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Abstract

Time–lapse (4D) seismic monitoring is to date the most commonly used technique for

estimating changes of a reservoir under production. Full–Waveform Inversion (FWI)

is a high resolution technique that delivers Earth models by iteratively trying to

match synthetic prestack seismic data with the observed data. Over the past decade

the application of FWI on 4D data has been extensively studied, with a variety of

strategies being currently available. However, 4D FWI still has challenges unsolved.

In addition, the standard outcome of a 4D FWI scheme is a single image, without

any measurement of the associated uncertainty. These issues beg the following ques-

tions: (1) Can we go beyond the current FWI limitations and deliver more accurate

4D imaging?, and (2) How well do we know what we think we know? In this the-

sis, I take steps to answer both questions. I first compare the performances of three

common 4D FWI approaches in the presence of model uncertainties. These results

provide a preliminary understanding of the underlying uncertainty, but also highlight

some of the limitations of pixel by pixel uncertainty quantification. I then introduce

a hybrid inversion technique that I call Dual–Domain Waveform Inversion (DDWI),

whose objective function joins traditional FWI with Image Domain Wavefield Tomog-

raphy (IDWT). The new objective function combines diving wave information in the

data–domain FWI term with reflected wave information in the image–domain IDWT

term, resulting in more accurate 4D model reconstructions. Working with 4D data

provides an ideal situation for testing and developing new algorithms. Since there are

repeated surveys at the same location, not only is the surrounding geology well–known

and the results of interest are localized in small regions, but also they allow for better

error analysis. Uncertainty quantification is very valuable for building knowledge but

is not commonly done due to the computational challenge of exploring the range of

all possible models that could fit the data. I exploit the structure of the 4D problem

and propose the use of a focused modeling technique for a fast Metropolis–Hastings
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inversion. The proposed framework calculates time–lapse uncertainty quantification

in a targeted way that is computationally feasible. Having the ground truth 4D prob-

ability distributions, I propose a local 4D Hamiltonian Monte Carlo (HMC) — a more

advanced uncertainty quantification technique — that can handle higher dimension-

alities while offering faster convergence.
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Chapter 1

Introduction

Seismic material properties (e.g. P–wave velocity) describe how waves travel through

the Earth’s subsurface. Over the cycle of a reservoir’s life, hydrocarbon production

processes, such as fluid extraction and injection, may introduce changes to pore fluids,

pore pressure, and effective stress in the reservoir. Consequently, seismic properties

of the reservoir will change too [91] [164]. For instance, Gassmann’s equations [43] are

the most widely used ones to infer seismic velocity changes from different pore fluid

saturations in a reservoir. Changes in pore pressure lead to changes in the effective

stress field [150] of a reservoir and its surrounding rocks [154]. As a consequence, the

stiffness of the rock matrix is modified, resulting in opening and closing cracks, which

then affects the seismic velocity. In some cases, a steep decline in the pore pressure

can even lead to reservoir compaction and overburden subsidence [45]. This causes

changes in seismic velocity and layer thickness, which thenceforth alter the seismic

travel times. All of these actions, indicate that there is a complicated relationship

between the seismic properties and the physical processes that take place within a

reservoir. Time–lapse seismology aims to estimate these changes and relate them to
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physical changes within a reservoir. Geophysical monitoring of a reservoir allows for

estimation of the extraction efficiency and determination of remaining reserves.

When looking at time–lapse data, the differences that are typically used are those

of amplitude and time–shifts. For example, amplitude changes can be caused by new

structures in the target area or reflectivity differences at interfaces, while time–shifts

can be caused by physically shifted geologic boundaries or velocity perturbations along

the wave path. Understanding which of these two mechanisms control the changes

in the observed data is important to better estimate and interpret the time-lapse

changes. Traditional time–lapse analyses are conducted on full- or partial- stack data

[8] [72] [73] [153]. In cases of simple and thin reservoirs (i.e. reservoirs with only

two fluids) direct interpretation of amplitude changes in the full–stack data will be

adequate, whereas in cases of complicated reservoirs more attributes will be necessary

for an accurate analysis [39]. For example, time–shifts can sometimes constrain inter-

pretation of amplitude changes. Time–shifts are usually measured at an interface of

interest by summing all changes of traveltimes in the layers above; the derivative of

those time–shifts — the so–called time strain — can indicate relative velocity changes

[17]. In addition, Amplitude Variation with Offset (AVO) is commonly used in order

to separate fluid saturation from pressure effects [149].

However, most of these approaches do not look for the actual property changes

(i.e. P–wave velocity) but rather indicators of them. In addition, they rely on simple

model assumptions and high frequency approximations, which are far from realistic.

Ideally, one would like to use an approach that is based on the physics of the wave

equation, has no assumptions, and delivers higher resolution images (compared to

traveltime tomography and migration) such as Full Waveform Inversion (FWI). FWI

aims to deliver directly an Earth model (e.g. P–wave velocity) of the subsurface by
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iteratively trying to match synthetic seismograms that were generated solving wave

equations with observed data. Even though FWI was conceptualized in the 1980s [71]

[145], it is only recently that it has become a part of time–lapse seismological analysis.

In contrast with the traditional methods discussed above, FWI uses prestack data,

which means that the risk of potentially losing useful information is eliminated. 4D

FWI has seen already numerous applications both on synthetic [173] [84] [6] [173]

and real cases [118] [57] [172] [85]. Amongst the most popular 4D FWI workflows are

Parallel FWI [110], Sequential FWI [6], Double Difference FWI [167] [182], and Joint

FWI [84] [173] (in the context of this thesis, we will refer to the Joint FWI scheme

from [173] which is called Alternating FWI). Figure 1.1 (a)-(d) provide a flowchart

of how each methodology works.

1.1 Challenges and Contributions

Despite its numerous advantages, 4D FWI has its challenges too. First and foremost,

FWI is sensitive to initial model inaccuracies and prone to cycle–skipping. If, for

example, the synthetic data generated on a starting model are more than half a

wavelength apart from the observed data, FWI will get trapped into a local minima

which will lead to erroneous estimates of the Earth’s property changes [161]. Figure 1.2

(a) shows an erroneous model recovery for a horizontal layered model, when the

velocities in the starting model have been perturbed by 5%. One way to mitigate the

cycle–skipping issue would be to consider the low frequency component of the data;

which in practise would require very large offsets. Typically 4D seismic monitoring

involves looking for changes in relatively small regions, where a large offset survey

would be expensive. A small offset survey, however, cannot record the diving rays

necessary for FWI to successfully recover velocity changes at depth as it can be seen
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Figure 1.1: Flowcharts of all gradient–based 4D Full–Waveform Inversion approaches
used in this thesis: (a) Parallel FWI (PFWI), (b) Sequential FWI (SFWI), (c) Double–
Difference FWI (DDFWI), (d) Alternating FWI (AFWI), (e) Image Domain Wavefield
Tomography (IDWT), and (f) Dual–Domain FWI (DDWI). The abbreviations noted
in the above flowcharts are: Base: observed baseline data, Monitor: observed mon-
itor data, Vinit: initial velocity model, V0: inverted baseline velocity model, V1:
inverted monitor velocity model, ∆V: time–lapse velocity change, bsyn: synthetic
data generated on V0, I0: baseline migrated image, and I1: monitor migrated image.
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in Figure 1.2 (b).

In addition, it is essential that the baseline and monitoring surveys are repeatable.

This includes but is not limited to the positions of sources/receivers, type of source,

environmental conditions and noise in the data. Since the actual 4D changes are rela-

tively small, any data differences generated by non–repeatable conditions, can either

saturate the actual 4D changes or be misinterpreted as a property change too. Some

authors have suggested using a model regularization which basically smooths the re-

sult [178] [132], however regularization risks delivering unrealistic results [134]. While

FWI could potentially fail to solve the kinematics of the wave equation properly (due

to the issues mentioned above), image domain methods, such as the one in Figure 1.1

(f), can overcome that while also retrieving the low-wavenumber components of the

velocity model. Ideally one would want a 4D inversion strategy that can handle com-

plex 4D changes while also being immune to most of FWI’s challenges. In Chapter

3, we tackle this by proposing a Dual–Domain Wavefield Inversion (DDWI) scheme

(Figure 1.1 (f)). Our new objective function combines data and image domain terms,

while the velocity model updates are constrained using both terms simultaneously.

A major challenge of gradient–based FWI, as also in all geophysical inverse prob-

lems, is the non–uniqueness of the solution [7]. Since FWI is a highly nonlinear

problem [26], any locally derived approximations of the objective function will lead to

an underestimation of the underlying uncertainty and overconfidence in the best–fit

model. 4D FWI depends on a mathematical model of the underlying physics, and any

mathematical model carries uncertainty for various reasons. This begs the question:

how well do we know what we think we know? In Chapter 2, we investigate the per-

formances of Parallel FWI, Double Difference FWI and Alternating FWI (Figure 1.1

(a)(c)(d)) in the presence of model uncertainties. To do so, we generate different
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Figure 1.2: (a) The degraded FWI result when there is a 5% amplitude error in the
smooth starting model. (b) When the target of interest is deep (e.g. deeper than
1 km), and the available acquisition does not have large offsets, diving waves (the red
lines in this figure), that mainly FWI relies on, do not penetrate the target of interest.

model noise realizations (one could think of it as adding heterogeneity to the models)

and computed different statistical estimators. While this analysis provides valuable

information for the effectiveness of each method, it is somewhat adhoc in terms of

its statistical robustness. In addition, one could argue that this uncertainty analysis

is mainly local, due to the local optimization solution of the objective function. If

the objective function is smooth and has a single minimum, approaches like this one,

could potentially deliver a meaningful measure of the global uncertainty. However, in

cases where the objective function is abrupt and highly multimodal, finding a global

minimum can be extremely onerous, and hence one can only rely on local measures of

uncertainty. This work builds the preceeding steps and motivation for the following

chapters by highlighting the need of a rigorous uncertainty quantification framework.

Uncertainty quantification (UQ) is valuable for building knowledge but is not com-

monly done due to the computational challenge of exploring the range of all possible
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Figure 1.4: Illustration of the proposed 4D Metropolis–Hastings FWI from the ob-
served data residual δd to distributions of quantities of interest.

Conveying an interpretation of the uncertainty in a velocity model can be challenging

and a UQ framework, such as our proposed one in Figure 1.4, is likely the most useful

when asking a specific question, such as how well known is the 4D velocity change in

terms of its magnitude or its extent.

There are a variety of UQ approaches that one could choose from depending on the

nature of the problem; evaluation of the forward solver, number of Degrees of Free-

dom (DoF), and dimensionality of the parameter space [143]. Sampling–based UQ

methods, such as random–walk and Adaptive Metropolis–Hastings, tend to be slow

in space exploration; however, they do not make assumptions about the distributions

of the underlying uncertainty. This means that these distributions can be any type,

including non–Gaussian and multimodal. This characteristic is particularly useful in

seismic imaging, where the structure of model distributions is unknown; therefore,

vigorous and straightforward algorithms such as Metropolis–Hastings are optimal to

ground–truth these distributions. In Chapter 4, we choose Metropolis–Hastings

(both random–walk and adaptive) to perform a 4D Full–Wavefield Bayesian Inver-

sion. The main difference between random–walk and adaptive Metropolis–Hastings

resides in how they generate the proposal distribution and hence how they sample the

probability space. At each iteration of a random–walk Metropolis–Hastings algorithm

a new sample is drawn from a Gaussian proposal distribution centred at the previous
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sample with a covariance C. This covariance C typically stays fixed for all iterations

of the algorithm. The adaptive Metropolis–Hastings, on the other hand, updates this

covariance C at each iteration using the history of the models already sampled in the

chain. By doing so, the probability space can be sampled more efficiently allowing

as such for a faster convergence compared to the random–walk Metropolis–Hastings.

Metropolis–Hastings algorithms typically require far fewer degrees of freedom, 10s to

100s at most [51] [37], than the thousands used to describe even a simple velocity

model. To provide a meaningful estimate of the velocity model distribution using

Metropolis–Hastings we commonly assume that either the underlying distributions

are Gaussian or parameter space needs to be reduced. Assuming that the velocity

model distributions are Gaussian, basically means that we linearize the wave equation,

which is not always a good approximation for our problem. To allow for nonlinearity

in the model parameters and non-Gaussian distributions of models, the number of

DoF needs to be reduced considerably. Since the nature of the time–lapse change is

quite localized, simulations of wavefield propagation through the entire Earth model

would be wasteful. In this thesis, we exploit this characteristic and use an exact

acoustic local solver developed by [169]. By doing so, not only do we reduce the

number of DoF, but we can also have very fast wavefield computations, an essen-

tial component for the hundreds of thousands realizations that are needed in order

to allow the Metropolis–Hastings algorithm to converge. While the employment of

the local domain significantly reduces the number of model parameters, it is still not

enough. Additional model parameterizations need to be adopted (such as the one

in Chapter 4), that not only respect the physics of the inverse problem, but also

accurately describe the 4D velocity model with far fewer parameters.
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Figure 1.5: The curse of dimensionality: the number of configurations that need to
be assessed grows exponentially as the underlying space dimensionality increases [12].
For example, if the number of data points that are needed to evaluate a function in
a 1-dimensional space are 7, when we move to a 2-dimensional space the number of
these data points increase to 72, and in a 3-dimensional space to 73 respectively.

However, not all reduced parameterization approaches allow for high fidelity mod-

els. In addition, Metropolis–Hastings suffers from the so–called “curse of dimension-

ality”. In simple words, this means that as the number of dimensions grows, the

features representing these dimensions grow exponentially. Figure 1.5 aims to provide

a schematic understanding of dimensionality. If seven equally spaced features (cubes

in Figure 1.5) are needed to describe a function in 1–dimension, with the addition

of another dimension, we need 72 = 49 (to keep the same space characteristic and

fill the whole space). In n-dimensions, the number of these features will be 7n. The

effect of the increasing dimensionality eventually requires smaller step sizes in the

Metropolis–Hastings proposals, which leads to far slower space exploration and sub-

sequent correlated samples. Thus, obviously, the road ahead would be having a time–

lapse nonlinear Full–Wavefield methodology that has no restrictions on the number

of variables describing the 4D model and can provide uncertainty information. Hy-

brid Monte Carlo (as it was first introduced by [32] in a quantum chromodynamics

study) or Hamiltonian Monte Carlo (HMC) as it is now most commonly known has
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seen a widespread application in numerous research fields such as neural networks [99]

and molecular simulations [33] to name a few. However, it is not until recent years

that it has been applied in geophysical inverse problems [133] [44] [27]. HMC allows

for faster convergence by doing long–distance moves in the parameter space while

also maintaining high acceptance rates. Hamiltonian Monte Carlo (HMC) explores a

target distribution by incorporating information about its differential geometry into

the search–proposal process. While adjoint state methods [109] typically allow for

fast gradient calculations (when compared to direct finite differencing for example),

they could still be a big computational burden given large models and thousands of

iterations. To address this challenge, we utilize local domains (since 4D changes are

localized) that considerably reduce the computational cost of a wavefield simulation,

and generate a robust 4D HMC framework. A summary of strengths and shortfalls

of our developed frameworks can be found in Table 1.1.

Although in this thesis we explore sampling–based UQ methods, there are non–

sampling techniques available too. For example, one can find alternative methods

that are based on approximations of the likelihood function such as the Polynomial

Chaos Expansion (PCE) method [29] [35], where the algorithm tries to approximate

the distributions of the uncertain parameters using a set of polynomials, resulting in

computational cost reduction. However, PCE is commonly limited to low dimensional

spaces. Another approach would be using Data Assimilation approaches or Ensemble

Kalman Filters [38], which try to characterize a dynamic system over time. Such

approaches solve inverse problems with a large number of DoFs while also providing

an estimate of uncertainty through posterior convariance. Thus far, they have been

applied to weather forecasting, oceanography and climatology, as well as geophysical

imaging [98] [127] [74] [152]. In addition, computation and storage of the Hessian

matrix, potentially through the help of machine learning algorithms or using local
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Gradient–based FWI MH FWI HMC FWI

Number of DoF: 103 − 106 1− 102 103 − 106

Number of iterations: ≤ 50 104 − 106 103 − 105

Computational Expense: Moderate Low High
Robust to local minima: No Yes Yes

Independent of Initial model: No Yes Yes
Uncertainty quantification: No Yes Yes

Table 1.1: Performance and trade–offs comparison of the three solvers that are used
in this thesis: Gradient–based, Metropolis–Hastings, and Hamiltonian Monte Carlo
4D Full–Waveform Inversion.

domains as in this thesis, can also be used as an uncertainty indicator when the

solution of the minimization problem is close to the global minimum.

1.2 Thesis Outline

Here, we will briefly discuss the content of each chapter of this thesis. The order of

the chapters reflects the chronological order that each research project took place.

To get a first understanding of how different gradient–based 4D FWI methods

work and extract simple measures of uncertainty, in Chapter 2 we compare Parallel,

Double Difference, and Alternating FWI on two simple numerical examples; one of

two horizontal reflectors and a five layer model. Although the considered models

are trivial, we are aiming at broad understanding of the underlying uncertainty. In

particular, we are interested in understanding how errors in the model are translated

into errors in the final image, and thus in the interpretation of those images. To

introduce the model errors, we add correlated Gaussian noise to either velocity or

slowness models. Visualizing and interpreting the conveying uncertainty could be

challenging, and hence we look at distributions of different spatial characteristics,

such as the area of the 4D change for example. Even though we were limited to
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test only limited number of realizations (compared to what is typically done in UQ

methods), we notice that for the particular numerical examples all three methods

perform reasonably well. In addition, we found that when adding noise to the velocity,

rather than to the squared slowness, we get significantly poorer recovered images. This

is likely because the wave equation depends linearly on the squared slowness but non

linearly on the velocity, resulting in a deterioration in the recovered models in the

latter case.

In Chapter 3, we address some of the limitations of conventional 4D FWI, such as

the need of large offsets, and accurate starting models, by proposing a Dual–Domain

Waveform Inversion (DDWI) technique. The new hybrid objective function nicely

combines information from the diving waves in the data-domain term with informa-

tion from the reflected waves in the image-domain term. Our framework can handle

complicated 4D changes without resorting to manual interventions in either data or

image domain. At each iteration, we update the velocity model using constraints

from both terms simultaneously. An essential aspect of this new hybrid methodology

is that the image-domain constraint is not relaxed during the inversion, meaning that

the inversion cannot deviate from the geologic prior. This characteristic is beneficial

in cases where the starting model is not in the vicinity of the true model. We test our

algorithm on a variety of synthetic models of increasing complexity and find that it

outperforms traditional FWI or image domain inversions.

In Chapter 4 we develop a computationally feasible framework that enables time-

lapse uncertainty quantification in a targeted way (Figure 1.4). We achieve fast wave-

field simulations by exploiting the structure of the 4D problem and use a local solver

to perform an inversion focussed on a specific sub-domain of interest within a larger
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model. We add random noise to our data and we want to answer UQ questions re-

lated to time–lapse change, such as the magnitude of the change or its spatial extent.

While the added measurement noise is Gaussian, we do not assume a specific type

of distribution for the posterior. We derive a 4D Bayesian scheme that only depends

on time–lapse changes both in terms of models and data. One key assumption of our

derivation is that the posterior calculation is independent of the background model;

we address this assumption both analytically and numerically. To reduce the number

of variables describing the 4D velocity model, we use image compression techniques,

where the model is expressed with a set of coefficients. We apply our framework to

and justify its success with both single and multiple DoF examples.

Metropolis Hastings (MH) is typically used to ground truth probability distribu-

tions, which is particularly useful in seismic imaging where the distributions of most

structures of interest are not well known. However, MH tends to be less efficient and

slow to converge. Building upon our work on 4D–MH, in Chapter 5, we focus on

more advanced uncertainty quantification methods, such as Hamiltonian Monte Carlo

(HMC), which can handle higher dimensions while providing faster convergence. Ex-

tending our framework to a method that can handle high dimensional models allows

us to more accurately model the subsurface. HMC requires the gradient calculation

of the likelihood function, which is computationally feasible when it is computed in a

local domain using adjoint state methods. We first provide a proof of principle that

HMC can be used for a probabilistic 4D inversion by demonstrating the algorithm on

low dimensional examples where one can easily visualize aspects of the algorithm, such

as trajectories in phase space. We then focus on a significantly higher dimensional

problem by inverting for the full local domain.

In Chapter 6 we summarize our innovations and discuss potential improvements
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and future directions.



Chapter 2

A statistical comparison of three

4D Full-Waveform Inversion

schemes

2.1 Summary

Multiple seismic data sets are often recorded to monitor changes in Earth properties.

To image these changes, several different 4D Full Waveform Inversion (FWI) schemes

have been successfully applied over the past decade. We compare three different

4D FWI schemes on two simple numerical examples to quantify how each method

performs. To do this, we create correlated Gaussian noise realizations and add them

to our models to determine how errors in the models are translated to errors in the final

images. We computed spatial characteristics of the recovered models and compare the

performance of the different 4D FWI schemes. Our results indicate that while there

are minor differences between the different proposed methods all perform reasonably
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well for this type of noise in these simple models. The methods that specifically

target 4D changes do result in fewer artifacts outside the region of true change, but

all methods recover the true change with similar accuracy.

2.2 Introduction

During hydrocarbon production changes occur in the reservoir geometry and pore fluid

properties. Geophysical monitoring of these changes allows for the estimation of the

extraction efficiency and determination of the remaining reserves [103]. Time-lapse

(4D) seismic is the most commonly used technique for geophysical monitoring. In 4D

seismic, differences between multiple surveys at the same site reveal changes in the

reservoir. The first survey acquired is called the baseline survey and all subsequent

surveys are called monitor surveys [79]. Results from studies using Full Waveform

Inversion (FWI) to recover 4D changes have been encouraging thus far [6]. Like all

inversion methods, the objective of FWI is to deliver a velocity model of the subsurface

by iteratively matching predicted and observed seismic data [145] [161]. FWI can

be extended to the time-lapse case successfully, however artifacts may arise due to

the non linearity of the inverse problem and the non-repeatability of the surveys. To

overcome this challenge different FWI approaches have been developed and used [167]

[182] [171] [173] [84]. Parallel, Double Difference, and Alternating FWI are used in

this study and they will be explained in more detail in the following section. Since 4D

monitoring involves looking for small changes in localized regions, understanding the

uncertainty in the measurement of those changes is key. For this study we use two

different numerical examples: one of two horizontal reflectors and a five layer model.

We then try to understand the uncertainty in the recovered changes by comparing

the performances of the three methods. To do this, we introduce coherent noise and
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observe how errors in the models propagate to the final image.

Although we consider simple models here, we are aiming at a more comprehensive

understanding of uncertainty. Characterizing the uncertainty pixel-by-pixel in a large

model is not computationally feasible and it is not clear that doing so would help in

the interpretation due to the volume of information generated. We focus instead on

the idea of characterizing the uncertainty of key elements of the image. As a first step

towards this goal, we estimate some parameters of the image which we refer to as

spatial characteristics, and we explore how are recovered by different FWI methods.

2.3 Theory

The most commonly used objective function in FWI is a least squares measure:

J(m) =
∑

xs

||F (m, xs)− d(xs)||22, (2.1)

where m is the model, usually 1
c2

where c is the velocity, d is the observed data and

F is the forward modeling operator. The extension of FWI to the 4D case can be

straight forward or complicated in a number of ways. In this section, we describe the

methods compared in this paper.

The first method we explore is Parallel FWI. This method is the most straightfor-

ward 4D extension of FWI. In this scheme, we perform FWI runs independently on

both baseline,

J(m0) =
∑

xs

||F (m0, xs)− d0(xs)||22, (2.2)

and monitor,

J(m1) =
∑

xs

||F (m1, xs)− d1(xs)||22. (2.3)
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The difference between the two recovered models illuminates the areas of the time-

lapse changes. Even though PFWI is easy to apply, it is also very naive considering the

complexity of the problem. In realistic scenarios, there is usually noise in the data from

different origins such as equipment and environment. For a successful 4D analysis, the

surveys need to be almost perfectly repeatable. In a standard marine environment for

example, non–repeatability and noise can arise from acquisition geometry mismatch,

seasonal water velocity and salinity changes, overburden changes, and source wavelet

inconsistencies. Therefore, noise from any of these sources is usually different between

the two sets of data. When we are solving for the successive linearized problem, we

can end up in different local minima, in which case subtracting the two results leaves

artefacts that are not related to the true 4D change. In order to overcome those

challenges different schemes have been developed. One of those schemes, even though

it is not studied in this chapter, is Sequential FWI. In Sequential FWI (SFWI), we

first perform FWI runs on the baseline model given a smooth initial model minit to

recover a baseline velocity model. We then use the recovered m0 as an initial model

for the monitor model inversion. The final 4D signal is computed by subtracting the

two models. If the recovered baseline velocity model is good, SFWI provides fewer

artifacts in the time-lapse recovery than PFWI. However, if the recovered baseline

model is not good, in the sense of converging to the wrong local minima, then this

wrong local minima remains in the recovered monitor model. This will lead to FWI

updating the model in areas other than the 4D change.

The second method we compare is Double Difference FWI (DDFWI). Double

Difference FWI is another FWI extension that is often utilized for its robustness [31]

[171] [175] [167], particularly to different surveys falling into different local minima.

The concept was first introduced to locate earthquakes’ hypocenters [162] and in

recent decades has been extensively used in 4D imaging. The method is based on the
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sequential approach with an extra step between the two inversions. Similar to SFWI,

we first invert for the baseline model given a smooth initial model minit. We then

take the inverted baseline model m̂0 and generate synthetic data, which we call bsyn.

Then, we add bsyn to the data difference to create the so–called composite data dcomp

dcomp = bsyn + (d1 − d0), (2.4)

where d1 and d0 are the monitor and baseline observed data respectively. Then, we

perform FWI runs for the monitor model, starting from the baseline inverted m̂0, but

we use dcomp rather than d1. The model to be minimized can be expressed as

J(m1) =
∑

xs

||F (m1, xs)− dcomp(xs)||22, (2.5)

=
∑

xs

||F (m1, xs)− (bsyn(xs) + (d1(xs)− d0(xs)))||22, (2.6)

=
∑

xs

||(F (m1, xs)− bsyn(xs)) + (d1(xs)− d0(xs))||22, (2.7)

=
∑

xs

||(F (m1, xs)− F (m0; xs)) + (d1(xs)− d0(xs))||22. (2.8)

The two differences in equation (2.8) is the reason why this method is called Double

Difference FWI. In this way, DDFWI is more robust with respect to the starting model

since the only signal in the composite data that is not explained by the starting model

is the 4D signal. However, due to the data subtraction (equation 2.8) there is a strong

dependence on the acquisition geometry of the surveys; a scenario that is not optimal

in real cases.

The third method we study is Alternating FWI (AFWI). This method attempts

to both mitigate the reliance on perfectly repeatable surveys and give us a measure of
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uncertainty [173]. To do this, a set of weights, β, are calculated from the differences

in how the baseline and monitor models converge. More precisely, we first perform

FWI runs on the baseline data for n number of iterations giving an update. We then

use this update to perform n FWI iterations on the monitor data until we get a new

update. We keep alternating — hence the name of the method — between the two

datasets for multiple times. Once we have all these model updates, we can calculate

β by

β =
∑

i

(1− sgn[(mi−1 −mi)(mi+1 −mi)])|mi+1 −mi|. (2.9)

This set of weights β can be thought of as a confidence map of changes that highlights

areas that have the highest probability of change. This is possible because β is derived

from the convergence curves of the model parameters (equation 2.9). In areas with

no time-lapse changes β will be small, whereas at places where there are time-lapse

changes, β will be big. β is then used as a regularization parameter to constrain

the final joint inversion for the change in the material properties. The models to be

minimized in this case are

J(m0,m1) =
∑

xs

||F (m0, xs)− d0(xs)||22 +
∑

xs

||F (m1, xs)− d1(xs)||22+ (2.10)

1

2

∥
∥
∥
∥

m0 −m1

β

∥
∥
∥
∥

2

,

where m0 and d0 are the baseline model and data, and m1 and d1 are the monitor

model and data respectively. In the next section, we describe the two numerical

examples and the spatial characteristics calculation for the respective examples. We

then compare the recovered spatial characteristics for the three methods on two simple

models.
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Figure 2.1: Horizontal reflectors example: the true noisy baseline model (a) and the
true noisy monitor model (b) for one of the noise realizations.

2.4 Numerical Examples

2.4.1 2D Horizontal Reflectors

For the first example we use a simple model with a homogeneous background and

two horizontal reflectors. All of our calculations are done with the PySit package [56].

To introduce a change between baseline and monitor models we shift the position

of the top reflector [65]. We generate one hundred different realizations of Gaussian

distributed random correlated noise, with a correlation length that is bigger in the

x-direction than in the z-direction. We then scale these random distributions so that

they have the same average velocity as the true model and so that we are adding a

zero-mean random field to the squared slowness. Specifically, we take the normalized

perturbations (normPert) and scale them via:

velRan =
velAve√

1 + pertAmpl ∗ normPert, (2.11)
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Figure 2.3: Simple schematic illustration showing how we compute the distance ∆z

between the recovered reflectors.

the recovered distances over the entire image to obtain an average ∆z for a particular

image. Figure 2.4 shows the histograms of all the recovered ∆z for each of the FWI

schemes together with their calculated standard deviations.

The recovered ∆z from all three histograms are approximately normally distributed

with most of the results being concentrated around the ∆z = 16, which is the true

value. In order to measure the spread of the values of ∆z, we compute their standard

deviationa via

Σ =

√
√
√
√ 1

N

N∑

i=1

(∆zi −∆z)2, (2.12)

where N = 100 is the number of realizations, ∆zi represents each value in the retrieved

histograms, and ∆z is the mean value of each histogram. Even though the deviations

in Figure 2.4 are sometimes large, none of them are larger than 1 from the true ∆z. It

is important to mention that defining an accurate picking window is important. In this

particular case a larger window allows more artifacts to be included in the calculation

of ∆z leading to less reliable results in terms of higher standard deviations.
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Figure 2.4: Left: Histograms of the ∆z of the recovered time-lapse changes from the
three FWI schemes. Right: the corresponding standard deviations.



26

2.4.2 Layered Model

We use a five layer model to incrementally increase the complexity of the model.

The thickness of the middle layer is increased from baseline to monitor introducing

a velocity perturbation of magnitude 0.5 km/s and a change in thickness of half the

layer thickness. The initial model for the inversion was created by applying a Gaussian

smoothing filtering with a σ of 10 to the true baseline model (Figure 2.5). To see

how random noise affects this model, we consider two cases. In case 1 we calculate

the perturbed velocity model as in equation 2.11 by applying zero-mean perturbations

around the slowness squared. In case 2 we add the normalized correlated noise directly

to the velocity instead of the slowness.

We create fifty noise realizations and add them to the true models. Once again,

we apply all three 4D FWI approaches to estimate the time-lapse changes (Figure

2.6). Due to the different nature of the time-lapse change in this experiment, the

spatial characteristic we are interested in is the area of the recovered changes. To

compare the different methods, we compute the area of the changed region. To do

this, we define a target velocity change, we use ±30% of the true change, and compute

the number of pixels within a depth dz, that are within our velocity range, giving us

an estimate of the area of the recovered change. Note that this calculation does not

consider any lateral-discontinuities that might be present in the recovery of the layer.

The true change has an area of 6.3 m2. For comparison we performed the 4D

FWI schemes on the noise free case. The resulting area for parallel FWI is 3.76 m2,

for DDFWI 4.16 m2, and for AFWI 3.7 m2. To be able to compare noisy and noise

free cases instead of plotting the histograms of areas, we plot the deviations from the

areas in the noise free case, in other words we normalize the results of each method

by the recovered area in the noise free case for that method. We calculate the area





28

both within the depth range dz and throughout the entire model. The area within

dz gives us a measure of how well each method recovers the true change and the

calculated area within the entire domain gives us a measure of how many artifacts

are introduced into the recovered change image. Figure 2.7 shows the histograms of

the area deviations from the case 1 noise in the depth dz on the left and throughout

the total depth on the right. In the depth dz all three methods perform well with

the peaks of the histograms being near 1 as expected. Parallel FWI has the flattest

distribution indicating that it is the method with the least precision in recovering the

final model. Of course extremes are also present in the other two cases, but they are

fewer and the distributions are thus a bit sharper around the optimal recovered area.

When we are looking at the whole depth, we are letting all the potential artifacts be

included in our calculation. An overestimation is therefore expected. DDFWI and

AFWI perform better compared to the parallel FWI, meaning they are more effective

at suppressing random noise and artifacts.

For the case 2 noise we do not scale the normalized correlated noise and we are thus

adding higher amplitude noise, which translates into a higher noise level in our final

images. Therefore, we extend the velocity range we consider to be a correct recovery

by a factor of 2. Figure 2.8 shows the resulting histograms of the area deviations.

All of the histograms are broader indicating that the accuracy of all of the methods

is diminished. This is to be expected as adding noise to the velocity instead of the

squared slowness introduces a more complicated error because the wave equation is

linear in squared slowness but non-linear in velocity. Both AFWI and DDFWI clearly

outperform parallel FWI in this case, as evidenced by their significantly narrower

distributions with fewer outliers particularly when comparing areas within the region

of interest.
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2.5 Conclusions

In this chapter we compared three 4D FWI approaches to evaluate their relative per-

formance in a statistical way. We used two simple numerical examples, one with

two horizontal reflectors in a homogeneous background and a five layer model. We

added different realizations of correlated Gaussian random noise to our models, and

we calculated spatial characteristics in the recovered images. In the two horizontal

reflector example we calculated the distance between the two recovered reflectors in

the time-lapse change. The histograms are approximately normally distributed and

the standard deviations show similarly good performance for all three FWI methods.

In the five layer model we calculated the area of the time-lapse change in the final

image for two different types of noise. We found that when adding noise to the veloc-

ity, rather than to the squared slowness, we get significantly poorer recovered images.

This is likely because the wave equation depends linearly on the squared slowness but

non–linearly on the velocity, resulting in a deterioration in the recovered models in

the latter case. This observation could be linked to the smaller phase variation when

considering slowness perturbations rather than velocity perturbations as shown by

the homogenization theory (e.g. [24]). The occured deterioration of results primar-

ily flattens the associated histograms and is particularly noticeable for the parallel

FWI case. Our results also indicate that both AFWI and DDFWI are successful at

attenuating artifacts outside of the region of true change. Last but not least, when

comparing different methodologies for FWI it is important to mention how their abil-

ity to fit the data is affected by the acquisition geometry. Repeatability of seismic

surveys is a key factor for a successful time–lapse analysis. Data differences caused

by non–repeatability sometimes can be stronger than the actual time–lapse changes,
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leading to a potential break down for these methods. Some of the repeatability is-

sues, such as source wavelets discrepancies and survey geometry, can be mitigated

with pre–processing. However, changes such as overburden changes, are much harder

to be accounted for. In general, both Parallel and Double–Difference FWI are more

sensitive to non–repeatability compared to Alternating FWI. This is because AFWI

tries to highlight time–lapse model changes rather time–lapse signal changes.
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Chapter 3

Combining reflection and

transmission information in

time-lapse velocity inversion: A

new hybrid approach

3.1 Summary

Full-Waveform Inversion (FWI) uses the information of the full wavefield to deliver

high resolution images of the subsurface. Conventional time-lapse FWI uses primar-

ily the transmitted component (diving waves) of the wavefield to reconstruct the low

wavenumber component of the velocity model. This requires large offset surveys and

low frequency data. When the target of interest is deep, diving waves cannot reach

the target and FWI will be dominated by the reflected component of the wavefield.

Consequently, the retrieved model resembles a least-squares migration instead of a
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velocity model. Image Domain methods, especially Image Domain Wavefield Tomog-

raphy (IDWT), have been developed to obtain a model of time-lapse velocity changes

in deeper targets using reflected waves. The method is able to recover models of

deep targets. However, it also tends to obtain smeared time-lapse velocity changes.

We present a form of time-lapse waveform inversion that we call Dual Domain time-

lapse Waveform Inversion (DDWI), whose objective function joins FWI and IDWT,

combining information from the diving waves in the data-domain FWI term with

information from the reflected waves in the image-domain IDWT term. During the

non-linear inversion, the velocity model is updated using constraints from both terms

simultaneously. Similar to sequential time-lapse waveform inversion we start the time-

lapse inversion from a baseline model recovered with FWI. We test DDWI on a variety

of synthetic models of increasing complexity and find that it can recover time-lapse

velocity changes more accurately than when both methods are used independently or

sequentially.

3.2 Introduction

During hydrocarbon production, changes occur in the reservoir geometry and pore

fluid properties. Monitoring these changes allows us to estimate the extraction ef-

ficiency and determine remaining reserves. Geophysical monitoring of an oil field

provides valuable information about these changes during production, particularly

offshore where well control is sparse and drilling is expensive. The technique most

commonly used in monitoring is time-lapse seismic. Time-lapse (4D) seismic is the

acquisition and analysis of multiple seismic surveys over the same site over time [79].

The first survey acquired is called the baseline survey and subsequent surveys are

called monitor surveys. Differences between surveys reveal changes in the reservoir
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and overburden. Time-lapse changes can result from amplitude changes and/or time

shifts. Amplitude changes can be caused by new structures in the target area or reflec-

tivity differences at interfaces. Time shifts are usually the result of physically shifted

geological boundaries or velocity perturbations along the wave path. Understanding

which of these two mechanisms control the observed time shifts is important to better

estimate and interpret the time-lapse changes.

Most 4D analyses are conducted on full- or partial-stack data [8] [72] [73] [153],

where a lot of information and sometimes 4D signal has been lost. To mitigate this

potential loss of 4D signal in stacking, a variety of pre-stack methods have been

proposed. [34] propose a ray based tomography without the 1D approximation of

seismic energy propagation resulting in more accurate seismic energy modeling and

thus more accurate inversion. [102] address the repeatability issue of 4D monitoring

by using a cost efficient subsampled acquisition and they propose a joint recovery

scheme that is based on the curvelet coefficients of the pre-stack 4D vintages. [139]

assess the effect of 4D seismic noise in the amplitude and impedance domain. They

conclude that the amplitude domain is more robust and can be used for quantifying

reservoir fluid properties. [88] apply a frequency based local domain solver to Double

Difference FWI and observe a decrease in both computational cost and number of

iterations. [137] address the repeatability issue of time-lapse surveys by applying an

interferometric least-squares migration on both synthetic and field data.

FWI is built upon original ideas from [145] to estimate a velocity model of the

subsurface by iteratively matching modelled and recorded data; see [161] for a recent

overview. FWI can be extended to the time-lapse case successfully and results from

studies using Full Waveform Inversion (FWI) to recover 4D changes have been encour-

aging thus far. [167] successfully apply a differential waveform inversion in crosswell
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seismic data to monitor a gas reservoir under production. [182] utilize and compare

three elastic 4D FWI schemes on OBC data. [129] apply a broadband FWI in a

parallel and sequential scheme and compare their robustness on a synthetic example

based on a producing field in West Africa. [173] introduce a regularized joint FWI

where the regularization parameters are obtained from the convergence curves of the

model parameters by fitting baseline and monitor datasets in an alternating manner.

[84] introduce a simultaneous 4D FWI with a model-difference regularization and a

cross-updating method and compare their performances with other 4D FWI tech-

niques on noisy synthetic data. [85] apply the TV-regularized simultaneous inversion

to the Genesis field in the Gulf of Mexico. [6] evaluate and compare three different

4D FWI schemes on noisy and noise free data and propose a target oriented imaging

and regularized FWI with the use of an a priori model. [57] compare the performance

of the standard parallel 4D FWI with their proposed common-model 4D FWI on the

Grane field in North Sea, and they observe more accuracy in the 4D recovery. [172]

apply Double Difference FWI on OBC data from the Valhall field in the North Sea.

[66] provide a statistical comparison of the performance of three 4D FWI schemes

on noisy models. [86] use a cascaded 4D FWI by choosing different regularization

penalties and achieve better recovery compared to the traditional parallel FWI.

For a successful application of FWI low frequency data and large offsets are re-

quired [138]. Typically 4D seismic monitoring involves looking for small changes in

localized regions, where a large offset survey would be expensive. A small offset survey,

on the other hand, cannot record the diving rays necessary for FWI to successfully

recover velocity changes at depth. Additionally, while FWI is robust in recovering

amplitude changes, it is often not able to solve the kinematics properly due to cy-

cle skipping issues and initial model inaccuracies. This is a problem when the 4D

change is primarily due to time shifts, because FWI tends to interpret the time shifts
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as an amplitude change, and therefore introduces a false 4D signal. Image Domain

methods are better at solving the kinematics of the wave equation and recovering

the low wavenumber components of the velocity model. [83] propose a layer strip-

ping approach in wave equation image difference tomography and they achieve rapid

convergence, with fewer local minima, and their method is less susceptible to cycle

skipping. [176] improve the accuracy and robustness of Differential Semblance Opti-

mization (DSO)— an implementation of image domain wavefield tomography — by

replacing the conventional penalty operator with one that compensates for uneven il-

lumination by measuring the illumination effects on space-lag extended images. [174]

propose IDWT specifically for the small-offset case, to recover velocity changes from

time shifts. In that study, time-shifts are translated into velocity changes using dy-

namic warping [53]. In other words, the migrated images of the baseline and monitor

data are calculated first, and then a warping function is applied to measure how much

one image is shifted from the other and translate that shift into a 4D velocity change.

The method is appealing in cases where there are acquisition limitations and survey

non-repeatability. In IDWT, we assume that the reflectors do not shift in depth dur-

ing the period of the time-lapse surveys. [174] show that the velocity changes are

smeared through the reflectors at the layer boundary that the anomaly is placed on

top of. Here, we use a mask that helps us recover a less smeared velocity change and

speeds convergence.

In real case scenarios, the 4D signal is a complicated combination of time shifts

and amplitude changes. This can result in decreased performance for both methods,

depending on the nature of the complication. This situation highlights the need for a

methodology that is able to handle these more complicated cases without having to

separate the two mechanisms of change nor needing to run different methods sequen-

tially for a more accurate estimation with less uncertainty. Several approaches have
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been proposed for velocity model building that incorporate both reflected and diving

wave information. [14] propose extending the velocity model along the time-shift τ

axis to make the modeling of large time shifts more efficient. This allows them to

develop an FWI approach that successfully recovers a velocity model from an inaccu-

rate starting model when both reflected and diving waves are recorded. [4] propose an

updated FWI objective function based on unwrapped phase attributes of the wave-

field and the misfit of the instantaneous traveltime between observed and modelled

data. They recover high resolution velocity models with less dependence on the initial

velocity model. [183] propose a Joint FWI based on conventional FWI and Reflection

Waveform Inversion (RWI) for more accurate velocity building using both diving and

reflected waves. [60] address the cycle-skipping issue of the traditional FWI with a

source-receiver extended FWI for better velocity model reconstruction. All of these

methods are designed to perform an accurate velocity model building.

In this study, we are interested in accurate 4D velocity change estimation and

therefore we address similar issues with a different approach. Our goal is to provide

a framework that can handle complicated 4D changes without resorting to manual

interventions in either FWI or IDWT. We therefore propose a Dual Domain Wavefield

Inversion (DDWI), where we perform FWI runs but add an image domain constraint.

To calculate the joint gradient we introduce a weight that defines the amount of

contribution from each domain. We use a sequential approach, where we first perform

FWI runs on the baseline data to estimate a baseline model, which we then use as

an input to DDWI. In this way, what we do is essentially to use IDWT to compute

a mask, which is then applied “softly” during the inversion. By “softly” we mean

that depending on the weights chosen on the two terms in the objective function the

influence of the image and FWI constraints can be adjusted, thus adjusting how far

the final result can stray from the locations of the mask.
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The paper is organized as follows. We first recall the theory of IDWT and explain

how we calculate the image domain mask. We then recall the conventional FWI and

introduce the theory of DDWI in this framework. In this study, we compute the joint

gradient with equal contributions from the data and image domains. We follow this

with a series of examples, in which we validate the robustness of the method compared

to typical 4D FWI schemes and IDWT both alone and followed by FWI. We conclude

with a discussion on the current limitations and potential future extensions of this

approach.

3.3 Image DomainWavefield Tomography (IDWT)

The aim of IDWT is to use short-offset data to exploit primarily kinematic changes

rather than amplitude changes. To focus on these kinematic changes, IDWT uses

an objective function that compares the migrated baseline and monitor images [174].

More precisely, we find the model by solving the following minimization problem

m̂ = argmin
m

{
∑

xs

||I1(m; x, z, xs)− I0(m0; x, z, xs)||22

}

, (3.1)

where I1 is the migrated image of the monitor data with the monitor velocity model,

I0 is the migrated image of the baseline data with the baseline velocity modelm0, xs is

the shot position, and m is the model (either velocity or squared slowness). By trying

to minimize equation 3.1 two problems arise: cycle skipping when the reflectors are

shifted by more than half of a wavelength resulting in an insufficient minimization of

the objective function and physical movement of reflectors when amplitude changes

are also present in the migrated images. To mitigate these issues, in IDWT we assume

that one image is a warped version of the other and make use of a warping function
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[53] to align the baseline and monitor images. We consider only vertical shifts since

horizontal shifts are usually less significant. With these assumptions, the monitor

image can be expressed as a vertically warped version of the baseline image. We

thus define the warping function w [53] as the solution to the following minimization

problem

ŵ(m|m0; x, z) = argmin
w

{
∑

xs

||I1(m; x, z, xs)− I0(m0; x, z + w(x, z), xs)||22

}

. (3.2)

The model m̂ from equation 3.1 can then alternatively be obtained as

m̂ = argmin
m
||ŵ(m|m0; x, z)||22, (3.3)

which replaces equation 3.1 as our objective function.

Choosing the right norm for a minimization problem is important. Full wavefield

problems are commonly formulated as an L2 norm. Other norms have also been

considered in the literature such as the L1 norm [146] [28] [20], the Huber criterion

[50], and the hybrid L1/L2 [22]. Here, we choose the L2 norm for the minimization of

the warping function in equation 3.3. The least squares norm is the correct norm for

optimization problems in which the true data residuals (those which would remain

even if the true model was known - i.e. the data error) form a Gaussian distribution.

According to the Central Limit Theorem, aggregation of independently sampled errors

will be Gaussian irrespective of the underlying distributions being sampled from.

Migration aggregates the noisy data over shots and offsets, and therefore the resulting

error distribution is quite likely to be Gaussian. There is no obvious compelling reason

to expect it to be any other distribution.

To calculate the gradient G of the IDWT objective function in equation 3.3 we
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use the adjoint state method (e.g. [109]) as was first done for the IDWT case in [174].

We summarize Yang’s derivations here. The gradient can be expressed as an inner

product of wavefields

GIDWT(x, z) = −
∑

xs

∫ T

t=0

(
∂2λs(x, z, t, xs)

∂t2
us(x, z, t, xs) +

∂2λr(x, z, t, xs)

∂t2
ur(x, z, t, xs))dt

︸ ︷︷ ︸

G

,

(3.4)

where G is the single source gradient, us(x, z, t, xs) and ur(x, z, t, xs) are the modeled

source and backpropagated receiver wavefields, and λs(x, z, t, xs) and λr(x, z, t, xs) are

the adjoint wavefields. The adjoint wavefields satisfy the wave equation

m
∂2λ(x, z, t)

∂t2
−∆λ(x, z, t) = d, (3.5)

where d are the adjoint sources

ds(x, z, t, xs) = α(x, z, xs)ur(x, z, t, xs), (3.6)

and

dr(x, z, t, xs) = α(x, z, xs)us(x, z, t, xs), (3.7)

where

α(x, z, xs) =

w(x, z, xs)
∂I0(x,z+w(x,z,xs),xs)

∂z

∂I0(x,z+w(x,z,xs),xs)
∂z

2 − ∂2I0(x,z+w(x,z,xs),xs)
∂z2

(I1(x, z, xs)− I0(x, z + w(x, z, xs), xs))
.

(3.8)

Here we take this one step further and use the recovered w to construct a mask
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to isolate the 4D change. We multiply the 4D gradient by a mask derived from

image shifts, thus restricting model updates to regions in which the two images are

misaligned. Following the ideas of [122] and [170] about the relationship between time

shifts and velocity changes, we relate the warping function to a fractional depth strain

φz(x, zj) as

w(x, zj) = ∆z

NZ∑

i=1

φz(x, zj), (3.9)

where zj is the discretized depth, ∆z is the depth discretization, and φz(x, zj) is the

unitless fractional depth strain. Inserting equation 3.9 into equation 3.2 we compute

the fractional depth strain by solving

φ̂z(m|m0; x, z) = argmin
φz

||I1(m; x, z)− I0(m; x, z +∆z

NZ∑

i=1

φz(x, zj))||22. (3.10)

Assuming that the waves propagate purely vertically, the fractional depth strain at

some depth in the subsurface is related to the fractional velocity strain (i.e. fractional

velocity change) in the overburden. Thus, equation 3.10 is a proxy for velocity change,

and therefore we use it to derive a mask for target-oriented time lapse inversion (Figure

3.1). At the 1st iteration the mask ψ is computed via

ψ1(xk, zi) =
1

4N2

N∑

l=−N

N∑

j=−N

|φz(xk+l, zi+j)| , (3.11)

where N is the total number of discretized nodes in each direction. For the following

n iterations, the mask is updated as

ψn(xk, zi) =
1

4N2

N∑

l=−N

N∑

j=−N

∣
∣
∣
∣

m1,n(xk+l, zi+j)−m0(xk+l, zi+j)

m0(xk+l, zi+j)

∣
∣
∣
∣
, (3.12)
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where m0 is the baseline velocity model and m1,n is the monitor velocity model up-

dated at iteration n.

Having estimated the warping function, we then use a moving average smoothing

via convolution with a boxcar function to smooth the absolute values in equations

3.11 and 3.12 and construct the final mask. In 1D this is expressed as

θn =
M∑

m=−M

|φ|n−mbm, (3.13)

where θn is the value of the mask at sample n, |φ|n−m is the absolute value of the

model parameters at sample n − m, bm is the value of the smoothing function at

sample m, and 2M + 1 is the length of the smoothing function.

To find a local minimum in equation 3.3 we use a non linear conjugate gradient

method [113] and we iteratively invert for the velocity c = 1√
m
. At each iteration the

model is updated via

mn+1 = mn + αnsn, (3.14)

where α is the step length and s is the search direction. To compute the search

direction s, we use the Polak-Ribiere formula [111]. For the first iteration, the search

direction is equal to the steepest descent direction, s1 = −G1. For the following n

iterations this direction is updated via

sn = −Gn + βnsn−1, (3.15)

where

βn =
GT

n (Gn −Gn−1)

GT
n−1Gn−1

, (3.16)

where Gn is the gradient at the nth iteration. See [108], [161], and [114] for the step
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length computation.

Thus far we have followed the same workflow that [174] proposed with the addition

of the 4D mask. Their workflow is based on pre-stack data, and therefore the vertical

shifts are computed individually for each of the partial images (from each shot). The

partial vertical shifts are then added to evaluate the objective function. Here we

propose a post-stack extension of this workflow, in which we first form the full image

and then compute the vertical shifts. We modify their workflow to:

1. given the baseline model m0, we create the baseline image I0,

2. for each shot xs migrate the monitor data with the modelm0 and get the monitor

image I1(x, z, xs),

3. sum over shots and get the full migration image I1(x, z),

4. use image warping to compute the vertical shifts w(x, z) between the images in

1 and 3,

5. evaluate the cost function (equation 3.3),

6. compute the adjoint source α(x, z),

7. using the post-stack adjoint source α(x, z) compute the adjoint wavefields λs,

λr and the partial gradient G(x, z, xs) for each shot xs,

8. sum over the partial gradients to get GIDWT (x, z) ,

9. calculate the search direction and step length to update the model,

10. remigrate the model with the new update and go to step 2.



45

(a)

0 1000 2000 3000 4000 5000

Horizontal Distance (m)

0

500

1000D
e

p
th

 (
m

)

-5

-4

-3

-2

-1

0

S
h

if
t 

(m
)

(b)

0 1000 2000 3000 4000 5000

Horizontal Distance (m)

0

500

1000D
e

p
th

 (
m

)

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 v

a
lu

e
Figure 3.1: (a)The warping function from Example 1 calculated for one shot at xs =
3000 m. (b) The mask computed from the warping function. The mask is updated at
each iteration, similar to the warping function.
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3.4 Sequential Full Waveform Inversion (SFWI)

The most commonly used objective function in FWI is a least squares measure, and

the recovered model is found by solving the following minimization problem:

m̂ = argmin
m

{
∑

xs

||F (m|minit; xs)− d(xs)||22

}

, (3.17)

wherem is the model, in this case we invert for velocity c = 1√
m
, d is the observed data,

F is the forward modeling operator, and xs is the shot position. Usually a smooth

initial model (minit) is used to create the predicted data, and the model is updated at

every iteration. To calculate the gradient of the objective function the adjoint state

method is used [109]. Therefore, the gradient is simply a cross-correlation between

the incident and the adjoint wavefields,

GFWI(x, z) = −
∑

xs

∫ T

t=0

[
∂2λ0(x, z, t, xs)

∂t2
u0(x, z, t, xs)

]

dt, (3.18)

where the adjoint wavefield is the residual wavefield backpropagated from the re-

ceivers. Similar to lDWT, we update the model using a non linear conjugate gradient

method [113].

We use the Sequential FWI (SFWI) 4D extension of FWI. In this approach, we

first perform FWI on the baseline model

m̂0 = argmin
m0

{
∑

xs

||F (m0|minit; xs)− d0(xs)||22

}

, (3.19)

given a smooth initial model minit to recover a baseline velocity model. We then use
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the recovered m0 as an initial model for the monitor model inversion,

m̂1 = argmin
m1

{
∑

xs

||F (m1|m0; xs)− d1(xs)||22

}

. (3.20)

The final 4D signal is computed by subtracting the two updates

dV =
1√
m̂1

− 1√
m̂0

. (3.21)

3.5 Dual Domain Waveform Inversion (DDWI)

In DDWI we combine diving wave information from FWI and reflection wave informa-

tion from the migrated images obtained with IDWT via a joint objective function. As

mentioned in the Introduction of this Chapter, several methods have been proposed

in the literature for incorporation of both reflection and diving wave information into

the inverse problem [14] [183] [60].

Our joint method is based on sequential 4D FWI. Therefore, we first perform FWI

runs on the baseline model to get the starting model for DDWI (Figure 3.2). Our

modified misfit function has two components and the model to be recovered is

m̂1(x, z) = (µ)argmin
m1

{
∑

xs

||F (m1|m0; xs)− d1(xs)||22

}

(3.22)

+ (1− µ)argmin
m1

{
∑

xs

||ŵ(m1|m0; x, z, xs)||22

}

,
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for the pre-stack version, while for the post-stack version, equation 3.22 becomes

m̂1(x, z) = (µ)argmin
m1

{
∑

xs

||F (m1|m0; xs)− d1(xs)||22

}

(3.23)

+ (1− µ)argmin
m1

{
||ŵ(m1|m0; x, z)||22

}
,

where m0 is the recovered baseline model, m1 is the monitor model, d1 is the monitor

observed data, F is the forward modeling operator, w is the warping function (equa-

tion 3.2), and µ denotes the weighting parameter between the two components of the

misfit function. The choice of the weight reflects how much contribution one wants

from the data and image domain in the gradient and misfit functions. Compared to

sequential FWI, our method is less sensitive to acquisition limitations and to cycle

skipping issues because of the image domain constraint. Compared to IDWT, DDWI

provides better reconstructed 4D changes without a significant increase in the already

high computational cost of IDWT.

To calculate the gradient we use the adjoint state method [109]. This gradient can

be expressed as a sum of cross correlated wavefields

GDDWI(x, z) = (µ)G̃FWI(x, z) + (1− µ)G̃IDWT(x, z) (3.24)

where G̃FWI and G̃IDWT are the normalized gradients from FWI (equation 3.18) and

IDWT (equation 3.4) computed via

G̃FWI(x, z) =
NXNZψ(x, z)GFWI(x, z)

√
∑NX

j=1

∑NZ

i=1 ψ
2(xj, zi)G2

FWI(xj, zi)
, (3.25)
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Figure 3.2: Flowchart for Dual Domain Waveform Inversion (DDWI).

and

G̃IDWT(x, z) =
NXNZψ(x, z)GIDWT(x, z)

√
∑NX

j=1

∑NZ

i=1 ψ
2(xj, zi)G2

IDWT(xj, zi)
, (3.26)

where ψ is the mask (equations 3.11 and 3.12), and NX and NZ are the total number

of discretized nodes in the x and z directions respectively. In this particular case, we

use equal weights for both gradients and therefore set µ = 0.5. Similar to both FWI

and IDWT, we use a non linear conjugate gradient method to update the model.

3.6 Numerical Examples

In this section, we compare the performance of the Dual Domain Waveform Inversion

(DDWI) with IDWT, Sequential FWI, Double-Difference FWI [171], and IDWT fol-

lowed by FWI [174] on different synthetic models. From simple to more complicated

models, we demonstrate the improvements the method delivers. We use a finite dif-

ference method to solve the wave equation and we generate constant density acoustic

data. Reverse Time Migration (RTM) [11] [92] is used to create the baseline and mon-

itor migration images. We use the same time-domain solver to generate the data and
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solve the inverse problem. For the boundary conditions we use absorbing boundary

conditions on all boundaries.

3.6.1 Example 1: Smooth velocity perturbation spanning a

layer

We begin with a layered model in which we introduce 200 m/s or 10% smooth velocity

perturbation. The anomaly is shallow and spans a layer (Figure 3.3), resulting in a

combination of time shifts and amplitude changes. We discretize the model using 300

nodes in both directions, with node spacing 20 m in the x-direction and 5 m in the

z-direction. We use the same 15 Hz Ricker wavelet for both baseline and monitor

surveys. We use a total of 9 shots to generate the synthetic seismograms, which we

record with 148 receivers placed at a depth of 5 m and an interval of 40 m. We first

invert for the baseline model, and then use the update to perform three 4D inversions:

SFWI, IDWT, and DDWI.

Figure 3.4 shows the 4D changes reconstructed from all three inversions. Because

there are both phase and amplitude changes IDWT struggles somewhat to recover

the change, the anomaly is smeared vertically, with a break at the location of the

spanned layer. SFWI performs better than IDWT providing a more accurate anomaly

reconstruction. Despite providing a better result than IDWT alone, there is still a lot

of energy below the anomaly and it almost looks as though FWI is taking information

from the reflections instead of the diving waves. DDWI produces better results than

the other two methods. The 4D change is fully reconstructed in shape without visible

artifacts.

One of the main points of our new objective function, is that it aligns the two

migrated images. Figure 3.5 illustrates this by comparing the baseline and monitor
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migrated images at the beginning and the end of the DDWI scheme. We choose the

shot location of xs = 3000 m and zs = 5 m for the display. In panels (a) and (b) we

see that initially there is a big misalignment between the two images, especially in

the reflectors below the anomaly. The difference between the two is shown in panel

(c). On the contrary, after 25 iterations of the DDWI scheme, the migrated images

are aligned, with the only difference being where the anomaly is located.

In any inversion scheme, it is important to have a quality control both in terms

of model fit and data fit (Figure 3.6). In panel (a) we display 1D velocity profiles

extracted from the true and recovered monitor velocity models at x = 3000 m, which

goes through the top of the anomaly. The DDWI line is closer to the true, especially

around the anomaly location, compared to the SFWI and IDWT lines. Panel (b)

shows the shot gather at xs = 3000 m, zs = 5 m using the DDWI recovered velocity

model. We show a single trace in panel (c) and focus on the shallow part where the

4D change is (panel d). We see that the data fit is good for all of the methods but

DDWI clearly has the best match.

3.6.2 Example 2: Deeper smooth velocity perturbation

To complicate the model, we now move the velocity perturbation to deeper layers, so

that the anomaly is deeper than the recorded diving waves penetrate (Figure 3.7).

We do this to show that in our hybrid approach, we are able to recover an accurate

model without first determining which parts of the data illuminate the regions of

interest. The velocity perturbation is the same as in the previous example (200 m/s

or 10% velocity change), and for consistency we keep the same acquisition setup and

simulation grids.



52

(a)

0 1000 2000 3000 4000 5000

Horizontal Distance (m)

0

500

1000

1500

D
e
p
th

 (
m

)

1500

2000

2500

V
e
lo

c
it
y
 (

m
/s

)

(b)

0 1000 2000 3000 4000 5000

Horizontal Distance (m)

0

500

1000

1500

D
e
p
th

 (
m

)

1500

2000

2500

V
e
lo

c
it
y
 (

m
/s

)
Figure 3.3: (a)The true baseline model. The red stars represent the positions of the
sources. (b)The true monitor model. In both figures the black box shows the zoomed
in area where the time-lapse changes are.
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Figure 3.4: (a) True time-lapse velocity change. (b) Time-lapse velocity change recov-
ered from IDWT. (c) Time-lapse velocity change recovered from SFWI. (d) Time-lapse
velocity change recovered from DDWI.
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Figure 3.5: For the shot located at xs = 3000 m in Example 1: (a) The migrated
baseline image, (b) the migrated monitor image at iteration 1, (c) the difference
between the monitor image b and the baseline image a (d) The migrated baseline
image same as in panel a, (e) the migrated monitor image after 25 iterations, (f) the
difference between the monitor image e and the baseline image. Note the difference
in scale between (c) and (f).

In this example we also compare the performance of DDWI with Double Differ-

ence FWI [167] [171] [180] and IDWT followed by FWI [174]. For all inversions we

perform 25 iterations. We use this number of iterations because the reduction of the

cost function in all schemes reach a plateau after approximately 20 iterations. Figure

3.8 shows the results obtained from all inversion schemes. IDWT performs very well.

The resolved anomaly is localized to the area of the true change and appears bounded

by the reflectors above and below it. As expected, SFWI delivers a poorly constrained

anomaly, completely failing to update the lower part of the anomaly. Double Differ-

ence FWI is unable to constrain the anomaly fully both in shape and amplitude, with

a performance similar to SFWI. However, this is expected due to the nature of the

anomaly; it is placed deeper than the diving waves penetrate and therefore there is

little information to contribute to the FWI reconstruction. When we apply IDWT
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Figure 3.6: Top left: 1D velocity profile of the true and recovered monitor models
in Example 1, at xs = 3000 m. Top right: Shot gather at xs = 3000 m, zs = 5 m
using the recovered DDWI velocity model. Bottom left: 1D plot of the shot gather
in the top right panel; the receiver index is 76 and we plot between 100-500 seconds
to exclude the direct wave. Bottom right: Zoom-in at the location of the anomaly
(120-260 seconds).
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Figure 3.7: (a) The true monitor model for the deeper smooth velocity perturba-
tion. The black rectangle shows the area where the time lapse change is, and all the
subsequent figures will show only the part in the area of interest. (b) Diving wave
penetration analysis.
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followed by FWI the anomaly is well reconstructed both in shape and magnitude, in-

dicating the advantages of using image domain information. However, a few layering

artifacts remain from the FWI above and below the anomaly, and we see a pattern

from the IDWT recovery within the anomaly. DDWI, on the other hand, delivers an

excellent reconstructed anomaly with fewer artifacts than IDWT followed by FWI.

This is likely due to the implicit incorporation of what amounts to a mask in the

inversion. More specifically, when the objective function includes both IDWT and

FWI components the IDWT component acts as a weight encouraging the updates to

remain in the vicinity of the changes estimated by IDWT. In DDWI both components

are present throughout the process making the mask a stronger constraint in DDWI

than it is in IDWT followed by FWI.To quantitatively compare the two strategies, we

computed the difference between their retrieved 4D signal and the true anomaly (Fig-

ure 3.9). We see that DDWI provides a more accurate result with an error of 10 m/s

(about 5% of the true change calculated via TrueChange−Recovered
TrueChange

· 100%) compared

to IDWT followed by FWI with an error of approximately 60 m/s (approximately

30% of the true change). This shows that the joint scheme mitigates the individual

limitations of IDWT and FWI.

3.6.3 Example 3: Inaccurate starting model

For all of the previous models, we assumed that the initial velocity model was accurate.

In practice though, this assumption does not usually hold. We know that FWI, in

contrast with IDWT is very sensitive to the velocity of the starting model [161] [174].

In a sequential time-lapse approach this will have an effect on the final estimate of the

velocity change. We anticipate that this sensitivity to initial model will be larger with

FWI than IDWT. To show this, we use the model from Example 2 with the smooth
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Figure 3.8: (a) True time-lapse velocity change for the deeper smooth velocity pertur-
bation example. (b) Time-lapse velocity change recovered from IDWT. (c) Time-lapse
velocity change recovered from SFWI. (d) Time-lapse velocity change recovered from
Double Difference FWI. (e) Time-lapse velocity change recovered from IDWT followed
by FWI. (f) Time-lapse velocity change recovered from DDWI.
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Figure 3.9: (a) Difference between the anomaly recovered with IDWT followed by FWI
and the true anomaly. (b) Difference between the anomaly recovered with DDWI and
the true anomaly. We see that DDWI delivers more accurate results.

velocity perturbation spanning a layer (Figure 3.3). The velocity anomaly is shallow

enough for the diving waves to penetrate it. We use a smooth starting model, in which

we introduce a 5% amplitude perturbation in slowness and perform the baseline model

inversion (Figure 3.10). We see that the performance of FWI deteriorates with the

introduction of a lot of artifacts in the shallow part, and layered artifacts in the deeper

parts of the model. A recovered baseline model like this one will never be accepted in

practise, and further processing and quality control steps will be needed. However, in

this example we want to show, that even if the baseline model is so bad that it would

never be acceptable in practise, IDWT still recovers a good 4D model, whereas the

FWI fails. This is because the kinematic differences (on which IDWT relies) are less

damaged by an inaccurate baseline model than are amplitude differences. As in all

previous examples, we use the recovered baseline model as a starting model for the

4D inversions.

Figure 3.11 shows the results of all of the 4D inversion schemes we compare. As

we expected, IDWT is almost completely unaffected by the velocity errors, yielding

the same final result as the case where the starting model was accurate (Figure 3.4).

Our result is in-line with the results of [174], where they tested the robustness of
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Figure 3.10: The inverted baseline model staring from a smooth initial model with
5% perturbation.

IDWT over baseline velocity errors (Figures 6 and 7 in their paper). The amplitude

discrepancy we introduced in the starting model is sufficiently large to cause cycle

skipping in the low frequency components of the data, and this is something we see

clearly with the SFWI result. In many cases, the result of SFWI could be improved

by the use of a mask (typically derived from data domain constraints). This type

of mask will work as a model-space geological prior to the inverse problem without

adding any sensitivity to the anomaly. Image domain constraints on the other hand,

fundamentally alter the sensitivities of the inverse problem by adding constraints to

the time-lapse change with a penalty sensitive to the reflecting energy in the input

data. Therefore, the sensitivity to the reflecting energy is enhanced, making IDWT

a powerful constraint in any time-lapse inversion scheme (hence we propose DDWI).

Here, the performance of DDWI is not perfect. Artifacts in the 4D model are well

suppressed when compared to SFWI, and the 4D change is in the right location.

However the shape of the anomaly is not recovered, and this is something requiring

further study and improvement. One of the main advantages of the DDWI and

fundamental difference with IDWT followed by FWI [174], is that we never relax the

image domain constraint. Even though IDWT can provide a good starting model for

FWI, there are scenarios in which FWI still ends up in the wrong local minimum, as
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for instance here where we see a poor performance of IDWT followed by FWI. This is

because FWI is walking away from the solution given by IDWT. Any FWI scheme will

deviate from its starting model if there is a lower residual to be found. If the starting

model is good, the inversion is typically regularized to stay close to it (i.e. zero-order

Tikhonov). If the starting model is not good (as in this example), an approach such

as FWI being anchored to IDWT will provide more meaningful results.

3.6.4 Example 4: Subsalt smooth velocity perturbation

To mimic a more realistic scenario we create a salt model. To do this, we take the

model from Example 3 and add the salt bodies from the Pluto velocity model on top

of the anomaly (Figure 3.12). The salt has a velocity of 3500 m/s, creating a high

contrast with the background layers’ velocity (1600− 1800 m/s). In this example, we

modify the acquisition setup to provide larger offsets so we can image better beneath

the salt. We use a total of 11 sources and 148 receivers equally distributed over a

distance of 5 km on the surface for both the baseline and monitor surveys. To invert

for the baseline model, we assume that the salt geometry is known and we therefore

create a smooth background that includes the salt body. The background baseline

model is well recovered (Figure 3.12); as above we use this as the starting model of

the 4D inversions.

Thus far we have used only the pre-stack version of IDWT and DDWI (equa-

tion 3.22). However, in this example, having such a high contrast body present in the

model, leads to weaker amplitude reflectors in the migrated image. Therefore, in this

example we use the post-stack version of IDWT and DDWI (equation 3.23), where

instead of computing the warping function separately for each shot, we create the full

migration image first. In addition, we use an automatic gain control (AGC) function
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Figure 3.11: (a) The true time-lapse change for Example 3 (b) The time-lapse change
recovered with IDWT. (c) The time-lapse change recovered with SFWI. (d) The time-
lapse change recovered with DDWI. (e) The time-lapse change recovered from IDWT
followed by FWI.
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Figure 3.12: (a) The true subsalt baseline model. We use a total of 11 shots shown with
the red stars. (b) The smooth initial velocity model with the known salt geometry that
was used for the baseline FWI. (c) The recovered baseline model after 50 iterations.
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to enhance the amplitude of the reflectors beneath the salt so that we have a more

accurate estimation of the vertical shifts. Therefore, the updated misfit function from

equation 3.2 is

ŵ(m|m0; x, z) = argmin
w
||AGC(I1(m; x, z))− AGC(I0(m0; x, z + w(x, z)))||22. (3.27)

We then use AGC(I1(m; x, z)) and AGC(I0(m0; x, z)) to compute the updated adjoint

source α and the gradient GIDWT . To do this we simply replace the standard images

with the AGC images in the system of equations A-11 from Appendix A of [174]. If

we now take the gradient of equation A.1

∂w

∂m
= 2 (AGC(I1(m))− AGC(I0(m)))

∂AGC(I1(m))

∂m
, (3.28)

and apply the chain rule to the last term, we get

∂AGC(I1(m))

∂m
=
∂AGC(I1(m))

∂I1(m)

∂I1(m)

∂m
. (3.29)

We expect that ∂I1
∂m

varies on a shorter wavelength scale than ∂AGC(I1(m))
∂I1(m)

, when we

choose an AGC window that spans several events in the image. Furthermore, we

expect that the AGC value between the two images will be similar, and can be ap-

proximated by a constant factor that varies slowly across the image (and which is in

any case close to constant). The constant could have been absorbed into the scaling

factor for the image space constraint in the FWI objective function and we neglect

the further contributions of the AGC in the gradient computation. A more detailed

explanation can be found in Appendix A of this thesis.

Figure 3.13 shows the 4D recovery from the three algorithms. We see that SFWI

after 25 iterations performs better than before for this anomaly without the salt,
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because we use larger offsets and therefore diving waves can better penetrate the

anomaly. However, the shape is not perfectly recovered and there are still a few

artifacts present as well as the signature of the salt bodies. When we run the SFWI

for 50 iterations, the recovered anomaly is improved in shape, however artifacts are

still present. The recovery from IDWT is good, but worse if it is compared with the

same anomaly without the salt. This is most likely due to the big internal multiples

we get from the salt body. The extra processing steps to enhance the images do

not correct the internal multiple energy from the salt body, that maps to below

the salt in the migrated image. More sophisticated migration algorithms capable of

avoiding artifacts from internal multiples, such as Marchenko imaging [166] would

benefit DDWI in this situation. [116] use a Simultaneous Joint Migration Inversion

that utilizes internal multiple energy to enhance the illumination of deeper targets.

Image space constraints, as are used in this study, are founded on the geological

assumption that reflectors do not move (significantly) in space over time. Combining

the two techniques may help in scenarios where illumination of deeper targets is poor.

This remains a topic of future study in which we expect our algorithm to perform

similarly to IDWT followed by FWI or other FWI algorithms when this coherent

noise is present. DDWI performs better than the other two methods. It delivers a

better constrained anomaly, which is located in the right place with a more accurate

shape.

3.7 Discussion

Thus far, we have only compared the results of three different time-lapse inversion

strategies. It is important to also consider computational cost. For one iteration of the

standard FWI we need three wavefield simulations, this means that in 25 iterations
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Figure 3.13: (a) The true time-lapse change for the subsalt anomaly. The white
circle highlights the area of the true change. (b) The time-lapse change recovered by
IDWT after 25 iterations. (c) The time-lapse change recovered from SFWI after 25
iterations. (d) The time-lapse change recovered from DDWI after 25 iterations. (e)
The time-lapse change recovered from SFWI after 50 iterations.
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need to perform 75 wavefield simulations. For one iteration of IDWT we need to

perform six wavefield simulations, this means that in 25 iterations we need to perform

a total of 150 wavefield simulations. In DDWI, we need seven wavefield simulations in

one iteration, and thus 175 in 25 iterations. When a good starting model is available,

performing FWI after IDWT, improves the final image over either method alone [174].

But doing the two together saves one wavefield solve per iteration. When the starting

velocity model is far from the truth, FWI moves away from the correct solution and

suffers from cycle skipping issues.

A fundamental advantage of our proposed methodology, is that we do not relax

the image domain constraint in our objective function, and hence FWI cannot deviate

from our geological prior. This is highlighted in the example of the inaccurate starting

model, where IDWT followed by FWI [174] is not able to deliver a meaningful result

and performs worse than DDWI. A second important contribution of DDWI, is the

use of a mask that is data driven. In contrast with other available masks for localized

4D updates, we do not need to pre-construct the mask prior the inversion procedure.

Instead, the mask is automatically derived from the migrated images, hence the data

themselves. In this way, we avoid both the bias of a precomputed mask as well as

localizing updates in areas where they may not actually occur. Additionally, using

image domain constraints, that are predominantly function of kinematic changes,

enhances the sensitivity of the inverse problem to reflections. This is an advantage

over the data domain masks that mainly work as a geological prior to the inversion

without adding any sensitivity to the anomaly. Therefore, this contribution, could be

considered as an alternative way of deriving a mask for a targeted inversion.

A seismic reflection can be shifted as a result of a reflector shift or a velocity

change. In IDWT we assume that the reflectors shifts are not as significant as the
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shifts due to velocity changes and therefore we ignore any actual structural changes.

This assumption is valid in many examples, however in cases where structural shifts

are present and significant, such as reservoir compaction, this assumption can lead

to inaccurate results. One way to compensate for this would be to relax the image

constraint in DDWI at later iterations and let FWI correct for depth shifts. This could

be easily achieved by changing the weights in the calculation of the joint gradient

(equation 3.24).

An important component of a successful seismic time-lapse analysis is the survey

repeatability. In most cases, 4D FWI approaches require extra pre-processing steps

to compensate for the dislocations of shots. [174] provide a detailed study about the

performance of IDWT when source positioning errors are present. More precisely, they

test both random (their Figure 7) and systematic (their Figure 8) source perturbations

also with errors in the baseline velocity model, and they conclude that the method is

robust and able to deliver meaningful results. Since half of our objective function is

based on IDWT, and we never relax the image domain component, we expect that

DDWI will be similarly robust.

Our current warping function is both amplitude and phase shift dependent. This

is why we need to perform image pre-processing steps to recover the 4D changes in

the salt model. Alternatively, a phase-shift only warping function may mitigate some

of the challenges of working with complicated velocity models with strong impedance

contrasts. Additionally, for our subsalt example we have assumed that the the ge-

ometry and location of the salt bodies were perfectly known. We know that such an

assumption is far from realistic. Future work could incorporate salt inversion strate-

gies such as the one shown by [77].

Last but not least, for all of our numerical examples we use the same solver for
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the generation of the synthetic datasets and the inverse problem. Future work might

investigate the performance of DDWI in a non-inverse crime scenario.

3.8 Conclusions

Imaging the low-wavelength component of the velocity model in deeper regions of

the Earth is a significant challenge. Full waveform inversion relies on diving waves

that lack penetration depth. Image domain tomography overcomes this challenge by

relying on reflected waves. In this manuscript, we proposed to combine full waveform

inversion with image domain tomography to setup time-lapse seismic inversion as a

single minimization problem. Having systematically compared the performance of

three methods (full waveform inversion, image domain tomography, and dual domain

tomography) we made several key observations. For shallow velocity anomalies in ge-

ology without complications, all three methods perform similarly. When the anomaly

is deeper, the image domain tomography lacks vertical resolution, while full waveform

inversion has to rely on reflected energy which fails in realistic scenarios when the

time-lapse velocity is smooth. Dual domain waveform inversion (combining these two

methods in one objective function) is able to combine the strengths and cancel the

weaknesses of both methods. Image domain tomography seems to be quite sensitive

to amplitude changes in seismic images. This is particularly challenging in cases like

subsalt imaging. We show that pre-processing the seismic images, before measur-

ing the depth-shifts, overcomes this problem. Finally, we found it advantageous to

combine both methods in a single minimization problem rather than applying image

domain tomography and full waveform inversion sequentially because the continued

application of the image constraint keeps FWI from straying into the wrong local

minima.
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Chapter 4

Uncertainty quantification in 4D

seismic imaging: a full-wavefield

approach

4.1 Abstract

Time-lapse seismic monitoring using Full-Wavefield methods aims to accurately and

robustly image rock and fluid changes within a reservoir. These changes are typically

very small and localized. Quantifying the uncertainty related to those changes is cru-

cial for decision making, but traditional methods that use pixel by pixel quantification

with large models are computationally infeasible. We exploit the structure of the 4D

seismic problem for much faster wavefield computations using a numerically exact lo-

cal acoustic solver. This allows us to perform a Bayesian inversion using a Metropolis

Hastings algorithm to sample our posterior distribution. We assume that the mea-

surement noise is Gaussian, however, we make no assumptions about the posterior
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distribution which could be any type, including multi–modal and non–Gaussian. We

compute single and multiple degrees of freedom numerical examples and address the

dimensionality problem using image compression techniques.

4.2 Introduction

4.2.1 Background Information and Related Work

Time–lapse (4D) seismic monitoring is to date the most commonly used technique for

geophysical monitoring of a reservoir. 4D monitoring is achieved by acquiring and

analyzing multiple seismic surveys at the same site over time [79]. The first survey

acquired over a field is called the baseline survey. All subsequent surveys are called

the monitor surveys. Full-Waveform Inversion (FWI) delivers high resolution images

of the subsurface using prestack data [145] [161]. There are several extensions of FWI

to the 4D case that aim to accurately image changes that are then used for further

decisions (i.e. drilling and production in the context of hydrocarbon exploration).

There are a variety of 4D schemes available including: Parallel FWI [110], Sequential

FWI [6], Double Difference FWI [167] [182], Joint FWI [84] [173], cascaded schemes

[129] or even schemes that couple FWI with image domain constraints [64]. All of these

schemes try to solve for the successive linearized problem using local optimization

techniques.

As with any inverse problem, 4D FWI depends on a mathematical model of the

underlying physics. Any mathematical model carries uncertainty for various reasons.

If we cannot quantify and control these uncertainties, then we cannot trust the out-

comes of our model. Because FWI is a non–linear problem and prone to local minima,
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it is important to determine how likely particular solutions are. [173] provide a pre-

liminary framework for uncertainty quantification by computing a confidence measure

of the model changes. Their idea is to perform FWI for baseline and monitor data

sets in an alternating fashion and observe the behaviour of the objective function.

[66] study time-lapse model uncertainties by comparing the performances of Parallel,

Double Difference, and Alternating FWI. These methodologies, however, are some-

what naive in terms of statistical estimations, and are computationally intensive. For

comprehensive statistical estimations one needs to compute the posterior probability

of the quantities of interest, such as the average change in velocity in a given region

of interest, using Bayes’ theorem [10].

In a Bayesian seismic inversion we are interested in obtaining a posterior proba-

bility density function (pdf ) of some model parameters given some observations [147].

In this framework, we turn the traditional FWI optimization problem into a sam-

pling problem. Sampling is usually done using Monte Carlo algorithms [95]. Markov

Chain Monte Carlo (MCMC) is a family of algorithms that originate in the 1950s

[93] but became more widely used in a variety of subjects in the 1990s [124]. These

algorithms generate random samples from a probability distribution that is otherwise

difficult to sample directly [19]. When the probability space is explored fully and the

Markov Chain reaches an equilibrium state, this probability distribution is equiva-

lent to the posterior distribution. However, in order for an equilibrium state to be

reached, thousands of models need to be evaluated, which in Bayesian seismic inver-

sion terminology relates to thousands of wavefield solves. This can be a significant

computational burden, particularly when most of this computational time is spent

on standard Finite-Difference solutions of proposed models while a majority of these

models are then rejected due to the low acceptance rate of these algorithms [3]. For

an efficient algorithm, ideal acceptance rates range from 10% to 60% with optimal
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acceptance rates at approximately 20− 25% [126].

In seismic imaging, there are multiple sources of uncertainty at all different stages

from acquiring the data to interpreting the final images [80]. Of course, there are

also uncertainties that we cannot even think of; unknown unknowns. Uncertainty

estimation is thus a crucial topic at all scales (i.e. exploration scale, crustal scale) of

geophysical imaging. Since the early study of [63], work is well underway to under-

stand these uncertainties and quantify them. Here, we refer to some of the most recent

work. [105] provide a strategy and overview for uncertainty quantification in seismic

tomography that is related to oil and gas exploration and production. [112] estimate

uncertainties that are propagated in migrated images through velocity model and

picking errors using a Bayesian framework. [141] propose a two-stage Markov Chain

Monte Carlo method where the unacceptable velocity proposals are filtered out with

an upscaling operator and the accepted ones are then used to solve the fine-grid prob-

lem. [133] propose a reversible jump Hamiltonian Monte Carlo method that combines

the traditional reversible jump MCMC (RJMCMC) and Hamiltonian Monte Carlo

and they achieve faster convergence than the traditional RJMCMC. [151] propose a

combination of Ensemble Kalman filters and FWI that provides an uncertainty esti-

mate of the recovered model through the posterior covariance matrix. [119] carry out

a 2D Bayesian inversion using a tree based parameterization and trans-dimensional

sampling in the wavelet transform domain. [37] use an Adaptive Metropolis Hast-

ings algorithm with a fast forward solver based on the field expansion method [87]

to estimate uncertainties in velocity models. [179] perform uncertainty quantification

in 3D surface wave tomography using the reversible–jump MCMC and a model pa-

rameterization based on Voronoi polyhedrals. [42] describe the Hamiltonian Monte

Carlo method for linear and nonlinear tomographic inverse problems. [61] perform a

probabilistic FWI on ground penetrating radar data using a geostatistical subsurface
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parameterization. Even though this literature focuses mostly on sampling based un-

certainty quantification techniques, one can find alternative methods that are based

on approximations of the likelihood function such as the Polynomial Chaos Expansion

(PCE) method [29] [35], where the algorithm tries to approximate the distributions of

the uncertain parameters using a set of polynomials, resulting in computational cost

reduction.

Even though most of the uncertainty quantification frameworks in the literature

use expensive forward solvers, a few attempts to overcome this have been proposed

recently. For example, [37] use a fast Helmholtz solver, called field expansion, that

provides fast approximate solutions of the wave equation. This allows them to perform

fast uncertainty quantification in velocity model building. Another way could be

using homogenization or upscaling techniques. These techniques could be used in

terms hierarchically moving from cheaper to more expensive forward solvers [158].

For instance, [141] first evaluate models in a coarser grid (less computational time)

and if these models are accepted, are then evaluated upscaled to a finer grid. An

encouraging alternative is using neural networks to approximate solutions of the wave

equation. [128] present an early application of neural networks for geophysical inverse

problems, where the algorithm estimates a 1D velocity model given a shot gather.

More recently, [54] replace the forward solver and travel time picking for GPR first

arrival travel time inversion with a neural network. This allows them to perform a

probabilistic inversion with Monte Carlo sampling three orders of magnitude faster

compared to traditional forward solvers. Last but not least, a different option could

be found in exact localized wavefield techniques [155] [157] [169] [18] [177]. The

fundamental idea behind these techniques is to update a model only in a subdomain

of interest while still taking into account all data available. This means that no data

redatuming needs to take place. Such techniques, are particularly appealing in 4D
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imaging where we are trying to image small changes in localized regions. Therefore,

solving the forward problem in the entire domain while we are interested in a small

subdomain (i.e. reservoir) is inefficient. In this work, we use the frequency based local

solver developed by [169].

4.2.2 Main Contribution and Overview

The main goal of this work is to provide a computationally feasible framework that

enables time-lapse uncertainty quantification. In addition, we study the 4D prob-

lem and evaluate different assumptions, such as using an incorrect background model

and the presence of local minima at different frequencies, while also providing a way

of addressing the dimensionality issue. To our knowledge, there is no work in the

literature studying the time-lapse problem using stochastic Full-Waveform inversion.

The paper is structured as follows. In Section 4.3 we briefly describe how the local

acoustic solver works and explain how we setup the 4D problem in a Bayesian regime.

For an efficient posterior calculation, we need an expression only in terms of model

differences and data differences, without having to compute a joint distribution over

the full domain baseline model. We test our problem setup using a single degree

of freedom (DoF) example (Section 4.4). Having such a simple numerical example

can prove beneficial in studying a range of potential issues. For example, one key

assumption of our derivation is that the posterior calculation is independent of the

background model. In Section 4.5, we try to address the effect of such an assumption

both analytically in terms of amplitude and travel time at the boundary of the local

domain, and numerically using six different inverted background models. Our results

show that for a reasonable noise level, all background models result in similar distri-

butions (measured by the recovered mean and median). This implies that a single
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background model assumption can be valid. However, characterizing the time-lapse

uncertainty using only a single DoF is far from realistic. In Section 4.6, we examine a

more complex 4D reconstruction using multiple degrees of freedom. To reduce the di-

mensionality of the problem, we parameterize the 4D model using image compression

techniques, where the model is expressed with a set of coefficients. For a standard

FWI to reach a global minimum a good starting model is needed. Using a Bayesian

FWI, instead, removes such a requirement. However, it is still possible that various

frequencies might converge to different local minima in the presence of high noise. In

Section 4.7 we discuss this matter for both single and multiple DoF examples used in

this study.

4.3 Theory

4.3.1 The Helmholtz equation

A mechanical disturbance in a medium is accompanied with a force that tries to

restore the equilibrium situation in the medium [165]. The acoustic wave equation

describes the evolution of the acoustic pressure u as a function of position x and time

t [41] and it is expressed via a partial differential equation,

∇ ·
(

1

ρ(x)
∇u(x, t)− 1

K(x)

∂2u(x, t)

∂t2

)

= −∂
2s(x, t)

∂t2
+∇ ·

(
1

ρ(x)
fv(x, t)

)

, (4.1)

where ρ is the density, K is the bulk modulus, ∂2s(x,t)
∂t2

is the point source of volume

injection, ∇ ·
(

1
ρ(x)

fv(x, t)
)

is the point source of force, and ∇ is the divergence. In

this thesis the discussion is limited to the 2D case only. If we consider a monopole



78

source and multiply by density [46], equation (4.1) becomes

ρ(x, z)∇ ·
(

1

ρ(x)
∇u(x, t)− 1

c2(x, z)

∂2u(x, t)

∂t2

)

= −ρ(x, z)∂
2s(t)

∂t2
δ(x− xs), (4.2)

where c = (K/ρ)1/2 is the acoustic velocity, ∂2s(t)
∂t2

is the time derivative of the rate

that a volume is added at a region with a delta function source δ(x− xs) at location

xs. Also, in this research, we consider the case of constant density and therefore

equation 4.2 is reduced and rewritten as

∇2u(x, t)− 1

c2(x)

∂2u(x, t)

∂t2
= −f(x, t), (4.3)

where f(x, z) is a general expression of the source function.

Equations 4.1 - 4.3 take place in time domain. Using a Fourier transform, we can

transfer the time dependent wave equation to the frequency dependent Helmholtz

equation, such that

c2(x)∇2U(x, ω) + ω2U(x, ω) = −g(x, ω). (4.4)

Dividing all terms with c2(x), we obtain the final form of the Helmholtz equation,

which is stated as

∇2U(x, ω) +
ω2

c2(x)
U(x, ω) = −F (x, ω). (4.5)

4.3.2 Local Acoustic Solver

Following the previous subsection, the term “acoustic” in the title refers to the scalar

wave equation in frequency domain (Helmholtz equation, equation 4.5), while the

term “local” stands for targeted wavefield solver as opposed to a full domain solver.
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Here, we briefly describe how the local solver works; for a detailed explanation please

refer to [169]. The first step to apply the local solver is to split the full domain into

the exterior domain Ω and the local domain Ωs. The model in the exterior Ω together

with the initial guess in the local domain Ωs form the background model m0. In

the background model, we compute background Green’s functions. The background

wavefield u0 satisfies the Helmholtz equation

∇2u0 +m0ω
2u0 = f, (4.6)

where ω is the angular frequency and m0 is the background model in terms of squared

slowness. We assume we have a perturbation δm that only exists within the local

domain Ωs. Therefore, the model m consists of the background model m0 and the

perturbation δm such as m = m0 + δm. The total wavefield u inside Ωs will also be

present only inside Ωs , where it is given as u = u0+ δu. This total wavefield has also

to satisfy the Helmholtz equation

∇2u+mω2u = f. (4.7)

Equation 4.7 is used to accurately compute the total field inside the local domain.

In order to use this scheme, we need to precompute the Green’s functions in the

background modelm0 in the full domain. We need to do this background computation

only once, and then we can update the model and recompute the wavefield using only

the local domain resulting in significant computational savings.
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Figure 4.1: The true baseline velocity model with the black box representing the
location of the local domain.

4.3.3 4D Problem Setup and Posterior Calculation

Statistical inference is a methodology which concludes properties about populations

of data by evaluating evidence. There are two fundamentally different categories of

statistical inference: the Frequentist statistics and the Bayesian statistics [40]. One of

the main differences between the two categories is that Bayesian statistics use the laws

of probability while the Frequentist statistics do not. Specifically, Bayesian statistics

use prior probabilities of quantities, which they later update to posterior probabilities

given some evidence. Frequentist statistics on the other hand, do not use probabilities

(prior or posterior), but rather compute characteristics such as p-values or confidence

intervals from the distribution of the data. For example, Chapter 2 of this thesis

can be considered as Frequentist statistics. Both types of statistics are widely used in

science, however Bayesian statistics are more logically rigorous and allow for deductive

logic.

Bayesian statistics are build upon Bayes’ theorem. Bayes’ theorem describes the

relationship between a hypothesis and given evidence. In seismic imaging, this is

expressed in terms of velocity models (m) and observed data (d),

p(m|d) = p(d|m)p(m)

p(d)
, (4.8)
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where p(m|d) is the quantity of interest for any probabilistic inversion, or the proba-

bility that a given model, m, is the truth given the existence of the data, d; p(m|d)

is called the posterior. In equation 4.8, p(d|m) is the likelihood function calculated

by [146]

L(m) ≡ p(d|m) (4.9)

∝ exp

[

−1

2
(F (m)− d)TΣ−1(F (m)− d)

]

,

where F is the forward solver and Σ−1 is the inverse covariance matrix of the data

noise, p(m) is the input prior model distribution and p(d) is considered to be a

normalization constant.

Following [67], we now explain how we are going to set up our problem for the

Metropolis Hastings algorithm. Let m be the velocity model and n be zero mean

Gaussian noise with a covariance matrix Σ, then

d = G(m) + n, (4.10)

where G is the forward modeling solver (i.e. the local domain solver here). In the 4D

case, we have d1 = G(m1) + n1 for the baseline model, and d2 = G(m2) + n2 for

the monitor. If we let δm = m2−m1 (which is equivalent to the model perturbation

described in the section above) and δd = d2 − d1, then our goal is to find the

probability of the model differences given the two datasets,

p(δm|d1,d2). (4.11)

In this expression there is a hidden variable, m1. In order to calculate the distribution
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over δm, we will first need to calculate the joint distribution p(m1, δm|d1,d2) and

then integrate over m1 to get the distribution on only δm. However, this would be

computationally expensive because we have to sample for both δm and m1, where

m1 is the baseline velocity model, which needs to be computed in the full domain.

Therefore, we will need an expression that is only in terms of δm. To obtain this, we

rewrite the forward modeling expression in equation 4.10 as,

δd = G(m2) + n2 −G(m1)− n1

= G(m2)−G(m1) + (n2 − n1)

= G(m1 + δm)−G(m1) + (n2 − n1). (4.12)

The sum or difference of two zero mean Gaussians (n1,n2) is equal to a single Gaussian

(n3) with a covariance Σ3 = Σ1 + Σ2. From this, we can rewrite equation 4.12 as

δd = G(m1 + δm)−G(m1) + n3. (4.13)

If we let F (m1, δm) = G(m1 + δm)−G(m1), equation 4.13 becomes

δd = F (m1, δm) + n3. (4.14)

Equation 4.14 is now almost entirely in terms of δm. If we now assume that

F (m1, δm) is independent of the initial model m1, then at any model update

F (m1a, δm) = F (m1b, δm), (4.15)

where m1a ≈m1b. This statement is valid for any small perturbation in m1. To show
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this numerically we consider the true Marmousi model (Figure 4.1) with a perturba-

tion in one of the background layers outside the local domain (Figure 4.2 (a)). Because

we compare model differences to data differences, which is similar to Double Differ-

ence FWI schemes, we expect that any perturbations in the background model that

are not explained by the data will be cancelled out. We, therefore, compare the data

residual F (δm) generated for a time–lapse perturbation δm = 75 m/s using both the

true (Figure 4.1) and perturbed (Figure 4.2 (a)) Marmousi as the background model

(Figure 4.2 (b)). The two residual wavefields are almost identical with tiny differences

highlighted with the two dashed circles. Assuming that this time–lapse perturbation

(δm = 75 m/s) is also the true perturbation, we can further compare the residual

wavefields (F (δm)) with the observed data residual δd, by looking at the data misfit

F (δm) − δd that is used in the likelihood (Figure 4.2 (c)). When the background

model is correct, this data misfit is zero. When the background model is slightly

perturbed, this data misfit is very small but not exactly zero. Here, the data misfit is

two orders of magnitude smaller than the data difference.

The forward model is now only dependent on the difference of models, difference

of observed data, and the sum of some known covariance matrices,

δd = F (δm) + n3. (4.16)

Bayes’ theorem from equation 4.8 now becomes

p(δm|δd) = p(δd|δm)p(δm)

p(δd)
, (4.17)
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Figure 4.2: (a) Error of 200 m/s in the background model with the black box repre-
senting the location of the local domain (which contains the time-lapse perturbation).
(b) & (c) Real and imaginary parts of the data residuals using the true and the per-
turbed Marmousi as the background model. (d) & (e) Real and imaginary parts of
the data misfit F (δm)− δd from the residual wavefields used in (b).

and the likelihood function from equation 4.9 is

L(δm) ≡ p(δd|δm) ∝ (4.18)

exp

[

−1

2
(F (δm)− δd)TΣ3

−1(F (δm)− δd)
]

.

For an accurate posterior calculation, a large number of samples need to be gen-

erated, and then the first half are discarded in order to reduce the impact of the

starting model [19]. This is because during the so–called burn–in phase the algorithm

tries to move from the initial models to areas with higher posterior density. Once

in these areas, the algorithm samples the solutions corresponding to the posterior

density. To sample the posterior of the single DOF example we use a Metropolis

Hastings algorithm [55] [125]. An advantage of the Metropolis Hastings algorithm is
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that it does not require the computation of p(d) or the calculation of the gradient of

the likelihood function. The pseudocode in Algorithm 1 provides a brief explanation

of the algorithm. At each iteration i, we get a new proposal δm∗ by adding a zero

mean perturbation to the current δmi−1 such that δm∗ = δmi−1 + n, n∼N(0, C),

where N(0, C) is a zero–mean vector drawn from the Gaussian distribution with a

covariance C. The acceptance of the new proposal is determined by the ratio of the

likelihood functions of the proposal and current samples, αi =
L(δm)∗

L(δm)i−1

. Typically,

the acceptance probability is defined using the Metropolis–Hastings rule [55] via

α = p(δm∗|δmi−1) = min

[

1,
p(δm∗)

p(δmi−1)

p(δd|δm∗)

p(δd|δmi−1)

Q(δmi−1|δm∗)

Q(δm∗|δmi−1)

]

, (4.19)

whereQ is called the transition kernel, which is simply a way of transitioning randomly

to a point δm∗ given a point δmi−1. Equation 4.19 simplifies to a Metropolis update

[93] if the proposal distribution is symmetrical and if the prior distribution is uniform.

As mentioned above, the proposal distribution is usually recentered after each step

at the value that was last generated by the chain. Generally, in a random walk the

proposal distribution is Gaussian, in which case it satisfies the symmetry requirement.

In addition, for the numerical example of this study we define a bounded uniform

prior distribution. Therefore, the acceptance probability is simplified to the ratio of

likelihood functions of the proposal and current samples, such as

α = p(δm∗|δmi−1) = min

[

1,
p(δd|δm∗)

p(δd|δmi−1)

]

. (4.20)

If it is accepted, the proposal becomes the new current. If it is rejected the current

proposed model is reused.
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Algorithm 1 4D Metropolis Hastings algorithm

Require: δm0 ⊲ initial perturbation
Require: N ⊲ maximum number of iterations
Require: C ⊲ proposal covariance matrix
1: L(δm0) ⊲ likelihood of initial model
2: for i = 1, ..., N do
3: n← Normal(0, C) ⊲ proposed jump
4: δm∗ ← δmi−1 + n ⊲ proposed model perturbation
5: L(δm∗) ⊲ likelihood of the proposal

6: αi =
L(δm∗)

L(δmi−1)
⊲ acceptance probability

7: u← U [0, 1] ⊲ uniform distribution
8: if u < αi then
9: δmi ← δm∗ ⊲ accept proposal
10: else
11: δmi ← δmi−1 ⊲ reject proposal
12: end if
13: end for

It is well known that for fast convergence of a Metropolis Hastings procedure an

effective proposal distribution is needed (in terms of size and spatial orientation). In

cases where the classic Metropolis Hastings algorithm does not converge, we can use

an Adaptive Metropolis Hastings algorithm that uses the history of the process to

tune the proposal distribution [51]. The pseudocode in Algorithm 2 summarizes the

Adaptive Metropolis Hastings algorithm. We typically run the MCMC with a fixed

step size Ci = C0 for a number of iterations Nc, and then start updating Ci using the

covariance of the models already in the chain. The choice of Nc reflects the trust in

the initial estimate of C0; if C0 is assumed to be equivalent to Cov[δm0, ..., δmi−1]

then Nc is set to a small number. Otherwise, Nc is set to a larger value. In this study,

we use Algorithm 2 for all the runs in the multiple DoF examples and Algorithm 1 for

the single DoF examples. We find that a choice of Nc = 1000 leads to good conver-

gence. It is important to mention that even though we assume that the measurement

noise is Gaussian, we make no assumptions about the posterior velocity model distri-

bution. These MCMC algorithms generate a number samples δm0, δm1, ....δmN that
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are drawn from the posterior distribution.

Algorithm 2 4D Adaptive Metropolis Hastings algorithm

Require: δm0 ⊲ initial perturbation
Require: C0 ⊲ initial step size
Require: N ⊲ maximum number of iterations
Require: Nc ⊲ number of iterations before the updating starts
Require: d = length(δm0, ..., δmi−1)
Require: Sd =

2.42

d
⊲ value from [51]

Require: ǫ≪ 1
L(δm0)

2: for i = 1, ..., N do
if i < Nc then

4: Ci = C0 ⊲ fixed step size
else

6: Ci = Sd(Cov[δm0, ..., δmi−1] + ǫId), ⊲ tune step size based on covariance
of models

end if
8: n← Normal(0, Ci) ⊲ proposed jump

δm∗ ← δmi−1 + n ⊲ proposed model perturbation
10: L(δm∗) ⊲ get the likelihood of the proposal

αi =
L(δm∗)

L(δmi−1)
⊲ acceptance probability

12: u← U [0, 1] ⊲ uniform distribution
if u < αi then

14: δmi ← δm∗ ⊲ accept proposal
else

16: δmi ← δmi−1 ⊲ reject proposal
end if

18: end for

4.4 Single Degree of Freedom Estimation

4.4.1 Numerical Example

To setup a simple numerical illustration, we use the standard Marmousi model [159]

as the true baseline model and as the background model m0 on which we compute

the full subsurface Green’s functions (Figure 4.1). The black box shows the location
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Figure 4.3: Histograms of the recovered time-lapse velocity change from eight different
noise realizations.

of the local subdomain in which the likelihood function is evaluated at each iteration

i. Nxsub and Nzsub represent the number of grid points in the subdomain in the x−

and y− direction respectively. The number of these grid points is significantly smaller

than the number of grid points in the full domain; in this example Nxsub = 44 and

Nzsub = 25, whereas Nxfull = 651 and Nzfull = 176.

We create the monitor model by adding a perturbation of 75 m/s in one of the

layers in the local domain. For the simulations, we use a single shot located in the

middle of the model and 651 equally spaced receivers at the surface. The source is

a Ricker wavelet with a peak frequency of 6 Hz. We evaluate the likelihood for the

single frequency of 8 Hz. In the inversions we use noisy δd to which we add Gaussian

noise with covariance matrix Σd. The signal to noise ratio is 1.9, calculated as the ℓ2

norm of the noiseless signal over the ℓ2 norm of the noise.

To examine the effect of random noise in the recovered posterior distributions,

we generate eight different noise realizations. All realizations have a similar signal to

noise ratio and are described by the same covariance matrix Σd. We run the nonlinear

inversion for 20,000 iterations with a fixed step-size Ci = σ for each realization and

we discard the first half. The initial guess is δm0 = 0 m/s, and we invert only the
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magnitude of the 4D change by keeping the shape fixed (hence the single parameter

estimation). Figure 4.3 shows the resulting histograms for all noise realizations with

the straight black line representing the true perturbation of 75 m/s. As expected, each

noise realization recovers slightly different means. However, if we take all histograms

together in one (orange line in Figure 4.3), we recover a mean of 74.86 m/s which

has an error of 0.18% (measured using mean absolute percentage error) from the true

value.

4.4.2 Linearity of the Results

Traditional time-lapse seismic analysis includes looking at migrated data cubes [49]

[81]. These methodologies assume that the monitor model is well estimated by a linear

perturbation of the baseline model. In a case like this, the 4D problem is likely to be

a rather linear problem. Of course, in real cases where strong changes in the physical

properties of the reservoir (and/or overburden) are introduced through production,

the linearity assumption might not hold anymore [136]. Here, we try to further un-

derstand the Gaussian distribution of the histograms in Figure 4.3 mathematically.

The observed data retrieved at the receivers can be expressed as

d = Pu (4.21)

where u is the wavefield everywhere in the subsurface and P is a projection matrix

that projects the wavefield to the receivers. The wavefield u can be obtained by

applying a wave equation operator W given a source s,

Wu = s. (4.22)
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Since we work in frequency domainW = ∇2+mω2 is the Helmholtz operator. At

time 1 (baseline) and time 2 (monitor) we will consequently have

d1 = Pu1, W1u1 = s1, (4.23)

and

d2 = Pu2, W2u2 = s2, (4.24)

generated by a small time–lapse perturbation such as the one in the numerical example

above (δm = 75 m/s), and we want to examine the relationship of

d2 − d1 = P(u2 − u1). (4.25)

Typically, in a 4D experiment we try to repeat the source as best as possible which

means that we can assume s2 = s1, and hence

W2u2 −W1u1 = 0. (4.26)

If we express W2 =W1 + δW , and u2 = u1 + δu, then equation 4.20 becomes

W1δu+ δWu1 + δWδu = 0. (4.27)

This equation is very similar to the Born approximation. To proceed further, we will

look into δW and see how it behaves. The third term δWδu is very small given the

small model perturbation (which means that δu≪ u1, u2 and δW ≪ W1,W2) and it
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can be neglected. In the second term

δWu1 =
[
(∇2 +m2ω

2)− (∇2 +m1ω
2)
]
u1 (4.28)

= ω2(m2 −m1)u1,

which can be thought of as a source term. Substituting equation 4.28 to 4.27 we find

W1δu = −ω2(δm)u1, (4.29)

which is a wave equation, where the wavefield δu is linear with respect to the source

(−ω2δmu1). Recall that our objective is to understand whether the time–lapse prob-

lem can be considered linear for small time–lapse perturbations, by studying the data

difference relationship in equation 4.25. One way to show that is by looking at the

right hand side (Pδu) of equation 4.25; if the right hand side has linear behaviour,

then so does the left hand side. A projection matrix (P) is by definition a linear

operator, and δu is shown to be linear in equation 4.29. Therefore, we can assume

that the data difference d2 − d1 is also linear, meaning that the 4D problem can be

treated as linear for small time–lapse perturbations.

To further validate our argument, we consider 41 different time-lapse velocity

models δm ranging from -200 m/s to 200 m/s, and their respective data residuals δd.

The simplest way to see what relationship models versus data exhibit is by plotting

them against each other. To do so, we first organize them into a matrix form. Let

M
j×41

represent the time-lapse velocity models matrix where each column represents

a vectorized model. The subscript j represents the size of the vector such that j =

nz × nx. Similarly, we define D
i×41

as the data residual matrix where each column

represents the data δd for the equivalent δm in the M. To avoid any complications
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when using complex numbers, each data residual is represented as a concatenation

of real and imaginary parts such that δd = [real(δd); imag(δd)]. Please note that

the dimension i is different from the dimension j. Plotting M against D would be

challenging for two reasons. First, their dimensions are too high for a classic 2D

visualization. Second, even if the dimensions were not a problem, these two matrices

have different sizes.

To reduce their dimensions, we use the commonly used Singular Value Decom-

position (SVD). When we plot the singular values of both M and D, we see that

they decay extremely fast (Figure 4.4 (a),(b)). Matrix M appears to be only rank

1, which is not surprising given the single degree of freedom of the problem. Matrix

D on the other hand appears to be rank 2, with the second singular vector being

significantly smaller than the first. We can then reduce the dimensionality of both

matrices, by performing an SVD using only the 1st singular value of M and the 1st

and 2nd singular values of D. Plotting the resulting right singular vectors against

each other reveals the relationship between the two matrices. However, to make this

a clearer visualization, we plot the time–lapse perturbations used in M against the

two right singular vectors of D (Figure 4.4 (c),(d)). There is clearly a relationship

between them. Panel (c) shows that the relationship between the first right vectors is

almost linear; the slight decay from linear represents the non-linearity of the problem.

When plotting the first vector of M against the second right vector of D (Panel

(d)) the relationship is quadratic. This shows, therefore, that for a single DoF the

relationship of model and data is very close to linear, and this is the reason that the

PDFs in section 4.4.1 are Gaussian. However, this changes when moving to higher

DoFs as shown later.
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Figure 4.4: (a) & (b): Singular values for the matrices M and D normalized by their
maximum value. (c) & (d): Plots of time–lapse velocity perturbations δm used in M

against the two singular vectors of D.

4.5 Uncertainty and Dependance on the Background

Model

4.5.1 Analytical Study

In section 4.3.3, in order to derive the 4D formulation of our posterior we assumed that

the background model does not change significantly between model updates (equa-

tion 4.15). Therefore, we use a forward solver that is independent of the background

model.

In this section, we try to verify this assumption both analytically and numerically.

To start with the analytical study, we focus on what happens at the boundary of the

local domain, when the background model (the one in the exterior Ω) changes. In the
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that it has to be very big in order to create a big deviation between the amplitudes

of the reflected waves at the two times. Hence, we can assume that RCa ≈ RCb.

Similarly, for the transmission coefficient we can assume that TCa ≈ TCb

Having established that perturbations in the background model do not have a

large impact on the amplitudes, let us now think what happens to the travel times.

According to ray theory, the travel time through a medium with a velocity m1a is

T1a =

∫

ray

1

m1a

dS. (4.32)

We are interested to know how different T1b would be from T1a. We thus define δT

as the travel time anomaly between the travel time through the perturbed model

m1b = m1a + φ minus the travel time at the reference background model m1a,

δT =

∫

ray(m1a+φ)

1

m1a + φ
dS −

∫

ray(m1a)

1

m1a

dS. (4.33)

According to Fermat’s principle, “for two points A and B on a ray, the ray itself is a

path along which, in the velocity field v(x), the travel time from A to B is stationary”

([107], [135]). This means that the derivative of the travel time with respect to any

small perturbation (here the φ perturbation of the velocity field m1a) to the path is

zero, which is important because it means that we get the correct answer (to first

order) even if we have small perturbations along the ray path. Then, we can rewrite

equation 4.33

δT =

∫

ray(m1a)

1

m1a + φ
dS −

∫

ray(m1a)

1

m1a

dS ∼=
∫

ray(m1a)

−φ
m2

1a

dS, (4.34)

where the term m1aφ is small so we ignored it. Let the perturbation to be φ = 20%

and the background velocity model be m1a = 2000 m/s. Then the m1aφ = 0.01%
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difference in travel times. From equation 4.34 we can thus draw the conclusion that

the difference in the travel time between a reference model (i.e. true velocity model)

and a perturbed model (i.e. inverted velocity model) is linearly dependent on the

perturbation.

4.5.2 Numerical Study

Thus far we have studied the impact of the incorrect background model analytically

in terms of travel time differences and reflection and transmission coefficients at the

boundary of the local domain. In this section, we study the impact of the incorrect

background model following a numerical approach. [169] already mentioned that con-

vergence to the true local model may not be achieved in the presence of an incorrect

exterior. Therefore, we expect that there will be an impact on the time-lapse esti-

mation when the background model is incorrect. This section does not only aim to

prove that impact, but also understand and quantify the role of it in the time-lapse

uncertainty estimation. Consequently, we want to answer the following questions:

1. What is the role of uncertainty or “incorrectness” of the background model in

the estimation of the 4D uncertainty?

2. How good is the single model assumption?

To begin with, we consider six different initial models that were generated using

the field expansion method [87]. In this method, a velocity model is estimated by a

perturbed layer medium and then the analytical Helmholtz equation is quickly solved

using a Taylor expansion [36]. Here, we do not approximate the analytical solution to

the Helmholtz equation, but use the method only to generate the initial models. For

each of the six initial models we perform an acoustic frequency—domain FWI using
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Table 4.1: Mean absolute percentage error of inverted model
Inverted model Error

1 8.9333
2 10.5202
3 10.6299
4 10.7580
5 11.4442
6 12.3989

64 shots and 651 receivers equally spaced at the surface of the model. We invert for

six frequencies (3, 4, 5, 6.5, 8, 10 Hz) sequentially for 15 iterations at each frequency.

We sort the models from one to six, based on their error measurement from the true

Marmousi model, with model 1 being the lowest error (Figure 4.6). To measure the

error, we use a mean absolute percentage error,

Ei =

[
1

nz · nx
∑ |modeli(:)− true(:)|

true(:)

]

· 100, (4.35)

where the subscript i represents each of the models, and nz, nx are the number of

grid points in z- and x- directions respectively, and (:) represents the conversion of a

matrix to a vector. Table 4.1 summarizes the percentage error for each of the inverted

models.

We then use each of these inverted baseline models as a background model and

run the MCMC algorithm. We use the same numerical setup as in section 3.1 and

we want to retrieve the same time-lapse perturbation of δm = 75 m/s. At each it-

eration of MCMC, a proposed δm∗ is drawn from the Markov chain, which is added

to the (incorrect) background model to create the estimated monitor model. We get

the F (δm∗) for the likelihood evaluation by subtracting the dataset computed on

the background model from the dataset on the estimated monitor model. Obviously,

the further away that background model is from the true, the more biased will be
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(a)

Figure 4.6: The six initial models (a -f) from the field expansion method (left panel)
together with the respective inverted models (right hand side g- l )
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Figure 4.7: Dataset comparison of model 1’s deviation from the true (blue line) and
the true time-lapse change (red line) in a completely noise free environment; d0 is the
true baseline data, F (m1) is the synthetic data generated on model 1 (Figure 4.6),
and d1 is the true monitor data.

the recovered density function. In simple words, it is possible that the incorrectness

of the background model is greater than the time-lapse change itself, leading to the

time-lapse change being “masked”. If for example we consider model 1 that has the

lowest error, we see that the model’s residual from the true is higher by one order

of magnitude from the true time-lapse residual (Figure 4.7). This difference may be

more significant in the presence of noise, a scenario highly realistic. Therefore, it will

be almost impossible to obtain a meaningful time-lapse distribution, by evaluating

our current likelihood function where the covariance matrix Σd is based on the mea-

surement noise. To combat this issue, we replace the standard covariance matrix with

one that is generated based on the energy of the model residuals. In this way, we can

account for the background model incorrectness while still recover useful distributions.

We define the model residual energy as

ǫi =
2 ‖d0 − F (mi)‖
numel(F (mi))

, (4.36)
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histograms reduced to ±10% of its current range.

Therefore, we draw the following conclusions. The background model uncertainty

has an impact on the 4D uncertainty estimation and it needs to be accounted for. In

the presence of reasonable to low noise levels, all model cases converge to a meaningful

distribution with a similar high peak, indicating that the single model assumption is

valid. In the high–noise scenario where the noise completely masks the 4D change, the

simple model assumption is no longer accurate. In this case, an alternative strategy

might need to be adopted or pre-processing of the data to reduce the noise level.

4.6 Multiple Degrees of Freedom

Thus far, we have characterized the 4D uncertainty only in terms of velocity change.

In time-lapse imaging, however, we are not only interested in the magnitude of a

change but also in the extent of that change. In this section we want to characterize

the 4D uncertainty in terms of both velocity and shape. We cannot do this for every

pixel, even in this small local domain, because the model space would become too

large; it is well known that faster convergence is possible with fewer unknowns (i.e.

smaller dimensionality) [130] [106]. Adaptive Metropolis Hastings algorithms can

generally perform well up to 200 degrees of freedom [51], while in velocity model

building [37] could only go up to 41 degrees of freedom. It is logical then to try to

reduce the dimensionality of the problem. The most straightforward parameterization

to reduce dimensionality is to assume that the Earth can be described by a stack of

layers, which could be either horizontal (i.e. [90], [59]) or with variable topography

(i.e. [30], [37]). Even though these types of parameterizations can capture essential

features of the subsurface, they are not able to represent small scale changes within
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layers (i.e. reservoir). For this purpose more advanced parameterizations such the

discrete waveform transform [119] or the discrete cosine transform [78] may be more

appropriate. As suggested in [68], we choose the discrete cosine transform (DCT)

to parameterize the 4D model within the local domain. The reason we choose DCT

is because it is a well–established technique that is widely used in image and signal

processing to compress images [62] [48]. However we do not claim that this method is

superior than others nor we expect that using a different method of compression will

significantly effect the results. The DCT transformation can express a model in terms

of a new set of parameters, with only a small subset of these parameters required to

obtain a good approximation of the reconstructed model. This means fewer unknowns

and better–posed inverse problems.

4.6.1 Discrete Cosine Transform (DCT)

Fourier based transforms use sinusoidal functions to represent spectral components of

an input signal [16]. The DCT is a linear transformation that transforms an n-length

vector of amplitudes to an n-length vector containing the coefficients of n different

cosine functions [2]. In other words, it decomposes a signal into cosine functions. Its

energy compaction efficiency (the ability to concentrate most of the input’s signal en-

ergy to a few frequency coefficients) is greater than any other transformation. Further

advantages of the DCT are that it can be computed in both 1D and 2D, and it is to

date the most widely used transform in image and video compression standards [163]

[75]. The DCT matrix is typically a non-symmetric matrix and the transformation is

orthogonal. The 2D DCT coefficients for an m-by-n matrix for the kth and lth degree

are:

DCTkl = αkαl

M−1∑

m=0

N−1∑

n=0

cos π(2m+ 1)k

2M

cos π(2n+ 1)l

2N
, (4.38)
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Figure 4.10: (a) The true time-lapse change with smoothed edges. (b) The recon-
structed time-lapse change using the first 300 largest singular values. (c) ~α coeffi-
cients.

where

αk =







1√
M
, k = 0

√
2
M
, 1 ≤ k ≤M − 1,

(4.39)

and

αl =







1√
N
, l = 0

√
2
N
, 1 ≤ l ≤M − 1.

(4.40)

The values of αk and αl act as normalizing constants. Here, we choose to normalize

each component of the DCT matrix so that they have the same energy via:

DCTkl =
DCTkl

|| ~DCTkl||
(4.41)

Typically, this DCT matrix is then multiplied by an image Amn to obtain the trans-

formed image. Although we reconstruct the model during the MCMC process, we

analyze convergence and interpret the results directly with the coefficients.

4.6.2 Numerical Example with 20 DOF

We now explain how we set up our numerical example. We take the 4D anomaly

used in the single parameter estimation and we apply a moving average smoothing
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via convolution with a boxcar function to smooth the sharp edges of the anomaly

(Figure 4.10). In 1D this is expressed as

θn =
M∑

m=−M

|φ|n−mbm, (4.42)

where θn is the value of the 4D change at sample n, |φ|n−m is the absolute value of

the velocity model at sample n−m, and bm is the value of the smoothing function at

sample m. We want to emphasize that the reason we assume that the true time–lapse

change is smooth, is simply because this scenario is closer to what we expect during

real production.

The local domain here is exactly the same as the one in Figure 4.1, and hence

Nxsub = 44 and Nzsub = 25. We then generate 1100 DCT matrices (Nzsub ∗

Nxsub=1100) using Equation 4.38. Each of these DCT matrices has m = Nzsub

rows and n = Nxsub columns. We then generate what we refer to as the Φ matrix by

Φ = [DCT1(:) DCT2(:) ... DCT1100(:)]. (4.43)

where each column of Φ is a vectorized DCT matrix. By doing so the Φ matrix is

orthogonal. The time-lapse change δm is then decomposed with the DCT transfor-

mation to

δm = Φ~α (4.44)

where ~α are the coefficients used to generate the DCT transformation.

To generate the true time lapse change, we first need to solve an inverse problem

to recover all ~α coefficients. We notice that the singular values of the Φ matrix decay

fast after the first 300, which means that the Φ matrix is low-rank (Figure 4.10).

Therefore, we perform a singular value decomposition (SVD) using only the first 300
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largest singular values. Figure 4.10 shows the recovered time-lapse change using 300 ~α

coefficients. We are interested in setting up a Bayesian inversion in which we recover

the ~α coefficients. Trying to recover all coefficients, though, means that we have to

solve a problem with 300 DoF, a number too high for convergence.

To reduce the dimensionality of the problem, we choose only a subset of the ~α

coefficients. If we plot ~α as a function of the coefficients k and l we see that most

of them are concentrated in the upper left corner (Figure 4.10, (c)). This is due

to the energy compaction efficiency of the DCT. This visualization helps us identify

which coefficients are essential to reconstruct the time-lapse change. Choosing the

right number of coefficients for an accurate 4D reconstruction can be difficult; this

number should be small enough for fast convergence but also big enough to sufficiently

describe the data. In addition, in order to ensure consistency through the numerical

examples, we choose the same simulation parameters as in the previous sections; a

single shot and a single frequency of 8 Hz. In order to assure a meaningful time–

lapse reconstruction, the DCT matrices have to comply with the minimum vertical

and horizontal resolution for that frequency. For example, if we take 30 of the ~α

coefficients (30 DoF), the higher frequency coefficients offer a resolution below the

minimum vertical resolution. This means that the thickness of the time–lapse will

not be resolved. This issue could be mitigated by moving to higher frequencies.

However since we choose to simulate all examples at 8 Hz, we choose a maximum

of 20 DoF. At each iteration of the MCMC algorithm, a new set of ~α coefficients

are drawn. This set of coefficients are multiplied by their respective columns from

the Φ matrix to generate a new proposed time–lapse change. Additionally, we add

a smooth taper at the edges of the local domain. We do this so that we can avoid

any artifacts that are produced because of the hard edge of the change when this is

added to generate the monitor model. To ensure faster convergence we change our



107

sampler to an Adaptive Metropolis Hastings (pseudocode in Algorithm 2) and we

recover each of the ~α coefficients. We first run the Non-Adaptive Metropolis Hastings

for Nc = 1000 with a fixed step size, and then we turn on the tuned step size using

the history of the proposals.

We run eight different Markov Chains for 100,000 iterations and we discard the

first half to drop the dependency on the starting model. The acceptance rate for

all chains ranges between 13% and 18%, which means that from 100,000 models

only 13,000-18,000 were accepted. Figure 4.11 shows the histograms of each of the

coefficients for all eight chains. All histograms seem to have converged with a mean

in the confidence range of the true (green line). It is worth mentioning that for the

same number of iterations the Non-Adaptive Metropolis Hastings algorithm did not

converge. To determine an empirical relationship between the coefficients we create

bivariate histogram plots between α1 − α2, α2 − α3, and so on. Of course, one could

choose a different arrangement of pairs for these plots. Bivariate or 3D histograms are

a combination of two histograms that show the dependencies between two variables by

measuring their co-occurrences. Figure 4.12 top left panel shows a bivariate histogram

between α1−α2. Because interpretation could be challenging with this visualization,

we show the top view of these histograms instead. The plots are from one of the

Markov Chains and the colours of these plots relate to the frequency of observations.

The majority of these plots (16 out of 19) show a diagonal concentration, which means

that these coefficients are dependent on one another. The rest of the coefficients seem

to follow a slightly blockier pattern, meaning that these coefficients are independent

of one another. Given their overall relationship, we cannot measure convergence of

these coefficients using the R̂ criteria [47]. For a meaningful use of the R̂ criteria,

quantities/variables need to be independent.
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Figure 4.11: Histograms of the recovered α coefficients for the eight Markov chains.
The green line represents the true value for each coefficient.

Therefore, for a meaningful interpretation, we look at histograms and measure

convergence over quantities of interest. Typically, 4D changes are characterized by

their magnitude and their extent. Thus, we define the following three quantities of

interest:

1. vertical extent of the anomaly,

2. horizontal extent of the anomaly,

3. average velocity of the anomaly.

To perform the vertical extent calculation, we extract a vertical line passing

through the middle of the anomaly (Figure 4.13, (a)). This extracted line looks

similar to a bell curve, and we want to measure to width of that curve. To do so,

we use MATLAB’s function “findpeaks”, that finds local maxima in a given vector by

searching for samples larger than its two neighbouring samples or equal to infinity.
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Figure 4.12: Bivariate histogram plots showing the correlation between the coefficients
for one of the Markov Chains. The top left panel shows a bivariate histogram between
α1 − α2. However, such a visualization is difficult, therefore we show the top view
of these histograms. The brighter colours represent a higher number of observations.
Tick marks are not shown just so each subplot looks clear. The axes and colorbar are
not the same with each other, since each coefficient has a slightly different distribution
range.
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First the highest peak of the signal and its prominence are obtained, and then the

width of the signal is calculated as the distance between two points located at the

height of half the prominence. We do this for all recovered 4D models for each of

the Markov Chains. Figure 4.13 (b) shows all recovered histograms with the green

line representing the value of the vertical extent in the true model (Figure 4.13, (a)).

Histograms appear Gaussian and all chains seem to have converged to the same dis-

tribution with the true being within the confidence range of one standard deviation.

For reference, the dotted black line represents the vertical extent calculated using

only 12 DoF. Fewer DoF lead to an overestimation of this quantity, which can also be

seen at the maximum likelihood model extracted from one of the chains (Figure 4.14).

We follow a similar workflow to calculate the horizontal extent of the anomaly. This

quantity seems to be more stable between the 12 and 20 DoF, however the 20 DoF

seem to be getting a mean more aligned with the true. To compute the average

velocity we define a rectangle in the centre of the anomaly, in which we calculate

the average of all values included. Figure 4.13 (a) shows the true anomaly with the

white rectangle representing the area of calculation. Panel (d) of the same figure

shows the recovered distributions from all Markov Chains. This quantity of interest

is very well described by 20 DoF with almost perfect recovery of the true average

velocity (+0.6 m/s) compared to a small overestimation from the 12 DoF (+5 m/s).

Of course the maximum likelihood model (Figure 4.14, (b)) doesn’t perfectly match

the true time–lapse anomaly, however it sufficiently captures the three quantities of

interest.

We can further assess convergence over the three quantities of interest using the

R̂ criteria. In this criteria we compare the average variance of the quantity of interest
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within each chain (varm) to the variance of all of the chains together (varmix) by

R̂ =

√

mean(varm)

varmix

. (4.45)

Figure 4.15 shows R̂ as a function of iterations for the average time lapse velocity

in the centre of the anomaly, and the vertical and horizontal extent of the anomaly.

Generally convergence is declared if R̂ is less than 1.1, and therefore we conclude that

our chains have converged for the features of interest. Note that this convergence

does not occur until close to 50,000 models have been sampled meaning that using a

method in which you can only sample a few thousand models will not give a stable,

converged solution.

4.7 Multiple Frequencies and Local Minima

FWI gradient–based minimization techniques (typically formulated as least squares

local optimization) are susceptible to local minima in the presence of high noise or

when a good starting model is not available [161] [21]. When complex and realistic

velocity models are used it is possible that different frequencies will converge to dif-

ferent local minima [97]. To mitigate that issue hierarchical approaches have been

proposed in the frequency domain moving from lower to higher frequencies [115] [23]

[138].

On the other hand, global optimization techniques, such as the one used in this

study, are less likely to be trapped in local minima. This property can make these

techniques more desirable compared to local optimization techniques despite their

computational expense. The choice of initial model in global optimization methods

is usually random. The final distribution is independent of the initial guess when the
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Figure 4.13: (a) The true time-lapse anomaly with the two dotted white lines in-
dicating the extracted lines used for the vertical and horizontal extent calculations.
The white box represents the area in which we computed the average velocity of the
time-lapse change. (b) Recovered histograms for anomaly’s vertical extent from the
eight Markov Chains. (c) Recovered histograms for anomaly’s horizontal extent from
the eight Markov Chains. (d) Recovered histograms for anomaly’s average velocity.
In (b), (c), (d) the dotted black line represents the histogram from the 12 DoF while
the solid green line is the true average velocity computed from the model in (a).

Figure 4.14: The maximum likelihood models for the 12 DoF example (a) and the 20
DoF (b) versus the true time–lapse change (c).
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Figure 4.15: R̂ for the three quantities of interest for both the 20 and 12 DoFs.

algorithm converges.

Thus far we have considered only a single frequency, so it is reasonable to ask

whether the issues with different frequencies will apply in the context of global opti-

mization. We examine this in both single and 40 degrees of freedom examples. We

begin with the single degree of freedom and use the noise level in the numerical ex-

ample of that section as the lower noise case. We generate synthetic data for the

frequencies of 3.0, 4.0, 5.0, 6.5, 8.0, 10.0 Hz. For the same frequency batch, we

generate a higher noise case; Figure 4.16 shows a comparison of the data for the high-

and low-noise cases at a frequency of 3 Hz. For both cases we evaluate the likelihood

function (equation 5.5) for a range of perturbations —from 0 to 150 m/s with an

interval of 10 m/s— for all frequencies in the batch. Figure 4.17 displays all results.

We see that for the lower noise case all frequencies converge to the global minimum.

This is not surprising considering the simplicity of the problem. The background

model is the true Marmousi, we recover a single parameter (single DOF), and the

noise level is relatively low. However, when the noise level gets higher (left panel in

Figure 4.17) the different frequencies start deviating from the global minimum and
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converge to slightly different local minima. All of these local minima are near the

global minimum most likely due to the simplicity of the single degree of freedom ex-

ample. Perhaps, in a situation like this a hierarchical Bayesian approach similar to

the one in local optimization might prove beneficial. One could, for example, evaluate

the likelihood of a proposed model at a lower frequency, and if the model is accepted

then move to higher frequencies. Such an approach could be characterized as a multi-

fidelity framework and is outside the scope of this study. An alternative approach

— and more straightforward to implement in an MCMC regime — is to compute all

frequencies simultaneously and evaluate the likelihood function for the stacked data.

[97] observe that stacking all frequencies together increases the chance of converging

to a global minimum with a descent method (Figure 3 of their paper). If we have

observed data (δd1, δd2, ...δdN) at N frequencies (here N = 6) and the measurement

of noise of each observation is Σ1,Σ2, ...ΣN , then the likelihood function becomes

L(δm) ∝ exp

(

−1

2

[
X 1X 2...XN

]T
Σ−1

[
X 1X 2...XN

]
)

, (4.46)

where X = F (δm) − δd with the superscript representing the different frequencies

and Σ is the block diagonal matrix of Σ1,Σ2, ...ΣN , i.e.

Σ =












Σ1 0 0 . . .

0 Σ2 0 . . .

...
. . .

0 . . . 0 ΣN












. (4.47)

Under this construction the noise is uncorrelated across frequencies. The right panel

in Figure 4.17 shows this likelihood evaluation for the perturbation ranges of δm = 0 :

10 : 150m/s in the presence of high noise. We see that unlike the situation where each
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Figure 4.16: The data residuals δd at the frequency of 3 Hz. Panels (a) and (b) show
the real and imaginary parts in the presence of higher noise, whereas panels (c) and
(d) show the real and imaginary parts at lower noise. The blue and red lines represent
the noisy and noiseless δd respectively.

Figure 4.17: Likelihood evaluation for the perturbations δm = 0 : 10 : 150m/s
at different noise levels and frequencies. Left panel: likelihood computed for each
frequency separately in the presence of high noise. Middle Panel: likelihood computed
for each frequency separately in the presence of low noise. Right panel: likelihood
computed for all frequencies at the same time in the presence of high noise.

frequency alone was trapped in a local minimum (left panel in Figure 4.17), evaluating

all frequencies together we can converge to the basin of the global minimum. Based

on the findings of Figure 4.17 we proceed with a single frequency and single shot for

the rest of our paper.

To evaluate the presence of different local minima at different frequencies for the

20 DoF is somewhat more complicated than the single DoF. If, for example, we

perturb by an amount all the DCT coefficients (i.e. perturb all coefficients by 10%,
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Figure 4.18: Recovered distributions of the three quantities of interest at different
frequencies.

20%, and so on) and evaluate the likelihood function the result will be biased. This

is because perturbing all coefficients by the same amount is equivalent to a single

degree problem. To avoid this, we evaluate the presence of local minima, in terms

of the mean of the distribution for the quantities of interest. To do so, we run the

MCMC algorithm for one of the chains at the same frequencies used in the single

DoF evaluation. The noise level is the same as the one in Section 4.6, with SNR =

1.95. Figure 4.18 shows the resulting distributions for the three quantities of interest.

We observe different behaviour (either in terms of distribution shape or in terms of

mean) for each frequency for all three quantities. For the vertical extent we see that

frequencies 8 Hz and 10 Hz retrieve similar distributions, whereas lower frequencies

seem to be more variable. This is likely due to the lower vertical resolution at these

frequencies. For the horizontal extent, most frequencies show a similar behaviour

and mean, however frequencies of 3 Hz and 4 Hz appear affected by limitations of

horizontal resolution. The average velocity displays a Gaussian distribution for all

frequencies, however each of them leads to a different local minima. We anticipate

that in the presence of higher noise — similarly to the single DoF — the obtained

means for each quantity might vary more significantly along the frequencies.
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4.8 Validity of our assumptions

In this section we discuss a number of the assumptions behind our methodology and

show how they influence our final results.

4.8.1 Gaussian assumption on the noise distribution

Assuming that the measurement noise is uncorrelated Gaussian with a perfectly known

covariance matrix is a strong assumption. On the other hand, in field data sets the

noise is typically coherent and spatially correlated. To investigate the performance of

our methodology in such situation, we generate a correlated covariance matrix that

resembles a toeplitz structure using the Matlab function convmtx. Figure 4.19(d)

shows the noisy time–lapse data in the presence of correlated noise compared to the

time–lapse data in the presence of uncorrelated noise. Both type of noises have the

same energy. Since we change one of our assumptions, we expect that the resulting

histograms will also change. Figure 4.19(a-c) shows the resulting histograms, which

now appear to be broader compared to the ones from the uncorrelated noise scenario.

It is very interesting to observe that the vertical extent is the most affected quantity,

which the each noisy type converging to a different median. However, the horizontal

extent and the average velocity are less affected with the medians of the two noise types

in a good agreement. It is important to mention that in a situation where the noise is

highly correlated, additional pre-processing steps may need to be applied before one

can use this framework. When the covariance matrix is unknown, we could follow

the standard practise of assuming a scaled identity matrix, with the scaling typically

coming by estimating and computing the variance of the noise from the signal to noise

ratio. Following the work of [15] and [1] future efforts will focus on investigating the



118
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Figure 4.19: (a) Recovered histograms for the anomaly’s vertical extent from one of
the Markov Chains in the presence of correlated and uncorrelated noise. (b) Recov-
ered histograms for the anomaly’s horizontal extent from one of the Markov Chains
in the presence of correlated and uncorrelated noise. (c) Recovered histograms for the
anomaly’s average velocity from one of the Markov Chains in the presence of corre-
lated and uncorrelated noise. (d) The noisy time–lapse data for both correlated and
uncorrelated noise compared to the noiseless ones.

potential of incorporating the covariance matrix into the unknown parameters.

4.8.2 The 2D acoustic approximation

All numerical examples here rely on the 2D acoustic approximation of the wave equa-

tion. We choose the acoustic wave equation because it is easier to implement compared

to the elastic wave equation, while also allowing for fewer degrees of freedom. Having

established an efficient acoustic UQ framework, we could consider two potential ex-

tensions. Following the work of [70] we could extend it to a 3D acoustic case, where

we still can exploit the structure of the 4D problem by using a local domain, while

also using the low rank approximation of the Green’s functions. Using a low–rank

approximation of the Green’s functions, significantly decreases the cost of computing

the background full–domain Green’s functions, which can be prohibitively expensive



119

when real data and large acquisitions are used. Alternatively, we could continue to

work in 2D but shift our emphasis to more realistic estimations of the time–lapse

change. Using more realistic physics models such as the elastic- or visco- or poro–

elastic wave equation we can better image fluid flows in the subsurface. This could be

done, for example, using a coupled acoutic–elastic local solver as proposed by [168]

and [104].

4.8.3 Design of the hierarchical approach

In Section 4.7 we showed that different frequencies retrieve different posterior distri-

butions. This is a clear sign of presence of local minima. The common practise in

frequency domain gradient–based FWI is to start inverting for lower frequencies and

subsequently invert for higher frequencies ([115], [23], [138]). A similar hierarchical

approach could be employed here too. However, having to solve the wave equation

hundreds or thousands of times for multiple frequencies can be a stumbling block,

especially when typically 80 − 90% of those models are rejected due to the low ac-

ceptance rate of the algorithm [3]. The best practise would be the implementation

of a multi–level or multi-fidelity approach (i.e. [142]). The algorithm could sample

the posterior distribution at lower frequency and accept or reject the proposed δm

based on the Metropolis–Hastings criterion. We can think this low frequency evalua-

tion as a cycle–skipping filter to which proposed models can be considered for further

evaluation. If the proposed δm model is accepted, then we can sequentially move to

evaluating the likelihood function at higher frequencies.
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4.8.4 Tuning of the DCT parameterization

A huge advantage of working with time–lapse data is that they are repeated versions

of the same experiment as a reservoir is actively producing. This means that the

surrounding geology is well known, and the results of interest are focused to the

region of the reservoir, making this an ideal situation for our proposed uncertainty

analysis. In a typical field-data situation we would not have access to the true time-

lapse change however. Here we explain how one could still use the DCT representation

in this case. Typically, before any time–lapse analysis, the reservoir size and velocity

response (prior to production) are well known. The first step would be to design a

local domain that contains the reservoir. Knowing the exact size of the local domain,

allows us to design the Φ matrix, which similar to the study here, will remain fixed

throughout the whole process. Knowing the type of hydrocarbon production process

that is used in the field, such as the type of fluid injection, allows for estimation of

the changes to pore fluids, pore pressure, and effective stress in the reservoir. One can

then use Gassmann’s equations [43] for instance, to infer seismic velocity changes from

different pore fluid saturations in a reservoir. Having a tentative δm at hand as well

as a Φ matrix, one can easily follow the steps described in Section 3 to retrieve the ~α.

When looking at Figure 4.20, we notice that between a 5-by-5 block (25 DoF) and a

6-by-6 (36 DoF) there is no significant change in the reconstructed time–lapse model,

meaning that either of these choices for the number of DoF can accurately approximate

a time–lapse change similar to the one used in this study. Obviously, using a 10-by-10

block (100 DoF) significantly improves the approximation, however the number of

DoF is far larger, posing a challenge for the convergence of the algorithm.
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Figure 4.20: Time–lapse model reconstructions (δm = Φ~α) as a function of the num-
ber of DCT coefficients. We pick different block sizes from the upper left corner of
Figure 4.10c: (a) 3-by-3 block, (b) 4-by-4 block, (c) 5-by-5 block, (d) 6-by-6 block,
(e) 7-by-7 block, and (f) 10-by-10 block.
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4.8.5 Number of iterations in the burn–in process

It is well known that a Markov chain has “no memory”, meaning that any future

state calculation solely relies on the current state and how it got to this state. Thus,

if we discard a number of samples, the future calculations will be no different than

if we have started from the last sampled we discarded. The so–called burn–in period

typically refers to these number of samples that are discarded. We do this because

after the burn–in period, the chain will be in a high probability region and hence more

accurately sample the posterior distribution of interest. If, for instance, we know the

region of high probability and we start from there, our chain would be immediately

burned–in. Following the standard practise described in [19] and [37], we discard the

first half of the samples in the chain as the burn–in samples. This means that we

consider only the second half of the chain to represent the posterior distribution. We

further investigate the number of iterations in the burn–in period by discarding the

first 25%, 50%, and 75%, and looking at the histograms of the Quantities of Interest.

We do not observe any significant difference, and all histograms converge to the same

distributions for all three QoI. We also examine whether the samples for the three QoI

after the burn–in period are correlated with each other; correlated samples typically

lead to slower convergence, and risk deriving biased pdf estimations. We analyze

the autocorrelation function of the sampled models as a function of lag and plotted

the histograms of QoI using different lag values (the so–called “thinning” process),

however we did not observe any changes in the retrieved distributions. This allows us

to draw the conclusion that samples in the chain are not correlated, and we can use

all samples after the burn–in period.
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4.9 Discussion

Time-lapse uncertainty quantification is critical for decisions based upon these time-

lapse changes. A successful uncertainty quantification relies not only on the mathe-

matical models that express the problem, but also on the numerical and computational

feasibility of the algorithm. For a Bayesian inversion to be meaningful, a fast forward

solver is required so that the ten or hundreds of millions of models could be assessed

within an acceptable time frame. Here, our choice of fast forward solver is a local

acoustic solver. Such a solver is particularly ideal for time-lapse imaging because we

can perform a wavefield solve only within a subset of our model (i.e. area around

reservoir) and get exactly the same wavefield (for that subset) as would have been

obtained with a wavefield solve in the full model. For the numerical setup of this

study (Figure 4.1) and for a single shot and single frequency one wavefield solve in

the local domain takes approximately 0.087 seconds. Therefore 20,000 iterations take

approximately 30 minutes. By contrast, one wavefield solve in the full domain takes

approximately 3 seconds, which in 20,000 iterations will be approximately 16.67 hours.

This difference becomes significant when more iterations are needed or more shots and

frequencies are included. We perform all computations on a MacBook Pro with a 2.6

GHz processor and 32 GB memory.

Deep neural networks are favourable for approximating physical phenomena that

are described by underlying nonlinear physics, such as the wave equation. These

techniques have been recently applied in seismic imaging by replacing the standard

finite difference solution of the wave equation (e.g. [144]). [96] approximate seismic

responses at multiple receivers for a horizontally layered medium with this theory.

Even though this approach could be very promising, it might not be ideal (computa-

tionally) for the problem we study here with this particular size of local solver. They



124

observe an order of magnitude reduction in computation time; 1sec for finite differ-

ence solution versus 0.1sec for deep neural network when there is no parallelization.

This time does not include the training process for the neural network, which at times

can be quite intense computationally. On the contrary, the size of local solver here

led to a reduction of approximately one and a half order of magnitudes. A potential

combination of the two techniques might lead to more significant computational time

reduction. Furthermore, assuming that there is a linear relationship between models

and data (which is commonly done in time–lapse problems) opens a possibility for

combining the local solver with supervised algorithms such as Support Vector Re-

gression (SVR) [156]. The idea would be that we can train our algorithm on current

models and data, and then use a regressor to predict what the data could be for a

given model or vice versa.

We showed that using an incorrect background model has an imprint on the re-

trieved time-lapse histograms, as also noted by [169]. When we tested six different

background models against the single DoF example we observed a huge increase in the

range of the recovered histograms. This is to be expected (to some extent) considering

that we use a single shot and a single frequency. Traditional FWI techniques require

multiple shots and frequencies to converge to an assumed global minimum. When

we repeated the same test using 5 shots and a single frequency, we noticed a 10%

reduction in the range of the histograms. In the case of multiple DoF, things could

be more complicated since we essentially allow the algorithm to draw more variable

models. To obtain meaningful quantities of interest we anticipate that more data will

be needed; this means a multi–shot multi–frequency approach. Such an approach will

be an easy extension to our current framework, however it will increase significantly

the computational cost.
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An MCMC algorithm can only sufficiently explore model space for relatively few

DoF. The model parameterization needs to be in a way that also captures all important

features that best represent the model. In this work, we parameterize our model using

a Discrete Cosine Transformation (DCT). We choose DCT because it is easy to employ

and we can describe our models using a set of cosine coefficients. Due to its energy

compaction efficiency, we can reduce the degrees of freedom by using only a subset of

these coefficients to accurately describe our models. Here, using 20 DoF was sufficient

enough to recover the three chosen features of interest. There are many other ways to

do this compression, which are thoroughly explored in the image processing literature

[120] [117], however we do not expect that using a different method of compression

will significantly effect the results.

4.10 Conclusions

We propose a local acoustic solver for a fast 4D Bayesian inversion. Calculating

the full posterior pixel by pixel, even in a small local subdomain, would be both

computationally challenging and potentially difficult to interpret. We have created a

framework that calculates time-lapse uncertainty quantification in a targeted way that

is computationally feasible. We show that our framework is robust for both single and

multiple degrees of freedom examples. Metropolis Hastings is typically used to ground

truth probability distributions. This is particularly useful in seismic imaging, where

the distributions of most structures of interest are not well known. Now that this is

done, our future work will focus on more advanced uncertainty quantification methods,

such as Hamiltonian Monte Carlo (HMC), which can handle higher dimensions while

providing faster convergence.
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Chapter 5

An introduction to Hamiltonian

Monte Carlo for time–lapse seismic

inversion and uncertainty

quantification

5.1 Abstract

Uncertainty quantification is an important aspect of time–lapse imaging and is typi-

cally done using Bayesian inference. Traditional random–walk sampling methods are

slow to converge and they fail to efficiently explore a high dimensional space. We

propose using a local acoustic solver for an efficient 4D Hamiltonian Monte Carlo in-

version. Using a local acoustic solver offers the advantage of quick and local gradient

computations. For a meaningful HMC implementation the parameters of the Leapfrog

simulator need to be tuned. Here, we use the strategy of trial and error to tune the
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Leapfrog steps L and the method of dual averaging to tune the Leapfrog stepsize ǫ.

Our simple numerical illustrations demonstrate the robustness of the method over the

Metropolis–Hastings algorithm, and sets up the path towards a higher dimensional

implementation.

5.2 Introduction

One of the critical aspects of reservoir monitoring is the analysis of time-lapse or

4D seismic data sets. These data sets are repeated surveys of the same location as

a reservoir is undergoing production to characterize changes in fluid properties [79].

The first survey acquired is called the baseline survey, while all the following surveys

are called monitor surveys. Full–Waveform Inversion (FWI) originated in the early

1980’s [145] and aims to deliver high–resolution velocity models of the Earth using the

entire content of seismic data. For a recent review, readers can refer to [160]. FWI is

extended to time–lapse successfully with a variety of frameworks currently available

[167] [182] [129] [84] [173] [6] [64].

Due to its inherent non–linearity, when local optimization strategies are used,

such as the ones mentioned above, 4D FWI has two challenges. First, for a given

initial model, FWI delivers a single model from the range of possible models that

could equally describe the data. Therefore, it is not straightforward to draw any

meaningful estimate of the uncertainty associated with that model. Second, FWI

strongly depends on the initial model; for accurate model reconstruction, the predicted

data for the starting model needs to be within half a wavelength of the observed

data. In principle, both of these challenges can be handled by Monte Carlo sampling

[95]. A fundamental characteristic of MCMC algorithms is that they do not assume
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the underlying structure of the posterior. [131] provide a helpful review of Monte

Carlo methods in geophysical imaging. Solving an inverse problem using Markov

Chain Monte Carlo (MCMC) means exploring and characterizing the ensemble of all

plausible models. This is typically done using Bayes’ theorem [10] and computing

a posterior probability density function [147]. Even though this can sound naively

simple, it can come with a significant computational burden given the dimension

of the problem to be solved and the expense of the forward solver. For instance,

for a standard Metropolis–Hastings implementation, one might need to run 10,000-

100,000 iterations, which means 10,000 - 100,000 forward solves [37]. The expense of

the forward solve is proportional to the size of the model, and hence to the number

of Degrees of Freedom (DoF). Here, we overcome the latter issue by exploiting the

structure of the 4D problem. Time–lapse data are typically collected over actively

producing reservoirs; this means that the surrounding geology is well studied while

the changes we are looking for are concentrated around the reservoir. This means

that we can use localized wavefield techniques [155] [157] [169] [18] [177] that allow

the solution of the forward problem in a smaller subdomain of the subsurface. In this

work, we use the frequency–based local solver developed by [169].

Uncertainty quantification is an essential topic of geophysical imaging. Since the

early study of [63], work has continued to understand these uncertainties and quan-

tify them. Some of the most recent studies include [119], [37], [179], [140], and [152].

In our recent work [69], we derived a Bayesian formulation of the 4D–FWI prob-

lem, and performed random–walk and Adaptive Metropolis–Hastings inversions [51].

Metropolis–Hastings algorithms are typically used to ground–truth probability dis-

tributions. This is particularly useful in seismic imaging, where the distributions of

most structures of interest are not well known. However, in addition to being slow

to converge, these algorithms are also in general limited in the number of DoF that
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they can handle. This is because as the number of dimensions grow, there are expo-

nentially more possible guesses the algorithm can make, while only a single one that

can pass the check (meaning that is accepted). This could be addressed by utilizing

reduced parameterization approaches, but there is the potential risk of oversimplifying

the model representation. In this context, more advanced uncertainty quantification

methods such as Hamiltonian Monte Carlo (HMC) could be beneficial because they

can handle higher dimensions while also providing faster convergence. Originating

with the title “Hybrid Monte Carlo” [32] in a quantum chromodynamics study, HMC

has seen a widespread application in numerous research fields such as neural networks

[99] and molecular simulations [33] just to name a few. HMC is particularly favourable

in the case where the partial derivatives of the target distribution are easy to com-

pute. In the case of FWI this can be easily achieved using the adjoint state method

[109], Hamiltonian Full–Waveform Inversion has only been applied recently [133] [44]

[27]. Building upon our earlier work, we employ a 4D–HMC algorithm and illustrate

its performance on a simple 4D problem. This opens up the possibility of allowing

the whole 4D model in the local domain to be uncertain, meaning more than 1,000

DoF to be considered which is not possible with standard MCMC methods. Even

though we assume that the measurement noise is Gaussian, we make no assumptions

about the posterior distribution which could be any type, including multi–modal and

non–Gaussian. In the following sections, we revisit the theory of the local domain

and the 4D problem setup, and explain the concept of HMC. We end with two simple

seismic examples and discussion of current and future work.
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Split domain
to Ω and Ωs

Model in Ω & initial
guess in Ωs → m0

Calculate full do-
main Green’s func-
tions u0 on m0

δm only in Ωsm = m0 + δm
In Ωs:

u = u0 + δu
∇2u + mω2u = f

Figure 5.1: Steps of local domain solver.

5.3 Theoretical Background

5.3.1 Local Acoustic Solver

Here, we briefly describe the local wave solver; a detailed explanation can be found

in [169]. This is a frequency–based acoustic local solver, that accurately computes

wavefields within only a subdomain of the region covered by the survey, providing

a significant computational savings when compared to standard forward solvers. To

successfully apply the local solver, we follow the steps in Figure 5.1. It is important to

mention that the background Green’s functions computation happens (all steps in the

first line of Figure 5.1) only once, and then we can update the model and recompute

the wavefield in only the local domain as many times as we need (all steps in the

second line of Figure 5.1).

5.3.2 4D Bayesian Inference

A probabilistic inversion approach can be described using Bayes’ theorem [10] [146],

where a hypothesis (given some evidence) is expressed in terms of a probability distri-

bution, typically called the posterior distribution. In the context of seismic imaging,

a hypothesis could be, for example, represented in terms of velocity models (m) given
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some observed data (d) [146],

p(m|d) = p(d|m)p(m)

p(d)
. (5.1)

In Equation 5.1, p(d|m) is the likelihood function calculated by [146]

L(m) ≡ p(d|m) (5.2)

∝ exp

[

−1

2
(F (m)− d)TΣ−1(F (m)− d)

]

,

where F is the forward solver and Σ−1 is the inverse covariance matrix of the data

noise. The variable p(m) is the input prior model distribution and contains any prior

information available on the models. The variable p(d) — the so–called evidence —

is considered to be a normalization constant [148] and is given by

p(d) =

∫

p(d|m)p(m)dm. (5.3)

The evidence ensures that the integral of the left hand side of Equation 5.1 is equal

to unity and therefore it is a valid probability distribution.

Since the focus of this paper is on time–lapse seismic application, we are interested

in having an expression only in terms of model differences δm and data differences

δd. Following [67], we can express Bayes’ theorem as

p(δm|δd) = p(δd|δm)p(δm)

p(δd)
, (5.4)
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and the respective likelihood function as

L(δm) ≡ p(δd|δm) ∝ (5.5)

exp

[

−1

2
(F (δm)− δd)TΣ−1(F (δm)− δd)

]

,

where Σ is the sum of known covariance matrices from the noise in the baseline and

monitor data.

5.3.3 Hamiltonian Monte Carlo (HMC)

Theoretical concept

Hamiltonian Monte Carlo (HMC) explores a target distribution by incorporating infor-

mation about its differential geometry into the search–proposal process. This means

that the algorithm utilizes physical system dynamics (Hamiltonian dynamics) to pro-

pose new and distant jumps in the Markov Chain [100]. To better understand this, an

excellent example of a comprehensive analogy is described by [13], where one can think

of a planet, a gravitational field, and an orbit instead of a mode, a gradient, and a

target distribution. Then, the probabilistic challenge of exploring a target distribution

turns into the physical challenge of placing a satellite in orbit around a planet. Both

these challenges are equivalent to the same mathematical problem, which means they

will suffer from the same issues. If we place a satellite at rest in space, it will crash

onto the planet due to the gravitational forces. Equivalently, gradient–trajectories

on a target distribution can crash onto the mode. To place the satellite in orbit

around the planet, we need to add momentum. If the momentum is too little, then

the gravitational forces overpower it and eventually lead to the satellite crashing onto

the planet. On the other hand, if the momentum is too big, the gravitational forces
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will not be able to keep the satellite around the planet, and the satellite will eventu-

ally drift away in space. To ensure a stable orbit around the planet, we need to add

the right amount of momentum, where momentum and gravitational forces are bal-

ancing each other. This way, we ensure that the system has conservative dynamics.

Equivalently the probabilistic system can be augmented with auxiliary momentum

parameters, p, to explore the target distribution efficiently. Similar to the physical

system, if the momentum is too little the trajectories will crash into the mode, whereas

too big of a momentum will lead to trajectories exploring areas away from the tar-

get distribution. The main idea behind Hamiltonian Monte Carlo is to introduce a

Hamiltonian function H(δm,p), such that the resulting dynamics allow us to explore

a target distribution efficiently. These Hamiltonian dynamics are used to describe

how an object moves in space in terms of its location (i.e. time–lapse model δm) and

its momentum p at some time t. For each location of the object, there is an associated

potential energy U(δm), and for each momentum of the object there is an associated

kinetic energy K(p). To relate the potential energy to the target distribution we use

the concept of canonical distribution from the field of statistical mechanics. For a set

of variables θ and their energy function E(θ), we have a canonical distribution with

probability density function p(θ) = 1
Z
e−E(θ). The variable Z is a positive normalizing

constant — so–called partition function— ensuring that this function sums to one so

that the resulting distribution is a valid probability distribution. One can obtain the

energy function E(θ) by simply E(θ) = − log p(θ) − logZ. The Hamiltonian func-

tion is an energy function that combines the potential and kinetic energy such that

E(θ) = H(δm,p) = U(δm) +K(p). The canonical distribution for the Hamiltonian
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energy function will therefore be

p(δm,p) ∝ e−H(δm,p) (5.6)

= e−[U(δm)+K(p)]

= e−U(δm)e−K(p)

∝ p(δm)p(p).

From Equation 5.6 we see that the joint canonical distribution simplifies to indepen-

dent canonical distributions for δm and p respectively. This means that δm and p

are independent of one another. Therefore, we use the joint canonical distribution to

sample from, but we ignore the momentum variables afterward; this is because the

momentum variables are only auxiliary to allow the use of Hamiltonian dynamics,

while the main variables of interest reside in δm. This means that the target dis-

tribution we are interested is p(δm). Following the energy expression of a canonical

distribution from above, we can obtain the potential energy function U(δm) by defin-

ing an expression that when negated and taken the exponential of, will give the target

distribution p(δm) [100] [133] such that

U(δm∗) = − log [p(δm∗)L(δm∗)] , (5.7)

where p(δm∗) is the prior time–lapse model distribution and L(δm∗) is the likelihood

computed via Equation 5.5. Here, we assume that the prior is a bounded uniform

distribution. Because δm and p are independent, we can choose any distribution

we want to sample from for the kinetic energy. A common choice is a zero–mean

unit–variance Gaussian distribution such that p∼N (0, 1), where p is a vector with
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size equal to the model parameters (number of DoF). This is equivalent to having a

quadratic kinetic energy K(p) in the system, calculated as

K(p) =
1

2
pTp. (5.8)

As mentioned earlier, Hamiltonian dynamics describe how an object moves in

space at some time t. Quantitively, this is expressed with a set of differential equations

known as the Hamilton equations [100]:

∂δm

∂t
=
∂H(δm,p)

∂p
=
∂K(p)

∂p
,

∂p

∂t
=
∂H(δm,p)

∂δm
= −∂U(δm)

∂δm
. (5.9)

The algorithm

HMC treats a model as a virtual Hamiltonian particle that moves along a trajectory.

Evolving a current state [δm0,p0] over some time τ we get a new state [δm∗,p∗]. Due

to the conservation of energy the Hamiltonian is equal in both states. The sequence

of models and momenta map out positions on the so–called phase space (i.e. plots

of trajectories). It is difficult to solve the Hamiltonian dynamics analytically, and

therefore we typically approximate them by discretizing them in time.

To discretize Hamiltonian dynamics we use symplectic numerical integrators. Sym-

plectic means that the solution of a system exists on a symplectic manifold [76] [52],

which is a characterization of phase space [δm,p]. Hamilton’s equations naturally

have that their solutions reside on a symplectic manifold in phase space, with the

natural splitting of position and momentum variables. These symplectic integrators

should respect the properties of the Hamiltonian dynamics, which are time reversibil-

ity (Figure 5.2 (a)) and volume preservation (Figure 5.2 (b)). Suppose we start at a
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Figure 5.2: (a) Illustration of an original and a time reversed trajectory. (b) Simplistic
illustration of the volume preservation characteristic of the Hamiltonian dynamics. (c)
Illustration of the structure of the leapfrog method.

position δms at some time ts with momentum ps and follow a trajectory to a later

position δme with momentum pe at time te. Considering the time reversed trajectory

starting at time ts, at position δme but with the opposite momentum −pe. Then,

at time te, the particle will have reached the initial position δms and the momen-

tum will be −ps. We think of this as a movie we run backwards; this describes the

time reversibility (symplectic integrators satisfy this by negating the momentum at

the end of the trajectory, as will be explained in the next paragraphs). The volume

preservation (area in phase space) is proven using Liouville’s theorem; [100] provides a

detailed explanation on that. Here, we only show a simplistic illustration (Figure 5.2

(b)). Let the four corners of the square (1,2,3,4) represent four possible coordinates

of a particle at time t. At a later time t′ each of these four points will change to form

the corners of a parallelogram. If we integrate Hamilton’s equations for some finite

time, this is essentially equivalent to designing a map in phase space. The area of

the square A will be equal to the area of the parallelogram A′, representing an area

preserving map.
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The most commonly used symplectic integrator in the context of HMC is the

Leapfrog method (an integrator of 2nd order accuracy), where position and momen-

tum are updated sequentially in an interleaving fashion such that they “leapfrog” each

other (Figure 5.2 (c)). At each iteration of HMC, we simulate the Leapfrog integrator

for L steps using a stepsize ǫ, which essentially leads to simulations over L× ǫ units

of time. Obviously, for a successful implementation, these two parameters need to be

tuned; we will discuss this in more detail in the next subsection. Starting with a cur-

rent position δm0, we randomly draw a momentum from a zero mean unit–variance

Gaussian distribution. The Leapfrog method first updates the momentum dynamics

for a small interval of time ǫ
2
, then updates the position and momentum for a slightly

longer interval of time ǫ, and at the end updates the momentum for another small

interval ǫ
2
, so that position and momentum are now at the same point in time [100].

Specifically, we firstly take a half step to update the momentum variable via

p
(

t+
ǫ

2

)

= p(t)−
( ǫ

2

) ∂U

∂δm(t)
. (5.10)

Then, for L and L−1 steps we update position and momentum variables respectively

with a full step via

δm(t+ ǫ) = δm(t) + (ǫ)
∂K

∂p
(
t+ ǫ

2

) (5.11)

p
(

t+
ǫ

2

)

= p
(

t+
ǫ

2

)

− (ǫ)
∂U

∂δm(t+ ǫ)
. (5.12)

We then take the remaining half step to update the momentum variable via

p (t+ ǫ) = p
(

t+
ǫ

2

)

−
( ǫ

2

) ∂U

∂δm(t+ ǫ)
, (5.13)
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and at the end we negate the momentum so that the proposal is symmetrical by

ensuring reversibility ([13]; Figure 5.2 (a)). Let us take a moment and briefly explain

why. Because we use a numerical integrator to approximate the Hamiltonian flow,

this integration introduces an error. A usual trick to correct this error, is to consider

the flow as a proposal and apply a Metropolis correction at the end. However, to

apply this correction it is required that the flow is reversible, which in the case of

HMC it is not. One way to make the flow reversible is consider that the kinetic

energy is symmetric around p, and apply a momentum flip at the end. [13] provides

a detailed explanation of this in his Section 5.2. The pseudocode in Algorithm 3

summarizes the steps of the Leapfrog integration. The new proposed state [δm∗,p∗]

(where δm∗ = δm(t + ǫ), and p∗ = −p (t+ ǫ)) is accepted based on the Metropolis

criterion, with a probability

α = min
[
1, e−H(δm∗,p∗)+H(δm0,p0)

]
= min

[
1, e−U(δm∗)+U(δm0)−K(p∗)+K(p0)

]
. (5.14)

The flowchart in Figure 5.3 provides a summary of the algorithm. Optimal accep-

tance rates, α, of the algorithm are typically in the range of 60− 80%.

Algorithm 3 Leapfrog integration

Require: δm0 ⊲ initial position
Require: p0 ⊲ initial momentum
Require: L ⊲ number of leapfrog steps
Require: ǫ ⊲ stepsize
1: p1 = p0 − ǫ

2
∂U

∂δmi−1

⊲ half step to update momentum

2: for j = 1, .., L do
3: δmj = δmj−1 + ǫpj−1 ⊲ full steps for position
4: if j 6= L then
5: pj = pj−1 − ǫ ∂U

∂δmj−1

⊲ full steps for momentum

6: end if
7: end for
8: pj = pj − ǫ

2
∂U

∂δmj
⊲ remaining half step for momentum

9: pj = −pj ⊲ flip the momentum at the end of trajectory
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Set t = 0

Initial position δm0

for t = 1, ..., N

Draw momenta from
Gaussian distribution

p0∼N (0, 1) and
set δm0 = δmt−1

[δm0,p0] → Leapfrog
→ [δm∗,p∗]

Pseudocode Algorithm
1

Calculate acceptance
probability α with
Equation 5.14

Draw random
number u∼U(0, 1)

if u ≤ α, δmt = δm∗

else δmt = δmt−1

while t ≤ N tune use
the Dual Averaging
method (pseudocode
Algorithm 2) to tune

and update the
step–size

Figure 5.3: 4D Hamiltonian Monte Carlo Flowchart.
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Hyperparameters

Even though HMC is considered to be one of the most powerful sampling methods,

its efficiency depends unavoidably on the choice of the hyper-parameters; here these

hyper-parameters are the number of leapfrog steps L and the leapfrog stepsize ǫ, which

together determine the length of the trajectory at some time τ = ǫL. A poor choice

of L and ǫ can lead to dramatic degradation in the performance of HMC [100] [58]

[13]. There are different ways that one can choose to tune these parameters, and we

elaborate on those in the next couple of paragraphs.

Number of Leapfrog steps L A correct choice of L will determine whether the

space exploration is systematic and efficient, rather than a random walk. For example,

if L is chosen too large, then the trajectories will be too long resulting in revisiting

and resampling the same area. This translates to a waste in computational time. On

the contrary, if L is chosen too small, then the consecutive samples will be too close to

one another, behaving similarly to a random–walk Metropolis algorithm. Thankfully,

the choice of L is independent of the choice of ǫ. For example, for the number of

leapfrog steps L one can choose the method of trial and error, or more sophisticated

approaches such as the one proposed in [58]. Here, we use the trial and error technique

following the recommendations on L choices provided in [100], and in particular we

find that L = 10 is good choice for the numerical tests of this study. However,

much like all MCMC algorithms, HMC can also show pathological behaviour when

it encounters areas of high curvature in parameter space. For instance, the most

common way of illustrating this phenomenon is using the Funnel distribution [100],

where a Markov chain can get stuck in the neighbourhood of high curvature, and only

after infinite number of iterations can potentially escape (i.e. Figure 9 in [13]). In

order for an HMC algorithm to avoid poor interactions in regions of high curvature
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when a fixed trajectory length τ is used in every iteration, [100] suggests to randomly

vary τ . Here, we adopt this strategy by randomly jittering L at each iteration, via

L = 2 ∗ np.random.rand() ∗ L.

Leapfrog stepsize ǫ Tuning the stepsize ǫ is, to some extent, similar to tuning

the stepsize of Metropolis Hastings but with higher sensitivity; an incorrect choice of

ǫ can have severe effects on the performance of the algorithm and sometimes even gen-

erate unstable trajectories. If ǫ is chosen too large the leapfrog method will generate

inaccurate simulations, which will be reflected in low acceptance rates of the HMC

algorithm. Otherwise, if ǫ is chosen too small, this will lead to taking too many steps

in the integration and essentially wasting computational time. With respect to how to

tune the stepsize, there are a few more possibilities in addition to trial and error. For

example, one could choose ǫ randomly from a distribution at the beginning of each

trajectory [100] or using adaptive strategies such as the ones described in [5]. Here, we

choose an adaptive strategy called the Dual Averaging Scheme proposed by [58]. This

method combines the concept of vanishing adaptation (this means that the step–size

adaptation vanishes gradually as more samples are drawn) proposed by [123] with the

primal–dual algorithm of [101]. Here, we will briefly describe the algorithm, but for

more details please refer to [58]. We assume that we have a statistic Ht that contains

some information about the MCMC process at some iteration t. This statistic could

be, for example, described in terms of the acceptance probability at iteration αt and

the desired average acceptance probability δ such that

Ht = δ − αt. (5.15)

The expectation of Ht is

h(ǫ) = Et[Ht|ǫ]. (5.16)
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We are interested in finding all ǫ ∈ R such that Equation 5.16 will converge to 0. This

can be accomplished by performing the following updates

ǫt+1 ← µ−
√
t

γ

1

t+ t0

t∑

i=1

Hi, (5.17)

ǫt+1 ← ηtǫt+1 + (1− ηt)ǫt,

with the second equation being an evaluation of the average stepsize ǫt. In the above

equations, µ is a randomly chosen point towards which ǫt is shrunk, and the amount

of that shrinkage is controlled by γ > 0. The term t0 ≥ 0 conveys stability of the

algorithm at initial iterations; theoretically larger values of t0 will stabilize the stepsize

exploration early. The parameter ηt = t−κ with κ ∈ (0.5, 1] is a stepsize ensuring that

h(ǫ) will converge to 0. The smaller κ is, the faster the algorithm forgets its earlier

stepsize iterates. In addition, ηt needs to satisfy

∑

t

ηt =∞,
∑

t

η2t <∞. (5.18)

From equation 5.17 the per–iteration update in the stepsize ǫ is on the order of

ǫt+1 − ǫt = O(−Htt
−0.5), (5.19)

which validates the vanishing nature of the adaptation. In this work, we choose

the default parameters of γ = 0.05, t0 = 10, and κ = 0.75 from [58]. We also

set the desired average acceptance probability to δ = 0.65 [100]. The pseudocode

in Algorithm 4 shows the Dual Averaging algorithm for stepsize tuning. During

the tuning process, the HMC algorithm uses a stochastic stepsize that comes from
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Equation 5.17 at each iteration. Once the tuning is done, the HMC uses the dual–

averaged stepsize for sampling.

Algorithm 4 Dual Averaging Algorithm

Require: N tune ⊲ number of iterations to run tuning
Require: κ = 0.75 ⊲ default value, Hoffman & Gelman (2014)
Require: γ = 0.05 ⊲ default value, Hoffman & Gelman (2014)
Require: t0 = 10 ⊲ default value, Hoffman & Gelman (2014)
Require: µ = log(10ǫ0) ⊲ default value, Hoffman & Gelman (2014)
Require: δ = 0.65 ⊲ desired acceptance rate, Neal (2011)
Require: H0 = 0
Require: ǫ0 ⊲ initial stepsize
Require: ǫ0
1: if i ≤ Nadapt then
2: αi = min(1, exp(−H(δm∗,p∗) +H(δmi−1,pi−1))) ⊲ acceptance probability

3: H i =
(

1− 1
i+t0

)

H i−1 +
1

i+t0
(δ − αi)

4: log ǫi = µ−
√
i

γ
H−

5: log ǫi = i−κ log ǫi + (1− i−κ) log ǫi−1

6: else
7: ǫi = ǫNadapt ⊲ Set to dual–averaged stepsize for sampling
8: end if

Algorithm illustration with Gaussian examples

To illustrate how the algorithm works we consider a couple of simple Gaussian ex-

amples that we compare to the examples shown in [25]. Let us assume that we want

to sample from a posterior distribution p(x) that has a normal distribution with the

following parameterization

p(x)∼N (µ, σ), (5.20)

with a mean of µ = 0 and a standard deviation of σ = 0.1. Using the kinetic energy

from equation 5.8, we need to define the expressions for the potential energy and

its partial derivative. The potential energy, as mentioned earlier, can be defined as

the negative logarithm of the posterior distribution, U(x) = − log[p(x)]. Taking the
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negative logarithm of a normal distribution results in

U(x) =
1

2

(

log(2πσ2) +

(
x− µ
σ

)2
)

. (5.21)

To calculate the partial derivative of Equation 5.21 with respect to x, we use a Python–

based automatic differentiation package called autograd1. This package offers a way

of taking a code that computes a function, and automatically constructs a code that

computes the derivative of that function [82] [9]. We, therefore, define the gradient of

potential energy as dUdx = grad(U(x)). We start from an initial position of x0 = 0.0,

and draw initial momentum from p0∼N (0, 1). We then run the HMC algorithm for

2,000 iterations with the hyper-parameters of L = 1.0 and ǫ = 0.01. Figure 5.4 (a)

and (b) show the recovered histograms and the phase space respectively. We see that

the single Gaussian distribution maps out ellipses in the phase space, where the radius

of the ellipses depends on the energy of the system, defined by the initial conditions.

Recall, that these ellipses in the phase space represent the Hamiltonian trajectories

(defined by plotting positions and momenta) along the integration length.

To progress this example further, we consider a target distribution that is a mixture

of three normal distributions. Specifically, we consider

p(x) = [p1(x); p2(x); p3(x)], (5.22)

where p1(x)∼N (−1.0, 0.3), p2(x)∼N (0.0, 0.2), and p3(x)∼N (1.0, 0.3), where each of

the individual normal distributions have different weights (specifically p1(x) has a 10%

weight, p2(x) has 50%, and p3(x) has 40%). We run the HMC algorithm for 2,000

iterations using exactly the same parameters as in the previous example. Figure 5.4

(c) and (d) show the recovered histograms and the phase space respectively. We see

1https://github.com/hips/autograd
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that the phase space is different than before, with three ellipses with their centres at

each of the different means. The density of these ellipses is proportional to the weight

given to each normal distribution; for example, p2(x) has higher weight than p3(x)

and p1(x), which is reflected in how dense the sampling is for this one compared to

the other two.

Now, to make things a bit more exciting we set up a target distribution that is

a mixture of two, p(x) = [p1(x); p2(x)], where the mean of the 2nd is within the

second standard deviations of the first and the areas of their first standard deviation

are overlapping. In particular, p1(x)∼N (0.0, 0.5) and p2(x)∼N (0.6, 0.3), and we give

both equal weight. This arrangement of distributions will most likely lead to a skewed

target distribution. Once again, we run the HMC algorithm for 2,000 iterations with

the same parameters as in the previous two examples. As expected, the resulting

histogram (Figure 5.4 (e)) is a negative skewed distribution with the mode being in

the vicinity of the p2(x) mean. This is also apparent in the phase space (Figure 5.4

(f)).

5.4 Simple Seismic Example

In order to be able to perform a direct comparison between the Metropolis–Hastings

and the HMC algorithm, we use the same example as in [69]. For both the true

baseline and background model m0 (on which we compute the full subsurface Green’s

functions), we use the standard Marmousi model [159] (Figure 5.5 (a)). The white box

shows the location of the subdomain in which we evaluate the Hamiltonian energy

function at each iteration i. The number of grid points in the local subdomain is

significantly smaller than the number of grid points in the full domain; in this example
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Figure 5.4: 1D Gaussian examples (left panel) and their respective trajectories in
phase space (right panel). The first row shows the results of the single normal distri-
bution example, the second row the results of the mixture of three normal distribu-
tions, and the third row the results of the mixture of two normal distributions. All
histograms are retrieved after 2,000 iterations of the HMC algorithm, using the exact
same hyper-parameters for all. All trajectories are plotted every 50th iteration.
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Figure 5.5: (a) The true Marmousi model, with the yellow star and red triangles
indicating the location of the source and receivers respectively. (b) The true time–
lapse change with a magnitude of 75 m/s that was was added in one of the layers. In
both images the white box shows the location of the local domain.

Nxsub = 44 and Nzsub = 25, whereas Nxfull = 651 and Nzfull = 176.

To generate the monitor velocity model, we add a perturbation of 75 m/s as shown

in Figure 5.5 (b). The acquisition geometry consists of a single shot and 651 receivers

as is shown in Figure 5.5 (a). We use a Ricker wavelet with a peak frequency of 6 Hz

as the source, while we perform the 4D HMC inversion for the frequency of 8 Hz. In

the inversions we use noisy δd to which we add Gaussian noise with covariance matrix

Σd. The signal to noise ratio is 1.9, calculated as the ℓ2 norm of the noiseless signal

over the ℓ2 norm of the noise.

Since this is a single DoF example, computing the gradient of the potential energy

(Equation 5.7) with respect to the time-lapse perturbation using the adjoint state

method will be complicated and unnecessary. We instead use the central difference
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method such that

∇δmU =
U(δm+ h)− U(δm− h)

2h
, (5.23)

where we choose h = 1 m/s. Using the above equation is quite fast since it only

requires two wavefield solves per gradient calculation. To initially validate the algo-

rithm we run the HMC starting from three different δm0, in particular for δm0 =

0 m/s, 75 m/s, and 1000 m/s. In principle, if the algorithm is set up correctly, when

we start from the true perturbation of 75 m/s, it should keep exploring the vicinity

of that value, instead of doing random jumps as in MH for example. Figure 5.6 (a)

shows the results of only the first 10 iterations, as we are only interested in seeing

how fast the algorithm reaches the neighbourhood of high probability. As expected,

when we start from the true answer, HMC keeps exploring the vicinity of the true

answer. When we start from 0 m/s the algorithm needs approximately two itera-

tions to reach the proximity of the correct answer, in contrast with the scenario of

δm0 = 1000 m/s where it needs approximately 6. We chose this example to allow

direct comparison with our previous work. Figure 5.6 (b) compares the results of the

first 50 iterations between the HMC and MH algorithm when we start from an initial

perturbation of δm0 = 0 m/s. It is not surprising to see that the MH algorithm

needs approximately 30 iterations before it reaches the neighbourhood of the correct

perturbation; this number is vastly different from the two iterations needed for HMC.

Obviously, the small number of required iterations is proportional to the simplicity

of the problem. Once we move to higher dimensional problems, a larger number of

iterations will be needed before the HMC reaches the proximity of the high density

area. For completeness we also show the trajectories (plot of positions and momenta

along the integration path at each iteration) of the HMC algorithm (Figure 5.6 (c)),

and we also compare the retrieved histograms (Figure 5.6 (d)) after running the MH

algorithm for 20,000 iterations (and discarding the 1st half) and the HMC algorithm
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(a)
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Figure 5.6: (a) Comparison of the behaviour of HMC with respect to different initial
models given the same hyper–parameters L and ǫ. (b) Comparison of the performance
of HMC versus MH given a starting model of δm0 = 0 m/s. (c) Trajectories in the
phase space. (d) Retrieved histograms for both Metropolis–Hastings and Hamiltonian
Monte Carlo inversions; the straight black line represents the value of the true time-
lapse change.

for 10,000 iterations (without discarding any of the samples drawn).

5.5 2D Local Domain HMC Inversion

Moving towards a more exciting and realistic numerical example, we consider a dif-

ferent local domain than in the previous example and we attempt a full local domain

retrieval. Without having the limitations of dimensionality nor the need to use reduced

parameterization strategies, we could allow the whole model within the local–domain

to be updated. This will mean a pixel–by–pixel uncertainty quantification, which will

result in a problem with the number of DoF being equal to the total number of grid
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points that comprise the local domain. Figure 5.7 (a) shows the Marmousi model

(that serves as our true baseline model) with the location of the local domain repre-

sented by the white box. We design this local domain to be shallower, as this allows for

better illumination and imaging. We generate the monitor model by adding a velocity

change of 200 m/s in one of the layers within this local domain (Figure 5.7 (b)). The

number of grid points in the local domain are Nxsub = 30 and Nzsub = 20, accounting

for a total of 600 DoF. For the simulations, we use five shots and 651 equally spaced

receivers at the surface (Figure 5.7 (a)). The source is a Ricker wavelet with a peak

frequency of 6 Hz. We perform the HMC inversion using a single frequency of 5 Hz.

Having a local acoustic solver at hand, means that we can compute gradients

locally very fast using the adjoint state method [109] [89]. However, the time–lapse

data differences δd do not satisfy the wave equation, and therefore any gradient

computation will be extremely difficult if not impossible. To make this feasible, we

have to adopt the same practise as several authors do in Double Difference FWI [180]

[171] where we use a synthesized monitor data set called dcomp. This new data set is

generated by

dcomp = bsyn + (d1 − d0), (5.24)

where bsyn is the synthetic data simulated on the inverted baseline model (that is

used as a starting model), and d1 and d0 are the observed monitor and baseline data

respectively. By doing this trick, we use a standard FWI gradient via the adjoint state

method, while still respecting our Bayesian formulation of model differences and data

differences in the likelihood function. If we have observed data (d1
comp,d

2
comp, ...d

N
comp)

for N number of shots (hereN = 5) and the measurement noise of each observation has
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a covariance matrix Σ1,Σ2, ...ΣN respectively, then the likelihood function becomes

L(δm) ∝ exp

(

−1

2

[
X 1X 2...XN

]T
Σ−1

[
X 1X 2...XN

]
)

, (5.25)

where X = F (m1) − dcomp with the superscript representing the different shots and

Σ is the block diagonal covariance matrix of Σ1,Σ2, ...ΣN , i.e.

Σ =












Σ1 0 0 . . .

0 Σ2 0 . . .

...
. . .

0 . . . 0 ΣN












. (5.26)

Each shot has a different realization of Gaussian measurement noise, however for

convenience all of the distributions are described by the same covariance matrix. We

generate noise with respect to the time–lapse differences δd, and the signal to noise

ratio is 3.9, calculated as the ℓ2 norm of the noiseless signal δd over the ℓ2 norm of

the noise. This noise level is quite low, however our future work is aiming to address

this by testing the algorithm in the presence of higher noise.

To make this numerical test as realistic as possible, we consider that our initial

background model is an inverted baseline model. Specifically, we perform a frequency–

based, constant–density acoustic FWI using 64 shots and 651 receivers that span the

entire subsurface of the model using the PySIT library [56]. We invert for six frequen-

cies (3, 4, 5, 6.5, 8, 10 Hz) sequentially for 15 iterations per frequency. Figure 5.7

(c) shows the obtained baseline velocity model. Since the HMC inversion will take

place only within the local domain, we first need to compute the full domain Green’s

functions on the inverted baseline model of Figure 5.7 (c).

It is known that HMC typically has high acceptance rates that range between
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Figure 5.7: (a) The true baseline model with the white box indicating the location
of the local domain. The yellow stars and red triangles represent the positions of the
sources and receivers respectively. (b) The true time–lapse velocity change. (c) The
inverted baseline model that serves as the starting and background model on which
the full Green’s functions are calculated.
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60% to 80%. However, a high acceptance rate is not necessarily an indicator of good

performance (in terms of successful exploration of the posterior distribution). In this

example, we tune the step size for a desirable acceptance rate, however there are

always trade offs between this and successful exploration of model space, and ideally

a proper balance is needed for good performance. To assess the performance as well

as the convergence of the algorithm, we look at the evolution of the potential energy

U(δm) (Figure 5.8 (a)), simply because it contains the likelihood function and hence

the data misfit. We run the 4D HMC algorithm (Figure 5.3) for 7,000 iterations, with

the Dual Averaging tuning for the stepsize only for the first 10 iterations. One can

choose to tune for more or fewer iterations depending on the trust one has in the initial

stepsize guess. Figure 5.8 (b) shows the evolution of the stepsize choices while the

Dual Averaging is taking place; we start with an initial stepsize of ǫ0 = 0.0032, and

we get an adapted stepsize of ǫadapt = 0.1968 which we keep fixed and use throughout

the 7,000 iterations. The acceptance rate is 51%; even though it is a bit lower than

the optimal range, we consider it as a good performance given the convergence of the

potential energy function. It will be quite challenging to show histograms at such

a high dimensional space, because we will potentially need to look at histograms of

each variable, meaning of each pixel. We choose, instead, for visualization purposes

to look at the median model obtained from all models in the chain. The median

model provides a good approximation of the true model in terms of the shape of the

anomaly, however they seem to underestimate the magnitude of it. Incorporation of

more information (e.g. adding more frequencies) could potentially improve this.
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Figure 5.8: (a) Evolution of the potential energy function U(δm) as a function of
iterations. (b) Stepsize estimates during the Dual Averaging tuning process.

5.6 Discussion

Thus far, we have provided a proof of principle that HMC can be successfully applied in

4D uncertainty quantification. While HMC algorithms are computationally expensive,

using a local solver as in this study proved to be a significant reduction in the cost. For

instance, running the 600 DoF example for 7,010 iterations (including the iterations

for tuning) took approximately 48 hours. This means that we were able to perform the

computation locally on a MacBook Pro with a 2.6 GHz processor and 32 GB memory.

Our results thus far using only five shots and a single frequency seem promising. We

are currently working on extending our framework to multiple frequencies.

Any global global optimization technique is supposed to be independent of the

choice of starting model. This means that the target distribution will be efficiently

explored after a finite number of iterations. However, it is obvious that the algorithm

will reach the equilibrium stage much faster if the starting model is in the neigh-

bourhood of the global minimum. This is what Figure 5.10 illustrates. Both HMC

inversions became localized in the region of the correct model, however one of them
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took 2,000 iterations more. In other words, starting from a ”better“ initial model can

considerably reduce the computational cost of the HMC inversion. In addition, the

current acceptance rate of our inversion is 51%, even though the ideal rate should be

between 60% - 80%. When we run the same inversion with a much smaller stepsize,

we observe that even though we get an acceptance rate of 65%, for the same number

of iterations, the algorithm is significantly slower to explore the model space in this

case. This means that we wasted a lot of computational time. This begs the question:

is there a trade–off? And if so, what is the acceptable balance? We are currently

investigating this topic.

The uncertainty quantification in this study took place using a pixel–by–pixel pa-

rameterization. However, to what extent does a pixel–by–pixel versus a basis function

parameterization provide a more meaningful result is still a debate. This could po-

tentially be problem dependent. [78] provide an interesting comparison between a

grid (pixel–by–pixel) and a DCT parameterization for MCMC on Ground Penetrat-

ing Radar (GPR) data. They observe that the DCT parameterization is better able

to capture the smooth variations in the soil moisture compared to the grid parame-

terization which resulted in meaningless randomly perturbed realizations. To some

extent, we observed a similar pattern to our results, which could be either a result

of the single frequency in the inversion or simply because we randomly perturb every

pixel independently. We are currently exploring two different avenues to address this.

Firstly, we are interested in whether we can use an off-diagonal covariance, which will

essentially introduce a prior constraint on how correlated pixels are with each other.

By doing so, we almost avoid randomly perturbing neighbouring pixels, which is what

leads to difficult interpretations. Secondly, following our earlier work [68] we would

like to test the possibility of using DCT parameterization instead of the uniform grid

that we have used so far.
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Figure 5.9: (a) The initial δm0 model used for the HMC inversion. (b) The median
model computed from all 7,000 models in the chain. (c) The true time–lapse change.

When working with hybrid methods such as HMC, it might be interesting to im-

plement and compare alternative hybrid approaches. For example [181] incorporate

information from the local gradient and approximate Hessian into a Bayesian formu-

lation that allows them to perform FWI and uncertainty analysis of the full Marmousi

model. Our suggestion would be to combine local–optimization and Monte–Carlo sam-

pling into a single scheme. This arises from the fact that sampling methods can provide

a range of possible solutions, while local–optimization delivers the “best–fit” model.

The question is, can we do better? One potential way to do so could be the following.

Starting with a current model perturbation, we can propose a new model δm∗ by

adding a zero mean perturbation to the current such that δm∗ = δm+n, n∼N(0, C).

Use that model to run a few iterations of FWI using local–optimization. Then use

the reconstructed model to evaluate the likelihood function and accept or reject the

model. This is a simple idea, but it is yet to be tested.

Last but not least, in the Gaussian examples we used an automatic differentiation

package called autograd. We are considering the possibility of adopting autograd or

other deep–learning tools for automatic differentiation instead of the classic adjoint

state method. An interesting application of such an approach is described in [121].
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a starting model the models from (a) and (b).



159

5.7 Conclusions

Following our earlier work, we propose using a local acoustic solver for an efficient

4D Hamiltonian Monte Carlo inversion. Our framework can compute the partial

derivatives of the potential energy in a targeted way that is computationally feasible.

In addition, we use a dual averaging algorithm in order to tune the stepsize to the

desired acceptance rate of 65%. Our single DoF illustration shows the efficiency and

superior performance of the algorithm when compared to 4D Metropolis Hastings

inversion. We successfully apply our framework to a full local domain inversion, that

equals to 600 DoF, using only a single frequency and 5 shots. Our future work will be

focusing on extending our framework a multi–frequency approach while also exploring

the possibility of using deep learning algorithms for the gradient computation.
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Chapter 6

Conclusions and Future Work

Each individual chapter of this thesis has its own specific conclusions based on the

focus of the respective chapter. Here, we only provide an overall summary of the

whole thesis. This thesis proposes frameworks for time–lapse imaging using both de-

terministic and stochastic approaches. Our novel and hybrid Dual Domain Waveform

Inversion (DDWI) is able to offer high resolution 4D images in complex scenarios by

combining a standard 4D FWI with image domain constrains. However, even the

most accurate and highest resolution 4D image (that is delivered through determinis-

tic FWI, such as for example DDWI) will never be complete without estimates of the

associated uncertainty. Calculating the full posterior pixel by pixel using expensive

forward solvers would be computationally infeasible. We created a framework that is

fast and calculates the time–lapse uncertainty in a targeted way. Using an exact local

solver not only retains the physics of seismic imaging, but also requires no restrictions

on the structure of the velocity model (i.e. layered Earth). Even though our derived

framework is sensitive to uncertainties inherent in the background model, it still per-

forms accurately for small perturbations in the wave path. Adding more redundancy
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in the data can potentially overcome this, but on the other side the computational

cost would likely increase. Having such a fast and accurate forward solver at hand,

allowed us to bench mark Metropolis–Hastings against Hamiltonian Monte Carlo, and

show that the latter is more efficient for time–lapse UQ.

6.1 Future Directions

Although our proposed scheme finds immediate application in reservoir monitoring, it

can be easily extended or applied to any problem that is localized in region and relies

on sound wave propagation. For example, much like reservoir monitoring in seismic

imaging, tumour monitoring in medical imaging can be considered a localized problem.

Ultrasound waves together with a local domain that contains the affected organ can

be employed to monitor the tumour progress while also providing estimates of the

associated uncertainty. Alternative applications can be found in both environmental

and engineering problems. One could use the newly popular Distributed Array Sensing

(DAS) technology and apply our framework to hydraulic fracturing, CO2 sequestration

and near surface geohazard applications. Last but not least, a similar workflow can

be employed to large scale seismological problems as for example estimation of Moho

depth.

The framework presented in this thesis, sets the basis for simple and straightfor-

ward time–lapse UQ and allows for testing different assumptions. However, there are

still various improvements and validation tests that could be made. We summarize

those in the next two subsections.
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6.1.1 Algorithmic Improvements & Reproducibility

The UQ framework in Chapter 4, even though it relies on a single source and a

single frequency estimation, provides a rigorous uncertainty estimation and sets the

baseline for more advanced implementations. Since most seismic observations are

incomplete and noisy, adding more redundancy is critical. For example, a hierarchical

Bayesian approach where the likelihood of a proposed model is first evaluated at

a lower frequency, and if the model is accepted, then move to higher frequencies.

The acoustic approximation is typically considered adequate when dealing with data

collected in marine environments. However, a realistic Earth model representation

requires more than just the P–wave velocity. An elastic FWI approach increases

not only the number of degrees of freedom but also the computational cost. This

issue is particularly significant in the Metropolis–Hastings scheme, where most of the

proposed models are rejected. The best practice approach would be to employ a

multi-fidelity algorithm, in some way similar to frequency stepping described above.

For instance, a proposed model can be first evaluated using the coarse acoustic wave

equation, and only if it’s accepted to then evaluated in the finer elastic wave equation.

A significant challenge in geophysical algorithms is that the majority of them are

not open source, and thus, the rest of the academic community cannot reproduce

them or even advance them. One possible solution that we particularly favor and use

in this thesis is using containers such as Docker, for example. This container is simply

a virtual machine image that packages a seismic toolbox together with all its libraries

and dependencies. Once an image like this is made, it can be pulled and run by

any machine without installing any libraries or being dependent on machine software

updates. If more computing resources are needed to run an algorithm, a Docker image

can be used to build a Singularity image (https://www.sylabs.io/docs/) that can



163

be commonly run on a computer cluster. The proposed framework of this thesis is

currently in preparation as an open-source 4D UQ toolbox on a Docker image.

We have compared two different UQ methods on the time–lapse problem. A

logical extension would be to compare the current forward solver to other MCMC

approaches, such as trans-dimensional sampling [119] or polynomial chaos expansion

[29] [35]. Having a complete 4D UQ toolbox available allows for a direct comparison of

performance, which algorithm is better than another in terms for example of number

of DoF, convergence, or include more sources of uncertainty.

6.1.2 Establishing Case Studies

Survey repeatability is a significant issue for an auspicious time–lapse analysis. In

practice though, this is very difficult to accomplish. Therefore, acquisition geometry

has its underlying uncertainty. An ideal and comprehensive framework would be able

to account for that and provide uncertainty analysis considering various sources.

One could argue that any framework is not fully proved unless it is applied on

real–data. However, getting prestack seismic data is not an easy task since they tend

to be proprietary information owned by oil companies. Equinor’s latest release of the

Volve data set is a possible solution. The particular release includes all subsurface and

production data from the field, making it an ideal candidate for both research and

algorithm development purposes. Also, laboratory data are typically acquired in well–

controlled environments, making them excellent candidates for time–lapse analysis.

Under these circumstances, different time-lapse scenarios can be easily tested and

verified, such as pressure effects and nonlinearity.
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[128] G. Röth and A. Tarantola. Neural networks and inversion of seismic data.

Journal of Geophysical Research: Solid Earth, 99(B4):6753–6768, 1994.

[129] P. Routh, G. Palacharia, I. Chikichev, and S. Lazaratos. Full Wavefield Inversion

of time-lapse data for improved imaging and reservoir characterization. 82nd

Anual International Meeting, SEG, Expanded Abstracts, pages 1–6, 2012.



179

[130] M. Sambridge, K. Gallagher, A. Jackson, and P. Rickwood. Trans–dimensional

inverse problems, model comparison and the evidence. Geophysical Journal

International, 167:528–542, 2006.

[131] M. Sambridge and K. Mosegaard. Monte Carlo methods in geophysical inverse

problems. Reviews of Geophysics, 40(3):1–29, 2002.

[132] M. K. Sen and R. Biswas. Choice of regularization weight in basis pursuit

reflectivity inversion. Journal of Geophysics and Engineering, 12:70–79, 2015.

[133] M. K. Sen and R. Biswas. Transdimensional seismic inversion using the re-

versible jump Hamiltonian Monte Carlo algorithm. Geophysics, 82(3):R119–

R134, 2017.

[134] M. K. Sen, R. Biswas, P. Mandal, and P. Kumar. Basis pursuit receiver function.

Bulletin of the seismological society of America, 2014.

[135] P. M. Shearer. Introduction to Seismology, Second Edition. Cambridge Univer-

sity Press, 2012.

[136] J. Shragge and D. E. Lumley. Time-lapse wave-equation migration velocity

analysis. SEG International Exposition and 82nd Annual Meeting, Expanded

Abstracts, pages 1–5, 2012.

[137] M. Sinha and G. T. Schuster. Seismic time-lapse imaging using interferometric

least-squares migration: Case study. Geophysical Prospecting, 66:1457–1474,

2018.

[138] L. Sirgue and R. G. Pratt. Efficient waveform inversion and imaging: A strategy

for selecting temporal frequencies. Geophysics, 69(1):231–248, 2004.



180

[139] R. Souza, D. E. Lumley, and J. Shragge. Estimation of reservoir fluid saturation

from 4d seismic data: effects of noise on seismic amplitude and impedance

attributes. Journal of Geophysics and Engineering, 14:51–68, 2017.

[140] G. Stuart, S. E. Minkoff, and F. Pereira. Enhanced neural network sampling

for two–stage Markov Chain Monte Carlo seimic inversion. SEG International

Exposition and 89th Annual Meeting, Expanded Abstracts, pages 1670–1674,

2019.

[141] G. Stuart, W. Yang, S. E. Minkoff, and F. Pereira. A two-stage Markov chain

Monte Carlo methd for velocity estimation and uncertainty quantification. SEG

International Exposition and 86th Annual Meeting, Expanded Abstracts, pages

3682–3687, 2016.

[142] G. K. Stuart, S. E. Minkoff, and F. Pereira. A two-stage Markov chain Monte

Carlo for seismic inversion and uncertainty quantification. Geophysics, 84(6),

2019.

[143] T. J. Sullivan. Introduction to uncertainty quantification. Springer, 63, 2015.

[144] J. Sun, Z. Niu, K. A. Innanen, J. Li, and D. O. Trad. A theory-guided deep-

learing formulation and optimization of seismic waveform inversion. Geophysics,

85(2):R87–R99, 2020.

[145] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation.

Geophysics, 49(8):1259–1266, 1984.

[146] A. Tarantola. Inverse Problem Theory: Methods for Data Fitting and Model

Parameter Estimation. Elsevier, New York, 1987.



181

[147] A. Tarantola. Inverse problem theory: Methods for data fitting and parameter

estimation. Elsevier Science, 1987.

[148] A. Tarantola and B. Valette. Generalized nonlinear inverse problems solved

using the least squares criterion. Reviews of Geophysics, 20:219–232, 1982.

[149] M. Tatanova and P. Hatchell. Time-lapse avo on deepwater OBN seismic at the

mars field. SEG International Exposition and 82nd Annual Meeting, Expanded

Abstracts, 2012.

[150] K. Terzaghi. Relation Between Soil Mechanics and Foundation Engineering.

Proceedings, 1st International Conference on Soil Mechanics and Foundation

Engineering, Boston, 3(13–18), 1936.

[151] J. Thurin, R. Brossier, and L. Metivier. An ensemble-transform Kalman filter:

Full - waveform inversion scheme for uncertainty quantification. SEG Interna-

tional Exposition and 87th Annual Meeting, Expanded Abstracts, pages 1307–

1313, 2017.

[152] J. Thurin, R. Brossier, and L. Metivier. Ensemble–based uncertainty estimation

in full waveform inversion. Geophysical Journal International, 219(3):1613–1635,

2019.

[153] E. Tolstukhin, B. Lyngnes, and H. H. Sudan. Ekofisk 4d seismic-seismic history

matching workow. SPE Europec/EAGE Annual Conference, 2012.

[154] A. Tura, T. Barker, P. Cattermole, C. Collins, J. Davis, P. Hatchell, K. Koster,

P. Schutjens, and P. Wills. Monitoring primary depletion reservoirs using am-

plitudes and time shifts from high–repeat seismic surveys. The Leading Edge,

24:1214–1221, 2005.



182

[155] D. J. van Manen, J. O. A. Robertsson, and A. Curtis. Exact wave field simula-

tion for finite-volume scattering problems. The Journal of the Acoustical Society

of America, 122(4):EL115–EL121, 2007.

[156] V. Vapnik. The Nature of Statitstical Learning Theory. Springer New York,

1995.

[157] M. Vasmel and J. O. A. Robertsson. Exact wavefield reconstruction on finite-

difference grids with minimal memory requirements. Geophysics, 81(6):T303–

T309, 2016.

[158] T. Vdovina and S. Minkoff. A priori error analysis of operator upscaling for

the acoustic wave equation. International Journal of Numerical Analysis and

Modeling, 5(543–569), 2008.

[159] R. Versteeg. The marmousi experience: Velocity model determination on a

synthetic complex data set. The Leading Edge, 13:927–936, 1994.

[160] J. Virieux, A. Asnaashari, R. Brossier, L. Metivier, A. Ribodetti, and W. Zhou.

An introduction to full waveform inversion. Encyclopedia of exploration geo-

physics: SEG, pages R1–1 – R1–40, 2017.

[161] J. Virieux and S. Operto. An overview of full-waveform inversion in exploration

geophysics. Geophysics, 74:WCC1–WCC26, 2009.

[162] F. Waldhauser and W. L. Ellsworth. A double difference earthquake location

algorithm: method and application to the northern hayward fault, california.

Bulletin of the seismological society of America, 90:1353–1368, 2000.

[163] G. K. Wallace. The JPEG Still Picture Compression Standard. Communications

of the ACM, 34(4):30–40, 1991.



183

[164] Z. Wang. Fundamentals of seismic rock physics. Geophysics, 66:398–412, 2001.

[165] C. P. A. Wapenaar and A. J. Berkhout. Elastic wave field extrapolation, reda-

tuming of single- and multi- component seismic data. Advances in Exploration

Geophysics, Elsevier, 1989.

[166] K. Wapenaar, J. Thorbecke, J. van der Neut, F. Broggini, E. Slob, and

R. Snieder. Marchenko imaging. Geophysics, 79(3)(3):WA39–WA57, 2014.

[167] T. Watanabe, S. Shimizu, E. Asakawa, and T. Matsuoka. Differential waveform

tomography for time-lapse crosswell seismic data with application to gas hydrate

production monitoring. SEG Technical Program Expanded Abstracts, 2005.

[168] B. Willemsen and A. Malcolm. Coupling a local elastic solver to a background

acoustic model to estimate phase variation. SEG International Exposition and

86th Annual Meeting, Expanded Abstracts, 2016.

[169] B. Willemsen, A. Malcolm, and W. Lewis. A numerically exact local solver ap-

plied to salt boundary inversion in seismic full waveform inversion. Geophysical

Journal International, 204:1703–1720, 2016.

[170] P. R. Williamson, A. J. Cherrett, and P. A. Sexton. A new approach to warp-

ing for quantitative time–lapse characterisation. 69th EAGE Conference and

Exhibition incorporating SPE EUROPEC 2007, 2007.

[171] D. Yang, M. Fehler, A. Malcolm, F. Liu, and S. Morton. Double difference

waveform inversion of 4d ocean bottom cable data: Application to valhall, north

sea. SEG Technical Program Expanded Abstracts, pages 4966–4970, 2013.



184

[172] D. Yang, F. Liu, S. Morton, A. Malcolm, and M. Fehler. Time-lapse full-

waveform inversion with ocean-bottom-cable data: Application on Valhall field.

Geophysics, 81(4):R225–R235, 2016.

[173] D. Yang, A. Malcolm, and M. Fehler. Time-lapse full waveform inversion and

uncertainty analysis with different survey geometries. 76th EAGE Conference

and Exhibition, 2014.

[174] D. Yang, A. Malcolm, and M. Fehler. Using image warping for time-lapse image

domain wavefield tomography. Geophysics, 79(3)(3):WA141–WA151, 2014.

[175] D. Yang, M. Meadows, P. Inderwiesen, J. Landa, A. Malcolm, and M. Fehler.

Double difference waveform inversion: Feasibility and robustness study with

pressure data. Geophysics, 80:M129–M141, 2015.

[176] T. Yang, J. Shragge, and P. Sava. Illumination compensation for image-domain

wavefield tomography. Geophysics, 78(5)(5):U65–U76, 2013.

[177] S. Yuan, N. Fuji, S. Singh, and D. Borisov. Localized time-lapse elastic inversion

using wavefield injection and extrapolation: 2-D parametric studies. Geophysical

Journal International, 209(3):1699–1717, 2017.

[178] R. Zhang and J. Castagna. Seismic sparse-layer reflectivity inversion using basis

pursuit decomposition. Geophysics, 76(6):R145–R158, 2011.

[179] X. Zhang, A. Curtis, E. Galetti, and S. de Ridder. 3-D Monte Carlo surface

wave tomography. Geophysical Journal International, 215:1644–1658, 2018.

[180] Z. Zhang and L. Huang. Double-difference elastic-waveform inversion with prior

information for time-lapse monitoring. Geophysics, 778:R259–R273, 2013.



185

[181] Z. Zhao and M. K. Sen. A gradient based MCMC method for FWI and un-

certainty analysis. SEG International Exposition and 89th Annual Meeting,

Expanded Abstracts, pages 1465–1469, 2019.

[182] Y. Zheng, P. Barton, and S. Singh. Strategies for elastic full waveforms inversion

of time-lapse ocean bottom cable (obc) seismic data. 81st Annual International

Meeting, SEG, Expanded Abstracts, pages 4195–4200, 2011.

[183] W. Zhou, R. Brossier, S. Operto, and J. Virieux. Full waveform inversion of

diving & reflected waves for velocity model building with impedance inversion

based on scale separation. Geophysical Journal International, 202(3):1535–1554,

2015.



Appendix A

Automatic Gain Control (AGC)

application on the misfit function

from Chapter 3

The objective function with the AGC is

ŵ(m|m0; x, z) = argmin
w
||AGC(I1(m; x, z))− AGC(I0(m0; x, z + w(x, z)))||22, (A.1)

where I1(m) is the monitor image that updates at each iteration and I0(m) is the

baseline image that remains constant. If we now take the gradient of Equation (A.1)

∂ŵ

∂m
= 2 (AGC(I1(m))− AGC(I0(m)))

∂AGC(I1(m))

∂m
, (A.2)

and apply the chain rule to the last term we get

∂AGC(I1(m))

∂m
=
∂AGC(I1(m))

∂I1(m)

∂I1(m)

∂m
. (A.3)
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We argue that ∂AGC(I1(m))
∂I1(m)

is approximately constant (or varies only slowly as a func-

tion of space), and therefore does not have a big effect on the final gradient of the

objective function. In a Taylor series approach

AGC(I1(m) + δI) = AGC(I1(m)) +
∂AGC(I1(m))

∂I1(m)
δI + ..., (A.4)

where we neglect higher order terms. Then

∂AGC(I1(m))

∂I1(m)
≈ AGC(I1(m) + δI)− AGC(I1(m))

∂I1(m)
. (A.5)

is small when the window size is large. In other words, if the window size is large

enough the AGC is approximately a constant scaling. If the image change is small

enough, that constant will be the same in the perturbed and unperturbed images.

More formally when ∂I1(m)
∂m

varies on a faster scale than ∂AGC(I1(m))
∂I1(m)

, we expect that

the AGC value between the two images will be similar and that this factor varies

slowly across the image ( this factor is approximately constant).


