bpm, and by 5 days post-surgery it was 54 bpm (at 10°C; Figure 3.5). 

While, to my knowledge, no other published values for resting fH in lumpfish exist, these 

data can be compared with that measured for the salmon in Chapter 2 that underwent 

similar procedures. The day-time fH of the salmon at 11°C was slightly lower post-surgery 

(~ 59 bpm), and decreased to about 45 bpm by day 5 (Figure 2.10). The higher fH (and 

smaller decrease post-surgery) in lumpfish may reflect an intrinsically higher fH in this 

species as compared to salmon, and is somewhat surprising given this species limited 

activity and that the fish were fasted for more than 2 days at the end of the recovery 

period. Digestion and other physiological processes associated with feeding increase the 

ṀO2 and fH of fish (McCue 2006; Eliason et al. 2008), and thus, fasting would have been 

expected to decrease fH. Further, given the limited maximum fH in this species (~ 80 bpm, 

see below), it might be expected that they would have a low resting fH so that they would 

have a scope for fH comparable to other teleost species (1.8 to 2.6-fold increase in fH 

during CTMAX tests; Gollock et al. 2006; Clark et al. 2008; Vornanen et al. 2014; Penney 
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et al. 2014; Motyka et al.2017). Thus, these data may indicate that the lumpfish had not 

fully recovered from surgery, and that this explains their high resting fH. 

Overall, there was a significant effect of photoperiod on the fH of lumpfish during 

the recovery period (Figures 3.4 and 3.5; Table 3.1). However, the day-time values were 

only significantly different than the night-time values on the first day post-surgery, and 

diel variations in fH were relatively small (2 to 4 bpm). In this study, a lower sampling 

frequency was chosen (every 4 hours post-surgery) and less data were collected in order 

to save battery life and memory for the pressure experiments. This may have affected the 

magnitude of the diel variation recorded in fH. Lumpfish are also not very active 

swimmers, and they were held in a relatively small tank (and baskets during fasting), and 

this may have limited activity-dependent changes in fH. The salmon in Chapter 2 were 

held in much larger tanks and swimming activity (as measured by EA; Figure 2.10; Table 

2.5) had a similar diel pattern as fH. Thus, the larger diel variation in salmon was likely, at 

least partially, related to changes in activity over the day.  

 

Heart Rate Response to Hydrostatic Pressure 

 The initial goal of this research was to investigate the effect of hydrostatic 

pressure on the fH of lumpfish. In response to an acute exposure to 80 bar of pressure, the 

fH of 10°C-acclimated lumpfish increased by ~ 14 bpm (20-30%) above resting values 

(Figure 3.6; Table 3.2). Further, this tachycardia was sustained during the 1 hour of 

pressure exposure at 80 bar (Figure 3.8; Table 3.3) and only diminished slightly during 

decompression (Figure 3.6). Previous research on this topic is extremely limited, possibly 

due to technical limitations (Guerrero et al. 2000). However, our results are generally 
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consistent with other studies that have measured the effect of hydrostatic pressure on fH in 

fishes at temperatures within the middle of a species’ thermal range. For example, Sébert 

and Barthélémy (1985b) reported that: 1) exposure to ~ 101 bar of pressure increased the 

fH of freshwater eels acclimated to 15-20°C by ~ 30-80% and that this tachycardia was 

sustained during the 1 hour of pressure exposure; and 2) while fH did fall to some degree 

during decompression, it was still not back to pre-exposure levels by 1 hour. Also, 

Naroska (1968) showed that abrupt compression to ~ 50 bar produced a transient 

tachycardia in 5°C eel pout (Zoarces viviparous), and Belaud et al. (1976) found that 

pressure induced a tachycardia below the temperature of 24.5°C in eels (c.f. Sébert and 

Macdonald 1993). 

In addition, our results are in agreement with studies on the effects of pressure on 

fH in other aquatic taxa, and the effects of pressure on oxygen consumption (ṀO2) in 

fishes; the latter data highly relevant as changes in fH often reflect those in ṀO2 

(Armstrong 1986; Lucas 1994). Heart rate increased by ~ 65% in the shallow-water 

spider crab (Maja brachydactyla) when hydrostatic pressure was raised from atmospheric 

pressure to ~ 100 and 150 bar at 20°C (Thatje and Robinson 2011). Similar to the change 

in the fH of lumpfish, ṀO2 has been shown to increase in response to acute pressure 

exposure in European plaice (Pleuronectes platessa), great sand eel (Hyperoplus 

lanceolatus), sand goby (Pomatoschistus minutus), Kessler’s sculpin (Cottus kessleri), 

European flounder (Platichthys flesus), rainbow trout (Oncorhynchus mykiss), goldfish 

(Carassius auratus) (reviewed in Sébert and Macdonald 1993), bloater (Coregonus hoyi; 

Speers-Roesch et al. 2004) and European eel (Sébert and Barthélémy 1985a; Simon et al. 

1989; Sébert et al. 1995a,b; Vettier et al. 2003, 2005, 2006; Scaion et al. 2008a).  
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With regards to the pressure at which increases in fH begin in fishes, the data are 

difficult to compare as the maximum hydrostatic pressure the fish is exposed, the rate of 

compression, and temperature, all influence the fH response to increased pressure (Sébert 

and Macdonald 1993). In this study, fH began to increase between 30 and 50 bar and this 

is consistent with Sébert and Barthélémy (1985b) where, after no change or a brief 

bradycardia in some eels, fH began to increase at 40 to 50 bar. In contrast, the pressure at 

which the ṀO2 of male and female eels began to increase was between 50 and 80 bar 

(depending on pressure; Scaion et al. 2008a), and Speers-Roesch et al. (2004) 

demonstrated that pressures as low as 3 bar increased ṀO2 in the bloater. The latter data 

suggest that the life history of a given species (i.e., its’ normal depth range) likely has a 

significant effect on the sensitivity of their responses to increasing pressure. In this study, 

the maximum pressure-induced fH in lumpfish was ~ 62 bpm at 10°C, whereas the fish’s 

maximum fH at this temperature (as determined by chasing and increased temperature; 

Figures 3.6 and 3.12) was ~ 73 - 83 bpm. These data suggests that the increase in fH 

induced by hydrostatic pressure was only ~ 47% of the available scope for fH. Again, this 

is consistent with Sébert and Barthélémy (1985b) who reported that while the maximum 

temperature-induced fH in eels is ~ 120 bpm, fH when exposed to ~ 101 bar did not exceed 

60 bpm. These data indicate that fish at high pressure (at least those whose life history 

includes excursions to the applied pressures) still have a considerable scope available for 

increases in fH. 

Many authors attribute the reported increases in ṀO2 to a simultaneous increase in 

motor activity during compression (Sébert and Barthélémy 1985a; Simon et al. 1989; 

Sébert et al. 1997; Vettier et al. 2003; Speers-Roesch et al. 2004), which Speers-Roesch et 
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al. (2004) suggested was partially related to compression of the swim bladder in bloater, 

and thus, a loss of buoyancy. Lumpfish do not possess a swim bladder (Powell et al. 

2017) and were supported by platform in the IPOCAMP chamber. Nonetheless, they 

became agitated and more active during compression and this hyperactivity was 

maintained for the hour of compression at 80 bar (see Figure 3.7), and Sébert and 

Barthélémy (1985b) found that increases in motor activity during compression in eels 

were associated with tachycardia. These data strongly suggest that increased activity was 

largely responsible for the increase in fH with pressure exposure. However, while activity 

decreased during decompression and was back to control levels by 35 bar (Figure 3.7), fH 

remained elevated. It is possible that the tachycardia associated with increases in 

hydrostatic pressure was also related to alterations in the neurohormonal control of fH. 

This conclusion is based on three lines of evidence. First, exposure of isolated eel hearts 

to increased pressure results in a pronounced bradycardia, not tachycardia (Pennec et al. 

1988). Second, Belaud et al. (1976) and Sébert and Barthélémy (1985b) show that 

atropine, and adrenergic agonists and antagonists, markedly alter the magnitude of the 

tachycardic response when eels are exposed to increased hydrostatic pressure. Third, 

HRV was considerably lower in the pressure-exposed group near the end of the 

compression period at 80 bar and remained lower during decompression (Figure 3.6. C). 

The mechanisms involved have not been elucidated but could be related to alterations in 

cholinergic or adrenergic tone, or receptor function / affinity associated with changes in 

pacemaker cell membrane fluidity (Sébert and Barthélémy 1985b).  

Several studies have also provided evidence that a pressure-induced decrease in 

membrane fluidity, or “rigidification”, results in “compression-induced histotoxic 
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hypoxia” in fish (Sébert and Barthélémy 1985a; Sébert et al. 1987; Sébert et al. 1993). 

However, most studies that have examined the acute effects of pressure on fish ṀO2 

report an increase (not a decrease) in ṀO2 (see references above), and Scaion et al. 

(2008b) showed that the ṀO2 of permeabilized red muscle fibers increases or does not 

change with acute pressure exposure (depending on test temperature and pressure). 

Further, the hypothesized decrease in tissue oxygen consumption (extraction) would be 

predicted to increase venous PO2 and oxygen content, and arterial PO2 and content do not 

change in trout when exposed to ~ 101 bar of pressure (Sébert at al. 1997), and thus, there 

would be no chemoreceptor-mediated drive for increased fH. These data call into question 

whether ‘compression-induced histotoxic hypoxia’ is a real phenomenon, versus related 

to changes in fish activity over time or the particular methods used in those experiments. 

Interestingly, there is evidence that the duration of exposure also impacts the 

physiological response of fishes to hydrostatic pressure. It is known that ṀO2 increases 

above resting levels with acute pressure exposure, but when pressure is maintained and 

fish are allowed to acclimate, ṀO2 falls back to resting levels (Simon et al. 1989; Sébert 

and Macdonald 1993; Sébert et al. 1995a; Vettier et al. 2003). For example, Simon et al. 

(1989) reported that the ṀO2 of eels reached resting levels by 6 to 7 days at sustained 

pressure. Sébert et al. (1995a) showed that the ṀO2 of eels exposed to ~ 101 bar returned 

to resting values within 3 hours at pressure and decreased below control values by 4 days 

of acclimation. Finally, Sébert and Barthélémy (unpublished; c.f. Sébert and Macdonald 

1993) indicated that the fH of European eels returned to resting values within 3 days at ~ 

100 bar. In this study, lumpfish were either acutely exposed to pressure or sustained at 

pressure for only one hour prior to environmental challenges. Therefore, based on the 
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available data, I hypothesize that the fH of lumpfish would eventually fall to resting values 

with acclimation to increased hydrostatic pressure. 

 The increase in lumpfish fH at 80 bar was quite variable (from -9 to 24 bpm) 

suggesting that other variables may have influenced the effect of pressure on fH. 

Individual difference in activity were likely a primary influence on the variability of the 

fH response to hydrostatic pressure (see above). However, by combining the data from all 

of the experiments in the IPOCAMP, it was possible to also investigate the influence of 

acclimation temperature, sex, and fish mass / length on the response of fH to compression 

(Table 3.4). The resting fH of females in the IPOCAMP (68 bpm, n = 5) was higher than 

immature lumpfish (53 bpm, n = 12), but not significantly higher than males despite a 

difference of 14 bpm (54 bpm; n = 3). Additionally, lumpfish acclimated to 12°C had a 

higher resting fH (58 bpm) than those acclimated to 10°C (48 bpm). Despite this, it was 

found that temperature, sex, weight and length did not affect the change in fH or the 

percentage change in fH when lumpfish were compressed to 80 bar of pressure. However, 

there was an unequal distribution of immature fish in the experiments, and the sex of 22 

fish were not assessed following the experiments. The lack of an effect of sex on pressure 

induced physiology in lumpfish at 10-12°C is consistent with the ṀO2 data that Scaion et 

al. (2008a) report for eels at temperatures below 15°C. However, these authors also report 

that the ṀO2 of female eels was much more sensitive at 22°C as compared to males, and 

thus, the effects of sex on hydrostatic pressure-related changes in the fH of fishes cannot 

be excluded.  
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Influence of Hydrostatic Pressure on Heart Rate and Its Response to Changes in 

Temperature and Hypoxia 

 In my experiments, I exposed lumpfish to 80 bar of pressure for one hour and then 

raised / or lowered the temperature from 12°C at 2°C h-1. This research showed that 

temperature resulted in a linear change in fH until the experiments were stopped at ~ 6 and 

20°C, and that while the relationship was steeper for absolute fH in fish exposed to 

hydrostatic pressure, the relationship was similar to control fish (i.e., exposed to 0 bar) 

when the elevated fH in pressure exposed fish at 12°C was taken into account (i.e., when 

the change in fH was expressed as a % of initial values; Figure 3.9). These results suggest 

that while hydrostatic pressure does have an effect on resting (baseline) fH, it does not 

influence the sensitivity of fH to changes in temperature. This finding was quite surprising 

as Scaion et al. (2008a) showed that temperature had a significant effect on the sensitivity 

of ṀO2 to increases in hydrostatic pressure, and Sébert et al. (1995b) reported that 

exposing eels to a 5°C temperature increase (from 15 to 20°C) concomitantly with an 

increase in pressure to ~ 101 bar reduced the acute increase in ṀO2 by approx. 50%. 

Finally, while tachycardia is seen in pressure exposed eels at lower temperatures, this 

response changes to a bradycardia at temperatures near this species’ CTMAX (~ 31°C) 

(Belaud et al. 1976; Claësson et al. 2016). The difference in response to temperature 

between our study and these studies may be related to the species used (eels vs. 

lumpfish). However, it is also probable that differences in experimental methodologies 

contributed to the reported differences. Most importantly, I exposed the lumpfish to 

elevated pressure (80 bar) for 1 hour prior to any changes in temperature, whereas the eels 
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were exposed to changes in temperature either before, or in concert with, changes in 

hydrostatic pressure. 

In this study, the Q10 for fH with increasing temperature (from 12 to  ~ 20°C) in 

fish held in the IPOCAMP was only ~ 1.38 (for both pressure-exposed and control fish), 

whereas it was 1.67 when fish were given a CTMAX test in shallow containers in a water 

table (i.e., compare the fH data in Figures 3.9 vs. 3.12). The reason for this is unknown as 

resting fH was only slightly higher in control fish in the IPOCAMP as compared to those 

used in the CTMAX experiment (i.e., 54.7 vs. 50.4 bpm), and oxygen levels were 

maintained close to air saturation in both experimental set-ups. However, it is possible / 

probable that this diminished temperature sensitivity of fish in the IPOCAMP influenced 

the effect of increased temperature on fH. For example, if Q10 had been 1.67 in the 

IPOCAMP experiment, maximum fH in pressure-exposed fish would have been reached at 

approx. ~ 17-18°C. Clearly, more research needs to be performed to understand how 

these two important parameters interact with respect to fH in fishes, and future 

experiments investigating the physiological responses of fish to pressure should consider 

providing longer acclimation periods to the pressure (IPOCAMP) chamber. 

In the lumpfish, decreasing water PO2 at atmospheric pressure from ~ 100% 

saturation to ~ 55% saturation resulted in a slight increase in fH (by ~ 5 bpm). This minor 

increase in fH was somewhat surprising as fH generally does not change as water PO2 is 

lowered to the point of bradycardia. However, such a response has been seen in several 

other fish species including the Atlantic cod (Gadus morhua) (Gamperl and Driedzic 

2009; Petersen and Gamperl 2011). Exposure to 80 bar of pressure eliminated the small 

increase in fH that was observed in the control fish (Figure 3.10). This is an interesting 
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observation, and while the mechanism(s) mediating this difference are unknown, these 

data suggest that fish experiencing increased hydrostatic pressure and moderate hypoxia 

may have a very limited scope for increases in fH. Bradycardia is typically recorded at 

oxygen levels similar or slightly higher than a species’ critical oxygen tension, Pcrit  (e.g. 

see Marvin and Heath 1968; Gehrke et al. 1988; Speers-Roesch et al. 2010). Therefore, it 

is very likely that bradycardia was not recorded in this study because the lumpfish did not 

reach their Pcrit (~ 40% air saturation at 12°C; Ern et al. 2016) due to ethical concerns 

when using the IPOCAMP during these initial experiments. First, it is difficult to 

determine loss of equilibrium in lumpfish because of their ability to attach to surfaces 

with their sucker, and it was not known whether pressure acclimation would increase the 

Pcrit of lumpfish. In addition, fish cannot be removed from the chamber quickly because 

the vessel must be decompressed before opening. Future experiments are being planned 

to examine if hydrostatic pressure affects the oxygen level at which bradycardia is 

initiated and the magnitude of the decrease in fH. Ultimately, the most relevant 

experimental scenario would be one which accurately reflects the environmental and 

behavioural challenges of a vertical migration: i.e., simultaneous increases in pressure, 

and decreases in temperature and water oxygen levels while the fish is actively 

swimming. 

 

Maximum Exercised and Temperature-Induced Heart Rate of Lumpfish 

 Given the low maximum fH recorded in the IPOCAMP at 20°C (63 bpm) and 

following exercise at 10°C (72 - 77 bpm), a CTMAX experiment was performed under 

more typical experimental conditions in a water table. During the CTMAX experiment, the 
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fH of lumpfish increased up to approx. 20°C (Q10 = 1.67) and began falling as 

temperatures approached the lumpfish’s CTMAX of 22°C (Figure 3.12; Table 3.5; Ern et 

al. 2016). This response is typical of that seen in other fish species, where fH increases (at 

Q10 values ranging from 1.5 to 2.5) up until approx. 2°C before the fish’s CTMAX, and the 

decrease in fH is thought to be associated with a loss of ventricular excitability due to an 

imbalance in trans-sarcolemmal sodium and potassium currents (Gollock et al. 2006, 

Steinhausen et al. 2008; Clark et al. 2008, Vornanen et al. 2014; Motyka et al. 2017; 

Gilbert et al. 2019). The highest individual fH recorded in lumpfish was 95 bpm while the 

highest average fH at 20°C was 81 bpm. Thus, it appears that lumpfish have low 

maximum fH relative to fish species such as the channel catfish Ictalurus punctatus (150 

bpm; Burleson and Silva 2011) and salmonids which have a maximum fH between 105 

and 132 bpm (Clark et al. 2008; Steinhausen et al. 2008; Ekstrӧm et al. 2014; Vornanen et 

al. 2014; Motyka et al. 2017), and more typical of those recorded in species such as the 

Atlantic cod (72 bpm; Gollock et al. 2006), winter flounder, Pseudopleuronectes 

americanus (73 bpm; Mendonça and Gamperl 2010) and European perch, Perca 

fluviatilis (83 bpm; Jensen et al. 2017).  

These results, combined with previous data, suggest that lumpfish are well-

adapted to a passive, yet still pelagic, lifestyle. Hvas et al. (2018) reported that lumpfish 

have a low critical swimming speed and aerobic scope due to a limited maximum ṀO2. 

The results of this study agree with the findings of Hvas et al. (2018), as lumpfish were 

found to have a low scope for fH and a low maximum fH. Additionally, research shows 

that lumpfish have relatively low values of exercise-induced cortisol, glucose and lactate, 

which indicates that lumpfish have a limited capacity to perform exhaustive exercise 
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(Clow et al. 2017; Jørgensen et al. 2017; Hvas et al. 2018). These physiological features 

are in contrast to most pelagic fish which are built for strong swimming and aerobic 

performance, however, not surprising given the lumpfish’s globiform shape, weak tail 

musculature and uniquely docile nature (Hvas et al. 2018). 

 

Considerations When Using Data Loggers 

 Temperature had a strong effect on the quality of ECGs recorded by the micro-

HRT tag, with the percentage of good quality (QI = 0) ECGs as low as 12% at 19.4°C 

inside the IPOCAMP (Figure 3.9; Table 3.6) and 2% at 22°C outside the IPOCAMP 

(Figure 3.12; Table 3.6). While most fH values could still be calculated by manually 

examining the ECG recordings, this is a concern for research being conducted at high 

temperatures or close to the CTMAX of the species being studied. It has been suggested 

that low quality ECGs are related to increased activity at higher temperatures because the 

potentials from aerobic muscles overlap with the ECG (Altimiras and Larsen 2000). 

Interestingly, the percentage quality of ECGs also transiently decreased during 

compression, which was also associated with an increase in activity (Figures 3.6 and 3.7; 

Table 3.2). However, I do not believe that this was the main factor impacting the ‘quality’ 

of the ECGs recorded in lumpfish using Star-Oddi data loggers. For example, the 

percentage of QI = 0 recordings in Atlantic salmon during the Ucrit protocol never fell 

below 50%. Instead, I believe that it was the low amplitude of the signal received by the 

HRT-tag that was the primary issue. In the salmon, the QRS (R wave) amplitude was 

approx. 510 mV, but only approx. 170 mV in the lumpfish (see Figures 2.4 vs. 3.11). This 

low signal amplitude was not due to the size of the heart as the relative ventricular mass 
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of lumpfish reared at 9°C is 0.94 (Hvas et al. 2018), and within the range of that reported 

for Atlantic salmon (Deitch et al. 2008; Antilla et al. 2014, 2015). Further, it is not that 

the lumpfish has a particularly large liver (e.g., the hepatosomatic index is only 2.5%; 

Hvas et al. 2018). However, the heart is relatively deep within the body cavity in 

lumpfish, and the liver’s position is such that it lies directly between the location of tag 

implantation and the heart. This may diminish the strength of the signal received by the 

data logger. It is possible that modification may be able to be made to the tag’s design, or 

to the software / algorithms to used calculate fH, to enhance the tag’s usefulness for this 

species. 

 

Conclusions 

The effects of hydrostatic pressure on the cardiovascular system of fish are poorly 

understood, and this is often attributed to the difficulty of obtaining physiological data 

while fish are at pressure (Guerrero et al. 2000; Shillito et al. 2014). With the 

miniaturization and growing popularity of biologgers for use in fish (Ropert-Coudert et 

al. 2012; Wilson et al. 2015) we are learning about the vertical movement patterns of 

marine species, but this also leads to further questions such as: how physiological 

perturbations associated with pressure influence their capacity to deal with other 

environmental challenges; or how simultaneous changes in conditions such as 

temperature and oxygen levels affect the hearts response to pressure. Star-Oddi micro-

HRT tags and the IPOCAMP chamber were successfully utilized in this research to show 

that acute exposure to hydrostatic pressure produced a tachycardia in the lumpfish (fH 

increasing by 29%), but that this had no effect on the slope of the temperature - fH 
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relationship when this pressure-induced increase was taken into account (i.e., by 

expressing the fH data as a percentage of initial values). In contrast, the minor increase in 

the fH of control fish to decreasing water PO2 was eliminated by exposure to hydrostatic 

pressure. Lastly, lumpfish were found to have a low maximum fH in response to 

exhaustive exercise or temperature increase to their CTMAX (77 and 81 bpm, respectively), 

relative to other fish. My research suggests that pressure influences the fH response to 

environmental challenges, and provides the first evidence that lumpfish have a limited 

capacity to increase fH. I hope that the findings of this study, and that biologgers were 

successfully used to address such research questions in my thesis, will inspire a 

resurgence of research into the physiological responses of fish to vertical migrations.  
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Chapter 4: Summary and Perspectives 

 In this thesis, I set out to evaluate the suitability of commercially available data 

storage tags (DSTs) produced by Star-Oddi for studying the physiology of fishes. This 

ultimate goal was addressed in two data chapters, each focusing on a separate fish species 

and using different DST products. First, I investigated the effectiveness of using the 

recently developed centi-HRT ACT tag to record heart rate (fH), electrocardiograms 

(ECGs), tri-axial acceleration and temperature in Atlantic salmon (Salmo salar). 

Secondly, I used micro-HRT tags to study the physiological response of lumpfish 

(Cyclopterus lumpus) to changes in hydrostatic pressure and other abiotic challenges (i.e., 

temperature and hypoxia). Here, I will briefly discuss the findings of each data chapter 

and their overlapping themes, as well as the implications of these results for the field of 

biologging and fish physiology. 

In Chapter 2, I determined that the centi-HRT ACT tags were reliable and 

effective tools for recording fH and activity in salmon. While a few previous studies have 

reported fH measurements recorded by Star-Oddi’s milli-HRT tag (Prystay et al. 2017, 

2019; Ekstrӧm et al. 2018; Brijs et al. 2018, 2019; Wallerius et al. 2019), this was a novel 

objective because no research has been published using, or evaluating, the data recorded 

by the centi-HRT ACT tag in fish. In the first experiment, salmon implanted with these 

tags were swum in a swim tunnel at increasing speeds. The results showed that the 

acceleration parameters calculated by the tag software (EA and VAR) increased with both 

swimming speed and tail beat frequency (Figure 2.5). EA was found to be a reliable 

predictor of swimming speed, while VAR has the potential to provide information about 

the behaviour of free-swimming salmon. In two separate experiments, salmon were 
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surgically implanted with centi-HRT ACT tags and recovered in large tanks (Figure 2.8, 

2.9). The tag reliably recorded diel changes in fH and activity, as well as temperature-

induced changes in fH (Figures 2.10 and 2.11). Surprisingly, while fH stabilized by 4 days 

post-surgery, it continued to decline up to 21 days following implantation, indicating that 

the presence of the tags and / or the effects of the surgery were having longer lasting 

effects than previously believed. Based on the above data, overall, I highly recommend 

that researchers seeking to understand the welfare and conservation of free-living fishes 

take advantage of the capabilities of the centi-HRT ACT tag. 

In Chapter 3, I found that increasing hydrostatic pressure resulted in tachycardia, 

and altered the fH response to decreasing oxygen levels in lumpfish. Research concerning 

the effects of hydrostatic pressure on fish physiology is extremely limited and has focused 

primarily on the European eel (Anguilla anguilla; e.g., Sébert and Barthélémy 1985a; 

Simon et al. 1989; Sébert and Macdonald 1993; Sébert 2002; Vettier et al. 2005, 2006). 

To the best of my knowledge, no previous studies have investigated whether pressure 

alters the fH response to decreasing oxygen levels. In this chapter, I first established that 

the fH of lumpfish increased during a step-wise exposure to 80 bar of pressure (Figure 3.6. 

A, B). In three follow-up experiments, I then found that: fH remained elevated when 

pressure was maintained at 80 bar for one hour and hydrostatic pressure suppressed the 

increase in fH of lumpfish in response to decreasing oxygen levels; but the hydrostatic 

pressure did not effect the sensitivity of the fH response to increasing or decreasing 

temperature (Figures 3.8, 3.9 and 3.10). Further, lumpfish were found to have a relatively 

low maximum fH in response to temperature increases inside the pressure chamber, 

following exhaustive exercise and during a CTMAX test under normobaric conditions 
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(Figures 3.6, 3.9 B and 3.12 A). In summary, the micro-HRT tags were a convenient and 

effective tool which allowed me to study the fH response of lumpfish to hydrostatic 

pressure and other concomitant environmental challenges. 

When considering the findings from each data chapter, I have identified some 

overlapping challenges and insights to consider when using biologgers. First, it is 

important to understand the limitations of Star-Oddi’s fH loggers, including the possibility 

that potentials produced by muscles during increased activity can interfere with ECG 

recordings as first reported by Altimiras and Larsen (2000). In the Ucrit test on tagged 

salmon, the percentage of ‘good’ quality ECGs (i.e., QI = 0) did not change significantly 

with increasing swimming speed (Figure 2.6 C). However, there was a trend for this 

parameter to decrease with swimming speed, and the percentage of QI = 0 values 

recorded in lumpfish decreased by 33% when pressure was increased to 50 bar and this 

was correlated with increased activity of the lumpfish during compression (Figures 3.6 D 

and 3.7). Further, I found that the Mercury software could miscalculate the fH of salmon 

from ECGs recorded with a QI > 0 by up to 39 bpm (Figure 2.7). Based on these studies, 

I recommend that researchers using fH loggers prioritize saving ECGs, and consider 

manually calculating fH from both good and poor quality recordings in order to prevent 

the loss and / or misinterpretation of data. 

It is also worth discussing the clear difference in the quality of ECGs recorded in 

salmon as compared to lumpfish. When the fish were recovering with conspecifics in 

their holdings tanks for one week, the average voltage amplitude of the R peaks and the 

average percentage of ‘good’ quality ECGs were much higher in salmon at 11°C than in 

lumpfish at 10°C (Figures 2.4 and 3.11; ~ 516 vs. ~ 171 mV; 89 vs. 73%, respectively). 



117 
 

The centi-HRT ACT tag (50 m length, 15 mm diam., 19 g in air) was used to record fH in 

salmon, while the micro-HRT tag (25.4 mm length, 8.3 mm diam., 3.3 g in air) was used 

for lumpfish because smaller fish were required for use in the IPOCAMP. It is possible 

that the smaller surface area of the micro-HRT electrodes contributed to the lower voltage 

amplitude recorded, however it is more likely that the differences in amplitude and 

quality were related to the species-specific morphology of lumpfish. I observed in post-

mortem dissections that the liver of the lumpfish prevented the tag from sitting closer to 

the pericardium (heart), which lies deeper within the body cavity of the lumpfish. It is 

very likely that researchers will have to alter their surgical procedures for species with 

anatomy that differs from salmonids, and that modification will be necessary to the tag’s 

sensitivity or algorithms in order to accurately measure / calculate fH. Nonetheless, it is 

highly recommended that species-specific preliminary testing be performed prior to 

experiments which release tagged fish into wild or aquaculture environments (Wilmers et 

al. 2015; Wilson et al. 2015). 

In addition to the potential noise caused by activity, temperature had a very strong 

impact on the quality of ECG recordings. For example, the percentage of ‘good’ quality 

ECGs recorded in lumpfish was as low as 12% at 20°C in the IPOCAMP and 2% at 22°C 

under normobaric conditions in a water table (Figures 3.9 F and 3.12 C). In contrast, data 

recorded in salmon had quality issues when the fish’s fHs were slow (i.e. below 30 bpm). 

For example, 75% of data for one salmon held for 6 weeks of recovery at 8°C was lost 

during their final week of recovery. All of this lost data was designated as QI = 3 by the 

Mercury software, indicating that a full R-R interval could not be recorded. This issue 

was previously mentioned by Brijs et al. (2019), who found that R-R intervals were 
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missed when the milli-HRT tags were set to record fH for 6 seconds in rainbow trout 

(Oncorhynchus mykiss). The issues with recording good quality ECGs during activity or 

at high / low temperatures should be largely alleviated by the recent update to the tag 

settings by Star-Oddi. In the tag programming, there is now a “long ECG” option which 

allows the user to record fH for up to 15 seconds. During short bursts of activity and the 

high fH caused by elevated temperatures, a longer recording time could potentially 

mitigate the amount of data lost by increasing the number of R-R intervals used to 

calculate fH. Similarly, and most notably, the longer ECGs will improve the accuracy of fH 

measurements (compared to a 6 sec. recording period) and allow Star-Oddi users to 

record fH in fish with lower resting fH values, such as during overwintering (low 

temperature) periods and during physiological tests such as critical thermal minimum 

(CTMIN) experiments. 

However, there are still aspects of tag use that need to be addressed / considered. 

First, the accuracy of fH recordings was not actually ‘validated’ in this study. Although 

many researchers have recorded values of fH using Star-Oddi loggers in fish (e.g., Brijs et 

al. 2018, 2019; Wallerius et al. 2019) and other animals (e.g., elephant seals, Mirounga 

leonina; Chaise et al. 2017), it would be valuable to confirm the accuracy of the tags with 

regards to recording time, and thus fH, by simultaneously fitting some fish with Doppler 

or Transonic® flow probes. Additionally, researchers need to be aware of situations where 

fH is not a reliable proxy for ṀO2 / cardiac output (Brijs et al. 2019). The relationship 

between ṀO2 and fH is influenced by physiological (i.e., feeding, stress), behavioural 

(i.e., activity, recovery) and environmental conditions (i.e., hypoxia, temperature) 

(Thorarensen et al. 1996; Cooke et al. 2016; Treberg et al. 2016), and a primary concern 
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is that many fish species can modulate their cardiac output through changes in stroke 

volume alone, or in addition to fH (Cooke et al. 2016). For example, during hypoxia the fH 

of rainbow trout changes without any effect on ṀO2 (Holeton and Randall 1967), and 

both fH and stroke volume increase when fish are exercised / their swimming speed 

increases (Farrell and Smith 2017). Thus, researchers looking to use fH to estimate energy 

use (ṀO2) or cardiac output should be careful when using fH to calculate these parameters 

in situations where stroke volume is also modulated (Thorarensen et al. 1996; Treberg et 

al. 2016). 

Despite the challenges encountered, the Star-Oddi tags have many valuable 

characteristics. For example, in both species I found the tags were easy to use and large 

amounts of data could be obtained (e.g., 962 data points per salmon during a one week 

recovery period). Due to their simplistic use, biologgers will improve our ability to collect 

data which was previously difficult to obtain. For example, there is a lack of data on the 

effects of hydrostatic pressure on the cardiovascular system of fish, which is often 

attributed to the technical difficulty of recording fH at pressure (Guerrero et al. 2000; 

Shillito et al. 2014). By combining fH loggers with the IPOCAMP pressure chamber, I 

was able to investigate many aspects of the fH response during compression over a short 

experimental timeline (i.e., five experiments were completed in ~ 4 months). 

Furthermore, exciting new discoveries were made in both chapters of this thesis. Most 

notably, I found that the fH of salmon continued to decline for 21 days following the 

surgical implantation of the centi-HRT ACT tag (Figure 2.11 A, B). This was a novel 

finding which has large implications for the welfare of fish being used in biologger 

research and the validity of “resting” fH values previously recorded in fish which only 
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received 48 to 72 hours of recovery (e.g., see Steinhausen et al. 2008; Grӓns et al. 2009; 

Ekstrӧm et al. 2016; Prystay et al. 2017; Cheng et al. 2017; Joyce et al. 2018). 

Additionally, I found that lumpfish have a low maximum fH, which was not previously 

known, and which compliments previous research indicating that lumpfish have low 

aerobic capacities despite their semi-pelagic lifestyle (Figures 3.9 B and 3.12 A; Clow et 

al. 2017; Jørgensen et al. 2017; Hvas et al. 2018). 

The reduced cost, miniaturization and growing popularity of biologgers will allow 

us to answer research questions that were difficult to address in the past (Cooke et al. 

2004a; Ropert-Coudert and Wilson 2005; Chmura et al. 2018). For example, there is a 

growing desire to better understand heart rate variability (HRV) and it’s use as an 

indicator for animal stress and welfare (Grӓns et al. 2014; Gaidica and Dantzer 2019). In 

both salmon and lumpfish, saving ECGs allowed for the measurement of the R-R interval 

and calculation of the standard deviation of those intervals, also known as HRV. It will 

likely become more common for software that analyzes ECGs to provide these 

calculations, making it easier to measure and study HRV. I was able to determine that 

HRV decreased with increasing swimming speed in salmon (Figure 2.6 B) and decreased 

transiently during compression (i.e. exposure to high hydrostatic pressure) in lumpfish 

(Figure 3.6 C). A decrease in beat-to-beat variability suggests an increase in 

neurohormonal control of fH, and therefore biologgers recording ECGs will be an 

important tool for understanding the control of fH in fish under varied conditions 

(Campbell et al. 2004; Grӓns et al. 2014; Gaidica and Dantzer 2019). In conclusion, 

biologgers will be an extremely beneficial tool and allow for new avenues of research, 

especially as we strive to understand how animals will respond to changes in their 
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environment such as those related to global climate change (Cooke et al. 2004a; Ropert-

Coudert and Wilson 2005; Cooke 2008; Wilson et al. 2015; Chmura et al. 2018).  



122 
 

References 

Aissaoui, A., Tort, L. and Altimiras, J. (2000). Circadian heart rate changes and light-

dependence in the Mediterranean seabream Sparus aurata. Fish. Physiol. Biochem. 22 

(1), 89-94. 

Algera, D. A., Brownscombe, J. W., Gilmour, K. M., Lawrence, M. J., Zolderdo, A. J. 

and Cooke, S. J. (2017). Cortisol treatment affects locomotor activity and swimming 

behaviour of male smallmouth bass engaged in paternal care: A field study using 

acceleration biologgers. Physiol. Behav. 181, 59-68. 

Altimiras, J., Johnstone, A. D. F., Lucas, M. C. and Priede, I. G. (1996). Sex differences 

in the heart rate variability spectrum of free-swimming Atlantic salmon (Salmo salar 

L.) during the spawning season. Physiol. Zool. 69 (4), 770-784. 

Altimiras, J. (1999). Understanding autonomic sympathovagal balance from short-term 

heart rate variation. Are we analyzing noise? Comp. Biochem. Phys. A. 124 (4), 447-

460. 

Altimiras, J. and Larsen, E. (2000). Non-invasive recording of heart rate and ventilation 

rate in rainbow trout during rest and swimming. Fish go wireless! J. Fish. Biol. 57 (1), 

197-209. 

Anderson, W. G., Booth, R., Beddow, T. A., McKinley, R. S., Finstad, B., Okland, F. and 

Scruton, D. (1998). Remote monitoring of heart rate as a measure of recovery in 

angled Atlantic salmon, Salmo salar (L.). Hydrobiologia. 371 (0), 372, 233-240. 

Andrzejaczek, S., Gleiss, A. C., Pattiaratchu, C. B. and Meekan, M. G. (2019). Patterns 

and drivers of vertical movements of the large fishes of the epipelagic. Rev. Fish. Biol. 

Fisheries. 29 (2), 335-354. 



123 
 

Antilla, K., Couturier, C. S., Øverli, Ø., Johnsen, A., Marthinsen, G., Nilsson, G. E. and 

Farrell, A. P. (2014). Atlantic salmon show capability for cardiac acclimation to warm 

temperatures. Nat. Commun. 5, ncomms5252. 

Antilla, K., Lewis, M., Prokkola, J. M., Kanerva, M., Seppӓnen, E., Kolari, I. and 

Nikinmaa, M. (2015). Warm acclimation and oxygen depletion induce species-specific 

responses in salmonids. J. Exp. Biol. 218 (10), 1471-1477. 

Arai, N. and Okuyama, J. (2012). Biologging. In Field Informatics (ed. T. Ishida), pp. 21-

38. New York: Springer-Verlag New York, Inc. 

Armstrong, J. D. (1986). Heart rate as an indicator of activity, metabolic rate, food intake 

and digestion in pike, Esox lucius. J. Fish. Biol. 29 (sA), 207-221. 

Belaud, A., Barthélémy, L., Le Saint, J. and Oeyraud, C. (1976). Trying to explain an 

effect per se hydrostatic pressure on heart rate in fish. Avoat. Sp. Environ. Med. 47 (3), 

252-257. 

Blacker, R. W. (1983). Pelagic records of the lumpsucker, Cyclopterus lumpus L. J. Fish. 

Biol. 23 (4), 405-417. 

Block, B. A. (2005). Physiological ecology in the 21st century: advancements in 

biologging science. Integr. Comp. Biol. 45 (2), 305-320. 

Boje, J., Neuenfeldt, S., Sparrevohn, C. R., Eigaard, O. and Behrens, J. W. (2014). 

Seasonal migration, vertical activity, and winter temperature experience of Greenland 

halibut Reinhardtius hippoglossoides in West Greenland waters. Mar. Ecol. Prog. Ser. 

508, 211-222. 



124 
 

Booth, R. K., McKinley, R. S., Økland, F. and Sisak, M. M. (1997). In situ measurement 

of swimming performance of wild Atlantic salmon (Salmo salar) using radio 

transmitted electromyogram signals. Aquat. Living. Resour. 10 (4), 213-219. 

Borch, K., Jensen, F. B. and Anderson, B. B. (1993). Cardiac activity, ventilation rate and 

acid-base regulation in rainbow trout exposed to hypoxia and combined hypoxia and 

hypercapnia. Fish. Physiol. Biochem. 12 (2), 101-110. 

Bouyoucos, I. A., Montgomery, D. W., Brownscombe, J. W., Cooke, S. J., Suski, C. D., 

Mandelman, J. W. and Brooks, E. J. (2017). Swimming speeds and metabolic rates of 

semi-captive juvenile lemon sharks (Negaprion brevirostris, Poey) estimated with 

acceleration biologgers. J. Exp. Mar. Biol. Ecol. 486, 245-254. 

Boyd, I. L., Kato, A. and Ropert-Coudert, Y. (2004). Bio-logging science: sensing 

beyond the boundaries. Mem. Natl. Inst. Polar. Res. Spec. Issue. 58, 1-14. 

Brauer, R. W., Beaver, R. W., Hogue, C. D., Ford, B., Goldman, S. M. and Venters, R. T. 

(1974). Intra- and interspecies variability of vertebrate high pressure neurological 

syndrome. J. Appl. Physiol. 37 (6), 844-851. 

Brett, J. R. (1964). The respiratory metabolism and swimming performance of young 

sockeye salmon. J. Fish. Res. Board. Can. 21 (5), 1183-1226. 

Brijs, J., Sandblom, E., Axelsson, M., Sundell, K., Sundh, H., Huyben, D., Brostrӧm, R., 

Kiessling, A., Berg, C. and Grӓns, A. (2018). The final countdown: continuous 

physiological welfare evaluation of farmed fish during common aquaculture practices 

before and during harvest. Aquaculture. 495 (1), 903-911. 



125 
 

Brijs, J., Sandblom, E., Rosengren, M., Sundell, K., Berg, C., Axelsson, M. and Grӓns, A. 

(2019). Prospects and pitfalls of using heart rate bio-loggers to assess the welfare of 

rainbow trout (Onchorhynchus mykiss) in aquaculture. Aquaculture. 509 (1), 188-197. 

Brill, R. W., Lowe, T. E. and Cousins, K. L. (1998). How water temperature really limits 

the vertical movements of tunas and billfishes – it’s the heart stupid. In International 

Conference on the Biology of Fish (ed. K. Gamperl, A. Farrell and D. Mackinlay), pp. 

57-62. Baltimore: American Fisheries Society. 

Broell, F., Noda, T., Wright, S., Domenici, P., Steffensen, J. F., Auclair, J-P. and Taggart, 

C. T. (2013). Accelerometer tags: detecting and identifying activities in fish and the 

effect of sampling frequency. J. Exp. Biol. 216 (7), 1255-1264. 

Brown, D. D., Kays, R., Wikelski, M., Wilson, R. and Klimley, A. P. (2013). Observing 

the unwatchable through acceleration logging of animal behaviour. Anim. 

Biotelemetry. 1 (1), 20. 

Brownscombe, J. W., Thiem, J. D., Hatry, C., Cull, F., Haak, C. R., Danylchuk, A. J. and 

Cooke, S. J. (2013). Recovery bags reduce post-release impairments in locomotory 

activity and behavior of bonefish (Albula spp.) following exposure to angling-related 

stressors. J. Exp. Mar. Bio. Ecol. 440, 207-215. 

Burleson, M. L. and Silva, P. E. (2011). Cross tolerance to environmental stressors: 

Effects of hypoxic acclimation on cardiovascular responses of channel catfish 

(Ictalurus punctatus) to a thermal challenge. J. Therm. Biol. 36 (4), 250-254. 

Campbell, H. A., Taylor, E. W. and Egginton, S. (2004). The use of power spectral 

analysis to determine cardiorespiratory control in the short-horned sculpin 

Myoxocephakus scorpius. J. Exp. Biol. 207, 1969-1976. 



126 
 

Campbell, H. A., Bishop, C. M., Davies, D. A. and Egginton, S. (2005). Recording long-

term heart rate in Paranotothenia angustat using an electronic datalogger. J. Fish. 

Biol. 67 (4), 1150-1156. 

Castro-Santos, T., Sanz-Ronda, F. J. and Ruiz-Legazpi, J. (2013). Breaking the speed 

limit – comparative sprinting performance of brook trout (Salvelinus frontinalis) and 

brown trout (Salmo trutta). Can. J. Fish. Aquat. Sci. 70 (2), 280-293. 

Chaise, L. L., Paterson, W., Laske, T. G., Gallon, S. L., McCafferty, D. J., Théry, M., 

Ancel, A. and Gilbert, C. (2017). Implantation of subcutaneous heart rate data loggers 

in southern elephant seals (Mirounga leonina). Polar. Biol. 40, 2307-2312. 

Cheng, R., Riyanto, M., Arimoto, T. and Yanase, K. (2017). Fatigue analysis of the jack 

mackerel Trachurus japonicus by electrocardiographic monitoring during prolonged 

swimming. Fish. Sci. 83 (1), 73-82. 

Chmura, H. E., Glass, T. W. and Williams, C. T. (2018). Biologging physiological and 

ecological responses to climatic variation: new tools for the climate change era. Front. 

Ecol. Evol. 6, 1-9. 

Claësson, D., Wang, T. and Malte, H. (2016). Maximal oxygen consumption increases 

with temperature in the European eel (Anguilla anguilla) through increased heart rate 

and arteriovenous extraction. Conserv. Physiol. 4 (1), cow027. 

Claireaux, G., Webber, M., Kerr, S. R. and Boutiliter, R. G. (1995). Physiology and 

behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating salinity 

and oxygenation conditions. J. Exp. Biol. 198 (1), 61-69. 



127 
 

Claireaux, G., McKenzie, D. J., Genge, A. G., Chatelier, A., Aubin, J. and Farrell, A. P. 

(2005). Linking swimming performance, cariac pumping ability and cardiac anatomy 

in rainbow trout. J. Exp. Biol. 208 (10), 1775-1784. 

Clark, T. D., Sandblom, E., Cox, G. K., Hinch, S. G. and Farrell, A. P. (2008). 

Circulatory limits to oxygen supply during an acute temperature increase in Chinook 

salmon (Oncorhynchus tsawytscha). Am. J. Physiol. Integr. Comp. Physiol. 295 (5), 

1631-1639. 

Clark, T. D., Sandblom, E., Hinch, S. G., Patterson, D. A., Frappell, P. B. and Farrell, A. 

P. (2010). Simultaneous biologging of heart rate and acceleration, and their 

relationships with energy expenditure in free-swimming sockeye salmon 

(Oncorhynchus nerka). J. Comp. Physiol. B. 180 (5), 673-684. 

Clow, K. A., Short, C. E. and Driedzic, W. R. (2017). Low levels of extracellular glucose 

limit cardiac anaerobic metabolism in some species of fish. J. Exp. Biol. 220 (16), 

2970-2979. 

Cooke, S. J. (2008). Biotelemetry and biologging in endangered species research and 

animal conservation: relevance to regional, national, and IUCN Red List threat 

assessments. Endang. Species. Res. 4, 165-185. 

Cooke, S. J., Thorstad, E. B. and Hinch, S. G. (2004a). Activity and energetics of free-

swimming fish: insights from electromyogram telemetry. Fish. Fish. 5 (1), 21-52. 

Cooke, S. J., Bunt, C. M., Ostrand, K. G., Philipp, D. P. and Wahl, D. H. (2004b). 

Angling-induced cardiac disturbance of free-swimming largemouth bass (Micropterus 

salmoides) monitored with heart rate telemetry. J. Appl. Ichthyol. 20, 28-36. 



128 
 

Cooke, S. J., Woodley, C. M., Eppard, M. B., Brown, R. S. and Nielson, J. L. (2011). 

Advancing the surgical implantation of electronic tags in fish: a gap analysis and 

research agenda based on a review of trends in intracoelomic tagging effects studies. 

Rev. Fish. Biol. Fisher. 21 (1), 127-151. 

Cooke, S. J., Donaldson, M. R., O’Connor, C. M., Raby, G. D., Arlingaus, R., Danylchuk, 

A. J., Hanson, K. C., Hinch, S. G., Clark, T. D., Patterson, D. A. and Suski, C. D. 

(2013). The physiological consequences of catch-and-release angling: perspectives on 

experimental design, interpretation, extrapolation and relevance to stake holders. 

Fisheries. Manag. Ecol. 20 (2-3), 268-287.  

Cooke, S. J., Hinch, S. G., Wikelski, M., Andrews, R. D., Kuchel, L. J., Wolcott, T. G. 

and Butler, P. J. (2014). Biotelemetry: a mechanistic approach to ecology. Trends. 

Ecol. Evol. 19 (6), 334-343. 

Cooke, S. J., Brownscombe, J. W., Raby, G. D., Broell, F., Hunch, S. G., Clark, T. D. and 

Semmens, J. M. (2016). Remote bioenergetics measurements in wild fish: 

opportunities and challenges. Comp. Biochem. Physiol. A. 202, 23-37. 

COSEWIC. (2017). COSEWIC assessment and status report on the Lumpfish 

Cyclopterus lumpus in Canada. Committee on the Status of Endangered Wildlife in 

Canada. Ottawa. xi + 78 pp. 

Costa, D. P., Klinck, J. M., Hofmann, E. E., Dinniman, M.S. and Burns, J. M. (2008). 

Upper ocean variability in west Antarcric Peninsula continental shelf waters as 

measured using instrumented seals. Deep-Sea. Res. 55 (3-4), 323-337. 

Davenport, J. (1985). Synopsis of biological data on the lumpsucker (Cyclopterus lumpus 

Linnaeus, 1758). FAO Fish. Synop. 147, 31. 



129 
 

De Pontual, H., Jolivet, A., Bertignac, M. and Fablet, R. (2012). Diel vertical migration of 

European hake Merluccius merluccius and associated temperature histories: insights 

from a pilot data-storage tagging (DST) experiment. J. Fish. Biol. 81 (2), 728-734. 

De Vera, L. and Priede, I. G. (1991). The heart rate variability signal in rainbow trout 

(Oncorhynchus mykiss). J. Exp. Biol. 156, 611-617. 

Deitch, E. J., Fletcher, G. L., Petersen, L. H., Costa, I. A., Shears, M. A., Driedzic, W. R. 

and Gamperl, A. K. (2006). Cardiorespiratory modifications, and limitations, in post-

smolt growth hormone transgenic Atlantic salmon Salmo salar. J. Exp. Biol. 209 (7), 

1310-1325. 

Donaldson, M. R., Clark, T. D., Hinch, S. G., Cooke, S. J., Patterson, D. A., Gale, M. K., 

Frappell, P. B. and Farrell, A. P. (2010). Physiological responses of free-swimming 

adult Coho salmon to simulated predator and fisheries encounters. Physiol. Biochem. 

Zool. 83 (6), 973-983. 

Dunmall, K. M. and Schreer, J. F. (2003). A comparison of the swimming and cardiac 

performance of farmed and wild Atlantic salmon, Salmo salar, before and after gamete 

stripping. Aquaculture. 200 (1-4), 869-882. 

Dussault, È, B., Playle, R. C., Dixon, D. G. and McKinley, R. S. (2008). Effects of soft-

water acclimation on the physiology, swimming performance, and cardiac parameters 

of the rainbow trout, Oncorhynchus mykiss. Fish.. Physiol. Biochem. 34 (4), 313-322. 

Einarsson, S. M., Gudjónsson, S., Jónsson, I. R. and Gudbrandsson, J. (2018). Deep-

diving of Atlantic salmon (Salmo salar) during their marine feeding migrations. 

Envion. Biol. Fish. 101 (12), 1707-1715. 



130 
 

Ekstrӧm, A., Jutfelt, F. and Sandblom, E. (2014). Effects of autonomic blockade on acute 

thermal tolerance and cardioventilatory performance in rainbow trout, Oncorhynchus 

mykiss. J. Therm. Biol. 44, 47-54. 

Ekstrӧm, A., Jutfelt, F., Sundstrӧm, L. F., Adill, A., Aho, T. and Sandblom, E. (2016). 

Chronic environmental warming alters cardiovascular and haematological stress 

responses in European perch (Perca fluviatilis). J. Comp. Physiol. B. 186 (8), 1023-

1031. 

Ekstrӧm, A., Axelsson, M., Grӓns, A., Brijs, J. and Sandblom, E. (2018). Importance of 

the coronary circulation for cardiac and metabolic performance in rainbow trout 

(Oncorhynchus mykiss). Biol. Lett. 14 (7), 1-4. 

Eliason, E. J., Higgs, D. A. and Farrell, A. P. (2008). Postprandial gastrointestinal blood 

floow, oxygen consumption and heart rate in rainbow trout (Oncorhynchus mykiss). 

Comp. Biochem. Physiol. A. 149 (4), 380-388. 

Eliason, E. J., Clark, T. D., Hinch, S. G. and Farrell, A. P. (2013a). Cardiorespiratory 

collapse at high temperature in swimming adult sockeye salmon. Conserv. Physiol. 1 

(1), cot008. 

Eliason, E. J., Clark, T. D., Hinch, S. G. and Farrell, A. P. (2013b). Cardiorespiratory 

performance and blood chemistry during swimming and recovery in three populations 

of elite swimmers: Adult sockeye salmon. Comp. Biochem. Physiol. A. 166 (2), 385-

397. 

Ern, R., Norin, T., Gamperl, A. K. and Esbaugh, A. J. (2016). Oxygen dependence of 

upper thermal limits in fishes. J. Exp. Biol. 219 (21), 3376-3383. 



131 
 

Farrell, A. P. and Smith, F. M. (2017). Cardiac form, function and physiology. In Fish 

Physiology: The Cardiovascular System, Volume 36A 1st Edition (ed. A. K. Gamperl, 

T. Gillis, A. Farrell and C. J. Brauner), pp. 155-264. Massachusetts: Academic Press. 

Føre, M., Frank, K., Dempster, T., Alfredsen, J. A. and Høy, E. (2017). Biomonitoring 

using tagged sentinel fish and acoustic telemetry in commercial salmon aquaculture: a 

feasibility study. Aquacult. Eng. 78, 163-172. 

Gaidica, M. and Dantzer, B. (2019). Quantifying the autonomic response to stressors – 

one way to expand the definition of “stress” in animals. EcoEvoRxiv. 

doi:10.32942/osf.io/huxw6. 

Gallaugher, P. E., Thorarensen, H., Kiessling, A. and Farrell, A. P. (2001). Effects of high 

intensity exercise training on cardiovascular function, oxygen uptake, internal oxygen 

transport and osmotic balance in Chinook salmon (Oncorhynchus tshawytscha) during 

critical speed swimming. J. Exp. Biol. 204 (16), 2861-2872. 

Gamperl, A. K. and Driedzic, W. R. (2009). Cardiovascular function and cardiac 

metabolism. In Fish Physiology: Hypoxia, Volume 27 1st Edition (ed. J. Richards, A. P. 

Farrell and C. J. Brauner), pp. 301-360. Massachusetts: Academic Press. 

Gehrke, P. C. and Fielder, D. R. (1988). Effects of temperature and dissolved oxygen on 

heart rate, ventilation rate and oxygen consumption of spangled perch, Leiopotherapon 

unicolor (Günther 1859), (Percoidei, Teraponidae). J. Comp. Physiol. B. 157 (6), 771-

782. 

Gilbert, M. J., Rani, V., McKenzie, S. M. and Farrell, A. P. (2019). Autonomic cardiac 

regulation facilitates acute heat tolerance in rainbow trout: in situ and in vivo support. 

J. Exp. Biol. 222, jeb194365. 



132 
 

Gleiss, A. C., Dale, J. J., Holland, K. N. and Wilson, R. P. (2010). Accelerating estimates 

of activity-specific metabolic rate in fishes: Testing the applicability of acceleration 

data-loggers. J. Exp. Mar. Biol. Ecol. 385 (1-2), 85-91. 

Gleiss, A. C., Wilson, R. P. and Shepard, E. L. C. (2011). Making overall dynamic body 

acceleration work: on the theory of acceleration as a proxy for energy expenditure. 

Methods. Ecol. Evol. 2 (1), 23-33. 

Godfrey, J. D., Stewart, D. C., Middlemas, S. J. and Armstrong, J. D. (2015). Depth use 

ad migratory behaviour of homing Atlantic salmon (Salmo salar) in Scottish coastal 

waters. ICES. J. Mar. Sci. 72 (2), 568-575. 

Gollock, M. J., Currie, S., Petersen, L. H. and Gamperl, A. K. (2006). Cardiovascular and 

haematological responses of Atlantic cod (Gadus morhua) to acute temperature 

increase. J. Exp. Biol. 209 (15), 2961-2970. 

Gollock, M. J., Hunter, K. J., Syme, D. A., Freeman, M., McKinley, R. S. and Gamperl, 

A. K. (2009). Potential methods for measuring the activity patterns and energy use of 

Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 66 (7), 1095-1106. 

Grӓns, A., Albertsson, F., Axelsson, M. and Olsson, C. (2009). Postprandial changes in 

enteric electrical activity and gut blood flow in rainbow trout (Oncorhynchus mykiss) 

acclimated to different temperatures. J. Exp. Biol. 212 (16), 2550-2557. 

Grӓns, A., Sandblom, E., Kiesslin, A. and Axelsson, M. (2014). Post-surgical analgesia in 

rainbow trout: is reduced cardioventilatory activity a sign of improved animal welfare 

or the adverse effects of an opiod drug? PLoS ONE. 9 (4), e95283. 



133 
 

Gross, M. and Jaenicke, R. (1994). Proteins under pressure: the influence of high 

hydrostatic pressure on structure, function and assembly of proteins and protein 

complexes. Eur. J. Biochem. 221 (2), 617-630. 

Guerrero, F., Theron, M. and Sébert, P. (2000). In vitro reactivity of central aorta to 

acetylcholine and noradrenaline in yellow freshwater eel (Anguilla anguilla L.) 

acclimatized to 10.1 MPa hydrostatic pressure. Can. J. Physiol. Parmacol. 78 (11), 

897-903. 

Halsey, L. G., Shepard, E. L. C., Quintana, F., Laich, A. G., Green, J. A. and Wilson, R. 

P. (2009). The relationship between oxygen consumption and body acceleration in a 

range of species. Comp. Biochem. Phys. A. 152 (2), 197-202. 

Hedger, R. D., Rikardsen, A. H., Strøm, J. F., Righton, D.A., Thorstad, E. B. and Naesje, 

T. F. (2017a). Diving behaviour of Atlantic salmon at sea: effects of light regimes and 

temperature stratification. Mar. Ecol. Prog. Ser. 574, 127-140. 

Hedger, R. D., Rikardsen, A. H. and Thorstad, E. B. (2017b). Pop-up satellite archival tag 

effects on the diving behaviour, growth and survival of adult Atlantic salmon Salmo 

salar at sea. J. Fish. Biol. 90, 294-310. 

Hill, J. and Forster, M. E. (2004). Cardiovascular responses of Chinook salmon 

(Oncorhynchua tshawytscha) during rapid anaesthetic induction and recovery. Comp. 

Biochem. Physiol. C. 137 (2), 167-177. 

Holeton, G. F. and Randall, D. J. (1967). The effect of hypoxia upon the partial pressure 

of gases in the blood and water afferent and efferent to the gills of rainbow trout. J. 

Exp. Biol. 46 (2), 317-327. 



134 
 

Hussey, N. E., Kessel, S. T., Aarestrup, K., Cooke, S. J., Cowley, P. D., Fisk, A. T., 

Harcourt, R. G., Holland, K. N., Iverson, S. J., Kocik, J. F., Mills Flemming, J. E. and 

Whoriskey, F. G. (2015). Aquatic animal telemetry: a panoramic window into the 

underwater world. Science. 348 (6240), 1255642. 

Hvas, M., Folkedal, O., Imsland, A. and Oppedal, F. (2017). The effect of thermal 

acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo 

salar. J. Exp. Biol. 220 (15), 2757-2764. 

Hvas, M., Folkedal, O., Imsland, A. and Oppedal, F. (2018). Metabolic rates, swimming 

capabilities, thermal niche and stress response of the lumpfish, Cyclopterus lumpus. 

Biol. Open. 7 (9), bio036079. 

Imsland, A. K., Reynolds, P., Eliassen, G., Hangstad, T. A., Foss, A., Vikinsta, E. and 

Elvegard, T. A. (2014). The use of lumpfish (Cyclopterus lumpus L.) to control sea lice 

(Lepeophtheirus salmonid Krøyer) infestations in intensively farmed Atlantic salmon 

(Salmo salar L.). Aquacult. 424-425, 18-23. 

Ivasauskas, T. J., Bettoli, P. W. and Holt, T. (2012). Effects of suture material and 

ultrasonic transmitter size on survival, growth, wound healing, and tag expulsion in 

rainbow trout. T. Am. Fish. Soc. 141 (1), 100-106. 

Jeanne, M., Logier, R., De Jonckheere, J. and Tavernier, B. (2009). Heart rate variability 

during total intravenous anesthesia: effects of nociception and analgesia. Auton. 

Neurosci. 147, 91-96. 

Jensen, D. L., Overgaard, J., Wang, T., Gesser, H. and Malte, H. (2017). Temperature 

effects on aerobic scope and cardiac performance of European perch (Perca fluviatilis). 

J. Therm. Biol. 68, 162-169. 



135 
 

Jepsen, N., Davis, L. E., Schreck, B. and Siddens, B. (2001). The physiological response 

of Chinook salmon smolts to two methods of radio-tagging. T. Am. Fish. Soc. 130 (3), 

495-500. 

Johansson, D., Ruohonen, K., Juell, J. and Oppedal, F. (2009). Swimming depth and 

thermal history of individual Atlantic salmon (Salmo salar L.) in production cages 

under different ambient temperature conditions. Aquaculture. 290 (3-4), 296-303. 

Jørgensen, E. H., Haatuft, A., Puvanendran, V. and Mortensen, A. (2017). Effects of 

reduced water exchange rate and oxygen saturation on growth and stress indicators of 

juvenile lumpfish (Cyclopterus lumpus L.) in aquaculture. Aquacult. 474, 26-33. 

Joyce, W., Egginton, S., Farrell, A. P., Crockett, E. L., O’Brien, K. M. and Axelsson, M. 

(2018). Exploring nature’s natural knockouts: in vivo cardiorespiratory performance of 

Antarctic fishes during acute warming. J. Exp. Biol. 221 (15), jeb183160. 

Kawabe, R., Kawano, T., Nakano, N., Yamashita, N., Hiraishi, T. and Naito, Y. (2003). 

Simultaneous measurement of swimming speed and tail beat activity of free-swimming 

rainbow trout Oncorhynchus mykiss using an acceleration data-logger. Fisheries. Sci. 

69 (5), 959-965. 

Kawabe, R., Naito, Y., Sato, K., Miyashita, K. and Yamashita, N. (2004). Direct 

measurement of the swimming speed, tailbeat, and body angle of Japanese flounder 

(Paralichthys olivaceus). ICES. J. Mar. Sci. 61, 1080-1087. 

Kennedy, J., Jónsson, S., Ólafsson, H. G. and Kasper, J. M. (2016). Observations of 

vertical movements and depth distribution of migrating female lumpfish (Cyclopterus 

lumpus) in Iceland from data storage tags and trawl surveys. ICES. J. Mar. Sci. 73 (4), 

1160-1169. 



136 
 

Kneis, P. and Siegmund, R. (1976). Heart rate and locomotor activity in fish: correlation 

and circadian and circannual difference in Cyprinus carpio L. Experientia. 32 (4), 474-

476. 

Kooyman, G. L. (2004). Genesis and evolution of bio-logging devices: 1963-2002. Mem. 

Natl. Inst. Polar. Res. Spec. Issue. 58, 15-22. 

Korsøen, O. J., Dempster, T., Oppedal, F. and Kristiansen, T. S. (2012). Individual 

variation in swimming depth and growth in Atlantic salmon (Salmo salar L.) subjected 

to submergence in sea-cages. Aquaculture. 334-337 (7), 142-151. 

Lacroix, G. L., Know, D. and McCurdy, P. (2004). Effects of implanted dummy acoustic 

transmitters on juvenile Atlantic salmon. T. Am. Fish. Soc. 133 (1), 211-220. 

Laitinen, M. and Valtonen, T. (1994). Cardiovascular, ventilatory and total activity 

responses of brown trout to handling stress. J. Fish. Biol. 45 (6), 933-942. 

Lear, K. O., Whitney, N. M., Brewster, L. R., Morris, J. J., Hueter, R. E. and Gleiss, A. C. 

(2017). Correlations of metabolic rate and body acceleration in three species of coastal 

sharks under contrasting temperature regimes. J. Exp. Biol. 220 (3), 397-407. 

Lee, C. G., Farrell, A. P., Lotto, A., Hinch, S. G. and Healey, M. C. (2003a). Excess post-

exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. 

kisutch) salmon following critical speed swimming. J. Exp. Biol. 206 (18), 3253-3260. 

Lee, C. G., Farrell, A. P., Lotto, A., MacNutt, M. J., Hinch, S. G. and Healey, M. C. 

(2003b). The effect of temperature on swimming performance and oxygen 

consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon 

stocks. J. Exp. Biol. 206 (18), 3239-3251. 



137 
 

Lorance, P., Cook, R., Herrera, J., de Sola, L., Florin, A. and Papaconstantinou, C. 

(2015). Cyclopterus lumpus. The IUCN Red List of Threatened Species 2015: 

eT18237406A45078284. Downloaded on 30 May 2019. 

Lowerre-Barbieri, S. K., Kays, R., Thorson, J. T. and Wikelski, M. (2019). The ocean’s 

movescape: fisheries management in the bio-logging decade (2018-2028). ICES. J. 

Mar. Sci. 76 (2), 477-488. 

Lucas, M. C. (1994). Heart rate as an indicator of metabolic rate and activity in adult 

Atlantic salmon, Salmo salar. J. Fish. Biol. 44 (5), 889-903. 

Macdonald, A. G., Gilchrist, I. and Wardle, C. S. (1987). Effects of hydrostatic pressure 

on the motor activity of fish from shallow water and 900 m depths; some results of 

Challenger Cruise 6B/85. Comp. Biochem. Physiol. 88 (3), 543-547. 

MacNutt, M. J., Hinch, S. G., Lee, C. G., Phibbs, J. R., Lotto, A. G., Healey, M. C. and 

Farrell, A. P. (2006). Temperature effects on swimming performance, energetics, and 

aerobic capacities of mature adult pink salmon (Oncorhynchus gorbuscha) compared 

with those of sockeye salmon (Oncorhynchus nerka). Can. J. Zool. 84 (1), 88-97. 

Martos-Sitcha, J. A., Sosa, J., Ramos-Valido, D., Bravo, F. J., Carmona-Duarte, C., 

Gomes, H. L., Calduch-Giner, J. À., Cabruja, E., Vega, A., Ferrer, M. Á., Lozano, M., 

Montiel-Nelson, J. A., Afonso, J. M. and Pérez-Sánchez, J. (2019). Ultra-low power 

sensor devices for monitoring physical activity and respiratory frequency in farmed 

fish. Front. Physiol. 10 (667), 10.3389/fphys.2019.00667. 

Marvin, D. E. and Heath, A. G. (1968). Cardiac and respiratory responses to gradual 

hypoxia in three ecologically distinct species of fresh-water fish. Comp. Biochem. 

Physiol. A. 27 (1), 349-355. 



138 
 

McCue, M. D. (2006). Specific dynamic action: a century of investigation. Comp. 

Biochem. Physiol. A. 144 (4), 381-394. 

Mendonça, P. C. and Gamperl, A. K. (2010). The effects of acute changes in temperature 

and oxygen availability on cardiac performance in winter flounder 

(Pseudopleuronectes americanus). Comp. Biochem. Physiol. A. 155 (2), 245-252. 

Metcalfe, J., Wright, S., Tudorache, C. and Wilson, R. P. (2016) Recent advances in 

telemetry for estimating the energy metabolism of wild fishes. J. Fish. Biol. 88 (1), 

284-297. 

Mori, T., Miyata, N., Aoyama, J., Niizuma, Y. and Sato, K. (2015). Estimation of 

metabolic rate from activity measured by recorders deployed on Japanese sea bass 

Lateolabrax japonicus. Fish. Sci. 81 (5), 871-882. 

Morris, J. P., Thatje, S., Ravaeux, J., Shillito, B., Fernando, D. and Hauton, C. (2015a). 

Acute combined pressure and temperature exposures on a shallow-water crustacean: 

Novel insights into the stress response and high pressure neurological syndrome. 

Comp. Biochem. Physiol. A. 181, 9-17. 

Morris, J. P., Thatje, S., Cottin, D., Oliphant, A., Brown, A., Shillito, B., Ravaux, J. and 

Hauton, C. (2015b). The potential for climate-driven bathymetric range shifts: 

sustained temperature and pressure exposures on a marine ectotherm, Palaemonetes 

varians. R. Soc. Open. Sci. 2 (11), 150472. 

Motyka, R., Norin, T., Petersen, L. H., Huggett, D. B. and Gamperl, A. K. (2017). Long-

term hypoxia exposure alters the cardiorespiratory physiology of steelhead trout 

(Oncorhynchus mykiss), but does not affect their upper thermal tolerance. J. Therm. 

Biol. 68, 149-161. 



139 
 

Naito, Y. (2004). Bio-logging science and new tools for marine bio-science. Proceedings 

of the International Symposium on SEASTAR2000 and Bio-logging Science. pp. 72-75. 

Kyoto, Japan. 

Nelson, J. A., Gotwalt, P. S., Rediy, S. P. and Webber, D. M. (2002). Beyond Ucrit: 

matching swimming performance tests to the physiological ecology of the animal, 

including a new fish ‘drag strip’. Comp. Biochem. Physiol. A. 133 (2), 289-302. 

Payne, N. L., van der Meulen, D. E., Gannon, R., Semmens, J. M., Suthers, I. M., Gray, 

C. A. and Taylor, M. D. (2013). Rain reverses diel activity rhythms in an estuarine 

teleost. Proc. R. Soc. B. 280 (1750), 1-7. 

Payne, N. L., Taylor, M. D., Watanabe, Y. Y. and Semmens, J. M. (2014). From 

physiology to physics: are we recognizing the flexibility of biologging tools? J. Exp. 

Biol. 217 (3), 317-322. 

Petersen, L. H. and Gamperl, A. K. (2011). Cod (Gadus morhua) cardiorespiratory 

physiology and hypoxia tolerance following acclimation to low-oxygen conditions. 

Physiol. Biochem. Zool. 84 (1), 18-31. 

Powell, A., Pooley, C., Scolamacchia, M. and Garcia de Leaniz, C. (2017). Review of 

lumpfish biology. In: Cleaner fish biology and aquaculture applications (ed. J. W. 

Treasurer), pp. 98-121. Sheffield: 5M Publishing Ltd. 

Powell, A., Treasurer, J. W., Pooley, C. L., Keay, A. J., Lloyd, R., Imsland, A. K. and 

Garcia de Leaniz, C. (2018). Use of lumpfish for sea-lice control in salmon farming: 

challenges and opportunities. Rev. Aquacult. 10 (3), 683-702. 

Peake, S. J. and Farrell, A. P. (2004). Locomotory behaviour and post-exercise 

physiology in relation to swimming speed, gait transition, and metabolism in free-



140 
 

swimming smallmouth bass (Micropterus dolomieus). J. Exp. Biol. 207 (9), 1563-

1575. 

Peake, S. J. and Farrell, A. P. (2006). Fatigue is a behavioural response in respirometer-

confined smallmouth bass. J. Fish. Biol. 68 (6), 1742-1755. 

Pennec, J.-P., Wardle, C. S., Harper, A. A. and Macdonald, A. G. (1988). Effects of high 

hydrostatic pressure on the isolated hearts of shallow water and deep sea fish; results 

of Challenger cruise 6B/85. Comp. Biochem. Physiol. A. 89 (2), 215-218. 

Penney, C. M., Nash, G. W. and Gamperl, A. K. (2014). Cardiorespiratory responses of 

seawater-acclimated adult Arctic char (Salvelinus alpinus) and Atlantic salmon (Salmo 

salar) to an acute temperature increase. Can. J. Fish. Aquat. Sci. 71 (7), 1096-1105. 

Plaut, I. (2001). Critical swimming speed: its ecological relevance. Comp. Biochem. 

Physiol. A. 131 (1), 41-50. 

Priede, I. G. (1974). The effects of swimming activity and section of the vagas nerves on 

heart rate in rainbow trout. J. Exp. Biol. 60 (2), 305-319. 

Priede, I. G. and Young, A. H. (1977). The ultrasonic telemetry of cardiac rhythms of 

wild brown trout (Salmo trutta L.) as an indicator of bio-energetics and behaviour. J. 

Fish. Biol. 10 (4), 299-318. 

Prystay, T. S., Eliason, E. J., Lawrence, M. J., Dick, M., Brownscombe, J. W., Patterson, 

D. A., Crossin, G. T., Hinch, S. G. and Cooke, S. J. (2017). The influence of water 

temperature on sockeye salmon heart rate recovery following simulated fisheries 

interactions. Conserv. Physiol. 5 (1), 1-12. 

Prystay, T. S., Lawrence, M. J., Zolderdo, A. J., Brownscombe, J. W., de Bruijn, R., 

Eliason, E. J. and Cooke, S. J. (2019). Exploring relationships between cardiovascular 



141 
 

activity and parental care behavior in nesting smallmouth bass: A field study using 

heart rate biologgers. Comp. Biochem. Physiol. A. 234, 18-27. 

Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey, L. G., Shepard, E. L. C., Gleiss, 

A. C. and Wilson, R. (2012). Tri-axial dynamic acceleration as a proxy for animal 

energy expenditure; should we be summing values or calculating the vector? PLoS 

ONE. 7 (2), e31187. 

Raby, G. D., Clark, T. D., Farrell, A. P., Patterson, D. A., Bettm N. N., Wilson, S. M., 

Willmore, W. G., Suski, C. D., Hinch, S. G. and Cooke, S. J. (2015). Facing the river 

gauntlet: understanding the effects of fisheries capture and water temperature on the 

physiology of coho salmon. PLoS ONE. 10 (4), e0124023. 

Rikardsen, A. H. and Thorstad, E. B. (2006). External attachment of data storage tags 

increases probability of being recaptured in nets compared to internal tagging. J. Fish. 

Biol. 68 (3), 963-968. 

Ropert-Coudert, Y. and Wilson, R. P. (2005). Trends and perspectives in animal-attached 

remote sensing. Front. Ecol. Environ. 3 (8), 437-444. 

Ropert-Coudert, Y., Beaulieu, M., Hanuise, N. and Kato, A. (2009). Diving into the world 

of biologging. Endang. Species. Res. 10, 21-27. 

Ropert-Coudert, Y., Kato, A., Gremillet, S., and Crenner, F. (2012). Biologging: 

recording the ecophysiology and behaviour of animals moving freely in their 

environment. In Sensors for ecology: towards integrated knowledge of ecosystems (ed. 

J. Le Galliard, K. Guarini, and F. Gaill), pp. 43-62. Paris: The French National Center 

for Scientific Research (CNRS). 

Rosen, S. and Holst, J. C. (2013). DeepVision in-trawling imaging: sampling the water 



142 
 

column in four dimensions. Fish. Res. 148, 64-73. 

Rosen, S., Jörgensen, T., Hammersland-White, D. and Holst, J. C. (2013). DeepVision: a 

stereo camera system provides highly accurate counts and lengths of fish passing 

inside a trawl. Can. J. Fish. Aquat. Sci. 70 (10), 1456-1467. 

RStudio Team. (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, 

MA. http://www.rstudio.com.  

Rothwell, S. E., Black, S. E., Jerret, A. R. and Forster, M. E. (2005). Cardiovascular 

changes and catecholamine release following anaesthesia in Chinook salmon 

(Oncorhynchus tshawytscha) and snapper (Pagrus auratus). Comp. Biochem. Physiol. 

A. 140 (3), 289-298. 

Rutz, C. and Hays, G. C. (2009). New frontiers in biologging science. Biol. Lett. 5 (3), 

289-292. 

Scaion, D., Belhomme, M. and Sébert, P. (2008a). Pressure and temperature interactions 

on aerobic metabolism of migrating European silver eel. Resp. Physiol. Neurobiol. 164 

(3), 319-322. 

Scaion, D., Vettier, A. and Sébert, P. (2008b). Pressure and temperature interactions on 

aerobic metabolism in migrating silver eels: results in vitro. Undersea. Hyperbar. M. 

35 (1), 27-33. 

Sébert, P. (2002). Fish at high pressure: a hundred year history. Comp. Biochem. Physiol. 

A. 131, 575-585. 

Sébert, P. and Barthélémy, L. (1985a). Effects of high hydrostatic pressure per se, 101 

atm on eel metabolism. Resp. Physiol. 62, 349-357. 

Sébert, P. and Barthélémy, L. (1985b). Hydrostatic pressure and adrenergic drugs 



143 
 

(agonists and antatgonists): effects and interactions in fish. Comp. Biochem. Physiol. 

C. 82 (1), 207-212. 

Sébert, P. and Macdonald, A. G. (1993). Fish. In Effects of high pressure on biological 

systems (ed. A. G. Macdonald), pp. 147-196. Berlin: Springer-Verlag. 

Sébert, P., Barthélémy, L., Caroff, J. and Hourmant, A. (1987). Effects of hydrostatic 

pressure per se (101 ATA) on energetic processes in fish. Comp.Biochem. Physiol. A. 

86 (3), 491-495. 

Sébert, P., Simon, B. and Barthélémy, L. (1993). Hydrostatic pressure induces a state 

resembling histotoxic hypoxia in Anguilla anguilla. Comp. Biochem. Physiol. 105A 

(2), 255-258. 

Sébert, P., Pequeux, A., Simon, B. and Barthélémy, L. (1995a). Effects of hydrostatic 

pressure and temperature on the energy metabolism of the Chinese crab (Eriocheir 

sinensis) and the yellow eel (Anguilla anguilla). Comp. Biochem. Physiol. 112 (1), 

131-136. 

Sébert, P., Simon, B. and Barthélémy, L. (1995b). Effects of a temperature increase on 

oxygen consumption of yellow freshwater eels exposed to high hydrostatic pressure. 

Exp. Physiol. 80 (6), 1039-1046. 

Sébert, P., Simon, B. and Péqueux, A. (1997). Effects of hydrostatic pressure on energy 

metabolism and osmoregulation in crab and fish. Comp. Biochem. Physiol. 116A (4), 

281-290. 

Semple, S. L., Mulder, I. M., Rodriguez-Ramos, T., Power, M. and Dixon, B. (2018). 

Long-term implantation of acoustic transmitters induces chronic inflammatory 

cytokine expression in adult rainbow trout (Oncorhynchus mykiss). Vet. Immunol. 



144 
 

Immunop. 205, 1-9. 

Shillito, B., Gaill, F. and Ravaux, J. (2014). The IPOCAMP pressure incubator for deep-

sea fauna. J. Mar. Sci. Tech. 22 (1), 97-102. 

Simon, B., Sébert, P. and Barthélémy, L. (1989). Effects of long-term exposure to 

hydrostatic pressure per se (101 ATA) on eel metabolism. Can. J. Physiol. Pharmacol. 

67 (10), 1247-1251. 

Simpson, M. R., Gauthier, J., Benoît, H. P., Macdonald, D., Hedges, K., Collins, R., 

Mello, L. and Miri, C. (2016). A pre-COSEWIC assessment of the Common Lumpfish 

(Cyclopterus lumpus, Linnaeus 1758) in Canadian Atlantic and Arctic waters. DFO 

Can. Sci. Advis. Sec. Res. Doc. 2016/068. v + 135 p. 

Singmann, H., Hervé, M., Love, J., and Buerkner, P. (2019). emmeans: Estimating 

Marginal Means, aka Least-Square Means. R package version 1.3.4. 

Skar, M. W., Haughland, G. T., Powell, M. D., Wergeland, H. I. and Samuelsen, O. B. 

(2017). Development of anaesthetic protocols for lumpfish (Cyclopterus lumpus L.): 

Effect of anaesthetic concentrations, sea water temperature and body weight. PLoS 

ONE. 12 (7), e0179233. 

Smircich, M. G. and Kelly, J. T. (2014). Extending the 2% rule: the effects of heavy 

internal tags on stress physiology, swimming performance, and growth in brook trout. 

Anim. Biotelem. 2, 16. 

Snobl, Z. R., Koenigs, R. P., Bruch, R. M. and Binkowski, F. P. (2015). Do tags 

exceeding 2% of total body weight impair lake sturgeon movement? N. Am. J. Fish. 

Manage. 35 (5), 880-884. 

Speers-Roesch, B., Lingwood, D. and Stevens, E. D. (2004). Effects of temperature and 



145 
 

hydrostatic pressure on routine oxygen uptake of the bloater (Coregonus hoyi). J. 

Great. Lakes. Res. 30 (1), 70-81. 

Speers-Roesch, B., Sandblom, E., Lau, G. Y., Farrell, A. P. and Richards, J. G. (2010). 

Effects of environmental hypoxia on cardiac energy metabolism and performance in 

tilapia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298 (1), 104-119. 

Steinhausen, M. F., Sandblom, E., Eliason, E. J., Verhille, C. and Farrell, A. P. (2008). 

The effect of acute temperature increases on the cardiorespiratory performance of 

resting and swimming sockeye salmon (Oncorhynchus nerka). J. Exp. Biol. 211 (24), 

3915-3926. 

Stramma, L., Prince, E. D., Schmidtko, S., Luo, J., Hoolihan, J. P., Visbeck, M., Wallace, 

D. W. R., Brandt, P. and Kӧrtzinger, A. (2012). Expansion of oxygen minimum zones 

may reduce available habitat for tropical pelagic fishes. Nat. Clim. Change. 2 (1), 33-

37. 

Syme, D. A., Gollock, M., Freeman, M. J. and Gamperl, A. K. (2009). Power isn’t 

everything: muscle function and energetic costs during steady swimming in Atlantic 

cod (Gadus morhua). Physiol. Biochem. Zool. 81 (3), 320-335. 

Tanaka, H., Takagi, Y. and Naito, Y. (2000). Behavioural thermoregulation of chum 

salmon during homing migration in coastal waters. J. Exp. Biol. 203 (12), 1825-1833. 

Tanaka, H., Takagi, Y. and Naito, Y. (2001). Swimming speeds and buoyancy 

compensation of migrating adult chum salmon Oncorhynchus keta revealed by 

speed/depth/acceleration data logger. J. Exp. Biol. 204 (22), 3895-3904. 

Tang, J. and Wardle, C. S. (1992). Power output of two sizes of Atlantic salmon (Salmo 

salar) at their maximum sustained swimming speeds. J. Exp. Biol. 166 (1), 33-46. 



146 
 

Thatje, S. and Robinson, N. (2011). Specific dynamic action affects the hydrostatic 

pressure tolerance of the shallow-water spider crab Maja brachydactyla. 

Naturwissenschaften. 98 (4), 299-313. 

Thorarensen, H., Gallaugher, P. E. and Farrell, A. P. (1996). The limitations of heart rate 

as a predictor of metabolic rate in fish. J. Fish. Biol. 49 (2), 226-236. 

Thorrold, S. R., Afonso, P., Fontes, J., Braun, C. D., Santos, R. S., Skomal, G. B. and 

Berumen, M. L. (2014). Extreme diving behaviour in devil rays links surface waters 

and the deep ocean. Nat. Comm. 5, 4274. 

Thorsteinsson, V. (2002). Tagging methods for stock assessment and research in 

fisheries. In Report of Concerted Action FAIR CT.96.1394 (CATAG) (ed. G. Arnold, J. 

Davenport, N. O. Maoiléidigh and V. Thorsteinsson), pp 1-179. Reykjavik: Marine 

Research Institute Technical Report (79). 

Treasurer, J. W. (1996). Retention of visible implants in farmed Atlantic salmon, Salmo 

salar L. Aquac. Res. 27 (12), 293-295. 

Treberg, J. R., Killen, S. S., MacCormack, T. J., Lamarre, S. G. and Enders, E. C. (2016). 

Estimates of metabolic rate and major constituents of metabolic demand in fishes 

under field conditions: methods, proxies, and new perspectives. Comp. Biochem. 

Physiol. A. 202, 10-22. 

Tsuda, Y., Kawabe, R., Tanaka, H., Mitsunaga, Hiraishi, T., Yamamoto, K. and 

Nashimoto, K. (2006). Monitoring the spawning behaviour of chum salmon with an 

acceleration data logger. Ecol. Freshw. Fish. 15 (3), 264-274. 



147 
 

Tudorache, C., Viaenen, P., Blust, R. and De Boeck, G. (2007). Longer flumes increase 

critical swimming speeds by increasing burst-glide swimming duration in carp 

Cyprinus carpio, L. J. Fish. Biol. 71 (6), 1630-1638. 

Tudorache, C., O’Keefe, R. A. and Benfey, T. J. (2010). Flume length and post-exercise 

impingement affect anaerobic metabolism in brook charr Salvelinus fontinalis. J. Fish. 

Biol. 76 (3), 729-733. 

Vettier, A., Székely, C. and Sébert, P. (2003). Are yellow eels from Lake Balaton able to 

cope with high pressure encountered during migration to the Sargossa sea? The case of 

energy metabolism. Anim. Biol. 53 (4), 329-338. 

Vettier, A., Amérand, A., Cann-Moisan, C. and Sébert, P. (2005). Is the silvering process 

similar to the effects of pressure acclimatization on yellow eels? Resp. Physiol. 

Neurobiol. 145 (2-3), 243-250. 

Vettier, A., Labbe, C., Amérand, A., Da Costa, G., Le Reumeur, E., Moisan, C. and 

Sébert, P. (2006). Hydrostatic pressure effects on eel mitochondrial functioning and 

membrane fluidity. Undersea. Hyperbar. M. 33 (3), 149-156. 

Videler, J. J. and Weihs, D. (1982). Energetic advantages of burst-and-coast swimming of 

fish at high speeds. J. Exp. Biol. 97 (1), 169-178. 

Vornanen, M., Haverinen, J. and Egginton, S. (2014). Acute heat tolerance of cardiac 

excitation in the brown trout (Salmo trutta fario). J. Exp. Biol. 217 (2), 299-309. 

Wagner, K. A., Woodley, C. M., Seaburg, A. G., Skalski, J. R. and Eppard, M. B. (2014). 

Physiological stress responses to prolonged exposure to MS-222 and surgical 

implantation in juvenile Chinook salmon. N. Am. J. Fish. Manage. 34 (4), 863-873. 



148 
 

Wallerius, M. L., Grӓns, A., Koeck, B., Berger, D., Sandblom, E., Ekstrom, A., 

Arlinghaus, R. and Johnsson, J. I. (2019). Socially induced stress and behavioural 

inhibition in response to angling exposure in rainbow trout. Fisheries. Manag. Ecol. 

00, 1-10. 

Webber, D. M., Boutilier, R. G. and Kerr, S. R. (1998). Cardiac output as a predictor of 

metabolic rate in cod Gadus morhua. J. Exp. Biol. 201 (19)F, 2779-2789. 

Welch, D. W., Batten, S. D. and Ward, B. R. (2007). Growth, survival, and tag retention 

of steelhead trout (O. mykiss) surgically implanted with dummy acoustic tags. 

Hydrobiologia. 582 (1), 289-299. 

Williams, E. M., Nelson, J. A. and Heisler, N. (1997). Cardio-respiratory function in carp 

exposed to environmental nitrite. J. Fish. Biol. 50 (1), 137-149. 

Wilmers, C. C., Nickel, B., Bryce, C. M., Smith, J. A., Wheat, R. E. and Yovovich, V. 

(2015). The golden age of bio-logging: how animal-borne sensors are advancing the 

frontiers of ecology. Ecology. 96 (7), 1741-1753. 

Wilson, R. P., White, C. R., Quintana, F., Halsey, L. G., Liebsch, N., Martin, G. R. and 

Butler, P. J. (2006). Moving towards acceleration for estimates of activity-specific 

metabolic rate in free-living animals: the case of the cormorant. J. Anim. Ecol. 75 (5), 

1081-1090. 

Wilson, R. P., Shepard, E. L. C. and Liebsch, N. (2008). Prying into the intimate details 

of animal lives: use of a daily diary on animals. Endag. Species. Res. 4, 123-137. 

Wilson, S. M., Hinch, S. G., Eliason, E. J., Farrell, A. P. and Cooke, S. J. (2013). 

Calibrating acoustic acceleration transmitters for estimating energy use by wild adult 

Pacific salmon. Comp. Biochem. Phys. A. 164 (3), 491-498. 



149 
 

Wilson, S. M., Hinch, S. G., Drenner, S. M., Martins, E. G., Furey, N. B., Patterson, D. 

A., Welch, D. W. and Cooke, S. J. (2014). Coastal marine and in-river migration 

behaviour of adult sockeye salmon en route to spawning grounds. Mar. Ecol. Prog. 

Ser. 496, 71-84. 

Wilson, A. D. M., Wikelski, M., Wilson, R. P. and Cooke, S. J. (2015). Utility of 

biological sensor tags in animal conservation. Conserv. Biol. 29 (4), 1065-1075. 

Wright, S., Metcalfe, J. D., Hetherington, S. and Wilson, R. (2014). Estimating activity-

specific energy expenditure in a teleost fish, using accelerometer loggers. Mar. Eco. 

Prog. Ser. 496, 19-32. 

Yasuda, T., Komeyama, K., Kato, K. and Mitsunaga, Y. (2012). Use of acceleration 

loggers in aquaculture to determine net-cage use and field metabolic rates in red sea 

bream Pagrus major. Fish. Sci. 78 (2), 229-235. 

Yerushalmi, S. and Green, R. M. (2009). Evidence for the adaptive significance of 

circadian rhythms. Ecol. Lett. 12 (9), 970-981. 

Zhang, X., Beebe, T., Jen, N., Lee, C-L., Tai, Y. and Hsiai, T. K. (2015). Flexible and 

waterproof micro-sensors to uncover zebrafish circadian rhythms: The next generation 

of cardiac monitoring for drug screening. Biosens. Bioelectron. 71, 150-157. 


