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Abstract

The effects of climate change are likely to have a significant impact on
environmental flows, which are often represented by alterations in hydrologic
and ecological indices. Changes in flow regimes caused by climate change have
implications for river ecology, and projections of future flow regimes must be
reliable. In this study, the performance of hydrological models was evaluated with
hydro-ecological indices to determine if stream flow characteristics could be reasonably
modelled with RCM (Regional Climate Model) driven data. In general, it was found
that RCM driven hydrological models could well simulate ecological stream flow
characteristics with seasonal or monthly bias correction. However, characteristics that
represented the frequency and rate of change of stream flow were not well simulated
even with bias correction. RCM data driven models resulted in comparable error to
the simulation of ERSS in a regional analysis. This gave confidence to the use of

RCM driven data to simulate stream flow characteristics.
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Chapter 1

Introduction

The natural flow regime and the ecological health of a river are inextricably linked.
The natural flow regime is the characteristic pattern of a river’s flow and varies
between long and short time scales [1]. When the natural flow regime is changed
spawning cues for fish can be eliminated and microorganism disturbance can take
place [2]-[4]. These changes to the natural flow regime affect the environmental flows
necessary to maintain human and ecological health in a waterway according to the
Brisbane Declaration [5]. It is well established that human modification, by way of
land use changes, large construction works or anthropogenic climate change alters the
stream flow regime and therefore the ecology of a waterway and riparian area[l], [6],
[7]. Hydro-ecological indices have to be consistently used as a way to to evaluate the
effects or impact of changes to the natural flow regime. Hydro-ecological indices are

described in this thesis as Ecologically Relevant Stream flow Statistics (ERSS).

The natural flow regime is described by the magnitude, duration, timing,
frequency and rate of change of a waterway. Statistics that characterize these five

components of stream flow are known as ERSS [8]. Changes in ERSS values represent



changes to the waterway which may have ecological significance and impact. One
useful approach is to create a set of future stream flows using a sensitivity model
or climate ensemble model and future ERSS are calculated from these stream flow
predictions [9]-[11]. However, there is concern over the accuracy and uncertainty of
climate projections and their application to ecological concerns. Climate extremes are
of particular interest as they are ecologically relevant [12]. For example, continuous

low flows can reduce dissolved oxygen levels and lead to drought conditions.

Dynamical downscaling is one method to bring global climate processes (affected
by climate change) to the local scale to be used in hydrological modelling and
determine environmental impacts. Dynamical downscaling is an intensive technique
to predict climate change impacts but has been found to better represent regional
climate [13]. However, current methods of dynamical downscaling do not well estimate
hydrologic variables [14]. Downscaled data input into a hydrological model results
in the poor estimation of hydrological variables due to the spatial mismatch between

the data and model.

This study tests the ability of a hydrological model to simulate ERSS and
dynamically downscaled data to simulate ERSS. Daily data simulated from GCMs
(General Circulation Model) should not be compared, only statistics that describe
the long term flow regime should be used [15]. The hypothesis of this research is that
bias correcting stream flows will improve hydrologic simulations ability to capture
flow indices and improve the performance of GCM driven models to represent these
indices. Research was needed to test bias correction of stream flows using seasonally
based methods [15]. This study focused on two watersheds of ecological significance

located on the Coastal Plain in New Jersey, USA.

The objectives of this study were to:



1. Identify parsimonious sets of ERSS that define the watersheds and

region of interest

2. Compare ERSS simulated through hydrological modelling driven by
observed historical data (1955-2005) and dynamically downscaled
GCM simulations of the historical period (1955-2005) to observed
ERSS

3. Compare ERSS derived from bias corrected stream flow from

simulations in objective 2 to observed ERSS

The intent of this research is to support the development of accurate
climate change predictions and predictions of hydro-ecological indices to determine
appropriate mitigation measures. To use a model for climate change predictions with
confidence the model must perform well over a long time period [15]. More detailed
analysis of the flow regime and ecological characteristics of this data were necessary

as there are projected changes in stream flow [15].

This thesis is separated into 7 chapters. Chapter 2 discusses the pertaining
literature to this topic: downscaling, ecology and hydrological modelling. Chapter 3
outlines the data used in this research. Chapters 4, 5 and 6 present methodology and
results obtained in three phases of this analysis along with discussions of each phase.

Chapter 7 is the conclusion of the study.



Chapter 2

Literature Review

Throughout history humans have altered stream flow patterns and these changes
have had ecological consequences. Large water infrastructure works, such as dams,
have altered stream flow regimes and biota [1]. Human-caused land use changes
have altered the ecology of river systems by changing evapotranspiration, runoff
and groundwater recharge [16]. In the 1970’s new environmental regulations in
the United States paved the way for developments in ecological rehabilitation and
watershed modelling, leading to reduced impact on the stream flow regime due to
human development. However, climate change is now impacting riparian systems
and attenuating human alterations of the landscape, such as increasing the frequency
of flooding, droughts and other extreme events. New methods must be created to
understand the impact of climate change on stream flow regimes as there are ecological

consequences to climate change on freshwater resources [17].

Changes to the flow regime have ecological consequences and this has been known
for a long time. For example, the flood-pulse concept states that a long or short flood

pulse impacts the type of biota in a river-floodplain system [2]. However, changes



to stream flow characteristics due to climate change are being increasingly studied
as climate change may impact ecological processes and economic activities such as

fisheries and urban planning [18]-[20].

Hydrological models are often a foundational step of analysis to better understand
alteration of a waterway or to create environmental flows [11]. Environmental flows
are the flows necessary to maintain human and ecological health in a waterway [5].
The five fundamental components of stream flow are magnitude, duration, timing,
frequency and rate of change [1]. Various hydrological models have been used to
determine environmental impacts and ecological aspects of flow [21]. However, no
one hydrological model has been found that is superior for ecological modelling and

environmental purposes [8].

Land use and land cover change impact the stream flow regime [22]. The effect
of such changes have been studied recently in various climates around the world and
can exacerbate drought conditions, increase nutrient concentrations and change flow
regimes which have ecological consequences [23], [24]. While land use changes can
have a significant change on flow regimes, climate change can have just as large or a

greater impact on stream flow [25].

2.1 Ecologically Relevant Stream flow Statistics

Environmental flows can be represented by statistics that describe the flow of a
waterway or stream flow regime. These statistics are known as Ecologically Relevant
Stream flow Statistics (ERSS) [26]. ERSS can be used to create management targets,
they are useful as a measure of how the ecology of a riparian area is changing [27].

ERSS can also be used to classify flows to determine changes in a waterway and imply



changes to the ecology of an area. There are a large number of hydro-ecological indices
and there are many different ways to pick a parsimonious set of indices that represents

the stream flow signal [27].

Olden and Poff (2003) took long term flow records from across the continental
United States and used Principal Component analysis (PCA) to determine a
parsimonious set of ERSS while still representing the stream flow regime [27]. An
ERSS for each aspect of the regime (magnitude, frequency, duration, timing, rate of
change) was chosen for each flow condition (high flow, low flow, average flow). This

analysis was performed for each stream type in the 420 sites.

There are also pre-determined sets of ERSS. Relevant indices should be chosen
based on some consultation with biologists and ecologists and popular methods to

subset indices are discussed below.

2.1.1 Indicators of Hydrologic Alteration

One common method of determining relevant streamflow statistics is to use the
Indicators of Hydrologic Alteration (IHA) a program designed to determine human
impacts on flow [28]. The THA method consists of thirty three hydrologic parameters
that can be correlated to ecological conditions. However, the primary purpose is to
determine human alteration on a system through activities such as construction where
there are known years where the stream flow regime was expected to change (e.g. the
creation of a dam in the year 2000). Determination of IHA requires one year to
divide pre- and postconditions which may not be appropriate for all types of analysis.
Some research has been done using this method to assess impacted waterways due

to climate change [29]. There are some disadvantages of this system. No indicators



directly quantify the magnitude of high flow conditions, this system is mainly set out
to only look at extreme low flow conditions [27]. The ITHA system is an extremely

common tool for hydroecological impact assessment [29], [30].

2.1.2 Range of Variability Approach

A similar method to the IHA system is the Range of Variability Approach (RVA).
Thirty three IHA parameters are analyzed that represent the five flow components:
frequency, magnitude, timing, duration and rate of change. This method looks at
the variation of the pre-impact indices, this determines the amount of alteration of a
waterway [31]. A range of variation of each of these parameters is selected as initial
flow management targets [32]. This method has the additional benefit of capturing
variation, however, the set of IHA parameters may not be ideal to the specific area of
interest. A minimum period of record is required to analyze the baseline or natural
range of variation, although estimation and modelling techniques can be used to

expand or create a flow record [32].

2.1.3 Hydroecological Integrity Assessment Process

The USGS has processes put in place for determining stream flow alteration
that would impact aquatic species. It is known as the Hydrolecological Integrity
Assessment Process (HIP) [33]. There are four main steps in the process: 1) perform
hydrological classification, 2) identify ERSS of interest, 3) develop area-specific stream
classification, and 4) develop an area specific Hydrologic Assessment Tool which can
be used to determine hydrological modification and flow standards [34]. Step 2 -

determining ERSS of interest can be completed using the pre-determined indices



noted above or other methods.

One tool that can be used to determine ERSS is HIT (Hydrologic Index Tool) that
was developed for the Hydroecological Integrity Assessment Process. The program
calculates 171 indices from daily flow data [34]. These ERSS represent the five
fundamental aspects of flow [1]. An ERSS should be selected that represents each
aspect of flow at each condition (high flow, low flow and average flow) to give an
adequate representation of the flow regime. In 2013, HIT was moved from a software
interface to a package called EflowStats [35] in the programming language R [36].
This increased the functionality of the program by allowing data to be input that was

not connected to the USGS site, such as hydrological model simulations.

2.1.4 Importance of Accurate ERSS Simulation

Traditionally hydrological model calibration has been performed on a hydrograph;
some calibration has been done using flow duration curves. However, the ecological
relationship between the flow and the accuracy of how flow is predicted has not been
a concern of most hydrological modelling projects to date. A focus on Ecologically

Relevant Stream flow Statistics (ERSS) is needed.

ERSS are statistics that represent the ecological relationship between flow and
local biota. Only in the past 15 years has the importance of the natural flow regime
been noted, thanks to the landmark research by Olden and Poff [1]. In some projects
the water quality statistic 7Q10 (the minimum seven day consecutive flow with a
10 year frequency), is used as the only environmental flow criteria [37]-[39]. The
environmental aspects of waterways must be analyzed more deeply for there to be

an adequate preservation of the ecological health of an area. These indices represent



a connection to the ecology of an area, even if they only appear to describe the

hydrodynamics of a system.

The timing and intensity of flood events are crucial in maintaining riparian
diversity through the influence of sediment dynamics [40]. Flood duration may
also provide insight into the ability to restore abundance of a riparian area [41].
Certain indices are of interest to specific species, many examples were found that
demonstrated this impact. Along the Missouri River peak flows heavily influenced
cottonwood recruitment; cottonwood is a habitat for many wildlife species [42]. This

is one example of many.

The establishment of an invasive species in an environment can have poor
consequences for the existing ecology of an area. In a global study of Holoarctic
regions the invasive success of rainbow trout could be explained by the timing of fry
emergence and the timing of low monthly flows [43] . Low flow indices may also be of
particular concern in areas where there is potential for drought. Changes in ERSS due
to climate change predicted a minimum of 38 species to have declines in abundance

in Missouri (USA) [44]. A select list of potential consequences to flow alteration are

in Table 2.1 [1].

2.2 Hydrological Modelling and Environmental

Effects

Hydrological modelling simulates observed natural processes so that engineering
design and scientific analysis can be completed. There are multiple calibration and

validation techniques. However, the question remains, has there been enough focus



Table 2.1:

10

A sample of ecological responses to select alterations in the five

fundamental components of the flow regime [1].

Flow
Component

Specific Alteration

Ecological Response

Magnitude and
Frequency

Timing

Duration

Rate of Change

Increased Variation

Flow Stabilization

Loss of Seasonal Flow
Peaks

Prolonged low flows

Prolonged  baseflow
("spikes”)

Altered inundation
duration

Prolonged inundation

Rapid changes in river
stage
Accelerated
Recession

Flood

Wash-out and/or stranding

Lots of sensitive species

Increased algal scour and wash-out of
organic matter

Life cycle disruption

Altered energy flow

Invasion or establishment of exotic
species leading to:

Local Extinction and
Threat to the native
species

Reduced water and nutrients to the
floodplain plant species, causing:
Seedling desiccation

Loss of secondary channels needed for
plant establishment

Disrupt Spawning cues for fish

Loss of fish access to wetlands or
backwaters

Modification of aquatic web food
structure

Reduction or elimination of Riparian
plant recruitment

Reduction or elimination of plant cover
Diminished plant species diversity
Desertification of riparian species
composition

Concentration of aquatic organisms
Downstream loss of floating eggs

commercial

Altered plant cover types

Change in vegetation functional type
Tree mortality

Loss of riffle habitat for aquatic species
Wash-out and stranding of aquatic
species

Failure of seedling establishment
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on the calibration of models for ecological purposes, such as flow regimes? Often
calibration is completed by comparing daily runoff versus simulated runoff for a
hydrological model [45]. Calibration is also completed by using traditional error
measures such as Nash-Sutcliffe Error (NSE) on a flow regime, but this does not take
the natural flow regime into account [1]. Some hydrological models better account

for magnitude than the other four aspects of flow [46].

Downscaling is a source of uncertainty, but the hydrological model is another
source of uncertainty as well. There are three primary sources of uncertainty from
the hydrological model: uncertainty in observations, parameter uncertainty and model
structure uncertainty [47], [48]. These errors stem from both human error and
limitations of our knowledge of the natural world. While no model is perfect, some
hydrological models perform better than others. One model that has performed well
in previous studies is the Precipitation-Runoff modelling system which has been used

in various studies where hydro-ecological indices were of interest [8].

Caldwell (2015) tested six hydrological models at five study sites with varying
levels of calibration: uncalibrated, calibrated to a downstream site, calibrated
specifically for the site and calibrated for the site with adjusted precipitation and
temperature inputs [8]. The authors found that the hydrological model’s calibration
had a greater impact on simulation of ERSS than model selection. It was additionally
found that simple regional scale models had comparable performance to more complex
models [8]. However, strong consideration should always be given to the type of
hydrological model chosen for a given area or region based on applicability, parsimony
and availability of input data. The strengths of a hydrological model should always

be considered before moving forward with the calculation of ERSS.

The output of a hydrological model and the calculation of an ERSS can lead to
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very different mitigation measures. Comparing a rainfall-runoff model to a regional
regression model, it was found that both hydrological models underestimated observed
variability but their calculation in some observed ERSS led to very different values
in insectivore scores, important for the health of the area [49]. Murphy et al. (2013)
found that the rainfall-runoff model had a 90% difference and the regional regression
model had a 16% difference from the observed insectivore score [49]. Poor hydrological
models and unexamined error can distort the perceived ecological health, risk and lead

to the creation of poor mitigation measures.

How well a hydrological model simulates a type of flow is also a concern. Mitigation
measures and preparedness for future environmental disasters can only be done when
ERSS have been calculated and analyzed. To accurately and precisely simulate
future conditions, present (baseline) conditions must be simulated well first. In one
Australian study stream flow characteristics were simulated well at high and average
flow but poorly at low flows, indicating an area for model improvement [9]. A similar
result was found in a study of stream flow characteristics over Northeastern Canada
[10]. A goal of this study is to determine if these stream flow characteristics can be

improved with bias correction (BC).

Often in model calibration the average flows are reproduced the best, in part due
to the selection of an error criterion that places less value on deviations at extreme
high and low flows. In one study in Brazil, it was found that the flows with 90%
and 95% exceedance were overestimated at 24% and 16% respectively [50]. The
overestimation of extreme high and low flows in hydrological models needs to be

continually researched since these types of flows are often ecologically significant [51].
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2.3 Climate Downscaling

Changes in global climatic conditions are known to affect small scale regional
weather patterns. Downscaling connects the global scale and the local scale; creating
local details as well as bridging the gap between the large scale atmospheric processes
and the small scale climatic conditions. Probability density functions of temperature,
precipitation or other climatic characteristics of a region are found through the
downscaling method [52]. The origins of downscaling are in the field of weather
forecasting but it is also used in climate research with applications towards climate

change.

Traditionally, extreme events are based on historical data and extreme events have
set return periods based on the concept of stationarity [53]. Stationarity describes
the idea that the variability in a watershed does not change [53]. For example, a 100
year flood has a 1% chance of occurrence in any given year and a construction project
would be built to withstand a 100 year flood event. Climate change has eroded the
classic methods of estimating future conditions as stationarity no longer holds true.
Estimating future extreme events by analyzing the severity and frequency of past

events is no longer reliable [53].

To estimate future scenarios that have variability in (extreme) events new methods
must be created to model extreme future data. General circulation models (GCMs)
contain climate information such as temperature, wind speeds, and precipitation for a
large area [54]. GCMs are used in conjunction with estimated future land-use changes,
and greenhouse gas emissions to determine future climate change projections [54].
However, GCM data cannot be used directly as there are two major impediments: 1)

the spatial scale of the GCM may not be as fine as required in a hydrological model
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Figure 2.1: Data storage of climate information in GCM (General Circulation Model)
and RCM (Regional Climate Model) grids and illustration of downscaling [56].

and 2) GCM output data contains biases relative to observed data [55].

Downscaling is the process of taking stored climate information in GCMs and
transforming it to the appropriate size for use by those studying local impacts [56],
[57], see Figure 2.1. There are two broad categories of downscaling - dynamical and
statistical. The choice of downscaling technique and inputs is dependent upon the
sites and variables of interest. Studies using downscaling have shown temperature
is better simulated than precipitation, however, to determine ERSS the simulation
of stream flow is necessary [58]. While there are benefits and detractions for each

technique there is no universally superior downscaling technique [56].
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2.3.1 Statistical Downscaling

Statistical downscaling is the older of the two downscaling techniques. In
statistical downscaling, relationships are determined between observed climate data
and large-scale climate patterns resolved by GCMs [55]. The statistical relationships
are then applied to the GCM ouputs to give data more appropriate for local climate
impact studies [55]. The first statistical downscaling techniques were regression
models [59]. Statistical downscaling methods now include but are not limited
to transfer functions, weather typing and weather generator methods [57]. The
downscaling method has a large influence on the uncertainty of the predictions and
the method should be chosen on a case-by-case basis [57], [58]. Statistical downscaling

is limited by stationarity as it is based upon empirical relationships [45].

One of the simplest and most widely used forms of statistical downscaling is
the change factor method (also known as the delta change factor method). This
method takes the difference between the GCM output for the current time period
and the GCM output from the future time period for a variable of interest [60]. The
difference is then applied to the climate variable that has been directly downscaled to
the observed resolution at the present time scale to get a present day observational
data set [60]. However, this method only changes the average values of the climate
variables, and not the variability [56]. The change factor method does not require

any validation because it is based on the observed time series [57].

2.3.2 Dynamical Downscaling

Dynamical downscaling is a newer development in the field of climate research

and downscaling techniques. PRUDENCE was the first international dynamical
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downscaling project and it was used to create climate change predictions for Europe
[61]. The PRUDENCE project started in 2001, making the field of dynamical
downscaling quite new compared to statistical downscaling which has origins in

weather forecasting techniques from the 1950’s [52].

In dynamical downscaling the large GCM grids are restricted to smaller areas,
creating regional climate models (RCMs). The boundary conditions are forced by the
GCMs. The RCM is the model and the GCM is the driver. In dynamical downscaling
both the large scale (atmospheric) and local conditions are calculated simultaneously
[52]. Dynamical downscaling has been shown to better simulate the regional climate,

however there are disadvantages to this method [13].

RCMs contain a better spatial resolution than GCMs, but are not necessarily
more accurate to the desired degree [56]. Dynamical downscaling is sensitive to initial
conditions and computationally intense. Additionally, this method does not allow for
feedback into the global model. However, dynamical downscaling has been shown to
better represent regional climate [13]. Dynamical downscaling is more physically
based [45]. Bias correction is necessary (or another post-processing method), in
dynamical downscaling as the physical and geographical characteristics of the basin
are usually underrepresented and GCM errors propogate into RCM output [57], [62],
[63]. Dynamically downscaled data is difficult to transfer to other regions as it is very
specific to the local area. However, this may be viewed as a benefit or neutral in this

research since only two basins are being considered.

Dynamical downscaling is a newer technique and is evolving quickly. Current
research across all downscaling techniques involves increasing GCM resolutions and
expanding ensemble projects. Data for climate research from dynamical downscaling

comes from large national or international projects. The Intergovernmental Panel on
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Climate Change (IPCC) has the goal to advance science related to climate change
and assess the impact of climate change on the Earth’s systems, both environmental
and socio-economic [64]. To further understand climate change and predict future
climate change impacts the CMIP (Coupled Model Intercomparison Project) was
created, a collection of climate simulations [65]. The project is now in it’s fifth phase
(CMIP5). Progress needs to be made in terms of reducing uncertainty and creating
more accurate climate simulations. One way that is being accomplished is by bias

correction.

2.3.3 Uncertainty in Downscaling

Observed climate data does contain uncertainty stemming from measurement
error and data management [46]. Uncertainty also propagates into hydrological
models. This is particularly true regarding low flow and high flow events simulated
by hydrological models which are important for ecological function [51] . However,

downscaled data introduces additional uncertainty into hydrological models.

All downscaling methods introduce additional uncertainty to that already present
from GCMs [51], [58], [66, among others]. The choice of downscaling method has
been found to be a source of uncertainty [57]. Uncertainty propogates from emission
scenario chosen, to GCM, RCM through to the downscaling method [15]. Using
data with a finer resolution from information at a course resolution can lead to
the the inability of the downscaling method to capture extreme events which are
ecologically important [57]. RCMs best represent typical weather conditions and the
complex relationships in a watershed may not necessessarily be kept when performing
downscaling [67]. Chen et al.(2011) compared the uncertainty from six downscaling

methods and the majority of the models resulted in hydrographs very similar to the



18

observed hydrograph but with poorly simulated timing and peak data [57]. Different
downscaling methods can cause variation in results, and thus climate change impact
studies using only one downscaling method should be interpreted with caution [57].
This uncertainty can propogate and can lead to simulation error in ERSS; Shrestha
et al.(2014) found that certain ERSS were subject to considerable uncertainties with

eight GCMs as data inputs in a hydrological model [68].

Aside from known uncertainties such as incomplete knowledge of climate systems
and model simplification there are additional unknowns when projecting future
climate using downscaling methods. These include, but are not limited to, unknown
future climate policy which will affect carbon emissions and atmospheric processes
[56]. Representative Concentration Pathways (RCPs) are emission scenarios based
on different future scenarios of human population size, economic activity land use
changes and climate policy [54]. There are four RCPs based on future emissions
levels: RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 each representing a future with
higher greenhouse gas emissions. However, only present conditions are considered
in this study to remove the uncertainty of using future climate data. The process
of creating downscaled climate data and comparing simulations using said data to

observed conditions is the first step in creating future climate predictions.

Bias Correction

Due to the uncertainty from downscaling, bias correction is necessary to gain
accurate predictions. Observed data often require modification due to poor estimation
of local conditions [57]. Sometimes biases are small enough to be dealt with by
a hydrological model, however that is not appropriate for every case [57]. Bias

correction cannot compensate for a poor choice of a downscaling method [45].
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Generally, bias correction first involves adjusting the long term differences between
the variable of interest (i.e., precipitation, temperature) and then correcting the daily
variability of the data to match that of the observed data, Equations 2.1 and 2.2 show

a general approach of correcting monthly mean precipitation values [69].

m=40 m=40

i=1 =1
PEM = cx PGM (2.2)

where, PI'P is the monthly mean precipitation values of the forcing data and PF“M
is the monthly mean precipitation values of the GCM data. An offset value c¢ is
calculated from Equation 2.1. The daily mean values are then corrected in Equation
2.2 to create a new precipitation time series from the offset value. PgCM is the

daily mean precipitation from the GCM and is the bias corrected daily mean

BPGCM
P
precipitation. Bias correction can be done in many ways and Equations 2.1 and 2.2

are just one example. Another method is via flow duration curves (FDCs).

A flow duration curve (FDC) is a cumulative frequency curve that shows the
relationship between flow magnitude and frequency [70] (Figure 2.2). It is an
alternative validation technique to compare modelled flow duration curves to observed
flow duration curves as opposed to comparing hydrographs [71]. Flow duration curves
better highlight the highest and lowest flows, whose calibration is important when
looking at ecological impacts. However, a hydrograph is a more complete picture of
the flow signature [72]. Stream flows can be characterized by their FDCs just as they

can be classified by hydro-ecological indices|73].
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The FDC represents physio-geographical characteristics that dynamical
downscaling lacks without bias correction [63], [71]. The upper part of the FDC is
controlled by the interaction between extreme rainfall and fast runoff, while baseflow
recession determines the lower part of the FDC, the mid-range is controlled by

within-year flow variations [71], [75], [76].

2.4 Summary

Climate change has been shown to impact the hydrograph and stream flow
characteristics which in turn impacts ecological health of a waterway. Previous
research has indicated that climate change alters hydro-ecological indices, but to
my knowledge a comprehensive analysis of climate change prediction methods (i.e.
downscaling) on the calculation of ERSS has not been researched to date [77]. Instead
of analyzing multiple study sites this research focuses on downscaling, multiple
GCMs and bias correction methods. In future, calibration criteria may include
hydro-ecological indices in water resources modelling. The focus in this research
is on the simulation of ecologically relevant stream flow characteristics (ERSS) and
not on the calculation of ecological scores or metrics, which is beyond the scope of this
research. However, it would be a continuation of this work and should be examined
in future analysis. This research analyzes the ability of hydrological models and
downscaled climate data to simulate ERSS. Previous work was done to obtain the

stream flow projections used to calculate ERSS for two basins of interest.



Chapter 3

Data

This chapter describes previously completed work, mainly by Daraio (2017) that
was used in this thesis. Familiarity with downscaling, hydrological modelling and
bias correction processes is necessary to understand the research described in this
chapter. This chapter is broken into three sections: observed data, simulated data
and bias correction of stream flows. Hydro-ecological indices (ERSS) were calculated

from these previously simulated stream flows.

ERSS were calculated from different sets of stream flow data. Details of how
ERSS were calculated are in the following chapters. ERSS were calculated for
each set of stream flows simulated using hydrologic models developed by Daraio
(2017). The stream flows include observed conditions for each watershed, simulated
stream flows calculated from inputting observed climate data into a hydrological
model and simulated stream flows from inputting dynamically downscaled data into
a hydrological model, Figure 3.1. Bias correction was also done on the stream flows.
Green text in Figure 3.1 represents climate data, blue represents hydrological data

and orange represents the statistical calculation of ecologically relevant stream flow
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characteristics. This chapter deals with the precursory work done in the green and
blue fields. The research and analysis done in this thesis belongs to the orange field

which is described in the following chapters.

3.1 Observed Data

This study focused on the Pinelands Ecoregion (Pine Barrens), a unique ecosystem
and home to 38 plant species and 43 animal species that are classified as threatened
or endangered [78]. The Pinelands National Reserve (PNR) occupies 1.1 million acres
of the Pinelands Ecoregion [78]. In addition to large land resources, the Pinelands
Ecoregion contains a large river system. Observed daily mean flows (water years
1956-2005) from two United States Geological Survey (USGS) gauging stations were
used: the Batsto River at Batsto, NJ (USGS Site 01409500) and the Maurice River
at Norma, NJ (USGS Site 01411500), Figure 3.2. Flow data were used for the water
years 1956 - 2005, as this research focused on long-term predictions of flow and ERSS.
The water year begins October 1 and ends September 30 of any year. The upper
Maurice River watershed has a basin area of 290 km? and the Batsto River watershed
has a basin area of 180 km?. The upper Maurice River watershed is more urbanized
compared to the Batsto while the Batsto River watershed is completely within the
PNR. Both rivers were classified by the USGS as class B, which represents a stable
stream with a high base flow, typically located on the coastal plain [33]. There
have been minimal changes to both the Batsto and Maurice stream flows over time
[79]. Observed stream flows from these two watersheds were used for calibration and

evaluation of the hydrological models.

To simulate stream flows for the historical period, hydrological models were driven
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Figure 3.1: Connection between Climatic, Modelling and Statistical process to
capture ERSS in this study.




25

e Batsto

[0 Maurice
1 Counties
Pinelands

Batsto River at Batsto, NJ
o
“‘\_“‘n
« Gauges

5 RS # . E_werﬁ
: 1 i ™ —ounies
f?-![aum::e RJVE{:I at Nn-rmq:, NJ\ ; 0 é -, k].'[l

Figure 3.2: Site Map of the Study Areas, Batsto River watershed (USGS Site
01409500) and Maurice River watershed (USGS Site 01411500).
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by observed and dynamically downscaled meteorological data, Figure 3.1. The sites
of interest played a role in the decision to use downscaling. The New Jersey coastal
plain is subject to hurricanes and tropical storms [74]. RCMs are known to have
better predictions in mountainous areas and tropical areas where there are convective
storms compared to GCMs [56]. Observed climate data in this study were input into
the Precipitation Runoff Modelling System (PRMS), a hydrological model. PRMS is
a deterministic (non-statistical) hydrological model which takes climate information
and predicts hydrological outcomes, including stream flow [80]. PRMS has been
used in many studies and has performed well in analyses with ERSS [8], [45]. The
inputs of the model are precipitation, maximum and minimum air temperature, and
solar radiation (from a daily time-scale) [45], [80]. Daily minimum and maximum air
temperature and daily precipitation was taken from 12 km? gridded data found in
the USGS Geo Data portal [81]. Observed Potential Evapotranspiration (PET) was

estimated using USGS solar radiation data and the Priestly-Taylor equation [74].

3.2 Simulated Data

Flows were simulated using two different climate inputs, Figure 3.1, through 1)
observed meteorological data and 2) dynamically downscaled meteorological (RCM)
data. To evaluate model performance and to quantify the uncertainty the hydrological
model was run with observed meteorological data and then separately run with RCM
data to determine how much uncertainty was related to the model or the climate
inputs. Climatic data was transformed into simulated flows in the Batsto and Maurice

watersheds via the hydrological model PRMS.

In this study, the performance of PRMS was examined to more fully assess how
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hydrological models simulate ERSS. Daraio (2017) used historical climate conditions
along with RCM data to drive PRMS and the outputted stream flows were compared
to the observed stream flow. It was found that when PRMS was simulated using
dynamically downscaled climate data the high flows were significantly underpredicted

in both basins [74].

3.2.1 Simulated Flows from Observed Climate Data

Daraio (2017) calibrated and evaluated the PRMS model using observed climate
data in addition to using dynamically downscaled climate data from 13 GCMs, Table
3.1. Each basin’s PRMS model was created using a calibrated amount of hydrologic
response units (HRUs). Each HRU contained soil and land use information relevant
to the respective watershed [82]. There were 116 HRUs and 236 HRUs created for the
Maurice River watershed and the Batsto River watershed, respectively. Groundwater
recharge was accounted for in the models using a three-reservoir system [80]. Stream
flow was routed using the Muskingum method. Calibration was done stepwise using
Let us calibrate (LUCA), a sensitivity and optimization tool [83]. Calibration was
done in the following order: solar radiation, PET, stream flow volume and stream
flow timing [74]. Stream flows were calibrated to mean daily flow and mean monthly
flow, both were weighted equally. The calibration period for each model was the
water years 1990-1996, the model was then validated for the water years 1997-2003.
The model performance was evaluated using Goodness of Fit measures (GoF) [74].

The full historical period of record was 50 years (water years 1956-2005).

Both watersheds were calibrated for mean daily and mean monthly flows and
performed well [74]. There were biases of -1.3% in both the mean daily and mean

monthly flow calibration for the Batsto River watershed and there were biases of -0.7%
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and -0.8% respectively for the mean daily and mean monthly stream flow calibrations
in the Maurice River watershed. These mean daily and mean monthly stream flow
calibrations for both watersheds had good fit to seasonal flows, showing well-simulated
interannual variation [74]. In the evaluation of the Maurice River watershed the
simulated stream flows had similar patterns to observed conditions. However, in
the Batsto watershed model there was a bias of +45% and +35% in the summer
and autumn respectively [74]. The calibration of Daraio’s (2017) models found that
simulated data had larger peaks than observed conditions, that indicates that there
was too much runoff or a lack of surface storage [74]. This was particularly relevant
in small storm events. Despite the limitations and biases of the PRMS modelling
software and PRMS models of the two watersheds, these hydrological models of these
New Jersey watersheds are considered optimized model simulations of this time period

[84].

All hydrological models have strengths and weaknesses. The PRMS model has
limitations in its ability to model groundwater and aquifers. In PRMS, the watershed
boundaries for groundwater and surface water are often different [74]. Water flow in
aquifers is simplified in PRMS and treated as a groundwater sink [74]. There were
simplifications made when creating the Batsto and Maurice PRMS models. Daraio
(Under Review-a) found through simulating the Batsto and Maurice River watersheds
that a main limitation of PRMS is the simulation of peak high and low flows and
groundwater-surface water interactions [15]. Another limitation of the PRMS models
was the consideration of water withdrawals. While there was no explicit consideration
of water withdrawal from the basins in the PRMS models, by using observed stream
flows for calibration of the Batsto River and Maurice River watershed models water

withdrawal was implicitly included [74].
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Even when using observed climate inputs in a hydrological model uncertainty is
still a concern and modelling limitation and may limit hydro-ecological assessments
[46]. Uncertainty can arise from socio-economic changes, feedback loops from changes
to the environment, observational error and parameter estimation [46], [85]. There is
limited application of hydrological outputs due to the uncertainty in model outputs
[84]. This uncertainty can propagate into the calculation of hydro-ecological indices,
which this research is concerned with. Hydrological modelling can lead to large
uncertainties in ERSS, particularly those that describe timing, duration, and rate of
change [46]. The simulations of the ERSS from these hydrologically modelled stream
flows is necessary to show whether ERSS are well estimated in hydrological modelling.
Past research has shown that while magnitude ERSS are well simulated other stream
flow aspects are not. However, creating hydrological models for the express purpose
of modelling ERSS is time consuming and therefore expensive. This research tests
whether specific simulations are necessary, or whether using hydrological models made

for other purposes is a possibility.

3.2.2 GCM Driven Simulated Flows

The hydrological model for each watershed was first run with observed
meteorological data listed in Section 3.1 and later run with RCM data to predict
future water scenarios. As written in the Chapter 1 (Introduction) of this thesis,
the goal of this research is to determine if dynamically downscaled climate data can
predict ERSS. To attain this goal, GCMs must be dynamically downscaled. The
process of dynamically downscaling and the uncertainty in downscaling is noted in
Chpater 2 (Literature Review). Please refer to Chapter 2 for more information on

the downscaling process and why downscaling is necessary to create climate model
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predictions.

Dynamically downscaled climate data were used as meteorological inputs into
the PRMS models of the Batsto and Maurice River watersheds to simulate stream
flow. This was done to achieve the second objective (Chapter 1), comparing ERSS
simulated through hydrological modelling, dynamically downscaled GCM simulations
(RCM data) and observed historical data. The historical record (water years
1956-2005) was simulated using RCM data to compare records and determine whether
the predictions were accurate or within reasonable error. This has applications to
climate change impact assessments and mitigation measures. To create future plans
stream flow and climate predictions must be within reasonable uncertainty. Using
dynamically downscaled data to drive hydrological models involves a lot of uncertainty
due to the top-down nature of the downscaling process, Figure 3.1 [86]. Uncertainty
in the choice of emission scenario propagates into the GCM and the RCM through
to the downscaling method until, in the worst case scenario, the future condition is

very different and misleading from what was modelled [84].

Daraio (2017) selected 13 GCMs from the CMIP5 ensemble which were
dynamically downscaled using a total of 40 RCM simulations for each watershed
of interest, Table 3.1. Selection of these climate projections was based on data
availability from the USGS Geo Data Portal [74]. The RCM data were input into

PRMS and stream flows were output.

Comparisons were made between observed data and RCM driven stream flows.
The RCM data driven PRMS model overestimated flows by 0.13 m?/s for the
Batsto River watershed and underestimated flows by 0.18 m?/s for the Maurice
River watershed. Daraio (2017) did not just simulate the PRMS model for the

historical period (1970-2000), but additionally simulated two future periods for both
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watersheds as comparisons, 2051-2065 and 2084-2099. Simulating these periods
indicated an expected overall increase in stream flow in both basins. Simulation of
future ERSS has not been included in this study as a main goal of this research was
to determine uncertainty in the hydrological modelling and dynamically downscaling
process. Uncertainty related to hydrological modelling versus dynamical downscaling
is best analyzed by looking at the historical period where simulated records can be
compared to observed records. Evaluation of the future periods is beyond the scope

of this thesis.

The original objective of Daraio’s (2017) study was to determine future water
quantity concerns and stormwater infrastructure needs in the Batsto and Maurice
River watersheds in New Jersey. However, by calculating the ERSS from the
simulated stream flows used in the original 2017 research a new hydro-ecological
component can be studied. By observing the changes in ERSS between observed and
simulated stream flows mitigation measures can be produced not only for stormwater
infrastructure but for the protection of ecological habitat and species. Future work
will have to be done to create an environmental impact assessment of the area,
however, this research is the first step in determining if the calculation of future

ERSS via downscaling are appropriate for mitigation creation purposes.

Each of the RCM driven PRMS models created one set of stream flow data
per basin, leading to a total of 40 stream flows per watershed. A set of ERSS
was calculated for each simulated stream flow in this study. This section ends the
description of what was done by Daraio (2017). However, further calculations were

made on the stream flows more recently.
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3.3 Bias Correction of Stream Flows

Flow Duration Curves

To improve the simulation of historical stream flows Daraio (Under Review-b)
used Flow Duration Curves (FDCs) to bias correct the two watersheds at different
time scales and compare GoF measures [84]. Using quantile mapping, Equation 3.1,
Daraio (Under Review-a) improved the overall fit of of the FDC using BC [15]. Bias
correction (BC) on the total record improved the overall fit of the FDC, but did not
consistently improve GoF measures. Whereas, BC at smaller time scales, monthly
and seasonal scales, improved the overall fit and consistently improved GoF measures
[84]. The tails of the FDC, representing the extremes of the data, diverged between
simulated and observed conditions (Figure 2.2). However, BC improved the fit of
the tails to the FDC with smaller BC time steps [84]. Overall, BC of stream flows
using either seasonal or monthly FDCs led to the greatest improvement of model

performance in both basins [84].

Bias correction was done using the R package "qmap” [87] and Equation 3.1,
creating a relationship between observed stream flow data (P,) and simulated stream
flow data (Pp,):

Py = F,  [(Fon(Pr)] (3.1)

where, F, ! is the inverse cumulative distribution function (CDF) for the observed
stream flow and F},, is the CDF for the simulated stream flow. Limitations of bias

correction are reviewed by Daraio (Under Review-b) [84].

While bias correction using the FDC did not consistently improve goodness of fit

(GoF) measures, GoF measures were consistently improved when the timescales of
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the bias correction were decreased [84]. Daraio (Under Review-a) used FDCs to bias
correct the stream flow projections [15]. This resulted in two different sets of stream
flows: 1) stream flows that were bias corrected directly to the observed data, hereafter
known as MODEL results, and 2) stream flows that were bias correcting the RCM
model driven results to the observed data, hereafter known as RCM results. Data
was used that had bias correction done at varying time scales: 1) Bias correction
of daily mean flows over the full period of record based on composite FDCs (BC),
2) based on seasonal FDCs (BCS), 3) and monthly FDCs (BCM) [84]. Data that
were not bias corrected were designated as Uncorrected (UC). The sets of observed
and simulated stream flows are in Table 3.2. In this thesis, these simulations were

compared to observed conditions (OBS) through the evaluation of hydro-ecological

indices (ERSS).
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Table 3.1: List of models from the CMIP5 multi-model ensemble used in this paper
[74].

Modeling Center (or Group) Institute ID Model Name
Commonwealth Scientific and Industrial CSIRO-BOM ACCESS1.0
Research Organization (CSIRO) and Bureau

of Meteorology (BOM), Australia

Beijing Climate Center, China Meteorological BCC BCC-CSM1.1
Administration

College of Global Change and Earth System GCESS BNU-ESM
Science Beijing Normal University

Canadian Centre for Climate Modelling and ~ CCCMA CanESM?2
National Center for Atmospheric Research NCAR CCSM4
Community Earth System Model NSF-DOE-NCAR CESM1(BGC)
Contributors

Centre National de Recherches CNRM-CERFACS CNRM-CM5
Météorologiques/Centre Européen de

Recherche et Formation Avancée en Calcul

Scientifique

Commonwealth Scientific and Industrial CSIRO-QCCCE CSIRO-Mk3.6.0
Research  Organization in collaboration
with Queensland Climate Change Centre of

Excellence

Institute for Numerical Mathematics INM INM-CM4

Institut Pierre-Simon Laplace IPSL IPSL-CM5A-LR
IPSL-CM5A-MR

Japan Agency for Marine-Earth Science and MIROC MIROC-ESM

Technology, Atmosphere and Ocean Research
Institute (The University of Tokyo), and
National Institute for Environmental Studies
MIROC-ESM-CHEM
Atmosphere and Ocean Research Institute MIROC MIROCS5
(The University of Tokyo), National Institute
for Environmental Studies, and Japan Agency
for Marine-Earth Science and Technology
Max-Planck-Institut fiir Meteorologie (Max MPI-M MPI-ESM-MR
Planck Institute for Meteorology)

MPI-ESM-LR
Meteorological Research Institute MRI MRI-CGCM3
Norwegian Climate Centre NCC NorESM1-M
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Table 3.2: Stream flow data used in this study per watershed.

Number of

. . Source predicted
Simulation Description Acronym stream flows
per basin
Observed Stream flow USCS OBS 1
Record
Simulated Stream flow PRMS SIM-UC 1
) ) ) ) ) SIM-BC 1
record with historical and Historical
limate i ; Climate Dat SIM-BCS 1
climate inputs imate Data SIMLBCM 1
RCM-UC* 40
) MODEL-BC 40
Slrnuilate'ollC ;tream flow ERMS ;n(lil MODEL-BCS A0
recor Wl ynamically . MODEL-BCM A0
dynamically downscaled climate
downscaled data data RCM-BC 40
RCM-BCS 40
MODEL-BCM 40

*Note that RCM-UC implies that there is no bias correction with the stream flows
using dynamically downscaled data, the term RCM-UC is being used to distinguish
between SIM-UC. This term could just be as easily called MODEL-UC.



Chapter 4

Phase 1: Preliminary Analysis of
Ecologically Relevant Streamflow

Statistics

4.1 Introduction

Hydro-ecological indices were chosen using three different methods to ensure that
the selection of indices did not have an overly large systematic impact on this study’s
results. In the first phase a set of ERSS, the Seven Fundamental Daily Stream flow
Statistics (7TFDSS), was chosen for analysis. In the second phase of this research
171 ERSS were calculated and were reduced to minimally correlated indices using
principal component analysis (PCA). In the third phase, hydro-ecological indices
were chosen that were relevant to the Pinelands area. Phase 1 is discussed in this

chapter while phase 2 and phase 3 are discussed later.
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4.2 Method

The first objective of this research was to determine parsimonious sets of ERSS
that defined the watersheds. The first phase of this research was a preliminary analysis
and was conducted to evaluate the performance of simulated estimates of the 7TFDSS
from observed climate and RCM data driving the hydrological model [26]. These
seven statistics were: mean (), coefficient of variation (72), skewness (73), kurtosis
(14), autoregressive lag-one correlation coefficient (r1), amplitude (A) and phase (w)
of the seasonal signal, Table 4.1. The first four statistics captured the distribution of
the stream flow, while the last three are correlated to the nature of the time series [26].
The first four of the 7TFDSS were calculated using L-moments [88] [originally from 89].
The coefficient of variation (73) and the mean daily flow (\;) are common statistical
descriptors of stream flow, while the other five indices are less common. The symmetry
of the probability distribution of stream flow is represented by 73. Skewness represents
how large the disparity is between extreme high flows and average conditions [90].
Kurtosis (74) is the peakedness of the probability distribution of stream flow compared
to the normal distribution and described how likely the flow was to experience peak
flow events [90]. 73 and 74 are related to peak data. The r; described the persistence
of stream flow from one day to the next, while A and w described the seasonal signal

of the flow [26]. The equations for the TFDSS are as follows:

M = B(X,)/N (4.1)

where X is the ordered daily stream flow record and N is the number of observations.
Equation 4.1, represents the mean daily stream flow. Hosking and Wallis (1997)

created L-moments to minimize the influence of sample size and outliers to the
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computation of higher order statistics using

b, = 1 zn: G- —-2)..(j—1r)

Tjn, Wherer=1,2 .. n. (4.2)
n<=(n=1)n-2)..(n-r) !
Equation 4.2 was used to estimate values for 7:
l
=2 (4.3)
h
T3 = l_3 (44)
ly
l
Ti=— (4.5)
ly
where
[y = by
lo = 2by — by
(4.6)

l3 = 6by — 6b1 + bo

ly = 20b3 — 30by + 12by — by

The unbiased estimator b, of the r** probability weighted moment (Equation 4.2) is
a function in the calculation of unbiased sample estimators of the first four L-moments
(Equation 4.6) (I,l2,l3,l4). Three of the four 7TFDSS based on daily stream flow are
listed in Equations 4.3-4.5. Equations 4.2 - 4.5 were taken from [88] (originally from
[89].

The autoregressive lag-one correlation coefficient was calculated using the

Yule-Walker method:

T — = ay (T — p) + .. Fap(xt —p—p) + ¢ (4.7)
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where the variance matrix of the innovations is calculated from the fitted coefficients
and the autocovariance of x [36].The autoregressive lag one correlation coefficient is
a measure of the relationship between the current daily stream flow and the previous
daily stream flow [26]. In calculating 71, the long-term monthly mean stream flow
was subtracted from the daily stream flow in each month [26]. This calculation
deseasonalized the time series. The transformed series was then standardized to have

zero mean and unit variance [26].

The seasonal signal was represented by the amplitude and phase of the stream

flows (Equation 4.8 and 4.9):

A=VaZ 15 (4.8)

W= tan_l(%a) (4.9)
where,
¢.+ = a”sin(27y) + b*cos(2my) (4.10)

The standardized stream flow at day t is represented by ¢.;. Parameters a and b
were obtained by solving Equation 4.10 which were used in the equations for A and

w (Equation 4.8 and 4.9) [26].

The 7TFDSS are advantageous as they are a pre-determined set of ERSS that
does not need to be reduced from a set of correlated indices [26]. The TFDSS are a
parsimonious set of ERSS (Table 4.1). However, there is speculation that they do not
adequately describe all ecological aspects of stream flow. The 7TFDSS were originally

created as a tool to classify the flow of ERSS while reducing the subjectivity of ERSS
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chosen for a hydrological study in the continental United States (CONUS). In this

research their applicability as a hydro-ecological tool is tested.

To determine whether these seven ERSS were within an acceptable range of
uncertainty a +/- 30% bias was placed around OBS ERSS[49]. Using a range
of uncertainty based on observed data established natural uncertainty, inherent to
stream flow measurement, in comparison to model prediction bias [49]. Data within

this range were considered to be reasonably estimated.

The 7FDSS have been shown to classify the flow just as well as a larger set of ERSS.
However, a greater amount of ERSS will be calculated in the next chapters to ensure
that the results from this phase are not only applicable to the 7TFDSS. In this way this
research will determine if they capture the full ecological characteristics of the stream
flow [26]. Estimates in frequency, duration and rate of change are more difficult to
estimate than changes in long term averages [46]. Thus the simulation of r;, A and
w were of particular concern. The ability to simulate extreme high and low flows
and the seasonal aspects of flow was of particular interest to this study. Comparisons

between simulations were done using percent bias (Equation 4.11, below).

Table 4.1: Preliminary set of ERSS and Ecological Significance (Seven Fundamental
Daily Stream Flow Statistics, 7TFDSS) [26].

ERSS Ecological Significance
Mean (A;) Distribution of Daily flow
Variation (72) Distribution of Daily flow
Skewness (73) Distribution of Daily flow
Kurtosis (74) Distribution of Daily flow
Autoregressive Lag-One (1) Duration and rate of change
Amplitude (A) Seasonal Signal

Phase (w) Seasonal Signal

One objective of this research was to determine if ecologically relevant stream flow
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statistics (ERSS) were well estimated in hydrological modelling simulations using both
observed meteorological data and dynamically downscaled climate data (RCM data).
ERSS were calculated from the stream flows described and simulated in the previous
chapter of this thesis. Comparisons of ERSS were made between historical simulations
using OBS and SIM. Each set of meteorological data inputs gave one ERSS point, as
noted in Table 3.2. Comparisons were also made between OBS, MODEL and RCM
data to determine which bias correction time scales and removal of which source of
uncertainty (in the GCM and/or PRMS) simulated observed conditions (OBS) with
minimal percent error or bias. Analysis was also done within the MODEL and RCM
runs. These comparisons were made by visual comparison (boxplots and scatterplots)

and percent bias:

(ERSS;, — ERSS;,)

Phias; , =
biasi,s ERSS,,

x 100% (4.11)

where ERSS;s represents statistic i, for stream flows from simulation s (e.g.
SIM-BC, MODEL-BCM, RCM-BCS, etc....), while ERSS;, is statistic i for the
observed stream flow (OBS). Pbias;s represents the percent bias between the
simulated ERSS;s and observed ERSS,,. Comparisons were made between
uncorrected indices (UC), and bias corrected indices (BC, BCS, BCM) and the OBS
ERSS in all results (SIM, MODEL, RCM), using Equation 4.11.

The indices of interest (Table 4.1) were calculated through the R package
?EflowStats” [91] for the historical period of water years 1956-2005. A minimum
twenty year flow record was recommended to calculate the indices of interest [46]. A
study by Kenard et al. (2009) showed that 90% of ERSS calculated using a 15 year

flow record were within 30% of true values and 90% of ERSS were within 20% of
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Land Use Batsto Maurice

Agriculture  7.4%  22.1%
Barren Land  0.1% 0.9%
Forest 60.0%  30.2%
Urban 5.6% 28.2%
Water 1.77% 1.2%
Wetlands 25.2%  17.5%

Table 4.2: Land Use as a Percentage of Total Basin Area for the Upper Maurice and
Batsto River watersheds [74].

the true value using a 30 year flow record. There were minimal changes to both the
Batsto and Maurice stream flows over the stream flow record which extended from
1927 in the Batsto River and 1932 in the Maurice River to 2005 compared to other
rivers with larger infrastructure works [79]. Analyzing stream flows with minimal
human alteration was advantageous because it was more likely observed changes to
ERSS were due to data inputs (observed meteorological data, RCM data) and it was

not necessary to consider pre- or post- impact conditions from an event.

The land use may impact the simulation of ERSS and account for differences

between the Batsto and Maurice River watersheds, Table 4.2.

4.3 Results and Discussion

In phase 1 of this research the TFDSS were calculated for each set of stream flows
created by Daraio (2017), Table 3.2. Results are presented for the SIM simulations
in the Batso and Maurice River watersheds first and then 7TFDSS of the MODEL and

RCM runs for each watershed are described.
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4.3.1 PRMS Simulations driven by Observed Data

The TFDSS were calculated for both watersheds and were analyzed to determine
how the hydrological model PRMS simulated ERSS from observed meteorological
data. This initial step was to determine how well the model simulated ERSS
before adding additional uncertainty in the form of RCM data inputs. Error in the
simulations could be attributed to the hydrological model. The stream flows were
bias corrected to observed data (OBS) giving four sets of 7TFDSS (SIM-UC, SIM-BC,
SIM-BCS, SIM-BCM). The error was quantified by percent bias comparing the four
sets of the TFDSS to OBS. The results of the SIM simulation are shown graphically

in Figure 4.1.

ERSS that described certain stream flow characteristics were expected to be within
the range of uncertainty. Previous studies have shown that while magnitude ERSS
were generally within the range of uncertainty, ERSS that represented other stream

flow characteristics were not [8].

In the Batsto River and Maurice River watersheds the majority of the 7TFDSS were
within +/-30% error at all bias correction time scales as indicated by the data being
within the dashed lines in Figure 4.1. Stream flow has a large natural variability, a
20-30% difference was observed between stream flow characteristics from a 75 year
daily record to a 30 or 15 year daily record [92]. The +/-30% band of uncertainty
placed model prediction bias into context with the natural variability of stream
flow [49]. Mean daily stream flow (\) and (75) were within reasonable hydrological
uncertainty at all time scales. This aligns with expected results [8], [49]. The PRMS
model was calibrated to daily and mean monthly flows which explains the ability
of \; to be well-simulated and centred around 0%. Models that are calibrated to

central tendency values, such as means, better predict central tendency statistics.
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Figure 4.1: Percent Bias from the 7FDSS calculated from the historical climate
simulation inputs into the PRMS hydrological model for the (a) Batsto River
watershed and (b) Maurice River watershed. The dashed lines indicate +/-30%
hydrological uncertainty.
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The purpose of hydrological model calibration is to capture the variability and mean
magnitude of stream flows, so A\; and 7, are expected to be well-simulated with
or without bias correction [8]. In the SIM stream flows other ERSS were not as

consistently well simulated.

Without bias correction (SIM-UC), 73 was outside hydrological uncertainty (+/-
30%)in the Batsto River watershed, but not in the Maurice River watershed. Skewness
(73) with bias correction on seasonal and monthly time scales (SIM-BCS, SIM-BCM)
had percent errors 1.4% outside of hydrological uncertainty in the Batsto River
watershed. In the Batsto River watershed, 73 did not change from -31.4% with
any bias correction except with bias correction on the full stream flow time series
(SIM-BC). The percent bias of 73 only changed with full bias correction (BC). While
73 fell within the established hydrological uncertainty bounds for the Maurice River

watershed, it did not in the Batsto.

In both watersheds kurtosis (74) had a similar trend to 73 where SIM-BC was the
simulation with minimal percent bias. Kurtosis (74) was improved with bias correction
at all time scales in both watersheds, but was not improved with bias correction at
seasonal time scales (BCS, BCM). The daily stream flow statistics were still within
hydrological uncertainty without bias correction. However, the seasonal ERSS had
large bias values without certain types of bias correction. The bias correction on the
smaller time scales did not prioritize 73 and 74. In one study it was found that 73
and 74 were very sensitive to the bias correction of precipitation [93]. This sensitivity

may be applicable to stream flow as well.

Amplitude (A) and phase (w) represented the seasonal aspect of the stream flow.
In the Batsto River watershed uncorrected A and w had percent errors of -72% and

-41% respectively. In the Batsto River watershed SIM-BC these same ERSS had
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percent errors of -74% and -48% respectively. In the Maurice River watershed a similar
trend was observed, Figure 4.1. Full bias correction on the stream flow increased error
for these ERSS. However, using seasonal and monthly time scales improved A and w
to be within hydrological uncertainty. Two of those ERSS were within 5%: A (BCS)
and w (BCM), of OBS values. Bias correction had little effect on Ay and 1. ERSS
75 had reduced percent error with all bias correction methods (SIM-BC, SIM-BCS,
SIM-BCM), compared to SIM-UC.

It was postulated that SIM-BCS and SIM-BCM would improve the prediction of
all ERSS which was consistent with recent findings that the bias correction at smaller
time scales improved model performance [84]. Bias correction at the smaller time
scales did not have the expected improvement on 73 and 74 (Figure 4.1). However,
improvement with SIM-BCS and SIM-BCM on the seasonal ERSS A and w showed
that these methods should be considered in hydrological model simulation of ERSS
as simulation of the seasonal aspects of flow is where hydrological modelling has not

been well simulated in past analysis [46].

The ERSS in the Maurice River watershed were better simulated compared to
the Batsto River watershed when the respective hydrological models were driven
by observed climate data (Figure 4.1). All ERSS, for uncorrected and bias corrected
stream flows, were within hydrological uncertainty ( +/- 30% error) with the exception
of A which had a percent bias of approximately -50% in SIM-UC and SIM-BC. Only
one ERSS (compared to two in the Batsto River watershed) was outside of accepted
uncertainty in the Maurice River watershed. With SIM-BCM and SIM-BCS the
simulation of A was improved to be within error. The Maurice River watershed
was better simulated with hydrological modelling potentially due to the greater

urbanization of the Maurice River watershed compared to the Batsto River watershed.
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Calculating ERSS from a calibrated hydrological model with observed data inputs
showed the bias inherent to the model. Removing the observed climate data as inputs
into the PRMS model and replacing with RCM data added additional uncertainty.
This change of climate inputs tested whether the calculation of ERSS could be done
using RCM data within reasonable error with the potential to use this research for

future predictions of ERSS for mitigation planning.

4.3.2 Downscaled GCM Simulations

To test the ability of downscaled climate data to simulate ERSS, the observed
climate data inputs was removed from the PRMS model and were replaced with
40 RCM simulations. Bias correction was done resulting in 7 sets of stream flow
per watershed (RCM-UC, MODEL-BC, MODEL-BCS, MODEL-BCM, RCM-BC,
RCM-BCS, RCM-BCM). Each of the seven simulations had 40 7FDSS values due

to the 40 dynamically downscaled climate (RCM) data inputs (Table 3.2).

Uncorrected Simulated ERSS driven by RCM data (RCM-UC)

In the Batsto watershed (Figure 4.2) A; was simulated within + /- 30% hydrological
uncertainty. The Maurice River watershed expressed similar behaviour (Figure 4.3)
however, there was one outlier from climate data input CCSM4 rlilpl which had
a percent bias of -31.2%. Mean error in variation (73) was just outside hydrological
uncertainty at -34% in the Batsto River watershed compared to -28.1% in the Maurice
River watershed. Skewness (73) was within hydrological uncertainty in the Maurice
River watershed, but was mostly outside of hydrological uncertainty in the Batsto

River watershed. Kurtosis (74) experienced the same trend as 73 where the majority
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of the simulation was within hydrological uncertainty in the Maurice River watershed,
but not in the Batsto River watershed. The mean percent bias of 7, was -28.4% in
the Batsto River watershed compared to -4.4% in the Maurice River watershed. The
ry coefficient was simulated acurately without bias correction in both basins and was

completely within hydrological uncertainty.

While many ERSS were simulated within reason for both watersheds, 73 and
74 were simulated differently per watershed. Given the similarity in characteristics
between the two watersheds, this indicates that the simulation of these characteristics
may be related to the urbanization of the Maurice River watershed compared to the
Batsto. In the Batsto River watershed the average RCM-UC value for 73 was 0.22
compared to the OBS value of 0.35, while the RCM-UC value of 74, was 0.18 compared
to OBS value of 0.18. The Maurice River watershed also had underestimated values,
but was closer to observed values. The underestimation of 73 and 7, indicates that
extreme events are being underestimated in the Batsto River watershed [90]. This
was a concern starting this research as this result was found in the creation of the
hydrological model [74]. This trend was also observed in the SIM results, which
indicates that it was the hydrological model, not the RCM data inputs that were the

result of the poorly simulated 73 and 74 in the Batsto River watershed.

As stated previously, two main ERSS of interest were amplitude (A) and phase
(w) as they represented the seasonal aspects of the stream flow signal which have not
been well-simulated in hydrological models [46]. Using RCM data the mean percent
error of A was -45.7% in the Batsto River watershed and -18.8% in the Maurice River
watershed. The mean percent error of w was -22.2% in the Batsto River watershed
and -4.3% in the Maurice River watershed. This has implications for the modelling

of undisturbed or minimally disturbed watersheds. Without bias correction, A and
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w in the Batsto River watershed exceeded the established uncertainty bounds more
consistently across the range of simulations than in the Maurice River watershed.
These results don’t follow a similar pattern to the SIM results, where A and w were
poorly simulated in the Batsto River watershed and only A was poorly simulated in
the Maurice River watershed. This indicates that the RCM data were a source of

additional bias or uncertainty.

Model Corrected GCM Simulated Stream Flow (MODEL)

Mean daily flow (A1) did not change with MODEL bias correction (MODEL-BC,
MODEL-BCS, MODEL-BCM). However, this was not unexpected as calibration of
hydrological models by Daraio (2017) was done to daily mean and mean monthly
flows. Bias correction at all time scales brought the error in 75 of the stream flows
within acceptable range of uncertainty. These results were expected because there

was minimal error on these ERSS from the hydrological model to begin with.

In the SIM results it was found that 73 and 74 only positively responded to SIM-BC.
A similar outcome to the SIM results in the Batsto River watershed is noted in Figure
4.2 in regards to skewness (73) and kurtosis (74). The mean percent error of 73 in the
Batsto River watershed were -21.5%, -37% and -37.6% in MODEL-BC, MODEL-BCS
and MODEL-BCM respectively. The mean percent error of 74 in the Maurice
River watershed were -0.01%, -16.7% and -22.7% in MODEL-BC, MODEL-BCS and
MODEL-BCM respectively. While MODEL-BC improved the vast majority (Batsto)
or all (Maurice) simulations of 73 and 74 to be within hydrological uncertainty,
MODEL-BCM and MODEL-BCS increased the percent error. This agrees with past
analysis that 73 and 74 of a time series is sensitive to bias correction [93]. Potentially,

when trying to correct for the seasonal aspects of flow, the prediction of extreme
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high and low flows are lost. The questions remains, whether they are lost to such
an extent that the use of MODEL-BCS and MODEL-BCM should be disregarded.

These results do not suggest so.

The seasonal aspects of flow also responded to MODEL-BCS and MODEL-BCM.
ERSS w and r; remained within hydrological uncertainty with the exception of a
few outliers. While phase (w) was corrected to be within the established range
of hydrological uncertainty using BCM and BCS in both watersheds, amplitude
did not have the same reaction. Instead, when MODEL-BCM and MODEL-BCS
were applied, A went from being underestimated in both watersheds to being
overestimated. The mean percent error of A was -47.9% in the MODEL-BC
simulations and 38.8% and 60.4% in MODEL-BCS and MODEL-BCM simulations
respectively in the Batsto River watershed. In the Maurice River watershed the
percent errors of A were -19.6%, +32.7% and 43.1% for MODEL-BC, MODEL-BCS
and MODEL-BCM respectively. In the RCM-UC and MODEL-BC simulations, A
was more negative than -30% error, with MODEL-BCS and MODEL-BCM the error
was greater than +30%. The change in amplitude is a difference in trend between the
SIM results and the MODEL results. As the MODEL bias corrections were intended
to correct for bias in the hydrological model. The change from a negative percent
error to a positive percent error, between SIM and MODEL results (BCS and BCM),
indicates that there is still uncertainty in the RCM data inputs that are not being

accounted for.

In the Maurice River watershed, MODEL results followed a similar pattern to
the Batsto (Figure 4.3). However, there were a greater number of outliers found
in simulations of the Maurice River than in the Batsto River. While A\; had been

within the range of uncertainty in past analyses there was one downscaled climate
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projection that caused an outlier in the data provided from RCM CCSM4 rlilpl. In
MODEL-UC and MODEL-BC simulations of the Maurice River watershed, CCSM4

rlilpl had percent errors of -31.2% and -31.9% respectively.

Amplitude (A) responded similarly in the Batsto River and Maurice River
watersheds when bias corrected in the MODEL simulations, however, A had greater
mean percent error in the Batsto than in the Maurice. This agrees with the SIM
analysis that urbanization may impact A’s hydrological simulation. The majority of
MODEL-UC and MODEL-BC ERSS were within hydrological uncertainty in the
Maurice River watershed but underestimated from OBS, while the MODEL-UC
and MODEL-BC ERSS were underestimated from OBS and outside of the range
in the Batsto River watershed. In both watersheds using MODEL-BCS and
MODEL-BCM overestimated A from OBS conditions to be outside the acceptable

range of uncertainty.

Bias corrected GCM Simulated Stream Flow (RCM)

The RCM bias corrected simulations, corrected not only for hydrological model
error (as in the MODEL simulations), but for additional bias from the RCM. Bias
corrected RCM stream flows resulted in less biased predictions of ERSS compared
to the MODEL simulations (Figure 4.4 and 4.5). This was exemplified by lower
overall percent bias. Using RCM-BC, RCM-BCS and RCM-BCM all bias corrected
ERSS were within hydrological uncertainty with the exception of A and w. However,
Amplitude A and w in the RCM simulations generally showed improvement over the

MODEL simulations.

The TFDSS that represented the daily distribution (A, 7o, 73, 74) of flow

experienced reductions in percent error using RCM bias correction. There was
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approximately a 15% reduction in the percent bias of 7, from MODEL to RCM
simulations using BCS and BCM. The mean percent error on 7 was -4.0% on
RCM-BCS and -2.5% on RCM-BCM simulations in the Batsto River watershed. In
the Maurice River watershed the coefficient of variation (72) had a mean percent bias

of -1.5% and -1.7% with RCM-BCS and RCM-BCM, respectively.

Data that described peak events were better simulated with RCM bias corrections.
Skewness (73) had percent bias of -25% with RCM-BCS and RCM-BCM. Kurtosis
(14) had percent bias of -23.9% and -26% with seasonal (RCM-BCS) and monthly
(RCM-BCM) bias correction. Comparing Figure 4.2 and Figure 4.4, 73 and 74 have
more of their data within hydrological uncertainty in the RCM simulations compared
to MODEL simulations. Direct bias-correction of RCM driven simulated stream flow
showed reduced bias for ERSS in the Maurice River watershed than the MODEL

simulations.

Analysis of the 7TFDSS that included seasonal characteristics of stream flow
showed improvements in at least one of the ERSS. While w did not change between
RCM and MODEL simulations, A did. Instead of having percent bias greater than
+30% with BCM and BCS (as in the MODEL simulations), the RCM-BCM and
RCM-BCS resulted in A being within the established hydrological uncertainty bounds.
Throughout MODEL and RCM simulation the percent bias of r; stayed consistently

at 0%.

4.4 Summary

Model simulations using the 7FDSS resulted in some similarities among the flow

characteristics. For example, seasonal characteristics of flow have often been found
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Figure 4.4: Percent Bias for the TFDSS for the Batsto watershed with bias correction
done on the RCM driven streams.
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to have higher uncertainty by hydrological models and that was true in this study
with greater percent error found in A and w without seasonal (BCS) and monthly
(BCM) bias correction [46]. It was also found that the seasonal and monthly bias
correction simulated the observed ERSS in the Batsto and Maurice River watersheds
better then when bias correction included the RCM, thus decreasing the percent bias

in ERSS representing all flow characteristics.

The need for bias correction on smaller time scales was speculated to be due to the
choice of calibration criteria in the PRMS model. Caldwell et al. (2015) calibrated a
PRMS model to annual, monthly, mean monthly and daily flow volumes and found
that extreme high and low ERSS were poorly simulated [8]. Hydrological models
from Daraio (2017) were calibrated to daily mean and mean monthly flows [74]. The

calibration approach does not adequately account for the seasonal signal.

Bias correction at shorter time scales (BCS and BCM) was found to improve
the simulation of the 7FDSS, both when using observed climate data (SIM)
and downscaled climate data (MODEL, RCM). However, the difference between
simulations in BCS and BCM was minimal. When simulating the stream flow
Daraio (Under Review-b) found that there was no consistency between which shorter
bias correction time scale outperformed the other (BCS or BCM) [84]. However,
both BCS and BCM outperformed BC when simulating stream flows [84]. This
was the primary finding of phase 1 of this research; ERSS from SIM-BCS and
SIM-BCM better simulated the Batsto and Maurice River watersheds than SIM-UC
or SIM-BC. The SIM simulation better represented observed conditions. Additionally,
the observed meteorological data when used as an input to PRMS reduced the

uncertainty associated with downscaled climate data.

The A and w ERSS did not improve with bias correction on the full flow record
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in the SIM, MODEL or RCM results, but did improve with BCS and BCM bias
correction. While 73 and 74 showed only limited improvement with RCM-BCS or
RCM-BCM bias correction and were best simulated with BC bias correction, they
were still within the range of uncertainty with RCM-BCS and RCM-BCM.

The RCM produced the better simulations of ERSS compared to MODEL results
as the bias corrected simulation reduced the overall uncertainty of the PRMS model
when GCMs are included. The lower percent bias values across the RCM simulations
compared to the MODEL simulations in the 7FDSS supported this conclusion.

However, some natural variation may have been lost in the RCM simulations [15].

While the simulation of the 7TFDSS in this analysis showed that ERSS were
best simulated using RCM-BCS and RCM-BCM there is concern as to whether
the TFDSS describe the breadth of ecological changes associated with stream flow
alteration in the Batsto and Maurice River watersheds. To determine whether this
represents a consistent pattern, a larger selection of uncorrelated ERSS were used
in phase 2 to describe the flow. Based on this preliminary phase of analysis, it was
hypothesized that ERSS would be contain minimal uncertainty and be similar to
observed conditions when the RCM was bias corrected on seasonal and monthly time
scales compared to MODEL simulations. This method of bias correction provided
acceptable uncertainty within all ERSS and did not favour only certain ERSS that

represented specific aspects of flow.



Chapter 5

Phase 2: Analysis of ERSS selected
through PCA

5.1 Introduction

In the previous chapter, the TFDSS provided a simple set of non-redundant indices
to determine the ability of dynamically downscaled climate data and hydrological
models to estimate hydro-ecological indices [26]. The flow statistics related to the
simulation of outlying flow events (73 and 74) resulted in better simulated by RCM-BC
while the seasonal statistics (A and w) were better simulated by RCM-BCS and
RCM-BCM. These results provided a good preliminary picture of the flow processes
in the study basins (Maurice Batsto). However, the relevance of these ERSS to
ecology is not well documented as the 7TFDSS have been mainly used as a stream
flow classification tool [26]. The TFDSS only describe a broad picture of stream
flow characteristics with a hydrodynamic focus (compared to an ecological focus). In

addition, by only using 7 hydro-ecological indices the results may be overly simple and,
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perhaps painted stream flow trends with a wide brush stroke. Important stream flow
trends may have been missed by using only 7 ERSS. For more specific results, more
ERSS were selected to describe the watersheds. Similar results were expected with
seasonal ERSS being better simulated by RCM-BCS and RCM-BCM, and outlying

flow characteristics being better simulated by RCM-BC.

Parsimonious sets of ERSS to define the region and simulations (objective 1) were
calculated from 171 ERSS for each simulation (Table 3.2) using EFlowStats. Principal
Component Analysis (PCA) was used following the approach outlined in Olden and
Poff (2003) to select statistically significant ERSS [27]. The ERSS selected were then

compared using statistical techniques and visual analysis (objectives 2 and 3).

5.2 Method

While the 7FDSS had been used as an initial set of measures to evaluate model
simulation of hydro-ecological indices in RCM data, the full set of ERSS calculated
by EflowStats is considered in this chapter. EflowStats calculates 171 ERSS [91],
however, using all 171 indices to assess the variability and changes in ERSS would
result in a high level of redundancy and could lead to issues with intercorrelation
among flow variables. It is highly recommended across ecohydrology to calculate a
smaller subset of the indices available [94]. A PCA in a regional analysis or modified

regional analysis can e used to help identify a statistically significant subset of ERSS.
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5.2.1 Principal Component Analysis

The function of a PCA is to reduce a large number of variables to a smaller number
of uncorrelated variables [95]. In a regional analysis, a PCA is calculated on ERSS
calculated from various stream flows of interest. In the modified regional analysis,
watersheds with different modelling inputs (MODEL and RCM simulations) provided
the inputs for a PCA (Table 3.2). Methods of analysis described in the literature
review were not used because they are applicable when different watersheds are
being compared, whereas in this study simulations of the watersheds are compared.
Modified methods were used to determine statistically significant ERSS, and are
described in this chapter. A PCA requires multiple data points (ERSS values) to
be calculated. The SIM stream flows and the MODEL and RCM stream flow sets

had the data points calculated differently between them.

Regional Analysis

In the SIM results, a regional analysis was performed where ERSS were calculated
for both the Batsto and Maurice River watersheds as well as four other watersheds
in the Pinelands. The Great Egg Harbor River at Folsom, NJ (USGS site 01411000)
has an area of 147.9 km? and is an ecological sampling site for a study on stream flow
and aquatic health interactions [96]. The Tuckahoe River at Head River (USGS site
01411300) has a drainage area of 79.8 km®. The Mullica River near Batsto, NJ (USGS
site 01409400) has a drainage area of 121.0 km?. The Oswego River at Harrisville,
NJ (USGS site 014000) has a drainage area of 187.8 km?. The Great Egg Harbour,
Mullica and Oswego sites are class B, while the Tuckahoe site is class C. Class B
streams are stable with high base flows, while class C streams are moderately stable

with moderately high base flows [34].Due to limitations in the flow record, data could
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not be continuously taken from water years 1956-2005. The Batsto, Maurice, Great
Egg and Oswego sites had data for the full water years 1956-2005 for all watersheds.
The Tuckahoe site had a stream flow date range of water years 1971-2005, and the
Mullica site had stream flow data from water years 1958-2005. All of these sites are
in the Pinelands area; however, the majority are not completely within the PNR
(Pinelands National Reserve). All sites have no or minor regulation and the entire
record could be taken as a preliminary baseline, which is the same as the Batsto and
Maurice River sites [79]. EflowStats was used to calculate 171 ERSS for each of these
observed stream flow records. Using these five sites, a PCA was performed where

each of the 171 indices represented a component.

Climate Change Analysis

To create a PCA for the MODEL and RCM results, a modified regional analysis
was performed. The MODEL and RCM simulations had 40 data points each because
there were 40 GCM simulations (Table 3.2). Instead of different watersheds being
considered, as in a regional analysis, each stream flow record with a different RCM
input was treated as a different watershed. EflowStats was used to calculate 171
ERSS for each stream flow calculated with a different RCM data input. The method
to subset ERSS in this chapter (Phase 2) was based on work by Olden and Poff [27].
This is a novel approach because multiple basins were considered as well as multiple

GCMs and multiple bias correction time scales.

Data Analysis

With a set of stream flows for each method of interest (SIM, MODEL, RCM),

the data was quality controlled before PCA was performed. For example, ERSS
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with extreme outliers and ERSS with small data ranges (<0.05) were removed to
reduce noise from the data sets and judgement was also applied. The data was then
checked for a normal distribution with the Shapiro-Wilk test, as PCA works best
with a normal distribution (5.1) [97], [98]. The Shapiro-Wilk normality test is more
appropriate for smaller data sets (< 50 samples). Therefore, it is applicable in this
study because there are 40 GCM simulations (40 values for each ERSS) or 6 basins
(6 values for each ERSS). For each set of ERSS, the Shapiro-Wilk test was calculated

using:

(T e’
i S (5-)

where
m/v -1

Vm'V-1V-1m

where m’ is the vector of expected values of standard normal order statistics, V' is the

A1y eeey Ay =

corresponding covariance matrix and y' is the vector of ordered random observations.
The two major components of the Shapiro-Wilk test are the W statistic and the
p-value (significance) (Equation 5.1). A p-value of 0.05 was chosen. The null
hypothesis was that the data is normally distributed. If the p-value of an ERSS
set was less than 0.05 the null hypothesis was rejected and the data was considered

not to have a normal distribution.

Not all ERSS data sets were normally distributed. Certain data sets that were
found via the Shapiro-Wilk test to not follow a normal distribution were transformed

using the Box-Cox method [99]:



64

YL N0
Ao (A #0) 5.2

log(A), (A =0)
where A is the transformation parameter and y is the dependant variable. The
transformation was done by maximizing the W statistic in the Shapiro-Wilk test.
This method of transformation has been found to be very effective in calculating the

true Box-Cox transformation parameter, A [100].

To make the contributions of each ERSS scale independent the Spearman’s
correlation matrix was calculated to equally weight the influence of each principal
component. The Spearman’s correlation matrix was then performed on the

transformed ERSS (where all data was normalized) using [101]:

I pi2 p13 . p1p
p21 1 pa3 ... pay
p31 ps2 1 ... psy (5.3)
| Pp1 Pp2 Pp3 -o- L]

where,
Y (wyy — 25) (i — Ty)

Pjk =
\/E?:l(ﬂfij = Zj) /X (T — Th)

and z and y represent the two ERSS sets whose correlation was calculated and 4 is

the paired score.

A Spearman’s correlation matrix was calculated for each ERSS set described in
Chapter 3, Table 3.2, or observed stream flow for SIM analysis. The 171 ERSS

were calculated by inputting stream flow data and peak flow data into EflowStats.
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PCA was done on the set of 171 indices for each simulation and watershed to obtain
the most representative statistics for the area. One PCA was done for SIM results,
one was done for MODEL-BC, one for MODEL-BCS, etc. PCA takes a number of
related variables and transforms them into a smaller set of uncorrelated variables [95].
Reducing so many indices was a numerical challenge as most PCA analyses typically
do not start from such a large set of variables (171 ERSS) compared to observations

(data points). Therefore, this research employed two functions to calculate PCAs.

The prcomp function in R was used to calculate the PCA on the ERSS sets and
calculated the loadings and eigenvalues on the Spearman’s correlation matrix. The
function returned the standard deviation of the principal components (the square
roots of the eigenvalues of the correlation matrix) and the loadings which were used

as inputs for the stopping criterion [36].

Since PCA is usually meant to be performed on data with greater observations
than variables the prcomp function was compared to the SamplePCA function from
the ClassDiscovery package in R [36] to ensure the results from both functions agreed.
The SamplePCA function is used to create a PCA more efficiently in scenarios with
greater numbers of variables compared to data points; it was originally developed
for biology microarray studies [36]. One component was calculated for every input

variable, and thus resulted in 171 components.

The amount of principal components (PCs) determined the ERSS included in the
analysis, reducing the large set of ERSS to a smaller, statistically significant ERSS
set. The number of principal components was chosen using the broken stick method
[102]:

by =% ,1/i (5.4)
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Table 5.1: Stream flow categories [34].

Definition

ma Magnitude, Average flow conditions
ml  Magnitude, Low flow conditions
Magnitude, High flow conditions
Frequency, Low flow conditions
Frequency, High flow conditions
Duration, Low flow conditions

dh  Duration, High flow conditions

ta  Timing, Average flow conditions

tl  Timing, Low flow conditions

th  Timing, High flow conditions

ra  Rate of Change, Average flow conditions

=ESE

where p is the number of variables and b, is the size of the eigenvalue for the k™
component under the broken stick model [103]. The broken stick model was more
easily able to be calculated through the prcomp function compared to the SamplePCA

function which is why both functions were used.

In the broken stick method, a significant PC is identified if the observed eigenvalues
are greater than the eigenvalues generated by the broken stick model (eigenvalues from
random data) [102]. There is a standard Kaiser-Guttman approach of selecting as
many principal components as eigenvalues greater than 0. However, this led to more
PCs and an objective of this research was to be selective about choosing ERSS and
finding parsimonious sets to reduce redundancy and confusion in interpretation. The

broken stick method was also chosen as it has been used in similar studies [96], [103].

For each PC included based on the broken stick model, one component was chosen
that represented a unique aspect of flow, ex. ma — magnitude average, fh — high
frequency (Table 5.1). A full list of ERSS names and definitions from ERSS can be
found in Appendix B [34].
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The ERSS chosen had the greatest absolute loading for that PC and stream flow
category, this replicated the method of Olden and Poff [27]. The percent error on these
indices was then calculated and the data were analyzed for trends and patterns in how
SIM, MODEL and RCM data represented observed conditions. Similar methods to
determine the accuracy of the simulations from Chapter 4 were used in this analysis,
such as the percent bias equation (Equation 4.11) and visual inspection. Some
variation in ERSS were expected, a hydrological uncertainty of +/- 30% was used
as context for inherent variability in stream flow and measurement [8], [49]. Each
PCA led to a different set of ERSS chosen, therefore comparisons between basins

SIM, MODEL and RCM simulations could not always be made directly.

The median absolute percent error (MdAPE) was used to compare the simulation
of ERSS between simulations (SIM, MODEL, RCM). The MdAPE for each stream

flow category was calculated using:

MdAIAPE = median(py, p2, -..Pn) (5.5)

where p; is the absolute P45, s from Equation 4.11. The MdAPE can be calculated
over the entire selected ERSS or using a subset of ERSS such as stream flow
characteristics (e.g. only timing ERSS, only low flow ERSS). The median was used as
a metric of average ERSS value because it is less sensitive to outliers. As the number
of ERSS used in the analysis varied depending on simulation, the proportion of ERSS
completely within the range of uncertainty was used as a measure of simulation

accuracy. A lower MAAPE value indicated a better simulation.

The variability of the ERSS predictions was also of interest. Due to the differences

in magnitude between ERSS, the data required standardization to compare the data
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ranges between ERSS. To quantify the variation between ERSS, the standardized

data range (SDR) was calculated for each ERSS set using [49]:

MAX(ERSS;s) — MIN(ERSS, ;)

SDh = median(ERSS; )

(5.6)

The SDR is the maximum ERSS value minus the minimum ERSS value divided
by the median. The SDR for observed values (OBS) was calculated using the set of
six stream flows from the regional analysis. The SDR for simulated data (MODEL
and RCM) was calculated from the set of simulated stream flows. The SIM results
could not have an SDR because each bias correction method produced only one ERSS
point, whereas the models with RCM data produced 40 ERSS data points from the

40 RCM inputs.

The purpose of the SDR was to contextualize the variability of ERSS when using
RCM data inputs in the PRMS model. The SDR represented the variability of an
ERSS. The variability (predicted SDR) of a specific simulated ERSS was compared
to the variability of an OBS ERSS (observed SDR). Ideally, the SDR of an observed
ERSS would be equal to the SDR of a predicted ERSS. However, it was desirable
that the variation of the ERSS from RCM data inputs be less than the variation of
the ERSS from a regional analysis. This would show that the uncertainty of doing
a regional analysis is greater than or equal to the uncertainty of using RCM data
inputs and treating each RCM simulation as a separate watershed (modified regional

analysis).
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5.3 Results and Discussion

ERSS were selected and calculated for each simulation (Table 3.2) and statistical
analysis techniques were done to determine which simulations had minimal error
compared to OBS conditions. Quality control of the data is presented first, then
results. Results are presented first for SIM, then results driven by RCM data are
discussed in the next section of this chapter. Trends in the ERSS were analyzed to
determine if there was consistency with the results from phase 1. It was expected that
BCS and BCM bias correction on each simulation would have the minimal percent

bias and MdAPE values for each stream flow characteristic and overall ERSS.

5.3.1 QA/QC

Using EflowStats, 171 ERSS were calculated for over 500 stream flows (Table
3.2). ERSS were systematically reduced prior to analysis following the steps outlined

below.

Small data ranges or outliers caused certain ERSS to be removed in simulations
of the stream flow. In all simulations ERSS dl18, dl19, dl20, mh23 and mh26 were
removed because of a large amount of missing data (e.g., many 0’s or NA’s). ERSS
dl18 and dl20 had a data set of 0 through the majority of the analysis. ERSS dl19,
mh23 and mh26 had NA values in simulations. The low flow indices (dl18, di19,
dl20) were 0 because there were no zero flow days simulated in the record or pulse
spells that low. The value on the high flow indices were due to there being no flows
above seven times the median flow value. In the observed record (OBS) in the Batsto
and Maurice watersheds, there were no zero flow days leading these ERSS (dl18, dl19,
dl20) to be a set of 0’s. In some simulations of ERSS mh23 and mh26 did not have
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values attached to them (NA), this was due to a lack of extreme stream flow events
in the simulation from the RCM. These ERSS, which are defined in Table 5.2 were

removed from analysis.

Table 5.2: ERSS removed from analysis in first stage QA /QC due to a high proportion
of missing values [34].

ERSS Definition

dlis Number of zero-flow days. Count the number of
zero-flow days for the entire flow record. DI1§ is
the mean annual number of zero flow days per year.
(number of days/year)

dl19 Variability in the number of zero-flow days. Compute
the standard deviation for the annual number of zero
flow days. DI19 is 100 times the standard deviation
divided by the mean annual number of zero flow days.
(%)

dl20 Number of zero-flow months. While computing the
mean monthly flow values, count the number of months
in which there was no flow over the entire flow record.
(%)

mh23  High flow volume. The average volume of flow events
above a threshold equal to seven times the median flow
for the entire record. Mh23 is the average volume
defined by the median flow for the entire record. (days)

mh26  High peak flow. The average peak flow value for flow
events over a threshold equal to seven times the median
flow for the entire flow record. Mh26 is the average peak
flow divided by the median flow for the entire record.
(dimensionless)

Outliers were removed from the data set on a case by case (simulation by
simulation basis). The PCA was run for each simulation once and any ERSS with
outliers was removed from analysis and re-run. ERSS that were consistently found

to have outliers (ta3, thi, tl4, dh6 and dh23), Table 5.3 were removed from analysis.

The Shapiro-Wilk test determined if the data were normally distributed on the



Table 5.3:

ERSS removed due to outliers in various simulations [34].

ERSS

Definition

tas3

thi

1y

dh6

dh23

Seasonal predictability of flooding. The maximum
number of flood days in any given 2-month period
divided by the total number of flood days (flow events
with flows > 1.67-year flood). (dimensionless)

Julian date of annual maximum. Determine the Julian
date that the maximum flow occurs for each year.
Transform the dates to relative values on a circular
scale (radians or degrees). Compute the x and y
components for each year and average them across all
years. Compute the mean angle as the arc tangent of
y-mean divided x-mean. Transform the resultant angle
back to Julian date. (Julian date)

Seasonal predictibility of non-low flow. Compute the
number of days that flow is above the 5-year flood
threshold as the ratio of number of days to 365 or 366
(leap year) for earch year. Tl is the maximum of the
yearly ratios. (dimensionless)

Variability of annual maximum daily flows.  The
standard deviation for the maximum 1-day moving
averages, dh6 is 100 times the standard deviation
divided by the mean (%)

Flood duration. The flood threshold as a the
flood equivalent for a flood recurrence of 1.67 years.
Determine the number of days each year that the flow
remains above the flood threshold. Dh23 is the mean of
the number of flood days for years in which floods occur.

(days)

71
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remaining ERSS. The Shapiro-Wilk normality test was done on all data sets (SIM,
MODEL, RCM). The ERSS that needed to be normalized for each watershed are

listed in Table 5.4.

Table 5.4: ERSS from the Batsto and Maurice River watersheds that required
normalizing.

Batsto Number Maurice Number
Simulation non-Gaussian  Simulation non-Gaussian
RCM-BCM 18 RCM-BCM 20

RCM-BCS 19 RCM-BCS 27

RCM-BC 23 MODEL-BCS 34

RCM-UC 29 MODEL-BCM 36
MODEL-BCM 34 RCM-BC 83

MODEL-BC 37 RCM-UC 95
MODEL-BCS 46 MODEL-BC 97

It was expected that there would be a pattern in the normalization due to the
data inputs, however, an obvious trend was not found. In general, there were a higher
number of ERSS that needed normalization in the MODEL runs than the RCM runs,
Table 5.4. Only six ERSS needed to be normalized in the SIM runs. This showed that

the RCM data drastically changed the distribution of stream flow characteristics.

Differences were apparent between results in the Batsto and Maurice simulations.
In the Maurice River watershed there were fewer ERSS that needed to be normalized
with seasonal and monthly bias correction on both the MODEL and RCM simulations
(Table 5.4). To the authors knowledge there has not been any research on the effect
of stream flow statistics to downscaled bias correction. This result could be a topic

of future study.

Certain ERSS could not be normalized but were still included in the analysis.
For example, in some simulations th! had a bimodal distribution of one of the

ERSS (Figure 5.1). ERSS th! were bimodal in the Batsto runs UC, MODEL-BC,
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Figure 5.1: ERSS thl simulated in the Batsto UC stream flow.

RCM-BC, but not on the remaining runs. In the Maurice simulations th1 was bimodal
in the RCM-UC simulation only. Certain ERSS could not be normalized in the
Maurice River watersheds (dh19, fhj and fh7) in the RCM-UC, MODEL-BCS and
MODEL-BCM simulations because in the majority of simulations their values were
0. ERSS dh19, fh4 and fh7 represented high flows. A PCA was performed on the
remaining ERSS to determine a subset of statistically significant minimally correlated

indices.

Other ERSS that were not able to be normalized were dh19, fhj and fh7.
These ERSS couldn’t be normalized in the Maurice MODEL-BCS and Maurice
MODEL-BCM simulations because the majority of the data series were 0 value. These
ERSS represented high flow duration, dependant on flow values equal to seven times
the median flow over the entire record. These ERSS (dh19, fh4, fh7) had non-zero
values in the OBS Maurice record. As was seen in the previous paragraph, from the

removal of outliers, models of the Maurice poorly simulated flows that high.
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Phase 1 showed that RCM simulations had minimized percent error with monthly
and seasonal bias correction. Therefore, it was expected that the watersheds would
have minimal percent bias with BCS and BCM bias correction in the SIM simulations.
It was also expected that extreme high and low flow ERSS would be best simulated
by BC in the SIM results but would be reasonably well simulated with SIM-BCS and

SIM-BCM, according to the results from phase 1.

5.3.2 PRMS Simulations driven by Observed Data

Quality control of the data removed between 8-15 ERSS sets from each simulation.
Removing so few indices alone did not create an uncorrelated set of ERSS to
describe the stream flow characteristics, that was the function of the PCA. Principal
Component Analysis (PCA) run on the remaining ERSS and a parsimonious set of
ERSS were obtained that described the full range of stream flow characteristics of

the watershed simulations.

In the SIM simulation the ERSS was calculated for 4 similar watersheds (Great
Egg, Tuckahoe, Mullica, Oswego, Batsto, Maurice) in the Pinelands Ecoregion in
addition to the Batsto and Maurice River watersheds. PCA performed on the ERSS
from the six watersheds to obtain a parsimonious set of ERSS that still described

the stream flow characteristics. The set of ERSS selected from the SIM runs were

compared across all SIM simulations (SIM-UC, SIM-BC, SIM-BCS, SIM-BCM).

There were two significant principal components found by performing PCA on
the ERSS from the six observed stream flow gauges. One ERSS that represented a
unique stream flow characteristic was selected for each principal component based on

the absolute value of the loading. The MdAPE across all ERSS (regardless of stream
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flow characteristic) were compared across all BC time scales and the MAAPE was
calculated across specific stream flow characteristics and compared across BC time

scales. The ERSS selected based on PCA are in Table 5.5.

In the Batsto River watershed the overall MAAPE was found to be 19.6% in
the SIM-UC simulations (Figure 5.2a). Using bias correction at smaller time scales
improved the results, MAAPE changed for BC (9.2%), BCS (10.1%) and BCM (7.3%)
(Table 5.6). Similar results were found in the Maurice River watershed (Figure 5.2b,
Table 5.7). While the 'best’ simulation (minimized MAAPE) was different for the two
watersheds - SIM-BCM for the Batsto and SIM-BCS for the Maurice, this showed that
bias correction at smaller time scales improved the simulation of ERSS compared to
the UC and BC simulations. These results are consistent with phase 1 of this research.

1

The simulation of individual stream flow characteristics was different than the
simulation of the overall selected ERSS (Table 5.1). The impact of bias correction on
the SIM ERSS is shown in Figure 5.2. Bias correction reduced the MdAPE over all
ERSS flow aspects compared to SIM-UC, with the exception of the timing ERSS in
SIM-BC (14.1%) compared to SIM-UC (11.7%) in the Batsto River watershed. Thus
the expected trend that bias correction (at any time scale) improved the prediction
of ERSS was followed in most scenarios. However, the effect of bias correction at
smaller time scales (SIM-BCS, SIM-BCM) had mixed results. Tables 5.6 and 5.7 show
which simulations reproduced the observed stream flow characteristics with minimized
MdAPE. Overall, the hypothesis that bias correction at smaller time scales (BCS and

BCM) improved the simulation of ERSS held in the Maurice watershed but not the

!Note that fh3 in the Maurice River Watershed is not displayed because the observed value was
0



Table 5.5: Selected ERSS and definitions
Pinelands [34].
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by PCA from a regional analysis in the

ERSS Definition ERSS Definition

ma7 Ratio of the 20% Exceedance dl15 90 percent exceedance
Values to 80% FExceedance of the entire flow record
Values for the Entire Flow (dimensionless)
Record (dimensionless)

ma26 Variability of February Flow dhi1 Annual maximum of 1-day
Values (%) moving average flows divided

by the median for the entire
record (dimensionless)

ml7 Mean of Minimum Flows in dh24 Flood free days (days)
July across all yeards (f3/s)

ml21 Variability —across annual ta2 Predictability
minimum flows (%) (dimensionless)

mhl16 High flow discharge index ta3 Seasonal predictability  of
(dimensionless) flooding (dimensionless)

mh21 High flow volume index tl1 Julian date of annual
(days) minimum (Julian date)

fil Low flood ©pulse count t3 Seasonal predictability of low
(number of events/year) flow (dimensionless)

fi3 Frequency of low pulse spells thi1 Julian  date of annual
(number of events/year) maximum (Julian date)

fhi Average number of flow th2 Variability in Julian date
events with flows above a of annual maximum (Julian
75th  percentile threashold date)
(number of events/year)

fhs Average number of days per rad Number of day  rises
year that the flow is above (dimensionless)
a threashold equal to three
times the median flow of
the entire record (number of
days/year)

dl1 Annual minimum daily flow ra7 Change of flow (f3/s)

(/)
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Figure 5.2: Percent Bias between PCA Selected ERSS in the (a) Batsto and (b)
Maurice River watersheds - SIM simulations with UC, BC, BCS and BCM bias
correction. Dashed lines show +/- 30% hydrological uncertainty.
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Table 5.6: MdAPE Values of the Batsto River watershed modelled with observed
data (SIM results) and bias correction.

SIM-UC SIM-BC SIM-BCS SIM-BCM

All ERSS 19.6% 9.2% 10.1% 7.3%
Magnitude 25.1% 10.4% 7.9% 5.3%
Frequency 55.4% 29.9% 43.4% 38.9%
Duration 15.0% 4.3% 8.6% 10.7%
Timing 11.7% 14.1% 3.9% 3.0%
Rate of Change 20.4% 10.4% 14.3% 14.7%

Table 5.7: MdAPE Values of the Maurice River watershed modelled with observed
data (SIM results) and bias correction.

SIM-UC SIM-BC SIM-BCS SIM-BCM

All ERSS 14.8% 16.4% 2.5% 5.2%
Magnitude 12.1% 9.7% 1.9% 3.7%
Frequency 73.6% 73.6% 74.2% 68.2%
Duration 5.4% 5.0% 3.3% 2.7%
Timing 22.8% 22.8% 1.8% 5.1%

Rate of Change 10.2% 11.5% 9.6% 9.3%
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Batsto watershed.

The timing and frequency ERSS were poorly simulated in the Batsto River
watershed. Various timing and frequency ERSS were simulated in this analysis
and the definitions of the ERSS are in Table 5.5. In the Batsto watershed, two
ERSS indices representing timing had large percent errors, ta$ and thl in the SIM
simulations. In SIM-UC and SIM-BC th1 equaled 303, which indicated that annual
maximum was at the end of October, while based on observed data (th! = 88) this
occurred at the end of March. The bias in simulation caused the MAAPE of the
timing ERSS to increase in the SIM-UC and SIM-BC simulations. With seasonal
and monthly bias correction th1 was much closer to the OBS value. However, when
applying bias correction at these smaller time scales ta3 did not improve in the Batsto
River watershed but ta3 did improve in the Maurice River watershed with SIM-BCS
and SIM-BCM. Ta? was based on stream flows calculated for two months and the
MdAPE was outside the range of uncertainty in the Batsto River watershed SIM-BC
and SIM-BCS simulations. This indicated that ta3 was impacted by the watershed
and potentially related to urbanization. ERSS ta3 represented seasonal predictability
of flooding. It is possible that as the Batsto River watershed is less urbanized, the area
may have unknown hydrological processes which impact the ERSS. The processes may
not be as well simulated in the Batsto River watershed due to porous soils. Porous
soils lead to greater stream flow and ground water recharge and less surface runoff [74].
PRMS is limited in it’s ability to model groundwater-surface water interactions, and
errors in simulation most likely propogated to the calculation of ERSS [15]. As shown
in Figure 5.2, ERSS were generally better predicted in the Maurice River watershed

compared to the Batsto River watershed with the exception of frequency ERSS.

Frequency ERSS were not well represented in any SIM watershed simulation.
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Frequency ERSS were expected to have large percent errors as hydrological models
in past analysis were not able to simulate rate and frequency of daily rise and falls in
stream flow [32]. Caldwell et al. (2015) found frequency ERSS regularly outside of the
range of uncertainty [8]. The frequency ERSS were outside the range of uncertainty in
both watersheds (Figure 5.2). In the SIM-UC ERSS on the Batsto River watershed,
the frequency ERSS were poorly simulated with a MAAPE of 55.4%. In the Maurice
River watershed the frequency ERSS were also poorly simulated with an MdAPE
of 73.6% in SIM-UC. Neither watershed showed substantial improvement with bias
correction on the simulation of frequency ERSS. All other MAAPE values were less
than 30% in SIM-UC in both watersheds. This may indicate that PRMS has difficulty
in simulating stream flow frequency. Simulation of frequency ERSS remains elusive
as frequency ERSS are highly variable and uncertainty is high [46]. This would likely

impact stream flows simulated with RCM data.

ERSS fI3 was poorly simulated in the Batsto with a percent bias of -100%.
However, this was due to the fact that only one low flow event was simulated compared
to 0 low flow events. In the Maurice watershed the fl1 and fh1 ERSS had large
percent errors outside of the range of uncertainty in all SIM stream flows. In the
Maurice watershed there were 0 low flow events and 0 low flow events simulated
in all SIM and because of the percent bias calculation (Eq. 4.11) (0/0) the value
was undefined and no points are shown on Figure 5.2. ERSS flI was overestimated
in the Maurice River watershed (SIM-UC) and bias correction did not improve the
prediction of fil. ERSS fiI represented a low flood pulse count. It is not surprising
that it was poorly simulated as, again, frequency aspects of stream flow have not been
well simulated in past analysis nor extreme high or low flows [8], [32]. FhI represented

high flood pulse count which was well simulated in the Batsto but not the Maurice.
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Fh1 was approximately twice as high in the SIM simulations in the Maurice River
watershed compared to the OBS value. There was potentially misrepresentation of
runoff processes in the model of the Maurice River watershed causing errors in high
flow simulation [15]. The SIM results showed the internal error in the model, and the

bias in PRMS by calculating ERSS from observed stream flow conditions.

In the Batsto and Maurice River watersheds all ERSS were best simulated by
SIM-BCM or SIM-BCS, respectively. The majority of timing ERSS followed the
expected trend, but ta$ did not. Frequency ERSS was poorly simulated in both the
Batsto and Maurice River watersheds with the minimal MdAPE of 29.9% (SIM-BC)
and 68.2% (SIM-BCM) respectively. Future calculations of frequency ERSS must
be treated with caution as bias correction could not correct for the simulation of

frequency ERSS.

5.3.3 Downscaled GCM Simulations

Simulating the watersheds with observed data and bias correction at different time
scales resulted in the majority of stream flow characteristics being best simulated with
monthly and seasonal bias correction. However, frequency ERSS had large MdAPE
value and were not well-simulated. Substituting observed data, RCM data then drove
the PRMS model (RCM-UC) and bias correction was performed to correct for model

error (MODEL) and RCM error (RCM).

Uncorrected Simulated ERSS driven by RCM data (RCM-UC)

There were three significant principal components in the RCM-UC simulations in

the Batsto River watershed based on the results of the broken stick method. In the
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RCM-UC simulation in the Batsto River watershed the first component represented
78.0% of the variance (Figure 5.3). The three PCs had a cumulative proportion of
variance of 89.2%. In the Maurice River watershed RCM-UC simulation there were
four principal components. The first component represented 70.5% of the variation
and the four principal components had total cumulative variation of 90.7%. One
ERSS was selected from each PC that represented each major aspect of the flow
regime resulting in 27 ERSS for the Batsto River watershed and 33 ERSS for the
Maurice River watershed RCM-UC simulations. The simulation of these ERSS are

shown in Figure 5.4.

Overall, in uncorrected simulations the ERSS that represented duration and
timing well simulated OBS conditions. The proportion of ERSS within +/-30% bias
was greater than the proportion outside. All flow categories had ERSS outside of

hydrological uncertainty.

However, the majority of ERSS were within the range of uncertainty in the Batsto
and Maurice RCM-UC simulations (Figure 5.4). In the Batsto River watershed the
MAAPE of all selected ERSS was 27.3%. The MdAPE of all selected ERSS in
the Maurice watershed was 28.0%. Both basins had similar percent bias without
considering bias correction. However, there was variation in how well different types

of ERSS were simulated.

The MdAPE for each stream flow characteristic in the Batsto River watershed
was 33.3%, 23.4%, 26.5%, 8.8% and 34.1% for the magnitude, frequency, duration,
timing and rate of change ERSS, respectively in the RCM-UC simulations (Table
5.8). Likewise the MAAPE values in the Maurice River watershed were 17.9%, 57.9%,
30.9%, 14.4% and 31.3% for the magnitude, frequency, duration, timing and rate of
change ERSS, respectively (Table 5.9).
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The timing ERSS were best simulated with MdAPE in both watersheds without
bias correction (RCM-UC). This result was different than the SIM results which had
a large MAAPE value on the timing ERSS due to two ERSS (¢th! and ta8). These
ERSS were not selected for analysis based on the PCA and thus the MAAPE for the

timing ERSS was smaller.

Two ERSS flow characteristics had MAAPE outside the range of uncertainty in
the Batsto River watershed: magnitude (33.3%) and rate of change (34%). However,
the magnitude ERSS in the Maurice River watershed was within the accepted range
of uncertainty in RCM-UC, with MdAPE of 17.9%. Approximately five magnitude
ERSS in the Batsto River watershed had data outside the range of uncertainty (Figure
5.4a) leading to poor simulation of the magnitude ERSS. Typically, magnitude ERSS

are better simulated compared to other ERSS characteristics [8].

Due to only three rate of change ERSS being included in the analysis a smaller
amount of ERSS outside the range of uncertainty gave a greater MAAPE value for
the rate of change ERSS in the Batsto River watershed. Rate of change ERSS are
very sensitive to errors in daily flow simulation [32]. The Maurice River watershed
had a larger amount of rate of change ERSS included in the analysis and less than

half of the ERSS had data within the range of uncertainty in the RCM-UC results.

The largest MAAPE of the RCM-UC simulations in the Batsto River watershed
were in the ERSS that represented frequency, fh4 (96.7%) and filI (68.5%), a
consistent trend with past results that frequency ERSS would not be well simulated
[32]. The frequency ERSS were also poorly simulated in the Maurice River watershed.
This was also found in the SIM results, where the Maurice River watershed had

frequency ERSS with an MdAPE of 73.6%, Table 5.7.

The standardized data ranges (SDR) showed the variability between the OBS



86

stream flows and the RCM-UC simulations (Appendix C). In the Batsto River
watershed 11 ERSS of 28 had larger variability compared to OBS conditions. In
the Maurice River watershed 10 of 34 ERSS had larger variability compared to OBS
conditions. Overall the simulation of the ERSS using RCM data underestimated the
variability. However, one third of the ERSS had overestimated variability, indicating
that perhaps some improvement is required to the PRMS model to better fit the
ERSS. The ERSS with under and overestimated variability were spread across stream
flow characteristics and were not constrained to one stream flow characteristic (e.g.

timing).

There was error and uncertainty in the simulation of stream flows using RCM
data, additional methods to reduce this error should be considered in future analysis.
Magnitude ERSS, which are considered to be the most reasonably simulated ERSS
were outside of the range of uncertainty in the Batsto River watershed which supports
the hypothesis that improvement in the simulation of ERSS using dynamically
downscaled climate data. The variability of the ERSS could also be better simulated
by RCM data. Bias correcting for the PRMS error (MODEL) may be enough to

reduce ERSS to within the range of uncertainty.

Model Corrected GCM Simulated Stream Flow (MODEL)

Bias correction was done on the stream flows directly to the observed data
(MODEL) (Figure 5.5 and 5.6). The purpose of this form of bias correction was to
remove the error due to PRMS. Seasonal bias correction (MODEL-BCS) minimized
percent error across all ERSS in both watersheds. However, frequency and rate of
change ERSS in MODEL simulations in both basins resulted in large deviations from
OBS conditions.
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The Batsto River watershed MODEL-BCS simulation had 15.8% MdJAPE and
the Maurice River watershed MODEL-BCS simulation had 14.3% MdAPE across
all ERSS (Table 5.8 and 5.9). This showed improvement from the approximately
28% MAJAPE in RCM-UC in both watersheds. While the overall ERSS were better
simulated in MODEL-BCS, some stream flow characteristics were simulated better

than others.

Bias correction at all time scales decreased the MAAPE of magnitude and duration
ERSS to be below 30%, and in most scenarios, below 15%. Magnitude and duration
ERSS had minimal MAAPE with MODEL-BCS and MODEL-BCM in the Batsto and
Maurice River watersheds, respectively (Table 5.8 and 5.9). This was consistent with
the results from phase 1. MODEL-BCS provided the lowest MAAPE for the timing
ERSS in the Maurice River watershed however, the RCM-UC simulation had the
lowest MAAPE for the Batsto River watershed. While the timing ERSS did not have
the lowest MAAPE with smaller bias correction time scale - the expected trend from
phase 1, the timing ERSS were still well simulated in MODEL-BCS (18.9% MdAPE)
and MODEL-BCM (11.5% MdAPE). The frequency and rate of change ERSS were

more poorly simulated.

Table 5.8: MdAPE Values of the Batsto River watershed with bias correction on the
PRMS model (MODEL simulations).

RCM-UC MODEL-BC MODEL-BCS MODEL-BCM

All ERSS 27.3% 17.0% 15.8% 19.3%
Magnitude 33.3% 15.6% 10.8% 14.4%
Frequency 23.4% 52.5% 31.6% 44.1%
Duration 26.5% 10.7% 10.7% 12.1%
Timing 8.8% 13.5% 18.9% 11.5%
Rate of Change 34.1% 17.7% 33.3% 37.1%

Using any form of bias correction in the MODEL simulations increased the
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Table 5.9: MdAPE Values of the Maurice River watershed with bias correction on
the PRMS model (MODEL simulations).

RCM-UC MODEL-BC MODEL-BCS MODEL-BCM

All ERSS 28.0% 24.5% 14.3% 16.0%
Magnitude 17.9% 14.9% 8.3% 8.3%
Frequency 57.9% 113.1% 92.6% 81.2%
Duration 31.0% 25.5% 13.7% 10.1%
Timing 14.4% 14.0% 8.0% 9.5%
Rate of Change 31.1% 44.7% 42.2% 34.3%

MAdAPE in the frequency and timing ERSS in the Batsto River watershed (Figure
5.5b - 5.6d). The MdAPE of the frequency ERSS increased in the Maurice River
watershed with bias correction whereas the MAAPE of the timing ERSS decreased
(the expected result). This indicated that frequency ERSS did not follow the expected
trend in both watersheds and further bias correction or other methods may be needed.
The difference in the trend of the timing ERSS may be a result of differences between
the watersheds. The two watersheds have differences in urbanization, land use and

soils [15].

Frequency and rate of change ERSS are sensitive to errors in the simulation of
daily stream flow from hydrological models [32]. MODEL bias correction did not
improve the simulation of frequency ERSS. The frequency ERSS did not follow the
expected pattern (Table 5.8 and 5.9); MdAAPE increased with MODEL-BCS and
MODEL-BCM in both watersheds. The MODEL simulations were intended to reduce
the error from the hydrological model and this was found in the magnitude and
duration ERSS across the board. However, the frequency and rate of change ERSS
in both watersheds and the timing ERSS in the Batsto River watershed did not have
their percent bias reduced by MODEL bias correction. This may indicate that the

RCM data inputs have inherent bias and doing bias correction to reduce model error
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made the simulations worse in some ways.

The rate of change ERSS were reasonably simulated in the Batsto River watershed
with MODEL-BC (17.7% MdAPE) but in no other simulations. All other simulations
of rate of change ERSS in both watersheds were over 30%. The rate of change ERSS
in the SIM runs had lower percent bias. While there may be some inherent bias in
the hydrological model, this may indicate that the RCM simulations were tested to
see if a large proportion of bias in the rate of change ERSS came from RCM data

inputs.

It was desirable that the variability of the MODEL or RCM simulations were less
than the variability of ERSS in the regional analysis (6 observed stream flows). The
SDR of the MODEL simulations showed that there was reduced variability in the
stream flow characteristics compared to the OBS ERSS (Appendix C - Table 2 and
Table 3). In the Batsto River watershed MODEL-BC simulations 20 of 28 ERSS had
reduced variability in the simulated results compared to OBS ERSS. In the Maurice
River watershed 21 of 34 ERSS had reduced variability in the MODEL-BC simulations
compared to the OBS simulations. In the Batsto River watershed the proportion
of ERSS that had overestimated variability went down, while in the Maurice River
watershed the proportion increased with smaller bias correction time scales. However,
the proportion of ERSS with overestimated variability was around 30% in all MODEL
simulations. The simulated stream flow record, in past analysis, could not fully
capture the observed variation in FDCs in either basin but variation at low exceedance
levels was underestimated in the Batsto watershed, while variation at high exceedance
levels was underestimated in the Maurice watershed [15]. The variation of low and

high flow ERSS is explored in phase 3.

Bias correction on the MODEL simulations increased the MdAPE in certain
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characteristics, the opposite of the desired effect. The rate of change, frequency
and timing ERSS did not consistently follow the same trend as phase 1 or the SIM

ERSS in phase 2. This may point to internal error in the RCM.

Bias corrected GCM Simulated Stream Flow (RCM)

The following section describes the results from creating the ERSS from stream
flows that were bias corrected on the RCM (see Figures 5.7 - 5.8 for ERSS used in
this analysis). The main results and deviations from expected trends are discussed.
Bias correction improved the simulation of ERSS for the Batsto watershed at all
timescales and minimized error compared to using no bias correction (RCM-UC) or

bias correction only for the PRMS model (MODEL), Table 5.10 and 5.11.

Bias correction in this section removed both the error from the PRMS model and
corrected for the remainder of the bias from the RCM. This improved the simulations
of ERSS over MODEL results (Table 5.10 and 5.11). While the MAAPE indicated
that RCM-BCS and RCM-BCM minimized percent error across all ERSS, the shorter
timescales did not show the greatest improvement across all flow characteristics.
RCM bias correction simulations results in simulated ERSS with minimized error,
as lower percent errors were found in all ERSS in the RCM bias corrected simulations

compared to the MODEL simulations.

In the RCM-UC simulations all ERSS had percent errors between -100 and 100%.
However, when applying bias correction certain ERSS developed ranges of percent
errors of 350% while the majority of the ERSS were within the range of uncertainty.

This affected the MdAAPE of certain stream flow characteristics more than others.

The magnitude ERSS had the lowest range of uncertainty in the Batsto River
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Table 5.10: MdAPE Values of the Batsto River watershed with bias correction on the
RCM (RCM simulations).

RCM-UC RCM-BC RCM-BCS RCM-BCM
All ERSS 27.3% 15.7% 14.0% 16.2%
Magnitude 33.3% 9.5% 14.3% 16.5%
Frequency 23.4% 21.9% 40.9% 43.4%
Duration 26.5% 25.4% 17.6% 18.0%
Timing 8.8% 24.1% 8.0% 5.6%
Rate of Change 34.1% 9.1% 12.9% 12.1%
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Table 5.11: MdAPE Values of the Maurice River watershed with bias correction on
the RCM (RCM simulations).

RCM-UC RCM-BC RCM-BCS RCM-BCM
All ERSS 28.0% 13.3% 12.1% 11.8%
Magnitude 17.9% 8.2% 6.6% 8.3%
Frequency 57.9% 80.0% 71.6% 22.6%
Duration 31.0% 7.6% 12.3% 8.5%
Timing 14.4% 13.0% 5.6% 2.0%
Rate of Change 31.1% 57.6% 48.4% 44.6%
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watershed simulated by RCM-BC (Table 5.10), this was not the consistent with
the results from phase 1. There were four principal components on the RCM-BC
simulations and five in the RCM-BCS and RCM-BCM simulations. Having the
additional principal components led to increased ERSS which skewed results.
However, after accounting for the increased principal components, the simulation
of certain ERSS was shown to be better or worse depending on the simulation. The
selection of ERSS ma40, mi13 and mh21 may have skewed the results in the Batsto
watershed. These three ERSS were selected only in the RCM-BCS and RCM-BCM
simulations and skewed the expected results. ERSS ma40 is the skewness of monthly
flow values. Skewness of the daily flow values was not as well represented in the
Batsto watershed (Figure 4.4 in Phase 1) so this may have extended to the monthly
skewness as well. ERSS ml13 described the variability across minimum monthly flows
and mh21 represented the high flow volume index - the average volume divided by
the median flow for the entire record. These ERSS were not well simulated which
led to the increased MdAPE value in the magnitude ERSS in the RCM-BCS and
RCM-BCM simulations in the Batsto River watershed. Selection of ERSS through
the modified regional analysis method played a role in the ability of RCM data to

simulate ERSS, however, visual observation put the results into context.

Shrestha et al.(2014) [68] found that a hydrological model did not simulate
duration ERSS well, however, in this study duration ERSS were better simulated
compared to certain other stream flow characteristics. The duration ERSS were
best simulated in the Batsto River watershed with RCM-BCS, with an MdAPE of
17.6%. However, the percent error was similar in RCM-BCM (18.0% MdJAPE). In
the Maurice River watershed, the MAAPE was lowest in the RCM-BC simulation

(7.6%); however MAAPE for duration ERSS was lowest in all RCM bias correction
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simulations (RCM-BCS: 12.3% and RCM-BCM: 8.5%) compared to the RCM-UC
simulation (30.1% MAAPE). The duration ERSS had a expected trend that was
consistent with the results from phase 1, that bias correction at smaller time scales

improved the prediction of ERSS.

The timing ERSS generally was consistent with phase 1, where bias correction
at smaller time scales decreased the MdAPE values. With the exception of the
Batsto River watershed which had a greater MAAPE value in the RCM-BC simulation
compared to the RCM-UC simulation (Table 5.10).

In the Batsto River watershed the MAAPE of the frequency ERSS was lower in
RCM-BC with 21.9% MdAPE. While in the Maurice River watershed the MAAPE of
the frequency ERSS was lower in the RCM-BCM simulation with 22.6% MdAPE. This
was different from what was observed in the watersheds with MODEL results, where
both watersheds showed low MdAPE in the RCM-UC simulations. This indicated
that there was error in the RCM that could be corrected for frequency ERSS to be
better simulated. However, the other RCM bias corrections had greater MAAPE in
frequency ERSS compared to RCM-UC (Table 5.10 and 5.11). This may indicate
that selection of ERSS may have impacted the results of the simulation. Frequency

ERSS were examined in more detail.

In the Batsto watershed RCM-BC, fil was the only frequency ERSS with flows
outside the range of uncertainty (Figure 5.7). The following paragraph is a discussion
of the frequency ERSS, specifically in the RCM simulations of the Batsto River
watershed as these simulations did not follow the results from phase 1. In the
simulation of RCM-BCS and RCM-BC not only was fiI poorly simulated but due to
a greater amount of significant principal components ERSS fh3, fh4 and fh9, which

also had large percent errors, were selected for analysis. Fh3 and fh4 were selected for
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analysis in RCM-BC but had smaller percent errors. ERSS fi1 was poorly simulated
in all bias corrected watersheds, and represented low flood pulse count, the average
number of low flow events below the 25th percentile of the flow record. ERSS fh3
and fh4 represented the high pulse count, based on the number of days the flow
was above 3 and 7 times the median flow, respectively. Seasonal and monthly bias
correction of the RCM were unable to bring these flow metrics within the desired
range of uncertainty for the simulation of fh% and th4. ERSS fh9 was representative
of flood frequency and was the average number of flow events above a 75% exceedance
value. This led to the minimized MdAPE in the RCM-BC for frequency ERSS
just by comparison as there were fewer frequency ERSS included in the analysis
of other simulations. The selection of fh9 in RCM-BCS and RCM-BCM contributed
to increased MdAPE in the frequency ERSS. However, fh3 and fh4 also contributed
and these ERSS were sensitive to the bias correction time scale. It is possible that
bias correction at these time scales reduced some of the natural variation of the

hydrological model impacting the calculation of these ERSS [15].

In the Maurice River watershed (Figure 5.8) in both RCM-BC and RCM-BCS
approximately 50% of the frequency ERSS were simulated with large data ranges, and
in some cases over 100% error. In the Maurice River watershed the frequency ERSS
that were poorly simulated for RCM-BC were fl1, fh6, and fh9 and for RCM-BCS
were fl1, fh1, fh5, and fh9. In RCM-BCM fiI and fh5 (average number of flow
events above the median flow) were still simulated poorly; the other ERSS that had
large percent errors and increased the MAAPE value of the frequency ERSS were not
selected. The lower amount of significant PCAs on certain frequency ERSS affected
the simulation of the ERSS more than the simulation of frequency ERSS with a

bias correction time scale. The uncorrected (RCM-UC) and RCM-BC simulations
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had fewer significant PCs resulting in fewer ERSS being included in the analysis,
but had a larger MAAPE value than RCM-BCM. Comparing the graphs in Figure
5.8 , the individual frequency ERSS experienced less variation between RCM-UC,
RCM-BC, RCM-BCS and RCM-BCM. This indicated that while selection of the
frequency ERSS had a larger effect on the MAAPE of frequency ERSS compared to

changes that occurred due to bias correction.

The rate of change ERSS had a low MdAPE value in the Batsto River watershed
RCM-BC simulation (9.1%) compared to other RCM simulations, Table 5.10.
However, the MAAPE of rate of change ERSS were within the range of uncertainty
in all RCM bias corrected simulations in the Batsto River watershed. In the Maurice
River watershed the smallest MAAPE value was in the RCM-UC simulation but the
value was outside the accepted range of uncertainty (31.1%). Neither of these results
reflected the expected trend that rate of change ERSS would be best simulated with
bias correction on the RCM at smaller time scales. While the MAAPE in the Batsto
River watershed may be lower in the RCM-BC simulations, as shown in Figure 5.7,
rate of change was actually better simulated in the RCM-BCM simulation as all values
were within the accepted range of uncertainty. Data were analyzed in a variety of
ways in this study to determine the best simulation method. In the Batsto River
watershed RCM-BCS had an outlier in the simulation of ERSS: ra9. ERSS ra9
represented variability in reversals. It was not selected in other simulations. It had
been shown that the rate of daily rises and falls has not been well simulated which

may have contributed to the increased MAAPE value [32].

In the Maurice watershed the rate of change ERSS were better simulated in the
RCM-UC simulation. This was most likely due to the selection of ERSS. ERSS ra§

was not well simulated in any runs in the Maurice River watershed (Figure 5.8b).
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ERSS ra8 represented the average number of days per year when the flow changed
direction. As referenced in the previous paragraph, reversals were not well simulated
so it was expected that ra8 would be simulated poorly. ERSS ral, ra3 and ra6
were included in the RCM-BC, RCM-BCS and RCM-BCM analysis which may have
skewed how well the rate of change ERSS were simulated due to the inclusion of an
increased amount of rate of change ERSS. ERSS ral and ra3 were complimentary
ERSS and were the rise and fall rate, respectively. They were the average change of
flow for days when the change was only positive (ral) or negative (ra3). ERSS ra6
is similar to ral, and calculated the median of the log of the change of flow for days
when the change was positive. Rate of change ERSS were not well simulated in the
MODEL simulations either, this may indicate structural errors in the PRMS model.

Rate of change ERSS are very susceptible to large uncertainties [46].

The SDR of the RCM results showed that with bias correction a greater proportion
of ERSS had reasonable variability (Appendix C - Tables 7-9 and Tables 13-15). In
the RCM-UC simulations approximately 68% of selected ERSS had underestimated
variability compared to OBS variability in both basins. Underestimated variability
of simulated ERSS compared to OBS ERSS was desirable as it showed that using
dynamically downscaled data in a hydrological model had less variation than a
regional analysis. The proportion of ERSS with underestimated variability increased
in both watersheds with bias correction. It was surmised that RCM-BC would
reduce natural variation of the hydrological model [15]. In this study however, it
was found that the natural variation was reduced within reason with bias correction
and improved with bias correction that had timing considerations (RCM-BCS,
RCM-BCM).



100

5.4 Summary

ERSS were selected using PCA for each simulation of interest (Table 3.2). Due
to the varying number of principal components in the SIM, MODEL and RCM
simulations there were different amounts and different ERSS that could be compared
between the observed conditions and simulated conditions. In the future, one set of
ERSS containing all flow characteristics relevant to the Pinelands would be useful as
a comparison between simulations. Using a different subset of PCA selected ERSS
for each watershed was tedious for the purposes of comparison but had the benefit of
showing that the trends in data were not biased by the selection of the ERSS. While
there was a set of ERSS found that had ecological relevance to the Pinelands it did

not contain all flow characteristics. This set of ERSS was analyzed in phase 3.

Bias correction on the seasonal and monthly timescales on the RCM generally
led to lower percent error in the simulations. This result was consistent with what
was found in phase 1 of this research. However, the individual flow characteristics
in the Batsto and Maurice watersheds did not appear to follow the same trends,
particularly the frequency and rate of change ERSS which will need to be more
carefully simulated in future, this includes better model calibration, better input data,
among other improvements. Having ERSS better simulated in RCM-UC or RCM-BC
often indicated a problem with the simulation of that stream flow characteristic as
opposed to this method as a whole. The simulation of frequency and rate of change
ERSS has been problematic in past studies, additional research is still necessary to

simulate these ERSS well in modelled basins [32], [46].

There was a similar range of uncertainty across a regional analysis as there was

across SIM, MODEL and RCM results. Previous studies of regional analysis showed
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between -100% and 300% across various modelling programs (8], [49] with the majority
of ERSS within a +/- 30% range. Similar results were found in this analysis. In a
comparison of the standardized data ranges the RCM and MODEL simulations had

smaller standardized data ranges than the six watershed regional analysis.

Bias correction did have some positive effects, however, work still needs to be done
to consistently improve the prediction of ERSS. While the inherent problem with
modelling is that calibration on one characteristic cannot predict all characteristics
accurately, it is important that they are within a reasonable range of error [49]. This
phase of research focused on the simulation of the five fundamental aspects of stream
flow. In phase 3 the ability of RCM data to simulate ERSS relevant to the Pinelands

indices were explored with a focus on the simulation of low flow ERSS.



Chapter 6

Phase 3: Analysis of ERSS

Relevant to Pinelands Ecology

6.1 Introduction

It was beneficial to examine the simulation of ERSS relevant to the Pinelands
Ecoregion as these ERSS may be used in mitigation measures and management plans
in the future. These ERSS of relevance only covered two stream flow characteristics
(magnitude and duration) at average and low flows. Low flows are of importance to
the Pinelands Ecoregion due to a strong groundwater component [94]. The selected
ERSS (Table 6.1 were able to be examined in more detail and more easily across

simulations (Table 3.2).

This phase of research differs from phase 2 where parsimonious sets of ERSS were
determined through a new methodology. Whereas, in phase 3, a pre-determined set
was used. Phase 3, is more concerned with objective 2 and 3, comparing simulated

ERSS. Phase 3 was implemented to determine if there were differences in how low
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flow ERSS were simulated compared to average flow ERSS. It was generally found

that low flow ERSS were more poorly simulated compared to average flow ERSS.

Kennen & Riskin (2010) took 163 hydrological variables from HIT (the precursor
to EflowStats) and used a conservative screening criteria to reduce the variables to
an uncorrelated set of indices that were used in fish-assemblage flow-ecology response
models [104]. A PCA was used to reduce a large subset of environmental variables;
these results were combined with fish sampling results of the Pinelands along with
water quality data which reduced these ERSS to a set of 18 ERSS that were related
to aquatic health of the Pinelands [104]. No timing, frequency or rate of change
ERSS were included in the analysis because they were uncorrelated (p < 0.5) with
anthropogenic indicators [104]. All the ERSS in Table 6.1 were correlated with

ecological response in Pineland streams [104].

6.2 Method

In this phase of research, a smaller amount of ERSS were compared across
simulations compared to phase 2. This allowed for additional trends to be evaluated.
Similar methods of analysis were used in phase 3 and phase 2. MdAPE, percent bias
and visual inspection methods determined whether low flow ERSS had minimal error

compared to average flow ERSS.

The indices in Table 6.1 were compared across SIM, RCM and MODEL
simulations to determine how RCM data simulated ERSS. In phase 2 of this analysis,
frequency, timing and rate of change ERSS were more poorly simulated compared
to magnitude and duration ERSS. Removing frequency, timing and rate of change

ERSS from the analysis allowed for more detailed observations to be made on the



Table 6.1: Indices important to the aquatic health of the Pinelands [104].

Definition

mal

mal2
mal8
mal/
mald
malb
mal7
mal9
ma20
ma2l
mal2
ma23
mld

ml8
ml9
ml13
ml16
dl1

dlj
dl5

Mean of all the daily mean flow values for the entire flow
record(f3/s)

Mean of all January flow values over the entire record (f3/s)
Mean of all February flow values over the entire record (f3/s)
Mean of all March flow values over the entire record (f3/s)
Mean of all April flow values over the entire record (f3/s)
Mean of all May flow values over the entire record (f3/s)
Mean of all June flow values over the entire record (f3/s)
Mean of all August flow values over the entire record (f3/s)
Mean of all September flow values over the entire record (f3/s)
Mean of all October flow values over the entire record (f3/s)
Mean of all November flow values over the entire record (f3/s)
Mean of all December flow values over the entire record (f3/s)
Mean of the minimums of all May flow values over the entire
record (f3/s)

Mean of the minimums of all August flow values over the
entire record (f3/s)

Mean of the minimums of all September flow values over the
entire record (f3/s)

Variability (coefficient of variation) across minimum monthly
flow values (%)

Median of annual minimum flows (dimensionless)

Mean of annual minimum of 1-day average flow (f3/s)

Mean of annual minimum of 30-day moving average flow (f3/s)
Mean of annual minimum of 90-day moving average flow (f3/s)

104



105

data. Phase 3 was used primarily to compare the simulation of low flow ERSS to
average flow ERSS as these low flow ERSS were determined to be especially relevant
to the Pinelands Ecoregion [94]. The duration and magnitude ERSS of interest
were compared graphically, through percent bias, and MdAPE. Using the SDR all
simulated ERSS had reasonable variability compared to OBS values, so the SDR was

not examined in detail in this phase.

6.3 Results and Discussion

The ERSS from Table 6.1 were calculated for each stream flow in Table 3.2.
The performance of the simulations to estimate these ERSS were compared across

watersheds and bias correction time scales. ERSS from SIM were examined first

followed by MODEL and RCM.

6.3.1 PRMS Simulations driven by Observed Data

The simulations of the ERSS driven by observed climate in PRMS are shown for
the Batsto River Watershed (Figure 6.1a) and the Maurice River Watershed (Figure
6.1b).

In the Batsto and Maurice River watersheds the overall ERSS had an MdAPE
between 14% and 20% in the uncorrected (UC) simulations (Table 6.2 and 6.3). With
all forms of bias correction the simulation of both watersheds improved; the MAAPE
decreased with shorter bias correction time scales. The MdAPE with monthly bias
correction was 1.1% in both the Batsto and Maurice River Watersheds. Removing

the other stream flow characteristics from analysis appeared to make the trends much
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more apparent. Overall, based on the MAAPE values, the phase 3 SIM ERSS were
better simulated than the phase 2 SIM ERSS. In the phase 3 results only the Batsto
Watershed has SIM ERSS outside of the range of uncertainty. This agreed with
the phase 2 analysis that showed the Batsto River watershed had greater error in
simulation of ERSS. However, both stream flow characteristics improved with bias

correction at short time scales.

Table 6.2: MdAPE Values of the Batsto River watershed modelled with observed
data (SIM results) and bias correction.

SIM-UC SIM-BC SIM-BCS SIM-BCM

All ERSS 19.1% 13.7% 7.5% 1.1%
Magnitude 13.5% 19.1% 8.1% 1.1%
Duration 19.3% 5.2% 4.1% 7.7%

Table 6.3: MdAPE Values of the Maurice River watershed modelled with observed
data (SIM results) and bias correction.

SIM-UC SIM-BC SIM-BCS SIM-BCM

All ERSS 14.4% 11.1% 3.8% 1.1%
Magnitude 14.9% 11.4% 3.4% 0.9%
Duration 8.6% 8.1% 6.6% 3.5%

Indices representing magnitude and duration decreased as bias correction time
scales decreased in both watersheds with one exception. In the Batsto River
watershed, the duration ERSS had a greater MdAPE value in the SIM-BCM
simulation compared to the SIM-BC and SIM-BCS values (Table 6.2). However,
in the Batsto River watershed, SIM-BCM had duration ERSS completely within
the range of uncertainty and SIM-BCS simulation had the lowest duration MdAPE
(4.1%). Neither bias correction method at small time scales (between BCS and BCM)

was expected to outperform the other [84].

While magnitude and duration ERSS were consistently shown to be better
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simulated with bias correction at smaller time scales, there was a concern that low
flow ERSS would not be as well simulated [9], [94]. Of the 20 ERSS selected in the
analysis, eight described low flow conditions (ml5, ml8, ml9, ml13, ml16, dl1, dij,
dl5). There were no high flow ERSS in this analysis as they did not meet the screening
criteria. The low flow ERSS were not consistently better or more poorly simulated
in the watersheds according to the MAAPE with any specific form of bias correction
(Table 6.4 and 6.5).In Tables 6.4 and 6.5 low flow and average flow ERSS improved
with bias correction at decreased time scales. It was expected that low flow ERSS
would be consistently poorly simulated compared to average flow ERSS. However, it
was found in the SIM-BC and SIM-BCS simulations in the Batsto River watershed
and the SIM-UC and SIM-BC simulations in the Maurice River watershed that the

low flow ERSS were better simulated compared to the average flow ERSS.

Table 6.4: MdAPE values of Average Flow and Low Flow ERSS in the Batsto River
watershed with observed data (SIM results) and bias correction.

SIM-UC SIM-BC SIM-BCS SIM-BCM

Average Flow ERSS 16.4% 14.6% 8.6% 1.0%
Low Flow ERSS 19.1% 12.3% 5.5% 6.8%

Table 6.5: MdAPE values of Average Flow and Low Flow ERSS in the Maurice River
watershed with observed data (SIM results) and bias correction.

SIM-UC SIM-BC SIM-BCS SIM-BCM

Average Flow ERSS 16.1% 11.4% 2.5% 0.4%
Low Flow ERSS 13.9% 9.7% 5.4% 4.0%

6.3.2 Downscaled GCM Simulations

The SIM results in phase 3 showed that there was minimal error in the hydrological

model for the magnitude and duration ERSS. Bias correction further improved the
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simulation of magnitude and duration ERSS. Driving the hydrological model with
RCM data showed similar results. Only bias correcting to remove model error gave
percent errors within the range of uncertainty for all ERSS. However, bias correcting
to remove additional error from the RCM data gave lower overall error but did produce

outliers.

Uncorrected Simulated ERSS driven by RCM data (RCM-UC)

Using RCM data, the selected ERSS were generally well simulated. The Batsto
and Maurice watersheds followed similar trends in the simulation of ERSS, Figure 6.2,
indicated that these magnitude and duration ERSS were not as affected by differences
in land use. Certain ERSS were not well-simulated without bias correction. In both
watersheds ml8, ml9 and ml16, could use improvement; these are all low flow indices.
Using RCM data the low flow indices tended to be poorer simulated compared to

average flow ERSS.

Mi8 and ml9 had the majority of their estimates from simulated data outside
the range of uncertainty in both watersheds, while ml16 had approximately 75% of
the estimates of this ERSS outside of the range of uncertainty in the Maurice River
watershed. DIl also had a majority of data outside of uncertainty in the Batsto
River watershed. All of these ERSS were low flow indices and indicated that low flow
ERSS could use improvement when simulating stream flow with RCM data. This
is in contrast to the SIM results, where low flow ERSS were well simulated with
observed climate data. MI8 and ml9 were the mean minimum flows across August
and September, respectively. Magnitude of flows are often related month to month,
so it is logical that both of these ERSS were similarly poor simulated. ERSS mli16

was the median of annual minimum flows and dl! was the mean of minimum 1-day
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average flows for each year. The poor simulation of low flows is consistent with past

analysis [9], [10].

By comparing the two watersheds (Figure 6.2) the Maurice River watershed had
more outliers in the individual ERSS than the Batsto River watershed. These outliers
were caused by RCM CCSM4 rlilpl. In future analysis this model may not be
included. Previously, in phase 1, RCM CCSM4 rlilpi was found to cause larger

percent errors in the Maurice River watershed.

Model Corrected GCM Simulated Stream Flow (MODEL)

The selected ERSS were simulated, correcting for bias from PRMS (Figure 6.3
and 6.4). When bias correction was done using the stream flows determined from the
PRMS model (MODEL) in both watersheds, it was found that MODEL-BCM led
to a smaller overall MAAPE. Based on the results from phase 1 and phase 2, that
bias correction at shorter time scales would better estimate ERSS. The MdAPE of
the MODEL-BCM simulation was 4.4% and 5.5% in the Batsto and Maurice River

watersheds, respectively (Table 6.6 and 6.7).

All simulations had an MdAPE less than 30%. However, again, it was found that
in each stream flow characteristic a decreased time scale had (the desired effect of) a
decrease in MAAPE.

Table 6.6: MdAPE Values of the Batsto River watershed with bias correction on the
PRMS model (MODEL simulations).

RCM-UC MODEL-BC MODEL-BCS MODEL-BCM

All ERSS 20.4% 10.5% 8.2% 4.4%
Magnitude 14.7% 13.5% 9.3% 5.4%
Duration 27.1% 8.6% 3.1% 3.1%
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Table 6.7: MdAPE Values of the Maurice River watershed with bias correction on
the PRMS model (MODEL simulations).

RCM-UC MODEL-BC MODEL-BCS MODEL-BCM

All ERSS
Magnitude
Duration

16.4%
15.8%
21.2%

18.0%
13.2%
21.2%

6.9%
5.5%
9.6%

D.
4.
8.

5%
8%
1%
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In the the uncorrected simulations the low flow ERSS were more poorly simulated
than the average flow ERSS: 27.0% MAdAPE versus 12.3% MdJAPE in the Batsto
watershed and 24.9% MdAPE versus 13.8% MdAPE in the Maurice watershed (Table
6.8 and 6.9). However, when bias correction was applied that difference decreased.
In fact, MODEL-BCS in the Batsto Watershed better simulated the low flow ERSS
(5.4% MAAPE) versus the average flow ERSS (10.0% MdAPE).

With bias correction on the full stream flow record (MODEL-BC), the ERSS
that were previously of concern (ml8, ml9, mi13, ml16 and di1), did show minor
improvement but still had the majority of data outside of hydrological uncertainty.
However, in both watersheds, MODEL-BCS and MODEL-BCM had all data within
the range of uncertainty. This showed that these ERSS were minimally affected by
any residual bias from the RCM.

Table 6.8: MdAPE Values Average Flow and Low Flow ERSS in the Batsto River
watershed with bias correction on the PRMS model (MODEL simulations).

ERSS RCM-UC MODEL-BC MODEL-BCS MODEL-BCM
Average Flow 12.3% 10.5% 10.0% 5.1%
Low Flow 27.0% 13.0% 5.4% 5.2%

Table 6.9: MAAPE Values Average Flow and Low Flow ERSS in the Maurice River
watershed with bias correction on the PRMS model (MODEL simulations).

ERSS RCM-UC MODEL-BC MODEL-BCS MODEL-BCM
Average Flow 13.8% 10.7% 5.7% 5.0%
Low Flow 24.9% 23.2% 6.8% 6.3%

Bias corrected GCM Simulated Stream Flow (RCM)

The MODEL simulations corrected for bias from the hydrological model, the RCM

simulations corrected for any remaining residual bias from the RCMs. The RCM
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Figure 6.5: Percent Bias between Pinelands ERSS in the Batsto River Watershed -
RCM simulations with (a) RCM-UC, (b) BC, (¢) BCS and (d) BCM bias correction.
Dashed lines show +/- 30% hydrological uncertainty.

driven results were bias corrected to the observed data (RCM). In both watersheds in
the RCM simulations it was found that shorter BC time scales had the desired effect
of decreased MAAPE (Table 6.5 and 6.6). This trend was also found in the MODEL

results, with the RCM results the MAAPE values were even lower.

While the magnitude ERSS had decreased MAAPE with decreased bias correction
time scales. The duration ERSS were best simulated with RCM-BC simulations on
the Batsto River (6.1% MAdAPE), however, similar MAAPE values were found in
RCM-BCS (7.2%) and RCM-BCM (7.1%). All ERSS, except one, in the Batsto
River watershed were within the range of uncertainty in RCM-BCS and RCM-BCM
compared to RCM-BC. The Maurice River watershed had duration ERSS best
simulated by RCM-BCM (7.4% MdAPE) (Table 6.10 and 6.11).
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Figure 6.6: Percent Bias between Pinelands ERSS in the Maurice River Watershed -
RCM simulations with (a) RCM-UC, (b) BC, (¢) BCS and (d) BCM bias correction.
Dashed lines show +/- 30% hydrological uncertainty.

Table 6.10: MdAPE Values of the Batsto River watershed with bias correction on the
RCM (RCM simulations).

RCM-UC RCM-BC RCM-BCS RCM-BCM

All ERSS 20.4% 9.7% 6.9% 1.4%
Magnitude 14.7% 14.3% 7. 7% 1.1%
Duration 27.1% 6.1% 7.2% 7.1%

Table 6.11: MdAPE Values of the Maurice River watershed with bias correction on
the RCM (RCM simulations).

RCM-UC RCM-BC RCM-BCS RCM-BCM

All ERSS 16.4% 6.3% 4.1% 1.1%
Magnitude 15.8% 7.7% 4.1% 0.7%
Duration 21.2% 7.7% 8.4% 7.4%
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All ERSS were within the range of uncertainty in the RCM-BCS and RCM-BCM
simulations (like the MODEL results), with the exception of ERSS ml13 in the Batsto
River watershed. ERSS ml13 described the variability across minimum monthly
flow values. In the Maurice River watershed this measure of variability was within
uncertainty. The variability in minimum monthly flows (ml13) for the Batsto River
watershed was overestimated in all RCM simulations. This outlier was not observed
in the MODEL simulations, but was narrowly inside the uncertainty in the MODEL
simulations (Figure 6.3. This indicated that the additional error was introduced
with the bias correction of the RCM. Bias correction on the RCM may sometimes
add additional error into particular ERSS by reducing the simulation of natural
variation, in particular for intra-annual variation however, consideration of timing in
bias correction should have reduced this error [15]. It is possible that even accounting
for seasonal and monthly bias correction, the wrong corrections were being applied.
This may be due to simulation of key events occurring at different times than expected
[15]. While this one ERSS was outside of the RCM, this should not take away from
the improvement that the RCM bias correction gave to the simulation of Table 6.1
ERSS.

Table 6.12: MdAPE Values Average Flow and Low Flow ERSS in the Batsto River
watershed with bias correction on the RCM (RCM simulations).

ERSS RCM-UC RCM-BC RCM-BCS RCM-BCM
Average Flow 12.3% 9.3% 6.5% 0.7%
Low Flow 27.0% 15.1% 12.1% 8.2%

Using RCM bias correction, the low flow ERSS always had greater percent error
than the average flow ERSS (Table 6.12 and 6.13). However, decreased bias correction
time scales did decrease MAAPE values in low flow ERSS. This same trend was found

in MODEL results. In comparing the simulation low flow ERSS between MODEL
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Table 6.13: MdAPE Values Average Flow and Low Flow ERSS in the Maurice River
watershed with bias correction on the RCM (RCM simulations).

ERSS RCM-UC RCM-BC RCM-BCS RCM-BCM
Average Flow 13.8% 6.7% 2.7% 0.4%
Low Flow 24.9% 9.7% 9.7% 8.7%

results and RCM results, it is shown in Tables 6.8, 6.9, 6.12, and 6.13 that there was
a difference in how low flow ERSS were simulated compared to average flow ERSS.
In the MODEL results, at smaller BC time scales, MAAPE of average and low flow
ERSS were similar. However, in the RCM simulations, at smaller BC time scales the
MAAPE of average flow ERSS was much smaller than the MAAPE of low flow ERSS.
The MdAAPE of low flow ERSS was lower in the MODEL simulations at lower time
scales compared to RCM simulations at lower time scales. The RCM bias correction
better simulated ERSS at average flow than low flows and this should be considered

in future analysis.

6.4 Summary

Magnitude and duration ERSS were found to be the only stream flow
characteristics relevant in the Pinelands Ecoregion that met a conservative screening
criteria by Kennen & Riskin (2010) [104]. Analyzing only this small subset of
these ERSS allowed for more detailed analysis of the simulations, in particular the
simulations of low flow ERSS. Biological interpretation of these results will be included
in future analysis. It was expected and found (similar to phase 1) that all ERSS
were better simulated by the RCM-BCS and RCM-BCM simulations. However,
low flow ERSS were better simulated by the MODEL simulations. In MODEI-BCS,
MODEL-BCM, RCM-BCS and RCM-BCM, generally, all data were within the range
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of uncertainty. Bias correction at smaller time scales, compared to the full record,
improved the simulation of magnitude and duration ERSS in SIM, MODEL and RCM

simulations.



Chapter 7

Conclusions

Ecologically Relevant Stream flow Statistics (ERSS) were calculated for two New
Jersey rivers that were simulated by PRMS and driven with 1) observed climate data
and 2) RCM data. This was to determine if ERSS could be captured with RCM
data, and if bias correction could be used to improved the simulation of ERSS. The

evidence presented in this research supported the hypothesis.

Three different methods (in three phases) were used to determine a parsimonious
set of ERSS for each waterway and simulation. Three different methods were used
so that the selection of ERSS would not unfairly bias the results. The simulation of
ERSS was first tested on stream flows from hydrological models driven by observed
climate data. Bias correction at different time scales was done on simulated stream
flows with observed climate data to correct for errors in the hydrological model (SIM).
ERSS were then calculated from stream flows driven by RCM data. The stream
flows were then bias corrected directly to the observed data (MODEL) and the RCM
model driven results were bias corrected directly to the observed data (RCM). The

MODEL simulations were to correct for biases in the hydrological model. To correct
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for remaining bias from the RCM, bias correction was performed on the stream flows

from dynamically downscaled data (RCM).

The two watersheds of interest - the Batsto and the Maurice, were both located
in the Pinelands. The watersheds were very similar however, the Maurice River
watershed was slightly more urbanized compared to the Batsto, Table 4.2. Overall,
it was found that the PRMS simulations of the Maurice River watershed better
estimated ERSS compared to the Batsto. Land use and urbanization may have

contributed to the percent bias in the simulation of ERSS.

Phase 1

Simulating the 7FDSS gave preliminary evidence that the hypothesis was
supported; that bias correcting stream flows will improve hydrologic simulations
ability to capture flow indices and improve the performance of GCM driven models
to represent these indices. The seasonal aspects of flow were best simulated by
RCM-BCS and RCM-BCM. While certain daily aspects of flow (73 and 74) were better
simulated by RCM-BC but were still reasonably simulated by RCM bias correction
at smaller time scales. From phase 1, a secondary hypothesis was presented that bias
correction at smaller time scales on the RCM would have the most positive impact on
the simulation of all ERSS. This hypothesis was generally supported in other phases

of this research.

The SIM and RCM results had a greater percentage of ERSS within the range
of uncertainty (+/- 30%) compared to the MODEL simulations. Application of
downscaled data has a high level of uncertainty [58]. Results suggest that ERSS
were almost completely within the range of uncertainty in the RCM-BCS simulations

and this indicated that doing bias correction on the RCM at smaller time scales



122

improved the prediction of ERSS. It also showed that RCM bias correction reduced
variation in the simulations [15]. Without a consideration of timing the reduction of

variability is potentially inaccurate [15]

The Batsto and the Maurice watersheds showed similar results in SIM, MODEL
and RCM bias correction where bias correction on the RCM at shorter time scales led
to minimized percent error. The Maurice watershed had more outliers and the Batsto
River watershed had greater percent error. There was concern that the simulation
of certain characteristics of the Maurice River stream flow (compared to the Batsto)
would not be well simulated due to the misrepresentation of runoff processes from
greater urban development [15]. However, greater error was found in the simulation
of the Batsto River watershed most likely due to structural errors in the PRMS model,

potentially caused by the groundwater component.

Phase 2

In phase 2 of the analysis PCAs were used to create sets of ERSS that described
each simulation of stream flow using a set of RCM data. This method gave different
ERSS for each simulation that described the five primary stream flow characteristics.
While it may have been beneficial to just select one set of ERSS to compare across
watersheds, this method showed which ERSS best defined the stream flows with

different bias correction methods.

Overall, similar results from phase 1 were found in phase 2; RCM-BCS and
RCM-BCM showed the greatest improvement on the simulation of ERSS. However,
upon further examination certain ERSS were found to be poorly simulated even with
bias correction at the smallest time scale on the RCM. The simulation of frequency

and rate of change ERSS need to be improved [32]. These ERSS are very sensitive
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to minor errors in stream flow simulation. The type of bias correction used in this
study did not improve the simulation of frequency ERSS. The simulation of certain
ERSS, particularly frequency ERSS has been a concern and has been highlighted in

many recent papers [8].

It was found that MODEL results gave more consistent and expected simulations
than RCM results. More ERSS followed the expected pattern (from phase 1),
compared to the RCM simulations. Using the RCM simulations changed the
variability of the simulated flow. However, when examining the SDR, it was clear
that the simulation of ERSS using RCM data was done with reasonable accuracy

compared to a regional analysis.

Phase 3

Phase 3 of this study examined only two stream flow characteristics that had
been well simulated in phase 2 - magnitude and duration ERSS. These ERSS were
determined to be ecologically relevant to the Pinelands Ecoregion [104]. Phase 3
tested the simulation of low flow magnitude and duration ERSS compared to average

flow.

Without bias correction, it was found that average flow ERSS were consistently
better simulated than low flow ERSS. MODEL simulations, and not RCM
simulations, predicted low flow ERSS the best, while RCM simulations predicted
average flow ERSS the best. However, both simulations at short bias correction time

scales predicted this set of 18 ERSS generally within the range of uncertainty.

There were limitations to this research. The biases in the Batsto River watershed

model in the summer and autumn add to the uncertainty of the stream flow
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simulations which limit the applicability of this hydro-ecological work stemming
from Daraio’s (2017) research. Further work is required to interpret the biological
significance of these simulations of hydro-ecological indices. The biological perspective

will be explored in upcoming publications.

The hypothesis of this research was that bias correcting stream flows will improve
the ability of hydrological simulations to capture flow indices and improve the
performance of GCM driven models to represent these indices. From the results
of phase 1, 2 and 3 this hypothesis was generally supported, with the exception of
frequency and rate of change ERSS, which were still poorly simulated (phase 2) with

bias correction.

Overall, the goal was achieved to create parsimonious sets of ERSS and compare
ERSS between simulations of the Batsto and Maurice River watersheds. This work
showed that using RCM data is reasonable for the simulation of ERSS as long as
proper bias correction is performed. However, the simulation of frequency ERSS
needs to be carefully considered for future modelling studies and requires further
research. The simulation of ERSS using RCM data has importance to climate change
predictions and therefore mitigation measures. More detailed analysis of the flow
regime and ecological characteristics are necessary as there are projected change to
these stream flows [15]. Future work should include the simulation of these ERSS
for future time periods and completing bias correction based on the results presented

here.

This research has implications for the choice of ERSS used in future studies and
management applications in the Pinelands streams. The simulation of certain ERSS
must be treated with caution. Management of hydro-ecological resources is a balance

of competing interests. The ability to simulate and model future ERSS with minimal
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uncertainty will result in more informed management decisions. Bias correction at
shorter time scales is a valuable tool when dealing with potential future ecologically

damaging scenarios to create predictions with minimal uncertainty.
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Glossary

range of uncertainty also known as hydrological uncertainty, a +/- 30% placed around the ob-
served stream flow ERSS determined as a reasonable range of ERSS..

RCM data dynamically downscaled climate data.

simulations The stream flows or ERSS calculated from Table 3.2, the stream flows were calculated
by Daraio (Under Review-b) [1].

Acronyms

-BC Bias Correction for the entire stream flow record.
-BCM Bias Correction on a monthly time scale.
-BCS Bias Correction on a seasonal time scale.

7TFDSS Seven Fundamental Daily Stream Flow Statistics.

BC Bias Correction.

CMIP5 Coupled Model Intercomparison Project Phase 5.

ERSS Ecologically Relevant Stream flow Statistics, also, Hydro-Ecological Indices.
FDC Flow Duration Curve.

GCM General Circulation Model.

IPCC Intergovernmental Panel on Climate Change.

MJAPE Median Absolute Percent Error.

MODEL- Stream flows that were determined from the PRMS model and then bias corrected to
the observed data.

OBS Observed, recorded stream flow or ERSS for the gauges of interest.

PCA Principal Component Analysis.
PRMS Precipitation Runoff Modelling System.

RCM- Stream flows that had the RCM model driven results bias corrected to the observed data.
RCM Regional Climate Model.

SDR Standardized Data Range.

SIM Simulated Stream Flow from inputting observed climate data into PRMS.

USGS United States Geological Survey.
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mal Mean of the daily mean flow values for the entire flow record
ma2 Median of the daily mean flow values for the entire flow record

ma3 Mean (or median - use preference option) of the coefficients of variation
(standard deviation/mean) for each year. Compute the coefficient of variation
for each year of daily flows. Compute the mean of the annual coefficients of

variation

ma4 Standard deviation of the percentiles of the logs of the entire flow record
divided by the mean of percentiles of the logs. Compute the log(10) of the
daily flows for the entire record. Compute the 5th, 10th, 15th, 20th, 25th, 30th,
35th, 40th, 45th, 50th, 55th, 60th, 65th, 70th, 75th, 80th, 85th, 90th and 95th
percentiles for the logs of the entire flow record. Percentiles are computed by
interpolating between the ordered (ascending) logs of the flow values. Compute
the standard deviation and mean for the percentile values. Divide the standard

deviation by the mean

mab The skewness of the entire flow record is computed as the mean for the

entire flow record (mal) divided by the median (ma2) for the entire flow record

mab Range in daily flows is the ratio of the 10-percent to 90-percent exceedence
values for the entire flow record. Compute the 5-percent to 95-percent
exceedence values for the entire flow record. Exceedence is computed by
interpolating between the ordered (descending) flow values. Divide the

10-percent exceedence by the 90-percent value

ma7 Range in daily flows is computed in the same way as ma6 except using the
20-percent and 80-percent exceedence values. Divide the 20-percent exceedence

value by the 80-percent value
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e ma8 Range in daily flows is computed in the same way as ma6 except using the
25-percent and 75-percent exceedence values. Divide the 25-percent exceedence

value by the 75-percent value

e ma9 Spread in daily flows is the ratio of the difference between the 90th and 10th
percentile of the logs of the flow data to the log of the median of the entire flow
record. Compute the log(10) of the daily flows for the entire record. Compute
the 5th, 10th, 15th, 20th, 25th, 30th, 35th, 40th, 45th, 50th, 55th, 60th, 65th,
70th, 75th, 80th, 85th, 90th and 95th percentiles for the logs of the entire
flow record. Percentiles are computed by interpolating between the ordered

(ascending) logs of the flow values. Compute ma9 as (90th-10th)/log10(ma2)

e mal0 Spread in daily flows is computed in the same way as ma9 except using

the 20th and 80th percentiles

e mall Spread in daily flows is computed in the same way as ma9 except using

the 25th and 75th percentiles.

e mal2-23 Requires pref argument to be either "mean” or "median” specifying
monthly aggregation function. Default is "mean”. Means (or medians - use
preference option) of monthly flow values. Compute the means for each month
over the entire flow record. For example, mal2 is the mean of all January flow

values over the entire record.

e ma24-35 Variability (coefficient of variation) of monthly flow values. Compute
the standard deviation for each month in each year over the entire flow record.
Divide the standard deviation by the mean for each month. Take the mean (or

median - use preference option) of these values for each month across all years.
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e ma36-40 Variability and skewness across monthly flows. ma36 - compute the
minimum, maximum and mean flows for each month in the entire flow record.
ma36 is the maximum monthly flow minus the minimum monthly flow divided
by the median monthly flow. ma37 - compute the first (25th percentile) and
the third (75th percentile) quartiles. ma37 is the third quartile minus the first
quartile divided by the median of the monthly means. ma38 - compute the
10th and 90th percentiles for the monthly means. ma38 is the 90th percentile
minus the 10th percentile divided by the median of the monthly means. mag39 -
compute the standard deviation for the monthly means. ma39 is the standard
deviation times 100 divided by the mean of the monthly means. ma40 - skewness
in the monthly flows. ma40 is the mean of the monthly flow means minus the

median of the monthly means divided by the median of the monthly means.

e ma4l-45 madl requires drainArea to be specified. Annual runoff and the
variability and skewness across annual flows. ma4l - compute the annual mean
daily flows. ma4l is the mean of the annual means divided by the drainage area.
ma42 is the maximum annual flow minus the minimum annual flow divided by
the median annual flow. ma43 - compute the first (25th percentile) and third
(75th percentile) quartiles for the annual means. ma43 is the third quartile
minus the first quartile divided by the median of the annual means. ma44
- compute the 10th and 90th percentiles for the annual means. mad4 is the
90th percentile minus the 10th percentile divided by the median of the annual
means. ma4b - skewness in the annual flows. ma45 is the mean of the annual
flow means minus the median of the annual means divided by the median of the

annual means.

e mhl-12 Requires pref argument to be either "mean” or "median” specifying
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monthly aggregation function. Default is "mean”. Means (or medians - use
preference option) of maximum daily flow values for each month. For example,

mhl is the mean of all January maximum flow values over the entire record.

mh13 variability (coefficient of variation) across minimum monthly flow values.
Compute the mean and standard deviation for the maximum monthly flows
over the entire flow record. MH13 is the standard deviation times 100 divided

by the mean maximum monthly flow for all years.

ml14 Mean of annual minimum annual flows. ML14 is the mean of the ratios

of minimum annual flows to the median flow for each year.

mll5 Low flow index. ML15 is the mean (or median-Use Preference option) of

the ratios of minimum annual flows to the mean flow for each year.

ml16 Median of annual minimum flows. ML16 is the median of the ratios of

minimum annual flows to the median flow for each year.

mll17 Baseflow 1. Compute the mean annual flows. Compute the minimum of
a 7-day moving average flow for each year and divide them by the mean annual
flow for that year. ML17 is the mean (or median-Use Preference option) of

those ratios.

ml18 Variability in baseflow 1. Compute the standard deviation for the ratios
of minimum 7-day moving average flows to mean annual flows for each year.

ML18 is the standard deviation times 100 divided by the mean of the ratios.

ml19 Baseflow 2. Compute the ratios of the minimum annual flow to mean
annual flow for each year. ML19 is the mean (or median-Use Preference option)

of these ratios times 100.
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ml20 Baseflow 3. Divide the daily flow record into 5-day blocks. Find the
minimum flow for each block. Assign the minimum flow as a base flow for that
block if 90 percent of that minimum flow is less than the minimum flows for
the blocks on either side. Otherwise, set it to zero. Fill in the zero values using
linear interpolation. Compute the total flow for the entire record and the total

base flow for the entire record. ML20 is the ratio of total base flow to total flow.

ml21 Variability across annual minimum flows. Compute the mean and standard
deviation for the annual minimum flows. ML21 is the standard deviation times

100 divided by the mean.

ml22 Specific mean annual minimum flow. ML22 is the mean (or median-Use

Preference option) of the annual minimum flows divided by the drainage area.

mh1-12 Requires pref argument to be either "mean” or "median” specifying
monthly aggregation function. Default is "mean”. Means (or medians - use
preference option) of maximum daily flow values for each month. For example,

mhl is the mean of all January maximum flow values over the entire record.

mh13 variability (coefficient of variation) across maximum monthly flow values.
Compute the mean and standard deviation for the maximum monthly flows
over the entire flow record. MH13 is the standard deviation times 100 divided

by the mean maximum monthly flow for all years.

mh14 median of annual maximum flows. Compute the annual maximum flows
from monthly maximum flows. Compute the ratio of annual maximum flow to

median annual flow for each year. MH14 is the median of these ratios.

mh15-17 MH15; High flow discharge index. Compute the 1-percent exceedence

value for the entire data record. MH15 is the 1-percent exceedence value divided
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by the median flow for the entire record. MH16; Compute the 10-percent
exceedence value for the entire data record. MH16 is the 10-percent exceedence
value divided by the median flow for the entire record. MH17; Compute the
25-percent exceedence value for the entire data record. MH17 is the 25-percent

exceedence value divided by the median flow for the entire record.

mh18 variability across annual maximum flows. Compute the logs (logl0) of
the maximum annual flows. Find the standard deviation and mean for these

values. MH18 is the standard deviation times 100 divided by the mean.

mh19 the skewness in annual maximum flows (dimensionless-spatial). Use the
equation: MH19 numerator = N2 ? sum(qm3)-3N 7 sum(qm) ? sum(qm2)
+ 2?7 (sum(qm))3 denominator = N 7 (N-1) ? (N-2) ? stddev3 Where: N
= Number of years qm = Logl0 (annual maximum flows) stddev = Standard

deviation of the annual maximum flows

mh20 specific mean annual maximum flow. MH20 is the mean (or median-Use
Preference option) of the annual maximum flows divided by the drainage area

(cubic feet per second/square mile-temporal).

mh21-27 high flow volume indices. Compute the average volume for flow events
above a threshold. Thresholds are equal to the median flow for the entire record
for mh21, 3 times the median flow for the entire record for mh22,and 7 times
the median flow for the entire record for mh23. Thresholds are equal to the
median flow for the entire record for mh24, 3 times the median flow for the
entire record for mh25, 7 times the median flow for the entire record for mh26,
and the 75th percentile for the entire record for mh27. MH21 through 23 are

the average volumes divided by the median flow for the entire record. MH24
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through 27 are the average peak flows divided by the median flow for the entire

record.

FL1; Low flood pulse count. Compute the average number of flow events with
flows below a threshold equal to the 25th percentile value for the entire flow

record. FL1 is the average (or median-Use Preference option) number of events.

FL2; Variability in low pulse count. Compute the standard deviation in the
annual pulse counts for FL1. FL2 is 100 times the standard deviation divided

by the mean pulse count.

FL3; Frequency of low pulse spells. Compute the average number of flow events
with flows below a threshold equal to 5 percent of the mean flow value for
the entire flow record. FL3 is the average (or median-Use Preference option)

number of events.

th1 High flood pulse count. Compute the average number of flow events with
flows above a threshold equal to the 75th percentile value for the entire flow

record. FH1 is the average (or median-Use Preference option) number of events.

th2 Variability in high pulse count. Compute the standard deviation in the
annual pulse counts for FH1. FH2 is 100 times the standard deviation divided

by the mean pulse count (number of events/year-spatial).

th3 High flood pulse count. Compute the average number of days per year
that the flow is above a threshold equal to three times the median flow for the
entire record. FH3 is the mean (or median-Use Preference option) of the annual

number of days for all years.

th4 High flood pulse count. Compute the average number of days per year that
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the flow is above a threshold equal to seven times the median flow for the entire
record. FH4 is the mean (or median - Use Preference option) of the annual

number of days for all years.

thb Flood frequency. Compute the average number of flow events with flows
above a threshold equal to the median flow value for the entire flow record. FH5

is the average (or median - Use Preference option) number of events.

fh6 Flood frequency. Compute the average number of flow events with flows
above a threshold equal to three times the median flow value for the entire flow

record. FHG is the average (or median-Use Preference option) number of events.

th7 Flood frequency. Compute the average number of flow events with flows
above a threshold equal to seven times the median flow value for the entire flow

record. FHT is the average (or median-Use Preference option) number of events.

th8 Flood frequency. Compute the average number of flow events with flows
above a threshold equal to 25-percent exceedence value for the entire flow record.

FHS8 is the average (or median-Use Preference option) number of events.

fh9 Flood frequency. Compute the average number of flow events with flows
above a threshold equal to 75-percent exceedence value for the entire flow record.

FHO9 is the average (or median-Use Preference option) number of events.

th10 Flood frequency. Compute the average number of flow events with flows
above a threshold equal to median of the annual minima for the entire flow
record. FHI10 is the average (or median-Use Preference option) number of

events.

th11 Flood frequency. Compute the average number of flow events with flows
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above a threshold equal to flow corresponding to a 1.67-year recurrence interval.

FH11 is the average (or median-Use Preference option) number of events.

dl1l Annual minimum daily flow. Compute the minimum 1-day average flow for

each year. DL1 is the mean (or median-Use Preference option) of these values.

dl2 Annual minimum of 3-day moving average flow. Compute the minimum of
a 3-day moving average flow for each year. DL2 is the mean (or median-Use

Preference option) of these values.

dl3 Annual minimum of 7-day moving average flows. Compute the minimum
of a 7-day moving average flow for each year. DL3 is the mean (or median-Use

Preference option) of these values.

dl4 Annual minimum of 30-day moving average flows. Compute the minimum
of a 30-day moving average flow for each year. DH4 is the mean (or median-Use

Preference option) of these values.

dl5 Annual minimum of 90-day moving average flows. Compute the minimum
of a 90-day moving average flow for each year. DH5 is the mean (or median-Use

Preference option) of these values.

dl6 Variability of annual minimum daily average flow. Compute the standard
deviation for the minimum daily average flow. DL6 is 100 times the standard

deviation divided by the mean.

dl7 Variability of annual minimum of 3-day moving average flows. Compute the
standard deviation for the minimum 3-day moving averages. DL7 is 100 times

the standard deviation divided by the mean.
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dl8 Variability of annual minimum of 7-day moving average flows. Compute the
standard deviation for the minimum 7-day moving averages. DL8 is 100 times

the standard deviation divided by the mean.

dl9 Variability of annual minimum of 30-day moving average flows. Compute
the standard deviation for the minimum 30-day moving averages. DL9 is 100

times the standard deviation divided by the mean.

dl10 Variability of annual minimum of 90-day moving average flows. Compute
the standard deviation for the minimum 90-day moving averages. DH10 is 100

times the standard deviation divided by the mean.

dl11 Annual minimum daily flow divided by the median for the entire record.
Compute the minimum daily flow for each year. DL11 is the mean of these

values divided by the median for the entire record.

dl12 Annual minimum of 7-day moving average flows divided by the median
for the entire record. Compute the minimum of a 7-day moving average flow
for each year. DL12 is the mean of these values divided by the median for the

entire record.

dl13 Annual minimum of 30-day moving average flows divided by the median
for the entire record. Compute the minimum of a 30-day moving average flow
for each year. DLL13 is the mean of these values divided by the median for the

entire record.

dl14 Low exceedence flows. Compute the 75-percent exceedence value for the
entire flow record. DL14 is the exceedence value divided by the median for the

entire record.
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dl15 Low exceedence flows. Compute the 90-percent exceedence value for the
entire flow record. DL15 is the exceedence value divided by the median for the

entire record.

dl16 Low flow pulse duration. Compute the average pulse duration for each
year for flow events below a threshold equal to the 25th percentile value for the

entire flow record. DL16 is the median of the yearly average durations.

dl17 Variability in low pulse duration. Compute the standard deviation for the
yearly average low pulse durations. DL17 is 100 times the standard deviation

divided by the mean of the yearly average low pulse durations.

dl18 Number of zero-flow days. Count the number of zero-flow days for the
entire flow record. DL18 is the mean (or median-Use Preference option) annual

number of zero flow days.

dl19 Variability in the number of zero-flow days. Compute the standard
deviation for the annual number of zero-flow days. DL19 is 100 times the

standard deviation divided by the mean annual number of zero-flow days.

d120 Number of zero-flow months. While computing the mean monthly flow
values, count the number of months in which there was no flow over the entire

flow record.

dhl Annual maximum daily flow. Compute the maximum of a 1-day moving
average flow for each year. dhl is the mean (or median-Use Preference option)

of these values.

dh2 Annual maximum of 3-day moving average flows. Compute the maximum

of a 3-day moving average flow for each year. dh2 is the mean (or median-Use
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Preference option) of these values;

dh3 Annual maximum of 7-day moving average flows. Compute the maximum
of a 7-day moving average flow for each year. dh3 is the mean (or median-Use

Preference option) of these values.

dh4 Annual maximum of 30-day moving average flows. Compute the maximum
of a 30-day moving average flow for each year. dh4 is the mean (or median-Use

Preference option) of these values.

dh5 Annual maximum of 90-day moving average flows. Compute the maximum
of a 90-day moving average flow for each year. dh5 is the mean (or median-Use

Preference option) of these values.

dh6 Variability of annual maximum daily flows. Compute the standard
deviation for the maximum 1-day moving averages. dh6 is 100 times the

standard deviation divided by the mean.

dh7 Variability of annual maximum of 3-day moving average flows. Compute
the standard deviation for the maximum 3-day moving averages. dh7 is 100

times the standard deviation divided by the mean.

dh8 Variability of annual maximum of 7-day moving average flows. Compute
the standard deviation for the maximum 7-day moving averages. dh8 is 100

times the standard deviation divided by the mean.

dh9 Variability of annual maximum of 30-day moving average flows. Compute
the standard deviation for the maximum 30-day moving averages. dh9 is 100

times the standard deviation divided by the mean.
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dh10 Variability of annual maximum of 90-day moving average flows. Compute
the standard deviation for the maximum 90-day moving averages. dh10 is 100

times the standard deviation divided by the mean.

dh11l Annual maximum of 1-day moving average flows divided by the median
for the entire record. Compute the maximum of a 1-day moving average flow
for each year. dhll is the mean of these values divided by the median for the

entire record.

dh12 Annual maximum of 7-day moving average flows divided by the median
for the entire record. Compute the maximum of a 7-day moving average flow
for each year. dh12 is the mean of these values divided by the median for the

entire record.

dh13 Annual maximum of 30-day moving average flows divided by the median
for the entire record. Compute the maximum of a 30-day moving average flow
for each year. dhl3 is the mean of these values divided by the median for the

entire record.

dh14 Flood duration. Compute the mean of the mean monthly flow values. Find
the 95th percentile for the mean monthly flows. dh14 is the 95th percentile value

divided by the mean of the monthly means.

dh15 High flow pulse duration. Compute the average duration for flow events
with flows above a threshold equal to the 75th percentile value for each year in

the flow record. dh15 is the median of the yearly average durations.

dh16 Variability in high flow pulse duration. Compute the standard deviation
for the yearly average high pulse durations. dhl16 is 100 times the standard

deviation divided by the mean of the yearly average high pulse durations.
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dh17 High flow duration. Compute the average duration of flow events with
flows above a threshold equal to the median flow value for the entire flow record.

dh17 is the mean duration of the events.

dh18 High flow duration. Compute the average duration of flow events with
flows above a threshold equal to three times the median flow value for the

entire flow record. dhl8 is the mean duration of the events.

dh19 High flow duration. Compute the average duration of flow events with
flows above a threshold equal to seven times the median flow value for the

entire flow record. dh19 is the mean duration of the events .

dh20 High flow duration. Compute the 75th percentile value for the entire
flow record. Compute the average duration of flow events with flows above a
threshold equal to the 75th percentile value for the median annual flows. dh20

is the average duration of the events.

dh21 High flow duration. Compute the 25th percentile value for the entire
flow record. Compute the average duration of flow events with flows above a
threshold equal to the 25th percentile value for the entire set of flows. dh21 is

the average duration of the events.

dh22 Flood interval. Compute the flood threshold as the flow equivalent for a
flood recurrence of 1.67 years. Determine the median number of days between
flood events for each year. dh22 is the mean (or median-Use Preference option)

of the yearly median number of days between flood events.

dh23 Flood duration. Compute the flood threshold as the flow equivalent for

a flood recurrence of 1.67 years. Determine the number of days each year that
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the flow remains above the flood threshold. DH23 is the mean (or median-Use

Preference option) of the number of flood days for years in which floods occur.

dh24 Flood-free days. Compute the flood threshold as the flow equivalent for
a flood recurrence of 1.67 years. Compute the maximum number of days that
the flow is below the threshold for each year. DH24 is the mean (or median-Use

Preference option) of the maximum yearly no-flood days.

tal; Constancy. Constancy is computed via the formulation of Colwell (see
example in Colwell, 1974). A matrix of values is compiled where the columns
are 11 flow categories and the rows are 365 days of the year (no leap years)
defined as either calendar or water year. February 29th is removed on leap
years. The cell values are the number of times that a flow falls into a category
on each day. The categories are listed below. The row totals, column totals,
and grand total are computed. Using the equations for Shannon information
theory parameters, constancy is computed as 1-(uncertainty with respect to

state) /logl0(number of state)
log(flow) < .1 x log(mean flow)
.1 x log(mean flow) <= log(flow) < .25 x log(mean flow)
.25 x log(mean flow) <= log(flow) < .5 x log(mean flow)
.5 x log(mean flow) <= log(flow) < .75 x log(mean flow)
.75 x log(mean flow) <= log(flow) < 1.0 x log(mean flow)
1.0 x log(mean flow) <= log(flow) < 1.25 x log(mean flow)
1.25 x log(mean flow) <= log(flow) < 1.5 x log(mean flow)

1.5 x log(mean flow) <= log(flow) < 1.75 x log(mean flow)
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1.75 x log(mean flow) <= log(flow) < 2.0 x log(mean flow)
2.0 x log(mean flow) <= log(flow) < 2.25 x log(mean flow)

log(flow) >= 2.25 x log(mean flow)

e ta2; Predictability. Predictability is computed from the same matrix as
constancy (see example in Colwell, 1974). It is computed as: 1- (uncertainty
with respect to interaction of time and state - uncertainty with respect to

time) /log10(number of state).

e tad; Seasonal predictability of flooding. Divide years up into 2-month periods
(that is, Oct-Nov, Dec-Jan, and so forth). Count the number of flood days (flow
events with flows > 1.67-year flood) in each period over the entire flow record.
TA3 is the maximum number of flood days in any one period divided by the

total number of flood days.

e tl1; Julian date of annual minimum. Determine the Julian date that the
minimum flow occurs for each water year. Transform the dates to relative values
on a circular scale (radians or degrees). Compute the x and y components for
each year and average them across all years. Compute the mean angle as the
arc tangent of y-mean divided by x-mean. Transform the resultant angle back

to Julian date.

e t12 Variability in Julian date of annual minima. Compute the coefficient of

variation for the mean x and y components and convert to a date.

e t13 Seasonal predictability of low flow. Divide years up into 2-month periods
(that is, Oct-Nov, Dec-Jan, and so forth). Count the number of low flow events

(flow events with flows <=5 year flood threshold) in each period over the entire
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flow record. TL3 is the maximum number of low flow events in any one period

divided by the total number of low flow events.

tl4 Seasonal predictability of non-low flow. Compute the number of days that
flow is above the 5-year flood threshold as the ratio of number of days to 365

or 366 (leap year) for each year. TL4 is the maximum of the yearly ratios.

thl Julian date of annual maximum. Determine the Julian date that the
maximum flow occurs for each year. Transform the dates to relative values
on a circular scale (radians or degrees). Compute the x and y components for
each year and average them across all years. Compute the mean angle as the
arc tangent of y-mean divided by x-mean. Transform the resultant angle back

to Julian date.

th2 Variability in Julian date of annual maxima. Compute the coefficient of

variation for the mean x and y components and convert to a date.

th3 Seasonal predictability of nonflooding. Computed as the maximum
proportion of a 365-day year that the flow is less than the 1.67-year flood
threshold and also occurs in all years. Accumulate nonflood days that span

all years. TH3 is maximum length of those flood-free periods divided by 365.

ral; Rise rate. Compute the change in flow for days in which the change is
positive for the entire flow record. RA1 is the mean (or median-Use Preference

option) of these values.

ra2; Variability in rise rate. Compute the standard deviation for the positive

flow changes. RA2 is 100 times the standard deviation divided by the mean.

ra3d; Fall rate. Compute the change in flow for days in which the change is
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negative for the entire flow record. RA3 is the mean (or median-Use Preference

option) of these values.

ra4; Variability in fall rate. Compute the standard deviation for the negative

flow changes. RA4 is 100 times the standard deviation divided by the mean.

rab; Number of day rises. Compute the number of days in which the flow is
greater than the previous day. RAb5 is the number of positive gain days divided

by the total number of days in the flow record.

ra6; Change of flow. Compute the log of the flows for the entire flow record.
Compute the change in log of flow for days in which the change is positive for

the entire flow record. RAG6 is the median of these values.

ra7; Change of flow. Compute the log of the flows for the entire flow record.
Compute the change in log of flow for days in which the change is negative for

the entire flow record. RA7 is the median of these log values.

ra8; Number of reversals. Compute the number of days in each year when the
change in flow from one day to the next changes direction. RAS8 is the average

(or median - Use Preference option) of the yearly values.

ra9; Variability in reversals. Compute the standard deviation for the yearly

reversal values. RA9 is 100 times the standard deviation divided by the mean.



Appendix C

Value, Standardized Data
Ranges and Medians of Selected
ERSS in Phase 2
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