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Abstract

Trimethylamine oxide (TMAO) is C{)ffiffion 10 most marine fishes; however. the

role TMAO plays in the physiology of marine fish is not well understood. I have used

two distinct TMAO accumulating fish 'types', deep-sea fish and smelt (Osmerus

mordax), to compare differences in the levels, intertissue distribution and capacity for

synthesis ofTMAO in fish with high and low levels ofTMAO. Several consistencies

were found. The intertissue distribution of TMAO showed a trend of locomotory muscle

;> heart> liver == kidney::o brain. Levels oftrimcthylarnine oxidase, the enzyme required

for TMAO synthesis, did not correlate with higher tissue TMAO content indicating that

enhanced endogenous synthetic capacity is not responsible for elevated TMAO content.

Finally, evidence for the active uplake ofTMAO into striated muscle and the regulation

of TMAO concentration in white muscle is presented, possibly due 10 some role TMAO

plays in muscle function.
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Chapter 1: Overview of the occurrence, metabolism and significance

of TMAO in fish.

1.1 Introduction

The muscle of marine fishes has substantial trimethylamine oxide (TMAO)

content, varying with species and osmoregulatory strategy. TMAO is a small organic

nitrogenous solute (Fig. 1.1); however, little is known about how and why marine fishes

accumulate TMAO. This chapter will provide a basic background on the occurrence,

metabolism, and potential physiological roles ofTMAO in fish. A comprehensive review

of the occurrence ofTMAO in fish is well beyond the scope of this work (see Hebard et

aI. 1982 for review); however, the

Figure 1.1 Structure of trimethylamine

oxide
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general trends in TMAO levels in teleost

and elasmobranch fishes as well as what

may affect levels ofTMAO is presented

as this background is required for the

interpretation of the following chapters.



1.2 Occurrence of TMAO

1.2.1 Teleosts

Marine tcleosts typically have between 20-90 mmollkg TMAO in white muscle.

The gadiforms (coos and cod-like fishes) have higher muscle TMAQ (40-90 mmollkg)

than most other groups (20-60 mmollkg). Flatfishes have low to moderate levels, while

the highly active tuna and mackerels have low levels. Salmoniformes (salmon and trout)

have very low levels « 15 mmollkg). TMAO content appears to increase with the size of

the fish and thus, presumably, with increasing age (Dyer 1952, Shewan 1951). The re<l

muscle of many species has less lMAO than white muscle; however, in highly active

species, such as mackerel and tunas, red muscle has higher TMAO eontent (Hebard et al.

1982). Non-muscle tissues in marine teleosts typically have very low TMAO «15

mmollkg).

1.2.2 Elasmobranchs

The marine elasmobranchs (sharks, skates and rays) have high tissue and plasma

TMAO. Levels in plasma typically range from 30 to 90 mM, while muscle content varies

from approximately 35 to 180 mmollkg. These fish are osmoconformers and TMAO,

along with urea and amino acids, are important osmolytes for maintaining water/solute

balance.



1.3 TMAO metabolism

The metabolism of methylamines is poorly understood in fishes. TMAO appears

to be involved in choline and betaine catabolism but, as explained below, it is unclear if

most species actively synthesize TMAO. Unfortunately, measurements of the enzymes

involved and of the products are relatively difficult and time consuming, further

complicating research in this field.

1.3.1 Precursors of TMAO

TMAO is formed by the oxidation of trimethylamine (TMA) by trimethylamine

oxidase (TMAoxi). TMA is thought to be toxic while TMAO is not; thus TMAO

synthesis was thought to be a mechanism to detoxify TMA (Yamada 1967). It has

become clear that the TMA content of the typical marine fish diet is low enough to be

easily excreted, creating doubt in the detoxification theory.

Based on the occurrence ofTMAoxi, TMAQ could be synthesized from TMA by

a number of marinc organisms, summarized in appendix 1 (Baker el a1. 1963, Goldstein

and DeWitt Harley 1973, Augustsson and Strom 1981, Raymond 1998, Raymond and

Choline FAD

C~ine ~c I FADH,
o.mim" ~

Betaine aldehyde NAD'

lklailH'aldehyde ,/

d<'hydrogmas" ~ NADH+H'

Betaine
"-. MolecularOxygen

AWo<')' TMA*'ADFADH,

NADPII + 11- TMAO

rrim"lhylamllU1 ox/lias" NADP"

figure ].2 Proposed pathway for synlhtsis ofTMAO from choline in fi,~



DeVries 1998) or from other potential substrates, see appendix 2. In fish, the liver and

kidney seem to be the likely sites of synthesis as no other tissues show appreciable

TMAoxi activity (Baker et al. 1963, Augustsson and Strom 1981).

The breakdown ofeholine appears (Fig. 1.2) to be a source ofTMAO (Bilinski

1964, Goldstein and Funkhouser 1972, Charest et a1. 1988), but presumably catabolism of

any trimethylamine-containing compound can result in the liberation ofTMA, the

immediate precursor to TMAO. In support of this. butyrobetaine is a potentially viable

precursor to TMAO, even though not a commonly occurring molecule in fish (Bilinski

1964). Dietary choline is likely in the greatest abundance in the form of

phosphalidylcholine, a major phospholipid. The breakdown of phosphatidylcholine

results in the fonnation of choline, which may enter into TMAQ synthesis, and

diacylglycerol. Recently, a very strong correlation between diacylglycerol content, and

TMAO has been found in some molluscs and it has been hypothesized that a similar trend

may exist in fish (see Seibel and Walsh 2002 for review). Conversely, bacterial

breakdown of choline, but not phosphatidylcholine, in the gut of tilapia has been linked to

increased muscle TMAO content (Niizeki et aI. 2002).

1.3.2 TMA oxidase

TMAoxi has only been partially characterized and has not been isolated in fish.

As in mammals, it is located in the microsomes, uses NADPH as a cofactor and is also

FAD linked (Fig. 1.2). This enzyme cannot use NADH as an electron donor and requires

dissolved oxygen, but is not inhibited by carbon monoxide (Baker and Chaykin 1962,

Baker et aI. 1963, Augustsson and Strom 1981). The lack of inhibition by carbon



monoxide indicates that it does nOI involve cytochrome p450. Based on similar effects of

inhibitors, and a broad substrate specificity, it has been suggested that the TMAoxi of fish

could be classified as a flavin containing monooxygenase (FMO) (Goldstein and DeWitt

Harley 1973, Schlenk and Li-Schlenk 1994). FMO activity has been associated with the

oxidation of tertiary antines as well as the breakdown of many nitrogen and sulphur

containing xenobiotics (Ziegler 1988).

An important point is that the presence ofTMAoxi is required for endogenous

synthesis. However, due to the broad substrate specificity, the possibility that this

enzyme may have another or several functions means that the presence ofTMAoxi

indicates the capacity for IMAO synthesis but is insufficient to conclude that a species is

actively synthesizing IMAO. Since TMAO would be readily available in the diet of

most marine fish determining if a species actively supplements its TMAO pool by

synthesis is difficult and time consuming to determine (see below).

1.3.4 Teleost TMA oxidase

There have been conflicting data on the occurrence ofTMAoxi activity, and Ihus

the potential for TMAO synthesis, in various fish groups. In teleosts there appears to be

little consistency even within a taxonomic group (Appendix I). Some pleuroneclifonnes

(natfishes) appear to have appreciable TMAoxi while others do not. Of note, Baker et al.

(1963) could not find detectable amounts of TMAoxi in Platyichtys stellatus, while

Bilinski (1964) did find appreciable conversion of injected [14C] TMA 10 [14C] TMAO.

This discrepancy has yet to be resolved. Typically, gadifonnes (cads) have quite high

TMAoxi, flalfishes may have high to undetectable levels and percifonnes (perch-like



fishes) have moderate to high activities. Other taxonomic groups have not been

adequately surveyed. It is important to note that the number of species tested to date is

very low and thus only vague generalizations may be made about the occurrence of

TMAoxi in teleosts. Furthennore, different assays are often used, making comparisons

between studies difficult.

1.3.5 Elasmobranch TMA oxidase

Some elasmobranch species have quite high activity (Appendix 1) while others

lack detectable TMAoxi or have questionable levels of activity. This is best shown by

experiments with Squalus acanthias. Baker et al. (1963) and Goldstein et al. (1967)

were unable to detect TMAoxi activity; however, Goldstein and DeWitt-Harley (1973)

did find levels ofTMA incorporation into TMAO, which likely bordered on the limits of

detection. Schlenk and Li-Schlenk (1994) found that FMO activity, with dimethylaniline

as substrate, was competitively inhibited by TMA in microsomes isolated from S.

acanthias. This suggests that there is TMAoxi activity, albeit non-specific, in S.

acanthias liver.

Schlenk and Li-Schlenk (1994) suggest that the lack of appreciable activity in S.

acanthias by previous authors may have been due ~o interference from the use of whole

homogenates or loss of activity during preparation, possibly from temperature-related

inactivation. More recent studies have found detectable TMAoxi activity, when

measured spectrophometrically at 22°C, in a number of fish species (Raymond 1998,

Raymond and DeVries 1998). These assays were linear for an hour, negating the

likelihood of temperature inactivation. Furthennore, the previous studies on S. acanthias



in question used radiolabelled TMA, not spectrophotometric assays, and should nol have

appreciable interference from the use of whole homogenates.

1.4 Endogenous or exogenous source for TMAO

There are tv/o potential sources ofTMAO in fish, exogenous or dietary, and

endogenous synthesis. Ultimately TMA must be oxidized to TMAO enzymatically, via

trimethylamine oxidase activity, at some point in the food chain. The lack of detectable

enzyme activity indicates a solely exogenous source for TMAO in a given species.

Similarily, there are experimental data showing that some fishes require dietary TMAO,

or at least TMA, for the accumulation ofTMAO. As stated above, the presence of

TMAoxi activity does not in itself indicate active TMAO synthesis. Until the enzyme, or

enzymes, responsible for tertiary amine oxidation is isolated and properly characterized

this will continue to make interpretation of crude tissue enzyme activities difficult.

1.4.1 Teleosts

A number of studies have attempted to detennine ifTMAO is synthesized by

given species or obtained through the diet. However, many studies utilized freshwater

species that do not normally accumulate TMAO to appreciable levels (Hebard et al.

1982) and these data are not included. Those studies involving species found in marine

waters typically involved euryhaline species that also have low levels ofTMAO.

Atlantic salmon, Salrno salar, have no appreciable TMAO while developing in

freshwater where dietary TMAO would be essentially absent, but those caught in marine

waters where dietary TMAO would be available do have appreciable muscle TMAO



(Norris and Benoit 1945, Cowey and Parry 1963). Benoit and Norris (1945) found that

pink salmon (Oncorhynchus gorbuscha) raised in a marine environment only

accumulated TMAQ when fed a TMAO oontaining diet. Charest et aI. (1988) found that

adult pink salmon can oonvert choline to TMAO in vivo suggesting that synthetic

capability may have an ontogenic aspect as well.

Work by Okaichi et al. (1959) found that for the globe fish (Diodon nicrhemerus)

and filefish (Sebastisus marmoralus), muscle TMAO increased only in fish fed a TMAO·

containing diet. This was in contrast to the jack mackerel (Tarchurus japoniclls) which

maintained TMAO levels even if the diet oontained no TMAO, suggesting active TMAO

synthesis in this species. To my knowledge, no such experiments have been done on

species known to have high TMAoxi.

1.4.2 Elasmobrancl1s

Elasmobranchs maintain high tissue levels ofTMAO and thus may present a good

mooel system to study the source ofTMAO in fish. Unfortunately, other than the work

on TMAoxi in elasmobranchs, very little has been done in this area. Only one study has

examined the long.tenn effects of fasting on TMAO in an elasmobranch (Cohen et al.

1958). These investigators held S. acanthias for up to 41 days without food and found

that plasma TMAO levels did not decrease over the experiment. The authors attributed

this to renal reabsorption ofTMAO and slow release from the much larger muscle

TMAOpool.

Goldstein and colleagues have made attempts to detennine the source ofTMAO

in elasmobranchs. Goldstein et al. (1967) found that S. acanthias oou.ld not convert



labeled cholinc or TMA to TMAO in vivo. As stated above, this species seems to lack

the capacity to convert TMA to TMAO in vitro as well. Another elasmobranch species,

Ginglymosfoma cirratium, has been shown to convert TMA to TMAO in vivo from

choline and TMA and this species has also shown in vitro TMAoxi activity (Goldstcin

and Funkhowser 1972). Although this is strong evidence for a link between TMAoxi and

in vivo synthesis, a follow.up paper developed a link between elasmobranch TMAoxi and

mammalian FMO activity (Goldstein and DeWitt Harley 1973). Thus, it is still

unanswered if this is a case of conversion by a non·specific enzyme that may serve

another physiological role or if in fact these fish will actively synthesize TMAO from

precursors during periods of dietary limitation.

1.5 Physiological Roles of TMAO

A number of physiological roles have been proposed for TMAO in fish. These

include osmoregulation, macromolecular stabilization against various perturbants and

colligative antifreeze. It is important to point out that these potential physiological roles

are based on the occllITence or levels of TMAO in certain species compared to 'typical'

species or environments or on very 'unnatural' in vitro experiments. Though this

provides circumstantial evidence for some of these roles, there is still much work to do to

confinn the many potential functions ofTMAO in fish.

1.5.1 Osmoregulation

Osmoregulation involves two compartments, the intracellular and extracellular,

and has two basic comJXments, the maintenance of water and osmolyte balance under



normal conditions and the adaptation to changes or stresses to water balance. Due to the

intimate contact of gills with the external media, and the high penneability of waler, fish

are highly susceptible to changes in the extemal media, which makes water balance

difficult or energetically expensive in the case of fish that maintain different lotal solute

concentrations than the external media. Depending on the species, TMAO plays

important roles in the intracellular and extracellular osmoreguJation as well as the

adaptation to different osmotic environments.

The essentially ubiquitous occurrence ofTMAO in the muscle of marine fishes

may be related to its use as an osmolyte. As an osmolyte, TMAO has many benefits

including those elaborated on below in addition to the benefit that as a dead-end

metabolite it would not be involved or competing with other metabolic processes,

whereas the accumulation of amino acids would have to compete with other amino acid

metabolizing systems in the cell.

1.5.1.1 fe/easts

Marine teleosts have low to high amounts of muscle TMAO. Certain shallow

living gadifonnes have as much as 80 mM TMAO (assuming - 70"10 water content) in

their while muscle (Hebard et al. 1982). Body fluid osmolality of these fish is

approximately 330-400 mOsmlkg (Holmes and Donaldson 1969). Thus TMAO would

make up from 20"/0 to almost 25% of the total solute in the muscle, making TMAO a

substantial component of the maintenance osmoregulatory system of white muscle in

these fish and the most abundant organic osmolytc in the fish.

10



Although not well examined, what little data are available suggest that TMAO

levels in teleosts are generally low in non-muscle tissues including blood (Hebard et al.

1982). This suggests that TMAO has an intracellular role in the maintenance

osmoregulation in the muscle of marine teleosts but does not constitute a significant

amount to the total extracellular osmotic pressure. Potential exceptions to this are

certain deep-sea gadifonn fishes and some teleosts that live in subzero temperatures.

These fish have been shown to have elevated plasma or serum TMAO (Raymond 1994,

Gillette et al. 1997 Raymond and DeVries 1998) as well as high plasma osmolalities

relative to typical marine teleost values and TMAO accounts for a significant amount of

the difference in plasma osmolality.

When euryhaline teleosts are acclimated to from seawater to freshwater, they

change the osmolality of their body fluids by approximately 40-100 mOsmlkg (Holmes

and Donaldson 1969). Lange and Fugillie (1965) demonstrated that, for two euryha1ine

teleosts, the muscle TMAO significantly decreases, along with amino acids, on the

acclimation from 100% to 50% seawater. Thus, TMAO plays an integral role in the

adjustmem ofthe muscle lluid in some marine and euryhaline teleosts when adapting to

dilute seawater.

1.5.1.2 Elasmobranchs

Unlike leleoslS, the role that TMAO plays in the osmoregulation of

elasmobranchs has received a substantial amount of study. Marine elasmobranchs are

osmoronfonners and mainlain body lluid osmolalities either near to or slightly greater

than that of seawater. The osmoregulatory system of elasmobranchs has been reviewed,

\I



especially the role of organic osmolytes such as TMAO (Pang et al. 1977, Perlman and

Goldstein 1988). TMAO appears to play significant roles in the osmoregulation of the

intracellular and extracellular compartments. In many species it is a major osmolyte in

many tissues thus making a significanl contribution to the maintenance osmoregulation

and it is involved in the osmotic adjustment, both intracellularly and extracellularly, that

occurs with dilution of the external media from full strength seawater (see above

references and references therein).

1.5.2 Protein stabilization

The stabilization of proteins by TMAO and similar molecules against perturbants

of structure and function has been reviewed (Yancey et al. 1982, Yancey 1994, Gilles

1997). A number of destabilizers of proteins are counteracted by TMAO in vitro and

many of these 'forces' are of physiological relevance to marine fishes. These include

high urea concentrations (which can reach> 400 mM in elasmobranchs), elevated salt

concentrations (seen in Antarctic fishes) and high pressure (equivalent to that

experienced by deep-sea fishes) (Gillenet al. 1997, Yancey et al. 2001). All of these

conditions have been shown to negatively effect protein function or stability and can be

counteracted to varying degrees by TMAO.

1.5.3 Buoyancy

Recently it has been demonstrated that the large amounts ofUTea and

methylamines accumulated by marine elasmobranchs may serve another physiological

role, buoyancy. Solutions containing urea or TMAO are less dense than seawater. Thus

12



the accumulation of these solutes instead of amino acids, most of which result in a

solution more dense than seawater, would decrease the net density of the animal which

would result in less energy expenditure for locomotion (Withers et aL 1994a, Withers et

al. 1994b). Since elasmobranchs lack a swim bladder and are typically more dense than

seawater this may playa significant role in these fish. Of note, benthic species like

skates and stingrays have high levels of urea and TMAO indicating that these solutes

have other and perhaps more significant roles that just buoyancy.

Most marine teleosts that have moderate to high TMAO also have a swim

bladder. Attaining neutral buoyancy may not be as energetically expensive in these fish

as in some elasmobranchs suggesting that TMAQ likely does not have a significant

buoyancy role in teleoslS.

1.5.4 Colligative Antifreeze

Teleost fishes living in waters that may have temperalUres below-I.O °C

typically develop some means of freeze avoidance (DeVries 1982). While many use

antifreeze proteins, which work by noncolligative properties, many also increase the

osmolality of their body fluids as colligative antifreeze (Raymond 1992, Raymond and

DeVries 1998). Some Antarctic and northern teleoslS accwnulate serum TMAO to

sufficient amounts to significantly depress the freezing point and thus TMAQ may act as

a colligative antifreeze in these fish (Raymond 1994, Raymond and DeVries 1998).

13



1.6 Conclusion

The common occurrence ofTMAO in marine fishes has yet to be fully explained.

The distribution ofTMAO in tissues olher lhan muscle is unclear, poorly documenled,

and may be crucial in understanding the physiological and biochemical significance of

TMAO. As such, the following chapters report the intenissue distribution ofTMAO in

several species of fish. This is especially important in lhe argument for counteraction of

pressure effects in deep-sea fish, where only muscle levels have been documented.

Clearly, TMAO should be elevated in olher tissues ifit plays an important role in

counteracting pressure effects on proteins. This is lhe subject of Chapter 2.

Rainbow smelt (Osmerus mordax) accumulate TMAO in their plasma during lhe

winter when ambient water temperalures drop to near, or that of, the freezing point of

seawater (Raymond 1994). It has been suggested thaI this may aCI colligalively as a

small bUI significant contribution to the smelt's antifreeze strategy. Iflhis is true, lhe

plasma levels of TMAO should oscillate wilh the seasonal water temperalures.

Furthennore, nolhing is known of lhe effects of changing extracellular TMAO

concentrations on total tissue (approximating intracellular) TMAO conlent. The

changing scasonal plasma TMAO concentration, representative of lhe extracellular fluid,

makes lhe smelt an ideal teleost model for examining lhe relationship between

extracellular and intracellular TMAO concentration in various lissues. The third chapter

examines the effect of seasonal, or elevated, temperature on TMAO accumulation in

smelt as well as the correlalion of plasma TMAO concentration with lhe TMAO rontent

ofscveral tissues.
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Chapter 2: Elevated levels of trimethylamine oxide in deep-sea fish:

Evidence for synthesis and intertissue physiological importance.

2.1 Introduction

Trimethylamine oxide (TMAO) is a nitrogenous organic molecule commonly

found in the muscle of marine fishes (reviewed by Hebard et al. 1982); however the

importance of this organic osmolyte has yet to be completely explained with regards to

adaptation to various environments. In marine elasmobranchs TMAO, and other

methylamine compounds, are important osmoregulatory compounds (Perlman and

Goldstein 1988) and likely have significant roles in the counteraction of urea (Yancey

1994) and buoyancy (Withers et al. 1994).

The function ofTMAO in teleosts is somewhat more obscure. In some euryhaline

species it has a substantiaJ role in osmoregulation in muscle (Lange and FugeLli 1965) but

this does not explain the high occurrence of TMAO in marine teleosts that do not

nonnaJly experience large fluctuations in salinity. Recently a number offish species

found in two extreme environmental groups have been shown to have elevated levels of

TMAO. These are marine teleosts adapted to near- or sub-zero temperatures (Raymond

1998, Raymond and DeVries 1998, Raymond and Hassel 2000) and deep-sea fishes

(Gillett et al. 1997, Kelly and Yancey 1999).

OCthe ncar- and sub-zcro degree adaptcd tcleosts cllamined for TMAO Conlent,

several have what appear to be elevated levels in the serum and liver, and muscle in the

case of certain Nototheniod species, when compared to the values tabulated in Hebard et
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al. (1982). In deep-sea gadiforms, some species have been shown to have elevated

plasma TMAO, whereas all fish species examined to date show elevated muscle TMAO

in oomparison to shallow water temperate species (Gillett et al. 1997, Kelly and Yancey

1999). Furthermore, Kelly and Yancey (1999) found that, in rajid skates, muscle urea

decreased and TMAO increased with depth of capture.

The accumulation ofTMAO may be of physiological importance to deep-sea

fishes to counteract high pressure effects on protein function (Gillett et al. 1997, Yancey

and Siebenaller 1999, Yancey et al. 2001). This suggests that TMAO would be elevated

in all tissues of deep-sea fish. The present study was conducted to determine if the trend

of elevated muscle TMAO found in deep-sea fishes is also extended to non-muscle

tissues of deep-sea fishes like in the cold-adapted teleosts examined by Raymond and

colleagues.

Raymond (1998) has suggested a correlation between plasma TMAO content and

liver trimethylamine oxidase (TMAoxi) activity. TMAoxi catalyses the conversion of

trimethylamine (TMA) to TMAO and has been identified in a number offish species

(Baker et at. 1963, Goldstein and Dewitt-Harley 1973, Agustsson and Strom 1981,

Raymond 1998, Raymond and DeVries 1998). A logical progression ofthis hypothesis is

that, for elevated tissue levels of TMAO, there would be an expected increase in TMAoxi

activity. Furthermore, ifTMAO does counteract high-pressure effects on protein

function, deep-sea fishes may have an increased synthetic capacity to produce TMAO

oompared to related shallow living species. I determined if deep-sea fish may have
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increased TMAO synthesis by measuring the activity ofTMAoxi as well as comparing

levels of the substrate, trimethylamine, in fishes caught from different depths.

2.2 Materials and Methods

2.2.1 Animals

Specimens were caught by otter trawl either in the Atlantic waters off

Newfoundland or in Passamoquoddy Bay, New Brunswick. Six species of gadifonn fish

were caught in either shallow «150 m: Gadus morhua, Urophycis chuss and Merluccius

bilinearis), moderate (450-700m: Gaidropsarus ensis and Macrourus berglax) or deep

water (I OOO·1500m: Antimora rostraw). An additional deep-sea teleost

(Synaphobranchus lwupi), an anguilliform, was also collected below lOOOm. Two

elasmobranchs, squaliform sharks, were also sampled; Squalus acanlhias and

Centroscylliumfabricii, from shallow and deep water respectively. Sampling was

conducted in November 1999, August 2000 and December 2000 for the deep, shallow

and moderate depths respectively.

Fish were killed by a blow to the head and blood was drawn into heparinized

syringes by caudal puncture. Blood was centrifuged for 3 minutes in an Eppendorf

bench-top centrifuge and plasma was frozen as described below. Tissues were collected

immediately following blood collection, blotted dl)', frozen wilh liquid nitrogen and

stored below ·65°C until used. Of note, tissues were nOI rinsed or perfused prior to

freezing and will have a small amowlt of contaminating blood.
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2.2.2 Osmolyte assays

TMA and TMAO wcre mcasurcd by a modification of the ferrous sulfatelEDTA

methodofWekell and Barnett (1991) for use with small tissue samples. Tissue samples

were weighed and homogenized in 9 volumes of5% TCA (wtIv) with a Polytron

homogenizer. Plasma samples were thawed on ice and diluted I: 10 (v/v) with 5% TCA,

mixed briefly and allowe<l to stand on ice for approximately 1·2 minutes to allow proteins

to pm::ipitate. All samples were centrifuged for 5 minutes at 4°C 10 remove precipitated

proteins and cellular debris. Deproteinized samples ,",,'Cre then assayed for both TMAO,

via reduction by ferrous sulfate and EDTA, and TMA with no reduction step. TMA is

extracted into toluene and quantified spectrophotometrically at 410 nm by its

colourimetric reaction with picric acid, 0.02% (w/v) in toluene. TMAO is delennined by

subtracting the TMA value from the value obtained with the reduction mixture (TMA

plusTMAO).

Initially, plastic cuveUes were utilized. However this was found 10 give very

unsatisfactory results for low TMA or TMAO samples, although reproducibility was

acceptable in samples with relatively high TMAO content. Due to this, the use of plastic

cuvettes was abandoned for a quartz cuvelte.

Urea was detennincd spectrophotometrically at 535 nm with a Sigma BUN-535

kit (Sigma chcmical Co., SI. Louis, MO, U.S.A.) on the deproteinized samples prepared

for TMAffMAO detennination.
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2.2,3 TMA oxidase assay

TMAoxi activity was measured by a modification of the spectrophotometric assay

given by Agustsson and Strom (1981). Liver or kidney samples were homogenized in 9

volumes of ice cold 40% glycerol in 50 mM imidazole (v/v), pH 7.8 at 20°C. Agustsson

and Strom (1981) homogenized in 250 mM sucrose; however preliminary experiments

with captive cod (Gadus morhua) indicated that the glycerol buffer gave somewhat

higher and more consistent activities (data not shown). Homogenates were centrifuged

for 10 minutes in an Eppendorf centrifuge (10000 rpm) at 4°C to remove cellular debris.

Assay conditions were as follows: 50 mM pyrophosphate buffer (pH 8.2 at 20°C), 6.0

mM MgCh, 0.15 mMNADPH. For reaction rates, 1.0 mM TMA was also added and

gave apparent saturating kinetics, TMA was omitted for control rates. The oxidalion of

NADPH was determined at 340 nm at 25°C with a Beckman DUMO spectropholometer.

2.2.4 Osmolality

Osmolality for teleost plasma samples was determined with a Fiske one-ten

freezing poinl osmometer.

2.2.5 Statistics

All means were compared with a oneway ANOVA. p<0.05 was considered to be

statisticaJly significant.
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2.3 Results

2.3.1 Teleosts

TMAO content of tissues from the deep-sea teleosts was significantly elevated

above moderate and shallow species in all cases exeept liver inA. rostrata (Table 2.1).

Typically, A. rostrata tissues had approximately 50-100 mmollkg more TMAO than

shallow and moderate fish. S. Jumpi had TMAO contents of approximately 100·150

mmollkg greater than other fishes. Other than white muscle in M. berg/ax, fish caught at

moderate depths had TMAO contents within the range of the three shallow species.

White muscle had substantially more TMAO than all other tissues and the heart had

slightly higher levels than other tissues in thc species caught in shallow and moderate

Plasma TMAO was vcry high in the deep caught teleosts, as was osmolality

(Table 2.2). The increase in TMAO, relative to shallow and moderate species, accounts

for most of the increased osmolality.

Levels ofTMA in the white muscle, brain and heart were gcnerally low (less than

1.4 mmollkg, data not shown). The kidney, and in some cases liver, did have elevated

TMA content (Table 2.3). A. rostrata had very high TMA in the livcr and kidney,

whereas S. Iwupi had high liver but not kidney TMA.
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Table 2.1. TMAQ content of lissues and plasma osmolality from teleost fishes caughl
from deplhs as described in Material and Methods. Values are means::l::SD, n value is in
patenlhesis. Units are mmollkg. Capture deplhs are S, shallow «I 50 m) M, moderate
(500-700 m) and D, deep «1000 m). Letters indicate no significant difference (p>O.05)
from a G. morhua, b M bilinearis, c U chuss, d G. ensis, e M berg/ax, fA. rostraJa and
g S. kaupi. na:: not analysed.

SPftt6 - Whilt """ BrIlin Unr Kidnty
MU5dt

Godus",orltl<a 48.~5.21 5.5~1.48 1.14W.8S 0.74W,44 0.79±O.40
,6J"' ,,)"' ",,- ,.,.. (Or

MerluccilU 40.8:1:1.32 8.79:1:2.85 O.61:l:O.20 0.71:1:0.90
bilineariJ (4)- (4)- (4)" (4)-

UrophycischUJ$ 64.7;t7.09 5.36±1.01 2.91:1:1.16 4,)2±0.88 0.43:1:0.85
(6)o.l (5).... (6)"" (6)oef (6r

Gaidiosaurw M 46,):1:17.5 9.51:1:2.62 3.05:1:0.32 0.97:1:1.01 3.71:1:1.07
(4)- (4)1oclf (4)"" (4)- (4)-

MIJr:t'lif'aIU M 95.4:1:-4.77 11.61:1:1.0 3.62:1:0.71 1.98:1:1.27 1.84:1:1.07
btrglax (3) 3 (3)w" (3).... (3)00( (3,-

Antimoria 159%12.8 595:1:9.02 4&.0«.59 4.3W.73 46.3± 15.5
raYrtJIa (4) (3) (4) (7)- (6)

S_"""- 206ill.3 11~~O.5 98.2±5.79 92.Cd9.34 IIHI1.5(3)
3 3 3

Urea was below 6 mmollkg in all tissues from all teleost species (data not shown).

TMAoxi activity did not increase wi!h depth of capture (Table 2.3). Shallow teleosts had

very high activity in !he liver, and in the case ofG. morhua, kidney as well. The

moderate and deep caught fish had no significanl difference between them. Liver activity

was significantly less than all shallow species. Kidney activity in G. morhua was

significantly greater than all other species.
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Species Plasma TMAO (mM) Osmolality (mOsmlkg)

Gadus morhua l.06±O.48(S)12 368±30.9 (4i

Merluccius bi/inearis 0.75±1.0(S)12 377±24.2 (Si

Urophycis chuss 8.67±4.02 (6)12 373±16.0(4)2

Gaidiosaurus ensis O.45±O.S7(4)12 351±8.51 (3)12

Macrurous berg/ax O.26±0.22 (3)12 369±13.8(3i

Antimoria rostrata 91.2±21.8 (4) 449±76.8(5)

Synaphobranchus 114±10.3 (3) 569,608
*oui

Table 2.3. TMA content and activity ofTMAoxi in the liver and kidney of teleost fishes.
Values are means ± SO, n value is in parenthesis. TMA in mmol/kg, TMAoxidase
activity in UIhr. Species depth of capture as in Materials and Methods. 1 significantly
different from A. rostrata and 2 significantly different from S. kaupi. • significantly
different from liver (p < 0.05). na "" not analysed

Species TMA

Liver

TMAoxi TMA

Kidney

TMAoxi

Gadus morhua L47,j,I.J9(6)' 5.37':1.80(6)'1

Merluccius bilinearis 0.16±O.J2(4)'l 9.05':3.93(7)11

Urophycis chuss 1.01-':.045(6)\ 9.39':6.74(5)'1

Gaidiosaurus ensis 0.27:I:Q.18(4)'l 1.28±1.35(4)

Macurous berg/ax 0.9U:O.28 (3)" 1.71 ± 0.79 (3)

Anlimoria rostrata 4.94±1.l8(7i 0.95±-o.45(5)

Synaphobranchus 2.20±0.69 (3)' 0.80± 0.42 (6)

/roupi

2.93,j,t.28 (6)'1 6.95,j,O.85 (5)'1

3.95±1.37 (6)\2' J.33 ± 0.66 (4)-

3.34±O.47 (4)12' 1.51 ± 0.65 (4)

3.0IrO.49 (3)'" 0.80± 0.29 (3)

9.65±2.87 (6)1' 2.28± 1.11 (6)

0.34±O.09(3)'· 1.20± 0.66 (3)
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2.3.2 Elasmobranchs

Levels ofTMAO were significantly greater in all tissues sampled from C. fabricii

than in S. aeanthim (fable 2.4). Furthermore, urea was significantly less in Cfabricii in

all cases except liver. 'The ratio of urea: TMAO was significantly less for C. fahricii in

all tissues. TMA was very low in all tissues « 2.1 mmollkg or l), data not shown.

TMAoxi was below levels ofdetection in liver and kidney of both species.

Table 2.4. TMAO and urea content and ratio of urea: TMAO in tissues from a shallow,
Squa/us aeanthias, and deep-sea Squaliform shark, Cemroseyl/iumfabricii. Values are
means:i: SO. n = 6 for S. aean/hias, for C.fabricii n" 4 for plasma, 6 for rectal gland
and 5 for all other tissues. Units are mmoVL for plasma and mmollkg for all tissues.•
significantly different from S. aeanlhias.

Squo/wacanlhias Centroscyl/iumfabricii
TMAO u~ Urn: TMAO u~ Urn:

TMAO TMAO

Wllile 167±11.I 3~.60 1.8Qd).13 248.:1::14.7· 24I±1.I· 0.97±O.OS·
mll.$C:1e

R.. 130H.1$ .306%21.4 2J.5±O.16 196i12.1· 213±13.3· 1.08=0.02·
IIIU.$C:1e

H~" 79.1±7.79 29n13.4 3.7.5±0.30 1&0:6.2· 2.52:1:19.8· 1.4O±O.09·

BllIiu 327±16.0 $.7OiO.U 130:b4•.5· 241±ll.2· 1.84%0.13·

RKlIIl 56.2:1:.7.0.5 334±11.4 6.02±0.TI 15():(i.O· 228±4.6· 1.$2:1:0.06·
Gland

Kidney 63.2:1:4.35 31~14.$ .5.08*0•.54 16O±1U· 242:1:9.2· 1..52:1:0.11·

21.20:5.73 105±27.6 .5.17±1.59 SO.8±24.9· 11.5,,$3.0 1.42±O.33·

79.S±3.63 3662:17.6 4.58±O.19 223±4S.S· 259:1:66.6· 1.46:1:0.06·
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2.4 Discussion

2.4.1 Teleosts

The TMAO content ofme deep caughl species was elevated over the moderate

and shallow caught species. The single exception 10 this, the liver ofA. rostrata where

TMAO content appears to be the result of blood 'contamination' within the tissue, will be

discussed below. The increased TMAO accounts for much of the change in plasma

osmolality (Table 2.2) and, in most tissues, intracellular TMAO would accommodate for

the increased solute in the extracellular fluid. These data strongly suggest that TMAO

accwnulation is of physiological importance to these deep-sea fish because ofelevated

levels in a variety of tissues. Lange and Fugelli (1965) have shown that TMAO has a

role in the osmotic adaplalion ofeuryhaline telcosts; hO'o\o'ever the species examined in the

current study would IlOllikely experience environmenlai dilution negating this as a likely

function. See Gillett et aI. (1997), Kelly and Yancey (1999) and Yancey et aI. (2oot) for

detailed discussion of potential benefits ofTMAO accumulation in deep-sea organisms.

The increased plasma, and presumably all body fluid, osmolalities in the deep-sea

species are of intrinsic interest and are consistent with dala from Gillen et aI. (1997). As

explained in Gillett et aI. (1997), if there was a strong selective foree towards increased

osmolality in telcosts, shallow species would also have increased osmolality. However,

the accumulation ofa particular osmolytc far above 'normal' concentrations suggests a

selective benefit in doing so. Furthermore, high dietary intake ofTMAO could account

for higher than 'typical' levels of this single solute but would not explain an increased

osmolality of body fluids, again suggesting some physiological role in deep-sea fish.
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In all species examined, the white muscle had substantially more, 32-110

mmollkg, TMAO than all other tissues. There appears to be a disequilibrium between

muscle and other tissues, as well as plasma. suggesting active transport. However, it is

important to note that the possibility that high plasma TMAO may be a result of 'leakage'

from muscle was not eliminated. If this is the case, the gradient between plasma and

muscle would be even greater. To my knowledge, there has been no ",,'ork involving a

potential active TMAO tmnsponer in teleosts, although TMAO transport in

elasmobranch erythrocytes has received some attention (Wilson et al. 1999, Koomoa et

al. 2001). Similar to the trend between non-muscle tissues in deep-sea and shallow fish,

this disequilibrium suggests a physiological role ofTMAO in muscle.

The consistently higher muscle TMAO content may shed some light on this

question. As explained in Yancey et a1. (2001), TMAO has the tendency to compress

protein conformation and increase protien-protein interactions that result in a net decrease

in the total hydrntion shell of the protein. The accumuJation in muscle may be important

in maintaining the integrity of1M muscle fibers or potentially counteracting general ionic

destabilization ofcontractile proteins (Nosek et aI. 1998). For example, the

polymerization ofG-actin to f·actin resuJts in an unfavomble volume increase and the

actin from a deep--sea fish has adapted 10 have an approximately 6 fold decrease in this

volume change relative to a shallower living congeneric species (Swezey and Somera

1985). TMAO increases the polymerization ofG-actin to f-actin at 1 and 500 atm and

thus could help in the fonnation and maintenance of f-actin in shallow and deep-sea

teleosts (Yancey et al. 2001). Since the effects of pressure on actin polymerization in
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shal1ow-living teleosts may be several fold higher, especially in the 1-100 atm range

(Swezey and Somero 1985), TMAO may be of substantial importance in marine deep-sea

and shallow-living teleosts, alike.

The liver ofA. rostrata and kidney of U. chuss have very low TMAO, especially

compared to plasma content. Some portion of the total tissue TMAO content would be

from extracellular fluid, presumably 10-20% of total water content, which the plasma

values would be representative of. With experimental error taken into accounl the levels

ofTMAO in these two tissues would be almost entirely accounted for by the extracellular

fluid. This suggests that there is a strong TMAO concentration gradient into the cells of

these lissues and potentially a mechanism to remove TMAO from the intracellular fluid

or means of preventing the entry ofTMAO into the cell.

Tissue TMA content was relatively low in most tissues and the plasma of all

teleosts (typically < 1.4 mmollkg or roM). The kidney, and in the case of A. rostrata and

S. kaupi the liver, had substantially higher TMA content. This could be significant with

respect to TMAO synthesis because the liver and kidney are the sites ofTMAoxi activity

in fish (Bakeret al. 1963; Augustsson and Strom 1981). The TMA in the above tissues

could eithcr be sequestered from the plasma or come from the catabolism of

trimethylamine containing compounds such as choline or belaine (Bilinski 1964, Charest

ct al. 1988). As TMA is typically low in organisms whereas choline and derivatives such

as phosphatidylcholine arc quite common, the brcakdov.n of trimethylamine-containing

compounds would appear to be more likely. However, we cannot discount that the high

kidney TMA is not due to accumulation prior to excretion.
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Levels of liver TMAoxi activity in the present study show a negative correlation

with increasing depth, with the shallow species being significantly greater than the

modcrnte and deep caught fish. Although this may ~flect the established trend of

decreased activity in several enzymes with increasing depth of capture (Hochachka and

Somero 1984). it also indicates that there does not ap~ to be increased metabolic

capacity for TMAO synthesis with increased TMAO content in these fish. Furthennore,

the potential for synthesis orTMAO via a yet uncharacterized pathway can not be

eliminated. The kidney activity was not significantly different from the liver, the only

exception being U. chu$$ where the kidney was significantly less than the liver. Thus,

this study does not suppon the hypothesis that elevated tissue TMAO content correlates

with elevated liver, or kidney, TMAoxi activity. High kidney, or liver, TMA content

along with appreciable amounts ofTMAoxi activity does suggest an active synthesis of

TMAO. This is best demonstrated in the liver of A. rostrala and kidney of U. chuss

where TMA is actually higher than TMAO, creating an excellent substrate to product

relationship for TMAO synthesis.

2.4.2 Elasmobranchs

The increased TMAO and decreased urea content of all tissues in C.fabricii

compared with S. acanthias is consistent with, and expands upon the data from, Kelly

and Yancey (1999). It appears that TMAO is elevated in most, ifnot all, tissues in deep...

sea e1asmobranchs, accompanied by a decrease in urea content. The inability to

demonstrate measurable TMAoxi activity in either elasmobranch species is significant

because it indicates that the TMAO accwnulation is not likely via endogenous synthesis.
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The lack ofappreciable activity in S. acanthias is consistent with previous work

involving the metabolism ofTMAO in this species (Goldstein et al. 1967, Goldstein and

DeWin-Harley 1973).

The accumulation ofTMAO in deep-sea elasmobranchs could have many roles.

As in teleosts it may act to counteract pressure. In addition the decrease in urea strongly

suggests that deep-sea e1asmobranchs may minimize disruptive protein effectors, such as

urea, while increasing stabilizing agents such as TMAO.

The ratio of urea to TMAO is a useful measure for comparing the relative

intracellular concentrations for the same tissue between species. If urea is in approximate

equilibrium between extracellular and intracellular fluid, as suggested by Sulikowski and

Maginniss (2001), the ratios between any other solute and urea can be used to give

relative solute content regardless of the water content of a tissue. That is, for a given

animal, although the values expressed in nunol/kg may differ between tissues, the

difference will be proportional and mostly due to difference in water contents. TMAO is

not in equilibrium between the extracellular and intracellular fluid. However, if tissues

vary over an approximate range of 10 to 20% extracellular fluid, the TMAO content

(nunol/kg) will approximate the intracellular TMAO concentration (roM) much more

closely than the extracellular concentration due to the low contribution of the

extracellular fluid to total tissue fluid. Although this ratio will not account for potential

contamination by the extracellular fluid, it estimates the concentration ofTMAO relative

to urea and is likely representative of the relative intracellular ratios. This accommodates

for tissues that have very high lipid content such as the liver.
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Furthermore, although caution should be used with comparisions bef\1,'een

different tissues, the ratio of urea to TMAO in the white and red muscle ofhoth

e1asmobranch species is substantiaJly lower than aJl other tissues. This indicates that, as

in teleosts, there is substantially more TMAO in the muscle tissues of elasmobranchs than

other Don-muscle tissues and that there is a substantiaJ disequilibrium belWeen the muscle

intracellular lMAO and the extracellular TMAO represented by the plasma. Thus the

above hypotheses of protein stabilization by TMAO in the muscle of marine leleosts may

also apply to elasmobranchs.

Another potential role ofTMAO in elasmobranchs is that it contributes to

buoyancy by decreasing the density of a solution relative to salt water (Withers et al.

1994). Although urea aJso decreases the density ofa solution, an equilmolar amount of

TMAO v.ill result in a greater change. Thus, deep-sea e1asmobranchs may accumulate

TMAO to become nearer to neutral buoyancy and would then require less net lift., which

would result in decreased drag and decreased energy expenditure. C.fabricii appears to

be an active predator and such an adaplatiOD may be quite beneficiaJ during periods of

low food availability. Withers et aJ. (1994) aJso found a trend of decreasing

methylamines with elasmobranchs that are more benthic. This may explain why the

deep-sea shark I have examined had approximately 45 mmol/kg more white muscle

TMAO than a deep-sea skate caught from between 1800-2000 m in Kelly and Yancey

(1999), allhough this previous Study found a similar ratio of urea: TMAO as I did.
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2.5 Conclusions

The data strongly suggest a physiological importance ofTMAO in teleost fishes

and especially in deep-sea fishes. The accumulation ofTMAO in various tissues. as well

as high activity oflMAoxi \\'ith concurrently high TMA content indicates that some of

the fish examined are capable of synthesizing and retaining TMAO. II has already been

established thai TMAO may have several important physiological roles in

elasmobranchs. The elevated TMAO content is suggestive of increased importance in all

tissues examined from a deep-sea e1asmobranch, with a subsequent decrease in urea

relative to a shallow water species. This study has also opened questions on why muscle

accumulates more TMAO than other tissues. as well as to the potential of TMAO

transporters in the: muscle ofleleosts and elasmobranchs.
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Chapter 3: The accumulation of trimethylamine oxide in smelt

(Osmerus mordax): Temperature effects, synthesis and correlation

between plasma concentrations and tissue contents.

3.1 Introduction

Trimethylamine oxide (TMAO) is a commonly occurring nitrogenous solule in

marine teleost fishes (reviewed by Hebard et al. 1982). Typically, TMAO is only found

to any great degree in the swimming muscle. A few exceptions to this have been found,

namely polar and subarctic fishes adapted to near or below ooe (Raymond 1994,

Raymond and DeVries 1998, Raymond and Hassel 2000) and teleosts from the deep·sea

(Gillett et al. 1997, previous chapter) have been shown to have elevated plasma TMAO

concentrations. Ofte1eosts known to have elevate<! plasma TMAO the smelt, Osmerus

mordax, has received the most study. Raymond (1994, 1998) has shown that winter

caught smelt have increased plasma and liver TMAO levels and that TMAO

concentrations are affected by acclimating fish to temperatures different from the

temperature they were caught in. That is, fish caught from subzero temperatures decrease

TMAO when wann-acclimated and fish from 5°C water increase TMAO when

acclimated to _1°C (Raymond 1994). This sets the framework for several experiments

which were undertaken to elucidate potential triggers and mechanisms ofTMAO

accumulation in smclt.

Although wild-caught smell accumulate TMAO in the winter, linle is known

about the temporal accumulation ofTMAO or what threshold temperature, if any,

43



triggers the accumulation or decrease in TMAO. TIle acclimation study mentioned above

demonstrates that temperature is a major effcctor ofTMAO in smelt., but it gives only

rudimental)' understanding about what temperatures actually will result in the increase in

TMAO. An aspect ofme curren! study was to detennine the effect oftempernr.ure on the

levels ofTMAO in smelt. This was done by holding smelt either at ambient temperature

(ranging from 11°C to -1.2°C) or by maintaining them at an elevated temperature well

above the freezing point of seawater (approximately SoC or 9OC) from fall to spring.

Raymond (1998) found detectable levels of trimethylamine oxidase (TMAoxi) in

smelt; thus they appear to have the metabolic machinery for the synthesis ofTMAO. As

explained elsewhere (see chapter I) the presence ofTMAoxi is not conclusive evidence

of active TMAO synthesis, only that ifTMA is fonned it could be oxidized to TMAO.

Since smell are known to accumulate TMAO during winter conditions, they present an

opportunity to examine if there is an increase in the capacity for TMAO synthesis in

parallel ",-jth increased TMAO levels. This will also test the hypothesis that has been put

foM that there is a com:lation between plasma TMAO concentration and TMAoxi levels

in teleost fishes (Raymond 1998).

Finally, little if anything is known about the interplay between the extracellular

concentration ofTMAO and the intracellular compartment. Smelt are an excellent model

organism for probing the relationship between extracellular and intracellular

concentrations because they are known to change their plasma TMAO concentrations,

representative of the extracellular compartment. This allows for comparison with tissue
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contents, representative ofthe intracellular compartment, over a range of extracellular

concentrations.

3.2 Materials and Methods

3.2.1 Experimental animals

The experiments were conducted over 2 separate winter seasons, the first from

1999 to 2000 (99/00) and second in 2000 to 2001 (00/01). Approximately 180 smelt for

thc 99/00 experiments were caught by beach seine in Conception Bay Newfoundland in

late October. Animals for the 00/01 experiments (approximately 350) were caught by

beach seine in Long Harbour, Placentia Bay Newfoundland on October 9, 2000. In both

cases fish were transported to the Ocean Sciences Centre in an aerated live·well filled

with water from the capture site. Upon arrival al the OSC smelt were transferred to two

4000 litre indoor ambient temperature flow-through seawater tanks with approximately

equal numbers of fish in each tank. They were kept on a natural photoperiod with

fluorescent lights set on an outdoor photocell. Smelt for the 99/00 experiment were fed

frozen brine shrimp 3 times a week while the 00/01 fish were fed chopped herring. In

both cases feeding was visually confirmed and evidence of food consumption was

observed in sampled fish.

3.2.3 Experimental protocol

In bolh experiments one tank offish was allowed to track ambient seawater

temperatures (ambient group) while another tank was maintainc<l at a constant and
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elevated temperature relative 10 seasonal winter lemperatures (wann group). The

temperature profiles are shown in Figures 3.1 and 3.2 for the 99/00 and 00101

experiments respectively. For the 99/00 experiment !his was accomplished by

maintaining one tank: al ambient temperature while anolher was held at approximately

SOC. In the case of the 00101 experiment, fish wen:: allowed 10 track ambient

lemperalUres until they dropped to 4°C (on Dec. 11,2000). At this point one tank was

maintained with heated seawater al approximately 9°C for the duration of the experimem.

Figure 3.1. TemperahJre profiles for 99/00 wann and

ambient smelt groups, arrow indicate sample times.

During Ihe 99/00 experiment fish from both tanks were sampled on December 15,

January II, February 29 and March 30. Due to tack of experimental animals in the

ambient group, fish were only sampled on May 15 from the wann group. On the inilial
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sample period, December IS, 3 fish from each tank were sampled. ~re was no

difference between any measured characteristic and data from both tanks were pooled

into an initial data point. For the 00101 experiment, 3 fish were taken from each tank on

October 19 and the data pooled. Fish were subsequently sampled on November I, 15 and

28, December II and 20, January 23, February 20, March 23. April 6 and May 14.

Figure 3.2. Temperature profiles for 00/01 warm and
ambient smelt groups, arrows indicate sample times

Fish were bled by caudal puncture with heparinized syringes and then killed by a

blow to the head. Tissues were dissected out and frozen in liquid nitrogen dry·shippers.

Whole blood was centrifuged at approximately SOOOg for 5 minutes; plasma was

collected and frozen as above. Samples were maintained al or below -60°C until
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3.2.3 TMAO detenninations

TMAO was determined by the method of Wekell and Barnett (1991), modified

for small samples. Briefly, tissues werc homogenized in 9 volumes of cold 5% (w/v)

tricholoacetic acid (TCA) while plasma was mixed with 9 volumes of 5% TCA and

allowed to stand for sevcral minutes on ice. Precipitated proteins were removed by

centrifuging at 10000g at 4°C for 5 minutes. The supernatant was used directly for

analysis. Toluene is added to the samples and TMAO is reduced to TMA by the addition

ofa ferrous sulphate (in 0.1 M HCl)-EDTA mixture and incubation at 50°C for 5 minutes

followed by the addition of 45% KOH. TMA is extracted into the toluene phase by

frequent mixing. An aliquot of the toluene phase is mixed with 0.02% (w/v) picric acid

in toluene. TMA reacts colourimetrically with picric acid and the absorbance was read at

410 run. Preliminary studies found endogenous TMA contents to be very low relative to

TMAO and thus no correction for TMA was made.

For samples from the 99/00 experiment, disposable plastic cuvettes were used as

in Raymond (1994) and Raymond and DeVries (1998). This had satisfactory results on

modcratc to high TMAO content samples, but gave poor reproducibility on very low

TMAO content samples. As such, samples from the 00/01 experiment were analyzed

using a quartz cuvette.
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3.2.4 TMA oxidase activity

TMAoxi was determined by a modified version of the spectrophotometric assay

used by Augustsson and Strom (1981). Augustsson and Strom (1981) homogenized

tissues in a 250 mM sucrose based buffer. Preliminary data from cod (Gadus morhua)

tissues found that homogenizing in 9 volumes of a 50 mM imidazole and 40% (v/v)

glycerol buffer, pH 7.8, gave somewhat higher and more consistent activities. Thus, the

Imidazole/glycerol buffer was used for this study. For kidney samples, homogenates

were centrifuged for 5 minutes at loooOg at 4°C to remove cellular debris. Initially this

was also the case for liver samples, however no detectable levels of activity could be

found above the control rate. Further steps were used in an attempt to improve the

resolution of the assay (see below in results section).

The standard assay conditions were as follows: 50 mM potassium pyrophosphate

buffer (pH 8.2), 6.0 mM MgCb and 0.15 mM NADPH. The reduction ofNADPH was

followed at 340 run on a Beckman DU640 spectrophotometer at 25°C. For reaction rates,

the assay also included 3.0 roM TMA while control rates were determined in separate

cuvettcs in the absence ofIMA. All assays were IUn in duplicate or triplicate. For true

reaction rates, the control decrease at 340 nm was subtracted from the decrease at 340 run

in the presence of TMA.

Although 25°C is well above the normal physiological temperature range of

smelt, other studies have found that the enzyme reaction is linear from cold water fishes

for an hour at 22°C (Raymond 1998, Raymond and DeVries 1998). This demonstrates

that despite this non-physiological temperature, the enzyme is likely stable, allowing for
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better resolution of this typically low activity enzyme than would be found at a lower

ternpem.ture within the physiological range.

To date, there is no procedure for isolating TMAoxi from fish, although it is

known that the enzyme is found in the microsomal fraction (Augustsson and Strom

1981). Insufficient amounts of kidney tissues could be collected from these relatively

small fishes to attempt a partial purification or even to isolate kidney microsomes. To

determine the apparent Km of smelt kidney TMAoxi for TMA, homogenates from 3 fish

were pooled and assayed at varying TMA concentrations, with a fixed NADPH

concentration (0.15 roM).

3.2.5 Statistical analysis

All means were compared by one way ANOVA. COlTClations between plasma

TMAO concentration and tissue contents were done by linear regression analysis on

individual animals or the means from each sample period in the case of the 99/00

experiment.

3.3 Results

3.3.1 99/00 experiment

The mean plasma TMAO concentration was 13.5 roM initially and increased in

both groups in January (Fig. 3.3a). In February, when ambient temperature fell below

DOC, the ambient group reached its peale TMAO concentration at 19.2 mM. Plasma
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Figure 3.3. TMAO levels in
plasma (A), white muscle (B)
and liver (C) in warm and
ambient smelt groups from
the 99/00 experiment.
Values are mean ± S.E.M. n
== 6 for initial point and 5 for
all other points. a, significant
difference from initial point;
• significant difference
between groups.
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TMAO had significanLly decreased to 9.07 roM by February 29 in the warm-acclimated

group and continued to decrease throughout the experiment. Interestingly, plasma

TMAO concenuations in !he ....'t\lTn smelt remained elevated in March.

Muscle TMAO conte:nlS did not significantly change from the: initial sample

group in either treattnenl at any time (Fig. 3.Jb). There was a significant (p < 0.05)

difference between warm and ambient groups in February, however neither values were

significantly differenl compared to initial values.

Liver TMAO content mirrored the trend seen in plasma where levels significantly

increased from initial, 12.7 mmollkg, to 16.5 mmollkg in the ambient group whereas

lMAO continually decreased from the initial content in the warm group (Fig.3c).

It was observed that while mean liver TMAO content increases linearly (r 
0.814, p < 0.01) as plasma TMAO concenuation increases (Fig. JAa}, mean white

muscle TMAO remains relatively constant (Fig. JAb).

3.3.2 00/01 experiment

As the initiation of the TMAO accumulation in smelt plasma appeared to be

'missed' in the first experiment a second experiment was required 10 determine at what

temperature TMAO begins to accumulate. Plasma TMAO concentrations were elevated

by November 1 when ambient temperatures were approximately 7°e (Fig. J.5). Thus, if

there is a thermallhreshold for the accumulation ofTMAO in smelt during the fall
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Figure 3.4. Relationship between mean plasma TMAO concentration and tissue
contents for A, liver and B, white muscle in smelt from the 99/00 experiment;
n = 6 or 5 for all measurements.

season, it occurs between 9 and 7°e. The results afthe 00/01 experiment parallel the

99/00 experiment very well. In the 00/01 ambient group plasma TMAO essentially

plateaued from December to April with a maximum 0£20.2 roM in January. As in the

99/00 experiment, although plasma TMAO was elevated in December, to approximately

75% of the highest levels in the experiment, holding the animals at an elevated

temperature caused a decrease in plasma TMAQ to levels not different from the initial

concentration by December 20. TMAO concentrations remained low for the rest of the

experiment in the wann group. The elevated temperature was approximately 4°C higher

than that of the 99/00 experiment resulting in what appears to be a more marked decrease

in TMAO. A final improvement in the 00/01 experiment was extending the final sample
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period to May when ambient temperatures have begun to increase. In lhe ambient group

the TMAO significantly fell from 18.9 in April to 8.9 mM in May. This was

accompanied by an inerease in temperature from _1°C to approximately 2_3°C.

Figure 3.S. Plasma TMAO levels, mean values ± S.E.M.. in WRnn lU'Id ambient smelt
fromOO/Ole"perimenln~6injliaiIYlU'ld3-Sforallothrpoints;a,significlU'lldifference

from initiai value, * significlll1t difTerencc betwccn wann and ambicnl fish (P<O.OS)•

Preliminary studies found levels of liver TMAoxi activity to be bordering on the

limits of detection and no appreciable activity in the muscle, heart, brain, intestine, gill or

spleen. When run in triplicate, many liver samples did not have consistently elevated

rates ofNADPH oxidation wilh added TMA when compared wilh control rates (data not

shown). This appeared to be potentially due to background 'noise' caused by lhe

homogenate. In an attempt to improve the resolution oflhe assaY,liver samples were

centrifuged for 10 minutes at 25000g at 4°C and the supernatant collected. The
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supernatant was again centrifuged at 25000g for 10 minutes III 4°C and the second

supernatant was collected. taking care not to disturb the loosely sedimented particulate

matter at the bonom of the tube. Despite the extra steps. this procedure resulted in

TMAoxi levels that were not consistently above the control rates of the decrease in

absorbence at 340 run. As such. it was detennined that liver TMAoxi ACtivity was below

the limits of detection for the assay protocol being used.

Kidney lMAoxi was found to be quite high in smelt. an order of magnitude

higher than liver levels reported by Raymond (1998). and thus only kidney TMAoxi was

measured over the season in smelt held III different temperatures. There was no

significant differencebe~ groups at any sample period, nor ....-ere there any seasonal

or temperature trends during the experiment with levels ranging from approximately 10.8

to 21.0 }.lmol of substrate converted (g wet tissue weight)'l hr'! (U1hr) (Fig. 3.6).

Fia""' 3.6. "idl>crlMAo~i .,;Uvity (lJIhrJ,1IIC1D valUOS:l: S.E.M.• ill WIIm IDd
wlMentsmdtlromOO'llIe:<perirnenl..-6ir1i!iallyond5l"orallotllerpoints;no
Iipif\QnlditfcralCl:betwcallfO'IPl'orflomllll!intia!poidt.
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The apparent Km for TMA was 0.2 mM (Fig. 3.7a,b). Of note, preliminary

examinations of the kidney TMA eonten! from samples of varying TMAO content was

0.15±O.08 (mean±SD) mmollkg (range of 0.089 to 0.29 mmollkg). These samples were

the same fish used in Fig 3.8b and represent fish with a wide range of plasma TMAO

concentrations, suggesting that it is unlikely that kidney TMA is elevated as plasma

TMAO levels increase. Furthennore, there was no lIend between TMA content and

TMAQ or temperature (dala not shown)

[TMAI"12::...",·o.~·._~020 ,'·09003 •

~O\~

~ 0.\0 •

~ O.O!!
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lllTMAl
Figure 3.7. Michaelis-Menton plot (A) and Lineweaver·Burke IIanSfonnation (8) for

TMAoxi actvity, fixed NADPH concentration (0.15 mM), from pooled smelt kidney

homogenales.
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The strong correlation from the previous experiment between mean liver content

and the plasma concentration ofTMAO, v.'hile white muscle was unaffected, prompted

the investigation ofother tissues. The high degree of linearity found seasonally in liver

was also found when tissues of individual fish with varying plasma TMAO were plotted

against each other. In this case liver, kidney, brain, intestine and heart had an ~ of 0.91,

0.85,0.98,0.93 and 0.85, respe<:tively (Fig. 3.8 a, b, c, d and e). Of note, the regression

line from individual fish plotted in Fig. 3.8a is not significantly different from the

regression of the mean data (taken over an entire season) in Fig. 3.4a. The slopes of the

regressions in tissues showing a linear trend were similar with the exception of heart,

which was approximately 3 fold higher than other tissues (Fig. 3.8e).

.~.(. . .'.
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Figure 3.8. Relationship between plasma TMAO concentTiltion and tissue contents in smelt:
A, liver B, kidney C, brain D, intestine and E, heart.
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3.4 Discussion

3.4.1 Relation between temperature and the accumulation of TMAO in Smelt

If there is a threshold temperature for the accumulation ofTMAO in smelt, it

appears to be above 5°C and likely between 9 and 7°C. Although there may be a low

temperature activated switch that results in TMAO accumulation in smelt, it is premature

to conclude that other environmental cues such as photoperiod are not key triggers.

Interestingly, TMAO began accumulating in the 00/01 experiment by 7°C but the post

winter decrease in plasma TMAO concentration occurred below Joe. Thus, if

temperature is the major trigger for TMAQ fluctuations, there are different threshold

temperatures for accumulation and decrease.

In both experiments the warm group offish decreased levels ofTMAO.

Whatever mechanism is involved with TMAO accumulation, maintaining fish at 5°C will

cause the process to be inhibited; however, TMAQ levels do not drop to pre

accwnulation levels until several months laler (Fig. 3.3a) when it would be expected that

TMAO would also drop in the ambient group (Fig. 3.5). While it appears that the

mechanism is inhibited at 5°C, it may shut off when fish are held at 9°C (nearing or

above the temperature when TMAO begins to accwnulate). TMAO levels had dropped

after only 9 days at 9°C in the warm group during the 00/0 I experiment. Raymond

(1994) estimated TMAO excretion in cold acclimated smelt at 9 J.lmol 100 g-1 hr- I
•

Although this number must be used cautiously, due to the levels ofTMAO being at the

limits of detection, this would mean a 100 g smelt could excrete 216 lMOol of TMAO per
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day. This rate would be sufficient for the observed initial decrease in the 00/01

experiment.

3.4.2 Potential role of TMA oxidase in TMAO accumulation in smelt

Based on the tissue distribution ofTMAoxi activity found by Baker et aL (1963),

the liver is typically viewed as the likely site ofTMAO synthesis in fish (Goldstein and

DeWitt-Harley 1973, Augustssonand Strom 1981, Raymond 1998, Raymond and

DeVries 1998). Although equivalent or greater activity can also be found in the kidney

(Baker et al. 1963, Raymond 1998) relative to the whole animal, the liver is a much

larger organ than the kidney supporting the notion that the liver is the major contribution

for synthesis, ifTMAO is being synthesized. Contrary to this, no appreciable TMAoxi

activity could be found in smelt liver, although Raymond (1998) reponed an activity of

0.18 to 0.24 UIhr. In the same study, kidney activity was found to be slightly higher at

0.73 UIhr(Raymond 1998). In the present study, the lowest mean TMAoxi activity for

any sample group was 17 fold higher than previously reported for kidney and over 20

fold higher than livcr (Raymond 1998). Furthermore, the levels ofTMAoxi activity found

in this study are among the highcst reported in fish. Despite the relatively small size of

the kidney (19.1% ± 9.4 of the liver mass, n = 10 Treberg unpublished observation), the

exceptionally high TMAoxi found in this present study in the kidney strongly suggests

that if smelt are actively synthesizing IMAO, synthesis occurs in the kidney and not in

the liver as believed in other fishes.

Although the kidney appears to be the likely site ofTMAO synthesis, there was

no apparent trend between temperature and levels ofTMAoxi activity, although there
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was a great deal of variability between groups. Furthennore, there was no significant

trend between kidney TMAoxi activity and plasma TMAO concentrations. Thus,

although the metabolic machinery for TMAO synthesis is present in the smelt kidney,

there is not an increased capacity for synthesis in conjunction with increased TMAO

levels. Interestingly, there was no difference between the ambient and warm groups. As

the fish held at 9°C would have a higher relative TMAoxi activity, and capacity for

TMAO synthesis, than fish at lower temperatures, absolute levels of kidney TMAoxi

activity do not relate with TMAO accwnulation.

The above raises the question, if TMAO is bemg synthesized, could regulation

occur by some other means? This may happen by increased flux through to the

production ofTMA; however, the preliminary data found that tissue levels ofTMA were

very low in the kidney « 0.2 mmollkg) indicating that enhanced TMA production does

not appear to have a key role in TMAO accumulation.

TMAoxi in fish is believed to be, or similar to, the flavin containing

monooxygenase, E.C. 1.14.13.8 (FMO) of mammals (Schlenk and Li-Schlenk 1994). To

my knowledge, there arc no known allosteric modulators of FMO; however, any

potential role of direct or indirect (ie. compctetive) activation or inhibition ofTMAoxi in

relation to the regulation ofTMAO synthesis in fish has yet to be examined.

The Michaelis-Menton plot in figure 3.7a gives the best evidence so far how

TMAO synthesis could increase while TMAoxi remains at constitutive levels. With an

apparent K", of 0.2 mM for TMA (Fig. 3.7b) and relatively large changes in activity at

lower TMA concentrations while subsequently 'trailing' offat higher TMA



concentrations, smelt kidney TMAoxi appears to be well adapted for regulation simply

by shifts in the intracellular TMA concentration. The apparent K", for TMA is slightly

higher than physiological concentrations and if production ofTMA were to increase from

the catabolism of trimethylamine.containing compounds, the rate of oxidation to TMAO

would increase rapidly by the affinity of the enzyme for this substrate. Thus, there may

be no need for further regulation at this locus.

Alternately, the accumulation of TMAO may not represent increased synthesis,

but rather an increase in retention. Along with IMAO, glycerol is accumulated by smelt

and can reach 400 mM (Raymond 1992). It is hypothesized that these solutes act as

colligative antifreezes to enhance the smelt's freeze-avoidance response. As the solutes

that are accumulated by smell as colligative antifreeze are all relatively small and

permeable to biomembranes., especially glycerol, it seems likely that smelt have

physiological mechanisms for curtailing solute loss. This may be important because

glycerol synthesis and accumu!ation would be metabolically costly, diverting carbon

from use as an energy source. The most like sites of solute loss are the gills and the

kidney, and TMAO accumulation may simply reflect reduced removal of dietary TMAO.

This is an area yet to be explored.

3.4.3 Intertissue differences in levels of TMAO

Smelt present a unique opportunity not only to examine the intertissue distribution

ofTMAO, but also how changing extracellular TMAO concentrations, represented by

plasma concentrations, affect tissue levels. This is the first time such observations have
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been looked at in detail in a teleost fish. In a general sense, the tissue distribution of

TMAO follows the trend of white muscle> heart > liver =: kidney =: brain> intestine. Of

note, the lower levels in the intestine may be a result oflow water content relative to total

mass due to the high amount of connective tissue. The intertissue distribution found in

smelt is consistent with data on other teleosts (reviewed by Hebard et al. 1982, see also

chapter 2).

The data in figures 3.4 and 3.8 illustrate several key trends, the most striking of

which is that levels ofTMAO in the liver, kidney, brain, intestine and heart are directly

proportional to plasma concentrations. Furthennore, with the exception of heart, the

slope of these regressions range from 0.58 to 0.77 which is close to what may be

expected assuming intracellular water content of approximately 70'% and equilibration of

TMAO between the intra and extracellular compartments.

Heart TMAO content increases with increasing plasma TMAO over three times

more than the other tissues thai show a linear trend. Although heart TMAO content is

proportional to plasma concentration, the intracellular concentration is much higher than

thai of the extracellular compartment. This may be due to some role ofTMAO in

relation to cardiac muscle function and implies active uptake as discussed below.

Data in Figure 3.4a represent the trend in liver over an entire season while the

liver data in Figure 3.8a are from fish selected from February when the different smelt

groups were expected to have very differenl plasma TMAO concentrations. These

regression equations are not significantly different and suggest that the trends seen in

62



figure 3.8 are representative of trends that will be seen regardless of the season, that is

they are not an artifact of the sample period.

While the TMAO content of the other tissues was proportional to plasma

concentration, TMAO in the white muscle is essentially unchanged by the extracellular

ooncentrations seen in the 99/00 experiment (Fig. 3Ab). This leads to two hypotheses;

first that white muscle in smelt may function optimally at a particular intracellular

TMAO concentration and second there is an active and regulated uptake ofTMAO into

the muscle.

White muscle from many marine fishes has high TMAO oontent (Hebard et aI.

1982) although the near ubiquitousness ofTMAO in the muscle of marine fishes has yet

to be clearly explained. Yancey et al. (2001) have shown that TMAO counteracts the

breakdown of f-actin into g-actin by high pressure in a deep-sea teleost. TMAO favours

protein:protein interactions (Yancey 1994) and accumulation in the striated muscle of

marine fish (where f-actin is a major functional and structural oomponent) may aid in the

maintaining the structure of f-actin or favour the polymerization of g-actin to f-actin (see

discussion Chapter 2). Alternately, TMAO has been shown to counteract the negative

effects of high ionic strength on isolated muscle fibre contractility in vitro (Nosek et al.

1998) and the accumulation ofTMAO in marine fishes may playa similar role in vivo.

The consistency of white muscle TMAO content in smelt strongly suggests a

regulated intnn;ellular concentration. This is because the intracellular concentration is

much higher than the extracelluJar compartment and is also unaffected by changes in the

intracellular to extracellular concentration gradient. For muscle TMAO levels to be
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regulated, there would have to be some means of active transport, or alternately a novel

and undescribed TMAO synthetic pathway, because the small size ofTMAO would

likely result in some 'leakage' out of the muscle. Interestingly, the data on heart

discussed above is suggestive of active transport because TMAO is again moved up a

substantial concentration gradient. In hean, levels do not appear to be directly regulated,

but are instead modulated by plasma concentrations. To date. no work has been done on

the transport of TMAO in fish muscle; however. in light of this data (see also chapter 2)

such investigations appear to be warranted.

3.5 Conclusions

The accumulation ofTMAO in smelt may have a thermal trigger at approximately

SoC and can be suppressed by temperatures above this range. TMAO accumulates in the

plasma and there is a proportional relationship with plasma concentrations in the liver,

kidney, intestine, brain and heart whereas TMAO in the white muscle is maintained at a

constant level. The kidney, not the liver, appears to be the most likely source for

endogenous synthesis ofTMAO in smelt and has exceptionally high levels ofTMAoxi,

although the accumulation ofTMAO does not coincide with an increase in TMAoxi

activity. TMAO is likely in, or near, equilibrium between the extracellular and

intracellular compartments in the liver, kidney, intestine and brain and is elevated in the

heart and white muscle, the latter of which is regulated al a constant level. These

experiments also provide data thai are evidence for the existence of a TMAO uptake

mechanism in smelt heart and white muscle.
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4: Summary

When approaching physiological problems in a comparative sense, one must do

one of two things, examine a number of species to determine if differences occur over the

conditions be tested, as in Chapter 2, or subject a single species to changing conditions,

as in Chapter 3. In case of the studies involved with this thesis, the experimental

approach worked very well, be the approach interspecific or intraspecific. There were

numerous fundamental or mechanistic consistencies between the deep-sea study and the

smelt experiments.

The most obvious is that both studies found that the adaptation to a particular

environment (be it high pressure or subzero temperatures) resulted in the accumulation of

TMAO in fish. As both were relatively low temperature environments, it is tempting to

speculate on a hypothesis that TMAO plays some role in marine fish at low temperatures.

With currently available data, this can only be done with marine teleosts living near the

freezing poinl of seawater as there are insufficient data to support a more general

hypothesis on TMAO accumulation in cold water fishes. Yet the data in this thesis do

build upon previous studies and go one step further to determining if the accumulation of

TMAO may have general adaptive significance at low temperatures.

Raymond and DeVries (1998) have shown a trend of increasing liver TMAoxi

activity with increasing serum TMAO. The data in chapters 2 and 3 do not support this

hypothesis. The deep-sea fishes with detectable liver TMAoxi actually had much lower

levels than the shallow water species that had marginal plasma TMAO concentrations.

Furthermore, smelt were found to have no appreciable liver TMAoxi activity while the
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kidney had levels of this enzyme an order of magnitude higher than the liver activities

presented in Raymond and DeVries (1998). As such, the studies in this thesis do support

the hypothesis that certain species of fish have the metabolic machinery to make TMAO

but whether or not TMAO is actively synthesized is still an unanswered question.

A major consistency found in all species examined in Chapters 2 and 3 as well as

in many species previously examined (see Hebard et a!. 1982) is that white muscle has a

disproportionately high TMAO content relative to plasma/serum concentrations and the

levels in other tissues. This is true not only in teleosts, but also in elasmobranch fishes,

which is an observation often ignored. This suggests that there is some active means of

TMAO uptake and retention, or an underscribed synthetic pathway for TMAO, in the

swimming muscle of marine fishes and that TMAO plays some physiologically important

role in the function of striated muscle. Interestingly, the heart also shows a trend of

higher TMAO content than would be expected if in equilibrium with the plasma

concentration. Again, this suggests an active uptake ofTMAO and some role in the

functioning of striated muscle.

Taken together, the results in chapters 2 and 3 demonstrate not only that TMAO is

accumulated in deep-sea fish and smelt at temperatures approaching O"C, but also that

there is some consistency in the intertissue distribution ofTMAO, with striated muscle

(especially locomotory muscle) having the highest TMAO contents. Although this has

been examined in the past, albeit in less detail, previous works tended to be geared to

more descriptive rather than functional interpretation. The present work illustrates that

muscle is not representative of other tissues although it appears that some presume that it
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is, especially in the case of elasmobranchs (the often touted 2:1 ratio of urea to TMAO or

total methylamines is based mostly on data from white muscle).

Finally, two excellent model 'systems' have been found for the study ofTMAO,

it's metabolism and importance in marine fishes; comparison of shallow living species

with deep-sea confamiliar species and the seemingly unique smelt which via

experimental manipulation can be used as a whole animal model system that can

increase, or decrease, TMAO allowing for the study of how these changes are mediated

and regulated. In the future J plan to use the above model systems, as well as others, to

further elucidate the metabolism, regulation and importance ofTMAO and related

methylamines in aquatic animals.
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Appendix 1.

Occurrence of liver trimethylamine oxidase (TMAoxi) activity in teleost and

elasmobranch fishes, activity in }lffiol g -Ihr-
I
. RL, radiolabelled assay, Spec.,

spectrophotometric assay, BLD, activity below limits of detection.

Spe<:ies Common name TMAoxi Method Reference

Teleosts
Perciformes
Leploco/ft<Sarmatus Bullhead 16.8 RL Baker el a1. 1963
Poriduhysnowhls Nonhem midshipman 16.7 RL BakeretaL 1963
Ophiodonelongafus Lingcod 4.2 RL Baker el Ill. 1963
Phonerodonfurcotus Perch BLD RL Baker et aL 1963
Anoplopomafimbrio SabJelish <:l.0 RL Bakerela1.1963
RQCCUssaxatilis SITipedbass 1l.5 RL Bakereta1.1963
Pneumatophuorusdiego Pacific mackerel BLD RL Baker el al. 1963

NOlOtheniformes
Dissostichusmawsoni Antardicloolhfish 0.94 S"",. Raymond and DeVries 1998
Gymnodracoacutir:eps Antareticdragonfish 0.72 S"",. Raymond and DeVries 1998
NOfOlheniaangusrota Codiccfish BLD S"'" Raymond and DeVries 1998

Plcurone<.:liformcs
Hippoglossus slenolepis PlU:itichalibut lOA RL Bakcrctal.I963
Atheyesthesstomia< Arrowtoothhalibut <1.0 RL BakerCIaL 1963
Psettichthysmelonostictw; Sand:solc 4.2 RL BakcrctaL 1963
wpsetlojordoni Petral:solc BLD RL BakeretaL 1963
MicroslomisptJcificus Dover sole BLD RL BakerctaL 1963
Parophyrusl'cntulw; English sole <1.0 RL BakcretaL 1963
PlotichlhysstellalW StatTyflounder BLD RL BakcretaL 1963
Limandalimanda Yellowtail flounder BLD RL Agustsson and Strom 1981
Pleuroneetesplote3sa Flounderspp BLD RL Agustsson and Strom 1981

Gadiformes
Gadusmorhua Coo 2.0-9.0 RL Agustsson and Strom 1981
Eleginusgracillu.s Saffron cod 0.21 S"",. Raymond 1998

Salmoniformes
Osmerusmordax Smelt 024 S"",. Raymond 1998
Ol1chorhynchus Chinook salmon < 1.0 RL Baketetal.l963
tshawytllScha
Onchorhyncfwsgoirdneri Rainbow trout 3.5 RL Bakeretal.l963
(SW)
Onchorhynchusgairdneri Rainbow trout <0.2 Baker et al. 1963

'W
Continued ...
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Appendix 1 continued:

s ies Common name TMAoxi Method Reference

Elopiformes
Alososopidi5$ima Sh" 2.7 RL Baker eta!. 1963
Cfupeaharellglls Herring 0.65 S"". Raymond 1998

Elasmobranchs
Rajiformes
Rojaeri1/oceo Liltleskate 0.0051 BL Goldstein and DeWitt-

Harley 1973
Rajabi/ltXlllafa Big skate <1.0 RL Bakeretal.1963
Torpedo cali/ornico Electric ray BLD RL BakeretaL 1963

Squaliformes

~ua~~ac.~llfh!.os Spinydoglish < LO BL Bakeretal.I963
0.0041 RL Goldstein and DeWitt-

Harley 1973

Orectolobiformes
Gillglymosfoma cirri/urn NUr'SCshark 6.3 Goldstein and DeWitt-

Harley 1973

Carcharhinifonnes
MIIS/elu$cali/orllicus Smoothhound 17.1 BL Bakere!al.I963
Negaprionbrf.'Virostrus Lemon shark 83 RL Goldstcin and DeWitt-

Harle 1973

Note: For full reference citations, see chapter 1.
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Appendix 2.

The in vivo conversion of injected radiolabelled potential precursors ofTMAO in various

fishes. + conversion to TMAO, ± marginal conversion to TMAO of questionable

physiological significance, • conversion below levels of detection.

Species Precursor Conversion Reference
toTMAO

Platichlhysslellatus

ParophTysvew/us

Gadll!imorhua

PtuolabraxclarhralU$

OIlCOl'hyru:hus

gOl'bU$cha

SquaJldacanthias

Ginglymostoma

Negopriollbl'evirostrus

Dasyarisamericana

Rojaerinacea

Methyl-[" Cl·Cho]ine

Methyl-["C]-TMA

Methyl.["Cj.BulyTObetaine

{"C)-Methylamine

Methy[-["C]-Carnitine

2-["C}-Glycine

["C)-Formate

Methyl-["C)-Betaine

Medtyl-["C].Methionine

[-["C)-Acetate

2-!"C]-Acetate
2.["q.Bicarbonate
Methyl-[" Cj-TMA

Methyl-["q-TMA
Melhyl.['Hj-Choline

Methyl-["Cj-Choline
Methyl-["Cj-Betaine

Methyl-["C]-TMA

Methyl-[I'Cl-Betaine

Mcthyl-[I<Cl-Choline

Methyl-[I'Cl-Choline

Methyl-[I'Cl-eholine

Methyl-l"Cl-TMA

Methyl-C'Cl-TMA

Methyl-["Cl-TMA

Methyl·["Cl-TMA

Bilinski 1964

Bilinski 1964

Bilinski 1964

Bilinski 1964
Bilinski 1964

Bilinski 1964

Bilinski 1964
Bilinski 1964

Bilinski 1964

Bilinski 1964

Bilinski 1964

Bilinski 1964
AugustssonandStrom

1981

Charesletal.1988

Charestetal.1988

Charest et al. 1988

Ch~stelal.1988

Ch~Sleta1.1988

Charest et al. 1988

Goldsteinela!. 1967

Goldstein el al. 1967

Goldsteinartd

Funkhouser 1912

Goldstein and

Funkhouser 1912

Goldstein and DeWill
Ilarleyl973

Goldstein and DeWill'

Harley 1973

Goldslein andDeWill

Harle 1973

Note: For full reference citation, see chapter 1.
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