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Abstract 

 

 Traditional C-C cross-coupling reactions generally rely on the use of expensive and 

sometimes toxic metal catalysts, such as palladium or ruthenium. These methods generally 

require two functionalized reagents, which can increase reaction cost. In the interests of 

sustainability and reduced costs there has been considerable interest in catalysis using 

earth-abundant metals, such as iron, as well as in C-H activation reactions. One example of 

a C-H activation reaction is the Minisci reaction, which is a radical reaction that couples N-

heteroarenes to a variety of organic species. Recently a variation of the Minisci reaction 

was discovered in which arylboronic acids, which are relatively cheap and easily available, 

are coupled to N-heteroarenes or quinones using either a silver or iron catalyst. This process 

occurs under air and at low temperatures, but requires long reaction times, has a somewhat 

limited scope, and is not regioselective. This thesis concerns the application of microwave 

heating to this reaction, in an attempt to mitigate these issues. Microwave heating has not 

been previously applied to the Minisci reaction, and in fact there are relatively few reports 

on radical reactions under microwave heating. 

 The reaction between pyrazine and arylboronic acids under microwave heating was 

first optimized. Ultimately, optimization led to similar product yields, but reactions that 

previously required 12 — 48 h could be conducted in 25 min. The reaction scope was then 

examined. The scope of arylboronic acids when reacted with pyrazine was somewhat 

limited, as strong electron-withdrawing and electron-donating groups were not tolerated. 
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Examination of the reaction mixtures revealed that two previously unobserved side reaction 

were taking place; first, a reaction in which the boronic acid moiety was replaced by a 

hydroxyl group, and second, N-heteroarene homo-coupling. The reaction scope with 

quinones was found to be similar to literature reports, but reactions still occurred at a much 

higher rate. The reaction was successfully extended to hydroquinones, but attempts to 

further expand scope to enones, imines, and other conjugated compounds were 

unsuccessful. Finally, the scope of reactions with N-heteroarenes was examined and was 

found to be similar to literature reports. The application of microwave heating did not 

significantly affect the regiochemical outcomes of the reaction. 
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Chapter 1. General Introduction 
 

1.1 Synthesis of Heterobiaryls and Arylquinones via Radical 

C-H Bond Activation 

1.1.1 Introduction 

1.1.1.1 Introduction to Radical C-H Bond Activation 

 C-H bond activation refers to a reaction in which the typically relatively inert 

carbon-hydrogen bond is cleaved in order to form a C-X bond.1-3 Some C-H bond activation 

reactions, such as alkane halogenations, are probably familiar to the majority of chemists, 

and are easily accomplished. Cross-coupling reactions that form C-C, C-N, or C-O bonds, 

on the other hand, are typically more challenging. Most commonly these reactions involve 

one reagent bearing a functional group that is cleaved during the reaction, and one reagent 

in which a C-H bond is cleaved.1-5 Less common are cross-dehydrogenative-coupling 

(CDC) reactions, in which a C-H bond is cleaved from each reagent. Both types of reaction 

have received a significant amount of attention due to their high atom and step economy, 

which in theory minimizes waste and the amount of time required to synthesize a given 

product (Scheme 1.1).1-5 This is because traditional cross-coupling methods usually require 

two functionalized reagents. For example, Suzuki coupling requires one reagent to have a 

boronic acid moiety, and the other a halide moiety. These groups must be installed before 

the Suzuki reaction can occur, meaning that at least two additional reactions are necessary 

before the desired Suzuki coupling. When relatively simple reagents are used, these 
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reactions can be resource- and time-consuming, and may produce a significant amount of 

waste, but are usually synthetically simple and afford good yields. However, 

functionalization of complex or otherwise challenging starting materials may prove to be 

difficult, and constitute a significant drain on resources and time.  

 

 

Scheme 1.1 Synthesis of a product by traditional cross-coupling methods, a C-H bond 

activation, and a CDC reaction, showing the reduced number of reactions required by C-

H bond activation reactions. 

 

 The majority of C-H bond activation reactions are accomplished by organometallic, 

two-electron processes, in which a carbon-metal bond is formed.1-5 Palladium catalysts 

generally dominate the area, although rhodium, ruthenium, and iridium catalysts are also 

common. However, these metals are relatively expensive, and in several cases there are 

concerns about their toxicity; in addition, these catalysts often require complex and 

synthetically challenging ligands.1-5 There has therefore been significant interest in 

developing C-H bond activation reactions that employ more cost-effective and less toxic 

metals such as copper, nickel, or iron, or even in developing catalyst-free processes. One 

method that has been investigated in order to accomplish this goal is radical C-H bond 
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activation.4,6,7 In these reactions, a radical is formed either by the cleavage of the C-H bond 

or the cleavage of a functional group, and coupling then occurs via a single-electron transfer 

pathway. These reactions often do not require the use of a precious metal catalyst, and in 

some cases do not require any catalyst.4,6,7  

 Descriptions of cross-coupling via radical C-H bond activation dates back as far as 

1924, when Gomberg and Bachmann were able to couple an aryldiazonium salt with an 

unactivated arene via a radical intermediate (Scheme 1.2).8 While several other radical C-

H bond activating cross-coupling reactions were developed in the ensuing years, a great 

deal of research and development in this area has occurred in the past several decades.4,6,7 

The number and scope of radical C-H bond activating cross-coupling reactions is now vast, 

and includes the coupling of alkanes, alkenes, alkynes, arenes, heteroarenes, alcohols, 

aldehydes, thiols, amines and more.4,6,7 The number of methods used to form radicals has 

also grown – currently, most radicals are formed in one of four ways; by cleavage of an 

unstable functional group; by irradiation with light; by the addition of an oxidant or 

reductant; or by the addition of a metal catalyst. Occasionally, radicals are also formed via 

electrochemistry.4,6,7  

 

 

Scheme 1.2 The Gomberg-Bachmann reaction, an early example of cross-coupling via 

radical C-H bond activation.8 
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 Given the diversity and proliferation of radical C-H bond activating cross-coupling 

reactions, a review of the literature is beyond the scope of this thesis. For further 

information, the reader should refer to one of several excellent reviews on the subject.4,6,7 

Instead, this chapter will focus exclusively on arylation and heteroarylation reactions. Even 

among this class of reactions, there exists a diverse array of radical sources, coupling 

partners, and reaction conditions.9-11 The aim of the following sections is therefore not to 

provide a complete review of the available literature, but instead to highlight notable 

examples and examine their advantages and disadvantages. 

1.1.1.2 N-Heterobiaryls and Arylquinones 

 N-heteroarenes are aromatic compounds where one or more nitrogen atoms are 

included in the aromatic system. They are most commonly five- or six-membered rings, 

and may include one to four nitrogen atoms, and in some cases other heteroatoms, most 

notably oxygen and sulfur.12 N-heteroarenes are aromatic, and are therefore usually 

somewhat more stable than analogous N-heterocycles. Six-membered N-heteroarenes 

differ from analogous aromatic hydrocarbons in that they are non-symmetric, possess a 

strong dipole, have an electron pair perpendicular to the aromatic pi orbitals, and are 

generally electron-deficient at the 2 and 4 positions due to inductive polarisation.12 The 

chemistry of five-membered N-heteroarenes are more difficult to generalize, but often they 

possess a second nitrogen which has a lone pair that contributes to aromaticity, and the 

carbons are electron-rich.12 N-heteroarenes are widely used as bases and ligands, and are 

important substructures in dyes, plastics, semiconductors, pharmaceuticals, and 

biochemistry.13-16 N-heteroarenes are in fact vital in biochemistry, as they are found in 
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many critical biological molecules, including the amino acids histidine and tryptophan; 

vitamins such as niacin (vitamin B3); NADP+ and NADPH, used in all cellular respiration; 

the heme macrocycle, responsible for oxygen transport in the blood; the purine bases 

adenine and guanine, found in DNA and RNA; and many more (Figure 1.1).17 

 

 

Figure 1.1 N-heteroarenes critical in the survival of all life. 

 

 N-heterobiaryls are compounds that contain one or more separate aromatic moieties 

bound directly to an N-heteroarene; this does not include bicyclic structures such as 

quinoline or indole. Historically, N-heterobiaryls have been synthesize using aryl halides 

and heteroarylmetal compounds such as heteroarylzinc, heteroaryltin, heteroarylsilicon, 



6 

 

and heteroaryl Grignard reagents.9-11,13,18-21 These reactions are still useful tools, but have 

fallen out of favor due to their cost and poor atom-economy. Suzuki reactions have been 

employed in the formation of N-heterobiaryls, but are limited due to difficulties in 

synthesizing N-heteroarene reagents with the appropriate regiochemistry, particularly 

given some N-heteroarenes sensitivity to acids and bases.9-11,13,18-21 In addition, many N-

heteroarenes are able to act as ligands on precious metal catalysts, interrupting the catalytic 

cycle and causing the formation of side products. There has been a considerable amount of 

interest in direct metal-mediated C-H bond activating arylation of N-heteraorenes.9-11,13,18-

21 The most common systems employ palladium, ruthenium, iron, and copper salts to 

couple N-heteroarenes with haloarenes.9-11,13,18-21 While these systems have better atom-

economy and may be more cost-efficient, they still often require complex ligands and harsh 

conditions.9-11,13,18-21 Finally, there has been considerable interest in developing C-H bond 

activating reaction using aryl radicals (see Sections 1.1.1.3 and 1.1.2). 

 Like N-heteroarenes in general, N-heterobiaryls are important as dyes, polymer 

building blocks, in electronic applications, in chemistry as ligands, and as pharmaceuticals. 

The most significant N-heterobiaryl dye is probably thioflavin, which is widely used as a 

histology stain in studies of protein aggregation (Figure 1.2).22 There are a number of other 

N-heterobiaryl dyes, but most find only niche applications.14 N-heterobiaryls have been 

important polymer building blocks since at least the 1950s, when high-performance 

polybenzimidazole fibres were first discovered.23 Polybenzimidazole exhibits high thermal 

stability and toughness, and is still used in high-performance protective gear, including 

space suits. As electronics, N-heterobiaryls are important as conducting or semi-conducting 
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polymers, mostly based on polypyrrole.23 N-heterobiaryls are an extremely common class 

of ligand; significant examples include various bipyridine ligands, tripyridine ligands, and 

many porphyrin-based ligands.13,24 The most significant use of N-heterobiaryls, however, 

occurs in the pharmaceutical and agrochemical industries. In the agrochemical industry 

several herbicides are based on N-heterobiaryl moieties.23,25 Most notable are paraquat, one 

of the most widely utilized herbicides, and difenzoquat (Figure 1.3).23,25 In the 

pharmaceutical industry, N-heterobiarenes make up some of the most widely used 

pharmaceuticals.16,26-28 Notable N-heterobiaryl pharmaceuticals include atorvastatin 

(Lipitor), a cholesterol-reducing drug; celecoxib (Celebrex), a non-steroidal anti-

inflammatory; etoricoxib, used to treat arthritis and acute pain; zolpidem (Ambien), a 

sedative; imatinib, used to treat myeloid leukemia and GI tumours; enasidenib (Idhifa), 

used to treat myeloid leukemia; pyrimethamine (Daraprim), an antimalarial and 

antiparasitic; flutemetamol (Vizamyl) used as a PET scanning radiopharmaceutical for the 

diagnosis of Alzheimer’s disease (Figure 1.3).16,26-28 
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Figure 1.2 N-heterobiarenes that are commonly used as dyes, semiconductors, ligands, 

and fibres. 
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Figure 1.3 Notable N-heterobiaryls in the agrochemical and pharmaceutical industries. 



10 

 

 Quinones are a class of compounds that contain a cyclic, conjugated dione structure 

(Figure 1.4).29,30 Most commonly quinones are based on 1,2-benzoquinone or 1,4-

benzoquinone (sometimes referred to as simply benzoquinone or quinone). Chemically, 

quinones are multifunctional, exhibiting properties of alkenes and ketones. They also 

commonly serve as hydrogen acceptors and oxidants, as they can be reduced to the 

semiquinone anion or to hydroquinones.29,30 Quinones are ubiquitous in nature, and are 

found in plants, animals, fungi, and bacteria.29,31-33 Due to their role as an oxidant and 

electron transfer agent they play roles in cellular respiration, electron transport, cellular 

defence, and photosynthesis. Quinones have also been implicated in a variety of diseases, 

as they may be cytotoxic, and can cause or contribute to oxidative stress, neuronal 

degeneration, and certain cancers.29,31-33 Quinones are extremely common in 

pharmaceuticals, where they find widespread use as fungicides and anticancer, antimalarial, 

and antibacterial drugs.29,31-33 Quinones are also common in the dye industry, where they 

have been employed for thousands of years as pigments such as henna (lawsone) and the 

red pigment alizarin.34 More recently, quinone dyes have been used as food dyes, 

fluorophores and infrared-absorbing moieties, often for medical imaging applications.35-37 

Finally, quinones are widely used in electrochemistry. 1,4-Benzoquinone forms part of the 

quinhydrone electrode which has been used to measure pH since 1921.38 Currently research 

is being conducted into the use of quinones in rechargeable batteries, phototransistors, and 

solar cells.39 
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Figure 1.4 Several common, basic quinones, which form the scaffold for the majority of 

more complex quinones. 

 

 Arylquinones constitute a small but important subsection of quinones. 

Arylquinones may be synthesized using traditional cross-coupling reactions such as the 

Suzuki reaction, but synthesis of the necessary halogenated quinone can be limited by 

chemo- and regioselectivity problems.40 Arylquinones may also be synthesized via C-H 

arylation using precious metal catalysts and arylmercury, aryltin, and arylsilane 

compounds, or through the use of radical C-H coupling with arylboron species using iron 

or silver catalysts (see Section 1.1.2.1).40 Arylquinone use in the dye industry is limited, 

although 2-pyrrolylnaphthoquinone derivatives may be used as hair dyes.36 In the 

pharmaceutical industry arylquinones, especially N-heteroarylquinones and the diarylated 

terphenyl quinones, are more common.29,33,41 Notable examples include Betulinan A and 

B, which inhibit lipid peroxidation29; leucomelone, an antibacterial agent40; 

asterriquinones, which activate insulin receptors and possess antitumor properties33; 

diospyrin, which is used to treat tuberculosis and may possess anti-cancer properties33; and 

2-(N-methylpyrrole)-1,4-naphthoquinone, a hair dye (Figure 1.5).36 
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Figure 1.5 Notable arylquinones from the pharmaceutical and dye industries 

 

1.1.1.3 Radical Sources for Arylation Reactions 

 Since aryl radicals are highly reactive and generally cannot be isolated, let alone 

stored, radical arylation reactions rely upon a number of aryl radical precursors. The 

purpose of this section is to provide a brief overview of some of the more notable 

precursors; for further information, readers should consult one of several excellent 

reviews.7,9,21,42,43 As described in Section 1.1.1.1, some of the earliest aryl radical reactions 

were carried out with aryldiazonium salts.8,9,21,42,43 Aryldiazonium salts form aryl radicals 

through homolytic cleavage of the C-N bond, which can be induced through metal catalysis, 

electrochemistry, or photochemistry.8,9,21,42,43 However, electron-donating substituents on 

the aryl moiety stabilize the C-N bond, and reactions with aryldiazonium salts bearing 
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strong electron-donating groups often fail, or lead to poor yields.8,9,21,42,43 Aryldiazonium 

salts are highly reactive, and usually cannot be stored for long periods of time, although 

their reactivity can be reduced by employing larger, more complex anions.9,42,44 In addition, 

in many cases aryldiazonium salts may explode if isolated.9,42,44 Instead, they are generally 

prepared immediately prior to use by the reaction of an aryl amine with sodium nitrite and 

hydrochloric acid, and kept in solution. Aryldiazonium salts high reactivity also often leads 

to a variety of side reactions, which ultimately result in lower yields. There are however 

some advantages to the reactivity of aryldiazonium salts, as reactions can generally be 

performed at room temperature, and proceed rapidly.8,9,21,42,43 In addition to the previously 

mentioned Gomberg-Bachmann reaction, aryldiazonium salts can also be coupled with 

olefins and heteroarenes in Meerwein-type reactions (Scheme 1.3).8,9,21,42,43 These 

reactions are usually catalyzed by copper salts, and reactions with heteroarenes are usually 

limited to electron-rich heteroarenes such as furans, thiophenes and protected pyrroles. In 

addition, it is often necessary to include a blocking group on the heteroarene to prevent 

diarylation.8,9,21,42,43 While the mild conditions and rapid reactions that are possible with 

aryldiazonium salts are attractive, they are limited due to difficulties with storage, low 

yields, and a somewhat limited substrate scope.8,9,21,42,43  
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Scheme 1.3 An example of the Meerwein-type reaction, in which aryldiazonium salts are 

coupled to heteroarenes and olefins via a radical pathway.9 

 

 Arylhydrazines are another, closely related class of early aryl radical precursors. 

Arylhydrazines are in fact usually prepared by reacting aryldiazonium salts with sodium 

sulfite in the presence of a base.9,21 Unlike aryldiazonium salts, however, arylhydrazines 

are not explosive, and can be safely isolated and stored. However, many arylhydrazines are 

carcinogenic, genotoxic, and acutely toxic, causing contact dermatitis, hemolytic anemia, 

and liver damage.9,21 Arylhydrazines have been used as radical precursors for the coupling 

of benzene and other aromatic hydrocarbons, olefins, and heteroarenes.9,21,45-47 Reactions 

generally require stoichiometric amounts of oxidant; the oxidant causes the formation of 

an unstable diazine, which decomposes to form the aryl radical and nitrogen gas (Scheme 

1.4).9,21,45-47 As with aryldiazonium salts, yields of reactions with arylhydrazines are often 

limited by the formation of side products or by diarylation. Reactions of arylhydrazines 

with heteroarenes are generally limited to electron-rich heterocycles and arylhydrazines 

with electron-withdrawing substituents.9,21,45-47 
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Scheme 1.4 Coupling of arylhydrazines to thiophenes and furans using manganese(III) 

acetate as an oxidant.46 

 

 Aromatic halides, particularly aryl bromides and aryl iodides, are widely used as 

aryl radical precursors.7,9,21,48 They are able to form aryl radicals via irradiation with visible 

light, electrochemical reduction, or the use of reductants such as potassium tert-

butoxide.7,9,21,48 Aromatic halides are less reactive than arylhydrazines or aryldiazonium 

salts, and are therefore easier to store and are generally less toxic. On the other hand, 

aromatic halides often require harsh conditions to form aryl radicals, usually including 

several equivalents of strong base, a metal catalyst with relatively high catalyst loading, 

and temperatures of 100 °C or more (Scheme 1.5).7,9,21,48 Large excesses of arene are also 

usually required, as the harsh conditions cause side reactions. Aromatic halides have been 

coupled with benzene and its derivatives, electron-deficient heteroarenes such as pyridine, 

and electron-rich heteroarenes like thiophene and furan.7,9,21,48 In reactions with 

heteroarenes a mixture of regioisomers are obtained; yields are generally highest at the 

ortho position, adjacent to the heteroatom, and diminish at each site moving away from the 

heteroatom (Scheme 1.5).7,9,21,48 
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Scheme 1.5 Coupling of pyridine with benzene using bromobenzene as an aryl radical 

precursor.48 

 

 More recently, the use of hypervalent diaryliodonium salts as radical precursors 

have received considerable attention.9,21,49,50 These salts are more reactive than aromatic 

halides, allowing reactions to occur under more mild conditions, often at room temperature. 

They are light-sensitive, but can be stored if protected from light, and are relatively non-

toxic.9,21,49,50 Diaryliodonium salts are commercially available, but are often relatively 

expensive; however, they can be synthesized fairly easy by treating the desired aryl iodide 

with meta-chloroperoxybenzoic acid (m-CPBA) and a salt containing the desired anion.50 

Aryl radicals are formed via the use of a reductant or by photoirradiation, and reactions can 

be performed with or without a transition-metal catalyst.9,21,49,50 Metal catalysts that have 

been used are generally precious metals such as ruthenium and palladium, although several 

copper-catalyzed reactions have been reported. One of the major drawbacks to the use of 

diaryliodonium salts is their low atom-economy, as only one aryl moiety forms an aryl 

radical, while the other aryl moiety forms an iodoarene.9,21,49,50 Metal-free and metal-

catalyzed reactions have been reported with aromatic hydrocarbons, and electron-rich 

heteroarenes such as thiophenes, furans, pyrroles, and indoles although pyrroles and indoles 

must usually must have N-alkyl substituents to prevent side reactions.9,21,49,50 Reactions are 
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often regioselective and result in higher yields than other aryl radical precursors.9,21,49,50 

Scheme 1.6 presents a typical example of an aryl radical coupling with aryliodonium salts. 

 

 

Scheme 1.6 Ruthenium-catalyzed coupling of aryliodonium salts with thiophenes, furans 

and pyrroles under photoirradiation.51 

 

 Finally, arylboronic acids and other arylboron compounds have received a 

significant amount of attention as aryl radical precursors over the last decade.7,9,21,52 

Arylboronic acids are light, air, and moisture stable, and are generally non-toxic.9,18,53 They 

are also widely commercially available and in many cases inexpensive, in part due to their 

widespread use in the Suzuki reaction.9,18,53 In addition to arylboronic acids, 

aryltrifluoroborates and arylboronic acid esters have also been investigated as aryl radical 

precursors.7,9,21,52 Aryltrifluoroborates in particular have received attention because they 

are water-soluble, and therefore allow reactions to take place in aqueous media. Arylboron 

compounds generally require stoichiometric amounts of oxidant in order cleave the C-B 

bond and thereby form an aryl radical.7,9,21,52 Reactions with arylboron compounds have 

been investigated with olefins, quinones, benzene and its derivatives, electron-rich 

heteroarenes such as furan and thiophene, but also with electron-deficient heteroarenes 
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such as pyridine, quinoline, and other N-heteroarenes.7,9,21,52 The synthesis of biarenes and 

heterobiarenes via radical C-H bond functionalization with arylboronic acids is examined 

fully in the following section. 

 

1.1.2 Synthesis of Biaryls and Arylquinones via Radical C-H Bond 

Functionalization with Arylboronic Acids 

1.1.2.1 Development and Significance 

 Interest in the use of arylboronic acids and other arylboron species, such as 

arylboronic acid esters and aryltrifluoroborates, as precursors to aryl radicals began due to 

their stability, commercial availability, low toxicity, easy synthesis, and widespread use in 

the Suzuki reaction. In addition, arylboron species had been shown to decompose into aryl 

radicals in the presence of an oxidant.54 The first report of a radical arylation reaction using 

an arylboron species was published in 2002, when Demir and coworkers reported the 

coupling of arylboronic acids with benzene, thiophene, and furan (Scheme 1.7).55 The 

reaction was performed at reflux, using benzene or heteroarene as a solvent, and required 

three equivalents of manganese acetate as an oxidant. The reaction was found to be tolerant 

to both electron-donating and electron-withdrawing substituents on the arylboronic acid, 

and were also tolerant of sterically hindered arylboronic acids.55 Reactions with benzene 

resulted in yields of 40%-90%, higher than yields with thiophene (50%-77%), which gave 

better results than furan (19%-67%).  A follow-up to this report was published in 2010, 

when the same group reported synthesis of biaryls and heterobiaryls under microwave 
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irradiation.56 In this report the group used a mixture of potassium permanganate and acetic 

acid as an oxidant, benzene as a solvent, and zeolite. The role of the zeolite was not 

explained or examined in the report, but presumably was meant to act as a heterogeneous 

catalyst, which would form a hotspot under microwave heating (see Section 1.2 for details). 

In addition, the temperature of the reaction mixture was not reported or monitored; instead, 

the group chose to report and optimize microwave power. In general, similar or slightly 

improved yields were reported under microwave heating.56 Curiously, however, reactions 

still required 20-30 min to reach completion, the same as reactions at reflux. In both of 

these reports yields were often limited by arylboronic acid side reactions, most commonly 

homo-coupling.55-57 Another report of arylboronic acid radical arylation under microwave 

heating was also published in 2010 by Guchhait and coworkers.57 They were able to 

perform reactions using a much smaller excess of arene - 10 equivalents instead of 

hundreds - in 7-10 min. They reported similar yields as Demir when coupling electron-rich 

or neutral arenes, and were able to extend the reaction scope to include electron-deficient 

arenes, such as pyridine, 4-cyanopyridine, and quinoline, in moderate yields.57 This report 

was significant, as N-heteroarenes are difficult targets for traditional Suzuki coupling due 

to difficulties in synthesizing the required starting materials and the N-heteroarenes’ ability 

to act as ligands. They also noted that arylboronic acid homocoupling was significantly 

diminished under microwave heating. 
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Scheme 1.7 Radical cross-coupling of arylboronic acids to benzene, thiophene and furan 

using manganese(III) acetate as an oxidant as reported by Demir and coworkers.55 

 

 In late 2010 and early 2011 Baran and coworkers published two reports describing 

the radical cross-coupling of arylboronic acids using potassium persulfate as an oxidant, as 

well as a report detailing radical cyclizations with arylboron species (Scheme 1.8).18,53,58 

The first report described coupling with heteroarenes, primarily N-heteroarenes,18 while 

their second report described coupling with quinones.53 Both of these reports used very 

similar conditions; in both reports reactions were performed in a biphasic mixture of 

dichloromethane and water, using several equivalents of potassium persulfate and a 

catalytic amount of silver(I) nitrate. Reactions were also performed under air at room 

temperature, using only 1.5 equivalents of arylboronic acid, and required 3-24 h to reach 

completion in both reports. Reactions with N-heteroarenes bearing electron-withdrawing 

groups gave yields up to 92%, while yields with unsubstituted N-heteroarenes ranged from 

30% – 96%.18 The reaction was also tolerant to a wide variety of arylboronic acids, 
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including arylboronic acids bearing electron-donating and electron-withdrawing group. 

Notably, a number of regioisomers were detected when non-symmetrical N-heteroarenes 

or quinones were coupled; in contrast, only one isomer was reported in most reactions using 

manganese(III) acetate as an oxidant.18,57 Reactions with quinones were tolerant to a wider 

variety of boronic acids, including strongly electron-deficient and electron-rich acids, and 

alkylboronic acids.53 Reactions with aryltrifluoroborate salts or ‘Molander salts’ were also 

attempted and gave similar yields. Reactions with both N-heteroarenes and quinones were 

successful on the gram scale, and in the case of quinone reactions at this scale could be 

performed in water without an additional organic solvent.18,53 

 

 

Scheme 1.8 Conditions described by Baran and coworkers for the cross-coupling of N-

heteroarenes and quinones with arylboronic acids using potassium persulfate as a radical 

initiator.18,53 

 

 The reports by Baran and coworkers of radical arylboronic acid coupling to difficult 

and biologically relevant electron-deficient arenes and quinones under mild conditions 
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sparked considerable interest, and several reports soon followed. Several reports attempted 

to extend the reaction scope, which is described in detail in Sections 1.1.2.3, 1.1.2.4, and 

1.1.2.5. Other reports examined the role of the catalyst – some groups continued using 

silver catalysts, while others employed more cost-effective iron catalysts or were entirely 

catalyst-free. Silver catalyzed reactions were described by Mai and coworkers in 2011, 

when they reported the coupling of pyridine N-oxides with arylboronic acids under similar 

conditions to those in the Baran report.59 Pyridine N-oxides are strongly electron-deficient 

at the 2-position, and their use had therefore been reported to lead to higher yields and 

increased selectivity for the 2-position. These effects were observed by Mai and coworkers, 

who were able to increase arylboronic acid scope, and obtain products arylated exclusively 

at the 2-position.59 In 2013, a silver-catalyzed reaction was reported by Jain and coworkers, 

who were able to achieve regiospecific coupling with the amino acid L-histidines – the first 

report of a single-step regiospecific synthesis of 2-aryl-L-histidines.60 In 2018 Wu and 

coworkers described the silver-catalyzed regiospecific arylation of N-methoxyquinoine-1-

ium tetrafluoroborate salts. As with N-oxides, these compounds are highly electron-

deficient at the 2-position, and Wu and coworkers were therefore able to expand substrate 

scope, and achieve almost exclusive selectivity for the 2-position.61 

 The first iron-mediated reaction was reported by Yu and coworkers in 2012.20 They 

were able to achieve similar yields as Baran and coworkers with both quinones and N-

heteroarenes using 0.5 equiv of heterogeneous iron(II) sulfide, although the reactions were 

more sluggish, requiring 24-48 h to complete. In addition, they reported the first tandem 

oxidation and cross-coupling of hydroquinones, forming the arylquinone products with 
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similar yields to reactions with quinones.20 Komeyama and coworkers also reported an 

iron-mediated reaction with both N-heteroarenes and quinones using 1 equiv of 

homogeneous iron(II) sulfate.62,63 However, they were able to use a catalytic amount of 

iron(II) sulfate when a reductant, such as ascorbic acid was present.62 A catalytic amount 

of iron(II) sulfate could also be used in reactions with hydroquinones, which themselves 

serve as reductants. Shortly after, Vishwakarma and coworkers also reported iron-catalyzed 

arylations of N-heteroarenes and quinones using iron(II) acetylacetonate and a phase 

transfer catalyst, tetrabutylammonium bromide (TBAB).19 Maiti and coworkers were also 

able to couple quinones, hydroquinones, N-heteroarenes and N,S-heteroarenes using 

iron(III) nitrate as a catalyst.64 In later reports, Maiti and coworkers also described the 

generation of arylated quinones from hydroquinones and phenols, and the regioselective 

arylation of biologically relevant N-alkyl-2-pyridones.40,65 Finally, Huang and coworkers 

reported excellent yields with substituted pyridines using iron oxalate as a catalyst.66 In 

general, reactions using iron catalysts were found to proceed more slowly and sometimes 

required heating, but were able to expand substrate scope to include hydroquinones and 

phenols (Scheme 1.9; see Sections 1.1.2.3, 1.1.2.4, and 1.1.2.5 for more information). 
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Scheme 1.9 Top: Iron-catalyzed coupling of arylboronic acids with 

N-heteroarenes.19,20,63,64,66 Bottom: Iron-catalyzed coupling of arylboronic acids with 

quinones,19,20,62,64 hydroquinones,20,62,64 and phenols.40 

 

 Lastly, there has been one report of a metal-free reaction. Singh and coworkers 

reported the coupling of N-heteroarenes and arylboronic acids in the absence of a metal 

catalyst or acid using a persulfate oxidant (Scheme 1.10).67 Arylated products were 

obtained in moderate to good yields with more electron-deficient N-heteroarenes, but yields 

diminished with less electron-deficient heteroarenes. Arylboronic acid esters and 

aryltrifluoroborate salts were also examined, and gave moderately lower yields than 

arylboronic acids.67 While a metal and acid-free reaction is desirable, the reaction required 

heating to 160 °C, and in most cases resulted in lower yields than most metal-catalyzed 

reactions. 
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Scheme 1.10 Metal and acid-free coupling of arylboronic acids to electron-deficient 

N-heteroarenes, as described by Singh and coworkers. 

 

 Radical cross-coupling with arylboronic acids provides a simple, mild, and cost-

effective method for the arylation of electron-deficient heteroarenes and quinones without 

the need for precious metals catalysts. In addition, the starting materials employed are 

generally commercially available and shelf stable, and the reaction avoids the need to 

functionalize the N-heteroarene or quinone reagent. As described in Section 1.1.1.2, 

heterobiarenes and arylquinones are important in the pharmaceutical, agrochemical, 

electrochemical, and dye industries. There have been a number of syntheses of natural 

products or medically relevant compounds and scaffolds using this method in the academic 

literature (Figure 1.6 and Figure 1.7), which demonstrate the utility of the reaction in the 

synthesis of biologically active compounds.18,19,40,53,63,65 In addition, a number of these 

reports note that the reaction is tolerant to numerous functional groups, eliminating the need 

for time-consuming and wasteful protection/deprotection reactions.18,40,53,63 Despite these 

advantages, there have been no commercial products synthesized using this method. This 

may be simply because the technique is relatively new, or may be due to one of several 

disadvantages, most notably long reaction times and the amount of waste produced as a 
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byproduct of the reaction. This waste includes products from the homo-coupling and 

protodeboronation of the arylboronic acid, but most significantly the waste from the several 

equivalents of potassium persulfate required as a radical initiator. These waste products are 

non-toxic and easy to dispose of on a bench scale, but may be more difficult to deal with if 

a significant scale-up is required. 

 

 

Figure 1.6 Natural products, pharmaceuticals, and medicinally relevant scaffolds 

synthesized via radical C-H activating cross-coupling between arylboronic acids and 

quinones, hydroquinones, or phenols. 
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Figure 1.7 Natural products, pharmaceuticals, and medicinally relevant scaffolds 

synthesized via radical C-H activating cross-coupling between arylboronic acids and N-

heterocycles. 

 

1.1.2.2 Mechanism of Reactions with Persulfates 

 The general mechanism of arylboronic acid radial coupling with N-heteroarenes is 

agreed upon, although the details of the mechanism are not. Several publications have 

confirmed that the reaction is radical in nature through the use of a radical trap, generally 

2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) experiments.19,20,59,60,64 This compound 
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reacts rapidly in the presence of radicals to form a relatively unreactive product. Upon 

addition to the reaction mixture, TEMPO retards or entirely halts the reaction, confirming 

the presence of radicals in the reaction cycle.19,20,59,60,64 It is also generally agreed that the 

original source of the radicals is the oxidation of the metal by the persulfate anion, which 

forms the oxidized metal species and a sulfate radical anion.18,20,40,62,64,68 This is consistent 

with literature reports on persulfate chemistry, which has been thoroughly investigated due 

to the widespread use in radical polymerization reactions. Arylation is thought to occur via 

nucleophilic attack of an aryl radical formed from the arylboronic acid, which is thought to 

be formed by the homolytic cleavage of the carbon-boron bond.18,20,40,62,64,68 This is strongly 

suggested by the fact that coupling is favored at electron-deficient sites on the N-

heteroarene, and occur exclusively at the site of the carbon-boron bond. Further evidence 

is provided by side reactions of the arylboronic acid, which can undergo homocoupling, 

hydroxylation, or protodeboronation, which also occur selectively at the site of the C-B 

bond.19,62,65,68 

  What remains unclear is the role of the metal catalyst and the identity of the species 

responsible for the formation of the aryl radical. There are two proposed mechanisms 

(Scheme 1.11). In their 2010 report Baran and coworkers suggested based on literature 

precedent that the persulfate anion disproportionated in the presence of silver(I), forming a 

sulfate dianion, a sulfate radical anion, and a silver(II) species.18 They then suggested that 

the sulfate radical anion reacted with the arylboronic acid to form an aryl radical, with the 

eventual formation of boric acid and another sulfate dianion. The aryl radical would then 

couple to a protonated N-heteroarene, which would then lose a hydrogen radical to form 
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the final product and regenerate the silver(I) catalyst.18 Most literature reports suggest a 

similar mechanism, changing only the identity of the metal and the termination step, as in 

metal-mediated reactions the catalytic cycle is not completed. This pathway appears 

plausible, but is not supported by any in-depth studies of the reaction mechanism. 

 

 

Scheme 1.11 The most commonly cited mechanism, first proposed by Baran and 

coworkers.18 

 

 However, several other reports, including the only report dedicated specifically to 

determining the reaction mechanism, suggested an alternative pathway (Scheme 1.12).64,68 

These groups suggested that the initial step was the formation of a metal-N-heteroarene 

complex. The formation of a metal-N-heteroarene complex was first suggested based on 

unusual rate orders with respect to the N-heteroarene and arylboronic acid, and was further 

confirmed by proton NMR studies in D2O.68 The metal would then be oxidized by the 

persulfate, then act as a reducing agent in order to cleave the carbon-boron bond and form 
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the aryl radical, rather than having the persulfate radical anion cleave the carbon-boron 

bond.64,68 This proposal was supported by experiments employing allyl acetate, a common 

radical trap for persulfate radical anions. The inclusion of allyl acetate did not impact the 

yield, and in fact increased yields slightly, indicating that the persulfate radical anion was 

not directly involved in the reaction.68 The aryl radical would then couple to a protonated 

N-heteroarene, with the final product being formed by the loss of a hydrogen radical.64,68. 

This mechanism is not proposed as often in the literature, but seems to be more well-

supported by experimental data. 

 

 

Scheme 1.12 A plausible mechanism originally suggested by Flowers and coworkers.68 
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 Relatively little research has been conducted into the mechanism of quinone or 

hydroquinone arylation. In general, the mechanisms that have been proposed are similar to 

those proposed for N-heteroarenes. Some groups have suggested that coordination with the 

metal might occur40, increasing the electrophilic nature of the quinone, while others do not 

suggest coordination.20,62 It is also unclear whether cleavage of the carbon-boron bond is 

caused by the sulfate radical anion or by the metal. Reactions with hydroquinones and 

phenols are thought to proceed via the same mechanism, with the phenol or hydroquinone 

being oxidized to quinone before arylation takes place.20,40,62 

1.1.2.3 Scope and regioselectivity of reactions with N-heteroarenes 

The scope of N-heteroarene cross-coupling in the reaction has been examined 

several times, usually focussing on six-membered rings containing one or more nitrogen 

atom (Figure 1.8).18-20,63-67 Unactivated N-heteroarenes such as quinoline, pyridine, 

pyrazine, or pyrimidine have been cross-coupled in good yields, but better results are 

obtained when a strong electron-withdrawing group, such as a cyano or trifluoromethyl 

group, is present on the N-heteroaryl.18,20,63,64,66 Reactions with weakly electron-

withdrawing halide substituents have been described with mixed results, with some groups 

reporting greatly diminished yields, and others reporting little difference between the 

halides and more strongly electron-withdrawing groups.18,20,63,64,66 Weakly electron-

donating alkyl groups, most commonly methyl and tert-butyl groups, are also generally 

well tolerated, but stronger electron-donating groups, such as alkoxy groups, lead to a 

significant reduction in yield.18,20,63,64,66 N-heteroarenes containing fused ring systems, as 

in the case of quinoline, quinoxaline, quinazoline or phthalazine, are generally well 
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tolerated, and they can be further activated by electron-withdrawing groups.18,20,63,64,66 

Arylation in these cases takes place exclusively on the ring containing the nitrogen 

atom.18,20,63,64,66 Finally, there is only one report of coupling with a non-aryl N-heterocycle, 

in which N-alkyl-2-pyridones were coupled in poor to moderate yields.65 

As previously mentioned, by far the most common N-heteroaryl coupling partners 

are 6 membered rings containing one or more nitrogen atoms. However, there are a small 

number of reports that describe reactions with 5-membered rings containing one or more 

nitrogen atoms, most commonly an imidazole ring, which usually produce poor yields or 

no conversion to the desired coupled product (Figure 1.8).18,20,60,64 Yields are particularly 

poor if an NH bond is present in the ring,18,60 and there have been no reports of successful 

coupling with N-heteroarenes containing only a nitrogen with an NH bond.18,60 There are 

two reports of reactions of five-membered rings containing other heteroatoms.20,64 Yu and 

coworkers reported moderate yields with sulfur-containing benzothiazole and 

4,5-dimethylthiazole, but were not able to couple oxygen-containing benzoxazole.20 Maiti 

and coworkers also reported the coupling of 4-methylthiazole and benzothiazole, this time 

in good to excellent yields.64 Maiti’s report appears to be the only report of a high-yielding 

reaction with a 5-membered ring. 
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Figure 1.8 Summary of reaction scope with respect to N-heteroarenes for persulfate 

initiated cross-coupling with arylboronic acids. 

 

Reactions with unsubstituted N-heteroarenes almost invariably generate a mixture 

of isomers (Scheme 1.13).18,20,63,64,66 Reactions with unsubstituted pyridine or quinoline, 

for example almost always generate a mixture of products at the 2 and 4 positions, with 

little or no product detected at the 3 position.18,20,63,64,66 This regioselectivity is typical for 

nucleophilic reactions with these compounds, and is due to reduced electron density at the 

2 and 4 positions. However, reports on regioselectivity are often contradictory. For 

example, in their original paper, using a silver catalyst, Baran and coworkers cross-coupled 

pyridine and generated twice as much product with substitution at the 2 position than at the 

4 position - the expected ratio given that there are twice as many 2 positions available for 

reaction.18 In contrast, Maiti and coworkers reported the opposite, with twice as much 

product at the 4 position compared to the 2 position.64 The cause of these differences in 

regioselectivity are not well understood, but may be due to differences in catalyst identity 

or reaction conditions.  
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Attempts to control regioselectivity focus mainly on the inclusion of functional 

groups on the N-heteroarene, typically at the 4 position, or on the use of aryl N-oxides 

(Scheme 1.13). The inclusion of strong electron-withdrawing groups, which are known to 

be activating, at the 4-position leads primarily to the 2 product, with a much smaller amount 

of 3 product.18,20,64 The inclusion of other groups, most commonly alkyl groups, often leads 

exclusively to the 2 substituted product.18,20,64 There have also been several reports of 

reactions with substituents at the 2 or 3 positions of pyridine, which yielded a mixture of 

all 4 isomers, generally in poor yields.18,20,63 Substitution of quinoline at the 2 position 

yielded only the 4 position product, also in diminished yields.64 Curiously, there are no 

reports of reactions with 2,6-disubstituted pyridine, which would presumably yield only the 

4 product. An alternate method to control regiochemistry is the use of pyridine or quinoline 

N-oxides, or N-methoxyquinoline-1-ium tetrafluoroborate salts.59,61,69 Reactions with these 

starting materials have similar yields to unactivated N-heteroarenes, but are much more 

selective for the 2 position due to decreased electron density at this site, in many cases 

yielding only the 2 product.59,61,69 
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Scheme 1.13 Regiochemistry of the cross-coupling of substituted and unsubstituted N-

heteroarenes in the persulfate initiated cross-coupling reaction with arylboronic acids. 

  

1.1.2.4 Scope and Regioselectivity of Reactions with Quinones 

The scope of reactions with quinones has been repeatedly explored.19,20,53,62,64 

Reactions with unsubstituted 1,4-benzoquinone generally give excellent yields.19,20,53,62,64 

The inclusion of alkyl groups leads to a modest decline in yields, as does the inclusion of 

halides.20,53,62,64 Reactions with quinones containing more strongly electron-donating ether 

groups results in similar or slightly reduced yields when compared with unsubstituted 

1,4-benzoquinone.20,53,62,64 No reactions have been reported with either stronger electron-

donating or stronger electron-withdrawing groups. Results with 1,4-napthoquinone and 

derivatives are mixed, with reported yields ranging from 11% to 98%.20,53,62,64 There has 
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also been one reaction reported with 1,2-napthoquinone, which was coupled in 48% yield.53 

No other literature reports could be found in which a 1,2-quinone was successfully coupled.  

There are also reports of the one-pot oxidation and homocoupling of 

hydroquinones, phenols, and 4-methoxyphenols, which yield the corresponding 

arylquinone (see Scheme 1.14).20,40,62,64 Curiously, such reactions have been reported only 

when using iron catalysts instead of silver catalysts.20,40,62,64 Reactions with hydroquinones 

give similar yields to reactions with quinones, while reactions with phenols and 

4-methoxyphenols have somewhat poorer yields.20,40,62,64 The effect of substituents appears 

to be similar to that described with quinones.20,40,62,64 There are no reports of reactions with 

cyclic or noncyclic enones, nor with enals or any other unsaturated species. The vast 

majority of quinones employed are symmetric, so regioselectivity is of less concern. When 

reactions are carried out with asymmetric quinones (as in mono-substituted quinones), all 

regioisomers are formed, generally in similar yields.53,62  

 

 

Scheme 1.14 Reagents that lead to the formation of arylquinone products in the persulfate 

initiated cross-coupling reaction with arylboronic acids. 
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1.1.2.5 Arylboronic Acid Scope 

The scope of arylboronic acids has been explored many times in reactions with both 

quinones and N-heteroaryls, with somewhat contradictory results (Figure 1.9).18-20,40,53,62-

66 Nearly all reactions focus on the coupling of phenylboronic acid or its derivatives. In 

these cases, unsubstituted phenylboronic acid or arylboronic acids with weakly electron-

donating alkyl substituents at the 3 or 4 positions are well tolerated.18-20,40,53,62-66 The 

presence of alkyl groups, or any substituent at the 2 position leads to mixed results. Several 

groups claim that there is little or no decrease in yield when substituents are present at the 

2 position19,20,62,65, while others report significant reductions in yield, presumably due to 

steric hindrance.18,53,63,64 Literature reports on reactions with halide substituents are also 

contradictory, with some groups observing a large decline in yields64-66, and others finding 

little to no effect19,20,40,62,63, regardless of position. When using stronger electron-

withdrawing groups such as cyano or trifluoromethyl groups, yields decline. However, 

some groups report moderate to good yields when using these substituents18,53,66, while 

others report very low yields or even no conversion.19,62,63 The presence of electron-

donating groups, most commonly alkoxy groups, results in only a small decline in yields.18-

20,40,53,62-66 Reactions with stronger electron-donating groups, such as hydroxyl or amine 

groups, have not been reported. In general, reactions with quinones appear to be tolerant to 

a wider array of substituted arylboronic acids than reactions with N-heteroaryls. 

There are also reports of couplings with arylboronic acids that are not based on 

benzene, non-aromatic boronic acids, and other boron-containing groups (Figure 1.9). Two 

groups have reported the coupling of N-heteroarylboronic acids to N-heteroarenes or 
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quinones, with all reactions returning low yields.19,69 An attempt with 2-thienylboronic acid 

gave only a trace amount of product.19 There has been one report of the coupling of 2-

furanylboronic acid to aryl N-oxides under metal-free conditions.69 There are two reports 

of the coupling of trans-2-phenylvinylboronic acids to N-heteroaryls at the terminal 

position, both in good yields.19,69 Attempts to couple phenylvinylboronic acids to quinones 

failed, and attempts to couple phenylethynylboronic acids led to Csp-Csp coupling.62 Finally, 

Baran and coworkers reported the coupling of several alkylboronic acids to 

1,4-benzoquinone.53 This appears to be the only account of coupling with non-conjugated 

boronic acids. In addition, there are several accounts of coupling with other boron groups. 

There are four accounts of coupling with arylboronic acid pinacol esters.19,53,62,67 All 

accounts reported that the pinacol esters were more sluggish, and gave lower yields, than 

the corresponding arylboronic acid.19,53,62,67 There are also 5 reports of coupling with 

potassium aryltrifluoroborate salts (Molander salts), with both quinones and N-

heteroaryls.19,53,62,63,67 In all cases, the aryltrifluoroborate salt reacted with similar or 

slightly higher yield when compared to the corresponding arylboronic acids.19,53,62,63,67  
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Figure 1.9 Summary of reaction scope with respect to organoboron species for persulfate 

initiated cross-coupling with arylboronic acids. In general excellent yields are 90% or 

above, good yields are 70-90%, moderate yields are 40-70%, and poor or low yields are 

40% and below. These classifications are based on the majority of reports with common 

coupling partners; yields obviously also depend on the identity of the coupling partner. 

 

1.2 Microwave Heating 

1.2.1 Introduction and Theory 

1.2.1.1 Introduction to Microwaves 

The term microwave radiation refers to electro-magnetic radiation with a frequency 

of 300 MHz to 300 GHz, corresponding to wavelengths of 1 m to 1 mm.70-75 Microwaves 

therefore have a lower frequency than infrared radiation, but a higher frequency than radio 

waves. Photons at 2.45 GHz, the frequency most often used for microwave heating, have 
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an energy of approximately 0.01 meV.73 In comparison, Brownian motion at 200 K has an 

energy of approximately 17 meV, hydrogen bonds up to 440 meV, and a typical C-H bond 

is approximately 4510 meV.73 Microwave radiation is therefore non-ionizing, meaning that 

it does not possess enough energy to directly break molecular bonds and thereby create 

ions.70-75 Reactions under microwave heating therefore do not (in the vast majority of cases) 

rely on microwave radiation directly breaking or altering chemical bonds; microwaves 

energy is usually simply converted into thermal energy.70-75 

Microwave radiation has extremely wide-ranging applications, from satellite 

communication to radar to medicine.71,73 In fact, the discovery of microwave heating in 

1945 was due to heating observed in proximity to a high-powered radar station.71,73 In order 

to avoid interfering with other devices that employ microwave irradiation, the vast majority 

of commercially available microwave heating systems, including those most often used in 

chemistry, employ 2.45 GHz (12.2 cm) light.70-75 Commercially available microwave 

heating units were available as early as 1947, and today microwave ovens are 

ubiquitous.71,73 The use of microwaves in organic chemistry began to gain popularity in 

1986, when dramatic increases in rate were reported in reactions in domestic microwaves 

in independent reports by Gedye and Giguere.76,77 Microwave heating in chemistry was 

initially slow to be adopted due to safety concerns with domestic microwaves, but rapidly 

increased in popularity with the advent of microwaves designed for lab use beginning in 

the 1990s.70-75 Interest in microwave heating in chemistry, especially organic chemistry, 

increased rapidly throughout the 2000s as it became clear that microwave heating offered 

a host of advantages, including diminished reaction times, higher yields, fewer side 
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products, expanded substrate scope, diminished catalyst loading or reagent stoichiometry, 

and alterations in regiochemistry.70-75,78 Microwave heating has also received attention as 

a green technique.79 It is often a more efficient way of heating reaction mixtures, is often 

safer due to built-in safety features, and may allow reactions to occur with substrates that 

are safer or more environmentally friendly, but usually less reactive.78,79 Microwave 

heating has now been applied to a huge variety of disciplines, including inorganic 

chemistry, radical chemistry, polymer chemistry, electrochemistry, photochemistry, 

heterogeneous and homogeneous catalysis, protein and carbohydrate chemistry, natural 

product synthesis, gas-phase and solid-state chemistry, biomass valorization, and more.70-

75,78,79 The utility of microwave heating has also continued to expand due to the invention 

and commercialization of microwave systems that allow scale-up in continuous-flow or 

stop-flow reactors, and parallel synthesis.70-75,78,79 

1.2.1.2 Microwave Heating 

Microwave heating occurs through a process known as dielectric heating, which 

relies upon the material to absorb microwave energy and convert it into heat energy.70-75 

This mechanism is different than conventional heating (CH) methods, in which heat energy 

is transferred from one surface or object to another. Dielectric heating is caused by the 

electronic component of the electro-magnetic field, and can be further broken down into 

ionic conduction and dipolar polarization.70-75 Ionic conduction occurs when there are ions 

present in the reaction mixture. As the electric field oscillates, it exerts a force on the ions, 

causing them to move, and thereby generating heat. Dipolar polarization occurs when polar 

species are present in the reaction mixture.70-75 The dipoles align when exposed to the 
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electromagnetic field. Then, as the field oscillates, the dipoles attempt to realign 

themselves, in essence transferring rotational energy to the molecules. As the molecules 

collide, this rotational energy can be transferred into heat energy.70-75 The magnitude of 

heating relies on the ability of the mixture to align itself with the applied field; if alignment 

with the field is rapid, or if the dipole does not have time to begin to realign, no heating can 

occur. The frequency of 2.45 GHz used by almost all microwave heating systems 

usually falls between these extremes, allowing the material to begin to realign before 

oscillating.70-75 

The efficiency with which a material is heated under microwave radiation is 

dependent on a number of factors, including the efficiency with which microwave radiation 

is absorbed, and the ability of the molecule to align with the electromagnetic field.70-75 In 

most cases the behaviour of a material under microwave irradiation can be described by the 

dielectric loss tangent, tanδ. A tanδ of 0 indicates that a material is completely microwave 

transparent, and cannot convert microwave energy to heat, while substances with a high 

tanδ are able to efficiently and rapidly transform microwave radiation to heat. For practical 

purposes, materials with a tanδ of above 0.5 are considered to be high microwave absorbers, 

while materials with a tanδ of 0.1 or below are considered low microwave absorbers. Most 

solids have low tanδ values (less than 0.1), as do most nonpolar liquids (Table 1.1). Polar 

solvents can range from low to high microwave absorbers, with tanδ values from 0.042 for 

dichloromethane to 1.35 for ethylene glycol.70-74 Microwave heating of mixtures with low 

tanδ values are still possible if polar or ionic materials can be dissolved. Tanδ values are 

not readily available for ionic liquids. However, microwave heating of ionic liquids is 
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extremely efficient and rapid, and temperature increases of hundreds of degrees have been 

observed in a matter of seconds.72,80  

Table 1.1 Loss factors (tanδ) of solvents and other relevant materialsa. 

Material Tanδ Material  Tanδ 

Ethylene Glycol 1.350 1% NaCl in waterb 0.3 

Ethanol 0.941 Distilled Water 0.123 

DMSO 0.825 Dichloromethane 0.042 

5% NaCl in waterb 0.8 Hexane 0.020 

Methanol 0.659 Borosilicate Glassc 0.0010 

1-Butanol 0.571 Fused Quartzc 0.00006 

aInformation from 71. bInformation from 81. cInformation from 75. 

 

1.2.2 Effects of Microwave Heating 

1.2.2.1 Bulk Thermal Effects and Microwave Specific Effects 

 The effects of microwave heating can be broadly divided into three categories; 

thermal effects, microwave specific thermal effects, and non-thermal effects. Thermal 

effects are due to an increase in temperature of the bulk reaction mixture, and can be 

obtained using conventional heating methods; microwave specific thermal effects cannot 

be easily replicated by conventional heating methods, but are still thermal in nature; and 

non-thermal effects are effects of microwaves not related to an increase in thermal 
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energy.70-75,82 The existence of non-thermal microwave effects remains controversial, and 

they are usually only invoked in very limited circumstances.70-75,82,83 For this reason, non-

thermal microwave effects will not be explored further in this work. 

 The majority of observed rate increases in microwave heating are attributable to 

bulk thermal effects.70-75 Most microwave systems allow for reactions in sealed containers, 

allowing reactions to be superheated well above their boiling point, which is the maximum 

temperature employed in most syntheses with conventional heating methods. Applying the 

Arrhenius equation, k = Ae-Ea/RT
, we can see that reaction rate will increase exponentially as 

temperature increases.70-75,84 Even modest increases in temperature can therefore have a 

large effect on reaction rate. Baghurst and Mingos have reported, based on the Arrhenius 

equation, that a reaction that required 68 days at 27 °C will require 13.4 h at 77 °C, 11.4 

min at 127 °C, and only 23 seconds at 177 °C.84 More generally, reaction times can be 

crudely estimated using the “rule of thumb” that an increase of 10 °C in temperature 

corresponds to a doubling of reaction rate.85 

 The unique mechanism of microwave heating may lead to a number of microwave 

specific effects. These effects are still thermal in nature, but may be difficult to attain using 

conventional heating methods.70-75 First, it has been proposed that microwave heating may 

lead to selective heating if some reaction components are much more strongly microwave 

absorbing. This could lead to the formation of heterogeneous or homogeneous hotspots, 

which would be much hotter than the bulk mixture; reactions occurring in these hotspots 

would therefore occur more rapidly than the Arrhenius equation would suggest. In some 

cases, it has been suggested that specific reagents in a homogeneous mixture may form a 
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hotspot; such reagents are commonly referred to as molecular radiators. Since these effects 

are microscopic in scale, and usually occur in sealed vessels during microwave irradiation, 

they are difficult to study. The existence of heterogeneous hotspots is generally accepted, 

but the existence and effects of homogeneous microwave hotspots remains disputed.70-75,82 

A second microwave specific effect is the rapid heating of reaction mixtures, or “flash” 

microwave heating.70-75 Reaction mixtures that contain a strongly microwave-absorbing 

solvent or reagents (ie with a high tanδ) may reach the desired temperature within seconds; 

in ionic liquids, temperature increases of hundreds of degrees have been reported in as little 

as several seconds.80 Finally, microwave heating may lead to the reduction or elimination 

of so-called “wall effects”.70-75 In conventional heating, heat must be conducted through 

the walls of the vessel to the reaction mixture. A temperature gradient must therefore be 

present, with the walls of the reaction mixture exceeding the temperature of the reaction 

solution. It has been proposed that certain side reactions, particularly catalyst degradation, 

take place in the high-temperature region at or near the walls of the vessel. In contrast, since 

the vessel walls are usually nearly microwave transparent, microwaves heat the bulk 

reaction mixture directly while the vessel walls remain relatively cool, eliminating any wall 

effects. 

 The reason why certain reactions proceed differently under microwave heating is 

somewhat contentious and varies from reaction to reaction. During the early development 

of microwave heating in chemistry microwave specific effects and even non-thermal 

microwave effects were invoked in a large number of reactions.70-75 However, in 2009 and 

2013 Kappe and coworkers pioneered the use of silicon carbide containers that were able 
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to mimic the rapid superheating commonly observed under microwave conditions without 

exposing the reaction mixture to microwaves.86,87 These experiments demonstrated that in 

the majority of cases it was the bulk thermal effects that led to observed improvements, not 

microwave specific effects.86,87 Microwave specific effects are still invoked in certain 

circumstances, but such claims are subject to a great deal more scrutiny. Circumstances in 

which microwave specific effects are commonly claimed include reactions with highly 

polar reagents in a nonpolar medium, in which molecular radiators may be formed; biphasic 

mixtures in which one phase has a higher tanδ, in which selective heating occurs; or 

heterogeneously catalyzed reactions, in which heterogeneous hotspots may form.70-75  

 Microwave heating has become an extremely widespread technique in synthetic 

chemistry, especially in organic chemistry. Even within the domain of organic chemistry, 

or even homogeneously catalyzed organic chemistry, the literature is far too vast for any 

sort of systematic review in this limited space. Instead, the following sections will present 

select reactions that demonstrate alterations in reaction rate, yield, catalyst loading, and 

selectivity observed under microwave heating. 

1.2.2.2 Increases in Rate and Expanded Substrate Scope 

 The most common effect observed under microwave heating is a rapid increase in 

rate.70-75 The increased rate of reactions under microwave heating is a major reason for the 

success and spread of microwave chemistry, as microwave heating has been widely applied 

as a cost and time-saving measure.70-75 Microwave heating is now routinely employed by 

many companies and groups in target screening and reaction optimization, as hundreds of 

reactions can be run in minutes on a parallel synthesis system. As described in Section 
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1.2.2.1, increases in reaction rate under microwave heating are generally attributable to 

bulk thermal effects, as microwave heating allows rapid heating to temperatures above the 

boiling point of a solvent, but may in some cases be attributed to microwave specific 

thermal effects.71-73,88,89 One example of the former is the intramolecular Diels-Alder 

reaction and subsequent hydrolysis of pyrazinones (Scheme 1.15).90 Under conventional 

heating, this reaction was performed via 24 h reflux in chlorobenzene, followed by an 18 h 

hydrolysis to form the final product, for a total reaction time of 42 h.90,91 Under microwave 

heating the Diels-Alder reaction could be performed in 1 h in DCE at 170 °C. However, 

when the reaction was doped with 1-butyl-3-methylimidazolium hexafluorophosphate 

(bmimPF6), an ionic liquid, the reaction could be performed at 190 °C in only 8 min.90 

Hydrolysis could then be performed simply by adding a small amount of water via syringe 

and heating the reaction to 130 °C for 5 min. The use of microwave techniques therefore 

allowed a reaction that required 42 h in the literature to be performed in only 13 min, nearly 

200 times faster, with nearly identical product yield.90  

 

 

Scheme 1.15 Intramolecular Diels-Alder reaction and hydrolysis of pyrazinones under 

microwave heating 
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 Reactions in which increases in rate are attributed to microwave specific effects are 

less common. However, reactions with polar reagents in nonpolar solvents and reactions 

with heterogeneous catalysts often report increases in rate attributed to microwave hotspots 

or molecular radiators. Reactions with heterogeneous catalysts in particular often cause 

large increases in rate, and the formation of hotspots hundreds of degrees hotter than the 

bulk solution have been reported. A typical example is the hydrogenation of alkenes using 

palladium-on-carbon (Pd/C) as a heterogeneous catalyst (Scheme 1.16).92 Using 

microwave heating, these reactions reached yields of 99% in only 5 min. Under 

conventional heating, a yield of only 55% was obtained under similar, strictly controlled 

conditions.92 

 

 

Scheme 1.16 Alteration of reaction rate under microwave heating in the hydrogenation of 

alkenes 

 

 Increased reaction rates frequently lead to the simple, rapid reaction of substrates 

that are sluggish, or do not react at all under conventional heating. This effect can be 

observed in the Suzuki reaction, which has been extensively studied under microwave 

heating. In 2004 Lidstrom and coworkers reported that challenging aryl chlorides could be 

rapidly coupled in good yields under microwave heating.93 A number of papers describing 
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Suzuki coupling with aryl chlorides soon followed.94 Further, Sanford and co-workers 

described a highly unusual Suzuki cross-coupling via C-F bond activation, as they were 

able to successfully couple a number of fluoroaryl reagents under microwave heating 

(Scheme 1.17).95 Similar expansion in substrate scope has been described in Kumada 

coupling, with aryl chlorides that reacted sluggishly under conventional heating reacting 

rapidly under microwave heating to attain higher yields.96 

 

 

Scheme 1.17 C-F bond activation in a Suzuki-Miyaura coupling reaction under 

microwave heating 

 

1.2.2.3 Higher Yields and Cleaner Reaction Profiles 

 Microwave heating may in some cases produce higher yields and cleaner reaction 

profiles than conventional heating; often, this allows smaller stoichiometric excesses to be 

used under microwave heating.70-75 Higher yields and cleaner reaction profiles are usually 

ascribed to effects such as rapid bulk heating of the reaction mixture and the absence of 

wall effects, as described in Section 1.2.2.1. One notable example is the reaction of urea to 

form cyanuric acid (Scheme 1.18).97 Under conventional heating the reaction is sluggish, 

and only low yields of the desired product are obtained, while a significant amount of 
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ameline and amelide side products are obtained. Under microwave heating yields of 83% 

can be obtained by heating to the same temperature for 2 min.97 The difference was revealed 

to be due to the formation of cyanuric acid on the walls of the reaction vessel, which formed 

an insulating layer and prevented efficient heat transfer. Increasing the temperature further 

under conventional heating resulted in decomposition of the cyanuric acid on the walls of 

the vessel.97 

 

Scheme 1.18 Synthesis of cyanuric acid from urea under microwave heating 

 

 Van der Eycken and coworkers have reported increased yields and reduction of side 

products in several Suzuki reactions. They were able to successfully couple 

2-nitrophenylboronic acid with a number of halogenated N-heteroarenes (Scheme 1.19).98 

Under conventional heating, reactions with 2-nitrophenylboronic acid are susceptible to 

protodeboronation, and yields of the desired product are reduced as nitrobenzene is formed 

as the major product.98 However, under microwave heating protodeboronation was 

suppressed, and the desired product was obtained in yields of 86%. In another report, they 

directly compared the extremely challenging coupling of phenethylamine and 

2-formylphenylboronic acid under microwave heating and conventional heating (Scheme 

1.20).99 Under conventional heating they were able to attain a maximum yield of 22% after 



51 

 

14 h at 150 °C. The majority of the 2-formylphenylboronic acid was found to have 

undergone protodeboronation, producing benzaldehyde as the major product. Using 

microwave heating, a maximum yield of 84% was obtained at the same temperature in only 

15 min. Benzaldehyde was still observed, but its formation was significantly diminished.99 

The group was unable to fully explain the observed difference between microwave and 

conventional heating, but suggested microwave specific effects were involved. Similar 

activity was noted by the group during their later synthesis of buflavine analogues.100 

 

Scheme 1.19 Suzuki coupling of 2-nitrophenylboronic acid and 4-bromoindole under 

microwave heating 

 

 

Scheme 1.20 Comparison of microwave and conventional heating in the Suzuki coupling 

of a phenethylamine and 2-formylphenylboronic acid 
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1.2.2.4 Reduced Catalyst Loading 

 Microwave heating has been observed to allow reactions to proceed with lower 

catalyst loadings, or lower stoichiometric amounts of reagents. In 2003 Leadbeater and 

Marco reported what appeared to be a metal-free Suzuki reaction under microwave 

conditions – the first such reaction to be reported.101,102 They were able to successfully 

couple aryl iodides and bromides in an aqueous solution at 150 °C in only 5 min using only 

tetrabutylammonium bromide (TBAB) and sodium carbonate (Scheme 1.21).101,102 Using 

inductively coupled plasma-atomic absorption (ICP-AA) spectroscopy, the reaction 

mixture was determined to be palladium-free below 0.1 ppm, and free of any transition 

metal that had been previously used as a catalyst for Suzuki reactions below 1 ppm.101,102 

Since there were no reports of catalysis with such low concentrations of metal catalyst, they 

concluded that the reaction was fully metal-free. However, in 2005 they re-examined the 

reaction using a more sensitive analytical technique, and determined that the reaction could 

be catalyzed by palladium impurities present in the sodium carbonate salt with a 

concentration as low as 50 ppb.103 This corresponded to a catalyst loading of 0.0000008 

mol%, with a turnover number of 1 250 000.103 This method was later extended to Heck 

reactions.104 Attempts were made to reproduce these reactions using conventional heating 

methods. However, it was discovered that the yield of the reaction using 

conventional heating was much lower until catalyst loading approached 2.5 ppm, at which 

point similar yields were observed. point similar yields were observed. point similar yields 

were observed.  
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Scheme 1.21 Suzuki and Heck reactions with extremely low catalyst loading under 

microwave heating. 

 

1.2.2.5 Altered Selectivity 

 There are a number of reports of reactions performed under microwave heating that 

yield products with different regio-, stereo-, enantio-, or chemoselectivity than reactions 

performed under conventional heating.89,91,105 These alterations are not generally well-

understood, but are usually rationalized by examination of the thermodynamics of a given 

reaction and the various intermediates formed.89,91,105 Alterations to chemo- and 

regioselectivity appear to be particularly common in cases involving N-heterocycles as 

reagents. One early example of this phenomenon occurred in the alkylation of 1,2,4-triazole 

with benzyl chloride, which was found to proceed without base or solvent under microwave 

irradiation (Scheme 1.22).106 Under conventional heating methods this reaction afforded 

low yields N-1,4-disubstituted product.106 However, under microwave heating, a 70% yield 

was obtained of N-1-substituted product. The exact mechanism behind this selectivity 

remains unclear, and the researchers invoked selective heating effects to explain the 

phenomeon.106 Similar work by Moneuse and coworkers in the phenacylation of 1,2,4-
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triazole showed similar selectivity when the reactions occurred solvent-free or in a non-

polar solvent.107 In polar solvents, however, conventional heating and microwave heating 

gave similar product distributions, supporting the conjecture that differences in selectivity 

were due to selective microwave heating.107 Modifications to selectivity were also observed 

during the benzylation of 2-pyridones under microwave heating, as it was discovered that 

selectivity could be altered under microwave heating (Scheme 1.23).108 At lower 

temperatures and microwave power the N-alkylated product was formed.108 At higher 

temperatures and powers a mixture of 3-substituted, 5-substituted, and 3,5-disubstituted 

products were formed. Reactions under conventional heating afforded only the N-

substituted product.108 

 

 

Scheme 1.22 Alteration in selectivity in the alkylation of 1,2,4-triazole under microwave 

heating 
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Scheme 1.23 Alterations in chemoselectivity during the benzylation of 2-pyridone under 

microwave heating 

 

1.2.3 Organic Syntheses under Select Conditions 

1.2.3.1 Radical Reactions 

 Despite the advantages demonstrated by microwave heating in conventional 

organic chemistry, the application of microwave heating to radical organic synthesis has 

been relatively limited. Microwave heating is often applied to radical polymerization 

reactions109 and in the radical degradation of biomass110,111 or pollutants112-114, but reports 

of radical organic syntheses remain somewhat rare. This may be in part due to the 

remarkably late initial interest in these reactions, as the first radical reaction under 

microwave heating was not reported until 1991115, and the second was not reported until 

1999.116 These early reactions, and radical reactions under microwave heating in general, 

show similar benefits to other reactions, such as diminished reaction times and cleaner 
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reaction profiles.89,117 It has been suggested that this is due to the higher temperatures that 

can be easily achieved under microwave heating. Higher temperatures increase the rate of 

thermal dissociation in common initiators such as peroxide, persulfate or azo compounds. 

The higher temperatures also increase the rate of propagation steps. However, termination 

steps, which have very low activation energies in most cases, will see a smaller rate 

increase; therefore, longer chain reactions and better yields would be expected at higher 

temperatures.  

  The plurality of reported radical reactions under microwave synthesis are either 

radical oxidations, often using hydrogen peroxide, or intramolecular ring-forming 

reactions, generally involving the coupling of an alkene or alkyne to a carbon adjacent to a 

halide, or in some cases forming a C-N bond with an amine or imine.89,117 These reactions 

generally proceed in a manner of minutes, with few side products formed. Cross-coupling 

reactions are much less common, although recently interest seems to have increased. 

Demonceau and coworkers have reported the coupling of carbon tetrachloride and 

chloroform to primary and secondary alkenes, and were able to reduce reaction times from 

30 h under conventional heating at 85 °C, to only 10 min under microwave heating at 160 

°C.118 Horikoshi and coworkers were able to successfully couple iodocyclohexane with 

crotonophenone using t-butylhydroperoxide and triethylborane.119 Under microwave 

irradiation they were able achieve a yield of 93%, while a yield of only 40% was achieved 

under conventional conditions. Peñéñory and coworkers reported a thermal SRN1 reaction 

in which aryl halides could be coupled with aryl or alkyl enolate anions in as little as 10 

min.120 Under microwave heating they were able to obtain a yield of 55% when coupling 
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iodobenzene and excess acetophenone; under the same conditions, they were only able to 

obtain a yield of 10% with conventional heating (Scheme 1.24). They attributed this 

difference to localized superheating, although they were unable to confirm this. Finally, 

there have been only three reports of radical biaryl coupling under microwave heating. Two 

were the manganese-mediated coupling of arylboronic acids with arenes and heteroarenes 

described in Section 1.1.2.1. The other is a report from 2008 from Itami and coworkers, 

who reported the coupling of N-heteroarenes and aryl iodides using KOtBu in as little as 5 

min using microwave heating (Scheme 1.25).121 Under microwave heating they reported 

yields as high as 98%, while reactions using conventional heating required higher 

temperatures and longer reaction times, and still returned lower yields. Strangely, although 

this report generated significant interest, and has been examined using a variety of catalysts 

and other reagents, no other reports have utilized microwave heating in these reactions. 

 

 

Scheme 1.24 Radical coupling of aryl iodides and benzophenones under conventional and 

microwave heating 

 



58 

 

 

Scheme 1.25 Radical biaryl coupling of N-heteroarenes and aryl halides under 

conventional and microwave heating 

 

 Overall, radical reactions under microwave heating remain significantly 

understudied. The majority of studies that do exist focus on oxidation reactions and 

intramolecular cyclization reactions. The use of microwave heating in radical coupling 

reactions remains understudied despite the fact that microwave heating has proven to be 

beneficial in at least two such reactions. 

1.2.3.2 Iron-Catalyzed Reactions 

 Iron-catalyzed reactions under microwave heating largely focus on heterogeneous 

catalysis, especially on the use of iron salts, iron nanoparticles or iron compounds supported 

on alumina, clay, or graphite.122-124 Iron nanoparticles have proven particularly attractive 

due to their relatively low cost and simple synthesis, their ability to form heterogeneous 

microwave hotspots, and in some cases their interaction with the microwaves magnetic 

field. Common applications of heterogeneous iron catalysts under microwave heating 

include the formation of carbon nanotubes or graphene sheets, oxidation or reduction 

reactions, and pyrolysis.122-124 Iron-catalyzed heterogeneous reactions have also been 

reported in continuous-flow and stop-flow reactors, and on larger scales. 
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 Iron-catalyzed homogeneous reactions under microwave heating, on the other hand, 

are remarkably rare. This is particularly surprising given the widespread utilization of 

microwave heating, and the widespread interest in the use of iron as a catalyst in an effort 

to perform more environmentally friendly chemistry.124-126 Further, noble-metal catalyzed 

cross-coupling reactions have been studied extensively under microwave conditions, and 

significant efforts have been made to replace these comparatively expensive and toxic 

metals with iron. It is remarkable then, that to the best of my knowledge there are no 

examples of homogeneous or heterogeneous iron-catalyzed Heck, Suzuki, Kumada or 

Sonogashira couplings under microwave heating. Research into iron-catalyzed 

homogeneous reactions under microwave heating are so rare that this section constitutes a 

review of the available literature. 

 Several homogeneous iron-catalyzed oxidation reactions have been reported. 

Santos and coworkers reported the iron-catalyzed Fenton oxidation of amoxicillin under 

microwave heating.127 They reported that under microwave heating amoxicillin could be 

completely degraded using low concentrations of iron catalyst in only 5 min, significantly 

improved from reactions under conventional heating.127 Antunes and coworkers reported 

the oxidation of cyclohexane using peroxides, catalyzed by tridentate pyridylamine 

complexes.128 They obtained a mixture of products including cyclohexanol, 

cyclohexanone, cyclohexyl hydroperoxide and adipic acid. Similarly, Pombeiro and 

coworkers reported oxidation of 1-phenylethanol and cyclohexane using pentadentate iron 

pyridyl amino and imino thioether complexes with peroxides and nitrogen-containing 

additives without additional solvent (Scheme 1.26).129 They were able to oxidize 1-
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phenylethanol to acetophenone in 74% yield in only 5 min, for a turnover number of 369 

and turnover frequency of 4430 h-1, comparable to the best iron catalysts.129 Pombeiro and 

coworkers then carried out another study describing the oxidation of alcohols with iron 

arylhydrazone of ethyl 2-cyanoacetate or formazan ligands.130 Reactions in those cases 

proved more sluggish, but reaction yields were higher, and the scope of alcohols that were 

coupled was wider. 

 

 

Scheme 1.26 Peroxide oxidation of 1-phenylethanol to acetophenone using microwave 

heating and homogeneous iron catalysts. Bottom left and centre: catalysts used in 

reference 129. Bottom right: catalyst used in reference 130. 

 

 A number of C-X bond-forming reactions have been reported using homogeneous 

iron catalysts. Che and coworkers have reported the use of [FeIII(F20-tpp)Cl], a porphyrinato 
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type complex, in the aziridination of styrenes and amination of saturated cyclic 

hydrocarbons and α-methylstyrenes (Scheme 1.27).131 Under conventional heating, 

reactions often required 24 to 48 h to complete under reflux in 1,2-dichloroethane, which 

has a boiling point of 83.5 °C. Reactions under microwave heating were conducted at 

100 °C, and led to rate increases of as much as 16 times with similar yields.131 Che and 

coworkers have also reported an intramolecular amination reaction with alkyl azides, which 

occurs via C-H bond activation.132 They employed a catalyst bearing N-heterocyclic 

carbene and porphyrin ligands, which was able to selectively aminate the C4 or C5 position, 

creating pyrrolidines or piperidines. Under microwave heating the reaction rate increased, 

although yields declined somewhat. However, reactions under microwave heating were 

also found to be much more resistant to moisture and oxygen, and could be run under air 

without drying solvents. Reactions under conventional heating had to be run under argon, 

with rigorously dried solvents and reagents.132 Finally, Breeden and coworkers have 

described the microwave-assisted synthesis of diaryl sulfones from arylsulfonyls and 

arenes using iron (III) chloride.133 They were able to synthesize diaryl sulfones in yields as 

high as 86% in only 1 min. They also compared the carbon dioxide emissions that would 

be caused by conventional and microwave heating and concluded that microwave heating 

would significantly reduce CO2 emissions to the rapid reaction times and greater energy 

efficiency observed under microwave heating. 
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Scheme 1.27 Aziridination and amination reactions using a homogeneous iron catalyst 

under microwave heating. 

 

 A search of the literature revealed only three examples of C-C bond-forming 

reactions using a homogeneous iron catalyst under microwave heating. Kang and 

coworkers have described an intramolecular didehydro-Diels-Alder reaction of 

styrene-ynes using a dual catalyst system of iron(III) chloride and iron(II) 

acetylacetonate.134 They were able to form a number of polyaromatic cycloadducts in 
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excellent yields without the use of additional functional groups to control the reaction. Fu 

and coworkers have reported the alcoholysis of furfural alcohol into alkyl levulinates using 

iron(III) chloride.135 Reactions using microwave heating were able to reduce the reaction 

time from 2 h to 5 min, with similar yields. Finally, Petricci and coworkers reported the 

aminocarbonylation of alkynes and amines using triiron dodecacarbonyl at low pressures 

of carbon monoxide (Scheme 1.28).136  

 

 

Scheme 1.28 Aminocarbonylation of alkynes and amines under microwave heating using 

triiron dodecacarbonyl as a catalyst. 

 

 Overall, the use of iron catalysts under microwave heating focuses largely on simple 

heterogeneous iron catalysts, perhaps due to the formation of heterogeneous hotspots. 

Homogeneous iron catalysts under microwave heating remains remarkably rare. This is 

particularly unusual given the growing interest in the use of iron as a replacement for noble 

metal catalysts, and the use of microwave chemistry and iron catalysis as green chemistry 

techniques. Iron catalysts have been reported in a number of reactions, including oxidation 

reactions and coupling reactions. Typically, the use of microwave heating in these cases 

results in lower reaction times and higher yields. There is therefore an opportunity for 

further exploration of iron catalyzed reactions under microwave heating. 
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1.2.3.3 Biphasic Reactions 

 Microwave heating in liquid-liquid biphasic systems are uncommon. Reactions in 

such mixtures often exhibit differential heating of the two phases, especially if the two have 

significantly different tanδ values.88,137,138 This can lead to altered reactivity but can also 

makes it difficult to accurately measure the temperature of the reaction mixture; since most 

microwave systems use an external IR sensor, the location of the sensor determines whether 

temperature is being measured in the upper phase, lower phase, or somewhere in between. 

For example, while heating a biphasic mixture of the ionic liquid mbimPF6 and hexane 

temperature sensors nearer the top of the mixture, in the hexane phase, measured a 

temperature of only 70 °C.138 Meanwhile, temperature sensor nearer the bottom of the 

mixture, in the ionic liquid phase, measured temperatures of up to 110 °C. This difference 

was, however, in part due to the fact that no stirring was used in this process; efficient 

agitation of the reaction mixture is likely to reduce this temperature difference. 

 Biphasic mixtures are somewhat more common in areas outside of organic 

synthesis. For example, microwave heating has often been used in microwave-assisted 

extractions, often for the recovery and reuse of valuable chemicals. Takao and coworkers 

have reported the extraction of platinum-group metals from aqueous nitric acid to an ionic 

liquid139. Without heating, or using conventional heating, 1 hour of shaking extracted 35%, 

68% and 90% extraction for Ru(III), Rh(III), and Pd(II) from the nitric acid layer to the 

ionic liquid, respectively. Under microwave heating all three metals could be more than 

90% extracted in 200 s or less, which they attributed to superheating of the ionic liquid 

phase. Biphasic mixtures are also sometimes employed in polymer chemistry. In particular, 



65 

 

microwave heating has often been applied to emulsion polymerization, where it can lead to 

the formation of extremely high-molecular-weight polymers.140  

 An early example of biphasic mixtures in organic synthesis was reported by Trainor 

and coworkers in 1995.141,142 They were able to use a mixture of water and chloroform 

under microwave irradiation to perform a rapid Hoffmann elimination due to the widely 

varying microwave absorbing abilities of the two solvents (Scheme 1.29). The elimination 

occurred in 1 min in the aqueous phase, at 110 °C; the product was then collected in the 

dichloromethane layer, which reached a temperature of only 48 °C in the sealed reaction 

vessel. Hallberg and coworkers reported the use of another biphasic mixture under 

microwave heating in 2001 (Scheme 1.30).143 They initially reported a Heck tri- or 

diarylation process, forming amine-substituted aryl vinyl ethers. They then sought to 

hydrolyse these products to the corresponding aldehydes. However, under conventional 

heating with a one-phase reaction low yields of the desired aldehydes were isolated due to 

extensive side reactions. In contrast, hydrolysis in a biphasic mixture of dilute hydrochloric 

acid and toluene under microwave heating resulted in high yields of the aldehyde in only 1 

 2 min. They suggested that the reaction occurred in the superheated acidic aqueous layer, 

and the aldehydes that were formed were then collected in the toluene phase, protecting 

them from further reaction.  
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Scheme 1.29 Rapid Hoffmann elimination under microwave heating using a differentially 

heated biphasic mixture 

 

 

Scheme 1.30 Heck diarylation reaction, and subsequent hydrolysis in a biphasic mixture 

of dilute hydrochloric acid and toluene under microwave heating 

 

 A more recent example is the report by Kasprzyk and coworkers of the oxidation of 

primary and secondary alcohols to form carboxylic acids or ketones, and the epoxidation 

of olefins (Scheme 1.31 and Scheme 1.32).144 The oxidation of alcohols occurred using 

sodium tungstate as a catalyst and tetrabutylammonium hydrogen sulfate (TBAHS) as a 

phase transfer catalyst in a biphasic mixture of aqueous hydrogen peroxide and an alcohol. 

They reported yields ranging from 60 to 97% in the oxidation of alcohols, with secondary 

alcohols generally reaching higher yields than primary alcohols. They also reported that 

reactions under microwave heating were higher yielding than conventional heating, which 

gave a mixture of aldehyde and carboxylic acid products in reactions with primary alcohols. 
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The presence of the phase transfer catalyst TBAHS was found to be vital to successful 

reactions. Epoxidation reactions were carried out with a variety of primary, secondary and 

tertiary olefins. Reactions took place in a mixture of dichloroethane (DCE) and aqueous 

hydrogen peroxide, with sodium tungstate, phosphoric acid and aliquat 336. Aliquat 336 is 

a quaternary ammonium salt which contains 3 octyl or decyl chains and one methyl chain 

and is commonly used as a phase transfer catalyst. Yields varied from 14 to 98%. Reactions 

were most successful with simple primary and secondary arenes, while the use of 

substituted alkenes resulted in lower yields. Similar to the reactions with alcohols, yields 

were found to be higher under microwave heating, and the phase transfer catalyst aliquat 

336 was found to be vital for successful reactions. 

 

 

Scheme 1.31 Oxidation of primary and secondary alcohols in a biphasic mixture of 

alcohol and aqueous hydrogen peroxide under microwave heating 
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Scheme 1.32 Epoxidation of olefins in a biphasic mixture of DCE and aqueous hydrogen 

peroxide under microwave heating 

 

 Finally, since 2016 there have been a number of recent reports on the production of 

furfural or 5-hydroxymethylfurfural from biomass under microwave heating in a biphasic 

mixture (Scheme 1.33).145-149 All reported reactions were performed in a biphasic mixture 

consisting of dilute, aqueous acid and an organic layer of either acetonitrile or methyl 

isobutyl ketone. Reactions under microwave heating occurred rapidly compared to 

reactions using conventional heating, and resulted in the production of fewer side products, 

most notably limited formation of levulinic acid and humin.145-149 Depending on the starting 

material and conditions employed, yields ranged from 45 to 91% in 1 to 240 min. Older 

reports were conducted on the gram scale or less. More recently, however, Martinez-

Merino and coworkers have reported a scale-up in a biorefinery, which was able to produce 

up to 2.5 kg of furfural from 50 kg of biomass, with an additional 12.6 kg of glucose 

formed.148 A detailed kinetic study was carried out by Appels and coworkers, and found 

that reaction rate was increased by a factor of 2.3 by microwave irradiation, even if the 

reactions under conventional heating were carried out in nearly identical conditions.146 

Differential heating of the reaction phases did not significantly affect the reaction; instead, 

it was concluded that molecular radiators were formed at the CH2OH group of glucose and 

cellulose. A comparison was also made of energy efficiency under microwave and 
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conventional heating; microwave heating was determined to be more efficient in all cases 

but were more favored by shorter reaction times. 

 

 

Scheme 1.33 Production of furfural or 5-hydroxymethylfurfural from biomass using 

microwave heating and a biphasic mixture 

 

1.3 Thesis Objectives 

 As described in Section 1.1, radical C-H bond activating reactions represent a 

valuable method of synthesizing heterobiaryl and arylquinone moieties, which are widely 

used in the agrochemical and pharmaceutical industries. One reaction that has received 

considerable attention since it was first reported in 2010 is the coupling of arylboronic acids 

with unactivated N-heterocycles and quinones (see Section 1.1.2). This reaction is 

advantageous due to the relatively mild conditions and the low cost of reagents. In 

particular, variants of the reaction using iron catalysts represent a cost-effective method for 

the formation of heterobiaryls or arylquinones, and also allow synthesis of arylquinones 

from hydroquinones and phenols. However, the reaction faces a number of challenges, 

including relatively long reaction times, poor regiochemical control, the need for several 
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equivalents of oxidant, and limits to substrate scope. As described in Section 1.2, 

microwave heating of reaction mixtures can have several beneficial effects. These effects 

include increased reaction rates, increased yields, decreased yields of by-products, the 

ability to perform reactions with lower catalyst loadings or the use of fewer equivalents of 

reagents, and alterations to regio- and chemo-selectivity.  

 As noted in Section 1.1.2.1, some of the benefits of microwave heating were noted 

by Guchhait and coworkers when they employed microwave heating in a radical C-H bond 

arylation reaction using manganese(III) acetate as an oxidant and arylboronic acids as 

radical precursors. Despite this, microwave heating has not been applied to reactions using 

potassium persulfate as an oxidant. The purpose of this thesis, therefore, is to examine the 

iron-catalyzed radical C-H bond arylation of N-heteroarenes and quinones using potassium 

persulfate as an oxidant under microwave heating, in an attempt to reduce reaction times, 

increase yields, lower catalyst loadings and the amount of oxidant required, and possibly 

effect the regioselectivity of the reaction. Chapter 2 presents reaction optimization under 

microwave heating, as well as the discovery of several unusual side products. Chapter 3 

examines the scope and selectivity of the reaction under microwave heating with a variety 

of arylboronic acids, N-heteroarenes, and quinones, as well as attempts to extend the scope 

of the reaction. 
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Chapter 2. Reaction Optimization and Profile 
 

2.1 Introduction 

 As discussed in Chapter 1, arylquinones and N-heterobiaryls are ubiquitous natural 

products that are of significant importance to the pharmaceutical and dye industries.1-8 

However, conventional approaches to synthesizing these molecules face challenges due to 

the unique electronic properties of quinones, difficulties in synthesizing reagents with the 

appropriate regioselectivity, and reagents binding to and deactivating the catalysts.9,10 In 

addition, traditional methods often involve the use of expensive metals such as palladium 

or rhodium, and may require the use of complex, expensive ligands. 

 In 2010 and 2011, Baran and coworkers reported on a new method for the synthesis 

of these products.9,10 Using a silver catalyst and several equiv of the radical initiator 

potassium persulfate, they were able to cross-couple unactivated quinones and N-

heteroaryls with arylboronic acids (general reaction scheme shown in Scheme 2.1).9,10 

Upon further investigation it was suggested that the sodium persulfate cleaved the boronic 

acid moiety forming an aryl radical that was then able to attack the desired coupling partner, 

with the catalyst being reduced by the resulting biaryl radical to form the final product 

(general reaction mechanism shown in Scheme 2.2).11 By directly functionalizing the C-H 

bond of the N-heteroaryls or quinones, they were able to avoid prefunctionalization steps 

required in other methods and make use of cheaper, commercially available reagents.9,10 

This reaction required the use of only relatively cheap, commercially available reagents, 
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was tolerant to a wide range of quinones, N-heteroaryls and arylboronic acids, and could 

be performed under air at mild conditions.9,10 As a result, the reports generated significant 

interest, and a number of other papers were soon published following up on this work.11-24  

 

 

Scheme 2.1 General conditions of the cross-coupling of arylboronic acids with quinones 

or N-heteroaryls using potassium persulfate.  
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Scheme 2.2 General reaction mechanism for the cross-coupling of N-heteroaryls and 

quinones with arylboronic acids using silver or iron catalysts. 

 

  In 2012, Yu and coworkers reported the first use of a simple iron salt in the reaction 

system.12 Using insoluble iron(II) sulfide, they were able to successfully couple quinones 

and N-heteroaryls with a variety of arylboronic acids, often with higher yields than those 

reported using a silver catalyst. However, the reaction required an equiv of iron(II) sulfide, 

and took a minimum of 24 h to complete, compared to only 3 h using silver nitrate. Several 

other iron-mediated examples have been reported, using a variety of iron compounds.17,20 

The first iron-catalyzed reaction was reported in 2013 and employed Fe(acac)2 as a catalyst 

and tetrabutylammonium bromide (TBAB) as a phase transfer catalyst.18 Under similar 

conditions to those used by Yu, this iron-catalyzed system was able to return similar yields 
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in 12 h. However, an attempt to reproduce this work was unsuccessful, and the yields 

obtained were similar to the amount of Fe(acac)2 added, suggesting the process may in fact 

have been iron-mediated, not iron-catalyzed.12,17,19,20 Regardless, a number of other iron-

catalyzed reactions have been reported since, none of which employed a phase transfer 

catalyst.13,21,22 In addition, a number of natural products have been synthesized using this 

reaction.18,19,21,22 

 While these reactions constitute a significant advance over previous methods to 

generate arylquinones and N-heterobiaryls, both iron and silver-catalyzed reactions have 

several disadvantages. First, they all require several reagents in excess, including potassium 

persulfate (typically 2 – 4 equiv), arylboronic acid (1.5 – 3 equiv), and trifluoroacetic acid 

(TFA, 1 – 3 equiv), and all use relatively high catalyst loadings (typically 0.2 equiv).11-24 

Second, several side-reactions are known to occur, most notably arylboronic acid homo-

coupling12,18-22 and bis-arylation.9,10,12,14,19,25 Third, none are regioselective – when using 

quinones or N-heteroaryls with more than one sp2 hybridized C-H bond, a mixture of 

products is obtained.11-24 Finally, all reactions are sluggish, requiring at least 3 h to 

reach completion when using silver catalysts, and at least 12 – 24 h when using 

iron catalysts.11-24 

 Microwave heating is a widely used heating method in synthetic organic chemistry, 

first employed in 1986 by Gedye et al. and Giguere et al.26-30 Reactions are heated by 

electromagnetic radiation in the microwave region, typically with a wavelength of 2.45 

GHz.28-30 There are several effects associated with microwave heating that are not observed 

under traditional heating, known as microwave specific effects.28-31 First, microwave 
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heating can be extremely rapid, with reports of temperature increases of up to several 

hundred degrees in seconds. Modern microwave instruments are also typically equipped 

with a cooling system that allows for rapid reaction cooling.28-31 Second, microwaves heat 

the bulk solution directly, rather than heating the vessel walls, then heating the reaction 

mixture through heat transfer with the vessel walls. This leads to more uniform heating of 

the solution, and prevents “wall effects”, in which reactions may have taken place at the 

vessel wall, which is hotter than the bulk reaction mixture.28-31 Finally, hot spots may form 

in the microwave if certain reagents are better able to absorb microwave radiation than 

others. In particular, ionic compounds, especially solid ionic compounds, are better able to 

absorb microwave radiation than the bulk solution, and may therefore achieve temperatures 

up to several hundred degrees higher than the surrounding solution.28-31  

Due to these microwave specific effects, microwave heating frequently offers 

several benefits over traditional heating methods.28-35 Most commonly, microwave heating 

is associated with an increase in rate.28-34 This increase is generally due to the ability to 

easily superheat solvents in the microwave but may also be caused by the formation of 

microwave hotspots. For the same reasons, reactions performed under microwave heating 

may have an expanded substrate scope, as reagents that are sluggish or unreactive under 

conventional heating may be efficiently reacted under microwave heating.28-32,34 Reactions 

performed under microwave heating have also been known to have a cleaner reaction 

profile, with fewer side products, and consequently reactions that require excess amounts 

of a reagent using traditional heating methods can be performed with only stoichiometric 

amounts of reagent under microwave heating. Reactions under microwave heating also 
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frequently require lower catalyst loadings.28-32,35,36 These effects may be due to the finer 

control over reaction heating and cooling, more homogeneous heating, or the absence of 

wall effects. The use of microwave heating can also cause a change in chemo-, regio-, or 

enantio- selectivity.28-31,37 Microwave heating therefore offered a potential method to 

address the various disadvantages of the cross-coupling reaction discovered by Baran and 

coworkers. 

 

2.2 Results and Discussion 

2.2.1 Reactions in Toluene 

Initial reactions were performed with pyrazine and 4-methylphenylboronic acid in 

a mixture of toluene and water in a procedure based upon that used by Deb et al. (Scheme 

2.3).13 Toluene was chosen due to its previous use in the literature and relatively high 

boiling point, which would allow a large increase in temperature under microwave heating. 

These initial reactions gave the desired 2-(4-methylphenyl)pyrazine (1A) in 5% yield. 

Further optimization of reaction parameters including time, temperature, concentration, and 

reagent stoichiometry increased yields substantially, to more than 60%. However, during 

optimization a number of new products were detected that were not observed in the original 

reactions and had not been previously reported in the literature. These products included a 

then unidentified compound that proved difficult to separate from 1A. GC-MS was 

performed on the reaction mixture after extractions and drying and revealed the presence 

of a number of products stemming from toluene oxidation and homocoupling (Figure 2.1). 

The identified species included three isomers of dimethylbiphenyl, bibenzyl, and benzyl 
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alcohol. Benzyl alcohol was found to be difficult to separate from the cross-coupled 

product. These products were confirmed to be at least partly due to the reaction of toluene 

when a reaction performed without 4-methylphenylboronic acid showed the same products. 

None of the desired 1A was observed during the reaction without 4-methylphenylboronic 

acid. It was therefore decided that dichloromethane, the solvent most commonly used in 

the literature, would be used in place of toluene to avoid the formation of side products. 

 

 

Scheme 2.3 Initial reaction conditions using a solvent mixture of toluene and water 
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Figure 2.1 Gas chromatogram of the crude reaction mixture of the optimized reaction in 

toluene, showing products of toluene oxidation and homo-coupling. Benzyl alcohol: Rt = 

3.08 min. 2-benzylpyrazine: Rt = 5.45 min. Bibenzyl: Rt = 5.59 min. Dimethylbiphenyl 

isomers: Rt = 5.54 min, 5.91 min, 5.97 min. 2-(4-Methylphenyl)pyrazine: Rt = 5.81 min. 

For further information, consult the experimental and/or Figure A118. 

 

2.2.2 Optimization in Dichloromethane 

 Initial reactions using dichloromethane were performed based on the optimized 

conditions in toluene; 5 min at 70 ᵒC, 25 min at 180 ᵒC, using 0.75 mmol of pyrazine, 4 

equiv of K₂S₂O₈, 2.0 equiv of TFA, 0.2 equiv of Fe(NO₃)₃·9(H₂O), and 1.5 equiv of 4-

methylphenylboronic acid in 8 mL each of dichloromethane and water. The maximum 

temperature was reduced to 130 °C, which was the highest temperature that did not exceed 

the 20 bar pressure limit of the Biotage Initiator™ microwave reactor. These initial reactions 

gave a yield of 44%, significantly lower than the yield using toluene. Reaction conditions 

were therefore reoptimized in the dichloromethane/water system using phenylboronic acid 

in an attempt to further increase reactions yields. 
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  Initial optimization concerned the amount and identity of acid (Table 2.1). While 

the role of acid in the reaction system is not well understood, it most likely serves to 

protonate the N-heteroarene and to prevent catalyst deactivation by preventing the 

formation of Fe(OH)2. Curiously, in toluene, adding TFA reduced the yield of 1A; however, 

the amount of oxidized and homo-coupled toluene increased substantially when TFA was 

not present. In dichloromethane, the presence of 2 equiv of TFA (entry 3) slightly increased 

the yield, while limiting the amount of phenylboronic acid homo-coupling that occurred. 

This is somewhat different to most literature accounts, in which the absence of TFA lowers 

yields more dramatically. The use of 2 equiv of sulfuric, hydrochloric, and p-

toluenesulfonic acid all resulted in decreased yields. The inclusion of 2 equiv of K2CO3 

limited the reaction to a yield of only 9%, and caused the formation of a black precipitate, 

most likely some form of iron oxide or iron hydroxide, immediately upon addition to the 

reaction mixture.  

  



92 

 

Table 2.1 Optimization of acid amount and identity. 

Entry Acid or Base Equiv  Yield of 1B (%) 

1 TFA 0 44 

2 TFA 1 46 

3 TFA 2 50 

4 TFA 4 46 

5 H2SO4 2 41 

6 HCl 2 40 

7 TsOH 2 20 

8 K2CO3 2 9 

All reactions were performed using 0.75 mmol of pyrazine, 4 equiv of K₂S₂O₈, 0.2 equiv 

of Fe(NO₃)₃·9(H₂O), and 1.5 equiv of phenylboronic acid in 8 mL of deionized water and 

8 mL of dichloromethane. All reactions were heated to 70 ᵒC for 5 min, then to 130 ᵒC for 

25 min. 

 

 The reaction temperature and reaction time were then optimized (Table 2.2 and 

Table 2.3). The highest yield was obtained at 70 ᵒC (entry 3), similar to many literature 

reactions under conventional heating.13,21,22 Reactions at higher temperatures (entries 4-9) 

led to the formation of a black solid that coated the vial walls and floated at the solvent 

interface.  This solid proved to be insoluble in most common solvents, and neither an NMR 

nor a GC-MS spectrum could be collected. The highest yield was obtained with a reaction 



93 

 

time of 25 min (Table 2.3, entry 4). The initial reaction rate was rapid, with a yield of 39% 

obtained after only 1 min (entry 1), but then slowed dramatically, with yields plateauing at 

25 min. 

Table 2.2 Optimization of reaction temperature. 

Entry Temperature (ᵒC) Yield of 1B (%) 

1 50 43 

2 60 53 

3 70 59 

4 80 50 

5 90 45 

6 100 36 

7 110 38 

8 120 37 

9 130 46 

All reactions were performed using 0.75 mmol of pyrazine, 4 equiv of K₂S₂O₈, 0.2 equiv 

of Fe(NO₃)₃·9(H₂O) 2 equiv of TFA, and 1.5 equiv of phenylboronic acid in 8 mL of 

deionized water and 8 mL of dichloromethane. All reactions were heated to the desired 

temperature for 25 min. 
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Table 2.3 Optimization of reaction time. 

Entry Time (min) Yield of 1B (%) 

1 1 39 

2 5 50 

4 15 46 

5 25 59 

6 30 59 

7 40 58 

All reactions were performed using 0.75 mmol of pyrazine, 4 equiv of K₂S₂O₈, 0.2 equiv 

of Fe(NO₃)₃·9(H₂O) 2 equiv of TFA, and 1.5 equiv of phenylboronic acid in 8 mL of 

deionized water and 8 mL of dichloromethane. All reactions were heated 70 ᵒC for the 

desired time. 

 

Reagent stoichiometry and catalyst loading were then optimized (Table 2.4). The 

highest yields were obtained when using 4 equiv of potassium persulfate, 1.5 equiv of 

phenylboronic acid, and 0.2 equiv of Fe(NO₃)₃·9(H₂O) (entry 9), similar to conditions in 

the literature.9,10,17-22 No reaction was observed when potassium persulfate was not present 

(entry 1), and only a small amount of product (5%) was obtained when Fe(NO₃)₃·9(H₂O) 

was not present (entry 6). Using only 1 equiv of phenylboronic acid (Table 2.5, entry 13) 

resulted in significantly decreased yields. Increasing the amount of potassium persulfate, 

phenylboronic acid, or Fe(NO₃)₃·9(H₂O) resulted in slightly diminished yields (entries 5, 

15, 10, and 11).   
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Table 2.4 Optimization of reagent stoichiometry. 

Entry K₂S₂O₈ 

(Equiv) 

Fe(NO₃)₃·9(H₂O) 

(Equiv) 

4-MePhB(OH)2 

(Equiv) 

Yield of 1A 

(%) 

1 0 0.2 1.5 0 

2 1 0.2 1.5 27 

3 2 0.2 1.5 43 

4 4 0.2 1.5 59 

5 6 0.2 1.5 45 

6 4 0 1.5 5 

7 4 0.05 1.5 51 

8 4 0.1 1.5 59 

10 4 0.5 1.5 50 

11 4 0.75 1.5 39 

12 4 1 1.5 46 

13 4 0.2 1.0 25 

15 4 0.2 3.0 58 

All reactions were performed using 0.75 mmol of pyrazine in 8 mL of deionized water and 

8 mL of dichloromethane. All reactions were heated to 70 ᵒC for 25 min. 

 Finally, the reaction concentration was optimized (Table 2.5). Optimization of this 

parameter was undertaken for two reasons. First, because differences in reaction 

concentration could influence heat distribution under microwave heating. At higher 
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concentrations, undissolved reagents or precipitates might be present. These solids would 

be much better absorbers of microwave radiation, and could cause the presence of 

microwave hotspots reaching temperatures as high as several hundred degrees.28,30,32 

Secondly, reaction concentration could affect the rate of mass transfer from one solvent 

phase to another. Lower concentrations resulted in increased yields, and higher 

concentrations often had black solids coating the walls of the reaction vessel, most likely 

indicating the presence of hotspots at higher concentrations.  

 

Table 2.5 Optimization of reaction concentration. 

Entry Pyrazine 

(mmol) 

Solvent 

volume (mL) 

Concentration                

(mmol pyrazine/mL 

solvent) 

Yield of 1B 

(%) 

1 0.75 15 0.05 70 

2 1.1 15 0.075 62 

3 0.50 5 0.10 62 

4 1.0 5 0.20 52 

All reactions were performed using 4 equiv of K₂S₂O₈, 0.2 equiv of Fe(NO₃)₃·9(H₂O), and 

1.5 equiv of phenylboronic acid in a biphasic mixture of dichloromethane and deionized 

water. All reactions were heated to 70 ᵒC for 25 min. 

 

 A number of other reaction conditions were tested. Changes in microwave power 

had no effect on the reaction. Several other oxidants were screened, including hydrogen 
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peroxide, tert-butylperoxybenzoate, iron(II) perchlorate, and potassium chlorate, but all 

were unsuccessful. Surprisingly, even sodium persulfate, which is reported to give only 

moderately lower yields in the literature, was completely inactive in this case.17,21 Several 

other solvent mixtures were also screened (Table 2.6). Reactions carried out in a mixture 

of water and benzene or water and ethyl acetate provided slightly lower yields, while 

mixtures of acetone and tetrahydrofuran with water resulted in no yield of the desired 

product (entries 8, 6, 7, and 9). Reactions using mixtures of dimethyl sulfoxide, acetonitrile, 

and methanol with dichloromethane also gave no product (entries 3, 1, and 2). 

Dichloromethane by itself yielded no product (entry 5), while water by itself gave a modest 

yield (entry 9). In most cases where no yield is reported the potassium persulfate appeared 

poorly soluble, and a large amount of black solid was obtained after heating, possibly due 

to the superheating and decomposition of the solid persulfate. The use of 

tetrabutylammonium bromide as a phase transfer catalyst, reported elsewhere in the 

literature, did not improve yields.18 Similarly, the use of an O2 atmosphere in place of air 

did not affect the reaction. The use of an equiv of ascorbic acid or elemental sulfur, which 

have been reported to affect the redox cycle of iron, were both unsuccessful.17 
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Table 2.6 Screening of solvent mixtures. 

Entry Solvent 1 Solvent 2 Yield of 1B (%) 

1 Dichloromethane Acetonitrile 0 

2 Dichloromethane  Methanol 0 

3 Dichloromethane Dimethyl Sulfoxide 0 

4 Dichloromethane Water 70 

5 Dichloromethane  NAa 0 

6 Ethyl acetate Water 0 

7 Acetone Water 0 

8 Benzene Water 70 

9 NAa Water 35 

All reactions were performed using 0.75 mmol of pyrazine, 4 equiv of K₂S₂O₈, 0.2 equiv 

of Fe(NO₃)₃·9(H₂O), and 1.5 equiv of phenylboronic acid in a 20 mL microwave vessel at 

a concentration of 0.050 mmol pyrazine/mL solvent. All reactions were heated to 70 ᵒC for 

25 min. A 1:1 solvent ratio was used in all cases. aNA indicates that no additional solvent 

was used. 

 

 A variety of iron compounds were screened for their activity as catalysts, including 

common inorganic and metalorganic complexes, and two iron(III) amino-bis(phenolate) 

complexes (see Figure 2.2 and Figure 2.3). The majority were found to give good activity, 

with little difference in yield. This is unusual, as the majority of iron species used in the 

literature are completely inactive, or only provide minimal yields.17,18,21 Iron species with 
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oxidation states of 0, +1, +2, and +3 were all active, as were inorganic and metalorganic, 

and soluble and insoluble iron species. This most likely indicates that the iron compounds 

function as precatalysts, which are oxidized by the potassium persulfate to form an active 

species. Reactions with insoluble iron oxide and iron powder were successful, albeit with 

somewhat lower yields. This was somewhat surprising as these compounds are generally 

reported to be give little or no cross-coupled product. In general, simple iron salts were the 

most active. Iron chlorides, which are reported in the literature to be inactive, were amongst 

the most effective catalysts under microwave heating.17,18,21 The highest yields were 

obtained with FeSO₄·6H₂O, and it was therefore used for all subsequent reactions. 
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Figure 2.2 Reaction yields under standardized conditions with different iron catalysts.  

All reactions were performed with 20% catalyst loading with respect to iron. aSee Figure 

2.3 for the structure of the iron(III) amino-bis(phenolate) complexes I and II. b40 mesh 

iron powder. c20% loading by weight with respect to pyrazine. See the experimental for 

the synthesis and characterization of the citrate capped iron nanoparticles.  

 

 

Figure 2.3 Structures of the iron(III) amino-bis(phenolate) complexes I38 and II.39 
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Overall, the optimized conditions consisted of 0.75 mmol of pyrazine, 1.5 equiv of 

phenylboronic acid, 0.2 equiv of FeSO₄·6H₂O, 2 equiv of TFA, and 4 equiv of K₂S₂O₈ in 8 

mL each of dichloromethane and deionized water, heated to 70 ᵒC for 25 min under 

microwave heating, to give the desired cross-coupled product in 70% yield. Reactions with 

4-methylphenylboronic acid gave a slightly higher yield of 72% (Scheme 2.4). The 

required reaction stoichiometry is similar to literature reports, as is the overall yield. 

However, the reaction time is significantly lower under microwave heating (Table 2.7). 

Literature reports that used iron catalysts required a minimum of 12 h to reach completion, 

nearly 30 times longer than the 0.4 h (25 min) required under microwave heating. Most 

papers reported lower yields, with the exception of Maiti and coworkers, who reported a 

similar yield, and Vishwakarma and coworkers, who reported a somewhat higher yield.13,18-

20 However, attempts to replicate Vishwakarma’s results by Takaki and coworkers were 

unsuccessful, and they reported that the process appeared to be require stoichiometric 

amounts of iron salt.18,19 Literature reports that employed silver catalysts, which are 

generally more active, required a minimum of 6 h to reach completion, and in the case of 

pyrazine afforded poor yields.9  

 

 

Scheme 2.4 Optimized reaction conditions in a mixture of dichloromethane and water. 
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Table 2.7 Comparison of reaction conditions and yields. 

Entry Source Time (h) Temperature 

(°C) 

Catalyst Yield (%) 

1 This work 0.4 70 (MW) FeSO₄·6H₂O  70 

2 20 48 RT Fe(ox) 32 

3 18 12 RT Fe(acac)2 84 

4 18 12 50 Fe(acac)2 82 

5 19
  12 RT Fe(acac)2 25 

6 13 24 70 Fe(NO₃)₃·9(H₂O) 70 

7 9 6 RT AgNO3 30 

 

2.2.3 Reaction Profile  

 In order to determine the fate of the pyrazine and 4-methylphenylboronic acid not 

involved in the formation of 2-(4-methylphenyl)pyrazine, GC-MS was performed on the 

crude reaction mixture of the optimized reaction. A large number of products were 

apparent, including the desired product, an unidentified isomer of doubly coupled product 

(2,6-(4-methylphenyl)pyrazine or 2,5-(4-methylphenyl)pyrazine), several isomers of 

dimethylbiphenyl, p-cresol, 2,2’-bipyrazine, 4-methylphenylboronic acid, and 

2-(dichloromethyl)pyrazine (see Figure 2.4 and Scheme 2.5). There are also several 
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compounds that could not be identified. The formation of bis-coupled product was not 

unexpected, as they are commonly observed throughout the literature in small 

amounts.9,10,12,14,19,25 The presence of three unidentified isomers of dimethylbiphenyl, 

formed by the homocoupling of arylboronic acids, was unexpected. Arylboronic acid 

homocoupling has been reported several times, but is thought to result from the 

homocoupling of two aryl radicals, yielding only one isomer.12,18-22 There are no other 

reports of arylboronic acid homocoupling yielding multiple isomers. This suggests that 

homocoupling in this case may be proceeding via a different pathway, perhaps involving 

an aryl radical attacking an arylboronic acid (see Scheme 2.6), although it is not clear how 

the subsequent loss of the boronic acid moiety would occur. There is also a large 4-

methylphenol peak, the result of the replacement of the boronic acid moiety with a hydroxyl 

group, which was recovered in 11% yield. There is one previous report of the formation of 

phenol, however, in that case phenol was formed only if the reaction was performed with 

only phenylboronic acid, with no coupling partner present.18 Phenol is most likely formed 

by the generated aryl radical reacting with either a hydroxyl radical or a water molecule. 

Finally, there is a large 2,2’-bipyrazine peak and a much smaller 2-

(dichloromethyl)pyrazine peak. Neither of these products have been noted in the literature. 

Most likely these products are due to the formation of a pyrazine radical, which either 

homocouples to form 2,2’-bipyrazine, or reacts with dichloromethane to form 

2-(dichloromethyl)pyrazine (see Scheme 2.7).  
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Scheme 2.5 Side reactions and side products observed in the GC-MS of the crude reaction 

mixture of pyrazine and 4-methylphenylboronic acid. 
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Figure 2.4 Gas chromatogram of the crude reaction mixture of the optimized reaction in 

dichloromethane. 4-Methylphenol: Rt = 3.66. 2-dichloromethylpyrazine: Rt = 4.15. 

Bipyrazine: Rt = 6.72 min. Dimethylbiphenyl isomers: Rt = 7.06 min, 7.66 min, 7.71 min. 

Biphenyldimethanol, unknown isomer: Rt = 9.00 min. For further information, consult the 

experimental and/or Figure A119. 

 

 

Scheme 2.6 Proposed mechanism for the formation of 3 isomers of dimethylbiphenyl 

formed by the cross-coupling of 4-methylphenylboronic acid 
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Scheme 2.7 Proposed mechanism for the formation of 2-dichloromethylpyrazine and 

2,2’-bipyrazine. 

 

  Overall, there are an unusually large number of side products, although most are 

present in only small or trace amounts. Several of these side products have not been 

previously reported, suggesting a difference in reactivity between reactions under 

conventional heating and under microwave heating. This result is particularly unexpected 

given that microwave heating frequently results in the formation of fewer side products, in 

lower yields. These side products are most likely a result of microwave specific effects, 

since they are not observed in reactions under conventional heating at the same 

temperature. Most likely the abundance of side products is an effect of selective heating. It 

is possible that the aqueous layer, which is a much better microwave absorber, is being 

superheated above the temperature of the dichloromethane layer. The IR sensor built in to 

the microwave measures the temperature at approximately one third of the way up the 

vessel, so temperature readings reflect conditions at that location, which is covered by the 

dichloromethane layer. However, since the pressure reading never exceeded 2 bar, the 

temperature of the aquous layer must have remained at or below approximately 110 °C.40 
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It is also possible that molecular radiators or heterogeneous hotspots are formed during the 

reaction, causing the side reactions. Molecular radiators could be formed by selective 

superheating of ionic compounds in the mixture, which more efficiently absorb microwave 

radiation via ionic conduction. The most likely molecular radiator would be the persulfate 

anion, but protonated pyrazine could also form a molecular radiator. The reaction mixture 

appears homogeneous to the naked eye after heating, although solids start to precipitate out 

as the reaction mixture cools. However, it is possible that small heterogeneous hotspots, 

invisible to the naked eye, are formed and superheated during irradiation. 

2.2.4  Conclusions 

 The cross-coupling of arylboronic acids and pyrazine via direct C-H 

functionalization was optimized under microwave heating. When toluene was used as a co-

solvent, toluene homo-coupling and oxidation was observed. No cross-coupling of toluene 

with pyrazine was observed under these conditions. When using dichloromethane and 

water as solvents, arylboronic acid hydroxylation and pyrazine homo-coupling were 

observed for the first time. The optimized reaction conditions provided the desired product 

in 70% yield, similar to literature reports. However, the reaction occurred much more 

rapidly under microwave heating, requiring only 25 min to reach completion, while 3-24 h 

are required under conventional heating. A number of previously unreported side-products 

were observed, including homo-coupled pyrazine and hydroxylated arylboronic acid. The 

formation of these side products may be due to the formation of superheated hotspots in 

the microwave, with either the persulfate acting as a molecular radiator or heterogeneous 



108 

 

hotspots forming during heating. The following chapters will discuss the effect of 

microwave heating on arylboronic acid, N-heteroaryl, and quinone substrate scope. 

 

2.3 Experimental 

2.3.1 General Information 

 Unless otherwise noted, reagents were purchased from commercial suppliers and 

used as received. All NMR spectra were obtained on a Bruker AVANCE III 300 MHz 

NMR spectrometer. All spectra were recorded in ppm relative to an internal TMS standard. 

Unless otherwise noted, CDCl3 was used as a solvent. Data are reported in the following 

format: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of 

doublets, m = multipet), coupling constant (J, Hz), and integration. All NMR spectra were 

processed using MestreNova software. Gas chromatography mass spectroscopy (GC-MS) 

data was recorded using an Agilent Technologies 7890 GC system coupled to an Agilent 

5975C mass detector equipped with an Agilent HP-5ms column (30m x 250µm x 0.25µm, 

(5%-Phenyl)-methylpolysiloxane). Samples were injected into a split-splitless inlet with a 

split ratio of 25:1, which was heated to 275 °C. The oven was held at 80 °C for 2 min, then 

the temperature was increased by 20 °C per minute until a maximum temperature of 200 

°C was reached. The oven was maintained at this temperature for 4 min. A blank was 

performed in between samples: if products eluted near the end of the run or in the blank the 

hold time was increased, but the ramp conditions were not changed. The only exception to 

this occurs in Figure 2.1, as that data was obtained before a standard method had been 



109 

 

developed. In that case the same conditions were used, except the temperature was 

increased by 30 °C per minute instead of 20 °C per minute. Unless otherwise noted all 

microwave reactions were performed in 20 mL Biotage microwave vials using a Biotage 

InitiatorTM microwave with expanded volume range (EXP). Column chromatography was 

performed using a Biotage Isolera One Flash Purification System, using Biotage SNAP 25 

G cartridges. GC-MS information of trace products is reported, but could not be obtained. 

Similarly, in most cases GC-MS data is reported for side products, but in most cases NMR 

data was not collected. Where possible, the identity of products identified by GC-MS alone 

was confirmed by comparison to the literature, most notably the National Institute of 

Standards and Technology (NIST) Chemistry WebBook. 

2.3.2 General Procedure 

A 10 – 20 mL Biotage microwave vial with a magnetic stir bar was charged with 

K2S2O8 (4 equiv), and FeSO4·6H2O (0.2 equiv). 8 mL each of water and dichloromethane 

were added, followed by trifluoroacetic acid (TFA, 2 equiv), the desired arylboronic acid 

(2 equiv), and pyrazine (0.75 mmol). The vial was capped and crimped shut, then placed in 

the microwave, where it was pre-stirred for 1 min at 900 RPM. The vial was then heated to 

70 °C using the high absorption level, and was heated with stirring for 25 min. The vial 

was cooled using forced air to 50 °C, then removed from the microwave and uncapped.  

 The resulting biphasic mixture was placed in a separatory funnel, and the 

dichloromethane layer was collected. The remaining aqueous layer was then extracted with 

3 × 15 mL of dichloromethane, then neutralized using 20 mL of saturated sodium 

bicarbonate solution and extracted with an additional 2 × 15 mL of dichloromethane. The 
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combined dichloromethane extracts were then washed with 30 mL of saturated sodium 

bicarbonate solution, then concentrated in vacuo. 

GC-MS data of the crude product mixture was collected if desired and the crude 

product was purified using flash chromatography with 25 G Biotage SNAP columns 

containing Zeoprep 60 Eco / 40-63 µm silica, and an eluent mixture of ethyl acetate in 

hexanes (recorded individually for each compound in section 2.3.4). The identity and purity 

of the product was confirmed using GC-MS, 1H NMR, 13C NMR, and DEPT NMR. 

2.3.3 Catalyst Synthesis 

2.3.3.1 Citrate-stabilized Iron Nanoparticles 

 Citrate capped nanoparticles were synthesized based a procedure reported by 

Nigam et al.41 4.44 g (27.3 mmol) of FeCl3 and 1.73 g (13.6 mmol) of FeCl2 were added to 

a 250 mL round-bottom flask, then dissolved in 80 mL nanopure water. The mixture was 

heated at 70 °C for 30 min with 1000 RPM stirring under a nitrogen atmosphere. 20 mL of 

concentrated aqueous ammonia was then added via syringe, and the mixture was stirred for 

another 30 min. 4 mL of an 0.5 g/mL citric acid solution was added via syringe to stabilize 

the iron nanoparticles, and the mixture was heated at 90 °C for 60 min. The reaction was 

cooled to room temperature, then the black solid was centrifuged and washed with 3 × 50 

mL of nanopure water. The solid was dried overnight at 50 °C before characterization on 

XRD, DSL, and FTIR. The citrate capped particles were rod-shaped, with an average size 

distribution of 148.5 nm ± 47.4 nm. 
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2.3.3.2 Complex I 

 The iron (III) amine-bis(phenolate) complex I was synthesized by a procedure 

reported by Chowdhury et al.38 The ligand was prepared by refluxing and stirring a solution 

of 1 equiv of 2-t-butyl-4-methylphenol, 0.5 equiv of tetrahydrofurfurylamine, and 1 equiv 

of 37% aqueous formaldehyde in methanol for 24 h. After cooling, the reaction mixture 

formed two phases, and the upper phase was decanted. The oily bottom phase was collected 

and triturate with cold methanol to give a white powder. The methanol washings were 

combined with the upper phase and concentrated in vacuo until product precipitated from 

solution. A total yield of approximately 80% was obtained. The complex was prepared by 

dropwise addition of 1 equiv of a solution of FeCl3 in methanol to a methanol slurry of 1 

equiv of the ligand at room temperature. The solution was neutralized using 2 equiv of NEt3 

and stirred for 4 h. The solution was then evaporated to dryness, extracted with toluene, 

filtered through Celite, and concentrated in vacuo to give the desired complex in 80% yield. 

The compound was characterized as in the literature. 

2.3.3.3 Complex II 

 The iron (III) amine-bis(phenolate) complex II was prepared based on a report by 

Alhashmialameer et al.39 The ligand was prepared by refluxing and stirring a solution of 1 

equiv of 2,4-di-t-butyl-phenol, 0.5 equiv of homopiperazine, and 1 equiv of 37% aqueous 

formaldehyde in methanol for 24 h. After cooling, the white solid that had formed was 

collected and recrystallized from methanol and chloroform to form a white powder in 98% 

yield. The complex was prepared by dropwise addition of 1 equiv of a solution of FeBr3 in 

methanol to a methanol slurry of 1 equiv of the ligand at room temperature. The solution 
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was neutralized using 2 equiv of NEt3 and stirred for 4 h. The solution was then evaporated 

to dryness, extracted with toluene, filtered through Celite, and concentrated in vacuo to 

give the desired complex in 80% yield. The compound was characterized as in the literature. 

2.3.4 Spectroscopic Information 

2-(4-Methylphenyl)pyrazine (1A) 

1A was synthesized according to the general procedure and purified using an eluent mixture 

of 10% ethyl acetate in hexane. The purified product was a pale-yellow solid obtained in 

72% yield. 1H NMR (300 MHz, CDCl3) δ 9.00 (d, J = 1.7 Hz, 1H), 8.60 (dd, J = 2.5, 1.6 

Hz, 1H), 8.47 (d, J = 2.6 Hz, 1H), 7.95 – 7.88 (m, 2H), 7.31 (d, J = 8.1 Hz, 2H), 2.42 (s, 

3H). 13C NMR (75 MHz, CDCl3) δ 152.85, 144.09, 142.57, 142.02, 140.12, 133.57, 129.79, 

126.81, 21.36. DEPT NMR (75 MHz, CDCl3) δ 152.86 (down), 144.09, 142.58, 142.03, 

140.13 (down), 133.57 (down), 129.80, 129.49, 129.00, 126.81, 21.36. GC-MS: Rt =7.47 

min. m/z: 170.1 (M+), 155.1 (M+-15), 117.1 (M+-53), 89.1 (M+-81). 

2-Phenylpyrazine (1B) 

1B was synthesized according to the general procedure and purified using an eluent mixture 

of 10% ethyl acetate in hexane. The final product was a pale-yellow solid obtained in 70% 

yield. 1H NMR (300 MHz, CDCl3) δ 9.03 (d, J = 1.7 Hz, 1H), 8.62 (dd, J = 2.5, 1.5 Hz, 

1H), 8.50 (d, J = 2.6 Hz, 1H), 8.05 – 7.98 (m, 2H), 7.54 – 7.45 (m, 3H). 13C NMR (75 MHz, 

CDCl3) δ 152.85, 144.19, 142.89, 142.20, 136.33, 129.93, 129.06, 126.95. GC-MS: Rt = 

5.32 min. m/z = 156.1 (M+), 129.1 (M+-27), 103.1 (M+-53), 76.1 (M+-80). 
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4-Methylphenol 

4-Methylphenol was obtained as a side product during the synthesis of 1A as a white solid 

in 11% yield. Rt = 3.66 min. m/z = 107.1 (M+), 90.1 (M+-17), 77.1 (M+-30). 

2,2’-Bipyrazine 

2.2’-Bipyrazine was obtained as a side product during the synthesis of 1A as a red solid in 

6% yield. Rt = 6.72 min. m/z = 158.1, 131.1, 106.1, 80.1. 

Dimethylbiphenyl (mixture of isomers) 

Three isomers of dimethylbiphenyl (unidentified) were obtained as side products during 

the synthesis of 1A as a white solid in 12% yield (with respect to 2-(4-

methylphenyl)pyrazine). Dimethylbiphenyl isomer: Rt = 7.66 min. m/z = 182.1 (M+), 

167.1 (M+-15), 152.1 (M+-30), 139.1 (M+-43), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-

93). Dimethylbiphenyl isomer: Rt = 7.71 min. m/z = 182.1 (M+), 167.1 (M+-15), 152.1 

(M+-30), 139.1 (M+-43), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93). Dimethylbiphenyl 

isomer: Rt = 7.06 min. m/z = 182.1 (M+), 167.1 (M+-15), 152.1 (M+-30), 141.1 (M+-41), 

128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93). 

Benzyl alcohol: Benzyl alcohol: Rt = 3.08 min. m/z = 108.1 (M+), 107.1 (M+-1), 90.1 (M+-

18), 79.1 (M+-29), 77.1 (M+-31). 

2-dichloromethylpyrazine: Rt = 4.15 min. m/z = 162.0 (M+), 164.0 (M++2), 166.0 (M++4), 

129.0 (M+-33), 127.0 (M+-35), 100.0 (M+-62), 92.1 (M+-70), 73.0 (M+-89). 

2-benzylpyrazine: Rt = 5.45 min. m/z = 170.1 (M+), 169.1 (M+-1), 115.1 (M+-55), 91.1 

(M+-79), 65.1 (M+-104). 
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Bibenzyl: Bibenzyl: Rt = 5.59 min. m/z: 182.1 (M+), 104.1 (M+-78), 91.1 (M+-91), 77.1 

(M+-105). 65.1 (M+-117). 

 

2.4 References 

(1) Baumann, M.; Baxendale, I. R. An overview of the synthetic routes to the best 

selling drugs containing 6-membered heterocycles. Beilstein Journal of Organic 

Chemistry 2013, 9, 2265-2319. 

(2) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N. An overview of the key 

routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein 

Journal of Organic Chemistry 2011, 7, 442-495. 

(3) Berg, S.; Bergh, M.; Hellberg, S.; Hogdin, K.; Lo-Alfredsson, Y.; Soderman, P.; 

von Berg, S.; Weigelt, T.; Ormo, M.; Xue, Y.et al. Discovery of novel potent and 

highly selective glycogen synthase kinase-3 (GSK3) inhibitors for Alzheimer's 

disease: design, synthesis, and characterization of pyrazines. Journal of Medicinal 

Chemistry 2012, 55 (21), 9107-9119. 

(4) Koyama, J. Anti-Infective Quinone Derivatives of Recent Patents. Recent Patents 

on Anti-Infective Drug Discovery 2006, 1 (1), 113-125. 

(5) Dandawate, P. R.; Vyas, A. C.; Padhye, S. B.; Singh, M. W.; Baruah, J. B. 

Perspectives on Medicinal Properties of Benzoquinone Compounds. Mini-Reviews 

in Medicinal Chemistry 2010, 10, 436-454. 

(6) Thomson, R. J. Naturally Occurring Quinones IV; 4 ed.; Blackie Academic and 

Professional: London, 1997. 

(7) Brown, E. G. Ring Nitrogen and Key Biomolecules: the biochemistry of N-

heterocycles; Kluwer Academic Publishers: Dordrecht, Netherlands, 1998. 

(8) Murphree, S. S. Chapter 2: Heterocyclic Dyes: Preparation, Properties, and 

Applications, in Progress in Heterocyclic Chemistry; Gribble, G.;Joule, J. A., Eds.; 

Elsevier Ltd.: Amsterdam, 2011; Vol. 22. 

(9) Seiple, I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; 

Baran, P. S. Direct C-H Arylation of Electron-Deficient Heterocycles with 

Arylboronic Acids. Journal of the American Chemical Society 2010, 132, 13194-

13196. 

(10) Fujiwara, Y.; Domingo, V.; Seiple, I. B.; Gianatassio, R.; Del Bel, M.; Baran, P. S. 

Practical C-H functionalization of quinones with boronic acids. Journal of the 

American Chemical Society 2011, 133 (10), 3292-3295. 



115 

 

(11) Patel, N. R.; Flowers, R. A., 2nd. Uncovering the mechanism of the 

Ag(I)/persulfate-catalyzed cross-coupling reaction of arylboronic acids and 

heteroarenes. Journal of the American Chemical Society 2013, 135 (12), 4672-

4675. 

(12) Wang, J.; Wang, S.; Wang, G.; Zhang, J.; Yu, X. Q. Iron-mediated direct arylation 

with arylboronic acids through an aryl radical transfer pathway. Chemical 

Communications 2012, 48 (96), 11769-11771. 

(13) Deb, A.; Manna, S.; Maji, A.; Dutta, U.; Maiti, D. Iron-Catalyzed Direct C-H 

Arylation of Heterocycles and Quinones with Arylboronic Acids. European 

Journal of Organic Chemistry 2013, 2013 (24), 5251-5256. 

(14) Li, Z.; Mai, W.; Yuan, J.; Sun, G.; Qu, L. Silver-Catalyzed 2-Pyridyl Arylation of 

Pyridine N-Oxides with Arylboronic Acids at Room Temperature. Synlett 2011, 

2012 (01), 145-149. 

(15) Ren, X.; Han, S.; Gao, X.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Direct arylation for the 

synthesis of 2-arylquinolines from N -methoxyquinoline-1-ium tetrafluoroborate 

salts and arylboronic acids. Tetrahedron Letters 2018, 59 (11), 1065-1068. 

(16) Bering, L.; Antonchick, A. P. Regioselective Metal-Free Cross-Coupling of 

Quinoline N-Oxides with Boronic Acids. Organic Letters 2015, 17 (12), 3134-

3137. 

(17) Komeyama, K.; Kashihara, T.; Takaki, K. FeSO4-promoted direct arylation of 

benzoquinones with ArB(OH)2 or ArBF3K. Tetrahedron Letters 2013, 54 (9), 1084-

1086. 

(18) Singh, P. P.; Aithagani, S. K.; Yadav, M.; Singh, V. P.; Vishwakarma, R. A. Iron-

catalyzed cross-coupling of electron-deficient heterocycles and quinone with 

organoboron species via innate C-H functionalization: application in total synthesis 

of pyrazine alkaloid botryllazine A. Journal of Organic Chemistry 2013, 78 (6), 

2639-2648. 

(19) Komeyama, K.; Nagao, Y.; Abe, M.; Takaki, K. Scope and Limitation for FeSO4-

Mediated Direct Arylation of Heteroarenes with Arylboronic Acids and Its 

Synthetic Applications. Bulletin of the Chemical Society of Japan 2014, 87 (2), 301-

313. 

(20) Huang, Y.; Guan, D.; Wang, L. Direct Arylation of Substituted Pyridines with 

Arylboronic Acids Catalyzed by Iron(II) Oxalate. Chinese Journal of Chemistry 

2014, 32 (12), 1294-1298. 

(21) Deb, A.; Agasti, S.; Saboo, T.; Maiti, D. Generation of Arylated Quinones by Iron-

Catalyzed Oxidative Arylation of Phenols: Formal Synthesis of Phellodonin, 

Sarcodonin ε, Leucomelone and Betulinan A. Advanced Synthesis & Catalysis 

2014, 356 (4), 705-710. 



116 

 

(22) Modak, A.; Rana, S.; Maiti, D. Iron-Catalyzed Regioselective Direct Arylation at 

the C-3 Position of N-Alkyl-2-pyridone. Journal of Organic Chemistry 2015, 80 

(1), 296-303. 

(23) Jain, R.; Mahindra, A. Regiospecific Direct C-H Arylation at the 2-Position of l-

Histidine Using Arylboronic Acids. Synlett 2012, 23 (12), 1759-1764. 

(24) Yan, G.; Yang, M.; Wu, X. Synthetic applications of arylboronic acid via an aryl 

radical transfer pathway. Organic & Biomolecular Chemistry 2013, 11 (46), 7999-

8008. 

(25) Thatikonda, T.; Singh, U.; Ambala, S.; Vishwakarma, R. A.; Singh, P. P. Metal free 

C-H functionalization of diazines and related heteroarenes with organoboron 

species and its application in the synthesis of a CDK inhibitor, meriolin 1. Organic 

& Biomolecular Chemistry 2016, 14 (18), 4312-4320. 

(26) Gedye, R.; Smith, F.; Westawa, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, J. 

The Use of Microwave Ovens for Rapid Organic Synthesis. Tetrahedron Letters 

1986, 27 (3), 279-282. 

(27) Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Application of Commercial 

Microwave Ovens to Organic Synthesis. Tetrahedron Letters 1986, 27 (41), 4945-

4948. 

(28) Kappe, C. O. Controlled microwave heating in modern organic synthesis. 

Angewandte Chemie International Edition 2004, 43 (46), 6250-6284. 

(29) Kappe, C. O.; Dallinger, D. Controlled microwave heating in modern organic 

synthesis: highlights from the 2004-2008 literature. Molecular Diversity 2009, 13, 

71-193. 

(30) Kappe, C. O.; Dallinger, D.; Murphree, S. S. Practical Microwave Synthesis for 

Organic Chemists: Strategies, Instruments and Protocols; Wiley-VCH Verlag 

GmbH an Co. KGaA: Weinheim, Germany, 2009. 

(31) Kappe, C. O.; Pieber, B.; Dallinger, D. Microwave effects in organic synthesis: 

myth or reality? Angewandte Chemie International Edition 2013, 52 (4), 1088-

1094. 

(32) Caddick, S.; Fitzmaurice, R. Microwave enhanced synthesis. Tetrahedron 2009, 65 

(17), 3325-3355. 

(33) Walla, P.; Kappe, C. O. Microwave-assisted Negishi and Kumada cross-coupling 

reactions of aryl chlorides. Chemical Communications 2004, (5), 564-565. 

(34) Nilsson, P.; Gold, H.; Larhed, M. Microwave Irradiation as a High-Speed Tool for 

Activation of Sluggish Aryl Chlorides in Grignard Reactions. Synlett 2005, 2005 

(10), 1596-1600. 

(35) Arvela, R. K.; Leadbeater, N. E. Microwave-Promoted Heck Coupling Using 

Ultralow Metal Catalyst Concentrations. Journal of Organic Chemistry 2005, 70, 

1786-1790. 



117 

 

(36) Arvela, R. K.; Leadbeater, N. E.; Sangi, M. S.; Williams, V. A.; Granados, P.; 

Singer, R. D. A Reassessment of the Transition-Metal Free Suzuki-Type Coupling 

Methodology. Journal of Organic Chemistry 2005, 70, 161-168. 

(37) Diaz-Ortiz, A.; De La Hoz, A.; Carillo, J. R.; Herrero, M. A. Chapter 5: Selectivity 

Modification Under Microwave Irradiation, in Microwaves in Organic Synthesis; 

3 ed.; De La Hoz, A.;Loupy, A., Eds.; Wiley-VCH Verlag GmbH and Co. KGaA: 

Weinheim, Germany, 2013. 

(38) Chowdhury, R. R.; Crane, A. K.; Fowler, C.; Kwong, P.; Kozak, C. M. Iron(III) 

amine-bis(phenolate) complexes as catalysts for the coupling of alkyl halides with 

aryl Grignard reagents. Chemical Communications 2008, (1), 94-96. 

(39) Alhashmialameer, D.; Collins, J.; Hattenhauer, K.; Kerton, F. M. Iron amino-

bis(phenolate) complexes for the formation of organic carbonates from CO2 and 

oxiranes. Catalysis Science & Technology 2016, 6 (14), 5364-5373. 

(40) Biotage Initiator Getting Started Guide. 2005, 1-20. 

(41) Nigam, S.; Barick, K. C.; Bahadur, D. Development of citrate-stabilized Fe3O4 

nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. 

Journal of Magnetism and Magnetic Materials 2011, 323 (2), 237-243. 



118 

 

Chapter 3. Reaction Scope and Regioselectivity 

Under Microwave Heating 
 

3.1 Introduction 

 As previously described in chapters 1 and 2, in 2010 and 2011 Baran and coworkers 

reported a procedure for the direct C-C coupling of quinones and N-heteroarenes with 

arylboronic acids.1,2 This reaction proceeded via a radical pathway, using a persulfate salt 

as an initiator and a simple silver salt as a catalyst, and provided an easier route to 

arylquinone or N-heterobiaryl compounds that are useful in the pharmaceutical and dye 

industries1,2. This reaction was relatively low cost, as it employed inexpensive arylboronic 

acids and persulfate salts as reagents, inexpensive silver salts as catalysts, and did not 

require functionalized N-heteroarenes or quinones.1,2 In addition, reaction conditions were 

mild, with reactions taking place between room temperature and 70 °C under air. The 

reaction therefore garnered significant academic interest, with iron-catalyzed and metal-

free variants described soon thereafter, as well as reports published examining the reaction 

mechanism.3-16 Further, several papers have explored the scope of the reaction with respect 

to quinones, N-heteroarenes and arylboronic acids, as well as the regiochemistry of the 

reaction and accounts of attempts to influence or control regioselectivity (Scheme 3.1).3-16  
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Scheme 3.1 General conditions of the cross-coupling of arylboronic acids with quinones 

or N-heteroaryls using potassium persulfate. 

 

 The scope of the reaction includes N-heteroarenes and quinones with arylboronic 

acids or aryltrifluoroborate salts, all of which can have a variety of functional groups. N-

heteroarene coupling is most successful with electron-deficient substrates; generally, 

reactions with N-heteroarenes bearing electron-withdrawing groups are most successful, 

followed by unsubstituted N-heteroarenes, with reactions with N-heteroarenes bearing 

electron-donating groups giving no conversion or low yields.1,3,6,8,15 This trend is explained 

by the proposed reaction mechanism, which suggests that the product forms when an aryl 

radical attacks the N-heteroarene.1,16 The presence of electron-withdrawing groups reduces 

electron-density on the N-heteroarene, making it more susceptible to attack. However, 

results with some substrates, such as halide or alkyl-substituted n-heteroarenes, are mixed, 

with some groups reporting good yields and others reporting little or no conversion.1,3,6,8,15 

These differences may be due to the use of different substrates or different reaction 

conditions. Six-membered rings are also preferred, with five-membered N-heteroarenes 
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generally giving poor yields.1,3,6,8,11,15 Reactions with quinones focus heavily on 

1,4-benzoquinone and derivatives2,3,7,9,15 and are more tolerant to the presence of functional 

groups such as alkyls, halides, and alkoxy groups, which all give similar yields to 

unsubstituted 1,4-benzoquinone.2,3,7,9,15 There are also reports of successful one-pot 

oxidation and coupling with hydroquinones, phenols, and methoxyphenols, usually in 

similar yields to reaction with quinones.3,4,7,15 However, there are no reports of reactions 

with other enones, with enals, or with other conjugated compounds.  

The scope of reactions with arylboronic acids have been explored with quinones 

and N-heteroarenes and focuses on reaction with phenylboronic acid and its derivatives.1-

9,15 Generally, the best results are observed with unsubstituted boronic acids, alkyl-

substituted boronic acids, or alkoxy-substituted boronic acids.1-9,15 Strong electron-

withdrawing groups lead to a decrease in yields, although the magnitude of the decrease 

varies.1-9,15 These results are also consistent with the proposed mechanism, as electron-

donating groups improve the nucleophilicity of the aryl radical. Results with halide-

substituted boronic acids and boronic acids with substituents at the 2 position are mixed, 

with some groups claiming good yields and others reporting little or no conversion.1-9,15 

Reactions have also been performed with aryltrifluoroborate salts, with similar results to 

reactions with the corresponding arylboronic acid.2,7-10 An in-depth review of the scope of 

reactions with respect to N-heteroarenes, quinones, and arylboronic acids can be found in 

Section 1.1.2. 

 The regiochemistry of the reaction has been studied extensively, with several 

reports on attempts to control regiochemistry. These reports focus almost exclusively on 
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N-heteroarenes, as quinones are very often symmetrical. When reactions are performed 

with asymmetric quinones, all isomers are produced, generally in similar yield to one 

another.2,7 Studies of regioselectivity in N-heteroarenes focus primarily on pyridine or 

quinoline and their derivatives. When they are unsubstituted, the 2 and 4 isomers are the 

major products due to reduced electron density at these position (see Figure 3.1).1,3,6,8,15 

However, the ratio of 2 to 4 product varies between reports, with some claiming a larger 

yield of the 2 product, and others a larger yield of the 4 product.1,3 A common method to 

control regiochemistry is to include a substituent at the 4 position. In these cases, the 2 

product is preferred, although a small amount of 3 product may be formed.1,3,6,8,15 Another 

method to control regiochemistry is to use aryl-N-oxides.12-14 Reactions with these 

compounds occur almost exclusively at the 2 position, which has significantly reduced 

electron density.12-14 An in-depth review of the regiochemistry of reactions with N-

heteroarenes and quinones can be found in Sections 1.1.2.3 and 1.1.2.4. 

 

 

Figure 3.1 Resonance structures of pyridine, demonstrating reduced electron density at 

the 2 and 4 positions. 

 

As described in greater detail in chapter 1.2, the manner in which microwave 

radiation heats reaction mixtures is different from that of conventional heating methods.17-

21 Conventional heating methods rely on thermal conduction, while microwave heating is 
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caused by the absorption of microwave radiation, which can heat the bulk reaction mixture 

directly.17-21 In addition, microwave heating is rapid, offers better control over heating 

conditions, and can heat certain substrates preferentially over others.17-21 These differences 

often lead to differences the outcomes of reactions under microwave heating from the 

outcomes of reactions under conventional heating.17-21 Commonly observed differences can 

include diminished reactions times17-23, increased yields17-24, a larger substrate scope17-24, 

and changes in regioselectivity.17-21,25 In the previous chapter, reaction conditions were 

optimized for the cross-coupling of arylboronic acids with pyrazine, an N-heteroarene. In 

this chapter a number of substrates that are challenging under conventional heating, such 

as N-heteroarenes bearing electron-donating groups, or arylboronic acids bearing sterically 

hindering or electron-withdrawing groups, are examined to determine whether microwave 

heating can be used to improve yields with. In addition, the effect of microwave heating on 

regiochemistry was examined. 

3.2 Results and Discussion 

3.2.1 Reactions with Pyrazine 

Using the optimized conditions determined in Chapter 2 (0.75 mmol of pyrazine, 

1.5 equiv of arylboronic acid, 0.2 equiv of FeSO₄·6H₂O, 2 equiv of TFA, and 4 equiv of 

K₂S₂O₈, in 8 mL each of CH2Cl2 and water, heated to 70 ᵒC for 25 min under microwave 

heating), substrate scope was examined by screening arylboronic acids with a variety of 

functional groups with pyrazine, beginning with alkyl-substituted arylboronic acids. 

Reactions using phenylboronic acid and 3-methylphenylboronic acid gave similar yields to 

4-methylphenylboronic acid (Scheme 3.2). 2-Methylphenylboronic acid gave a 
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substantially lower yield, while only a trace of mesitylboronic acid product was detected 

(trace meaning that the product was detectable via GC-MS, but could not be isolated). 

These diminished yields are most likely due to steric hindrance. Previous literature reports 

concerning the effects of steric hindrance are mixed, with several groups using other N-

heterocycles reporting significant decreases in yield from the inclusion of a 2-methyl 

substituent1,3,8, and others reporting little or no effect.9,15 The only other literature report 

that examined substrate scope with pyrazine did not attempt a reaction using 

2-methylphenylboronic acid, but saw only a slight decrease in yield (from 86% to 78%) 

when using 2-ethylphenylboronic acid.9  

Arylboronic acids with a variety of electron-withdrawing groups were then 

screened, beginning with the weakly electron-withdrawing halogens. In all cases yields 

were substantially diminished, with yields between 21% using 2-chlorophenylboronic acid 

and 39% using 3-chlorophenylboronic acid. Literature reports are again mixed, with several 

groups reporting dramatically lower yields when a halide is present when using other N-

heterocycles1,3,15, while others report little or no difference.7,8 The only other group to 

examine substrate scope using pyrazine reported yields of 76% with 4-chlorophenylboronic 

acid, and 65% with 3-chlorophenylboronic acid, only slightly lower than the 80% yield 

they reported with phenylboronic acid.9 Under microwave heating strongly electron-

withdrawing groups at the para position, including cyano, trifluoromethyl, and formyl 

groups gave only trace yields, while the inclusion of a carboxyl group gave a 0% yield, 

meaning that no product could be detected in the GC-MS of the crude reaction mixture. 

The presence of stronger electron-withdrawing groups generally reduced yields in the 



124 

 

literature as well. Several groups have reported successful reactions with trifluoromethyl 

or ester groups, albeit with diminished yields, while others report no conversion.1,3,6,8 One 

group has reported the successful cross-coupling of 4-trifluoromethylphenylboronic acid 

with pyrazine in 30% yield; this is the only successful example of cross-coupling between 

pyrazine and an arylboronic acid bearing a strongly electron-withdrawing group.6,9 

Arylboronic acids with moderate or strong electron-donating groups were then 

screened. The moderately electron-donating 4-methoxycarbonyl group resulted in a trace 

yield, while strongly electron-donating hydroxy and amine groups returned a 0% yield. The 

3-aminophenylboronic acid immediately began forming a black solid upon addition, which 

made up the majority of the product of the reaction. This is most likely due to the formation 

of a polymer with a polyaniline backbone, as the chemical formation of polyaniline may 

take place under similar conditions.26 The reaction with 4-hydroxyphenylboronic acid also 

led to the formation of a black solid, this time after microwave irradiation. The black solid 

could not be identified, and GC-MS performed on the crude reaction mixture showed not 

only no product, but no starting material and none of the products from previously observed 

side reactions. Instead, the only compound observed was phenol. It is not clear whether 

phenol is formed simply by the removal of the boronic acid moiety, or by the loss of the 

hydroxyl group followed by the replacement of the boronic acid moiety with a hydroxyl 

group. The fate of the pyrazine also remains unclear, as no pyrazine and no compounds 

containing pyrazine could be detected. There are no reports in the literature of successful 

coupling with amine or hydroxy substituted arylboronic acids.  



125 

 

 

Scheme 3.2 Yields of cross-coupling with pyrazine using a variety of arylboronic acids 

under standard conditions. “Trace” indicates that product was visible in the GC-MS of the 

crude reaction mixture, but the product could not be isolated. 0% indicates that there was 

no product visible in the GC-MS of the crude reaction mixture. 

 

Overall, although the literature is somewhat contradictory, substrate scope under 

microwave heating appears to be somewhat limited, with lower yields than most reports 

with halide substituents, and no yield with stronger electron-withdrawing or electron-

donating substituents. This was surprising, given that an expanded substrate scope is often 

observed under microwave heating. In order to determine the cause of the reduced substrate 

scope, GC-MS was performed on the crude reaction mixtures. Typical examples, showing 

the GC trace from the crude reaction mixtures of reactions with 

4-trifluoromethylphenylboronic acid and 4-chlorophenylboronic acid, are presented in 
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Figure 3.2. Both show a similar result; while the intensity of the peaks from the 

cross-coupled and homo-coupled products are diminished, the peak that is associated with 

arylboronic acid hydroxylation has grown dramatically. There is only one other report of 

the formation of phenol side products, and in that case they were observed only when no 

coupling partner was added to the reaction mixture.9 Most groups report a mixture of 

arylboronic acid starting material and the corresponding homo-coupled products during 

low-yielding or unsuccessful reaction. The formation of phenol side-products in this case 

appears to indicate that the reaction of the phenylboronic acid with either water or a 

hydroxyl radical is preferred over the desired homo-coupling under microwave heating. It 

is not clear why this reaction is preferred, but it may be due to the formation of superheated 

molecular radiators or heterogeneous hotspots in the aqueous phase. 
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Figure 3.2 GC traces of crude reaction mixtures after attempted cross-coupling between 

4-chlorophenylboronic acid and pyrazine (top), and 4 (trifluoromethyl)phenylboronic acid 

and pyrazine (bottom). 4-chlorophenol: Rt = 4.78 min. Bipyrazine: Rt = 6.72 min. 2-(4-

chlorophenyl)pyrazine: Rt =8.00 min. Isomers of x,x’-dichlorobiphenyl: Rt = 8.24 min, 

8.75 min, 8.84 min. 4-trifluorophenol: Rt=3.67 min. 2-(4-trifluoromethylphenyl)pyrazine: 
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Rt = 6.63 min. Bipyrazine: Rt = 6.72 min. For further mass spectrometry information, 

consult Section 3.4.3 and/or Figure A120 and Figure A121. 

 

 Reoptimization was attempted with 4-chlorophenylboronic acid to determine if 

yields with functionalized arylboronic acids could be improved (Table 3.1). Reaction 

conditions including time, temperature, acid amount, and catalyst identity were examined. 

The use of AgNO3 and CuSO4 as catalysts decreased yields slightly, and a yield of 32% 

was obtained in both cases. The use of BPh3 and Al(NO3)3·9H2O resulted in a larger 

decrease, to 16% and 24% respectively. Increasing reaction time from 25 to 50 min did not 

have a large effect on yield, while decreasing reaction time to 5 min resulted in only a 7% 

yield. Increasing the temperature to 120 °C decreased the yield to 26%, while reducing it 

to 50 °C resulted in an even lower yield of only 13%. Finally, increasing the amount of 

TFA to 4 equivalents resulted in a significantly decreased yield of only 21%. 
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Table 3.1 Reoptimization of conditions for the persulfate-initiated cross-coupling of 

pyrazine and 4-chlorophenylboronic acid. 

Entry Catalyst Equiv of 

TFA 

Temperature (°C) Time 

(min) 

Yield 

(%) 

1 FeSO4·6H2O 2 70 25 39 

2a CuSO4 2 70 25 32 

3a Al(NO3)3·9H2O 2 70 25 24 

4 BPh3 2 70 25 16 

5 AgNO3 2 70 25 32 

6a FeSO4·6H2O 2 70 5 7 

7a FeSO4·6H2O 2 70 50 38 

8 FeSO4·6H2O 2 120 25 26 

9 FeSO4·6H2O 2 50 25 13 

10 FeSO4·6H2O 4 70 25 21 

Reactions were carried out as described in the general arylation procedure (See Section 

3.4.2). Unless otherwise noted, the yields reported are of isolated product. aYield 

determined by 1H NMR spectroscopy using an internal DMSO standard.  
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3.2.2 Reactions with Quinones and Enones 

The scope of the reaction under microwave heating was then examined with 

quinones. Initial reactions focused on the most basic quinone, 1,4-benzoquinone, and the 

scope of arylboronic acids (see Scheme 3.3). Reactions with phenylboronic acid yielded 

the desired 2-phenylquinone in 71% yield, comparable to the yields with pyrazine. This is 

consistent with the literature, where yields range from 65% - 98% (Table 3.2).2,3,7,9,15 

Further, in the majority of cases with higher yields, spectroscopic yields are reported, not 

yields of isolated product. Amongst papers that reported the yield of isolated product, yields 

were between 65% and 91%, with most reports between 70% and 90%. Finally, the use of 

microwave heating remained significantly faster than reactions under conventional or no 

heating, with maximum yields still achieved after only 25 min. In comparison, the 

minimum reaction time reported in the literature was 6 h, an increase in rate of almost 15 

times. Most reactions with iron catalysts required 12 - 24 h, 29 to 58 times slower than 

reactions under microwave heating.  
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Table 3.2 Comparison of reaction conditions and yields of the radical coupling of 1,4-

benzoquinone and phenylboronic acid. 

Entry Source Time (h) Temperature 

(°C) 

Catalyst Yield (%) 

1 This work 0.4 70 (MW) FeSO₄·6H₂O  71 

2 2 6 RT AgNO3 91 

3 3 12 70 Fe(NO₃)₃·9(H₂O) 89 

4 7 4 50 FeSO4 65 

5 9
 12 RT Fe(acac)2 90 

6 15 24 RT FeS 82 

 

The inclusion of a weakly electron-donating methyl group at the 4 position 

decreased the yield to 56%, while the more sterically hindered 2-methyl product was 

obtained in 41% yield. The inclusion of an electron-withdrawing chloride increased yield 

at the 4 position increased the yield to 76%, but the inclusion of a chloride at the 3 and 2 

position resulted in decreased yields of 49% and 45% respectively. Literature reports with 

alkyl-substituted phenylboronic acids are mixed, with some groups reporting similar yields 

with alkyl substituents3,7,9, and others reporting a modest decline.2 Altering the location of 

the alkyl group also led to mixed results; some groups reported signifcant declines with the 

alkyl group at the 2 or 3 position2,7, and others reported little difference or even improved 
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yields.3,7,15 Yields with halide substituents are generally similar to those with unsubstituted 

phenylboronic acid.2,3,7,15 Literature reports on the effect of chloride position vary, with 

some reporting highest yields at the 3 position15, and others reporting the highest yield at 

the 2 position.7 The more strongly electron-withdrawing trifluoromethyl group lowered 

yields dramatically, to only 10%, while the sterically hindered mesityl group resulted in a 

yield of 9%. This is the only reported coupling with mesitylboronic acid, and the only 

succesful iron-catalyzed coupling with 4-trifluoromethylphenylboronic acid. Results with 

other sterically hindered arylboronic acids are mixed, with some groups reporting 

significant reductions in yield2,7 and others reporting little or no change.2,3 The only other 

iron-catalyzed reaction with 4-trifluoromethylphenylboronic acid was unsuccesful, and 

returned only starting material.7 Reactions reported in the literature with 3-

trifluoromethylphenylboronic acid, or arylboronic acids bearing other strong electron-

withdrawing groups, generally have low yields, or are entirely unsuccessful.8,9 The 

presence of a strongly electron-donating hydroxyl group resulted in 0% yield, with no trace 

product detectable in the GC-MS of the crude reaction mixture. There are no reports of 

succesful coupling with arylboronic acids bearing hydroxyl groups. 



133 

 

 

Scheme 3.3 Yields of cross-coupling with 1,4-benzoquinone using a variety of 

arylboronic acids under standard conditions. 

 

  The identity and abundance of side products was then examined via GC-MS of the 

crude reaction mixture (Figure 3.3). The side products in the reaction with 

1,4-benzoquinone are similar to those observed with pyrazine, except that no quinone 

homo-coupling was observed. Instead, some unreacted 1,4-benzoquinone starting material 

remains. In addition, there is a relatively large amount of bis-coupled product, either 

2,5-diphenyl-1,4-benzoquinone or 2,6-diphenyl-1,4-benzoquinone. Most groups report the 

presence of some bis-coupled product, although there are several reports in which no 

bis-coupling is reported. Curiously, although reports of boronic acid homo-coupling are 

common when using heteroarenes, there are no reports of homo-coupling when using 

quinones. This may be due to the relatively high yields obtained with most quinones, or 
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due to limited examination of side products with quinones (most papers involving quinones 

are very short communications, and focus on reaction scope). The formation of phenol, 

most likely via reaction of the arylboronic acid with water or a hydroxyl radical, has not 

been previously observed. 
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Figure 3.3 GC traces of crude reaction mixtures after attempted cross-coupling between 

phenylboronic acid and 1,4-benzoquinone (top), and 4 (trifluoromethyl)phenylboronic 

acid and 1,4-benzoquinone (bottom). Quinone: Rt = 2.22 min. Phenol: Rt = 2.73 min. 

2-chloroquinone: Rt = 3.75 min. 2-dichloromethylquinone: Rt = 5.67 min. 

Biphenyl: Rt = 6.21 min. 2-phenyl-1,4-benzoquinone: Rt =7.82 min. Terphenyl (unknown 

isomer): Rt = 10.16-13.09 min. 2,5-diphenylquinone or 2,6-diphenylquinone: Rt = 12.82-

13.09 min. 4-trifluorophenol: Rt = 3.67 min. Trifluorophenol, isomer unknown: Rt = 

3.82 min. 2-dichloromethylquinone: Rt = 5.67 min. 2-(4-trifluoromethylphenyl)-1,4-
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benzoquinone: Rt = 7.70 min. For further mass spectrometry information, consult Section 

3.4.3 and/or figures Figure A122 and Figure A123. 

 

 The scope of the reaction with regards to hydroquinones, enones, phenols, and 

conjugated carboxylic acids was then investigated (Scheme 3.4). The one-pot oxidation 

and cross-coupling of 1,4-hydroquinone was successful, with only a small decline in yield 

when compared to reactions with 1,4-benzoquinone. This is somewhat unusual, as reactions 

with 1,4-hydroquinone usually gives similar or slightly higher yields than 

1,4-benzoquinone.3,7,15 Reactions with 1,2-hydroquinone (catechol) were unsuccessful, 

perhaps due to the reduced stability of the 1,2-benzoquinone moiety. There are no reports 

of cross-coupling of 1,2-benzoquinone or catechol, although there is one report of cross-

coupling with 1,2-naphthoquinone.2 Reactions with 2,3-dimethyl-1,4-hydroquinone were 

successful, but gave lower yields than the unsubstituted 1,4-hydroquinone. This is only the 

second reported reaction of a substituted hydroquinone.7 Reactions with phenol were 

performed using both TFA and with 3 equiv of K2CO3, as literature reports required a base 

for the reaction to proceed.4 In both cases, reactions failed under microwave heating and 

the phenol remained unreacted. Attempts to extend the reaction scope to other enones and 

a conjugated carboxylic acid were all unsuccessful, and all remained unreacted. There are 

no reports demonstrating the cross-coupling of these species under conventional heating. 
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Scheme 3.4 Yields of cross-coupling with 1,4-benzoquinone using a variety of 

arylboronic acids under standard conditions. 0% indicates that product could not be 

isolated, and there was no product visible in the GC-MS of the crude reaction mixture. 
aThe product, 5-phenyl-2,3-dimethyl-1,4-benzoquinone, was collected as a mixture with 

2,3-dimethyl-1,4-benzoquinone. Yield was determined via comparison of the integration 

of the respective methyl peaks in the 1H NMR. bReactions performed with TFA and with 

3 equiv of K2CO3. 

 

3.2.3 Reactions with Other Heteroaryls 

A variety of alternative N-heteroaryls were then screened in reactions with 

phenylboronic acid (Scheme 3.5), beginning with 4-cyanopyridine, also known as 

4-pyridinecarbonitrile. 4-cyanopyridine was chosen because it is common in the literature 

due to the strongly electron-withdrawing cyano group, which appears to increase 

reactivity. The reaction still reached completion in only 25 min, compared to 12 to 48 h 
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reaction times reported in the literature (Table 3.3). A total yield of 64% was achieved, 

with 49% of the 2-phenyl product and the remainder 3-phenyl for a ratio of 2:3 product 

of 3.2. Most literature reports have somewhat higher yields, ranging from 68 to 92%. 

Based on the GC-MS of the reaction mixture the lower yield is probably attributable to 

the formation of the phenol side-product. Oddly, N-heteroarene homo-coupling does not 

appear to occur in this case. In fact, no homocoupling was observed with any N-

heteroarene other than pyrazine, including the pyrazine isomer pyridazine. Why this is 

the case is unclear. Reports on regiochemistry vary, as the ratio of 2 to 3 products varies 

from 2:1 to 5:1. Microwave heating therefore does not appear to alter the regiochemical 

outcome in this case. Preference for the 2 position is mostly due to its electron-deficient 

nature, and may be aided in this case by steric hindrance at the 3-position caused by the 

cyano group. 
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Scheme 3.5 Yields of cross-coupling of arylboronic acid with a variety of N-heterocycles 

under standard conditions. “Trace” indicates that product was visible in the GC-MS of the 

crude reaction mixture, but the product could not be isolated. 0% indicates that there was 

no product visible in the GC-MS of the crude reaction mixture. aReaction performed 

without TFA. 
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Table 3.3 Comparison of conditions, yields, and regiochemistry in the cross-coupling of 

phenylboronic acid and 4-cyanopyridine. 

 

 

 Reactions were then performed with pyridine (Table 3.4). As with 

4-cyanophenylpyridine the reaction was completed within the standard 25 min, with a total 

yield of 65%. A mixture of 2 and 4-phenyl products were obtained, in 43% and 22% yield 

respectively. No 3 product was observed. The total reaction yield is among the higher yields 

reported in the literature, which range from 30 — 73%. Again, the regiochemistry of the 

reaction was similar to other literature reports, with a ratio of 2:1 of 2 vs 4-position 

products, although one article did not mention the presence of any 4-phenyl product. This 

Entry Source t (h) T (°C) Catalyst Yield of 

2-pos. 

(%) 

Yield of 

3-pos. 

(%) 

Ratio 

(2-/3-) 

1 This work 0.4 70 (MW) FeSO₄·6H₂O  49 15 3.2 

2 6 48 RT Fe(C2O4) 77 15 5.1 

3 3 24 50 Fe(NO3)3 57 21 2.8 

4 1 12 RT AgNO3 45 23 2.0 
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distribution is purely statistical, since there are twice as many 2-positions available to react 

as 4-positions. 

 

Table 3.4 Comparison of conditions, yields, and regiochemistry in the cross-coupling of 

phenylboronic acid and pyridine. 

 

 

 

Entry Source t (h) T (°C) Catalyst Yield of 

2-pos. 

(%) 

Yield of 

4-pos. 

(%) 

Ratio  

(2-/4-) 

1 This work 0.4 70 (MW) FeSO₄·6H₂O  43 22 2.0 

2 6 48 RT Fe(C2O4) 18 12 1.5 

3 3 24 RT Fe(acac)2 49 24 2.0 

4 3,9 12 50 Fe(acac)2 45 0 N/A 

5 15 40 RT FeS 20 14 1.4 

6 1 6 RT AgNO3 45 23 2.0 
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 Reactions performed with quinoline reached a total yield of 67%, with 41% 2-

phenyl product and 21% 4-phenyl product (Table 3.5). This is a somewhat higher yield 

than most literature reports, and also a higher ratio of 2-product to 4-product. Reactions 

with pyridazine reached a yield of 68%, comparable to the only other literature report 

(Table 3.6). However, the regiochemical outcome was significantly different, as nearly 

equal amounts of 3-phenyl and 4-phenyl products were produced under microwave heating, 

whereas the literature reports a higher yield of 4-phenyl product. This difference may be 

due to the influence of microwave heating, but may also be due to the use of an iron catalyst, 

as the only literature report used a silver catalyst. 

 

Table 3.5 Comparison of conditions, yields, and regiochemistry in the cross-coupling of 

phenylboronic acid and quinoline. 

 

  

Entry Source t (h) T (°C) Catalyst Yield of 

2-pos. 

(%) 

Yield of 

4-pos. 

(%) 

Ratio  

(4-/2-) 

1 This work 0.4 70 (MW) FeSO₄·6H₂O  41 21 2.0 

2 15 40 RT FeS 29 21 1.4 

4 1 12 RT AgNO3 41 20 2.0 
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Table 3.6 Comparison of conditions, yields, and regiochemistry in the cross-coupling of 

phenylboronic acid and pyridazine. 

 

 

 The reaction scope was then examined with several other substituted pyridines 

(Scheme 3.5). Reactions with lutidine (2,6-dimethylpyridine) were successful, with a total 

yield of 45% (12% 3-phenyl, 33% 4-phenyl). To the best of my knowledge, this is the first 

reported reaction with a 2,6-substituted pyridine, although there have been reports of 

reaction with 2-substituted quinolines.3 Attempts to couple 2,6-dibromopyridine, 

2,6-diacetylpyridine, and 2,6-pyridinedimethanol were unsuccessful, with the N-

heteroarene remaining unreacted. Reactions with 2-bromopyridine returned only a trace of 

product in this case. Reactions with dimethylaminopyridine (DMAP), which has a strong 

electron-donating group, were unsuccessful. Reactions with pyridine N-oxide were 

unsuccessful under acidic conditions, but returned a trace amount of product when no TFA 

Entry Source t (h) T (°C) Catalyst Yield of 

4-pos. 

(%) 

Yield of 

3-pos. 

(%) 

Ratio 

(4-/3-) 

1 This 

work 

0.4 70 (MW) FeSO₄·6H₂O 36 32 1.1 

2 1 12 RT AgNO3 44 15 2.9 
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was used. The majority of the product formed was at the 2-position, with a minority at the 

4-position. In comparison, most literature reports observe only the formation of the 2-

position product.  

 Finally, reactions were attempted with a variety of 5-membered rings. Reactions 

with 5-membered rings with an N-H bond, including imidazole, pyrazole, and pyrrole rings 

were unsuccessful, and the N-heteroarene remained unreacted. This is consistent with most 

literature reports, although there are some reports of low-yielding reactions with imidazole1 

and L-histidine11 (which possesses an imidazole ring) using a silver catalyst. There have 

been no reports of successful coupling with five-membered rings with an N-H bond using 

iron catalysts. Reactions with 1-methylimidazole were successful, albeit in low yield 

(23%), while reactions with 1-phenylpyrrole were unsuccessful. All other iron-catalyzed 

reactions to five-membered rings have required a thiazole ring system. 

 

3.2.4 Other Reactions 

 In addition to the previously described reactions with N-heteroarenes and quinones, 

several other substrates were examined, and several other reaction conditions. First, several 

reactions with reagents that were liquid or possessed a low boiling point were attempted 

with the reagent serving as the organic solvent in place of dichloromethane. It was 

speculated that the increased availability of coupling partner might lead to a reduction in 

arylboronic acid homo-coupling or hydroxylation, and therefore an increased yield. Species 

tested included pyridine, lutidine, quinoline, and thiophene. Unfortunately, no product was 
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observed in any of these reactions. The reasons for the failure of these reactions are unclear 

but may be due to decreased solubility of arylboronic acids in these solvents, or a side 

reaction, as an unidentifiable black solid was often present after microwaving. There are 

no literature reports of reactions occurring under similar conditions. 

 Several attempts were also made to extend the reaction scope beyond quinones and 

N-heteroarenes. Reactions were attempted with pyrrole, a non-aromatic N-heterocycle, and 

N-benzylidenbenzylamine, a conjugated imine, but were unsuccessful. Reactions with the 

S-heteroarene thiophene yielded only a trace amount of product, while reactions with 

cyclohexane, cyclohexene, cyclohexanone, styrene, and benzene were completely 

unsuccessful. GC-MS of the crude reaction mixtures showed that the phenylboronic acid 

was being homo-coupled and hydroxylated, while the coupling partner remained unreacted. 

There are no reports of any of these reagents undergoing cross-coupling under similar 

conditions. 

 Finally, based on the reactivity of toluene observed in Chapter 2, in which toluene 

was homo-coupled at the benzylic position, attempts were made to determine if a cross-

dehydrogenative coupling (CDC) reaction was possible if the reaction was performed 

without arylboronic acid. Since this reaction with pyrazine had shown only minimal 

cross-coupling, initial reactions focussed on the reaction of toluene and quinone. However, 

instead of coupling with the toluene, quinone served as an oxidant, yielding a mixture of 

bibenzyl, benzaldehyde, benzyl alcohol, and benzoic acid. Reactions with 4-cyanopyridine 

were then attempted, but yielded a large number of trace products, including 

benzyl-4-cyanopyridine, benzoyl-4-cyanopyridine, methylphenyl-4-cyanopyridine, 
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formylphenyl-4-cyanopyridine, and 3- and 2-phenyl-4-cyanopyridine, (Scheme 3.6). 

Attempts to optimize this reaction, including attempting the reaction under conventional 

heating, were not performed due to time constraints. 

 

Scheme 3.6 Iron-catalyzed radical cross-dehydrogenative coupling of toluene and 4 

cyanopyridine under microwave heating. Consult Section 3.4.3.5 or Figure A126 for 

spectroscopic information. 

 

3.3 Conclusions 

The scope of the persulfate-initiated cross-coupling of N-heteroarenes or quinones with 

arylboronic acids was investigated under microwave heating. Arylboronic acid scope with 

N-heteroarenes was found to be somewhat limited, as arylboronic acids bearing sterically 

hindering, electron-withdrawing, or electron-donating groups were coupled with only trace 
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yields. The cause of these low yields was determined to be a side reaction in which 

arylboronic acids were hydroxylated to form the corresponding phenol. Additional attempts 

to reoptimize the reaction proved unsuccessful. This side reaction had only been observed 

previously when no coupling partner was present, and may be due to the formation of 

superheated molecular radiators or heterogeneous hotspots. Reaction scope with 

arylboronic acids was improved with quinone, but yields with stronger electron-donating, 

electron-withdrawing, or highly sterically hindered groups remained poor. Quinones and 

hydroquinones were coupled successfully, but attempts to extend the reaction scope to 

include phenols, other enones, and conjugated carboxylic acids failed. The scope of the 

reaction with other N-heteroarenes was examined. Broadly speaking, the scope proved to 

be similar to that under conventional heating, although this is the first report of successful 

coupling with 2,6-disubstituted pyridines, and reactions with N-oxides failed. Microwave 

heating did not appear to influence the regiochemistry of the reaction in most cases, as there 

were no major changes in regiochemistry except in the case of pyridazine and quinoline. It 

is unclear whether the difference in regiochemistry observed with pyridazine is due to the 

use of an iron catalyst instead of a silver catalyst, or due to microwave heating. 

 

 

3.4 Experimental 

3.4.1 General Information 

 Consult Section 2.3.1.  
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3.4.2 General Arylation Procedure 

 Unless otherwise noted, reactions were performed and worked up as described in 

Section 2.3.2. In some cases, noted in the NMR descriptions, a Bruker AVANCE 500 MHz 

NMR was used instead of a Bruker AVANCE 300 MHz NMR. GC-MS information of 

trace products is reported, but NMR data could not be obtained due to the small amount of 

product obtained. Similarly, GC-MS data is reported for side products, but in most cases 

NMR data was not collected. Where possible, the identity of products identified by GC-

MS alone was confirmed by comparison to the literature, most notably the National 

Institute of Standards and Technology (NIST) Chemistry WebBook. 

3.4.3 Spectroscopic data 

3.4.3.1 Spectroscopic Data of Phenylpyrazine Products 

2-Phenylpyrazine: Pale yellow solid, purified by flash chromatography using 10% ethyl 

acetate in hexane. 1H NMR (300 MHz, CDCl3) δ 9.03 (d, J = 1.7 Hz, 1H), 8.62 (dd, J = 

2.5, 1.5 Hz, 1H), 8.50 (d, J = 2.6 Hz, 1H), 8.05 – 7.98 (m, 2H), 7.54 – 7.45 (m, 3H). 13C 

NMR (75 MHz, CDCl3) δ 152.85, 144.19, 142.89, 142.20, 136.33, 129.93, 129.06, 126.95. 

DEPT NMR (75 MHz, CDCl3) δ 144.18, 142.90, 142.22, 129.92, 129.05, 126.95. GC-MS: 

Rt = 5.32 min. m/z = 156.1 (M+), 129.1 (M+-27), 103.1 (M+-53), 76.1 (M+-80). 

2-(4-Methylphenyl)pyrazine: Pale yellow solid, purified by flash chromatography using 

10% ethyl acetate in hexane. 1H NMR (300 MHz, CDCl3) δ 9.00 (d, J = 1.7 Hz, 1H), 8.60 

(dd, J = 2.5, 1.6 Hz, 1H), 8.47 (d, J = 2.6 Hz, 1H), 7.95 – 7.88 (m, 2H), 7.31 (d, J = 8.1 Hz, 

2H), 2.42 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 152.85, 144.09, 142.57, 142.02, 140.12, 
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133.57, 129.79, 126.81, 21.36. DEPT NMR (75 MHz, CDCl3) δ 152.86 (down), 144.09, 

142.58, 142.03, 140.13 (down), 133.57 (down), 129.80, 129.49, 129.00, 126.81, 21.36. GC-

MS: Rt =7.47 min. m/z: 170.1 (M+), 155.1 (M+-15), 117.1 (M+-53), 89.1 (M+-81). 

2-(3-Methylphenyl)pyrazine: Pale yellow solid, purified by flash chromatography using 

10% ethyl acetate in hexane. 1H NMR (300 MHz, CDCl3) δ 9.01 (d, J = 1.7 Hz, 1H), 8.65 

– 8.54 (m, 1H), 8.49 (d, J = 2.6 Hz, 1H), 7.88 – 7.74 (m, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.36 

– 7.24 (m, 1H), 2.48 – 2.34 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 152.99 , 144.10, 142.83, 

142.33, 138.81, 136.31, 130.70, 128.95, 127.64, 124.04, 21.52. DEPT NMR (75 MHz, 

CDCl3) δ 152.99 (down), 144.11, 142.83, 142.33, 138.82 (down), 136.31 (down), 130.70, 

128.95, 127.64, 124.04, 21.52. GC-MS: Rt =7.39 min. m/z: 170.1 (M+), 155.1 (M+-15), 

117.1 (M+-53), 89.1 (M+-81). 

2-(2-Methylphenyl)pyrazine: Pale yellow oil, purified by flash chromatography using 

10% ethyl acetate in hexane. 1H NMR (500 MHz, CDCl3) δ 8.74 (s, 1H), 8.69 – 8.63 (m, 

1H), 8.57 – 8.47 (m, 1H), 7.42 (dd, J = 7.8, 1.8 Hz, 1H), 7.38 – 7.29 (m, 3H), 2.40 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 155.71, 145.12, 143.87, 142.46, 136.75, 136.31, 131.11, 

129.83, 129.23, 126.19, 20.28. DEPT NMR (75 MHz, CDCl3) δ 145.13, 143.87, 142.46, 

136.31 (down), 131.11, 129.83, 129.23, 126.19, 20.29. GC-MS: Rt =7.39 min. m/z: 169.1 

(M+), 155.1 (M+-14), 117.1 (M+-53), 89.1 (M+-81). 

2-(4-Chlorophenyl)pyrazine: Pale yellow solid. Purified by flash chromatography using 

10% ethyl acetate in hexane. 1H NMR (300 MHz, CDCl3) δ 9.04 – 8.97 (m, 1H), 8.66 – 

8.58 (m, 1H), 8.52 (d, J = 2.6 Hz, 1H), 8.06 – 7.90 (m, 2H), 7.53 – 7.40 (m, 2H). 13C NMR 

(75 MHz, CDCl3) δ 151.62, 144.21, 143.19, 141.91, 136.22, 134.74, 129.29, 128.16. DEPT 
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NMR (75 MHz, CDCl3) δ 151.62 (down), 144.21, 143.19, 141.92, 136.23 (down), 134.74 

(down), 129.29, 128.17. GC-MS: Rt =8.00 min. m/z: 190.1 (M+), 192.1 (M++2), 155.1 (M+-

35), 137.1 (M+-53), 102.1 (M+-88). 

2-(3-Chlorophenyl)pyrazine: Pale yellow solid. Purified by flash chromatography using 

10% ethyl acetate in hexane. 1H NMR (300 MHz, CDCl3) δ 9.02 (s, 1H), 8.64 (dd, J = 2.6, 

1.6 Hz, 1H), 8.55 (d, J = 2.6 Hz, 1H), 8.08 – 7.99 (m, 1H), 7.95 – 7.82 (m, 1H), 7.51 – 7.35 

(m, 2H). 13C NMR (75 MHz, CDCl3) δ 151.39, 144.28, 143.50, 142.10, 138.07, 135.23, 

130.29, 129.94, 127.13, 124.90. DEPT NMR (75 MHz, CDCl3) δ 151.39 (down), 144.29, 

143.50, 142.10, 138.07 (down), 135.25 (down), 135.24, 135.23, 130.30, 129.94, 127.13, 

124.91. GC-MS: Rt =7.97 min. m/z: 190.1 (M+), 192.1 (M++2), 155.1 (M+-35), 137.1 (M+-

53), 102.1 (M+-88). 

2-(2-Chlorophenyl)pyrazine: Pale yellow oil. Purified by flash chromatography using 

10% ethyl acetate in hexane.  1H NMR (300 MHz, CDCl3) δ 8.99 (s, 1H), 8.70 (s, 1H), 8.59 

(s, 1H), 7.63 – 7.59 (m, 1H), 7.54 – 7.50 (m, 1H), 7.43 – 7.39 (m, 2H). 13C NMR (75 MHz, 

CDCl3) δ 152.73, 145.86, 144.24, 143.11, 135.97, 132.36, 131.71, 130.56, 130.33, 127.31. 

DEPT NMR (75 MHz, CDCl3) δ 145.86, 144.24, 143.11, 135.97 (down), 132.35 (down), 

131.71, 130.56, 130.33, 127.31. GC-MS: Rt =7.54 min. m/z: 190.1 (M+), 192.1 (M++2), 

155.1 (M+-35), 137.1 (M+-53), 102.1 (M+-88). 

2-(4-Iodophenyl)pyrazine: White solid. Purified by flash chromatography using 15% 

ethyl acetate in hexane. 1H NMR (300 MHz, CDCl3) δ 9.01 (s, 1H), 8.62 (s, 1H), 8.53 (s, 

1H), 7.85 (d, J = 8.5 Hz, 2H), 7.76 (d, J = 8.6 Hz, 2H). 13C NMR (75 MHz, CDCl3) δ 

151.81, 144.25, 143.34, 141.85, 138.24, 135.80, 128.53, 96.60. DEPT NMR (75 MHz, 
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CDCl3) δ 151.82 (down), 144.25, 143.34, 141.86, 138.24, 135.80 (down), 128.53, 96.61 

(down). GC-MS: Rt =9.64 min. m/z: 282.0 (M+), 229.0 (M+-53), 155.1 (M+-127), 102.1 

(M+-180). 

2-(4-Trifluoromethylphenyl)pyrazine: GC-MS: Rt =6.63 min. m/z: 224.1 (M+), 205.1 

(M+-19), 171.0 (M+-53). 

2-(4-Methoxycarbonylphenyl)pyrazine: GC-MS: Rt  =9.87 min. m/z = 214.1 (M+), 183.1 

(M+-31), 155.1 (M+-59), 130.0 (M+-84), 102.0 (M+-112), 75.0 (M+-139). 

2-Mesitylpyrazine: GC-MS: Rt = 7.84 min. m/z = 198.1 (M++1), 197.1 (M+), 182.1 (M+-

15), 168.1 (M+-30), 144.1 (M+-54), 130.1 (M+-68), 115.1 (M+-83), 91.1 (M+-107). 

2-(4-Cyanophenyl)pyrazine: GC-MS: Rt = 8.80 min. m/z = 181.1 (M+), 154.1 (M+-27), 

128.0 (M+-53), 101.0 (M+-80), 75.0 (M+-106). 

2-(4-Formylphenyl)pyrazine: GC-MS: Rt = 8.70 min. m/z = 184.1 (M+), 183.1 (M+-1), 

155.1 (M+-29), 130.0 (M+-53), 102.1 (M+-82), 75.1 (M+-109). 

3.4.3.2 Spectroscopic Data of Phenylquinone Products 

2-Phenyl-1,4-benzoquinone: Bright orange solid. Purified by flash chromatography using 

2% ethyl acetate in hexanes. 1H NMR (300 MHz, CDCl3) δ 7.49 – 7.41 (m, 5H), 6.92 – 

6.74 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 187.58, 186.60, 145.93, 137.05, 136.24, 

132.68, 132.62, 130.12, 129.25, 128.54. DEPT NMR (75 MHz, CDCl3) δ 187.58 (down), 

186.60 (down), 145.93 (down), 137.05, 136.24, 132.68, 130.12, 129.25, 128.54. GC-MS: 

Rt =7.82 min. m/z: 184.1 (M+), 156.1 (M+-28), 128.1 (M+-56), 102.1 (M+-82), 82.1 (M+-

102). 
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2-(4-Chlorophenyl)-1,4-benzoquinone: Bright orange solid. Purified by flash 

chromatography using 2% ethyl acetate in hexanes. 1H NMR (300 MHz, CDCl3) δ 7.42 (s, 

4H), 6.86 – 6.82 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 187.31, 186.29, 144.72, 137.01, 

136.54, 136.33, 132.65, 131.00, 130.56, 128.86. DEPT NMR (75 MHz, CDCl3) δ 187.31 

(down), 186.29 (down), 144.71 (down), 137.01, 136.54 (down), 136.33, 132.65, 131.00 

(down), 130.56, 128.85. GC-MS: Rt =9.05 min. m/z: 218.0 (M+), 220.0 (M++2), 183.0 (M+-

35), 155.0 (M+-63), 136.0 (M+-82). 

2-(3-Chlorophenyl)-1,4-benzoquinone: Bright yellow solid. Purified by flash 

chromatography using 2% ethyl acetate in hexanes. 1H NMR (500 MHz, CDCl3) δ 7.44 (t, 

J = 1.9 Hz, 1H), 7.39 (dt, J = 7.3, 2.1 Hz, 1H), 7.37 – 7.29 (m, 2H), 6.89 – 6.71 (m, 3H). 

13C NMR (75 MHz, CDCl3) δ 187.22, 186.05, 144.55, 136.99, 136.32, 134.50, 134.29, 

133.16, 130.10, 129.80, 129.25, 127.38. DEPT NMR (75 MHz, CDCl3) δ 187.22 (down), 

186.05 (down), 144.55 (down), 136.99, 136.32, 134.49 (down), 134.29 (down), 133.15, 

130.10, 129.80, 129.25, 127.38. GC-MS: Rt =9.08 min. m/z: 218.0 (M+), 220.0 (M++2), 

183.0 (M+-35), 155.0 (M+-63), 136.0 (M+-82), 101.1 (M+-117), 82.0 (M+-136). 

2-(2-Chlorophenyl)-1,4-benzoquinone: Bright orange solid. Purified by flash 

chromatography using 2% ethyl acetate in hexanes. 1H NMR (500 MHz, CDCl3) δ 7.43 

(dd, J = 8.0, 1.4 Hz, 1H), 7.35 (td, J = 7.7, 1.8 Hz, 1H), 7.30 (td, J = 7.5, 1.4 Hz, 1H), 7.18 

(dd, J = 7.6, 1.8 Hz, 1H), 6.91 – 6.80 (m, 2H), 6.76 (d, J = 2.4 Hz, 1H). 13C NMR (75 MHz, 

CDCl3) δ 187.25, 185.06, 146.13, 136.82, 136.41, 135.02, 133.09, 132.43, 130.75, 130.65, 

129.84, 126.83. DEPT NMR (75 MHz, CDCl3) δ 187.25 (down), 185.06 (down), 146.13 

(down), 136.82, 136.41, 135.02, 133.09 (down), 132.42 (down), 130.75, 130.65, 129.84, 
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126.83. Rt =8.46 min. m/z: 218.0 (M+), 220.0 (M++2), 183.0 (M+-35), 155.0 (M+-63), 136.0 

(M+-82), 101.1 (M+-117), 82.0 (M+-136). 

2-(4-Methylphenyl)-1,4-benzoquinone: Bright orange solid. Purified by flash 

chromatography using 2% ethyl acetate in hexanes. 1H NMR (300 MHz, CDCl3) δ 7.39 (d, 

J = 8.3 Hz, 2H), 7.29 – 7.21 (m, 2H), 6.89 – 6.76 (m, 3H), 2.40 (s, 3H). 13C NMR (75 MHz, 

CDCl3) δ 187.66, 186.82, 145.85, 140.57, 137.05, 136.22, 132.01, 129.82, 129.32, 129.19, 

21.39. DEPT NMR (75 MHz, CDCl3) δ 187.66 (down), 186.82 (down), 145.84 (down), 

140.56 (down), 137.05, 136.22, 132.01, 129.81 (down), 129.31, 129.19, 21.38. GC-MS: Rt 

=8.57 min. m/z: 198.1 (M+), 183.1 (M+-15), 170.1 (M+-28), 155.1 (M+-43), 141.1 (M+-57), 

115.1 (M+-68), 82.0 (M+-116). 

2-(2-Methylphenyl)-1,4-benzoquinone: Dark orange oil. Purified by flash 

chromatography using 2% ethyl acetate in hexanes. 1H NMR (500 MHz, CDCl3) δ 7.31 (td, 

J = 7.5, 1.5 Hz, 1H), 7.25 – 7.19 (m, 2H), 7.07 (dd, J = 7.7, 1.4 Hz, 1H), 6.88 – 6.77 (m, 

2H), 6.69 (d, J = 2.4 Hz, 1H), 2.16 (s, 3H). 13C NMR (75 MHz, CDCl3) δ 187.65, 186.17, 

148.44, 136.85, 136.36, 136.13, 134.52, 133.08, 130.41, 129.49, 129.25, 125.83, 20.36. 

DEPT NMR (75 MHz, CDCl3) δ 187.65 (down), 186.16 (down), 148.44 (down), 136.85, 

136.35, 136.12 (down), 134.52, 133.07 (down), 130.41, 129.49, 129.25, 125.83, 20.36. Rt 

=7.97 min. m/z: 198.1 (M+), 183.1 (M+-15), 181.1 (M+-17), 169.1 (M+-29), 153.1 (M+-45), 

141.1 (M+-57), 115.1 (M+-83), 82.1 (M+-116). 

2-(4-Trifluoromethylphenyl)-1,4-benzoquinone: Waxy yellow solid, collected using 

flash chromatography with 1% ethyl acetate in hexane as eluent. 1H NMR (300 MHz, 

CDCl3) δ 7.74 – 7.57 (m, 4H), 6.96 – 6.82 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 187.11, 
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185.97, 144.71, 136.99, 136.45, 133.60, 129.62, 125.54, 125.49, 125.44, 125.39, 77.44, 

77.01, 76.59. DEPT NMR (75 MHz, CDCl3) δ 136.99, 136.44, 133.60, 129.62, 125.54, 

125.49, 125.44, 125.39. GC-MS: Rt = 7.70 min. m/z: 252.1 (M+), 233.0 (M+-19), 224.1 

(M+-28), 196.1 (M+-56), 183.1 (M+-69), 170.0 (M+-82), 151.0 (M+-99), 120.0 (M+-132), 

82.0 (M+-170). 

2-Mesityl-1,4-benzoquinone: Waxy yellow solid, collected using flash chromatography 

with 1% ethyl acetate in hexane as eluent. 1H NMR (300 MHz, CDCl3) δ 6.92 – 6.85 (m, 

4H), 6.78 – 6.65 (m, 1H), 2.31 (s, 3H), 2.07 (s, 6H). 13C NMR (75 MHz, CDCl3) δ 187.58, 

186.39, 148.30, 138.65, 136.91, 136.56, 135.55, 135.45, 133.10, 128.39, 20.29. DEPT 

NMR (75 MHz, CDCl3) δ 187.59 (down), 186.39 (down), 148.29 (down), 138.66 (down), 

136.91, 136.56, 135.55, 135.45 (down), 133.10, 128.40, 21.10, 20.29. GC-MS: Rt =8.88 

min. m/z: 226.1 (M+), 211.1 (M+-15), 198.1 (M+-28), 183.1 (M+-43), 169.1 (M+-57), 155.1 

(M+-71), 143.1 (M+-83), 128.1 (M+-96), 115.1 (M+-111). 

2,3-Dimethyl-5-phenyl-1,4-benzoquinone:  Translucent yellow liquid, collected as a 

mixture with 2,3-dimethyl-1,4-benzoquinone using flash chromatography with 1% ethyl 

acetate in hexane as eluent. Spectroscopic yield determined via comparison of the 

integration of the respective methyl peaks. 1H NMR (300 MHz, CDCl3) δ 7.54 – 7.34 (m, 

4H), 6.71 (s, 1H), 2.09 (dt, J = 7.2, 1.3 Hz, 6H). 13C NMR (75 MHz, CDCl3) δ 187.51, 

186.66, 145.71, 141.23, 140.98, 140.74, 136.23, 132.43, 129.71, 128.36, 12.69, 12.17. 

DEPT NMR (75 MHz, CDCl3) δ 187.51 (down), 186.65 (down), 145.70 (down), 141.22 

(down), 140.97 (down), 140.73 (down), 136.23, 132.43, 129.71, 128.36, 12.69, 12.17. GC-
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MS: Rt = 9.33 min. m/z: 212.1 (M+), 197.1 (M+-15), 183.1 (M+-29), 169.1 (M+-43), 155.1 

(M+-57), 141.1 (M+-61), 102.1 (M+-110). 

2,3-Dimethyl-1,4-benzoquinone: Translucent yellow liquid, collected as a mixture with 

2,3-dimethyl-5-phenyl-1,4-benzoquinone using flash chromatography with 1% ethyl 

acetate in hexane as eluent. Spectroscopic yield determined via comparison of the 

integration of the respective methyl peaks. 1H NMR (300 MHz, CDCl3) δ 6.80 (s, 2H), 2.03 

(s, 6H). 13C NMR (75 MHz, CDCl3) δ 187.34, 133.30, 129.22, 12.14. DEPT NMR (75 

MHz, CDCl3) δ 187.34 (down), 133.29 (down), 129.22, 12.14. GC-MS: 136.1 (M+), 108.1 

(M+-28), 107.1 (M+-29), 90.1 (M+-46), 82.0 (M+-54), 79.1 (M+-57), 54.1 (M+-79).  

3.4.3.3 Spectroscopic Data of Other Phenyl-N-Heteroarenes 

2-Phenyl-4-cyanopyridine: White solid. Purified by flash chromatography using 5% ethyl 

acetate in hexanes. 1H NMR (300 MHz, CDCl3) δ 8.86 (d, J = 5.0, 1.0 Hz, 1H), 8.04 – 7.96 

(m, 2H), 7.94 (s, 1H), 7.59 – 7.47 (m, 3H), 7.44 (dd, J = 5.0, 1.5 Hz, 1H). 13C NMR (75 

MHz, CDCl3) δ 158.77, 150.63, 137.33, 130.22, 129.08, 126.98, 123.14, 122.03, 121.22, 

116.72. DEPT NMR (75 MHz, CDCl3) δ 158.77 (down), 150.63, 137.33 (down), 130.22, 

129.08, 126.97, 123.14, 122.03, 121.22 (down), 116.72 (down). GC-MS: Rt =8.22 min. 

m/z: 180.1 (M+), 153.1 (M+-27), 126.1 (M+-54), 103.1 (M+-77), 76.1 (M+-104). 

3-Phenyl-4-cyanopyridine: White solid. Purified by flash chromatography using 5% ethyl 

acetate in hexanes. 1H NMR (300 MHz, CDCl3) δ 8.88 (s, 1H), 8.76 (d, J = 4.2 Hz, 1H), 

7.64 – 7.50 (m, 6H). 13C NMR (75 MHz, CDCl3) δ 150.99, 148.71, 138.73, 134.44, 129.56, 

129.15, 128.80, 126.06, 118.82, 116.33. DEPT NMR (75 MHz, CDCl3) δ 150.99, 148.71, 

134.45 (down), 129.56, 129.15, 128.80, 126.06, 118.83 (down), 116.32 (down). GC-MS: 
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Rt =7.82 min. m/z: 180.1 (M+), 153.1 (M+-27), 126.1 (M+-54), 103.1 (M+-77), 76.1 (M+-

104). 

3-Phenylpyridazine: Dark red solid, collected using 100% ethyl acetate as eluent. 1H 

NMR (300 MHz, CDCl3) δ 9.16 (dd, J = 4.9, 1.6 Hz, 1H), 8.14 – 8.04 (m, 2H), 7.87 (dd, J 

= 8.6, 1.7 Hz, 1H), 7.60 – 7.47 (m, 4H). 13C NMR (75 MHz, CDCl3) δ 159.51, 150.01, 

136.38, 130.12, 129.06, 127.14, 126.79, 123.91. DEPT NMR (75 MHz, CDCl3) δ 150.01, 

130.12, 129.05, 127.14, 126.79, 123.91. GC-MS: Rt = 7.91 min. m/z: 156.1 (M+), 128.1 

(M+-28), 102.1 (M+-54), 76.1 (M+-70), 63.1 (M+-93), 51.1 (M+-103). 

4-Phenylpyridazine: Dark red solid, collected using 100% ethyl acetate as eluent. 1H 

NMR (300 MHz, CDCl3) δ 9.50 – 9.42 (m, 1H), 9.22 (d, J = 5.3 Hz, 1H), 7.70 – 7.64 (m, 

3H), 7.57 – 7.50 (m, 3H). 13C NMR (75 MHz, CDCl3) δ 151.38, 149.91, 138.55 (down), 

134.46 (down), 130.16, 129.55, 127.08, 123.29. GC-MS: Rt = 8.08. m/z: 156.1 (M+), 128.1 

(M+-28), 102.1 (M+-54), 76.1 (M+-80), 63.1 (M+-93), 51.1 (M+-105). 

2-Phenylquinoline: White solid, eluted using 10% ethyl acetate in hexane. 1H NMR (300 

MHz, CDCl3) δ 8.23 – 8.13 (m, 4H), 7.86 (d, J = 8.7 Hz, 1H), 7.81 (dd, J = 8.1, 1.5 Hz, 

1H), 7.72 (ddd, J = 8.5, 6.8, 1.5 Hz, 1H), 7.58 – 7.41 (m, 4H). 13C NMR (75 MHz, CDCl3) 

δ 157.38, 148.31, 139.72, 136.79, 129.77, 129.67, 129.34, 128.87, 127.59, 127.48, 127.20, 

126.30, 119.03. DEPT NMR (75 MHz, CDCl3) δ 157.38, 148.31, 139.71, 136.79, 129.77, 

129.67, 129.59, 129.33, 128.87, 127.59, 127.48, 127.20, 126.30, 119.03. GC-MS: Rt = 

11.09. m/z: 205.1 (M+), 204.1 (M+-1), 176.1 (M+-29), 151.1 (M+-54), 102.2 (M+-103), 88.1 

(M+-117), 76.1 (M+-129). 
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4-Phenylquinoline: Yellow oil, collected using 10% ethyl acetate in hexane. 1H NMR (300 

MHz, CDCl3) δ 8.96 (dd, J = 4.2, 1.8 Hz, 1H), 8.21 (dd, J = 8.3, 1.8 Hz, 1H), 7.83 (dd, J = 

8.1, 1.6 Hz, 1H), 7.72 (dd, J = 1.8, 0.9 Hz, 1H), 7.61 (dd, J = 8.1, 7.2 Hz, 1H), 7.50 (tt, J = 

6.7, 1.0 Hz, 2H), 7.45 – 7.37 (m, 2H). 13C NMR (75 MHz, CDCl3) δ 150.28, 146.06, 

140.93, 139.56, 136.24, 130.61, 130.33, 128.74, 128.01, 127.54, 127.38, 126.27, 120.99. 

DEPT NMR (75 MHz, CDCl3) δ 150.28, 136.24, 130.61, 130.33, 128.01, 127.54, 127.38, 

126.27, 120.99. GC-MS: Rt = 10.07. m/z: 205.1 (M+), 204.1 (M+-1), 176.1 (M+-29), 151.1 

(M+-54), 102.0 (M+-103), 88.1 (M+-117), 76.1 (M+-129). 

3-Phenyllutidine: Thick yellow oil, collected using 10% ethyl acetate in hexane as eluent. 

1H NMR (500 MHz, CDCl3) δ 7.40 (dd, J = 7.8, 2.3 Hz, 3H), 7.38 – 7.31 (m, 1H), 7.32 – 

7.26 (m, 2H), 7.03 (d, J = 7.7 Hz, 1H), 2.56 (s, 3H), 2.47 (s, 3H). 13C NMR (75 MHz, 

CDCl3) δ 156.47, 154.92, 140.06, 137.71, 134.04, 129.12, 128.35, 127.26, 120.61, 24.16, 

23.23. DEPT NMR (75 MHz, CDCl3) δ 137.71, 129.12, 128.35, 127.26, 120.62, 24.15, 

23.23. GC-MS: Rt = 7.12. m/z: 183.2 (M+), 182.2 (M+-1), 167.1 (M+-16), 141.1 (M+-42), 

115.1 (M+-68), 102.1 (M+-81), 90.6 (M+-92), 77.1 (M+-106). 

4-Phenyllutidine: Thick yellow oil, collected using 20% ethyl acetate in hexane as eluent. 

1H NMR (300 MHz, CDCl3) δ 7.63 – 7.57 (m, 2H), 7.49 – 7.36 (m, 3H), 7.17 (s, 2H), 2.58 

(s, 6H). 13C NMR (75 MHz, CDCl3) δ 158.14, 149.07, 138.73, 128.94, 128.73, 127.01, 

118.39, 77.46, 77.04, 76.62, 24.55. DEPT NMR (75 MHz, CDCl3) δ 158.14 (down), 

149.07 (down), 138.73 (down), 128.94, 128.73, 127.01, 118.39, 77.46, 77.04, 76.61, 24.55. 

GC-MS: Rt = 7.62. m/z: 183.2 (M+), 167.1 (M+-16), 153.1 (M+-30), 141.1 (M+-42), 128.1 

(M+-55), 115.1 (M+-68), 102.1 (M+-81), 90.6 (M+-92), 77.1 (M+-106). 
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2-Phenylpyridine: Yellow oil, collected using 10% ethyl acetate in hexane. 1H NMR (300 

MHz, CDCl3) δ 8.69 (dt, J = 4.9, 1.4 Hz, 1H), 8.07 – 7.91 (m, 2H), 7.79 – 7.64 (m, 2H), 

7.51 – 7.41 (m, 3H), 7.28 – 7.15 (m, 1H). 13C NMR (75 MHz, CDCl3) δ 157.48, 149.69, 

139.42, 136.75, 128.97, 128.77, 126.93, 122.11, 120.58. DEPT NMR (75 MHz, CDCl3) δ 

149.69, 136.75, 128.97, 128.77, 126.93, 122.11, 120.58. GC-MS: Rt = 6.80. m/z: 155.1 

(M+), 154.1 (M+-1), 127.1 (M+-28), 102.1 (M+-53), 77.1 (M+-78), 63.1 (M+-92), 51.1 (M+-

104). 

4-Phenylpyridine: Reddish solid, collected using 10% ethyl acetate in hexane. 1H NMR 

(500 MHz, CDCl3) δ 8.64 (d, J = 5.3 Hz, 2H), 7.62 (d, J = 7.5 Hz, 2H), 7.52 – 7.42 (m, 5H). 

13C NMR (75 MHz, CDCl3) δ 150.00, 148.57, 138.06, 129.15, 127.03, 121.73. DEPT NMR 

(75 MHz, CDCl3) δ 150.00, 129.15, 127.02, 121.73. GC-MS: Rt = 6.89. m/z: 155.1 (M+), 

154.1 (M+-1), 140.1 (M+-15), 127.1 (M+-28), 115.1 (M+-40), 102.1 (M+-53), 77.1 (M+-78), 

63.1 (M+-92), 51.1 (M+-104). 

1-Methyl-2-phenylimidazole: Dark red-brown solid, collected using 100% ethyl acetate 

as eluent. 1H NMR (300 MHz, CDCl3) δ 7.89 – 7.74 (m, 1H), 7.58 (dq, J = 6.2, 2.4 Hz, 

2H), 7.45 – 7.40 (m, 2H), 7.15 (d, J = 1.3 Hz, 1H), 6.96 (d, J = 1.3 Hz, 1H), 3.70 (s, 3H). 

13C NMR (75 MHz, CDCl3) δ 147.67, 133.71, 130.09, 128.83, 128.51, 127.95, 122.13, 

77.50, 77.08, 76.66, 34.46. DEPT NMR (75 MHz, CDCl3) δ 133.71, 128.83, 128.51, 

127.94, 122.13, 34.46. GC-MS: Rt = 7.53. m/z: 158.1 (M+), 157.1 (M+-1), 142.1 (M+-16), 

130.1 (M+-28), 116.1 (M+-42), 104.1 (M+-42), 89.1 (M+-69), 77.1 (M+-81), 63.1 (M+-95), 

54.1 (M+-104). 
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2-Bromophenylpyridine (isomer unknown): GC-MS: Rt = 6.53 – 7.55. m/z: 234.1 (M+), 

233.1 (M+-1), 205.1 (M+-29), 191.1 (M+-43), 131.1 (M+-103), 128.1 (M+-106), 103.1 (M+-

131), 91.1 (M+-143), 77.1 (M+-157), 51.1 (M+-183). 

3.4.3.4 Spectroscopic Data of Side Products 

4-Chlorophenol: GC-MS: Rt = 4.78 min. m/z: 128.1 (M+), 130.1 (M++2), 100.0 (M+-28), 

93.1 (M+-35), 65.1 (M+-63). 

Bipyrazine: GC-MS: Rt = 6.72 min. m/z = 158.1 (M+), 131.1 (M+-27), 106.1 (M+-52), 80.1 

(M+-78). 

Isomers of x,x’-dichlorobiphenyl. Isomer 1: GC-MS: Rt = 8.24 min. m/z: 222.0 (M+), 

224.0 (M++2), 226.0 (M++4), 188.0 (M+-34), 187.1 (M+-35), 186.1 (M+-36), 152.1 (M+-

35). Isomer 2: GC-MS: Rt = 8.75 min. m/z: 222.0 (M+), 224.0 (M++2), 226.0 (M++4), 

188.0 (M+-34), 187.1 (M+-35), 186.1 (M+-36), 152.1 (M+-35). Isomer 3: GC-MS: Rt = 8.84 

min. m/z: 222.0 (M+), 224.0 (M++2), 226.0 (M++4), 188.0 (M+-34), 187.1 (M+-35), 186.1 

(M+-36), 152.1 (M+-35). 

Biphenyl: GC-MS: Rt = 6.21 min. m/z: 154.1 (M+), 139.1 (M+-15), 128.1 (M+-26), 115.1 

(M+-39), 76.1 (M+-78). 

Phenol: GC-MS: Rt = 2.73 min. m/z: 94.1 (M+), 66.1 (M+-28), 55.1 (M+-39). 

Quinone: GC-MS: Rt = 2.22 min. m/z: 108.0 (M+), 82.0 (M+-26), 80.0 (M+-28), 54.0 (M+-

54). 
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2-Dichloromethylquinone: GC-MS: Rt = 5.67 min. m/z: 190.0 (M+), 192.0 (M++2), 194.0 

(M++4), 166.0 (M+-24), 164.0 (M+-26), 162.1 (M+-28), 155.1 (M+-35), 128.0 (M+-62), 

126.0 (M+-64), 101.0 (M+-89), 99.0 (M+-91). 

2-Chloroquinone: GC-MS: Rt = 3.75 min. m/z: 142.0 (M+), 144.0 (M++2), 116.0 (M+-26), 

114.0 (M+-28), 107.0 (M+-35), 88.0 (M+-54), 82.0 (M+-60), 60.0 (M+-82). 

2,5-Diphenylquinone or 2,6-diphenylquinone: GC-MS: Rt = 12.82-13.09 min. m/z: 

260.1 (M+), 231.1 (M+-29), 215.1 (M+-45), 203.1 (M+-57), 178.1 (M+-82), 176.1 (M+-84), 

152.1 (M+-108), 102.1 (M+-158). 

4-Trifluorophenol: GC-MS: Rt = 3.67 min. m/z: 162.1 (M+), 143.1 (M+-19), 133.1 (M+-

29), 114.1 (M+-48), 112.1 (M+-50). 

Trifluorophenol, isomer unknown: GC-MS: Rt = 3.82 min. m/z: 162.1 (M+), 144.0 (M+-

18), 142.0 (M+-20), 116.0 (M+-46), 114.0 (M+-48), 88.0 (M+-74), 82.0 (M+-80), 60.0 (M+-

98). 

Unknown isomers of phenylquinoline. Isomer 1: GC-MS: Rt = 9.94. m/z: 205.1 (M+), 

204.1 (M+-1), 176.1 (M+-29), 151.1 (M+-54), 102.0 (M+-103), 88.1 (M+-117), 76.1 (M+-

129). Isomer 2: GC-MS: Rt = 10.26. m/z: 205.1 (M+), 204.1 (M+-1), 176.1 (M+-29), 151.1 

(M+-54), 102.0 (M+-103), 88.1 (M+-117), 76.1 (M+-129). Isomer 3: GC-MS: Rt = 10.43. 

m/z: 205.1 (M+), 204.1 (M+-1), 176.1 (M+-29), 151.1 (M+-54), 102.0 (M+-103), 88.1 (M+-

117), 76.1 (M+-129). Isomer 4: GC-MS: Rt = 11.57. m/z: 205.1 (M+), 204.1 (M+-1), 176.1 

(M+-29), 151.1 (M+-54), 102.0 (M+-103), 88.1 (M+-117), 76.1 (M+-129). 
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3.4.3.5 Spectroscopic Data of Products and Side Products of CDC Reactions 

2-Benzyl-1,4-benzoquinone: GC-MS: Rt =8.07 min. m/z: 198.1 (M+), 181.1 (M+-17), 

169.1 (M+-29), 152.1 (M+-46), 141.1 (M+-57), 115.1 (M+-83), 91.1 (M+-107) 77.1 (M+-

121). 

Bibenzyl: GC-MS: Rt = 7.16 min. m/z: 182.1 (M+), 91.1 (M+-1), 104.1 (M+-78), 91.1 (M+-

91), 77.1 (M+-115). 65.1 (M+-117). 

Benzaldehyde: GC-MS: Rt = 2.57 min. m/z: 106.0 (M+), 105.0 (M+-1), 77.1 (M+-29), 51.0 

(M+-55). 

Toluene: GC-MS: Rt = 1.30 min. m/z: 92.1 (M+), 91.1 (M+-1), 77.1 (M+-15), 65.1 (M+-27) 

51.1 (M+-40). 

4-Cyanopyridine: GC-MS: Rt = 2.76 min. m/z: 104.1 (M+), 77.1 (M+-27), 64.1 (M+-40), 

50.1 (M+-54). 

2-Phenyl-4-cyanopyridine: See Section 3.4.3.3. 

3-Phenyl-4-cyanopyridine: See Section 3.4.3.3. 

(4-Methylphenyl)-4-cyanopyridine, isomer unknown: GC-MS: Rt = 8.35 min. m/z: 

194.1 (M+), 179.1 (M+-15), 166.1 (M+-28), 139.1 (M+-55), 115.1 (M+-79), 91.1 (M+-103). 

Benzyl-4-cyanopyridine, isomer unknown: GC-MS: Rt = 8.29 min. m/z: 194.1 (M+), 

193.1 (M+-15), 168.1 (M+-26), 139.1 (M+-55), 115.1 (M+-79), 91.1 (M+-103). 

(4-Formylphenyl)-4-cyanopyridine, isomer unknown: GC-MS: Rt = 9.65 min. m/z: 

208.1 (M+), 207.1 (M+-1), 180.1 (M+-28), 105.1 (M+-103), 77.1 (M+-131). 
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Benzoyl-4-cyanopyridine, isomer unknown: GC-MS: Rt = 9.50 min. m/z: 208.1 (M+), 

181.1 (M+-27), 131.0 (M+-77), 105.1 (M+-103), 103.0 (M+-105), 77.1 (M+-131). 
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Chapter 4. Conclusions and Future Work 
 

4.1 Conclusions 

 In the early stages of this Master’s project, it was proposed to examine the direct 

Suzuki reaction - the two-electron C-H coupling of arylboronic acids to arenes and N-

heteroarenes, first reported by Yu and coworkers (Scheme 4.1)1,2, under microwave 

heating. Interest in this system stemmed from long-standing interest in green chemistry and 

a desire to examine iron-catalyzed C-H bond activation reactions. The desire was to 

increase the rate of reaction, expand substrate scope, examine the effects of a variety of 

ligands, and perhaps apply amine-bisphenolate ligands that are widely used in the Kozak 

group to the system. However, all reactions attempted with this system under microwave 

heating failed, with not even a trace of product being observed. A previous literature search 

had found reports of radical, iron-catalyzed, persulfate-initiated reactions using the same 

substrate. Given that we had already purchased reagents, and our attempts with the two-

electron system was unsuccessful, it was decided to abandon a familiar catalytic and 

organometallic approach and attempt these radical, ligand-free reactions under microwave 

heating. 
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Scheme 4.1 Top: The two-electron direct Suzuki reaction described by Yu and 

coworkers1,2. Bottom: A selection of macrocyclic polyamine (MCPA) ligands examined 

in the reaction. 

 

 This decision immediately bore fruit, as initial reactions based on the work of Maiti 

and coworkers returned a yield of approximately 5%.3 The reaction was therefore optimized 

in a mixture of toluene and water, eventually reaching yields similar to those in the 

literature, as described in Chapter 2.2.1. However, toluene underwent several side-reactions 

under these optimized conditions, and some of these products proved difficult to separate 

from our desired product. It therefore became necessary to switch solvents to a mixture of 

dichloromethane and water, and reoptimized the reaction conditions. This work makes up 

the bulk of Chapter 2.2. After optimization of reaction conditions including solvent, time, 

temperature, microwave power, catalyst identity, catalyst loading, reagent stoichiometry, 
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concentration, and the presence of phase transfer catalysts or other additives, a maximum 

yield of 70% was reached. This yield was similar to other literature reports, but was reached 

in only 25 min, between 14 and 115 times faster than literature reports (See Table 2.7). In 

addition, the crude reaction mixture was examined with GC-MS, revealing the presence of 

several previously unreported side products, including hydroxylated arylboronic acid and 

cross-coupled pyrazine. It was proposed that these side reactions may be due to the specific 

heating of the aqueous layer above the 70 °C measured by the external IR sensor, or 

possibly due to the formation of molecular radiators or heterogeneous hotspots, both of 

which heat certain reaction components far above the bulk reaction temperature. 

 The scope of the reaction was then examined with respect to arylboronic acids, 

quinones, hydroquinones, and N-heterocycles. Contrary to our expectations and desires, the 

use of microwave heating did not result in an expanded substrate scope. The scope of 

reactions with arylboronic acids was limited by the formation of the phenol by-product 

when stronger electron-donating or electron-withdrawing groups were present. The scope 

of reactions with quinones and hydroquinones appears to be similar to the literature; 

attempts to extend the reaction to enones and phenols failed. The scope of reactions with 

other N-heterocycles also appears to be similar to the literature, and regiochemistry did not 

appear to be affected by microwave heating. Attempts to extend reaction scope to 

S-heteroarenes, ketones, and unactivated arenes proved unsuccessful, as did attempts at 

performing the reaction neat. 
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4.2 Future Work 

4.2.1 Future Work in This Reaction 

 There are several areas or discoveries presented in this thesis that may merit further 

investigation, ranging from simple expansions of scope to the development of side 

reactions. The first area would be to further investigate reactions with functionalized 

quinones and hydroquinones (Scheme 4.2). Several papers present cross-coupling 

reactions with benzoquinone bearing a variety of functional groups, including alkyl, halide, 

alkoxy, and cyano groups, as well as naphthoquinones. These functionalized benzoquinone 

moieties may have wider applications and be more synthetically useful than 

unfunctionalized benzoquinone. These reactions were not explored in this thesis due to time 

constraints. Additionally, this thesis is only the second report of the oxidation and coupling 

of a substituted hydroquinone.4 It is unclear whether previous reports that successfully 

coupled 1,4-hydroquinone did not extend the reaction scope because they were unable to, 

or simply because of lack of interest. In any event, this area remains underdeveloped, and 

further reactions with substituted hydroquinones may be worth pursuing. 

 

 

Scheme 4.2 Proposed reaction to further examine the scope of the reaction with regards 

to substituted quinones and hydroquinones. 
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Second, further studies may wish to examine the use of aryltrifluoroborate salts in 

place of arylboronic acids. A number of previous studies have examined the use of 

aryltrifluoroborate salts and found that they have similar activity to arylboronic acids.4-8 

However, aryltrifluoroborate salts are water-soluble, and there are reports of successful 

reactions with aryltrifluoroborate salts in the absence of an organic solvent.5 Under 

conventional heating methods, this is unlikely to make much of a difference. However, 

under microwave heating, this could have several effects. First, if the aryltrifluoroborate 

salts are fully solubilized in water, the proposed formation of heterogeneous hotspots might 

be avoided. Secondly, this would remove mass transfer considerations from the reaction, 

and allow all reagents to interact directly. 

 Large-scale reactions might yield positive results for a similar reason. First, there 

are several reports that these reactions under conventional heating attain higher yields at 

larger scales.5,6,9 Second, there are reports that reactions with certain reagents at higher 

scales may be done without an additional organic solvent; this would, again, remove any 

mass transfer considerations from the reaction.5 Third, and perhaps most significantly, 

large-scale reactions would allow a reduction in reaction concentration. If, as we suspect, 

side reactions are occurring due to the presence of heterogeneous hot-spots, lowering the 

reaction concentration may reduce the yield and variety of side products formed and 

increase yields of the desired product. In addition, if reactions performed at lower 

concentrations, or in aqueous solution, curtail the formation of the phenol product, it may 

be possible to further expand the scope of the reaction with respect to arylboronic acids, N-

heteroarenes, and perhaps even other compounds. 
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 Finally, any future work conducted using a biphasic mixture of dichloromethane 

and water, or a similar mixture of organic and aqueous phases, may wish to further examine 

the method of heating in the reaction mixture. Biphasic mixtures in microwave heating are 

relatively rare, and temperatures can be difficult to measure in such cases. In the Biotage 

Initiator microwave used in this work, temperature is measured via a single external IR 

sensor located approximately one-third of the way up the vial.10 The recorded temperature 

of 70 °C is therefore most likely a measure of the temperature of the denser 

dichloromethane layer, or perhaps a measurement of the temperature at or near the 

interface. Despite the vigorous stirring applied, there is likely to be a significant 

temperature gradient between the two phases, as water is significantly better at absorbing 

microwave energy than dichloromethane.11 Regrettably, measuring this temperature 

gradient can be quite difficult, as the vial must be fully ensconced in the microwave cavity, 

and is being heated above atmospheric pressure. Unfortunately, most thermocouples cannot 

be used, as they effect the way in which the reaction is heated, and may not be reliable 

when exposed to microwave irradiation.10 Most commonly, internal fibre-optic sensors are 

used to measure the reaction temperature.10 Unfortunately, fibre-optic sensors are quite 

expensive, and may be difficult or impossible to use with the Biotage Initiator microwave, 

which closes a “blast hatch” over the top of the vial before irradiating a sample for safety 

reasons. 

4.2.2 Microwave Heating in Other Reactions 

 Several of the side reactions reported in this thesis might warrant further 

investigation. The homo-coupling of arylboronic acids has been documented extensively, 



171 

 

as it is a common side product of Suzuki reactions, and probably does not warrant further 

investigation.12-14 However, it may be possible to cross-couple two different arylboronic 

acids if they have substituents with varying electronic properties (Scheme 4.3), and this 

reaction may be of interest. The oxidation of boronic acids to the corresponding phenol has 

been reported several times, and has been performed under catalyst-free, and more 

environmentally benign, conditions.15-19 However, these reactions generally require basic 

conditions; this appears to be the first report of arylboronic acid oxidation to phenols under 

acidic conditions. The development of reaction under acidic conditions may be of interest. 

By far the most interesting side-reaction, however, is the previously unobserved homo-

coupling of pyrazine. Nitrogen bi-heteroarenes are common in biological systems, and 

more extensive conjugated heteroarenes are common in biological systems, 

electrochemistry, and the dye industry. There have recently been two reports of a CDC 

homo-coupling or cross-coupling of unactivated N-heteroarenes.20,21 One report required a 

palladium catalyst20, the other an iridium catalyst21; both reactions required high 

temperatures (125 - 150 °C), long reaction times (16 -30 h), and nitrogen atmospheres. 

There do not appear to be any reports of iron-catalyzed homo-coupling or cross-coupling 

of unactivated N-heteroarenes. However, it is currently unclear why other N-heteroarenes, 

including pyridazine, an isomer of pyrazine, did not undergo homo-coupling. Future studies 

may wish to optimize the reaction to favor homo-coupling, attempt to homo-couple other 

N-heteroarenes under these new conditions, or even attempt to cross-couple N-heteroarenes 

with different electronic properties (Scheme 4.4). 
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Scheme 4.3 Proposed reaction to further examine the scope of the reaction with regards 

to substituted quinones and hydroquinones. 

 

 

Scheme 4.4 Proposed homo-coupling or cross-coupling reaction of N-heteroarenes. 

 

 Finally, as described in Section 3.2.4, attempts to perform a CDC reaction between 

toluene and quinones or N-heteroaryls were attempted. Attempts with quinones failed, as 

quinone acts as an oxidant, returning a mixture of bibenzyl, benzyl alcohol, benzaldehyde, 

and benzoic acid. However, reactions with 4-cyanopyridine did return a trace amount of 

product coupled at the benzylic position (Scheme 3.6). This reaction was not optimized 

due to a lack of time. Further attempts to optimize this reaction, including examining other 

catalyst systems and oxidizing agents, should be attempted. In addition, reactions may be 

more successful with a reagent other than toluene. It might therefore be worth attempting 
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reactions with reagents that are substituted at the benzylic position, such as 

diphenylmethane, vinylbenzene, benzyl alcohol, or benzaldehyde. 

 More generally, this thesis has demonstrated the utility of microwave heating in 

iron-catalyzed radical C-H activating cross-coupling reactions. There are a several similar 

reactions that might benefit from exploration under microwave heating. For example, there 

have been several descriptions of iron-catalyzed or metal-free cross-coupling of 

unactivated arenes with aryl halides, forming biaryl species (Scheme 4.5).22-25  These 

reactions require relatively harsh conditions (strong organic base, 80 - 180 °C, under 

nitrogen), are often limited to aryl iodides or aryl bromides, and require long reaction times, 

often 24 or more h.22-25 Another possible reaction of interest might be the dimerization of 

terminal alkynes, which require similar conditions and can sometimes yield a mixture of 

products (Scheme 4.5).26,27 There are also a number of iron-catalyzed radical amination 

reactions that may be worth investigation under microwave heating.28 Finally, it may be 

worth investigating the “holy grail” of iron-catalyzed reactions – an iron-catalyzed biaryl 

Suzuki reaction. There has been considerable research into iron-catalyzed Suzuki reactions, 

and there are several examples of reactions with alkyl halides.29-33 Only very recently has 

the first biaryl iron-catalyzed Suzuki reaction been reported.34,35 However, such reactions 

usually required harsh bases, magnesium bromide salt, pinacolborane or pinacolboronate 

esters, and often long reaction times.29-35 To the best of my knowledge, these reactions have 

not been attempted under microwave heating. 
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Scheme 4.5 Top: Iron-catalyzed radical cross-coupling of aryl halides and unactivated 

arenes. Bottom: Radical iron-catalyzed dimerization of terminal alkynes. 
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Chapter 5. Appendices 
 

Figure A1 1H NMR spectrum of 2-phenylpyrazine 
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Figure A2 13C NMR spectrum of 2-phenylpyrazine 
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Figure A3 DEPT NMR spectrum of 2-phenylpyrazine 
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Figure A4 Gas chromatogram and mass spectrum of 2-phenylpyrazine 
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Figure A5 1H NMR spectrum of 2-(4-methylphenyl)pyrazine 
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Figure A6 13C NMR spectrum of 2-(4-methylphenyl)pyrazine 
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Figure A7 DEPT NMR spectrum of 2-(4-methylphenyl)pyrazine 
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Figure A8 Gas chromatogram and mass spectrum of 2-(4-methylphenyl)pyrazine 
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Figure A9 1H NMR spectrum of 2-(3-methylphenyl)pyrazine 
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Figure A10 13C NMR spectrum of 2-(3-methylphenyl)pyrazine 
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Figure A11 DEPT NMR spectrum of 2-(3-methylphenyl)pyrazine 
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Figure A12 Gas chromatogram and mass spectrum of 2-(3-methylphenyl)pyrazine 
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Figure A13 1H NMR spectrum of 2-(2-methylphenyl)pyrazine 
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Figure A14 13C NMR spectrum of 2-(2-methylphenyl)pyrazine 
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Figure A15 DEPT NMR spectrum of 2-(2-methylphenyl)pyrazine 
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Figure A16 Gas chromatogram and mass spectrum of 2-(2-methylphenyl)pyrazine 
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Figure A17 1H NMR spectrum of 2-(4-chlorophenyl)pyrazine 
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Figure A18 13C NMR spectrum of 2-(4-chlorophenyl)pyrazine 
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Figure A19 DEPT NMR spectrum of 2-(4-chlorophenyl)pyrazine 
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Figure A20 Gas chromatogram and mass spectrum of 2-(4-chlorophenyl)pyrazine 
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Figure A21 1H NMR spectrum of 2-(3-chlorophenyl)pyrazine 
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Figure A22 13C NMR spectrum of 2-(3-chlorophenyl)pyrazine 
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Figure A23 DEPT NMR spectrum of 2-(3-chlorophenyl)pyrazine 
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Figure A24 Gas chromatogram and mass spectrum of 2-(3-chlorophenyl)pyrazine 
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Figure A25 1H NMR spectrum of 2-(2-chlorophenyl)pyrazine 
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Figure A26 13C NMR spectrum of 2-(2-chlorophenyl)pyrazine 
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Figure A27 DEPT NMR spectrum of 2-(2-chlorophenyl)pyrazine 
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Figure A28 Gas chromatogram and mass spectrum of 2-(2-chlorophenyl)pyrazine 
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Figure A29 1H NMR spectrum of 2-(4-iodophenyl)pyrazine 
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Figure A30 13C NMR spectrum of 2-(4-iodophenyl)pyrazine 
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Figure A31 DEPT NMR spectrum of 2-(4-iodophenyl)pyrazine 
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Figure A32 Gas chromatogram and mass spectrum of 2-(4-iodophenyl)pyrazine 
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Figure A33 Gas chromatogram and mass spectrum of 

2-(4-trifluoromethylphenyl)pyrazine 
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Figure A34 Gas chromatogram and mass spectrum of 2-(4-methoxyphenyl)pyrazine 
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Figure A35 Gas chromatogram of the crude reaction mixture of mesitylboronic acid and 

pyrazine (top). Mass spectrum of 2-mesitylpyrazine (bottom). 
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Figure A36 Gas chromatogram of the crude reaction mixture of 4-cyanophenylboronic 

acid and pyrazine (top). Mass spectrum of 2-(4-cyanophenyl)pyrazine (bottom). 
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Figure A37 Gas chromatogram of the crude reaction mixture of 4-formylboronic acid and 

pyrazine (top). Mass spectrum of 2-(4-formylphenyl)pyrazine (bottom). 
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Figure A38 1H NMR spectrum of 2-phenyl-1,4-benzoquinone 
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Figure A39 13C NMR spectrum of 2-phenyl-1,4-benzoquinone 
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Figure A40 DEPT NMR spectrum of 2-phenyl-1,4-benzoquinone

 



218 

 

 

  



219 

 

Figure A41 Gas chromatogram and mass spectrum of 2-phenyl-1,4-benzoquinone 
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Figure A42 1H NMR spectrum of 2-(4-chlorophenyl)-1,4-benzoquinone 
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Figure A43 13C NMR spectrum of 2-(4-chlorophenyl)-1,4-benzoquinone 
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Figure A44 DEPT NMR spectrum of 2-(4-chlorophenyl)-1,4-benzoquinone 
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Figure A45 Gas chromatogram and mass spectrum of 

2-(4-chlorophenyl)-1,4-benzoquinone 
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Figure A46 1H NMR spectrum of 2-(3-chlorophenyl)-1,4-benzoquinone 
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Figure A47 13C NMR spectrum of 2-(3-chlorophenyl)-1,4-benzoquinone 

  



226 

 

Figure A48 DEPT NMR spectrum of 2-(3-chlorophenyl)-1,4-benzoquinone 
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Figure A49 Gas chromatogram and mass spectrum of 

2-(3-chlorophenyl)-1,4-benzoquinone 
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Figure A50 1H NMR spectrum of 2-(2-chlorophenyl)-1,4-benzoquinone 

 

  



229 

 

Figure A51 13C NMR spectrum of 2-(2-chlorophenyl)-1,4-benzoquinone 
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Figure A52 DEPT NMR spectrum of 2-(2-chlorophenyl)-1,4-benzoquinone 
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Figure A53 Gas chromatogram and mass spectrum of 

2-(2-chlorophenyl)-1,4-benzoquinone 
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Figure A54 1H NMR spectrum of 2-(4-methylphenyl)-1,4-benzoquinone 
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Figure A55 13C NMR spectrum of 2-(4-methylphenyl)-1,4-benzoquinone 
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Figure A56 DEPT NMR spectrum of 2-(4-methylphenyl)-1,4-benzoquinone 
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Figure A 57 Gas chromatogram and mass spectrum of 

2-(4-methylphenyl)-1,4-benzoquinone 
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Figure A58 1H NMR spectrum of 2-(2-methylphenyl)-1,4-benzoquinone 
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Figure A59 13C NMR spectrum of 2-(2-methylphenyl)-1,4-benzoquinone 
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Figure A60 DEPT NMR spectrum of 2-(2-methylphenyl)-1,4-benzoquinone 
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Figure A61 Gas chromatogram and mass spectrum of 

2-(2-methylphenyl)-1,4-benzoquinone 
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Figure A62 1H NMR spectrum of 2-mesityl-1,4-benzoquinone 

 

  



241 

 

Figure A63 13C NMR spectrum of 2-mesityl-1,4-benzoquinone 
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Figure A64 DEPT NMR spectrum of 2-mesityl-1,4-benzoquinone 

  



243 

 

Figure A65 Gas chromatogram and mass spectrum of 2-mesityl-1,4-benzoquinone 
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Figure A66 1H NMR spectrum of 2-(4-trifluoromethylphenyl)-1,4-benzoquinone 
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Figure A67 13C NMR spectrum of 2-(4-trifluoromethylphenyl)-1,4-benzoquinone 
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Figure A68 DEPT NMR spectrum of 2-(4-trifluoromethylphenyl)-1,4-benzoquinone 
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Figure A69 Gas chromatogram and mass spectrum of 

2-(4-trifluoromethylphenyl)-1,4-benzoquinone 
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Figure A70 1H NMR spectrum of a mixture of 2,3-dimethyl-5-phenyl-1,4-benzoquinone 

and the starting product, 2,3-dimethyl-1,4-benzoquinone 
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Figure A71 13C NMR spectrum of a mixture of 2,3-dimethyl-5-phenyl-1,4-benzoquinone 

and 2,3-dimethyl-1,4-benzoquinone 

  



250 

 

Figure A72 DEPT NMR spectrum of a mixture of 

2,3-dimethyl-5-phenyl-1,4-benzoquinone and 2,3-dimethyl-1,4-benzoquinone 
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Figure A73 Gas chromatogram and mass spectrum of a mixture of 

2,3-dimethyl-5-phenyl-1,4-benzoquinone and 2,3-dimethyl-1,4-benzoquinone 
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Figure A74 1H NMR spectrum of 2-phenyl-4-cyanopyridine  
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Figure A75 13C NMR spectrum of 2-phenyl-4-cyanopyridine 
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Figure A76 DEPT NMR spectrum of 2-phenyl-4-cyanopyridine 
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Figure A77 Gas chromatogram and mass spectrum of 2-phenyl-4-cyanopyridine 
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Figure A78 1H NMR spectrum of 3-phenyl-4-cyanopyridine 
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Figure A79 13C NMR spectrum of 3-phenyl-4-cyanopyridine 
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Figure A80 DEPT NMR spectrum of 3-phenyl-4-cyanopyridine 
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Figure A81 Gas chromatogram and mass spectrum of 3-phenyl-4-cyanopyridine 
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Figure A82 1H NMR spectrum of 3-phenylpyridazine 
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Figure A83 13C NMR spectrum of 3-phenylpyridazine 
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Figure A84 DEPT NMR spectrum of 3-phenylpyridazine 
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Figure A85 Gas chromatogram and mass spectrum of 3-phenylpyridazine 
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Figure A86 1H NMR spectrum of 4-phenylpyridazine 
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Figure A87 13C NMR spectrum of 4-phenylpyridazine 
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Figure A88 DEPT NMR spectrum of 4-phenylpyridazine 
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Figure A89 Gas chromatogram and mass spectrum of 4-phenylpyridazine 

 

  



268 

 

Figure A90 1H NMR spectrum of 2-phenylquinoline 
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Figure A91 13C NMR spectrum of 2-phenylquinoline 
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Figure A92 DEPT NMR 2-phenylquinoline 
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Figure A93 Gas chromatogram and mass spectrum of 2-phenylquinoline 
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Figure A94 1H NMR spectrum of 4-phenylquinoline 
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Figure A95 13C NMR spectrum of 4-phenylquinoline 

  



274 

 

Figure A96 DEPT NMR spectrum of 4-phenylquinoline 
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Figure A97 Gas chromatogram and mass spectrum of 4-phenylquinoline 
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Figure A98 1H NMR spectrum of 3-phenyllutidine 
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Figure A99 13C NMR spectrum of 3-phenyllutidine 
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Figure A100 DEPT NMR spectrum of 3-phenyllutidine 
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Figure A101 Gas chromatogram and mass spectrum of 3-phenyllutidine 
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Figure A102 1H NMR spectrum of 4-phenyllutidine 
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Figure A103 13C NMR spectrum of 4-phenyllutidine 
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Figure A104 DEPT NMR spectrum of 4-phenyllutidine 
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Figure A105 Gas chromatogram and mass spectrum of 4-phenyllutidine 
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Figure A106 1H NMR spectrum of 2-phenylpyridine 
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Figure A107 13C NMR spectrum of 2-phenylpyridine 
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Figure A108 DEPT NMR spectrum of 2-phenylpyridine 
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Figure A109 Gas chromatogram and mass spectrum of 2-phenylpyridine 
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Figure A110 1H NMR spectrum of 4-phenylpyridine 
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Figure A111 13C NMR spectrum of 4-phenylpyridine 
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Figure A112 DEPT NMR spectrum of 4-phenylpyridine 
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Figure A113 Gas chromatogram and mass spectrum of 4-phenylpyridine 
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Figure A114 1H NMR spectrum of 1-methyl-2-phenylimidazole 
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Figure A115 13C NMR spectrum of 1-methyl-2-phenylimidazole 
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Figure A116 DEPT NMR spectrum of 1-methyl-2-phenylimidazole 
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Figure A117 Gas chromatogram and mass spectrum of 1-methyl-2-phenylimidazole 
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Figure A118 Gas chromatogram of the raw reaction mixture of the reaction of 

2-bromopyridine and phenylboronic acid (top). Mass spectrum of 

2-bromophenylpyridine, isomer unknown (bottom). 

 

2-bromopyridine: Rt = 3.26 min. m/z: 159.0 (M+), 157.0 (M+-2), 78.1 (M+-81), 51.1 (M+-

108). 
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Biphenyl: Rt = 6.21 min. m/z: 154.1 (M+), 139.1 (M+-15), 128.1 (M+-26), 115.1 (M+-39), 

76.1 (M+-78). 

2-bromophenylpyridine, isomer unknown: Rt = 6.53 – 7.55. m/z: 234.1 (M+), 233.1 (M+-

1), 205.1 (M+-29), 191.1 (M+-43), 131.1 (M+-97), 128.1 (M+-106), 103.1 (M+-131), 91.1 

(M+-143), 77.1 (M+-157), 51.1 (M+-183). 
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Figure A119 Gas chromatogram of the crude reaction mixture of the reaction with 

4-methlphenylboronic acid and pyrazine using toluene and water as solvent 

 

Benzyl alcohol: Rt = 3.07 min. m/z = 108.1 (M+), 107.1 (M+-1), 90.1 (M+-18), 79.1 (M+-

29), 77.1 (M+-31). 

2-benzylpyrazine: Rt = 5.45 min. m/z = 170.1 (M+), 169.1 (M+-1), 115.1 (M+-55), 91.1 

(M+-79), 65.1 (M+-104). 

Dimethylbiphenyl isomer: Rt = 5.52 min. m/z = 182.1 (M+), 167.1 (M+-15), 152.1 (M+-

30), 141.1 (M+-41), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93). 

Bibenzyl: Rt = 5.59 min. m/z: 182.1 (M+), 104.1 (M+-78), 91.1 (M+-91), 77.1 (M+-105). 

65.1 (M+-117). 
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Dimethylbiphenyl isomer: Rt = 5.92 min. m/z = 182.1 (M+), 167.1 (M+-15), 152.1 (M+-

30), 139.1 (M+-43), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93).  

Dimethylbiphenyl isomer: Rt = 5.96 min. m/z = 182.1 (M+), 167.1 (M+-15), 152.1 (M+-

30), 139.1 (M+-43), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93).  
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Figure A120 Gas chromatogram of the crude reaction mixture of the reaction with 

4-methylphenylboronic acid and pyrazine under optimized conditions. 
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Unknown: Rt = 2.03 min. m/z = 100.1 (M+), 87.1 (M+-13), 75.1 (M+-25), 57.1 (M+-43).  

Benzyl alcohol: Rt = 3.66 min. m/z = 108.1 (M+), 107.1 (M+-1), 90.1 (M+-18), 79.1 (M+-

29), 77.1 (M+-31). 

Methylbenzaldehyde, isomer unknown: Rt = 3.76 min. m/z = 120.1 (M+), 119.1 (M+-1), 

107.1 (M+-13), 91.1 (M+-29), 65.1 (M+-55). 

2-dichloromethylpyrazine: Rt = 4.15 min. m/z = 162.0 (M+), 164.1 (M++2), 129.1 (M+-

33), 127.1 (M+-35), 100.0 (M+-62), 73.0 (M+-89). 

4-methylphenylboronic acid: Rt = 4.43 min. m/z = 136.1 (M+), 135.1 (M+-1), 118.1 (M+-

16), 107.1 (M+-19). 90.1 (M+-46), 77.1 (M+-59). 

Methylbenzaldehyde, isomer unknown: Rt = 4.74 min. m/z = 119.1 (M+), 91.1 (M+-28), 

65.1 (M+-54). 

Unknown: Rt = 6.06 min. m/z = 176.1 (M+), 161.1 (M+-15), 132.1 (M+-44), 117.1 (M+-

59), 105.1 (M+-71), 91.1 (M+-85). 

Dichloromethylbenzyl alcohol, isomer unknown: Rt = 6.34 min. m/z = 190.1 (M+), 192.1 

(M++2), 157.1 (M+-33), 155.1 (M+-35). 127.0 (M+-63), 107.1 (M+-83), 91.1 (M+-99), 79.1 

(M+-111), 77.1 (M+-113), 65.1 (M+-125), 51.1 (M+-139). 

Bipyrazine: Rt = 6.72 min. m/z = 158.1 (M+), 131.1 (M+-27), 106.1 (M+-52), 80.1 (M+-

78). 

Dimethylbiphenyl, isomer unknown: Rt = 7.06 min. m/z = 182.1 (M+), 167.1 (M+-15), 

152.1 (M+-30), 141.1 (M+-41), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93). 
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2-(4-methylphenyl)pyrazine: Rt =7.47 min. m/z: 170.1 (M+), 155.1 (M+-15), 117.1 (M+-

53), 89.1 (M+-81). 

Dimethylbiphenyl, isomer unknown: Rt = 7.66 min. m/z = 182.1 (M+). 167.1 (M+-15), 

152.1 (M+-30), 139.1 (M+-43), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93). 

Dimethylbiphenyl, isomer unknown: Rt = 7.71 min. m/z = 182.1 (M+). 167.1 (M+-15), 

152.1 (M+-30), 139.1 (M+-43), 128.1 (M+-54), 115.1 (M+-67), 89.1 (M+-93).  

Biphenyldimethanol, isomer unknown: Rt = 9.00 min. m/z = 214.1 (M+). 199.1 (M+-15), 

185.1 (M+-29), 171.1 (M+-43), 159.1 (M+-55), 145.1 (M+-69), 128.1 (M+-86), 115.1 (M+-

99), 91.1 (M+-123), 77.1 (M+-137).  
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Figure A121 Gas chromatogram of the crude reaction mixture of the reaction with 

4-chlorophenylboronic acid and pyrazine under optimized conditions.  
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4-chlorophenol: Rt = 4.78 min. m/z: 128.1 (M+), 130.1 (M++2), 100.0 (M+-28), 93.1 (M+-

35), 65.1 (M+-63). 

Bipyrazine: Rt = 6.72 min. m/z = 158.1 (M+), 131.1 (M+-27), 106.1 (M+-52), 80.1 (M+-

78). 

2-(4-chlorophenyl)pyrazine: Rt =8.00 min. m/z: 190.1 (M+), 192.1 (M++2), 155.1 (M+-

35), 137.1 (M+-53), 102.1 (M+-88). 

Isomers of x,x’-dichlorobiphenyl. Isomer 1: Rt = 8.24 min. m/z: 222.0 (M+), 224.0 

(M++2), 226.0 (M++4), 188.0 (M+-34), 187.1 (M+-35), 186.1 (M+-36), 152.1 (M+-35). 

Isomer 2: Rt = 8.75 min. m/z: 222.0 (M+), 224.0 (M++2), 226.0 (M++4), 188.0 (M+-34), 

187.1 (M+-35), 186.1 (M+-36), 152.1 (M+-35). Isomer 3: Rt = 8.84 min. m/z: 222.0 (M+), 

224.0 (M++2), 226.0 (M++4), 188.0 (M+-34), 187.1 (M+-35), 186.1 (M+-36), 152.1 (M+-

35). 
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Figure A122 Gas chromatogram of the crude reaction mixture of the reaction with 

4-trifluoromethylphenylboronic acid and pyrazine under optimized conditions. 

 

4-trifluorophenol: Rt = 3.67 min. m/z: 162.1 (M+), 143.1 (M+-19), 133.1 (M+-29), 114.1 

(M+-48), 112.1 (M+-50). 
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2-(4-trifluoromethylphenyl)pyrazine: Rt =6.63 min. m/z: 224.1 (M+), 205.1 (M+-19), 

171.0 (M+-53). 

Bipyrazine: Rt = 6.72 min. m/z = 158.1 (M+), 131.1 (M+-27), 106.1 (M+-52), 80.1 (M+-

78). 
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Figure A123 Gas chromatogram of the crude reaction mixture of the reaction with 

phenylboronic acid and quinone under optimized conditions (top). Mass spectrum of 

2-phenylquinone (bottom). 

 

Quinone: Rt = 2.22 min. m/z: 108.0 (M+), 82.0 (M+-26), 80.0 (M+-28), 54.0 (M+-54). 

Phenol: Rt = 2.73 min. m/z: 94.1 (M+), 66.1 (M+-28), 55.1 (M+-39). 
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2-chloroquinone: Rt = 3.75 min. m/z: 142.0 (M+), 144.0 (M++2), 116.0 (M+-26), 114.0 

(M+-28), 107.0 (M+-35), 88.0 (M+-54), 82.0 (M+-60), 60.0 (M+-82). 

2-dichloromethylquinone: Rt = 5.67 min. m/z: 190.0 (M+), 192.0 (M++2), 194.0 (M++4), 

166.0 (M+-24), 164.0 (M+-26), 162.1 (M+-28), 155.1 (M+-35), 128.0 (M+-62), 126.0 (M+-

64), 101.0 (M+-89), 99.0 (M+-91). 

Biphenyl: Rt = 6.21 min. m/z: 154.1 (M+), 139.1 (M+-15), 128.1 (M+-26), 115.1 (M+-39), 

76.1 (M+-78). 

2-phenyl-1,4-benzoquinone: Rt =7.82 min. m/z: 184.1 (M+), 156.1 (M+-28), 128.1 (M+-

56), 102.1 (M+-82), 82.1 (M+-102). 

Terphenyl (unknown isomer): Rt = 10.16-13.09 min. m/z: 230.0 (M+), 203.0 (M+-27), 

195.0 (M+-35), 175.0 (M+-55), 168.1 (M+-62), 149.1 (M+-81), 139.1 (M+-91), 114.1 (M+-

116), 82.0 (M+-148), 63.0 (M+-167), 54.0 (M+-176). 

2,5-diphenylquinone or 2,6-diphenylquinone: Rt = 12.82-13.09 min. m/z: 260.1 (M+), 

231.1 (M+-29), 215.1 (M+-45), 203.1 (M+-57), 178.1 (M+-82), 176.1 (M+-84), 152.1 (M+-

108), 102.1 (M+-158). 
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Figure A124 Gas chromatogram of the crude reaction mixture of the reaction with 

4-trifluoromethlphenylboronic acid and quinone under optimized conditions (top).  

 

Quinone: Rt = 2.22 min. m/z: 108.0 (M+), 82.0 (M+-26), 80.0 (M+-28), 54.0 (M+-54). 

4-trifluorophenol: Rt = 3.67 min. m/z: 162.1 (M+), 143.1 (M+-19), 133.1 (M+-29), 114.1 

(M+-48), 112.1 (M+-50). 
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Trifluorophenol, isomer unknown: Rt = 3.82 min. m/z: 162.1 (M+), 144.0 (M+-18), 142.0 

(M+-20), 116.0 (M+-46), 114.0 (M+-48), 88.0 (M+-74), 82.0 (M+-80), 60.0 (M+-98). 

2-dichloromethylquinone: Rt = 5.67 min. m/z: 190.0 (M+), 192.0 (M++2), 194.0 (M++4), 

166.0 (M+-24), 164.0 (M+-26), 162.1 (M+-28), 155.1 (M+-35), 128.0 (M+-62), 126.0 (M+-

64), 101.0 (M+-89), 99.0 (M+-91). 

2-(4-trifluoromethylphenyl)-1,4-benzoquinone: Rt = 7.70 min. m/z: 252.1 (M+), 233.0 

(M+-19), 224.1 (M+-28), 196.1 (M+-56), 183.1 (M+-69), 170.0 (M+-82), 151.0 (M+-99), 

120.0 (M+-132), 82.0 (M+-170). 
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Figure A125 Gas chromatogram of the crude reaction mixture of the reaction of quinone 

and toluene (top). Mass spectrum of the desired product, 2-benzyl-1,4-benzoquinone 

(bottom). 

 

Benzaldehyde: Rt = 2.57 min. m/z: 106.0 (M+), 105.0 (M+-1), 77.1 (M+-29), 51.0 (M+-55). 
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Bibenzyl: Rt = 7.16 min. m/z: 182.1 (M+), 104.1 (M+-78), 91.1 (M+-91), 77.1 (M+-105). 

65.1 (M+-117). 

2-benzyl-1,4-benzoquinone: Rt =8.07 min. m/z: 198.1 (M+), 181.1 (M+-17), 169.1 (M+-

29), 152.1 (M+-46), 141.1 (M+-57), 115.1 (M+-83), 91.1 (M+-107) 77.1 (M+-121). 
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Figure A126 Gas chromatogram of the crude reaction mixture of the reaction of 

4-cyanopyridine and toluene (top). 

 

Toluene: Rt = 1.30 min. m/z: 92.1 (M+), 91.1 (M+-1), 77.1 (M+-15), 65.1 (M+-27) 51.1 

(M+-40). 
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Benzaldehyde: Rt = 2.57 min. m/z: 106.0 (M+), 105.0 (M+-1), 77.1 (M+-29), 51.0 (M+-55). 

4-Cyanopyridine: Rt = 2.76 min. m/z: 104.1 (M+), 77.1 (M+-27), 64.1 (M+-40), 50.1 (M+-

54). 

Bibenzyl: Rt = 7.16 min. m/z: 182.1 (M+), 91.1 (M+-1), 104.1 (M+-78), 91.1 (M+-91), 77.1 

(M+-115). 65.1 (M+-117). 

3-phenyl-4-cyanopyridine: Rt =7.82 min. m/z: 180.1 (M+), 153.1 (M+-27), 126.1 (M+-54), 

103.1 (M+-77), 76.1 (M+-104). 

2-phenyl-4-cyanopyridine: Rt =8.22 min. m/z: 180.1 (M+), 153.1 (M+-27), 126.1 (M+-54), 

103.1 (M+-77), 76.1 (M+-104). 

benzyl-4-cyanopyridine, isomer unknown: Rt = 8.29 min. m/z: 194.1 (M+), 193.1 (M+-

15), 168.1 (M+-26), 139.1 (M+-55), 115.1 (M+-79), 91.1 (M+-103). 

methylphenyl-4-cyanopyridine, isomer unknown: Rt = 8.35 min. m/z: 194.1 (M+), 179.1 

(M+-15), 166.1 (M+-28), 139.1 (M+-55), 115.1 (M+-79), 91.1 (M+-103). 

benzoyl-4-cyanopyridine, isomer unknown: Rt = 9.50 min. m/z: 208.1 (M+), 181.1 (M+-

27), 131.0 (M+-77), 105.1 (M+-103), 103.0 (M+-105), 77.1 (M+-131). 

(4-formylphenyl)-4-cyanopyridine, isomer unknown: Rt = 9.65 min. m/z: 208.1 (M+), 

207.1 (M+-1), 180.1 (M+-28), 105.1 (M+-103), 77.1 (M+-131). 

 


