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Abstract

The adaptive virulence hypothesis states that parasites cause death to their hosts

because virulence is beneficial for the transmission and spread of parasites. A grow-

ing body of empirical evidence supports the adaptive virulence hypothesis but more

examples are needed for its empirical validation. The classic mathematical framework

of the adaptive virulence hypothesis does not account for host population structure

which can have important implications for virulence evolution. The goal of this thesis

is to address the broad applicability problems and extend spatially the mathematical

framework of the adaptive virulence hypothesis by accounting for host movement in

the model. My thesis examines whether virulence is adaptive at the species level by

investigating the relationship between virulence and parasite fitness using simulation

data. I find that virulence and parasite fitness, measured as the basic reproduction

number R0, are correlated at the between-species level and the exact form of the re-

lationship depends on the selective pressures within each group of parasite species.

Also, I break free from the classic framework of the adaptive virulence hypothesis

to investigate virulence evolution when parasites reduce host movement. The results

explain the transient coexistence of low- and high-virulence strains in Avian influenza

viruses. I reviewed epidemic models with host movement to understand what aspects

of disease spread are important to develop a spatially extended model for virulence

evolution. I find that epidemic models with spatially heterogeneous epidemiological

parameters, like disease transmissibility, are suitable for the spatial extension of the

mathematical framework of the adaptive virulence hypothesis. Finally, I investigated

the relationship between the temporal and the spatial spread of infectious diseases. I
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show an inverse relationship between the initial epidemic growth rate and the spatial

spread rate which may reflect a trade-off between parasites dispersal and transmis-

sion. Overall my thesis opens interesting research avenues for future works to formulate

spatially explicit models for the evolution of virulence and makes significant contribu-

tions to the empirical investigation of the adaptive virulence hypothesis and the role

of animal movement for disease spread and virulence evolution.

— MUN School of Graduate Studies
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1. Introduction and overview

Virulence is a polysemic term which is often measured as host death due to parasite

infection or parasite-induced host sterility by theoretical biologists, case fatality by

epidemiologists and the degree of anemia, lethargy or weight loss due to infection

by experimental biologists (Poulin and Combes 1999; Casadevall and Pirofski 1999;

Mackinnon and Read 1999; Casadevall and Pirofski 2001; Thomas and Elkinton 2004;

Nishiura 2010; Poulin 2011; Ejima et al. 2012; Casadevall 2017). The general definition

of virulence is the harm parasites cause to their hosts, and the harm can be host

mortality and sub-lethal measures like anemia, sterility and reduced host mobility

(Ewald 1994).

Ebola virus, smallpox virus and Rhinovirus (which causes common cold in humans)

can cause 80 %, 10 % and less than 0.0001 % death in infected humans respectively

(Georges et al. 1999; Walther and Ewald 2004; Beeching et al. 2014). Because the

harm parasites cause to their hosts can reduce parasite transmission and survival, it is

paradoxical why some parasites kill, cause severe lethargy or castrate their hosts. The

adaptive virulence hypothesis, also known as the trade-off hypothesis, suggests that

virulence is an adaptation that is beneficial for parasite transmission and spread in

host populations (Anderson and May 1982; Ewald 1983; Alizon and Michalakis 2015).

The adaptive virulence hypothesis has received some empirical support during the past

three decades (Alizon et al. 2009; Alizon and Michalakis 2015; Cressler et al. 2016)

and the theoretical framework has been extended to include parasite transmission

modes and routes (Ewald 1983; 1991; Berngruber et al. 2015), parasite competition

within the host (Levin and Bull 1994; de Roode et al. 2005; Bell et al. 2006) and

the spatial structure of host populations (Boots and Mealor 2007; Kamo et al. 2007;
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Messinger and Ostling 2013).

The extent of spatial spread of infectious diseases can be an indication of parasite

fitness because a parasite can achieve higher fitness by spreading globally, and as

such the spatial aspects of disease spread can affect virulence evolution. Also, para-

site infection often affect host movement by inducing lethargy which can impact the

contact rate between infected and susceptible hosts, epidemic spread and ultimately

the evolution of virulence. As such, the explicit incorporation of host movement in the

theoretical framework of the adaptive virulence evolution hypothesis is a promising

research avenue for understanding why some parasites kill their hosts.

This thesis will investigate whether different types of host movement affect the

transmission potential and the spatial propagation of parasites in host populations.

The main goal of this thesis is to extend the adaptive virulence evolution hypothe-

sis by accounting for host movement in the mathematical framework. The following

three reasons explain why the incorporation of the spatial aspects of disease spread

in the mathematical framework of the adaptive virulence hypothesis is important.

Firstly, the spatial extension of the mathematical framework of the adaptive vir-

ulence hypothesis is necessary to investigate the often suspected trade-off between

parasite transmission and host movement (e.g., transmission-host-dispersal distance

trade-off). Secondly, a trade-off between parasite transmission and host movement

can naturally emerge from the spatiotemporal dynamics of host-parasite interactions,

and the spatial extension of the mathematical framework of the adaptive virulence

hypothesis can help in opening this research avenue. Thirdly, the adaptive virulence

hypothesis must be widely applicable to be used as a framework for virulence manage-

ment. The spatial extension of the mathematical framework of the adaptive virulence

3



hypothesis can help in improving the predictive power of the current model and help

in making effective disease control decisions.

This thesis is divided into 4 chapters corresponding to 4 different research papers.

The first chapter addresses the issues of the broad applicability of the adaptive viru-

lence hypothesis. I investigate whether we can determine if virulence is adaptive using

simulated cross-species data. In the second chapter, I develop a mathematical model

to investigate the evolution of virulence when parasites cause lethargy, which is de-

creased host movement due to infection. The third chapter reviews epidemic models

with animal movement, and investigates whether different types of animal movement

affects the risk of disease spread. The last chapter investigates the relationship be-

tween the temporal and the spatial spread of infectious diseases. Finally, I summarize

the main results of the thesis and discuss the significance of my findings.
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Is virulence adaptive? A numerical investigation with

cross-species disease outbreak data

Abdou M. Fofana, Amy Hurford, Samuel Alizon

Abstract

The adaptive virulence hypothesis states that virulence can persist because it is linked

with increased parasite spread. This hypothesis is supported by empirical data but

validation is lacking at the cross-species level because of empirical and statistical

challenges. To investigate if virulence is adaptive, we simulated the evolution of 50

species with 30 strains within each species and assumed that life history trade-offs are

different within species, but qualitatively similar across species. We then simulated

outbreak data for the 1500 phylogenetically related parasites and used the phyloge-

netic comparative approach to investigate whether higher virulence parasites have

higher fitness, virulence being defined as the inverse of the time to host death due to

infection and fitness being measured as the basic or the effective reproduction num-

ber (R0 or R). We find that virulence and R0 are correlated at the cross-species level,

and that the exact form of the relationship depends on the selective pressures within

each group of parasite species, allowing us to distinguish extreme parasite lifestyles

(obligate killers and sub-lethal infections). Finally, we discuss open methodological

challenges for testing the adaptive virulence hypothesis at the cross-species level.

Keywords: Basic reproduction number, trade-off, virulence, phylogenetic

comparative method, Ornstein-Uhlenbeck.

2.1. Introduction

The conventional wisdom states that parasites and their hosts will always coevolve1

towards low virulence because a highly virulent parasite that kills its host reduces its2

10



own transmission, reproduction and survival (Smith 1904; Ball 1943; Burnet and3

White 1972; Méthot 2012). This view has been challenged by the adaptive virulence4

hypothesis, commonly known as the trade-off hypothesis, which states that if viru-5

lence is beneficial for parasite transmission and spread in host populations then high6

virulence will be maintained (Ewald 1983; May and Anderson 1983). Within-species7

data support the adaptive virulence hypothesis for some parasites species, but cross-8

species empirical tests are lacking mostly due to methodological challenges (Alizon9

and Michalakis 2015; Cressler et al. 2016). This study addresses these challenges using10

simulation data.11

At the within-species level, HIV-1 in humans (Fraser et al. 2007), the protozoan12

parasite Ophryocystis elektroscirrha in monarch butterflies (de Roode et al. 2008) and13

the malaria parasite Plasmodium falciparum in humans (Mackinnon and Read 2004),14

Cauliflower mosaic virus in turnips (Doumayrou et al. 2013) are some of the host-15

parasite interactions that exhibit the strongest evidence that intermediate virulence16

maximizes parasite fitness. More recently, evidence from dengue virus infections has17

been put forward suggesting that intermediate viral loads in human could maximize18

the transmission potential of the virus to mosquito vectors (Ben-Shachar and Koelle19

2018). In this latter example, the trade-off is governed by the host recovery rate rather20

than the virulence. Other examples have been reported and appropriately reviewed21

elsewhere, and more examples are needed because the validity of the adaptive virulence22

hypothesis depends on its wide applicability (Alizon et al. 2009; Froissart et al. 2010;23

Bolker et al. 2010; Chapuis et al. 2012; R̊aberg 2012; Williams et al. 2014; Alizon and24

Michalakis 2015; Cressler et al. 2016).25

A number of studies have also compared parasite virulence at the cross-species26

11



level for different transmission routes. One important prediction of the adaptive viru-27

lence hypothesis is that high virulence can be maintained when parasites rely less on28

the host for their transmission (Ewald 1983; Frank 1996). As such, parasites that sur-29

vive longer in the environment, waterborne and vector-borne parasites are expected30

to evolve higher virulence compared to directly transmitted parasites, a hypothesis31

known as the ‘Curse of the pharaoh’ (Bonhoeffer et al. 1996; Gandon 1998; Boldin32

and Kisdi 2012). Empirical evidence supporting this prediction has been found in33

human gastrointestinal bacteria, where a positive relationship between virulence and34

the proportion of disease outbreaks caused by waterborne bacteria has been reported35

(Ewald 1991a;b). Similarly, Walther and Ewald (2004) compared virulence of infec-36

tions caused by human respiratory viruses and found that the ones that survive longer37

in the environment cause higher mortality rate in humans. A more recent study has38

investigated the relationship between within-host parasite growth rate and virulence39

and parasite transmission using between-parasite-species data (Leggett et al. 2017),40

but no previous study has directly tested whether higher virulence parasites have41

higher fitness at the cross-species level.42

Cross-species data can be used to test the adaptive virulence hypothesis because43

variations in virulence across parasite species can be large, and cross-species compar-44

ative approaches can help in understanding why some parasite species cause higher45

virulence than others (Frank and Schmid-Hempel 2008). However, cross-species data46

is phylogenetically structured such that closely related species are more similar than47

distant species, and as such, virulence measured from different parasite species can-48

not be considered as statistically independent observations (Rohle 2006; Pavoine et al.49

2008; Jombart and Dray 2010). Therefore, statistical tools for investigating whether50
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virulence is adaptive using cross-species data must correct for the effect of phylogeny51

(Felsenstein 1985; Grafen 1989; Pagel and Harvey 1988; Harvey and Pagel 1991; Pagel52

and Harvey 1992; Hadfield and Nakagawa 2010). The problem is that reconstructing53

the phylogeny is often unfeasible. The empirical data that is often available is infec-54

tion cases caused by parasites from a wide range of taxa, including viruses, bacteria,55

fungi, protozoa and worms and constructing a phylogenetic tree for these infectious56

organisms can be complicated (but see Iyer et al. 2001; Kühnert et al. 2011; Koonin57

et al. 2015; Leggett et al. 2017).58

To investigate whether we can determine if virulence is adaptive, we simulated59

within- and cross-species data and analyzed the relationship between virulence, de-60

fined as the inverse of the time to host death due to infection, and parasite fitness,61

defined as the basic reproduction number R0 and the effective reproductive number62

R. Then we performed a phylogenetic comparative analysis to determine the correla-63

tion between virulence and parasite fitness. We find that virulence and parasite fitness64

are correlated at the cross-species level, and the exact form of the fitness-virulence65

correlation depends on the selective pressures within each biological and ecological66

group of species.67

2.2. Methods68

We investigated whether virulence is adaptive by simulating cross-species data and69

by analyzing the relationship between parasite fitness and virulence. To test whether70

parasite species that are less virulent have lower fitness, we estimated virulence and71

parasite fitness from simulated disease outbreak data, and we did phylogenetic com-72

parative analysis to determine the correlation between virulence and parasite fitness.73

In this section we present the simulated phylogeny, the parasite traits and the disease74
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outbreak data that we used to estimate parasite fitness and virulence (Figures 2.1 and75

2.2). The phylogenetic tree simulation was implemented in phytools (Revell 2012), the76

traits simulation in mvMORPH (Clavel et al. 2015), the phylogenetic analyses in ade-77

phylo, and the estimation of parasite fitness in EpiEstim R packages (Cori et al. 2013).78

All the codes that we used are available as electronic supplementary materials S2.1-79

S2.4, and are publicly available at Figshare doi:10.6084/m9.figshare.11387865.v2. The80

simulations were run on Compute Canada cedar and beluga clusters, and took a total81

of 5.7 core-years to complete.82

Evolution
model

(OUM/OUTS

process)

Section 2.2.1

Epidemic
model (SE

- SEIR)

Section 2.2.2

Parameters:

Number of species

and sub-species

Selection strength

Drift strength

Optima

Trade-offs

Output:

Outbreak data

(R0, R)

Figure 2.1: We developed a framework whereby simulated cross-species data are used to determine

if virulence is adaptive by simulating the evolution of parasites, simulating the epidemiological dy-

namics arising from the evolved parasite trait values and calculating parasite fitness from these

epidemics. The compartments are the simulation models, and the input and the output variables are

at the left and the right of the compartments respectively. We simulated 1500 parasites (50 species

with 30 strains within each species) that are phylogenetically correlated and have 5 parameters, the

incubation period (σd), the time to host recovery (γd), the time to host death (νd), the probability of

disease transmission given an infectious contact (p) and infected host movement step length reduction

factor (s). To simulate the evolution of parasite species trait values we used the Ornstein-Uhlenbeck

process with multiple optima (OUM process), the diversification of each species into strains was

simulated using Time series Ornstein-Uhlenbeck process (OUTS) and we considered 5 within-species

evolutionary trade-offs. We used the simulated 5 traits as input for a spatially explicit SEIR epidemic

model (SE-SEIR) to generate disease outbreak data for each parasite and calculate fitness.
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(a) (b)

(c)

Figure 2.2: We simulated a phylogenetic tree with 50 species and the evolution of 5 parasite traits

by Multiple optima Ornstein-Uhlenbeck process along the tree, where each optimum corresponds to

a selective regime (a) the diversification of each species into 30 strains (b), and we assume that the

traits are correlated within the species (c). In (a) the size of the symbol is relative trait value, and

the five traits are the incubation period (σd), the time before the host recovers from an infection

(γd), the time before the host dies due to infection (νd), the probability of disease transmission

given a contact (p) and the infected host movement step length reduction factor (s). Each selective

regime (R1 = red, R2 = green, R3 = yellow, R4 = blue and R5 = orange) represents biological and

environmental conditions that drive the evolution of a trait towards an optimum trait value. In (b)

the lines are the evolutionary trajectories of the 30 strains within the species t2 for virulence trait

and initial νd = 9.6. We assume that virulence-recovery ν − γ, virulence-host-movement ν − s and

recovery-transmission γ − p trade-offs are negative, virulence-transmission ν − p and recovery-host-

movement γ − s trade-offs are positive, and the correlation coefficients for the species t2 are shown

in the upper diagonal diagonal matrix in (c) as example. We transformed the length of times νd and

γd into rates ν = 1/νd, γ = 1/γd respectively to illustrate the trade-offs in a more intuitive way.
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Table 2.1: List of symbols used in the main text

Symbols Definitions Units

σd The incubation period days

γd Time before host recovers from infection days

νd Time before host dies due to infection days

σ = 1/σd Rate of exposed becoming infectious day−1

ν = 1/νd Virulence day−1

γ = 1/γd Host recovery rate day−1

p Probability of disease transmission given a contact unitless (0-1)

s Infected host movement step length reduction factor unitless (0-1)

R0 The expected number secondary cases by the primary case unitless

in a completely susceptible host population

R The average number of infections during the infectious unitless

period

OUM Multiple optima Ornstein-Uhlenbeck process

OUTS Time series Ornstein-Uhlenbeck process

2.2.1. Phylogeny and species traits simulation83

We generated numerically a total of 1500 parasites, 50 species and 30 strains within84

each species, that are phylogenetically related and each parasite has five parasite traits85

that we used as input for an epidemic model (Figure 2.1). We assumed a number of86

evolutionary trade-offs within each species and these trade-offs can emerge from the87

dynamics of parasite replication and the immune response within the host, as well as88

ecological constraints (Ewald 1983; Antia et al. 1994; Day 2001; Gilchrist and Sasaki89

2002; Alizon and van Baalen 2005; Alizon 2008).90

First, we simulated a phylogenetic tree of 50 species by stochastic birth-death91

process and along the tree we simulated the evolution of five parasite traits by Multiple92
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optima Ornstein-Uhlenbeck process (OUM). The five parasite traits are the incubation93

period (σd), the time before the host recovers from an infection (γd), the time before94

the host dies due to infection (νd), the probability of disease transmission given a95

contact (p) and the infected host movement step length reduction factor (s), which96

indicates the effect of infection on host movement (see Figure 2.2a and Table 2.197

for the definition of the abbreviations and symbols used in this paper). Second, we98

simulated the diversification of each species into 30 strains by Time Series Ornstein-99

Uhlenbeck process (OUTS) where the diversification of parasite traits is constrained100

by evolutionary trade-offs within each species (Figures 2.2b and 2.2c).101

The OUM process is a model of continuous trait evolution that simulates the102

adaptive evolution of traits by selection and drift towards multiple optima that rep-103

resent different evolutionarily stable strategies (Hansen 1997; Butler and King 2004;104

Monteiro and Nogueira 2011; Beaulieu et al. 2012; Cressler et al. 2015; Citadini et al.105

2018). For each trait, we defined five optima and each optimum corresponds to the ex-106

pected evolutionarily stable strategy for one trait under a particular selective regime.107

We sampled randomly the optima p and s in the range [0.1, 0.9], γd and νd in the108

range [2, 14] days and σd in the range [2, 6] days, and the values within the ranges109

are assumed to be uniformly distributed. Here, a selective regime corresponds to any110

biological and environmental conditions that drive the evolution of a trait towards111

an adaptive optimum, and parasite species that have similar transmission route or112

exploit similar host tissues can be in the same selective regime. For example, the113

immune responses of the host can impose a selective pressure on the rate of parasite114

replication within a host, and different sites of parasite growth within a host can con-115

strain the evolution of parasite traits towards different adaptive optima (Engwerda116
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and Kaye 2000; Engwerda et al. 2004). The OUM process is appropriate for simulating117

parasite trait values because trait variation between the evolved species is large, and118

the distribution of the traits reflect evolution by drift and selection (Butler and King119

2004).120

We further simulated the diversification of each species into 30 strains that are121

slightly different (Figure 2.2b) using Time Series Ornstein-Uhlenbeck processes (OUTS).122

Based on a number of evolutionary trade-offs that have been previously reported in the123

literature, we assumed that virulence-recovery ν − γ, virulence-host-movement ν − s124

and recovery-transmission γ − p trade-offs are negative, and virulence-transmission125

ν − p and recovery-host-movement γ − s trade-offs are positive (Figure 2.2c). These126

evolutionary trade-offs often emerge from physiological constraints and the dynamics127

of within-host immune response and parasite replication rate (Alizon and van Baalen128

2005; Alizon 2008). Higher within-host parasite replication rate, which is positively129

correlated with virulence, can result in higher parasite transmission because more in-130

fectious stages are produced (Fraser et al. 2007; de Roode et al. 2008; 2009; de Roode131

and Altizer 2010; Fraser et al. 2014) and lower host movement because the host is132

severely lethargic (see Day 2001; Zitzow et al. 2002; Lion et al. 2006; Belser et al.133

2013; Osnas et al. 2015; Finnerty et al. 2018; Fofana and Hurford 2019). The relation-134

ship between within-host replication and host recovery rate is not well understood,135

but some studies suggest that fast replicating parasites are not cleared rapidly by136

the immune system of the host and induce lower recovery rate (Mackinnon and Read137

2004; Metcalf et al. 2011; Klein et al. 2014; Greischar et al. 2019). The correlations138

are qualitatively similar across parasite species, but each parasite species has its own139

trade-off curves (its correlation coefficients) which means that the exact form of the140
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trade-offs depend on the biology and the ecology of the parasite and the host species141

(Ewald 1983; Ewald and Giulio 2002; Alizon and van Baalen 2005; Alizon 2008; Alizon142

et al. 2009).143

The goal of the phylogeny and parasite traits simulation is to generate phylogenet-144

ically correlated cross-species data with epidemiological parameter values that emerge145

from an underlying evolution model and account for evolutionary trade-offs. As such,146

the epidemiological parameter values that we used for disease outbreak simulation are147

biologically meaningful and can be used to test evolutionary hypotheses at the cross-148

species level. To verify whether the simulated traits are phylogenetically correlated,149

we performed Abouheif’s test at the species level, and the results show that all the150

simulated traits are phylogenetically correlated (Figure 2.3).151

2.2.2. Disease outbreaks simulation152

To generate disease outbreak data, we used a spatially explicit stochastic Susceptible-153

Exposed-Infectious-Removed (SEIR) model with host movement to simulate the spread154

of different parasite strains in host populations. We modelled host movement as ran-155

dom walks in two-dimensional spatial domain with periodic boundaries. We simulated156

the spread of the different strains in host populations of different size (250-4000 in-157

dividuals corresponding to 62.5-1000 individuals per km2) to mimic empirical disease158

outbreak data and inform best ways to correct for the effect of host population density159

in future empirical data analysis.160

We model the infection and disease progression as SEIR, such that at a given time161

a host individual can be either Susceptible, Exposed (infected but not yet infectious),162

Infectious or Recovered from the infection. When an infectious and a susceptible host163

are spatially close to each other then a contact can occur. We defined 10 meters as164
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Figure 2.3: The graphs are the results of Abouheif’s test based on Moran’s I index to detect phylo-

genetic correlation in the simulated parasite traits at the species level. The results are permutation

tests in which the data is resampled randomly (ignoring the phylogeny) to perform Abouheif’s test

and the correlation index is compared to the true phylogenetic correlation. The vertical black line is

the true phylogenetic correlation, measured as Moran’s Index, for each trait (Iνd = 0.90, Ip = 0.90,

Is = 0.89, Iγd = 0.86, and Iσd = 0.75), and all the observed values tend to one which suggests

that all the simulated traits are phylogenetically correlated. The histogram is the distribution of the

phylogenetic correlations obtained from the permutations, and the indexes from random samples are

different from the observed index for all the simulated traits (P-values < 0.0015).

the maximum spatial radius within which contact can occur and the probability of a165

contact is exponentially distributed. If an infectious contact occurs then an infection166

can occur with a probability p which is the probability of disease transmission given an167

infectious contact. An infected host is exposed upon infection, and becomes infectious168

after an average of σd days which is the mean incubation period of the parasite. An169

infected host can either recover from the disease after an average of γd days or die due170

to infection after an average of νd days, which are the average times to host recovery171

and host death due to infection respectively. The incubation period, the time to172

host recovery and the time to host death due to infection are gamma-distributed with173
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means of σd, γd and νd respectively (Brauer 2008; Bretscher et al. 2011). Our epidemic174

model has no recruitment of new susceptible hosts through birth and recovery, and175

as such the outbreaks will always end (see Figures A.1 and A.2 in appendix). Finally,176

we used the infections, the serial interval and other counts data from the outbreak177

simulation to estimate parasite fitness.178

2.2.3. Parasite fitness and virulence measures179

We measured parasite fitness as the basic reproduction number (R0) and the ef-180

fective reproduction number (R), and these two quantities measure the ability of a181

parasite to invade and spread in a host population. We use R0 as a measure of parasite182

fitness because it is a threshold quantity that informs whether a parasite can generate183

an outbreak in a completely susceptible host population (Lipsitch et al. 2003; Brauer184

2008; Diekmann et al. 2012). The quantity R0 measures the growth potential of the185

infected class on generation basis and R0 can be seen as absolute fitness (Alizon and186

Michalakis 2015). To estimate R0 we counted the total number of secondary cases187

generated by the primary case in a completely susceptible host population in each188

outbreak simulation. The effective reproductive number (R), is the average number189

of infections per infected host when the parasite is established in the host population190

(Lipsitch et al. 2003). In evolutionary epidemiology the quantity R indicates whether191

a new mutant strain can replace an established one at the endemic equilibrium, and192

R can be seen as the relative fitness (Alizon and Michalakis 2015). Previous studies193

showed that evolution maximizes R at endemic equilibrium or during the late phase194

of an epidemic (Osnas et al. 2015; Cressler et al. 2016). To estimate R, we used the195

incidence and the serial interval data from the outbreak simulation to calculate the196

average transmission potential of each parasite, and the estimation of R was imple-197
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mented in the EpiEstim R package. For both R0 and R the results are averaged over198

30 simulated outbreak runs.199

2.2.4. Statistical analysis200

To test whether parasite species that are less virulent have lower fitness we used201

an autoregressive model, which is a regression model that accounts for the phylo-202

genetic relationships and non-independence of observations (Cheverud et al. 1985;203

Gittleman and Kot 1990). We formulated parasite fitness (R0 and R) as a function of204

phylogenetic and virulence components, and closely related species are assigned more205

weights than distant species. Observations in cross-species data are not independent206

and are phylogenetically correlated, and as such traditional statistical methods, such207

as classic regression model, are not appropriate for the analysis of cross-species data208

(Pagel and Harvey 1988; Harvey and Pagel 1991; Pagel and Harvey 1992; Martins209

and Hansen 1997). We divided R0 and R by host population density N to correct for210

host population density, and to meet the assumptions of the linear model we square211

root transformed R0 and R.212

2.3. Results213

We measured parasite fitness as the basic reproduction number R0 an the effec-214

tive reproduction number R for 1500 parasites (50 species and 30 strains within each215

species) that are phylogenetically related, virulence as the length of time before an216

infected host dies due to infection (νd), thus shorter νd means higher virulence, and217

we investigated the fitness-virulence correlation using phylogenetically corrected sta-218

tistical model. We find that virulence and parasite fitness are correlated at the cross-219

species level which suggests that virulence is adaptive, however the exact form of the220
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fitness-virulence correlation depends on the selective pressures within each biological221

and ecological group of species.222

Table 2.2: Summary of the proportion (×100) of cross-species and within-species data for which the

best model is positive, negative, concave-dow or concave-up correlation between virulence and para-

site fitness measures (R0 or R). We fit linear and parabolic models to within- and cross-species data

(sample sizes are 26-30 and 200 observations per within-species and cross-species data respectively)

and we performed a likelihood ratio test to select the best fit model based on Log-likelihood. For

each species data (50 species) or cross-species data (1000 random samples) the proportion (×100) of

model fit that is significant (p-value < 0.05) is shown in parenthesis.

Data and fitness measure % Concave-down % Positive % Concave-up % Negative

Within-species R0 2 (0) 70 (71) 2 (100) 26 (46)

Within-species R 6 (66) 47 (13) 4 (50) 43 (0)

Cross-species R0 97.8 (100) 0 0 2.2 (100)

Cross-species R 99.5 (100) 0.5 (100) 0 0

2.3.1. Virulence is adaptive within most of the species223

We compared linear and polynomial model fits to each species’ data, we selected224

the best fit model by likelihood ratio test. We found that the correlation between225

virulence and R0 is positive for 70 % of species, and concave-up for 2 % of the species226

(Figures 2.4a and 2.4b, and Table 2.2). As such, higher virulence strains have higher227

R0 within most of our simulated parasite species. However the relationship between228

virulence and R0 is negative in 26 % of the species, and this result suggests that there229

are conditions where virulence is not beneficial for parasite transmission (Figures 2.4c,230

and Table 2.2). For R fitness measures only 16 % of the best model fit models are231

significant, and the results are presented in A.3 and A.4 as electronic supplementary232

material.233
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Virulence Virulence

(a) (b)

(c) (d)

Figure 2.4: Most of the within-species data show that virulence is adaptive and the correlation

between virulence and R0 is positive (a), however, in a few species the correlation between virulence

and R0 is concave-up (b) and negative (c) (We graph only examples of significant model fits). The

proportion (×100) of species data for which the relationship between R0 and virulence is positive

(green bar), negative (yellow bar) or concave-up (blue bar) and their corresponding model p-values

are presented in (d), where the vertical black line is the 0.05 significance level. We fit linear and

parabolic models to our within-species data (sample sizes are 26-30 observations per species data,

with 50 species in total) and we performed a likelihood ratio test to select the best fit model. The

dots are the estimated fitness measures for each parasite strain of the same species (averaged over

30 outbreaks simulation runs), the line through the data is the best fit model, and the grey area

is the 95% confidence interval. Model p-values are less than 0.001 for all graphs and the adjusted

R2 = 0.48, 0.28, 0.32 for (a), (b) and (c) respectively. We divided R0 by host population density

(N) to correct for the effect of host population density and we square root transformed the response

variables to meet the assumptions of the linear model.
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2.3.2. Cross-species data show that virulence is adaptive at least for low virulence234

levels235

Most of the random cross-species data samples show a concave-down relationship236

between virulence and both R0 and R measures (97.8 % for R0 and 99.5 % for R)237

and this result suggests that the relationship between virulence and parasite fitness238

is positive for low virulence levels (νd > 10) and negative for high virulence levels239

(Figures 2.5a, 2.5b and Table 2.2). In very few cases, our results show that the fitness-240

virulence relationship can be linear (2.2 % for R0 and 0.5 % for R), but the model fits241

are relatively poor and model diagnostics show that the relationship between virulence242

and R0 and R is probably not linear (See Figures A.5 in appendix).243

We investigated whether the relationship between virulence and parasite fitness244

depends on the selective regimes, and we fit samples of cross-species data to (1) a245

phylogenetically corrected linear model without interaction and (2) a phylogenetically246

corrected linear model with interaction between virulence and selective regime and247

we performed a likelihood ratio test to select the best fit model. We found that the248

model with interaction is significantly more likely for R0 fitness measures, and this249

result suggests that the relationship between virulence and R0 is not the same within250

the selective regimes (p-value < 0.0001 and ∆ Log likelihood = 44). The virulence-251

R0 relationship is positive for the selective regimes R1, R2 and R5, negative for R3252

and concave-down for R4 (Figure 2.6a). However for R fitness measures the fitness-253

virulence correlations within the different selective regimes are unclear (Figure 2.6b254

and ∆ Log likelihood = 2 and p-value > 0.5 for the comparison of model with and255

without interactions).256
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Virulence

(a)

(b)

Figure 2.5: The correlation between virulence and the basic reproduction number R0 in (a) and the

effective reproduction number R in (b) is concave down. The dots are the estimated fitness measures

of each parasite (averaged over 30 outbreaks simulation runs), the colour indicates parasite strains

of the same species, the line through the data is the best fit model, and the grey area is the 95%

confidence interval. For both graphs the best fit models are polynomials, model p-value < 0.0001

and adjusted R2 = 0.50 and R2 = 0.38 in (a) and (b) respectively. We divided R0 and R by host

population density (N) to correct for the effect of host population density, and we square root trans-

formed the response variables to meet the assumptions of the linear model. We fit phylogenetically

corrected linear and parabolic models to 1000 randomly sampled cross-species data (sample size is

200 observations per randomly sampled data) and we performed likelihood ratio tests to select the

best fit model. The best model fit is the concave-down correlation between virulence and parasite

fitness (99.9 % of samples for R0 and 99.5 % for R).
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(a)

(b)

Figure 2.6: The correlation between virulence and R0 is positive for R1, R2, and R5, negative

for R3 and concave-down for R3 (a), however, the correlation between virulence and R for R1-R5

is statistically unclear (b). For each selective regime, we fit phylogenetically corrected linear and

parabolic models to random samples of cross-species data (60 observations per selective regime), and

we performed a likelihood ratio test to select the best fit model. The dots are the estimated fitness

measures for each parasite (averaged over 30 outbreaks simulation runs), the colours are the different

selective regimes (R1 = red, R2 = green, R3 = yellow, R4 = blue and R5 = orange), the line through

the data is the best fit model, and the grey area is the 95% confidence interval. In (a) model p-value

is < 0.05 for all selective regimes, and in (b) model p-value is > 0.1 for all selective regimes. We

divided R0 and R by host population density (N) to correct for the effect of host population density

and we square root transformed the response variables to meet the assumptions of the linear model.
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2.4. Discussion257

The adaptive virulence hypothesis suggests that virulence is maintained because258

it is adaptive, and this hypothesis has been successful in theoretical studies but its259

empirical validation is methodologically challenging, especially at the cross-species260

level. In this paper we investigate whether we can determine if virulence is adaptive261

using simulated cross-species data. We find that virulence and parasite fitness can262

be correlated at the species level, the exact form of the fitness-virulence correlation263

depends on the selective pressures within biological and ecological groups of species,264

and this results suggests that ecological conditions determine whether virulence is265

beneficial for parasite transmission.266

2.4.1. Why is virulence beneficial for parasite transmission in some species?267

Both within- and cross-species data show that the correlation between parasite268

fitness and virulence is positive, which means that virulence is beneficial for parasite269

transmission and disease spread in host populations (Figures 2.4a, 2.4b, 2.6a and Table270

2.2). In the R1, R2, and R5 selective regimes, higher virulence parasites are more likely271

to be transmitted and cause infections with longer infectious period during which new272

infections can occur, and as such, higher virulence parasites generate more infections273

and have higher fitness (Figures 2.7, see R1, R2 and R5). The positive relationship274

between virulence and parasite transmissibility can emerge from the dynamics of275

parasite replication rate and the immune response within the host, and previous276

studies showed that parasites with higher within-host replication rate produce more277

infectious stages and are not cleared rapidly by the immune system of the host, which278

increase both the probability of host death due to infection and disease transmissibility279

(Mackinnon and Read 2004; de Roode et al. 2008; Metcalf et al. 2011; Leggett et al.280
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2017; Acevedo et al. 2019; Greischar et al. 2019). This result is expected given the281

linear virulence-transmission and virulence-recovery trade-offs that we assume within-282

species.283

The other reason why higher virulence parasites generate more infections in the R1,284

R2 and R5 selective regimes is the relationship between virulence and the infectious285

period. In the R1, R2 and R5 selective regimes, the parasites induce infections where286

most of the hosts recover before the expected time to host death due to infection287

because γd < νd, and as such, the infectious period mainly depends on the time to288

host recovery γd (Figure 2.7d, νd − γd > 0). Higher virulence parasites (thus shorter289

νd) have longer times to host recovery γd and induce longer infections, which is a290

translation of the negative within-species virulence-recovery trade-offs at the species291

level. Because higher virulence parasites are more likely to be transmitted given a292

contact, these parasites generate more new infections over longer infectious period,293

which explains why the relationship between virulence and parasite fitness is positive294

at the cross-species level in the R1, R2 and R5 selective regimes.295

Moreover in the R1, R2 and R5 selective regimes, parasite species cause few host296

death (γd < νd), most of the infected hosts recover from the disease sooner or later.297

Lower virulence parasites are rapidly cleared by the immune system of the host, and298

a host infected with a lower virulence parasite is more likely to recover earlier from299

the infection. The species in the R1, R2 and R5 selective regimes can be seen as300

sub-lethal parasites, and previous studies showed that host recovery rate (1/γd) is the301

main factor that drives the evolution of virulence in sub-lethal parasites (Alizon 2008;302

Bull and Lauring 2014). Our results are in accordance with previous studies, and we303

show that within-species virulence-transmission and virulence-recovery trade-offs can304
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Virulence Virulence

(a) (b)

(c) (d)

Figure 2.7: Virulence as a function of the probability of disease transmission given a contact p (a),

the duration of the infectious period (b) and the basic reproduction number R0 (c). In (d), we graph

the distribution of the difference between the expected time to host death due to infection and the

expected time to host recovery (νd−γd) for all parasites and selective regimes. This graph illustrates

how νd and γd can affect the duration of the infectious period, shown in (b), and when νd − γd > 0

then γd is the main factor limiting the duration of the infectious period, whereas when νd − γd < 0

then νd is the main limiting factor. Parasites within the same selective regime are biologically or

ecologically similar and we have 5 selective regimes R1 = red, R2 = green, R3 = yellow, R4 = blue

and R5 = orange. Parasite traits, νd, γd and p, were simulated to generate outbreaks and calculate

R0, see section 2.2 for details.

explain why virulence is beneficial in sub-lethal parasites.305

However, in the R3 selective regime species the correlation between parasite fit-306

ness and virulence is negative, and the explanation is that as virulence increases the307

probability of disease transmission given a contact, p, increases but the infectious pe-308
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riod becomes shorter. The species in the R3 selective regime induce death before the309

expected time to host recovery (νd < γd) and most of the infected hosts die from the310

infections (Figures 2.7, νd − γd < 0). In this situation, the duration of the infectious311

period depends on the length of time to host death due to infection νd, which is shorter312

for higher virulence parasites because the infected host is more likely to die earlier313

from the infection. As such, higher virulence parasites have higher transmissibility but314

generate overall less infections because the infected host is more likely to die earlier315

from the infection.316

The species in the R3 selective regime can be seen as obligate killers because in-317

fected hosts will die sooner or later (νd < γd). Previous studies show that for the318

obligate killers, Nucleopolyhedrovirus in its insect host Spodoptera exempta and Pas-319

teuria ramosa in its Crustacean host Daphnia magna, higher virulence strains produce320

fewer transmission stages during their lifetime and have lower fitness (Redman et al.321

2016; Ben-Ami 2017). Our results are in accordance with these previous studies, and322

our simulation data suggest that the negative relationship between virulence and par-323

asite fitness is valid at the cross-species level for obligate killers.324

In the R4 selective regime the relationship between R0 and virulence is concave-325

down, which means that higher virulence parasites generate more infections until326

a point, which is νd < γd, where increased virulence is not beneficial for parasite327

transmission and results in lower parasite transmission from one host to another328

(Figure 2.7, see R4 selective regime). Due to the negative virulence-recovery trade-329

off, a host infected with low virulence parasites is less likely to die due to infection330

but more likely to recover earlier from the infection, and the likelihood of earlier331

host recovery decreases as virulence increases because higher virulence parasites can332

31



replicate faster within the host and avoid rapid clearance by the immune system of333

the host. As such, higher virulence parasites cause longer infections during which334

more new infections can occur until a point where the likelihood of host death due to335

infection becomes very high, which happens when the expected time to host death is336

less than the expected time to host recovery (νd < γd). From this point, the expected337

time to host recovery γd is irrelevant for the duration of the infectious period. A338

host infected with higher virulence parasites is more likely to die earlier during the339

infection which results in shorter infectious period and lower parasite transmission340

before the host dies due to infection. Thus, intermediate virulence parasite species341

with intermediate disease transmissibility generate the maximum number of infection342

over longer infectious period in the R4 selective regime.343

Concave-down relationship between virulence and parasite fitness often arises from344

a saturating relationship between virulence and parasite transmission, where interme-345

diate virulence maximizes the total number of new infections per infected host during346

the infectious period (Fraser et al. 2007; de Roode et al. 2008; Chapuis et al. 2012;347

Fraser et al. 2014). However, a concave-down relationship between virulence and par-348

asite fitness can also arise due to a trade-off between parasite transmission and the349

clearance rate of the parasite by the immune of the host (van Ballegooijen and Boer-350

lijst 2004; Alizon 2008). Empirical evidence supporting the transmission-clearance351

trade-off has been reported for the Mycoplasma gallisepticum bacterial infections in352

the North American house finch Haemorhous mexicanus (Williams et al. 2014) and353

Dengue virus infection in humans (Ben-Shachar and Koelle 2018). In complement to354

previous results, our simulation data show that a concave-down relationship between355

virulence and parasite fitness can arise at the cross-species level, and a non-linear356
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relationship between virulence and the infectious period can maintain intermediate357

virulence.358

2.4.2. Can we determine whether virulence is adaptive using empirical cross-species359

data ?360

Overall, our simulation data show that we can test the adaptive virulence hypothe-361

sis at the cross-species level but the following three factors need careful consideration362

when investigating the relationship between virulence and parasite fitness. Firstly,363

the biological and ecological similarities between the species cannot be ignored in364

the empirical investigation of the correlation between parasite fitness and virulence365

at the species level. In our simulation the different selective regimes correspond to366

groups of species that have evolved under similar selective pressures and have similar367

epidemiological trait values. These similarities can be the transmission route of the368

parasites or the type of host tissues in which the parasites replicate. The biological369

and ecological distinctions between each group of species is important because the370

contribution of the different parasite traits to parasite fitness can be different from371

one group to another.372

Second, phylogenetic correction is important in cross-species comparison because373

it improves the quality of the statistical tests (Gittleman and Kot 1990; Garland et al.374

2005). Testing the adaptive virulence hypothesis at the cross-species level is difficult375

because reconstructing the phylogenetic relationship within and between viruses, bac-376

teria and fungi is not straightforward (but see Iyer et al. 2001; James et al. 2006;377

Kühnert et al. 2011; Koonin et al. 2015). However, investigating the fitness-virulence378

correlation in parasites that are biologically or ecologically similar can be a step for-379

ward because constructing a phylogenetic tree for species that share some biological380
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similarities may be less complicated. The difficulties in reconstructing the phyloge-381

netic relationship between parasite species for phylogenetic correction is probably382

one of the reasons why previous studies are limited to virulence comparison across383

parasite species that exploit similar host tissues or have similar transmission routes384

(Ewald 1983; 1991b; Walther and Ewald 2004). However, more recent works showed385

that reconstructing the phylogenetic relationship between parasite species that have386

diverged a long time ago is feasible using similarities between the structure of parasite387

proteins (Leggett et al. 2017).388

Thirdly, the host population density is another important factor that needs to be389

considered when investigating the correlation between parasite fitness and virulence.390

A preliminary investigation of our data shows that the most important contributor to391

both R0 and R is the host population density. As such, to remove the density effect392

we divided R0 and R by the density of the host population. The fitness measures,393

R0 and R estimated from disease outbreak data, often carry some information about394

host population density and appropriate methods to remove or control for the effect395

of host population density will provide more accurate results. Furthermore, R0 is396

more precise at capturing the relationship between virulence and parasite fitness,397

whereas the relationship between R measures and virulence is unclear. One possible398

explanation is that during the late phase of the outbreak, the availability of susceptible399

hosts often limit the spread of infectious diseases and this phenomenon does not400

depend on the initial host population density (Lipsitch et al. 1995; Dieckmann 2002;401

Otto and Day 2007; Lion and Metz 2018). As such, dividing R by host population402

density may be insufficient to correct for the effect of the initial host population403

density.404
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2.5. Conclusion405

The main challenges with testing the adaptive virulence hypothesis at the cross-406

species level are methodological, but we use simulated cross-species data to test407

whether higher virulence parasites have higher fitness. We conclude that the empirical408

investigation of whether virulence is adaptive using cross-species data is feasible with409

species that are biologically or ecologically similar for the following reasons: (1) the410

phylogenetic correction for comparative analysis can be simpler, (2) the main para-411

site traits that directly affect fitness can be similar and (3) the interpretation of the412

fitness-virulence relationship may be more straightforward for species under similar413

selective pressures.414
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3. Chapter two: Parasite-induced shifts in host move-

ment may explain the transient coexistence of high-

and low-pathogenic disease strains
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Parasite-induced shifts in host movement may explain the

transient coexistence of high- and low-pathogenic disease

strains

Abdou M. Fofana, Amy Hurford

Abstract

Many parasites induce decreased host movement, known as lethargy, which can impact

disease spread and the evolution of virulence. Mathematical models have investigated

virulence evolution when parasites cause host death, but disease-induced decreased

host movement has received relatively less attention. Here, we consider a model where,

due to the within-host parasite replication rate, an infected host can become lethar-

gic and shift from a moving to a resting state, where it can die. We find that when

the lethargy and disease-induced mortality costs to the parasites are not high, then

evolutionary bistability can arise, and either moderate or high virulence can evolve

depending on the initial virulence and the magnitude of mutation. These results sug-

gest, firstly, the transient coexistence of strains with different virulence, which may

explain the coexistence of low- and high-pathogenic strains of avian influenza and

human immunodeficiency viruses, and secondly, that medical interventions to treat

the symptoms of lethargy or prevent disease-induced host deaths can result in a large

jump in virulence and the rapid evolution of high virulence. In complement to existing

results that show bistability when hosts are heterogeneous at the population-level, we

show that evolutionary bistability may arise due to transmission heterogeneity at the

individual host-level.

Keywords: Bistability, Evolutionarily stable strategy, lethargy, movement,

trade-off, virulence.
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3.1. Introduction

Reduced host movement due to infection, known as lethargy, is a commonly ob-

served disease manifestation, which can affect the parasite transmission rate and dis-

ease spread (Eames et al. 2010; Perkins et al. 2016). Many parasites, including those

responsible for common illnesses in humans such as measles and the flu, can alter

host movement behaviour and induce lethargy, which can prevent infected individu-

als from socializing and going to work and school (Hart 1988; Holmstad et al. 2006;

Eames et al. 2010; Van Kerckhove et al. 2013). Like parasite-induced host mortality,

parasite-induced host lethargy can be a direct or an indirect consequence of the rate

a parasite produces infectious stages using host resources and/or the clearance rate

of the parasite by the immune system of the host (Zitzow et al. 2002; Belser et al.

2013). The severity of lethargy can affect the transmission of a parasite from one host

to another because a lethargic host may be less likely to make a direct contact with

a susceptible host than a moving host (Ewald 1983; 1994; Day 2001). Thus a trade-

off can emerge between the rate of host lethargy and the rate a parasite produces

infectious stages within a host.

Animal movement is frequently modelled as a Markov process with probabilistic

transitions between discrete movement states, which are defined based on distributions

of step lengths and turning angles recovered from animal movement data (Morales

et al. 2004; Patterson et al. 2008; Gurarie et al. 2009; Moorter et al. 2010; McKellar

et al. 2014; Edelhoff et al. 2016; Teimouri et al. 2018). These discrete state movement

models inspire our model formulation, as our epidemiological model considers two in-

fective classes: moving and resting (or lethargic), which have distinct epidemiological

characteristics due to distinct movement behaviours. A number of previous studies
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have proposed similar epidemic models with coupled behaviour-disease classes and

transitions from one class to another (Perra et al. 2011; Fenichel et al. 2011; Wang

et al. 2015; Verelst et al. 2016), and recent works highlight the need to combine mod-

elling frameworks from the epidemiological and animal movement literatures (Fofana

and Hurford 2017; Dougherty et al. 2017).

We formulate a behaviour-disease model to investigate the role of host movement

as an underlying process for an evolutionary trade-off between the rate of parasite

transmission and the production of parasite transmission stages within a host, which

determines the level of virulence a parasite causes in its host. During the past three

decades the trade-off theory has emerged as an accepted explanation for different

levels of virulence (Read 1994; Bull 1994; Ebert and Herre 1996; Frank 1996; Lipsitch

and Moxon 1997; Alizon et al. 2009; Alizon and Michalakis 2015; Cressler et al. 2016).

This theory assumes that high virulence or slow recovery rates are the consequence

of the parasite producing transmission stages at a high rate within a host (Anderson

and May 1982; Antia et al. 1994; Gilchrist and Sasaki 2002; Alizon and van Baalen

2005). For example, when the transmission-virulence trade-off has a saturating form

then parasites will evolve towards an intermediate level of virulence (Anderson and

May 1982; Ebert and Herre 1996; Frank 1996).

The trade-off theory has received some empirical support (Paul et al. 2004; Fraser

et al. 2007; de Roode et al. 2008; Doumayrou et al. 2013; Fraser et al. 2014; Williams

et al. 2014; Blanquart et al. 2016), but has been criticized for its restrictive definition

of the term virulence (Alizon et al. 2009). Theoretical analyses of the evolution of

virulence frequently define virulence as parasite-induced host mortality and ignore

non-lethal effects due to parasite infection (Anderson and May 1982; Frank 1996;
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Alizon et al. 2009). Notable mathematical formulations that have investigated non-

lethal parasite virulence have considered parasite-induced host sterility (O’Keefe and

Antonovics 2002; Bonds 2006; Lively 2006; Abbate et al. 2015; Best et al. 2017) and

parasite-induced reduced host growth (Schjørring and Koella 2003), but reduced host

movement due to infection has received relatively less attention (but see Ewald 1983;

Day 2001).

The aim of this paper is to explicitly represent parasite-induced effects on host

movement as a process underlying the transmission-virulence trade-off. Notably, we

consider that infected hosts can shift between two discrete movement states: mov-

ing and resting and we justify this formulation based on studies from the animal

movement literature (Edelhoff et al. 2016; Teimouri et al. 2018). We investigate the

evolution of the rate of parasite replication within a host when the infection is po-

tentially lethal and when the infection is non-lethal. We find that the main drivers

of the evolutionary dynamics are lethargy and disease-induced mortality costs to the

parasite, and when the disease-induced mortality or the lethargy cost is high, then

evolution converges towards a parasite strain that induces moderate virulence. For a

range of parameter values, where the lethargy and the disease-induced mortality costs

are not high, a bistable evolutionary equilibrium occurs. As such, depending on the

initial virulence and the magnitude of the effect of mutation, either a parasite strain

that induces moderate virulence or a parasite strain that induces high virulence in

the host population can evolve. Finally, we discuss how our results can aid in under-

standing the transient coexistence of parasite strains with different virulence in avian

influenza and human immunodeficiency viruses.
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3.2. Epidemiological model

To formalize the epidemic model, we couple two discrete movement states (moving

and resting) with a Susceptible-Infected-Susceptible (SIS) model. Figure 3.1 describes

the epidemic model, and definitions for all the parameters and notations used in this

paper are provided in Table 3.1.

IM

SM

IR

d

d

ν(α)

d

γ

γ

ψ(α)

α(cmIM + crIR)

θ

Figure 3.1: An epidemiological model where the compartments represent combinations of host epi-

demiological statuses and movement states. The symbols S and I indicate susceptible and infected,

and the subscripts M and R indicate the moving and the resting states. The arrows indicate the flow

of individuals between each compartment with the corresponding rates. Susceptible hosts, SM , are

recruited through immigration at the rate θ and become infected at a per capita rate α(cm + cr).

Following infection the infected host enters the moving state (IM ). The infected host can become

lethargic and enter the resting state (IR) at the rate ψ(α) or recover from the disease before lethargy

and become susceptible again at the rate γ. When the infected host becomes lethargic it can die

from the disease at the rate ν(α) or recover from the disease and become susceptible again at the

rate γ. Finally, we assume that a host can die naturally at the rate d independently of the movement

state and epidemiological status.

We assume that susceptible hosts are always in the moving state, and infected

hosts are in the moving state before lethargy and in the resting state during lethargy.

Let SM , IM and IR denote the numbers of susceptible hosts in the moving state,

infected hosts in the moving state, and infected hosts in the resting state respectively.
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Table 3.1: List of notations and definitions

Symbols Definitions

(Epidemic)

α Within-host parasite net replication rate.

ψ(α) Parasite-induced host lethargy rate.

ν(α) Parasite-induced host mortality rate.

cm The per capita host-host contact rate in the moving state.

cr The per capita host-host contact rate in the resting state.

γ Host recovery rate.

d Host natural mortality rate.

θ Host immigration rate.

R0 The expected number of secondary cases

by a primary case in a susceptible population.

ρ The fraction of infected hosts that experience lethargy.

σ Case fatality ratio given lethargy.

χ Case fatality ratio (ρ× σ).

Symbols Definitions

(Evolution)

α1 Within-host net replication rate of the resident strain.

α2 Within-host net replication rate of the mutant strain.

α∗ Evolutionarily stable or convergence stable net replication rates (ESS or CSS).

ψ(α1) Parasite-induced host lethargy rate of the resident strain.

ψ(α2) Parasite-induced host lethargy rate of the mutant strain.

ν(α1) Parasite-induced host mortality rate of the resident strain.

ν(α2) Parasite-induced host mortality rate of the mutant strain.

The epidemiological dynamics of the host population are described by,

dSM
dt

= θ + γ (IM + IR)− SM (Λ + d) (3.1)

dIM
dt

= ΛSM − IM [d+ γ + ψ(α)] (3.2)

dIR
dt

= ψ(α)IM − IR [d+ γ + ν(α)] , (3.3)

where Λ = α (cmIM + crIR) is the force of infection.

We assume that a susceptible host becomes infected by making a direct contact
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with an infected host that is either in the moving or the resting state. We formulate

these two infection events separately because a lethargic host in the resting state is

less likely to make a direct contact than a non-lethargic host in the moving state.

In order to capture this idea, we decompose the transmission coefficient frequently

denoted β, into two components: the rate of direct contact and the probability of

disease transmission given a contact between a susceptible host and an infected host

(Day 2001). The first component depends on the movement state of the host, and

we assume that an infected host is less likely to make a direct contact in the resting

state compared to the moving state (cr < cm) (Ewald 1983; 1994; Day 2001; Lloyd-

Smith et al. 2004). The second component depends on parasite properties only, and

we assume that the probability of disease transmission given an infectious contact is

proportional to the net replication rate of a parasite within a host which we denote

α (Brauer 2008; Diekmann et al. 2012). The within-host parasite net replication rate

(α) is the difference between parasite replication rate and the parasite clearance rate

by the immune system of the host (Lipsitch and Moxon 1997). To formulate the

infection process we apply the mass-action law, thus the number of new infections per

unit time due to one infected host in the moving state is αcmSM and in the resting

state is αcrSM . We assume that the parasite has a short incubation period, meaning

that an infected host is immediately infectious.

An infected host in the moving state can become lethargic and enter the resting

state at the rate ψ(α), which is the parasite-induced host lethargy rate, and the

infected host can die from the disease in the resting state at the rate ν(α), which is

the parasite-induced host mortality rate. Both the rate of lethargy and the rate of

host death due to infection depend on the within-host parasite net replication rate,
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and we ignore the details of the dynamics between the parasite replication rate and

the immune system within the host for simplicity. We assume that an infected host

can recover either in the moving or the resting state at a constant rate γ and become

susceptible again. A host can be reinfected multiple times during the course of its life,

thus this type of model is appropriate for infectious diseases that confer no immunity

such as rhinoviruses responsible for the common cold in humans (May 1986; Brauer

2008). Finally, we assume that susceptible and infected hosts can die naturally at a

constant rate d, and new susceptible hosts are recruited through immigration at the

rate θ.

The system of equations (3.1-3.3) exhibits two equilibria: one disease-free and

one endemic equilibrium. We use the next-generation matrix approach (see van den

Driessche and Watmough 2002) to derive the basic reproduction number which is

given by,

R0 =

[
αcm

d+ γ + ψ(α)
+

αcr
d+ γ + ν(α)

× ψ(α)

d+ γ + ψ(α)

]
S∗M , (3.4)

where S∗M = θ/d represents the number of susceptible hosts in the absence of the

disease (see Appendix B of supporting information for the derivation of R0). Equation

(3.4) is the expected number of secondary cases generated by a primary case in a

completely susceptible host population, and it informs the outcome of the disease

when rare in the host population (Diekmann et al. 2012). If equation (3.4) is less

than one then no outbreak occurs, and if equation (3.4) is greater than one then an

epidemic occurs and the system reaches a stable endemic equilibrium as long as the

input of susceptible hosts through immigration and recovery is permanent (Brauer

2008). Equation (3.4) is the sum of the expected number of new infections generated
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by an infected host in the moving state,

αcmS
∗
M

d+ γ + ψ(α)
,

and the resting state multiplied by the probability of entering the resting state,

αcrS
∗
M

d+ γ + ν(α)
× ψ(α)

d+ γ + ψ(α)
.

To characterize the degree of non-lethal and lethal virulence associated with the

net replication rate of a parasite within a host (α) we define:

ρ =
ψ(α)

d+ γ + ψ(α)
, (3.5)

σ =
ν(α)

d+ γ + ν(α)
, (3.6)

and

χ =
ψ(α)

d+ γ + ψ(α)
× ν(α)

d+ γ + ν(α)
, (3.7)

where equations (3.5), (3.6) and (3.7) are the fraction of hosts that become lethargic,

the case fatality ratio given lethargy and the case fatality ratio, respectively. We

consider equation (3.5) as a measure of non-lethal virulence and equation (3.7) as a

measure of lethal virulence a parasite causes to the host.

3.3. Evolution model

To investigate the evolution of the within-host parasite net replication rate, we

assume that a resident parasite strain with a net replication rate α1 is present in the

host population at a locally stable endemic equilibrium and a rare mutant strain with
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a net replication rate α2 arises in the population. Assuming that only one strain can

infect one host at the same time, the evolutionary dynamics are described by the

following system of differential equations:

dSM
dt

= θ + γ (IM1 + IM2 + IR1 + IR2)− SM (Λ1 + Λ2 + d) (3.8)

dIM1

dt
= Λ1SM − IM1 [d+ γ + ψ(α1)] (3.9)

dIM2

dt
= Λ2SM − IM2 [d+ γ + ψ(α2)] (3.10)

dIR1

dt
= ψ(α1)IM1 − IR1 [d+ γ + ν(α1)] (3.11)

dIR2

dt
= ψ(α2)IM2 − IR2 [d+ γ + ν(α2)] , (3.12)

where Λ1 = α1 (cmIM1 + crIR1) and Λ2 = α2 (cmIM2 + crIR2) are the force of infections

associated with the resident and the mutant strains respectively. Let IM1 and IR1

denote the number of infected hosts in the moving and the resting states respectively

infected with the resident strain, and IM2 and IR2 denote the number of infected hosts

in the moving and the resting states respectively infected with the mutant strain.

To investigate the evolutionary dynamics, we analyze the stability of the mutant-

free equilibrium (the endemic equilibrium of the system (3.1-3.3)) using the next-

generation matrix approach for evolutionary invasion analysis (see, Hurford et al.

2010). We derive the expression for the invasion fitness, R(α2, α1), which is the ex-

pected lifetime infection success of a rare mutant strain, α2, in a host population

where the resident strain, α1, is at endemic equilibrium, and it gives the conditions

for α2 to replace α1 (see, Otto and Day 2007; Dieckmann 2002). The stability analysis

of the mutant-free equilibrium reveals that α2 replaces α1 at the endemic equilibrium
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if,

R(α2, α1) =

α2

(
cm[d+ γ + ν(α2)] + crψ(α2)

)
[
d+ γ + ν(α2)

][
d+ γ + ψ(α2)

] ×
[
d+ γ + ν(α1)

][
d+ γ + ψ(α1)

]
α1

(
cm[d+ γ + ν(α1)] + crψ(α1)

)−1 > 0.

(3.13)

Details of the derivation of R(α2, α1) are provided in Appendix B as supporting in-

formation. Equation (3.13) suggests that if,

α2cm
d+ γ + ψ(α2)

+
α2cr

d+ γ + ν(α2)
× ψ(α2)

d+ γ + ψ(α2)
>

α1cm
d+ γ + ψ(α1)

+
α1cr

d+ γ + ν(α1)
× ψ(α1)

d+ γ + ψ(α1)
,

(3.14)

then the mutant strain (α2) replaces the resident strain (α1). Therefore, a resident

strain that maximizes

R∗(α1) =
α1cm

d+ γ + ψ(α1)
+

α1cr
d+ γ + ν(α1)

× ψ(α1)

d+ γ + ψ(α1)
, (3.15)

can not be invaded, and as such its net replication rate is evolutionarily stable (ESS

α∗). This result is valid provided that there is always susceptible hosts to infect (Dieck-

mann 2002). The expression R∗(α) is the expected secondary infections by a single

infected host per susceptible host in the moving and the resting states.

To investigate the evolutionary dynamics we need to determine the general form

of the functions ψ(α) and ν(α) which are parasite-induced host lethargy and parasite-

induced host mortality rates respectively. We assume that both ψ(α) and the ν(α)

are determined by the rate a parasite replicates within a host (α), meaning that a

trade-off exists between α and ψ(α) on one hand and ν(α) on the other hand. We

consider parasite-induced host lethargy rate (ψ(α)) to reflect a form of non-lethal

virulence because the lethargic state is harmful to the host as the host is less able

to engage in activities essential to survival (i.e., foraging, provisioning for offspring,
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evading predators), and parasite-induced host mortality rate (ν(α)) reflects a form of

lethal virulence because the host dies due to infection. A number of studies support

the existence of a positive correlation between parasite load (a measure of the net

replication rate of a parasite within a host, α) and host survival (Timms et al. 2001;

Paul et al. 2004; Brunner et al. 2005; Bell et al. 2006; de Roode et al. 2006; 2008;

2009; de Roode and Altizer 2010). Finnerty et al. (2018) found that both the total

running time and the running distance of infected cane toads decreases as the number

of lungworms increases. Therefore, we assume that both ψ(α) and ν(α) are increasing

functions.

To investigate the within-host parasite net replication rate that is evolutionarily

stable (ESS α∗) and to determine the conditions for the ESS α∗ to be convergence

stable (CSS α∗), we perform an evolutionary invasion analysis (Dieckmann 2002; Otto

and Day 2007). When a parasite strain with the α value that is evolutionarily stable

is dominant in the host population then no parasite strain with a different α value

can replace it. An evolutionarily stable within-host net replication rate (ESS α∗) that

is also convergence stable (CSS α∗) is an evolutionary attracting equilibrium, in other

words parasites evolve towards α∗ by a succession of small mutations and selection

(Eshel 1983; Dieckmann 2002; Diekmann 2004; Otto and Day 2007). To illustrate our

analytical results we use Pairwise Invasibility Plot (PIP), which is a graphical rep-

resentation used for evolutionary invasion analysis, and numerical simulation (Geritz

et al. 1998; Dieckmann 2002; Diekmann 2004).

3.4. Results

We derive the within-host parasite net replication rate that is evolutionarily stable,

and the conditions for an ESS α∗ to be convergence stable. Also, we investigate the
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effects of some important parameter values on the ESS α∗ and the corresponding

virulence (equations 3.5 and 3.7).

3.4.1. The evolutionarily stable within-host parasite net replication rate (ESS α∗)

At the within-host parasite net replication rate that is evolutionarily stable, the

expected number of new infections generated by an infected host in the moving and

the resting state is maximal (equation 3.15). To determine the ESS α∗, we evaluate

the first derivative of the invasion fitness (R(α2, α1), equation 3.13) equal to zero at

α1 = α2 = α∗, and we solve for α∗. To verify under what conditions α∗ is a maximum,

we require the second derivative of R(α2, α1) at α1 = α2 = α∗ to be less than zero.

We find that when

α∗ =

[
cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ψ

][
d+ γ + ν

][
(cm − cr)(d+ γ) + cmν

][
d+ γ + ν

]
ψ′ +

[
d+ γ + ψ

]
crψν ′

, (3.16)

equation (3.15) is maximal, where ψ′ and ν ′ respectively, are the first derivatives of

ψ(α) and ν(α) with respect to α2 evaluated at α∗. When ψ(α) is a concave up trade-

off and ν(α) has a concave up or a linear form, then equation (3.16) is a maximum

and a biologically feasible evolutionarily stable within-host parasite net replication

rate, ESS α∗ (Equation 3.16 is an implicit expression of the ESS and see Appendix

B for details). Where PIP and dynamical simulation are presented, we model the

parasite-induced host lethargy rate as ψ(α) = αa (a > 1 is the exponent parameter),

and the parasite-induced host mortality rate proportional to the parasite-induced host

lethargy rate, ν(α) = bψ(α) (where b is the ratio of the parasite-induced mortality

rate to the lethargy rate). The lower the parameter b the lower the fraction of lethargic

hosts that die in the resting state, and so decreasing b may represent host adaptations

(host resistance) or medical interventions that prevent disease-induced host death.
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Figures 3.2a and 3.2b illustrate the concave-up trade-offs (ψ(α) and ν(α)), and the

non-lethal and lethal virulence (equations 3.5 and 3.7) a parasite with a given net

replication rate causes to its host. Supporting details for the evolutionary invasion

analysis and description of the simulation are provided in Appendix B. The code

used for PIP, simulation and Movie is available as electronic supplementary materials

S3.1-S3.3, and is publicly available on Figshare doi:10.6084/m9.figshare.8059781.v2.
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Figure 3.2: The concave up trade-offs in (a), where solid line is ψ(α), dashed and dotted lines

are ν(α) for different b, and the corresponding virulence in (b), where solid line is the fraction of

hosts that experience lethargy (equation 3.5), dashed and dotted lines are the case fatality ratios

(equation 3.7) for different b. The parameter b is the ratio of the parasite-induced mortality rate

to the lethargy rate, and b can be seen as medical interventions that prevent disease-induced host

deaths. For example when the net replication rate of the parasite strain that is present in the host

population is α = 3, then ≈ 100% of infected hosts will experience lethargy and the case fatality ratio

is ≈ 95% and ≈ 68% for b = 0.16 and b = 0.016 respectively. We model the concave-up trade-offs

using a power function ψ(α) = α2 and ν(α) = bα2. We set d = 0.0001 and γ = 0.065.

3.4.2. Evolutionary bistability arises when hosts make contacts during lethargy

Hosts make no contacts in the resting state (cr = 0)

We found that if hosts make no contact in the resting state (cr = 0) then the evo-

lutionarily stable within-host net replication rate, ESS α∗, is also convergence stable,
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suggesting that parasites will evolve towards α∗ by a succession of small mutations

and selection. The numerical results confirm that when hosts make no contacts in the

resting state (cr = 0) then parasites evolve towards an intermediate α∗ which corre-

sponds to moderate non-lethal virulence (moderate fraction of infected hosts becoming

lethargic, equation 3.5), and moderate lethal virulence (moderate case fatality ratio,

equation 3.7). The PIP shows that a resident strain with a within-host net replication

rate corresponding to α∗ can not be replaced by any rare mutant strain, and both

the PIP and the dynamical simulation show that no matter the initial α evolution

converges towards the intermediate ESS α∗ (Figures 3.3a and 3.3b).

When cr = 0, only the moving state contributes to the total number of secondary

infections and an intermediate value of α∗1 maximizes equation (3.15), which is the

expected secondary infections by a single infected host per susceptible host, R∗(α1)

(Figure 3.4a). An intermediate value of α1 is optimal because for low values of α the

probability of disease transmission given a contact is too low, and for high α values

the duration of the moving state, which is the only state where parasites can be

transmitted, is too short due to the concave up trade-off, ψ(α). Therefore, decreased

R∗(α1) due to lethargy occurring earlier in the infection, which we term the lethargy

cost, is the main factor that maintains intermediate α∗ and prevents evolution towards

higher virulence.

Hosts make contacts in the resting state (cr > 0)

We found that when hosts make contacts in the resting state (cr > 0) evolutionary

bistability, with a lower and an upper ESS, is possible for a set of parameter values

(Figure 3.3c). As such, the evolutionary trajectory can depend on the initial value of

α. For all initial within-host parasite net replication rates (α) below a critical level,
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Hosts make contacts in the resting state (cr > 0)

Figure 3.3: Pairwise Invasibility Plots (PIP) and dynamical simulations illustrating the evolutionary

dynamics when hosts make no contacts in the resting state (top row) and when hosts make contacts

in the resting state (bottom row). Panels (a) and (c) are PIPs, and for a given combination (α1, α2),

white indicates that the rare mutant goes extinct (equation 3.13 is negative), and black indicates

that the rare mutant replaces the resident (equation 3.13 is positive). Panels (b), (d) and (e) are

dynamical simulations of the evolution of parasite net replication rate (α) for different initial α.

Dotted lines are evolutionary trajectories for initial α values below the invasible repellor (α ≈ 0.7)

and dashed lines are evolutionary trajectories for initial α values above the invasible repellor. In (a)

the unique intersection (α∗1 ≈ 0.25) is an ESS and in (b) evolution converges towards this ESS for

all initial α. In (c) from low to high α, the first intersection (α∗ ≈ 0.33) is an ESS (termed the lower

ESS), the second (α ≈ 0.7) is an invasible repellor, and the third (α∗ ≈ 2) is an ESS (termed the

upper ESS). In (d) only small-effect mutations occur and in (e) large-effect mutations can occur. For

all figures, we model the concave-up trade-offs using a power function ψ(α) = α2 and ν(α) = 0.01α2,

and we set cm = 0.8, d = 0.0001, γ = 0.065, and cr = 0.08, except the top row figures where cr = 0.
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Figure 3.4: The expected secondary infections by a single infected host per susceptible host (equation

3.15) in the moving state (dashed black line), the resting states (dotted black line) and during the

entire infectious period (solid black lines) as a function of within-host net replication rate α. In (a)

we set cr = 0, thus infection is possible only in the moving state. Equation (3.15) is maximized at

α∗ ≈ 0.25, and maximizing the number of secondary infections per susceptible hosts in the moving

state also maximizes this quantity for the entire infectious period. In (b) we set cr = 0.08, thus

both moving and lethargic hosts contribute to the total infections and equation (3.15) has two local

maxima: α∗ ≈ 0.33 and α∗ ≈ 2, corresponding to the lower and the upper ESS respectively. A

parasite strain at the lower ESS is mainly transmitted in the moving state, whereas a parasite strain

at the upper ESS is mainly transmitted in the resting state. For all graphs we model the concave-up

trade-offs using a power function ψ(α) = α2, ν(α) = 0.01ψ(α), and we set d = 0.0001 and γ = 0.065.

parasites evolve towards the lower ESS α∗ by a succession of small mutations and

selection. This critical level corresponds to an invasible repellor which is an invasible

and non-convergent evolutionary equilibrium (Evans et al. 2010; Otto and Day 2007;

Diekmann 2004; Dieckmann 2002). In contrast, for initial α values above the invasible

repellor parasites evolve towards the upper ESS α∗ by a succession of small mutations

and selection (Figures 3.3c and 3.3d).

When hosts make contacts in the resting state (cr > 0) both moving and resting

states contribute to the total number of secondary infections, and the expected sec-

ondary infections by one infected host per susceptible host (R∗(α1)) can have more

than one maxima (i.e., local and global maxima). The parasite strain with the lower

61



ESS α∗ is mostly transmitted in the moving state (Figure 3.4b, dashed line), whereas

the parasite strain with the upper ESS α∗ induces lethargy very early in the infection

and is mostly transmitted in the resting state (Figure 3.4b, dotted line). For any α

above the upper ESS the duration of the entire infectious period is too short due to

the concave up trade-off ν(α), and the overall infection success of a parasite, R∗(α1),

decreases. Therefore, decreased R∗(α1) due to shorter infectious period, which we

term the disease-induced mortality cost, limits evolution towards much higher α and

maintains the upper ESS α∗ (Figure 3.4b). In absence of a concave-up ν(α) trade-off,

ever increasing values of α will evolve.

In addition to the initial within-host parasite net replication rate (Figure 3.3d), its

variability within the parasite population can play an important role in the evolution-

ary outcome. For example, when large-effect mutations can occur and a rare mutant

strain can be very different from the resident strain, then parasites can evolve towards

the upper ESS even if α is initially below the invasible repellor (Figure 3.3e). How-

ever when α is less variable within the parasite population, because only small-effect

mutations can occur, the evolutionary outcome depends on the initial α value. The

bistability suggests that a transient coexistence of two strains with different virulence

is possible in the host population. For example, when a strain that induces moderate

virulence corresponding to the lower ESS α∗ is present in the host population and

when large-effect mutations can occur, then any mutant strain with a net replica-

tion rate higher than the invasible repellor can emerge and produce an outbreak. As

such, evolution can maintain two strains with low and high virulence in a transient

coexistence, before eventually the elimination of one strain by competitive exclusion.
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3.4.3. The effects of model parameters on the evolutionary dynamics

To gain a better understanding of how the parameter values affect the evolutionary

dynamics, we graph the case fatality ratio (equation 3.7) corresponding to the evo-

lutionary singular points as a function of the host contact rate during lethargy (cr)

and the constant b (the ratio of disease-induced host mortality rate to disease-induced

host lethargy rate). We found that reduced cr selects for parasite strains that induce

lower virulence (Figure 3.5a, see also Movie in Figure B.1 in Appendix B). One way

that cr could be reduced is through interventions to reduce infectious contacts (e.g.,

isolation of infectious people), and our results suggest that these interventions would

select for parasite strains that induce lower virulence. In contrast, medical interven-

tions that treat the symptoms of lethargy, but do not prevent parasite transmission

(e.g., painkillers), might increase cr and select for parasite strains that induce higher

virulence.

Similarly, as b decreases parasite strains that induce higher virulence are selected.

One way that b might decrease is through medical interventions that reduce disease-

induced host death rate, and our results suggest that these interventions are more

likely to induce higher virulence (Figure 3.5b, see also Movie in Figure B.2 in Appendix

B). Examples of these medical interventions are imperfect vaccines that decrease the

probability that the host dies due to infection, but do not prevent the transmission

of infectious stages (Gandon et al. 2001; 2003; Read et al. 2015). Moreover, when cr

as well as b increases then virulence increases slowly except for a range of cr and b

values where a backward bifurcation occurs with an evolutionary bistable equilibrium

(Figures 3.5a and 3.5b). As such, a small increase in cr or a small decrease in b within

this range of values can result in a large increase in the evolutionary equilibrium and
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Figure 3.5: Increasing contact rate in the resting state (cr) and increasing the ratio of host mortality

to lethargy rates (b) induce a backward bifurcation in the evolutionary dynamics. In (a) we set

cm = 0.8, b = 0.016, d = 0.0001, γ = 0.065 and we graph the case fatality ratio (equation 3.7)

corresponding to evolutionary equilibria for cr values from 0 to 0.2. For cr values between ≈ 0.07

and 0.1 there are two ESS (black open circles) separated by an invasible repellor (red filled circles),

but outside this range there is only one ESS which is also a CSS (black filled circles). In (b) we set

cm = 0.8, cr = 0.08, d = 0.0001, γ = 0.065 and we graph the case fatality ratio corresponding to

the evolutionary equilibria for b values from 0 to 0.04. For b values between ≈ 0.006 and 0.016 there

are two ESS separated by an invasible repellor, but outside this range there is only one ESS which

is also a CSS. We choose to plot only the corresponding lethal virulence (equation 3.7) in function

cr and b, but the result is the same for non-lethal virulence (equation 3.5). For all graphs we model

the concave-up trade-offs using a power function ψ(α) = α2 and ν(α) = bψ(α).

the corresponding virulence. When all other parameters are kept fixed, a 0.01 increase

in cr can select for a strain that is ≈ 12-fold more virulent, and a 0.01 decrease in b

can select for a strain that is ≈ 15-fold more virulent.

3.4.4. Evolutionary dynamics when parasite infection is non-lethal

We investigate the evolution of the within-host parasite net replication rate (α)

when no infected host dies from the disease (b = 0), and we derive the corresponding

non-lethal virulence (the fraction of infected hosts that become lethargic, equation

3.5). Many human parasites such as rhinoviruses and chickenpox enter this category

because they do cause lethargy, but negligible or no host mortality (Walther and
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Ewald 2004). Also, for many human parasites a large proportion of infected individuals

eventually recover from the disease after they receive appropriate medical treatment,

and only a small proportion die from the disease. When no infected host dies from

the disease then the cost of lethargy is the main factor that governs the evolutionary

dynamics, and this cost is higher when cr = 0 or cr is small. Evolution converges

towards a parasite strain that is mainly transmitted in the moving state resulting in

a high fraction of hosts that avoid lethargy when cr = 0 (Figure 3.6a, and details of

the model and the evolutionary dynamics are provided in Appendix B as supporting

information). In contrast, when the transmission rate in the resting state increases

due to increased cr, the incentive to avoid lethargy is lessened and without a disease-

induced mortality cost (b = 0), the parasite can evolve ever increasing within host net

replication rate with all infected hosts experiencing lethargy (Figure 3.6b). Finally,

when there is no disease-induced mortality the evolutionary bifurcation digram as a

function of host contact rate in the resting state (cr) is similar to Figure 3.5a but

without the upper ESS.

Throughout this paper, we assumed that the probability of disease transmission

given an infectious contact, which is proportional to the within-host parasite net repli-

cation rate (α), is the same in the moving and the resting states, but the probability

of disease transmission given an infectious contact may be higher in the resting state

because of a higher parasite load. We investigated the case where the probability of

disease transmission given an infectious contact (proportional to α) is higher in the

resting state than the moving state (αm > αr, where αm and αr are the within-host

parasite net replication rates in the moving and the resting states respectively). We

found that the results are qualitatively similar to the case where the probability of dis-
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Figure 3.6: Pairwise Invasibility Plots (PIP) illustrating the evolutionary dynamics when parasite

infection is non-lethal (b = 0). In (a) infected hosts make no contacts in the resting state (cr = 0)

and in (b) infected hosts make contacts in the resting state (cr > 0). See the caption of Figure 3.3 for

how to read a PIP. The unique equilibrium in (a) is an ESS (α∗ ≈ 0.25) because it is non-invasible

by any rare mutant strain, and a CSS because parasites evolve towards this evolutionary equilibrium

by a succession of small mutations and selection independently of the initial α value. In (b) from

low to high α, the first equilibrium (α∗ ≈ 0.35) is an ESS and the second equilibrium (α ≈ 0.58)

is an invasible repellor. For all figures we model the concave-up trade-off using a power function

ψ(α) = α2, and we set d = 0.0001, γ = 0.065, cm = 0.8 and cr = 0.08 except in (a) where cr = 0.

ease transmission transmission given an infectious contact is the same in the moving

and the resting states (Figure B.3 in Appendix B).

3.5. Discussion

Disease-induced mortality as an unavoidable consequence of increasing parasite

transmission is the most frequently evoked explanation for the evolution and the

maintenance of virulence. While parasites rarely induce death in their hosts, it is

common that parasites cause reduced movement (lethargy), which can result in a

behavioural shift from a moving to a resting state. As such, our epidemiological model

considers discrete movement states, moving and resting, with a transition rate between

the states, to understand how non-lethal in combination with lethal parasite-induced

harm influences the evolution of the parasite net replication rate and the corresponding
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virulence.

We found that when infected hosts make no contacts in the resting state, cr = 0, or

when the ratio of the disease-induced mortality rate to the lethargy rate (b) is high,

then a parasite strain that is mainly transmitted in the moving state and induces

moderate virulence (non-lethal and lethal virulence) will evolve (Figures 3.3a, 3.3b

and 6a). In contrast, when cr > 0 and the ratio b is low then high virulence can evolve,

and a bistable evolutionary equilibrium is possible for a range of parameters values

(Figures 3.3c, and 3.6b). As such, either a parasite strain that is mainly transmitted in

the moving state and induces moderate virulence (lower ESS) or a parasite strain that

is mainly transmitted in the resting state and induces high virulence (upper ESS) can

evolve, depending on the initial virulence and the magnitude of the effect of mutation

(Figures 3.3d and 3.3e). Furthermore, we show that medical interventions to treat the

symptoms of lethargy (increased cr) or reduce disease-induced host death (decreased

b) can select for high virulence, and a small change in cr and b can result in a large

shift in the evolutionary dynamics due to the evolutionary bistability (Figures 3.5a

and 3.5b).

Classic models of virulence evolution which ignore disease-induced lethargy and

restrict virulence to parasite-induced host death suggest that the disease-induced mor-

tality cost is the main factor that maintains intermediate virulence (Anderson and May

1982; Frank 1996). However, our results suggest that lethargy cost can also maintain

an intermediate virulence whether parasite infection is lethal or non-lethal (see also

Day 2001). It has been challenging to validate the tradeoff theory in the context of

lethal virulence (Alizon et al. 2009; Alizon and Michalakis 2015; Cressler et al. 2016),

but formulating the trade-off as a lethargy cost may facilitate experimental validation
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of the trade-off theory.

Previous studies have demonstrated that evolutionary bistable virulence can emerge

from a variety of ecological factors. Gandon et al. (2003) showed that imperfect vac-

cines that do not prevent infection, but limit parasite growth in infected hosts, can

select for either low or highly virulent strains depending on the initial parasite viru-

lence for intermediate vaccination coverage. Bistability occurs because intermediate

vaccination coverage creates an heterogenous host population, with vaccinated and

unvaccinated hosts, and the anti-growth component of the vaccine can maintain high

virulence whereas the anti-infection component can maintain low virulence. Similar

conclusions are reached in the case where the vaccine increases the efficacy of host im-

munity, and the functional relationship between virulence and transmission emerges

from within-host dynamics (André and Gandon 2006). Boots et al. (2004) found that

for infectious diseases that confer long-lived immunity, when some of the infections

occur globally, whereas others occurs locally, then either an avirulent or a highly vir-

ulent strain can evolve depending on the initial parasite virulence, and several other

examples of evolutionary bistability are given in van Baalen (1998), Boldin and Kisdi

(2012) and Fleming-Davies et al. (2015). In our work, evolutionary bistability arises

due to the two movement states with distinct epidemiological characteristics that cre-

ate temporal heterogeneity in disease manifestation at individual host-level. As such,

disease transmission in the moving state maintains parasite strains with moderate

virulence, whereas disease transmission in the resting state maintains parasite strains

that induce high virulence.

In the formulation of our model, we made several assumptions that require fur-

ther discussion. We assumed that the parasite affects host movement via a trade-off
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between the parasite net replication rate and the parasite-induced host lethargy rate

(ψ(α)). Finnerty et al. (2018) demonstrates this relationship, and a number of stud-

ies have reported that human and non-human parasites frequently induce lethargy

in their hosts (Hart 1988; Holmstad et al. 2006; Ghai et al. 2015). This trade-off

could be assessed experimentally by measuring the relationship between parasite load

or within host parasite growth rate and the fraction of infected hosts that become

lethargic using a scoring system based on the activity level of infected hosts (Reuman

et al. 1989; Zitzow et al. 2002). We assumed that infected hosts shift from a moving to

a resting state, where the host-host contact rate decreases and an infected host can die

from the disease. The clinical manifestation of many infectious diseases that induce

lethargy prior to host death can justify this assumption, and public health initiatives

such as encouraging sick people to stay home from workplace and social distancing

policies can also result in two infective classes with distinct epidemiological character-

istics and a behavioural shift from moving to resting state (Hart 1988; Halloran et al.

2008; Fenichel et al. 2011; Ghai et al. 2015). We focus on parasite-induced reduced

movement rates, while there are other examples of parasites (e.g., the so-called furious

strain of rabies virus) that can cause increased movement in infected hosts (Bacon

1985; Hemachudha et al. 2002; Susilawathi et al. 2012). Evolutionary bistability may

not arise in the case where the parasite increases host movement (cr > cm) because the

lethargy cost is no more present, and the higher the disease-induced mortality cost the

lower the ESS α∗ that is favoured by natural selection. Our model formulation is not

specific to parasites that cause lethargy, but is applicable to any host-parasite system

with two infective classes with distinct epidemiological characteristics such as Ebola or

human immunodeficiency viruses, which have asymptomatic and symptomatic disease
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stages.

In the result section, we show that for a range of parameter values a bistable evo-

lutionary equilibrium is possible, and as such, transient coexistence of low and high

virulence is possible. The coexistence of two strains with different levels of virulence is

not uncommon in nature, and we provide two examples where host movement and/or

medical interventions can explain the coexistence of a low and a high virulent strains,

and rapid emergence of high virulence.

Example 1: The emergence of highly pathogenic avian influenza (HPAI)

viruses

Avian influenza is caused by a type A influenza virus which infects domestic poul-

try (e.g., chickens and turkeys), free-living and wild bird populations (e.g., ducks,

gulls and terns) (Stallknecht 2003; Causey and Edwards 2008; Yoon et al. 2014).

Our model assumptions are valid for the avian influenza virus because it is mainly

transmitted through direct contact with infected hosts or their secretions and infec-

tion does not confer long-lasting immunity (Stallknecht et al. 1990; Alexander 2000;

2007). The avian influenza virus induces symptoms such as lethargy, depression and

anorexia prior to death in infected hosts, and the different virus strains are often

classified as low pathogenic (LPAI) and highly pathogenic (HPAI) strains based on

the severity of lethargy and the case fatality rate/ratio they cause in birds (Perkins

and Swayne 2001; Mutinelli et al. 2003; Bertran et al. 2011; Belser et al. 2013; Wu

et al. 2017). Infected chickens may have more contacts before lethargy because they

are more active in the chicken pen or more likely to be transported between locations.

As symptoms of lethargy appear, infected chickens may experience a decrease in their

70



contact rate because they are less active in the chicken pen or less likely to enter the

global poultry market.

Our results suggest an alternative to the current best explanations for the emer-

gence of HPAI in domestic poultry: 1) that HPAI strains result from infection spillover

from strains endemic to wild bird populations; and 2) that HPAI can arise in poultry

as a consequence of genetic mechanisms such as mutation, insertion, substitution and

reassortment from an already circulating LPAI strain (Perdue et al. 1997; Alexander

2000; Banks et al. 2000; 2001; Sims et al. 2005; Taubenberger and Kash 2010; Nao

et al. 2017; Qi et al. 2018). We show that when lethargic infected chickens can trans-

mit the disease (cr > 0), then a HPAI strain can emerge rapidly even when a LPAI

strain reached a local ESS. In addition, our results suggest that a HPAI strain will

not evolve if chickens make no contacts during lethargy (cr = 0) or if a high fraction

of lethargic chickens die (b is high). Therefore, our results suggest a dual benefit of

quarantining or culling lethargic chickens, in that not only is infection transmission

prevented, but the evolution of highly pathogenic strains becomes less likely.

Example 2: Human Immunodeficiency Viruses 1 and 2 (HIV-1/HIV-

2)

HIV is a human lentivirus that is transmitted through sexual contact, from mother-

to-child, through transfusion and needle sharing (Jaffar et al. 2004; Shaw and Hunter

2012; Patel et al. 2014). HIV disease is characterized by an acute, an asymptomatic

stage followed by a symptomatic stage with acquired immunodeficiency syndrome

(AIDS), and HIV can be transmitted during all stages with variable probability

(Moylett and Shearer 2002; Pinkerton 2008; Levy 2009; Maartens et al. 2014). Two
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HIV types are known: HIV-1 which may originate from a virus that infects chim-

panzees in central Africa (Pan trogolodytes), and HIV-2 which has been traced back

to a virus found in Sooty mangabey (Cercocebus atys) in west Africa (Sharp and Hahn

2010; Ndung’u and Weiss 2012).

The HIV symptomatic stage can be viewed as the resting state in our model

because individuals with AIDS symptoms may experience a decrease in sexual contacts

during the symptomatic stage. To apply our model to HIV, we set the recovery rate

equal zero (γ = 0) because HIV infection is invariably lethal. For HIV, virulence

is often measured as the rate of progression to AIDS in the absence of treatment,

whereas in treated individuals plasma viral load, set-point viral load and CD4 T-cells

decline rate are frequently used as proxies for virulence (Cheng-Mayer et al. 1988;

Carré et al. 1997; Pantazis et al. 2014; Roberts et al. 2015). To be consistent with

our model formulation, we measure virulence as the fraction of asymptomatic hosts

that progress to AIDS (ψ(α)/[d+ ψ(α)]) corresponding to a within-host parasite net

replication rate (α).

Our results suggest that when symptomatic AIDS individuals do not transmit HIV

(cr = 0) then a strain with low replication rate and slow progression to AIDS will

evolve. As such, reduced needle sharing and protected sex can reduce HIV transmis-

sion and prevent the evolution of HIV strains with a high replication rate and rapid

progression to AIDS. In contrast, when symptomatic AIDS individuals can transmit

HIV then one strain with a long asymptomatic stage and a second strain with a short

asymptomatic stage can coexist. The strain with the long asymptomatic stage has a

lower within-host replication rate and induces slower progression to AIDS, whereas

the strain with the short asymptomatic stage has a higher within-host replication rate
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and induces rapid progression to AIDS. These relationships are consistent with a num-

ber of studies showing that plasma viral load is ≈ 30 times lower in HIV-2-infected

individuals than HIV-1-infected individuals, and this lower plasma viral load explains

the observed faster progression to AIDS in HIV-1-infected individuals (Berry et al.

1998; Popper et al. 1999; Andersson et al. 2000; MacNeil et al. 2007; Drylewicz et al.

2008; Tchounga et al. 2016). Our findings suggest that the rapid progression to AIDS

in HIV-1-infected individuals is due to a higher within-host replication rate, and most

of the secondary infections are generated from an HIV-1-infected individual during

the symptomatic stage. Moreover, our findings suggest that medical interventions that

improve the health of HIV-infected individuals (e.g., antiretroviral treatments (ART))

can select for strains with higher replication rate and faster progression to AIDS. This

result is in accordance with a number of studies that have shown that when ART is

initiated early after infection at high coverage then HIV strains (whether HIV-1 or

HIV-2) with higher virulence are favoured (Herbeck et al. 2016; Porco et al. 2005;

Herbeck et al. 2012; Pantazis et al. 2014).

Inspired by Markov models used to describe animal movement, we considered an

epidemic model with two movement states and a parasite-induced shift from a moving

to a resting state. Previous studies have illustrated that evolutionary bistability can

arise due to host population heterogeneity (Gandon et al. 2003) and transmission

mode heterogeneity (Boldin and Kisdi 2012). We find that a parasite-induced shift

from a moving to a resting state can also result in evolutionary bistatbility, and for

our model the bistability arises due to heterogeneity at the individual host-level rather

than at the host population-level or beyond.
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4. Chapter three: Mechanistic movement models to

understand epidemic spread

This chapter has been published in the journal Philosophical Transac-
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Mechanistic movement models to understand epidemic spread

Abdou M. Fofana, Amy Hurford

Abstract

An overlooked aspect of disease ecology is considering how and why animals come into

contact with one and other resulting in disease transmission. Mathematical models of

disease spread frequently assume mass-action transmission, justified by stating that

susceptible and infectious hosts mix readily, and foregoing any detailed description of

host movement. Numerous recent studies have recorded, analyzed and modelled ani-

mal movement. These movement models describe how animals move with respect to

resources, conspecifics, and previous movement directions and have been used to un-

derstand the conditions for the occurrence and the spread of infectious diseases when

hosts perform a type of movement. Here, we summarize the effect of the different

types of movement on the threshold conditions for disease spread. We identify gaps in

the literature and suggest several promising directions for future research. The mech-

anistic inclusion of movement in epidemic models may be beneficial for the following

two reasons. Firstly, the estimation of the transmission coefficient in an epidemic

model is possible because animal movement data can be used to estimate the rate of

contacts between conspecifics. Secondly, unsuccessful potential transmission events,

where a susceptible host contacts an infectious host but does not become infected

can be quantified. Following an outbreak, this enables disease ecologists to identify

‘near misses’ and to explore possible alternative epidemic outcomes given shifts in

ecological or immunological parameters.

Keywords: Animal movement, random walks, levy walks, contact process, epidemic

threshold, disease spread.
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4.1. Introduction

Animal movement is essential for many ecological processes such as foraging, es-

caping from predators and finding a mate or new habitats. Movement determines the

spatiotemporal distribution of populations, plays a major role in encounters between

individuals (Preston et al. 2015; Ims 1995; Turchin 1991; Swingland and Greenwood

1983; Cronin 2003; Barry et al. 2016) and in turn affects the magnitude of ecological

processes and the dynamics of interacting populations (Morales et al. 2010; Turchin

1998). In disease ecology, the transmission of many infectious diseases requires ‘con-

tact’ between a susceptible and an infectious host. This contact process is traditionally

modelled in a phenomenological fashion with few details on how and why individuals

come into contact with one another (Kermack and McKendrick 1927; Hethcote 2000;

Diekmann et al. 2012; Allen et al. 2008; Anderson et al. 1992). These traditional

approaches assume homogeneous mixing of susceptible and infectious hosts and the

spatial proximity between individuals is not explicitly acknowledged in disease trans-

mission process. Although these traditional models have significantly contributed to

understanding the conditions for epidemic occurrence (Diekmann et al. 1995), their

spatial extension is necessary for capturing both the spatial and the temporal dynam-

ics of infectious diseases (Cliff 1996; Durrett 1995).

During the past five decades, recording individual animal movement has been fa-

cilitated by Global Positioning Systems (GPS) and telemetry technology (Cagnacci

et al. 2010; Hebblewhite and Haydon 2010). The a posteriori description obtained from

successive positions data provides information about animal movement patterns, but

contains limited information on why animals move as they do (Turchin 1998). During
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the same period, many mathematical models have been developed with details on how

individual animals move towards resources (for example, food, habitat and mates).

In these models, individual movement follows specific rules describing movement di-

rection, turning frequency and velocity, reflecting the resource distribution and how

informed the mover is about resource locations (Berg 1983; Lewis et al. 2013; Okubo

and Levin 2001). This detailed individual-based behaviour can be translated into a

partial differential equation (PDE), describing the spatiotemporal distribution of the

population (Codling et al. 2008, see Table 4.1 for the definition of the abbreviations

and symbols used in this paper). Some models conserve the individual description (La-

grangian approach) whereas others focus on population-level consequences of these

movement rules (Eulerian approach). These two approaches have been reviewed in

detail in Smouse et al. (2010).

Different types of animal movement are uncorrelated, correlated, biased random

walks (URW, CRW, BRW) and Levy walks (LWs). These models have been applied

to ecological problems such as predator-prey dynamics (Merrill et al. 2010; Tiutiunov

et al. 2013; McKenzie et al. 2012), biological invasions (Shigesada et al. 2015; Shaw

et al. 2006) and have long attracted the interest of disease ecologists. The growing

interest for these models in disease ecology is due to the following reasons. Firstly, in

contrast to traditional epidemic models (see Kermack and McKendrick 1927; Hethcote

2000; Diekmann et al. 2012; Allen et al. 2008), the spatiotemporal distribution of the

host population and the pattern of contacts between individuals emerges from individ-

ual movement rules rather than being simply homogeneous. For this reason, epidemic

models with explicit individual movement are termed mechanistic, in contrast to tra-

ditional epidemic models which are phenomenological. Secondly, epidemic thresholds,
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Table 4.1: List of abbreviations and symbols used in the main text

Abbreviations/ Symbols Definitions

Movement models

BCRW Biased correlated random walk.

BRW Biased random walk.

CRW Correlated random walk.

LW Levy walk.

URW Uncorrected random walk.

Epidemic models

IBM Individual-based model.

PDE Partial differential equation.

SI Compartmental Susceptible-Infected model.

SIR Compartmental Susceptible-Infected-Removed model.

SIS Compartmental Susceptible-Infected-Susceptible model.

Movement parameters

CI Advection rate of infectious hosts.

CS Advection rate of susceptible hosts.

DI The diffusion coefficient of infectious hosts.

DS The diffusion coefficient of susceptible hosts.

l The degree of host movement between habitats.

Epidemic parameters

β Disease transmission coefficient.

βi The transmission coefficient for a defined habitat (i = 1, 2, 3..).

β∗h Spatially homogeneous vector-host transmission rate.

β∗w Spatially homogeneous host-vector transmission rate.

c The speed of disease spread

c0 The critical speed for disease propagation.

d Natural host mortality rate.

dw Natural vector mortality rate for the host-vector model in the Table 4.2.

dh Natural host mortality rate for the host-vector model in the Table 4.2.

γ Host recovery rate.

γi Host recovery rate for a defined habitat (i = 1, 2, 3..).

I0 The initial density/number of infectious hosts.

Kt The critical carrying capacity of host population for epidemic occurrence.

λ The probability of infection given a contact.

µ Disease-induced host mortality rate.

µw Disease-induced vector mortality rate for the host-vector model in the Table 4.2.

µh Disease-induced host mortality rate for the host-vector model in the Table 4.2.

N Total host population size.

pj Probability that a host performs a long ‘distance jump’ into a random location.

R0 The expected number of secondary cases generated by a primary case

in a completely susceptible host population (an epidemic occurs if R0 > 1).

S0 The initial density/number of susceptible hosts

or the critical host population density for epidemic occurrence.

W ∗1 Density of susceptible vector population.

ww The incubation period of the parasite within vector individuals.

wh The incubation period of the parasite within host individuals.

in particular the basic reproduction number (R0), which is the expected number of

secondary cases generated by a primary case in a completely susceptible population
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(Allen et al. 2008), depend on the density of the host population and the transmission

rate including the host-host contact rate. Therefore, spatiotemporal distributions and

contact patterns resulting from different types of animal movement might affect the

spread of infectious diseases. In this paper, we review theoretical studies that account

for mechanistic animal movement in disease ecology. Our objective is to summarize

the effect of different types of animal movement on threshold conditions for disease

spread.

4.2. The mass-action law

In disease ecology, any parasite transmission opportunity is considered a contact.

Examples of contacts are a sexual contact between two partners for sexually trans-

mitted diseases, a vector biting a host for vector-borne diseases and touching and

exposure to aerosols emitted by another individual for directly transmitted diseases.

The relationship between animal movement rules (how and why animals move) and

the contact process is poorly understood (but see Rhodes and Anderson 2008). The

formulation of the contact process for traditional models and directly transmitted dis-

eases is generally based on two main assumptions. First, at every point in time, it is

assumed that each individual has the same chance of making a contact with any other

individual in the population. This is the so-called homogeneous mixing assumption

which is a simplification aiming to keep the analysis of the mathematical equations

tractable. Second, at any point in time, a fraction of these contacts are assumed to

lead to the transmission of the disease. This is the so-called mass-action law which

means that the total number of infectious contacts per unit of time increases with the

densities of susceptible and infectious individuals (McCallum et al. 2001; Begon et al.

2002). In the next sections we ask, when a type of movement is explicitly considered
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in the epidemic model, does the mass-action law hold?

4.3. Epidemics when host movement is random

The uncorrelated random walk (URW) is considered as the starting point for ani-

mal movement models in ecology. It describes the non-persistent animal movement in

a homogeneous environment (for example, a homogeneous food distribution). When

performing the URW, an individual executes independent successive steps at a con-

stant speed and turns in each direction with the same probability because it has no a

priori information about the location of food. A sample movement path for an animal

performing an URW is shown in Figure 4.1a. Over large spatial scales, a population of

non-interacting individuals exhibiting such movement rules diffuses with time (Skel-

lam 1951; Spitzer 1976). Using mark-recapture data from field studies, it has been

shown that the foraging movement in some insect species reflect the URW when the

food is homogeneously distributed (Kareiva 1983; 1982; Marchant et al. 2015). Ac-

counting for the URW of host individuals in a Kermack-McKendrick epidemic model

gives a system of partial differential equations (PDEs) of the following form:

∂S

∂t
= DS

∂2S

∂x2
− βSI

∂I

∂t
= DI

∂2I

∂x2
+ βSI − µI,

x ∈ R and t ∈ R+, (4.1)

where I(x, t) and S(x, t) are the densities of infectious and susceptible individuals

respectively at location x at time t. The diffusion terms (DS∂
2S/∂x2 and DI∂

2I/∂x2)

represent the URW of susceptible and infectious individuals and the remaining terms

(called the reaction terms) are infection and disease-induced host mortality at each

location. The parameters DI and DS represent the diffusion coefficients of infectious
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and susceptible individuals and β and µ represent the transmission coefficient and

disease-induced host mortality rate respectively. The diffusion coefficient is a measure

of how far a moving individual travels on average from its initial location during a

fixed period of time (for details on how the diffusion coefficients can be estimated,

see Murray et al. 1986). Assuming that the initial density of susceptible individ-

uals is the same everywhere, S(x, 0) = S0, and the disease is locally introduced,

I(x, 0) = I0(x), Hosono and Ilyas (1995) showed that if S0 < µ/β, then the dis-

ease dies out. In contrast, if S0 > µ/β, then the disease spreads outward from the

point of introduction as a travelling wave with a speed of propagation, c, satisfying

c ≥ c0 = 2
√
βS0DI(1− µ/βS0).

First, it can be noticed that the epidemic threshold given by the system (4.1) is in-

dependent of the movement parameters and is exactly the basic reproduction number

given by traditional epidemic models (see for example Kermack and McKendrick 1927;

Diekmann et al. 1995). This result suggests that the occurrence of an epidemic might

be independent of the URW of host individuals. Second, the pattern of spatial spread

of the disease exhibited by the system (4.1) is not captured by traditional models and

it can be noticed that the critical speed for disease propagation, c0, increases with

DI . This suggests that the spatial spread of a disease, when it occurs, depends on the

URWs of infectious individuals. Similar results were found for the spatial spread of

rabies in the red fox (Vulpes vulpes), where only infectious individuals are assumed

to be moving (Källén 1984; Källén et al. 1985; Murray et al. 1986). In recent studies,

the system (4.1) has been modified by considering an incubation period (Li and Li

2015; Bai and Zhang 2015) and non-local (Wang and Wu 2010), non-linear (Li and Li

2015; Bai and Zhang 2015) and frequency-dependent infections (Wang et al. 2012).
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(a) URWs (b) BRWs

(c) LWs

Figure 4.1: Examples illustrating simulated URWs, BRWs and LWs of a single individual in 2 spatial

dimensions. For the URWs, the individual chooses its movement direction and angle from a uniform

distribution and moves a constant step at each time (pr = pl and 1 − pr − pl is the probability of

waiting). For the BRWs, we set the probability distribution of the movement directions such that the

individual is more likely to move left (pl > pr and 1− pr − pl is the probability of waiting). For the

LWs, the individual chooses its movement direction and the angle from a uniform distribution but

the step length is chosen from a heavy-tailed distribution (Pareto distribution with infinite variance).

For each simulated type of movement, the mean step length is equal.

The inclusion of the above factors did not change the main conclusion, which is that

the threshold condition for the occurrence of an epidemic is independent of the URW

of host individuals. Given that traditional epidemic models assume the mass-action

law and that the basic reproduction number is the same for models assuming a URW,

at least from the perspective of the basic reproduction number, a URW may be con-
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sistent with the mass-action assumption. We simulated a URW and compared the

rate of new infections with the rate assumed by the mass-action law. The simulation

results suggested that the rate of new infections for a population performing a URW

is consistent with the mass-action law model formulation (Figure 4.2). All the codes

used for the simulation is available as electronic supplementary materials S4.1-S4.3

and is publicly available at Figshare doi:10.6084/m9.figshare.11389623.v2.

For all of the studies where the basic reproduction number was found to be in-

dependent of the diffusion coefficient, the epidemiological parameters (especially β,

µ and γ, where γ is the recovery rate) as well as the movement parameters (DI and

DS) were assumed to be spatially homogeneous. Wang and Zhao (2011) proposed a

reaction-diffusion model for a dengue fever epidemic with spatially-dependent trans-

mission rates (modelled using a periodic function) and non-local and delayed transmis-

sion (i.e, infections at a given location at a given time result from contacts at different

locations at an earlier time). The results of this study showed that the occurrence of

a dengue fever epidemic is independent of the URW of the host (human) and the

vector (mosquito) only when the transmission rates are spatially homogeneous. In

the case where the transmission rates are spatially heterogeneous the derivation of an

analytical expression for R0 is more complex, but using numerical methods Wang and

Zhao (2011) showed that R0 decreases with increasing values of the diffusion coeffi-

cients for host and vector. This result suggests that the less distance the vector and

the host travel on average (when exhibiting URWs) the higher the risk of occurrence

of a dengue fever epidemic. Moreover, other studies investigated the epidemiologi-

cal dynamics of Susceptible-Infected-Susceptible (SIS) reaction-diffusion models with

spatially heterogeneous transmission and recovery rates (Allen et al. 2007; Peng 2009;
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Figure 4.2: The number of infectious contacts per unit of time as a function of the number of

infectious individuals when hosts perform URWs (red), BRWs (blue) and LWs (green curve). The

circles represent the simulated epidemic data and the curves represent the fit of the mass action

law to the simulation data. For the simulations, we use an SI model with no recovery and no

disease-induced mortality. We assumed that an infectious contact occurs when the distance between

a susceptible and an infectious individual is less than the interaction radius, r = 1, and the probability

of disease transmission given a contact is 1. Thus, the total number of infections per unit of time

is exactly the total number of infectious contacts per unit of time. We initially set the number of

infectious individuals to 0.1% of the total host population which is S + I = N = 1000 and results

are averaged over 30 runs for each simulated model. Under the mass-action law, the number of

infections per unit of time is given by βI(N − I) which is a quadratic function with one unknown

parameter, β. To estimate β, we used the non-linear least squares method. The estimated values of

β (with 95 % confidence intervals in the parentheses) are 3.9e−5 ([3.971e−5, 3.977e−5] for URW),

4.1e−5 ([4.180e−5, 4.186e−5] for BRW) and 7.1e−5 ([7.096e−5, 7.104e−5] for LW). For all model

fits R2 = 0.999.

Peng and Liu 2009). In these studies, a location x is defined as high-risk when the

transmission rate is greater than the recovery rate (β(x) > γ(x)), otherwise it is a

low-risk location. If the sum over the spatial domain of local transmission rates is less

or equal to the sum of local recovery rates then it is a low-risk domain, otherwise

it is a high-risk domain (Allen et al. 2007; Peng and Liu 2009). For a special case
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(DS = 0), Allen et al. (2007) derive an analytical expression for R0 for two adjacent

habitats and showed that the occurrence of an epidemic depends on the epidemiolog-

ical characteristics of the domain and the diffusion coefficient of infectious individuals

DI . Allen et al. (2007) showed that in a high-risk domain an epidemic occurs (R0 > 1)

no matter the value of DI , in contrast, in a low-risk domain an epidemic occurs only

if DI is lower than a threshold diffusivity denoted D∗. This result suggests a rela-

tionship between the occurrence of the epidemic and the diffusive movement of host

individuals.

Moreover, Peng (2009) and Peng and Liu (2009) investigated a reaction-diffusion

SIS models with spatially heterogeneous transmission and recovery rates where sus-

ceptible hosts move more or less rapidly (DS tends to 0 or ∞). These studies found

that the extinction or the persistence of the epidemic depends on the epidemiological

characteristics of the domain and the diffusion coefficients. Furthermore, epidemio-

logical parameters (transmission and recovery rates) may vary not only spatially but

also temporally due to seasonality. To fill this gap, Peng and Zhao (2012) incorpo-

rated spatially heterogeneous and temporally periodic epidemiological parameters to

the reaction-diffusion epidemic model proposed by Allen et al. (2007). Their results

show that, if the domain is high-risk or there is at least a high-risk location in the

domain and if the diffusion coefficient of infectious individuals (DI) tends to zero then

an epidemic occurs. In contrast, if DI is very high and if the domain is low-risk then

the disease dies out.

In summary, it appears that when epidemiological parameters (transmission and

recovery rates) are the same everywhere, the diffusion coefficient of infectious individu-

als (DI) affects the speed of disease propagation once it occurs but not the occurrence

98



of the disease itself (Table 4.1). In contrast, when epidemiological parameters are

spatially heterogeneous the URW of host individuals can affect the occurrence of an

epidemic (R0) via diffusion coefficients.

4.4. Epidemics when host movement direction is biased or temporally autocorrelated

The URW model assumes that successive steps moved by an individual are tem-

porally independent. Including correlation between the direction of successive steps

allows movement in a same direction relative to the previous one. This type of move-

ment is termed the correlated random walk (CRW) and illustrates that the mover

is informed about the location of food, prey or mate (Goldstein 1951; Okubo and

Günbaum 2001). Empirical support for CRWs have been found in the oviposition

movement of butterflies (Kareiva and Shigesada 1983), the foraging movement in bees

(Marchand et al. 2015) and relatively short time scale movement of caribou (Bergman

et al. 2000) and pea aphids (Nilsen et al. 2013). For both URWs and CRWs, the move-

ment direction is chosen from a uniform distribution. When the URW or the CRW is

more likely in a given direction (the movement direction is chosen from a non-uniform

distribution), the resulting movement is a biased random walk (BRW) or a biased

correlated random walk (BCRW) (Codling et al. 2008). Biased walks reflect a directed

movement towards a specific point such as a foraging place or home and a sample

movement path for an individual performing a BRW is shown in Figure 4.1b. More-

over, other models such as CRWs with heterogeneous distribution of resources and

interactions between conspecifics have been developed and are appropriately reviewed

in Okubo and Günbaum (2001) and Codling et al. (2008).

Including BRWs of hosts into a Kermack-McKendrick epidemic model gives a

99



system of PDEs of the following form:

∂S

∂t
= DS

∂2S

∂x2
− CS

∂S

∂x
− βSI

∂I

∂t
= DI

∂2I

∂x2
− CI

∂I

∂x
+ βSI − µI,

x ∈ R and t ∈ R+, (4.2)

where CS and CI represent the advection rates of susceptible and infectious individuals

respectively and describe the speed of directed movement towards the focal point. The

system (4.2) involves two components of individual movement. The random movement

of susceptible and infected individuals represented by the diffusion terms (DS∂
2S/∂x2

and DI∂
2I/∂x2) and the directed movement of susceptible and infected individuals

toward the focal point represented by the advection terms (CS∂S/∂x and CI∂I/∂x).

The remaining terms (called the reaction terms) are infection and disease-induced

host mortality at each location. The focal point can be a fixed foraging location where

food is more available, a den for animals such as foxes and badgers, or a workplace

for humans. Beardmore and Beardmore (2003) investigated the system (4.2) on a

bounded domain (x ∈ [0, 5]) and showed that S0 > µ/β is a sufficient condition for

the occurrence of an epidemic when host movement is biased. This result suggests

that the occurrence of an epidemic might not depend on how host individuals move

towards a preferred location. We performed numerical simulations and show that the

rate that new infections occur for a population of individuals undergoing a BRW is

consistent with the mass-action law assumed by traditional epidemic models (Figure

4.2).

In comparison to reaction-diffusion epidemic models, relatively few studies in-

vestigated the relationship between advection parameters and the pattern of spatial

spread of infectious diseases (Gudelj and White 2004; Gudelj et al. 2004) and we are

not aware of any studies that have determined if advection parameters affect R0 for
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spatially heterogeneous epidemiological parameters and environments. Finally, while

analyses of movement data suggest CRWs as a possible model of animal movement,

to date, no epidemiological model that consider host movement as a CRW have been

investigated (for a mathematical formulation of the CRW model see Hadeler 2015).

Our discussion in sections 4.3 and 4.4 has focused on PDE models, however, host

movement may also be formulated mechanistically as an integro-differential equation.

Under this formulation, movement from a location y to a location x is assumed to

follow a probability density function specified by a kernel. This movement kernel might

be skewed in a particular direction representing movement similar to a BRW. The

theoretical framework as well as the epidemiological dynamics of integro-differential

epidemic models are appropriately reviewed in Medlock and Kot (2003) and Ruan

(2007). Similar to PDE-based epidemic models, there exists a critical velocity c0 above

which the disease spreads as a travelling wave from its introduction point. Medlock

and Kot (2003) showed that the expression for c0 depends on the choice of the kernel

and c0 is a function of the movement coefficients of host individuals. However, Medlock

and Kot (2003) did not report any relationship between the disease outbreak itself

(R0 > 1) and the movement of host individuals or the choice of the kernel.

4.5. Epidemics when host individuals are discrete

In contrast to PDE-based models, individual-based models (IBMs) focus on a La-

grangian description of animal movement. For IBMs, host individuals are represented

as discrete entities (the size of the total host population is a whole number) and each

host is associated with a specific location, whereas hosts are represented as densities

in PDE-based models (Figure 4.3). In the IBM formulation, at each time the location

of every individual is updated following a set of movement rules (Preisler et al. 2004;
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DeAngelis and Gross 1992). Also, the infection process is described using a set of

rules governing contacts between individuals and the transmission of the disease. An

epidemiological status (for example, susceptible or infectious) is attributed to each in-

dividual at each point in time. During an increment of time, a susceptible individual

can become infected when it interacts with an infectious individual at a spatial loca-

tion. An interaction radius r is defined and determines the spatial proximity required

for potential infections. Thus, for IBM models the total number of infections at a time

t depends on the total number of nearby susceptible and infectious hosts, whereas for

PDE-based models the total number of infections within a small vicinity of the space

at a time t is function of the densities of susceptible and infectious individuals on the

interval (Figure 4.3; for a detailed description of an IBM epidemic model see Frasca

et al. 2006).

4.5.1. Uncorrelated random walks

Buscarino et al. (2008) considered an IBM epidemic model in two spatial dimen-

sions, where host individuals exhibit URWs and can perform long distance jumps to a

random location with probability pj. In the special case where pj = 1 (host individuals

perform only long distance jumps) the population mixes at random and the contact

process is homogeneous. For this limiting case, an explicit expression for the epidemic

threshold can be obtained and is given by λ/γ > σc where, σc = 1/πr2S0 and thus,

S0 > γ/λπr2 (λ is the probability of becoming infected given a contact, S0 is the ini-

tial density of susceptible hosts and γ is host recovery rate). This epidemic threshold

is equivalent to the one obtained from traditional epidemic model where β = λπr2.

Buscarino et al. (2008) then investigated the relationship between the movement rules

(URWs with different pj) and σc, and found that for similar S0, σc decreases with pj.
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Figure 4.3: The population size and infectious contacts for PDE models (a and c) and IBMs (b and

d). For PDEs, the number of individuals on an interval x0 to x0 + ∆x at a time t is given by the

integral of the population density N(x, t) over the interval (
∫ x0+∆x

x0
N(x, t)dx). The population size

at each time is given by a probability distribution (a). In contrast, for IBMs individuals are discrete,

the population size is represented by a whole number and each individual has a specific location

at a given time (b). For PDEs, the number of infectious contacts on an interval x0 to x0 + ∆x at

time t is given by the integral of the product of susceptible and infectious densities on the interval

(
∫ x0+∆x

x0
S(x, t)I(x, t)dx) (c). In contrast, for IBMs, an interaction radius is defined because no two

individuals will ever be located at exactly the same location at the same time. A contact occurs

when two individuals fall in this interaction radius. The total number of infectious and susceptible

individuals in spatial proximity determines the number of infectious contacts at a given time. As

shown in (d), the interaction radius is ∆x and a contact occurs on the interval x0 −∆x to x0.

This result suggests that an epidemic is less likely when individuals exhibit URWs

(pj = 0) compared to long distance jumps (pj = 1). Long distance jumps may enhance

the mixing process, and as such promote the occurrence of an epidemic. However, this
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effect is less pronounced as S0 becomes large and the epidemic threshold no longer

depends on pj.

4.5.2. Levy walks

Animal movement patterns can be described as clusters of short step lengths con-

nected by persistent-like movement, reflecting a shift between intense and less intense

search modes. This movement behaviour is termed a Levy Walk (LW) and is consid-

ered to be an efficient foraging strategy when food is rare and randomly distributed

(Reynolds 2013). A sample movement path for an individual performing a LW is

shown in Figure 4.1c. LWs have been reported in many species and ecological phe-

nomenon including the foraging movement of spider monkeys (Ramos-Fernndez et al.

2004), the daily movement pattern of humans (Rhee et al. 2011) and the hunting-

gathering movement of humans (Raichlen et al. 2014). For a complete review of LWs

in movement ecology and its status as efficient foraging strategy see Reynolds (2015)

and Pyke and Giuggioli (2015). Buscarino et al. (2010) modified the model proposed

earlier in Buscarino et al. (2008) (see section 4.5.1) by considering a LW of host indi-

viduals and compared the risk of disease outbreak for URWs and LWs. They showed

that for similar S0 a disease outbreak may be more likely in a population of Levy

walkers compared to a population of uncorrected random walkers. Few studies have

investigated epidemics in populations where individuals perform a LW, however, the

numerical simulations in Figure 4.2 illustrate that the mass-action assumption is con-

sistent with the contact rate arising from LW movement.

In summary, the above IBM-based epidemic models (sections 4.5.1 and 4.5.2) sug-

gest that the type of movement performed by host individuals may affect the critical

quantity σc at least for relatively low population sizes (Frasca et al. 2006; Buscarino
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et al. 2008; 2010). However, using an IBM framework, the analysis is often restricted

to a quantitative description of the epidemiological dynamics. In particular, deriving

an analytical expression for the epidemic threshold, R0, and a solution describing the

spatial spread of the disease are mathematically challenging. The quantity σc derived

in these studies does not involve movement parameters and it is difficult to conclude

whether the type of movement performed by host individuals affects the epidemic

threshold.

The effect of host movement on the spread of infectious diseases has also been

studied using contact network models. In these models, a type of host movement

is implicitly acknowledged and the contact structure of the population is explicitly

modelled using networks. The nodes of the network represent either host individuals

or neighbourhoods and the edges represent connections between individuals or neigh-

bourhoods which is possible through movement. This class of model is appropriately

reviewed in Keeling and Eames (2005) and Brauer (2008) and will not be discussed

in the present paper.

4.6. Case study: rabies

Rabies is a viral infection which spreads mainly within wild carnivores including

the red fox (Vulpes vulpes), the arctic fox (Vulpes lagopus), raccoons (Procyon lotor)

and domestic carnivores such as dogs (Canis familiaris) and cats (Felis catus). The

virus is present in the saliva of rabid hosts, is transmitted through direct contacts

(especially bites), has a particularly long incubation period between 12 and 150 days

and ultimately kills its host. Rabies causes a random-like movement when it affects

the central nervous system of foxes (Baer 1991; Kaplan 1977; Bacon 1985). During

the 1980s, particular attention was payed to the inclusion of animal movement (espe-

105



Table 4.2: Summary of different movement types, model formulations and the corresponding epidemic

threshold, R0. Model abbreviations and parameters are defined in the Table 4.1.

Model formulation
Spatially heterogeneous

β and γ
Movement type R0 References

Reaction-diffusion SI

model.
No URWs

βS0
µ

, does not depend on movement pa-

rameters.

Hosono and Ilyas (1995);

Källén (1984); Källén

et al. (1985)

Reaction-diffusion SIR

model.
No URWs

βS0
µ+γ

, does not depend on movement pa-

rameters.

Li and Li (2015); Wang

and Wu (2010); Bai and

Zhang (2015).

Host-vector epidemic

model.
No/yes (numerically) URWs

√
e−dwwwW∗1 β

∗
w

dh+µh+γ
×
e−dhwwS∗β∗

h
dw+µw

, de-

pends on movement parameters for spa-

tially heterogeneous βw and βh.

Wang and Zhao (2011).

Reaction-diffusion SIS

model.
Yes URWs

β2γ1+β1γ2+DIl(β1+β2)

2(γ1γ2+DIl(γ1+γ2))
+√

[β2γ1−β1γ2+DIl(β2−β1)]2+(2DIl)
2β1β2

2(γ1γ2+DIl(γ1+γ2))
.

Allen et al. (2007); Peng

(2009); Peng and Liu

(2009).

Advection-diffusion SI

model.
No BRWs

βS0
µ

, does not depend on movement pa-

rameters.

Beardmore and Beard-

more (2003).

IBM SIR model. No URWs, LWs
λ
γσc

, σc is affected by movement parame-

ters.

Frasca et al. (2006); Bus-

carino et al. (2008).

cially random movement of rabid foxes) in the mathematical models of rabies spread

(Panjeti and Real 2011). Reaction-diffusion models have been mainly used to capture

the spatial spread of rabies in the red fox in Western Europe as well as the arctic

fox and raccoons in North America. In this section, we summarize some important

results of these studies, their relationship with field data and some control measures

implemented using these models.

Murray et al. (1986) proposed a reaction-diffusion model for the rabies epizootic

that occurred in central Europe during the 1940s. The model assumes that rabies is

transmitted among fox populations with density dependent growth. Susceptible foxes

are considered territorial and are assumed to be homogeneously distributed. Rabid

foxes move randomly, travel far away from their den, and may infect susceptible indi-

viduals they encounter during their wanderings. Murray et al. (1986) found that the

occurrence of rabies epizootic depends on a critical carrying capacity of fox popula-

tions Kt which is analogous to the critical density S0 for traditional models that utilize
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different demographic assumptions. This critical carrying capacity is independent of

the diffusion coefficient which is consistent with the finding that R0 is independent of

movement parameters reported in Section 4.3. If the carrying capacity of the fox pop-

ulation K is greater than the critical carrying capacity Kt, then the disease spreads

outward from the endemic location to disease-free locations as a travelling wave at a

critical speed of propagation c0 =
√
DIβKz (where z is the unique root of a cubic

function). From the expression for c0, it can be noticed that the speed of rabies prop-

agation increases with the diffusion coefficient of rabid foxes. Moreover, it has been

shown that the front of the wave (which is the first passage of rabies epizootic at a

location) is followed by an oscillatory tail suggesting periodic outbreaks after the first

outbreak. The front of the wave is characterized by a severe epizootic with a high

number of foxes dying from rabies whereas each following outbreak is less severe than

the previous one. A similar model assuming exponential growth for fox populations,

exhibits the same qualitative behaviour, which has been shown to agree with field

data (Källén et al. 1985). Furthermore, Murray et al. (1986) have estimated that DI

is between 50 km2year−1 and 330 km2year−1 using different data sources and meth-

ods. Varying DI in this interval and keeping all the other parameters constant, the

speed of the epidemic increases by a factor of 2.6. In addition, Murray et al. (1986)

showed that for DI = 200 km2year−1 and fixing the fox population carrying capacity

at 2 km−2, rabies spreads at a velocity c = 51 km year−1.

The above reaction-diffusion framework has been used for the implementation

and the evaluation of rabies control measures. Murray et al. (1986) suggested that the

spatial propagation of rabies can be ‘broken’ by reducing the density of susceptible

foxes below the persistence threshold Kt before the wave reaches a disease-free area.
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However, the results of Källén et al. (1985) and Murray et al. (1986) do not account

for environmental heterogeneity (resources and landscape) and spatially heteroge-

neous epidemiological parameters. In particular, landscape heterogeneity can play a

major role in the spatial spread of rabies (Panjeti and Real 2011). For example, an

immigration-based model of the spatial spread of rabies in raccoons across heteroge-

neous landscapes has revealed that large rivers can reduce the speed of propagation

of rabies by 7 fold (Smith et al. 2002). As reported in Section 4.3, theoretical studies

suggest that conclusions based on threshold quantities for a disease outbreak may be

sensitive to assumptions of environmental homogeneity.

4.7. Concluding remarks and perspectives

Overall, including the URWs of host individuals in disease models reveals that the

diffusion coefficients (DS and DI) affect the threshold condition for epidemic occur-

rence R0 only when epidemiological parameters (the transmission and the recovery

rates) are spatially heterogeneous (Table 4.1). An effect of host movement on R0 was

expected because how host individuals move affects the distribution of susceptible

and infected individuals and the contact process which is represented by βSI in a

mass-action model formulation. It is surprising however that spatially heterogeneous

transmission and/or recovery rates are required for the epidemic occurrence (R0) to

be affected by diffusion coefficients. Frequently, when the law of mass action is as-

sumed it is stated that this assumption implies homogeneous mixing, however the

types of movement that are consistent with a mass-action model formulation may

be much more general. We reviewed epidemiological studies that considered animals

moving following URWs, BRWs and LWs and found limited evidence that the thresh-

old for a disease outbreak was affected by the type of host movement (Table 4.1). In
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addition, numerical simulations suggested that each of these three movement types

(URWs, BRWs and LWs) produces an infection rate consistent with the infection rate

assumed by the law of mass action (Figure 4.2). Despite the failure of animal move-

ment models to affect the threshold condition for a disease outbreak there are several

reasons why considering animal movement in epidemic models is useful. We suggest

the following promising directions for future research:

1. The formulation of a mechanistic sub-model for the contact process in order to

understand how different types of animal movement affect the mixing process

for disease transmission.

2. The development of PDE-based epidemic models with underlying individual

movement such as CRWs, BCRWs and LWs in order to investigate the effect of

more realistic movement rules on disease spread. CRW, BCRWs and LW mod-

els are prevalent in the animal movement literature, but few epidemic models

consider these types of movement.

3. The development of epidemic models that consider spatially dependent diffu-

sion coefficients in order to investigate the spread of infectious diseases in non-

homogeneous environments and landscapes.

4. Finally, the coupling of telemetry-derived and epidemiological data to parame-

terize and validate epidemiological models and the development of robust sta-

tistical tools to achieve this goal. In particular, if the contact rate could be

estimated from GPS data then it is more likely that the probability of an in-

fection given a contact could be estimated from epidemic data. This is valuable

because it would help to estimate the prevalence of ‘near-misses’ occurring dur-

ing an outbreak. Near-misses are contacts that did not result in infection and
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it may be useful to explore alternative epidemic scenarios based on instances

where near misses are instead realized.
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A counter-intuitive relationship between the temporal and

spatial spread of diseases

Abdou M. Fofana, Amy Hurford

Abstract

Spatial epidemic models predict a positive relationship between the temporal, r, and

the spatial, c, spread rates of diseases because when more infectious individuals are

produced per unit of time, more infected hosts can disperse long distances resulting in

a larger area covered by the epidemic, however, this prediction has yet to be validated

with empirical data. In this paper, we tested whether infectious diseases that produce

more infectious individuals per week also spread more kilometres per week using

42 outbreaks caused by 10 infectious organisms with different transmission routes

that are reported in the United States of America between 1996 and 2017 by the

Centers for Disease Control and Prevention. In contrast to the predictions of spatially

explicit disease spread models, we find that infectious diseases that produce more

cases per week spread less kilometres per week. This inverse relationship between

r and c is unexpected but may reflect a trade-off between parasite dispersal and

disease transmission. Our results suggest that assumed relationships between spatial

and temporal spread require further investigations, and may inform best approaches

for spatially explicit quarantine and vaccination strategies.

Keywords: Epidemic growth rate, spatial spread rate, movement, GAM, CDC.

5.1. Introduction

During the early phase of many infectious disease outbreaks the number of infected

individuals in the host population increases exponentially, and the rate of exponential

growth is a key epidemiological quantity for the estimation of disease transmission
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potential and the evaluation of the effectiveness of control measures (Anderson et al.

1992; Heesterbeek and Dietz 1996; Heffernan et al. 2005; Nishiura 2010; Chowell and

Nishiura 2014; Delamater et al. 2019). After the successful introduction of an infectious

disease in a host population, the disease often spreads from one location to another

in a wavelike pattern and the estimation of the speed of disease propagation is crucial

for planing interventions to limit the spatial propagation of the disease (Thieme 1980;

Murray et al. 1986; Van den Bosch et al. 1990; Smith et al. 2002). Mathematical

formulations have been derived for the initial epidemic growth rate r and the spatial

spread rate c of infectious diseases and there is a substantial theoretical support for

a positive relationship between c and r (Murray 1993; Murray et al. 2001; Diekmann

et al. 2012c).

In a non-spatial epidemic modelling framework, the host population is subdivided

into classes with different epidemiological status, and the temporal dynamic of the

different classes is investigated whereas the spatial dynamics of the classes is ignored

(Anderson et al. 1992; Allen et al. 2008; Diekmann et al. 2012a). Spatial epidemic

models, however, account for the spatial and temporal dynamics of the epidemiolog-

ical classes often by introducing host movement in the model (Fofana and Hurford

2017). The basic reproduction number R0 and the spatial spread rate c are key epi-

demiological quantities that are often derived from spatial models (Allen et al. 2008;

Diekmann et al. 2012a). The rate of spatial spread c measures the speed of spatial

propagation of an infectious disease, and methods have been developed to estimate c

using infection cases reported at different locations during an outbreak (Moore 1999;

Farnsworth and Ward 2009; Pioz et al. 2011; Mercier et al. 2018; Tisseuil et al. 2016;

Goldstein et al. 2019). The basic reproduction number R0 measures the generational
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growth rate of an epidemic and is often difficult to estimate from infection cases data

(Diekmann et al. 2012b; Park et al. 2019). A practical alternative way to quantify

the growth of an epidemic is to measure it’s instantaneous growth rate r during the

early phase of the outbreak, using reported infection cases data (Lipsitch et al. 2003;

Heffernan et al. 2005; Nishiura et al. 2010; Li and Blakeley 2011; Park et al. 2019;

Delamater et al. 2019).

Estimated values of the epidemic growth rate r and the spatial spread rate c are

useful for disease control and interventions. The epidemic growth rate r is often used

to calculate the transmission potential of infectious diseases, and a transmission po-

tential lower than one indicates that the ongoing epidemic is under control (Roberts

and Heesterbeek 2007; Chowell et al. 2016; Park et al. 2019). For example, during

the 2001 foot-and-mouth disease outbreak in Great Britain mathematical models and

early incidence data have been used to guide the implementation of foot-and-mouth

control measures in livestock animals (Ferguson et al. 2001a; Keeling et al. 2001; Kao

2002). Many studies showed that following the implementation of culling policies in

addition to livestock movement ban in Europe, the transmission potential of foot-

and-mouth dropped below one which means that the implemented control measures

were effective (Ferguson et al. 2001b; Woolhouse et al. 2001; Ferguson et al. 2001a;

Haydon et al. 2004). Similarly, spatial epidemic models have been extensively used to

understand the spatial propagation of the 1940 rabies outbreak in fox populations in

Europe, and different studies have reported spread rates between 30 and 60 km/year

(Van den Bosch et al. 1990; Murray et al. 1986; Alanazi et al. 2019). The estimated

spread rates have been used to determine the size of the region within which vacci-

nation strategies must be deployed to prevent further spatial propagation of rabies
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(Murray et al. 1986; Evans and Pritchard 2001). While r can be estimated from early

disease outbreak data, the estimation of c requires infection case data with some level

of spatial resolution which are not available at the beginning of an outbreak. Under-

standing the relationship between r and c can help in predicting how far an infectious

disease can spread and mobilizing earlier the resources that will be needed to control

the outbreak.

The relationship between the epidemic growth rate r and the spatial spread rate c

has been previously investigated, and diffusion models suggest that c depends on r and

the diffusion coefficient D which measures the dispersal distance of host individuals

(Källen et al. 1985; Murray et al. 1986; Diekmann et al. 2012c; Osnas et al. 2015).

The mathematical expression for c depends on the assumptions of the model, and in a

simple case where hosts move randomly and disease transmission is local c = 2
√
βS0D

which suggest that the relationship between c and r is positive (r = βS0 where β and

S0 are disease transmissibility and initial susceptible host density respectively) (Källen

et al. 1985; Murray 1993; Murray et al. 2001; Osnas et al. 2015). Similar models have

been developed in invasion ecology where many studies reported a positive relationship

between the speed of invasion (which is analogous to c) and the intrinsic growth rate

of the invading population (which is analogous to r) (Skellam 1951; Andow et al.

1990; Holmes et al. 1994; Kot et al. 1996; Wang and Kot 2001; Neubert et al. 2000;

Okubo and Levin 2013; Hastings et al. 2005; Shea et al. 2010). Theoretical models

often predict a positive correlation between c and r because when more infections

occur per unit time (high r) there are more infected individuals available who can

potentially disperse long distances, and as such the area covered by infected hosts

and c can be larger.
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Many studies have estimated the intrinsic growth rate and the speed of invasion

of the invading organism from species range expansion data in invasion ecology (see

review Hastings et al. 2005), and tested whether the invasion speed predicted by

diffusion model agrees with the observed invasion speed for the muskrat (Skellam

1951), the collared dove, starling (Van den Bosch et al. 1990), the cereal leaf beetle

(Andow et al. 1990), the California sea otter (Lubina and Levin 1988) and wolves

(Hurford et al. 2006). In disease ecology, a few empirical studies have investigated the

pattern and the rate of disease propagation for some infectious diseases. For example,

McCallum et al. (2003) compared c in marine and terrestrial pathogens and showed

that marine pathogens spread faster than terrestrial pathogens because there is no

barrier to dispersal in marine environments.

In this paper, we test the expected positive relationship between disease spread

rate c and the epidemic growth rate r using human infectious disease outbreaks data.

We collected infection cases data that were reported in the United States of America

from 1996 to June 2019 by the Centers for Disease Control and Prevention (CDC)

which is publicly available on CDC website, and we estimated the spatial spread rate c

(kilometres per week) and the epidemic growth rate r (cases per week) of 42 outbreaks

caused by 10 infectious organisms with different transmission routes. In contrast to

the predicted positive relationship between the spatial spread rate c and the epidemic

growth rate r, we find that c and r are inversely related which suggests that disease

outbreaks where the number of cases are rapidly increasing over time spread fewer

kilometres per week.
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5.2. Method

We investigated the relationship between the initial epidemic growth rate r and the

spatial spread rate c of disease outbreaks across different outbreak years and infectious

diseases. We collected weekly cases data of infectious diseases that are reported on the

website of the Centers for Disease Control and Prevention (CDC), and we estimated

c and r for 42 infectious disease outbreaks that are reported in the United States

of America, excluding US territories, between 1996 and 2017. The processed CDC

disease outbreak data, the estimated c and r data and all the codes that we used are

available as electronic supplementary materials S5.1-S5.2 and are publicly available at

Figshare doi:10.6084/m9.figshare.11389584.v2. Details on the data, the estimation of c

and r and statistical method are presented in appendix C as electronic supplementary

materials.

5.2.1. Disease outbreak data

We retrieved infectious disease cases reported in the United States of America by

the Centers for Disease Control and Prevention (CDC) through the National Notifiable

Diseases Surveillance System (NNDSS) which is an information sharing system for

infectious diseases. Cases of notifiable infectious diseases in the different states and

territories of the U.S.A are reported and updated weekly, and the data reported from

1995 to present is publicly available on the website of the CDC via CDC Wide-

Ranging Online Data for Epidemiologic Research for public health professionals and

the general public.

We used web scraping techniques in Matlab to extract the weekly tables which

report the infectious diseases, the number of cases notified each epidemiological week

within a year and the cumulative year-to-date cases in each state and territory in
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the U.S.A. The CDC data is suitable for investigating the spatio-temporal dynamics

of infectious diseases because the weekly tables contain information on when (the

epidemiological week), where (the state) and the number of notified cases for about

122 human diseases and conditions.

We retrieved weekly and cumulative year-to-date cases for all infectious diseases

reported in each state from 1995 to June 2019. We cleaned and processed the data

to ensure that the state and disease names are consistent throughout the data. We

visualized the data and selected a total of 28 infectious diseases that exhibit an expo-

nential growth profile, which is a signature of an outbreak and are therefore suitable

for the estimation of the initial epidemic growth rate r (Chowell et al. 2016). We

excluded the US territories data and restricted our analysis to the spread of the infec-

tious diseases from one state to another, and we used data that have been verified and

validated by the CDC. Finally, we replaced the names of the states by their longitude

and latitude in decimal degrees which we retrieved from the website of the National

Ocean and Atmospheric Administration (NOAA) of the U.S.A.

Ethics statement

The data that we collected from the CDC website were anonymous, publicly avail-

able, and represent the total number of cases reported within the different states

during a week.

5.2.2. Estimation of disease spatial spread rate c

To estimate the spatial spread rate c of a given outbreak, we fit a generalized

additive model with thin plate regression splines to the reported infections data, where

the response variable is the week of first reported cases in a state and the latitude and
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the longitude of the state are the predictors (Example in Figure 5.1). We calculated

c as the sum of the inverse of the estimated slopes for each predictor (latitude and

longitude in number of weeks per distance) that we obtained from the generalized

additive model fit (Mercier et al. 2018; Tisseuil et al. 2016; Farnsworth and Ward

2009; Lizarazo et al. 2019). Finally, we converted c from distance in decimal degrees

per week into kilometres per week using map projection methods (Bugayevskiy and

Snyder 2013). We implemented the generalized additive model in the mgcv R package

(Wood 2004; 2011; Marra and Wood 2012; Wood 2012; 2013; Wood et al. 2016; Wood

2017).

A generalized additive model is a generalized linear model where the relationship

between each predictor and the response variable is modelled by a smooth function,

and finding the form of the function is part of the data fitting procedure (Hastie

and R. 1986). We used a generalized additive model because it can effectively capture

non-linear disease spread patterns and no prior knowledge of the relationship between

the response and the predictors is required for data fitting. Our generalized additive

model can be written as,

Yi = f(Latitudei,Longitudei) + εi, (5.1)

where Yi is the week the first cases were reported in a location i, f(Latitude,Longitude)

is an unknown function that describes the change in the response variable as a function

of the predictors, and εi is the error term which we assumed to be normally distributed.

The change of Y with respect to the locations is,

∂Y

∂Latitude ∂Longitude
=

∂f

∂Latitude
+

∂f

∂Longitude
, (5.2)

where ∂f
∂Latitude

and ∂f
∂Longitude

are the partial derivatives of the function f with respect

126



Figure 5.1: The week of first reported cases as a function of the latitude and the longitude (top)

and contour plot describing the spatial spread of the 2009 Anaplasmosis infections in the U.S.A

(bottom). The top graph shows that the disease is travelling at constant speed from North to South

(Latitude) and from East to West (Longitude) the speed of disease spread increases rapidly initially

and saturates toward the end of the outbreak. The bottom graph shows that the first cases were

reported in Northeastern states (Maryland and New Hampshire in green) and the disease spread

quickly to the Southern and Western states (Florida, Texas and California in red). The lines of the

contour plot are the predicted week of first reported cases. The predicted weeks of first reported

cases as a function of the latitude and the longitude are obtained by fitting a generalized additive

model to the data (see equation 5.1). The estimated average spatial spread rate c is 1.4 Km/week,

and to calculate c we estimated the slope of the curves in (top) using generalized additive model fit

to the data, calculated the inverse of the estimated slopes and the sum is c (see section 5.2.2). The

data are Anaplasmosis infection cases reported in 2009 in different states in the U.S.A by the CDC.
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to the Latitude and the Longitude respectively, which are the regression of time

on distance for the latitude and Longitude respectively. If the relationship between

the time of reported cases Y and the locations (Latitude, Longitude) is linear then

equation (5.1) becomes,

Yi = β0 + β1Latitudei + β2Longitudei + εi, (5.3)

where β1 = ∂f
∂Latitude

and β2 = ∂f
∂Longitude

are the slope of the regression of the week

of reported case on distance for latitude and longitude respectively (β1 and β2 are in

weeks per distance). Thus, we can calculate the rate of spatial spread, as the sum of

the inverse of the slope of the predictors,

c =
1

β1

+
1

β2

, (5.4)

where c is distance (in kilometres) per week.

5.2.3. Estimation of disease epidemic growth rate r

In the early phase of an outbreak the infected class grows exponentially and the

rate of exponential growth at the beginning of the outbreak, which is often denoted r,

is the epidemic growth rate (Diekmann et al. 2012b; Heffernan et al. 2005; Ma et al.

2014; Chowell et al. 2016). The exponential growth of the infected class during the

early phase of an outbreak can be written as,

i(t) = I0e
rt, (5.5)

where i(t) is the number of new infections reported at week t, I0 is a constant and

r is the epidemic growth rate (Roberts and Heesterbeek 2007; Nishiura et al. 2010;

2009b;a; Chowell and Nishiura 2014). For each outbreak data we fit equation (5.5) to
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the exponentially growing part of the incidence curve, and we estimated r by non-

linear least squares approach (Examples in Figure 5.2). We fit equation (5.5) to the

incidence data instead of the cumulative number of cases because the cumulative data

is often autocorrelated, and as such violate the independence assumptions of the least

squares method (King et al. 2015).

(a) (b)

(c) (d)

Figure 5.2: The number of cases reported each epidemiological week for Babesiosis (a) and Anaplas-

mosis (b), and the non-linear fit of an exponential function to the exponentially growing part of

the incidence curve for Babesiosis (c) and Anaplasmosis (d). For these sample graphs the epidemic

growth rate is r = 0.27 and 0.42 for (c) and (d) respectively. The data are the 2013 Babesiosis and

the 2009 Anaplasmosis infections reported on the CDC website.
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5.2.4. Statistical analysis

In addition to c, r and outbreak year variables, we performed a web search to

identify the main transmission route of each infectious disease. We removed the 2016

Anaplasmosis outbreak data from some of analysis because it is an influential outlier,

it has very high c = 77 Km/week for an intermediate r = 0.2 relative to the general

trend of the relationship between c and r followed by the other observations. Also, we

removed the 2011 Coccidioidomycosis outbreak data because the incidence data was

not exponential and the estimated r is unreliable.

To investigate the relationship between c and r across the years and disease trans-

mission routes we fit a generalized linear model with Gamma distributed response

variable (c) to our data because the distribution of c is left-skewed, and as such, a

classic linear model is not appropriate. We compared different candidate models us-

ing likelihood ratio tests and analysis of deviance, and we selected the models with

the lowest deviance, the lowest AIC and the highest likelihood compared to the null

model. We selected the link function for our Gamma-generalized linear model by

comparing 3 candidate link functions (the inverse, log and identity links) and select-

ing the link function that captures the general trend of the data. To improve model

fit we square root transformed either c or both c and r. We compared c and r in

tick-borne and airborne infections only because the other transmission routes have

very few observations (sample size is 2 and 1 for direct and waterborne transmissions

respectively).

5.3. Results

We tested the predicted positive relationship between the spatial spread rate c

and the epidemic growth rate r using human infectious disease outbreaks reported

130



in the United States of America by the Centers for Disease Control and Prevention

(CDC) from 1996 to 2017. We find that infectious diseases that produce more cases per

week spread fewer kilometres per week. Also, disease outbreaks caused by tick-borne

infections on average have higher epidemic growth rate and spread fewer kilometres per

year, whereas disease outbreaks caused by airborne infections spread more kilometres

per year and have lower epidemic growth rate.

5.3.1. Epidemic growth rate r and spatial spread rate c are inversely related

We find that r accounts for an important part of the explained variability in c,

while the effect of outbreak years is statistically unclear (Total pseudo-R2 = 0.31

and r marginal pseudo-R2 = 0.29). The best model describing c as a function of r

and outbreak years does not include interaction terms (Table 5.1). The results show

an inverse relationship between c and r which suggests that when the number of

cases per week is high, the spatial expansion rate of the infected area is low and

the relationship is non-linear (Figure 5.3a). Also, we compared the epidemic growth

rate r of 41 infectious disease outbreaks from 1996 to 2017 and find that more recent

outbreaks have higher epidemic growth rate (pseudo-R2 = 0.17, and see Figure 5.3b

). From 1996 to 2017 the average r of reported infectious diseases in the U.S.A has

significantly increased from 0.023 (0.014 0.03, 95 % CI) to 0.16 (0.15 0.18, 95 % CI)

cases per week, and this result means that epidemic growth rate r has increased by

approximately 85 % in 20 years.
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Table 5.1: The model with spatial spread rate c, epidemic growth rate r, and outbreak years T . We

fit Gamma-generalized linear models with inverse link function the data. We calculated the ∆AIC,

∆Dev ( ∆Deviance), ∆LL (∆ Log-likelihood) and pseudo-R2 with respect to the model 7. The

pseudo-R2 = 1− Model residual deviance/deviance of model 7. The models are ordered from the

best to the worst.

N Models K ∆AIC ∆Dev ∆LL Pseudo-R2

1 1√
c
∼ β0 + β1

√
r + β2T 3 11.277 3.660 -7.638 0.31

2 1√
c
∼ β0 + β1

√
r + β2T + β3

√
rT 4 9.286 3.661 -7.642 0.31

3 1√
c
∼ β0 + β1

1√
r

+ β2T + β3
1√
r
T 4 7.533 3.305 -6.766 0.28

4 1√
c
∼ β0 + β1

1√
r

+ β2T 3 9.382 3.273 -6.691 0.27

5 1√
c
∼ β0 + β1r + β2T + β3rT 4 6.287 3.042 -6.143 0.25

6 1√
c
∼ β0 + β1r + β2T 3 8.286 3.041 -6.143 0.25

7 1√
c
∼ β0 1 0 0 0 0

5.3.2. Airborne infections grow slowly and spread faster compared to tick-borne infec-

tions

We investigated whether the link between epidemic growth rate r and spatial

spread rate c is different in tick-borne and airborne infections, and we find that the

difference between the slope of the correlation between c and r in tick-borne and

airborne infections is statistically unclear (P-value > 0.5, pseudo-R2 = 0.33, and see

Figures 5.4 and 5.5). As the best model does not include interaction terms (Table 5.2)

we compared the spatial spread rate c and the epidemic growth rate r in airborne and

tick-borne infections, and we find that on average the spatial spread rate of airborne

infections is 1.75 times higher compared to tick-borne infections (P-value < 0.02,

model pseudo-R2 = 0.32, see Figure 5.5a).

Moreover, we compared the epidemic growth rate r from 1996 to 2017 in tick-

borne and airborne infections, and we find that more recent outbreaks have higher

r in tick-borne infections, but in airborne infections the correlation between r and

outbreak years is statistically unclear (Figure 5.4b, and see Table A5.1). From 1996
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(a)

(b)

Figure 5.3: The spatial spread rate (c) and the initial epidemic growth rate (r) are inversely related

(a), and more recent outbreaks have higher r (b). We estimated c and r of 42 diseases outbreaks (10

different infectious diseases) that occurred between 1996 and 2017 in the United States of America,

excluding U.S. territories and publicly available on the CDC website. We fit Gamma Generalized

Linear Models with inverse (a) and log links (b) to the estimated c and r data. The dots are the

estimated c and r measures for an outbreak, the colours are the years the outbreaks occurred, the

black line through the data is the best fit model, and the grey area is the 95 % confidence interval.

For all graphs the correlations are significant (p-values < 0.05), and pseudo- R2 is 0.30, and 0.17

in (a) and (b) respectively. In (a) the residuals are independent (ρ = −0.09, and p-value > 0.5),

whereas in (b) the residuals are correlated (ρ = 0.56, and p-value < 0.0001) .
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Table 5.2: Spatial spread rate c and epidemic growth rate r in tick-borne and airborne infections,

where R is disease transmission route variable. We calculated the ∆AIC, ∆Dev ( ∆Deviance), ∆LL

(∆ Log-likelihood) and pseudo-R2 with respect to the model 3. The pseudo-R2 = 1− Model residual

deviance/deviance of model 3. The models are ordered from the best to the worst.

N Models K ∆AIC ∆Dev ∆LL Pseudo-R2

1
√
c ∼ β0 + β1r + β2R 3 10.592 3.620 -7.296 0.32

2
√
c ∼ β0 + β1r + β2R + β3rR 4 9.328 3.770 -7.664 0.33

3
√
c ∼ β0 1 0 0 0 0

to 2017 the average r of reported tick-borne infections has increased from 0.027 (0.017

0.037, 95 % CI) to 0.24 (0.22 0.26, 95 % CI) cases per week in 2017 which means that

the average epidemic growth rate of reported infectious diseases has increased by 88

% in 20 years. Finally, we find that on average the epidemic growth rate r is 9 times

higher in tick-borne than airborne infections, and this result suggests that disease

outbreaks produced by tick-borne infections grow more faster compared to airborne

infections (r = 0.019 (0.015 0.024, 95 % CI) and r = 0.17 (0.13 0.21, 95 % CI) in

airborne and tick-borne infection respectively).

134



(a)

(b)

Figure 5.4: Airborne infections have higher c and lower r, and tick-borne infections have lower c and

higher r (a), and more recent outbreaks have higher r in tick-borne infections (b). We fit Gamma

Generalized Linear Models with identity links to the estimated c and r data (23 tick-borne and

13 airborne infection outbreaks). The dots are the estimated c and r measures for an outbreak,

the line through the data is the best fit model, the colours are the different transmission routes

(red and green for airborne and tick-borne infections respectively) and the grey area is the 95 %

confidence interval. In (a) c is significantly higher in airborne compared to tick-borne (p-value< 0.01

and pseudo-R2 = 0.32), but the correlation between c and r is not significant for tick-borne and

airborne infections (p-value> 0.3 and pseudo-R2 = 0.33). In (b), r for tick-borne and airborne

infections are statistically different (p-value < 0.05), the correlation between r and outbreak year is

significant in tick-borne (p-value < 0.0001) and statistically unclear in airborne infections (p-value

> 0.3), and model pseudo-R2 = 0.79. For both graphs the residuals are independent (p-value < 0.05),

the correlation coefficients are ρ = −0.15 and ρ = 0.13 for (a) and (b) respectively.
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(a)

(b)

Figure 5.5: The relationship between c and r is statistically unclear for tick-borne (a) and airborne

infections (b). We estimated c and r for 23 tick-borne and 13 airborne infections that occurred

between 1996 and 2017 in the United States of America, excluding U.S. territories and publicly

available on the CDC website. We fit Gamma Generalized Linear Models with identity links to the

estimated c and r data. The dots are the estimated c and r measures for an outbreak, the line through

the data is the best fit model and the grey area is the 95 % confidence interval. In (a) the estimated

slope ρ = −0.6, p-value 0.6, and pseudo-R2 = 0.01, and in (b) the estimated slope ρ = −23.84,

p-value is 0.7, and pseudo-R2 = 0.01.
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5.4. Discussion

A positive relationship between the spatial spread rate c and the epidemic growth

rate r has been derived using spatial epidemic models, but this prediction has yet to

be validated with empirical data. In this paper, we estimated c (kilometres per week)

and r (cases per week) for 42 outbreaks caused by 10 human infectious diseases with

different transmission routes that have been reported in the United States of America

by the Centers for Disease Control and Prevention (CDC) from 1996 to 2017, and we

investigated whether infectious disease outbreaks that produce more cases per week

spread more kilometres per week. We find an inverse relationship between c and r,

which suggests that infectious disease outbreaks where the number of cases are rapidly

increasing over time spread fewer kilometres per week. Also, we find that disease

outbreaks caused by tick-borne infections produce on average more cases per week

and spread fewer kilometres per week, whereas disease outbreaks caused by airborne

infections produce on average fewer cases per week and spread more kilometres per

week.

5.4.1. The inverse relationship between c and r can reflect a link between the spatial

dispersal and the transmission of parasites

The inverse relationship between spatial spread rate c and epidemic growth rate

r is unexpected because spatial epidemic models suggest that when more cases are

produced there are more infected individuals who can potentially disperse long dis-

tances and the spatial region covered by infected hosts is larger, and as such the

spatial spread rate will be higher (Källen et al. 1985; Murray et al. 2001; Diekmann

et al. 2012c). An inverse relationship between c and r can reflect a relationship be-

tween parasite transmission and the dispersal of infectious organisms (Figures 5.3a
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and 5.4a).

The density of infected humans do not contribute to the growth of the epidemic

in the majority of the infectious diseases that we have investigated because humans

are dead-end hosts for these parasites, thus human-to-human transmission does not

occur. One explanation for why some infectious disease outbreaks generate more new

cases per week is that the likelihood of infection is high due to higher density of the

infectious organisms. In theory, the infectious disease outbreaks that generate more

infections per week will spread more kilometres per week, however, we observe the

opposite which can be explained by a possible trade-off between dispersal and disease

parasite transmission. When more infections occur per week the spatial spread rate

of the disease c is higher because there are more infected hosts that can disperse

long distances, but higher spread rate of infectious diseases can also be achieved

by particular transmission routes: wind, water or animal. As such, some infectious

disease outbreaks spread more kilometres per week because the infectious organisms

can disperse long distances by wind or water which can result in larger area covered by

the disease. For example, Coccidioides fungi spread more kilometres per week because

the infectious aerosols which contribute directly to the growth of the epidemic can

disperse long distances by wind.

The positive relationship between c and r predicted by spatial epidemic models

may hold because the new cases generated per week can disperse longer distances and

directly contribute to the growth of the epidemic by infecting more susceptible hosts.

One possible explanation for why the positive relationship between c and r does not

hold in airborne and tick-borne infections is that new cases that are generated each

week do not generate more cases and contribute directly to the growth of the epidemic
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and the main factor driving the spatial propagation of the disease is the dispersal of the

infectious organisms by wind, water and animals. An alternative explanation is that

long distance dispersal is associated with higher parasite mortality or limited access

to susceptible hosts, which results in fewer cases per week. Infectious organisms that

disperse long distances by air or water have a higher risk of dying or dispersing away

from susceptible hosts, whereas infectious organisms that disperse locally, by vectors

for example, have a stable access to susceptible hosts and the risk of death due to long

distance dispersal is lower. As such, infectious organisms that spread locally produce

more cases per week compared to infectious organisms that disperse long distances.

5.4.2. Disease spread rate c and epidemic growth rate r in tick-borne and airborne

infections

Our analysis suggests that on average tick-borne infections spread fewer kilometres

per week than airborne infections, and infectious disease outbreaks caused by tick-

borne infections have higher epidemic growth rates compared to airborne infections

(Figure 5.4a). Tick-borne infections have lower spatial spread rates because ticks,

which are the vectors of the diseases, are absent from many states and rely on migra-

tory birds for long distance dispersal (Gabriel et al. 2009; Rikihisa 2011). For example

the main vectors of Lyme disease, Ixodes scapularis and I. pacificus, are present in the

eastern and western states in the U.S.A respectively (Dennis et al. 1998; Eisen et al.

2016; Owen et al. 2019), disperse locally few kilometres per day attached to rodents

and deers and occasionally more than 250 kilometres per day attached to migratory

birds (Ogden et al. 2008; Leighton et al. 2012; Tonelli and Dearborn 2019). The geo-

graphic range within which infectious contacts and infections can occur is relatively

smaller for tick-borne infections due to their limited spatial distribution and move-
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ment. As such the reported tick-borne cases are within the small geographic range of

the ticks, and over a period of time the disease spread kilometres per week.

In contrast, airborne infectious organisms have higher spatial spread rates be-

cause the infectious aerosols can disperse longer distances by wind. For example the

Coccidioides which are the fungi that cause Coccidioidomycosis are endemic to the

southwestern United States (California, Arizona, New Mexico and Texas States), and

some studies found that the geographic range of Coccidioides species is expanding

to Utah and Washington states (Brown et al. 2013; Litvintseva et al. 2014; Johnson

et al. 2014; Engelthaler et al. 2016; Barker et al. 2019). Cases of Coccidioidomycosis

are reported from states that are far from the endemic regions because the Coccid-

ioides spores can disperse longer distances by wind. Thus, the area covered by humans

infected with Coccidioides is larger and the estimated spatial spread rate is higher.

In summary, tick-borne infections spread fewer kilometres per week than airborne

infections because the infected ticks that transmit the infections disperse shorter dis-

tances attached to their hosts, whereas the infectious aerosols that cause airborne

infections can disperse longer distances by wind. Similar ideas have been proposed

to explain why tick-borne infections have lower spatial spread rates c compared to

mosquito-borne infections (Leiby 2019).

Moreover, infectious disease outbreaks caused by tick-borne infections produce on

average more infections per week than airborne infectious disease outbreak (Figure

5.4a). One possible explanation for this result is that more infectious contacts per week

occur between humans and ticks than humans and the infectious aerosols that cause

airborne infections. Either the overall density of infected ticks is larger than the density

of the infected aerosols or some human activities like hunting and walking in the forest
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increases the probability of infectious contacts between infected ticks and humans,

and as such more cases per week due to tick-borne infections are reported than cases

due to airborne infections. However, this result must be taken with caution because

the incidence curve of most of our airborne infections do not exhibit a well defined

exponential growth profile, and as such the estimation of r for airborne infections may

be unreliable.

Finally, recent outbreaks have higher epidemic growth rates r, and this result is

supported in tick-borne infections and unclear in airborne infections (Figure 5.3b and

5.4b). It is clear that the observed increased epidemic growth rate during the past 20

years is driven by tick-borne infections. A potential explanation for increased epidemic

growth rate in tick-borne infections is that the density and/or the geographic range

of ticks has increased during the past 20 years. As reported by previous studies, the

geographic range of the ticks has increased during the past 50 years due the expansion

of suitable habitat like forests and climate change has been reported as important fac-

tor (Barbour and Fish 1993; Brownstein et al. 2003; Eisen and Eisen 2018; VanAcker

et al. 2019). Higher ticks population density will increase the probability of infectious

contacts between ticks and humans and the incidence of tick-borne infections, and as

such, more recent outbreaks due to tick-borne infections will produce more infections

per week.

5.5. Concluding remarks

Spatial epidemic models predict a positive relationship between the epidemic

growth rate r and the spatial spread rate c, and the empirical clarification of the

link between c and r can help in predicting how far an infectious disease will propa-

gate. In this paper, we test whether infectious disease outbreaks where the number of
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cases are rapidly increasing over time spread more kilometres per week using human

infectious disease cases reported in the U.S.A by the CDC during the past 20 years. In

contrast to the theoretical predictions we found an inverse relationship between c and

r. Our work is a step forward in clarifying the link between c and r, and we formulate

three recommendations for future works. Firstly, to achieve the goal of predicting the

spatial spread rate c early during an outbreak we need to clarify the contribution

of disease transmission routes to the epidemic growth rate r and the spatial spread

rate c, which can clarify whether the predicted positive relationship between c and r

holds across transmission routes. Secondly, future works will clarify the impact of host

movement on the spatial spread rate of infectious diseases. In simple spatial epidemic

models hosts movement affect the rate of spatial spread via the diffusion rate, but

in complex models the effect of hosts movement is unclear because other movement

parameters (e.g. the advection rate, the coefficient of correlation between movement

directions) come into play. Thirdly, the data for investigating the link between the epi-

demic growth rate and the spatial spread rate is available (not public sometimes), but

the challenge is to organize the outbreak data in a format that can be used directly in

statistical softwares. As such, more work is needed to get open, high spatial resolution

and useful data to achieve the goal of predicting how far an infectious disease will

propagate using early case data.
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6. Summary

The adaptive virulence evolution hypothesis is widely accepted as an explanation

for why some parasites kill their hosts, but has been recently criticized for its limited

applicability and the lack of spatial aspects of disease spread in the theoretical frame-

work. This thesis is an attempt to spatially extend the mathematical framework of the

adaptive virulence hypothesis by explicitly accounting for why and how hosts move

towards food, conspecifics and mates and address the broad applicability problems.

In summary, I show that the empirical investigation of the adaptive virulence hy-

pothesis at the cross-species level is feasible with parasite species that are ecologically

similar. Our simulation data show that virulence can be adaptive at the species level,

and as such, the adaptive virulence hypothesis may be broadly applicable and can

be invoked to explain why some parasite species cause higher virulence than others

(Figures 2.5 and 2.6). Also, I show that evolutionary bistable virulence can emerge

when parasites induce lethargy and death to their hosts. I explain how parasites with

low- and high-virulence can be maintained in transient coexistence in host populations

(Figure 3.3). Moreover, I reviewed epidemic models that account for host movement to

investigate how different types of host movement affect epidemic spread, I find that the

main aspect that require further focus is how spatially heterogenous epidemiological

parameters (e.g., parasite transmission rate) can emerge from the spatial structure of

host population or other spatiotemporal processes (Table 4.2). Finally, I investigated

whether the relationship between the growth rate r and the spread rate c of infectious

diseases is positive, I find an inverse relationship between c and r and discuss how

this result can reflect a trade-off between parasite dispersal and transmission (Figure
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5.3).

Diffusion models to describe epidemic spread can effectively capture the transmis-

sion and the spatial spread of infectious diseases, but the derived basic reproduction

number R0, which is a measure of parasite fitness, is often independent of host move-

ment parameters. In chapter three, I show that for spatial epidemic models with

spatially and/or temporally heterogeneous epidemiological parameters (e.g., disease

transmission rate) R0 and host movement are linked via the diffusion coefficient of

the hosts. As such, spatial epidemic models with spatially heterogenous disease trans-

mission rates can be appropriate for the spatial extension of the adaptive virulence

evolution hypothesis. However, the mathematical analysis of spatial epidemic models

with spatially heterogenous disease transmission rate can be difficult and only very few

studies have derived an explicit expression of R0 for such models. Future works will

investigate how spatially heterogenous disease transmission rate can emerge from the

spatiotemporal dynamics of host-parasite interactions, formulate the results as trade-

offs between parasite traits and spatial aspects of disease spread like host movement

and explicitly incorporate those trade-offs directly in the mathematical framework of

the adaptive virulence hypothesis. Moreover, the spatial spread rate c, which is the

speed of spatial propagation of infectious diseases, can be an important component

of parasite fitness because a parasite can achieve higher transmission by spreading

globally in the host population. As such, the empirical investigation of the relation-

ship between the temporal and the spatial spread of infectious diseases is critical for

understanding the contribution of c to the lifetime transmission success of parasites

and the implications for the evolution of virulence.
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Appendix A.

Chapter one: Is virulence adaptive? A numerical investigation with cross-species

disease outbreak data

Parasite species and Disease outbreak simulation

We generated numerically a total of 1500 parasites, 50 species and 30 strains within

each species, that are phylogenetically related and each parasite has an incubation pe-

riod (σd), the time before the host recovers from an infection (γd), the time before the

host dies due to infection (νd), the probability of disease transmission given a contact

(β) and the infected host movement step length reduction factor (s). We generated

outbreaks from the evolved epidemiological parameters in host populations where the

size of the population is selected randomly. The epidemic model is spatially explicit,

stochastic, Susceptible-Exposed-Infectious-Removed (SEIR) disease progression and

with random walk host movement (Figures A1 and A2).
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(a)

(b)

Figure A.1: Disease outbreak caused by a parasite in a population where hosts move randomly

in two-dimensional spatial domain with periodic boundaries, we graph the epidemic curve in (a)

and the movie in (b) illustrates disease spread in the population (Video is available at Figshare

doi:10.6084/m9.figshare.11392626). Parasite incubation period, the time from infection to host death,

the time from infection to host recovery are gamma-distributed with mean σd = 1.5, γd = 4.3 and

νd = 3.6 days respectively. The probability of parasite transmission given a contact is p = 0.6

and the movement step length reduction factor is s = 0.3 and host population size N = 1869

individuals. The epidemic model is a spatially explicit stochastic Susceptible-Exposed-Infectious-

Removed (SEIR) model, each dot is a host individual, it’s location at a given time and epidemiological

status. Susceptible hosts are blue, exposed and infectious hosts are red, recovered hosts are green

and dead hosts are empty dots. The total number of secondary cases by the primary case is R0 = 4.
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The relationship between virulence and parasite fitness measures: within-

species data

Figure A.2: For most of the species’ data, the relationship between virulence and the effective

reproduction number R is statistically unclear. We graph the proportion of model fit to within-

species data as a function of model p-value for which the relationship between virulence and R is

positive (green bar), negative (yellow bar), concave-up (blue bar) or concave-down (red bar). We

fit linear and parabolic models to each species’ data (sample sizes are 26-30 observations for the

different species) and we did likelihood ratio tests to select the best fit model. The vertical black line

is the 0.05 significance level.
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Virulence Virulence

(a) (b)

(c) (d)

Figure A.3: The correlation between virulence and the effective reproduction number R can be

positive (a), concave-up (b), negative (c) and concave-down (d), and we graph cases where the

relationship is significant (except graph (c)). The dots are the estimated R for each strain (averaged

over 30 outbreaks simulation runs), the line through the data is the best fit model, and the grey

area is the 95% confidence interval. Model p-values are less than 0.05 for all graphs except graph (c)

where p-value is 0.1, and adjusted R2 = 0.23, 0.2, 0.05and0.2 for (a), (b), (c) and (d) respectively.

We divided R0 by host population density (N) to correct for the effect of host population density

and we square root transformed the response variables to meet the assumptions of the linear model.
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The relationship between virulence and parasite fitness measures: cross-

species data

Virulence Virulence

(a) (b)

(c) (d)

Figure A.4: The correlation between virulence and the basic reproduction number R0 in (a) and

the effective reproduction number R in (b) is concave down, and in (c) and (d) the proportion of

random cross-species data samples that supports the R0 and the R results is 97.7 % and 99.5 %

respectively. The dots are the estimated fitness measures for each parasite over 30 outbreaks (the

colour indicates strains of the same species), the line through the data is the best fit model, and the

grey area is the 95% confidence interval. In (a) and (b) the best fit polynomial models are significant

(Model p-value < 0.0001) and the adjusted R2 = 0.5 and R2 = 0.38 for (a) and (b) respectively.

To select the best fit model, we fit phylogenetically corrected linear and parabolic models to 1000

randomly sampled cross-species data (sample size is 200 observations per randomly sampled data),

we did likelihood ratio tests to select the best fit model, and the proportion of samples for each best

fit model and their corresponding model p-values are presented in (c) and (d). The red, yellow and

green bars are the best fit polynomial, linear-negative and linear-positive models respectively, and

the vertical black line is the 0.05 significance level.
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Virulence Virulence

(a) (b)

(c) (d)

Figure A.5: The correlation between virulence and the basic reproduction number R0 is negative in

(a) and the effective reproduction number R is positive in (b), and in (c) and (d) the proportion

of random cross-species data samples that supports the R0 and the R results is 2.2 % and 0.5 %

respectively. In (a) and (b) the dots are the estimated fitness measures for each parasite over 30

outbreaks (the colour indicates strains of the same species), the line through the data is the best

fit model to the sampled data, and the grey area is the 95% confidence interval. The model fit is

poor, adjusted R2 = 0.09 for both graphs (a) and (b), the model diagnostics performed using the

gvlma R package, show that the residuals are correlated and the linear relationship assumption is

not satisfied (p-value < 0.05). We divided R0 and R by host population density (N) to correct for

the effect of host population density and we square root transformed the response variables to meet

the assumptions of the linear model. We fit phylogenetically corrected linear and parabolic models

to 1000 randomly sampled cross-species data (sample size is 200 observations per randomly sampled

data), we performed likelihood ratio tests to select the best fit model, and the proportion of samples

for each best fit model and their corresponding model p-values are presented in (c) and (d). The

red, yellow and green bars are the best fit polynomial, linear-negative and linear-positive models

respectively, and the vertical black line is the 0.05 significance level.
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Appendix B.

Chapter two: Parasite-induced shifts in host movement may explain the transient

coexistence of high- and low-pathogenic disease strains

Epidemiological and evolution models presented in the main text

Epidemiological dynamics

dSM
dt

= θ + γ (IM + IR)− SM (Λ + d) (B.1)

dIM
dt

= ΛSM − IM [d+ γ + ψ(α)] (B.2)

dIR
dt

= ψ(α)IM − IR [d+ γ + ν(α)] , (B.3)

where Λ = α (cmIM + crIR) represents the force of infection. The system of equa-

tions B.1-B.3 (system 3.1-3.3 in the main text) has two equilibria. A disease-free

equilibrium (EDF ),

EDF =

(
S∗M =

θ

d
, I∗M = 0, I∗R = 0,

)
and an endemic equilibrium (EE),

EE =



S∗M =
[d+ γ + ν(α)] [d+ γ + ψ(α)]

α
(
cm [d+ γ + ν(α)]

)
+ αcrψ(α)

,

I∗M =

[d+ γ + ν(α)]

(
[d+ γ + ν(α)] [αcmθ − d(d+ γ)] +

[
αcrθ − d

(
d+ γ + ν(α)

)]
ψ(α)

)
α

(
cm [d+ γ + ν(α)] + crψ(α)

)(
d [d+ γ + ν(α)] + [d+ ν(α)]ψ(α)

) ,

I∗R =
ψ(α)

d+ γ + ν(α)
I∗M .


If both

θ

d
>
d+ γ

αcm
,
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and

θ

d
>
d+ γ + ν(α)

αcr
,

then I∗M and I∗R are non-negative and the endemic equilibrium is biologically feasible.

To investigate the stability of disease-free equilibrium (EDF ) we use the next-

generation matrix method (see van den Driessche and Watmough 2002), and we

compute the basic reproduction number (R0) of the system B.1-B.3. We write the

Jacobian martrix of the system B.1-B.3 as Jeco = F − V where,

F =

αcmS∗M αcrS
∗
M

0 0

 ,
and

V =

d+ γ + ψ(α) 0

−ψ(α) d+ γ + ν(α)

 .
According to the next-generation theorem, R0 is given by the dominant eigenvalue of

the next-generation matrix which is,

FV −1 =


(

αcm
d+γ+ψ(α)

+ αcrψ(α)
[d+γ+ν(α)][d+γ+ψ(α)]

)
S∗M

αcr
d+γ+ν(α)

S∗M

0 0

 ,
and the dominant eigenvalue of FV −1 is,

ρ(FV −1) = R0 =

[
αcm

d+ γ + ψ(α)
+

αcr
d+ γ + ν(α)

× ψ(α)

d+ γ + ψ(α)

]
S∗M , (B.4)

where S∗M = θ/d is the size of the susceptible host population at the disease-free

equilibrium. If R0 < 1 then EDF is stable and no outbreak occurs, in contrast, if

R0 > 1 then EDF is unstable and an outbreak occurs. Following an outbreak the

system reaches a stable endemic equilibrium as long as there is a permanent input of

susceptible hosts through recovery and immigration.
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Evolutionary dynamics

dSM
dt

= θ + γ (IM1 + IM2 + IR1 + IR2)− SM (Λ1 + Λ2 + d) (B.5)

dIM1

dt
= Λ1SM − IM1 [d+ γ + ψ(α1)] (B.6)

dIM2

dt
= Λ2SM − IM2 [d+ γ + ψ(α2)] (B.7)

dIR1

dt
= ψ(α1)IM1 − IR1 [d+ γ + ν(α1)] (B.8)

dIR2

dt
= ψ(α2)IM2 − IR2 [d+ γ + ν(α2)] , (B.9)

where Λ1 = α1 (cmIM1 + crIR1) and Λ2 = α2 (cmIM2 + crIR2) are the force of infections

of the resident strain (α1) and the mutant strain (α2) respectively. The symbols α1

and α2 are within-host net replication rates of the resident and the mutant strains

respectively. The system of equations B.5-B.9 has 3 equilibria: the disease-free, the

resident-free and the mutant-free equilibria. For the purposes of the evolutionary

invasion analysis we are interested in the mutant-free equilibrium (EMF ) which is

EMF =



S∗M =
[d+ γ + ν(α1)] [d+ γ + ψ(α1)]

α1

(
cm [d+ γ + ν(α1)]

)
+ α1crψ(α1)

,

I∗M1 =

[d+ γ + ν(α1)]

(
[d+ γ + ν(α1)] [α1cmθ − d(d+ γ)] +

[
α1crθ − d

(
d+ γ + ν(α1)

)]
ψ(α1)

)
α1

(
cm [d+ γ + ν(α1)] + crψ(α1)

)(
d [d+ γ + ν(α1)] + [d+ ν(α1)]ψ(α1)

) ,

I∗R1 =
ψ(α1)

d+ γ + ν(α1)
I∗M1,

I∗M2 = 0,

I∗R2 = 0.


To investigate the stability of the mutant-free equilibrium (EMF ) we write the Ja-

cobian matrix of the system B.5-B.9 (Jevo) and we evaluate Jevo at the mutant-free

equilibrium.

Jevo =

 Jres U

0 Jmut

 , (B.10)
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where

U =


−α2cmS

∗
M + γ −α2crS

∗
M + γ

0 0

0 0

 ,

Jres =


−d− α1(cmI

∗
M1 + crI

∗
R1) −α1cmS

∗
M + γ −α1crS

∗
M + γ

α1(cmI
∗
M1 + crI

∗
R1) −d− γ − ψ(α1) + α1cmS

∗
M α1crS

∗
M

0 ψ(α1) −d− γ − ν(α1)

 ,
and

Jmut =

−d− γ − ψ(α2) + α2cmS
∗
M α2crS

∗
M

ψ(α2) −d− γ − ν(α2)

 .
First, we assume that the resident strain is established in the host population, mean-

ing that an epidemic occurred (R0 > 1) and the system reaches a stable endemic

equilibrium (Jres is locally stable). Then a rare mutant strain arises in the popula-

tion. We investigate the conditions for the rare mutant strain to invade and replace

the dominant resident strain, by analyzing the stability of the system of equation B.5-

B.9 at the mutant-free equilibrium. The dynamics of the system of equation B.5-B.9

are governed by the stability of the sub-matrices Jres and Jmut. We assumed that Jres

is locally stable, thus the dynamics of Jevo are governed by the stability of Jmut. If

Jmut is unstable then Jevo is unstable and the rare mutant strain replaces the resident

strain, and if Jmut is stable then Jevo is stable and the rare mutant strain goes extinct.

To investigate the stability of Jmut, we use the next-generation theorem for the

evolutionary invasion analysis (see, Hurford et al. 2010). We write Jmut = F − V and

we compute the leading eigenvalue (ρ(FV −1)) of the Jmut sub-matrix, which is given
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by,

ρ(FV −1) = R(α2, α1) =

α2

(
cm [d+ γ + ν(α2)] + crψ(α2)

)
[
d+ γ + ν(α2)

][
d+ γ + ψ(α2)

] S∗M . (B.11)

where

S∗M =

[
d+ γ + ν(α1)

][
d+ γ + ψ(α1)

]
α1

(
cm[d+ γ + ν(α1)] + crψ(α1)

) . (B.12)

Equation B.11 is known as the invasion fitness of a rare mutant strain in a resident

population at endemic equilibrium. Replacing equation B.12 in equation B.11 we have,

R(α2, α1) =

α2

(
cm[d+ γ + ν(α2)] + crψ(α2)

)
[
d+ γ + ν(α2)

][
d+ γ + ψ(α2)

] ×
[
d+ γ + ν(α1)

][
d+ γ + ψ(α1)

]
α1

(
cm[d+ γ + ν(α1)] + crψ(α1)

) .
(B.13)

It can be noticed that

R(α2, α1) =
R(α2)

R(α1)
,

with i = 1 and 2 and

R(αi) =

αi

(
cm[d+ γ + ν(αi)] + crψ(αi)

)
[
d+ γ + ν(αi)

][
d+ γ + ψ(αi)

] . (B.14)

According to the Next-generation theorem, (see Hurford et al. 2010), Jmut sub-matrix

is unstable if

ρ(FV −1) = R(α2, α1) > 1.

Therefore a rare mutant strain invades the host population dominated by the resident
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strain if,

α2

(
cm[d+ γ + ν(α2)] + crψ(α2)

)
[
d+ γ + ν(α2)

][
d+ γ + ψ(α2)

] >

α1

(
cm[d+ γ + ν(α1)] + crψ(α1)

)
[
d+ γ + ν(α1)

][
d+ γ + ψ(α1)

] . (B.15)

We discuss the evolutionary implications of this result in the main text.

The evolutionarily stable within-host parasite net replication rate (ESS α∗)

First we recall that the invasion fitness is,

R(α2, α1) = R0(α2)× 1

R0(α1)
,

Assuming that mutants are slightly different from the resident strain, a net replication

rate that is evolutionarily stable (denoted α∗) must satisfy:

∂R(α2, α1)

∂α2

∣∣∣∣
α2=α∗

α1=α∗

=
1

R0(α∗)

∂R0(α2)

∂α2

∣∣∣∣
α2=α∗

α1=α∗

= 0 (B.16)

and

∂2R(α2, α1)

∂α2
2

∣∣∣∣
α2=α∗

α1=α∗

=
1

R0(α∗)

∂2R0(α2)

∂α2
2

∣∣∣∣
α2=α∗

α1=α∗

≤ 0. (B.17)

The condition B.16 is the first partial derivative of the invasion fitness with respect to

α2 evaluated at α2 = α1 = α∗ and the condition B.17 is the second partial derivative

of the invasion fitness with respect to α2 evaluated at α2 = α1 = α∗. From equation

B.14, we know that

R(α2) =

α2

(
cm[d+ γ + ν(α2)] + crψ(α2)

)
[
d+ γ + ν(α2)

][
d+ γ + ψ(α2)

] .

165



The first and the second derivatives of R(α2) with respect to α2 evaluated at α2 =

α1 = α∗ are receptively,

∂R(α2)

∂α2

∣∣∣∣
α2=α∗

α1=α∗

= R(α∗)

[
1

α∗
+

(
cr[

cm
(
d+ γ + ν

)
+ crψ

] − 1[
d+ γ + ψ

])ψ′−
cr[

cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν ′], (B.18)

and

∂2R(α2)

∂α2
2

∣∣∣∣
α2=α∗

α1=α∗

= R(α∗)

[
− 1

α∗2
−
(

(cm − cr)(d+ γ) + cmν

[d+ γ + ψ][cm
(
d+ γ + ν

)
+ crψ]

)
ψ′′−

cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν ′′ − [ cr

cm
(
d+ γ + ν

)
+ crψ

ψ′
]2

+

[
1

d+ γ + ψ
ψ′
]2

−

cr[
cm
(
d+ γ + ν

)
+ crψ

]( 2cm
(
d+ γ + ν

)[
cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ψ′ν ′+
cr[

cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]( 2cm
(
d+ γ + ν

)
+ crψ[

cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ν ′2],
(B.19)

where, ψ, ψ′ and ψ′′ are used in place of ψ(α∗), ψ′(α∗) and ψ′′(α∗) respectively, and

ν, ν ′ and ν ′′ are used in place of ν(α∗), ν ′(α∗) and ν ′′(α∗) respectively for notational

brevity. Also, ψ′ and ψ′′ are respectively the first and the second derivatives of ψ(α2)

with respect α2 evaluated at α∗, whereas ν and ν ′′ are respectively the first and the

second derivatives of ν(α2) with respect α2 evaluated at α∗. We substitute equation

B.18 in the ESS condition B.16 and after few simplifications we found that if

1

α∗
=

(cm − cr)(d+ γ) + cmν[
d+ γ + ψ

][
cm
(
d+ γ + ν

)
+ crψ

]ψ′ + cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν ′,
(B.20)

then the condition B.16 is satisfied. From equation B.20 we solve for α∗, and it is
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given by

α∗ =

[
cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ψ

][
d+ γ + ν

][
(cm − cr)(d+ γ) + cmν

][
d+ γ + ν

]
ψ′ +

[
d+ γ + ψ

]
crψν ′

. (B.21)

For equation B.21 to make sense biologically α∗ must be non-negative. In the model

formulation we assume that cm > cr, thus if both ψ′ and ν ′ are positive then α∗ is

non-negative. Similarly, we substitute equation B.19 in the ESS condition B.17 and

after few simplifications we found that if

cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]( 2cm
(
d+ γ + ν

)
+ crψ[

cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ν′2 +

[
1

d+ γ + ψ
ψ′
]2

≤

1

α∗2
+

(
(cm − cr)(d+ γ) + cmν

[d+ γ + ψ][cm
(
d+ γ + ν

)
+ crψ]

)
ψ′′ +

cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν′′ + [ cr

cm
(
d+ γ + ν

)
+ crψ

ψ′
]2

+

cr[
cm
(
d+ γ + ν

)
+ crψ

]( 2cm
(
d+ γ + ν

)[
cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ψ′ν′,
(B.22)

then the condition B.17 is satisfied. We replace the expression of α∗ (equation B.21)

in inequality B.22 and we have,

cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]( 2cm
(
d+ γ + ν

)
+ crψ[

cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ν ′2 +

[
1

d+ γ + ψ
ψ′
]2

≤(
cr[

cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν ′)2

+

(
(cm − cr)(d+ γ) + cmν[

d+ γ + ψ
][
cm
(
d+ γ + ν

)
+ crψ

]ψ′)2

+

2

(
cr[

cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

])( (cm − cr)(d+ γ) + cmν[
d+ γ + ψ

][
cm
(
d+ γ + ν

)
+ crψ

])ψ′ν ′+
cr[

cm
(
d+ γ + ν

)
+ crψ

]( 2cm
(
d+ γ + ν

)[
cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ψ′ν ′ + [( cr

cm
(
d+ γ + ν

) − 1

d+ γ + ψ

)
ψ′
]2

+(
(cm − cr)(d+ γ) + cmν

[d+ γ + ψ][cm
(
d+ γ + ν

)
+ crψ]

)
ψ′′ +

cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν ′′.
(B.23)

It can be shown that if both ψ′′ and ν ′′ are positive or if ψ′′ is positive and ν ′′ = 0

then inequality B.23 holds, and α∗ satisfies both conditions B.16 and B.17. Thus, if

both parasite-induced host resting rate (ψ(α)) and parasite-induced host mortality

rate (ν(α)) increase at an increasing rate as within-host parasite net replication rate
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(α) increases (meaning that both ψ(α) and ν(α) have a concave-up form) then α∗ is

a biologically feasible evolutionarily stable within-host parasite net replication rate.

Also, if ψ(α) has a concave up form whereas ν(α) is linear then equation B.21 is a

biologically feasible evolutionarily stable within-host parasite net replication rate. In

contrast, when both ψ(α) and ν(α) have a linear form then no evolutionarily stable

parasite net replication rate is possible. In the main paper we focus on the case where

both ψ(α) and ν(α) have a concave up form.

The convergence stable within-host parasite net replication rate (CSS)

An ESS, if it exists, is also convergence stable if

d

dα1

{
∂R(α2, α1)

∂α2

∣∣∣∣
α2=α1

}
α1=α∗

< 0. (B.24)

The CSS condition (equation B.24) and condition B.17 are similar except the

inequality sign. We found that if

cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]( 2cm
(
d+ γ + ν

)
+ crψ[

cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ν ′2 +

[
1

d+ γ + ψ
ψ′
]2

<(
cr[

cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν ′)2

+

(
(cm − cr)(d+ γ) + cmν[

d+ γ + ψ
][
cm
(
d+ γ + ν

)
+ crψ

]ψ′)2

+

2

(
cr[

cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

])( (cm − cr)(d+ γ) + cmν[
d+ γ + ψ

][
cm
(
d+ γ + ν

)
+ crψ

])ψ′ν ′+
cr[

cm
(
d+ γ + ν

)
+ crψ

]( 2cm
(
d+ γ + ν

)[
cm
(
d+ γ + ν

)
+ crψ

][
d+ γ + ν

])ψ′ν ′ + [( cr

cm
(
d+ γ + ν

) − 1

d+ γ + ψ

)
ψ′
]2

+(
(cm − cr)(d+ γ) + cmν

[d+ γ + ψ][cm
(
d+ γ + ν

)
+ crψ]

)
ψ′′ +

cr[
cm
(
d+ γ + ν

)
+ crψ

] ψ[
d+ γ + ν

]ν ′′
(B.25)

then equation B.24 is satisfied. If cr = 0 then inequality B.25 becomes

0 <

[
1

d+ γ + ψ
ψ′
]2

+

[
1

d+ γ + ψ

]
ψ′′. (B.26)
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From the ESS conditions we know that both ψ′′ and ψ′ are positive. Thus, we conclude

that if cr = 0 then an evolutionarily stable within-host parasite net replication rate

(ESS α∗) is also convergence stable (CSS α∗).

Evolutionary dynamics when parasite infection is non-lethal

The model is similar to the system B.1-B.3, with no disease-induced host death

(ν(α) = 0). We substitute ν(α) = 0 in equation B.4 and we obtain the basic repro-

duction number which is given by

R0 =

[
αcm

d+ γ + ψ(α)
+

αcr
(d+ γ)

× ψ(α)

d+ γ + ψ(α)

]
S∗M , (B.27)

where S∗M = θ/d is the the size of susceptible host population at disease-free equilib-

rium. Similarly we substitute ν(α) = 0 in equation B.13 and we obtain the invasion

fitness which is given by

R(α2, α1) =

α2

[
cm

(
d+ γ

)
+ crψ(α2)

]
[
d+ γ

][
d+ γ + ψ(α2)

] ×
[
d+ γ

][
d+ γ + ψ(α1)

]
α1

[
cm

(
d+ γ

)
+ crψ(α1)

] . (B.28)

The conditions for an ESS net replication rate to exist are the same as those provided

in B.16 and B.17. We substitute ν(α) = 0 in equation B.21 and we obtain the expres-

sion of the within-host net replication rate that is evolutionarily stable. It is given

by

α∗ =

[
cm
(
d+ γ

)
+ crψ

][
d+ γ + ψ

][
(cm − cr)(d+ γ)

]
ψ′

. (B.29)

For α∗ to be non-negative, thus biologically meaningful, ψ′ must be positive. The ESS

condition (B.17) is satisfied if

− 1

α∗2
−
(

(cm − cr)(d+ γ)

[d+ γ + ψ][cm
(
d+ γ

)
+ crψ]

)
ψ′′−

[
cr

cm
(
d+ γ

)
+ crψ

ψ′
]2

+

[
1

d+ γ + ψ
ψ′
]2

≤ 0.

(B.30)
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We replace α∗ (equation B.29) in equation B.30 and after few simplifications we

have

2crψ
′2 −

[
cm(d+ γ) + crψ

]
ψ′′ ≤ 0. (B.31)

As in the case where parasite infection is potentially lethal ψ′′ must be positive for α∗

(equation B.29) to be biologically feasible. Therefore, the trade-off between parasite-

induced host lethargy rate (ψ(α)) and within-host net parasite replication rate (α) is

concave-up.

To derive the condition for the ESS to be a CSS, we apply the condition B.24, and

we find that if

2crψ
′2 −

[
cm(d+ γ) + crψ

]
ψ′′ < 0. (B.32)

then equation (B.29) is also a CSS. It can be noticed that if cr = 0 then inequality

B.32 holds. Therefore, similarly to the case where parasite infection is potentially

lethal, if cr = 0 then whenever α∗ is an ESS it is also a CSS.

Dynamical simulation

To simulate the evolution of the within-host parasite net replication rate (α), we

solve the system of ordinary differential equations (ODEs) describing the epidemio-

logical dynamics (B.1-B.3), where only the resident strain (α1) is present in the host

population. We set the parameter values such that an epidemic occurs (R0 > 1) and

the system reaches a stable endemic equilibrium (which is reached within 500 time

steps maximum).

For the evolutionary dynamics, we set the initial within-host net replication rate

αi = α1 as the dominant strain for the first generation. At the end of each generation,
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we produce 20 different mutant strains from uniformly distributed α values, with

the centre of the distribution being the α value of the current dominant strain. The

lower and the upper bounds of the distribution are chosen to reflect the magnitude

of the effect of mutation. We set bounds to α1 ± 0.1 and α1 ± 0.55 for small- and

large-effect mutations respectively. We calculate the fitness for all parasite strains

present in the population using equation S14, and we compare the fitness of mutants

to the fitness of the current resident strain. For the following generation, the new

dominant resident strain is the strain with the highest fitness. We assume that all

the other strains go extinct. We iterate this evolution process for 300 generations

(evolutionary equilibrium is reached in all simulations before 300 generations). We

repeat the evolution simulation 100 times, but we plot only one sample evolutionary

path to illustrate the PIP.

For simulations in Figures 3.3d and 3.3e, we run the simulations with initial α

values below (dotted lines) and above (dashed lines) the invasible repellor which is

≈ 0.7. For all simulations we model the concave-up trade-offs using a power function

ψ(α) = α2 and ν(α) = 0.01α2, and we set cm = 0.8, cr = 0.08, d = 0.0001 and

γ = 0.065 except Figure 3.3b where we set cr = 0.

Multimedia materials
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Figure B.1: Movie of Pairwise Invasibility Plots (PIP) illustrating the effect of increasing the con-

tact rate in the resting state (cr) on the evolutionary dynamics, Video is available at Figshare

doi:10.6084/m9.figshare.11392617. We set cm = 0.8, b = 0.01, d = 0.0001, γ = 0.065, and we vary

cr values from 0 to 0.25. The colours on the PIPs represent the fate of a rare mutant strain in a

host population where the resident strain is at endemic equilibrium for different combinations of

mutant-resident α values (α1 on the x-axis and α2 on the y-axis). For a given combination (α1, α2),

white indicates that the rare mutant goes extinct (equation 3.13, in the main text, is negative), and

black indicates that the rare mutant replaces the resident (equation 3.13, in the main text, is posi-

tive). The transitions between black and white occur where equation 3.13, in the main text, equals

zero, and the intersections are evolutionary equilibria. The intersections are either one ESS that is

convergence stable or 2 ESS separated by an invasible repellor. We model the concave-up trade-offs

using a power function ψ(α) = α2 and ν(α) = bα2.

Figure B.2: Movie of Pairwise Invasibility Plots (PIP) illustrating the effect of increasing increasing

the ratio of host mortality to lethargy rates (b) on the evolutionary dynamics, Video is available at

Figshare doi:10.6084/m9.figshare.11393319. We set we cm = 0.8, cr = 0.08, d = 0.0001, γ = 0.065,

and we vary b values from 0 to 0.05. We model the concave-up trade-offs using a power function

ψ(α) = α2 and ν(α) = bα2. See the caption of Figure B.1 for how to read a PIP.
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Throughout the paper, we assumed that the probability of disease transmission

given an infectious contact, which is proportional to the within-host parasite net repli-

cation rate (α), is the same in the moving and the resting states, but the probability

of disease transmission given an infectious contact may be higher in the resting state

because of a higher parasite load. We investigated the case where the probability of

disease transmission given an infectious contact (α) is higher in the resting state than

the moving state (αm > αr, where αm and αr are the within-host parasite net repli-

cation rates in the moving and the resting state respectively). To formalize this idea,

we assume that αm is lower by a factor of c than αr. For example, if c = 0.5 and the

probability of disease transmission given an infectious contact in the resting state is

αr = 1 then the probability of disease transmission given an infectious contact in the

moving state is αm = 0.5. We found that the results are qualitatively similar to the

case where α is the same in the moving and the resting states. When the contribution

of one state (moving or resting) to the expected number of secondary infections per

susceptible host (equation 15 in the main text) is not substantial then only one ESS

is possible. In contrast, when both states can substantially contribute to the expected

number of secondary infections per susceptible host then a bistability occurs.
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Figure B.3: The results are qualitatively similar when we assume that the probability of disease

transmission given an infectious contact is higher in the resting than the moving state, Video is

available at Figshare doi:10.6084/m9.figshare.11393343. We set cm = 0.8, cr = 0.08, b = 0.01,

d = 0.0001, γ = 0.065, and the movie shows the PIPs for c = αm/αr values from 0 to 1 (αm and αr

are the within-host parasite net replication rates in the moving and the resting states respectively).

We model the concave-up trade-offs using a power function ψ(α) = α2 and ν(α) = bα2. See the

caption of Figure B.1 for how to read a PIP.
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Appendix C.

Chapter four: A counter-intuitive relationship between the temporal and spatial

spread of diseases

Description of the CDC data

We retrieved infectious disease cases reported in the United States of America by

the Centers for Disease Control and Prevention (CDC) through the National Notifi-

able Diseases Surveillance System (NNDSS) which is an information sharing system

on infectious diseases. We cleaned and processed the data to make it directly usable

in any statistical softwares or program, and the processed data are publicly available

at Figshare doi:. The data have 3754064 observations of 11 variables which are: the

reporting years (ReportingYears) is from 1996 to 2019, the reporting week (Report-

ingWeeks) is 1-52 or 1-53 within each year, the locations (Locations) are the names of

the states as reported on the CDC websites, the names of the diseases (DiseaseNames)

as reported on the CDC website, the number of cases reported the current epidemi-

ological week (CurrentWeekInf), the cumulative number of cases to date reported

for a disease at a location during the current year (CumYearInf1), the cumulative

number of cases to date reported for a disease at a location during the previous year

(CumYearInf2), the processed disease names (DiseaseNamesProc), the processed lo-

cation names (LacationsProc), latitudes (Lat), and longitudes (Long). We processed

the disease and the state names because the reporting was not consistent from one

year to another. To make the disease names consistent across the years we reviewed

the the case definition and the updates for each infectious diseases that is provided

by the Council of State and Territorial Epidemiologists (CSTE). We used the latitude
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and longitude coordinates (in decimal degrees) which we retrieved from the website

of the National Ocean and Atmospheric Administration (NOAA) of the U.S.A. The

CDC processed data is publicly available at doi:.

Preliminary statistical analysis

We explored the data to investigate the distribution of the spatial spread rate c

and the epidemic growth rate r. We used box plots to identify extreme observations

that can be outliers and potential influential observations.

(a) (b)

(c) (d)

Figure C.1: The distribution of the spatial spread rate c for the untransformed data (a and b) and

the square root transformed data (c and d). With these graphs, we started thinking about data

transformation and dealing with possible outliers, which was decided after model fit and diagnostics.
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(a) (b)

(c) (d)

Figure C.2: The distribution of the spatial spread rate c for the untransformed data (a and b) and

the square root transformed data (c and d) for each transmission route data.
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(a) (b)

(c) (d)

Figure C.3: The distribution of the epidemic growth rate r for the untransformed data (a and b)

and the square root transformed data (c and d). For r measures the square root transformation is

sometimes not necessary to get a good model fit.
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Supplementary tables

Table C.1: Epidemic growth rate r as a function of outbreak years T in tick-borne and airborne infec-

tions, where R is disease transmission route variable. We calculated the ∆AIC, ∆Dev ( ∆Deviance),

∆LL (∆ Log-likelihood) and pseudo-R2 with respect to the model 3. The pseudo-R2 = 1− Model

residual deviance/deviance of model 3. The models are ordered from the best to the worst.

N Models K ∆AIC ∆Dev ∆LL Pseudo-R2

1 1
r
∼ β0 + β1T + β2R + β3TR 4 56.380 32.738 -31.190 0.79

2 1
r
∼ β0 + β1T + β3R 3 42.165 28.223 -23.082 0.68

3 1
r
∼ β0 1 0 0 0 0
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