
DETECTION OF COPY-MOVE FORGERY IN
DIGITAL IMAGES USING DIFFERENT
COMPUTER VISION APPROACHES

by
c©Younis E. Abdalla

A thesis submitted to the School of Graduate Studies in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Faculty of Engineering and Applied Science

Memorial University of Newfoundland
March 2020

St. John’s Newfoundland



Abstract

Image forgery detection approaches are many and varied, but they generally all serve

the same objectives: detect and localize the forgery. Copy-move forgery detection

(CMFD) is widely spread and must challenge approach. In this thesis, We first inves-

tigate the problems and the challenges of the existed algorithms to detect copy-move

forgery in digital images and then we propose integrating multiple forensic strategies

to overcome these problems and increase the efficiency of detecting and localizing

forgery based on the same image input source. Test and evaluate our copy-move

forgery detector algorithm presented the outcome that has been enhanced by various

computer vision field techniques. Because digital image forgery is a growing problem

due to the increase in readily-available technology that makes the process relatively

easy for forgers, we propose strategies and applications based on the PatchMatch

algorithm and deep neural network learning (DNN). We further focus on the con-

volutional neural network (CNN) architecture approach in a generative adversarial

network (GAN) and transfer learning environment. The F-measure score (FM), re-

call, precision, accuracy, and efficiency are calculated in the proposed algorithms and

compared with a selection of literature algorithms using the same evaluation function

in order to make a fair evaluation. The FM score achieves 0.98, with an efficiency rate

exceeding 90.5% in most cases of active and passive forgery detection tasks, indicat-

ing that the proposed methods are highly robust. The output results show the high

ii



efficiency of detecting and localizing the forgery across different image formats for ac-

tive and passive forgery detection. Therefore, the proposed methods in this research

successfully overcome the main investigated issues in copy-move forgery detection as

such: First, increase efficiency in copy-move forgery detection under a wide range

of manipulation process to a copy-moved image. Second, detect and localized the

copy-move forgery patches versus the pristine patches in the forged image. Finally,

our experiments show the overall validation accuracy based on the proposed deep

learning approach is 90%, according to the iteration limit. Further enhancement of

the deep learning and learning transfer approach is recommended for future work.
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Chapter 1

Introduction

Advanced technology is currently the go-to equipment used by forgers via computer

graphics and digital image processing. In fact, the use of digital imagery to create

forgeries is one of the biggest problems emerging from technology. However, experts

working together with law enforcement are devising systems that employ advanced

algorithms in order to ferret out the forgeries [1][2]. What may be surprising to

those not working in the field is that very few digital documents today (especially

those produced from medical, legal and government sources) are entirely free of some

aspect of forgery. Detecting forgery algorithms is possible but depends almost entirely

on the image source.

Nowadays, digital photographs and documents are easily changed to suit the pur-

poses of the user, with copy-move being the most popular approach to forgery [3].

Copy-move is considered a type of passive forgery [4][5] if there is no authentic image

copy for the forged image, and it is quite widespread. Figure 1.1 below shows differ-

ent kinds of common forgeries [6]. One classic approach to digital image forgery is

enhancing. This is the easiest approach and is also considered the least risky (i.e., it

has the lowest repercussion if the forger is caught).

1
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To counteract these forgeries, active and passive detection mechanisms have been

developed [7]. In the active approach, digital watermarking or signatures are em-

ployed to make documentation more concise and genuine [4][6]. These mechanisms

all serve the same objectives, with the concise documentation and robustness of the

image processing field making the professional authenticated research works more ob-

vious and thus helping to eliminate the fake works. Forgery detectors essentially share

the same fundamentals for detecting forgeries – namely, the image information which

is either information included or attached. For example, a color image filter that

used to enhance the image, the used acquisition phase, or the camera lens character-

istics. All this information can be detected professionally by using the photo-response

non-uniformity noise sensor (PRNU). PRNU is a powerful algorithm for detecting

copy-move forgery and is unique for each camera [4]. Other powerful algorithms can

also detect copy-move forgery. These algorithms all have three main processes: feature

extraction, matching, and post-processing at the pixel level to reduce false alarms.

Additionally, scale and rotation invariant feature selection is also important for pro-

viding robustness. The best example powerful algorithm that achieved high efficiency

of forgery detection is PatchMatch algorithm. The PatchMatching algorithm defeats

is faster than most other algorithms and uses a matching approach that applies a

dense approximation field matching. The PatchMatching offset field will implement

more efficiency and smoothness in detecting copy-move forgery. In order to speed

the matching of the offset points, the PatchMatching algorithm in our work runs the

Denes-field to find the nearest neighbor field (NN), as follows:

delta(s) = argminφ:s+φ∈Ω.φ 6=0D(f(s), f(s+ φ)) (1.1)

NN u s
′ = s+ δ(s) (1.2)
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Figure 1.1: A Different types of forgeries

.

The new advances in deep learning, which has added a huge boost to this field,

proposes of many new applications to support and leverage the computer vision tech-

nology, for instance, using Convolutional Neural Networks (CNNs). Nowadays, CNNs

are most commonly used in computer vision applications and employ local neighbor-

hood pooling operations and trainable filters when testing raw input images. There-

fore, we propose novel models for copy-move forgery detection and localization using

these new techniques.

The later chapters in this work will illustrate more details about our novel end-

to-end network approach for image forgery detection and localization based on Scale

Variant Convolutional Neural Networks (SVCNNs). After that, we will leverage this

model by employing the Generative Adversarial Network (GAN) in dual branches of

the model to achieve same objectives with more robustness.
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1.0.1 Motivation

In recent years, our lives have become engrossed in the digital era, where technol-

ogy dominates digital information usage, processing, and transformation. Images and

their metadata have become easier to access and, as a result, software that makes it

easier to tamper with and forge images has become more prevalent. This causes nu-

merous problems regarding the authenticity of digital images, particularly in official

processes. Examples include using images in the courtroom as evidence, in insurance

claims for accident verifications, or in a medically-related way where an infection or

other health anomaly can be edited-in and used as an official diagnosis for personal

gain, like suing a workplace. There has also been an increase in the editing of per-

sonal photos for illegal gain, such as forging photo ID or various kinds of permits,

legal documents, etc. Editing personal photos has even been used to damage people’s

reputation. The current state for used methods are suffering of low efficiency and/or

lacking of specialization of the forgery type detection. These and other ongoing is-

sues motivate us to explore this industry more in-depth in order to come up with a

possible solution by building off state-of-the-art accomplishments, but with a focus

on copy-move forgery.

1.0.2 Objectives of the Research

The main objectives of this thesis are due to:

1) integrate multiple forensic approaches to increase the efficiency of detecting and

localize the copy-move forgery based on the same image input source.

2) improve the robustness of copy-move forgery detection models based on scale and

rotation invariant features and metadata selection.
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3) eliminate the dissimilarity feature-matching detection and increase the robustness

of feature similarity detection in high dimensional feature space by employing the

CNN model.

4) improve the computational speed implementation and operational cost of deep

learning models for copy-move forgery detection by using the GAN algorithm and

transfer learning technics.

1.1 Novelty and Research Contributions

The main contribution of this work is to enhance the capability of detecting and lo-

calizing copy-move forgery detection, by:

A) First, develop an algorithm to detect copy-move forgery detection that in-

corporates traditional methods that employ Patch-Match and dense-field algorithm.

Other powerful algorithms can also detect copy-move forgery. These traditional al-

gorithms all have the same three main processes: feature extraction, matching, and

post-processing at the pixel level to reduce false alarms. Additionally, scale and

rotation invariant feature selection is also important for providing robustness. The

PatchMatching offset field increases efficiency and smoothness in detecting copy-move

forgery. By running the Denes-field to find the nearest neighbor field (NN)to match

the offset points in the forged seen main stone of enhancement. Applying this al-

gorithm achieve a stronger efficiency of detecting and localizing copy-move forgery

higher than 91%

B) Second, develop a learning algorithm based on CNN that can detect copy-move
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forgery operations according to the feature similarity within an image frame. This

novel scheme based on neural networks and deep learning, focuses on the convolu-

tional neural network (CNN) architecture approach to enhance a copy-move forgery

detection. The proposed approach employed a CNN architecture that incorporates

pre-processing layers to gives satisfactory results. Additionally, the possibility of using

this model for various copy-move forgery techniques is explained. The experiments

show the overall validation accuracy is 90%, with a set iteration limit.

C) Third, distinguish the difference between the source patch and the target one in

copy-move forgery detection by developing a learning algorithm that combines CNN

and GAN in the end-to-end model. In this type of algorithm, the image is altered

such that it appears identical to the original and is nearly undetectable to the un-

aided human eye as a forgery. The present approach investigated copy-move forgery

detection using a fusion processing model comprising a deep convolutional model and

an adversarial model. Four datasets were used. Our results indicated a significantly

high detection accuracy performance ( 95%) exhibited by the deep learning CNN and

discriminator forgery detectors. Consequently, an end-to-end trainable deep neural

network approach to forgery detection appears to be the optimal strategy. The net-

work was developed based on two-branch architecture and a fusion module. The two

branches were used to localize and identify copy-move forgery regions, source patch

and the target one, through CNN and GAN.

D) Finally, we used deep transfer learning for digital image forgery detection by us-

ing fewer resources to achieve higher efficiency forgery detection. The method applies

prior knowledge that has been transferred to the new model from previous steganalysis

models. Additionally, because CNN models generally perform badly when transferred
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to other databases, transfer learning accomplished through knowledge transfer allows

the model to be easily trained for other databases. The various models are then eval-

uated using image forgery techniques such as shearing, rotating, and scaling images.

The experimental results, which show an image manipulation detection has valida-

tion accuracy of over 94.89%, indicate that the proposed transfer learning approach

successfully accelerates CNN model convergence but does not improve image quality.

1.2 Thesis Outline

This thesis is written in manuscript format. The thesis is organized as follows:

Chapter 2 provides a literature review of forgery detection methods and the nov-

elty and contributions of this thesis to the copy-move forgery detection. Chapter 3

focuses on a robust method for rotated and scaled copy-move forgery detection using

enhanced PatchMatch algorithm. Chapter 4 presents a convolutional neural network

for copy-move forgery detection. Chapter 5 illustrates copy-move forgery detection

and localization using generative adversarial network and convolutional neural net-

work. Chapter 6 presented an image forgery detection based on deep transfer learning.

Finally, Chapter 7 concludes the presented work and predicts future work based upon

the research and novel methods proposed.
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Chapter 2

Literature Review of Forgery

Detection Methods

2.1 Forgery Detection Methods’ Overview

2.1.1 Introduction

In most cases, digital image forgery is simple image enhancement, but it can also be

complete manipulation. Image retouching involves reconstructing damaged images,

while image enhancement is an operation of shaping transformation. This opera-

tion has many positive advantages, such as, for example, restoring missing data [5].

However, it may also in some cases be illegal, especially when applied to official doc-

uments, academic work, or medical documentation. Image splicing involves copying

and pasting more than one image into one component image, while image cloning is

essentially another term for standard copy-move forgery.

9
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2.1.2 Digital images forgery detection types

In recent years, developing a reliable method to detect digital image forgery is an

active research area. Many techniques have been utilized for image forgery. The

literature approaches can be simply classified into single and fusion approaches as

the major sectors, as illustrated in Figure 2.1. On the other hand, image forgery

detection mechanisms can be classified into two major categories of methods: active

and passive. The active method can be presented either by digital fingerprinting,

digital signature, or digital watermarking [1][2].

Figure 2.1: Digital image forgery approaches

.

2.1.3 Active forgery detection

An active forgery detection method, such as digital fingerprint, digital watermarking

and/or digital signatures, uses a known authentication clue embedded or coded into
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the image data before sending the image throughout an undependable transmission

network. The algorithms used for this forgery detection will be briefly discussed next.

2.1.3.1 Digital fingerprint

This method determines the camera used in a forged image by extracting the sensor

pattern noise. It employs a mathematical function to provide data, presenting a

length value called a hash value or, simply, hashes. This length is a fixed step value

among a several possible values: 32 bits, 64 bits, 128 bits, or 265 bits [3]. The

digital fingerprint method shows high accuracy in identifying the source camera for

many unknown images. However, it has limitations in that it tends to misclassify

small hash values [4]. [5] the authors reported that the average accuracy of using

fingerprint function is above 93%.

2.1.3.2 Digital signature

Digital signatures are obtained by concealing an image. The hash of the original

image is taken and encrypted by RSA. The digital signature is sent along with the

encrypted image which decreases the probability of a meticulous attack by the in-

truder. The encrypted image is shuffled using a Chaotic Logistic Map to obtain the

final shuffled encrypted image. The use of the Logistic Map improves the randomness

in the image. For authentication purposes, a comparator is employed, which evaluates

the correctness of the hash extracted [6].

2.1.3.3 Digital watermarking

Watermarking is a technique for labeling digital pictures by hiding secret information

within the images. Sophisticated watermark embedding is a potential method to

discourage unauthorized copying or attest to the origin of the images [7].
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2.1.4 Passive forgery detection

Digital image forgery can be found everywhere and is done for a variety of reasons.

However, the major challenge is to determine if an image has been manipulated or

not. Acquiring this knowledge solely with the aid of human eyes is impossible in most

cases. On the other hand, applying forgery detection to every image is costly, time-

consuming, and not always definitive. Detecting forgery based on a forged image is

called passive forgery detection and is the most typical scenario in forgery activities.

Passive or blind forgery detection technique uses the received images only for judging

their truthfulness or authenticity, without any signature or watermark of the original

image from the sender [8][55]. Therefore, passive forgery detection algorithms are

better compared to active algorithms. The forgery detection process in this category

is very unique and can be classified into two categories: Tampering forgery detection

and source device forgery detection.

2.1.4.1 Tampering operations

In general, each algorithmic detector is designed based on how the forgery is made

(e.g., copy-move and splicing are called dependent forgery). On the other hand,

independent forgery can be classified into three ways: Compressing, Inconsistencies,

and Re-sampling. All of these can be classified under tampering forgery. Therefore,

the detector should first of all identify the tampering operation which was applied

to the image and then makes the right decision regarding which algorithm needs to

detect and localize the forged area within the targeted image.

2.1.4.2 Source device

This type of detection is used either as an optical or sensor regularities method to

detect forgery. In source device identification, we try to identify the information about
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the device, such as camera fingerprints, model, or other factory information.

2.2 Overview of the classic approaches used for

copy-move forgery detection

2.2.1 Block Based Approach

This method is a fairly simple technique and yet quite effective in copy-move forgery

detection. The technique maps the test image to small-sized patches or blocks (e.g.,

4x4, 8x8 or 16x16) and uses these small patches in a specific sequence to scan all the

images as a filter either horizontally, vertically or in a zigzag manner. By applying

convolution between the filter and the same size small patches, the high convolution

value result which exceeds the tested threshold will be defined as the duplicate area

in the image. The best example of this technique is the Discrete Cosine Transform

(DCT), as shown in Figure 2.2. Here, [9] divides the image to overlapping small

blocks and then quantizes the DCT coefficients of each block, sorts them in the field

of lexicography, and finds any similarities between these blocks. This approach is

fairly robust to noise and image blurring but fails to detect copy-move forgery under

geometric operations.

Figure 2.2: The flow chart of classic DCT method for copy-move forgery detection

.
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2.2.2 Sensor Pattern Noise Based Approach

This method is used to prove the authenticity of an image based on sensor pattern

noise or camera signatures. This can help to evaluate the truthfulness of an image

by estimating the pattern noise of the same camera sensor. The noise pattern which

is introduced by any type of camera will be divided into two main types: a random

noise pattern and a fixed pattern noise. A random noise is changed from one exposure

to another, whereas a fixed pattern is known as a Photo Response Non-Uniformity

(PRNU). This is produced as a result of pixel light sensitivity and is highly noise-

dependent. PRNU, which is a kind of intrinsic property of all digital cameras [10], is

stable and unique for each camera. Therefore, by calculating the correlation between

the designated image with the PRNU signal of the known camera, we can specify

whether the image was captured by that camera or not. This will be obtained by

using the PRNU pattern correlated with the query image noise residual and apply-

ing it at a specific threshold. If the correlation value is less than the threshold, the

image was not captured by the known camera; otherwise, the image was captured by

the camera. Figure 2.3 shows the algorithm used in the detection and localization

forgery performance to estimate the accuracy and time conception to full processing.

This is accomplished by measuring the F-measure. To do so, we need to determine

all false-positive FP, true-positive TP, false-negative FN, and true-negative TN. The

PRNU performs FM = 83% on average.

.

Figures 2.4 and 2.5 include the FM reading. When the detection map and ground
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Figure 2.3: Shows The PRNU algorithm

truth occur at the same time or behave in the exact manner, then a false-negative FN

and false-positive FP will equal to zero and the F-measure will be normalized (F =

1). The F-measure is obtained at two levels: the image level and the pixel level. To

detect if there is forgery at the image level, the pixel level can be used to localize the

forgery in the same image [11].

The accuracy of this approach depends on the true-positive rate (TPR) and the

false-positive rate (FPR). The results show the PRNU approach has higher accuracy

over the PatchMatch approach for detecting active copy-move forgery. In fact, the

PRNU approach is specifically meant to deal with this type of forgery. We will show

a comprehensive comparison of these two approaches in a later section.

.

.
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Figure 2.4: This figure shows a detection of copy-move forgery based on PRUN
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Figure 2.5: This figure shows a copy-move forgery detection based on PRUN, the
image from different camera

2.2.3 Copy-Move forgery detection using PatchMatch (dense)

A PatchMatching algorithm is faster than most other algorithms and uses a matching

approach that applies a dense approximation field matching. The primary reason for

choosing this approach over others is its fast propagation in offset fields. Iterations

are performed by performing a randomized search or by doing full-image scanning

(propagation). Generally, in a scan, we can first choose a specific vector f(s), that

utilizes an s pixel for its patch center. Because the features essentially characterize

the patch, the distance between and among the features needs to be carefully and

accurately measured. The algorithm modifies the scaling, rotation and duplicate

regions (copy-move) and finds a dense approximation of the nearest neighbor field

(NNF) randomly, which matches the exact image’s patches.

This algorithm will be discussed in detail in chapter 4.
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2.3 Deep learning approaches for copy-move forgery

detection

2.3.0.1 Method review

The high demand for technology requires much more processing in order to classify the

origin of products. Digital image forgery and manipulation are largely intuitive, since

smart tools make the task much easier and highly proficient. Researchers have applied

different methods to detect forgery. In this study, as deep learning and neural network

have been involved in wide applications and different purposes, the presented deep

learning approach utilizes a convolutional neural network (CNN) to automatically de-

tect forgery in digital images. The proposed method is applied for copy-move forgery

detection based on convolutional neural networks (CNNs). The experiments demon-

strate that the proposed CNN-based model with the preprocessing layers achieves

excellent results.

In [12][13] and [14], deep learning methods applied to computer vision problems

resulted in a local convolution feature data-driven CNN, while in other research,

copy-move forgery detection algorithms were mostly based on computer vision tasks

like image retrieval [15], classification [16], and object detection [17]. Along with

CNNs, GPU technologies have helped to fuel the latest improvements in computer

vision tasks [12]. Unlike traditional strategies for image classification, which mostly

use local descriptors [18], the latest CNN-based image classification techniques use

end-to-end structure. Because deep networks typically incorporate classifiers and

features that are high, mid, or low level [19] using end-on-end multilayers, the various

feature levels are enriched according to the numeral of hidden layers. The most

recent convolutional neural networks like VGG [15], AlexNet [12], ResNet [21][14]

and ResNet [22] significantly enhance performance in object detection and image
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classification tasks [13]. Table 2.1 gives a summary of common CNNs [23], and shows

some of the characteristics of these networks.

Table 2.1: The common CNNs characteristics

CNN Layers No. Year Parameters No. Error rate

LeNet 8 1988 60 T N/A
AlexNet 7 2012 60 M 15.3%
ZFNet 7 2013 N/A 14.8%

GoogleNet 9 2014 4 M 6.67%
VGG Net 16 2014 140 M 3.6%
ResNet 152 2015 N/A 3.75%

.

2.3.1 Copy-move forgery detection based on convolutional

neural network (CNN)

With the rapid development of a variety of digital image editing tools, editing images

has become relatively easy. Editing of images also includes image forgery, which is

commonly considered as a process of cropping and pasting regions on the same or

separate sources [24].The goal of copy-move forgery detection is to determine the au-

thenticity of an image by detecting the traces left by copy-move forgery. Copy-move

forgery detection is one of the most actively investigated topics in image forensics.

In general, there are two main branches in copy-move forgery detection: block-based

forgery detection, and keypoint-based forgery detection [25]. In the block-based copy-

move forgery detection methods, overlapping image patches that contain raw or trans-

formed pixels are extracted, and similar patches are sorted to seek traces of forgery
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[26]. There are numerous methods currently being used in image forgery detection.

Many of these approaches consider the statistical characteristic in different domains

[27]. However, image forgery localization is one of the most challenging tasks in digital

image forensics. Different from forgery detection, which simply discriminates whether

a given image is pristine or fake, image forgery localization attempts to detect the

tampered areas [28]. In contrast to the aforementioned methods, we do not focus

on any specific feature or any domain but concentrate on constructing a model to

extract useful features automatically. Our model is based on a deep neural network.

This type of network includes Deep Belief Network [29], Deep Auto Encoder [30] and

Convolutional Neural Network (CNN) [31]. CNN is a widely used deep neural net-

work model for computer vision applications. It applies trainable filters and local

neighborhood pooling operations on the raw input image, resulting in a hierarchy

of increasingly abstract features. CNNs have a high impact on computer vision and

image understanding in general, so they can achieve superior performance on a visual

object recognition [32]. This is because the structure and working principle of CNNs

are highly similar to those of the visual system [33]. In fact, CNNs can be obtained

simply by composing linear and non-linear filtering operations such as convolution

and rectification [34].

2.3.2 Neural network architecture

The CNN architecture in this research has been built to perform forgery detection.

As such, CNN is layered in a specific arranged and sequence and operates as a feature

extraction which consists of a set of filters with a designated size. These filters convolve

in parallel with all regions of an input image with an overlapping distance called a

stride. The output of each convolutional filter in a convolutional layer is a newly

learned representation of data known as the feature map. Subsequently, the following
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hidden convolutional layers similarly extract features from the input feature maps

previously learned by a former convolutional layer. The output of these hierarchical

feature extractors is fed to a fully-connected layer that performs a classification task

using learning weights [35]. These weights are initialed randomly, then learned by the

backpropagation technique. The set of hierarchical convolutional layers yields a large

volume of feature maps which makes the CNNs computationally very expensive [36].

The used network in this work has 15 layers: 3 convolution layers, one max-pooling

layer, 2 average-pooling layers, 4 ReLU layers, 2 fully-connected layers, SoftMax layer,

and the input and classification output layers.

Figure 2.6: A Network architecture of the CNN model

.

2.3.3 CNN model identification

Convolutional Neural Networks is a complex nonlinear interconnection of neurons

inspired by the biology of the human visual system. Successfully used in object

recognition, face identification, image segmentation, etc., the use of CNNs in forensics
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is relatively recent. Inspired by results obtained by [37],we take the proposed CNN

as a feature extractor for each patch of the input image. The structure of a CNN is

divided into several blocks, called layers. Each layer Li takes as input either as

Hi ∗Wi ∗ Pi

feature map or a feature vector of size Pi and produces as output either as

H(i+1) ×W(i+1) × P(i+1)

feature map or a feature vector of size P(i+1). Layer types used in this work are:

Convolutional layer Performs convolution, with stride Sh and Sw along first two axes,

between input feature maps and a set of P(i+1) filters with size Kh ∗Kw ∗Pi . Output

feature maps have size of 5x5x32.

2.3.4 Copy-move forgery detection based on Siamese net-

work

.

In order to enhance the performance of the network, we decided to train the features

instead of training the image. To accomplish this, we used different networks to train

the features for each category individually and match both outputs trained features

to detect the copy-move based on the threshold convolution value or similarity vs.

dissimilarity. A novel fully-convolutional Siamese network trained end-to-end is the

best option to achieve this target at this time. Siamese networks are a special type

of neural network architecture. They were first time introduced in 1990 by Bromley
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and LeCun to solve the problem of signature verification based on image matching

technique [38]. Instead of a model learning to classify its inputs, the neural networks

learn to differentiate between or match two inputs. Specifically, they learn how to

distinguish similarities between them.

Let the f1, f2 be a pair of input images to our neural network. Let α be a binary

label. If the images have the same features, α will be labeled to 1, and the d function

will calculate how much the images are similar. Otherwise, α will be labeled to 0 to

present the difference between the pair input images. The d function is called a loss

function. Through this function, we marry the two networks in one Siamese network

and find the match between the two inputs in these networks.

d(f1, f2) =
∑
i

αi|f1[i]− f2[i]|

2.3.4.1 Siamese architecture

The Siamese networks consist of two branches which present as two identical neural

networks. Each branch takes one category of the two input images. The weight pa-

rameters between the twin network branches are tied, which guarantees that two exact

similar images will have no possibility to miss their similar feature map during the

detection process because they are dealing with the same functions. The last layers of

the two neural networks are then fed to a one contrastive loss function, which detects

the forgery or pristine in the tested image based on the similarity and/or dissimilarity

between the two images. The two identical neural networks have some weights. Each

pair of the images out of two different datasets presenting different categories based

on the training propose which in this case copy-move forgery detection. Figure 2.7

shows the main structure.
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Figure 2.7: Diagram of Siamese network structure

By applying Siamese, three main aspects emerge, as follows:

i. The loss function in Siamese networks is very important to show similarity or dis-

similarity.

ii. The architecture of Siamese networks is symmetric, which ensures the same pro-

cessing to the two inputs.

iii. Mixed Network Architecture in one network can improve the performance of that

network outcome.

The problem with copy-move forgery detection is localizing the copy moved area

from the original one. Also, many forged images have no pristine image pairs, in

which case the typical Siamese network will be a similarity detection tool only.

Deep convolution learning algorithms are one such solution. These are highly ef-
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fective in dealing with image forgery derived from generative adversarial networks

(GANs) [39]. In this type of algorithm, the image is altered such that it appears

identical to the original image and is nearly undetectable to the unaided human eye

as a forgery. In this work, a novel idea by employing the same Siamese network’s

structure by pairing to different networks CNN and GAN. CNN network to detect

the similarity between any similar patches in the same image frame, while the GAN

network, on the other hand, will detect the interrupted area [40][41]. If the image

has copy-move forgery, the model will produce three outputs categories: the forgery

patch mask, the similarity detection mask, and the original versus the copy-moved

area mask.

Figure 2.8: CNN-GAN model for copy-move forgery detection based on Siamese struc-
ture

Figure 2.8 illustrates the based diagram of the CNN-GAN network structure for

copy-move forgery detection. The two branches are used to localize and identify

copy-move forgery regions through CNN and GAN.
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2.3.5 Forgery detection based on deep transfer learning

The main concepts of transfer learning as a means to reduce both the amount of

resources required and the time it takes to train the networks especially when the

used dataset is huge. Doersch et al. in [42], studied the behavior of learning features

in unsupervised datasets. Their aim was to see whether or not a network is able

to learn objects occurring within images; if a network can do this, it indicates an

ability to learn underlying feature orientation for images. Therefore, by applying

these learned representations, features learned from this network could potentially be

reused in unsupervised object detection for other datasets, which can be translated

as a type of transfer learning.

The key here is to reuse the pretrained network to do a new task when the cases

have some common layout and to adjust the new case to fit with pretrained size

similarity matrix. It is then necessary to fine-tune the new model based on the chosen

pretrained model’s matrix. Figures 2.9 and 2.10 provide a summary of the cases and

the process, showing when and how the transfer learning process can be applied.

Figure 2.9: Size similarity matrix for pretrained model’s datasets [43]
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Figure 2.10: Decision map for fine tuning pretrained model [43]

2.4 Related Work

2.4.1 Introduction

The history of forgery is as old as mankind. Throughout the centuries, it has primarily

been used as a means to acquire access to power or money illegally [44]. Although

this motivation persists, many cases of forgery today are focused instead on gaining

access to systems for a variety of purposes. So, for instance, people engage in forgeries

across fields as diverse as healthcare, surveillance, insurance, and even the media. To

counteract forging activities, researchers are exploring algorithms as a means to detect

image forgery. In the majority of the algorithms used thus far, lighting is analyzed

to see whether or not copy-move forgery is present. During the forgery process,

the image becomes “messy”, and it is this “mess” that forgery detectors look for

through the application of algorithms, as explained in [45]. The researchers [45] also

demonstrate how shadows can generate similar lighting artifacts within an image. As

touched on earlier, there are several different algorithm-based approaches for forgery
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detection, but the most popular techniques are block-based and feature-based. For

block-based approaches, the detector needs access to the original image, whereas,

for feature-based strategies, the detector removes features by means of overlapping

blocks that are typically used in the block-based approach. Several various kinds of

characteristics can be input to the overlapping blocks, and the matching among the

boxes is performed on the basis of the feature-extraction strategy. In summary, this

chapter aims to provide a comprehensive overview of the state-of-the-art in the digital

image forgery. This technology has been invented and designed to determine whether

the image content is authentic or manipulated, without any prior knowledge about

the image. Also, it is used to distinguish between the source image and the target

image.

2.5 Feature Types

Firstly, we overviewed different types of image features and then we included three

types based features extractions: Polar Cosine Transform (PCT), Zernike Moments

(ZM), and Fourier Mellin Transform (FMT). For the first two types, will be having

two distinct categories: polar and cartesian.

2.5.1 Polar Cosine Transform (PCT)

Polar cosine transforms (PCT) is a fast algorithm which suits more for large images

and real-time application, and it was proposed to represent the pattern of 2-D image

f(x, y) by transforming it from cartesian to polar form f(r, θ), where r is the reduce

and θ is the azimuth.

r =
√
x2 + y2 (2.1)
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θ = arctan
y

x
(2.2)

The polar form will be found as:

f(r, θ) =
(∞∑
n=1

(∞∑
l=1

M c
nlH

c
nl(r, θ) (2.3)

Where r 5 1.

M c
nl = Ωn

∫ 2π

0

∫ 1

0
f(r, θ)Hc

nl(r, θ)ρdρdθ (2.4)

Hc
nl(r, θ) = Rc

nl(r)eiln (2.5)

Rc
nl(r) = cos(πnr2) (2.6)

Omegan = {
1
π

if n=0

2
π

if n6=0
(2.7)

The PCT will be defined on the unit circle, and to generate the Kernel coefficient

for each point, three trigonometric functions [46].

2.5.2 Zernike Moments Transformation (ZM)

Zernike moments are used for image recognition and find an image orientation, size,

and position. So, it is basically an extinction of geometric moments and [47] describe

the relationship between them. The Zernike function can be presented as follows:
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Vnm(ρ, θ) = Rnm(ρ)ejmθforρ ≤ 1 (2.8)

Where n,m are the order and the rotation respectively. Rnm(ρ) is the radial

polynomial, and it can be given as:

Rnm(ρ) =
(n−|m|)/2∑

x=0
(−1)x (n− x)!

x!(n+ |m|
2 − x)!(n− |m|2 )

(2.9)

The tow dimensional ZM for continuous image function f(ρ, θ) can be described

as:

Znm = n+ 1
π

∫ 2π

0

∫ 1

0
f(r, θ)V ∗nm(ρ, θ)ρdρdθ (2.10)

Znm = n+ 1
π

∫ 2π

0
e−jmθ

∫ 1

0
f(r, θ)Rnm(ρ)ρdρdθ (2.11)

In the digital image form in 2-D the ZM will be as:

Znm = n+ 1
2

∑
(ρ,θ)∈unitdisk

∑
f(r, θ)V ∗nm(ρ, θ) (2.12)

The Zernike moment is rotation invariant, this helps to detect the rotated forgery.

Therefore, the literature shows many algorithms use the Zernike moment to detect

the forgery [48][49][50].

2.5.3 Fourier-Mellin Transform based feature extraction

The recent efficient block-matching based copy-move forgery detection approaches

are using Fourier-Mellin Transform (FMT) which was proposed by [51]. In fact, this

method performs radial projection on the log-polar organize Fourier transformation
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of image blocks as follows:

a- Obtain translation invariant for each block i(x,y) by applying Fourier transformation-

representation.

|I ′(fx, fy)| = |σ|−2|I ′(σ−1((fxcosα, fysinα), (−fxsinα, fycosα))| (2.13)

b- Resample the magnitude values result into log-polar coordinates.

|I ′(ρ, θ)| = |σ|−2|I(rho− logσ), θ − α| (2.14)

c- Project log-polar values onto 1-D, and obtain θ = 45 features by quantization

these summed values for different θ.

g(θ) =
∑
i

log(|I(ρj, θ|) (2.15)

The FMT achieve high performance in forgery detection of flat regions.

2.6 Feature Extraction

2.6.1 Feature Extraction based on Classic Approach

As mentioned previously, there are several kinds of features extraction methods avail-

able in published work and online. They all suggest the efficacy of one or more

approaches for the detection of copy-move forgery, but this present work only looks

into 3 main classifications of features, namely: the Fourier-Mellin transform (FMT),

the Zernike moments (ZM), and the polar cosine transforms (PCT). The features
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in all 3 of these approaches share highly similar circular harmonic transform expan-

sions (CHT) [52]. Therefore, measuring the CHT coefficient through image projection

I(ρ, θ) using the basis function of K(n,m)(ρ, θ) to effect the transformation:

Fl(n,m) =
∫ ∞

0
R∗n,m(ρ)× [ 1√

2π

∫ 2π

0
I(ρ, θ)e−jmθdθ]dρ (2.16)

As can be seen, the image I(ρ, θ) appears in the polar scheme, with ρ ∈ [0,∞], θ ∈

[0, 2π]. This particular approach entails combining aspects of 2 formulations: 1.

integrating the Zernike radial, function, and the ρ value integration; and, in brackets,

indicating the Fourier series function for the image I(ρ, θ) together with phase term

e−jmθ with a rotation of θ radians. Thus, to obtain rotation invariance, we simply

use coefficient magnitude, such that FMT’s coefficient absolute value will then give

scale invariance, as any alterations in image scale add to the phase term [53]. Hence,

the radial function is then variant-based according to feature designation. Therefore,

we can assert that PCT radial function acts as a cosine function arguing ρ2 while

normalizing coefficients Cn.

Rn(ρ) = CnCos(nπρ2) (2.17)

In this case, the Zernike radial function demonstrates the identical radial function

of PCT, but includes coefficient values that are more apt and uses the formulation

ρ ∈ [0, 1] in both functions. This is formulated as follows:

Rn,m(ρ) =
(n−|m|)/2∑

h=0
Cn,m,hρ

(2−2h) (2.18)

At the same time, we can show the FMT radial function as non-zero in ρ ≥ 0,

using a continuous value r above the argument value of ρ2
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R(ρ) = ( 1
ρ2 e

(jrln(ρ)) (2.19)

2.6.2 Feature Extraction Using CNNs

Feature extraction in neural network shows how to extract learned image features

from a pretrained convolutional neural network and to use those features to train an

image classifier. Feature extraction is the easiest and fastest way to use the repre-

sentational power of pretrained deep networks. The network constructs a hierarchical

representation of input image. Deeper layers contain higher-level features, constructed

using the lower-level features of earlier layers. To obtain the feature representations

of the training and test images, we use the last fully connected layer FC. Obtaining

a lower-level representation of the images can be done by using an earlier layer in the

network. In this chapter, various methodologies of copy-move forgery detection and

image forensic detection were reviewed. Each study illustrated a specific approach to

detect the image forgery. Some studies publicly shared their algorithms, while others

did not. However, all of the mentioned researchers provided their own contribution to

solve the problem statement of copy-move forgery detection within a limited capacity.

2.7 Conclusion

It is worth noting that the models mentioned above can be used in a patch size

with good resolution. So, in order to achieve good matching with features from

both patches, the extension on the feature length must remain lax (that is, in only

a loosely extended state). Furthermore, we will apply sampling from cartesian and

polar for ZM and PCT, respectively, whereas FMT will employ log-polar sampling.

For the experiments, however, we will use polar sampling only to compute scaling
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and rotation in order to obtain the optimized invariance angle as well as scalar values

[54]. When we apply deep learning techniques, CNN architecture will be used for

feature extraction by applying multiple layers with trainable filters to create feature

maps which will be inserted later in row vectors. Technically, the deeper layers convey

features of higher levels from the lower levels found within earlier layers. Then, feature

extraction focuses on extracting useful information out of raw pixel values and use

them in next processing steps.
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port to developing and testing the algorithm as well as and reviewing the manuscript.

Abstract - Image forgery detection approaches are varied and serve same objec-

tives. However, the difference in image properties causes some limitations of most of

these approaches. Integrate multiple forensic approaches to increase the efficiency of

detecting and localize the forgery was proposed based on the same image input source.

In this paper, we propose a new detector algorithm based on different image source

format. We propose approach to detect a copy-move forgery based on PatchMatch

enhanced by the dense field technique. The F-measure score used same evaluation

function to make the system more robust. The output result shows high efficiency

of detecting and localizing the forgery in different image formats, for passive forgery

detection.

Keywords: Copy-move detection; forgery localization; image forgery; score evalu-

ation.

3.1 Introduction

The software and hardware technologies reduce the gap between the professional peo-

ple and the amateurs in different fields. Digital image processing, computer graphics,

and computer vision have some advantages and disadvantages to the use of technol-

ogy. Forgery is one of the challenging issues of digital image processing in recent

decades. As a result of using new algorithms and investigation techniques, it becomes

possible to detect the forgery [1]. Image forgery detection approaches are varied and

serve the same objectives. However, the difference in image properties causes some



43

limitations of most of these approaches. Integrate multiple forensic approaches to

increase the efficiency of detecting and localize the forgery was proposed based on the

same image input source. In this work, we propose a new detector algorithm based

on rotation and scaling invariance methods. We propose a robust approach to detect

a rotated and scaled copy-move forgery based on PatchMatch enhanced by the dense

field technique. The F-measure score used the same evaluation function to make the

system more robust. The output result shows the high efficiency of detecting 91%

and localizing the forgery in different image formats.

3.2 PatchMatch Copy-move Forgery Detection Ap-

proach

A PatchMatching algorithm is faster than most other algorithms and uses a matching

approach that applies dense approximation field matching. The primary reason for

choosing this approach over others is its fast propagation in offset fields. Iterations

are performed by performing a randomized search or by doing full-image scanning

(propagation). Generally, in a scan, we can first choose a specific vector f(s), that

utilizes an s pixel for its patch center. Because the features essentially characterize

the patch, the distance between and among the features need to be carefully and

accurately measured.

.
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Figure 3.1: A PatchMatching-based copy-move forgery detection algorithm

3.3 Proposed Method

Digital image copy-move forgery detection using PatchMatch has many limitations

to deal with most of geometric transformation which normally applies to copy-move

forgery, such as rotation, scaling and even shearing of the copied region. PatchMatch

was enhanced by [2] to deal with rotation, scaling and could be extended to more

geometric transformations. The algorithm complexity increased by considering the

scale factor and the rotation angle as new dimensions in the space. Both rotation

and scaling’s offset fields are changed in a linear manner. This theory, make the

propagation stage done easier and quicker as whenever the offset field matching in the

same neighborhood. However, the used enhanced PatchMatch algorithm works very

similarly to the classic version of this algorithm [2]. In fact, the proposed approach

achieved more robustness by improving a random search to overcome the local minima

trap that results of a large matching scale with high dimensional optimization space.

Reducing the number of iterations by initializing offset point increased the speed of

the algorithm. Figure 3.2 shows the matching of offset points over varies of geometric
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transformations.

Figure 3.2: Matching of the offsets in copy-move forged images in: a. street forward
copy-move, b. scaled copy-move, c. rotated copy-move, d. rotated and scaled copy-
move, e. rotated and scaled in mirrored copy-move)

.

3.3.1 Post-Processing using Denes Liner Fitting

Comparison of images, along with matching and stitching, is more or less based on fea-

ture matching. To create an offset field, the PatchMatch algorithm employs matching

and a feature search using offset points and generates the offset field. In this system, a

linear offset will formulate an accurate offset field on the top of the copy-move region.

Referred to as “propagation”, this step might require several iterations. Dense-field

matching strategies enhance the efficacy of the strategy and thus have already been

the choice of many scholars, as shown in [3-6]. Yet, despite the method’s popularity,

this type of image can suffer from geometric deformation, compression, the noise ef-

fect, and illumination fluctuations, and geometric deformation. When this occurs, the

offset field is significantly less successful at feature-matching. In the post-processing

stage, the objective is to remove or at least mitigate all negative impacts on the image.
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To achieve this aim, it is important to regularize offset fields and thereby heighten

the opportunity to enhance the detection of copy-move and decrease false alarms. To

be viable, offset fields must be able to fit all neighborhood pixels of s through a linear

model, after which a transformation sets parameters to obtain the sum of square error

(SSE).

δ
′(si) = ASi (3.1)

ε2(S) =
N∑
i=1
‖δ(si)− δ

′(si)‖2 (3.2)

.

In the post-processing strategy, a number of steps need to be adhered to for the

tests to be valid: 1) filtering median material using a circular window with a radius

of ρM ; 2) computing fitting errors, ε2(S), w.r.t. using a least-squares linear model

over a circular neighborhood of radius ρN ; 3) bringing ε2(S) to level T 2
ε ; 4) deleting

regional couples that are actually closer positioned than TD2 pixels; 5) deleting of

all regions not larger than TS pixels; 6) mirroring the regions; and 7) morphological

dilation of the elements using a circular structuring element featuring a radius of

ρD = ρM + ρN . If we choose to use these clearly defined stages, our first step is to

get rid of all outliers from the image using a median filter. In fact, not until all of the

outliers have been deleted or demoted will the minimum mean square fitting be used.

Pictures and other images that exhibit repeating patterns, including monochrome,

can be extremely problematic because their identical or near-identical details can

lead to mismatching entire areas. To overcome this problem, we use the thresholds

T 2
ε , TD2, and TS, whose usage is indicated in steps 3, 4, 5. So, if a copy-move pixel is

suspected, s, for a particular area, the mirrored pixel “twin” in s+ δ(s) is designated

as a copy-move pixel. The final stage will view morphological effects as an outcome



47

of immediately preceding steps.

3.3.2 F-measure Procedure

The F-measure standing (i.e., score) within the IEEE designation is determined by

a procedure that determines the true condition for negative and positive conditions.

This must have in it both pixel- and image-level images. Table 3.1 categorizes all

conditions accordingly to the scoring outcome.

Table 3.1: The predictive conditions

Predictive conditions
Predictive Positive Predictive Negative

TP TPR = TP∑
condition− positive

FN FNR = FN∑
condition− positive

FP FPR = FP∑
condition− negative

TN TNR = TN∑
condition− negative

The accuracy of any approach depends on all area under the PDF curve. Based

on that, we can write the equation as follows

Acc = TP + TN

P +N
= TP + TN

TP + TN + FP + FN
(3.3)

.

In brief, true positive shows the highest-output standings regarding accuracy in

detecting forged images, and true negative shows zero-output tallies featuring zero

scores. This indicates that the approach has detected zero evidence of forgery. Con-

versely, false negative and false positive indicate, respectively, a non-detected forged

image and an image that was assumed false, but the assumption was inaccurate. For

CMFD, the output can indicate a pure image mask or a forgery. On the other hand,

the ground truth mask presents as a binary mask (0, 1) which can be created by



48

hand to signify the region copies as well as removing the high-value image elsewhere

within the same shot (groundroot==max). In this instance, the remaining mask is

considered a low value (groundroot==0). Once the condition values are obtained,

we can verify the process, assuming that the CMFD output/ground root constitutes

genuine inputs. In the initial test, we can make both inputs the same to obtain a valid

F-measure score. Next, we can apply various inputs to achieve a range of F-measures

depending on the predicted condition values. Figures 3.3 to 3.4 indicate F-measure

results from the inputs. In this work, the “ideal” value for F-measure will be the

outcome of an ideal matching of the ground root mask (GT) and the output mask

of forgery detection function. In so doing, outliers of CMFD will likely lead to low

F-measure and thus limit the validity of the system.

Figure 3.3: If the CMFD mask and the GT mask are the same, the F-measure is
considered ideal

.

Figure 3.4: If the CMFD and GT masks turn variant, the F-measure is invalidated)
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.

3.4 Experiment Result

The proposed algorithm was able to resolve all the issues presented above and suc-

cessfully apply the most apt forgery detection examples for detecting copy-move and

localizing it. However, there are situations when the process will be less efficient, espe-

cially if the image contains too many vivid colors, no colors, or is in black and white.

Overall, the detector process requires the use of a variety of images and datasets,

including the Loughborough University dataset 1 and the GRIP database 2.

Figure 3.5: Searching for forged RGB images: (a) forged image, (b) offset points, (c)
localization copy-move forgery mask)

.

.

.
1http://www.grip.unina.it.
2http://homepages.lboro.ac.uk/ cogs/datasets/ucid/ucid.html.
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Figure 3.6: Searching for forgery in a grey image: (a) forged image, (b) offset points,
(c) localization copy-move forgery mask)

Figure 3.7: Searching for forgery in black and white image: (a) forged image, (b)
offset points, (c) localization copy-move forgery mask)
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In searching the three instances given in Figures. 3.5 to 3.7, we see several dif-

ferent offset points and also notice the reduction in efficiency when there are fewer

colors. Moreover, when presented from exceedingly “flat” viewpoints, changing image

formatting to BW from RGB could lead to even further reductions in features, which

means that the forgery, if present, might not be viewable with the tools provided.

Applying the proposed algorithm on digital images which were targeted by scaling

and rotation manipulations, shows that the robustness of this scheme is excellence

in the matter of detecting and localizing the forgery. Figures 3.8 to 3.11 show some

result of such experiments. (see Appendix A for more figures).

Figure 3.8: Detecting forgery in rotation by 90 degree)

.

Figure 3.9: Detecting forgery in rotation by 180 degree)

.

.

.

In order to objectively evaluate the usefulness and applicability of the methods,

we decided to apply the identical function as outlined by researchers in [6][7]. In
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Figure 3.10: Detecting forgery in rescaling by 80 percent)

Figure 3.11: Detecting forgery in rescaling by 120 percent)

examining Table 3.2, however, it becomes clear that the conditions are different. The

proposed method was used to detect active and passive copy-move forgery in differ-

ent images format, while the PRUN method, for example, was only used for active

copy-move forgery detection using a specific dataset that dragooned the proposed

method accuracy to be lower than that method. However, in the end, they gave very

close FM value. The algorithm was examined in many different images. Indeed, the

proposed algorithm robustness was judged against passive detector Discrete Cosine

Transformation DCT (Sheehan 2015), and the active detectors in literature like photo

response non-uniformity PRNU (Giovanni Chierchia 2014) when the original image

was presented as in figure 3.12.(See Appendix). Table 3.3 shows the time complexity

of the proposed method and the DCT method form literature. Here the comparison

shows the total time for full image inspection. The DCT algorithm using a block

scanning level, while the proposed method used pixel and feature propagation level.

That, in fact, makes the DCT algorithm take less time in most inspection cases. The

table shows one example. The difference of the FM in these experiments is negligible.

Tables 3.4 and 3.5 show some results of these experiments.
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Table 3.2: FM Parameters of Image as Given by the Proposed Method vs. Some
Literature

Existing methods Proposed method
Par. SIFT DyWT+SIFT PRNU PatchMatch E-PatchMatch

TPR 0.953 0.888 0.960 0.539 0.952
TNR 0.791 0.818 0.978 0.993 0.994
FPR 0.046 0.111 0.039 0.460 0.046
FNR 0.029 0.091 0.003 0.105 0.004
Acc 85.5% 85% 97.7% 90.88% 90.5%
FM 0.837 0.842 0.88 0.6885 0.928

Table 3.3: Time complexity of the proposed algorithm vs literature

Proposed method Existing method
Used Algorithm PatchMatch DCT

Time 302.800742 seconds 132.146030 seconds

Figure 3.12: Output of the proposed detector vs active and passive detectors from
literature)
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Overall, the proposed approach achieved more robustness by 1) improving a ran-

dom search to overcome the local minima. 2) Reducing the number of the iterations

by initializing offset point 3) Increased the speed of the algorithm.

Table 3.4: This table shows the proposed evaluation values for detecting CMF in four
different RGB images.

Input-img-No. FM TPR TNR FNR FPR PPV NPV TFE TPM TPP

1. 0.999 0.9958 0.9995 0.0042 0.0005 0.9862 0.999 1.292 12.235 1.465
2. 0.9992 0.9987 1.0000 0.0013 0.00001 0.9997 1.0000 1.945 10.179 1.687
3. 0.9727 0.9972 0.9977 0.0028 0.0023 0.9493 0.999 1.912 10.871 1.703
4. 0.5633 0.7210 0.9683 0.2790 0.0317 0.4622 0.9892 1.892 11.131 1.753

Table 3.5: This table shows the evaluation values for detecting CMFD to same image
in assorted color format.

Feature-Type FM TPR TNR FNR FPR PPV NPV TFE TPM TPP

PCT-BW 0.9896 0.9905 0.9996 0.0095 0.0004 0.9888 0.9997 1.230 8.765 1.579
PCT-RGB 0.999 0.9958 0.9995 0.0042 0.0005 0.9862 0.999 1.292 12.235 1.465
ZM-Gray 0.9802 0.9733 0.9996 0.0267 0.00049 0.9873 0.9990 2.060 11.657 1.790

.

3.5 Conclusion

To conclude, copy-move forgery detection (CMFD) had been widely adopted for use

by people of all skill levels, due mainly to its user-friendly and ease-of-use approach.

However, despite the relative simplicity of the strategy, there are still some challenges

that go along with it that makes the outcome sometimes invalid or at least question-

able. On the whole, there is the main issue affecting most CMFD algorithms. If a



55

copy-move is performed by applying something in the image background to obscure

evidence of forgery, but this can be overcome by employing classic PatchMatching on

the forged images’ offset points. However, applying a geometric transformation on a

forged digital image, like scaling or rotation, will be more challenging. In this situa-

tion, the authentic image is needed to proceed with forgery detection, so a different

method should be adopted. Our experiments indicate the presence of variance within

the evaluations, which occurs also in identical images where there are alterations to

the resolution or color, giving unequal F-scores. Despite these slight problems, the

F-score generally exhibits optimal efficiency in the enhanced approach. In future stud-

ies, we would use the identical idea to test for forgeries in videos and include studies

from the literature to evaluate F-score results.
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Chapter 4

Convolutional Neural Network for

Copy-move Forgery Detection

Preface.

A version of this chapter has been published in the Journal of Symmetry,MDPI 2019;

11: Isue 10, 10.3390/sym 11101280, 1-17. I am the primary author. Along with

Co-authors, Tariq Iqbal and M. Shehata, I conceptualized the idea. I have prepared

the first draft of the manuscript and subsequently revised the manuscript, based on the

feedback from Co-authors and also peer review process. As Co-authors, Tariq Iqbal and

M. Shehata assisted in developing the concept and testing the algorithm, reviewed and

corrected the model and results. Also, the Co-author T. Iqbal critically reviewed the

content and revising the manuscript. Contribution was made through the team support

to developing and testing the algorithm as well as and reviewing the manuscript.

Abstract: Digital image forgery is a growing problem due to the increase in readily-

available technology that makes the process relatively easy. In response, several ap-

proaches have been developed for detecting digital forgeries. This paper proposes a

57
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novel scheme based on neural networks and deep learning, focusing on the convolu-

tional neural network (CNN) architecture approach to enhance a copy-move forgery

detection. The proposed approach employs a CNN architecture that incorporates

pre-processing layers to gives satisfactory results. In addition, the possibility of using

this model for various copy-move forgery techniques is explained. The experiments

show the overall validation accuracy is 90%, with a set iteration limit.

Keywords: forgery detection; neural networks; image processing.

4.1 Introduction

Digital editing is becoming less and less complicated with time thanks to the increased

availability of a wide array of digital image editing tools. Image forgery, which is de-

fined as “the process of cropping and pasting regions on the same or separate sources”

[1], is one of the most popular forms of digital editing. Copy-move forgery detection

technology can be applied as a means to measure an image’s authenticity. This is

done through the detection of “clues” that are typically found in copy-move forged

images. In the field of digital image forensics, copy-move forgery detection generally

falls into two categories: keypoint-based and block-based [2]. This chapter will focus

on the latter category. Block-based copy-move forgery detection approaches employ

image patches that overlap. From these, “raw” pixels are removed for forgery testing

against similar patches [3].Of the many strategies currently being employed in image

forgery detection, several use statistical characteristics across a variety of domains

[4]. Regardless of the forgery category, the forgery detection application will deal

with active image copy-move forgery and/or passive copy-move forgery. In the former
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type, the original image includes embedded valuable data which makes the detection

process easier whereas in the latter the original is imaging which makes the detection

more challenging and difficult. Image forgery localization is even more difficult to

carry out [5]. While forgery detection only seeks to know if an image is in whole

or in part fake or original, image forgery localization tries to find the exact forged

portions [5][6]. Furthermore, in image forgery localization, the focus is on building

a model rather than looking at only certain features or domains. The model will

be used to automatically detect specific elements based on a form of advanced deep

neural network. Examples of these types of networks include Deep Belief Network

[7], Deep Auto Encoder [8], and Convolutional Neural Network (CNN) [62]. Of these

three neural networks, CNNs are most commonly used in vision applications. These

approaches employ local neighborhood pooling operations and trainable filters when

testing raw input images, thereby creating hierarchies (from concrete to abstract)

of the features under examination. Because the image analysis and computer vi-

sion in the CNN strategy are so highly advanced, CNN generally provides excellent

performance [10-12] in image forgery detection through the composition of simplis-

tic non-linear and linear filtering operations (e.g., rectification and convolution) [13].

This present paper proposes a novel approach for image forgery detection and local-

ization which is based on Scale Variant Convolutional Neural Networks (SVCNNs).

An outline of the proposed method is presented in Figure 4.3. For this approach,

sliding windows that incorporate a variety of scales are included in customized CNNs

with the aim of creating possibility maps that indicates image tampering. Our main

focus is both copy-move forgery detection and localization through the application of

elements removed via the use of CNNs. The rest of the paper is organized as follows.

In section 2, we introduce an overview of the literature that has contributed to the

advancement of CNNs in copy-move forgery detection and feature extraction proce-
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dures. In section 3, we introduce the proposed model and the training processes. In

section 4, the experiment’s environment and results are discussed. Finally, in section

5, we present the study’s conclusions.

4.2 Related Work

This section provides an overview of related works in copy-move forgery detection

using neural network CNN’s and related concepts. CNN for forgery detection based

on DCT: Numerous researchers have approached the problem using CNN’s for forgery

detection. As discussed in [14], CNNs can be used in steganalysis for gray-scale images,

where the CNNs first layer features a single high pass filter to filter out the image

content. In [2], an image model is developed for detecting image-splicing forgery. In

this approach, the researchers used discrete cosine transformation (DCT), to remove

relevant features out of the DCT domain [2].

The DCT domain feeds the input of the CNN by transferring the row of quantized

DCT coefficients from the JPEG file to data classification. The processing of the data

in the classification stage will generate a histogram for each patch and concatenate

all the histograms to feed the CNN [36]. In [15-17], deep learning methods applied to

computer vision problems resulted in a local convolution feature data-driven CNN,

while in other research, copy-move forgery detection algorithms were mostly based on

computer vision tasks like image retrieval [18], classification [19], and object detection

[20]. Along with CNN, GPU technologies have helped to fuel the latest improvements

in computer vision tasks [15]. Unlike traditional strategies for image classification,

which mostly use local descriptors [21], the latest CNN-based image classification

techniques use end-to-end structure. Because deep networks typically incorporate

classifiers and features that are high, mid, or low level [22] using end-to-end multilay-
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ers, the various feature levels are enriched according to the number of hidden layers.

The most recent convolutional neural networks (e. g., VGG [23], AlexNet [15], ResNet

[14][17] and ResNeXt [24]) significantly enhance performance in object detection and

image classification tasks [16]. Table 4.1 provides a brief summary of some common

CNNs [26].

Table 4.1: The common CNNs characteristics

No. CNN Layer No. Inventer(s) Year Place Parameters No. Error rate

[25] LeNet 8 Yann LeCun 1988 First 60 T N/A
[66] AlexNet 7 Alex K. Hinton, Ilya S. 2012 First 60 M 15.5%
[76] ZFNet 7 Matthew Z, Rob Fergus 2013 First N/A 14.8%
[25] Google Net 9 Google 2014 First 4 M 6.67%
[70] VGG Net 16 Simonyan, Zisserman 2014 Second 140 M 3.6%
[72] ResNet 152 Kaiming He 2015 First N/A 3.75%

In the CNNs mentioned above, the intermediate layers serve as global features of

image-level descriptors. This type of feature can reinforce inter-class differences but

does not make any intra-class distinctions. The strategies for deep learning applied to

computer vision tasks are also not suitable for direct use in copy-move forgery detec-

tion. As discussed previously, this kind of detection looks for the same types of regions

that have been resized, rotated or deformed in some way. The expressive feature rep-

resentations output derived from image-level CNNs [27] points to the possibility of

using appropriate patch-level descriptors in order to replace handcrafted patch-level

descriptors with data-driven ones [27]. The recent literature presents a number of

deep local descriptors that offer impressive patch classification and matching abilities

[28]. Because CNNs have been proven proficient in natural image distribution, they

will likely also be useful in image copy-move forgery detection, given that the aim

in that task is to find the so-called natural or pristine image among any unnatural

or forged ones. The main key used to classify images in order to detect copy-move
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forgery and localize it is image features. Therefore, extracting image features is an es-

sential part of the CNNs’ work in copy-move forgery detection. We will highlight the

differences between the classic way and the CNN automatic way of feature extraction

and show how the CNN strategy effectively eliminates the need for the first method.

4.2.1 Feature Extraction

The literature includes several different feature extraction approaches. Although the

published works discuss a wide range of different strategies for detecting copy-move

forgery, the present study will focus on three specific classifications of features, which

are the polar cosine transforms (PCT), the Zernike moments (ZM), and the Fourier-

Mellin transform (FMT). These three techniques were explained in previous chapter

(3).

4.2.2 Using CNNs for feature extraction

In neural networks, the process of feature extraction removes elements of learned im-

ages out of a pre-trained CNN (see Figures 4.1 and 4.2). These images can then be

utilized for training image classifiers. In general, feature extraction presents as the

simplest approach when applying pretend deep networks of representational power as

there is a clearly delineated hierarchy of the input images which is easy to understand.

In short, the deeper layers convey features of higher levels and are built by incorpo-

rating features from the lower levels found within earlier layers. Test and training

images for feature representations can be sourced from previous fully-connected (FC)

layers, while image representations from lower levels require an earlier network layer.

.

.
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Figure 4.1: Feature selection for classification pipeline (The proposed model). Train-
ing Stage

Figure 4.2: Feature selection for classification pipeline (The proposed model). Testing
Stage)

4.2.3 Classifying feature selections

The last step for computer vision applications is to use feature selection in object iden-

tification to classify certain features according to specific characteristics. This stage

is typically carried out using later layers of deep learning neural networks via a voting

technique. Take, for example, the fully-connected layer known as learning. Because

of a large amount of data, it can be challenging for the system to learn good classi-

fiers prior to extracting undesirable features from the program. However, removing

features which are irrelevant or repetitious creates a more generally applicable classi-

fier and also serves to decrease learning algorithm run times, thus enabling a deeper

understanding of the real-world problem to which the classifier is being applied.

A considerable number of worthy research has already been conducted on exist-

ing techniques for detecting and localizing copy-move forgeries. The research has

investigated whether these implemented methods are sufficiently robust and whether

properly modeling the structural changes that have occurred in images due to copy-

move forgeries can reliably classify a digital image as a pristine or manipulated image.
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Furthermore, many techniques of copy-move forgeries have been presented in the liter-

ature. Some good examples about detections techniques and their limitations [29-31].

Some recent studies [29][32] on copy-move forgery detection highlighted CNN’s which

learn and minimize a loss function (an objective that scores the quality results) in

an automatic process. However many authors are still attempting manual efforts on

designing effective loss function by telling CNN what we wish to minimize [31][33].

4.3 The Proposed CNN Model

CNN’s are nonlinear interconnecting neurons based on the construct of the human

visual system. Applying CNN’s for forensic purposes is a somewhat new approach,

but their ability to segment images and identify objects is thus far unsurpassed [34];

In one study where CNNs were used to extract input images’ features in order to

classify them the method outperformed all previous state-of-the-art approaches. The

proposed CNN will be used as a feature extractor for image input patches in the

training stage and, later on, for the testing stage as well (see Figures 4.1 and 4.2).

CNN’s can be deconstructed into building blocks knowns as layers. Layer Li will

accept relevant input Hi×Wi×Pi for feature maps or vectors sized as Pi . This layer

then gives the output Hi+1×Wi+1×Pi+1 for feature maps or vectors sized as Pi+1. In

the present study, we use six different kinds of layers: convolutional, pooling, ReLU,

softmax, fully-connected, and batch normalization. A brief description of each type

of these layers is given below.

1. In a convolutional layer, the convolutions are performed using stride Sh and Sw

for the first two axes of the input feature maps, along with Pi+1 filters Kh ×Kw × Pi

[35].
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Hi+1 =
[
Hi −Kh + 1

Sh

]
(4.1)

Wi+1 =
[
Wi −Kw + 1

Sw

]
(4.2)

Pi+1 (4.3)

2. In a pooling layer, which occurs following convolutions, the layer chooses

pixel valuations of specific characteristics (e.g., average pooling or maximum pooling)

within a given region. If a max-pooling layer is chosen, it then carries out maximum

element extraction, i.e., stride Sh and Sw for the initial two axes in a neighborhood

Kh×Kw for every two-dimensional piece of input the feature map. The input block’s

maximum value is, therefore, returned [35]. This approach is commonly applied in

deep learning networks. In our proposed strategy, the max-pooling layer will decrease

the input image patch resolution as well as enhance network robustness in the face of

possible valuation changes in the motion residuals of the frame’s absolute difference

image [36].

Hi+1 =
[
Hi −Kh + 1

Sh

]
(4.4)

Wi+1 =
[
Wi −Kw + 1

Sw

]
(4.5)

Pi+1 = Pi (4.6)

Input image patches for CNN models use two-dimensional array image blocks

measuring 3 × (64 × 64), with 3 indicating the channel number in the RGB-scale.

Thus, if we use 3 × 3 as a window size and 3 as the stride size, the image patch

resolution decreases by half to 32 × 32 from its original 64 × 64 following the initial

max-pooling layer [35].
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3. ReLU layer Performs element-wise nonlinear activation. Given a single neuron

x, it is transformed into a single neuron y with:

y = max(0, x) (4.7)

4. Softmax layer Turns an input feature vector to a vector with the same number

of elements summing to 1. Given an input vector x with Pi neurons xji ∈ [1, Pi], each

input neuron produces a corresponding output neuron.

yi = exj∑k=pi
k=1 e

xk
(4.8)

5. In a fully-connected (FC) layer, dot multiplication is carried out between flat-

tened feature maps (i.e., the input feature vector) and the weight matrix using Pi+1

rows, along with columns of Pior(Hi.Wi.Pi) . Meanwhile, the output feature vector

presents P(i+ 1) elements. Trained CNNs can also remove meaningful information in

images that have not been used to train the network. This particular characteristic

enables forgery exposure of previously unidentified images as well [35].

6. In a batch normalization layer, every input channel is normalized in ultra-small

(or mini) batches. The batch normalization layer initially normalizes every individual

channel’s activations by subtracting the mini-batch mean and then dividing the result

by the standard deviation of the mini-batch. Next, the input is shifted by the layer

using the learnable offset β, after which it scales the input using the learnable scale

factor γ . Batch normalization layers can also be used between convolutional and

nonlinearities (e.g., ReLU layers) to increase CNN training and lessen any sensitivities

that might arise during the initialization of the networks. Batch normalization can

normalize inputs xi through formulating the mean µB and variance σB2 for a mini

batch and input channel, after which it formulates the normalized activations:
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x̂i = xi − µB√
σ2
B + ε

(4.9)

As can be seen in the expression above, ε or Epsilon is used to enhance numer-

ical stability if the variance of the mini-batch variance presents as being too small.

Furthermore, in cases where the zero mean input and unit variance are not suited to

the subsequent batch normalization layer, it is then scaled and shifts its activations

as follows:

yi = γ̂xi + β (4.10)

Interestingly, the offset β and scale factor γ properties appear as learnable proper-

ties that can be updated throughout the network training process. At the end of the

network training, the batch normalization layer then formulates both the mean and

the variance across the entire training set, after which it retains them as properties

called TrainedMean or TrainedVariance [35]. Then, if the trained network is applied

for new image prediction, the layer will utilize the trained mean/variance rather than

the mini-batch mean/variance for activation normalization.

The three main characteristics are representative of CNN models and indicate

their potential for image forgery detection. These characteristics are presented below:

• Convolution operation: This is defined as adding image pixels within local regions,

thereby accumulating into large values the duplicate patches in the area. The large-

value accumulation could result in easier detection of forged images among pristine

ones [37].

• CNN model convolutional: This is a form of exploitation of any strong spatially

local correlations which could occur in input images. Embedded copy-move distorts

image pixel local correlation, which then differentiates it from correlations of pristine
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images via the process of correlation-based alignment. In this way, any distinctions

between distorted and natural images are easily perceived through the CNN models

[37].

• Nonlinear mappings: In CNN models, this type of mapping enables them to derive

deep and rich features that enable them to be used to classify all types of images.

Such features are automatically learned via network updates and would be difficult

to apply using the traditional non-CNN method [29].

Table 4.2: Summary of CNN layers with their chosen parameters.

Layer Preperties No

imageInputLayer 64×64×3 1
convolution2dLayer 64 5×5 convolutions with 3

stride [1 1] and padding [2 2 2 2]
MaxPooling2DLayer Name: 3

HasUnpoolingOutputs: 0
NumOutputs: 1

OutputNames: ’out’

Hyperparameters
PoolSize: [2 2]
Stride: [2 2]

PaddingMode: ’manual’
PaddingSize: [0 0 0 0]

stride [1 1] and padding [2 2 2 2]
fullyConnectedLayer(x) 64 fully connected layer 2

2 fully connected layer
ReLU ReLU 4

Softmax Softmax 1
C-Outputlayer 64×64×3 1
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The literature, as mentioned above, introduced different types of algorithms used

for image forgery in general and in copy-move forgery detection in particular. How-

ever, CNNs are emerging now as a powerful method to do the job. The CNN pipeline

begins the extracting process of the features from the image using the different layers

and then feeds them into the specific classifier to detect the copy-move forgery if it

exists. However, before we go over the different parameters used in this CNN, we

should first clarify why CNNs are generally a more viable option for this task. The

fact that CNNs are learnable method makes them a better choice overall compared

to other methods for achieving the same goal. In the evaluation section, we show

the output performance of this algorithm versus the state-of-the-art. Secondly, the

classifier here can work at the feature level as well as the pixel level, which eliminates

the challenge of losing pixel interaction if we use a pixel vector. The CNN uses the

first convolution layer to downsample the image by adjacent information of the pixels.

The convolution is thus a summation of the weight of pixel values in the input image.

This is achieved, in the proposed network, by convoluting the input image 64×64 with

a 5×5 Kernel filter. The operation (using a weight matrix) will produce a new image

with a smaller size. Each convolutional layer in the CNN will produce multi convolu-

tions, thus generating a weight tensor according to the n number of the convolutions,

in this case, the tensor will be 5×5×n. The first convolution layer in the CNN will

give a weight matrix of 64×5×5, which will produce 1600 parameters. At the end

of the network, we use a prediction layer to support the final classification task. For

the last two convolutional layers we padded them with 2, however, the max-Pooling

Layer has a pool size of 3×3 and a stride of 2×2.
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4.3.1 The proposed CNN architecture

Recent studies show that CNNs are performing remarkably well in image forgery

[29][32]. Therefore, in this paper, we propose an end-to-end deep learning CNN to

handle and detect copy-move forgery. The proposed CNN includes the following main

operational layers: an input layer, convolutional layers, fully connected layers, clas-

sification layer, and output layer with each convolutional layer including different

convolutional filters. The top benefit of using CNNs in copy-move forgery detection

model is the strategy’s success in feature extraction which improves the model overall

performance. Moreover, improvements in the output results are based on CNN learn-

ing skills which can be boosted by increasing the input samples and training cycle.

CNNs also lower the cost of detecting copy-move forgery compared with the classic

method. Finally, a wide range of input images can be used by CNN which, indeed,

increases the output accuracy of the model.

In this paper, the CNN structure is intended for copy-move forgery detection. To

that end, we layered the CNN in a specific sequence such that it could function as

a type of feature extraction system that uses filter sets of a certain size. The filters

are arranged in parallel to the input image regions, incorporating an area of overlap

known as the stride. Every convolutional filter output per convolutional layer stands

for a feature map or learned data representation. The subsequent convolutional layers

likewise extract features from maps which were learned from earlier convolutional

layers. The proposed CNN will learn how to detect similarities and differences in

image features through a number of hidden layers. Each individual hidden layer will

enhance the CNN’s learning feature ability in order to increase its detection accuracy.

Note that, hierarchical feature extractor output is added to an FC to carry out a

classification task learning weight which is first randomly initiated and then learned

via a backpropagation method [38]. However, the hierarchical convolutional layers
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create an enormous amount of feature maps, rendering the CNN’s impractical from

both cost and computational perspectives [39]. The network shown in Figure 4.3 is

applied to the present study features 15 layers in total: one each of input and output

classification layers, one SoftMax layer, one max-pooling layer, two average-pooling

layers, two FC layers, three convolution layers, and four ReLU layers.

Figure 4.3: The proposed network architecture (The training algorithm of the pro-
posed CNN model

.

4.3.2 Batch normalization of CNN

Batch normalization for CNN has been commonly applied as a technique for classifying

output images. Deep neural network model training can be challenging due to data

changes across the various different layers (known as the internal covariate shift)

as well as gradient vanishing/exploding phenomena [40]. Batch normalization can

overcome these issues through the application of a few simple operations for input

data, as follows [41]:

µρ←− 1
m

m∑
i=1

Ii (4.11)

µρ←− 1
m

m∑
i=1

(Ii − µβ)2 (4.12)



72

Îi = Ii − E[Ii]√
σ2
β + ε

(4.13)

I
◦

i = γÎi + β (4.14)

where Ii indicates the i − th training sample; m denotes batch sample amount;

β = Ii,.....m expresses mini-batch input data; µβ and σβ stand for mean and standard

deviations, respectively, in mini-batch B; ε represents a negligible constant that pre-

vents zero from being divided, and γ and β indicated scale and offset parameters.

Against these operational parameters, the mini-batch I
◦
i output data show a stan-

dard deviation and a fixed mean for all depths following normalization of the batch.

Hence, any deviations of mean or variance are removed through the process of batch

normalization, allowing the network to avoid potential internal covariate shifts.

Different types of CNN’s are proposed to achieve a similar goal by employing dif-

ferent architectures and different domains. However, the CNN centered deep learning

approach is currently widely used for universal image manipulation and forgery de-

tection [1]. The proposed copy-move forgery detection algorithm is performed based

on CNN to adopt an end-to-end structure. Thus, the proposed algorithm provides a

better outcome for copy-move forgery detection than traditional copy-move forgery

detection algorithms. The copy-move forgery detection baseline initiates by taking the

input image, extracting the features, producing feature maps, and then making useful

feature statistics with the percentage pooling process of up sample feature maps. Af-

ter that, the feature classifier can be applied to doctor similar regions as a copy-move

forgery. PatchMatch was implemented to achieve the localization assignment.
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4.4 Experiment Results

In this section, we present the results analysis and performance of the used CNN

deep learning model. Next, we evaluate the model’s method versus state-of-the-art

approaches. Finally, we present the training experiment and testing evaluation in

detail.

4.4.1 Environment Analysis

In this work, we use a CNN deep learning model with two fully connected layers.

The auto-resizing layer was modified to inject unrestricted size images and output

modified union dataset size to 16×16×3 to fit with the input to the first convolutional

layer. Training and testing phases were performed using neural network toolbox-

MATLAB 2018a. Learning training was implemented with different image batch

sizes: 64, 100 and 265, with the same preliminary learning rate of 10(−3). However,

the best performance of error loss was accomplished with the mini-batch size of 100.

Forgery localization used images with a minimum Size of 277×277. We considered

PNG image formats for the used datasets, each image of which is 12.288 k. bytes

on the disk versus the actual size of 8.420 k.bytes. A lab machine was used to run

this implementation using 16GB RAM. All network parameters were set to achieve

smoothed training for both, applying the same number of iterations to test accuracy

and loss. In our training and testing, we split the dataset into randomized bases;

however, the dataset divided into 70% training data and 30% testing data.

The used dataset is a combination of public online datasets available from research

or dataset producers. These publicly available datasets are quite small, however, and

none of the existing CMFD datasets provide ground truth masks showing the distin-

guishing source and target copies. Therefore, we generated a collection dataset out of
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online and public existing datasets for training and testing. In total, we collected 1792

paired images of good quality to present different samples for copy-move forgery, each

with one binary mask distinguishing source and destination. This dataset contains

166 authentic and 1626 tampered color images. However, in the training task, we

don’t specify which images are manipulated in a copy-move manner and which are

not. Hence we randomly verify that 30% of the total forged samples are a copy-move

forgery for testing i.e. around 340 mixed images for testing. These CMFD samples

and their authentic counterparts together form the training and testing datasets.

The first one was constructed by Christlein et al [1], consisting of 48 base images

and 87 copied with a total of copy-move forged images of 1392. The second database

MICC-F600 was introduced by Amerini et al [37][17] with 400 images. The CIFAR-10

(11000) [42]. Caltech-101, image manipulation dataset. IM dataset (240 images) [2].

The Oxford buildings dataset (198 images and 5062 resized images) [42]. Coverage

dataset (200) [43] and collection of online and self-producer images. . Note that,

even the total images look bigger than what we used in training and testing, that

is because we avoid using some images either because they are in bad shape or low

resolution. An image data augmentation configures with main properties is shown in

the next table. Data augmentation typically will maintain the generalization of the

image classification properties such as rotation, scaling, shearing, etc. Training and

testing related have been illustrated comprehensively in the result discussion section.

4.4.2 Training

While CNN training involves a larger portion of data, there are no large public datasets

that contain numerous image pairs marked with their copy-move manipulations and

ground truth. Therefore, we generated our own dataset, from datasets we found

online. The training data were designed to present two datasets categories: pristine
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Table 4.3: Data augmentation properties

Data Property Option value

Input Size [64 64 3] Various
Fill Value 0

Rand X Reflection 0
Rand Y Reflection 0
Rand Rotation [-20 20]
Rand X Scale [1 1]
Rand Y Scale [1 1]
Rand X Shear [0 0]

Rand X Translation [-3 3]
Rand Y Translation [-3 3]
Initial Learn Rate 0.01 0.001
Mini Batch Size 256 100.64
lower Threshold 10 8

Validation Frequency 50 30
Base Learning Reta 0.0001

and forged. The second dataset category is larger than the first because of the different

types of geometric transformation employed to the copy-move patches in the forged

images. Training images constitute images that have a known outcome. The elements

and features of these kinds of images undergo a classification process in order to find

their correct weight category. After determining which weights will be used, sample

images, whose outcome is also already known, are run. Next, the sampled test images

undergo an extraction, while the weight is used to predict image classification. Finally,

an actual known classification is compared with the predicted classification to gauge

the accuracy of the analysis.
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4.4.3 Result and Discussion

In assessing the proposed model approach, we will review the dataset, analyze its per-

formance, and then compare the method to other key algorithms as a reference point.

The dataset was built with images that were readily available online. These images

were then resized to 64 x 64 and constituted the two specific pre-set image categories

of pristine and forged. We used both of these categories for network training, starting

with the input layer sized to the output of the automatically resized layer. We also

used two learned connected layers – fc1 output at size 64, and fc2 output at size 2.

The SoftMax layer represents the final layer used for output discrimination, as shown

in Figure 4.3. The variant scale classifier trains the network output at a certain size

based on loss function software. The various minibatch sizes used (e.g., 64, 100 and

256) indicate a strong impact on the training set as well as in the saturation of the

overall accuracy and error loss. The Figures (4.4, 4.5 and 4.6) show the different

training responded based on changing minibatch size and some other important pa-

rameters. Moreover, the model fitting shows different training responses based on

changes in minibatch size and other important parameters. For instance, the training

cycle, for the same data in the same training environment, using minibatch 64, there

are 154 iterations. for 7 epochs, i.e., 22 iterations for each epoch. On the other hand,

while using minibatch 256, the training cycle will take only 98 iterations for the same

number of epochs, but each epoch, in this case, takes 14 iterations to be finished. In

both training cases, samples will take roughly the same amount of time. Overall, we

found that the best minibatch size is 100. Despite the training process having a high

noise ratio, this batch size still gives the best training accuracy and error drops faster,

resulting in less error. We then reduce the number of epochs to avoid overfitting

during the training task as the input data is for the dataset is not large enough. See

Figures 4.4, 4.5 and 4.6.
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Figure 4.4: Training progress: Mini batch size is 64

.

Figure 4.5: Training progress: Mini batch size is 100

.
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Figure 4.6: Training progress: Mini batch size is 256

.

The results indicate network robustness, despite the small size of our dataset.

Given these results, we anticipate that increasing our dataset size will result in even

higher efficiency, as the small dataset could not use much of the temporal information

i.e. the use of a small sequence of image volumes across the time range will not make

an effective investigation to understand the dataset’s temporal dynamic. Nonetheless,

the good performance of our model still leaves room for improvement, for instance, the

approach gives similar results if no post-processing is performed. Overall, the tech-

nique provides the best results when applied to active copy-move forgery, whereas for

passive copy-move forgery detection, it gives fair results. Figures 4.7 to 4.10 illustrate

some results for different scenarios of copy-move forgery detection using the proposed

learned CNN approach. As we mentioned in the introduction, CNN still suffers from

forgery localization for copy-move since it is located in the same neighborhood as
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the original region. Provisionally, we overcome this issue by employing a PachMatch

technique to match the feature points between the two regions, with this stage be-

ing done separately [44]. However, image patch size used for training and testing, as

mentioned above, is customized to small sizes according to network sizing parameters.

This will reduce the image size leading to loss of some important details. Hence, this

size will not work effectively for forgery localization which mainly relies on the offset

points matching. Therefore, the image size used for copy-move region localization is

277×277 instead of the 64×64 used for the training and testing stages.

Figure 4.7: Random output samples show the true detection of the pristine images
category. The output is flagged with the category name in green color “Pristine”
which indicates the correct decision

.

In this Figure 4.7, the model was able to justify the authenticity of these images

and mark them as pristine images, which illustrates that the false positive is zero and

the true positive is the one in the present experiment. On the other hand, in both

Figured 4.8 and 4.9 the model red flags these images as forged images regardless of

whether the copy-move forgery type is active (as is in Figure 4.8 or passive (as is in

Figure 4.9. These two cases are called true positive and true negative respectively.

An unfortunate scenario occurs when the model marks the forged image as a

pristine image. In this case, the model accuracy is reduced. However, even if a result

mistakenly shows the image as pristine, the resulting flagging alarm may incorrectly
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act by sending the output category in red color as illustrated in Figure 4.10.

Figure 4.8: This figure shows three image categories (a) pristine image (b) the same
image was manipulated with copy-move forgery (c) the output mask shows the copy-
move forgery detection result includes the two similar areas in the same image frame.

.

.

.

.

Our model represents a deep learning method suitable for detecting forgery em-

bedded within digital images. Non-deep-learning traditional methods, such as [22],

are unable to extract relevant data from input image patches automatically, nor can

they devise representations very efficiently. Many non-deep-learning approaches also
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Figure 4.9: Random samples of the model result illustrates a true passive forgery
detection i.e. there is no original images (Pristine)

Figure 4.10: False detections by labeling this forged image as a pristine image. There
will be a red flag on the result refers to a false result

Figure 4.11: Testing time of forged samples related to the number the trials



82

only utilize a single artificial feature for classification purposes. These are all signifi-

cant drawbacks in the traditional models. Our proposed method, on the other hand,

is much more efficient. It can apply several epochs in the training sets, the optimal

number being no less than three epochs and no more than five, which is related to

dataset size. Testing a new input image will take a longer time the first time around

but will decrease several trails, the first trail case usually takes no more than 1.6 sec-

onds as illustrated in Figure 5.1. This time is based on image resolution and the used

machine. Table 4.4 indicates a clear reduction in accuracy from 90% to 81%. The

average validation loss rate of the training set was around 0.3010 for all saturated

iteration values. Of the 1255 forged images we used, we had an overall validation

accuracy of 88.26% to 90.1%. The matrices and the baseline evaluation settings were

devised by computing false positive (FP), true positive (TP), false positive (FP) and

false negative (FN) settings in order to compute the F-measure. The evaluation scores

in Table 4.5 present the F-measure of the proposed model vs the state-of-the-art mod-

els [45, 46][28]. It is worth mentioning again that our testing dataset was relatively

small and used a mix of both forged and pristine images. Hence, we anticipate that

the value will change in accordance with dataset size. Note that the number of epoch

is low according to the dataset size to avoid overfitting during the training task.

Table 4.4: The accuracy based the epoch and the number of the iterations

Epoch Iteration Time elapsed sec. Mini-batch accuracy Base learning rate

1 1 31.42 88.00% 0.0010
4 50 1587.43 90.00% 0.0010
7 90 3120.95 91.00% 0.0010

.
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Table 4.5: Comparison of copy-move forgery detection F-measure, precision and
recall of different algorithm

Algorithm [45] [47] [48] [28] [49] [50] Proposed

F1 0.5943 0.5439 0.6055 0.6318 0.7993 0.4926 0.8835
Precision 0.5440 0.5390 0.5662 0.5927 - 0.5734 0.6963
Recall 0.8020 0.8327 0.8040 0.8220 - 0.4939 0.8042
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4.5 Conclusion

A novel neural network-based copy-move forgery detection strategy was proposed in

this work. The convolutional neural network (CNN) was built with MATLAB due to

its ease of use and its support of GPU/CPU computations. Weights for decreasing

error rates and improving overall efficiency were applied via backward and forward

propagation. Our CNN learned how to reproduce both forged and pristine outputs in

its training phase, enabling copied regions to trigger detection during reconstruction.

The results of active copy-move detection were highly promising, while the passive

detection results were only satisfactory. Additionally, overall efficiency was relatively

low due to the small size of the experimental dataset utilized in the training phase.

The proposed model’s key contribution is its capability of detecting and localizing

copy-move forgery. In future related work, other network structures could be tested,

and in-depth analyses could be performed through implementing a more expansive

dataset than the one used here. As well, other kinds of image manipulation could

be incorporated, including post-processing strategies. Additionally, future work could

focus on producing customized layers to distinguish the source and target location

of the copy-moved region in this type of forgery, or to examine the effects of other

shallow learning methods for image copy-move forgery.
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Abstract – The problem of forged images has become a global phenomenon that

is spreading mainly through social media. New technologies have provided both the

means and the support for this phenomenon, but they are also enabling a targeted

response to overcome it. Deep convolution learning algorithms are one such solu-

tion. These have been shown to be highly effective in dealing even with image forgery

that derived from generative adversarial networks (GANs). In this type of algorithm,

the image is altered such that it appears identical to the original and is nearly un-

detectable to the unaided human eye as a forgery. The present paper investigates

copy-move forgery detection using a fusion processing model comprising a deep con-

volutional model and an adversarial model. Four datasets are used. Our results

indicate a significantly high detection accuracy performance ( 95%) exhibited by the

deep learning CNN and discriminator forgery detectors. Consequently, an end-to-end

trainable deep neural network approach to forgery detection appears to be the optimal

strategy. The network is developed based on two-branch architecture and a fusion

module. The two branches are used to localize and identify copy-move forgery regions

through CNN and GAN.

Keywords: image forgery; copy-move forgery; CNN; convolutional layer; GAN;

neural network training.
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5.1 Introduction

The hot topic known as “fake news” is becoming increasingly widespread across so-

cial media, which for many people has become their primary news source. Fake news

is information that has been altered to represent a specific agenda. To support the

production of fake news, images that have been tampered with are often presented

with the reports. Fake news production has been enabled in recent years due to

two main reasons: first, cost reductions of the required image-producing technology

(e.g., cell phones and digital cameras); and second, the widespread accessibility of

image-editing software from open-source tools and apps. Anyone with a cell phone or

digital camera who has online access to the necessary software can now alter images

easily and cheaply, for whatever purpose. At the same time, online access enables

the images to be sent across a virtually limitless number of platforms, where they

can be further altered through imagery-dedicated software (e.g., Photoshop) using

tools such as splicing, painting, or copy-move forgery. Considering how easy it is to

create fake images as part of a fake news report, there is a critical need for detec-

tion methods that can keep up with the latest technology in fraud production. The

integrity of an image can be validated through one or more strategies, either alone

or in combination, which tests an image for authenticity [1][2][3]. A popular strategy

is copy-move image forgery, which involves copying or cloning an image patch into

an identical image. The patches to be copied or clones can be either irregular or in

regular form. Copy-move image forgery is increasing in popularity due in large part

to its ease of use. Furthermore, because the copied/cloned patch has its source in

the original image, photometric characteristics between the original and the forgery

are essentially the same, making it that much more difficult for the fake to be de-

tected. Since its recent development at around the turn of the present century [4][5],

the primary purpose for copy-move forgery detection (CMFD) has been determining
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if the imaging probe in question (otherwise known as the query) features any ar-

eas that are cloned, and whether this cloning has been performed through malicious

intent. The three main types of copy-move forgeries are plain, affine and complex

[6]. The earliest CMFD investigations dealt mostly with plain cloning. Interestingly,

in [7], the researchers found that human judgment outsmarted machine learning re-

garding computer-generated forgeries. This could be caused by the current lack of

photorealism found in most computer graphics tools. In response to this flaw, various

researchers suggested alternative approaches to analyzing digital imagery. Examples

include, in [8], statistics extracted from wavelet decomposition and, in [9], statistics

extracted from residual images. As well, researchers focused on noise type and level

based on recording devices [10], chromatic aberrations [11], and/or demos-icing fil-

ters [12]. Additionally, some researchers looked at color distribution differences [13],

whereas others examined the statistical properties found in local edge patches [14].

Currently, deep learning is being successfully applied in a range of applications, as

demonstrated in [7][15][16]. Given the increasing difficulty to distinguish between pho-

tographic and computer-generated forgeries, the need to develop equally sophisticated

detection modes is becoming more and more urgent [17]. The latest incarnations of

computer-vision-based image forgeries show a significantly higher degree of photoreal-

ism than was previously exhibited [18][19]. Especially compelling is image copy-move

forgery (CMF), which changes the features of one image by digitally translating one

scene as another. CMF is further enabled by generative adversarial networks (GANs),

whose sole purpose has it producing “knock-off” images that are virtually identical

to the original ones. The present work proposes a novel algorithm that can detect

and localize digital image copy-move forgery. The approach is derived from a new

strategy for deep neural architecture that detects CMFs by applying generative ad-

versarial networks. The proposed algorithm assumes that because no forged images
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will be accessible for training purposes, feature representations for pristine images are

then made available solely on the basis of training tasks. Therefore, a one-class SVM

(support vector machine) has been trained in alignment with the characteristics of

the images in order to gauge distribution. Any forged images can then be determined

according to anomalies found in the distribution patterns.

5.2 Related Works

According to feature extraction and matching schemes, copy-move detection strate-

gies are categorized as one of three different types: block-based or patch methods,

keypoint methods, and irregular region-based methods. In the first approach, block-

based methods have applied chroma features in some research studies such as [20][21],

as well as in PCA features [22], blur moments [23], DCT [24], and Zernike moments

[25]. However, this is a relatively computationally expensive approach compared to

the other two. The second approach category – keypoint-based methods – includes

triangles [26], ORB [27], SURF [27[28][29], and SIFT [30][31]. Keypoint approaches

are known to be generally fast, but they can fail if S and D show as homogeneous.

Meanwhile, the third category deals with strategies related to irregular region-based

methods, as in [32] and [33], and has been shown to be somewhat efficient, though

occasionally resulting in false positives [34-37]. The latest research on image forgery

detection focuses on deep neural networks (DNNs). In [67], DNN was applied for

extraction of features in CMF, while in [38], altered areas of the image were detected

using a DNN-based patch classifier. The researchers in [39] looked for a way to detect

localization and splicing using a DNN solution, and [40] explored how DNN can be

used in detecting images that have been doctored. In general, GAN-based methods

provide the most optimal results in image forgery detection, with the majority of
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the applications using numerous paired images from both domains to train the net-

works. In instances where no image pairs have been made available for the training

process, an alternative method can be used to continue in the GANs approach. The

adversarial training paradigm features two main components: the generator (i.e., the

image-to-image network) and the discriminator (i.e., the support network). Within

the paradigm, the generator’s training revolves around learning to deceive the dis-

criminator, while the discriminator is trained to detect real images from forged ones

[41]. In [42], Zhu et al. devised a method for automatically pairing images, thus over-

coming the shortage in genuine image pairs. For a baseline, Zhu and colleagues [42]

employed a discriminator in the GAN. Nonetheless, there are a few methods where

explicit delineation of a probability distribution is not done; in these cases, generative

machines are trained to obtain samples within a specific distribution source. The main

benefit of using this technique is being able to design the machines for the desired

training task.

5.3 Proposed Copy-Move Forgery Detection Strat-

egy

5.3.1 GANs create forged images

Advances in technology are enabling GANs to create forged images that fool even

the most sophisticated detectors. Keep in mind that the primary aim of generative

adversarial networks is to form images that cannot be distinguished from the original

source image. Figure 5.1 below depicts image forgery translation enabled by GANs.

.

As can be seen, generator GA has been employed to transform input image A from
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Figure 5.1: The GAN training cycle for fake image translation (i e fake image creation
based on real image)

domain DA to output domain DB. Next, generator GB is used to map image B back

to domain DA (the original domain). In so doing, two more cycle consistency losses

are added to the typical adversarial losses borne by the discriminators, thus obtaining

A = GA(GB(A)) and enabling the two images to be paired. Extremely sophisticated

editing tools are required to change an image’s context. These tools must be able

to alter images while retaining the original source’s perspective, shadowing, and so

on. Those without forgery detection training would likely be unable to distinguish

the original from an image forged using this method, which means that it is a good

candidate for developing supporting materials for fake news reports.

5.3.1.1 GAN tasks

1- Loading dataset, 2- Building discriminator network, 3- Building generator network,

4- Generating a sample image, 5- Training difficulties, 7- Closing thoughts. Shown in

figure 5.2.
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5.3.1.2 GAN processing Steps

In our GAN proposed network, we consider three main steps: 1- In the first step, the

Generator creates an image from random input. 2- The image is then presented to the

Discriminator, together with several images derived from the same dataset. 3- After

the Discriminator is presented with the real and forged images, it provides probabil-

ities in the form of a number between 0 and 1, inclusive. Here, 0 indicates a forged

image and 1 indicates a high likelihood for authenticity. Note that the Discriminator

should be pre-trained prior to the Generator, as this creates a clearer gradient. It is

important to retain constant values for both the Discriminator and Generator when

training their opposite (i.e., the values for Discriminator when training Generator

and vice versa are steady). Holding the values constant enables the networks to have

a greater understanding of the gradient, which is the source of its learning. How-

ever, because GANs have been developed as a type of game played between opposing

networks, maintaining their balance can be challenging. Unfortunately, learning is

difficult for GANs if the Discriminator or Generator is too adept because GANs gen-

erally require a lengthy training period. So, for instance, a GAN could take a few

hours for a single GPU, while for a single CPU, a GAN could require several days

[43].

5.3.1.3 Support vector machines

Recently, there has been a decline in reliance on support vector machines (SVM),

particularly kernel SVMs, as they require real valued vectors. Users and researchers

are instead turning to machine learning systems as end-to-end learning models. In

general, deep learning architectures usually source the classifier function and feature

representations solely from training examples, but we employed a linear SVM to-

ward the end of every deep convolutional neural network branch. We then trained
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them jointly by applying a backpropagation algorithm and stochastic gradient de-

scent (input→→convNet→→SVM→→output). Note that the linear SVM has been

given a linear activation function (similar to a regression function), with the hinge

loss replacing the loss function, as follows:

L(ŷi, yi) = max(0.1− yiŷi) (5.1)

Where yi ∈ [−1, 1] and ŷi = actualoutput. It is also possible to use a stochastic

sub-gradient descent rather than an SGD, given that the hinge-loss cannot be differ-

entiable. The training thus occurs end-to-end, with the hinge-loss error signal guiding

the convNet and SVM weights learning. Furthermore, because hinge-loss causes the

linear units to connect with learning maximum margin hyperplanes, linear SVMs are

the outcome. As an example, a linear unit is connected by the hinge-loss, resulting in

a single linear SVM + a trained convNet as feature detection after training. In this

setup, the SVM is designed to learn the final splitting hyperplane and the convNet is

designed to learn the hierarchical features. Following the training procedure, a heav-

iside step function can then be applied against the linear SVM output to obtain a

binary output. The fact of using SVM in forgery detection is based on capturing the

difference before knowing for certain that the patch is a forged which requires the use

of a one-class SVM. This entity, which has been trained using feature vectors h that

have been extracted from input images, quickly learns pristine feature distribution

versus the forgery feature distribution. Next, it outputs a soft value that indicates

the degree of possibility that the feature vector h is pristine or forged. The soft mask

M
′ is then defined as a matrix which has identical dimensions as the image, with

every entry having a soft SVM output corresponding to image patches at identical

positions. A final detection binary mask M can be obtained by employing the soft

mask M ′ for thresholding. More details will be provided in the coming section.
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A summary of the copy-move forgery detection (CMFD) strategies employed in

the present work is given in this section. Figure 5.2 illustrates the pipeline for the

proposed technique. As shown in the figure, our proposed approach employs two

distinct networks for forgery detection. One of the networks is GAN-based detects

any symptom of forgery, while the other locates any similarities existing in the image.

As a joint network, the proposed method then locates any copy-move forgery found

in the imagery target, demarcating the original source from the copy-moved region of

the image. In CMFD related task, the input data proceeds through the two networks

GAN and CNN, and then assigned to a linear classifier based on the proposed model

selection. The CNN in general maintained a feature extraction and ability to generate

features versus strong discrimination skills, therefore proposed model is used it for

data generation, feature extraction, data discrimination, and data classification.

Figure 5.2: A layout of the proposed model

.

5.3.2 CNN in matching or detecting similar patches

A critical issue in copy-move forgery detection is images which contain features that

are nearly identical, although matching visual content for the same or diverse im-
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ages can be done [44]. The important element in matching methods is how much

rigidity ensues after the correspondences are computed. In most instances, matching

size options are relatively manageable, but they can also be extreme, in which case

the problem is unconstrained. Recently, some methods are being developed which

can detect matching objects throughout an image and across several different view-

points [45][46], but improvements can still be made [47]. Such improvements could

include involving convolutional deep neural networks, as these networks are relatively

easily trainable end-to-end. For local feature representations, researchers have used

deep learning in different copy-move forgery detection stages, such as metric learning,

descriptor, and detector. Based on preceding research inquiries, the present work

proposes employing deep convolutional neural networks (CNNs) to deal with learning

automatic detector in similar features presentation [48]. CNNs are especially valuable

for learning decision features adaptively when working from large data sets [49]. In

the present study, the proposed model will learn a number of attributes, such as what

is considered good features, how to capture similar pixels across different scales, and

finding possible similarities between patches. The proposed model is then evaluated

qualitatively as well as quantitatively, showing its ability to discern and match similar

patches across multiple scales. The primary contribution of this work is developing a

learning algorithm that can detect copy-move features according to similarities found

in detected features within an image frame.

5.3.2.1 Similarity-matching tasks

In similarity-matching tasks, similarities are computed by employing a multi-layer

CNN that deconstructs the targeted patches into sub-patches. Under this setup,

different scales can be applied and repetitive textures used. Local similarities are

computed in every individual layer by starting with the assumption that the feasible
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rigid deformations comprise only a limited set. Detection of the matching features is

propagated throughout the sub-patch hierarchy, with the incorrect detections being

discarded during the process [46]. As can be seen in Figure 5.2, the architecture resem-

bles a traditional computer vision pipeline, except for the application of differentiable

modules. The addition of these modules enables end-to-end training to occur in the

localization tasks as well as in the main target task of CMFD. The similarity detection

network moves all the images (pristine and forged) through the convolutional layers,

in the process extracting feature maps by employing CNN. This procedure continues

through dense local descriptors and percentile pooling to feature maps, and then,

using the mask decoder feature, on to the original image size. At this stage, similar

feature maps are matched as a tentative correspondence map, using binary classifiers.

Further details will be provided in the training section below.

5.3.2.2 Feature extraction

Traditional CNN architecture is employed for the pipeline’s initial step of feature

extraction. In this stage, a CNN which does not have fully connected layers develops

a feature map from an input image (f ∈ Rh×w×d). This can also be expressed as a h×w

dense spatial grid from d-dimensional local descriptors. In [35], researchers applied

more or less the same interpretation for instance-retrieval, showing that CNN-based

descriptors had significant discriminative power. Therefore, as feature extraction

in the present work, the VGG-16 network will be employed. This setup features

four layers (16 convolutional layers) and conducts 3X33 × 33X3 convolutions and

2X22 × 22X2 pooling throughout the extraction process. Note that this strategy is

presently the most popular for image feature extraction. In employing the technique,

however, we decided to modify the terms slightly by cropping the pool4 layer (in

front of the ReLU unit) prior to applying per-feature L2-normalization. A pre-trained
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model was used to perform image analyses and classification. Figure 5.2 illustrates

the duplication of the feature extraction network, showing how it is organized as a

series configuration. In this arrangement, the input images move along the network

path [22][32]. The aim of conducting feature extraction is mainly to boost the learned

models’ accuracy through the extraction of the most critical features and the removal

of redundancies and noise [25]. Note that, in general, feature extraction focuses on

extracting useful information out of raw pixel values; the information is considered

“useful” if it can distinguish among various categories. Following successful feature

extraction, the images and related labels are then used to train a classification module

which will be used in measuring distances toward the detection of similarities.

Table 5.1: Comparison of computational complexity

Cited Feature Methods Feature length

Fridrich et al. [50] DCT 64
Bayram et al. [51] FMT 45

Popescu and Farid [52] PCA 32
Huang et al. [53] Improved DCT 16

Proposed technique GAN and CNN 16
Toqeer et al. [54] DCT and KPCA 10

The comparison between the proposed method and other state-of-the-art methods

in terms of feature vector dimensions which presented in table 5.1 shows that our

method technique uses low feature vector dimension which, in fact, increases the

model efficiency in an effective syntactic computational scheme.
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5.3.2.3 Feature extraction problems

Accurate and efficient feature extraction of input data is crucially significant in ma-

chine learning. In feature extraction, input data are transformed into feature vectors,

which in turn become input in learning algorithms. To address the many issues that

have arisen over the years in pursuit of optimal feature extraction, researchers have

developed a number of techniques, ranging from feature selection to dimensionality

reduction to manifold and representation learning [28]. The most promising solution

appears to be incorporating CNNs in the VGG16 approach. In this architecture,

multiple 3 X 3 kernel-sized filters are used in succession. Multiple stacked small-size

kernels function more optimally than large-size ones, as multiple non-linear layers

add more depth to the network, allowing for more complex learning and reduced

costs. The extraction of relevant features can be done effectively even from a simple

approach, and such an approach need not be complex or large to be effective [29].

5.4 Proposed Algorithm Overview

The present study proposes the construction of a copy-move forgery detection algo-

rithm that features two deep neural networks – a GAN network and a custom CNN-

based one. The details of the proposed network are as follows. The GAN network

contains both the generator and the discriminator. It will be built first, followed by

the custom CNN. The third step in the construction involves merging the two output

networks to create a merging network branch. In this section, we will sketch down

these networks with draining more related details.
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5.4.1 Discriminator network

Constructing the discriminator network requires some prior work, beginning with

defining the functions to build the CNNs in Tensorflow (e.g., looping and conv. layers).

For the Tensorflow CNN, the classifier is explained as follows: https://www.tensorflow.org/tutorials/mnist/pros/.

Based on this architecture, our discriminator will have many layers, six conv. layers,

followed by seven ReLU layers and two fully connected ones. The main purpose of

the discriminator is to discriminate the accuracy value between the real patches in the

real input image and the regenerated patches in the fake image out of the generator.

The working manner and training process of the discriminator will be fully presented

in the implementation section.

5.4.2 Generator network

The generator module in figure 5.3 we will use in our proposed construct resembles a

reverse-order ConvNet and CNNs, which aims to change into single probability 2D or

3D pixel value matrices. In contrast, generators aim to change d-dimensional input

(noise) vectors into 28 X 28 images by upsampling. The generator and discriminator

underlying structures are quite similar, but here we will refer to the convolution

transpose method rather than the conv2d method.

Figure 5.3: Shows the GAN module used in the proposed model

.
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Sample image generation: Sample outputs can be generated by untrained gener-

ators. Using Tensorflow, we first define the session and assign an input placeholder

which we will refine at a later stage. Note that the loss function in GANs can be quite

complex compared to standard CNN classifiers. Meanwhile, the generator constantly

improves its output images, and the discriminator works to better discern “real” from

“generated” images. Hence, the loss functions need to be formulated to take both

networks into account. So, discriminator prediction probabilities of real dataset im-

ages will be held by Dx; generated images will be held by Gz; and discriminator

prediction probabilities of the generated images will be held by Dg. Our goal is to

generate images on the generator network which the discriminator will not be able to

identify as forgeries. To achieve that end, we start by computing label-of-1 and Dg

losses using the function ıtf.nn.sigmoidcrossentropywithlogits. After obtaining the

two loss functions (dloss and gloss), our next step is defining the optimizers. In the

generator network, the optimizer is used for updating the generator’s weights only,

not the discriminator’s weights. Therefore, we need to ensure this distinction, which

we can do by devising two separate lists of the generator’s weights and the discrimi-

nator’s weights. After specifying the two optimizers, the better SGD one appears to

be Adam. Finally, to update our generator and get a probability score, a random z

vector will be fed to the generator and the output passed to the discriminator. Dis-

criminator updates will be obtained the same way, substituting the discriminator for

the generator.

5.4.3 CNN networks

CNNs function as feature extractors. We will first use Tensorflow to create the CNNs

for self-correlation, looping and conv. Layers as in figure 5.4. These will feed into the

mask detector, which will highlight similarities existing throughout the target area
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of the image. Next, the extracted features will be subjected to self-correlation, with

the module detecting any extracted features which are alike. The percentile pooling

layer will then compile the relevant statistics. Finally, the mask detector will be used

to recast the feature to its original image size, after which the linear classifier will be

applied and a decision made regarding the authenticity of the image.

Figure 5.4: Presents the branch used for similarity detection based on CNN

.

5.4.4 Merging network

The outputs of these two networks serve as inputs for the merging one. The three core

aims for building this new network are: first, to render a final decision on the copy-

move forgery image under study; second, to make the copy-move transaction localized;

and third, to make a distinction between the original source and the targeted regions

of a potentially forged image. Though varied in their application, neural networks

(NNs) are generally used for predicting categorical variables. A typical NN classifier

features n input nodes, with n indicating how many values can be assumed by the

dependent variable. In the present network, we use as input values the two vectors

from the other networks’ output. Thus, CMFD classifier output, in this case, is a

node which represents the concatenated sum of all relevant inputs. To begin, we
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tested all of the model networks individually. At the point where the desired outcome

was obtained by the two networks, we used GAN for detecting any forged area(s) in

the image and the similarity CNN for detecting any similar area(s). Next, the two

outputs were combined into a single layer to represent novel vector inputs, with the

first layer being an SVM classifier. To preclude high extremes of randomness, every

test was performed multiple times and involved random selection of both the test sets

and the training, after which we averaged the results. Terms of expected score defined

as

S = Pr(F̂ |F ) + Pr(P̂ |P )
2 (5.2)

where P [F ] demonstrates the case “image pristine[fake]”, P̂ [F̂ ] is the case “de-

cision pristine [fake]” and Pr indicates the predicted scores from each case [55]. a-

CMFD classifier: we used an SVM linear classifier. Eventually, our SVM classifier

uses the merging of the vector features of the two models and is trained over the whole

training set. b- Output Masking: shows three images with copy-move forgeries, the

corresponding ground truth, and the detection map output by our method. Note that

the forgery is easily detected, and the map is quite accurate, although the original and

copied regions are distinguished from one another. With an eye to making the model

more robust, alternative performance measures were attempted. So, for example, in

every SVM classifier, the separating hyperplane was shifted to an orthogonal direc-

tion and the subsequent ROC constructed. Next, we calculated the area under (the

receiver operating) curve (AUC) for every model, as a sizeable AUC usually indicates

robustness, even when functioning under changeable conditions [55].

.
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Figure 5.5: Overview of the proposed model two branch DNN based (GAN and CNN)
ended by merging network to provide CMFD

5.5 Proposal Implementation

This section provides details on the present study’s localization and splicing detection

methods; for further details on GAN, please refer to [56]. The GAN used in this

work is called CapsuleGAN which trained with forged and pristine images as a means

to map input image I in relation to forgery mask M . As shown in Figure 5.2, the

GAN architecture comprises a generator G and a discriminator D, with generator G

consisting of a 16-layer U-net format of 8 encoder and 8 decoder layers [68][57]. So,

for instance, if G receives image I, G will calculate a forgery mask M ′ (soft mask)

as M ′ = G(I). In so doing, the generator aims to construct an M
′ as similar as

possible to the genuine M . The discriminator D will then differentiate between the

generator’s constructs (i.e., synthesized input-mask pairs I,M ′ vs. genuine input-

mask pairs I,M). Equation 4 expresses how the discriminator and generator are

coupled through a loss function, using cGAN. The training of the generator includes

forcing it to construct masks which are so close to the original that the discriminator is

unable to distinguish the original from the forged. In this way, the generator is forced
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to become better and better at creating near-identical images. The architecture of the

discriminator D is a 6-layer CNN which can perform binary classification for masks.

Whether an image-mask estimate pair I,M ′ or a genuine image-mask pair I,M is

given to the discriminator, it will subdivide the provided input as pixel patches.

Every patch within the subdivision will then be classified either as pristine or forged

by assigning the patch label of either 1 or 0, respectively, after which the values of

every patch combined will be averaged in order to classify the complete input as a

whole. We can use these equations to illustrate the two cases from the paragraph.

D(I,M ′) = D(I,G(I)) (5.3)

D(I,M) = 1 (5.4)

Essentially what we create is a minimax game, with generator G and discriminator

D training through the competition to enhance the skills of the other. The coupled

loss function of the network is described in the following equations:

LcGAN(G,D) = EI,M [log(D(I,M))] + EI,Z [log(1−D(I,G(I))] (5.5)

Above, we explained how generator G is forced to construct masks M ′ that can

fool the discriminator D, but this process stops short at guaranteeing the synthesized

mask can detect an image forgery. So, for instance, if M ′ can trick the discriminator

D into believing it is not a forgery, it will be classified as authentic even though it is

not, and M ′ 6= M . To overcome this failure, we can then add another limitation to

the generator G, thus enabling it to reconstruct the genuine masks from the original

training images, such that M ′ ≈ M . We can accomplish this through retraining G

and teaching it how to minimize reconstruction losses LR related toM ′ andM . Recall

that our overall aim is still to categorize each pixel as either pristine or forged, so LR
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is chosen as our binary cross-entropy (BCE) loss. Hence, the total loss function for

cGAN can be expressed as follows:

L = LcGAN + τLR (5.6)

After training has been accomplished, generator G will be able to construct masks

M
′ which are very close toM . Then, for evaluating forgery detection, we can estimate

the mean pixel value for a mask as follows:

M
′

avg = 1
X.Y

x∑
x=1

y∑
y=1

M
′(x, y) (5.7)

Where as X × Y is the image resolution. Binary thresholding can then be used in

tandem with threshold T to decide if a specific image I has been forged or not. Images

are designated pristine (i.e., not forged) if M ′ ≈ 0, or according to thresholding, if

M
′
avg. < T . If this is not the case, 1 is considered a forgery. We illustrate receiver

operating characteristic (ROC) curves showing various threshold T performance levels.

Additionally, the ROC will indicates model performance when employing BCE loss

and L1 as reconstruction loss and illustrates that the area under the curve (AUC)

designates perfect detection accuracy. The results can be verified against the precision

recall (PR) plot for the model, which also shows an excellent detection rate for this

work experiment.

Finding the similarity using CNN is just street forward as mentioned above, except

including customized layers to do Self-correlation and Pooling procedure in percentile

scheme by preference the vector’ scores in percentile ranking. Each extracted feature

by CNN will produce a feature tensor fs sized in 16×16×512. The goal here is to match

any similar features by correlating all feature together by applying a self-correlation

layer to sorted out the tensor S[i] as follows:
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S[i] = [ρ(i,0), ..., ρ(i,j), ...ρ(i,255)] (5.8)

Where ρ(i,j) is the Pearson Correlation coefficient which, in fact, maintains the

feature similarity. For instance, here we have two suspected feature patches f(ir,ic)([i])

and f(jr,jc)([j]), which can be normalized in the form of f̂(ir,ic)([i]) and f̂(ir,ic)([j]). The

ρ(i,j) to these designated features will be given as follows:

f̂(ir,ic)([i]) =
∑
i(f(ir,ic)[i]− µ[j])

σ[i] (5.9)

f̂(ir,ic)([j]) =
∑
j(f(ir,ic)[j]− µ[j])

σ[j] (5.10)

ρ(i,j) = (f̂(ir,ic)([i]))T f̂(ir,ic)([j])/512 (5.11)

Here, µ[.] is the mean value of the feature f(ir,ic)[.] where σ[.] is the standard

deviation to the same feature and the feature size is defined by: r, c ∈ 0, . . . , 15. The

feature tensor S[i] now can be sorted out by applying Percentile Pooling to new vector

called s
′ [i]. By plotting this vector will give a curve shape. The matched features

f(ir,ic)[i] and f(ir,ic)[j] will cause the curve to drop abruptly whenever they exist. The

vector’ scores in percentile ranking will fix the issue in pooling layer input size by

normalizing the score vector. This can be done by applying a percentile ranking filter

through Percentile pooling layer as in figure 5.5. This, indeed, will reduce the scores

dimensionality to allow using a smaller vector of the total scores. The produced mask

will follow same used technique is in the above network by using the same binary

classifier. The final step is determined the source patch against the target one by

using the merging network.
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5.6 Results and Discussion

5.6.1 Training GAN models in forgery detection

The present study proposes using a generative adversarial network (GAN) for a frame-

work to include relevant entities. For instance, cNets have been employed as discrim-

inators, compared to its counterparts GANs and both of them are quantitatively and

qualitatively [58]. Our test results indicate a more robust performance by cGANs

compared to CNN-based GANs for constructing a model that reflects how CIFAR-10

[69] and MNIST [59] datasets apply the generative adversarial metric (GAM) either

quantitatively or qualitatively [60]. As discussed earlier, Goodfellow et al. [61] de-

buted the GANs framework in order to build a generative model for data that would

learn how to transform points from simple prior distribution (z Pz) to data distribu-

tion (x Px) using an adversarial generator and discriminator. The generator’s task

is to learn to transform G(z), while the discriminator’s is to goad the generator into

performing better D(.). Ultimately, the discriminator must be able to distinguish

between a sample from the generator’s output distribution (G(z) Pg) and one derived

from data distribution (x Px), giving a scalar output (Y ∈ 0, 1).

minGmaxDV (D,G) = Ex Px(x)[logD(x)] + EZ PZ(Z)[log(1−D(x))] (5.12)

Capsule Networks: Hinton et al. [62][58] first introduced capsules as a learning

approach to robust unsupervised image representation. Capsules can be generally

defined as locally invariant neuron groups learning to detect visual entities in their

midst and encode the properties of those entities as vector outputs. In this process,

the vector length is restricted to being either 1 or 0 as an entity representation.
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So, for instance, the capsules are able to learn how to discern in images of specific

objects or parts thereof. The neural network framework allows for the grouping of

numerous capsules, creating capsule layers. In these layers, individual units generate

vector output rather than produce traditional scalar activation. Equation 5.2 depicts

margin loss Lm when training CapsNets to perform multi-class classifications:

LM =
k∑
k=1

Tkmax(0,m+ − ‖Vk‖2 + λ(1− Tk)max(0, ‖Vk‖ −m−)2 (5.13)

Where Tk indicates target labels,m+ = 0.9,m− = 0.1 and λ = 0.5, which represent

down-weighting factors that can inhibit the shrinking of capsule output lengths in the

final layer during the early-stage learning phase. Included in the network as well is

regularization, which appears as weighted image reconstruction loss. In this addition,

the vector output Vk from the final layers are manifested to the reconstruction network

as inputs.

5.6.1.1 Data environment

Our experimental results are provided through several datasets. As a training task, we

chose the datasets CIFAR-10 and MNIST. The CIFAR-10 dataset shows 32 X 32 color

images categorized as ten distinct classes (in alphabetical order: airplane, automobile,

bird, cat, deer, dog, frog, horse, ship, and truck), while the MNIST dataset shows 28

X 28 hand-written grayscale images. When we test the model, additional datasets

from both the forged and pristine images categories will be considered. Figure 5.6

depicts the random result samples of the proposed model.

.

As shown, the model is pre-trained to ensure it has the weights to perform both
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Figure 5.6: From left to right, some samples from random results show the process
of training improving transition result of the model using CIFAR-10 dataset and
maximum iteration of 10,000

generator and discriminator training tasks. The pre-training method for the dis-

criminator is illustrated in the next figure 5.7. As indicated, the pre-training of the

generator and discriminator are not carried out simultaneously (Pre. Disc, Pre. Gene)

= (True/False) or = (False/True). Note that although we chose to use the model’s

pre-training weights to train the same dataset as well as to test the same dataset at a

later time, it is possible that using alternative pre-training model weights could give

the same or similar results.

Figure 5.7: Loss function of the pretraining model
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.

Figure 5.8: This is the training results of MNIST dataset in number of 1000 epochs

.

Figure 5.9: This is the training results of CIFAR10 dataset in number of 1000 epochs

.

.

After training the GAN, we test the discriminator by using MNIST: We got these:

(Dx,Dz,Dg) as in figures 5.11, 5.12.

.

.
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Figure 5.10: This is the training results of CIFAR10 dataset in number of 10000
epochs

Figure 5.11: Output after the first initial training stage
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Figure 5.12: Output in an advanced stage of training loops
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5.6.1.2 Experimental setup

In this work, we used a Keras GAN. Keras implementations of Generative Adver-

sarial Networks (GANs) suggested in many research papers and it can be found in

“https://github.com /eriklindernoren/Keras-GAN”. Also, we used for training task

the TensorFlow backend. • Some analysis: As was mentioned, the training tips for

the combined model for the discriminator and the generator as follows: (False = 0,

True = 1). a- Train the discriminator:

DLoss = LossReal + LossFack

2 (5.14)

b- Train the generator (to have the discriminator label samples as valid):

G Loss = combined train (noise, valid)

Noise = random batch on image

Valid = adversarial ground truth

In this experiment, we will use two different pieces of training: a- Using pretrained

weights file (hd5) for the previous dataset. b- Pretrain the dataset and use its own

weights file (hd5). c- Compare between the two cases. Our first task was to prepare

the dataset. There are two classifications in the training dataset: forged and pristine.

The paired images will be used to illustrate how the forgery operation proceeds (here,

copy-move forgery). Prior to starting the training, pixels from multiple images are

loaded into a directory using the NumPy array distribution. We begin with the

pristine category and then perform tests with both forged and pristine images. To

obtain a directory image file list, we import the glob, use file-list for constructing

two diminutions matrix, and then convert the file-list to a NumPy array. Thus, if we

combine the total images as one NumPy array, we get:
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x = np.array([np.array(Image.open(f −name))forf −nameinfile− list]) (5.15)

This array divided later to three partitions for training, verification, and testing.

Figure 5.13: From left to right, some samples from random results show the process
of training improving transition result of the model using local dataset

.

Figure 5.14: Loss functions (D loss, G loss) of the training model using a custom local
dataset used pretrained discriminator and generator respectively

.

.
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Figure 5.15: Detect the copy-move forgery using GAN model

5.6.2 Training CNN models in similarity detection

In this study, a new type of deep neural network architecture was introduced for

detecting and localizing copy-move forgery. The model, which uses a supervised end-

to-end trainable network, was able with high accuracy to detect the copy-move forgery.

Specifically, it was able to pinpoint areas in the image that were sourced from the

same original area.

5.6.2.1 How the model works

The model functions as follows. First, an image I is input, from which features are

extracted by employing the CNN feature extractor. Next, based on the extractions,

feature similarity is calculated using the self-correlation module, and statistics are

gathered using percentile pooling. These then upsample feature maps against the

original image size by applying a mask decoder, after which a binary classifier creates a

copy-move mask. The present research gained inspiration from a number of published
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works, especially [43][63][39].

To sum up, the copy-move forgery detection baseline was first developed by mak-

ing feature maps from input image extracts, followed by the construction of relevant

feature statistics on the basis of percentage pooling process from upsampled feature

maps. The feature classifier was then applied as a means to doctor and assign similar

regions as copy-move forgery areas. The subsequent tests we performed relied on a

pre-trained weight file for the initial model branch; later, however, we built another

weight file (HD5 format), intending to compile into a single entity the large amount

of images. This made our training more accurate and readied the stage for the sub-

sequent portions of the model construction. Numerous image samples were used in

the training process. A single-class classifier tested every image to determine whether

it was a copy-move forgery or pristine. Figures 5.16 and 5.17 depict images that are

forged as well as a detected soft mask and genuine mask. The test applied a set of

forged images to carry out the primary task of the network branch, using recall, pre-

cision and F1 scores for reporting CMFD performance. We considered the classified

pixels from both the target and the source as being forged in order to compare our

proposed model to other CMFD approaches that predict only binary masks.

.

.

5.6.2.2 Some result using different datasets

Numerical results in table 5.2 are shown discernibility summery of different datasets

form state-of-the-art compared to the proposed model, while the other hand figure

5.18 gives a visual illustration of similar comparison.

.
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Figure 5.16: Shows random results with F1 score for T greater than 0.25

Figure 5.17: Shows random results with F1 score for T greater than 0.75
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Table 5.2: Shows the skeleton metrics for the precision recall F1 scores

Algorithm [37] [94] [23] [106] [64] Proposed

F1 0.4926 0.5439 0.5943 0.6055 0.6318 0.8835
Precision 0.5734 0.5390 0.5440 0.5662 0.5927 0.6963
Recall 0.4939 0.8327 0.8020 0.8040 0.8220 0.8042

Figure 5.18: Shows the ROC for F-scores comparison

5.6.3 Training the CMFD classification model for localization

A single support vector machine (SVM) classifier was employed in our model for

all three branches for detection and classification. The outcomes indicate precision,

accuracy, and good recall and F-measure. The primary aim of the model’s third

branch was verifying and then localizing any detected copy-move forgery. Note that

the first network uses GAN for detecting and manipulating areas of the frame of

the input image, whereas the second branch detects similar areas of the input image

as being indicative of a copy-move forgery incidence. The third branch merges the

outputs from the two other branches, as follows:
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5.6.3.1 Verifying CMFD

Image forgery is detected by the GAN network through determining one or more

interrupted areas, as detailed in a previous section (6.1). Then, as mentioned in

section (6.2), the CNN network matches similar batches in the image. This step

trains the merging network to detect any forgery through comparing and testing the

outputs.

5.6.3.2 Localizing CMF

Following the verification of CMF detection, the model constructs a mask which

pinpoints the CMFD location within the forged image frame.

Figure 5.19: a- Masking the forged area (GAN), b- Masking the similar areas in the
forged image frame (CNN), c- Forgery location

.

Evaluating forgery localization entails a similar process in images where forgery has

already been discerned. In these cases, the mask estimates M ′ indicate the threshold

but subsequently are compared (pixel-wise) with related ground truth masksM . Note

that the ROC curves here Figure 5.20 indicate localization for various threshold levels.

By applying the Binary Cross Entropy BCE loss, we can see that the PR curve obtains

0.6963 as a mean precision score and 0.8042 as a mean recall score, confirming the
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strength of the localization results.

Figure 5.20: Fig 6. Shows the ROC for F-scores

.

The precision recall area under the curve (AUC) Figure’s 5.21 illustrates excellent

detection accuracy. Here, the target is to have the model curve in the upper point

in the right corner, which presents an ideal model with 100% true positive and zero

false positive rates, regardless of recall. The area under the curve shows that perfect

detection of the forgery using this model is fairly likely.

Figure 5.21: Illustrates that the area under the curve (AUC)

.
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5.6.3.3 Determining the CMF area vs. source area

Because the variations between the source (original) and the copy-move batch can be

very small, the unaided human eye is usually unable to detect the forgery. Therefore,

auto-detection with a deep learning method is necessary to determine a forged image.

This is especially important for discerning an original source image from a forged one.

The figure illustrates the source and CMF areas in various colors, making it easier for

people to see the difference between the images.

Figure 5.22: Shows the output of the model

.

5.7 Conclusions

The present work proposed an image analysis method that employs GAN for lo-

calization and splicing detection of images. The novel method adopts a data-driven
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strategy that enables the algorithm to constantly update its learning via training data

on how to discern pristine areas from forged ones. The test results clearly indicate

the significantly high accuracy of the proposed method in applying the dataset in the

discernment of localization and tampering detection. Also noteworthy is the proposed

technique’s ability to project its findings to differently sized forgeries than the ones

used in training. The encouraging results from these tests encourage an extension

of the research to additional related inquiries, such as testing the method with other

kinds of forgeries and datasets. The rationale for the proposed CMF solution in the

present work is testing the potential for training auto-encoders to acquire a represen-

tation of image patches originating in pristine images. Such an auto-encoder could

also be employed in feature extraction of image patches. In the tests, a single-class

SVM detects if feature vectors are derived from pristine or forged images. Generative

adversarial networks are used for training the auto-encoder in detecting forgery, with

the entire system being trained solely with pristine data. The system thus has no

prior knowledge of forgeries. Even so, the test results indicate a high level of accuracy

for localization as well as detections. In fact, the proposed model succeeded in its

assigned CDFD task, giving performance results in the 93% to 97% range. Future

related work could consider testing and enhancing system robustness by introduc-

ing a variety of different forgery types and increasing the number of used images for

GAN training by including more datasets, such as ImageNet. The sensitivity of the

presented methodology to the setup of its parameters should be investigated.
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Chapter 6

Image Forgery Detection Based on

Deep Transfer Learning

Preface.

A version of this chapter has been published in the Journal of EJECE, European

Journal of Electrical and Computer Engineering 2019; 5: Isue 3, 1-8. I am the pri-

mary author. Along with Co-authors, Tariq Iqbal and M. Shehata, I conceptualized

the idea and developed the conceptual algorithm. I have prepared the first draft of

the manuscript and subsequently revised the manuscript, based on the feedback from

Co-authors and also peer review process. As Co-authors, Tariq Iqbal and M. Shehata

assisted in developing the concept and testing the algorithm, reviewed and corrected

the model and results. Also, the Co-author T. Iqbal critically reviewed the content and

revising the manuscript. Contribution was made through the team support to devel-

oping and testing the algorithm as well as and reviewing the manuscript.

Abstract – The recent digital revolution has sparked a growing interest in apply-

ing convolutional neural networks (CNNs) and deep learning to the field of image
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forensics. The proposed methods aim to train algorithms for solving a range of prede-

termined tasks. However, training a model that has been randomly initialized requires

extensive time for computation as well as an enormous pool of training data to draw

from. Moreover, such a model needs to be developed and redeveloped from the ground

up if there are any alterations to the feature-space distribution. In addressing these

problems, the present paper proposes a novel approach to training image forgery de-

tection models. The method applies prior knowledge that has been transferred to

the new model from previous steganalysis models. Additionally, because CNN mod-

els generally perform badly when transferred to other databases, transfer learning

accomplished through knowledge transfer allows the model to be easily trained for

other databases. The various models are then evaluated using image forgery tech-

niques such as shearing, rotating, and scaling images. The experimental results,

which show an image manipulation detection has validation accuracy of over 94.89%,

indicate that the proposed transfer learning approach successfully accelerates CNN

model convergence but does not improve image quality.

Keywords: Forgery detection; Deep learning; Transfer learning; Neural network.

6.1 Introduction

Human beings are generally hard-wired to apply or transfer knowledge that they have

learned in one skill to other related skills. In this way, acquired knowledge can help

solve problems in less time through the cross-utilization of knowledge which occurs

during these transfers [1]. Considering this built-in problem-solving framework, let

us look at two critical problems currently restricting progress in the field of image
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forensics. These problems are: (1) developing a sufficiently large and diverse body of

annotated images for use as training models; and (2) including in the models non-

image data in order to permit and enable broader application of the model(s). This

research will address both of these challenges. Regarding the creation of a large body

of images, this can be an extremely costly undertaking, as the task requires humans

rather than machines to do the image classification. Even so, the workers tasked

with this job could be severely challenged by the image complexity and vast array of

different classes for categorization. Regarding issues around incorporating non-image

data in the models, researchers and other workers in the field still experience problems

when trying to extract image data from images that also incorporate non-image data,

such as text. However, finding a way to include non-image data in transfer learning is

crucial if the models are to be applied to areas such as the medical field or insurance

industry. In overcoming these challenges, the present work will employ text metadata

to deal with noisy classifications in images. Within these datasets are forged images

which will comprise the metadata. So, instead of attempting image classification or

categorization, it will be assumed that the images share certain metadata features

along with some aspects of feature representations. Two distinct image categories

– pristine images and forged images – will be presented, with the metadata being

sourced from the Internet. Although this will enable us to substantially expand our

available training data set, it will also likely mean that we will be including some forged

labels as a trade-off. We will use cosine similarity to gauge similarities within the

metadata, even though this will result in some compromise in feature representation

quality and similarity complexity that the system learns. This is another trade-off

that is considered negligible. However, there is a relatively significant problem with

this strategy – namely, the similarities that exist between the pristine image and

forged image metadata. These similarities exist because the Internet-sourced data
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were not developed as image classifiers but instead were specifically created as fakes of

original images. We note that, though beyond the scope of the present work, numerous

applications have shared and related images as well as repeatable features that have

similar or even the same colors (e.g., claims in the insurance field that feature damaged

vehicle images). These existing models can already incorporate both images and text

as data, but they are also prohibitively expensive to build and maintain. This is

because large training datasets must be employed to compensate for noisy labels. So,

while acknowledging the existence of these models, our work aims to utilize datasets

in combination [2], as this approach requires smaller datasets and shows promise of

high image quality. Moreover, our study relies on the concept of transfer learning as

a means to reduce both the amount of resources required and the time it takes to

train the networks. In our experiments, we initialize the networks by applying basic

weights learned in earlier large-scale training, such as CaffeNet and VGG16 [1][3].

We can see by the accuracy in the baseline classification task (i.e., cat versus dog

images) that the convolutional neural network (CNN) weights are able to give high-

quality feature representation on diverse image datasets. So, our baseline here will be

to develop a “cat versus dog” image classifier through fine-tuning CNN weights as a

means to significantly shorten the computational time required to train the network.

We will run the network using an extensive sampling of image pairings, with the

network learning similarity between the provided images, both forged and pristine.

As well, we will fine-tune the CNN weights in order to achieve feature representations

with minor differences that are not so different that they require a full re-training.

Furthermore, because CNNmiddle layers and baseline architecture are alike, we aim to

demonstrate the practicality and effectiveness of re-training the baseline by applying

the original network weights instead of new CNN weights, with the aim of enhancing

forgery detection abilities with more accurate image classification.
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This chapter covers the strategy used to develop a new classification model meant

to detect the forged images in digital dataset using pretrained model. This work is

organized as follows. Following the introduction, we will provide an overview and

revision of the related works. In the subsequent sections, we will dive deeper into the

topics mentioned in the overview training, performance testing, and also validation of

the used methods.

6.2 Related Works

The present paper presents a full review of the background, foundational ideas, and

current applications for transfer learning, including both historical and recent exam-

ples. It is generally well-known in the industry that transfer learning evolved from

machine learning as well as statistical modeling. With this in mind, we look at some

research conducted by Han et al. [4] and Doersch et al. [5]. Additionally, we review

MatchNet and the study of D. Itera [6], noting that their two-tower architecture shares

some similarities with that used in the present work. Specifically, the towers share

weights that are first concatenated; the resulting feature representations for patch

pairs are then relayed through the metric network (fully connected) and SoftMax loss

function. In the metric network, similarities between the two features representations

are measured, after which the ground truth similarity loss of the patch pair is for-

mulated. The outcome is equivalent to the present work’s formulation for similarities

in the two feature representations; however, the ground truth towers rely on the text

metadata accompanying the images instead of relying on a computed function over-

laying the images. In [5], Doersch et al. study the behavior of learning features in

unsupervised datasets. They divide each image to create a “patch” and then train

networks to figure out the right (i.e., original) orientation among the patched pieces.
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The aim here is to see whether or not a network is able to learn objects occurring

within images; if a network can do this, it indicates an ability to learn underlying

feature orientation for images. Therefore, by applying these learned representations,

features learned from this network could potentially be reused in unsupervised ob-

ject detection for other datasets. It is important to note that transfer learning, as

mentioned, is a concept which evolved from machine learning and statistical model-

ing. More recently, transfer learning has been investigated for its application in deep

learning. However, earlier approaches that were previously employed to construct and

train machine learning models differ significantly from methodologies that adhere to

transfer learning strategies. The present work aims to locate similarities in “similar”

images’ underlying map features by applying the latest deep learning techniques.

6.3 Transfer learning strategies

The type of transfer learning strategy that is most suitable for a given problem is

determined by several factors, including data availability, the task to be performed,

and the domain. In general, transfer learning methods are classified according to the

kind of conventional ML algorithms that are used. The three main categories ex-

plored in this work are unsupervised transfer learning, transductive transfer learning,

and inductive transfer learning, as explained below. The first category, unsupervised

transfer learning, deals with unsupervised tasks located in target domains. Although

both the target and the source domains could potentially be similar, their tasks are

quite dissimilar. Later in this study, we will work on labeled data which has been

made unavailable at both domains. The second category to be explored here is trans-

ductive transfer learning, which is employed when there are similarities between target

and source tasks but dissimilar corresponding domains. In this scenario, there is no
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labeled data in the target domain, whereas the source domain contains sample labeled

data. Transductive transfer learning can also include subcategories regarding settings

(e.g., marginal probabilities or different feature spaces). In inductive transfer learn-

ing, which will be the third category studied, both the target and source domains are

the same, even though their respective tasks differ. In the inductive transfer learn-

ing setting, algorithms employ the source domain’s inductive biases as a means to

make an improvement to the target tasks. This setting can be divided into the sub-

categories of self-taught learning and multitask learning, according to whether there

is labeled data in the source domain or not. The source task’s inductive biases help

to carry out the target task. As shown in the figure 6.1 below, this is accomplished

by making adjustments to the target task’s inductive biases through the restriction

of model space, adjusting the search process using the knowledge acquired from the

source task, or limiting the hypothesis space.

Figure 6.1: Inductive transfer techniques of a target [1]

.
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6.4 Transfer learning approaches

We will demonstrate in our work that a few of the approaches are able to be used in

the aforementioned strategies, as follows: (1) Instance transfer: This involves reusing

(or re-purposing) knowledge obtained from a source domain in a target task. However,

in many instances, we cannot directly reuse source domain data, but we might be able

to reuse this data in tandem with target data. For inductive transfer cases, we can

apply modifications like AdaBoost (Dai et al.) to assist with improvements to target

tasks when training from source domains. (2) Relational-knowledge transfer: This

approach deals with non-IID data (e.g., data which are not identically distributed or

independent). These type of data have data points that are related to other (some-

times similar) data points. A good example of relational-knowledge transfer in the

current application is social network data. (3) Parameter transfer: In the parameter

transfer approach, it is assumed that models used for related tasks involve a few or

more shared parameters and/or hyperparameters. (4) Feature-representation trans-

fer: The purpose of this technique is to mitigate error rates and domain divergence

through the identifications of positive (good) feature representations. Such feature

representations can then be used for target domains from source domains. Instances,

where feature-representation transfer is used, include supervised/unsupervised meth-

ods, if there is sufficient labeled data available.

6.5 Similarity detection

In the similarity detection process, the similarity is measured by taking any related

metadata text applied to an image pair, from which the score of 0 to 1 indicates the

similarity of the images, according to the detected features in the objects measured.

Although features which are similar will probably produce similar results, repeated
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features (e.g., neighborhood or background features) do not always give similar re-

sults. Furthermore, this function should be sufficiently robust to compare large and

small areas, as patches of various sizes need to be comparable. However, this opera-

tion can be very costly, given how many pairs are able to be generated in a dataset

and considering that the operation typically runs several times. At the outset, the

present work employs cosine similarity, which offers users a good similarity measure

for comparing sets of varying sizes. However, a trade-off between results accuracy and

computational complexity is expected and understood between cosine similarity and

other more complicated and time-consuming approaches. Using cosine similarity, two

feature “bags” will be developed with feature sets related to the images as well as to

the counts for every feature. This model is expected to be biased toward images that

are dissimilar, given that dissimilarity has been shown to be more common. As well,

we will construct a preprocessing engine which is able to compute image similarity

and from that to develop balanced pairs out of the similar/dissimilar images. These

will then be labeled accordingly as contradictory categories. Note that this compo-

nent also includes similarities between different texts and is able to be expanded as

needed. If we obtain positive results from the simplified similarity function, we would

consider carrying out a future study focusing on the kind of trade-offs incurred be-

tween using highly complex similarity models and simpler ones, based on effectiveness

and runtime. This, however, is outside the scope of the present work, whose main

aim is to test similar and non-similar images, not performance grades of similarity.

6.6 The proposal transfer learning approach

The present work mainly investigates a range of deep learning models. Although the

various techniques mentioned above are applicable in different instances of machine
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learning, is transfer learning also applicable to deep learning? Deep learning models

can best be described as being inductive learning approaches. As touched on in a

previous section, the inductive transfer is a learning mechanism’s ability to enhance

task performance as a result of having learned a similar skill/task from another (i.e.,

earlier) one [2]. Hence, a general inductive-learning algorithm objective is to apply

mapping based on training examples. So, for example, if the task is classification, a

model thus learns to map class labels and input features, using seen and unseen data

based on sets of assumptions concerning training data distribution. The assumption

sets are referred to as inductive biases and include factors like search process and hy-

pothesis space restrictions. These assumed biases limit the model’s learning capacity

but also streamline the process. In our proposed approach, we use transfer knowledge

in model image classification related to the categories of “cat” and “dog”, using a

pre-trained model for detecting pristine images in comparison to forged images.

6.6.1 Datasets Environment

This experiment was conducted using multiple datasets [2]. The training used mainly

dogs vs cats dataset which 25,000 images of dogs and cats in total each category have

12500 images. We can verify with the preceding output that we have 12,500 images

for each category. Let’s now build our smaller dataset, so that we have 3,000 images

for training, 1,000 images for validation, and 1,000 images for our test dataset and

that applied to both categories [7]. A collection dataset out of online and public

existing datasets for training and testing. In total, we collected 1792 pair images with

good quality to present different samples for copy-move forgery. The first one was

constructed by Christlein et al [8], consisting of 48 base images and 87 copied with

a total of copy-move forged images of 1392. The second database MICC-F600 was

introduced by Amerini et al [9, 10] with 400 images. Caltech-101, image manipulation
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dataset. IM dataset (240 images) [11]. The Oxford buildings dataset (198 images and

5062 resized images) [12]. Coverage dataset (200) [13] and collection of online and

self-producer images. Note that, even the total images look bigger than what we used

in training and testing, that is because we avoid using some images either because

they are in bad shape or low resolution. Therefore, here we used selected ponch of

images with total of 1348 image which devided for 1248 for training and 100 for testing

task.

6.6.2 Implementation

Using Python 3.6, our experiments ran basic classification task on a network of similar

images pairs in MatchNet. The model training data were kept in a secure H5 file, and

the original convolutional neural network was built accord to [7]. Hence, the transfer

learning network is more or less identical to the earlier network that employed pre-

knowledge from the original CNN model. The towers have two main requirements,

as follows. 1) Weight share: The towers have to be able to share weights, as this is

how the network is able to learn image pairs simultaneously (i.e., running image pairs

through the same weight set for every layer). 2) Towers as CNNs: Specifically, the

towers must be CNNs of themselves, which then permits the learned weights from one

network model to be used on the other. Therefore, the towers must have the same

parameter and architecture names to enable weights to be transferable between them.

This is accomplished as follows. In the weight-training stage, weights are initialized.

At the completion of the training, the model is saved in an H5 file, which can then

be loaded for additional training/testing utilizing the same weight parameters. The

CNN networks comprise standard convolutions, normalization layers, ReLu and pool

(i.e., frozen convolutional layers). However, they are unique in that images that are

loaded are split, after which they are recombined prior to reaching fully connected
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layers. Individual images are fed into input layers, with the outputs being vectors with

representations comprising 4,096 elements. Next, the vector is fed to fully connected

layer sets which have been re-trained to convert vectors into similarity/non-similarity

scores. In the final step, the cosine similarity computes a Softmax loss of expected sim-

ilarity vs. predicted similarity for image content. The total operation is functioning

as deep learning classifier to classify the output in the designation target.

6.7 Experiment results

There are several tasks that can be evaluated using these features to compare to

the state-of-the-art systems. While there are many such tasks in the unsupervised

learning space, to bound the difficulty of evaluating the results of this work, the first

set of experiments will simply attempt to test if the weights learned in the CNN are

a better initialization for fine-tuning an image classification task than the provided

weights which were learned on the training task. The rest of this section will outline

in detail how these experiments were built and how weights were transferred. First,

we present the result of training the original model to show how the results look like

and then we’ll use the new dataset to see how the knowledge transferred and show

the result for the new task.

The baseline training model and the transfer learning model are layered in same

architectures. The last layers (dense layers) were trained slightly different to serve

the different output target. This architecture of layered network allowed us to employ

the trained/or pre-trained network in the original model to extract the new features

in the other model with the consideration of re-train the classifier to serve the new

labeled case. Figure 6.2 shows the models summery in both tasks while table 6.1

shows the parameters’ summary of the same model.
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Figure 6.2: The summary of the processing of the transfer learning model form the
original trained model
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.

Table 6.1: Model summary information

Model parameters Total parameters Trainable parameters Non-trainable parameters

Summary 12,942,786 12,941,314 1,472

In this work, the initial experiments aim to determine whether the weights that

were learned in the CNNs improve the initialization of image classification task fine-

tuning compared to the weights learned during the training task of the original dataset.

The remainder of the section provides a detailed discussion on the construction of the

experiments as well as the manner in which the weights are transferred during the

tasks. Specifically, we will review and present the outcomes from the original model

training, after which we will apply the new dataset in order to determine the means

of knowledge transfer. The results of the new approach will also be provided.

6.7.1 Training data generator

In normal cases the all dataset images can’t be uploaded to the process memory in

one shout. Also, this may drop down the performance of the used GPU’s / or CPU in

the training task. Therefore, we will load the dataset in a group of 15 images at once

in each time to all dataset using data generator. The other advantage of using data

generator is to make many changes in each image which known as data augmentation

to learn all possible image transformation to the used neural network after fixing the

image scale according to the input layer which in our case is 126×126×32. Also this

will present different image forgery techniques such as shearing, rotating, and scaling

images. Figure 6.3 shows two examples of data generator. The output of this task

can be summarized as following: Found 20000 images belonging to 2 classes. Training
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Generator: Found 5000 images belonging to 2 classes. Found 0 images belonging to

0 classes. (See Appendix B has more figures)

Figure 6.3: Examples of the data generator work using the original dataset

Note: Categories: 0: ’cat’, 1: ’dog’. The original dataset has same number of the

two categories that used in the training task as shown in the next illustration, figure

6.4.

Figure 6.4: This figure presents the training result map to a dog is 1 and cat is 0
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Figure 6.5: Random samples from the training result in the image’s presentation

Figure 6.6: The validation result map to model using the original dataset: dog is 1
and cat is 0
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6.7.2 Create Testing Generator

We will convert the predicted category back into our generator classes by using train−

generator.class− indices. It is the classes that image generator map while converting

data into computer vision

Figure 6.7: The testing result map to dog is 1 and cat is 0

Figure 6.8: The predicted result with images representation

Training task initial output: Found 998 images belonging to class 1, found 250

images belonging to class 0. After preparing the new dataset and go through the above

steps we see the results:
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Figure 6.9: Random sample images from the new dataset

Figure 6.10: This figure shows examples of the data generator work using new dataset

Figure 6.11: This figure shows a map result of training set for new dataset
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Table 6.2 Numerical Training result which was presented in the above figure

Table 6.2: The numerical training result which was presented in the above figure

Image No. Category fillename Image No. Category fillename

0 0 forged(1).png 1243 1 pristine(92).png
1 0 forged(10).png 1244 1 pristine(93).png
2 0 forged(100).png 1245 1 pristine(94).png
3 0 forged(1000).png 1246 1 pristine(95).png
4 0 forged(1001).png 1247 1 pristine(96).png

For the training task, we used the two categories with total images of 1248 images

as we mentioned above. Here 6.12 we show random sample pairs images out of the

used dataset:

Figure 6.12: Random samples of the two new categories with their labels

Now for the new dataset, the result should look like: (’dog’: 1, ’cat’: 0) =>

(‘pristine’: 1, ’forged’: 0 ), i.e. each image labeled with a dog that means this image

is a pristine image, and each image tagged in the cat is a forged image as you can see

in figure 6.14.

.
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Figure 6.13: Predicted result with images using the new dataset

Figure 6.14: The image labels presentation for new dataset based on the original
dataset labels
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Based on the original model weights the second dataset will be judged. Next

figure shows the deep learning classifier output after re-trained to deserve the new

task. However, the output still shows some false detection which can be overtaken by

using a closer model for the learning transfer assignment.

Figure 6.15: Evaluation of the testing result from the new dataset using the old
categories labels for clear and fare judgement

.

According to the sample result presented in figure 6.15, the first image from the

left hand is forged image and here shows as (dog==pristine). The other two images

are (cat==forged) and that is correct. Now, in order to increase the accuracy of this

model, we train the original dataset for a longer time using 25 Epochs with same

conditions to avoid over fitting.

6.7.3 Validation and evaluation

The next figure 6.16 shows the validation data for both datasets before we flatten the

data and feed our deep learning classifier.

As shown in the results, the validation accuracy of the baselines was higher than

the accuracies using the weights learned in the original network. The next visual illus-

tration shows clearly the gap between the training accuracy and validation accuracy

for the both datasets.
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Figure 6.16: The validation data of the presented models in both datasets

Figure 6.17: Some predicted results in images presentation for validation task

Figure 6.18: Training loss vs. validation loss in different training trial



157

Figure 6.19: Training accuracy vs. validation accuracy in different training trial

Figure 6.20: Training loss vs. validation loss in different training trial (new dataset)

Figure 6.21: Training accuracy vs. validation accuracy in different training trial (new
dataset)
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From the figures 6.18, 6.19, 6.20 and 6.21 we can notes that the model is getting

over fitting with new dataset, however, the model still able to maintain excellent

validation accuracy. However, second training show more improvement in both loss

and accuracy training vs. validations. Also, from the table 6.3 we can see that we

achieved validation accuracy of 94.89% which 4% improvement in accuracy from the

previous model.

Table 6.3: The loss and the validation accuracy of the both models

The model F1-Score Loss Acc Val-loss Val-Acc.

Trained model 0.89 0.2683 88.93% 0.2122 91.29%
Transfer model 0.93 0.2583 92.94% 0.2347 94.89%

Evaluate this work with the-state-of-the-art is presented in the table 6.4.

Table 6.4: The evaluation based on the validation accuracy between two closer
targets

The Model Training data Validation accuracy

[2] MSCOCO 77%
ImageNet subset 93%

Presented model Dogs -and- Cats 91.29%
Pristine -and- Forged 94.89%

6.8 Conclusion

The present work demonstrates that, by employing different CNN architectures, deep

learning can be successfully applied in tasks such as image classification, image iden-
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tification, and object recognition. Cost-effective image classification is achieved on

manipulated and/or larger datasets, and improved image feature mapping are ob-

tained from similar images in text metadata using CNNs. However, although using

feature map representations is shown to be cheaper and faster, it does not improve

the quality of the image classifications, indicating that this approach is not optimal

for evaluating quality, given the weak correlation between feature labels and similar

(and/or non-) images. Nevertheless, the results of the present work could lead to

future investigations that include looking at other forms of forgery detection by ap-

plying the newly transfer learned weights. Overall, the present work indicates that

metadata sampling and classification requires highly disciplined scaling model which

can be scored by employing a pre-trained model with and that can be future extension

steps to this work.
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Chapter 7

Summary and Future Work

7.1 Summary of the thesis

Copy-move forgery detection (CMFD) had been widely adopted for use by people of

all skill levels, due mainly to its user-friendly and ease-of-use approach. However, de-

spite the relative simplicity of the strategy, there are still some challenges that make

the outcome sometimes invalid or at least questionable. If a copy-move is performed

by applying something in the image background to obscure evidence of forgery, this

can be overcome by employing PatchMatch on the forged image’s offset points. In

this situation, the authentic image is needed to proceed with forgery detection, so a

different method should be adopted. Our experiments indicate the presence of vari-

ance within the evaluations, which occurs also in identical images where there are

alterations to the resolution or color, giving unequal F-scores. Despite these minor

problems, the F-score generally exhibits optimal efficiency in the enhanced approach,

showing FM = 0.98 and efficiency higher than 90.5.

In the present research, we tackle the problem of copy-move forgery in digital im-

ages. The literature review explored different methods that were reapplied, tested
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and evaluated. Based on a comprehensive study of state-of-the-art approaches and

the robustness and accuracy of existing methods and algorithms, we were able to

choose the right path. Our enhanced PatchMatch algorithm, based on density, pre-

sented in chapter three, achieved high FM and was able to detect copy-move forgery in

several different geometric phases by localizing the copy-move forgery based on offset

points. The experiments on CMFD included RGB images and BW; in both cases, the

F-score generally exhibited optimal efficiency in the enhanced approach and showed

high value compared with the state-of-the-art techniques currently in use.

The problem of forged images has become a global phenomenon that is spreading

mainly through social media. New technologies have provided both the means and

the support for this phenomenon, but they are also enabling a targeted response to

overcome it. Using the convolutional neural network (CNN) architecture approach

shown in chapter four, to enhance a copy-move forgery detection efficiency was promis-

ing. Deep convolution learning algorithms are one such solution. These have been

shown, in chapter five, to be highly effective in dealing even with image forgery that

derived from generative adversarial networks (GANs).

The recent digital revolution has sparked a growing interest in applying convolutional

neural networks (CNNs) and deep learning to the field of image forensics. The pro-

posed methods aimed to train algorithms for solving a range of predetermined tasks.

However, training a model that has been randomly initialized requires extensive time

for computation as well as an enormous pool of training data to draw from. Moreover,

such a model needs to be developed and redeveloped from the ground up if there are

any alterations to the feature-space distribution. In addressing these problems, the

transfer learning model in chapter six proposed a novel approach to training image

forgery detection models.

In conclusion, to introduce new trends in the research field of image forgery detection,
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we deeply looked at deep learning and neural networks to develop a new method that

can improve the accuracy of copy-move forgery detection of digital images and that

was achieved by the proposed CNN. The copy-move forgery detection and localiza-

tion between the source and target areas were the main focus of this research, and the

results of using the proposed CNN and GAN networks to implement that are highly

promising. Even though datasets of copy-move forgery are available, but they are not

sufficient for long-run training. Therefore, the proposed deep transfer learning can

provide an option to overcome this problem.

7.2 Future work

For future work, we need to increase the use of deep learning to deal with image

forgery in general and copy-move forgery in particular, especially in cases where the

forgery industry is using the same strategy of using deep learning to introduce a new

application for copy-move forgery. We also need to look at improving multi-copy-move

forgery detection (MCMFD) algorithms to reduce the lack of detection using single

copy-move forgery detection algorithms. These improvements can come by adopting

the latest related technologies and components. It also will provide a tool capable

of applying copy-move forgery detection in real-time situations. This could be even

automated search application to detect the digital image forgery on media
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Appendix A

A.1 Appendix A

• raw data, extra images, extra spectra

Figure A.1: Show the comparison between the (a) PatchMatch algorithm vs (b) DCT
algorithm)

.
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Figure A.2: Show the comparison between the (a) PatchMatch algorithm vs (b) DCT
algorithm using gray images with different contrast)

.

Figure A.3: Show the number of matching point in the same forged image based on
the block size used for the scanning detection)

.

.

A.2 Appendix B

• raw data, extra images, extra spectra

.
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Figure A.4: Show random result of the generator work original dataset
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Figure A.5: Show random result of the generator work (new dataset)
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.

Figure A.6: Show random result of the generator work (new dataset)
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