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ABSTRACT 

Water Alternating Gas (WAG) injection, commonly used in light to medium crude oil 

reservoirs, is a well-established technique for enhanced oil recovery combining the effects of 

two conventional oil recovery processes - water injection and gas injection. Immiscible water 

alternating gas (IWAG) injection is considered as an appropriate injection type dependent on 

economical and productive aspects. During the IWAG process, injected gas and oil are always 

in separate phases due to low-pressure maintenance, and it takes advantages in improving the 

stability displacement front in the macroscopic sweep as well as enhancing microscopic sweep 

in narrow pores. In order to check the optimum operational condition in which to apply IWAG 

injection at the field-scale, this injection process is usually tested as a core-flooding 

experiment, which is time-consuming and expensive. In this research, a model of core-scale 

IWAG injection is introduced with validation by Double Displacement Process (DDP) 

experimental data from previous research. Response Surface Methodology (RSM) with CCD 

design is used to investigate the impact of five operational parameters on the volume of oil 

recovery. Particle Swarm Optimization (PSO) is employed to determine the optimum 

combination of operational parameters to achieve the highest oil recovery factor for each 

operation scenario. The results indicate that all the main operational parameters, including 

timing, ratio, flow rate, slug size, and sequence, are significant for the response surface model. 

The PSO models reach good convergent results, with the volume of oil recovery for each case 

as 0.613, 0.650, and 0.666 pore volume. The performance of optimum IWAG injection is 

significantly better than only water-flooding or gas injection, with results approximately 5% 

higher than water-flooding, similar to double displacement process (DDP), and approximately 

20% better than gas injection for the same operational conditions. These optimization tools 
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are recommended for further research of WAG injection, both the experimental and 

simulation processes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4  

ACKNOWLEDGMENTS 

I want to thank my family, who are always the most important part of my life. Their endless 

love and support gave me the strength to stay focus on completing this great research. 

 

It is an exclusive privilege of being supported and encouraged by my supervisor, Dr. Lesley 

A. James throughout my studies. She not only an enthusiastic advisor but also a great leader 

who trained me both academic skills and soft skills. 

 

I also acknowledge Hibernia Management & Development Company (HMDC), Natural 

Sciences and Engineering Research Council of Canada (NSERC) and School of Graduate 

Studies (SGS) for their financial support for my research and Schlumberger for providing the 

University with the reservoir simulation software package. My appreciation also goes to Mr. 

Mohammadreza, Mr. Langdon, and Dr. Saeed, for their technical and scientific support. 

 

Finally, I want to acknowledge all the people whom I did not mention above but inspire me 

to follow my dream.



5  

TABLE OF CONTENTS 

 

ABSTRACT ............................................................................................................................ 2 

ACKNOWLEDGMENTS ....................................................................................................... 4 

TABLE OF CONTENTS ........................................................................................................ 5 

LIST OF FIGURES ................................................................................................................. 8 

LIST OF TABLES ................................................................................................................ 11 

NOMENCLATURE .............................................................................................................. 12 

CHAPTER 1. INTRODUCTION .......................................................................................... 15 

1.1 Hibernia Field Introduction................................................................................................. 15 

1.2 Oil Recovery Processes Overview ...................................................................................... 17 

1.3 Optimization Theory Background ...................................................................................... 19 

1.4 Research Objectives ............................................................................................................ 20 

1.5 Thesis Outline ..................................................................................................................... 21 

CHAPTER 2. LITERATURE REVIEW ............................................................................... 23 

2.1 Water Alternating Gas (WAG) Injection ............................................................................ 23 

2.2.1 WAG Description ........................................................................................................ 23 

2.1.2 WAG Recovery Mechanism ........................................................................................ 25 

2.1.3 WAG Classification ..................................................................................................... 29 

2.2.4 WAG Worldwide Applications.................................................................................... 32 



6  

2.2 Immiscible WAG Injection Overview ................................................................................ 35 

2.2.1 Critical Operational Parameters ................................................................................... 35 

2.2.2 Core-scale IWAG injection screening ......................................................................... 52 

2.3 Double Displacement Process (DDP) ................................................................................. 57 

2.4 Oil and Gas Production Optimization ................................................................................. 60 

2.4.1 Response Surface Methodology (RSM) ...................................................................... 61 

2.4.2 Computational Optimization Algorithms .................................................................... 71 

CHAPTER 3. METHODOLOGY ......................................................................................... 86 

3.1 Numerical Simulation Models ............................................................................................ 86 

3.1.1 Rock Properties ............................................................................................................ 86 

3.1.2 Fluids Properties .......................................................................................................... 88 

3.1.3 SCAL Properties .......................................................................................................... 89 

3.1.4 Models Description ...................................................................................................... 92 

3.2 Response Surface Methodology (RSM) ............................................................................. 97 

3.3 Particle Swarm Optimization (PSO) ................................................................................... 99 

CHAPTER 4. RESULTS AND DISCUSSION .................................................................. 102 

4.1 Composite Core Simulation Model Validation................................................................. 103 

4.2 Comparison of DDP Simulation and IWAG Simulation .................................................. 106 

4.3 Immiscible WAG Injection Optimization ......................................................................... 108 

4.3.1 Response Surface Methodology (RSM) .................................................................... 108 



7  

4.3.2 Particle Swarm Optimization (PSO) .......................................................................... 114 

4.4 Optimum IWAG Injection Oil Recovery Efficiency Comparison ................................... 119 

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS....................................... 122 

5.1 Summary and Conclusions ............................................................................................... 122 

5.2 Recommendations ............................................................................................................. 124 

REFERENCES .................................................................................................................... 125 

APPENDIX ......................................................................................................................... 147 

A. ECLIPSE Data File of Double Displacement Process (DDP) Model ................................ 147 

B. ECLIPSE Data File of Immiscible Water Alternating Gas (IWAG) Injection Model....... 159 

C. Input Data for Central Composite Design (CCD) Model .................................................. 171 

 



8  

LIST OF FIGURES 

Fig. 1-1: Hibernia oil field location map ..............................................................................15 

Fig. 1-2: Hibernia Field reservoirs stratigraphic column .....................................................16 

Fig. 1-3: The classification of reservoir oil recovery ...........................................................18 

Fig. 2-1: Schematic of the WAG process .............................................................................25 

Fig. 2-2: Illustration of both microscopic sweep and macroscopic sweep improvement during 

gas injection in the WAG process ........................................................................................29 

Fig. 2-3: WAG projects classification over 59 fields ...........................................................33 

Fig. 2-4: WAG projects application in the North Sea ..........................................................34 

Fig. 2-5: Injection gas used in 59 WAG projects .................................................................37 

Fig. 2-6: The recovery of water flooding, WAG flooding, and total as a function of salinity

 ..............................................................................................................................................38 

Fig. 2-7: Comparison of oil recovery between different processes on Grey sandstone .......39 

Fig. 2-8: WAG recovery efficiency at different starting points ...........................................41 

Fig. 2-9: Total fluid injection (PV) vs. recovery factor (% OOIP) at different stages of oil 

saturation ..............................................................................................................................41 

Fig. 2-10: Comparison between different WAG ratios for the water-wet system (a), and the 

oil-wet system (b) .................................................................................................................43 

Fig. 2-11: Effect of total injected fluid on oil recovery factor, (a) varying rock permeability, 

and (b) varying brine salinity ...............................................................................................46 

Fig. 2-12: (a) Gas breakthrough at different WAG half-cycle slug sizes (HCSS), and (b) Oil 

recovery per slug size ...........................................................................................................47 



9  

Fig. 2-13: Effect of flow rate on total oil recovery (a) and the effect of flow rate on oil viscosity 

(b) .........................................................................................................................................49 

Fig. 2-14: Effect of injection sequence on oil recovery .......................................................50 

Fig. 2-15: Recovery for (a) GAW and (b) WAG injection ..................................................51 

Fig. 2-16: Double displacement process ..............................................................................57 

Fig. 2-17: Model of central composite design (CCD) in three dimensions with factorial points 

(F), axial points (A) and center point (C) .............................................................................65 

Fig. 2-18: Central composite design classification for model of two-variables (a, b) and three-

variables (c) ..........................................................................................................................66 

Fig. 2-19: Box-Behnken design (BBD) for three variables ..................................................67 

Fig. 2-20: Basic velocity update mechanism in PSO ...........................................................76 

Fig. 3-1: The order of core plugs in composite core ............................................................87 

Fig. 3-2: Phase envelope diagram of recombined oil with Peng-Robinson EOS .................89 

Fig. 3-3: Corey estimated water-oil relative permeability....................................................90 

Fig. 3-4: Corey estimated gas-oil relative permeability .......................................................91  

Fig. 3-5: Water-Oil and Gas-Oil capillary pressure curves from centrifuge test on plug 10 (a) 

and plug 12 (b)......................................................................................................................92 

Fig. 3-6: (a) Composite core model for the DDP test with gas injected from the top and water 

injected from the bottom of the composite core, and (b) composite core model for IWAG with 

gas and water injected from the bottom of the composite core ............................................96 

Fig. 3-7: Response Surface Methodology Workflow ...........................................................98 

Fig. 3-8: Particle Swarm Optimization Workflow ...............................................................100 

Fig. 3-9: The movement of particles by the PSO model in MATLAB ................................101 



10  

Fig. 4-1: Simulation implementation workflow ...................................................................103 

Fig. 4-2: Post water-flooding process for DDP model .........................................................104 

Fig. 4-3: The volume of cumulative oil recovery by gas injection of DDP experiment ......105 

Fig. 4-4: Comparison between DDP simulation model and DDP experimental data after 2011 

PV of injected gas .................................................................................................................105 

Fig. 4-5: Comparison between DDP simulation model and optimum IWAG injection after 

post water-flooding lead to water cut equal 90% .................................................................107 

Fig. 4-6: ANOVA table for CCD-RSM application of IWAG injection model ..................108 

Fig. 4-7: The impact of operational parameters on oil recovery volume by RSM model from 

the ANOVA table .................................................................................................................109 

Fig. 4-8: The interaction between Ratio and Sequence ........................................................110 

Fig. 4-9: Reduced ANOVA table with only significant terms .............................................111 

Fig. 4-10: Adjusted and predicted R-square value between (a) including insignificant 

interaction terms and (b) without insignificant interaction terms ........................................111 

Fig. 4-11: ANOVA assumptions checking plots ..................................................................112 

Fig. 4-12: Particle Swarm Optimization (PSO) for 0.8 PV of IWAG injection ...................114 

Fig. 4-13: Particle Swarm Optimization (PSO) for 1 PV of IWAG injection ......................114 

Fig. 4-14: Particle Swarm Optimization (PSO) for 1.2 PV of IWAG injection ...................115 

Fig.4-15: Optimum IWAG injection for different volume of injected fluids

 ..............................................................................................................................................116

Fig. 4-16: Sensitivity analysis of IWAG operating parameters on oil recovery considering the 

PSO model ............................................................................................................................118 

Fig. 4-17: Comparison of different oil recovery techniques ................................................119 



11  

Fig. 4-18: Post water-flooding process as secondary recovery stage ...................................120 

Fig. 4-19: Comparison between the efficiency of optimum IWAG injection and Water 

injection ................................................................................................................................121 

LIST OF TABLES 

Table 2-1: Screening of core-scale IWAG injection through 18 experimental projects ......53 

Table 2-2: Applications of reviewed optimization techniques for WAG injection process .84 

Table 3-1: Horizontal core plugs properties .........................................................................87 

Table 3-2: Composition of equilibrium oil phase by flash ...................................................88 

Table 3-3: The range values of operational parameters for IWAG injection .......................97 

Table 3-4: The level of input parameters for CCD-RSM model ..........................................99 

Table 4-1: The optimum operational parameter of 1 PV of IWAG injection after post water-

flooding.................................................................................................................................106 

Table 4-2: Results of confirmation runs for the predicted model ........................................113 

Table 4-3: The optimum IWAG operational parameters by PSO and RSM ........................115 

Table 4-4: Comparison of the optimum IWAG operational parameters from the PSO model 

and the RSM model ..............................................................................................................117 

Table 4-5: Optimum operational parameters of IWAG injection after post water-flooding 120



12  

NOMENCLATURE 

 

ANOVA Analysis of Variance 

BBD Box-Behnken Design 

BV Bulk Volume 

C1 cognitive learning coefficient (PSO) 

C2 social learning coefficient (PSO) 

CCD Central Composite Design  

DDP Double Displacement Process 

DOE Design of Experiment 

EOR Enhanced Oil Recovery 

GA Genetic Algorithm  

GOR Gas-Oil Ratio 

HCPV Hydro-Carbon Pore Volume 

IFT Interfacial Tension 

IOIP Initial Oil in Place  

IRF Incremental Recovery Factor 

IWAG Immiscible Water Alternating Gas 

K Absolute Permeability 

Krg Relative Permeability of Gas 

Kro Relative Permeability of Oil 

Krw Relative Permeability of Water 

MBO Million Barrels of oil 



13  

MDT Modular Formation Dynamic Tester 

NPV Net Present Value 

OD Optimal Design 

OWC Oil Water Contact 

PSO Particle Swarm Optimization 

PV Pore Volume 

RSM Response Surface Methodology 

RF Recovery factor 

S Saturation 

SA Simulated Annealing 

Sor Residual Oil Saturation 

Swi Initial Water Saturation 

TVDss True Vertical Depth 

WAG Water Alternating Gas 

WF Water-Flooding 

tmax total number of iterations 

Vi Velocity of particle i in the PSO formulation 

µ viscosity 

ρ density 

φ porosity 

σ interfacial tension 

θ contact angle 

ω inertia weight in the PSO formulation 



14  

Subscripts 

c refers to critical saturation 

g refers to gas phase 

o refers to oil phase 

w refers to water phase 

 

 

 

 

 

 



15  

CHAPTER 1. INTRODUCTION 

1.1 Hibernia Field Introduction 

This research is focused on the Hibernia field, which is located 315 kilometers southeast of 

St. John’s, Newfoundland, Canada in 80 meters of water; it is one of the major developed oil 

fields offshore Newfoundland and Labrador [Lawrence et al., 2013]. The Hibernia field is 

extremely faulted combining various sand bars and fluvial channels, including two main 

reservoirs of Cretaceous age: the Hibernia reservoir at an average depth of 3700 meters and 

the Ben Nevis–Avalon (BNA) reservoir at a depth of 2400 meters. The first wildcat well was 

drilled in the Hibernia field in 1979 and more exploration wells were drilled in the next several 

years [Lawrence et al., 2013]. Most wells target an area of 200-meter thickness that has a high 

net to cross section of stacked, braided fluvial channels at the depth around 3700-3900 meters 

TVD. A few wells target the upper BNA shallow marine sand and estuarine reservoir at the 

depth roughly 2300 – 2500 meters TVD.      

 

Fig. 1-1: Hibernia oil field location map [Richards et al., 2010] 
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According to Wang et al., the Hibernia field was developed with 27 oil production wells, 18 

water injection wells, and six gas injection wells by the end of 2005. The cumulative oil 

production is almost 455 MBO by continuing applying all stages of exploration, expansion, 

and optimization on the field during this period [Wang et al., 2006].      

 

Fig. 1-2: Hibernia Field reservoirs stratigraphic column [Richards et al., 2010] 

As can be seen from the stratigraphic column, there are two main reservoirs in the Hibernia 

field. Most field production comes from the deeper pool, which is a high-quality, productive 

sandstone reservoir and extremely connected. The Hibernia formation is a combination of 

inter-distributary channels and major fluvial channels. 

Cores used for this research were obtained from the research of Wang et al., and all of them 

were collected from well B16-17 and distributed vertically with depth from 4039.83 m to 

4041.13 m. This zone of the reservoir is characterized as a mature sandstone, very fine to very 
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coarse grained, moderate to well-sorted. Its reservoir properties are good to excellent with 

porosity varying from 15 to 22% and permeability ranging from 500 to 5000 mD. The physical 

condition of the cores is well representative for this area with porosity and permeability typical 

of the observed reservoir.   

1.2 Oil Recovery Processes Overview 

Generally, a reservoir goes through these typical phases, including primary, secondary, and 

enhanced oil recovery (EOR) during the producing life [Nadeson, 2001]. The lengths of these 

stages are based on different particularly reservoirs will vary to optimize both productive as 

well as economic aspects.  

Primary recovery is the recovery process that depends mostly on the natural forces of the 

reservoir for the displacement of oil to be produced. These natural energies are solution gas 

drive, gas-cap drive, water influx, fluid/rock expansion, and gravity drainage. In real cases, 

all or a few natural forces are combined during the primary stage [Lake, 1989]. The primary 

process will be over when the reservoir pressure is decrease or the production volume drops 

due to weak natural forces; then the recovery process will move to the secondary stage. 

Secondary recovery employs the injection of water or gas into the reservoir to maintain or 

improve the natural energies inside to keep a high rate of oil production. The impact of gas 

injection could be used as gas-cap expansion and/or to sweep immiscible oil to the production 

well. However, it has been proven in real cases that water-flooding is more effective in 

comparison with gas injection as secondary recovery due to better volumetric sweep 

efficiency and economic convenience [Green and Willhite, 1998].   
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Fig. 1-3: The classification of reservoir oil recovery [Lake, 1989] 

After the primary and secondary recovery processes, in many cases, a vast residual oil volume 

remains in the reservoir, then EOR could be applied to recover more oil. EOR is applied after 

the secondary stage, typically using special fluids such as gas, chemicals, and thermal energy 

to displace additional oil [Sohrabi et al., 2001]. Thermal EOR is defined as injecting steam or 

hot water into the reservoir to improve the displacement efficiency as well as to reduce the 

viscosity of reservoir fluids to be recoverable, the thermal energy of the process is maintained 

by combusting reservoir oil [Lake, 1989]. Thermal EOR shows a remarkable advantage in 

thin reservoirs or heavy oil reservoirs [Hassan et al., 2018]. Chemical EOR is employed to 

improve the interaction between injected fluids and reservoir rock/oil to make a favorable 

environment for oil recoveries such as lowering interfacial tension (IFT), reducing oil 

viscosity, changing wettability or oil swelling. Typically, chemicals have been studied to for 
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EOR application, including alkalines, surfactants, polymers, and combinations of them 

[Sheng, 2011]. However, chemical EOR has proven itself as a technique that requires 

significant financial resources for field application. The double displacement process (DPP) 

is an EOR method that takes advantage of gravity drainage by injecting immiscible gas to 

create gas cap expansion after water-flooding [Fassihi and Gillham,1993].  

Water alternating gas (WAG) was proposed as an optimum EOR technique that could satisfy 

both technical and economic aspects of tertiary recovery due to the advantage of combining 

increased sweep efficiency by gas injection and controlling mobility ratio as well as 

stabilizing the front by water injection [Righi et al., 2004].  

WAG injection has been applied in many fields with remarkably positive results since the first 

field test in 1957 [Christensen et al., 1998]. WAG injection involves three-phase flow (gas, 

water, and oil) to decrease residual oil saturation and it is much more complicated to estimate 

its efficiency compared to just water or gas injection [Zhang et al., 2006]. Determination of 

the saturation path in the three-phase system is also much more complicated than the two-

phase model because of the different hysteresis effect [Righi et al., 2004]. Therefore, core-

flooding experiments are often employed to clearly understand any aspects relating to the 

WAG injection process before applying to field case studies. 

1.3 Optimization Theory Background 

The meaning of optimization can be defined as a process that seeks the optimum values of 

variables that lead to the optimal result through a condition function. From that statement, 

identifying the objects and the input parameter would affect the characteristic from design. 

The number of input variables makes a huge impact on the optimization problem 

exponentially, therefore, keeping the number of input parameters as low as possible would 



20  

simplify the optimization process. The relationship between optimization problems and input 

parameters can be either an experimental or numerical process [Cavazzuti, 2013]. 

With m input parameters υi, i = 1,…, m and n ≤ m input variable xj, j = 1, …, n then the 

Euclidean geometrical spaces of the input parameters and the input variable are Rm and Rn 

respectively.  

Considering p as output parameters wk, k = 1, …, p and the objective function y; g(x) and f(x) 

are the function defining the output parameters and the objective function respectively; X is 

the design space for domain, we have 

g (x): X ⊆ Rn => W ⊆ Rp           wk = gk (x), k = 1, …, p  

 (1.1) 

f (x): X ⊂ Rn => Y ⊂ R  y = f (x, w) = f (x, g (x)) = f (x) 

The optimization process aims to optimize f (x), x ∈ X ⊆ Rn. This procedure acquires iteration 

by the algorithm to get the solution x* 

X* ∈ {x(1), …, x(t)}: y (x*) = optimum y (x(r)), r = 1, …, t (1.2) 

The classification of the optimization technique related to experiment and simulation is 

divided into two main areas: the design of experiments (DOE) and computational optimization 

algorithms [Cavazzuti, 2013]. Details of these categories of optimization problems will be 

reviewed in detail in Chapter 2. 

1.4 Research Objectives 

This study focuses on optimizing the efficiency of the oil recovery process of core-scale 

immiscible WAG (IWAG) injection by determining the most significant WAG operational 

parameters for core-flooding experiments with the intent of reducing the number of 

experiments required. First, a core-scale model is built using Schlumberger Eclipse and is 
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validated using experimental results of the double displacement process (DDP). A comparison 

is also made between the recovery performance of DDP and IWAG injection for the 

simulation model. The optimization methods are presented and investigated using simulation 

at the core scale through different techniques, DOE and Particle Swarm Optimization (PSO). 

The objective of the optimization process is to maximize the volume of incremental oil 

recovery by IWAG injection for the composite core simulation by investigating WAG 

operational parameters. Furthermore, the impact and correlation between the operational 

parameters on the incremental oil recovery factor is also estimated. The variables of IWAG 

injection are optimized, including six main parameters: water and gas flow rates, timing, cycle 

ratio, slug size, total injection, and sequence/order of injection process. The results of the 

optimization techniques are analyzed and compared, then used as the input data for the core-

flooding experiment in the future. 

1.5 Thesis Outline 

The thesis consists of five chapters: 

Chapter 1: Introduces the background of the Hibernia field as well as composite core geology 

properties used for the simulation. A brief introduction to EOR techniques, especially for 

double displacement process and WAG injection, is presented generally. Optimization 

methodology is described as a base for optimizing the problem. The objective of the thesis is 

defined to clarify the purpose of this research. 

Chapter 2: Summarizes the main works that relate to the four main problems addressed in the 

thesis including a literature review of double displacement process (DPP), WAG injection, 

WAG operational parameters and optimization techniques with a screening of their 

application for oil and gas production.       



22  

Chapter 3: Presents the methodology and framework for core-scale simulations, both DPP 

and IWAG injection, as well as for optimization techniques, including response surface 

methodology (RSM) and particle swarm optimization (PSO). 

 Chapter 4: Demonstrates the results and discussions of the simulation for two main case 

studies including a comparison of the performance between DDP and WAG injection; and 

optimization process with optimum operation parameters and the effect of the interaction 

between these parameters. 

Chapter 5: Finally, the conclusion is summarized, and the recommendations are suggested to 

improve further research.
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CHAPTER 2. LITERATURE REVIEW 

In the first section of the literature review chapter, all aspects related to Water Alternating Gas 

(WAG) injection, including general description, operational mechanism, classification, and 

its worldwide applications are presented. The second section focuses on reviewing all works 

that investigate WAG operational parameters for the core-flooding experiments of immiscible 

WAG (IWAG) injection, detailed papers screening of core-scale IWAG injection are also 

included. The third section focuses on reviewing all studies that involve the double 

displacement process (DDP). In the last section, optimization techniques applied in the oil 

and gas industry are reviewed, especially Response Surface Methodology (RSM) and 

computational optimization methods, which have been employed for WAG injection 

applications.       

2.1 Water Alternating Gas (WAG) Injection 

2.2.1 WAG Description 

 Water injection is the most common technique for oil recovery. The volume of oil remaining 

in the reservoir after water-flooding is usually significant and could be reduced by applying 

gas injection in a later stage [Lake, 1989]. Due to the lower of interfacial tension (IFT) 

between gas/oil compared with water/oil interaction, the sweep efficiency by gas injection is 

technically better than water-flooding [Kulkarni and Rao, 2005]. Various types of gases have 

been used around the world for oil recovery processes, including hydrocarbon (HC), CO2 

(mostly in the U.S), LPG, propane, exhaust gas and N2 [Christensen et al., 2001].     

Water alternating gas (WAG) injection, commonly used in light to medium crude oil 

reservoirs is a well-developed technique for enhanced oil recovery. It combines the effects of 

two conventional oil recovery processes - water injection and gas injection [Green and 
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Willhite, 1998]. Parrish originally presented the procedure for this method in 1966; the 

research focused on investigating the mechanism of reducing gas mobility and improving the 

sweep efficiency for continuous gas injection in reservoirs [Minssieux and Duquerroix., 

1994].  

WAG injection is a cyclic method that alternates gas and water cycle injection and repeats the 

process several times depending on the operator plan (Figure 2.1). During the WAG injection 

process, a three-phase zone is created by water and gas injected from the same injection well. 

The most significant advantage of three-phase interaction is that it leads to a reduction in the 

mobility of the water and gas phases inside the pore system. Mobility control is especially 

important for gas injection due to its low viscosity, which usually causes gas fingering and 

early gas breakthrough then reduces the macroscopic (areal and vertical) sweep efficiency, 

due to less bypassing behavior [Zekri et al., 2011]. Therefore, only continuing gas injection 

could not make an economic remarkable additional oil recovery. However, alternating gas 

and water injection can significantly reduce the mobility of the gas phases due to gas trapping 

[Caudle and Dyes, 1958]. The presence of gas is usually considered as most non-wetting phase 

in the three-phase system can also push oil out of the larger pores to increase the oil 

connectivity, then the water phase will more easily to sweep oil out of the pore system. 
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Fig. 2-1: Schematic of the WAG process [Tunio., 2011] 

Despite the many advantages of WAG injection, several aspects should be considered before 

applying this method. The three-phase zone has a limited area because of gravity segregation, 

the gas phase tends to move to the upper zone while the water phase falls to the bottom. This 

effect makes a clear impact on the sweep efficiency for upper and lower layers of the reservoir 

[Choudhary et al., 2011]. Furthermore, despite the advantage of gas mobility reduction by 

alternating water injection cycle, switching to gas injection may lead to a decrease in water 

injectivity and a critical challenge in maintaining the injection pressure [Lien et al., 1998]. 

2.1.2 WAG Recovery Mechanism 

The general mechanism of oil recovery by WAG injection could be described as an 

improvement of the combination of microscopic and macroscopic sweeps by injected fluids 
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to oil volume inside the pore space. The overall displacement efficiency of the WAG process 

can be generalized as the following equation: 

 EWAG = EMicro . EMacro (2.1) 

where EWAG is the total displacement efficiency (the volume of oil recovery by WAG injection 

divided by the amount of oil in place at the start of WAG injection). EMicro is defined as the 

effectiveness of water and gas injection through physical and chemical properties between 

rocks and fluids on oil recovery. In contrast, EMacro is considered as the effectiveness of water 

and gas floods through the physical space between the injected point and production point on 

oil recovery [Aurand, 2017].  

Macroscopic sweep efficiency 

Macroscopic sweep is usually divided into a horizontal sweep and vertical sweep. The 

horizontal sweep depends significantly on the mobility ratio. The mobility ratio is defined as 

the ratio of the mobility of displacing fluid on the mobility of the displaced fluid at the front 

contact [Fanchi., 2010]. When the mobility of the displacing fluid is higher than the displaced 

fluid, it will cause viscous fingering that leads to an early breakthrough. A mobility ratio of 

less than one is required or a good sweep efficiency. The vertical sweep refers to a vertical 

cross-section swept by an injected fluid due to the density difference of injected fluids. In 

reservoir, gas tends to move to the top while water prefers to move to the bottom. Therefore, 

maintaining the three-phase region extending as far as possible from the injection point will 

optimize the oil recovery process.  

Other factors that also take part in the macroscopic sweep are listed as physical arrangements 

of injectors and producers in the field, reservoir heterogeneity, permeability, porosity, and 

fluid saturation [Slb.com., 2019].  
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Reservoir Heterogeneity makes a clear impact on water/gas displacement of WAG process. It 

affects the microscopic scale such as changing of pore connectivity, the sorting of grains, a 

variation of pore size and presence of impurities and on macroscopic scales such as the various 

distribution of stratification, formation thickness, layers communication or facies of reservoir 

[Satter and Iqbal, 2015]. 

Porosity is the volume of space in the reservoir and can be divided into absolute and effective 

porosity [Lyons and Plisga, 2011]. 

 Absolute porosity, % = 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑟𝑒𝑠 𝑎𝑛𝑑 𝑣𝑜𝑖𝑑𝑠 𝑖𝑛 𝑟𝑜𝑐𝑘

𝐵𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑜𝑐𝑘
 ×  100 

  (2.2) 

 Effective porosity, % = 
𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑟𝑒𝑠 𝑖𝑛 𝑟𝑜𝑐𝑘

𝐵𝑢𝑙𝑘 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑟𝑜𝑐𝑘
 ×  100 

The effective porosity is important to detect the general volume of reservoir fluid due to their 

interconnected properties, fluids placed in isolated pore will not contribute to the production. 

Permeability is a rock property that indicates how well fluid can be transported through the 

pore system and channels inside the reservoir in three-dimensions [Satter and Iqbal, 2015]. A 

high permeability presents for good productivity and better recovery efficiency of the 

reservoir. Absolute permeability is defined as the permeability of rock when saturated by one 

fluid, while effective permeability represents for the permeability of one fluid for a rock that 

fully saturated by another fluid. 

Fluid saturation is defined as the ratio of the pore volume divided by the volume of a specific 

fluid. Hence the value of fluid saturation ranges between zero to 1. Generally, the total fluid 

saturation of the reservoir is the summary of gas, oil, and water saturation. Understanding 

saturation distribution with both end-point saturation and critical saturation of each phase 

while processing the injection is important for recovery efficiency [Kantzas et al., 2012]. 
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Microscopic sweep efficiency 

The microscopic sweep defines the efficiency of how the displacing fluids mobilize the 

residual oil once the interfacial contact occurs. Factors affecting the interaction between them 

include interfacial tension, wettability, capillary pressure, and relative permeability.  

Interfacial tension (IFT) is the force that exists at the surface that separates two immiscible 

fluids such as oil/gas, gas/water or water/oil and is considered a prime property as phase 

boundaries [Lyklema, 2005].  

Wettability is the ability of a solid surface to be in contact with a specific liquid rather than 

another one, it is determined by the balance between the interaction of liquid to surface and 

liquid to liquid [Moldoveanu and David, 2016]. For a water-wet reservoir, the residual oil 

after secondary water-flooding tends to remain in the larger pores far away from the rock 

surface, which prefers to attract water; an injected gas cycle would push the residual oil into 

smaller pores that helps to increase the oil injectivity, which improves oil recovery [Suicmez 

et al., 2006].  

Capillary pressure (Pc) is defined as 

 Pc = 
2𝜎𝑐𝑜𝑠𝜃

𝑅
 (2.3) 

where Pc is the capillary pressure [dynes/cm2], 𝜎 is the interfacial tension [dynes/cm], 𝑐𝑜𝑠𝜃 

is the contact angle [degrees] and R is the radius of the pore [cm]. Capillary pressure in the 

reservoir defines the fluid distribution, hence affects the alternating of fluid saturation 

[McPhee et al., 2015].  

Relative permeability of rock to aqueous phases (gas/oil/water) is defined as the ratio between 

the effective permeability of the given fluid and the absolute permeability of rock types when 

100% saturated by that fluid [Satter and Iqbal, 2015]. The relative permeability depends on 
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the interfacial tension and is usually visualized as both a drainage curve and imbibition curve. 

In a water-wet system, the drainage curve is present the decreasing of wetting phase (water) 

saturation, and imbibition curve is illustrated as increasing of wetting phase (water) saturation. 

 

Fig. 2-2: Illustration of both microscopic sweep and macroscopic sweep improvement 

during gas injection in the WAG process [Crogh et al., 2002] 

Optimizing WAG injection requires balancing the efficient volume of gas and water needed 

to be injected into the pore system. Too much injection water would lead to poor microscopic 

sweep efficiency, or a large volume of injected gas would reduce the stability in front and 

macroscopic sweep effect. 

2.1.3 WAG Classification 

The WAG injection process can be divided into various comprehensive classifications based 

on injection pressure and method of injection. The most typical WAG processes applied so 

far in oil reservoirs include miscible WAG (MWAG), immiscible WAG (IWAG), 

simultaneous WAG (SWAG) and hybrid WAG (HWAG) [Christensen et al., 1998; Awan et 

al., 2008; Darvishnezhad et al., 2010]. 
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Miscible WAG Injection 

Miscible WAG injection is defined as the process that maintains the injection pressure higher 

than the minimum miscibility pressure (MMP) to achieve a miscible flood process, which also 

makes the reservoir bubble point pressure increase [Al-Shuraiqi et al., 2003]. When the 

miscibility is developed when the gas cycle is injected, as gas displaces oil, it will create first 

contact or multi-contact miscibility with the reservoir oil [Skauge and Sorbie, 2014]. MWAG 

takes advantage of microscopic sweep by dissolving a gas slug into oil, which leads to reduced 

oil viscosity, making it easier to mobilize trapped oil. However, the miscible flood is also 

responsible for poor volumetric sweep efficiency at the front because of its low viscosity. 

Furthermore, injecting water cycle support increases the macroscopic sweep efficiency for 

MAWG [Fatemi et al., 2011]. Most miscible WAG projects are applied onshore and are 

performed on close well spacing, but there are few attempts to apply this process for offshore 

well spacing [Panda and Lenig, 2010; Kumar et al., 2017]. 

Immiscible WAG injection     

When the gas cycle of WAG is injected to the reservoir with the injection pressure lower than 

MMP it cannot create miscibility with oil inside the pore system, this process is called 

immiscible WAG (IWAG). In the IWAG process, both displacement efficiency and sweep 

efficiency are increased by taking advantage of improved trapped gas saturation [Khanifar et 

al., 2015]. The main objectives when applying IWAG are to improve frontal stability through 

the 3-phase zone and to create oil film flow, which behaves as a pathway for oil movement in 

the presence of water and gas, after gas sweeping oil out of larger pores [Holtz, 2016]. IWAG 

has been applied in many lab-scale and field-scale projects for various types of oil and injected 

gas. It is reported to be a low-cost technique with good recovery efficiency [Afzali et al., 2018; 
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Christensen et al., 2001]. This research focuses on immiscible WAG injection by simulating 

the core-scale condition with gas used as synthetic gas, which does not create miscibility with 

oil, and minimum miscibility is not measured by applying a suitable injection pressure.   

Simultaneous WAG injection 

In simultaneous WAG injection, both water and gas cycles are injected at the same time into 

a portion of the reservoir [Ma et al., 1995]. This technique was proven to be a good option 

that improves mobility control more than conventional WAG, which leads to a higher oil 

recovery efficiency. It also reduces both capital and operating costs by combining water and 

gas injection lines [Shetty et al., 2014]. Two options can be used to describe SWAG process 

by verifying the combining point of the system. In the first option, water and gas for injection 

are combined at the surface and transfer through one wellbore, which was previously used for 

secondary recovery, this process is usually called SWAG. For the second option, slugs of 

water and gas are injected through a dual completion injector into the formation by taking 

advantage of the gravity segregation, water injection for the upper zone and gas injection for 

the lower zone. This process is referred to as Selective SWAG [Barnawi, 2008; 

Darvishnezhad et al., 2010]. 

Hybrid WAG injection 

In hybrid WAG (HWAG) injection, the amount of water and gas slugs injected into the 

reservoir are varied, such as after injecting a large slug of gas into the reservoir followed by 

several small slugs of water and gas [Larsen and Skauge, 1999]. The main advantages of the 

HWAG process are better gas utilization, reduced chance of water blocking, improved 

injectivity and combining efficiently with continuous injection method at an earlier stage in 

comparison with conventional WAG [Bagrezaie et al., 2014].  



32  

2.2.4 WAG Worldwide Applications 

Since the first WAG injection was applied for a sandstone reservoir of the North Pembina 

field in Alberta, Canada in 1956, various fields around the world, both offshore and onshore, 

have employed this method with a majority of them located in Canada, the U.S and the North 

Sea region claiming successful application [Christensen et al., 2001].  

Christensen et al. reviewed the WAG injection process application of approximately 60 field 

cases, most of which were successful [Christensen et al., 2001]. Generally, the majority of 

WAG field applications have been reported in the U.S. However, the most recent application 

was from the North Sea area, and the recovery stage that WAG process was applied is also 

sooner than other areas, which often happens after secondary recovery. The increased 

recovery was reported to vary from 5% to 15% and could increase up to 20% for some specific 

cases such as the Rangely Weber and Slaughter Estate fields.  

In 2001, the majority of WAG field applications were the miscible type (79%) in comparison 

with 18% of observed fields planned to be an immiscible injection. The overall average 

improved recovery of miscible type is also higher than immiscible type, 9.7%, and 6.4% 

respectively. A high-permeability reservoir is considered as the dominant rock model used to 

apply WAG injection and over half of the observed projects are sandstone reservoirs, the rest 

of them are divided into dolomite, limestone and carbonate rock groups. Only six out of 59 

projects in this research are reported from the offshore environment with hydrocarbon gas 

used as injected gas; the rest were applied onshore.      
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Fig. 2-3: WAG projects classification over 59 fields [Christensen et al., 2001] 

The North Sea area is considered to have many favorable fields for the application of WAG 

injection, which is the most successful EOR technique employed. In 1980, Thistle was the 

first field to implement WAG injection and later performed in the 1990s [Teigland and 

Kleppe., 2006]. WAG injection applied in the North Sea is not the same as onshore field 

application. Onshore, a 5-spot injection pattern has been reported as the most successful for 

WAG injection; this however would be extremely expensive offshore. Therefore, wells have 

to be established based on geological consideration.  
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Awan et al. conducted a survey about EOR application in the North Sea and noted that most 

EOR field applications were WAG injection processes with a total of 19 projects; six were 

immiscible types, three were miscible WAG, two were FAWAG (foam assisted water 

alternating gas injection) and one was SWAG [Awan et al., 2008]. The main reason is because 

of the advantage of improving both macroscopic and microscopic sweep efficiency of WAG 

when adjusting the favorable mobility ratios. Most fields in the North Sea contain a lot of attic 

oil that is preferred to be exploited by gas injection rather than only water-flooding, which 

makes downdip WAG injection become an efficient application for these offshore fields 

[Crogh et al., 2002; Instefjord and Todnem, 2002; Lien et al., 1998]. Most projects that applied 

WAG recovery in the North Sea are focused on using HC gas as the injected gas due to its 

availability and affordable cost [Christensen et al., 2001]. Although a few of them are using 

CO2 alternating with water for injection have proven to achieve greater efficiency in 

comparison with HC gas and water injection, CO2 application will be not be an attractive 

approach because of the limited resource in this area. 

 

Fig. 2-4: WAG projects application in the North Sea [Awan et al., 2008] 
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2.2 Immiscible WAG Injection Overview 

Immiscible water alternating gas (IWAG) injection is considered as an appropriate injection 

type depending on both economical and production aspects. During the IWAG process, 

injected gas and oil are always in separate phases due to low-pressure maintenance, and it 

improves the stability displacement front in the macroscopic sweep and enhances the 

microscopic sweep in narrow pores [Itriago et al., 2018]. IWAG uses the mechanism of three-

phase flow (gas, water, and oil) to decrease residual oil saturation and it is much more 

complicated to estimate the efficiency than just oil or gas injection [Christensen et al., 2001]. 

Understanding the correlation of all the parameters related to this injection process, through 

core-flooding experiment, would lead to a successful reservoir simulation and enhance the 

recovery factor in field tests. 

2.2.1 Critical Operational Parameters 

Operational parameters used as input data for core-scale WAG process include the following 

main components: types of gas and water for the injection, time to start WAG process, WAG 

ratio, WAG slug size, WAG flow rate and the sequence in every cycle. Generally, based on 

the type of reservoir with different geological properties, as well as interaction properties 

between rock-fluid and fluid-fluid, suitable operational parameters should be optimized for 

each injection process. Many types of research have been done to investigate appropriate 

injection patterns for various types of reservoirs as well as the correlation between them on 

the oil recovery efficiency. 

Gas injection 
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The gas used for the injection process has a significant effect on the oil recovery volume. 

Three typical classes used as injected solvent are non-hydrocarbons (CO2 not included), CO2, 

and hydrocarbons (HC).  

Nitrogen is used in a few fields due to their economic prospects and resource availability 

[Christina et al., 1981]. Salehi et al. injected nitrogen, one of the gases typically used in both 

miscible and immiscible gas injection for an oil reservoir, at a constant flow rate for the 

tertiary recovery process known as Surfactant-Alternating-Gas (SAG) by varying the ratio 

between the volume of surfactant and N2 [Salehi et al., 2014]. The best result of these tests is 

87% than compared with WAG, water-flooding, and gas injection with the following ultimate 

recovery factors as 70%, 66%, and 50% OIIP respectively. Janssen et al. compared the effect 

of different N2-WAG injection schemes on the efficiency of oil recovery [Janssen et al., 2018]. 

By changing the backpressure conditions and the sequences of the recovery process, the study 

concluded that immiscible N2-WAG injection gives the highest oil recovery factor (60% OIIP) 

in comparison with water-flooding or N2 continuous injection (approximately 50%) after 16 

PV of injection for Bentheimer sandstone cores. 

However, oil recovery with CO2 appears to be better than using N2. Ghafoori et al. [2012] 

experimentally investigated the performance of WAG injection and continuous gas injection 

(CGI) processes using nitrogen and CO2 in a porous carbonate sample.  The result showed 

that CO2-WAG injection attained about 13% more oil recovery than nitrogen WAG. The same 

result was observed by Amadi et al. [2015] when oil recovery form CO2-WAG is higher, 

about 8.5% than N2-WAG.  

Srivastava and Mahli presented a laboratory investigation about WAG injection for a mature 

light oil field. They used HC gas and CO2 as injected gas and alternating WAG parameters to 
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achieve the optimum oil recovery [Srivastava and Mahli., 2012]. CO2 gas with five cycles of 

WAG account for an incremental displacement efficiency about 40% of HCPV, which is 

significantly higher than around 20% of HCPV for 5-cycles HC-WAG.  

Among the 60 WAG field applications reviewed by Christensen et al. [1998], 28 WAG 

injection cases employed CO2 as the injected gas, which is popular to use for miscible 

injection due to easy solubility of CO2. However, 24 offshore fields used hydrocarbon gases 

in dry or enriched form, despite the environmental benefits of using CO2, simply because of 

the availability in the production site of HC gas for most offshore WAG projects. This study 

focuses on optimizing injection patterns for synthetic gas as the HC gas condition for the 

injection process to take advantage of the offshore recovery. 

 

 

 

Fig. 2-5: Injection gas used in 59 WAG projects [Christensen et al., 2001] 

Water injection 

The brine used for the injection process of reservoir recovery has to be estimated for recent 

time because of the effect of salinity on oil recovery. Brine salinity affects enhanced oil 



38  

recovery process through many mechanisms inside the pore system such as ion exchange, 

mobility control, and wettability alteration [Ramanathan et al., 2015].  

Jiang and Nuryaningsih investigated the effect of brine salinity on WAG injection by 

conducting a series of core-flooding experiments on Berea sandstone with two different oil 

samples [Jiang and Nuryaningsih, 2010]. A synthetic brine with NaCl salinity in the range of 

1000 to 32,000 ppm, and a synthetic brine is containing 4000 ppm NaCl and 4000 ppm CaCl2 

were used to examine the recovery performance. They concluded that with the same miscible 

condition, the tertiary oil recovery will increase when increasing the salinity for both oil 

models due to the decreasing level of CO2 solubility. They also indicated that secondary 

water-flooding would be more effective with low salinity brine compared with high salinity. 

This statement has been proven through experimental and simulation research [Zolfaghari et 

al., 2013; Dang et al., 2014; Ramanathan et al., 2015]. 

 

Fig. 2-6: The recovery of water flooding, WAG flooding, and total as a function of salinity 

[Jiang and Nuryaningsih., 2010] 

Zolfaghari et al. [2013] ran a set of core-flooding tests for heavy oil with low and high salinity 

brine for CO2-WAG injection; they concluded that low salinity brine combined with CO2 in 
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WAG injection gave the optimum recovery for heavy oil, both as a secondary or tertiary 

process. 

Dang et al. mentioned that the main mechanism contributing to the efficiency of low salinity 

brine injection is wettability alteration by moving to the water-wet condition [Dang et al., 

2014]. Furthermore, brine salinity also affects the recovery process through core aging 

condition. Ramanathan et al. conducted six core-flooding tests on Grey Berea sandstone cores 

by immiscible WAG injection to estimate the impact of the aging condition as well as the 

correlation with brine salinity on oil recovery [Ramanathan et al., 2015]. The result indicates 

that low salinity brine is more effective for the water-flooding process, while high salinity 

seawater gives a better recovery for WAG injection. The salinity makes a significant impact 

on wettability after aging core that affects the recovery process later. 

 

Fig. 2-7: Comparison of oil recovery between different processes on Grey sandstone 

[Ramanathan et al., 2015] 

In this research, brine with a high salinity (102,435 ppm) [Wang et al., 2006] is used as 

injected water to simulate the core-scale IWAG process, which is similar to the experimental 

works of the double displacement test from the research of Wang et al. 
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Tanner [1992] proposed a process called “Denver Unit WAG” injection process; it is an 

optimum mechanism they suggest to recover oil from the world’s largest CO2 EOR project. 

Based on numerical models that match the historical recovery from CGI (continuous gas 

injection) and CO2-WAG for this area, they suggest that the optimum operation parameters 

for this unit are 60%-80% pore volume CGI followed by WAG injection with ratio 1:1. This 

conclusion has raised a concern about the optimum time to start WAG injection after 

secondary recovery stage as water-flooding or gas injection.  

Amin et al. [2012] presented results from a set of core-flood tests to compare the efficiency 

of miscible CGI and CO2-WAG for a carbonate unit in the UAE. They also concluded that 

timing plays an important role in the injection process. Running WAG injection in the early 

stage as a secondary recovery would give a better oil recovery, an incremental over 12% 

remaining original oil in place (OOIP), than starting as a tertiary process after CO2 flooding.  

Jiang et al. [2012] pointed out the variation of 3-phase saturation after water-flooding can 

significantly affect the optimum timing to start WAG injection [Jiang et al., 2012]. Their 

experiments were set up for water-wet Berea sandstone cores under the miscible condition 

with injected fluids as synthetic brine and high purity CO2, the results indicate that starting 

the injection process too early or too late would lead to a lower recovery factor. In a range 

from 0% to over 50% pore volume oil recovery after water-flooding, the most suitable timing 

to start WAG injection is around 30% PV oil recovery. In the middle of this range, due to the 

appropriate volume of oil left after water-flooding that allows to CO2 easily contact then 

improve microscopic sweeping efficiency as well as enough volume of water to enhance the 

gas trapping mechanism. 
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Fig. 2-8: WAG recovery efficiency at different starting points [Jiang et al., 2012] 

In 2015, Batruny and Babadagli also verified a similar conclusion. Their experiments were 

conducted at ambient pressure and temperature on a pure silica sand pack with a porosity of 

approximately 37%. Heptane was used as injected gas for these experiments [Batruny and 

Babadagli, 2015]. To investigate the timing effect on WAG injection efficiency, three cores 

with different oil saturation after water-flooding were used to run tests including 20%, 35%, 

and 50% oil saturation. The highest oil saturation condition as a result also accounts for the 

biggest recovery factor, over 80% OOIP, almost double the recovery value of the 20% oil 

saturation option. 

 

Fig. 2-9: Total fluid injection (PV) vs. recovery factor (% OOIP) at different stages of oil 

saturation [Batruny and Babadagli, 2015] 
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Hence, defining the right time to start WAG injection will make a clear impact on improving 

oil recovery efficiency.    

WAG ratio 

WAG ratio, defined as the volume of injected water divided by the volume of injected gas, 

could be considered as the most important operating parameter for planning the injection 

process. An optimum ratio must be not only get the highest oil recovery, but also control the 

most appropriate volume of solvent used for injection, which would improve the economic 

benefit [Juanes and Blunt, 2006]. 

Jackson et al. [1985] pointed out that the wettability has a significant impact on WAG ratio. 

They suggested the ratios 0:1 for water-wet bead pack and 1:1 for the oil-wet pack. Stern. 

[1991] also concluded similar results when investigating the mechanism of miscible oil 

recovery, after 16 core-flooding experiments for both water-wet and mixed-wet cores. He 

indicated that for water-wet rock, a high WAG ratio could lead to less oil recovery because 

the presence of water will reduce the contact between oil and solvent; for the mixed-wet 

system, the impact of WAG ratio is not significant on recovery efficiency, but he suggested 

the use of the ratio of 1:1 as the optimum number.  

Zekri et al. [1992], after comparing three different ratios of 1:1, 2:1 and 1:2 from miscible 

WAG injection for sandstone composite core with oil-wet preferred, the optimum ratio also 

suggested 1:1 for the lowest residual oil saturation, only 12.38 %PV, after tertiary recovery 

process with CO2 as injected solvent. 
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(a) 

 

 

(b) 

Fig. 2-10: Comparison between different WAG ratios for the water-wet system (a) [Al-

Shuraiqi et al., 2003], and the oil-wet system (b) [Zekri et al.,1992] 

Various researchers have focused on investigating the effect of WAG ratio for a water-wet 

system for both miscible and immiscible injection. In 2003, Al-Shuraiqi et al. compared three 

ratios of 4:1, 1:1 and 4:1 from WAG injection process for miscible displacement process on 
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Ballotini glass beads with ISOPAR V as oil, and paraffin as the injected solvent. The highest 

oil recovery was achieved with a ratio of 1:1, with the flow rate as 5 ccs/min [Al-Shuraiqi et 

al., 2003]. In 2004, Wu et al. simulated a 2-D model under miscible condition with injected 

solvent as combination of 85 % CO2 and 15 % NGL, after comparing results from 5 different 

ratios, the highest oil recovery after injecting 1.5 PV was obtained with the 2:1 case, however, 

just slightly higher than the recovery factor of 1:1 case, approximately 1-2% [Wu et al., 2004].  

In 2015, Kim et al. simulated miscible WAG injection in a 1-D model with dimensions of 

50×1×1 grids, the results were presented to compare the recovery efficiency of different 

operation parameters for the core-flooding model and suggested ratio of 1:2 as the optimum 

case, which had a recovery factor of 65%, slightly higher than the 1:1 case (62%) which 

showed a better efficiency in CO2 consumption [Kim et al., 2015]. 

The WAG ratio around the point 1:1 is considered to be the best optimum parameter to 

improve the injection process for both field and laboratory operations with the advantages of 

balancing the solvent-oil contact efficiency as well as optimizing the volume of solvent 

injection [Christensen et al., 2001; Panda et al., 2009; Amin et al., 2012; Han et al., 2015; 

Batruny et al., 2015; Khanifar et al., 2015]. 

WAG slug size 

Generally, WAG slug size is defined as the volume of injected gas, or the volume of injected 

water, for each cycle of WAG. Based on almost 60 observed WAG project operations, it was 

clear that the length of injected water and solvent processes are various for different reservoir 

properties [Christensen et al., 2001]. In 2004, Wu et al. varied the WAG cycle length (45, 75, 

150, 300, and 600 days) for a total of 1.5 PV injected for his model simulation and the length 
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as 75 days gave the highest oil recovery factor, however it raised a concern that the optimum 

option should be chosen from a range of slug size [Wu et al., 2004].  

Namani and Kleppe. [2011], from results of both sensitive black-oil and compositional 

miscible WAG models, concluded that the relationship between half-cycle slug size and the 

volume of recovered oil is significant, but not simple, to predict and a suitable option could 

be optimized for different models. The total length of the injection process also varies through 

different rock-fluid properties and fluid-fluid properties to acquire the optimum oil recovery. 

Torabi et al. [2012] pointed out that changing rock permeability would lead to significant time 

for total fluid injection to archive the optimum oil recovery factor. For these cases, they varied 

the permeability from 11.4 to 39.9 Darcy and the length of injection for each option also 

increased from 1.8 PV to 4.5PV through a set of core-flood experiments. 

 

(a) 
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(b) 

Fig. 2-11: Effect of injected fluid on oil recovery, (a) varying rock permeability [Torabi et 

al., 2012], and (b) varying brine salinity [Van et al., 2017] 

By changing each cycle slug size, the interaction between the reservoir fluid and the injected 

fluid also changes, such as fluids mobility and contact time, which will result in the efficiency 

of the displacement process. Under the miscible condition, Nuryaningsih et al. [2010] 

conducted a set of core-flooding experiment on Berea sandstone core by changing half-cycles 

slug size from 0.05 to 0.75 PV with WAG ratio of 1:1. The results indicated that the option 

as 0.1PV is giving the highest oil recovery (almost 80% OOIP) after injecting 1.2PV in total, 

they pointed out that a high slug size would lead to a sooner gas breakthrough, while a 

significantly small size of slug would reduce the contact between oil and gas that make a 

negative impact on microscopic displacement efficiency.   

Kim et al. [2015] made a similar conclusion after optimizing the parameters for a 1-D core 

model simulation; a suitable small slug was determined to be 0.04 PV from an investigated 

range between 0.01 and 0.3PV with a WAG ratio of 1:2. A bigger slug size may have a 

negative impact on oil recovery factor due to gravity segregation. 
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                                            (a)  (b) 

Fig. 2-12: (a) Gas breakthrough at different WAG half-cycle slug sizes (HCSS) 

[Nuryaningsih et al., 2010] and (b) Oil recovery per slug size [Kim et al., 2015] 

Van et al. [2017] conducted a sensitive analysis regarding slug size and salinity effects by 

conducting a set of miscible WAG core-flood experiments and then applying a prediction 

method known as response surface models to optimize the suitable operation parameters. The 

range of slug size used for these experiments were from 0.2 to 0.6 PV with a fixed WAG ratio 

of 1:1. Salinity varied from 0.2 to 0.6 PV, and the final optimum result determined from the 

mathematical model was 0.455 PV with a salinity of 4.313% for a recovery factor around 51% 

residual oil volume after secondary water-flooding. It could be concluded that by varying the 

wettability condition of rock samples, water-wet [Han et al., 2015] or mixed-wet [Alkhazmi 

et al., 2017]. A suitable small slug size still gives a better oil recovery efficiency rather than a 

bigger one. Furthermore, they also pointed out that the recovery factor from WAG injection 

would not increase significantly after water breakthrough. 

 

WAG flow rate 
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WAG flow rate is the operational parameter that impacts the length of the injection process 

as well as the relative permeability of each phase. In 1991, Stern, from a set of core-flood 

tests, indicated that there is a correlation between flow rate and maximum residual oil volume, 

namely that there is a limitation of flow rate that if higher the residual oil volume could be 

increased. There could be an optimum number of the range below limitation, this study also 

discussed that flow rate could affect capillary induce and viscous fingering, which results in 

the relative permeability. Al-Shuraiqi et al. [2003] used paraffin and water as injection fluids 

for both miscible and immiscible displacement tests, and varied the flow rate from one 1 

cc/min and 5 cc/min. They found that there is a significant impact on the volume of oil 

recovered through total injected fluid volume, as well as water-cut status. The optimum flow 

rate of 3 cc/min was predicted through a simulation model to achieve the maximum oil 

recovery factor.  

The flow rate proved to affect the viscous force, which has an impact on displacement 

efficiency [Namani and Kleppe., 2011]. Furthermore, for a different type of oil viscosity, flow 

rate also affects the total oil recovery factor. This phenomenon is related to viscous force 

efficiency [Torabi et al., 2012]. Batruny et al. [2015] found that flow rate as well as slug size 

had a significant impact on oil recovery efficiency. However, their research only compared 

the slug side effect for each case of injection rate and did not point out the correlation between 

them.  
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 (a) (b) 

Fig. 2-13: Effect of flow rate on total oil recovery (a) [G. Kim et al., 2015] and the effect of 

flow rate on oil viscosity (b) [F. Torabi et al., 2012] 

Kim et al. [2015] completed a simulation of the core model and reservoir model and discussed 

that WAG flow rate affects not only the total oil recovery volume but also the injected gas 

breakthrough time. In the range of injected rates investigated, the highest value (0.015 ft3/day) 

resulted in the most efficient oil recovery.  

Generally, it can be concluded that a suitable high flow rate can significantly improve the 

recovery factor in comparison with low value but does not lead to a critical bypassing level 

of injected fluid. 

WAG Sequence 

Injection sequence, i.e. starting first with a gas or water cycle, is a significant factor that would 

make a clear impact on the efficiency of the WAG injection process. Han et al. [2015] have 

investigated this factor through a series of nine core-flood tests for a tight oil formation, under 

the same operational parameters for WAG ratio, slug sizes, and flow rate, but changed the 

sequence of injection cycles to see how the RF would change. They concluded that when 
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running WAG injection as the secondary recovery stage, starting with water cycle first will 

give a better efficiency due to the higher volumetric sweep than gas cycles; these cases were 

compared even in different slug sizes. However, this research compares the effect happening 

as secondary recovery. 

 

Fig. 2-14: Effect of injection sequence on oil recovery [Han et al., 2015] 

Fatemi et al. [2015] investigated the effects of different IFT between oil and gas on the 

performance of immiscible WAG injection for a mixed-wet system. Their research clearly 

indicated that the oil recovery volume under different IFT schemes was dependent on the 

injection sequence. In the case of high IFT (2.7 mN/m), starting gas injection as the initial 

cycle gave a higher recovery, whereas for the case with low IFT (0.04 mN/m), starting with 

the water cycle first gave better results of oil recovery.  

Batruny et al. [2015] also noted the significant effect of injection order on oil recovery. Their 

core-flooding experiment was performed under a miscible condition in a water-wet system. 

By changing the sequence of starting the injection process with heptane or water, the 
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conclusion for this case was made that starting by heptane, with a significant slug size, will 

give a better oil recovery result in comparison with starting with water, due to the higher 

efficiency of miscibility and sweep between the solvent and oil interaction inside the pore 

system. 

 

(a) 

 

(b) 

Fig. 2-15: Recovery for (a) GAW and (b) WAG injection [Alkhazmi et al., 2017] 
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Later for the case of immiscible WAG injection in a mixed-wet system, Alkhazmi et al., 

[2017] found that when comparing two processes as small slug size GAW and WAG injection, 

most oils were recovered after 2 cycles (0.8PV injection), and starting with a gas cycle would 

lead to a later gas and water breakthrough. Moreover, after 2PV injection, running gas cycles 

first would give better oil recovery results, around 75% IOIP compared to roughly 68% IOIP 

using the water cycle first. 

Generally, it can be concluded that the sequence of cycle injection makes a clear impact on 

the efficiency of the WAG injection process. 

2.2.2 Core-scale IWAG injection screening 

In order to determine a suitable range of values for IWAG operational parameters as input 

data for the injection process as well as to generalize the efficiency of different core-scale 

IWAG injection schemes, a total of 18 projects [Table 2-1] were reviewed. Injection 

information that affects the oil recovery efficiency, such as type of injected fluid, reservoir 

wettability, time to start first WAG cycle, WAG slug size, ratio, flow rate and the sequence 

of each cycle, is tabulated. Generally, the WAG ratio equal to approximately 1:1 may result 

in a high oil recovery factor by balancing the sweeping effect of water and gas injections. The 

sequence of the injection process is significantly affected by when the WAG injection 

recovery started. WAG flow rate is usually simulated as the condition from the field 

production activity. WAG slug size usually ranges from 0.01 to 0.5 PV, and an appropriate 

small volume will improve the recovery process.
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Core-Scale IWAG Injection Operational Parameters Screening 

Authors Core Properties Fluid Properties WAG 

Timing 

WAG 

Flow 

Rate 

WAG 

Ratio 

WAG 

 Slug 

Size 

WAG 

 Sequence 

Best 

Hydrocarbon 

Recovery 
Efficiency 

Conclusions 

Type Wettability Porosity Permeability Reservoir 

Hydrocarbon 

Injected 

Gas 

Injected 

Water 

Cullick et 

al., 1993 

Limestone 

core 
Water-wet 

11.3 - 

26 % 
0.3 - 10 mD C3 C2 - nC4 Brine 

Secondary 

stage 

0.05 - 2 

ft/Day 
1:1 

0.05 

PV 

Water 

first 

Over 80 % 

IOIP 

after 1.2 PV 
injection 

- WAG injection consumes less 

gas but more efficient than 

continuous gas injection. 

- Changing the injection rate does 

not make a clear impact on gas 

condensate recovery efficiency. 

Nguyen et 

al., 1998 

Silica Sand 

core 
Water-wet 

38 - 42 

% 
11 - 13 D 

Crude Oil 

(Heavy) 

CO2 - 

N2 
Brine 

Secondary 

stage 

6 

ft/Day 
4:1 

0.2 

PV 

Gas 

first 

Over 50 % 

IOIP 

after 2.5 PV 
injection 

- N2 affect the impurity of CO2 by 

decreasing the solubility and 

diffusivity. 

- More percentage of N2 in the gas 

mixture reduce the recovery 

efficiency. 

Sohrabi et 

al., 2000 
Micromodel Water-wet N/A N/A nC10 C1 

Distilled 

Water 

Tertiary 

stage 

3 

ft/Day 
N/A N/A 

Gas 

first 

Over 20 % 

ROIP 

after five 
cycles of 

injection 

- Most oil recovery of WAG 

happened in the first two cycles. 

- Gas intends to occupy the oil-

filled pore due to its lower IFT of 

gas/oil compared to gas/water. 

Dong et al., 

2002 
Micromodel Water-wet N/A N/A 

Mixed 

Crude Oil 
Air Brine 

Secondary 

stage 

0.15 

 cc/Hr 

2:1 

3:1 

0.3-
0.4 

PV 

Water 

first 

Over 50 % 
IOIP 

after 2.5 PV 
injection 

- Injected gas tends to push the oil 

into the water channel when the 

residual oil saturation still high. 

- Trapped gas saturation increasing 

is the main recovery mechanism 

when Sor low. 

- More cycles of injection do not 

lead to a better recovery due to 

high water saturation and 

discontinuity of the oil phase.  

Righi et al., 

2004 

Quartzose 

sandstone 

core 

Water-wet 18% 25 - 300 mD Live-Oil 
Produced 

Gas 
Brine 

Tertiary 

stage 
N/A 1:1 

0.05 - 

0.1 

PV 

Gas 

first 

Over 20 % 

IOIP 

after 1.2 PV 

injection 

-WAG produced a significant 

volume of oil as tertiary recovery. 

 - A good matching between the 

core flooding experiment and 

simulation results. 
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Kulkarni 
and Rao, 

2005 

Berea 
sandstone 

core 

Water-wet N/A N/A n-Decane CO2 Brine 
Tertiary 

stage 

60  

cc/Hr 
1:1 

0.5 

PV 

Water 

first 

Over 20 % 

IOIP 

after 2 PV 
injection 

- The optimum process suggested 

by this experimental work is 

approximately 60%–80% pore 

volume CGI injection followed by 

1:1 WAG; it is related to timing. 

- WAG floods show a significant 

dependence on brine composition. 

Zhang et 
al., 2006 

Sandstone 
core 

Water-wet N/A N/A 
Crude Oil 
(Heavy) 

CO2 - 

N2 

Flue gas 

Brine 
Foam 

Tertiary 
stage 

20  
cc/Hr 

4:1 
0.2 
PV 

Gas 
first 

Over 5 % 

IOIP 
after 4 PV 

injection 

- The efficiency of using flue gas 

is the same with pure CO2, which 

much better than being 

contaminated by N2. 

- Using foam instead of just brine 

will improve the recovery 

efficiency for heavy oil. 

Zhang et 
al., 2010 

Mixed 

silica sand 
core 

Water-wet N/A N/A 
Crude Oil 
(Heavy) 

CO2 Brine 
Tertiary 
stage 

20 
 cc/Hr 

1:1 
0.5 
PV 

Gas 
first 

Over 15 % 

IOIP 
after 4 PV 

injection 

- Significant oil recovery was 

noticed by WAG injection to 

compare with only Polymer 

Injection. 

- The concentration of Polymer is 

important to improve the recovery 

efficiency of Polymer alternating 

gas Injection. 

Ghafoori et 

al., 2012 

Carbonate 

core 
N/A 12.15% 0.36 mD 

Live Oil 

nC10-nC4 

CO2 - 

N2 
Brine 

Secondary 

stage 

15 

 cc/Hr 
1:1 

0.05 - 
0.25 

PV 

N/A 

Over 80 % 
IOIP 

after 2 PV 
injection 

- Slug size impact on oil recovery 

for N2-WAG injection after 

comparing different schemes. 

- The optimum time to start 

injection is 1:1 WAG followed 

after 0.5 PV of gas was injected.  

Srivastava 
et al., 2012 

Sandstone 
core 

N/A 21.00% 323.23 mD Live-Oil CO2 Brine 
Tertiary 
stage 

10 - 20 
 cc/Hr 

1:1 

0.1 - 

0.5 

PV 

Gas 
first 

Over 12 % 

IOIP 
after 1 PV 

injection 

- Slug size has a clear impact on 

the tertiary oil recovery by WAG. 

- Tapered WAG gives a general 

better oil recovery volume than a 

conventional WAG. 

Jiang et al., 
2012 

Berea 

sandstone 

core 

Water-wet 19.50% 
125 - 130 
mD 

Crude Oil 
CO2 - 
O2 

Brine 
Tertiary 
stage 

18 
cc/Hr 

1:1 
0.1 
PV 

Water 
first 

Over 10 % 

IOIP 
after 2 PV 

injection 

- The impurity of CO2 

significantly impacts the efficiency 

of WAG recovery for both 

immiscible and miscible WAG. 
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Torabi et 

al., 2012 

Sandstone 

core 
N/A 

36 - 38 

% 
12 - 43 D 

Crude Oil 

(Heavy) 
CO2 Brine 

Secondary 

stage 

6 - 60 

 cc/Hr 

1:1 
2:1 

1:2 

N/A N/A 

Over 40 % 

IOIP 

after 4.5 PV 
injection 

- WAG ratio has a clear impact on 

oil recovery; in this case, 1:1 is 

considered as the optimum value. 

- Base on the viscosity of the oil, a 

suitable WAG ratio should be 

suggested for an optimum oil 

recovery factor. 

Zolfaghariet 

al., 2013 

Sandstone 

core 
Water-wet 

29 - 31 

% 

330 - 340 

mD 

Crude Oil 

(Heavy) 
CO3 Brine 

Secondary 

stage 

18 

cc/Hr 
1:1 N/A 

Water 

first 

Over 80 % 
IOIP 

after 2 PV 

injection 

- The low salinity brine tends to 

give a better oil recovery than the 

high one for both WAG injection 

and only water-flooding as 

secondary recovery stage. 

Salehi et al., 
2014 

Silica Sand 
core 

Water-wet 29% 350 mD Crude Oil N2 Surfactant 
Secondary 
stage 

12 
cc/Hr 

1:1 

3:1 
1:3 

0.15 
PV 

Surfactant 
first 

Over 80 % 

IOIP 
after 1.2 PV 

injection 

- The amount of oil recovery is 

highly sensitive to WAG ratio. 

Fatemi et 
al., 2015 

Clashach 

sandstone 

 core 

Mixed-wet 18.20% 65mD n-Butane CH4 Brine 
Secondary 
stage 

25 
cc/Hr 

1:1 
2.5 
PV 

Alternating 

Over 70 % 

IOIP 
after 15 PV 

injection 

- Ultimate oil recovery by CGI is 

less for the case of Mixed-wet than 

water-wet and RF of gas injection 

is lower than that obtained by 

water-flooding, also contrast with 

water-wet type. 

- The oil recovery is lower for 

extended gas injection performed 

at higher gas/oil IFT conditions. 

- For ultra-low IFT, WAG is better 

than GAW. 

- For high IFT, GAW is better than 

WAG.  Hence, the sequence makes 

a clear impact on oil recovery 

efficiency. 

Ahmadi et 

al., 2015 

Sandstone 

core 
Water-wet 

13 -25 

% 

13.5 - 14 

mD 

Crude Oil 

(Heavy) 

CO2 

HC gas 
N2 

Brine 
Secondary 

stage 
N/A 1:2 

0.5 

PV 

Water 

first 

Over 70 % 
IOIP 

after 1.5 PV 

injection 

- Hot water is more effective than 

normal brine for WAG recovery. 

- Associated HC gas in compared 

with N2 and CO2 is better for 

improving oil recovery factor. 

Khanifa et 
al., 2015 

N/A N/A 
29 - 33 
% 

180 - 300 
mD 

Live-Oil 

Mixed 

HC gas - 

CO2 

Brine 
Seawater 

Tertiary 
stage 

13 
cc/Hr 

1:1 
0.2 
PV 

Gas 
first 

Over 15 % 

IOIP 
after 4 PV 

injection 

- WAG produced a significant 

volume of oil as tertiary recovery. 
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Alkhazmi et 

al., 2017 

Clashach 

sandstone 
core 

Mixed-wet 18.20% 65mD n-Butane CH4 Brine 
Tertiary 

stage 
N/A 1:1 

0.15 - 

2PV 
Alternating 

Over 70 % 
IOIP 

after 2 PV 

injection 

- Highest performance of oil 

recovery was achieved by the 

injection of the first two cycles of 

small slug GAW (0.72/0.75 total 

IOIP) and small slug WAG 

(0.64/0.69 total IOIP). 

- Reducing the size of injected 

slugs can improve the performance 

of WAG. 

- Sequence significantly impact on 

oil recovery efficiency. 

 

Table 2-1: Screening of core-scale IWAG injection through 18 experimental projects
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2.3 Double Displacement Process (DDP) 

The Double displacement Process (DDP) is considered to be an effective oil recovery method 

that employs gas as the immiscible injection solvent and can be applied to oil reservoirs as a 

secondary recovery method after the natural water influx stage or as a tertiary recovery 

method after secondary water-flooding [Ren et al., 2004]. In 1988, the term of DDP was first 

introduced by Carlson in a study to investigate the performance of Hawkins field oil recovery 

under gas drive process [Carlson, 1988]. The results of this recovery process for this field 

project is remarkable, with a total oil recovery factor over 80%, much higher compared with 

water-flooding in which approximately 60% of the initial oil volume was recovered. Gases 

used for DDP vary with the popular types including hydrocarbon gas, flue gas, nitrogen and 

carbon dioxide [Merchant, 2010]; their worldwide applications are recognized with an 

average total oil recovery factor over 75% [Kulkarni and Rao, 2006]. When implementing 

DDP for field projects, gas is injected from the top part of the reservoir, and oil is produced 

from the bottom part.  

 

Fig 2-16: Double displacement process [Satitkanikul and Athichanagorn, 2013] 
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The main recovery mechanisms of DDP are gravity drainage and mobilization of residual oil 

from water-flooding by the displacement effect of gas cap expanding by the injection 

[Carlson, 1988]. Water-flooding is also uses gravity drainage to recover oil, but due to a 

smaller disparity in water-oil density than in gas-oil density gravity drainage is less effective 

for water-flooding than for gas injection. Double displacement processes, including gas-oil 

displacement, which is usually called the first drainage process, and oil-water displacement 

as a second drainage process to push the oil-water contact to the original position [Oren et al., 

1992]. The benefit of double displacement processes, DDP, is improving the sweep efficiency 

then displace better for the gas-oil system to the water-oil system [Langenberg et al., 1995]. 

Various studies investigate DDP, fboth experimentally and through simulation. 

Fassihi and Gillham. [1993] introduced the first project that employed air as the injected gas 

for DDP in the West Hackberry field. Air was chosen for this project because of its economic 

benefit, it was much cheaper than using nitrogen or CO2 and was easy to mobilize the reservoir 

oil under high pressure and temperature condition. Based on the simulation results, they 

concluded that the gravity effect is considered as the main mechanism for the DDP recovery 

process in this field. Furthermore, the interaction between gas and oil phase is also significant 

to the recovery process by the effect of phase behavior and composition of fluids. 

Oren and Pinczewski. [1992, 1994] continued the previous study about the effect of 

wettability and spreading on the recovery performance of DDP from water-wet system to oil-

wet system by observing the recovery process in an experimental micromodel. Air was used 

as the injected gas, and ambient pressure and temperature were maintained for DDP. They 

observed that oil-wetting films in the oil-wet system were thicker and more productive than 

oil-spreading film observed in the water-wet system in the study of Oren et al. in 1992. 
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Another statement was also made that oil recovered from the oil-wet system is much higher 

than water-wet-system due to its positive spreading effect. 

Ren and Bentsen. [2004] conducted pore-level experiments to investigate the main 

mechanisms of two gravity-assisted tertiary gas injection processes including DDP and 

second-contact water displacement (SCWD), an extended version of DDP with a second 

water-flooding. Nitrogen was used as the injected gas for both processes, with gas injected 

from the top of the cell, and water injected from the bottom of the cell to illustrate the same 

condition as the field operation. They confirmed that the oil firm is an important factor in the 

recovery process, and it depends strongly on the interfacial tension of the fluid system. 

Moreover, the length of SCWD is much shorter than DDP due to the effective second water-

flooding and trapped gas effect. 

 Wang et al. [2006] investigated the properties of three-phase flow in DDP for an oil-wet 

composite core representative of the Hibernia reservoir. Synthetic gas and formation brine 

were used as injected fluids to set up the condition of the DDP test. The gravity effect was 

also noticed in simulating the core-flooding experiment by orienting the vertical direction of 

the core holder. After water-flooding, approximately 54% OOIP was recovered when the 

water-cut was at 90 percent. An additional approximately 13% OOIP was recovered after the 

first pore volume of gas injection and a total of around 33% OOIP was produced by the whole 

gas-flood at water-flooding residual oil. This result demonstrates that employing hydrocarbon 

gas for DDP is good not only for storage purposes, but also to produce a significant additional 

oil recovery after water-flooding.  

To investigate the effectiveness of DDP application for a sandstone formation, Al-sumaiti and 

Kazemi [2012] proposed experimental and numerical simulation of DDP for a tight fractured 
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reservoir that has a wettability range from mixed-wet to oil-wet condition. The procedure of 

this research included examining the DDP tests for experimental fracture core, simulating the 

experimental by computational software and upscaling the experimental results to field-scale 

data. The experimental results from the DDP test indicated that all cores recognized a total oil 

recovery of all injection process is higher than 80% with the volume of oil recovered by gas-

flood equal to the amount from water-flooding. The classical implicit pressure explicit 

saturation method created a good matching between the simulation model and experimental 

data. However, due to the complex structure of the fractured reservoir, scaling up the 

experimental data to field-scale could be challenging.  

Satitkanitkul and Athichanagorn. [2013] presented an optimization procedure for DDP of a 

numerical reservoir model. Four important parameters were listed to be optimized, including 

the length of water injection, fluids injection rate, and well pattern. The results indicated that 

a high produced water leads to a better oil recovery factor. Furthermore, a high rate of fluid 

injection gave a higher amount of recovered oil; however, too high a rate will yield an excess 

of the formation fracture system. Finally, a horizontal production well is more effective than 

a vertical one. 

In this research, the fluid information and cores used for the DDP test in the study of Wang et 

al. are employed to simulate the numerical composite core-scale model for further 

investigation of IWAG injection as well as validating with the experimental data from this 

study. 

2.4 Oil and Gas Production Optimization 

The main objective of oil production optimization is to investigate the most appropriate 

operational scheme to acquire the maximum volume of oil recovery from the reservoir but 
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still maintain a good balance for the operation and economic constraints. The optimization 

application was introduced for use in the oil and gas industry and developed through the time 

for many aspects. In the middle of the 1960s, research presented a simplified optimization 

method for the drilling of a gas reservoir to optimize the number of wells, the length of the 

drilling period and timing to start the drilling stages, for both technical and economic 

considerations [Goldfracht et al., 1966]. Later, a constrained optimization technique was 

employed to achieve the optimum operational parameters, such as production well rate and 

gas-lift rate, to increase production rate and decrease the operational expense [Wang et al., 

2002]. 

Various optimization programming techniques have been applied to optimize oil and gas 

exploitation. The following information will generally categorize optimization methods and 

present the literature with respect to their application in the oil and gas industry. 

2.4.1 Response Surface Methodology (RSM) 

The Design of Experiments (DOE) is not just considered as an optimization technique, it is 

an effective tool to determine the relationship between cause and effect. Beginning in early 

1920, Sir Ronald A. Fisher became the pioneer to lay the foundation for this technique 

originally focused on agriculture purposes [Fisher, 1958]. Three fundamental principles were 

introduced through his research for shaping the experiment design, including randomization, 

replication, and blocking. He also systematically presented general ideas about the design of 

experimental investigation, including the factorial design concept and the analysis of variance. 

Randomization is defined as a well understood probabilistic scheme to assign the treatment 

for units. A set of objects for the experiment are chosen randomly in both orders and subsets 

to achieve a well-designed experiment. Randomization methods can be achieved either 
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through physical or numerical ways [Gary, 2010]. Replication is the level of repeating 

experiment runs with the same factor settings in randomized runs and employed in the purpose 

of checking variability and constraining the experimental system. Blocking is explained as a 

categorical variable that is used to reduce the bias and errors variation for the designed 

experiment. Runs happening inside different blocks also need to be randomized [Anderson 

and Whitcomb, 2016]. A factorial design is a designed experiment in which all the 

combinations of the factor levels are concerned. As the number of factors or the level of each 

factor increases, the number of runs required for the design experiment increases significantly, 

then fractional factorial design or other advanced designed techniques should be considered 

to reduce the time for experimentation [Montgomery, 2017]. Analysis of variance (ANOVA) 

is used to examine if mean values of the populations are equal for the designed model. It also 

estimates the level of importance for each factor, as well as their interactions by comparing 

the response variable means with the producer’s risk (alpha) [Gary, 2010]. 

Later in the 1930s, the industrial statistical design began, and the next development was 

classified as response surface methodology (RSM) [Box and Wilson, 1951]. This technique 

was widely used in the chemical and process industries by taking advantage of optimizing the 

related factors such as time of process, pressure, temperature, flow rate, etc. In the 1950s, an 

upgraded designed experiment technique was introduced by Kiefer and Wolfowitz known as 

optimal design. This approach is based on selecting a design that fits a specific objective 

through optimum criteria. However, at the time, this approach was not suitable for spreading 

use because of the lack of computation application for its advanced algorithms [Kiefer and 

Wolfowitz, 1959]. Later in the 1980s, Genichi Taguchi promoted a newly designed 

experiment termed as robust parameter design [Taguchi, 1986; Taguchi, 1987; Taguchi et al., 
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2000]. In this design, the response has a fixed mean that will be optimized while minimizing 

the variation. The purpose of the design is improving the relationship between signal factor 

and response. Taguchi design is built on a mixed level through fractional factorial design and 

orthogonal designs. Its application is well recognized in automotive and aerospace 

manufacturers. 

A well-designed DOE model collects the design space of sample to maximize useful output 

information while minimizing the amount of input data and lowering the number of runs. 

Time-consuming for experiments, as well as the numerical simulation, is reasonable reducing 

as useful effort. Therefore, choosing an appropriate sample size for experiment runs must be 

optimized to maintain the accuracy of the designed model. DOE follows various interpolation 

or approximation techniques such as linear, nonlinear, polynomial, stochastic, etc. that employ 

response surface methodology (RSM) techniques in different ways. Whenever an appropriate 

response surface of the objects is created through variables, the general optimization process 

of this design will be achieved accurately. The most significant advantage of RSM is reducing 

the duration of sample runs in comparison with conventional factorial design by reducing the 

number of runs. However, the optimization from response surface is always approximate due 

to the limitation of confidence level. The RSM technique is improved by distributing the input 

samples over the designed space [Cavazzuti, 2012]. 

Response surface methodology (RSM) is defined as a collection of mathematical and 

statistical methods that help to understand and optimize the response better through several 

variables [Deyhimi et al., 2006]. The purpose of this technique is to focus on investigating the 

relationship function with is unknown between input variables and the related response. When 

starting the RSM process, the first stage is establishing a suitable rough relationship between 
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response y and independent variables (xi). A simple low-order polynomial is used to model 

the linear function of independent variables (xi), which is called the first-order model as 

described below: 

 y = 𝛽0 + 𝛽1x1 + 𝛽2x2 + · · · + 𝛽ixi + 𝜖 (2.4) 

The first-order model can describe the response surface reasonably when the estimated region 

is a small portion and separated from the curved region such as maxima, minima, ridge, and 

saddle [Gary, 2010]. Hence, an improved model made by the steepest ascent method is 

suggested to solve this issue, which would make the response surface more advanced by 

including curvature [Weihs et al., 2006]; this model is called the second-order model 

 y = 𝛽0 + ∑ β𝑖
𝑘
𝑖 = 1 x𝑖 + ∑ β𝑖𝑖

𝑘
𝑖 = 1 𝑥𝑖

2 + ∑ ∑ β𝑖𝑗x𝑖x𝑗𝑖 <𝑗  + 𝜖 (2.5) 

where: ∑ β𝑖
𝑘
𝑖 = 1 x𝑖 called the linear terms;  ∑ ∑ β𝑖𝑗x𝑖x𝑗𝑖 <𝑗  called the interaction terms and 

∑ ∑ β𝑖𝑗x𝑖x𝑗𝑖 <𝑗  called the quadratic terms. The second-order model can describe the response 

surface as a quadratic surface which includes various shapes that significantly improves the 

accuracy of the designed model. The second-order surface possibly points out the stationary 

point, which is defined as either maximum or minimum points from a specific combination 

of designed variables in all directions of the modeled surface. If in the searching surface, it 

contains both the maximum point in some directions and the minimum point in other 

directions, the stationary point is called the saddle point. The model also could have no 

stationary point; then it is called a ridge surface [Gary, 2010].  

The designs of the second-order surface can be classified with specific characteristics as the 

following methods below, including conventional designs such as central composite designs 

(CCD) and Box-Behnken designs (BBD) or unconventional design such as optimal designs. 
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2.4.1.1 Central Composite Designs (CCD) 

CCD is the most popular design used to fit the second-order model [Carley et al., 2004]. 

Generally, CCD consists of factorial points, axial or start points and center points; it usually 

divided into five levels for each variable including low axial, low factorial, center, high 

factorial, and high axial [Anderson and Whitcomb, 2016]. 

 

Fig. 2-17: Central composite design (CCD) in three dimensions with factorial points (F), 

axial points (A), and center point (C) [Anderson and Whitcomb, 2016] 

First, factorial points are presented for fitting the first-order model, then adding axial points, 

and center points are used to incorporate the quadratic term into the designed model. Two 

important factors affect the efficiency of CCD design, including the distance (α), form axial 

points to the center point and the number of the center point. Good CCD design means that 

the response surface should be rotatable, it happens when all points (axial and factorial) should 

be the same distance from the designed center and placed on a sphere [Box and Hunter, 1957], 

these properties are appropriate when the design will provide an equal estimation for predicted 

response in all directions. The rotatability will be decided by choosing the suitable distance 

(α), for a spherical region the best choice of α is equal to (2𝑘)
1

4 with k is the number of 

variables. There are various types of CCD model that are based on the limitation of the 

searching range. 
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Fig. 2-18: Central composite design classification for the model of two-variables (a, b) and 

three-variables (c) [Cavazzuti, 2012] 

The number of center point bases on the level of power for analysis is symbolized for the 

variability of the predicted response. For an experiment, this number should be placed in the 

range from three to five for a powerful analysis [Montgomery, 2017]. However, in the 

simulation model, the number of center-point can be equal to 1 due to no replication of runs. 

2.4.1.2 Box-Behnken Designs (BBD) 

BBD is built from the combination of two-level factorials with incomplete block design to 

become an incomplete three-level factorial designed model [Montgomery, 2017]. This model 

is introduced to maintain the size of the sample when increasing the number of variables [Box 

and Behnken, 1960]. In BBD, the block of two-levels factorial samples is repeated and 

changes through different variable combinations whereas the variable that is not contained in 

that block keeps the same mean value. This design could be either rotatable or near-rotatable 

depending on the distance of predicted response variance with the designed center point 

[Cavazzuti, 2012]. BBD proved itself as an economical design because it requires fewer 

design points than CCD. However, this design contains a clear limitation for applying to 

orthogonal blocking in comparison with CCD due to lack of embedded factorial design. 

Therefore, it is not suitable to be applied for sequential designs [Minitab, 2019]. 
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Fig. 2-19: Box-Behnken design (BBD) for three variables [Anderson and Whitcomb, 2016] 

2.4.1.3 Optimal Designs (OD) 

These designs are used as an upgraded design of RSM when the standard response surface 

methods as CCD or BBD are not capable of illustrating the experiment region in a higher 

order than second-order design [Anderson and Whitcomb, 2016]. Optimal design is used due 

to its special properties. Firstly, if the design variables are sensitive in the examined range of 

complex constraint must be established for the experimental system, the optimal design 

should be used to optimize the response [Montgomery, 2017]. Secondly, for some atypical 

experiments, the conventional model cannot deal with the high number of parameters or a 

high number of variable levels. Therefore, the nonstandard model as the optimal design is 

suggested to optimize the response surface; it seems like an adjustable model of the full 

factorial design with high levels of each variable [Cavazzuti, 2012]. Another advantage of 

optimal design is that if the experimenter can anticipate a good structure of the response 

surface by using optimal design, it could reduce the number of runs used significantly and 

could save time [Montgomery, 2017]. The most popular optimal model used is I-optimal; this 

model focus on minimizing the normalized average or integrated prediction variance 

[Cavazzuti, 2012]. Other optimal design models used for different specific purposes include 

D-optimal design, which aims to minimize joint confidence region volume on the vector of 

the regression coefficient. A-optimal design is used for minimizing the sum of variances of 
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the regression coefficients. G-optimal design focusing on minimization of maximum scaled 

prediction variance through the design space. V-optimal design, which is used to minimize 

the average prediction variance over observed points [Montgomery, 2017]. However, optimal 

design is not recommended unless the design model relates to a complex constraints model. 

Generally, the conventional response surface models are good enough to illustrate the 

optimum response [Anderson and Whitcomb, 2016]. 

2.4.1.4 Response Surface Methodology (RSM) Applications 

Response surface methodology is used widely for optimizing processes in the oil and gas 

industry and have proven to be an effective model to optimize simulation process [Hood and 

Welch, 1993; Carson and Maria, 1997; Neddermeijer et al., 2000]. 

In 1999, Narayanan et al. used the RSM model to optimize one particular property, pseudo-

relative permeability (used for geological model upscaling) due to its reasonable price in 

comparison with the fine grid simulation model. BBD was employed to present the quadratic 

and linear effect between the response of five factors including facies ratio, shale resistivity, 

cement permeability, angle of dip, and water injection rate. The result from response surface 

indicated that the shale resistivity and facies ratio make the most significant impact on pseudo-

relative permeability variation. All other parameters also made an impact on response 

curvature with a confidence level at 95%.  

Averbuch et al. [2005] employed RSM as an effective tool to design the response surface for 

the critical time of hydrate formation as a function of flow characteristics, including the gas-

oil ratio, the water cut, the total liquid flow rate, the temperature and pressure at the manifold, 

and the heat exchange coefficient (U value) for a deep offshore field development. A total of 

45 runs was employed based on the CCD design for six parameters, leading to a conclusion 
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that the critical time is strongly dependent on the U value with a good predicted quadratic 

response surface. Li and Friedmann. [2005] also used RSM for another deep-water field 

development in Africa. An upgraded model of RSM, named the amplitude-phase factor, was 

presented to design the response surface for oil rate and water cut from the relationship 

between eight parameters (including porosity, permeability and viscosity of multiplier) in 

addition to conventional RSM models such as regression and thin-plate spline. These response 

designs were applied at three levels of the total volume of water injection for a reservoir model 

with dimension as 78 × 59 × 116 grid blocks. The results pointed out that the amplitude-phase 

model gave the best R2, which is the coefficient between the predicted and actual response, 

for all cases in which the value are all higher than 0.95. The conventional regression model 

resulted in a good R2 value for the case with 0.1 PV of water injection.  

Mollaei et al. [2011] built up a general isothermal EOR forecasting tool to perform 

simultaneous WAG process for reservoir simulation model by CMG through components as 

material balance, segregation flow, and fractional flux. The input data used for this RSM 

model included WAG ratio, injection pressure, reservoir heterogeneity, and geostatistical 

dimensionless correlation length. The response surfaces covered three different aspects, 

including solvent front factor, oil bank front factor, and final average oil saturation. They 

concluded that the RSM model is good for modeling the WAG process through these observed 

parameters by fitting well with simulation results and reservoir heterogeneity is the most 

significant impact factor for the WAG process. Ghahri et al. [2011] optimized the clean-up 

process efficiency of injected fracture fluid for a hydraulic fractured well using the RSM 

technique with 16 parameters related to the pressure drawdown, capillary pressure, 

permeability and porosity of injected fluids, the matrix and the fractures. The response surface 
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focused on illustrating the predicted value of gas production loss through two injected 

fractured volume values. Both two-level full factorial design and three-level CCD and BBD 

were employed to establish the response surface by running an ECLIPSE simulation model. 

The result is clear that the more the production process continues, the impacts of input 

parameters increase based on RSM. For one-year of production, full factorial design and CCD 

suggest a better clean up efficiency than BBD model. Khosravi et al. [2011] applied RSM 

design for a fracture simulation model to examine the impacts of related reservoir parameters 

for the recovery process. The ultimate oil recovery factor from the natural depletion stage was 

investigated through a sensitive Monte-Carlo analysis model later based on the predicted 

response surface of RSM. After a sensitivity screening on different RSM techniques, BBD 

was employed to design the response surface by 49 runs from the combination of input 

parameters such as matrix block size, effective fracture permeability, matrix permeability, 

aquifer size, water relative permeability, and oil relative permeability. The predicted response 

was good, with R2 values higher than 0.95, and pointed out the aquifer size has the most 

significant impact on oil recovery, and ultimate oil recovery factor can be up to 23%. 

Ghaderi et al. [2012] used the optimal design of RSM to optimize the WAG process for a tight 

formation compositional simulation. A wide range of parameters related to the WAG process, 

including well pattern, well completion, fracture spacing, fracture half-length, average 

reservoir pressure, water-cut, WAG slug size, and WAG ratio, were selected to design the 

response for oil recovery factor, CO2 sequestration and NPV aspects. The results indicated 

that for different objects, there would be differences in predicted response surfaces as well as 

variables impact orders. To maximize the oil recovery factor, WAG ratio is the most 
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significant parameter, whereas the well completion method is the most significant in order to 

determine the NPV efficiency. 

RSM method also proved itself as an effective tool to optimize core-scale WAG injection. 

Khezrnejad et al. [2014] employed RSM to optimize the oil recovery factor for the 

nanoparticle WAG process through three input parameters, including the salt concentration 

of brine, type of nanoparticles, and WAG ratio. From the ANOVA table and predicted 

response surface, he concluded that the salt concentration of brine is the most significant 

parameter, and silica nanoparticle is more effective than the alumina type. Van and Chon 

[2017] investigated the effect of brine salinity and WAG slug size on the oil recovery factor 

of a miscible WAG process by establishing the RSM model. For different volumes of fluid 

injection, range values of salinity and slug size were chosen to design the response surface. 

They found that this quadratic design model was suitable to present the relationship between 

observed parameters with oil recovery factor, with R2 values generally higher than 0.95.             

2.4.2 Computational Optimization Algorithms 

Computational optimization algorithms are classified into various types based on different 

principles. Generally, the classification can be divided into deterministic optimization and 

stochastic optimization. The following literature will verify their definition and application 

for each type. 

Deterministic Optimization 

Deterministic optimization is defined as an optimization technique that relates to 

mathematical programming. By depending on a linear mathematical formulation that does not 

include the random variable, the result of deterministic will be clear and replicable for 

different runs. This algorithm focuses on searching the local optimum point of the response 
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variable from a set of feasible samples chosen based on specific criteria [Cavazzuti, 2012]. 

These criteria can be classified as two main types, including unconstrained optimization and 

constrained optimization.  

Unconstrained optimization is employed when there is no significant influence of constraints 

on the designed model and usually focuses on the minimization of the response [Rao, 2009]. 

These algorithms, which are based on the approximate genetic objective function, start the 

optimization process from point x1 and generate a line set of sequence point xn until the design 

space is converging to the solution. The minimum response from unconstrained optimization 

should be qualified two conditions, including the first-order necessary condition and the 

second-order condition [Guler, 2010]. Furthermore, the order of convergence of these 

algorithms demonstrates that the level of iterates converge of the solution. 

Constrained optimization is when the algorithms have input parameters that are constrained; 

these algorithms are described as following 

 Optimizing  f (x) x ϵ ℝk 

 Subject to  ci (x) = 0 i ϵ E (2.6) 

 ci (x) ≥ 0  i ϵ I 

where f (x) is the objective function, ci (x) are the constraint functions, E is the set of equality 

constraints, and I is the set of inequality constraints [Rao, 2009]. The group of points that 

satisfy the constrained optimization problem are called feasible points and the vectors of 

moving points of the optimization process are called feasible direction. The response solutions 

of the algorithms can be linear equations, nonlinear equation, or a mixture of them based on 

their complex constrained problem [Abidi et al., 2016].    

Stochastic Optimization 
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Stochastic optimization techniques focus on solving the optimization situations involving 

probabilistic or stochastic variables [Rao, 2009]. These random variables could come from 

nature or any random sources and could be used to handle both linear and non-linear 

programming problems [Chen and Lee, 2011]. These algorithms can be classified as simulated 

annealing, genetic algorithms, particle swarm optimization, and Monte-Carlo methods. 

2.4.2.1 Genetic Algorithm (GA) 

In the 1960s, Genetic algorithms (GA) were proposed by J. Holland as an innovative 

evolutionary algorithm based on biological evolution [Holland, 1975]. Their development 

was continued by Holland and his students during the next decade [Goldberg, 1989]. The 

original goal of this technique was to establish a natural adaption algorithm for a computer 

system, and the significant innovation of these algorithms was the combination of crossover, 

inversion, and mutation. It begins with two individual groups defined as the parent group and 

the offspring group, where the offspring is a mutated version of the parent. Various individual 

populations and crossover are not incorporated until a later stage. The selection of offspring 

from parents is an important process of the GA method [Mitchell, 1998]. The GA method has 

many advantages in the application of combinatorial optimization problems. This technique 

can be applied for both continuous and discrete variables, being suitable for dealing with a 

high number of input parameters, and especially providing a group of optimal solutions, not 

just a single option. However, GA requires a significant number of function evaluations based 

on generation and individual; therefore, it can be unpredictable for the first starting point. 

2.4.2.2 Simulated Annealing (SA) 

In 1983, Kirkpatrick proposed a probabilistic technique, based on the Metropolis-Hasting 

algorithm, called simulated annealing to find a global optimum through several local minima 
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[Kirkpatrick et al., 1983]. This algorithm is known as SA due to its initial application to 

achieve the optimum case for annealing the solid in a heat bath by managing the heating and 

cooling processes through temperature variable. The annealing process will start at the 

maximum temperature, then, the solid will cool down while maintaining the thermal 

equilibrium [Bertsimas, 1993]. SA could be considered as an algorithm that attempts to 

continue the transformation from the current configuration to one of its neighbors; this process 

is described as a chain of trial when the result of each trial is dependent on the previous 

outcome [Aarts, 1987]. SA optimization is a completely random run over the design space 

and is more effective in a discrete searching space. For each optimization process, the input 

variables are usually random in a constraint range; therefore, it is a time-saving process. 

However, the optimum case is considered not as a local optimum but a global one [Cavazzuti, 

2012]. 

2.4.2.3 Particle Swarm Optimization (PSO) 

Particle swarm optimization (PSO) is a well-known, population-based stochastic optimization 

method that was originally introduced by Dr. Eberhart and Dr. Kennedy. [1995]. This random 

optimization search algorithm was inspired by observing and simulating the social behavior 

of birds, bees, or fish schooling. PSO methods are considered as a computational optimization 

technique that is quite similar to GA. Their systems both come up with a random solution of 

population and acheive the optimum case by updating generation. However, without evolution 

factors such as crossover or mutation, PSO is instead flying the particles in the searching space 

following the current optimum particle to get to the final optimum point. This increases 

robustness of the algorithm. This mechanism is based on bird flocking scenarios, when 

iteration the bird inter-communication to find the optimum location for food by following the 
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bird which is closest to the food point [Eberhart and Kennedy, 1995]. The original model of 

PSO focused on building models that were well represented for the unpredictable 

choreography of a flock of birds. A vector represents each particle of the swarm through the 

multidimensional searching space. This vector will decide the following steps for particle 

movement and is called the velocity vector. The PSO algorithm is generally an update process 

of particle velocity to get to the optimum global point by iterating many times until the 

minimum error of performance index is achieved, proving itself as an efficient optimization 

tool [Pampara et al., 2005]. Eberhart and Kennedy [1997] introduced an upgraded discrete 

binary model for PSO. The value of each particle varies from zero to one value, and the 

velocity vector is represented as the probability of a particle equal to one. Later, Shi and 

Eberhart [1998] presented an update from the conventional PSO model by introducing a new 

factor called inertia weight to illustrate the previous velocities of particles.  

Generally, the PSO algorithm is a process that compares each particle with the nearest one to 

imitate which is better, then finally gets to the global optimal even if it is the nonlinear 

relationship, or problem environments are multidimensional [Abdelhalim and Habib, 2009]. 

The relationship between the current particle position (𝑥𝑖
(𝑛)

) and the next position (𝑥𝑖
(𝑛 +1)

) is 

described as 

 𝑥𝑖
(𝑛 +1)

 = 𝑥𝑖
(𝑛)

 + 𝑣𝑖
(𝑛 +1)

                                                         (2.7) 

where 𝑣𝑖 is the velocity vector of the individual i. The velocity information could also be 

presented as the function below to update for the current particle 

𝑣𝑖
(𝑛 +1)

  = ω 𝑣𝑖
(𝑛)

 + C1r1 (�̅�𝑖 - 𝑥𝑖
(𝑛)

) + C2r2 (�̃� - 𝑥𝑖
(𝑛)

) (2.8) 
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where: 𝑣𝑖
(𝑛 +1)

 is the particle velocity; ω is the inertia weight; C1, C2 are learning factors; r1, 

r2 are independent uniform random numbers; �̅�𝑖 is the best local solution; and �̃� is the best 

global solution [Haupt and Ellen, 2004]. 

The inertia weight (ω) is defined:  

ω = 𝜔𝑚𝑎𝑥 - 
(ω𝑚𝑎𝑥 − ω𝑚𝑖𝑛)𝑡

𝑡𝑚𝑎𝑥
 (2.9) 

where ω𝑚𝑎𝑥 is the maximum magnitude of the inertia weight, ω𝑚𝑖𝑛 is the minimum 

magnitude of the inertia weight, t is the current iteration and 𝑡𝑚𝑎𝑥 is the total number of 

iterations. 

 

Fig. 2-20: Basic velocity update mechanism in PSO [Kiranyaz et al., 2014] 

Although PSO has proven itself as a good global optimization method for any 

multidimensional problems, PSO still has the drawback of the risk of being trapped at the 

local optimum and not being able to improve anymore and guaranteeing further convergence. 

An improvement could be made by an improved local minimizer PSO model [Aote et al., 

2013]. 
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2.4.2.4 Monte Carlo Methods 

In 1940, Monte Carlo simulation was first applied in the process of nuclear weapons 

development in Los Alamos [Kalos and Whitlock, 2009]. Simplistically, Monte Carlo 

methods are a group of stochastic algorithms that focus on analyzing the specific personalities 

of the object by repeating random sampling for different paths [Raychaudhuri, 2008]. The 

algorithms calculate different output options by repeating input data picks from observed 

variables suitable for statistical distribution and employing that to build the forecast response 

models. Then, the forecast model is able to define and analyze any optimum aspects based on 

the probability and value relationship. Monte Carlo simulation is widely used for purposes 

such as risk analysis, risk quantification, and prediction analysis [Mun, 2006]. There are three 

main evolutional mechanisms to describe the system models, including discrete-time models, 

continuous-time models, and discrete-event models [Brandimarte, 2014]. The biggest 

challenge when applying Monte Carlo simulation is picking a suitable statistical distribution 

for sampling values from input variables. With a suitable statistical distribution chosen, the 

Monte Carlo method is well recognized as an effective mathematic tool for forecasting 

optimization in the oil and gas industry [Murtha, 1994; Murtha, 2006]. 

2.4.2.5 Computational Optimization Algorithms Applications 

The application of computational optimization algorithms has been widely recognized as an 

effective tool for forecasting in oil and gas exploration and production industries. Generally, 

GA techniques primarily used for the purpose of matching the simulation model with 

production history and improving the economic aspect of the production process. In 1999, 

GA was proposed as an evolutionary programming technique to forecast oil production by 

matching historical production with a simulation model of petrophysical rock properties, such  
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as permeability and porosity. Ten simulation runs for two different production strategies were 

conducted to give an uncertainty estimate prediction [Soleng, 1999]. Later, the advantage of 

GA for global optimization was also employed to characterize a hydrocarbon reservoir by 

matching the historical production data (such as bottom hole pressure, oil production rate, and 

water injection rate) with the reservoir simulation model based on geological and structural 

properties [Romero et al., 2000]. In 2015, Xu et al. adjusted crossover and mutation rates to 

modify the GA method to match the simulation data with experimental results for vapor 

extraction (VAPEX) heavy oil recovery process. The result of that fitting process were good 

with the obtained errors lower than 1% [Xu et al., 2015]. For economical production 

efficiency, in 1998, Harding et al. used GA to optimize the total net present value (NPV) for 

the reservoir production model. Constraint models were built under productivity and 

sequencing condition to focus on optimizing the input parameters, including the starting 

points of production and production rates [Harding et al., 1998]. Similarly, Sarich used GA 

as an effective tool to optimize investment decision-makers for oil and gas production. The 

economic indicators such as NPV and rate of return (ROR) were optimized based on 

managing the operation status of oil and gas production wells [Sarich, 2001].  

SA applications are recognized in seismic interpretation optimization. In 1991, a framework 

of employing SA to implement seismic inversion was introduced, based on their particular 

genetic algorithms structure, it was possible to invert the seismic field data. The result clearly 

indicated that a subsurface model can be built from hundreds of input parameters of the SA 

model [Pedersen et al., 1991]. Later, Abdassah et al. optimized the inter-well reservoir 

characterization by applying the SA technique for seismic data processing. The object 

function was strongly built on the relationship between acoustic impedance data and porosity 



79  

data [Abdassah et al., 1996]. In 2005, SA was used to optimize the seismic shear-wave 

splitting analysis to correctly estimate the lateral and vertical variation of fracture properties 

based on the analysis of the input data as the time lag between S-waves and natural direction 

of S-wave [Dariu et al., 2005]. Another advantage of SA for inverted seismic data was 

proposed in 2008; Huang and Chou used SA to minimize the distance of hyperbola points in 

the hierarchical system by optimizing the parameter vector from the number of patterns and 

number of points in an image [Huang and Chou, 2008]. In 2011, three new different SA 

technique,s including normal SA, fast SA, and very fast SA, were proposed to detect the 

parameters of the hyperbolic patterns on seismic data gathering, the results also capering to 

each other [Huang and Hsieh, 2011].  

The Monte Carlo method is mostly applied for optimization cases such as reserve estimation 

and production forecasting [Murtha, 2006]. In 1973, Evers and Jennings pointed out the 

importance of Monte Carlo simulation for field economic evaluation and suggested the 

calculation steps of two different probability distribution models of Monte Carlo simulation 

to present the profit of a gas field [Evers and Jennings, 1973]. Murtha also confirms the 

advantage of Monte Carlo simulation for modeling the economic key parameters for oil and 

gas production, such as net present value (NPV) and return of investment (ROI) [Murtha, 

1997; Murtha 2006]. In 1994, Murtha introduced an essential procedure for incorporating 

historical production data into a Monte Carlo simulation to present effective statistical 

distribution models to predict the field reserve. Later, Gilman et al. employed Monte Carlo 

simulation to estimate the future production from the input parameters such as gas-oil ratio 

(GOR) and production rate [Gilman et al., 1998]. Komlosi et al. [2009] also built predicted 

reserved model and technical reserved model by probability distribution function of the Monte 
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Carlo simulation base on the geotechnical properties and production conditions. The results 

pointed out the importance of choosing input data smoothly for a highly accurate prediction.                  

The PSO technique has a wide range of applications for oil and gas production optimization 

and has only been recognized recently. Onwunalu and Durlofsky [2009] introduced the PSO 

algorithm to optimize the well type and well location for a full reservoir simulation model for 

the first time. They also employed GA as a comparison technique. A detailed explanation was 

made with respect to PSO algorithms operational mechanism with iteration. The objective of 

this optimization process is NPV and the input parameters for this stochastic optimization 

procedure included all expenses related to good operation. After comparing the performance 

of PSO and GA, they concluded that as PSO gets to the optimum global point with fewer steps 

than GA, then it will be more efficient than GA for more complex variables. The swarm side 

and number of iterations of the optimization model should be flexible for different complexity 

levels. Assareh et al. [2010] also used both PSO and GA optimization techniques to estimate 

the demand of oil in Iran based on the input data as the volumes of oil consumption, imported 

oil, and exporting oil. After comparing four different scenarios, they concluded that the linear-

PSO model outperformed other cases with the lowest relative average error rate.  

Mohammed et al. [2011] proposed the multi-objective PSO procedure for history matching of 

a complex reservoir simulation model. The objectives functions included water and oil 

production rate based on the input parameters such as fault geophysical properties. The 

conclusions suggested that this multi-objective model led to the optimum result faster than 

the conventional single object approach and proved itself well-fitting with the reservoir 

model.   
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Awontunde. [2012] introduced the local-global PSO algorithm to estimate flow properties 

such as decomposition wavelets from permeability distribution to optimize reservoir 

performance. The optimization procedure went from a local search to global search, and the 

results indicated that by separating the two stages the model could predict a good fit for the 

optimum residual value with conditioning permeability distribution. Later, Zendehboudi et al. 

[2012] presented a feed-forward artificial neural network (ANN) optimized by PSO method 

to estimate a good value represented for Condensate-to-Gas ratio, which is extremely 

important for production preparing stage. Both PVT experiment and literature data were 

employed as input variables to build the PSO-ANN model, including temperature, dew-point 

pressure, and molecular weight. The result is clear that with a significantly high value of R2 

from the statistical analysis, this model is beyond the efficiency of the conventional ANN 

model.  

In 2013, the PSO algorithm was proposed by Fortini et al. to analyze seismic velocity 

interpretation to reduce time-consumsumption and focus on multi-dimensionality 

optimization for both 2D and 3D velocity models. As a result, both cases with different 

described input parameters, PSO is creates a simulation curve that fits both the 2D and 3D 

velocity curves. 

Wang and Qiu. [2013] employed PSO algorithms, including three different models, to 

optimize the oil recovery factor for a large, heavy oil reservoir. All the algorithms were 

compared based on the performance of convergence behavior and optimum results. The 

conventional one, Canonical model, got the best oil recovery factor, but all of them were 

significantly higher than the base case suggested. 
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Jesmani and Bellout. [2015] proposed PSO algorithms to develop the constraint 

computational optimization model for good placement in developing planning. Two 

producing cases were made to include the constraints of inter-well distance, well length, and 

well orientation. The objective of this optimized function is NPV based on the fixed economic 

parameters. The constraint handling methods used for these two cases included penalty 

function and decoder as a homomorphous mapping technique. A clear conclusion was made 

that the decoder technique is more efficient, incorporating different constraints of good 

placement. Further, there is no requirement for parameter tuning, and it is convenient to apply 

for both convex and non-convex feasible search space. 

The application of PSO algorithms for WAG optimization has only recently garnered attention 

despite the applications of the reviewed computational optimization techniques have been 

recognized many times. In 2000, a genetic algorithm was introduced to optimize the 

production performance for a miscible WAG injection field. From the reservoir model, a 

production model was built to combine all the fundamental properties of the wellbore model 

and choke model with the objective of the GA optimization function is net present value. The 

constraints for this model were established, including pressure, material balance, and 

economic index properties. It concluded that GA is an effective method to optimize the 

production forecasting of WAG reservoir with stability and could handle different constraints 

[Yang et al., 2000]. Later in 2003, further research into the optimization of WAG injection 

performance for this field focused on employing both GA and SA techniques. The same 

economic aspect as the objective of the optimization process was used for the four production 

cases. The results indicated that the integrated model for production forecasting works well, 

and both GA and SA are effective and stable to optimize the control of the production-
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injection operation systems [Yang and Gu, 2003]. In 2006, Esmaiel et al. introduced a 

response surface proxy model to optimize the economic perspective of the WAG process that 

applied well-smart technology. The optimization model was built based on the response 

surface methodology of the DOE, then upgraded the forecasted response by Monte Carlo 

simulation. The D-optimal design was used to determine the set of runs for five parameters, 

including WAG ratio, areal permeability multiplier, oil mobility, and the status of injection 

and production wells.  The proxy model wasccapable of demonstrating the response surface 

simulation for oil recovery, NPV, and utility of the WAG process, and Monte Carlo simulation 

was proven to be adequate as a beneficial probability distribution function. 

A WAG ratio equal to 1:1 is the best scenario for optimizing the response and the robust smart 

well technology with the optimum case which can improve the WAG process efficiency more 

than conventional wells [Esmaiel and Heeremans, 2006].  In 2010, an upgraded GA technique 

was proposed to optimize the production performance of miscible WAG injection in a a 

heterogeneous reservoir. The objective of the optimization was NPV based on the input 

parameters of injection rates, length of injection, and bottom hole pressure condition at 

producers. This upgraded hybrid GA method demonstrated a successful application to forecast 

production performance with a significant increase for oil recovery and NPV, 9.9% and 11.4 

% respectively [Chen et al., 2010]. In 2016, Mohagheghian introduced the applications of GA 

and PSO methods to optimized WAG injection performance, for both productive and 

economic aspects, for a field-scale model simulation of a segment in the Norne field. The 

optimized WAG parameters included rates of fluids injection, bottom-hole pressures, WAG 

ratio, length of the injection process and the composition of injected gas. The results of this 
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research indicated a significant improvement in optimizing the NPV and oil recovery factor, 

over 13% for both cases [Mohagheghian, 2016].  

Table 2-2: WAG Optimization techniques in literature 

Authors Optimization 

Objects 

Optimization 

Methods 

Optimization 

Variables 

Research Observations 

Yang et al., 

2000 
NPV GA 

Bottom hole pressure 

of producers and 

injection rates 

- GA is an effective method 

to optimize the production 

forecasting of WAG 

reservoir with stability and 

well-handling different 

constraints. 

Yang and Gu, 

2003 
NPV GA and SA 

Bottom hole pressure 

of producers and 

injection pressures 

- The integrated model for 

the production forecasting 

works well, and both GA 

and SA are effective and 

stable to optimize the 

controlling of the 

production-injection 

operation systems. 

Esmaiel and 

Heeremans, 

2006 

Oil recovery 

factor, NPV 

DOE-RSM and 

Monte Carlo 

simulation 

WAG ratio, Arial 

permeability 

multiplier, oil mobility, 

and the status of 

injection and 

production well 

- The proxy model is well 

capable of demonstrating 

the response surface 

simulation for oil recovery, 

NPV, and utility of the 

WAG process. 

- WAG ratio equal to 1:1 is 

the best scenario for 

optimizing the response. 

- The robust smart wells 

technology with the 

optimum case can improve 

better the WAG process 

efficiency than 

conventional wells. 

Chen et al., 

2010 
NPV Upgraded GA 

Injection rates, length 

of injection, and 

bottom hole pressure 

of producers 

- This upgraded hybrid GA 

method demonstrated a 

successful application for 

the forecasting production 

performance with a 

significant increase for oil 

recovery and NPV, 9.9%, 

and 11.4 % respectively. 

Mollaei et al. 

2011 

Residual oil 

saturation 
DOE - RSM 

WAG ratio, injection 

pressure, reservoir 

heterogeneity, and 

geostatistical 

dimensionless 

correlation length 

- RSM model is capable to 

model the WAG process 

through these observed 

parameters by fitting well 

with simulation results. 

- Reservoir heterogeneity is 

the most significant impact 
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factor for the WAG 

process. 

Ghaderi et al., 

2012 

Oil recovery 

factor, CO2 

sequestration, 

and NPV 

DOE - RSM 

Well pattern, well 

completion, fracture 

spaces, fracture half-

length, average 

reservoir pressure, 

water-cut, WAG slug 

size, and WAG ratio 

- For different objects, there 

will be differences in 

predicted response surfaces 

as well as variables impact 

orders. 

Khezrnejad et 

al., 2014 

Oil recovery 

factor 
DOE - RSM 

The salt concentration 

of brine, type of 

nanoparticles, and 

WAG ratio 

- ANOVA table indicates 

that the salt concentration 

of brine is the most 

significant parameter, and 

silica nanoparticle is more 

effective than the alumina 

type. 

Mohagheghian, 

2016 

Oil recovery 

factor, NPV 
PSO 

Bottom hole pressure 

of producers, injection 

rates, WAG ratio, 

length of the injection 

process and the 

composition of injected 

gas 

- Significant improvement 

in optimizing the NPV and 

oil recovery factor, over 

13% for both cases. 

Van and Chon, 

2017 

Oil recovery 

factor 
DOE - RSM 

Brine salinity and 

WAG slug size 

- This quadratic design 

model is suitable to present 

the relationship between 

observed parameters with 

oil recovery factor with R2 

values are generally higher 

than 0.95. 

 

In this research, both DOE-RSM and PSO techniques will be employed for optimization as 

well as to investigate the impact of a collection of WAG operational parameters to improve 

the oil recovery performance of a numerical, core-scale, core flooding model.
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CHAPTER 3. METHODOLOGY 

In this chapter, the first section presents all components that are related to building the 

numerical simulation models for the core-scale double displacement process (DDP) tests and 

immiscible Water Alternating Gas (IWAG) injection tests including rock properties, fluid 

properties, special core analysis (SCAL) properties and operational parameters with a detailed 

simulation model description. Later, workflows of optimization techniques, including 

response surface methodology (RSM) and particle swarm optimization (PSO), are presented 

step-by-step for their applications in this research to identify the significant operational 

parameters and the optimum combination for enhancing oil recovery efficiency of the 

immiscible WAG injection process.  

3.1 Numerical Simulation Models 

In this first part of the methodology section, a framework of building a numerical simulation 

model for composite core flooding is described. All the necessary components are discussed, 

including reservoir fluids properties; permeability, porosity, and fluids saturation distribution 

of the composite core. Generally, all the information in this section is referenced from the 

experimental data of the research in 2006 [Wang et al., 2006]. Schlumberger ECLIPSE 

software is employed to simulate the numerical composite core model, which is then used in 

the simulation of the DDP test, IWAG test, and optimization processes. The operational 

condition of all simulation tests is at a temperature of 210oF, and pressure of 4500 psig, which 

is representative of the reservoir conditions. 

3.1.1 Rock Properties 

The cores used for this study were from the Hibernia exploration B16-17 well. First, ten 

horizontal core plugs were taken from the full core to test their properties, their dimensions 
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were approximately 3.8 cm in diameter and 5 cm in length [Wang et al., 2006]. Four of them 

were used for the centrifuge capillary pressure tests. Core plug #10 is used to illustrate the 

water-oil capillary pressure relationship and core plug #12 is used to present the gas-oil 

capillary pressure relationship. The other six core plugs, from depths ranging from 4039.83 

m to 4041.13 m were combined to become a full, approximately 30-cm-long composite core. 

The total bulk volume (BV) of the composite core was approximately 349 cc. The average 

porosity and permeability of the composite core were 0.1789 fraction BV and 1919 mD, 

respectively, at 4000 psig net confining stress. The initial water saturation of the composite 

core is approximately 3% of PV by centrifuging the water-wet core, which was saturated by 

100% brine and the grain density is approximately 2.65 g/cc [Wang et al., 2006].  

Table 3-1: Horizontal core plugs properties [Wang et al., 2006] 

 
Composite Core Capillary Pressure Curves 

Plug ID A B C D E F 10 12 

Depth (m) 4041.09 4039.83 4040.96 4041.04 4041.13 4041.00 4039.71 4039.79 

Permeability 

(mD) 
1919 1705 1752 

Porosity 

(% BV) 
17.89 17.95 17.87 

 

 

Fig. 3-1: The order of core plugs in composite core 

Plug A Plug B Plug C Plug D Plug E Plug F 
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3.1.2 Fluids Properties 

The fluids used for this research are representative of Hibernia fluid properties. The brine used 

for conditioning cores and water-flooding is synthetic brine that has a salinity of 

approximately 102,435 ppm, similar to the formation water from MDT samples. At 4500 psig 

and 210 oF, the synthetic brine density is around 1.0793 g/cc, and the viscosity is about 0.411 

cP. The gas used for injection and live oil recombination is a synthetic gas with density and 

viscosity of 0.2278 g/cc and 0.0293 cP, respectively. The oil used for conditioning the cores 

and all tests is a recombined live oil, which has a bubble point pressure around 4489 psig at 

210oF and a stock tank oil gravity of 31.8 API. 

Table 3-2: Composition of equilibrium oil phase by flash 

Component Mol % Liquid Density 

(g/cc) 

CO2 0.79 0.817 

C1 53.92 0.299 

C2 6.11 0.356 

C3 4.50 0.507 

i-C4 0.07 0.563 

n-C4 2.45 0.584 

i-C5 0.23 0.624 

n-C5 1.24 0.631 

C6 1.65 0.685 

C7 2.51 0.722 

C8 3.59 0.745 

C9 1.97 0.764 

C10 1.95 0.778 

C11+ 19.02 0.883 

 

After tuning the recombined oil composition with Constant Composition Expansion (CCE) 

test data and the experimental bubble point pressure, a phases envelope diagram is presented 

as the following, with the estimated bubble point pressure around 4491 psig at 210 oF with the 
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solution gas-oil ratio (Rs) of about 174.5. This result is quite similar to the bubble point 

pressure (4489) of tested fluids used in previous research [Wang et al., 2006].   

 

Fig. 3-2: Phase envelope diagram of recombined oil with Peng-Robinson EOS 

3.1.3 SCAL Properties 

The Corey function was used for fitting the two-phase relative permeability data obtained 

from the experimental data from the composite core flooding. The estimated saturations are 

accurate within 0.03 saturation units as the previous research done on this composite core 

[Maloney and Milligan, 2017]. The Corey functions for two-phase oil-water and gas-oil 

relative permeability are described as follows [Brooks and Corey, 1964]: 

𝐾𝑟𝑜 = 𝐾𝑟𝑜
0 (

𝑆𝑜−𝑆𝑜𝑟

1−𝑆𝑜𝑟−𝑆𝑤𝑐−𝑆𝑔𝑐
)𝑛0 

𝐾𝑟𝑤 = 𝐾𝑟𝑤
0 (

𝑆𝑤−𝑆𝑤𝑐

1−𝑆𝑜𝑟−𝑆𝑤𝑐−𝑆𝑔𝑐
)𝑛𝑤 (3.1) 

𝐾𝑟𝑔 = 𝐾𝑟𝑔
0 (

𝑆𝑔−𝑆𝑔𝑐

1−𝑆𝑜𝑟−𝑆𝑤𝑐−𝑆𝑔𝑐
)𝑛𝑔 
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where:𝐾𝑟𝑜, 𝐾𝑟𝑤, 𝐾𝑟𝑔 are estimated relative permeability of oil, water, and gas; 𝐾𝑟𝑜
0 , 𝐾𝑟𝑤

0  and 

𝐾𝑟𝑔
0   are the relative permeability of oil, water, and gas at the endpoint saturation; no, nw, ng 

are the exponents of relative permeability of oil, water, and gas. By using Microsoft Excel 

software to minimize the total errors between estimated relative permeability values and 

experimental relative permeability values, the optimum exponents are defined for this 

research as no-w = 2.73, no-g = 3.8, nw = 2.57 and ng = 3.38. 

The experimental data from Wang et al. pointed out the residual oil saturation in the gas-

displacing-oil process around 6.5 % of PV and the water-displacing-oil process yielded a 

residual oil saturation around 14.5 % of PV. The initial water saturation is approximately 0.03 

for both displacing processes, and it is considered as the general initial water saturation for 

the composite core. 

 

Fig. 3-3: Corey estimated water-oil relative permeability [Wang et al., 2006] 
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Fig. 3-4: Corey estimated gas-oil relative permeability [Wang et al., 2006] 

Centrifuge tests were employed to investigate the capillary pressure relationship of water-oil 

on core plug 10 and gas-oil on core plug 12. At the residual oil saturation of the water-oil 

capillary pressure curve, the Pc value is around -2 atm, whereas at the residual oil saturation 

of the gas–oil capillary curve, the Pc value is nearly 7 atm. 
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(a) 

 

(b) 

Fig. 3-5: Water-Oil and Gas-Oil capillary pressure curves from the centrifuge test on plug 

10 (a) and plug 12 (b) [Wang et al., 2006] 

3.1.4 Models Description 

The following section describes the numerical composite models used for simulating the DDP 

test and the IWAG process. Both numerical models are made using Schlumberger ECLIPSE 

100 software for black oil models. The structure below presents the main framework for the 

numerical simulation models: 

• RUNSPEC Section: this is the first section of the ECLIPSE data file. It contains general 

information about grid properties such as title, unit, start date, used fluids, problem 

dimensions of wells and blocks. The simulations employed grid models with the dimension 

as 120 × 2 × 2 grids. These grid models take advantage of counting the sweep efficiency for 

three dimensions of injected fluids in the composite core models. The unit used in the model 
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is LAB unit. The composite core models are placed in the vertical direction to simulate the 

experimental condition with consideration of the gravity effect.  

• GRID Section: this section defines the properties of simulation grid and various rock 

properties such as porosity and permeability in each grid cell. These properties support the 

program to calculate the grid block pore volume, mid-point depths, and inter-block 

transmissibility. The Cartesian geometry was employed in this simulation model. 

• PROPS Section: this section contains the information of pressure- and saturation-

dependent properties of reservoir rocks and fluids information. The fluids properties used to 

input into these models are extracted from PVTsim software as sections, including DENSITY, 

PVTW, PVTO, and PVDG. The SCAL properties of models are filled by sections as SWFN, 

SGFN, and SOF3. The Hysteresis model applied for these models is the Killough model by 

considering their performance for drainage and imbibition processes in the previous studies 

[Kossack, 2000; Hamzei et al., 2011; Sharokhi et al., 2014].  

• REGION Section: this section divides the computational grid model into regions for 

various purposes of calculation, including saturation functions, PVT properties, equilibration, 

fluids in place, inter-region flows, pressure maintenance.  

• SOLUTION Section: this section focuses on using the sufficient input data to define the 

initial state, including pressure, saturation and composition of every grid block in the 

reservoir.  

• SUMMARY Section:  this section points out any variables that need to be written to 

summary files after each time step of the simulation. The time step of the model is set as the 

value equal to 100 to smoothly reading the output value. 
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• SCHEDULE Section: this section specifies the schemes of operation to be simulated, 

including the production and injection controls and constraints. The total of four injection 

wells are controlled by the constraint as reservoir volume rate (RESV) and four production 

wells are controlled by the constraint as bottom hole pressure (BHP). All operational 

parameters such as WAG ratio, WAG slug size, WAG flow rate, and WAG sequence are 

scheduled in this section sufficiently. 

The detailed data files of numerical simulation model are listed in the appendix section of this 

thesis.  

Double Displacement Process (DDP) 

Based on the condition of the DDP experiment data from the research of Wang et al., the 

composite core was reconditioned by centrifuge after it went through two displacing processes 

to measure the water-oil and gas-oil relative permeability having the initial water saturation 

at 0.122 fraction PV, which is different from the original initial water saturation of the 

composite core at 0.03 fraction PV [Wang et al., 2006]. The numerical DDP model is 

simulated under the operational condition as an experiment with pressure equal to 4500 psig, 

temperature equal to 210oF, and the rate of injected fluids equal to 4 cc/min. At first, water 

was injected at the bottom of the composite core by four injected points covering all the 

bottom surface until the water-cut value of four production points at the topside got to 90%. 

Then, the gas injection process started at the injection points at the top of the core with a 

volume from 1 PV up to 2000 PV. The oil recovery factor was noted and compared with the 

experimental data to validate the integrity of the numerical simulation model. Finally, an 

additional optimum IWAG injection instead of gas injection after post water-flooding was 

tested to compare the efficiency between the two methods, DDP and IWAG. 
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Immiscible WAG (IWAG) injection 

The numerical IWAG injection model is based on the original condition of the composite core 

with a pressure of 4500psig, temperature of 210oF, and the initial water saturation of 

composite core is 0.03 fraction PV. The slugs of water or gas are injected at the bottom of the 

core through four injected points which cover all core surface, and oil is produced at the top 

of core through four producing points. All the input operation parameters are optimized by 

the following techniques in the next sections to optimize the volume of oil recovery by IWAG 

process. The operational parameters of concern in this research include total injection (the 

total volume of fluids used for the injecting process); timing (the water saturation state when 

starting the WAG injection after water-flooding, counting from the starting point at the initial 

water saturation);  ratio (the volume of water per volume of gas for each injecting cycle); flow 

rate (the injection rate of injected fluids); slug size (the volume of each injected slug for one 

cycle) and sequence (type of injected fluids start the injection cycle). Table 3-3 presents the 

range of operational parameters used to optimize the IWAG process for this research, based 

on the literature for core-scale IWAG injection in Table 2-1. 
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(a) 

 

(b) 

Fig. 3-6: (a) Composite core model for the DDP test with gas injected from the top and 

water injected from the bottom of the composite core, and (b) composite core model for 

IWAG with gas and water injected from the bottom of the composite core 
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Table 3-3: The range values of operational parameters for IWAG injection 

Operational Parameters Range of Value 

1. Total Injection (PV) 0.8, 1.0 or 1.2 

2. Timing (fraction PV) 0.03 – 0.40 

3. Ratio 0.2 – 5.0 

4. Flow rate (ft/d) 
0.14 – 1.40 or 

2 cc/h – 20 cc/h 

5. Slug size (PV) 0.01 - 0.50 

6 Sequence Gas or Water 

 

3.2 Response Surface Methodology (RSM) 

RSM was employed to analyze the general idea of optimum operational parameters for IWAG 

core-flooding process, because it is saves time by only requiring a few runs and can illustrate 

the significant level of each parameter as well as their interactions. This research used Design-

Expert version 11 software to apply the method of Central Composite Design (CCD) as an 

effective popular RSM model to optimize the objective function as the volume of oil recovery. 

The framework of response surface methodology is presented in Fig. 3-7. 
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Fig. 3-7: Response Surface Methodology Workflow [Neddermeijer et al., 2000] 

The CCI (Inscribed Central Composite) model of CCD was chosen as it fit the suitable range 

of input parameters by dividing it into five levels. By fixing the case of total 1 PV of fluid is 
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injected, the other four numeric parameters and one category parameter are investigated. 

Table 3-4 presents the level of each parameter as input data. The α value is calculated to equal 

to 2 for a rotatable CCD model. The number of simulated runs to input into the CCD model 

is 2 × (2^4 + 8 +1) = 50 with the number of the center point per block is equal to 1 due to the 

computer model needs no replication. 

Table 3-4: The level of input parameters for CCD-RSM model 

Optimized 

parameters 
Level 1 Level 2 Level 3 Level 4 Level 5 

A-Timing 0.030 0.123 0.215 0.308 0.400 

B-Ratio 0.2 1.4 2.6 3.8 5.0 

C-Flow Rate 2.0 6.5 11.0 15.5 20.0 

D-Slug Size 0.010 0.133 0.255 0.378 0.500 

E-Sequence Gas or Water slug first 

 

3.3 Particle Swarm Optimization (PSO) 

To enhance the accuracy of the optimization process for the core-scale IWAG injection 

numerical model, the PSO technique is employed as an optimum algorithm for that purpose 

due to its wide application in the oil and gas industry. The range of values of the operational 

parameters that need to be optimized are as shown in Table 3-3. MATLAB software was used 

to simulate the PSO process with the framework of PSO as presented below for the purpose 

of maximizing the objective function as the volume of oil recovery by IWAG process. 
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Fig. 3-8: Particle Swarm Optimization Workflow 

One case of the PSO model was run to optimize the IWAG injection with a total of 1PV of 

injected fluids to compare with the performance of 1 PV of gas injection in the DDP test. The 

other three cases of PSO model were run to optimize the operational parameters for the IWAG 

injection of the original composite core model. For each time implementing of PSO model, a 
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total of 2000 runs are required to reach the global optimum based on the reviewed literature, 

with the suggested number of particles equal to 50, and the suggested iteration equal to 40 

[Mohamed et al., 2011; Mohagheghian, 2016]. The following parameters necessary for  

equations (2.8) and (2.9) were chosen from the literature that presented good convergence 

results [Cai et al., 2009; Bansal et al., 2011]. These parameters include C1 = 0.50, C2 = 1.25, 

ω max = 0.9 and ω min = 0.4. 

 

 

Fig. 3-9: The movement of particles by the PSO model in MATLAB
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CHAPTER 4. RESULTS AND DISCUSSION 

In the first section of this chapter, the numerical simulation model used for core-scale injection 

is validated by the experimental data of double displacement process (DDP) test from 

previous research (section 4.1). Once validated, the composite core simulation model was 

used to compare oil recovery efficiency between DDP and IWAG in section 4.2. Section 4.3 

shows the simulation results obtained by applying response surface methodology (RSM) and 

particle swarm optimization (PSO) on the IWAG injection model to investigate the impact of 

operating parameters as well as the optimum combination of them. Finally, in section 4.4, the 

results of optimized IWAG injection applied after water cut level of post water-flooding led 

to 90% is presented with a significant improvement in oil recovery efficiency for the 

composite core model. 
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Fig. 4-1: Simulation implementation workflow 

4.1 Composite Core Simulation Model Validation 

Similar to the experimental DDP conducted by Wang et al., the simulation DDP process 

started at the initial water saturation Swi = 0.122, with a post water-flooding injecting from the 

bottom of the composite core until the ratio of produced water and oil at the production points 

reached 9:1. The data from the DDP simulation indicated that a volume of 0.6 PV of water 

needs to be injected to get to 90% water cut level at the rate of 4 cc/min.  
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Fig. 4-2: Post water-flooding process for DDP model 

After water flooding, the predicted water saturation was 0.585. Then, the injection process 

continued with gas injection from the top of the composite core, and oil was recovered at the 

bottom. The simulation data illustrated that, after 1 PV of injected gas, approximately 10.3% 

OOIP was recovered. After the next 10 PV of injected gas, an additional about 12% OOIP 

was recovered, and after over 2000 PV of injected gas, a total of around 38.5% OOIP was 

recovered by the gas injection process. These data fit quite well with the experimental results 

from Wang et al. and are presented in Fig. 4-4. 
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Fig. 4-3: The volume of cumulative oil recovery by gas injection of DDP experiment 

[Wang et al.,2006] 

 

Fig. 4-4: Comparison between DDP simulation model and DDP experimental data after 

2011 PV of injected gas 

These comparison results validated that the properties of the composite core models are good 

with an acceptable match to the experimental data as shown in Fig. 4-4. After injecting 1 PV 
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of gas, the simulation DDP model indicates the cumulative oil recovery is about 63%, 

compared with experimental data as below 65%.  When injecting more 10 PV of gas, the 

cumulative oil recovery of DDP model is approximately 76.6%, while experimental data 

reported 76%. After a total of around 2011 PV of injected gas, simulation DDP model present 

the cumulative oil recovery as around 91%, while the experimental result was above 90%. 

The average errors over three observed points is equal to 1.7%, which is considered to be 

appropriate. Having confidence in the simulation results, the composite core simulation model 

is used to compare DDP to IWAG and to optimize the operating parameters of IWAG.  

4.2 Comparison of DDP Simulation and IWAG Simulation 

In order to compare the performance of gas injection from DDP model, IWAG simulated 

injection also operated after the post water-flooding when the water cut at the production 

points reached 90 %. In this case, a total of 1 PV of injected fluids of the IWAG process were 

used to compare with 1 PV of gas injection for DDP. The injected rate was the same as the 

condition for DDP-gas injection while other operational parameters were optimized by PSO 

as shown in Table 4-1. 

Table 4-1: The optimum operational parameter of 1 PV of IWAG injection after post water-

flooding 

Operational 

Parameters 

Optimum 

Value 

A-Timing 0.122 (Swi) 

B-Ratio 0.427 

C-Flow Rate 4 cc/min 

D-Slug Size 0.11 

E-Sequence Gas 
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As can be seen from the table, because of the large amount of water inside the composite core 

model from post water-flooding, the IWAG should start gas slug first instead of water slug, 

and the WAG ratio should be smaller than 1, which is more volume of gas for each cycle. 

Furthermore, the slug size should be small enough to better enhance oil recovery [Kim et al., 

2015; Alkhazmi et al., 2017]. The simulation results indicated that a suitable operational 

condition of IWAG injection could improve approximately more than 3% OOIP cumulative 

oil recovery than an additional gas injection by DDP after 1 PV of injected fluids as Fig. 4-5. 

 

Fig. 4-5: Comparison between DDP simulation model and optimum IWAG injection after 

post water-flooding lead to water cut equal 90% 

It can be concluded that the IWAG injection is more efficient than the double displacement 

process. For DDP, when starting the gas injection from the top, at first 0.3 PV injected fluid, 

not much oil was produced due to the large amount of water contained inside the pore system, 

the double displacement initially pushing water out. For the IWAG injection, the oil continued 

to produce steadily after post water-flooding due to its connectivity and the advantage of 

combining the macroscopic and microscopic sweep efficiency immiscible 3-phases injection. 
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4.3 Immiscible WAG Injection Optimization 

4.3.1 Response Surface Methodology (RSM) 

The method central composite design (CCD) was used to create the response surface for the 

objective function of the oil recovery volume (ORV) after 1 PV of IWAG injection at the 

initial condition of the composite core. The ANOVA table below presents the sensitivity 

results of the CCD-RSM application for this case. 

 

Fig. 4-6: ANOVA table for CCD-RSM application of IWAG injection model 

As can be seen from the table, the full two-factor interaction (2FI) model was applied to 

present the response surface of the model objects. With the significant value (alpha) equal to 

0.05, the full two-factor interaction model is generally significant with p-value < 0.0001. All 

the main operational parameters including timing (A), ratio (B), flow rate (C), slug size (D) 
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and sequence (E) are significant for the response surface because of their p-value all smaller 

than the alpha value. Timing is the most significant factor that makes the most impact on the 

optimum objective, its F-value equal to 9070.52 is the highest. The response model suggested 

that starting the IWAG injection at initial water saturation reached the highest volume of oil 

recovery combined with other parameters. Fig. 4-7 below illustrates all information about 

significant terms and insignificant terms for the predicted response surface model from the 

ANOVA table by comparing their p-value with alpha value. 

 

Fig. 4-7: The impact of operational parameters on oil recovery volume by RSM model 

from the ANOVA table 

All interaction terms containing sequence factor (E) are significant when comparing their p-

value with the alpha value, especially the interaction term of ratio and sequence (BE) with its 

p-value < 0.0001. In Fig. 4-7, when increasing the ratio value, changing from injecting water 

to gas first will improve the recovery performance. 
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Fig. 4-8: The interaction between Ratio and Sequence 

All terms that have the p-value larger than alpha value are insignificant for the model. By 

removing all the insignificant terms, it improves the R-square adjusted and predicted value as 

shown in Fig. 4-10. However, both the full two-factor interaction model and the reduced full 

two-factor interaction model present a significantly high value of R-square with the 

differences of adjusted and predicted values are small. 
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Fig. 4-9: Reduced ANOVA table with only significant terms 

  

 (a) (b) 

Fig. 4-10: Adjusted and predicted R-square value between (a) including insignificant 

interaction terms and (b) without insignificant interaction terms 

In the analysis of variances, three main assumptions need to be satisfied to validate the results, 

including that the residual is normally distributed, constant variances and independence 

between runs. The following plots (Fig. 4-11) validate these assumptions above, namely 

Normal Distribution Plot of Residual, Residual vs. Predicted and Residual vs. Run. 
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Fig. 4-11: ANOVA assumptions checking plots 

The prediction response surface function in actual models are presented below, including all 

terms of the full two-factor interaction model. 

For gas slug first: Oil Recovery (PV) = 0.642339 - 0.948356 × A - 0.000473 × B + 0.00797 

× C – 0.0352 × D + 0.00934 × AB - 0.00109 × AC + 0.062168 × AD- 0.000188 × BC - 

0.001624 × BD + 0.000606 × CD 

 (4.1) 
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For water slug first: Oil Recovery (PV)ORV = 0.692925 - 0.998576 × A – 0.009306 × B + 

0.000423 × C – 0.101163 × D + 0.001934 × AB - 0.00109 × AC + 0.062168 × AD -0.000188 

× BC - 0.001624 × BD + 0.000606 × CD 

After removing all the insignificant terms, the prediction response surface function in actual 

models are presented as below 

For gas slug first: Oil Recovery (PV) = 0.645181 - 0.939468 × A - 0.002539 × B + 0.001229 

× C – 0.019394 × D 

 (4.2) 

For water slug first: Oil Recovery (PV) = 0.695768 - 0.989689 × A – 0.011373 × B + 0.000146 

× C – 0.085349 × D 

To validate the predicted function, several confirmation runs were carried out. The Table 4-2 

shows a set of trial runs for this predicted function. The responses place between the range of 

95% confidence interval indicates that the model is good for prediction and optimization with 

a significant value equal to 5%. 

Table 4-2: Results of confirmation runs for the predicted model 

Run# Timing Ratio 
Flow 

Rate 

Slug 

Size 
Sequence 

Simulation 

oil 

recovery 

(PV) 

95% Predicted 

Interval Low 

95% Predicted 

Interval High 

1 0.365 3.463 16.29 0.034 Water 0.287 0.275 0.304 

2 0.077 3.344 7.60 0.452 Water 0.536 0.528 0.556 

3 0.264 0.771 4.98 0.250 Gas 0.400 0.383 0.410 

4 0.186 2.827 11.69 0.472 Gas 0.462 0.455 0.482 

5 0.030 0.920 20.00 0.094 Water 0.644 0.629 0.659 

6 0.036 0.601 1.33 0.015 Water 0.626 0.622 0.654 
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4.3.2 Particle Swarm Optimization (PSO) 

PSO method was employed to maximize the optimization for IWAG injection. In this section, 

the results of the three cases of optimization IWAG processes are presented, including 

different total volumes of injected fluids as 0.8 PV, 1 PV, and 1.2 PV. In all cases, the PSO 

models reached good convergent results after 2000 runs, such as is shown in the following 

figures.  

 

Fig. 4-12: Particle Swarm Optimization (PSO) for 0.8 PV of IWAG injection 

 

Fig. 4-13: Particle Swarm Optimization (PSO) for 1 PV of IWAG injection 
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Fig. 4-14: Particle Swarm Optimization (PSO) for 1.2 PV of IWAG injection 

Table 4-3: The optimum IWAG operational parameters by the PSO model 

 PSO 

Total Injection (PV) 0.8 1.0 1.2 

 A – Timing (Sw)  0.03 – 0.4 0.03 0.03 0.03 

 B - Ratio  0.2 – 5 0.88 0.92 0.82 

 C - Flow Rate (ft/day) 0.14 – 1.41  1.41 1.41 1.41 

 D - Slug Size (PV) 0.01 – 0.5 0.200 0.094 0.091 

 F - Sequence  
Gas or Water 

slug first 
Water Water Water 

Oil Recovery (PV) 0.613 0.650 0.666 

 

As can be seen from Table 4-3, the process of IWAG should be started at the initial water 

saturation (Swi) of the composite core and combining with suitable other parameters to give 

the best volume of oil recovery for different total volume of injected fluid. A suitable high 

flow rate of the injection, starting at Swi reached the highest oil recovery volume. The impact 

of sequence was significant, which was validated by the RSM results. Starting IWAG 

injection at Swi, the first injected slug must be water to enhance the sweep efficiency at the 

beginning stage of injection. The ratio and slug size of IWAG injection are various through 
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the different total volumes of injection. The optimum ratio is 0.88 for 0.8 PV of WAG 

injection, while this number for cases 1.0 PV and 1.2 PV injection is 0.92 and 0.82, 

respectively. The optimum slug size is 0.200 for 0.8 PV of WAG injection, while this number 

for cases 1.0 PV and 1.2 PV injection decreasing slightly from 0.094 to 0.091. The data points 

out the importance of optimizing suitable operational parameters for different operational 

scenarios. Fig. 4-14 below illustrates the oil recovery volume for three optimum cases with 

different volumes of injected fluids, as presented in Table 4-3. The optimized operational 

parameters will be variable for different total volumes of fluids injected for IWAG injection 

to get the highest oil recovery volume.  

 

 

 Fig. 4-15: Optimum IWAG injection for different volume of injected fluids 
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Table 4-4: Comparison of the optimal IWAG operational parameters using PSO and RSM 

models from initial water saturation (Swi) 

 PSO RSM 

Total Injection (PV) 1 1 

Optimum 

Operational 

Parameters 

 A – Timing (Sw) 0.030 0.036 

 B - Ratio 0.920 0.601 

 C - Flow Rate (ft/day) 1.41 1.33 

 D - Slug Size (PV) 0.094 0.015 

 F - Sequence  Water Water 

Predicted oil recovery (PV) using optimal 

operational parameters (above) 
0.650 0.626 

Estimated oil recovery (PV) using RSM 

Equation (4.2) 
0.646 0.650 

Absolute error (%) 0.62 3.83 

 

In Table 4-4, when applying the optimum combination of operational parameters of case 1 

PV injection for RSM model as the function (4.2), the value of oil recovery volume is 0.646 

PV, which is quite similar to the results of PSO model as 0.6 PV, with an absolute error around 

0.6 %. The suggested optimum operational parameters from the RSM model predicted to get 

approximately 0.65 PV oil recovery volume. Compared with the simulation results, there is 

an absolute error of around 3.83% when the simulated oil recovery volume is approximately 

0.626 PV. It can be concluded that the optimum result from the PSO model is more accurate 

for prediction than the RSM model due to the confidence level as 95 % of the response surface 

and a lower number of input data. 

To investigate the impact of significant operational parameters acquired from the RSM model 

for the PSO model, a maximum oil recovery volume fixes at 0.65 PV based on the optimum 

operating parameters of the PSO model from Table 4-4. Then, each significant term is varied 
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to get the minimum oil recovery volume for each case. The average base value is the average 

value of all mean value between minimum oil recovery volume and maximum oil recovery 

volume for each significant parameter. All results are illustrated in Fig. 4-15 below.        

 

Fig. 4-16: Sensitivity analysis of IWAG operating parameters on oil recovery considering 

the PSO model 

As can be seen from Fig. 4-15, timing has the most significant impact on oil recovery volume 

when the difference between the maximum and minimum oil recovery volume values is the 

largest. The impact order of other operational parameters decreases from ratio to sequence. 

All the interaction terms between sequence and other parameters significantly impact the oil 

recovery volume, which is similar to the result from the ANOVA table of the RSM model 

(Fig. 4-6). It can be concluded that sequence has a strong interaction with other parameters to 

impact the oil recovery volume. When starting IWAG injection at the early stage when the 

volume of water in the pore system is low, a water slug should be injected first to improve the 

sweep efficiency with suitable other operational parameters. However, when the pore system 

has more water, a gas slug should be injected first to push oil out of the larger pores to improve 

the connection of oil in the pores and improve the oil recovery performance. 
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4.4 Optimum IWAG Injection Oil Recovery Efficiency Comparison 

Further tests were run to check the comparison between the performance of optimum IWAG 

injection with other oil recovery techniques including water-flooding, gas injection and water 

injection for a total of 1 PV of fluid injection starting at the initial composite core condition 

with the same operational condition from Table 4-3. The results presented in Fig. 4-16 below 

indicate that the optimum IWAG injection has the highest oil recovery factor, which is about 

5% higher than water-flooding, quite similar to the double displacement process (DDP), and 

approximately 20% better than gas injection.  

 

Fig. 4-17: Comparison of different oil recovery techniques 

For field applications in the future, IWAG injection could be applied after post water-flooding 

when the water cut reaches 90%. A further simulation was tested on the composite core 

simulation model to determine the efficiency of optimum IWAG injection in comparison with 

continuing waterflooding after 90% water cut.  
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Starting at the initial water saturation Swi = 0.03, the simulation result indicates that after 0.75 

PV of water-flooding (Fig. 4-16) with the standard flow rate at 1 ft/day, the water cut value 

will equal to 90%. 

 

 

Fig. 4-18: Post water-flooding process as secondary recovery stage 

After applying PSO technique to optimize IWAG injection for a total of 1 PV injected fluids, 

the result of optimum operational parameters is presented in Table 4-5. 

Table 4-5: Optimum operational parameters of IWAG injection after post water-flooding 

Total Injection (PV) 1 

 A – Timing (Sw) 0.586 

 B - Ratio 0.2 

 C - Flow Rate (ft/day) 0.14 

 D - Slug Size (PV) 0.12 

 F - Sequence  Gas 
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As can be seen from Table 4-5, due to a significant amount of water volume inside the pore 

system, the volume of water used for WAG injection should be much lower than the volume 

of gas (WAG ratio = 0.2). The flow rate should be lower than the standard flow rate of post 

water-flooding (1 ft/ day) to let the gas slug contact with the oil left after the water-flood. The 

optimum slug size for this case is 0.12 PV and the volume of oil that can be recovered with 1 

PV IWAG injection is 0.123 PV. Fig. 4-18 illustrates the efficiency comparison between 

optimized IWAG injection and continued waterflood. After 1 PV of IWAG injection, the total 

oil recovery factor is above 0.7. If the water injection continues with the same volume of 

injected fluid, the oil recovery factor is almost 10 % lower than IWAG injection. It can be 

concluded that, when the water cut of the production point gets to 90%, a suitable optimum 

IWAG injection can improve the further recovery stage than continue injecting. 

 

   Fig. 4-19: Comparison between the efficiency of optimum IWAG injection and Water 

injection 
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CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS  

5.1 Summary and Conclusions 

A black oil model simulator, Schlumberger Eclipse E100, was employed to simulate the 

composite core flooding processes for three-phase immiscible injection. The composite core 

model was first validated by Double Displacement Process (DDP) experimental data by the 

comparison between the recovery performance of DDP simulation and experimental data. The 

results showed that good validation was made with good fitting in the curves of cumulative 

oil recovery data. Furthermore, an optimum Immiscible WAG (IWAG) injection was acquired 

with a similar operational condition as the DDP model to compare the performance of oil 

recovery between two the EOR techniques. The results indicated that the IWAG injection is 

more efficient than the double displacement process, improve approximately more than 3% 

OOIP cumulative oil recovery than an additional gas injection of DDP injection. The 

combination of the macroscopic and microscopic sweep efficiency of immiscible three-phase 

injection may improve more than the gravity segregation sweep efficiency from the gas 

injection of DDP.  

Particle Swarm Optimization (PSO), was used to optimize the IWAG process for the initial 

composite core flooding model. A range of values for operational parameters including 

timing, ratio, flow rate, slug size, and sequence were determined from the literature review 

for use in optimizing IWAG injection. For the RSM method, Central Composite Design 

(CCD) was used because of its rotatability and its wide application. A total of 50 combinations 

of operational parameters were input to create the predicted response surface of oil recovery 

volume. The results indicated that the two-factor interaction (2FI) model was well represented 

for the response surface with a suitably adjusted and predicted R-square values, both higher 
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than 0.99. A set of validation of output figures (Fig. 4-10) verifies the appropriate model. The 

ANOVA table showed that all the main operational parameters including timing, ratio, flow 

rate, slug size, and sequence are significant for the response surface model because their p-

values are all smaller than 0.05 (significant value). Timing is the most significant factor that 

makes the most impact on the optimum objective with the highest F-value (equal to 9070.52). 

All interaction terms containing the sequence factor are significant when comparing their p-

values with the significant value, especially the interaction term of ratio and sequence, with 

its p-value < 0.0001. A set of a random combination of operational parameters was chosen to 

validate the predicted response surface function. The results of these were good with all the 

simulation calculated values in the range of 95% confidence interval. It can be concluded that 

the model is good for prediction and optimization with a confidence level equal to 95%. 

A total of three cases of IWAG injection, dependent on their total of injected fluid, including 

0.8 PV, 1PV, and 1.2 PV were optimized by the PSO technique. The results are clear that, 

after 2000 runs, PSO models reach good convergent results. The volume of oil recovery for 

each case was 0.613 PV, 0.65 PV, and 0.666 PV, respectively. In comparison with the RSM 

predicted response surface by the same combination of optimum operational parameters from 

the PSO model, the results were quite similar, 0.646 PV of oil recovery from RSM model and 

0.65 of oil recovery from PSO models. A conclusion is made that the process of IWAG should 

be started at the initial water saturation (Swi) of the composite core and combining with the 

suitable other parameters. A suitable high flow rate of the injection starting at Swi reach to the 

highest oil recovery volume and the first injected slug must be water but gas due to its strong 

impact in interaction with other parameters. The ratio and slug size of IWAG injection are 

various through the different total volume of injection. Therefore, it is necessary to optimize 
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the suitable operational parameters for different operational scenarios by appropriate 

optimization tools such as RSM and PSO. The performance of optimum IWAG injection is 

significantly better than only water-flooding or gas injection, which is about 5% higher than 

water-flooding, quite similar to double displacement process (DDP), and approximately 20% 

better than gas injection for the same operational conditions. For field application in the future, 

IWAG injection could be applied after post water-flooding when the water cut value at the 

production well approaches 90%. The result from the simulation indicates that after 1 PV of 

IWAG injection, the total oil recovery factor is above 0.7 which is almost 10 % higher in 

comparison with only water-flooding. 

5.2 Recommendations 

RSM can be employed as an appropriate DOE method to reduce the number of runs to 

optimize the IWAG process for immiscible core-flooding experiments in the future.  It could 

also be a good tool to present the impact of operational parameters for other WAG injection 

models, which should be applied for a further miscible core-scale flooding model. PSO is 

proven to be a great technique to determine the optimum combination of operational 

parameters for maximizing the oil recovery factors. It is suggested that this tool is be widely 

used in further numerical simulation models.
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APPENDIX 

A. ECLIPSE Data File of Double Displacement Process (DDP) Model 

-- DDP CORE-FLOODING MODEL 

RUNSPEC 

TITLE 

'DDP-COREFLOODING' 

LAB 

OIL 

WATER 

GAS 

DISGAS 

FULLIMP 

SATOPTS 

HYSTER/ 

DIMENS 

2    2     120   / 

TABDIMS 

2 1 200 50 3 8* 1 / 

WELLDIMS 

20 50 20 4 / 

MESSAGES 

2* 10 6* 10000 / 

START 

19 MAY 2019 / 

UNIFIN 

UNIFOUT 

GRID       
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TOPS 

4*1 4*1.02 4*1.04 / 

DX 

480*1.673 / 

DY 

480*1.673 / 

DZ 

480*0.26 / 

EQUALS 

     PERMX  1919         1   2       1   2     1    20/ 

     PERMX  1919         1   2       1   2     20   40/ 

     PERMX  1919         1   2       1   2     40   60/ 

     PERMX  1919         1   2       1   2     60   80/ 

  PERMX  1919         1   2       1   2     80   100/ 

  PERMX  1919         1   2       1   2     100  120/ 

     PORO  0.1789      1   2     1   2        1   20/ 

  PORO  0.1789      1   2     1   2        20  40/ 

  PORO  0.1789      1   2     1   2        40  60/ 

  PORO  0.1789      1   2     1   2        60  80/ 

  PORO  0.1789      1   2     1   2        80  100/ 

  PORO  0.1789      1   2     1   2        100 120/ 

/ 

COPY 

     PERMX  PERMY / 

     PERMX  PERMZ / 

/ 

INIT 

PROPS 
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ROCK 

272.2 1.5E-06 / 

DENSITY 

0.7686 1.0753 0.00100179 / 

PVTW 

306.2  1.02769  0.39395E-04  0.411    0.90953E-04 / 

PVTO 

   73.8     145    1.23449      1.047 

            195    1.22453      1.137 

            245    1.21581      1.226 

            295    1.20809      1.316 

            305    1.20658      1.335 

            345    1.20119      1.406 

            395    1.19497      1.495  / 

  101.7     195    1.30233      0.888 

            245    1.29091      0.957 

            295    1.28090      1.026 

            305    1.27895      1.041 

            345    1.27204      1.096 

            395    1.26411      1.165  / 

  132.0     245    1.37456      0.743 

            295    1.36165      0.795 

            305    1.35915      0.806 

            345    1.35034      0.848 

            395    1.34030      0.902  / 

  166.4     295    1.45615      0.585 

            305    1.45292      0.592 

            345    1.44159      0.617 
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            395   1.42881       0.649  / 

  174.5     305    1.47556      0.558 

            345    1.46358      0.582 

            395   1.45008       0.611  / 

  207.2     345    1.55356      0.474 

            395    1.53700      0.498  / 

/ 

PVDG 

   145      0.00740     0.0187 

   195      0.00555     0.0226 

   245      0.00458     0.0291 

   295      0.00410     0.0417 

   305      0.00405     0.0459 

   345      0.00400     0.0665 

   395      0.00365     0.0957   

/ 

SWFN 

0.03      0        0 

0.141     0.0038   -0.0172 

0.2404    0.0195   -0.0293 

0.3134    0.0417   -0.0315 

0.4138    0.0908   -0.0339 

0.4941    0.1478   -0.0364 

0.5523    0.2001   -0.0391 

0.6071    0.2585   -0.0421 

0.7123    0.3971   -0.0952 

0.772     0.4924   -0.256 

0.8014    0.5440   -0.5524 
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0.8249    0.5875   -0.9952 

0.8531    0.6425   -1.7422 

0.8598     0.656    -2.006 

/ 

0.03      0        0 

0.141     0.0038   -0.0172 

0.2404    0.0195   -0.0293 

0.3134    0.0417   -0.0315 

0.4138    0.0908   -0.0339 

0.4941    0.1478   -0.0364 

0.5523    0.2001   -0.0391 

0.6071    0.2585   -0.0421 

0.7123    0.3971   -0.0952 

0.772     0.4924   -0.256 

0.8014    0.5440   -0.5524 

0.8249    0.5875   -0.9952 

0.8531    0.6425   -1.7422 

0.8598     0.656    -2.006 

/ 

SGFN 

0         0         0 

0.2857    0.0153    0.0136 

0.3394    0.0273    0.017 

0.4031    0.0488    0.0204 

0.4865    0.0922    0.0238 

0.6467    0.2451    0.0272 

0.8007    0.4967    0.136 

0.8694    0.656     1.224 
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0.8944    0.722     6.936 

/ 

0         0         0 

0.2857    0.0153    0.0136 

0.3394    0.0273    0.017 

0.4031    0.0488    0.0204 

0.4865    0.0922    0.0238 

0.6467    0.2451    0.0272 

0.8007    0.4967    0.136 

0.8694    0.656     1.224 

0.8944    0.722     6.936 

/ 

SOF3 

0.0759    0         0 

0.1696    0         0.002 

0.1751    0         0.0075 

0.1986    0         0.0102 

0.228     0.0002    0.0125 

0.2877    0.0014    0.0206 

0.3206    0.0016    0.0284 

0.3929    0.0109    0.0526 

0.4477    0.023     0.0852 

0.4838    0.032     0.1146 

0.5059    0.0444    0.1346 

0.5672    0.078     0.1905 

0.5862    0.0944    0.2125 

0.6309    0.1332    0.2657  

0.6846    0.1985    0.3419 
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0.6866    0.2041    0.3426  

0.7596    0.3287    0.4845 

0.859     0.5786    0.7074 

0.97      1         1 

/ 

0.0759    0         0 

0.1696    0         0.002 

0.1751    0         0.0075 

0.1986    0         0.0102 

0.228     0.0002    0.0125 

0.2877    0.0014    0.0206 

0.3206    0.0016    0.0284 

0.3929    0.0109    0.0526 

0.4477    0.023     0.0852 

0.4838    0.032     0.1146 

0.5059    0.0444    0.1346 

0.5672    0.078     0.1905 

0.5862    0.0944    0.2125 

0.6309    0.1332    0.2657  

0.6846    0.1985    0.3419 

0.6866    0.2041    0.3426  

0.7596    0.3287    0.4845 

0.859     0.5786    0.7074 

0.97      1         1 

/       

EHYSTR 

0.1  2  1.0  / 

REGIONS 
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SATNUM 

480*1 / 

IMBNUM 

480*2 / 

SOLUTION         

PRESSURE 

480*306.2/ 

SGAS 

480*0/ 

SWAT 

480*0.122/ 

RPTRST 

basic=2 NORST=1 VGAS VOIL SOIL SGAS KRO KRG / 

RS 

480*174.5 

/ 

EXTRAPMS 

3 / 

SUMMARY 

RPTONLY 

FOPT 

FWPT 

FGPT 

FOSAT 

FWSAT 

FGSAT 

FOIP 

FWIP 
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FWCT 

FGIP 

FRPV 

FOPV 

FWPV 

FGPV 

WBHP 

/ 

FOE 

RUNSUM 

EXCEL 

SCHEDULE 

WELSPECS 

PROD1 G1 1 1 1* OIL / 

PROD2 G1 1 2 1* OIL / 

PROD3 G1 2 1 1* OIL / 

PROD4 G1 2 2 1* OIL / 

PROD5 G3 1 1 1* OIL / 

PROD6 G3 1 2 1* OIL / 

PROD7 G3 2 1 1* OIL / 

PROD8 G3 2 2 1* OIL / 

INJ1  G2 1 1 1* WATER / 

INJ2  G2 1 2 1* WATER / 

INJ3  G2 2 1 1* WATER / 

INJ4  G2 2 2 1* WATER / 

INJ5  G4 1 1 1* GAS / 

INJ6  G4 1 2 1* GAS / 

INJ7  G4 2 1 1* GAS / 
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INJ8  G4 2 2 1* GAS / 

/ 

COMPDAT 

PROD1 1 1 1 1 O 1* 7500/ 

PROD2 1 2 1 1 O 1* 7500/ 

PROD3 2 1 1 1 O 1* 7500/ 

PROD4 2 2 1 1 O 1* 7500/ 

PROD5 1 1 120 120 O 1* 7500/ 

PROD6 1 2 120 120 O 1* 7500/ 

PROD7 2 1 120 120 O 1* 7500/ 

PROD8 2 2 120 120 O 1* 7500/ 

INJ1 1 1 120 120 O 1* 7500/ 

INJ2 1 2 120 120 O 1* 7500/ 

INJ3 2 1 120 120 O 1* 7500/ 

INJ4 2 2 120 120 O 1* 7500/ 

INJ5 1 1 1 1 O 1* 7500/ 

INJ6 1 2 1 1 O 1* 7500/ 

INJ7 2 1 1 1 O 1* 7500/ 

INJ8 2 2 1 1 O 1* 7500/ 

/ 

WCONINJE 

INJ1 WATER OPEN RESV 1* 60/ 

INJ2 WATER OPEN RESV 1* 60/ 

INJ3 WATER OPEN RESV 1* 60/ 

INJ4 WATER OPEN RESV 1* 60/ 

INJ5 GAS SHUT RESV 1* 60/ 

INJ6 GAS SHUT RESV 1* 60/ 

INJ7 GAS SHUT RESV 1* 60/ 
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INJ8 GAS SHUT RESV 1* 60/ 

/ 

WCONPROD 

PROD1 OPEN BHP 5* 306.2/ 

PROD2 OPEN BHP 5* 306.2/ 

PROD3 OPEN BHP 5* 306.2/ 

PROD4 OPEN BHP 5* 306.2/ 

PROD5 SHUT BHP 5* 306.2/ 

PROD6 SHUT BHP 5* 306.2/ 

PROD7 SHUT BHP 5* 306.2/ 

PROD8 SHUT BHP 5* 306.2/ 

/ 

TSTEP 

100*0.00156/ 

/ 

WCONINJE 

INJ1 WATER SHUT RESV 1* 60/ 

INJ2 WATER SHUT RESV 1* 60/ 

INJ3 WATER SHUT RESV 1* 60/ 

INJ4 WATER SHUT RESV 1* 60/ 

INJ5 GAS OPEN RESV 1* 60/ 

INJ6 GAS OPEN RESV 1* 60/ 

INJ7 GAS OPEN RESV 1* 60/ 

INJ8 GAS OPEN RESV 1* 60/ 

/ 

WCONPROD 

PROD1 SHUT BHP 5* 306.2/ 

PROD2 SHUT BHP 5* 306.2/ 
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PROD3 SHUT BHP 5* 306.2/ 

PROD4 SHUT BHP 5* 306.2/ 

PROD5 OPEN BHP 5* 306.2/ 

PROD6 OPEN BHP 5* 306.2/ 

PROD7 OPEN BHP 5* 306.2/ 

PROD8 OPEN BHP 5* 306.2/ 

/ 

TSTEP 

100*0.0040/ 

/ 

END 
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B. ECLIPSE Data File of Immiscible Water Alternating Gas (IWAG) Injection Model 

-- IWAG CORE-FLOODING MODEL 

RUNSPEC 

TITLE 

'IWAG-COREFLOODING' 

LAB 

OIL 

WATER 

GAS 

DISGAS 

FULLIMP 

SATOPTS 

HYSTER/ 

DIMENS 

2    2     120   / 

TABDIMS 

2 1 200 50 3 8* 1 / 

WELLDIMS 

20 50 20 4 / 

MESSAGES 

2* 10 6* 10000 / 

START 

19 MAY 2019 / 

UNIFIN 

UNIFOUT 

GRID       

TOPS 

4*1 4*1.02 4*1.04 / 
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DX 

480*1.673 / 

DY 

480*1.673 / 

DZ 

480*0.26 / 

EQUALS 

     PERMX  1919         1   2       1   2     1    20/ 

     PERMX  1919         1   2       1   2     20   40/ 

     PERMX  1919         1   2       1   2     40   60/ 

     PERMX  1919         1   2       1   2     60   80/ 

  PERMX  1919         1   2       1   2     80   100/ 

  PERMX  1919         1   2       1   2     100  120/ 

     PORO  0.1789      1   2     1   2        1   20/ 

  PORO  0.1789      1   2     1   2        20  40/ 

  PORO  0.1789      1   2     1   2        40  60/ 

  PORO  0.1789      1   2     1   2        60  80/ 

  PORO  0.1789      1   2     1   2        80  100/ 

  PORO  0.1789      1   2     1   2        100 120/ 

/ 

COPY 

     PERMX  PERMY / 

     PERMX  PERMZ / 

/ 

INIT 

PROPS 

ROCK 

272.2 1.5E-06 / 
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DENSITY 

0.7686 1.0753 0.00100179 / 

PVTW 

306.2  1.02769  0.39395E-04  0.411    0.90953E-04 / 

PVTO 

   73.8     145    1.23449      1.047 

            195    1.22453      1.137 

            245    1.21581      1.226 

            295    1.20809      1.316 

            305    1.20658      1.335 

            345    1.20119      1.406 

            395    1.19497      1.495  / 

  101.7     195    1.30233      0.888 

            245    1.29091      0.957 

            295    1.28090      1.026 

            305    1.27895      1.041 

            345    1.27204      1.096 

            395    1.26411      1.165  / 

  132.0     245    1.37456      0.743 

            295    1.36165      0.795 

            305    1.35915      0.806 

            345    1.35034      0.848 

            395    1.34030      0.902  / 

  166.4     295    1.45615      0.585 

            305    1.45292      0.592 

            345    1.44159      0.617 

            395   1.42881       0.649  / 

  174.5     305    1.47556      0.558 



162  

            345    1.46358      0.582 

            395   1.45008       0.611  / 

  207.2     345    1.55356      0.474 

            395    1.53700      0.498  / 

/ 

PVDG 

   145      0.00740     0.0187 

   195      0.00555     0.0226 

   245      0.00458     0.0291 

   295      0.00410     0.0417 

   305      0.00405     0.0459 

   345      0.00400     0.0665 

   395      0.00365     0.0957   

/ 

SWFN 

0.03      0        0 

0.141     0.0038   -0.0172 

0.2404    0.0195   -0.0293 

0.3134    0.0417   -0.0315 

0.4138    0.0908   -0.0339 

0.4941    0.1478   -0.0364 

0.5523    0.2001   -0.0391 

0.6071    0.2585   -0.0421 

0.7123    0.3971   -0.0952 

0.772     0.4924   -0.256 

0.8014    0.5440   -0.5524 

0.8249    0.5875   -0.9952 

0.8531    0.6425   -1.7422 
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0.8598     0.656    -2.006 

/ 

0.03      0        0 

0.141     0.0038   -0.0172 

0.2404    0.0195   -0.0293 

0.3134    0.0417   -0.0315 

0.4138    0.0908   -0.0339 

0.4941    0.1478   -0.0364 

0.5523    0.2001   -0.0391 

0.6071    0.2585   -0.0421 

0.7123    0.3971   -0.0952 

0.772     0.4924   -0.256 

0.8014    0.5440   -0.5524 

0.8249    0.5875   -0.9952 

0.8531    0.6425   -1.7422 

0.8598     0.656    -2.006 

/ 

SGFN 

0         0         0 

0.2857    0.0153    0.0136 

0.3394    0.0273    0.017 

0.4031    0.0488    0.0204 

0.4865    0.0922    0.0238 

0.6467    0.2451    0.0272 

0.8007    0.4967    0.136 

0.8694    0.656     1.224 

0.8944    0.722     6.936 

/ 
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0         0         0 

0.2857    0.0153    0.0136 

0.3394    0.0273    0.017 

0.4031    0.0488    0.0204 

0.4865    0.0922    0.0238 

0.6467    0.2451    0.0272 

0.8007    0.4967    0.136 

0.8694    0.656     1.224 

0.8944    0.722     6.936 

/ 

SOF3 

0.0759    0         0 

0.1696    0         0.002 

0.1751    0         0.0075 

0.1986    0         0.0102 

0.228     0.0002    0.0125 

0.2877    0.0014    0.0206 

0.3206    0.0016    0.0284 

0.3929    0.0109    0.0526 

0.4477    0.023     0.0852 

0.4838    0.032     0.1146 

0.5059    0.0444    0.1346 

0.5672    0.078     0.1905 

0.5862    0.0944    0.2125 

0.6309    0.1332    0.2657  

0.6846    0.1985    0.3419 

0.6866    0.2041    0.3426  

0.7596    0.3287    0.4845 
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0.859     0.5786    0.7074 

0.97      1         1 

/ 

0.0759    0         0 

0.1696    0         0.002 

0.1751    0         0.0075 

0.1986    0         0.0102 

0.228     0.0002    0.0125 

0.2877    0.0014    0.0206 

0.3206    0.0016    0.0284 

0.3929    0.0109    0.0526 

0.4477    0.023     0.0852 

0.4838    0.032     0.1146 

0.5059    0.0444    0.1346 

0.5672    0.078     0.1905 

0.5862    0.0944    0.2125 

0.6309    0.1332    0.2657  

0.6846    0.1985    0.3419 

0.6866    0.2041    0.3426  

0.7596    0.3287    0.4845 

0.859     0.5786    0.7074 

0.97      1         1 

/       

EHYSTR 

0.1  2  1.0  / 

REGIONS 

SATNUM 

480*1 / 
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IMBNUM 

480*2 / 

SOLUTION         

PRESSURE 

480*306.2/ 

SGAS 

480*0/ 

SWAT 

480*0.122/ 

RPTRST 

basic=2 NORST=1 VGAS VOIL SOIL SGAS KRO KRG / 

RS 

480*174.5 

/ 

EXTRAPMS 

3 / 

SUMMARY 

RPTONLY 

FOPT 

FWPT 

FGPT 

FOSAT 

FWSAT 

FGSAT 

FOIP 

FWIP 

FWCT 

FGIP 
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FRPV 

FOPV 

FWPV 

FGPV 

WBHP 

/ 

FOE 

RUNSUM 

EXCEL 

SCHEDULE 

WELSPECS 

PROD  G1 1 1 1* OIL / 

PROD1 G1 1 2 1* OIL / 

PROD2 G1 2 1 1* OIL / 

PROD3 G1 2 2 1* OIL / 

INJ   G2 1 1 1* GAS / 

INJ1  G2 1 2 1* GAS / 

INJ2  G2 2 1 1* GAS / 

INJ3  G2 2 2 1* GAS / 

/ 

COMPDAT 

PROD  1 1 1 1 O 1* 7500/ 

PROD1 1 2 1 1 O 1* 7500/ 

PROD2 2 1 1 1 O 1* 7500/ 

PROD3 2 2 1 1 O 1* 7500/ 

INJ  1 1 120 120 O 1* 7500/ 

INJ1 1 2 120 120 O 1* 7500/ 

INJ2 2 1 120 120 O 1* 7500/ 
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INJ3 2 2 120 120 O 1* 7500/ 

/ 

WCONINJE 

INJ  WATER OPEN RESV 1* 60.000000/ 

INJ1 WATER OPEN RESV 1* 60.000000/ 

INJ2 WATER OPEN RESV 1* 60.000000/ 

INJ3 WATER OPEN RESV 1* 60.000000/ 

/ 

WCONPROD 

PROD  OPEN BHP 5* 306.2/ 

PROD1 OPEN BHP 5* 306.2/ 

PROD2 OPEN BHP 5* 306.2/ 

PROD3 OPEN BHP 5* 306.2/ 

/ 

TSTEP 

100*0.00156/ 

/ 

WCONINJE 

INJ  GAS OPEN RESV 1* 60.000000/ 

INJ1 GAS OPEN RESV 1* 60.000000/ 

INJ2 GAS OPEN RESV 1* 60.000000/ 

INJ3 GAS OPEN RESV 1* 60.000000/ 

/ 

WCONPROD 

PROD  OPEN BHP 5* 306.2/ 

PROD1 OPEN BHP 5* 306.2/ 

PROD2 OPEN BHP 5* 306.2/ 

PROD3 OPEN BHP 5* 306.2/ 
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/ 

TSTEP 

100*0.000069/ 

/ 

WCONINJE 

INJ  WATER OPEN RESV 1* 60.000000/ 

INJ1 WATER OPEN RESV 1* 60.000000/ 

INJ2 WATER OPEN RESV 1* 60.000000/ 

INJ3 WATER OPEN RESV 1* 60.000000/ 

/ 

WCONPROD 

PROD  OPEN BHP 5* 306.2/ 

PROD1 OPEN BHP 5* 306.2/ 

PROD2 OPEN BHP 5* 306.2/ 

PROD3 OPEN BHP 5* 306.2/ 

/ 

TSTEP 

100*0.000029/ 

/ 

WCONINJE 

INJ  GAS OPEN RESV 1* 60.000000/ 

INJ1 GAS OPEN RESV 1* 60.000000/ 

INJ2 GAS OPEN RESV 1* 60.000000/ 

INJ3 GAS OPEN RESV 1* 60.000000/ 

/ 

WCONPROD 

PROD  OPEN BHP 5* 306.2/ 

PROD1 OPEN BHP 5* 306.2/ 
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PROD2 OPEN BHP 5* 306.2/ 

PROD3 OPEN BHP 5* 306.2/ 

/ 

TSTEP 

100*0.000069/ 

/ 

WCONINJE 

INJ  WATER OPEN RESV 1* 60.000000/ 

INJ1 WATER OPEN RESV 1* 60.000000/ 

INJ2 WATER OPEN RESV 1* 60.000000/ 

INJ3 WATER OPEN RESV 1* 60.000000/ 

/ 

WCONPROD 

PROD  OPEN BHP 5* 306.2/ 

PROD1 OPEN BHP 5* 306.2/ 

PROD2 OPEN BHP 5* 306.2/ 

PROD3 OPEN BHP 5* 306.2/ 

/ 

TSTEP 

100*0.000029/ 

/ 

END 
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C. Input Data for Central Composite Design (CCD) Model 

Run# Timing Ratio Flow Rate Slug Size Sequence Oil RF (PV) 

1 0.1225 3.8 15.5 0.3775 Gas 0.534007 

2 0.1225 1.4 6.5 0.3775 Gas 0.523468 

3 0.215 0.2 11 0.255 Gas 0.346194 

4 0.215 2.6 11 0.255 Water 0.429216 

5 0.3075 1.4 15.5 0.1325 Gas 0.372266 

6 0.1225 1.4 6.5 0.1325 Gas 0.537304 

7 0.3075 1.4 15.5 0.3775 Water 0.348185 

8 0.215 0.2 11 0.255 Water 0.450462 

9 0.1225 3.8 15.5 0.1325 Water 0.522835 

10 0.3075 1.4 15.5 0.1325 Water 0.365645 

11 0.215 2.6 2 0.255 Gas 0.424564 

12 0.03 2.6 11 0.255 Gas 0.616779 

13 0.3075 3.8 15.5 0.1325 Gas 0.359008 

14 0.3075 3.8 15.5 0.1325 Water 0.338548 

15 0.1225 1.4 15.5 0.3775 Gas 0.536075 

16 0.1225 3.8 6.5 0.1325 Water 0.522779 

17 0.3075 1.4 6.5 0.3775 Water 0.337192 

18 0.3075 1.4 6.5 0.1325 Water 0.365437 

19 0.215 2.6 11 0.5 Gas 0.436121 

20 0.3075 1.4 6.5 0.3775 Gas 0.35638 

21 0.1225 3.8 6.5 0.3775 Water 0.494079 
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22 0.215 5 11 0.255 Gas 0.439133 

23 0.1225 3.8 6.5 0.3775 Gas 0.520698 

24 0.1225 3.8 15.5 0.1325 Gas 0.539334 

25 0.1225 1.4 6.5 0.3775 Water 0.533376 

26 0.1225 3.8 6.5 0.1325 Gas 0.532136 

27 0.1225 3.8 15.5 0.3775 Water 0.493671 

28 0.215 2.6 2 0.255 Water 0.43845 

29 0.215 2.6 11 0.255 Gas 0.440233 

30 0.3075 3.8 6.5 0.1325 Gas 0.35419 

31 0.1225 1.4 15.5 0.1325 Gas 0.552647 

32 0.3075 1.4 15.5 0.3775 Gas 0.366015 

33 0.215 2.6 20 0.255 Gas 0.450256 

34 0.3075 3.8 6.5 0.1325 Water 0.340991 

35 0.3075 3.8 6.5 0.3775 Gas 0.354877 

36 0.1225 1.4 15.5 0.3775 Water 0.531364 

37 0.215 2.6 20 0.255 Water 0.423532 

38 0.3075 1.4 6.5 0.1325 Gas 0.363963 

39 0.3075 3.8 6.5 0.3775 Water 0.313012 

40 0.4 2.6 11 0.255 Water 0.245712 

41 0.215 2.6 11 0.01 Gas 0.437461 

42 0.3075 3.8 15.5 0.3775 Gas 0.36499 

43 0.215 5 11 0.255 Water 0.403345 

44 0.03 2.6 11 0.255 Water 0.61071 
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45 0.4 2.6 11 0.255 Gas 0.265959 

46 0.215 2.6 11 0.01 Water 0.437343 

47 0.3075 3.8 15.5 0.3775 Water 0.311811 

48 0.1225 1.4 6.5 0.1325 Water 0.540487 

49 0.215 2.6 11 0.5 Water 0.403568 

50 0.1225 1.4 15.5 0.1325 Water 0.549344 

 


