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Abstract

It is very common in health science studies that we observe both longitudinal and sur-

vival data, within which different types of data are correlated and need to be analysed

together to draw accurate conclusions. In this thesis, we propose a new method to

jointly analyse observations of a longitudinal outcome and occurring times for multiple

right- and interval-censored events to capture the underlying effects between them.

In order to have a more complete view, we apply the quantile regression techniques

to measure the effects of covariates on the longitudinal observations and then the ef-

fects of longitudinal observations on the occurring times of events at different levels of

quantile. Semi-parametric proportional hazards models are proposed for both right-

and interval-censored events with a vector of possible time-varying covariates shared

with the quantile regression model for the longitudinal outcome. We also assume a

variable of random effects in the survival models to measure the dependence between

different events. We develop a Monte Carlo Expectation Maximization (MCEM) al-

gorithm for computing non-parametric maximum likelihood estimators of parameters.

Our estimators are proved to be consistent and asymptotically normally distributed.

Furthermore, our proposed joint model is illustrated through a series of extensive sim-

ulation studies and an application to a data set from a French cohort study, PAQUID,

aiming at studying the cognitive decline, such as the disease of dementia, among the

elderly.
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Chapter 1

Introduction

In clinical or medicine studies, the data collected is often very complex which may

include many types of data, such as longitudinal measurements and time-to-event

data. It is a common objective to characterize the dependence between different

types of data. For example, in a longitudinal study, observations may be lost due

to the occurrence of some events that are associated with the response of interest.

Without considering the dropout, the model may result in biased estimates for the

longitudinal analysis. Also, in survival analysis, a longitudinal covariate may be

observed over time and the trend can be used to predict the risk of an event or the

risks of several events. For example, a steadily decline in scores of Isaacs Set Test

(IST) is predictive of cognitive diseases and death among the elderly.

It is very common, in many application studies, that a subject is under risks of two

or more types of events that could be symptomatic or asymptomatic, where the time

to the occurrence of a symptomatic event is observed exactly or right-censored if the

event does not occur till the end of the study, whereas the time to the development of

an asymptomatic event can only be located between two time points (i.e., within an

interval of time) by periodically visits or examinations. For example, in a dementia

1
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study for the elderly, psychologists visit subjects every 2 or 3 years and conduct a

battery of psychometric tests which helps to diagnose the disease. The exact time

to the development of dementia can only be diagnosed between two visits, resulting

in interval-censored times, while the death times are reported exactly for those who

died or right-censored for those who still alive at the end of study. Moreover, different

types of events may be highly correlated with each other and share some common risk

factors. Failure to take into account for the correlation between events may lead to a

biased effect of a common risk factor on the event of interest. For example, dementia

is a chronic disease among the elderly where people are also under high risk of death.

Moreover, some risk factors, such as sex and age, have effects on both events.

Another motivation of this thesis is that the mean or the expected value of the

longitudinal response may not be the summary of interest. When the distribution

of the longitudinal response is highly skewed or contains non-negligible outliers, the

conditional median of the longitudinal response is more robust and preferred than

the conditional mean. Also, in many clinical and epidemiological studies, researchers

are more interested in the tails of a distribution and covariates may have different

effects on different quantiles of the longitudinal response distribution. For example,

in a study of the spread of sexually transmitted diseases, we may focus on the effect

of predictors on people with a great number of sexual partners, since they are the

main group of people spreading the disease. Moreover, the effects of a longitudinal

outcome on the events of interest may be significant only when the value exceeds or

below a threshold. Quantile regression has been extended to longitudinal analysis by

Jung (1996) who firstly proposed a quasi-likelihood method in the median regression,

Lipsitz et al. (1997) who extended Jung’s work to a weighted GEE model, and Lu

and Fan (2015) who proposed a weighted quantile regression model applying a general

stationary auto-correlation structure for the covariance matrix. Also, different types
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of mixed quantile regression models have been proposed to account for within- and/or

between-subject correlations using random effects, see, among others, Koenker (2004),

Geraci and Bottai (2007), Liu and Bottai (2009), and Geraci and Bottai (2014).

The induced smoothing method (Brown and Wang, 2005) has been used to redefine

smoothed objective functions in quantile regression by Fu and Wang (2012), Leng and

Zhang (2012), and Lu and Fan (2015).

Many methods were proposed in the literature to account for informative dropouts

in a longitudinal study by simultaneously modelling the longitudinal outcome and the

time to dropout, see Little (1995), Tsiatis and Davidian (2004) and references therein.

Farcomeni and Viviani (2015) proposed a joint model for a quantile of the longitudi-

nal outcome and a right-censored time-to-event outcome to account for informative

dropout. There are also many methods proposed to jointly analyse correlated right-

censored events (Hougaard, 2012), correlated interval-censored events (Zeng et al.,

2017), and correlated right- and interval-censored events (Gao et al., 2018). However,

no existing literature has proposed a method to jointly modelling a quantile of the

longitudinal outcome, right-censored time-to-event outcome, and interval-censored

time-to-event outcome. The three types of data are frequently observed together in

cohort studies and a joint model of these three types of data would allow us to evaluate

the effects of predictors on longitudinal response and both symptomatic and asymp-

tomatic events at different levels of quantile. Furthermore, given the fitted model, we

can predict the occurrence of an symptomatic event based on the history of the other

events and the location (quantile level) of the longitudinal observations.

In this thesis, we propose a joint model of a quantile of longitudinal outcome, and

multiple right-censored and interval-censored time-to-event outcomes.

Our joint model contains two parts, the first part is a proposed quantile regression

submodel for the longitudinal outcome which is assumed to follow an asymmetric
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Laplace distribution (ALD). The second part consists of proposed semi-parametric

proportional hazards models for the events of interest. The survival regression mod-

els share a common vector of time-dependent covariates with the longitudinal quantile

regression model to measure the effects of longitudinal quantiles on the risks of events.

The dependence between events are captured by a shared random effect and estimated

by unknown coefficients. By adding a terminal event, our proposed joint models can

handle semi-competing risks. We derive non-parametric maximum likelihood esti-

mates by setting up a Monte Carlo expectation maximization algorithm. We show

that the derived estimators are consistent and asymptotically normal. Finally, our

proposed joint model for a quantile of longitudinal observations and multiple right-

censored and interval-censored event times are illustrated through intensive simula-

tion studies and an application to a dementia dataset from a French cohort study,

PAQUID, aiming at studying cognitive decline among the elderly.

The remainder of this thesis proceeds as follows. In Chapter 2, we give an in-

troduction to quantile regression and its application for longitudinal data along with

some basic quantities for survival analysis and the Cox’s proportional hazards models.

Chapter 3 describes the proposed joint model for three types of data: longitudinal

outcome, right-censored time-to-event, and interval-censored time-to-event. A MCEM

algorithm is developed for computing non-parametric maximum likelihood estimates.

We then show and prove some asymptotic properties of the resulting estimators. In

Chapter 4, we illustrates the performance of our proposed joint model by carrying out

some extensive simulation studies and applying the method to a dataset from a de-

mentia study. Finally, in Chapter 5, a general discussion summarizes the advantages

of our proposed joint model, as well as some possible extensions and perspectives.



Chapter 2

Quantile regression and Survival

analysis

In this chapter, we discuss the basics of quantile regression models for a response

variable and the Cox’s proportional hazards models for time-to-event data, separately.

Introduced by Koenker and Bassett Jr (1978), quantile regression is an extension of

the traditional mean regression which provides a more complete view of the distri-

bution of the response variable. It has become a very popular approach and applied

to a wide range of studies, including biomedicine, epidemiology, ecology, agriculture,

econometrics and finance. We will focus on the application of quantile regression in

longitudinal studies. Proposed by Cox (1972), the proportional hazards model has

been used primarily in biomedicine studies to model the effect of secondary vari-

ables on survival time. Unlike a specific life distribution model, the Cox proportional

hazards model does not require any specific assumptions of the life distribution in

modelling and testing many inferences about survival. We will describe the Cox pro-

portional hazards models for both symptomatic and asymptomatic events (right- and

interval-censored survival data).

5
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2.1 Quantile regression

In traditional mean regression, the mean and the standard deviation are two essential

measures used to describe a distribution. The mean describes the central location

of one distribution, and the standard deviation describes the dispersion. However,

focusing on the mean and standard deviation alone will lead us to ignore other im-

portant properties which offer more insights into the distribution. Self-thinning of

tropical plants (Cade and Guo, 2000) is a very interesting example, where the effects

of increasing germination densities of seedlings on the reduction in densities of ma-

ture plants were best revealed at the higher plant densities with intense intraspecific

competition. Also, in social science, researchers often have data sets with skewed

distribution which could not be well characterized by the mean and the standard de-

viation. To describe the distributional attributes of asymmetric response data sets,

quantile regression is developed based on quantiles of the response distribution and

measures the effect of covariates on the entire response distribution.

2.1.1 Quantiles

For any real-valued random variable Y , its cumulative distribution function is defined

as

F (y) = P (Y ≤ y),

where y is a specified value within the range of Y and P is the probability measure.

The cumulative function F (·) is monotonic increasing and has limits 0 and 1 at −∞

and ∞ respectively. The τth quantile of Y , denoted as Qτ (Y ), is defined as the

smallest value of y such that the probability of Y ≤ y is τ , where τ is the level of the
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Figure 2.1: The cumulative distribution function for the standard normal variable X
and the 75% quantile of X.

quantile which takes values between 0 and 1. That is,

Qτ (Y ) = F−1(τ) = inf {y : F (y) ≤ τ} .

For example, for the standard normal variableX, as shown in Figure 2.1, F (0.67449) =

0.75, so Q0.75 = 0.67449.

We define the quantile function, Q(·)(Y ), as a function of τ corresponding to the

F (Y ). For the same variable Y , the value of Qτ increases as τ increases indicating

that the quantile function is also monotonic increasing. An example of the quantile

function is shown in Figure 2.2 along with the corresponding cumulative distribution

function for the standard normal distribution. By allowing the quantile level τ to vary

between 0 and 1, Qτ give us the ability to examine a distribution at different locations

not just at the center (e.g. the mean for a symmetric distribution and the median

for an asymmetric distribution). For example, one may be interested in examining a
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Figure 2.2: The cumulative distribution function and the quantile function for the
standard normal variable X.

location at the lower tail (e.g. 0.15th quantile) or upper tail (e.g. 0.90th quantile) of

a distribution.

Standard deviation is a commonly used measure to describe the scale or spread of a

symmetric distribution. However, when the distribution becomes highly asymmetric

or heavy-tailed, a quantile-based scale measure will characterize the scale better. We

define

QSCτ = Q1−τ −Qτ

as the scale measure for skewed and heavy-tailed distributions, where τ is selected and

less than 0.5. Therefore, we can obtain the spread of any desirable middle 100(1−2τ)%

of a distribution by QSCτ . For example, the conventional interquartile range (IQR)

is actually QSC0.25 = Q0.75 − Q0.25 which measures the spread of the middle 50% of

the population.

We then can describe the skewness of a distribution as the level of imbalance
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Figure 2.3: Quantile Functions for Standard Normal and a Skewed Distribution
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between the scales above and below the median. The upper scale is characterized by

Q1−τ−Q0.5 and the lower scale is measured by Q0.5−Qτ . For a symmetric distribution,

the upper and lower scales should be the same for any τ < 0.5. If the distribution is

skewed, the quantile function will be asymmetric about the median and the difference

between upper and lower scales will become large when the distribution becomes less

symmetric (a positive difference indicating right skewness and a negative difference

indicating left skewness). As shown in Figure 2.3, the slopes of the quantile function

at any pair of (Qτ , Q1−τ ) around the median are the same for the standard normal

(symmetric) distribution. However, the slope at Qτ is less than the slope at Q1−τ

for a right skewed distribution and τ < 0.5. A measure of quantile-based skewness,

QSKτ , is defined as an expression of the ratio between the upper and lower scales.

That is,

QSKτ = Q1−τ −Q0.5

Q0.5 −Qτ

− 1

for τ < 0.5. Thus, the quantity QSKτ takes the value zero for a symmetric dis-

tribution, a negative value for a left-skewed distribution and a positive value for a

right-skewed distribution.

2.1.2 Quantile regression for independent data

Similar to the traditional linear regression models which are based on the mean, we

try to construct regression models that are based on the quantiles of the response

variable. The mean of the distribution of Y can be obtained by minimizing the mean
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squared deviation E
[
(Y − µ)2

]
, where

E[(Y − µ)2] = E[Y 2]− 2E[Y ]µ+ µ2

= (µ− E[Y ])2 + (E[Y 2]− (E[Y ])2)

= (µ− E[Y ])2 + V ar(Y ).

Since V ar(Y ) is constant, we minimize E[(Y −µ)2] by taking µ = E[Y ]. For a sample

of n realizations of the variable Y , y1, . . . , yn, the sample mean can be obtained by

seeking the point µ that minimizes the mean squared distance 1
n

∑n
i=1 (yi − µ)2. To

similarly define quantiles as a solution to a minimization problem, we use the following

quantile loss function

ρτ (u) = u(τ − I(u < 0))

which gives u a weight of τ if u ≥ 0 and a weight of τ − 1 if u < 0. We seek to

minimize the expected loss, E [ρτ (Y − ŷ)] =
∫+∞
−∞ ρτ (y − ŷ)dF (y), by differentiating

with respect to ŷ and setting the partial derivative to zero. That is

∂

∂ŷ
E [ρτ (Y − ŷ)] = ∂

∂ŷ
(τ − 1)

∫ ŷ

−∞
(y − ŷ)dF (y) + ∂

∂ŷ
τ
∫ +∞

ŷ
(y − ŷ)dF (y).

= (1− τ)
∫ ŷ

−∞
dF (y) + τ

∫ +∞

ŷ
dF (y)

=
∫ ŷ

−∞
dF (y)− τ

{∫ ŷ

−∞
dF (y) +

∫ +∞

ŷ
dF (y)

}

= F (ŷ)− τ
∫ +∞

−∞
dF (y)

= F (ŷ)− τ
set= 0.

When the solution is unique, Qτ (y) = ŷ = F−1(τ); otherwise, we choose the smallest

value from a set of τth quantiles. Thus, the τth sample quantile can be expressed as
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the solution to the following minimization problem

min
ŷ∈R

n∑
i=1

ρτ (yi − ŷ). (2.1)

If the conditional mean of Y given X is linear and expressed as E(Y |X) = XTβ,

then β can be estimated by solving

min
β∈Rp

n∑
i=1

(yi − xTi β)2,

where β denotes a vector of unknown, fixed, parameters summarizing the effects of X

on the conditional mean of the response Y . Similarly, since the τth sample quantile

solves the problem in (2.1), we are willing to specify the following quantile regression

model

Qτ (Y |X) = XTβτ , (2.2)

where βτ denotes the vector of parameters that summarizes the effects of X on the

τth conditional quantile of the response Y . Further, the model in (2.2) can also be

formulated in the form of a conventional linear model

Y = XTβτ + ε, (2.3)

where ε denotes a random error term with Qτ (ε|βτ , X) = 0. We can proceed the

estimation of βτ by solving

β̂τ = arg min
βτ∈Rp

n∑
i=1

ρτ (yi − xTi βτ ). (2.4)

Optimal solutions to the above problem can be derived using appropriate algorithms,

see in Koenker and Bassett Jr (1978), Koenker and D’Orey (1987) and others. There
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exits a natural link between the minimization of the quantile loss function and the

maximum likelihood theory if the error term in (2.3) is assumed to follow an asym-

metric Laplace distribution (ALD), see, among others, Koenker and Machado (1999).

If a random variable Y is ALD distributed, then its density is

fY (Y |µ, %, τ) = τ(1− τ)
%

exp
{
−ρτ

(
Y − µ
%

)}
,

where ρτ (u) is the quantile loss function defined previously, µ is the location param-

eter, τ determines the skewness, and % > 0 is a scale parameter. For a sample of in-

dependent observations, y1, . . . , yn, assuming that Yi ∼ ALD(µi, %, τ) and µi = XT
i β,

the likelihood function can be derived as

L(β, %, τ) =
[
τ(1− τ)

%

]n
exp

{
−

n∑
i=1

ρτ

(
yi − µi
%

)}
,

The assumption of ALD errors allows us to recast quantile regression optimization

in a (pseudo) maximum likelihood framework. The estimates under the ALD as-

sumption are robust to misspecification of error distributions. Furthermore, such a

distributional assumption allows several extensions of the basic framework, including

modelling dependent observations.

2.1.3 Quantile Regression for longitudinal data

It is very common in many application studies that data are collected repeatedly

on individuals over time. We call this type of data as longitudinal data. For each

subject, we may have more than one observations. Under this scenario, the indepen-

dence assumption between observations may no longer hold. The dependence can

be influenced by variabilities coming from three sources: between-subject variability,
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within-subject variability, and random error. Failing to take the dependence into con-

sideration in a model setup may lead to severely biased parameter estimates. There

are two common approaches to deal with the dependence between longitudinal obser-

vations, which essentially fall into the families of marginal and conditional models.

The first approach is to specify explicitly an association structure between repeated

observations together with the model for the response quantiles. The second approach

is to jointly specify the response quantiles and the dependence between longitudinal

observations by introducing subject-specific parameters. We discuss the first approach

firstly.

Let yi1, . . . , yij, . . . , yini be ni ≥ 1 repeated measures observed from the ith subject,

for i = 1, . . . , n where n is the number of subjects. Let xij = (xij1, . . . , xijp)T be the

p-dimensional covariate vector associated with the parameter βτ . A marginal model

can be specified as

Qτ (yij|xij) = xTijβτ ,

or equivalently as

yij = xTijβτ + εij,

where Qτ (εij|βτ , xij) = 0 and the error terms are independent over different subjects

but dependent over repeated measurements on the same subject. When a working

independence is assumed between repeated responses from the same individual, we

can estimate βτ by minimizing the following objective function

S(βτ ) =
m∑
i=1

ni∑
j=1

ρτ (yij − xTijβτ )
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with derived estimating equation as

∂S(βτ )
∂βτ

=
m∑
i=1

ni∑
j=1

xijψτ (yij − xTijβτ ) =
m∑
i=1

XT
i ψτ (yi −Xiβτ ) = 0,

where Xi = [xi1, . . . , xini ]T is the ni × p matrix of covariates, yi = (yi1, . . . , yini)T is

the ni × 1 vector of the variable of repeated measures for the ith individual, ψτ (u) =

ρ′τ (u) = τ−I(u < 0), and ψτ (yi−Xiβτ ) = (ψτ (yi1−xTi1βτ ), . . . , ψτ (yini−xTiniβτ ))
T is a

ni×1 vector. There is an efficient algorithm (Koenker and D’Orey, 1987) to obtain an

estimate of βτ by solving the above equation, which is available in statistical software

R (package "quantreg").

Jung (1996) introduced a quasi-likelihood method to take the within-subject corre-

lations into consideration for median regression. Let fij(·) be an unknown density of

εij. A quasi-likelihood based estimating equation for βτ is derived as

m∑
i=1

XT
i ΓiV

−1
i ψτ (yi −Xiβτ ) = 0,

where Vi = cov (ψτ (yi −Xiβτ )) and Γi = diag [fi1(0), . . . , fini(0)] is to account for pos-

sible overdispersion in the error distribution. However, the estimation of the covari-

ance matrix Vi becomes much complicated when quasi-likelihood method is applied.

Whatever correlation matrix that εi has, the correlation matrix of ψτ (εi) is no longer

the same one, and its correlation structure may be very difficult to specify. To over-

come this difficulty, Lu and Fan (2015) proposed a general stationary autocorrelation

structure for Vi and estimated the parameters by solving the following equation

U(βτ ) =
m∑
i=1

XT
i ΓiΣ

−1
i (ρ)ψτ (yi −Xiβτ ) = 0, (2.5)

where Σi(ρ) is the covariance matrix of ψτ (εi) that can be expressed as Σi(ρ) =
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A
1
2
i Ci(ρ)A

1
2
i with Ai = diag[σi11, . . . , σ1nini ] being an ni × ni diagonal matrix, σijj =

var(ψτ (εij)) and Ci(ρ) as the correlation matrix of ψτ (εi), ρ being a correlation index

parameter. The matrix Ai can be estimated theoretically by σ̃ijj = τ(1− τ) or empir-

ically by σ̂ijj = 1
m

∑m
i=1 I

(
yij < xTijβτ

) (
1− 1

m

∑m
i=1 I

(
yij < xTijβτ

))
. The stationary

autocorrelation structure of Ci(ρ) is given by

Ci(ρ) =



1 ρ1 ρ2 · · · ρni−1

ρ1 1 ρ1 · · · ρni−2

... ... ... ...

ρni−1 ρni−2 ρni−3 · · · 1



where ρ` is estimated by

ρ̂` =
∑m
i=1

∑ni−`
j=1 ỹij ỹi,j+`/m(ni − `)∑m
i=1

∑ni
j=1 ỹ

2
ij/mni

for ` = 1, . . . , ni− 1 with ỹij =
{
ψτ (yij − xTijβτ )

}
/
√
σijj. Since the objective function

U(βτ ) in (2.5) is non-continuous and can not be differentiated, an induced smoothing

method is applied and leads to a smoothed estimating function

Ũ(βτ ) =
m∑
i=1

XT
i ΓiΣ−1

i (ρ)ψ̃τ (yi −Xiβτ ),

where ψ̃τ (εij) = τ − 1 + Φ( εij
rij

) with Φ being the cumulative distribution function of

the standard normal distribution, rij =
√
xTijΩxij, and Ω being an estimate of the

covariance matrix of βτ . We can use ∂Ũ(βτ )/∂βτ as an approximation of ∂U(βτ )/∂βτ .

It can be derived that

∂Ũ(βτ )
∂βτ

= −
m∑
i=1

XT
i ΓiΣ−1

i (ρ)Λ̃iXi,



17

where Λ̃i is an ni × ni diagonal matrix with the jth diagonal element 1
rij
φ((yij −

xTijβτ )/rij), and φ is the density of the standard normal distribution.

An alternative approach to account for the dependence between repeated observa-

tions is to include a measure of the unobserved heterogeneity in the quantile regression

models. This heterogeneity comes either from unobserved covariates or from a differ-

ent effect of measured covariates on the response due to genetic, environmental, social

and/or economic factors. We can define a conditional quantile regression model as

Qτ (yij|bi, xij) = bi + xTijβτ ,

or equivalently as

yij = bi + xTijβτ + εij,

where bi denote subject-specific parameters that could be distribution free or in-

dependent and identically distributed random variables. We can also assume a q-

dimensional vector of subject-specific random parameters, bi = (bi1, . . . , biq). There-

fore, a linear quantile mixed model is defined by

yij = xTijβτ + zTijbi + εij,

where zij denotes a subset of xij. As mentioned by Geraci and Bottai (2014), the

random structure above allows to account for between-subject heterogeneity associ-

ated with given explanatory variables and does not require orthogonality between the

observed and the unobserved covariates. The estimation of parameters can proceed

through a maximum likelihood method. Let fb(·; Στ ) be the density of bi with a
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covariance matrix Στ . The likelihood function is defined by

L(βτ , %,Στ , τ) =
n∏
i=1

∫
bi

ni∏
j=1

fY (yij|bi, βτ , %, τ) fb (bi; Στ ) dbi.

The integral in the expression above does not have a closed form solution and numer-

ical integration methods are required. A Monte Carlo Expectation and Maximization

(MCEM) method has been derived and Gaussian quadrature methods are suggested

to reduce the computational burden, see among others, Liu and Bottai (2009), Geraci

and Bottai (2014).

2.2 Survival analysis

Time-to-event data arises in many applied studies, such as medicine, biology, health

science, epidemiology, engineering, economics, and demography. The time that takes

for a well-defined event to occur is termed as survival time. Survival analysis examines

and models the survival data which contains the response of time and explanatory

or predictor variables. Observations of event time are censored if an event is known

to occur only in a certain period of time, or in other words, for some subjects the

event has not occurred at the end of study. Possible types of censoring are right

censoring, where all that is known is that the subject has not experienced the event

at a given time, left censoring, where event has occurred prior to the start of the

study, or interval censoring, where event can only be known to occur between two

time points. Within many well-known methods in survival analysis for estimating

the distribution of survival times, some focus on estimating unconditional survival

distributions, however the most interesting method is to examine the relationship

between survival times and one or more predictors. One most widely used method of

survival analysis is the Cox proportional hazards regression model introduced by Cox
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(1972).

2.2.1 Basic quantities in survival analysis

Let T be the time until some well-defined event. This event may be death, the develop-

ment of some disease, equipment breakdown, and so forth. We will assume that T is a

non-negative continuous random variable from a homogeneous population with prob-

ability density function fT (t) and cumulative distribution function FT (t) = P (T < t).

The density fT (t) gives the unconditional probability of the event’s occurring at time

t and the distribution function FT (t) is the probability that the event has occurred

by time t.

It will often be convenient to work with the survival function which is the comple-

ment of the cumulative distribution function FT (t) = P (T < t), giving the probability

of a subject experiencing the event after time t. It is defined as

S(t) = P (T ≥ t) = 1− FT (t) =
∫ ∞
t

fT (s)ds

which is continuous and strictly decreasing. Thus, we have

fT (t) = −dS(t)
dt

. (2.6)

Another basic quantity in survival analysis is the hazard function, also known as

the conditional failure rate in reliability, the age-specific failure rate in epidemiology,

the inverse of the Mill’s ratio in economics, or simply referred as the hazard rate. The

hazard function is defined as

λ(t) = lim
∆t→0

P {t ≤ T < t+ ∆t|T ≥ t}
∆t .
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One can see that λ(t)∆t may be viewed as the conditional probability that the event

will occur in the next instant given that it has not occurred before the current time t.

As ∆t goes down to zero, we obtain an instantaneous rate of occurrence. The above

expression of hazard function can be further written as

λ(t) = lim
∆t→0

P {t ≤ T < t+ ∆t, T ≥ t}
∆t

1
P {T ≥ t}

= lim
∆t→0

P {t ≤ T < t+ ∆t}
∆t

1
P {T ≥ t}

=fT (t)
S(t) .

Along with (2.6), we have

λ(t) = −d log [S(t)]
dt

. (2.7)

By introducing the boundary of survival function at time zero to be one (S(0) = 1),

the integration of both sides of (2.7) gives a formula for the survival function in terms

of the hazard:

S(t) = exp
{
−
∫ t

0
λ(s)ds

}
. (2.8)

The integral in the equation (2.8) is the cumulative hazard function (or cumulative

risk function), denoted by

Λ(t) =
∫ t

0
λ(s)ds.

The other important quantity in survival analysis, especially in life length studies, is

the mean residual life function. It is defined as mrl(t) = E (T − t|T > t), measuring

the expected remaining lifetime for a subject at time t. It then follows that

mrl(t) =
∫∞
t (s− t)fT (s)ds

S(t) =
∫∞
t S(s)ds
S(t) .
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Furthermore, the mean or expected lifetime by definition is

E(T ) = mrl(0) =
∫∞

0 S(t)dt
S(0) =

∫ ∞
0

S(t)dt,

followed by the variance of T :

V ar(T ) = 2
∫ ∞

0
tS(t)dt−

[∫ ∞
0

tS(t)dt
]2
.

2.2.2 Censoring and likelihoods

A distinguishing feature often present in survival analysis, is known as censoring,

which occurs when some event times can only be observed within certain intervals.

The first category of censoring we consider is the right censoring. There are three

types of right censoring, the first is the Type I censoring where the exact event time

is observed only if it occurs prior to some pre-specified time, the second is the Type

II censoring in which the study continues until a certain number of subjects has

experienced the event, and the Type III is a random censoring where some subjects

may experience some competing event causing them to be removed from the study

and whose times for the event of interest be right censored. Let Cr be the potential

censoring time and T is the time variable. The right censored data can be conveniently

represented by pairs of (D,∆), whereD = min (T,Cr) and ∆ = I (T ≤ Cr). The event

indicator ∆ (= 0 or 1) indicates whether the exact event time is observed (∆ = 1,

T ≤ Cr) or the event is censored (∆ = 0, T > Cr).

The other type of censoring is the left censoring in which the subjects has already

experienced the event of interest sometime before time Cl (denoting left censoring

time). Similar to the right censoring, the left censored data can be represented by

pairs of (D,Υ), where D = max (T,Cl) and Υ = I (T ≥ Cl). The exact time is
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observed if T ≥ Cl with the event indicator Υ = 1, while the event is left censored if

T ≤ Cl with Υ = 0.

A more general type of censoring in survival data is the interval censoring where

the event of interest is only known to occur within an interval of time. This type of

censoring often occurs in clinical or longitudinal studies where subjects have periodic

follow-up and their event time can only be known to fall in an interval, say (L,R] (L

represents the left time point and R represents the right time point for the censoring

interval).

When constructing likelihood functions for survival models, we should very carefully

consider the censoring mechanisms. If an observation reflecting the exact event time,

it provides information on the probability that the event is occurring at this time

(approximately equal to fT (T )). Right censoring observations provide information

of the survival function S(Cr) that the event time is larger than the right censoring

time. For left-censored observations, the contribution to the likelihood is the proba-

bility that the event has already occurred before Cl which is equal to the cumulative

distribution function FT (Cl) = 1−S(Cl). Finally, interval-censored observations pro-

vide information on the probability that the event occurred within the interval (L,R].

Now, suppose a study involves n subjects with T denoting the variable of time for an

event of interest. Let T be the set of exact event times, R be the set of right-censored

observations, L be the set of left-censored observations, and I be the set of interval-

censored observations. The likelihood function can be constructed by combining all

information on the survival time as

L =
∏
i∈T

fT (ti)
∏
i∈R

S(Cri)
∏
i∈L

[1− S(Cli)]
∏
i∈I

[S(Li)− S(Ri)] ,
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or equivalently,

L =
∏
i∈T

λ(ti)S(ti)
∏
i∈R

S(Cri)
∏
i∈L

[1− S(Cli)]
∏
i∈I

[S(Li)− S(Ri)] ,

based on the relationship between the density, hazard and survival functions.

2.2.3 Cox’s proportional hazards model for survival data

Survival analysis typically models the effects of covariates or explanatory variables on

the survival time. Many survival models focus directly on the hazard function. The

most common method is to specify a linear-like model for the logarithm of the hazard

function. For example, a parametric model based on the exponential distribution may

be written as

log λ(t|X) = α +XTβ,

or, equivalently,

λ(t|X) = exp
{
α +XTβ

}
,

as a linear model for the log-hazard function or as a multiplicative model for the

hazard function, where α is a consant and X is a vector of covariates whose effect on

survival time is measured by β. The constant α represents baseline log-hazard when

all covariates are zero, log λ(t|X = 0) = α, or λ(t|X = 0) = eα.

Cox (1972) introduced a family of survival models that leave the baseline hazard

function unspecified:

log λ(t|X) = α(t) +XTβ,

or, equivalently,

λ(t|X) = λ0(t) exp
{
XTβ

}
. (2.9)
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This model is semi-parametric because the baseline hazard does not have any para-

metric assumptions while the covariates enter the model linearly. The Cox model is

often called a proportional hazards model, if we consider two subjects with different

covariate values X and X∗, the hazard ratio for these two subjects is

λ(t|X)
λ(t|X∗) =

λ0(t) exp
{
XTβ

}
λ0(t) exp {X∗Tβ} = exp

{
(X −X∗)T β

}

which is independent of time t. By integrating the hazard function in (2.9), we obtain

the cumulative hazard

Λ(t|X) = Λ0(t) exp
{
XTβ

}
which is also proportional, where Λ0(t) =

∫ t
0 λ0(s)ds. Then the survival function

follows as

S(t|X) = exp
{
−Λ0(t) exp

{
XTβ

}}
.

Typically in many survival studies, subjects are monitored during the study, and

other covariate variables are recorded whose values may change over time. The Cox

proportional hazards model is also possible to include these time-dependent covariates.

Let X(t) denote a set of covariates or risk factors at time t which may effect the

survival distribution of T . The proportional hazards model can be generalized to

λ(t|X(t)) = λ0(t) exp
{
X(t)Tβ

}
.

A general form of the likelihood function for a Cox’s proportional hazards model
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with possible time-dependent covariates thus can be constructed as

L(β) =
∏
i∈T

λ0(ti) exp
{
X(ti)Tβ

}
exp

{
−
∫ ti

0
λ0(s) exp

(
X(s)Tβ

)
ds
}

∏
i∈R

exp
{
−
∫ Cri

0
λ0(s) exp

(
X(s)Tβ

)
ds

}
∏
i∈L

[
1− exp

{
−
∫ Cli

0
λ0(s) exp

(
X(s)Tβ

)
ds

}]
∏
i∈I

[
exp

{
−
∫ Li

0
λ0(s) exp

(
X(s)Tβ

)
ds

}
− exp

{
−
∫ Ri

0
λ0(s) exp

(
X(s)Tβ

)
ds

}]
.

Estimates of β then can be obtained through non-parametric maximum likelihood

method.



Chapter 3

Proposed joint model of a quantile

of longitudinal outcome and

multiple-censored survival times

In this chapter, we introduce a joint model for multiple types of right- and interval-

censored event times and quantiles of a longitudinal response. The joint distribution

of these types of data are related with potentially time-dependent covariates and la-

tent variables through a linear quantile regression model and proportional hazards

models. The longitudinal and survival processes share some common predictors and

a shared random effect is assumed between all right- and interval-censored events,

which results in a hybrid of the shared-parameter model and the joint model. We

develop a Monte Carlo expectation maximization (MCEM) algorithm to obtain the

maximum likelihood estimates of parameters. We show that the estimators are con-

sistent, efficient and asymptotically normal.

26
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3.1 Data and Model

Let T1, . . . , TK1 denote the occurring times for a number of K1 types of asymptomatic

events, and TK1+1, . . . , TK are observed failure times for a number of K2 symptomatic

events, where K2 = K − K1. The longitudinal response Yij is repeatedly observed

at visits j = 1, . . . , ni during the follow-up for the ith individual, i = 1, . . . , n. We

assume that the longitudinal outcome is associated with event times T1, . . . , TK , but

is independent of censoring times.

We let Xij be a vector of covariates used to model only longitudinal response

and Wik be a vector of covariates used to predict only the time of the kth event.

The longitudinal and survival processes shared a common vector of covariates, Hi(t),

which is possibly dependent on time t. Further, different types of survival events are

supposed to be dependent and the dependencies are captured by random effect bi.

Conditional on covariates Xij, Wik, Hi(t) and random effect bi, our model consists of

two types of equations, one is a linear equation for the longitudinal response and the

other one is the hazard function of Tk, k = 1, . . . , K:


Yij = ηTXij + δTHi(t) + εij = Q̃τij + εij

λk(ti; Q̃τti ,Wik, bi) = eβ
T
kWik+αkδTHi(ti)+ζkbiλk0(ti).

(3.1)

where η, δ, βk, αk, ζk are unknown regression parameters associated with fixed and

random effects, Q̃τij denotes any specified τth quantile of the longitudinal outcome

with the τth quantile of the distribution of the error εij set to be 0, and λk0(·) is the

baseline hazard function for the kth event. Furthermore, the model is based on the

assumption that the change of the quantile of the longitudinal outcome has effects on

the development of survival events, that is, the risk of survival events are conditional

on the history of longitudinal process up to the current time which is denoted as Q̃τti .
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The random effect bi is a zero-centred normal variable with variance σ2.

Unknown parameters η and βk can be estimated to measure the effects of covariates,

Xij, used only in longitudinal model and the effects of covariates, Wik, used only in

the survival processes. The effects of the time-dependent predictor Hi(t) on the

longitudinal observations can be estimated as δ. The contribution of the longitudinal

process to the risk of the kth event is explained through δTHi(t) and measured by a

scalar parameter αk. The effects of the covariate Hi(t) itself on the log-hazard ratios

then can be measured by αkδ. By adding a latent normal random variable bi, we tend

to capture some underlying effects for the development of both asymptomatic and

symptomatic events, and thus makes our survival models as mixed effects proportional

hazard models.

Remark 1. The random effect bi characterizes some common unobserved or omitted

covariates that also affects the risks of both asymptomatic and symptomatic events.

For example, in a cognitive ageing study, bi represents the underlying health conditions

for the development of dementia and death, such as social environment, depression,

physical activity, and/or genetic factor. The effect of bi on the log-hazard ratios of

the kth event is measured by a scalar parameter ζk.

In the proposed joint model, we usually assume that K1 and K2 are greater than

or equal to one, that is, we have one or more than one events of each type. However,

the model can be reduced to one that contains only symptomatic events or one that

contains only asymptomatic events by setting K1 = 0 or K2 = 0. Moreover, depend-

ing on the purpose of our study, the joint model can be modified to weigh one type

of process more than the other one. For example, if our interest is in modelling the

quantiles of the longitudinal response with dropout, we may use the survival mod-

els to measure the informative dropout, and thus reduce the bias in the estimation

of parameters of the longitudinal process. In this scenario, we simplify the survival
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models by removing some covariates and/or even the random effects and propose a

more sophisticated (e.g. mixed effects) regression model for the longitudinal data. If

we aim to get accurate prediction of event times but with a mismeasured longitudi-

nal covariate, the longitudinal process in the joint model can be used to deal with

measurement errors. In this scenario, we weigh survival models more than the lon-

gitudinal process, and a quantile regression is considered in the longitudinal process

to manage possibly skewed measurement errors. In this work, we focus on predict-

ing failure times for survival events and use longitudinal observations to reduce the

bias and deal with measurement errors. For example, in a cognitive ageing study,

we jointly analyse repeated assessment of a psychometric test with survival times for

dementia and death. More discussions on potential extensions and modifications of

our proposed joint model of longitudinal quantiles and survival times are addressed

in Chapter 5.

3.2 The likelihood functions

We first describe the sub-models for each type of data separately, and then link them

in the observed likelihood of the full joint model.

3.2.1 Likelihood attributed to longitudinal observations

As discussed in Chapter 2, the estimation of quantile regression parameters can pro-

ceed by solving the minimization problem (2.4), and thus lead to minimizing the

quantile loss function. Similar properties to this minimization problem can be found

in asymmetric least square estimations (Newey and Powell, 1987). Specifically, min-

imizing the quantile loss function is equivalent to maximizing the likelihood of an

asymmetric Laplace distribution (ALD) (Koenker and Machado, 1999). Based on
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this, we assume that the distribution of εij is an ALD, and then Q̃τij represents the

conditional τth quantile of Yij for a specified and fixed 0 < τ < 1. Conditional on Xij

and Hi(t), the distribution of Yij has a density function

fY (Yij|Xij, Hi(t)) = τ(1− τ)
%

exp
{
−ρ

(
Yij − ηTXij − δTHi(t)

%

)}
, (3.2)

where ρ(s) = s(τ − I(s < 0)) is the quantile loss function, τ determines the skewness,

and % > 0 is a scale parameter. The assumption of an ALD will result in a pseudo-

likelihood function for the longitudinal process when the error is not ALD distributed

(e.g. normal, as illustrated in chapter 4 through simulation studies).

3.2.2 Likelihood attributed to asymptomatic events

Suppose that the monitoring times for detecting asymptomatic events are arbitrary for

each subject and independent of the event time Tk (k = 1, . . . , K1). For the ith subject,

we let (Lik, Rik] be an interval with the lower bound Lik being the largest monitoring

time point below Tik and the upper bound Rik being the smallest monitoring time

point above the event time Tik. If Lik is the last monitoring time during the follow-up

study, we let Rik =∞ indicating that the asymptomatic event does not occur at least

during the period of study. Conditioning on Wik, Hi(t) and bi, the likelihood for the

kth asymptomatic event can be expressed as the difference between the values of the

cumulative distribution function Fk(·) at Rik and Lik, or equivalently be written as



31

the difference between the values of the survival function Sk(·) at Lik and Rik:

Fk(Rik;Wik, Hi(t), bi)− Fk(Lik;Wik, Hi(t), bi)

=Sk(Lik;Wik, Hi(t), bi)− Sk(Rik;Wik, Hi(t), bi)

= exp
{
−
∫ Lik

0
eβ

T
kWik+αkδTHi(t)+ζkbidΛk(t)

}
(3.3)

− exp
{
−
∫ Rik

0
eβ

T
kWik+αkδTHi(t)+ζkbidΛk(t)

}
,

where Λk(t) =
∫ t
0 λk0(s)ds.

3.2.3 Likelihood attributed to symptomatic events

For k = K1+1, . . . , K, let Ck be the censoring time of the kth symptomatic event such

that we observe the event time as Dk = min(Tk, Ck). Further, let ∆k = I(Tk 6 Ck)

denote the symptomatic event indicator, where I(·) is the indicator function. Thus,

we have that the survival function for the kth symptomatic event and the ith subject

is

Sk(Dik;Wik, Hi(t), bi) = exp
{
−
∫ Dik

0
eβ

T
kWik+αkδTHi(t)+ζkbidΛk(t)

}
,

where Λk(t) =
∫ t

0 λk0(s)ds. Thus, the distribution of the symptomatic event time can

be written as

fk(Dik,∆ik; bi) = λk(Dik;Wik, Hi(t), bi)∆ikSk(Dik;Wik, Hi(t), bi), (3.4)

where λk(Dik;Wik, Hi(t), bi) is given by the hazard function in (3.1).
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3.2.4 Observed joint likelihood

We denote the data collected from a random sample of n subjects as {Oi : i =

1, . . . , n}, where Oi is the union of {Yij, Xij, Hi(·) : j = 1, . . . , ni}, {Lik, Rik,Wik : k =

1, . . . , K1} and {Dik,∆ik,Wik, k = K1 + 1, . . . , K}. We assume that the monitoring

times for the asymptomatic events and censoring times for symptomatic events are

independent of event time Tik(k = 1, . . . , K) and random effect bi. Further, we leave

the baseline hazard function λk0(·) unspecified leading to a semi-parametric joint

model and non-parametric maximum likelihood estimation (NPMLE) as in section

3.3. Let β = (βT1 , . . . ,βTK)T , α = (α1, . . . , αK)T and ζ = (ζ1, . . . , ζK)T . Concerning

parameters θ ≡ (η, δ,β,α, ζ, %, σ2) and A ≡ (Λ1, . . . , ΛK), the joint likelihood of the

longitudinal and survival processes is obtained as

Ln(θ,A) =
n∏
i=1

∫
bi∈R

ni∏
j=1

fY (Yij)
K1∏
k=1

[Sk(Lik)− Sk(Rik)]
K∏

k=K1+1
fk(Dik)fb(bi)dbi, (3.5)

where fY (·), Sk(·) and fk(·) are the conditional functions defined in (3.2), (3.3) and

(3.4), and fb(·) is the density function of the normal distribution with mean 0 and

variance σ2.

When a study involves one terminal event (e.g., death), the study is terminated if

that event occurs, such that no information is collected after the occurrence of the

terminal event. Without loss of generality, let the Kth event is terminal in our joint

model setting. Then TK is bigger than any monitoring times for the asymptomatic

events, and all the other symptomatic event times Tk(k = K1 + 1, . . . , K − 1) are

censored at min(Ck, TK). The joint likelihood for this semi-competing risks setting is

the same as the one in (3.5), due to the fact that non-terminal events are mutually

independent, and Tk(k = 1, . . . , K − 1) are independent of monitoring times and Ck.



33

3.3 Estimation

We use the maximum likelihood estimation method for estimating parameters. To

evaluate the integrations over bi involved in the joint likelihood in (3.5), quadrature

methods are often adopted. However, quadrature methods have limitations. One

is that, a quadrature method works well for one type of the distribution of random

effects but is not promised to be appropriate for other types of distribution. For

example, we use Gauss-Hermite quadrature when the distribution of random effects

is Gaussian and use Gauss-Laguerre quadrature when the support of random effects

is (0,∞). The other drawback of the quadrature methods is that it becomes too slow

or less accurate when the dimensionality of random effects is large. This may happen

when we need multiple-dimensional random effects to accommodate multiple types of

survival events in a joint model or to characterize unobserved properties at different

times when used in the longitudinal model.

To give our proposed joint model the possibility and flexibility to be modified or

extended under different purposes and settings of study (as discussed in Chapter 5),

we propose a Monte Carlo expectation maximization (MCEM) algorithm for compu-

tation. The MCEM method can be applied to fit the model with any assumptions

on the random effects and any forms of regression functions (linear, non-linear). The

MCEM algorithm consists of two steps. One step is to take a random sample of

random effects and estimate the conditional expectation of the complete data log-

likelihood using current estimates of parameters (E-step), and the other step is to

maximize the obtained expectation (M-step). To start, we set the initial values of η,

δ, βk, αk as the estimates obtained by fitting separate longitudinal and survival mod-

els with only fixed effects. When we fit asymptomatic event times with traditional

Cox models, practically, we can use the mean of Lik and Rik as an approximate event

time of type k (k = 1, . . . , K1) for the ith subject. Let ζk = 1 on the first run. We keep
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alternating the E- and M-steps until convergence. The standard errors are estimated

through a bootstrap procedure. In particular, we draw a simple random sample of

size n by sampling subjects with replacement rather than observations. Inferences

then can be made based on the standard errors and Wald statistics.

For fitting our proposed joint model with an MCEM algorithm, we first re-express

the cumulative hazard functions in the joint likelihood function L(θ,A) in (3.5) as

summations of history hazards up to the desired times. Using the information of all

subjects, we sort all the distinct interval boundaries of (Lik, Rik] (i = 1, . . . , n;Rik <

∞) for the kth (k = 1, . . . , K1) asymptomatic event from the smallest to the largest as

tk1 < tk2 < · · · < tkmk . For k = K1+1, . . . , K, all uncensored symptomatic event times

Dik (corresponding ∆ik = 1) are sorted in the same way as tk1 < tk2 < · · · < tkmk .

Further, we estimate Λk (k = 1, . . . , K) with a step function, Λk, which jumps only

at tk1 < tk2 < · · · < tkmk with respective jump sizes of λk1, . . . , λk,mk . The objective

function need to be maximized thus becomes the following

Ln(θ,A) =
n∏
i=1

∫
bi∈R

ni∏
j=1

[
τ(1− τ)

%
exp

{
−ρ

(
Yij − ηTXij − δTHi(t)

%

)}]

×
K1∏
k=1

[
exp

− ∑
tkl≤Lik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl


− I(Rik <∞) exp

− ∑
tkl≤Rik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl


]

×
K∏

k=K1+1

[ {
eβ

T
kWik+αkδTHi(Dik)+ζkbiΛk(Dik)

}∆ik

× exp

− ∑
tkl≤Dik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl


]

× fb(bi)dbi.

(3.6)

whereWikl is the vector of covariates at time tkl for the ith individual for l = 1, . . . ,mk,

k = 1, . . . , K; Wik is the vector of covariates at time Dik and Λk(Dik) is the jump size
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of Λk at time Dik for the ith individual for k = K1 + 1, . . . , K.

Direct maximization of (3.6) is difficult, specifically, when we take the logarithms

of the likelihoods for asymptomatic event times which involve subtractions of two

exponential functions. To make the maximization feasible, we apply a Poisson process

to derive a likelihood equivalent to the objective function. For k = 1, . . . , K1, we

denote Nik(t) as a non-homogeneous Poisson process with intensity function the same

as the hazard function of Tik. For the ith subject, if Rik = ∞, no event of type k

occur before Lik, and the likelihood is

exp

− ∑
tkl≤Lik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl

 .
If Rik < ∞, no event of type k occur before Lik but occur in interval (Lik, Rik], and

the likelihood is

exp

− ∑
tkl≤Lik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl


×

1− exp

− ∑
Lik<tkl≤Rik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl


 .

We can write the above two likelihoods in a general form as

exp

− ∑
tkl≤Lik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl


− I(Rik <∞) exp

− ∑
tkl≤Rik

eβ
T
kWikl+αkδTHi(tkl)+ζkbiλkl

 (3.7)

which is the same as the asymptomatic part in the objective function (3.6). Based on

this fact, we let Pikl (l = 1, . . . ,mk, tkl ≤ R∗ik, R∗ik = I(Rik =∞)Lik+I(Rik <∞)Rik)

be independent Poisson random variables with means λkl exp{βTkWikl +αkδ
THi(tkl) +

ζkbi}. Therefore, we propose a MCEM algorithm treating Pikl as latent variables, and
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we work on fP (Pikl) defined as the likelihood function of {Pikl, l = 1, . . . ,mk, tkl ≤ R∗ik}

with the following expression

mk∏
l=1,tkl≤R∗ik

{ 1
Pikl!

(
λkle

βTkWikl+αkδTHi(tkl)+ζkbi
)Pikl exp

(
−λkleβ

T
kWikl+αkδTHi(tkl)+ζkbi

)}
.

The likelihood for Aik = ∑
tkl<Lik Pikl = 0 and Bik = I(Rik <∞)∑Lik<tkl≤Rik Pikl > 0

given bi is equal to (3.7).

Based on the above, we obtain the following complete-data log-likelihood

lc(θ,A) =
n∑
i=1

[ ni∑
j=1

log fY (Yij) +
K1∑
k=1

log fP (Pikl) +
K∑

k=K1+1
log fk(Dik) + log fb(bi)

]

=− log %
n∑
i=1

ni −
n∑
i=1

ni∑
j=1

ρ

(
Yij − ηTXij − δTHi(t)

%

)

+
n∑
i=1

K1∑
k=1

mk∑
l=1

I(tkl ≤ R∗ik)
[
Pikl(log λkl + βTkWikl + αkδ

THi(tkl) + ζkbi)

− λkl exp{βTkWikl + αkδ
THi(tkl) + ζkbi}

]

+
n∑
i=1

K∑
k=K1+1

[
∆ik{log Λk(Dik) + βTkWik + αkδ

THi(Dik) + ζkbi}

−
∑

tkl≤Dik
λkl exp{βTkWikl + αkδ

THi(tkl) + ζkbi}
]

+
n∑
i=1

log fb(bi). (3.8)
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3.3.1 Monte Carlo E-step

The conditional expected value of the complete-data log-likelihood function in (3.8)

is

E[lc(θ,A)]

=
n∑
i=1

E
[ ni∑
j=1

log fY (Yij) +
K1∑
k=1

mk∑
l=1

log fP (Pikl) +
K∑

k=K1+1
log fk(Dik) + log fb(bi)

]

=
n∑
i=1

∫
bi∈R

[ ni∑
j=1

log fY (Yij) +
K1∑
k=1

mk∑
l=1

log fP (Pikl) +
K∑

k=K1+1
log fk(Dik) + log fb(bi)

]

× fb(bi | Oi,θr,Ar)dbi,

(3.9)

where the expectation is obtained given the observed data Oi(i = 1, . . . , n), with Oi =

{Yij, Xij, Hi(·) : j = 1, . . . , ni}
⋃{Aik = 0, Bik > 0,Wik : k = 1, . . . , K1}

⋃{Dik,∆ik,

Wik : k = K1 + 1, . . . , K}, and (θr,Ar) denote the values of the parameters at the

current rth iteration of the algorithm. The posterior distribution of the random effect

bi given Oi is proportional to the complete joint likelihood for the ith subject, that is

fb(bi | Oi,θr,Ar) ∝
ni∏
j=1

fY (Yij)
K1∏
k=1

[Sk(Lik)− Sk(Rik)]
K∏

k=K1+1
fk(Dik)fb(bi)

∣∣∣∣
r
,

where |r means that the computations are based on estimates of parameters at the

rth iteration.

We propose a Monte Carlo simulation based on a Uniform distribution to approx-

imate the integrals over the random effects in (3.9). At each iteration, we draw a

simple random sample (ci1, . . . , cim) from a Uniform distribution with a possible sup-

port (−a, a) and assign each sample point a weight, where the weights are calculated



38

by the following

wif = fb(cif | Oi,θr,Ar)∑m
f=1 fb(cif | Oi,θr,Ar)

for f = 1, . . . ,m. By doing this, we try to use {(ci1, wi1), . . . , (cim, wim)} to mimic

the entire conditional posterior distribution of bi given the observed data and thus to

approximate the expectation of lc(θ,A) at the rth iteration. The approximation is

E[lc(θ,A)] ≈− log %
n∑
i=1

ni −
n∑
i=1

ni∑
j=1

ρ

(
Yij − ηTXij − δTHi(t)

%

)

+
n∑
i=1

K1∑
k=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik)
[
Ê[Pikl](log λkl + βTkWikl + αkδ

THi(tkl)

+ ζkcif )− λkl exp{βTkWikl + αkδ
THi(tkl) + ζkcif}

]

+
n∑
i=1

K∑
k=K1+1

m∑
f=1

wif

[
∆ik{log Λk(Dik) + βTkWik + αkδ

THi(Dik) + ζkcif}

−
∑

tkl≤Dik
λkl exp{βTkWikl + αkδ

THi(tkl) + ζkcif}
]

+
n∑
i=1

m∑
f=1

wif log fb(cif ), (3.10)

where the conditional expectation of Pikl given Oi and bi is

Ê[Pikl] = I(Lik < tkl ≤ Rik <∞) λkl exp{βTkWikl + αkδ
THi(tkl) + ζkbi}

1− exp{−∑Lik<tkl′≤Rik λkl′e
βT
k
Wikl′+αkδTHi(tkl′ )+ζkbi}

.

Remark 2. The support range (−a, a) of the Uniform distribution used in the Monte

Carlo simulations can be determined by fitting separate traditional Cox models for

all events with only fixed effects. For k = 1, . . . , K1, we assume I(Rik < ∞) =

Λ̂ike
eik where Λ̂ik denotes the estimated cumulative hazard of the kth event for the

ith subject using traditional Cox model and eeik denotes the exponential contribution

of some underlying random effects. We know that the martingale residual is defined



39

as rmik = I(Rik <∞)− Λ̂ik, thus we have

eik = log(I(Rik <∞)/Λ̂ik)

= log

(
I(Rik <∞)

I(Rik <∞)− rmik

)

Similarly, for k = K1 + 1, . . . , K, we have

eik = log

(
∆ik

∆ik − rmik

)

Since we use eeik to approximate eζkbi and set the initial value of ζk to 1, we choose

a positive number of a such that (−a, a) covers a majority of {eik : i = 1, . . . , n, k =

1, . . . , K} (e.g., a is three times of the standard deviation of eik’s). Also, this can be

used to set the initial value of σ2 as the variance of eik’s at the first iteration.

3.3.2 M-step

In the M-step, we maximize the approximated conditional expectation of the complete-

data log-likelihood. By zeroizing the differentiations of E[lc(θ,A)] in (3.10) with re-

spect to each type of parameters, we obtain the estimating equations for corresponding

parameters. Differentiating (3.10) with respect to % and λkl, we update % and λkl,

dependent on the other parameters, with explicit expressions:

% = 1∑n
i=1 ni

n∑
i=1

ni∑
j=1

ρ(Yij − ηTXij − δTHi(t)), (3.11)

λkl =
∑n
i=1

∑m
f=1wifI(tkl ≤ R∗ik)Ê[Pikl]∑n

i=1
∑m
f=1wifI(tkl ≤ R∗ik)eβ

T
k
Wikl+αkδTHi(tkl)+ζkcif

(3.12)
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for k = 1, . . . , K1, l = 1, . . . ,mk, and

λkl =
∑n
i=1 ∆ikI(Dik = tkl)∑n

i=1
∑m
f=1 I(Dik ≥ tkl)wifeβ

T
k
Wikl+αkδTHi(tkl)+ζkcif

(3.13)

for k = K1 +1, . . . , K, l = 1, . . . ,mk. We then update the other parameters through a

one-step Newton-Raphson algorithm by using the updated estimates in (3.11), (3.12)

and (3.13). Specifically, the estimating equation for η is

n∑
i=1

ni∑
j=1

ψτ (Yij − ηTXij − δTHi(t))Xij = 0

where ψτ (s) = ρ′(s) = τ − I(s < 0) is the derivative of the quantile loss function.

To make Newton-Raphson method useable, Lu and Fan (2015) derived an equivalent

smoothed estimating equation

n∑
i=1

ni∑
j=1

Xij(τ − 1 + Φ(εij/rXij )) = 0,

where Φ(·) is the cumulative probability function of the standard normal, rXij =√
XT
ijΩηXij and Ωη is an estimate of the covariance matrix of parameter η. The

corresponding second order derivative of (3.10) with respect to η then follows as

−
n∑
i=1

ni∑
j=1

φ(εij/rXij )
rXij

XijX
T
ij
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where φ(·) is the standard normal density function. The objective function for δ is

n∑
i=1

ni∑
j=1

ψτ (Yij − ηTXij − δTHi(t))Hi(t)

+
n∑
i=1

K1∑
k=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik){Ê[Pikl]− λkleβ
T
kWikl+αkδTHi(tkl)+ζkcif}αkHi(tkl)

−
n∑
i=1

K∑
k=K1+1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcifαkHi(tkl)


+

n∑
i=1

K∑
k=K1+1

∆ikαkHi(tkl),

followed by the second order derivative of (3.10) with respect to δ as

−
n∑
i=1

ni∑
j=1

φ(εij/rHij )
rHij

Hi(t)HT
i (t)

−
n∑
i=1

K1∑
k=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik)λkleβ
T
kWikl+αkδTHi(tkl)+ζkcifα2

kHi(tkl)HT
i (tkl)

−
n∑
i=1

K∑
k=K1+1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcifα2

kHi(tkl)HT
i (tkl)

 .

where rHij =
√
HT
i (t)ΩδHi(t) and Ωδ is an estimate of the covariance matrix of param-

eter δ. For k = 1, . . . , K1, the objective function for βk is

n∑
i=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik){Ê[Pikl]− λkleβ
T
kWikl+αkδTHi(tkl)+ζkcif}Wikl

followed by the second order derivative of (3.10) with respect to βk as

−
n∑
i=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik)λkleβ
T
kWikl+αkδTHi(tkl)+ζkcifWiklW

T
ikl.
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For k = K1 + 1, . . . , K, the objective function for βk is

−
n∑
i=1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcifWikl


+

n∑
i=1

∆ikWikl

followed by the second order derivative of (3.10) with respect to βk as

−
n∑
i=1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcifWiklW

T
ikl

 .
For k = 1, . . . , K1, the objective function for αk is

n∑
i=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik){Ê[Pikl]− λkleβ
T
kWikl+αkδTHi(tkl)+ζkcif}δTHi(tkl)

followed by the second order derivative of (3.10) with respect to αk as

−
n∑
i=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik)λkleβ
T
kWikl+αkδTHi(tkl)+ζkcif δTHi(tkl)HT

i (tkl)δ.

For k = K1 + 1, . . . , K, the objective function for αk is

−
n∑
i=1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcif δTHi(tkl)


+

n∑
i=1

∆ikδ
THi(tkl)

followed by the second order derivative of (3.10) with respect to αk as

−
n∑
i=1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcif δTHi(tkl)HT

i (tkl)δ

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For k = 1, . . . , K1, the objective function for ζk is

n∑
i=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik){Ê[Pikl]− λkleβ
T
kWikl+αkδTHi(tkl)+ζkcif}cif

followed by the second order derivative of (3.10) with respect to ζk as

−
n∑
i=1

mk∑
l=1

m∑
f=1

wifI(tkl ≤ R∗ik)λkleβ
T
kWikl+αkδTHi(tkl)+ζkcif c2

if .

For k = K1 + 1, . . . , K, the objective function for ζk is

−
n∑
i=1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcif cif


+

n∑
i=1

∆ikcif

followed by the second order derivative of (3.10) with respect to ζk as

−
n∑
i=1

m∑
f=1

wif

 ∑
tkl≤Dik

λkle
βTkWikl+αkδTHi(tkl)+ζkcif c2

if

 .
Finally, the variance of the random effect bi can be updated by the weighted empirical

variance of {ci1, . . . , cim, i = 1, . . . , n}, that is

σ2 = 1
n

n∑
i=1

m∑
f=1

wifc
2
if

We iterate between the Monte Carlo E-step and the M-step until convergence. The

final non-parametric maximum likelihood estimators for θ and A are denoted as θ̂

and Â.
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3.4 Asymptotics

In this section, we establish and prove the consistency and asymptotic normality

of the non-parametric maximum likelihood estimators, θ̂ and Â, for our proposed

joint model of quantiles of longitudinal observations and multiple right- and interval-

censored survival times. For k = 1, . . . , K1, let Ik be the support for monitoring times

with the least upper bound tk. For k = K1 + 1, . . . , K, let Ik = [0, tk] where tk is the

study duration time. We assume throughout that the following regularity conditions

are satisfied:

C1. For any subject i, the number of longitudinal measurements ni is bounded and

supi‖Xi‖<∞ with the dimension of Xij fixed as p1, where ‖·‖ is the Euclidean

norm. The cumulative distribution function Fij(z) = P (Yij−ηTXij−δTHi(t) ≤

z|Xij, Hi(t)) is absolutely continuous with continuous density fij and its first

derivative being uniformly bounded away from 0 and∞ at zero, for j = 1, . . . , ni.

C2. With probability 1, Hi(·) and Wik have bounded variation in Ik with fixed di-

mensions p2 and p3. If there exists a deterministic function a1(t) and constant

vectors a2, a3 such that a1(t) + aT2Wik + aT3Hi(t) = 0 with probability 1, then

a1(t) = 0, a2 = 0, and a3 = 0 for any t in Ik and k = 1, . . . , K.

C3. The true value of θ, denoted by θ0 = (η0, δ0,β0,α0, ζ0, %0, σ
2
0), are interior points

of known compact sets of the space Θ = E ×D ×B × A × Z ×R ×S, where

E ⊂ Rp1 , D ⊂ Rp2 , B ⊂ Rp3 , A ⊂ R4, Z ⊂ R4, R ⊂ (0,∞), and S ⊂ (0,∞).

C4. For any Xi = (XT
i1, . . . , X

T
ini

) and Hi = (HT
i (t1), . . . , HT

i (tni)), the following

conditions are satisfied:

(a) For any positive definite matrix Σi, 1
m

∑m
i=1 X

T
i ΣiΓiXi converges to a pos-

itive definite matrix; where Γi is an ni × ni diagonal matrix with the jth
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diagonal element fij(0).

(b) For any positive definite matrix Σi, 1
m

∑m
i=1H

T
i ΣiΓiHi converges to a pos-

itive definite matrix.

C5. For k = 1, . . . , K, the true value of Λk(·), denoted by Λk0(·), is strictly increasing

and continuously differentiable with positive derivatives in I, and Λk0(0) = 0.

C6. For k = 1, . . . , K1, the number of possible monitoring times Mik is bigger than

zero with a finite mean. For two monitoring times next to each other, say

Iik,m and Iik,m+1, P{min0≤m<mk(Iik,m+1− Iik,m) ≥ ϕ|Mik,Wik, Hi} = 1 for some

positive constant ϕ. In addition, there exists a probability measure µk in Ik such

that the conditional bivariate density of (Iik,m, Iik,m+1) is dominated by µk ×µk

and its Radon-Nikodym derivative, f̃km(u, v|Mik,Wik, Hi), can be expanded to

a positive and twice continuously differentiable function with respect to u and

v when v − u ≥ ϕ.

C7. For k = K1 + 1, . . . , K, P (Ck ≥ tk|Wik, Hi) = P (Ck = tk|Wik, Hi) ≥ ϑ for some

positive constant ϑ.

Remark 3. Condition C3 is standard assumptions for parameters in the joint

regression models of longitudinal and time-to-event data. Conditions C1 and C4

are required for the consistency and convergence of estimators of the parameters

using quantile regression models for longitudinal data. Condition C6 ensures that the

distance between any two adjacent monitoring times is at least ϕ, resulting in no exact

observations for asymptomatic events. Condition C7 allows a positive probability for

the kth symptomatic event to be observed during the study and that some individuals

are still at risk of the kth event at the end tk of the study.

For k = 1, . . . , K, we denote Wik = E1k × (W T
i1 , . . . ,W

T
iK)T , Hik = E2k ×

(δTHi(t), . . . , δTHi(t))T , and bik = E2k × (bi, . . . , bi)T , where E1k is a diagonal matrix
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with diagonal elements ek ⊗ 1p3 , E2k is a diagonal matrix with diagonal elements ek,

ek is the kth canonical vector in RK , ⊗ represents the Kronecker product, and 1p3 de-

notes a p3 dimensional vector with all ones. Therefore, the proposed hazard function

for the kth event time thus be

λk(t; Q̃τt,Wik, bik) = eβ
TWik+αTHik+ζT bikλk0(t).

3.4.1 Consistency

Let ‖·‖∞(Ik) denote the supremum norm on Ik, ‖·‖ be the Euclidean norm, Pn repre-

sent the empirical measure for n independent individuals, P denote the true probability

measure, and Gn =
√
n(Pn − P) be the empirical process. We first state and prove

the almost sure (a.s.) consistency of (θ̂, Â). Let (θ0,A0) be the true values of the

parameters. We have the following theorem.

Theorem 3.4.1. Under regularity conditions C1−C7, as n→∞, the non-parametric

maximum likelihood estimator (θ̂, Â) is consistent. That is, ‖θ̂ − θ0‖→a.s. 0, and

‖Λ̂k − Λk0‖∞(Ik)→a.s. 0 for k = 1, . . . , K.

The consistency in Theorem 3.4.1 can be proved by verifying the following steps:

First, we show that the non-parametric maximum likelihood estimators of θ and A

exist. Second, we prove that, lim supn Λ̂k(tk−ξ) <∞ (k = 1, . . . , K1) with probability

1 for any ξ > 0 and lim supn Λ̂k(tk) < ∞ (k = K1 + 1, . . . , K) with probability

1. Third, based on the second step, we select a subsequence of Λ̂k such that Λ̂k

converges to some right-continuous monotone function Λk∗ with probability 1. We

can choose a sub-subsequence and further assume that θ̂ → θ∗. By showing that

θ∗ = θ0 and A∗ = A0, we conclude that θ̂ converges to θ0 and Â converges to A0.

Proof of Theorem 3.4.1. We first prove the existence of the NPMLEs, θ̂ and Â. For
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a specified value of quantile 0 < τ < 1 and any (θ,A) in Θ, the ith term of the

likelihood for longitudinal response is

Ψi(Oi;η, δ, %) =
ni∏
j=1

τ(1− τ)
%

exp
{
−ρ

(
Yij − ηTXij − δTHi(t)

%

)}
(3.14)

Since ρ(s) = s(τ − I(s < 0)) ≥ 0 and % is a scale parameter greater than zero, the

likelihood in (3.14) is less than or equal to Υi = {τ(1 − τ)/%}ni < ∞. According

to conditions C1 and C3, there exists a constant M̂ such that Υi ≤ M̂ for any

i ⊂ (1, . . . , n). Let M̃ = ∑K
k=1 supt∈Ik supWk,Hk,β,δ,α,ζ

{|βTWk|+|αTHk|+|ζk|} which

is finite under Conditions C2 and C3. For the joint likelihood Ln(θ,A), the ith

integrand is bounded by

M̂
K1∏
k=1

[
exp

{
−
∫ Lik

0
eβ

TWik+αTHik+ζT bikdΛk(s)
}

− exp
{
−
∫ Rik

0
eβ

TWik+αTHik+ζT bikdΛk(s)
}]

×
K∏

k=K1+1

[ {
eβ

TWik+αTHik+ζT bikΛk(Dik)
}∆ik

× exp
{
−
∫ Dik

0
eβ

TWik+αTHik+ζT bikdΛk(s)
}]

× fb(bi;σ2).

(3.15)

Since, for k = 1, . . . , K1,

exp
{
−
∫ Lik

0
eβ

TWik+αTHik+ζT bikdΛk(s)
}
− exp

{
−
∫ Rik

0
eβ

TWik+αTHik+ζT bikdΛk(s)
}

≤ 1,
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the ith integrand of the joint likelihood in (3.15) is further bounded by

M̂
K∏

K1+1

[(
Λk{Dik}eM̃ |bi|

)∆ik
{

1 +
∫ Dik

0
eβ

TWik+αTHik+ζT bikdΛk(s)
}−∆ik

]
fb(bi;σ2).

Therefore, the joint likelihood attains the maximum only if the values of Λ̂k (k =

K1 + 1, . . . , K) were finite, and there exists a non-parametric maximum likelihood

estimator (θ̂, Â) by allowing Λ̂k(tk) =∞ (k = 1, . . . , K1).

The next step is to show that the above conditions for the existence of (θ̂, Â)

are satisfied. That is, with probability one, Λ̂k(tk) is bounded as n → ∞ for k =

K1 + 1, . . . , K, and Λ̂k(tk − ξ) is bounded as n → ∞ for any ξ > 0 when k =

1, . . . , K1. Otherwise, as proved latter, there will be a contradiction to the fact that

Ln(θ̂, Â)− Ln(θ,A) ≥ 0 for any (θ,A) in the parameter space Θ.

For k = 1, . . . , K1, we let Λ̃k be a step function with Λ̃k(tkl) = Λk0(tkl) such

that it converges uniformly to Λk0 for l = 1, . . . ,mk. For k = K1 + 1, . . . , K, we

define a function Λ̃k as the solution of the following equation which is constructed by

differentiating the joint likelihood Ln(θ,A) with respect to Λk(Dik) and setting it to

be equal to zero. That is, Λ̃k (k = K1 + 1, . . . , K) satisfies

∆ik

Λ̃k(Dik)
=

n∑
j=1

∫
b g1 (b,Oj;θ0,A0) g2k (Dik, b,Oj;θ0,A0) fb(b;σ2

0)dbΨ(Oj;θ0)∫
b g1 (b,Oj;θ0,A0) fb(b;σ2

0)dbΨ(Oj;θ0)

=
n∑
j=1

∫
b g1 (b,Oj;θ0,A0) g2k (Dik, b,Oj;θ0,A0) fb(b;σ2

0)db∫
b g1 (b,Oj;θ0,A0) fb(b;σ2

0)db ,
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where

g1 (b,O;θ,A) =
K1∏
k=1

[
exp

{
−
∫ Lk

0
eβ

TWk+αTHk+ζT bkdΛk(s)
}

− exp
{
−
∫ Rk

0
eβ

TWk+αTHk+ζT bkdΛk(s)
}]

×
K∏

k=K1+1

[{
eβ

TWk+αTHk+ζT bkΛk(Dk)
}∆k

exp
{
−
∫ Dk

0
eβ

TWk+αTHk+ζT bkdΛk(s)
}]
,

and

g2k (t, b,O;θ,A) = I(Dk ≥ t)eβTWk+αTHk+ζT bk .

By Lemma 1 of Gao et al. (2018), the following classes of functions

C1 =
{∫

b
g1 (b,O;θ,A) fb(b;σ2)db : θ ∈ Θ,A ∈ D1

}
(3.16)

and

C2 =
{∫

b
g1 (b,O;θ,A) g2k (t, b,O;θ,A) fb(b;σ2)db : θ ∈ Θ, t ∈ Ik,A ∈ D1

}
(3.17)

for k = K1 + 1, . . . , K are Glivenko-Cantelli, where D1 = D1,∞×, . . . ,DK1,∞ ×

DK1+1,M×, . . . ,DK,M , Dk,c = {Λ : Λ is increasing with Λ(0) = 0 and Λ(tk) ≤ c} and

M is a finite constant. Therefore, Λ̃k, as an expression formed by Glivenko-Cantelli

functions, converges to the true value Λk0 uniformly as n→∞ for k = K1 +1, . . . , K.

We write Ã = (Λ̃1, . . . , Λ̃K).

Let ln(θ,A) = logLn(θ,A) be the joint log likelihood. By definition and the fact
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that e−|x|(1 + y) ≤ 1 + exy ≤ e|x|(1 + y), we have

0 ≤n−1ln(θ̂, Â)− n−1ln(θ0, Ã)

≤M1 + n−1
n∑
i=1

K∑
k=K1+1

log
{
nΛ̂k(Dik)

}

+ n−1
n∑
i=1

log
∫
bi

K∏
k=K1+1

 eβ̂
TWik+α̂THik+ζ̂T bik

1 +
∫Dik
0 eβ̂TWik+α̂THik+ζ̂T bikdΛ̂k(s)


∆ik

fb(bi; σ̂2)dbi


≤M1 + n−1

n∑
i=1

K∑
k=K1+1

log
{
nΛ̂k(Dik)

}

+ n−1
n∑
i=1

log
∫
bi

K∏
k=K1+1

 eM̃‖bik‖

e−M̃‖bik‖
{

1 + Λ̂k(Dik)
}


∆ik

fb(bi; σ̂2)dbi


≤M2 + n−1

n∑
i=1

K∑
k=K1+1

log
{
nΛ̂k(Dik)

}
− n−1

n∑
i=1

K∑
k=K1+1

[
∆ik log

{
1 + Λ̂k(Dik)

}]
,

where M1 and M2 are constants. Applying the partitioning method of Murphy

(1994), we choose a sequence of time uk0 = tk > uk1 > · · · > uk,Qk = 0 and have the

following inequality

n−1
n∑
i=1

K∑
k=K1+1

log
{
nΛ̂k(Dik)

}
− n−1

n∑
i=1

K∑
k=K1+1

[
∆ik log

{
1 + Λ̂k(Dik)

}]

≤
K∑

k=K1+1

Qk−1∑
q=0

n−1
n∑
i=1

I (Dik ∈ [uk,q+1, ukq)) log
{
nΛ̂k(Dik)

}

−
K∑

k=K1+1
n−1

n∑
i=1

I (Dik = tk) ∆ik log
{

1 + Λ̂k(tk)
}

−
K∑

k=K1+1

Qk−1∑
q=0

n−1
n∑
i=1

∆ikI (Dik ∈ [uk,q+1, ukq)) log
{

1 + Λ̂k(uk,q+1)
}
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which is further bounded by

M3 − (2n)−1
K∑

k=K1+1

n∑
i=1

I (Dik = tk) ∆ik log
{

1 + Λ̂k(tk)
}

−
K∑

K1+1

{
(2n)−1

n∑
i=1

I (Dik = tk) ∆ik − n−1
n∑
i=1

∆ikI (Dik ∈ [uk1, uk0))
}

log
{

1 + Λ̂k(tk)
}

−
K∑

K1+1

Qk−1∑
q=1

{
n−1

n∑
i=1

I (Dik ∈ [ukq, uk,q−1)) ∆ik − n−1
n∑
i=1

∆ikI (Dik ∈ [uk,q+1, ukq))
}

× log
{

1 + Λ̂k(ukq)
}
,

where M3 is a constant. Using a selected sequence of {ukq; q = 0, . . . , Qk}, we can

make all the coefficients of log
{

1 + Λ̂k(ukq)
}
terms negative such that n−1ln(θ̂, Â)−

n−1ln(θ0, Ã) ≤ M2 +M3. However, if Λ̂k(tk) diverges to ∞, then log
{

1 + Λ̂k(tk)
}

diverges to∞ and n−1ln(θ̂, Â)−n−1ln(θ0, Ã) diverges to−∞, which is a contradiction.

Hence, we conclude that lim supn Λ̂k(tk) <∞ for k = K1 + 1, . . . , K.

Now, we let Ã∗ = (Λ̃1, . . . , Λ̃K1 , Λ̂K1+1, . . . , Λ̂K) and dikm = I(Iik,m < Tik ≤ Iik,m+1)

for i = 1, . . . , n, k = 1, . . . , K1, m = 0, . . . ,Mik, where Iik,Mik+1 =∞. Then, we have

the following inequalities

0 ≤n−1ln(θ̂, Â)− n−1ln(θ0, Ã∗)

≤M4 + n−1
n∑
i=1

log
∫
bi

K1∏
k=1

[
exp

{
−eM̃‖bik‖Λ̂k(Iik,Mik

)
}]dik,Mik

fb(bi; σ̂2)dbi


≤M4 + n−1

n∑
i=1

log
∫
‖bi‖≤1

K1∏
k=1

[
exp

{
−eM̃‖bik‖Λ̂k(Iik,Mik

)
}]dik,Mik

fb(bi; σ̂2)dbi


+ n−1

n∑
i=1

(
log

∫
‖bi‖≥1

fb(bi; σ̂2)dbi
)

≤M5 −M6n
−1

n∑
i=1

K1∑
k=1

dik,Mik
eM̃ Λ̂k(Iik,Mik

),

where M4, M5 and M6 are positive constants. If lim supn Λ̂k(tk − ξ) = ∞, then
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eM̃ Λ̂k(tk − ξ) = ∞ indicating a contradiction. Therefore, lim supn Λ̂k(tk − ξ) < ∞

with probability one for any ξ > 0 and k = 1, . . . , K1. From Helly’s selection lemma,

along a selected sequence of ξ decreasing to 0, Λ̂k → Λk∗ point wise in Ik and θ̂ → θ∗.

We denote A∗ = (Λ1∗, . . . ,ΛK∗).

Proof of the theorem will be completed if we can show that θ∗ = θ0 andA∗ = A0. For

k = K1 + 1, . . . , K, since Λ̃k is defined by imitating Λ̂k, Λ̂k(t) is absolutely continuous

with respect to Λ̃k, and

Λ̂k(t) =
∫ t

0

Pnνk(s,O;θ0,A0)
|Pnνk(s,O; θ̂, Â)|

dΛ̃k(s), (3.18)

where

νk(t,O;θ,A) =
∫
b g1 (b,O;θ,A) g2k (Dk, b,O;θ,A) fb(b;σ2)db∫

b g1 (b,O;θ,A) fb(b;σ2)db ,

Following from the Glivenko-Cantelli property of the function classes C1 and C2, we

have that

sup
t∈Ik
|Pnνk(t,O;θ0,A0)− Pνk(t,O;θ0,A0)|→a.s. 0

and

sup
t∈Ik
|Pnνk(t,O; θ̂, Â)− Pνk(t,O;θ∗,A∗)|→a.s. 0.

Further, for any ξ > 0,

lim sup
n

Λ̂k(tk) ≥
∫ tk

0

Pνk(t,O;θ0,A0)
ξ + |Pνk(t,O;θ∗,A∗)|

dΛk0(t).

By letting ξ → 0, it follows from the Monotone Convergence Theorem that

∫ tk

0

Pνk(t,O;θ0,A0)
|Pνk(t,O;θ∗,A∗)|

dΛk0(t) <∞.

Thus, we conclude that mint∈Ik |Pνk(t,O;θ∗,A∗)|> 0. We further take the limits
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on both sides of (3.18) and have that Λk∗(t) is absolutely continuous with respect to

Λk0(t) meaning that Λk∗(t) is differentiable with respect to t. Moreover, dΛ̂k(t)/dΛ̃k(t)

converges to dΛk∗(t)/dΛk0(t).

We define a function

m(θ,A) = log
{
Li(θ,A) + Li(θ0, Ã)

2

}
,

where Li(θ,A) is the likelihood function for the ith subject and i = 1, . . . , n. The

class of functions m(θ,A) is Glivenko-Cantelli. By the concavity of the log function,

Pnm(θ̂, Â) ≥ 1
2
{
Pn logLi(θ̂, Â) + Pn logLi(θ0, Ã)

}
≥ Pnlni(θ0, Ã) = Pnm(θ0, Ã),

Thus, it follows that

0 ≤Pnm(θ̂, Â)− Pnm(θ0, Ã)

=P
{
m(θ̂, Â)−m(θ0, Ã)

}
+ oP (1)

=P log
Li(θ̂, Â) + Li(θ0, Ã)

2Li(θ0, Ã)

+ oP (1)

=P log
1

2 +
∏K
K1+1 Λ̂k(Dik)∆ik

∫
bi
g1
(
bi,O; θ̂, Â

)
fb(bi; σ̂2)dbiΨi(O; θ̂)

2∏K
K1+1 Λ̃k(Dik)∆ik

∫
bi
g1
(
bi,O;θ0, Ã

)
fb(bi;σ2

0)dbiΨi(O;θ0)

+ oP (1)

→P
{

log
[

1
2 +

∏K
K1+1 Λk∗(Dik)∆ik

∫
bi
g1 (bi,O;θ∗,A∗) fb(bi;σ2

∗)dbiΨi(O;θ∗)
2∏K

K1+1 Λk0(Dik)∆ik
∫
bi
g1 (bi,O;θ0,A0) fb(bi;σ2

0)dbiΨi(O;θ0)

]}
,

indicating a positive value of the negative Kullback-Leibler information. Thus, we
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have

Ψi(Oi;η∗, δ∗, %∗)
∫
bi

K1∏
k=1

(
Mik∑
m=0

dikm

[
exp

{
−
∫ Iikm

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

}

− exp
{
−
∫ Iik,m+1

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

}])

×
K∏

k=K1+1

[ {
eβ

T
∗Wik+αT∗Hik+ζT∗ bikΛk∗(Dik)

}∆ik

× exp
{
−
∫ Dik

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

}]
fb(bi;σ2

∗)dbi

= Ψi(Oi;η0, δ0, %0)
∫
bi

K1∏
k=1

(
Mik∑
m=0

dikm

[
exp

{
−
∫ Iikm

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}

− exp
{
−
∫ Iik,m+1

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}])

×
K∏

k=K1+1

[ {
eβ

T
0 Wik+αT0 Hik+ζT0 bikΛk0(Dik)

}∆ik

× exp
{
−
∫ Dik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}]
fb(bi;σ2

0)dbi

with probability one, where dikm = I(Iikm < Tik ≤ Iik,m+1) for k = 1, . . . , K1 and

m = 0, . . . ,Mik with Iik,Mik+1 =∞. For any k from 1 to K1 and m from 0 to Mik, we

let dikm′ equals 0 for m′ < m and equals 1 for m′ ≥ m. By taking the sum of Mik + 1
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terms of likelihoods for k = 1, . . . , K1, we obtain

Ψi(Oi;η∗, δ∗, %∗)
∫
bi

K1∏
k=1

exp
{
−
∫ Iikm

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

}

×
K∏

k=K1+1

[ {
eβ

T
∗Wik+αT∗Hik+ζT∗ bikΛk∗(Dik)

}∆ik

× exp
{
−
∫ Dik

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

}]
fb(bi;σ2

∗)dbi

= Ψi(Oi;η0, δ0, %0)
∫
bi

K1∏
k=1

exp
{
−
∫ Iikm

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}

×
K∏

k=K1+1

[ {
eβ

T
0 Wik+αT0 Hik+ζT0 bikΛk0(Dik)

}∆ik

× exp
{
−
∫ Dik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}]
fb(bi;σ2

0)dbi.

Because m is randomly chosen, we can use any tik in Ik to replace Iikm. We then let

∆ik = 1 for all k ∈ {K1 + 1, . . . , K}. By integrating Dik from 0 to tik, we have

Ψi(Oi;η∗, δ∗, %∗)
∫
bi

exp
{
−

K1∑
k=1

∫ tik

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

−
K∑

k=K1+1

∫ tik

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

}
fb(bi;σ2

∗)dbi

= Ψi(Oi;η0, δ0, %0)
∫
bi

exp
{
−

K1∑
k=1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

−
K∑

k=K1+1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}
fb(bi;σ2

0)dbi,

which can be further written as

Ψi(Oi;η∗, δ∗, %∗)
∫
bi

exp
{
−

K∑
k=1

∫ tik

0
eβ

T
∗Wik+αT∗Hik+ζT∗ bikdΛk∗(s)

}
fb(bi;σ2

∗)dbi

= Ψi(Oi;η0, δ0, %0)
∫
bi

exp
{
−

K∑
k=1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}
fb(bi;σ2

0)dbi.

(3.19)
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By letting tik = 0 for all k = 1, . . . , K in (3.19), we obtain the following equation

Ψi(Oi;η∗, δ∗, %∗) = Ψi(Oi;η0, δ0, %0). (3.20)

Using the proof arguments of Theorem 3.1 in Lu and Fan (2015), we conclude that

η∗ = η0, δ∗ = δ0, and %∗ = %0. For any k ∈ {1, . . . , K}, we let tik′ = 0 for all k′ 6= k

in (3.19). Along with the result in (3.20), we have the following equation

∫
bi

exp
{
− eζT∗ bik

∫ tik

0
eβ

T
∗Wik+αT∗HikdΛk∗(s)

}
fb(bi;σ2

∗)dbi

=
∫
bi

exp
{
− eζT0 bik

∫ tik

0
eβ

T
0 Wik+αT0 HikdΛk0(s)

}
fb(bi;σ2

0)dbi.

Following the results of Theorem 1 in Elbers and Ridder (1982), we can conclude that

σ2
∗ = σ2

0, ζ∗ = ζ0, and

∫ tik

0
eβ

T
∗Wik+αT∗HikdΛk∗(s) =

∫ tik

0
eβ

T
0 Wik+αT0 HikdΛk0(s). (3.21)

By differentiating both sides of the above equation with respect to tik and then taking

the logarithm, we have the following equation

βT∗Wik +αT∗Hik + λk∗(tik) = βT0Wik +αT0Hik + λk0(tik). (3.22)

By condition C2, we conclude that β∗ = β0, α∗ = α0, and λk∗(tik) = λk0(tik).

Further, by letting Wik = Hik = 0, we obtain that Λk∗(tik) = Λk0(tik) for tik ∈ Ik

and k = 1, . . . , K. The above implies that θ∗ = θ0 and A∗ = A0. We now have

proved that ‖θ̂−θ0‖→ 0, |Λ̂k(t)−Λk0(t)|→ 0, and thus Â converges uniformly to A0

on ∏k Ik.
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3.4.2 Asymptotic normality

The asymptotic normality of the non-parametric maximum likelihood estimator θ̂ is

stated in the following theorem.

Theorem 3.4.2. Under regularity conditions C1−C7,
√
n(θ̂− θ0) converges weakly

to a multivariate zero-mean normal vector with a covariance matrix that attains the

semi-parametric efficiency bound.

Once the consistency of (θ̂, Â) is proved, the normality of θ̂ can be verified through

empirical processes, the Taylor expansion of the score functions for θ̂ and Â around

the true parameters θ0 and A0, and the Donsker properties of the score functions.

Proof of Theorem 3.4.2. For convenience, we process with individual (ith) terms of

the joint log likelihood ln(θ,A) and define the following terms

Hijτ (t,O;θ) = τ − I
{

(Yij − ηTXij − δTHi(t)) < 0
}
,

Hi1k(t, u, v, bi,O;θ,A) = g1 (bi,O;θ,A) q1(t, u, v, bi,O;θ,A)fb(bi;σ2)∫
b′i
g1 (b′i,O;θ,A) fb(b′i;σ2)db′i

for k = 1, . . . , K1, and

Hi2k(t, bi,O;θ,A) = g1 (bi,O;θ,A) q2(t,Dik, bi,O;θ,A)fb(bi;σ2)∫
b′i
g1 (b′i,O;θ,A) fb(b′i;σ2)db′i
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for k = K1 + 1, . . . , K, where

q1(t, u, v, b,O;θ,A)

=eβTWk+αTHk+ζT bk

×
[

I(v ≥ t) exp
{
−
∫ v

0 e
βTWk+αTHk+ζT bkdλk(s)

}
exp

{
−
∫ u
0 e

βTWk+αTHk+ζT bkdλk(s)
}
− exp

{
−
∫ v

0 e
βTWk+αTHk+ζT bkdλk(s)

}
−

I(u ≥ t) exp
{
−
∫ u

0 e
βTWk+αTHk+ζT bkdλk(s)

}
exp

{
−
∫ u

0 e
βTWk+αTHk+ζT bkdλk(s)

}
− exp

{
−
∫ v

0 e
βTWk+αTHk+ζT bkdλk(s)

}],
and

q2(t, u, b,O;θ,A) = −I(u ≥ t)eβTWk+αTHk+ζT bk .

By differentiating the log-likelihood function with respect to θ, we derive that the

individual score function for parameter θ is

lθ(θ,A) =
(
lη(θ,A)T , lδ(θ,A)T , lβ(θ,A)T , lα(θ,A)T , lζ(θ,A)T , l%(θ,A), lσ2(θ,A)

)T
,

where

lη(θ,A) =
ni∑
j=1
Hijτ (t,O;θ)Xij,

lδ(θ,A) =
ni∑
j=1
Hijτ (t,O;θ)Hi(t)

+
K1∑
k=1

Mik∑
m=0

dikm

∫ tk

0

∫
bi
Hi1k(t, Iikm, Iik,m+1, bi,O;θ,A)dbiαkHi(t)dΛk(s)

+
K∑

k=K1+1

{
∆ikαkHi(Dik) +

∫ tk

0

∫
bi
Hi2k(t, bi,O;θ,A)dbiαkHi(t)dΛk(s)

}
,

lβ(θ,A) =
K1∑
k=1

Mik∑
m=0

dikm

∫ tk

0

∫
bi
Hi1k(t, Iikm, Iik,m+1, bi,O;θ,A)dbiWikdΛk(s)

+
K∑

k=K1+1

{
∆ikWik +

∫ tk

0

∫
bi
Hi2k(t, bi,O;θ,A)dbiWikdΛk(s)

}
,
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lα(θ,A) =
K1∑
k=1

Mik∑
m=0

dikm

∫ tk

0

∫
bi
Hi1k(t, Iikm, Iik,m+1, bi,O;θ,A)dbiHikdΛk(s)

+
K∑

k=K1+1

{
∆ikHik +

∫ tk

0

∫
bi
Hi2k(t, bi,O;θ,A)dbiHikdΛk(s)

}
,

lζ(θ,A) =
K1∑
k=1

Mik∑
m=0

dikm

∫ tk

0

∫
bi
Hi1k(t, Iikm, Iik,m+1, bi,O;θ,A)dbibikdΛk(s)

+
K∑

k=K1+1

{
∆ikbik +

∫ tk

0

∫
bi
Hi2k(t, bi,O;θ,A)dbibikdΛk(s)

}
,

l%(θ,A) =
ni∑
j=1

{
%− ρ

(
Yij − ηTXij − δTHi(t)

)}
,

lσ2(θ,A) =
∫
bi
g1 (bi,O;θ,A) f ′b,σ2(bi;σ2)dbi∫
bi
g1 (bi,O;θ,A) fb(bi;σ2)dbi

,

and f ′b,σ2(bi;σ2) is the derivative of fb(bi;σ2) with respect to σ2. Let lA(θ,A)(h) be the

score operator for A along the submodel dAε,h = ((1 + εh1)dΛ1, . . . , (1 + εhK)dΛK)T

for h = (h1, . . . , hK) where hk ∈ L2(µk) for k = 1, . . . , K1 and hk is in the set of

functions on Ik with total variation bounded by one for k = K1 + 1, . . . , K. We have

lA(θ,A)(h) =
K1∑
k=1

Mik∑
m=0

dikm

∫ tk

0

∫
bi
Hi1k(t, Iikm, Iik,m+1, bi,O;θ,A)dbihk(t)dΛk(s)

+
K∑

k=K1+1

{
∆ikhk(Dik) +

∫ tk

0

∫
bi
Hi2k(t, bi,O;θ,A)dbihk(t)dΛk(s)

}
.

We use the Taylor’s expansions of the following two equations at the true value of

parameters, (θ0,A0),

Gn

{
lθ(θ̂, Â)

}
= −
√
nP

{
lθ(θ̂, Â)− lθ(θ0,A0)

}
,

and

Gn

{
lA(θ̂, Â)(h)

}
= −
√
nP

{
lA(θ̂, Â)(h)− lA(θ0,A0)(h)

}
.
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Based on the properties in Lemma 5 of Gao et al. (2018), the second term of the

expansions are bounded by

OP (1)
√
nE

[
K1∑
k=1

Mik∑
m=0

{
Λ̂k(Iikm)− Λk0(Iikm)

}2
+

K∑
K1+1

{
Λ̂k(Dik)− Λk0(Dik)

}2

+ ‖η̂ − η0‖2+‖δ̂ − δ0‖2+‖β̂ − β0‖2+‖α̂−α0‖2+‖ζ̂ − ζ0‖2

+ ‖%̂− %0‖2+‖σ̂2 − σ0‖2
]

=
√
n
[
OP (n−2/3) +OP (1)‖η̂ − η0‖2+OP (1)‖δ̂ − δ0‖2+OP (1)‖β̂ − β0‖2

+OP (1)‖α̂−α0‖2+OP (1)‖ζ̂ − ζ0‖2+OP (1)‖%̂− %0‖2+OP (1)‖σ̂2 − σ0‖2
]

=OP

(
n−1/6 +

√
n‖η̂ − η0‖2+

√
n‖δ̂ − δ0‖2+

√
n‖β̂ − β0‖2+

√
n‖α̂−α0‖2

+
√
n‖ζ̂ − ζ0‖2+

√
n‖%̂− %0‖2+

√
n‖σ̂2 − σ0‖2

)
.

Therefore, we have

Gn

{
lθ(θ̂, Â)

}
=−
√
nP

{
lθθ(θ̂ − θ0) + lθA(h)(Â − A0)

}
+OP

(
n−1/6 +

√
n‖η̂ − η0‖2+

√
n‖δ̂ − δ0‖2+

√
n‖β̂ − β0‖2

+
√
n‖α̂−α0‖2+

√
n‖ζ̂ − ζ0‖2+

√
n‖%̂− %0‖2+

√
n‖σ̂2 − σ0‖2

)
,

and

Gn

{
lA(θ̂, Â)(h)

}
=−
√
nP

{
lAθ(h)

(
θ̂ − θ0

)
+ lAA(h)

(
Â − A0

)}
+OP

(
n−1/6 +

√
n‖η̂ − η0‖2+

√
n‖δ̂ − δ0‖2+

√
n‖β̂ − β0‖2

+
√
n‖α̂−α0‖2+

√
n‖ζ̂ − ζ0‖2+

√
n‖%̂− %0‖2+

√
n‖σ̂2 − σ0‖2

)
,

where lθθ, lθA(h),lAθ(h), and lAA(h) are second order derivatives of l(θ,A) and eval-

uated at (θ0,A0).

Using the arguments in the proof of Theorem 2 of Gao et al. (2018), we can show



61

that there exists a set of functions h∗ = (h∗1, . . . ,h∗K) such that l∗AlA(h∗) = l∗Alθ with

l∗A being the adjoint operator of lA. Further, h∗ can be expanded to be a continuously

differentiable function with bounded total variation. Thus, we have

Gn

{
lθ(θ̂, Â)

}
−Gn

{
lA(θ̂, Â)(h∗)

}
=−
√
nP

{
lθθ

(
θ̂ − θ0

)
+ lθA

(
Â − A0

)}
+
√
nP

{
lAθ(h∗)

(
θ̂ − θ0

)
+ lAA(h∗)

(
Â − A0

)}
+OP

(
n−1/6 +

√
n‖η̂ − η0‖2+

√
n‖δ̂ − δ0‖2+

√
n‖β̂ − β0‖2

+
√
n‖α̂−α0‖2+

√
n‖ζ̂ − ζ0‖2+

√
n‖%̂− %0‖2+

√
n‖σ̂2 − σ0‖2

)
=
√
nP

[
{lθ (θ0,A0)− lA (θ0,A0) (h∗)}⊗2

] (
θ̂ − θ0

)
+OP

(
n−1/6 +

√
n‖η̂ − η0‖2+

√
n‖δ̂ − δ0‖2+

√
n‖β̂ − β0‖2

+
√
n‖α̂−α0‖2+

√
n‖ζ̂ − ζ0‖2+

√
n‖%̂− %0‖2+

√
n‖σ̂2 − σ0‖2

)
.

LetD2 = D1,M×, . . . ,DK,M , whereDk,c = {Λ : Λ is increasing with Λ(0) = 0 and Λ(tk) ≤

c} and M is a finite constant. By replacing A ∈ D1 with A ∈ D2 in (3.16) and (3.17),

we can show that the function classes, C1 and C2, are Donsker (Van der Vaart and

Wellner, 1996). Therefore, lθ (θ0,A0) − lA (θ0,A0) (h∗) belongs to a Donsker class

and

sup
h

P
{
lθ(θ̂, Â)− lθ(θ0,A0) + lA(θ̂, Â)(h)− lA(θ0,A0)(h)

}2
→ 0.

As a result of the Donsker property, Gn

{
lθ(θ̂, Â)

}
−Gn

{
lA(θ̂, Â)(h∗)

}
converges to

a multivariate zero-mean random variable.

Now, we need to show that the matrix

P
[
{lθ (θ0,A0)− lA (θ0,A0) (h∗)}⊗2

]



62

is invertible which is equivalent to proving that the matrix is not singular. If the

matrix is singular, there exists a non-zero vector v = (v1,v2,v3,v4,v5, v6, v7)T in the

real space with dimension corresponding to θ such that vTE[{lθ − lA(h∗)}⊗2]v = 0.

That is, the score function along the submodel {θ0 + εv,Aε(−vTh∗)} is zero with

probability one, which leads to the following equation

ni∑
j=1
Hijτ (t,O;θ0)

{
vT1 Xij + vT2 Hi(t)

}
+ v6ni

+
∫
bi

(
K1∑
k=1

Mik∑
m=0

dikm

∫ tk

0
q1(t, Iikm, Iik,m+1, b,O;θ0,A0){vT3Wik + vT4Hik + vT5 bik

− vTh∗k(s)}dΛk0(s) +
K∑

k=K1+1
∆ik

{
vT3Wik + vT4Hik + vT5 bik − vTh∗k(Dik)

}

+
K∑

k=K1+1

∫ tk

0
q2(t,Dik, b,O;θ0,A0){vT3Wik + vT4Hik + vT5 bik − vTh∗k(s)}dΛk0(s)

+ v7
f
′

b,σ2(bi;σ2)
fb(bi;σ2)

)
g1 (bi,O;θ0,A0) fb(bi;σ2

0)dbi = 0

with probability one. For any k from 1 to K1 and m from 0 to Mik, we let dikm′

equals 0 for m′ < m and equals 1 for m′ ≥ m. For k = K1 + 1, . . . , K, we set ∆ik = 0

and let Dik = tik, where tik ∈ Ik. By taking the sum of all Mik + 1 terms of dikm for

k = 1, . . . , K1, we obtain

ni∑
j=1
Hijτ (t,O;θ0)

{
vT1 Xij + vT2 Hi(t)

}
+ v6ni

+
∫
bi

(
K1∑
k=1

∫ Iikm

0
eβ

T
0 Wik+αT0 Hik+ζT0 bik{vT3Wik + vT4Hik + vT5 bik − vTh∗k(s)}dΛk0(s)

+
K∑

k=K1+1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bik{vT3Wik + vT4Hik + vT5 bik − vTh∗k(s)}dΛk0(s)

+ v7
f
′

b,σ2(bi;σ2)
fb(bi;σ2)

)
K1∏
k=1

exp
{
−
∫ Iikm

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}

×
K∏

k=K1+1
exp

{
−
∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}
fb(bi;σ2

0)dbi = 0
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Because m is randomly chosen, we can use any tik in Ik to replace Iikm. That is,

ni∑
j=1
Hijτ (t,O;θ0)

{
vT1 Xij + vT2 Hi(t)

}
+ v6ni

+
∫
bi

(
K∑
k=1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bik{vT3Wik + vT4Hik + vT5 bik − vTh∗k(s)}dΛk0(s)

+ v7
f
′

b,σ2(bi;σ2)
fb(bi;σ2)

)
exp

{
−

K∑
k=1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bikdΛk0(s)

}
fb(bi;σ2

0)dbi = 0.

Because tik is arbitrary, we can set tik = 0 for all k = 1, . . . , K in the above equation

to obtain
ni∑
j=1
Hijτ (t,O;θ0)

{
vT1 Xij + vT2 Hi(t)

}
+ v6ni = 0.

Because Hijτ 6= 0, ni > 0 and along with conditions C2 and C4, we conclude that

v1 = 0, v2 = 0 and v6 = 0. Applying the inverse Laplace transform, we have

K∑
k=1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bik{vT3Wik + vT4Hik + vT5 bik − vTh∗k(s)}dΛk0(s)

+ v7
f
′

b,σ2(bi;σ2)
fb(bi;σ2) = 0

for any bi. It follows that v5 = 0, v7 = 0 and

K∑
k=1

∫ tik

0
eβ

T
0 Wik+αT0 Hik+ζT0 bik{vT3Wik + vT4Hik − vTh∗k(s)}dΛk0(s) = 0.

By differentiating both sides of the above equation with respect to tik, we obtain

{vT3Wik +vT4Hik−vTh∗k(s)} = 0. By condition C2, we claim that v3 = 0 and v4 = 0.

Therefore, the matrix P
[
{lθ (θ0,A0)− lA (θ0,A0) (h∗)}⊗2

]
is invertible.
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Using all the above results, it follows that θ̂ − θ0 = OP (1/
√
n), and

√
n
(
θ̂ − θ0

)
=
(
P
[
{lθ (θ0,A0)− lA (θ0,A0) (h∗)}⊗2

])−1
Gn

{
lθ(θ̂, Â)− lA(θ̂, Â)(h∗)

}
+ oP (1).

Since the estimator θ̂ has an efficient influence function,
√
n
(
θ̂ − θ0

)
converges weakly

to a multivariate zero-mean normal random variable with its covariance matrix reach-

ing the semi-parametric efficiency bound.



Chapter 4

Numerical Study

In this chapter, we illustrate our method through extensive simulation studies and an

application to a dementia dataset from a French cohort study: PAQUID. In the simu-

lation studies, we assess the performance of our proposed joint model under different

assumptions of the distribution of the longitudinal response, for different sample sizes,

and under the situation that there is a terminal event. In the real data example, we

fit our model to the data considering Isaacs Set Test scores as longitudinal measure-

ments, dementia and dependency status change as interval-censored asymptomatic

events, and death as a right-censored and terminal event.

4.1 Simulation

In this section, we setup and conduct some simulation studies and report the results

to investigate the performance of our proposed joint method in analysing longitudinal

and survival data. We show that a joint analysis of longitudinal and multiple-censored

time-to-event data is better than that based on separate models. In Section 4.1.1, we

list the process and values of parameters for different setups of the simulation studies.

One longitudinal response variable, two asymptomatic events and two symptomatic

65
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events are considered with different sample sizes and error distributions at quantile

levels of τ = 0.25, 0.50 and 0.85. The simulation results for different settings are then

reported and interpreted in Section 4.1.2.

4.1.1 Simulation setup

We set the sample size n to 150 or 300 and simulate 1000 replicates for different

quantiles of longitudinal observations at τ = 0.25, 0.5 and 0.85. We consider two

asymptomatic events, two symptomatic events and a maximum of six longitudinal

observations for each subject. For i = 1, . . . , n and k = 1, 2, 3, 4, we set Xi = (1, xi)T ,

Hi(t) = hi ∗ t and Wik = wik, where xi , hi and wik are generated from independent

standard normal distributions. We assume that the random variable bi follows a zero-

centred normal distribution with a variance σ2 = 1. We fix η = (η1, η2)T = (1, 1)T ,

β = (β1, β2, β3, β4)T = (1, 1, 0.5, 0.5)T , α = (α1, α2, α3, α4)T = (0.5, 0.5, 1, 1)T , and

ζ = (ζ1, ζ2, ζ3, ζ4)T = (0.25, 0.25, 0.5, 0.25)T . Further, we let Λk(t) = log(1 + t/k) for

k = 1, 2, 3, 4. All symptomatic- and asymptomatic-event times, Tik, can be obtained

by solving the following equations

sik = Sk(Tik;Wik, Hi(t), bi)

= exp
{
−
∫ Tik

0
eβ

T
kWik+αkδTHi(t)+ζkbidΛk(t)

}

using numerical methods, where sik is randomly generated from the uniform distribu-

tion on [0, 1] interval, that is sik ∼ Unif [0, 1]. We then let both symptomatic events be

censored by Ci ∼ Unif(M(T4), 15), where M(T4) is the median of {T14, . . . , Tn4} and

15 is set to be the maximum following time. The censoring rates for two symptomatic

rates are then around 32% and 36% respectively. For k = 1, 2, the potential monitor-

ing times for asymptomatic events are generated through Idik = Id−1
ik +0.1+Unif(0, 0.5)
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and stopped at Ci for d > 1 and I0 = 0. Thus (Lik, Rik] is the smallest interval con-

structed by the series of Idik and∞, which contains the true time Tik. For each subject,

the longitudinal responses are potentially observed at t = 0, and the 5th, 10th, 20th,

40th, 80th quantiles of the series of {Di4 = min(Ti4, Ci); i = 1, . . . , n}. In order to

illustrate the performance of our model under violation of assumptions, we generate

longitudinal observations under two distributional settings using the first equation in

(3.1), Yij = ηTXij + δTHi(t) + εij. In one setting, we assume an ALD distributed

error, εij, centred at 0 with skewness τ and scale parameter % = 1. In another setting,

we assume a normal distributed error, εij = εij − qτ , where εij ∼ N(0, 1) and qτ is the

τth quantile of the standard normal distribution. We fit the generated data using our

proposed joint model and compare the results with those of separate models.

In MCEM iterations, we set the initial values of η, δ, βk, αk as estimates obtained

from separate models with fixed effects, and let ζk = 1, σ2
b = 1 and λkl = 1/mk to start

the first run. We use 100 random points generated from Unif(−3, 3) to approximate

integrations over random effect bi within iterations. The variance of parameters are

estimated with 100 bootstrap samples.

4.1.2 Simulation results

For the estimates under each setting of the above simulation studies, we report the

bias, the bootstrapped standard error (SD), the empirical standard deviation (SE)

over 1000 replicates, and the coverage probability (CP) of the true parameter by the

95% confidence interval constructed using the bootstrapped standard error. Table 4.1

summarizes the simulation results for a sample of size n = 150 and values of longitudi-

nal response generated from an Asymmetric Laplace Distribution. It can be seen that,

for every quantile level (τ= 0.25, 0.50, and 0.85), the biases of parameter estimators

are small for both joint and separate models of longitudinal and survival data. Our
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Table 4.1: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 150 and at three quantile levels τ = 0.25, 0.50 and 0.85, where the
longitudinal error follows an ALD.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

150 0.25 η1 -0.008 0.096 0.097 0.953 -0.003 0.081 0.069 0.891

η2 -0.005 0.096 0.093 0.947 -0.002 0.079 0.069 0.895

δ 0.010 0.074 0.073 0.937 -0.001 0.026 0.022 0.861

β1 0.048 0.147 0.152 0.943 -0.074 0.113 0.115 0.893

β2 0.051 0.136 0.140 0.933 -0.036 0.125 0.121 0.928

β3 -0.001 0.130 0.131 0.965 -0.046 0.112 0.111 0.918

β4 0.014 0.133 0.141 0.946 -0.007 0.116 0.115 0.953

α1 0.000 0.121 0.125 0.951 -0.022 0.107 0.081 0.846

α2 -0.059 0.124 0.120 0.931 -0.071 0.112 0.067 0.654

α3 0.001 0.133 0.133 0.950 -0.065 0.110 0.105 0.860

α4 0.010 0.139 0.143 0.962 -0.008 0.109 0.105 0.933

ζ1 0.015 0.167 0.166 0.947

ζ2 0.044 0.196 0.201 0.960

ζ3 -0.088 0.178 0.176 0.929

ζ4 -0.030 0.168 0.170 0.943

% -0.003 0.038 0.037 0.952

σ2 -0.003 0.052 0.055 0.961

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

150 0.50 η1 -0.008 0.082 0.081 0.950 0.001 0.070 0.058 0.880

η2 0.008 0.079 0.079 0.951 -0.002 0.071 0.060 0.883

δ 0.006 0.068 0.069 0.944 0.000 0.021 0.018 0.872

β1 0.049 0.134 0.135 0.935 -0.074 0.115 0.115 0.879

β2 0.040 0.140 0.137 0.927 -0.040 0.122 0.121 0.933

β3 0.001 0.135 0.133 0.946 -0.040 0.116 0.111 0.923

β4 -0.003 0.121 0.123 0.954 -0.001 0.120 0.116 0.952

α1 -0.008 0.108 0.105 0.935 -0.023 0.101 0.080 0.863

α2 -0.063 0.131 0.134 0.927 -0.069 0.114 0.066 0.663

α3 -0.024 0.136 0.143 0.968 -0.064 0.111 0.105 0.852

α4 0.023 0.143 0.140 0.943 -0.003 0.111 0.106 0.939

ζ1 -0.003 0.172 0.168 0.944

ζ2 0.037 0.192 0.190 0.943

ζ3 -0.066 0.164 0.164 0.928

ζ4 -0.013 0.189 0.186 0.961

% -0.001 0.035 0.035 0.963

σ2 -0.004 0.051 0.052 0.960

150 0.85 η1 -0.009 0.106 0.104 0.933 -0.005 0.099 0.080 0.862

η2 -0.003 0.105 0.101 0.927 0.002 0.099 0.085 0.876

δ 0.013 0.073 0.071 0.908 -0.002 0.031 0.027 0.855

β1 0.059 0.149 0.150 0.926 -0.075 0.121 0.115 0.871

β2 0.037 0.138 0.136 0.953 -0.036 0.130 0.122 0.927

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

β3 -0.007 0.127 0.125 0.945 -0.047 0.113 0.112 0.926

β4 0.010 0.129 0.132 0.950 -0.009 0.118 0.116 0.946

α1 0.000 0.113 0.114 0.953 -0.023 0.104 0.081 0.868

α2 -0.067 0.127 0.126 0.915 -0.071 0.117 0.066 0.640

α3 -0.007 0.138 0.136 0.959 -0.064 0.118 0.106 0.857

α4 0.024 0.133 0.137 0.952 -0.007 0.112 0.105 0.931

ζ1 0.006 0.162 0.163 0.954

ζ2 0.050 0.208 0.215 0.950

ζ3 -0.099 0.191 0.200 0.936

ζ4 -0.010 0.179 0.176 0.954

% -0.002 0.038 0.038 0.941

σ2 0.001 0.051 0.054 0.964

proposed joint model performed well in estimating the effects of longitudinal response,

acted as a covariate in survival sub-model, on survival times for both symptomatic

and asymptomatic events. Our joint model has significant smaller biases in estimating

α1 and α3 than separate models. Further, the bootstrapped variance estimators of our

joint model are more accurate than those in separate models. The separate models

tend to underestimate the variances of many parameters. The coverage probabilities

for all estimates are around 0.95 for the joint model, while the separate models give

many coverage probabilities less than 0.90. The difference between our proposed joint

model and separate models become more clear when the sample size is large. Table

4.2 shows the simulation results for a sample size n = 300. The biases become smaller
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Table 4.2: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 300 and at three quantile levels τ = 0.25, 0.50 and 0.85, where the
longitudinal error follows an ALD.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

300 0.25 η1 0.007 0.065 0.068 0.959 0.001 0.056 0.060 0.963

η2 0.003 0.062 0.062 0.931 0.000 0.060 0.059 0.948

δ 0.007 0.053 0.049 0.931 0.000 0.017 0.015 0.923

β1 0.021 0.089 0.094 0.941 -0.080 0.081 0.080 0.800

β2 0.019 0.095 0.100 0.959 -0.058 0.085 0.084 0.890

β3 -0.011 0.087 0.092 0.962 -0.052 0.080 0.077 0.871

β4 0.004 0.096 0.100 0.946 -0.009 0.080 0.080 0.948

α1 -0.022 0.087 0.086 0.921 -0.042 0.081 0.053 0.773

α2 -0.101 0.102 0.103 0.948 -0.112 0.093 0.042 0.397

α3 -0.014 0.107 0.099 0.940 -0.083 0.083 0.071 0.722

α4 0.005 0.093 0.091 0.953 -0.019 0.076 0.071 0.922

ζ1 -0.003 0.108 0.108 0.959

ζ2 0.033 0.133 0.138 0.940

ζ3 -0.067 0.113 0.121 0.928

ζ4 -0.015 0.135 0.134 0.940

% -0.001 0.023 0.023 0.950

σ2 -0.020 0.035 0.037 0.943

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

300 0.50 η1 0.000 0.053 0.049 0.913 -0.001 0.048 0.052 0.960

η2 -0.008 0.054 0.057 0.954 0.003 0.049 0.051 0.956

δ 0.001 0.047 0.043 0.921 0.001 0.015 0.014 0.934

β1 0.020 0.094 0.083 0.928 -0.081 0.084 0.080 0.781

β2 0.028 0.106 0.105 0.925 -0.053 0.083 0.085 0.908

β3 -0.005 0.095 0.093 0.959 -0.054 0.083 0.077 0.865

β4 0.009 0.083 0.088 0.954 -0.012 0.083 0.080 0.941

α1 -0.021 0.088 0.080 0.939 -0.043 0.080 0.053 0.771

α2 -0.087 0.106 0.094 0.935 -0.107 0.092 0.043 0.409

α3 -0.025 0.098 0.102 0.966 -0.085 0.082 0.071 0.737

α4 0.009 0.089 0.083 0.933 -0.018 0.082 0.072 0.921

ζ1 -0.002 0.127 0.129 0.957

ζ2 0.055 0.152 0.147 0.912

ζ3 -0.074 0.117 0.127 0.934

ζ4 -0.004 0.120 0.121 0.950

% 0.001 0.024 0.028 0.966

σ2 -0.015 0.036 0.037 0.948

300 0.85 η1 -0.007 0.092 0.092 0.957 -0.002 0.069 0.073 0.956

η2 -0.010 0.078 0.078 0.955 -0.001 0.069 0.071 0.957

δ 0.006 0.058 0.057 0.954 0.000 0.022 0.018 0.872

β1 0.043 0.094 0.094 0.938 -0.076 0.082 0.080 0.822

β2 0.042 0.093 0.091 0.926 -0.052 0.086 0.084 0.893

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

β3 -0.002 0.084 0.087 0.951 -0.052 0.078 0.077 0.886

β4 0.009 0.082 0.082 0.935 -0.009 0.080 0.080 0.940

α1 -0.018 0.093 0.090 0.924 -0.043 0.083 0.053 0.760

α2 -0.090 0.104 0.100 0.929 -0.103 0.082 0.043 0.431

α3 -0.020 0.101 0.097 0.935 -0.079 0.081 0.071 0.724

α4 0.012 0.095 0.095 0.960 -0.018 0.080 0.072 0.901

ζ1 -0.005 0.118 0.115 0.927

ζ2 0.039 0.145 0.144 0.926

ζ3 -0.082 0.119 0.117 0.929

ζ4 -0.010 0.142 0.140 0.953

% -0.002 0.025 0.025 0.945

σ2 0.018 0.035 0.035 0.936

for most of parameter estimators when sample size increases. For k = 1, 2, 3, 4, our

proposed model gives smaller biases than separate models for almost all estimators of

βk, αk and ζk. The coverage probabilities under separate model are small for many

parameters and can be as low as 0.40 for α2. The above indicates that our joint model

is better in capturing the way in which the longitudinal measurements and survival

times are connected and how the longitudinal process affects the risks of different

events.

For different simulation replicates, we set some fixed time points uniformly located

between 0 and 6 (e.g. 0.0, 0.2, 0.4, . . . , 5.8, 6.0) and estimate the survival probabilities

at each fixed time point by exp(−∑tkl<t λkl) for k = 1, 2, 3, 4. The survival probabil-
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Figure 4.1: The estimation of baseline survival functions average over 1000 simulations
for a sample size of n = 150, τ = 0.25 and ALD distributed longitudinal response
variable.

ities at each fixed time point are then averaged over 1000 simulations to approximate

the true baseline survival function. Figure 4.1 along Figures A.1, A.2, A.3, A.4 and

A.5 in the Appendix show the estimations of the baseline survival functions for the

settings of n = 150 or 300, τ = 0.25, 0.50, 0.85 and ALD distributed longitudinal

response variable. For all levels of quantile, it can be seen that the estimated baseline

survival curves are very close to the true curves indicating the estimators are accurate

and virtually unbiased, especially at early follow-up time and when sample size is big

where a large number of subjects exist and more information about the event risks

can be obtained from the data.

We considered a semi-competing risks setup by involving a terminal event. With-
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out loss of generality, we set the last event (k=4) to be terminal which can occur

after any of the other three events have occurred but its occurrence censors all the

other events and terminates the follow-up study. The semi-competing event was also

censored by C, such that the censoring rate for itself is still around 36% while the

censoring rate for the other symptomatic event changed to be around 58%. Simula-

tion results are shown in Tables 4.3 and 4.4 for sample sizes n = 150 and 300 and

quantiles τ = 0.25, 0.50 and 0.85. The results of separate models improved due to the

increase of the correlation between events and thus relatively reduces the dependency

between longitudinal measurements and the risks of events. However, our proposed

joint model still performs better in estimating variances of parameters, especially for

small samples. The estimation of baseline survival functions for semi-competing risks

joint models are shown in Figures A.6, A.7, A.8, A.9, A.10 and A.11 for different

sample sizes and levels of quantile. Similar conclusions are made to the case of no

competing event. Only difference is that the estimators for the first three events are

more biased at later follow-up time points. This is due to that, at later follow-up

times, events are more likely censored by either C or the terminal event, resulting

less information can be obtained from the data and thus lead to biased estimates,

especially when the sample size is small.

In order to illustrate the justifiability of assuming an asymmetric Laplace distributed

error for the longitudinal outcome, we run more simulation studies with normally as-

sumed error distributions when generating longitudinal responses, Yij. The simulation

results are summarized in Tables A.1 , A.2, Figures A.12, A.13, A.14, A.15, A.16, A.17

for no competing risks joint models and Tables A.3, A.4, Figures A.18, A.19, A.20,

A.21, A.22, A.23 for semi-competing risks joint models. It can be seen that the results

are approximately equal to those reported in previous tables and figures for the cases

of assuming an ALD distributed error for the longitudinal outcome. The conclusions
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are similar and indicating the robustness of the ALD assumption with respect to

model misspecification when the true error distribution for the longitudinal outcome

is Normal.

Table 4.3: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 150 and at three quantile levels τ = 0.25, 0.50 and 0.85, where
the longitudinal error follows an ALD distribution and the last symptomatic event is
terminal.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

150 0.25 η1 0.024 0.108 0.106 0.950 0.003 0.079 0.068 0.891

η2 0.004 0.099 0.094 0.945 -0.003 0.084 0.069 0.880

δ 0.018 0.101 0.105 0.932 0.001 0.026 0.022 0.863

β1 0.076 0.152 0.139 0.933 -0.055 0.141 0.135 0.898

β2 0.059 0.161 0.175 0.924 -0.017 0.151 0.151 0.942

β3 0.015 0.164 0.149 0.936 -0.046 0.136 0.140 0.948

β4 0.010 0.128 0.145 0.966 -0.008 0.116 0.115 0.952

α1 0.041 0.190 0.195 0.927 -0.017 0.146 0.148 0.947

α2 0.041 0.170 0.166 0.955 -0.014 0.145 0.141 0.941

α3 0.003 0.202 0.189 0.936 -0.049 0.177 0.159 0.894

α4 -0.004 0.137 0.134 0.951 -0.008 0.113 0.105 0.927

ζ1 0.039 0.203 0.209 0.962

ζ2 0.045 0.217 0.207 0.934

ζ3 -0.063 0.209 0.219 0.945

ζ4 -0.041 0.189 0.202 0.960

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

% 0.004 0.039 0.036 0.952

σ2 -0.005 0.046 0.043 0.950

150 0.50 η1 -0.007 0.096 0.089 0.931 0.000 0.072 0.058 0.884

η2 -0.002 0.094 0.088 0.936 -0.002 0.073 0.060 0.874

δ -0.006 0.096 0.095 0.942 -0.001 0.022 0.019 0.874

β1 0.063 0.146 0.158 0.941 -0.058 0.138 0.135 0.917

β2 0.072 0.176 0.178 0.958 -0.022 0.154 0.151 0.942

β3 -0.004 0.155 0.158 0.954 -0.034 0.141 0.139 0.935

β4 0.008 0.128 0.124 0.960 -0.005 0.116 0.115 0.962

α1 0.036 0.175 0.184 0.947 -0.007 0.155 0.150 0.934

α2 0.044 0.172 0.165 0.953 -0.011 0.141 0.142 0.953

α3 0.025 0.181 0.169 0.942 -0.048 0.164 0.160 0.912

α4 0.038 0.144 0.138 0.926 -0.005 0.116 0.106 0.927

ζ1 0.039 0.182 0.180 0.951

ζ2 0.049 0.253 0.242 0.947

ζ3 -0.014 0.207 0.215 0.971

ζ4 -0.027 0.187 0.179 0.945

% 0.002 0.040 0.038 0.946

σ2 -0.002 0.049 0.051 0.955

150 0.85 η1 -0.008 0.112 0.109 0.955 -0.006 0.098 0.080 0.876

η2 0.001 0.127 0.131 0.956 -0.001 0.103 0.086 0.873

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

δ -0.003 0.102 0.104 0.953 -0.001 0.033 0.027 0.844

β1 0.081 0.159 0.163 0.926 -0.060 0.136 0.135 0.917

β2 0.053 0.168 0.168 0.935 -0.018 0.161 0.150 0.935

β3 0.019 0.159 0.150 0.939 -0.035 0.137 0.140 0.949

β4 0.009 0.128 0.131 0.948 -0.002 0.119 0.116 0.943

α1 0.038 0.186 0.177 0.919 -0.009 0.152 0.148 0.940

α2 0.065 0.152 0.152 0.941 -0.002 0.145 0.142 0.948

α3 0.021 0.217 0.218 0.955 -0.049 0.172 0.159 0.892

α4 0.030 0.147 0.144 0.950 -0.008 0.110 0.105 0.935

ζ1 0.003 0.212 0.214 0.954

ζ2 0.033 0.238 0.247 0.966

ζ3 -0.049 0.219 0.212 0.937

ζ4 -0.052 0.193 0.195 0.951

% -0.001 0.039 0.039 0.946

σ2 -0.005 0.045 0.044 0.952
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Table 4.4: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 300 and at three quantile levels τ = 0.25, 0.50 and 0.85, where
the longitudinal error follows an ALD distribution and the last symptomatic event is
terminal.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

300 0.25 η1 0.002 0.066 0.066 0.954 0.004 0.054 0.060 0.969

η2 -0.010 0.064 0.065 0.951 0.000 0.056 0.059 0.954

δ 0.013 0.067 0.061 0.944 0.000 0.017 0.015 0.909

β1 0.035 0.115 0.116 0.954 -0.066 0.092 0.093 0.873

β2 0.036 0.119 0.114 0.950 -0.034 0.108 0.104 0.924

β3 0.002 0.101 0.101 0.956 -0.044 0.102 0.097 0.909

β4 -0.008 0.090 0.083 0.949 -0.011 0.080 0.080 0.948

α1 0.012 0.111 0.099 0.918 -0.029 0.105 0.100 0.920

α2 0.010 0.109 0.105 0.930 -0.024 0.097 0.097 0.935

α3 -0.002 0.126 0.127 0.971 -0.062 0.112 0.108 0.885

α4 -0.007 0.097 0.089 0.936 -0.020 0.077 0.071 0.926

ζ1 -0.005 0.145 0.152 0.959

ζ2 0.033 0.159 0.159 0.950

ζ3 -0.042 0.151 0.163 0.953

ζ4 -0.028 0.135 0.129 0.947

% 0.003 0.028 0.030 0.971

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

σ2 -0.021 0.030 0.033 0.938

300 0.50 η1 -0.002 0.059 0.059 0.949 0.001 0.050 0.052 0.963

η2 -0.003 0.057 0.061 0.951 -0.001 0.048 0.051 0.968

δ -0.002 0.068 0.074 0.949 0.000 0.015 0.014 0.934

β1 0.015 0.105 0.098 0.928 -0.066 0.093 0.094 0.879

β2 0.019 0.114 0.112 0.936 -0.031 0.105 0.104 0.929

β3 0.002 0.108 0.108 0.949 -0.044 0.103 0.097 0.918

β4 0.011 0.083 0.081 0.962 -0.014 0.080 0.080 0.947

α1 0.021 0.138 0.136 0.962 -0.020 0.100 0.101 0.948

α2 0.012 0.090 0.089 0.955 -0.011 0.097 0.097 0.949

α3 0.014 0.141 0.147 0.943 -0.071 0.118 0.108 0.852

α4 0.007 0.102 0.109 0.954 -0.022 0.075 0.072 0.919

ζ1 -0.012 0.139 0.126 0.936

ζ2 -0.004 0.150 0.155 0.933

ζ3 -0.054 0.142 0.149 0.937

ζ4 -0.032 0.126 0.127 0.956

% 0.003 0.027 0.025 0.936

σ2 -0.026 0.033 0.034 0.931

300 0.85 η1 0.004 0.103 0.077 0.922 -0.004 0.067 0.073 0.957

η2 0.008 0.106 0.082 0.966 -0.004 0.068 0.071 0.955

δ 0.003 0.077 0.074 0.928 -0.001 0.021 0.018 0.884

β1 0.046 0.103 0.096 0.935 -0.069 0.093 0.093 0.862

Continued on next page



81

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

β2 0.031 0.112 0.114 0.943 -0.039 0.107 0.104 0.921

β3 -0.012 0.113 0.128 0.971 -0.049 0.100 0.097 0.909

β4 0.005 0.085 0.084 0.936 -0.013 0.082 0.080 0.946

α1 0.004 0.114 0.116 0.948 -0.018 0.102 0.101 0.935

α2 0.011 0.104 0.109 0.963 -0.017 0.099 0.097 0.944

α3 0.001 0.135 0.132 0.960 -0.066 0.111 0.108 0.876

α4 0.018 0.112 0.107 0.954 -0.017 0.075 0.072 0.925

ζ1 0.023 0.137 0.132 0.927

ζ2 0.041 0.160 0.152 0.925

ζ3 -0.042 0.141 0.152 0.963

ζ4 -0.035 0.137 0.150 0.950

% 0.001 0.029 0.028 0.955

σ2 -0.018 0.030 0.032 0.943

4.2 An application to dementia: what about the

elderly?

Dementia is a common disease in the elderly. As the world’s population is ageing,

dementia has been recognized as a public health priority by the World Health Organi-

zation. Dementia is characterized by a significant cognitive decline which is progres-

sive and steeper than the normal ageing-caused cognitive decline. Some degenerative

forms of dementia can be developed among the elderly, such as Alzheimer’s disease,
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and Parkinson’s dementia. The health, social and economic costs are increasing with

the disease of dementia, as it heightens the risk of dependency and disability among

the older people. Therefore, it is essential to identify risk factors to better under-

stand the natural trajectory of dementia and early detect subjects with high risk of

developing dementia.

We apply our proposed joint model to a French prospective cohort: PAQUID ("Per-

sonnes Agées QUID?" that is, "what about the elderly?", Letenneur et al. (1994)),

which aims at studying cognitive ageing from repeated psychometric tests. The cohort

involves 3777 subjects, aged 65 and older at entry, from the Gironde and Dordogne

regions of south west France. During more than 25 years follow-up, subjects were

visited by a trained psychologist every 2 or 3 years at home and administered a ques-

tionnaire that included health information, a battery of cognitive tests, and scales of

disability. Dementia was assessed based on a two-stage screening procedure according

to the Diagnostic and Statistical Manual of Mental Disorders, Third Edition, Revised

(DSM III R) criteria (American Psychiatric Association, 1987). Age at death was

recorded from being informed by families or retrieving death registries.

4.2.1 Data

The dataset we use is a random subsample from the PAQUID cohort study, called

"paquid". The paquid dataset is provided by an R package named as "lcmm" (Proust-

Lima et al. (2019)) which consists of 500 subjects. Over a maximum period of 20 years,

three common cognitive tests were repeatedly measured and scores were recorded.

The three cognitive tests are the Mini Mental State Examination (MMSE) assessing

global cognition, the Isaacs Set Test (IST ) evaluating verbal fluency, and the Ben-

ton Visual Retention Test (BV RT ) for visual perception and memory. Measures of

physical dependency (HIER, 0 =no dependency; 1 =mild dependency; 2 =moderate
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dependency; 3 =severe dependency) and depressive symptomatology (CESD) were

collected at follow-up visits along with age at each visit (age), age at dementia di-

agnosis or last visit (agedem) and indicator of positive diagnosis of dementia (dem).

Time-independent socio-demographic information is also provided: indicator of edu-

cational level (CEP , 1 =graduated from primary school; 0 =otherwise), sex (male, 1

for men; 0 for women), and age at entry (age_init). Since dementia was developed

between two periodic visits, we let (L,R) denote the smallest time interval constructed

by (age_init, age, Inf) that covers the time to dementia onset.

We then add two new variables, death and death_age, based on subjects’ HIER

scores and exponential distributions. We assume that the nature life time that all

subjects can survive after the last visit follows an exponential distribution with rate

0.5 and all subjects have a maximum age of 105. At the last visit, subjects with no or

mild dependency (HIER = 0 or 1) can survive another length of time following an

exponential distribution with rate 1 and subjects with moderate or severe dependency

(HIER = 2 or 3) can live for another length of life time following an exponential

distribution with rate 1.5. If a subject’s simulated life time is less than his or her

simulated natural life time, death occurred (death = 1) and age at death is observed

(death_age = simulated life time). Otherwise, the event of death is censored at the

last visit with indicator death = 0. In this way, we achieve a total death rate around

71%, a death rate around 68% among subjects developed dementia and a death rate

around 72% among subjects without dementia diagnosed. For a better interpretation

of the effect of age, we let age = age − 65 to centre the intercept around 65. Then,

we divide the new values of age by 10 to reduce numerical problems in computation.

Too large ages in the model reduce the attribution of random effects. We do the same

procedure to get new values of agedem, age_init, (L,R).
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Figure 4.2: Box plots of IST scores for subjects not graduated from primary school
and subjects graduated from primary school in the paquid dataset.

4.2.2 Joint model of IST, dementia and death

For longitudinal analysis, we work with the repeated measures of the Isaacs Set Test.

Partitioner needs to produce up to 10 words within 15 seconds for four different

semantic categories. Scores of IST ranges from 0 to 40. In Figure 4.2, comparing the

two box plots of IST scores for subjects with and without primary school diploma

respectively, we find that the two distributions are different. More specifically, subjects

who received higher education tended to perform better than subjects with a low level

of education in the Isaacs Set Test. Further, as subjects age, they were more likely

to have a worse IST performance. This can be seen from the plots in Figure 4.3. In

Figure 4.3, the left scatter plot shows a decreasing trend in IST scores among all

subjects as they get older. In the plot on the right side, IST scores for a randomly

selected sample of 10 subjects are connected separately for each subject using lines
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Figure 4.3: Plot of IST scores against ages at the time of visit. The left scatter plot is
for all subjects in the paquid dataset. The right plot is based on a random subsample
of 10 subjects. The IST scores in the right plot are connected with separate lines for
each of those 10 subjects.

with different colours. Similarly, for those 10 subjects, as they getting older, they tend

to perform worse in a Issacs Set Test. Therefore, we use education level (CEP ) and

subject’s age (age) as two predictors of IST scores. The quantile regression model

for longitudinal scores of Isaacs Set Test thus be proposed as

IST = η1 + η2 ∗ CEP + δ ∗ age+ ε, (4.1)

where the error ε is ALD distributed with a specified skewed parameter τ and a scale

parameter %.

When setting up survival models, time-to-dementia should not be analysed sepa-

rately to the longitudinal IST scores as they are highly correlated. The IST score,

as a cognitive marker, is a predictor of the risk of dementia. Subjects with lower IST

scores are at higher risk of dementia. This can be seen in Figure 4.4 as the group of
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Figure 4.4: Box plots of IST scores for subjects diagnosed with dementia and subjects
without dementia diagnosis in the paquid dataset.

subjects diagnosed with dementia has lower IST scores than those without dementia

diagnosis. Our summary interest may focus on the lower tail of the distribution of

IST scores and its effects on the risk of dementia.

As older people are more likely to develop the disease of dementia, the risk of death

is non-negligible among the population at risk of dementia. Those two events are

correlated and also share some common risk factors, such as sex and age. Figure 4.5

shows the different survival curves for the event of death for male and female subjects

respectively and females are more likely to live for a longer time. Moreover, some

longitudinal measurements of cognitive markers may be missing in the follow-up due

to death. By taking death into consideration, as a semi-competing event, we could

reduce the bias in estimating the effect of covariates on the IST scores or the risk

of dementia. Further, the joint analysis distinguishes the effects of predictors on the
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Figure 4.5: Kaplan-Meier death curves for male and female subjects in the simulated
paquid dataset.

decline of cognitive marker, the risk of dementia and the risk of death respectively.

We apply Cox proportional hazard models for the risk of dementia and the risk of

death as the followings

λdem(t) = exp{β1 ∗male+ α1 ∗ δ ∗ age+ ζ1 ∗ b} ∗ λdem0(t), (4.2)

and

λdeath(t) = exp{β2 ∗male+ α2 ∗ δ ∗ age+ ζ2 ∗ b} ∗ λdeath0(t), (4.3)

where the random effect variable b captures possible underlying health conditions that

affects both risks of dementia and death.

At different quantile levels, τ = 0.10, 0.15, 0.25, 0.35, 0.50, 0.75 and 0.85, of

the distribution of the IST scores, we report the estimates of parameters and their
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Table 4.5: Estimates of regression and dispersion parameters in the joint model of
Isaacs Set Test scores, dementia time and death time, at different levels of τ .

τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

η1
∗ 23.6644 24.5815 26.3962 27.8512 29.9704 33.1576 34.2338

η2
∗ 2.3521 2.5598 2.7014 2.6155 2.7481 3.9115 4.7353

δ∗ -4.0997 -3.8345 -3.6812 -3.4971 -3.6152 -3.7238 -3.4048

β1 -0.3512 -0.3519 -0.3552 -0.3435 -0.3553 -0.3329 -0.3700

β2
∗ 0.5184 0.5177 0.5107 0.5117 0.5026 0.5254 0.4905

α1
∗ -0.1410 -0.1522 -0.1362 -0.1499 -0.1310 -0.1501 -0.1415

α2
∗ -0.1117 -0.1200 -0.1085 -0.1188 -0.1032 -0.1193 -0.1128

ζ1
∗ 1.0829 1.0598 1.0843 1.1143 1.0896 1.0969 1.0892

ζ2
∗ 0.8489 0.8536 0.8663 0.8714 0.8815 0.8735 0.8833

%∗ 1.0011 1.3264 1.7901 2.0688 2.2201 1.7529 1.2501

σ2∗ 1.5611 1.5975 1.4169 1.4286 1.3870 1.3962 1.3570

*Estimates in the row are significant at the 5% level for all quantiles τ .

bootstrapped standard error, lower and upper limits of the 95% confidence intervals

in Table 4.5 and Table A.5 respectively. As expected, estimates of parameters are

different at different quantiles. It can be seen that the estimates of the effect of

CEP are significantly positive indicating subjects who received higher education get

higher Isaacs Set Test scores than those did not finish their primary school. As

subjects getting older, they perform worse in Isaacs Set Tests and have higher risks

of dementia and death. Almost all effects of risk factors are significant except for
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the effect of male on the dementia. Negative estimates of β1 suggest that males are

less likely to develop dementia than females but in an insignificant manner. Males

have higher risk of death than females. The estimates of the variance of the random

effects, σ2, are significantly larger than zero, indicating some common underlying

health conditions that strongly connect with both dementia and death. Further, the

estimates of ζ1 and ζ2 are significantly larger than zero, suggesting a strong positive

dependence between death and dementia.

4.2.3 Joint model of IST, dementia, death and dependency

Since the status of dependency, death and the disease of dementia are highly corre-

lated, we take the dependency into our consideration in analysing the paquid dataset.

The status of dependency were recorded at each visit, however the status changes

might happen between two visits, making the change of the dependency status as an

asymptomatic event with interval-censored times. We define another event as the first

status change of dependency from non-severe (HIER = 0, 1, 2) to severe (HIER = 3)

which can only happen between two visits. Without loss of generality, we set the ini-

tial ages as the very first monitoring time and the status of dependency at entry for

all subjects were non-severe. The interval time points are obtained by the same way

as those for dementia. The Cox proportional hazard sub-model for the risk of severe

dependency thus be written as

λden(t) = exp{β3 ∗male+ α3 ∗ δ ∗ age+ ζ3 ∗ b} ∗ λden0(t). (4.4)

Estimation results for the joint analysis of longitudinal IST , dementia, dependency

and death are reported in Tables 4.6 and A.6. At all specified levels of quantile, males

are at lower risk of severe dependency than women but the effect is insignificant.
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Table 4.6: Estimates of regression and dispersion parameters in the joint model of
Isaacs Set Test scores, dementia time, death time and dependency status, at different
levels of τ .

τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

η1
∗ 23.6521 24.5827 26.3963 27.8508 29.9732 33.1842 34.2020

η2
∗ 2.3596 2.5601 2.7019 2.6158 2.7485 3.9276 4.7310

δ∗ -4.0947 -3.8353 -3.6815 -3.4968 -3.6172 -3.7552 -3.3843

β1
∗ -0.5231 -0.5462 -0.5466 -0.5115 -0.5088 -0.5526 -0.5305

β2
∗ 0.4634 0.4605 0.4369 0.4795 0.4657 0.4608 0.4399

β3 -0.2252 -0.2378 -0.2459 -0.2011 -0.2073 -0.2394 -0.2465

α1
∗ -0.1065 -0.1195 -0.1107 -0.1286 -0.1165 -0.1219 -0.1162

α2
∗ -0.0847 -0.0937 -0.0858 -0.1019 -0.0931 -0.0977 -0.0905

α3
∗ -0.0965 -0.1089 -0.0990 -0.1171 -0.1048 -0.1107 -0.1042

ζ1
∗ 1.7782 1.8045 1.7321 1.7760 1.7571 1.8048 1.7096

ζ2
∗ 0.8259 0.8418 0.8340 0.8181 0.8154 0.7992 0.8419

ζ3
∗ 1.7542 1.7624 1.7176 1.7425 1.7396 1.7575 1.7052

%∗ 1.0011 1.3264 1.7901 2.0688 2.2201 1.7529 1.2500

σ2∗ 1.5873 1.5600 1.5426 1.6164 1.4909 1.5759 1.4770

*Estimates in the row are significant at the 5% level for all quantiles τ .

Ageing increases the risk of severe dependency significantly. Moreover, after adding

the dependency as an asymptomatic event in the joint model, the effects of male on

the risk of dementia become significant suggesting females have significantly higher

risks to develop dementia than males.
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Figure 4.6: Estimated baseline survival curve for dementia and death under the joint
model for the simulated paquid dataset.

Figures 4.6 and 4.7 show the estimated baseline survival curves of dementia, depen-

dency and death for above two joint models. It can be seen that there is a big drop

in survival probabilities for all events at follow-up time around 20. The risk of severe

dependency seems to be lower than the risk of dementia at any certain time point.
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Figure 4.7: Estimated baseline survival curve for dementia, dependency and death
under the joint model for the simulated paquid dataset.



Chapter 5

Discussion

In this thesis, we proposed a new joint model for a quantile of longitudinal observa-

tions and survival times of both asymptomatic and symptomatic events. We measured

the effects of covariates on the longitudinal response at a specified τth quantile by

assuming an ALD error in the longitudinal regression model. The survival and longi-

tudinal processes are connected through a common vector of time-varying covariates

to measure the effects of the longitudinal trend on the occurring times of events at

different quantiles of the longitudinal response distribution. We characterized the

dependence between and within asymptomatic and symptomatic events through a

random effect variable b and used different coefficients to capture the effects of un-

derlying unobserved conditions on the time of occurrence for different events. There

is no such proposals that have been previously made in the literature.

We proved that the non-parametric maximum likelihood estimators derived from

our proposed joint model satisfies the theories of consistency and normality. Our

proposed MCEM method performed well in computing the estimates of parameters

and baseline hazards for both the simulation studies and real data analysis. Our

joint model outperformed separate models for small samples where information is

93
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lacking and inference is difficult to draw, especially at latter times of a follow-up

study. By applying our joint model of quantiles of longitudinal measurements of a

psychometric test, development times of dementia, death times, and status change

times of dependency, we concluded more insights of the cognitive ageing among older

people.

There are many possible expansions of our proposed joint model. For example, in

the quantile regression submodel for longitudinal data, we can add a vector of random

effects, ui, to capture the heterogeneity between subjects and between repeated obser-

vations, resulting in a linear mixed quantile model. Furthermore, the random effects

in the longitudinal model also affects the survival events with the effects measured by

an unknown coefficient, say χ. We then have the form of proposed joint model as the

following


Yij = ηTXij + δTHi(t) + uTi Zij + εij = Q̃τij + εij

λk(ti; Q̃τti ,Wik, bi) = eβ
T
kWik+αkδTHi(ti)+χkuTi Zij+ζkbiλk0(ti).

where Zij is a vector of covariates associated with random effects ui. In addition, if

the longitudinal response is count or binary, a generalized linear quantile model would

be more appropriate for the longitudinal outcome, such as Poisson or logistic models.

The survival part of our proposed joint model can be reduced to contain only

interval-censored events or only right-censored (competing) events to accommodate

problems in real world survival analysis. We can include more than one terminal

events in the joint model with the study ended for the occurrence of any one of them.

Also, the joint model can be expanded by adding other types of events, such as left-

censored events, truncated events, events that can be reoccurred during the follow-up,

and so on. Another interesting extension of our proposed model is to include multi-
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stage or multi-level events with the development of stages happened in an interval of

time. For example, for the stages 0, I, II, III, and IV of a cancer, a latter stage

of the cancer censors the previous stage and the change time of stage is observed

between two examinations. By adding a terminal event, the other events including

the multi-stage event will be censored by the occurrence of the terminal event no

matter what stage the subject is at (e.g. death will censor all stages of a cancer). Our

proposed model can also be modified to deal with recurring events.

With the fitted joint model and all its expansion forms, we can do the dynamic

predictions for future events of interest by updating the event history. Compared to

other joint methods in the literature, our model has the flexibility to choose a level of

quantile for the longitudinal response and use the corresponding model for prediction.

For example, if the latest longitudinal measurement falls in the first quarter of the

distribution, we can set τ = 0.25 to fit the joint model and then perform the dynamic

prediction and/or detecting individuals with high risk scores. Moreover, the quantile

level τ can be changed with time and newly updated history including newly measured

longitudinal outcome.
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Appendix

Table A.1: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 150 and at three quantile levels τ = 0.25, 0.50 and 0.85, where the
longitudinal error follows a standard normal distribution.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

150 0.25 η1 0.005 0.056 0.057 0.962 0.000 0.046 0.038 0.874

η2 -0.004 0.051 0.051 0.943 0.000 0.047 0.038 0.862

δ 0.007 0.048 0.047 0.935 0.000 0.013 0.011 0.841

β1 0.035 0.124 0.131 0.956 -0.073 0.116 0.115 0.891

β2 0.044 0.136 0.134 0.934 -0.044 0.124 0.122 0.929

β3 0.002 0.135 0.131 0.952 -0.050 0.113 0.112 0.912

β4 0.011 0.118 0.116 0.961 -0.006 0.115 0.116 0.953

α1 -0.003 0.107 0.105 0.930 -0.023 0.099 0.080 0.877

α2 -0.058 0.119 0.121 0.926 -0.069 0.117 0.066 0.665

α3 -0.012 0.147 0.144 0.954 -0.063 0.115 0.105 0.857

α4 0.011 0.120 0.119 0.932 -0.011 0.112 0.105 0.931

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

ζ1 -0.013 0.158 0.163 0.934

ζ2 0.013 0.179 0.182 0.955

ζ3 -0.099 0.156 0.162 0.934

ζ4 -0.023 0.169 0.171 0.951

%

σ2 -0.014 0.054 0.056 0.975

150 0.50 η1 0.000 0.043 0.040 0.941 0.001 0.043 0.035 0.870

η2 -0.011 0.048 0.044 0.924 0.000 0.043 0.035 0.885

δ 0.003 0.042 0.042 0.932 0.000 0.012 0.010 0.846

β1 0.058 0.145 0.148 0.915 -0.069 0.115 0.115 0.896

β2 0.058 0.145 0.140 0.924 -0.043 0.126 0.122 0.919

β3 -0.026 0.112 0.116 0.949 -0.047 0.118 0.111 0.901

β4 0.027 0.127 0.130 0.941 -0.014 0.117 0.115 0.942

α1 0.006 0.102 0.107 0.958 -0.023 0.107 0.081 0.850

α2 -0.062 0.129 0.127 0.927 -0.066 0.110 0.067 0.692

α3 -0.009 0.134 0.135 0.958 -0.065 0.112 0.105 0.870

α4 0.035 0.124 0.131 0.966 -0.009 0.110 0.105 0.939

ζ1 0.012 0.143 0.144 0.924

ζ2 0.024 0.199 0.198 0.932

ζ3 -0.131 0.160 0.171 0.937

ζ4 0.017 0.183 0.181 0.949

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

%

σ2 -0.009 0.049 0.048 0.941

150 0.85 η1 0.009 0.060 0.060 0.964 -0.002 0.050 0.040 0.868

η2 -0.001 0.064 0.067 0.973 -0.001 0.053 0.042 0.853

δ 0.006 0.048 0.047 0.939 0.000 0.015 0.013 0.833

β1 0.042 0.126 0.127 0.935 -0.069 0.118 0.115 0.885

β2 0.056 0.129 0.128 0.937 -0.043 0.123 0.122 0.935

β3 -0.012 0.125 0.122 0.951 -0.049 0.117 0.111 0.902

β4 -0.001 0.137 0.131 0.944 -0.008 0.117 0.115 0.947

α1 -0.002 0.107 0.103 0.923 -0.023 0.102 0.080 0.857

α2 -0.056 0.126 0.127 0.928 -0.073 0.115 0.066 0.649

α3 -0.003 0.141 0.141 0.953 -0.065 0.119 0.105 0.857

α4 0.011 0.108 0.111 0.951 -0.009 0.112 0.105 0.930

ζ1 -0.001 0.153 0.154 0.945

ζ2 0.031 0.175 0.175 0.953

ζ3 -0.080 0.178 0.179 0.921

ζ4 -0.003 0.183 0.179 0.957

%

σ2 -0.008 0.051 0.051 0.958
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Table A.2: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 300 and at three quantile levels τ = 0.25, 0.50 and 0.85, where the
longitudinal error follows a standard normal distribution.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

300 0.25 η1 0.003 0.039 0.040 0.972 0.000 0.031 0.033 0.959

η2 -0.003 0.036 0.035 0.937 0.000 0.032 0.032 0.944

δ 0.006 0.034 0.034 0.935 0.000 0.009 0.009 0.933

β1 0.043 0.094 0.091 0.908 -0.079 0.083 0.080 0.810

β2 0.020 0.105 0.106 0.941 -0.057 0.087 0.084 0.875

β3 -0.010 0.083 0.081 0.946 -0.052 0.080 0.077 0.882

β4 0.004 0.089 0.090 0.961 -0.012 0.081 0.080 0.949

α1 -0.025 0.093 0.093 0.930 -0.041 0.083 0.053 0.778

α2 -0.096 0.102 0.100 0.935 -0.108 0.097 0.043 0.417

α3 -0.022 0.085 0.086 0.935 -0.080 0.080 0.071 0.743

α4 0.001 0.090 0.089 0.969 -0.017 0.079 0.072 0.917

ζ1 0.003 0.114 0.117 0.959

ζ2 0.030 0.128 0.127 0.947

ζ3 -0.077 0.108 0.115 0.929

ζ4 -0.009 0.132 0.131 0.951

%

σ2 -0.020 0.039 0.039 0.948

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

300 0.50 η1 0.004 0.036 0.036 0.953 -0.001 0.029 0.030 0.952

η2 0.003 0.033 0.033 0.943 -0.001 0.030 0.030 0.947

δ 0.003 0.029 0.030 0.936 0.000 0.009 0.008 0.924

β1 0.028 0.088 0.089 0.937 -0.082 0.081 0.080 0.809

β2 0.010 0.104 0.107 0.964 -0.050 0.088 0.085 0.903

β3 -0.028 0.086 0.082 0.919 -0.053 0.081 0.077 0.882

β4 0.001 0.089 0.088 0.968 -0.012 0.082 0.080 0.934

α1 -0.027 0.092 0.089 0.924 -0.045 0.081 0.053 0.765

α2 -0.098 0.093 0.094 0.933 -0.108 0.095 0.043 0.416

α3 -0.016 0.090 0.088 0.950 -0.081 0.074 0.071 0.764

α4 0.006 0.092 0.090 0.947 -0.019 0.079 0.072 0.932

ζ1 -0.006 0.094 0.098 0.956

ζ2 0.034 0.117 0.117 0.931

ζ3 -0.080 0.104 0.105 0.916

ζ4 -0.011 0.117 0.118 0.943

%

σ2 -0.025 0.035 0.034 0.912

300 0.85 η1 0.000 0.038 0.037 0.945 0.001 0.037 0.037 0.948

η2 0.002 0.037 0.037 0.941 0.000 0.037 0.036 0.937

δ 0.001 0.031 0.030 0.943 0.000 0.010 0.009 0.898

β1 0.027 0.094 0.096 0.946 -0.081 0.083 0.080 0.797

β2 0.016 0.101 0.104 0.971 -0.049 0.090 0.084 0.887

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

β3 -0.017 0.083 0.081 0.962 -0.053 0.078 0.077 0.873

β4 0.000 0.081 0.080 0.961 -0.009 0.082 0.080 0.938

α1 -0.026 0.098 0.097 0.923 -0.042 0.082 0.053 0.761

α2 -0.084 0.101 0.102 0.937 -0.101 0.094 0.043 0.467

α3 -0.018 0.078 0.080 0.953 -0.076 0.078 0.072 0.751

α4 0.002 0.087 0.088 0.950 -0.015 0.078 0.072 0.926

ζ1 -0.006 0.101 0.102 0.945

ζ2 0.026 0.129 0.130 0.943

ζ3 -0.079 0.109 0.110 0.922

ζ4 -0.008 0.132 0.131 0.938

%

σ2 -0.023 0.035 0.035 0.933
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Table A.3: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 150 and at three quantile levels τ = 0.25, 0.50 and 0.85, where the
longitudinal error follows a standard normal distribution and the last symptomatic
event is terminal.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

150 0.25 η1 0.006 0.057 0.055 0.943 -0.001 0.045 0.038 0.869

η2 0.001 0.059 0.060 0.965 -0.003 0.046 0.037 0.855

δ 0.006 0.057 0.056 0.934 -0.001 0.014 0.011 0.823

β1 0.077 0.165 0.163 0.926 -0.055 0.139 0.134 0.912

β2 0.070 0.171 0.187 0.947 -0.016 0.152 0.151 0.952

β3 0.012 0.166 0.169 0.952 -0.041 0.143 0.139 0.929

β4 0.025 0.132 0.132 0.943 -0.011 0.122 0.115 0.932

α1 0.056 0.158 0.155 0.930 -0.017 0.149 0.147 0.942

α2 0.036 0.154 0.156 0.957 -0.010 0.143 0.141 0.954

α3 0.011 0.191 0.181 0.955 -0.047 0.166 0.160 0.918

α4 0.006 0.115 0.113 0.950 -0.005 0.108 0.105 0.941

ζ1 0.037 0.194 0.208 0.961

ζ2 0.033 0.213 0.217 0.970

ζ3 -0.045 0.212 0.193 0.936

ζ4 -0.028 0.193 0.204 0.948

%

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

σ2 -0.006 0.049 0.051 0.965

150 0.50 η1 0.004 0.058 0.055 0.945 -0.001 0.041 0.035 0.886

η2 0.004 0.051 0.047 0.946 0.000 0.043 0.035 0.859

δ 0.008 0.062 0.062 0.944 0.000 0.012 0.010 0.844

β1 0.065 0.168 0.182 0.940 -0.049 0.139 0.135 0.914

β2 0.049 0.175 0.182 0.953 -0.029 0.147 0.149 0.948

β3 0.001 0.160 0.168 0.961 -0.032 0.144 0.139 0.931

β4 0.011 0.118 0.119 0.954 -0.002 0.117 0.115 0.944

α1 0.027 0.167 0.163 0.948 -0.022 0.146 0.147 0.946

α2 0.039 0.160 0.156 0.951 -0.018 0.138 0.140 0.942

α3 -0.001 0.179 0.170 0.943 -0.056 0.170 0.159 0.895

α4 0.018 0.127 0.121 0.933 -0.007 0.107 0.105 0.945

ζ1 0.020 0.193 0.198 0.945

ζ2 0.077 0.224 0.222 0.940

ζ3 -0.040 0.201 0.206 0.956

ζ4 -0.024 0.174 0.174 0.954

%

σ2 -0.001 0.045 0.048 0.965

150 0.85 η1 -0.005 0.067 0.065 0.955 -0.001 0.053 0.040 0.840

η2 -0.005 0.057 0.057 0.954 -0.001 0.051 0.042 0.877

δ -0.002 0.066 0.064 0.920 -0.003 0.015 0.012 0.818

β1 0.049 0.152 0.175 0.953 -0.059 0.137 0.134 0.902

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

β2 0.043 0.173 0.182 0.954 -0.021 0.155 0.150 0.943

β3 0.008 0.156 0.147 0.935 -0.039 0.145 0.140 0.930

β4 0.008 0.113 0.108 0.925 -0.002 0.125 0.116 0.928

α1 0.045 0.174 0.152 0.927 -0.020 0.153 0.147 0.931

α2 0.046 0.163 0.192 0.968 -0.012 0.139 0.141 0.941

α3 0.018 0.173 0.172 0.945 -0.047 0.168 0.159 0.916

α4 0.024 0.132 0.128 0.945 -0.008 0.111 0.105 0.932

ζ1 0.039 0.190 0.197 0.952

ζ2 0.040 0.240 0.236 0.961

ζ3 -0.035 0.189 0.190 0.960

ζ4 -0.048 0.184 0.209 0.974

%

σ2 -0.007 0.044 0.044 0.965
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Table A.4: Biases (Bias), empirical standard deviations (SD) over 1000 simulations,
averaged Bootstrap standard errors (SE) and coverage probabilities (CP) of the true
value based on the 95% CI’s for the estimates of parameters using our proposed joint
model and separate models with fixed effects are reported. This table lists the results
of sample size n = 300 and at three quantile levels τ = 0.25, 0.50 and 0.85, where the
longitudinal error follows a standard normal distribution and the last symptomatic
event is terminal.

Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

300 0.25 η1 -0.004 0.041 0.041 0.950 -0.004 0.032 0.033 0.951

η2 -0.003 0.037 0.035 0.936 0.000 0.033 0.032 0.940

δ 0.003 0.038 0.039 0.964 0.000 0.009 0.009 0.917

β1 0.018 0.108 0.114 0.963 -0.061 0.095 0.093 0.882

β2 0.010 0.122 0.120 0.961 -0.035 0.104 0.104 0.936

β3 -0.004 0.109 0.109 0.955 -0.046 0.100 0.097 0.905

β4 0.003 0.087 0.090 0.958 -0.012 0.078 0.080 0.952

α1 0.010 0.103 0.101 0.948 -0.025 0.103 0.101 0.940

α2 0.012 0.102 0.105 0.946 -0.020 0.098 0.097 0.941

α3 -0.005 0.124 0.115 0.935 -0.064 0.110 0.109 0.903

α4 -0.008 0.093 0.097 0.966 -0.015 0.078 0.072 0.929

ζ1 -0.011 0.136 0.136 0.945

ζ2 0.028 0.149 0.149 0.944

ζ3 -0.039 0.133 0.131 0.935

ζ4 -0.027 0.119 0.119 0.932

%

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

σ2 -0.023 0.032 0.033 0.920

300 0.50 η1 -0.002 0.038 0.038 0.940 0.001 0.030 0.030 0.949

η2 0.003 0.035 0.035 0.953 -0.001 0.030 0.030 0.948

δ 0.002 0.035 0.034 0.934 0.000 0.009 0.008 0.921

β1 0.028 0.110 0.110 0.932 -0.061 0.095 0.093 0.882

β2 0.038 0.121 0.120 0.935 -0.037 0.106 0.104 0.928

β3 -0.012 0.098 0.102 0.955 -0.043 0.100 0.097 0.914

β4 -0.009 0.077 0.078 0.951 -0.009 0.082 0.080 0.932

α1 0.006 0.109 0.102 0.953 -0.017 0.102 0.101 0.934

α2 0.021 0.105 0.111 0.964 -0.025 0.099 0.097 0.940

α3 0.001 0.122 0.110 0.938 -0.066 0.111 0.108 0.877

α4 -0.006 0.091 0.087 0.958 -0.015 0.077 0.072 0.933

ζ1 -0.003 0.137 0.137 0.946

ζ2 -0.034 0.139 0.123 0.921

ζ3 -0.048 0.142 0.134 0.927

ζ4 -0.030 0.128 0.129 0.944

%

σ2 -0.021 0.032 0.032 0.907

300 0.85 η1 0.001 0.049 0.046 0.950 -0.004 0.037 0.037 0.945

η2 0.004 0.042 0.043 0.960 0.002 0.036 0.036 0.951

δ -0.006 0.042 0.042 0.944 0.001 0.010 0.009 0.897

β1 0.031 0.113 0.123 0.969 -0.066 0.098 0.093 0.868

Continued on next page
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Joint Model Separate Model

n τ Bias SD SE CP Bias SD SE CP

β2 0.041 0.124 0.131 0.933 -0.039 0.103 0.104 0.928

β3 -0.001 0.101 0.100 0.955 -0.043 0.104 0.097 0.904

β4 -0.010 0.081 0.089 0.960 -0.010 0.080 0.080 0.948

α1 0.015 0.110 0.100 0.935 -0.027 0.100 0.101 0.935

α2 0.022 0.104 0.095 0.927 -0.019 0.096 0.097 0.929

α3 0.016 0.126 0.128 0.921 -0.066 0.108 0.108 0.887

α4 0.017 0.094 0.100 0.954 -0.012 0.077 0.072 0.926

ζ1 0.016 0.138 0.137 0.950

ζ2 0.039 0.154 0.157 0.935

ζ3 -0.021 0.139 0.135 0.938

ζ4 -0.028 0.127 0.129 0.945

%

σ2 -0.018 0.029 0.027 0.902
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Figure A.1: The estimation of baseline survival functions average over 1000 simula-
tions for a sample size of n = 150, τ = 0.50 and ALD distributed longitudinal response
variable.

Figure A.2: The estimation of baseline survival functions average over 1000 simula-
tions for a sample size of n = 150, τ = 0.85 and ALD distributed longitudinal response
variable.
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Figure A.3: The estimation of baseline survival functions average over 1000 simula-
tions for a sample size of n = 300, τ = 0.25 and ALD distributed longitudinal response
variable.

Figure A.4: The estimation of baseline survival functions average over 1000 simula-
tions for a sample size of n = 300, τ = 0.50 and ALD distributed longitudinal response
variable.
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Figure A.5: The estimation of baseline survival functions average over 1000 simula-
tions for a sample size of n = 300, τ = 0.85 and ALD distributed longitudinal response
variable.

Figure A.6: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 150, τ = 0.25 and ALD distributed
longitudinal response variable.
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Figure A.7: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 150, τ = 0.50 and ALD distributed
longitudinal response variable.

Figure A.8: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 150, τ = 0.85 and ALD distributed
longitudinal response variable.



115

Figure A.9: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 300, τ = 0.25 and ALD distributed
longitudinal response variable.

Figure A.10: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 300, τ = 0.50 and ALD distributed
longitudinal response variable.
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Figure A.11: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 300, τ = 0.85 and ALD distributed
longitudinal response variable.

Figure A.12: The estimation of baseline survival functions average over 1000 simu-
lations for a sample size of n = 150, τ = 0.25 and Normal distributed longitudinal
response variable.
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Figure A.13: The estimation of baseline survival functions average over 1000 simu-
lations for a sample size of n = 150, τ = 0.50 and Normal distributed longitudinal
response variable.

Figure A.14: The estimation of baseline survival functions average over 1000 simu-
lations for a sample size of n = 150, τ = 0.85 and Normal distributed longitudinal
response variable.
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Figure A.15: The estimation of baseline survival functions average over 1000 simu-
lations for a sample size of n = 300, τ = 0.25 and Normal distributed longitudinal
response variable.

Figure A.16: The estimation of baseline survival functions average over 1000 simu-
lations for a sample size of n = 300, τ = 0.50 and Normal distributed longitudinal
response variable.
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Figure A.17: The estimation of baseline survival functions average over 1000 simu-
lations for a sample size of n = 300, τ = 0.85 and Normal distributed longitudinal
response variable.

Figure A.18: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 150, τ = 0.25 and Normal distributed
longitudinal response variable.
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Figure A.19: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 150, τ = 0.50 and Normal distributed
longitudinal response variable.

Figure A.20: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 150, τ = 0.85 and Normal distributed
longitudinal response variable.
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Figure A.21: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 300, τ = 0.25 and Normal distributed
longitudinal response variable.

Figure A.22: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 300, τ = 0.50 and Normal distributed
longitudinal response variable.
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Figure A.23: The estimation of semi-competing baseline survival functions average
over 1000 simulations for a sample size of n = 300, τ = 0.85 and Normal distributed
longitudinal response variable.
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Table A.5: Estimates of regression and dispersion parameters with their bootstrapped standard errors (SD) and 95%
confidence intervals (LL: lower limit; UL: upper limit) for the joint model of Isaacs Set Test scores, dementia time and
death time, at different levels of τ .

τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

η1
∗ 23.6644 24.5815 26.3962 27.8512 29.9704 33.1576 34.2338

SD 0.3717 0.3757 0.3565 0.3026 0.2763 0.2401 0.3486

LL 22.9359 23.8452 25.6975 27.2581 29.4287 32.6870 33.5506

UL 24.3929 25.3179 27.0949 28.4443 30.5120 33.6281 34.9171

η2
∗ 2.3521 2.5598 2.7014 2.6155 2.7481 3.9115 4.7353

SD 0.4275 0.4473 0.4071 0.3502 0.3305 0.3335 0.4000

LL 1.5141 1.6831 1.9035 1.9292 2.1002 3.2579 3.9513

UL 3.1900 3.4364 3.4994 3.3018 3.3959 4.5651 5.5192

δ∗ -4.0997 -3.8345 -3.6812 -3.4971 -3.6152 -3.7238 -3.4048

SD 0.0833 0.0919 0.1031 0.1104 0.1150 0.1078 0.0986

LL -4.2630 -4.0146 -3.8832 -3.7136 -3.8405 -3.9351 -3.5979

UL -3.9364 -3.6544 -3.4792 -3.2806 -3.3898 -3.5125 -3.2116

Continued on next page
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τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

β1 -0.3512 -0.3519 -0.3552 -0.3435 -0.3553 -0.3329 -0.3700

SD 0.2614 0.2647 0.2778 0.2676 0.2801 0.2723 0.2755

LL -0.8635 -0.8707 -0.8997 -0.8680 -0.9044 -0.8666 -0.9099

UL 0.1611 0.1669 0.1893 0.1811 0.1937 0.2009 0.1698

β2
∗ 0.5184 0.5177 0.5107 0.5117 0.5026 0.5254 0.4905

SD 0.1175 0.1195 0.1178 0.1171 0.1181 0.1179 0.1182

LL 0.2881 0.2836 0.2798 0.2822 0.2712 0.2942 0.2588

UL 0.7487 0.7519 0.7415 0.7412 0.7341 0.7566 0.7222

α1
∗ -0.1410 -0.1522 -0.1362 -0.1499 -0.1310 -0.1501 -0.1415

SD 0.0149 0.0160 0.0178 0.0180 0.0183 0.0170 0.0194

LL -0.1702 -0.1836 -0.1712 -0.1852 -0.1670 -0.1833 -0.1795

UL -0.1117 -0.1209 -0.1012 -0.1147 -0.0951 -0.1168 -0.1036

α2
∗ -0.1117 -0.1200 -0.1085 -0.1188 -0.1032 -0.1193 -0.1128

SD 0.0085 0.0091 0.0095 0.0102 0.0098 0.0094 0.0105

LL -0.1283 -0.1378 -0.1272 -0.1388 -0.1224 -0.1377 -0.1334

Continued on next page
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τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

UL -0.0950 -0.1022 -0.0899 -0.0987 -0.0840 -0.1009 -0.0922

ζ1
∗ 1.0829 1.0598 1.0843 1.1143 1.0896 1.0969 1.0892

SD 0.1128 0.1159 0.1250 0.1180 0.1262 0.1242 0.1279

LL 0.8617 0.8327 0.8394 0.8830 0.8422 0.8534 0.8385

UL 1.3040 1.2870 1.3293 1.3456 1.3369 1.3403 1.3398

ζ2
∗ 0.8489 0.8536 0.8663 0.8714 0.8815 0.8735 0.8833

SD 0.0880 0.0863 0.0937 0.0931 0.0943 0.0939 0.0964

LL 0.6764 0.6845 0.6826 0.6889 0.6966 0.6894 0.6943

UL 1.0214 1.0227 1.0499 1.0539 1.0663 1.0575 1.0723

%∗ 1.0011 1.3264 1.7901 2.0688 2.2201 1.7529 1.2501

SD 0.0232 0.0310 0.0403 0.0458 0.0501 0.0423 0.0318

LL 0.9557 1.2656 1.7111 1.9790 2.1219 1.6700 1.1877

UL 1.0465 1.3872 1.8692 2.1586 2.3183 1.8358 1.3124

σ2∗ 1.5611 1.5975 1.4169 1.4286 1.3870 1.3962 1.3570

Continued on next page
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τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

SD 0.7713 0.7892 0.6745 0.6829 0.6435 0.6703 0.6358

LL 0.0494 0.0501 0.0949 0.0902 0.1258 0.0824 0.1108

UL 3.0727 3.2000 2.7390 2.7670 2.6483 2.7100 2.6033

*Estimates in the row are significant at the 5% level for all quantiles τ .
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Table A.6: Estimates of regression and dispersion parameters with their bootstrapped standard errors (SD) and 95%
confidence intervals (LL: lower limit; UL: upper limit) for the joint model of Isaacs Set Test scores, dementia time, death
time and dependency status, at different levels of τ .

τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

η1
∗ 23.6521 24.5827 26.3963 27.8508 29.9732 33.1842 34.2020

SD 0.3712 0.3756 0.3565 0.3027 0.2766 0.2374 0.3522

LL 22.9244 23.8465 25.6976 27.2575 29.4311 32.7189 33.5117

UL 24.3797 25.3189 27.0950 28.4440 30.5153 33.6495 34.8923

η2
∗ 2.3596 2.5601 2.7019 2.6158 2.7485 3.9276 4.7310

SD 0.4274 0.4472 0.4071 0.3502 0.3308 0.3297 0.4040

LL 1.5219 1.6836 1.9040 1.9294 2.1002 3.2814 3.9392

UL 3.1974 3.4366 3.4998 3.3023 3.3968 4.5739 5.5229

δ∗ -4.0947 -3.8353 -3.6815 -3.4968 -3.6172 -3.7552 -3.3843

SD 0.0838 0.0914 0.1030 0.1098 0.1156 0.1072 0.0995

LL -4.2591 -4.0144 -3.8834 -3.7120 -3.8438 -3.9653 -3.5793

UL -3.9304 -3.6562 -3.4795 -3.2815 -3.3907 -3.5451 -3.1892

Continued on next page
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τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

β1
∗ -0.5231 -0.5462 -0.5466 -0.5115 -0.5088 -0.5526 -0.5305

SD 0.1979 0.1919 0.1996 0.1969 0.2042 0.1892 0.2082

LL -0.9110 -0.9224 -0.9378 -0.8974 -0.9091 -0.9234 -0.9386

UL -0.1352 -0.1700 -0.1553 -0.1255 -0.1085 -0.1817 -0.1224

β2
∗ 0.4634 0.4605 0.4369 0.4795 0.4657 0.4608 0.4399

SD 0.1237 0.1236 0.1224 0.1240 0.1220 0.1233 0.1241

LL 0.2208 0.2181 0.1970 0.2365 0.2266 0.2191 0.1966

UL 0.7059 0.7028 0.6767 0.7226 0.7047 0.7024 0.6832

β3 -0.2252 -0.2378 -0.2459 -0.2011 -0.2073 -0.2394 -0.2465

SD 0.1953 0.1869 0.2034 0.1865 0.2011 0.1808 0.2117

LL -0.6079 -0.6042 -0.6446 -0.5668 -0.6013 -0.5937 -0.6614

UL 0.1575 0.1286 0.1529 0.1645 0.1868 0.1149 0.1685

α1
∗ -0.1065 -0.1195 -0.1107 -0.1286 -0.1165 -0.1219 -0.1162

SD 0.0095 0.0101 0.0116 0.0114 0.0113 0.0103 0.0135

LL -0.1252 -0.1394 -0.1335 -0.1509 -0.1387 -0.1421 -0.1427

Continued on next page
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τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

UL -0.0878 -0.0996 -0.0880 -0.1062 -0.0943 -0.1017 -0.0896

α2
∗ -0.0847 -0.0937 -0.0858 -0.1019 -0.0931 -0.0977 -0.0905

SD 0.0068 0.0074 0.0079 0.0081 0.0079 0.0075 0.0087

LL -0.0980 -0.1081 -0.1013 -0.1177 -0.1086 -0.1125 -0.1076

UL -0.0714 -0.0793 -0.0703 -0.0861 -0.0776 -0.0829 -0.0733

α3
∗ -0.0965 -0.1089 -0.0990 -0.1171 -0.1048 -0.1107 -0.1042

SD 0.0092 0.0094 0.0096 0.0097 0.0105 0.0083 0.0127

LL -0.1146 -0.1273 -0.1178 -0.1361 -0.1253 -0.1270 -0.1291

UL -0.0785 -0.0905 -0.0802 -0.0981 -0.0842 -0.0944 -0.0793

ζ1
∗ 1.7782 1.8045 1.7321 1.7760 1.7571 1.8048 1.7096

SD 0.0512 0.0473 0.0506 0.0480 0.0521 0.0478 0.0592

LL 1.6778 1.7119 1.6330 1.6820 1.6550 1.7111 1.5936

UL 1.8786 1.8972 1.8312 1.8699 1.8592 1.8986 1.8257

ζ2
∗ 0.8259 0.8418 0.8340 0.8181 0.8154 0.7992 0.8419

SD 0.0722 0.0706 0.0737 0.0712 0.0748 0.0710 0.0760
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τ

0.10 0.15 0.25 0.35 0.50 0.75 0.85

LL 0.6843 0.7033 0.6895 0.6786 0.6688 0.6601 0.6929

UL 0.9675 0.9802 0.9785 0.9577 0.9620 0.9382 0.9908

ζ3
∗ 1.7542 1.7624 1.7176 1.7425 1.7396 1.7575 1.7052

SD 0.0648 0.0616 0.0662 0.0595 0.0625 0.0619 0.0691

LL 1.6271 1.6416 1.5877 1.6259 1.6171 1.6361 1.5698

UL 1.8813 1.8831 1.8474 1.8592 1.8622 1.8788 1.8407

%∗ 1.0011 1.3264 1.7901 2.0688 2.2201 1.7529 1.2500

SD 0.0234 0.0312 0.0407 0.0462 0.0502 0.0424 0.0319

LL 0.9551 1.2652 1.7104 1.9782 2.1217 1.6699 1.1875

UL 1.0470 1.3876 1.8698 2.1593 2.3185 1.8359 1.3126

σ2∗ 1.5873 1.5600 1.5426 1.6164 1.4909 1.5759 1.4770

SD 0.6894 0.6675 0.6687 0.7050 0.6388 0.6725 0.6415

LL 0.2360 0.2516 0.2320 0.2345 0.2389 0.2578 0.2196

UL 2.9385 2.8684 2.8531 2.9983 2.7429 2.8940 2.7345

*Estimates in the row are significant at the 5% level for all quantiles τ .


