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Abstract 

 

The influx of reservoir fluid (kick) has a significant impact on drilling operations. 

Unmitigated kick can lead to a blowout causing financial losses and impacting human lives 

on the rig. Kick is an unmeasured disturbance in the system, and so detection, estimation, 

and mitigation are essential for the safety and efficiency of the drilling operation. Our main 

objective is to develop a real time warning system for a managed pressure drilling (MPD) 

system. In the first part of the research, an unscented Kalman filter (UKF) based estimator 

was implemented to simultaneously estimate the bit flow-rate, and kick. The estimated kick 

is further used to predict the impact of the kick. Optimal control theory is used to calculate 

the time to mitigate the kick in the best case scenario. An alarm system is developed based 

on total predicted influx and pressure rise in the system and compared with actual well 

operation control matrix. Thus, the proposed method can estimate, monitor, and manage 

kick in real time, enhancing the safety and efficiency of the MPD operation.  So, a robust 

warning framework for the operators based on real life operational conditions is created in 

the second part of the research. Proposed frameworks are successfully validated by 

applying to several case studies.
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Chapter 1 

Introduction 

 

1.1 Motivation 

 

We live in a technologically advanced era where strive for maintaining a standard living 

style increases the energy demand. The search for alternative energy has been going on, 

but still, hydrocarbon holds the position for the largest source of the energy supply (Ritchie 

& Roser, 2014). Totten (2004) provided a brief history of the petroleum industry. 

Explorations using bamboo poles to modern drilling equipment, the drilling technique, and 

procedure have changed significantly over the years. Drilling for oil and gas is a 

challenging and expensive operation due to adverse geological conditions. The convenient 

wells have already been used for extraction. These used or ongoing production sources 

affect the nearby wells by creating critical pressure margins (Møgster et al., 2013). The 

biggest challenge for the drilling companies is to access the reservoir in a cost-effective 

manner and ensuring the safety and maximum production during the operation. So, the 

necessity of continuous developments of the drilling technique is inevitable to face the 

challenges in the present and near future.  

Detail description of the conventional drilling method can be found in Bourgoyne et al., 

(1986). Three columns of hollow drill pipes mounted together to assemble the drillstring. 
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At the bottom, different shaped and sized bits are present to crush the rock. Drilling fluid 

is pumped through the drillstring, jetted through nozzles in the bit, and circulated in the 

annulus carrying the cuttings. It is the primary safety tool to maintain well overbalanced. 

Pressure in the well must be higher than the pore pressure of the formation. Figure 1.1 

presents the pressure margins in the well.  

 

Figure 1.1 Pore pressure, fracture pressure and the pressure in the well 

Mitchell & Miska (2011) provided an overview of pressure management in the drilling 

operation. The pressure profile is mainly dependent on bottomhole pressure (BHP), 

reservoir pressure, and fracture pressure. Hydrostatic pressure can be defined as the 

following equation- 

                                            hP gh ………………………………………. (1.1) 

Here,  is the fluid density and h is the total height.  
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BHP depends on the hydrostatic pressure, pump pressure and frictional pressure drop.  

Generally, a pump circulates the drilling fluid under a pump pressure Pp at a particular flow 

rate qp. The drilling fluid continues through the bit with a flow rate of qbit., and pressure at 

the bit is denoted as Pbh.. When the drill string reaches the reservoir zone, the reservoir fluid 

exerts pressure Pres at the bottomhole through porous rock formation BHP can be 

presented by the following equation: 

                                             bh h p fP P P P   ……………………………..……..…. (1.2) 

Here, fP  is the fractional pressure drop. Operators modify the circulation rate of the 

drilling fluid, pump pressure, and mud properties to maintain the desired BHP. During 

drilling, the length of the drill string is gradually increased by adding stands of pipe, 

referred to as making a pipe connection. During that time, frictional pressure will be absent 

because there will be no mudflow. Mud density must be chosen carefully to maintain the 

hydrostatic pressure above the formation pressure. As the depth increases, the pressure 

margins become narrower, creating complexity for the operators. The pressure 

manipulation is limited in conventional drilling techniques. So there is a high chance of 

BHP exceeding the fracture pressure causing loss of drilling fluid in the formation (Rehm 

et al., 2013). On the other hand, if the BHP goes below the reservoir pressure, a reservoir 

influx of fluid called kick will encounter in the system. Controlling pressure is critical for 

an event free drilling operation. BHP must be kept in between the formation pressure and 

fracture pressure.   

Formation Pressure < BHP < Fracture Pressure. 
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A kick can occur in the system for multiple reasons. Hughes (1995) identified five main 

reasons for kick occurrence. There are: 

 The majority of kicks occur when the bit is off the bottom while tripping. 

 Swabbing of formation fluid into the borehole 

 Insufficient mud density. 

 Poor well planning. 

 Loss circulation due to fracturing.  

Controlling the pressure is essential to prevent uncontrolled kick and, among other issues, 

prevent boreholes from collapsing, minimize loss of mud when drilling into depleted 

sections of reservoirs, reduce danger when drilling into high pressure. Unmitigated kick 

can turn into blowouts, which creates financial losses and affects the environment and 

human lives ( Hauge et al., 2013). The Macondo incident in the Gulf of Mexico is the prime 

example of a catastrophic accident due to kick. In conventional drilling, when a kick is 

encountered drilling has to be stopped, and a heavier mud is pumped to take the BHP above 

the reservoir pressure, and that is a significant drawback of conventional drilling as 

stopping of drilling contributes to nonproductive time (NPT). Further, the mitigation of 

kick depends on the operator’s skills and expertise. Therefore, to increase the safety and 

productivity in the drilling operation, Managed Pressure Drilling (MPD) has emerged 

powerfully to control the pressure profile in the well effectively. 

  



 

5 
 

1.2 Managed Pressure Drilling (MPD) 

MPD offers a solution to many drilling issues by dynamically adapting the drilling 

condition at a particular moment. MPD is a marginally overbalanced drilling technique that 

keeps the BHP in the safety region by manipulating the automated choke valve (Nandan & 

Imtiaz, 2017). It treats the mud circulation system as a closed vessel rather than an open 

system.  MPD uses back pressure devices like choke to manage the BHP actively. So, MPD 

can perform in a narrow pressure window for having higher precision and flexibility than 

the conventional drilling procedure. The International Association of Drilling Contractors 

(IADC), the official definition of MPD, is "an adaptive drilling process used to more 

precisely control the annular pressure profile throughout the wellbore. The objectives are 

to ascertain the downhole pressure environment limits and to manage the annular hydraulic 

pressure profile accordingly. MPD intends to avoid the continuous influx of formation 

fluids to the surface. Any influx incidental to the operation will be safely contained using 

an appropriate process" (Reitsma & Couturier, 2012).  

A schematic representation of MPD drilling is presented in Figure 1.2. It has mainly two 

control volumes: drill string and annular mud return section. Pump supplies the drilling 

fluid to the drillstring under pump pressure Pp with a flow rate of qp.  The drilling fluid 

passes through the bit with a flow rate of qbit., and pressure at the bit is denoted as Pbh.  A 

choke at the exit of the annulus control volume provides a back pressure Pc and mud flows 

through it at a volumetric flow rate qc 
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Figure 1.2: Schematic representation of MPD drilling (Zhou and Krstic, 2016) 

 In MPD,  Pbh  does not completely dependent on hydrostatic pressure Ph  and pump 

pressure Pp. Choke valve and backpressure Pb provide more flexibility for pressure control 

as shown in Figure 1.3. So, BHP can be presented as – 

                                          Pbh = Ph + Pp. + Pb – Pf  ………..………………..……..…. (1.3) 
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Figure 1.3: Comparison between conventional and managed pressure drilling 

The main objective of MPD is reduced the production cost and NPT time (Vieira et al., 

2008). MPD increases the safety with specialized techniques and surface equipment and 

makes many drilling operations economically viable (Rehm et al., 2013). As reported in 

Vieira et al., (2008), MPD reduced the time of drilling operations from 65 days to 45 days. 

MPD can reduce the cost of drilling by $25 to $40 per foot (Rehm et al., 2013). Apart from 
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economic advantages, MPD provides the solution to other conventional drilling drawbacks.  

These are (Rehm et al., 2013)- 

 Reduction of total number of casing points 

 Strings and the subsequent hole size reduction.  

 Limiting the NPT associated with a differentially stuck pipe. 

 Limiting lost circulation. 

 Drilling with total lost returns. 

 Increasing the penetration rate. 

 Deepwater drilling with lost circulation and water flows. 

 

Manually controlled MPD depends on operator’s skills and expertise. Automation of MPD 

can provide an extra helping hand to the operators. Godhavn & Asa (2010) discussed about 

the necessity of automated control system for high performance MPD operation. The 

researchers implemented a proportional integral derivative (PID) controller to track the 

choke pressure and (Johannes et al., 2013) extended this work by implementing a model 

predictive controller (MPC). In MPD operations, controller ranges from PID controllers to 

model based advanced controllers such as nonlinear model predictive controller (NMPC). 

But there are mainly two ways to control the MPD operation and these are flow control 

and pressure control. The Pressure controller tracks the bottomhole pressure but allows 

influx of the fluid in the reservoir. On the other hand, flow controller is the best possible 

method to mitigate the kick but it does not track the bottomhole pressure during normal 

conditions. Zhou et al., (2011) proposed a novel switching controller to overcome these 
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drawbacks. The controller acted like a pressure controller under normal condition and 

switched to flow controller mode during abnormal condition to mitigate the kick. The 

proposed controller showed superior performance over the conventional drilling process 

but it was checked only for one case scenario. Different scenarios can be considered to 

check the controller’s performance properly. Siahaan et al. (2012) proposed a switching 

scheme of a PID controller where the tuning parameters are selected from real time 

measurement data and cost function. The researcher employed WeMod, which is a drilling 

simulator, to utilize an actual off-shore drilling operation in the North Sea. The tuning 

parameters of PID controllers were fixed at constant values and there is a possibility of 

oscillation in the states when the flow demand changes. The controller tried to compensate 

for the changes based on real measurement data and evaluation of cost function. The 

success of this operation depends on choosing the right tuning parameters to mitigate the 

oscillation effect. However, the computation for selecting the right setting is challenging 

without prior knowledge and expertise of the system. 

Reitsma & Couturier (2012) provided a brief description about the progress of automated 

choke controller in MPD system. They implemented a modified proportional integral (PI) 

controller. Espen Hauge, Aamo, & Godhavn (2012) presented a model based on in/out flux 

detection scheme for MPD along with an adaptive observer to estimate the unknown states 

and parameters of hydraulic scheme. Hauge et al. (2013) extended this work by 

implementing the controller in an experimental setup and high fidelity OLGA simulator. 

The controller used the flow control theorem to mitigate the kick. Nandan, Imtiaz, & Butt 

(2017) implemented a gain switching controller to deal with the nonlinearity of the system. 
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Multiple controllers were used, and those were selected by total flow rate and choke 

openings. The nonlinear ODE based observers are used to estimate the reservoir pressure 

during kick and a new pressure set point is selected to mitigate kick in the system.  

G. Nygaard & Nævdal (2006) implemented the NMPC controller, which is based on the 

first-principles two-phase flow model using spatial discretization of the complete well. 

They used the Levenberg–Marquardt optimization algorithm for the optimal choke 

settings. The goal of the controller is to control the choke opening based on the fluctuating 

flow needs in the drilling operation. The performance of the controller was evaluated by 

comparing the results with feedback PI controller. The PI controller’s configuration varies 

with the changes in the tuning parameter, and that is why the proposed controller had better 

performances than the PI controller. The model considered for the simulations in this 

experiment is different from the practical operation. Nandan & Imtiaz (2017b) developed 

a new model of NMPC which switches to flow control mode from pressure control in case 

of reservoir kick by utilizing the constraint handling capacity of NMPC. The controller was 

designed as an output feedback control architecture and used active set method for 

computing control inputs. A nonlinear ODE solver was used to estimate the bit flow rate 

and kick volume. Whenever the kick volume went beyond a threshold value indicated by 

the difference between inlet and outlet flow rate, the flow control mode was activated to 

drive the kick out of the system. An optimal choke opening was achieved by optimizing 

the constraint values in predefined cost function and for that the controller was tested on a 

simulated ODE model. 
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The automated MPD system requires an accurate measurement of each state and variable. 

In MPD system, normally, top side measurements are available only, such as pump 

pressure, choke pressure, pump flow rate, and choke flow rate due to lack of proper 

instrumentations. Kick is the unmeasured disturbance, which makes the system more 

critical. An accurate estimation of the kick is inevitable to enhance the safety and efficiency 

of the MPD system.  

1.3 Estimators 

Kalman based estimators are the most popular approach for state estimation. Kalman 

(1960) first introduced this concept for linear filtering and state estimation purposes. The 

proposed concept was implemented in two case studies to confirm the method. Other 

common observers are Luenberger observers. Luenberger (1971) presented this idea for 

state estimations. These two types of concepts are the base for most of the observers. They 

have been modified and improved over time. Dochain (2003) discussed the extended 

Luenberger observers (ELO) and extender Kalman observers (EKO). The researchers 

identified the limitation of these observers and modified them for better performance.  

(Radke & Gao, 2006) discussed Luenberger observers in their review work on observers 

for process industries and identified the advantages of these observers. A brief overview of 

the observers can be found in Mohd et al. (2015). The researchers concluded that 

Luenberger observers are suitable for a simple linear system. The performance degrades in 

the presence of model mismatch and a higher noise level. They presented the Bayesian 

estimator as an alternative of Luenberger observers. Chen et al. (2009) developed a 



 

12 
 

disturbance observer based multi-variable control (DOMC) scheme for a control system. 

This work was further modified by Yang et al. (2011) . They considered both internal and 

external disturbances. A modified observer showed better performances than the other 

disturbance observers. Corless & Tu  (1998) proposed a framework to estimate states and 

inputs simultaneously using ‘Lyapunov-type characterization.’ The proposed estimator 

was suitable under very strict conditions. Researchers considered linear cost function and 

known state and parameter values. Xiong and Saif (2003) extended the work by proposing 

a state functional observer with reduced restrictive conditions. 

The above-discussed observers apply to linear systems. However, real-world systems are 

nonlinear. Designing an observer for a nonlinear system is complicated and challenging 

(Imsland et al., 2007). The researchers presented an unknown input observer to handle the 

nonlinearity. In Alessandri (2004) adaptive high-gain observers were proposed based on 

linear matrix inequalities (LMI) to solve the observer designing problem. They also 

identified the difficulties associated with the construction of a state observer for the 

nonlinear system, and these were investigated by using input-to-state stability (ISS) 

properties. Junqi et al. (2016) proposed an adaptive H∞ observer for Lipschitz nonlinear 

system. Measurement noise was combined with the state vector, and states and 

measurement noise were estimated simultaneously. This approach is restricted to the 

Lipschitz type system. Patwardhan et al. (2012) presented a brief review of nonlinear 

Bayesian state estimation. They classified the Bayesian estimators based on the 

nonlinearity handling approaches. 
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However, high measurement noise affects the observer significantly. Boizot et al. (2010) 

provided a solution to deal with the noise sensitivity issue by applying the extended 

Kalman filter (EKF). The researchers introduced a new method to adjust the gain. They 

also provided guidelines to tune the parameters for the EKF to achieve desired results. 

Ghahremani & Kamwa (2011) modified the EKF with unknown inputs (EKF-UI) and 

implemented it on a synchronous machine. They considered field voltage as an unknown 

input, and signals were obtained from Phasor Measurement Unit (PMO). States and input 

estimation were done simultaneously, and parameter estimation was done excellently.  

EKF cannot be applied directly to the nonlinear system. The nonlinear system needs to be 

linearized to apply this kind of observers. Linearization can be difficult or even impossible 

in some cases. Julier & Uhlmann (2004) addressed these limitations and proposed the 

unscented Kalman filter (UKF) for a nonlinear system. UKF is the extension of the 

unscented transformation (UT) and can deal with the nonlinearity directly. A weighted set 

of deterministically chosen sampled points called sigma points are used for state 

distribution, and it can capture the true mean and the covariance of the Gaussian random 

variable and also captures the posterior mean and covariance accurately. The difference 

between EKF and UKF are summarized in Kandepu et al. (2008). Their performances were 

evaluated in four simulation studies, and UKF performed better in each scenario. UKF was 

used as an unknown input observer (UIO) for fault detection purposes (Zarei & Poshtan, 

2010a) in a large class of nonlinear systems. The developed observer was applied to a 

continuous stirred tank reactor (CSTR) to show the robustness and effectiveness of the 

proposed scheme. In Liu & Gao (2013), UKF was applied in a neural mass model. A UKF 
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based controller was developed, and the observer was used to estimate the unknown 

parameters. Both UKF and EKF are dependent on Gaussian noise distribution. Particle 

filter (PF) is an alternative approach that can perform in any noise distribution (György et 

al., 2014). But the number of particles affects the computation time of the estimation. 

(Rawlings & Bakshi, 2006) presented an overview of state estimators and identified the 

advantages and disadvantages of these methods. Their research work concluded that PF is 

less sensitive to the choices of initial states because it uses resampling technique. 

Observers play a crucial part in the MPD system. Several research works have been done 

on estimators in the drilling system. Lorentzen et al. (2003) developed an ensemble EKF 

for tuning the first principles based 2-phase flow model. Stamnes et al. (2008) designed a 

Lyapunov based adaptive observer to estimate BHP in a well during a drilling operation. 

The estimated BHP converged to the actual BHP in the presence of unknown frictions, and 

density and verification were done by using real field data. Zhou et al. (2009) extended this 

work by adding parametric uncertainties in unmeasured states. 

Zhou et al. (2010b) designed a novel observer for kick and loss detection. The researchers 

considered both bit flow rate and annulus flow rate as unknowns. Estimated kick was 

determined from the difference between the predicted and actual flow rates. Zhou et al. 

(2011)  extended this work for kick detection and attenuation. Differences between the 

predicted and actual pump pressure were injected into the dynamic observer equation for 

the bit flow rate estimation. The kick was estimated using the difference in the actual and 

predicted bit flow rates and was mitigated by applying a switching based controller. 

Nandan & Imtiaz (2017a) adopted a similar approach for the bit flow rate and reservoir 
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pressure prediction during nonlinear model predictive controller (NMPC) implementation. 

Zhou & Nygaard (2011) continued this work by applying an adaptive observer for 

estimating the annular pressure profile throughout the wellbore during a drilling operation. 

Zhou & Nygaard  (2010) implemented a similar method to estimate downhole pressure. 

Kaasa & Stamnes (2012) experimented with a similar type of observer to estimate 

downhole pressure. This method is dependent on real time measurements of downhole 

pressure. Sui et al. (2012) implemented a moving horizon estimator (MHE) to estimate 

BHP during drilling and pipe connection operation. State’s and parameter constraints, as 

well as noise filtering, was introduced to improve the traditional MHE approach. A 

linearized MPD was used in this work. The model based approach is also popular for 

estimation purposes. Hauge et al. (2012) used a model based approach in a linearized MPD 

model for kick detection. Kick’s magnitude was identified from the difference between the 

actual and predicted flow rates. A model based approach was used for reservoir pressure 

estimation in Holta et al. (2018). They considered bit flow rate and BHP as known 

measurements, and reservoir pressure and productivity index as unknown parameters. 

Nygaard et al. (2007) applied UKF for state estimation as a part of NMPC to control the 

well pressure. The accuracy of the estimation decreased during the pipe connection 

scenario. Gravdal et al. (2010) to predict the essential parameters in a well-flow model 

using UKF. Friction factors were calibrated using UKF, and the parameters were updated 

every thirty seconds by estimating the bottomhole pressure. The proposed method was 

applied to three case studies to validate it.  Mahdianfar et al. (2013a) designed a joint UKF 

to estimate states and unknown parameters in a well simultaneously. Estimation was done 
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using only topside measurements like pump pressure and choke pressure. The frictional 

flow model and geometry terms were augmented with unknown parameters. These 

parameters were combined in a state vector and were estimated simultaneously with the 

states using available topside measurements. Next step after kick estimation is to develop 

a warning system. A robust warning system can lead to an accident free drilling operation.  

 

1.4 Warning system 

In the process industry, alarms are mostly generated when the measured variable exceeds 

the safety limit. Prediction of future value in the horizon can lead to a predictive and real 

time warning system. Primbs et. (1999) reviewed the control Lyapunov function and 

receding horizon control for the nonlinear optimization problem. The researchers analyzed 

the strengths and limitations of the approaches, and also provided new ideas for the control 

design. The control Lyapunov method is better suited for off-line computation, and a 

receding horizon performs better in on-line control. The safety system is an integral part of 

a control and monitoring system. A brief review of the control system with safety features 

are presented in Albalawi et al. (2018). They identified and discussed some key prospects 

to increase operational safety.  They suggested closed loop state predictions to generate a 

warning. Varga et al. (2010) developed predictive alarm management (PAM) system using 

a simulator based approach. The controller output was identified using the Lyapunov 

secondary stability analysis. The alarm was generated when there was no feasible solution. 

The proposed method was validated by applying two case studies. Ahooyi et al. (2016) 
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presented a design based model predictive safety system to detect hazards in the system.  

Safety system is combined with a set of operability constraints and a robust state estimator. 

An extended Luenberger observer (ELO) was used as a state estimator to predict the present 

and future state variables.  A real time receding horizon operability analysis was done to 

identify the predicted operational hazards, and alarm was generated when the process 

violated the operability constraints.  In the process industry, variables are interconnected. 

Therefore, optimizing one extreme state using one manipulated variable may cause other 

variables to exceed the safety limit (Amin et al., 2018). Ahmed et al. (2011) proposed a 

risk based alarm design. The complexity of the warning system was reduced by assigning 

the alarms into the sets of variables instead of an individual variable. Researchers also 

identified future risks associated with the present state variables. The alarms were 

prioritized based on the severity. There are mainly two types of safety monitoring system 

failure events: failed dangerous (FD) and failed safe (FS). Kohda & Cui  (2007) proposed 

a diagnosis framework to overcome these failures. Yu et al. (2015) developed a new 

method for detection and assessment of risk. The proposed method used the Self-

Organizing Map (SOM) and probability analysis to capture the nonlinear behavior of the 

system states. SOM monitored the variation of states for early fault detection. Risks 

associated with the faults were classified according to the hazard potential, and root cause 

analysis was done.  

Hashemi et al. (2014) developed a risk based warning system using loss function (LF). The 

advantages of LF was presented by applying it to assess operational stability and system 

safety. Researchers generated the alarm based on risk. Thus, the significance of the risk 
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determined and minimized the operational and maintenance loss in the system. A simulated 

case study on a reactor system was demonstrated to verify their findings. Hashemi et al. 

(2014) created a real time risk profile to help the operators in decision making. LF, 

combined with the probability of undesired process states were used to estimate the risk 

continuously. A similar approach was followed by Abimbola and Khan (2018) to provide 

real time blowout risk analysis by estimating operational risks for drilling operations. Every 

possible loss due to risk was determined to create a robust risk assessment system. Pui et 

al. (2017) implemented an advance dynamic risk-based maintenance (RBM) method to 

create risk profile in offshore MPD system for rotating control device (RCD) and blowout 

preventer (BOP). The applied framework was applied to an offshore case study and 

displayed good performances on minimizing the operational maintenance and identifying 

the critical components in the MPD system. 

 

1.4. Objectives 

The goal of this research is to develop a real time kick management to the MPD system. A 

UKF based observer is implemented to estimate the unmeasured kick in the system. The 

first part of the thesis presents the methodology and performances of UKF in different case 

studies. The estimated kick is further predicted over a prediction horizon to identify the 

mitigation time and total kick volume entered in the system. In the second part, the warning 

system is created based on the real life operational conditions to fulfill our objectives. 
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The main objectives of this thesis are to: 

 Early detection of the kick in an MPD system considering noise and uncertainty in 

the system model. 

 Estimation of kick size using surface measurements, i.e., the choke pressure, 

pumping rate, pump pressure. 

 Prediction of kick mitigation time, and total kick volume and pressure fluctuations 

in the presence of kick. 

 Develop a robust warning framework, based on the real field operational 

conditions. 

 

1.5. Thesis Structure 

This thesis is a manuscript styled thesis which includes two submitted manuscripts. It is 

composed of four chapters. Chapter 1 briefly presents the motivation for this research. An 

extensive literature review on MPD, estimators, and warning systems are presented in this 

chapter. In chapter 2, UKF based estimator is implemented for kick detection and 

estimation. A real time warning system is presented in Chapter 3. Finally, the outcomes of 

this thesis are summarized, and some future recommendations to improve this research are 

presented in Chapter 4. 
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Chapter 2 

Early detection and estimation of kick in managed pressure 

drilling  

M. Musab Habib, Syed Imtiaz*, Faisal Khan and Salim Ahmed 

Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 

St. John's, NL, Canada A1B3X5 

 

Abstract 

Drilling in the offshore environment involves high risks mainly due to uncertainties in 

reservoir conditions. Unplanned events such as the influx of reservoir fluids (kick) may 

lead to catastrophic accidents. Therefore mitigation of kick is extremely crucial to 

enhance safety and efficiency. As kick is an unmeasured disturbance to the system, it 

needs to be estimated. In the current study, unscented Kalman filter (UKF) based 

estimator is used to simultaneously estimate the bitflow-rate, and kick in a managed 

pressure drilling (MPD) system. The proposed estimator uses sigma point 

transformations to determine the true mean and covariance of the Gaussian random 
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variable (GRV) and capture the posterior mean and covariance accurately to the 3rd order 

(Taylor series expansion) for any nonlinearity. In the proposed UKF formulation, hidden 

states and unknown inputs were concatenated to an augmented state vector. The 

magnitude of the kick is estimated using only available top-side measurements. The 

applied method was validated by estimating the gas kick magnitude in a lab scale setup 

and data set from a field operation. The proposed estimation method was found robust 

for the MPD system under different noisy scenarios.  

Keywords- Unknown Input Estimator; UKF; Kick; Bit flow rate; MPD 

2.1 Introduction  

The challenges of ensuring energy supply for the future is driving hydrocarbon 

exploration in extreme and harsh offshore environments.  Most of the conventional wells 

are already producing or, are becoming depleted which makes the exploration more 

challenging.  In the offshore, usually, reservoirs have narrow pressure margin between 

the fracture pressure and the pore pressure. As a result, offshore drilling presents 

additional technological challenges ( Møgster et al., 2013). Drilling in narrow pressure 

window wells creates potential influx situations in these wells. Maintaining bottomhole 

pressure (BHP) within the pressure window between reservoir and fracture pressure is 

essential. An influx of reservoir fluid, referred to as reservoir kick, is encountered if the 

reservoir pressure exceeds the BHP. 
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On the other hand, drilling fluid will be lost to formation if BHP exceeds the fracture 

pressure (Nandan & Imtiaz, 2016). These unplanned events can lead to catastrophic 

accidents that can impact human lives on the rig as well as cause significant damage to 

the environment ( Hauge et al., 2013). The Macondo tragedy created more awareness of 

the challenges, uncertainties in drilling and the aftermath consequences of an accident. 

Under the above mentioned circumstances, Managed Pressure Drilling (MPD) has 

become a powerful method for precise control of wellbore pressure (Breyholtz et al., 

2010). The automated MPD system requires accurate measurement of each state and 

variable. During a drilling operation, many of the states are unmeasurable due to lack of 

proper instrumentation. Presence of unknown disturbances such as kick makes the 

overall process more critical. The estimation of these hidden states and unknown inputs 

must be done from available process measurements to enhance the safety and efficiency 

of the MPD system. This work focuses on implementing an observer to simultaneously 

estimate the unmeasured states and unknown inputs from the measured variables using 

the available surface instruments in a MPD system.  

Kalman filter based estimators are popular for hidden state estimation. They were first 

introduced by Kalman (1960) for linear filtering. Later on, state observers were proposed 

by Luenberger (1971) for state estimation. These estimators were modified and improved 

over time. Mohd et al. (2015) briefly discussed the application of the observers to the 

chemical process systems and classified them based on their features. These features 

presented the attributes, advantages, limitations, and guidelines for implementation. 

Based on their classifications, proper criteria for the observer designs were proposed for 
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different types of applications. Chen et al. (2009) proposed a specific observer only for 

disturbance estimation, and it was further improved by Yang et al. (2011). Extended 

Luenberger observer (Dochain, 2003), sliding mode observer (Floquet et al., 2004) and 

adaptive state observer (Vries et al., 2010) are commonly used for their simple 

implementation. However, these observers are not applicable to a complex system. In 

Corless and Tu (1998), an estimator was designed to estimate the states and inputs; 

Lyapunov-type characterization was used for the construction of a combined state/input 

estimator. The proposed estimator was suitable under very strict conditions. Xiong and 

Saif (2003) extended the work by proposing a state functional observer with reduced 

restrictive conditions. 

 The above mentioned observers are restricted to linear systems. Designing an observer 

for a nonlinear system is complicated and challenging (Imsland et al., 2007). In 

Alessandri (2004), difficulties associated with the construction of a state observer for the 

nonlinear system were investigated by using input-to-state stability (ISS) properties. 

Adaptive high-gain observers were proposed based on linear matrix inequalities (LMI) 

to solve the observer designing problem. This work was further extended by applying 

ISS Lyapunov functions ( Alessandri, 2013). Adaptive H∞ observer was proposed for 

Lipschitz nonlinear system ( Yang et al., 2016). Measurement noise was considered as 

an extended state vector to estimate the states and measurement noise simultaneously. 

This method is limited to Lipschitz type system. 
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A review of nonlinear Bayesian state estimation was illustrated in Patwardhan et al. 

(2012). This work focused on the constrained state estimation, the handling of multi-rate 

and delayed measurements and recent advancement in model parameter estimation. 

Bayesian estimators were classified based on the nonlinearity handling approaches. A 

solution was provided to the noise sensitivity of high-gain observers by applying the 

extended Kalman filter (EKF) (Boizot et al., 2010a). They implemented noise smoothing 

for small estimation error and introduced guidelines for the tuning of the parameters. 

EKF with unknown inputs was applied to a synchronous machine to estimate the states 

and input simultaneously (Ghahremani & Kamwa, 2011) where field voltage was 

considered as an unknown input, and signals were obtained from Phasor Measurement 

Unit (PMO). The proposed estimator showed good performances, and the parameter 

estimation procedure was also demonstrated effectively. 

The use of the EKF has been the most common way to deal with state estimation of 

nonlinear systems, but there are some complications in implementing EKF. Linearization 

can be very difficult. These limitations were addressed in Julier and Uhlmann (2004). 

They proposed the unscented Kalman filter (UKF) which can deal with nonlinearity 

directly. Unscented Transformation (UT) was developed to propagate mean and 

covariance in nonlinear transformation. Sigma points were deterministically chosen from 

the statistics of the transformation to capture the distribution with fixed small points. A 

higher number of sigma points can increase the computational cost of UT.  The 

differences between EKF and UKF were shown in Kandepu et al. (2008). Four 

simulation case studies were considered to evaluate the performances, and UKF 
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delivered superior performances over EKF in terms of robustness and speed of 

convergence. The computational load was the same for both methods. UKF was used as 

an unknown input observer (UIO) for fault detection purposes (Zarei & Poshtan, 2010b) 

in a large class of nonlinear systems. The developed observer was applied to a continuous 

stirred tank reactor (CSTR) to show the robustness and effectiveness of the proposed 

scheme. Joint UKF was implemented in a simulated MPD system for state and parameter 

estimation (Mahdianfar et al. 2013b). The model parameters were considered as states 

and estimated simultaneously with other states. 

In Liu and Gao (2013), UKF was applied in a neural mass model; the proposed model 

based estimator was able to estimate the unknown parameters for the model. A UKF 

based control was also developed to reconstruct the dynamics of the model, and showed 

better results than EKF based control. However, both UKF and EKF require that the 

process and measurement noises are gaussian distributed (György et al., 2014). For 

noises with non-gaussian distribution, the Particle Filter (PF) can be a good approach for 

estimation purposes. An overview of state estimators was presented in Rawlings and 

Bakshi (2006) by identifying the advantages and disadvantages of these methods. Their 

research work concluded that PF is less sensitive to the choices of initial states. PF was 

also developed by using an approximate Bayesian classifier for a nonlinear chaotic 

system (Mejri et al., 2013); the proposed method estimated chaotic states and unknown 

inputs for Gaussian and non-Gaussian noise scenarios. PF implementation issues were 

addressed in Imtiaz et al. (2006). This methodology was performed in a simulated non-

linear CSTR and an Experimental Four Tank system. Jampana et al.  (2010) applied PF 
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to estimate the interface level of a sensor, and performance was evaluated by using 

industrial data. The number of particles significantly affects the performance of PF. For 

a high number of particles, computational time increases significantly compared to other 

methods (György et al., 2014).  

Several researchers have worked on estimation and controller design in the MPD system. 

Stamnes et al. (2008) designed a Lyapunov based adaptive observer to deal with 

unknown frictions and density, and estimate bottomhole pressure in a well during 

operation. The estimated BHP converged to the actual BHP under some conditions and 

verification was done by using real field data. Parametric uncertainties in unmeasured 

states were included in Stamnes et al. (2009) to check the robustness of the Lyapunov 

based adaptive observer. They analyzed the stability and convergence of the error with 

or without the persistency of excitation. A novel observer was designed by Zhou et al. 

(2010) for kick and loss detection. Both bit flow rate and annulus flow rate were 

considered as unknown, and the kick was estimated from the difference of the predicted 

unknown flow rates. Reservoir pressure was also estimated to set the new reference point 

for BHP. Zhou et al. (2011) extended this work for kick detection and attenuation. The 

bit flow rate was considered as an unknown state, and it was estimated by injecting the 

error in pump pressure into the dynamic equation of bit flow rate. The kick was estimated 

using the difference in the flow rates and was mitigated by applying switching based 

controller. A similar approach was followed by Nandan and Imtiaz (2017) for the bit 

flow rate and reservoir pressure prediction during nonlinear model predictive controller 

(NMPC) implementation. Zhou and Nygaard (2011) continued this work for estimating 
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the annular pressure profile throughout the wellbore during a drilling operation. An 

adaptive observer was implemented to estimate state and parameter in an MPD system. 

A similar method was applied to estimate downhole pressure in Zhou and Nygaard 

(2010). Kaasa and Stamnes (2012) experimented with a similar type of observer to 

estimate downhole pressure. They developed a simplified hydraulics model to capture 

the dominating hydraulics of the MPD system and used topside measurements and 

downhole measurements to calibrate the uncertain parameters in the annulus. This 

method is dependent on real time measurements of downhole pressure. Moving horizon 

(MHE) based observer was applied by Sui et al. (2012) to estimate bottomhole pressure 

during drilling and pipe connection operation. They used a linearized model of the MPD 

system and solved a least- squares optimization problem to estimate the states.  The 

proposed method improved the traditional MHE approach by including the state’s and 

parameter’s constraints and noise filtering.  

Hauge et al. (2012) used a model based kick detection method for the MPD system. A 

stable adaptive observer was designed to estimate the unknown states and unknown 

parameters. Kick and location of the leak were selected as unknown parameters and 

estimated by the difference of the flow rates. They have also considered a linearized 

MPD model for their work. This research was extended in Hauge et al. (2013). The 

applied observer monitored the change in frictional pressure drop to identify the leak 

position. The localization algorithm was highly sensitive to the friction parameters in the 

drillstring and annulus. Another model based approach for kick and loss detection in the 

MPD system was presented by Holta et al. (2018). Their method considered bit flow rate 
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and bottomhole pressure as known measurements and reservoir pressure and 

productivity index as unknown parameters. 

A swapping based filter was combined with a closed loop controller to keep the 

bottomhole pressure close to the predicted reservoir pressure. The time delay was 

neglected for the bottomhole pressure measurement. Model based estimation using a 

approach to predict the key parameters simplified two phase model for real time 

estimation of influx rate was introduced by Ambrus et al. (2016) that comprised the 

reduced drift flux model, and an estimation algorithm which was built upon a reservoir 

inflow model. An experimental dataset was used for model validation. A low-pass 

filtered version of the pressure dynamics equation from the reduced DFM was used for 

dynamic estimation of the reservoir inflow rate, pore pressure, and reservoir productivity 

from real-time pressure and flow data. The recursive least squares (RLS) method was 

used for the instantaneous estimation of kick. Nygaard et al. (2007) implemented NMPC 

to control the well pressure and used UKF for estimating the states, and the friction and 

choke coefficients. Estimation was accurate during normal operation but showed 

oscillation after the pipe connection. Gravdal et al. (2010) presented a new approach to 

predict the key parameters in a well-flow model. UKF based estimation method was 

applied for accurate calibration of friction factors in the drillstring and annulus using 

topside and bottom-hole pressure measurements and uncertain parameters. The 

parameters were updated every thirty seconds by monitoring the bottomhole pressure. 
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The method was applied to three case studies and showed satisfactory results. 

Robustness of the UKF was shown by many researchers, for example, Mahdianfar et al., 

(2013) designed a joint UKF to simultaneously estimate states and unknown parameters 

in a well using topside measurements. Friction factors and bulk modulus were considered 

as unknown parameters. These were combined as a part of a state vector, and their values 

were estimated simultaneously using UKF. UKF delivered good performances for state 

and parameter estimation under different case studies. Our main objectives are as 

follows- 

 Early detection of the kick in an MPD system considering noise and uncertainty 

in the system model. 

 Estimation of kick size using surface measurements i.e., the choke pressure, 

pumping rate, pump pressure. 

 Validation of the proposed approach using different case studies.  

The above literature suggests that UKF is the most suitable tool to estimate unknown 

states and unknown inputs in the MPD system. It is capable of handling nonlinearity and 

also not computationally expensive which makes the estimator relevant for online 

applications. The rest of the paper is organized as follows: the model development for 

the MPD system is described in Section 2.2, followed by the problem formulation and 

observer design in Section 2.3. The simulation results, experimental results, and field 

validation are presented in Section 2.4 with concluding remarks in Section 2.5. 
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2.2 System Description 

The hydraulic model of an MPD system is derived from the mass and the momentum 

balance equations. A 1D model was originally developed by Kaasa and Stamnes (2012) 

assuming incompressible fluid with negligible variance in viscosity, and isothermal 

conditions. The model considered two control volumes: drill string and annular mud 

return section. As shown in Figure 2.1, Pump supplies the drilling fluid to the drillstring 

under pump pressure Pp with a flow rate of qp.  The drilling fluid passes through the bit 

with a flow rate of qbit., and pressure at the bit is denoted as Pbh.  A choke at the exit of 

the annulus control volume provides a back pressure Pc and mud flows through it at a 

volumetric flow rate qc. βd and βa represent the bulk moduli of mud in the drill string and 

annulus and ρd and ρa are the mud densities. Vd and Va are the volumes of the drill string 

and the annulus, respectively; fd and fa are frictional loss coefficients in the drill string 

and the annulus, respectively. We included the detailed derivation of the model in the 

Appendix as the derivation is not available in the literature. The hydraulic model of an 

MPD system derived from mass and momentum balances can be written as (Kaasa and 

Stamnes, 2012): 

               

d
p p bit

d

P (q q )
V



 

……………………………………………….…...…. (2.1) 

         

a
c bit c k

a

P (q q q )
V



  

…………………..………………………..……..…... (2.2)                

2 21
bit p c d p a bit a d TVDq ( P P f q f q ( )gh )

M
 



     
……….…………..……..…..... (2.3) 



 

32 
 

          bh c a a TVDP P Pf gh  
……………………...………………………...…... (2.4) 

         0 0c c c c cq u K sign( P P ) P P  
…………………..……..……………….... (2.5) 

          k p res bhq K ( P P ) 
…………………….…....……………….………….... (2.6) 

 

 

Figure 2.1: Schematic representation of MPD drilling (Zhou and Krstic, 2016) 
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2.3 Method 

2.3.1 Problem Formulation 

In MPD, there are three states; pump pressure (Pp), choke pressure (Pc), and bit flow rate 

(qbit). Pump pressure and choke pressure are the available top-side measurements 

whereas bit flow rate is an unmeasured state; kick (qk) is considered as an unknown input. 

Our objective is to estimate both the known and the unknown states and input 

simultaneously. The hydraulic model of an MPD system is given as follows (E. Hauge 

et al., 2013): 

State vector, p c bitX [ P ,P ,q ]  T; Measurement vector, p cy [ P ,P ] T; Unknown input=
kq  

                  1k k k kX f (X ) q w   
…………………………………………..……. (2.7) 

                     k k ky g(X ) v 
………………….…………….……………..…...…. (2.8) 

 Where, f is the nonlinear system equation, (0, )k kw N W is the Gaussian process noise, 

and (0,R )k kr N  is the Gaussian measurement noise. Process and measurement noises 

are assumed to be uncorrelated. In our work, we represent the unknown input as part of 

the state vector, and estimate its magnitude along with other states simultaneously. The 

states and unknown inputs are concatenated into a combined state vector, and the 

corresponding dynamic model is written as: 
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……..…...…. (2.9) 

 

 

2.3.2 Observer 

We implemented UKF as an observer for state and unknown input estimation purpose. 

UKF is the extension of the unscented transformation (UT) (Wan and Van Der Merwe, 

2000). The UT is a method used for calculating the statistics (mean and covariance) of a 

random variable which undergoes a nonlinear transformation. UKF can deal with the 

nonlinearity directly without linearizing the nonlinear model. In UKF, state distribution 

is specified by a weighted set of deterministically chosen sampled points called sigma 

points. It captures the true mean and the covariance of the Gaussian random variable and 

also captures the posterior mean and covariance accurately up to the 3rd order (Taylor 

series expansion) in a nonlinear system. In our case, we considered that process and 

measurement noises are purely additive to reduce the computational complexity by 

reducing the number of sigma points.  

For a nonlinear-discrete time system, there are two stages of UKF (Mahdianfar et al., 

2013b): Prediction, and Update. Below we describe these two stages: 
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2.3.2.1 Prediction 

Step 1: Initial value of state and covariance are selected.  

Step 2: The set of sigma points are created based on the present state covariance applying 

the following equation- 

               1 1 1 1 1[  ... ] +  [0  - ]k k k k km m c P P     
…………………………...…...…. (2.10) 

Here  is the matrix of sigma points and 2 ( )c n k  .  

 and k  are tuning parameters.   determines the spread of sigma points around m, and 

generally, it should be a small number. k 0  should be selected to guarantee the semi-

positive definiteness of the covariance matrix, and whereas n is the dimension of the 

state vector (Kandepu et al., 2008).  

Step 3: The transformed set is calculated by translating each sigma point through model, 

and then predicted mean and covariance are calculated  

         

^

k k 1X f ( ,k 1)   …………………………………………………...…...…. (2.11) 
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Here 
kQ is the process covariance matrix. Vector mw and matrix W can be defined as 

follows: 

           
( 0 ) ( 2n ) T

m m mw [W  ... W ] 
……………………………..….……..………...…. (2.14) 

           
( 0 ) ( 2n ) T

m m c c m mW ( I [ w  ... w ]) diag(W  ... W ) ( I [ w  ... w ])     ………….…. (2.15) 
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2( n k ) n     is a scaling parameter 

2.3.2.2 Updating  

Step 4: New Sigma points are calculated from using following equation - 

      k k k k k
[ m  ... m ] + c  [0 P  - P ]     

…………………..………..……..……. (2.16) 

Step 5: New sigma points are passed through the measurement equation. 

     k k
Y g( ,k ) 

………………………….…………………………………....…. (2.17) 
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The predicted mean 
k and covariance of the measurement

kS  are computed by- 

    kk mY w 
……………………………….…………….……..………...…. (2.18) 

  k k

T

k kS Y W [Y ] R  
……………………………………………………….... (2.19) 

Here, 
kR  is the measurement covariance matrix. Cross-covariance of state and 

measurement 
kC is computed as follows- 

       k k

T

kC X W [Y ] 
………………………………………………………...…. (2.20) 

Kalman Gain is calculated as, 

       
1

k k kK C S 
……………………………………………..…………...…..... (2.21) 

Step 6: The updated state mean 
km and covariance 

kP is computed conditional to the 

measurement yk
. 

      kk k k km m K [y ]  
…………….……………………………………….…... (2.22) 

      k k

T

k k kP P K S K 
…..…… …………………………….………………...….... (2.23) 

Updated state mean and covariance act as an initial value for the next time step. The 

algorithm of UKF can be represented by the flow chart in Figure 2.2: 
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Figure 2.2: The UKF algorithm flowchart 
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2.4 Results and Discussion  

The effectiveness of the proposed method is demonstrated through three case studies. 

For the first study, the simulation model of an MPD system was used with different 

process and measurement noise scenarios (Kaasa and Stamnes 2012). Next, experimental 

data from a laboratory scale MPD system were used for the second case study. Finally, 

field data from a drilling rig operating in Western Canada was used to validate the 

unknown input observer. 

2.4.1 Simulated MPD model 

MPD system was simulated based on the hydraulic model described in Section 2.2. 

Model parameters used for simulation are summarized in Table 2.1. UKF was 

implemented on the simulated MPD system to estimate the hidden states (i.e., bit 

flowrate) and unknown input (i.e., gas influx rate). The robustness of the proposed 

methodology was demonstrated through three different process and measurement noise 

scenarios. In this simulation, the augmented process had both model mismatch and 

measurement noise as per our design. 

Measurement noise remained unchanged for all cases, while the model mismatch was 

changed from low to a high level to check the efficacy of the estimator. Static drilling 

conditions were considered; as such volumes in drillstring and annulus were unchanged 

throughout the simulation. Drilling fluid was also considered unchanged in the 
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simulation. For each scenario, mud was pumped at the rate of 1200 LPM, and the choke 

opening was 30 percent. 

Table 2.1: Simulated MPD system parameters (Nandan & Imtiaz, 2017b) 

Parameter Value Unit 

Volume of annulus (Va) 89.9456 m3 

Volume of drillstring (Vd) 25.5960 m3 

Total vertical depth (TVD) 3500 m 

Mass parameter (M) 8.04×108 kg/ m3 

Bulk modulus in annulus (βa) 2.3×109 Pa 

Bulk modulus in drillstring 

(βd) 

2.3×109 Pa 

Density in drillstring (ρd) 1300 kg/ m3 

Density in annulus (ρa) 1300 kg/ m3 

Friction factor in drillstring 

(fd) 

1.65×1010 S2/m6 

Friction factor in annulus (fa) 2.08×109 S2/m6 

Choke discharge coefficient 

(Cd) 

0.6 - 
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Choke discharge area (A0) 2×10-3 m2 

Choke downstream pressure 

(P0) 

1.013×105 Pa 

Flow rate (Qp) 1200 LPM 

 

For the first scenario, the process covariance matrix, Q, was set to = diag [50 50 0.000005 

0.000005], and the pump pressure and choke pressure were affected by additive 

measurement noise with a covariance R= diag [500000 500000]. In this simulation, a 

kick was simulated at 200s, and that led to a sudden change in pump pressure and choke 

pressure. The observer was able to estimate the hidden state and unknown input 

simultaneously based on the pump pressure and choke pressure measurements. After 

350s, the kick was removed from the system, and the process became normal again. 

Filtered and estimated states and inputs along with actual states, are illustrated in Figure 

2.3 and Figure 2.4. For the second scenario, the process model mismatch was increased 

from low to medium noise level with a covariance Q= diag [50000 50000 0.00005 

0.00005], and other conditions were unchanged. The corresponding results are shown in 

Figures 5 and 6. As shown in Figure 2.5 and Figure. 2.6, a high level of process model 

mismatch affected both the unknown state and input estimation. However, the proposed 

estimator efficiently estimated the unknown state and unknown input. 
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Figure 2.3: Filtered and actual states for the low noise scenario 

 

Figure 2.4: Estimated and actual states and inputs for the low noise scenario 
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Figure 2.5: Filtered and Actual states for high noise scenario 

 

 

Figure 2.6: Estimated and actual states and inputs for high noise scenario 
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2.4.2 Simulated closed loop MPD model 

A simple PI controller was implemented to test the observer in a closed loop system. The 

model parameters remained the same as in Table 2.1. Initially, the choke opening was 

30 percent, and the pump flow rate was fixed at 1200 LPM. In this case study, the 

covariance of the system noise was Q= diag [50 50 0.000005 0.000005], and the pump 

pressure and choke pressure were affected by additive measurement noise with a 

covariance R= diag [500000 500000]. A kick was encountered at the 250th second. 

The controller was able to mitigate the kick at 290 seconds. New choke opening was 

21.47 percent after kick mitigation. Kick control and choke opening percentage is 

presented in Figure 2.7. Filtered and estimated state and input, along with actual states, 

are presented in Figure 2.8 and Figure 2.9. Our main objective was to detect the unknown 

kick, which was achieved, as shown in Figure 2.9.  

Estimation of the kick is dependent on choke pressure change. In a closed loop scenario, 

as long as the pressure set point is unchanged, there is influx into the system and kick 

can be estimated accurately. However, as the pressure was increased after the kick 

detection to mitigate the kick, the observer is no longer valid, therefore Figure 2.9 (b) is 

showing the estimated kick signal only for the period when kick magnitude was 

increasing. 
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Figure 2.7: Kick mitigation in a closed loop MPD system 

 

Figure 2.8: Filtered and actual states and inputs in a closed loop MPD system 
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Figure 2.9: Estimated and actual states and inputs in a closed loop MPD system 

 

2.4.3 MPD Experimental Setup   

A lab scale MPD setup was developed by Amin (2017) in the process engineering facility 

at Memorial University of Newfoundland. The 16.5 ft concentric flow loop was created 

to replicate the MPD operation. The inner pipe section represents the drill string, and the 

outer annular section represents the annular casing of a well. As shown in Figure 2.10, 

the experimental setup is equipped with 8 pressure transmitters, 4 flow meters, and 2 

control valves. Drilling fluid is pumped using a progressing cavity pump. 

 

(b) (a) 
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Figure 2.10: Schematic diagram of the experimental setup (Amin, 2017) 

 

A variable frequency drive controls the pump pressure and the flowrates. An air 

compressor supplies gas in the system, which we considered as a kick for our system. An 

open loop experiment was performed on this setup and the experimental data was collected 

by MATLAB. Water was considered as drilling fluid. Pump pressure and choke pressure 

were measured by PT102 and PT 302, respectively. The pump flow rate was fixed at 40 

LPM and choke opening was 50% throughout the operation. The other parameters are 

given in Table 2.2. 
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Table 2.2: Experimental setup parameters 

Parameter Value Unit 

Volume of annulus (Va) 0.01518 m3 

Volume of drill string (Vd) 0.0054 m3 

Total vertical depth (TVD) 4.75 m 

Mass parameter (M) 8.4×108 Kg/ m3 

Bulk modulus in annulus 

(βa) 

2.15×109 Pa 

Bulk modulus in drillstring 

(βd) 

2.15×109 Pa 

Density in drillstring (ρd) 1000 Kg/ m3 

Density in annulus (ρa) 1000 Kg/ m3 

Friction factor in drillstring 

(fd) 

47147.21 

 

S2/m6 

Friction factor in annulus 

(fa) 

43680.9 

 

S2/m6 

Choke discharge coefficient 

(Cd) 

0.6 - 

Choke discharge area (A0) 0.00028 m2 

Choke downstream pressure 

(P0) 

1.013×105 Pa 

Flow rate (Qp) 40 LPM 

 

A gas kick was injected into the annular section at the 120th second of operations by the 

air compressor. The magnitude of the kick was recorded by the airflow meter, AF 501. For 
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this current study, we only compared the unknown input as there was no flow meter 

available to record the bit flow rate. The pressure transmitter captured the change in the 

pressure instantaneously, but the flow meter took approximately 20 seconds to display the 

variation. The gas injection was stopped at 290th second. Figure 2.11 shows the actual and 

filtered states of the process. Figure 2.12 illustrates the estimated and actual unknown input 

of the system. The applied algorithm estimated kick from the choke pressure, as such the 

estimated kick was observed 20 seconds prior to the actual kick reached the surface 

flowmeter shown in Figure 2.12. The proposed method was able to determine the 

magnitude of the kick accurately. 

 

Figure 2.11: Filtered and actual states for experimental data 
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Figure 2.12: Estimated and actual unknown input for experimental data 

 

2.4.4 Implementation in a field case study 

The proposed method was tested on real data collected from an actual MPD operation that 

was taking place in Western Canada. From the drilling data, the measured depth (MD) was 

available for every second. The MD was used to calculate the true vertical depth and other 

changing parameters, e.g., annular volume, drill string volume, etc. for the drilling system. 

Other measured variables available from the surface sensors, pump flow rates and choke 

flow rates were used directly in the UKF algorithm. 

The pump pressure was estimated as the difference between the standpipe pressure and 

the choke pressure. Friction factors were calculated from pipe specifications. The well 

parameters are given in Table 2.3 
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Table 2.3: Field parameters from the rig operating in Western Canada 

Parameter Value Unit 

Measured Depth (MD) 3671.2-3768.6 m 

Volume of annulus (Va) 0.00739*MD+27.172 m3 

Volume of drill string (Vd) 0.00739*MD m3 

Bulk modulus in annulus 

(βa) 

1.3×109 Pa 

Bulk modulus in drillstring 

(βd) 

1.3×109 Pa 

Density in drillstring (ρd) 1240 Kg/ m3 

Density in annulus (ρa) 1240 Kg/ m3 

Choke downstream 

pressure (P0) 

1.013×105 Pa 

Flow rate (Qp) 1 m3/ min 

 

Figure 2.13, and Figure 2.14 shows the time trends of the data.  Presence of gas influx was 

observed throughout the operation. For the current study, sample data set over 4000 s were 

selected, mainly ensuring the presence of kick. In this period, the gas influx was noticed 

on three different occasions: 1190, 2200, and 3300. On all of the three occasions, 

immediately prior to the change reflected in the flowrate, pressure transmitter displayed 

fluctuations. The change was first detected in the pump pressure, as the gas enters the 

annular section pump is suddenly working against a compressible fluid; as a result, a sharp 

decrease in pump pressure is observed. Due to this, while the gas flow was detected at 1100 

second, the pump pressure change was detected much earlier at 950 second. This dip in 
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pump pressure is followed by a spike in pressure in the annular section. As more gas enters 

into the system, the annular pressure increases and the increased pressure is reflected by a 

sharp change in the choke pressure. This pressure signature of the pump and choke pressure 

indicates that it is possible to estimate the reservoir kick earlier than the flow measurements 

using the pressure signal. The UKF designed in the previous section used the measurements 

from the available sensors on the surface of the drilling rig and estimated the kick 

magnitude. In this unknown input estimator UKF, pump pressure and choke pressure are 

the measured states and the gas influx to the annular section is the unmeasured state. The 

UKF only filters these two signals. Figure 2.13 shows the actual and filtered pressure 

signals of the MPD system. The measured gas influx rate (i.e. gas kick) and the estimated 

gas influx rate are shown in Figure 2.14. As expected, the estimated kick was observed 

approximately 150 seconds ahead of its detection by the flow sensor. This clearly shows 

that the estimation of the kick using pressure measurement is beneficial. 
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Figure 2.13: Filtered and actual states for field data 

 

Figure 2.14: Estimated and actual unknown input for field data 
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2.5 Conclusion  

In this paper, we presented UKF as a simultaneous estimator of hidden states (i.e., bit 

flowrate) and unknown input (i.e., reservoir influx). It was observed from the simulation, 

lab scale, and field case study that UKF is able to successfully estimate the bit flow and 

gas kick. UKF was found to be robust in the presence of significant measurement noise 

and plant model mismatch. It was observed that kick detection and estimation from the 

pressure leads to early detection of kick compared to the surface flow sensors. Both 

experimental data and field case study validated the findings. 

In the experimental case study, the kick was detected 20 seconds before the actual kick 

appeared in surface flowmeter, and kick detection was approximately 150 seconds earlier 

for the field case study. Early estimation and detection of kick improve the performance of 

the kick mitigation process significantly and can play an important role in the increase of 

the safety and efficacy of a drilling operation. Different drilling operations such as: pipe 

extension scenario, no pump flow etc. can be used for further validation. Temperature 

effects need to be considered as well.  
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Nomenclature 

  = tuning parameters of sigma points 

βa = bulk modulus in annulus, Pa 
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βd = Bulk modulus in drillstring, Pa 
  = scaling parameter 

ρa = Density in annulus, Kg/ m3 

ρd = Density in drillstring, Kg/ m3 

w  = wall shear stress. Pa 


 = sigma points 

A0 = choke discharge area, m2 

Cd = choke discharge coefficient 

fa = friction factor in annulus, S2/m6 

fd = friction factor in drillstring, S2/m6 

g = gravity, m/s2 

HTVD = total vertical depth, m 

M = mass parameter, Kg/ m3 

Pbh   = bottomhole pressure, Pa, Bar 

Pc = choke pressure, Pa, Bar 

Po = choke downstream pressure, Pa, Bar 

Pp = pump pressure, Pa, Bar 

qbit = bit flowrate, m3/s, LPM 

qc = choke flowrate, m3/s, LPM 

qk = kick, m3/s, LPM  

qp = pump flowrate, m3/s, LPM 

Va = volume of annulus, m3 

Vd = volume of drillstring, m3 
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Abstract 

The sudden influx of reservoir fluids (i.e., reservoir kick) into the drilling annulus is one 

of the common abnormal events encountered in the drilling operation. A kick can lead to a 

blowout, causing loss of lives, assets, and damage to the environment. This study presents 

a framework for real time kick monitoring and management in managed pressure drilling 

(MPD) operation. The proposed framework consists of three distinct steps: the unscented 

Kalman filter (UKF) is used to detect and estimate the kick's severity; the estimated 

severity and optimal control theory is used to calculate the time to mitigate the kick in the 

best case scenario; based on total predicted influx and pressure rise in the system generate 

a warning and activate the mitigation strategy. Thus, the proposed method can estimate, 

monitor, and manage kick in real time, enhancing the safety and efficiency of the MPD 

operation. The robustness of the developed method were validated using a simulated MPD 

system. Implementation of the proposed approach into a pilot scale experimental setup 
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demonstrate its applicability. The proposed monitoring framework delivered good 

outcomes in both case studies. 

Keywords: Kick; MPD; Observer; Risk; Alarm. 

 3.1. Introduction 

The need for hydrocarbon will continue to exist in the foreseeable future. However, many 

of the convenient wells have already been used for the extraction of oil and gas. These used 

sources affect the nearby wells by creating a smaller pressure window for operation 

(Møgster et al., 2013).  Maintaining the bottomhole pressure (BHP) within this permissible 

range while drilling in a narrow pressure margin is exceptionally challenging (Nandan and 

Imtiaz, 2016). Kick is known as an influx of reservoir fluid that happens when the reservoir 

pressure exceeds the BHP. On the other hand, drilling fluid will be lost to formation if BHP 

exceeds the fracture pressure. An unmitigated kick may result in a catastrophic accident 

causing significant damage to the environment and human lives. The Macondo incident in 

the Gulf of Mexico is a prime example of this kind of undesired events (Hauge et al., 2013).  

Drilling operation is associated with risk, and to ensure safety while drilling, accurate 

pressure control throughout the wellbore is required. Drilling at greater depth may require 

pipe extension, creating significant pressure fluctuation. Besides, the annular pressure 

profile changes due to the drill-pipe connection, tripping, swab, and surge operation. These 

activities add additional complexity during a drilling operation (Siahaan et al., 2012). 

Under this above mentioned scenarios, MPD has emerged as a powerful method to control 



 

64 
 

the annular pressure profile precisely. MPD operates in a closed pressurized mud 

circulation system offering higher flexibility and precision than the conventional method. 

Automation in MPD has increased the efficiency and safety of the process by eliminating 

the risk of human error (Breyholtz et al., 2010). The automated MPD system relies on 

accurate measurement of each state and variable. Mud density, viscosity are uncertainties 

in operation. Frictional loss is dependent on mud density, viscosity, pressure, length, and 

diameters.  So, these factors increases the uncertainties in the drilling operations. Besides, 

accurate measurements are not available in the bottomhole region because of the greater 

depth.  The estimation of these unmeasured states and unknown inputs such as kick are 

crucial to enhance the performance of the MPD system. So, an observer is required to 

estimate the unknown kick in the system. Kalman filter based estimation is the most widely 

used approach for unknown state estimation (Julier and Uhlmann, 2004).  

Significant research has been conducted on estimation and controller design for the MPD 

system. Stamnes et al. (2008) and  Stamnes et al. (2009) estimated BHP in a well by 

implementing a Lyapunov based adaptive observer dealing with unknown frictions and 

density. Real field data verified the findings by comparing the estimated BHP to the actual 

BHP.  Zhou et al. (2010) proposed a novel observer by estimating kick, and reservoir 

pressure from the difference of the predicted flow rates and actual flow rates. Zhou et al. 

(2011) extended his previous work on observers for kick detection and attenuation applying 

a switching based controller. Nandan and Imtiaz (2017) used a similar technique for the bit 

flow rate and reservoir pressure prediction and implemented a nonlinear model predictive 

controller (NMPC) with kick mitigation. Zhou and Nygaard (2010) implemented an 
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adaptive observer to estimate downhole pressure during a drilling operation.  Kaasa and 

Stamnes (2012) developed a simplified hydraulics model to capture the dominating 

hydraulics of the MPD system and used topside measurements and downhole 

measurements to calibrate the uncertain parameters in the annulus. Sui et al. (2012) 

estimated BHP during drilling and pipe connection operation by implementing a moving 

horizon (MHE) based observer. The method improved the conventional MHE approach by 

including the state's and parameter's constraints and noise filtering. Espen et al. (2012) 

considered kick and its location in a linearized MPD system as unknown parameters and 

estimated using a stable adaptive observer. Nygaard et al. (2007) applied UKF for state 

estimation and implemented NMPC to control the well pressure. UKF based estimation 

method was applied by Gravdal et al. (2010) to predict the essential parameters in a well-

flow model. Topside and BHP measurements were used for the calibration of friction 

factors. The parameters were updated every thirty seconds by estimating the BHP. Three 

case studies were shown to verify the method. Mahdianfar et al. (2013) designed a joint 

UKF to simultaneously estimate states and unknown parameters in a well. They considered 

friction factors and bulk modulus as unknown parameters. These parameters were 

combined in a state vector and were estimated simultaneously with the states using 

available topside measurements. 

 An advanced dynamic risk based maintenance strategy using a Bayesian approach was 

presented in Pui et al. (2017) to create a risk profile for the offshore MPD system for 

rotating control device (RCD) and blowout preventer (BOP). The applied framework 

minimized the operational maintenance by mitigating the risks and identifying the critical 
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components in the MPD system. Abimbola and Khan (2018) developed a risk based 

warning system using loss function (LF) to provide real time blowout risk analysis by 

estimating operational risks for drilling operations. The researchers provided standard 

criteria of the measured parameter from absolute bottom-hole pressure to pressure 

gradients. Though some work has been done on dynamic risk assessment of MPD systems, 

these methods lack some prediction ability as the probability of a blowout, or catastrophic 

event is calculated from the measured signal. Also, none of the methods take the controller 

capability into consideration. We propose to develop a robust warning system based on the 

real time operational data (Beyond Energy Services and Technology Corp, 2018). The 

developed warning system is independent of the controller and can deal with the 

unmeasured kick as well. 

The rest of the paper is organized as follows: the model development for the MPD system 

is illustrated in Section 3.2, followed by the problem formulation and methodology in 

Section 3.3. The simulation results and the experimental results are presented in Section 

3.4 with concluding remarks in Section 3.5. 
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3.2. Problem Formulation 

In a mathematical model of an MPD system, there are two measured states, namely, pump 

pressure (Pp), and choke pressure (Pc), and one unmeasured state, bit flow rate (qbit). The 

kick (qkick) is considered as an unknown input in the model. The relationships among the 

states and the inputs for an MPD system are governed by the system hydraulics. Kaasa and 

Stamnes (2012) developed the hydraulics model of the MPD system from the mass and 

momentum balance equations. In this work, we used the model for developing the 

monitoring system, including state estimation. The model is briefly described in this 

section. Drill string and annular mud return section are the control volumes of an MPD 

system. The hydraulics model for these control volumes can be written as:                            

                                                   
d

p p bit

d

P (q q )
V



  ……….……………………………………............... (3.1) 

                                                  
a

c bit c k

a

P (q q q )
V



   ……….……………………….……………............. (3.2) 

                                                
2 21

bit p c d p a bit a d TVDq ( P P f q f q ( )gh )
M

 


      ……….…….. (3.3) 

                                                 bh c a a TVDP P Pf gh   ……….………………………….…........... (3.4) 

                                                 0 0c c c c cq u K sign( P P ) P P   ……….…………………............ (3.5) 

                                               k p res bhq K ( P P )  …………………………….………………….......... (3.6) 
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βd and βa are the symbols of the bulk moduli of mud in drill string and annulus, 

respectively and ρd and ρa  for the mud densities. Drill string volume and annulus volume 

are presented as Vd, and Va respectively; frictional loss coefficients in the drill string and 

the annulus are shown as fd and fa   respectively. In the state space form, the model can be 

expressed as 

                                           ……………………………..……. (3.7) 

                                            ……………………………..….…...…. (3.8) 

State vector, T

p c bitX [ P ,P ,q ] ; Measurement vector, T

p cy [ P ,P ]  ; Unknown input= qkick 

Where, f is the nonlinear system equation, (0, )k kw N W is the Gaussian process noise, and 

(0,R )k kr N  is the Gaussian measurement noise. Process and measurement noises are 

assumed to be uncorrelated.  

Our objective is to estimate the kick from the available top side measurements by applying 

the UKF. Based on the kick, the impact of a kick in the system will be calculated and 

compared with operability conditions for monitoring and control purposes. Section 3.3 

describes the methodology in detail.   

 

3.3 Methodology on real time kick monitoring and management 

Real time and predictive warning systems can play a significant role in increasing process 

safety. Varga et al. (2010) proposed a novel concept for a predictive alarm management 

1k k k kX f (X ) q w   

k k ky g(X ) v 
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system. They identified the stable and unstable operating conditions of a process. A 

warning was generated when the state's value crossed the controllable region, which was 

determined by the Lyapunov's secondary stability analysis of the state variables. The 

proposed method was applied to two industrial benchmark problems. A design based on 

operability constraints and state estimators were presented for model predictive safety 

system in Ahooyi et al. (2016). A real time receding horizon operability analysis was done 

to identify the predicted operational hazards. An extended Luenberger observer (ELO) was 

used to estimate the present and future state variables. The alarm was generated based on 

the controller's capacity to mitigate the extreme value of a predicted state. In the real world, 

process variables are interconnected. So optimizing one extreme state using one 

manipulated variable may cause other variables to exceed the safety limit. A risk based 

alarm design was proposed by Ahmed et al. (2011). The present and future risks associated 

with the system variables were evaluated to generate alarms in the system. Researchers 

prioritized the alarms based on the severity and provided operator actions to mitigate the 

risk.  

There is no significant work has been done on real time kick management for the MPD 

system. Our research work addressed this issue by developing a framework for real time 

kick monitoring and management system. It requires detection and accurate estimation of 

kick and a robust warning system. There are mainly three steps to achieve our goal 

described as follows: 
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 Implementation of UKF to estimate the unmeasured kick in the system. The 

estimation was done using the available topside measurements: flow rate at the 

pump, pump pressure, and choke pressure.  

 

 Optimal control output to mitigate the kick was estimated using an optimizer. A 

moving horizon predictor was used to predict kick size for a short duration to 

calculate the required time to mitigate the kick. 

 

 The total predicted kick volume entered during the mitigation time was calculated. 

The fluctuation of pressure due to kick was computed. A warning system was 

created based on the industry standard well operation matrix. 

 

Figure 3.1 shows the overall methodology for risk based monitoring. Followed by the 

flow chart a detailed description of each step is provided. 
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Figure 3.1: Implementation steps of real time kick monitoring 
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3.3.1 UKF with the Augmented States 

UKF is a widely used state estimator for nonlinear systems (Gravdal et al., 2010). In this 

work, our objective is to estimate states pump pressure (Pp), choke pressure (Pc), bit flow 

rate (qbit) and the unknown input to the system, reservoir influx (qkick). In order to estimate 

the unknown states, the states and the unknown inputs are placed into an augmented state 

vector. After augmenting the reservoir influx into the state vector, the augmented state 

transition matrix looks as in Equation (3.9). 

 

………….………..…. (3.9) 

 

 

The UKF is an extension of the unscented transformation (UT), a method used for 

calculating the statistics (mean and covariance) of a random variable in a nonlinear 

transformation (Wan and Van Der Merwe, 2000). Deterministically chosen sigma points 

are used for state distribution to capture the true mean and the covariance of the Gaussian 

random variable and calculate the posterior mean and covariance. These measurements can 

be done accurately up to the 3rd order (Taylor series expansion) in a nonlinear system. 

There are two stages of UKF (Mahdianfar et al., 2013): Prediction, and Update. Below we 

describe these two stages: 
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3.3.1.1 Prediction 

Step 1: A set of initial values of state, 1  km  and covariance, 1kP   are selected.  

Step 2: The set of sigma points are generated based on the present state covariance by the 

following equation- 

                                             1 1 1 1 1[  ... ] +  [0  - ]k k k k km m c P P     
………………….. (3.10) 

Here,   is the matrix of sigma points and 
2 ( )c n k  . and k are tuning parameters used 

for sigma points’ spread specifications , and n is the dimension of the state vector (Kandepu 

et al., 2008). 

Step 3: Sigma points are transferred through model to calculate the predicted mean and 

covariance by using the following equation: 

                                                  

^

k k 1X f ( ,k 1)   ……………………………….…. (3.11) 

                                                 

^

kk mm X w  ……………………….…….............…. (3.12) 

                                                 

^ ^
T

k kk k 1P X W [ X ] Q

  …..……………..…….....…. (3.13) 

Here, 
kQ is the process  covariance matrix. Vector 

mw and matrix W can be described as 

follows: 
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. 

 

 

 

2( n k ) n      is a scaling parameter. 

3.3.1.2 Updating 

Step 4: New Sigma points are generated from the following equation - 

                                               k k k k k
[ m  ... m ] + c  [0 P  - P ]     

………….....…. (3.14) 

Step 5: New sigma points are transferred in the measurement equation. 

                                                k k
Y g( ,k ) 

…………………………………...…. (3.15) 

The predicted mean 
k and covariance of the measurement 

kS are calculated by the 

following equation- 

                                                 kk mY w 
………………….…………………...…. (3.16) 

                                                 k k

T

k kS Y W [Y ] R  
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Here, 
kR is the measurement covariance matrix. Cross-covariance of state and 

measurement 
kC  is calculated as follows- 

                                                   k k

T

kC X W [Y ] 
…………….…….……...…. (3.18) 

Kalman Gain is calculated by the following equation- 

                                                    
1

k k kK C S 
….…………………...…... (3.19) 

Step 6: The updated state mean 
km and covariance 

kP  is computed based on the 

measurement yk
. 

                                                    kk k k km m K [y ]  
…………….…….....……... (3.20) 

                                                   k k

T

k k kP P K S K 
………….…….…..…………... (3.21) 

Updated state mean and covariance act as an initial values for the next time step.  

3.3.2 Prediction of total influx for alarm generation 

Once the kick has been detected, and the initial kick size has been estimated, the next step 

is to calculate the total size of influx into the system. However, as the controller will try to 

mitigate the kick in the system, the controller effect needs to be accounted for in the 

calculation. In order to make a monitoring system independent of the controller, we 

calculated the influx size assuming an optimal controller response. Therefore, the estimated 
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influx size will be a conservative estimate and makes the monitoring system robust. Choke 

valve opening (uc) was considered as the manipulated variable. The cost function 

minimizes the difference between the upper kick limit and predicted kick over the 

prediction horizon, keeping the choke valve deviation within the acceptable limits (Nandan 

and Imtiaz, 2017). The cost function can be written as: 

            
c

k m
set 2 2

1 k k 2 c
u

K k

J min ( q ( K ) q ( K )) u  
 



  
………………….. (3.22) 

Where 1 R  and 2 R  are weighing constants and m is the prediction horizon. Kick 

and input constraints can be defined as: 

                                                  
min max

k k kq q q 
………………………….……….. (3.23) 

                                                  
min max

c c cu u u 
.………………………………….. (3.24) 

When the kick enters the system, it affects the states and is reflected by the change in the 

pressure measurements. The controller takes action to keep the kick below the threshold 

limit. The time required to mitigate the kick back into the safe region was calculated. This 

time was used for total kick volume for real time kick management.  
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3.3.3 Warning Generation 

 The warning system is based on total influx volume and the pressure in the annular section 

of the drilling rig. The total volume can be identified by integrating the volumetric flow 

rate of kick until the kick is fully mitigated. 

T mitigation _ time

kick _ predicted
0

Total _Volume q dT


  ………………….. (3.25) 

The change in surface choke pressure is calculated from the increase in pressure from the 

stable surface pressure during the influx. 

choke( increment ) choke( kick ) choke(normal)P P P   ………………………….. (3.26) 

We used an industry standard guideline for setting the alarm threshold. The MPD well 

operation matrix from the Beyond Energy Corporation is presented in Figure (3.2). The 

matrix provides the necessary guidelines for actions in an MPD system based on operating 

conditions. The warning system and the management of the well for different influx 

scenarios are given in the risk matrix. Prediction of the influx volume in real time will 

provide a precise quantitative measure to an operator to activate appropriate mitigation 

action based on the guideline. 
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Figure 3.2: MPD well control matrix (Beyond Energy Services and Technology Corp, 

2018) 

 

3.4. Implementation of the methodology 

The effectiveness of the proposed methodology is demonstrated through two case studies: 

a simulation model of an MPD system (Kaasa and Stamnes, 2012) and on a laboratory 

scale MPD system. 
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3.4.1. Simulated system 

MPD system was simulated based on the hydraulic model described in Section 3.2. A 

Proportional Integral (PI) controller was implemented to mitigate the kick. Model 

parameters used for simulation are presented in Table 3.1. In this case study, the covariance 

of the system noise was Q= diag [50 50 5×10^-6 5×10^-6], and measurement noise with a 

covariance R= diag [5×10^6 5×10^6] was added with pump pressure, and choke pressure. 

Volumes in drillstring and annulus and drilling fluid were unchanged throughout the 

simulation. Mud was pumped at a rate of 1200 LPM, and initially, the choke opening was 

at 30 percent. We introduced two kicks into the system, one with a magnitude of 550 LPM 

and the other 24 LPM. The performance of the monitoring system is described in the result 

section. 

Table 3.1: Simulated MPD system parameters (Nandan and Imtiaz, 2017) 

Parameter Value Unit 

Volume of annulus (Va) 90 m3 

Volume of drillstring (Vd) 25.6  m3 

Total vertical depth (TVD) 3500 m 

Mass parameter (M) 8.04×108 Kg/ m3 

Bulk modulus in annulus (βa) 2.3×109 Pa 

Bulk modulus in drillstring (βd) 2.3×109 Pa 

Density in drillstring (ρd) 1300 Kg/ m3 

Density in annulus (ρa) 1300 Kg/ m3 

Friction factor in drillstring (fd) 1.65×1010 S2/m6 

Friction factor in annulus (fa) 2.08×109 S2/m6 

Choke discharge coefficient (Cd) 0.6 - 
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Choke discharge area (A0) 2×10-3 m2 

Choke downstream pressure (P0) 1.013×105 Pa 

Flow rate (Qp) 1200 LPM 

 

3.4.2. Experimental Setup 

The proposed methodology was implemented on a lab scale MPD setup located in the 

process engineering facility at Memorial University of Newfoundland (Amin, 2017). The 

setup is a pipe in a pipe system simulating the annular volume and the drillstring. The 

vertical length in the experimental setup is 16.5 ft, and it can only monitor the flow behavior 

of a static drillstring. The schematic of the experimental setup is given in Figure 3.3. As 

shown in the diagram, the experimental setup has eight pressure transmitters, four flow 

meters, and two control valves. A progressing cavity pump supplies the drilling fluid, 

which can be controlled by a variable frequency drive. For our experiment, we considered 

water as drilling fluid. The kick was introduced in the setup by an air compressor injecting 

air into the annular section. A PI controller was implemented to perform the closed loop 

operation, and the experimental data was collected by MATLAB. Communication between 

the MPD plant and MATLAB is established using ADAM 5000TCP/IP, OPC Server, and 

MATLAB OPC toolbox. PT102 is used to measure the pump pressure, and PT302 is for 

choke pressure measurement. The pump flow rate was fixed at 60 LPM throughout the 

operation. Initially, the choke opening was at 55 percent, and however, it changed due to 

the control action. The rest of the parameters are given in Table 3.2. We also tested the 

experimental setup for a wide range of kicks. The results of two representative kicks are 

presented in the next section. 
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Figure 3.3: Schematic diagram of the experimental setup (Amin, 2017) 

 

Table 3.2: Experimental setup parameters 

Parameter Value Unit 

Volume of annulus (Va) 0.01518 m3 

Volume of drill string (Vd) 0.0054 m3 

Total vertical depth (TVD) 4.75 m 

Mass parameter (M) 8.4×108 Kg/ m3 

Bulk modulus in annulus (βa) 2.15×109 Pa 

Bulk modulus in drillstring 

(βd) 

2.15×109 Pa 
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Friction factor in drillstring 

(fd) 

47147.21 S2/m6 

Friction factor in annulus (fa) 43680.9 S2/m6 

Choke discharge coefficient 

(Cd) 

0.6 - 

Choke downstream pressure 

(P0) 

1.013×105 Pa 

 

3.5. Results and discussions 

Kicks with different magnitudes were introduced to the simulated system and the 

experimental system to test the warning system. The experiments and the results from the 

warning system are summarized below. 

3.5.1 Simulation Results 

For the first scenario in the simulated study, a kick was introduced at 400 seconds that led 

to a sudden change in pump pressure and choke pressure. UKF was able to estimate the 

kick size based on the pump pressure and choke pressure measurements. Our initial goal 

was achieved by detecting the unknown kick, as shown in Figure 3.4(a). In the observer, 

kick size estimation is dependent on choke pressure variations. The kick was estimated as 

long as the pressure set point was unchanged. As the pressure set point was changed after 

the kick detection to mitigate the kick, the UKF estimate was no longer valid. The reason 

for this limitation is, as reservoir fluid influx into the control volume, the pressure inside 

the MPD system increases. Thus there is a positive correlation between the flow and the 
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fluid influx. On the other hand, when the pressure set point is increased, the system pressure 

increases; however, the rate of influx into the system decreases. Thus there is an inverse 

response in the system. The observer is not able to capture this inverse response.  

The estimated kick was utilized for predicting the influx in the system for the entire 

monitoring horizon. We selected our monitoring time horizon from 395 seconds to 415 

seconds. As shown in Figure 3.4(b), predicted kick values are presented from five different 

sample points starting from 408. In this simulation study, we considered 10 LPM as the 

safe limit for the kick in the system. Required time for kick mitigation based on the optimal 

control action at a different point in time were calculated and presented in Figure 3.5(a). 

The total influx volume into the system and incremental pressure were calculated following 

procedure described in Section 3.3. The predicted influx volume and the overpressure were 

compared with the operational risk matrix presented in Figure (3.2). The total kick volume 

crossed the safety zone at 405 and entered the critical zone, as presented in Figure 3.5(c). 

The alarm for shut down operation was generated at 405. The proposed framework was 

able to estimate the unknown kick and identify the suitable operating conditions with the 

predicted kick. Real time kick management was achieved as the alarm was generated 

within 5 seconds of the kick. 
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Figure 3.4: (a) Estimated and actual kick in a closed loop MPD system. (b) Predicted 

Kick from different time samples in the monitoring horizon 

 

 

(a) (b) 

(a) (b) 
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Figure 3.5: (a) Required time to mitigate kick. (b) Pressure increment due to kick. 

(c) Total kick volume estimation 

For the second scenario, a kick of a smaller magnitude was introduced at 400 seconds. 

Model parameters remained the same as in Table 3.1, system noise and measurement noise 

were kept unchanged. The pump flow rate was 1200 LPM, and the choke opening was 30 

percent. UKF was able to detect the kick and estimate the magnitude of the kick, as shown 

in Figure 3.6(a). A similar approach was taken to predict the kick in the same monitoring 

horizon. The predicted kicks from different time samples are presented in Figure 3.6(b). 

(c) 
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As shown in Figure 3.7(a), the optimizer required less time to mitigate the kick into the 

safety limit because of having a smaller kick magnitude. As presented in Figure 3.7(b), 

3.7(c), the pressure increment, and the total volume, were less than that for the previous 

scenario. The total kick volume remained within the safety zone during the monitoring 

time. As such, no alarm was generated for this scenario. 

 

 

 

 

Figure 3.6: (a) Estimated and actual kick in a closed loop MPD system. (b) Predicted 

kick from different time samples in the monitoring horizon 

 

 

 

(a) (b) 
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Figure 3.7: (a) Required time to mitigate kick. (b) Pressure increment due to kick. 

(c) Total kick volume estimation 

(a) (b) 

(c) 
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3.5.2 Experimental Results 

Two kick scenarios are considered for experimental evaluation. For the first scenario, a gas 

kick was injected into the annular section at 173 seconds by the air compressor. The gas 

influx led to an instantaneous change in the choke pressure. The controller took action and 

mitigated the kick. For our experimental case study, the safety limit for kick was considered 

1 LPM. As presented in Figure 3.8(a), the observer has successfully detected the kick and 

identified the magnitude of the disturbance. Kick prediction for the next 100 seconds was 

made using the estimated kick value. Kick prediction from 5 different sample points with 

the actual kick is presented in Figure 3.8(b). The total influx volume to the system and the 

pressure increment were calculated as described in Section 3.3. The results were compared 

with the conditions presented in Figure (3.3). Since the experimental setup is a small size 

replica of the MPD operation, the industrial guideline is not applicable to the system.  We 

adjusted the limits to suit the experimental setup. The total kick volume crossed the safety 

zone at 175 seconds and entered the critical zone, as presented in Figure 3.9(c). So, the 

alarm for shut down operation was generated at 175 seconds. The alarm was generated 

within 2 seconds of the kick encountered, creating a real time warning scenario. 
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Figure 3.8: (a) Estimated and actual kick in a closed loop MPD system. (b) Predicted 

Kick from different time in the monitoring horizon 

 

 

 

(a) (b) 

(a) (b) 
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Figure 3.9: (a) Required time to mitigate kick. (b) Pressure increment due to kick. 

(c) Total kick volume estimation 

For the second scenario, a kick of smaller magnitude was injected in the MPD setup at 192 

seconds. Operating conditions remained unchanged for this experiment. UKF detected and 

estimated the kick, as presented in Figure 3.10(a). The estimated kick size was used to 

predict the influx size for the next 100 seconds. Predicted kick from different sample 

points, starting at 199 seconds, is given in Figure 3.10(b). Mitigation of predicted kick was 

achieved quicker due to the smaller kick size, as shown in Figure 3.11(a). These impacted 

the total kick volume and the pressure increment. As displayed in Figure 3.11(c), the total 

volume entered the warning zone at 193 seconds. For this kick scenario, the system 

generates a warning alarm to the operators to take necessary actions for kick mitigation. 

(c) 
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Figure 3.10: (a) Estimated and actual kick in a closed loop MPD system. (b) 

Predicted Kick from different time in the monitoring horizon 

 

 

 

(a) (b) 

(a) (b) 
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Figure 3.11: (a) Required time to mitigate kick. (b) Pressure increment due to kick. 

(c) Total kick volume estimation 

 

3.6 Conclusions 

A real time framework to estimate, monitor, and manage kick in an MPD system have been 

presented. The monitoring system uses the surface measurements to detect the kick. UKF 

detected and estimated the kick’s magnitude effectively.  The main feature of the 

monitoring system is its predictive nature and the ability to take the controller action into 

(c) 
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account. The monitoring system is also controller independent. It assumes an optimal 

controller. As such, it provides the best case scenario and is conservative in issuing an 

alarm. The proposed warning system is based on an industrial MPD well control matrix so 

that it can be comparable with the practical warning conditions. However, the alarm 

sensitivity can be increased or decreased by manipulating the alarm threshold depending 

on the philosophy of operation.  Two case studies validate the proposed approach. In the 

simulated case study with field scale dimensions, an alarm was generated within 5 seconds 

of the actual kick. For the experimental study, the alarm was issued within 2 seconds. 
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Chapter 4 

Summary Conclusions and Future work scopes 

 

 

4.1 Conclusion 

The objective was to develop a framework for real time kick estimation and monitoring 

in MPD system. UKF was implemented as a simultaneous estimator of hidden states 

(i.e., bit flow rate) and unmeasured disturbance (i.e., reservoir influx). The estimated 

kick is further processed to calculate the time to mitigate the kick by the controller. The 

monitoring system used optimal control method, so it was controller independent. The 

proposed warning system is based on an industrial MPD well control matrix so that it 

can be comparable with the practical warning conditions. Some of the key findings are- 

 

 UKF performed effectively in the presence of significant measurement noise and 

plant model mismatch.  Three case studies validated the findings.  

 Kick detection and estimation from the pressure leads to an early detection of 

kick compared to the surface flow sensors. In the experimental case study, the 

kick was detected 20 seconds before the actual kick appeared in surface flow 

meter, and kick detection was approximately 150 seconds earlier for the field 

case study.  
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 A real time framework to estimate, monitor, and manage kick in an MPD system 

was achieved. In the simulated case study, an alarm was generated within the 5 

seconds of actual kick, and for the experimental study, the alarm was issued 

within 2 seconds. 

 The proposed monitoring system has the predictive nature and can take the 

controller action into account. It assumes an optimal controller. As such, it 

provides the best case scenario and is conservative in issuing an alarm. 

 

4.2 Future Work Scopes 

Some future recommendations are highlighted below: 

 A two-phase MPD model can be considered for a better representation of the real 

life MPD system.  

 Temperature effects need to be considered in future studies. 

 Different drilling operations such as: pipe extension scenario, no pump flow etc. 

can be used for further validation. 

 Development of a user friendly graphical user interface for better alarm 

visualization   (e.g. VT SCADA software). 
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Appendix 

 

The model is based on three fundamental equations. These are – 
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 Equation of State 

 Equation of Continuity (mass conservation) 

 Equation of Motion 

 

A.1 Equation of State 

The density of drilling mud depends on pressure and temperature. The equation of state for 

the density can be written as -                                                                                          

                                                                  ( P,T)  …………………………..…… (A.1) 

The linearized representation can be done for a small change of density (Kaasa and 

Stamnes, 2012).  

                                                                 
0 0 0(P P ) (T T )

P T

 
 

 
    

  ………… (A.2) 

The temperature difference can be neglected considering isothermal condition 

                                                               
0 0(P P )

P


 


  

   ……………………… (A.3) 

Bulk modulus is a numerical constant which is used to determine the compressibility of a 

fluid (White, 2011).  

                                                                 1
P P

( / V)
V

 
  

 
 


…………………… (A.4) 
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From equation (A.3),                                   

                                                                 

0
0 0(P P )


 


  

……………………… (A.5) 

Drilling fluid gets affected by the friction created by straight pipe, bend pipe, curved pipe, 

choke valve, and tees.  This factors impact the dynamics of flow along the main flow path.  

A.1.1. Friction 

 Head losses 

 Minor losses 

A.1.2 Head Losses 

Head losses is used to determine the energy losses in sections consisting of straight pipes.  

                                                     
w

F
S( x ) ( )

x x


 


  ……………………………… (A.6) 

                                                      

2

w

1
f v

4 2


 

……………………………….…… (A.7) 

 
w = Wall shear stress. For a pipe flow,  f is dimensionless, and is used to determine the 

roughness of the pipe resistance (White, 2011).  

2.1.3 Minor Losses 

Minor losses occur at a pipe entrance or exit, sudden expansion or contraction, bends, 

elbows, tees, and other fittings (White, 2011). 
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2

L

1
P K v

2
 

…………………………………….…… (A.8) 

For the incompressible flow, pressure drop  

                                           

L
2

P
K

1
v

2





………………………………………..…… (A.9) 

LK  is an empirical loss coefficient, and dimensionless,  

Choke valve in the MPD system can cause minor loss, and the size of the loss can be a 

significant portion of resistance in the system. The velocity of the flow,  
c 0

d

2( P P )
v C




  

dC = Discharge coefficient of the valve. 

Choke valve flow rate, 
c 0

c d

2( P P )
q v A( x ) C A( x )




   ……..…………….…… (A.10) 

The pressure loss due to friction is the sum of the minor losses and the head losses. The 

friction loss in the straight pipe   can be obtained from equation (A.6), 

                                                

2F 1
S( x ) f v

x 4 2




 ……………………….….…… (A.11) 

The minor losses can be related to friction gradient 

                                         

2F K
A( x ) v

x x 2

 


  …………………………….…….…… (A.12) 

So the total system loss can be represented as - 



 

110 
 

                                        

2 2FF 1 q K q
fS( x ) ( ) A( x ) ( )

x 4 2 A( x ) x 2 A( x )

  
 

  ………… (A.13) 

A.2 Equation of Continuity (mass conservation) 

 

Figure A.1: Elemental Cartesian fixed control volume showing the inlet and outlet 

mass flows on the x faces (White, 2011) 

Considering one dimensional flow in the x-direction, 

                                                
0( u )

t x




 
 

  ……………………………….…… (A.14) 

The continuity function is integrated over a deformable control volume (Kaasa and 

Stamnes, 2012). 

                         

L

in out
0

( A( x )dx ) m m
t




 


 
……………………………….. (A.15) 

Where  

L

0

m ( p )A( x )dx ( p )V 
 

   
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               V= Total volume in the well 

                A(x) = Area in the well 

From equation (A.15), 

                                            in outm m m


   …………………………………… (A.16) 

Density of the well is not constant but can be approximated as average density. The average 

density is dependent on pressure variations in the well.                                                         

                                     

L

0

1
( p ) (x, p )A( x )dx

v
  

…………………………….…… (A.17) 

                                      

( ) ( )
( )

m p V p V
m V p

t t t t

 


    
   
    ……………………… (A.18) 

Inserting the bulk modulus in the equation (A.18), 

                               
( ) ( ) ( )

V V V
m p p P V

t t


  

 


   
   

  …………………….…… (A.19) 

From equation (A.16), 

                                                  
in out

V
( p )( P V ) m m




 

   
………………….…… (A.20) 

                                                   
in out

V
( P V ) q q




 

   
……….…….………... (A.21) 

Where,   
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in in

out out

1
m q

( p )

1
m q

( p )









 

 
  

The well is considered as two separate subsystems (two different control volumes), the drill 

string and the annular mud return section. Drilling fluid enters the drillstring under pump 

pressure Pp with a flow rate of qp.  The drilling fluid passes through the bit with a flow rate 

of qbit.  It flows through the annular control volume under the choke pressure Pc and at flow 

rate qc. So equation (A.7) becomes, 

                                    D
Dp p bit

V
Vq qP

 

                                                   (Subsystem 1) 

                                   

A
Ac bit kick b c

V
Vq q q qP

 

    

                                   (Subsystem 2) 

 

A.3 Equation of Motion 

The momentum balance is obtained by using Newton’s second law of motion (Zhou et 

al., 2011). For the one dimensional flow, 

                   

sV
F A( x )dx

t







………………………………………..………… (A.22) 

The sum of the forces acting on the fluid will consist of two different type of forces, body 

forces and surface forces. 

surface gravityF F F   
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Surfaces forces are the sum of the hydrostatic pressure, and friction forces (viscous 

stress) due to motion (White, 2017). 

F
surface

Fp
F Adx dx

x x


  

   

gravity

h
F g sin g

x
  


 

  

From the equation (A.22), 

( ) ( ) ( )s F
V Fp h

A x dx A x dx dx g A x dx
t x x x

 
  

   
     

                                              

1

( )

s F
V F

dx p dx g h
t A x x

 
 

    
  ……………………. (A.23) 

 

This is a reduced form of Navier-Stokes equation (White, 2011). Due to one directional 

flow, s

x
V

t





. Equation (23) is integrated over a control volume L. 

 

                                                   

( ) ( )

0 (0) 0 (0)

1

( ) ( )

p l h ll l

F

p h

Fq
dx p dx g h

A x t A x x





     

    
 

                                          0 0

1
(0) ( ) [ ( ) (0)]

( ) ( )

l l

FFq
dx p p l dx g h l h

A x t A x x





    

  
……. 

(A.24) 

 

 

Inserting the expression for friction drop in equation (A.24), 

l l

2 2

0 0

q 1 1 q K q
dx p(0 ) p( l ) fS( x ) ( ) A( x ) ( ) dx g[ h( l ) h(0 )]

A( x ) t A( x ) 4 2 A( x )(x) x 2 A( x )

  


 
     

  
  

l

0

q
dx p(0 ) p( l ) F | q | q g[ h( l ) h(0 )]

A( x ) t





    


……………………………...…… (A.25) 
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Where 
l l

2 3

0 0

K 1 1 S( x )
F ( dx dx )

2 x 4A( x ) A( x )

 
 

   

 

For the annulus section, 
l

a a

0

q
dx M q

A( x ) t

 


 ………………………………….…… (A.26) 

 

Flow through the annulus is consist of the flow through the bit and influx of the reservoir. 

                                         a a bit c a bit res bit res a bitM q P P F |( q q )|( q q ) gh


      …….. 

(A.27) 

                bit c a bit res bit res a a bitbit resP P F |( q q )|( q q ) M ( q q ) gh
 

       ………………… (A.28) 

 

For the drilling section,   
ld

d d

0

q
dx M q

A( x ) t

 


  

                                          
| |d d p bit d d d d bitM q P P F q q gh



   
………………………. (A.29) 

                                             bit p d bit bit d bit d bitP P F | q | q M q gh


   
……………..… (A.30) 

 

Adding equation (A.28) and (A.30) together, 

| ( ) | ( ) ( ) | |a a d d bit c a bit res bit res a a bit p d bit bit bit d bitbit resM q M q P P F q q q q M q q gh P F q q P gh 
   

            

 

| ( ) | ( ) | | ( )p c a bit res bit res d bit bit d a bitbitM q P P F q q q q F q q gh 


       
 

 

 

So the MPD model can be summarized as: 

  

d
p p bit d

V
P q q V



 

  

 

 

A
c bit kick b c A

V
P q q q q V



 

    
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 p c a bit res bit res d bit bit d a bitbitM q P P F |( q q )|( q q ) F | q | q ( )gh 


       
 

 

c 0

c d

2( P P )
q C A( x )






 

 


