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Abstract

Macroscopic friction involves interaction between many asperities of two surfaces

in contact. After the invention of an atomic force microscope (AFM), the physics

of friction can be studied at a single-asperity level. While the majority of such

studies are performed in ultrahigh vacuum (UHV), friction in ambient conditions

is more relevant to our everyday life. In this thesis, the results of AFM friction

measurements on amorphous glass and crystalline mica surfaces in ambient conditions

are presented. AFM friction in ambient conditions is found to differ significantly from

vacuum conditions. While in UHV, the motion of the AFM cantilever is of the stick-

slip type, in ambient conditions, only steady sliding is observed. Furthermore, in

UHV, the average friction force is known to increase logarithmically with the pulling

velocity. In ambient, on the other hand, it may either increase or decrease with

the puling velocity. These experimental findings strongly suggest that AFM friction

in ambient conditions is produced by water bridges between the AFM tip and the

surface. A version of the mechano-kinetic model (MKM) is developed, in which the

water bridges can spontaneously be created and broken. The main difference between

the MKM proposed in this thesis and the one existing in the literature is that we

assume that a water bridge may slide along the surface, whereas in the standard

MKM, it is rigidly coupled to the surface. The main motivation for this modification

is that it suppresses the onset of the stick-slip motion, making the steady sliding the

generic regime of motion at slow pulling. A simple analytical formula is obtained for

the average friction force that reproduces the experimental results both qualitatively

and quantitatively.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

The laws of friction were first investigated by Leonardo da Vinci and documented in

his lab book [6]. Later, the phenomenological laws of friction were rediscovered by

Coulomb and Amontons as the following statements [7]:

• Friction force is independent of contact area

• Friction force is proportional to the normal load Fn

• Kinetic friction does not depend on pulling velocity and is smaller than static

friction

This classical perspective of friction, which is known as the Coulomb Laws, is

useful for the application of friction on macroscopic scales. At the microscopic scale,

1



friction stems from the interaction of the small asperities between the surfaces in

contact. The more asperities in contact, the greater the magnitude of the friction

between the surfaces.

It is of interest to investigate single-asperity interactions between two surfaces,

since small scale (micro and nano scales) friction measurements can show different

behaviors from macroscopic friction. The invention of the atomic force microscope in

1986 by Gerd Binning and his group opened the door to nanoscale friction research [8].

Since da Vinci’s time, the study of friction has been limited to macroscopic scale

observations with the theories relying on classical laws of physics. One of the central

studies from this period (by Bowden and Tabor) was aimed at explaining the hydro-

dynamic nature of friction using Reynolds’ steady-state equation of fluid films [9].

According to the authors, the real contact area comes frome the large number of

small junctions, known as asperities, and the friction force was considered to be pro-

portional to the actual area of contact and average lateral force per unit area. By

considering the multiple asperities interacting with the surface, this model satisfied

the Coulomb friction laws as outlined in the previous section. However, considering

a single asperity which is the Hertzian model subject, results in the friction force

proportional to the normal force raised to the power 3/2, F
2/3
n [1]. This new result

showed that at the micro scales, the friction force does not behave similar to the

macro scales.

As is often the case, new technologies lead to new scientific theories and discoveries.

After the invention of the atomic force microscopy (AFM) [8], the study of nanoscale

friction produced significantly different results through new measurement techniques

and modelings. The critical study of friction at the nanoscale friction stems from
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work done by Mate et al. [10], which was the first experimental study of friction at

the atomic scale by AFM (see Figure 1.1). The authors observed that not only was the

friction force a non-linear function of the normal load (of the AFM tip on the sample),

but that friction versus position showed a stick-slip behavior at normal loads higher

than 2.5×10−5 N. In stick-slip behavior, the tip apex occupies a particular surface site.

By pulling the cantilever base along the surface, the elastic force due to the torsional

deformation of the cantilever increases to the point where it overcomes the force

exerted by the surface potential. At this point, the tip slips to another lattice site,

and this process repeats itself with the periodicity of lattice constant [10, 11]. Since

then, technologies have been developed such as ultra-high vacuum (UHV) systems

which provided better resolution from AFM measurements. Under UHV conditions,

kinetic friction was measured with different pulling velocities indicating that friction

is an increasing function of the natural logarithm of the pulling velocity [12].

Besides experimental approaches, various modeling approaches were also devel-

oped. The Prandtl-Tomlinson’s (PT) model, originally introduced by L. Prandtl [13],

is a basic model used to explain experimental results on the UHV nanofriction. In the

PT model, the cantilever tip is modeled as a mass-spring system that moves along

the surface as a result of a constant pulling velocity v. According to the PT model,

there are several different forces which are exerted on the cantilever tip: the dissipa-

tive force also known as the damping force, the force due to the surface potential, the

elastic force, and the force related to random noise due to thermal fluctuations. In this

model, the tip is considered as a Brownian object and the Langevin equation describes

the equation of motion of the tip as a stochastic motion [14]. The model successfully

reproduces the main features of UHV nanofriction, in particular the stick-slip motion
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(a)

(b)

Figure 1.1: (a)A sketch of an AFM nanofriction experiment, in which the tip of an

AFM is dragged along an atomically flat surface, and the resulting friction force is

measured optically from the elastic deformation of the cantilever. (b) The friction

force vs. cantilever base position at different normal loads from [1]
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and the logarithmic velocity dependence of friction [15], although deviations from the

model have also been reported [16].

Ultra-high vacuum rarely shows up in our everyday life; hence, a study of AFM

friction in ambient conditions is just as important as UHV friction research. This re-

search direction was initiated by Riedo et al. [17, 18]. It was immediately recognized

that in ambient conditions, friction arises due to formation and rupture of capillary

bridges [17, 18]. At about the same time, a Mechano-Kinetic (MK) model was in-

troduced [19], which attributes friction to formation and rupture of multiple bonds

between the tip and the surface. This model seems like an ideal one to describe

friction in ambient conditions. Surprisingly, no direct comparison between the MK

model and an AFM friction experiment in ambient conditions have been performed

to our best knowledge. The purpose of this Thesis is to fill this gap.

Our study includes two parts, modeling, and experiment. In the next chapter,

the MK model is introduced as formulated originally [19]. Because we never observed

the stick-slip behaviour in the experiment, this MK model is modified in such a way

that suppresses the stick-slip regime. An analytical expression for the mean friction

force is derived in the experimentally relevant asymptotic limit of high cantilever

stiffness. It is shown that our modified MK model may even exhibit Coulomb, i.e.

velocity-independent, friction at the single-asperity level. In the third chapter, lateral

force microscopy experiments are described and experimental results are provided in

terms of the average friction versus velocity and normal load. After that, a compar-

ison between experimental data and simulations is reported. Finally, our results are

summarized.
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Chapter 2

Mechano-kinetic (MK) model

2.1 The original MK model

The mechano-kinetic (MK) model was originally introduced by Filippov, Klafter, and

Urbakh in 2004 [19]. Within this model, the AFM tip interacts with the substrate

via many bonds, whose nature was not specified in the original publication [19]. In

later publications, they were identified with capillary (water) bridges [20, 21]. The

bonds are modeled as overdamped elastic springs, and their extension by an AFM tip

results in a counterforce interpreted as friction. The mechanical part of the model

describes the motion of the cantilever, the tip, and the extension of the water bridges,

according to Newton’s laws. The kinetic part of the model describes the formation

and rupture of the bridges as random thermally activated processes. Here, we outline

a simplified version of this model. Our simplifications will be clarified every time they

are introduced. They do not affect the physics behind the model.
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Figure 2.1: Schematic interaction of the apex of the cantilever tip with the surface.

2.1.1 Mechanical part

We model the cantilever as a spring of stiffness κC . Its one end represents the can-

tilever base, which is moving uniformly with the velocity V and has the coordinate

X = V t . (2.1)

The other end of this spring represents the cantilever tip apex with the coordinate

x. The spring constant κC describes the effect of the torsional deformation of the

cantilever beam and the tip. For more sense of MK model it would be useful to see

the Figure 2.1. Its value is of the order of 1 N/m, as established experimentally [12].

The elastic force

f = κC(X − x) (2.2)

equals the force of friction by Newton’s third law.

The tip interacts with the surface via many water bridges. One end of each bridge,

which we will call “the head”, is attached to the tip apex and has the coordinate x.

The other end, “the tail”, is attached to the surface and has the coordinate yi, where
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the subscript i labels the bridges. Each bridge is modeled as an elastic spring with

the spring constant κB. It produces the force

fi = −κBzi (2.3)

on the cantilever tip. Here,

zi = x− yi (2.4)

is the extension of the ith bridge.

The force expression (2.3) differs from the one used in [19] in that our formulation

is completely one-dimensional, whereas in [19], the tip apex was assumed to be at

some distance h from the substrate, and hence the bridge extension was
√
z2
i + h2.

Our formulation is a special case when h = 0.

We further assume that each bridge is an overdamped spring with the damping

coefficient ηB so high that as long as at least one bridge exists between the tip and

the substrate, the tip dynamics is heavily damped. We also assume that ηB is much

higher than the damping coefficient of the cantilever itself. Denoting the number of

active bridges, i.e. the ones that are formed between the tip and the substrate as Non

and the dynamics of the tip apex can then be expressed as an overdamped equation

of motion

0 = −NonηBẋ− κB
∑
i

(x− yi) + κC(X − x) . (2.5)

It differs from the one adopted in [19] in several respects:

(i) In [19], the tip possesses inertia, and so the left-hand side of the equation of

motion is not zero, but of the mass times acceleration form. This difference is not

crucial, because in the work [19], no inertia-related effects have been reported.
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(ii) The damping force on the cantilever is assumed to originate from direct tip-

substrate interaction, and therefore it is independent on the number of bridges in [19].

(iii) A further difference between our model and [19] is in the way how we treat the

bridges after they are broken. In [19], once a bridge is broken, it relaxes to equilibrium

in an overdamped manner according to zi(t) ∝ e−λt, where λ is the relaxation constant

in the notation of [19]. In contrast, we assume that after rupture, a bridge disappears,

and new bridges are formed with the initial length set to zero. This difference should

not play a role as long as the bridge formation rate ωon is small compared to the

relaxation rate λ.

(iv) Finally, in [19], the bridges that already exist are assumed to be in equilibrium

all the time. This point is not quite consistent with the features (ii) and (iii) of the

model [19]. It is hard to understand why the bridges act as overdamped springs only

after they are broken, and when they are intact, they merely produce a force −κBzi

independent on the extension speed żi. Such a “dual” nature of the bridges can

hardly be justified physically. If bridge dynamics is overdamped after rupture, then

one would expect that when the tip pulls an intact bridge apart, a dissipative force

proportional to the bridge extension rate, −λżi, should also emerge in the equation

of motion for the tip. This force should also be proportional to Non the number of

active bridges. This force is present in our equation (2.5). It appears as the first term

in the right-hand side of our equation of motion (2.5).

In principle, it is easy to introduce an additional damping force that is independent

on the number of bridges in (2.5), tip inertia, and the internal dissipation of the tip.

But all these modifications also mean introducing additional model parameters, whose

values are not obvious. Therefore, we will consider the model (2.5) as the simplest,
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minimalistic model of friction due to water bridges.

Admittedly, it does not reflect the full complexity of the tip dynamics. For in-

stance, if there are no active bridges, the first two terms in the right-hand side of

Eq. (2.5) are zero, implying that the tip apex immediately equilibrates to the elastic

energy minimum x = X. The equations of motion (2.5) are, therefore, applicable

when the water bridges are present. Fortunately, this is precisely the regime in which

we are interested.

2.1.2 Kinetic part

The kinetic part of the model describes the formation and rupture of water bridges.

It is assumed that there is a maximal number of bridges, NB, that can be supported.

Out of them, Non bridges are active, allowing for NB−Non more bridges to be formed.

At the same time, the existing bridges may break. Bridge formation and rupture are

random events. The probability of bridge formation/rupture per unit time are called

the formation/rupture rates and are denoted as ωon and ωoff .

We assume that the bridge formation rate depends on the tip velocity ẋ relative to

the substrate. The faster the tip moves, the smaller the bridge formation probability.

We focus on the following model function:

ωon(ẋ) =
Ωon√

1 + (ẋ/V0)2
, (2.6)

where Ωon is the bridge formation rate when the tip is stationary, and V0 is a char-

acteristic velocity. Its magnitude should depend on the chemistry and morphology

of the surface and the tip, relative humidity, and temperature. We will treat it as

a fit parameter to be determined experimentally. This functional form emphasizes
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the fact that ωon depends only on the magnitude of the tip velocity, but not on its

direction. Furthermore, at fast pulling (ẋ/V0) >> 1, and we have ωon(ẋ) ∝ 1/|ẋ|.

The bridge rupture rate is assumed to exponentially increase with the bridge

extension zi. The rationale behind this is that bridge rupture is a thermally ac-

tivated process, whose probability per unit time is given by the Arrhenius law,

ωoff = Ωoffe
−∆U/kT , where Ωoff is the rate of rupture of a newly formed bridge,

∆U is the energy barrier against rupture and kT is the thermal energy. A further

assumption is that the energy barrier decreases with the bridge extension zi approx-

imately linearly (at least for small values of zi), ∆U(zi) ∝ −α|zi|, where α is the

inverse characteristic length to be determined from fitting the experimental data,as

first proposed in [22]. It leads to

ωoff (zi) = Ωoffe
α|zi| . (2.7)

More sophisticated expressions for ∆U(zi) can also be considered, such as ∆U(zi) =

∆U(0)(1 − zi/zc)3/2 [19], where ∆U(0) is the energy barrier at zero extension, and

zc is the critical extension, at which the barrier disappears. These modifications

introduce more parameters into the model, but do not alter its physics qualitatively.

Therefore, we will stick to the simplest expression (2.7), which contains only two

model parameters, Ωoff and a characteristic length against rupture α−1.

2.1.3 Simulation details

Time is discretized into discrete steps of small magnitude ∆t, that is, tn = n∆t. At

the nth step, the tip position has the value x, the tip base position is at X = V tn,

and there are Non active bridges with extensions zi(tn). These parameters are then
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updated on the next time step as follows:

1. Rupture of the existing bridges. Consider an active bridge at the moment tn.

The probability of its survival over time ∆t is governed by the rate equation

Ṗ (t) = −ωoff (zi(t))P (t) (2.8)

where zi(t) is the bridge extension at time t. With the initial condition Pi(tn) = 1,

the rate equation has the solution

P (t) = e−
∫ t
tn
ds ω(zi(s)) . (2.9)

Focusing on small time intervals ∆t, the probability that the bridge will remain active

at time tn+1 = tn + ∆t can be approximated as

Poff = e−ωoff (zi(tn))∆t . (2.10)

To simulate this random event, a random number uniformly distributed between 0

and 1 is generated, r ∈ (0, 1). If this number turns out to be smaller than P , the

bridge is left intact. If it turns out that r > Poff , the active bridge is ruptured. This

procedure is applied to all bridges that are active at time tn.

2. Formation of the new bridges. Similarly, Pon = e−ωon(v)∆t represents the prob-

ability that a new bridge will be formed where v = dx/dt is the velocity of the tip

relative to the substrate. Again, a random number r ∈ (0, 1) is generated, and if

r < Pon, a bridge is formed with the tail coordinate set to x and extension set to 0.

This procedure is performed NB −Non times.

3. The number of active bridges, Non, is updated. This is done by assigning to

each bridge a Boolean variable qi, i = 1 . . . NB, such that qi = 1 if the ith bridge is
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on and qi = 0 if it is off. Whenever a bridge is broken in step 1, the corresponding qi

is set to 0; and whenever a new bridge is formed in step 2, the corresponding qi is set

to 1. Then, Non =
∑NB

i=1 qi. This concludes the kinetic part of the time step.

4. The cantilever base position X is then shifted by the amount V∆t.

5. If there are no active bridges, the tip position x is set to X and its velocity v

is set to the pulling velocity V .

6. Otherwise, the tip velocity is calculated according to Eq. (2.5), and the tip

position is changed by the amount ẋ∆t. The value of v ≡ ẋ obtained here is to be

used in step 2.

2.2 MK model with mobile water bridges

There is both experimental [23–25] and computational [26] evidence that under ambi-

ent conditions with relative humidity of at least 15 %, a hydrophilic surface is covered

with a few monolayers of water. This means that water bridges are formed not be-

tween the tip and the substrate, but between the tip and a thin water layer that

covers the surface. While in the original version of the model [19], the tail of the

water bridge was assumed to be rigidly pinned to a particular surface site, there is

no reason to believe that such pinning sites may exist on a water-covered surface.

Therefore, we introduce a crucial modification into the model by assuming that

the tails of the bridges are mobile. Their motion is expected to be associated with

a damping force proportional to the bridge tail velocity, with the proportionality

constant being the surface damping coefficient ηS. Because now the bridge tails are

mobile, their coordinates yi are functions of time. Hence, the damping force in the
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tip equation of motion (2.5) should be proportional to the tip velocity relative to the

bridge tails, leading to the modification

0 = −ηB
∑
i

(ẋ− ẏi)− κB
∑
i

(x− yi) + κC(X − x) . (2.11)

We furthermore need an equation for the dynamics of an ith bridge tail. Assuming

overdamped limit, this equation reads

0 = −ηS ẏi − ηB(ẏi − ẋ)− κB(yi − x) . (2.12)

In the limit ηS → ∞, the latter equation gives ẏi → 0, and bridges become immobi-

lized; then, Eq. (2.11) becomes equivalent to the original Eq. (2.5).

Eqs. (2.11), (2.12) are not suitable for numerical simulations, because they mix

the velocities of all the degrees of freedom involved. For numerical simulations, it is

desirable to express the rate of change of each coordinate in terms of the coordinates

only. Fortunately, this is easily done. Taking the sum of Eq. (2.12) over all active

bridges, (ηS + ηB)
∑
ẏi = ηBNonẋ− κB

∑
(yi− x), and plugging it in into Eq. (2.11),

we obtain

Non
ηBηS
ηB + ηS

ẋ = −κC(x−X)− ηS
ηB + ηS

κB
∑
i

(x− yi) . (2.13)

Substitution of this expression for ẋ into Eq. (2.12) gives

(ηS + ηB)ẏi = − κC
Non

(
1 +

ηB
ηS

)
(x−X)− κB

(
yi −

1

Non

∑
j

yj

)
. (2.14)

Numerical implementation of these dynamic expressions is the same as described

above, except in step 6, Eq. (2.13) is used for the velocity, and a further step is

added, namely:

7. Tip tail velocities are calculated according to Eq. (2.14) and their positions are

incremented by ẏi∆t.
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The maximal number of bridges: NB = 1000

Cantilever spring constant: κC = 1 N/m

Bridge spring constant: κB = 0.01 N/m

Bridge and surface damping coefficients: ηB = ηS = 0.01 nN/(nm/ms)

On and off rate prefactors, Eqs. (2.6), (2.7): Ωon = Ωoff = 10 ms−1

Characteristic velocity in the on-rate (2.6): V0 = 1 nm/ms

Characteristic length in the off-rate (2.7): α−1 = 1 nm

Table 2.1: Parameter values used in the simulations

2.3 Comparison of the MK model with mobile and

stationary bridges: Friction regimes

For numerical simulations, we focus on the parameter values presented in Table 2.1.

Initially, the cantilever base and the tip are assumed to be at the position X =

x = 0, and the number of bridges corresponds to the stationary value Non(t = 0) =

NBΩon/(Ωon + Ωoff ). All these bridges were assumed to have zero extension. After

that, the tip base starts to move at constant velocity V . Figure 2.2 shows the temporal

evolution of the friction force [panels (a), (c), and (e)] and the number of active bridges

[panels (b), (d), and (f)] within the original MK model (black curves) and the modified

MK model (red curves).

At slow pulling, V = 1 nm/ms, both models exhibit steady sliding, in which

friction force performs small fluctuations around the mean value, and the number of

bridges fluctuates around the value, which is smaller than the equilibrium value of
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Evolution of the friction force (left panel) and the number of active

bridges (right panel), as obtained from the simulations of the original MK model

(black) and the MK model with mobile bridges (red) for (a,b) V = 1 nm/ms, (c,d)

V = 5 nm/ms, and (e,f) V = 10 nm/ms.
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NBΩon/(Ωon + Ωoff ).

Increasing pulling velocity to 5 nm/ms (Figure 2.2(b)) results in an onset of the

stick-slip regime, which is much more pronounced in the original MK model than in

our modified MK model. This is better visible in the fluctuations of the number of

active bridges (right panel), which shows sawtooth-like oscillations in the simulations

of the original MK model (black curve). The character of the bridge number fluctu-

ations within our modified MK model at faster pulling velocity V = 5 nm/ms differs

from the fast fluctuations observed at slower pulling at 1 nm/ms, cf. Figs. 2.2(a) and

(b), right panel. But in contrast to the original MK model, the stick-slip regime is not

quite developed in the modified MK model at V = 5 nm/ms. In particular, the fric-

tion force at this pulling velocity exhibits larger fluctuations around the mean value,

but no sign of the sawtooth-like oscillations characteristic of the stick-slip motion.

The stick-slip regime fully develops at the pulling velocity V = 10 nm/ms for both

models, see Figure 2.2(c). In this regime, the force evolves in time in a characteristic

sawtooth-like pattern, consisting of the stick phases and sudden slips. The origin of

this behavior is as follows. In a stick phase, the tip apex is bound to the surface by

many bridges, and therefore it either practically does not move relative to the surface

(original MK model), or its motion is much slower than the motion of the cantilever

base (modified MK model). At the same time, pulling of the cantilever base results

in an approximately linear increase of the elastic force f , resulting in a higher bridge

rupture rate. Therefore, the number of active bridges continuously decreases.

Subsequently, the tip moves together with the cantilever with the velocity V . This

motion, however, is very short-lived, because new bridges start to get formed. As the

new bridges appear, the tip slows down, which increases the bridge formation rate
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ωon(ẋ). This results in an even higher number of bridges, and in further slowing down

of the tip. The number of active bridges reaches its maximum very quickly, and a

new stick phase begins.

Why is the stick-slip regime stable at fast pulling, whereas the steady sliding

is stable at slow pulling? Qualitatively, the reason is as follows. In order for the

cantilever to slip, all or almost all active bonds must break. At slow pulling, rupture

of a few active bonds does not mean that all bonds will break, because new bonds

form too fast for this to happen. At fast pulling, on the other hand, the loading rate

is too high for the surviving bonds to be able to stay attached to the tip indefinitely

long.

The conclusion that we can make from this comparison between the original and

the modified MK model is that depending on the pulling velocity V , two friction

regimes are realized. At low pulling velocity, tip motion proceeds as a steady sliding,

whereas at high pulling velocity, the tip exhibits stick-slip behavior. There is a critical

velocity, Vc, which separates the two regimes. This critical velocity has a much lower

value within the original MK model than within our modified MK model with mobile

bridges. At some point, the last bridge breaks, and the tip quickly slides to a new

equilibrium position x = X, minimizing the elastic energy. In the modified MK

model, this slip event is possible even when a small number of bridges remain active;

the tip simply drags those residual bridges to a new equilibrium position. It is for

this reason that the force drops to zero in the original MK model, but remains finite

in the modified MK model.
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2.4 Stiff cantilever limit

2.4.1 Friction force

The model (2.13), (2.14) can be solved analytically in the limit of cantilever stiffness

much greater than the bridge stiffness, in which case formation and rupture of bridges

has little effect on the cantilever tip velocity. Hence, fluctuations of the tip velocity

can be neglected, i.e. the tip moves with the same velocity V at which the cantilever

base is pulled:

κC � κB , ẋ = V . (2.15)

In this limit, we first find the distribution of bridge extensions z = x − yi. It

follows from Eq. (2.12) that the extension of ith bridge is governed by the differential

equation

(ηB + ηS)ż = ηSV − κBz . (2.16)

Let us measure the time t from the moment of ith bridge formation, i.e. z(0) = 0.

Then, the extension at any later time is given by

z(t) = zmax
(
1− e−t/τ

)
, zmax =

ηSV

κB
, τ =

ηS + ηB
κB

. (2.17)

The important difference between the original and our version of the MK model is that

in the original model, a bridge is extended uniformly with the velocity V , zi = V t.

In our model, there is a velocity-dependent maximal length, zmax, which is reached

with the characteristic extension time τ . After reaching this maximum, the bridge

continues to move together with the cantilever without being extended further. The

bridge extension rate is time-dependent:

u(t) ≡ ż(t) =
1

τ
e−t/τ . (2.18)
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A bridge of extension z changes its length with the velocity

u(z) =
zmax − z

τ
. (2.19)

Let us find the probability P (z) for a bridge to survive to the length z. In the time

domain, bridge survival probability is governed by Eq. (2.8). Transforming Eq. (2.8)

from the time to the extension domain according to Eq. (2.17), we have:

u(z)
dP (z)

dz
= −ωoff (z)P (z) . (2.20)

With the initial condition P (0) = 1, the bridge survival probability is found as

P (z) = exp

(
−
∫ z

0

dz′
ωoff (z

′)

u(z′)

)
. (2.21)

For the off-rate given by Eq. (2.7), the integral can be expressed in terms of the

exponential integral

E1(x) =

∫ ∞
x

dt
e−t

t
(2.22)

as ∫ z

0

dz′
ωoff (z

′)

u(z′)
= τωoff (zmax) [E1 (α(zmax − z))− E1(αzmax)] . (2.23)

Let n(z, t) be the concentration of bridges of length z at time t, i.e. the number

of bridges with length in an interval (z, z+dz) is n(z, t) dz. The bridge concentration

changes in time, because bridges enter and leave this interval due to pulling, and

because bridges of length between z and z + dz break with the rate ωoff (z). These

statements are expressed in as a continuity equation:

∂n(z, t)

∂t
= −∂[n(z, t)u(z)]

∂z
− ωoff (z)n(z, t) . (2.24)
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We are interested in the steady-state solution of this equation, n(z) ≡ limt→∞ n(z, t),

in which ∂n/∂t = 0. This solution reads:

n(z) = C
P (z)

u(z)
. (2.25)

The prefactor C can be found from the balance condition: In the steady state, the

total number of bridge formation formation events per unit time, (dN/dt)+, equals

the total number of bridge rupture events, (dN/dt)−. On average, there are

〈Non〉 =

∫ zmax

0

dz n(z) (2.26)

active bridges. Given that the maximal number of bridges that can be supported by

the tip-substrate contact is NB, the rate of increase of the bridge number is(
dN

dt

)
+

= ωon(V )(NB − 〈Non〉) . (2.27)

The number of bridge rupture events per unit time is(
dN

dt

)
−

=

∫ zmax

0

dz ωoff (z)n(z) . (2.28)

Equating (dN/dt)+ = (dN/dt)−, we obtain:

C = NB
ωon(V )∫ zmax

0
dz P (z)

u(z)
(ωon(V ) + ωoff (z))

. (2.29)

Once n(z) is found, we can find the friction force

〈f〉 = κC〈X − x〉 (2.30)

by averaging Eq. (2.13):

〈f〉 = 〈Non〉
ηBηS
ηB + ηS

V +
ηS

ηB + ηS
κB〈Non〉〈z〉 , (2.31)
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where

〈z〉 =
1

〈Non〉

∫ zmax

0

dz z n(z) (2.32)

is the average bridge extension. The first term in Eq. (2.31) represents the damping

contribution that arises due to the finite speed of the cantilever tip relative to the

substrate, and the second term is the elastic force due to the bridge extension.

2.4.2 Validation of the analytical formulae

In order to be absolutely certain that the analytical formulae for 〈f〉 and 〈Non〉 are

correct, we compare them with the simulations of the MK model performed in the

limit κC →∞. In this limit, the tip coordinate is (almost) equal to X, and its velocity

is just ẋ = V . The instantaneous friction force (2.4), f = −κC(x − X), is given by

the expression which directly follows from Eq. (2.13):

f =

(
NonηBV + κB

∑
i

(X − yi)

)
ηS

ηB + ηS
. (2.33)

Finally, the tail coordinates dynamics is governed by the equation that follows from

(2.14):

(ηS + ηB)ẏi =

(
1 +

ηB
ηS

)
f

Non

− κB

(
yi −

1

Non

∑
j

yj

)
. (2.34)

Shown in Fig. 2.3 is a comparison between the average friction force and the

number of bridges obtained from simulations (black curves) and analytically (red

curves), with all parameters (except κC) given in Table 2.1. A perfect agreement

between the two sets of data is obvious. In fact, the curves representing the average

number of active bridges, Fig. 2.3(b), are practically indistinguishable from each

other. With respect to the average friction, Fig. 2.3(a), the curve obtained from the
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simulations exhibits small, but noticeable fluctuations, especially at faster pulling.

These fluctuations can be traced back to the fluctuations in the bridge extension,

zi = X − yi.

As expected, the average bridge number 〈Non〉monotonically decreases with pulling

velocity. This is not surprising, in view of the fact that bridge formation rate ωon(V )

decreases with V , and bridge rupture rate ωoff (z) increases with the bridge extension,

which, in turn, increases with the pulling velocity.

Interestingly, the average friction force in the stiff-cantilever limit is a non-monotonic

function of the pulling velocity, see Fig. 2.3(a). This can be understood as follows.

On the one hand, the friction produced by a single active bridge increases with the

pulling velocity. This is so, because its average extension x − 〈yi〉 increases with

V , and because so does the damping force due to the substrate, −ηS 〈̇ẏi〉. But, on

the other hand, the total number of active bridges, 〈Non〉, decreases with the pulling

speed. The friction maximum results from the competition of these two effects.

2.4.3 Coulomb friction

It is quite surprising that nanoscale single-asperity friction is usually a function of

pulling velocity, whereas macroscopic dry friction is velocity-independent, as noted

by Coulomb’s friction law. Because of this difference with respect to the velocity

dependence, extension of nanoscale friction theories to macroscopic scale is not trivial.

It should involve additional assumptions about, e.g., asperity size distribution, or the

distribution of the interaction parameters between the asperities.

In this respect, a natural question arises: Under what conditions can a nanoscale
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(a)

(b)

Figure 2.3: Velocity dependence of (a) the average friction force and (b) the average

number of active bridges for the modified MK model with parameter values from

Table 2.1 in the stiff-cantilever limit, κC →∞. Circles: numerical simulations, solid

curves: analytical formulae (2.26) and (2.31).

friction model predict velocity-independent friction? Here, we show that within our
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modified MK model, Coulomb friction is possible if the bond rupture rate is constant

ωoff (z) = const (2.35)

independent of the bridge extension, and if the condition (2.15) holds.

In this case, the analytical expressions obtained in the previous section can be

simplified further. For the bridge survival probability, we obtain

P (z) = exp

(
−ωoffτ

∫ z

0

dz′

zmax − z

)
=

(
1− z

zmax

)ωoff τ

. (2.36)

Then, given that
∫ zmax

0
dzP (z)/u(z) = 1/ωoff , we find the normalization constant

from Eq. (2.29)

C = NB
ωonωoff
ωon + ωoff

. (2.37)

Hence, bond length concentration is found as

n(z) = C
P (z)

u(z)
= NB

ωonωoff
ωon + ωoff

τ
(zmax − z)ωoff τ−1

z
ωoff τ
max

, (2.38)

the average number of active bridges is

〈Non〉 =

∫ zmax

0

dz n(z) = NB
ωon

ωon + ωoff
, (2.39)

and the average bridge extension is

〈z〉 =
1

〈Non〉

∫ zmax

0

dz z n(z) =
zmax

ωoffτ + 1
. (2.40)

Substitution of the last two expressions into the expression (2.31) for the friction force

gives the friction force

〈f〉 = NB
ηS

ηS + ηB

ωon
ωon + ωoff

(
κBzmax
ωoffτ + 1

+ ηBV

)
. (2.41)
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Finally, using the expression (2.17) for zmax, we transform the average friction force

to

〈f〉 = NB
ηS

ηS + ηB

ωon
ωon + ωoff

V

(
ηS

ωoffτ + 1
+ ηB

)
. (2.42)

Next, we assume that for fast pulling, the on-rate asymptotically decreases with

velocity as

ωon(V ) ∝ Ωon
V0

|V |
, (2.43)

see Eq. (2.7). Then, the average friction force becomes

〈f〉 = NB
ηS

ηS + ηB

ΩonV0

ωoff

(
ηS

ωoffτ + 1
+ ηB

)
V

|V |
. (2.44)

velocity-independent. Hence, within our model, Coulomb friction is explained as

resulting from the interplay of two effects: an increase of the damping force that

arises as a bridge is pulled over the surface, and a decrease of the average number of

bridges with the pulling velocity.

2.5 Effect of cantilever stiffness on friction

It is instructive to see how the average friction force depends on the velocity for

the parameter values from Table 2.1 at finite cantilever stiffness κC = 1 and to

compare the results with the stiff-cantilever analytical approximations (2.26), (2.31).

The results of this comparison are presented in Figure 2.4, showing (a) the average

friction force and (b) the average number of active bridges, as obtained analytically

(red curves) and numerically (black curves).

It is seen that for velocities below about 5 nm/ms, the analytical approximation

is in perfect agreement with the numerical results, as the two curves are practi-
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(a)

(b)

Figure 2.4: Velocity dependence of (a) the average friction force and (b) the average

number of active bridges for the modified MK model with parameter values from

Table 2.1. Black curves: numerical simulations, red curves: stiff-cantilever analytical

approximations (2.26) and (2.31).

cally indistinguishable from each other. In this velocity range, the average friction

force initially increases and then develops a maximum, whereas the number of active
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bridges steadily decreases with the pulling velocity. This behaviour has already been

discussed, see Section 2.4.2.

The stiff-cantilever approximation does not agree with the simulations at fast

pulling, i.e. for V above 5 nm/ms. Interestingly, it is around this velocity that

the steady-sliding regime is replaced by the stick-slip regime, see Figure 2.2. The

inapplicability of the stiff-cantilever approximation in the stick-slip regime is due to

the fact that this approximation is based on the assumption that the cantilever tip

moves at a constant pulling velocity, ẋ = V . Obviously, this is not the case in the

stick-slip regime, the tip velocity is very small in the stick phases and very high in

the slip events.

It comes as a surprise that the velocity dependence of both friction force 〈f〉

and the number of active bridges 〈Non〉 in the stick-slip regime is non-uniform. Both

curves develop a maximum at slightly different velocities. The maximum of 〈f〉 occurs

at V ≈ 30 nm/ms, whereas 〈Non〉 is maximized at V ≈ 20 nm/ms.

The maximum of 〈Non〉 can be explained as follows. In the stick phases, the tip

velocity is much smaller than the pulling velocity V . Correspondingly, the bridge

formation rate (2.6) is higher than the constant value ωon(V ) assumed in the stiff-

cantilever approximation. Therefore, also the number of active bridges in a stick

phase, Nstick, is higher than the stiff-cantilever value given by Eq. (2.26). During

the stick-slip motion, the number of bridges oscillates between the value Nstick and

almost zero, see Figure 2.2(c), and so the average number of bridges can be estimated

as Nstick/2. This number may turn out to be higher than the stiff-cantilever approx-

imation (2.26), i.e. after the onset of the stick-slip motion, 〈Non〉 may increase with

the pulling velocity V .
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If the pulling velocity is too high, the elastic deformation of the bridges builds

up too fast, implying a high bridge rupture rate ωoff (z), and hence a decrease of

Nstick with V . The maximum in the 〈Non〉 vs. V curve at around 20 nm/ms can

be understood as a result of a competition between an enhancement of the bridge

formation rate at slower pulling, and an increase of the bridge rupture rate at fast

pulling.

Because the friction force is directly related to the number of the active bridges,

it should also be maximized with the pulling velocity. The fact that the friction

maximum is found at a slightly different pulling velocity than the maximum of 〈Non〉

can also be understood. The value of 〈f〉 is determined not only by the number of

the active bridges, 〈Non〉, but also by the average bridge extension 〈z〉. The average

extension of the friction bridges is monotonically increasing with the pulling veloc-

ity without any non-monotonicity. This effect makes the friction force to continue

increasing even after reaching the velocity at which 〈Non〉 is maximized. Eventually,

the decrease of 〈Non〉 with V dominates, resulting in a decrease of 〈f〉 with V at

fast pulling. This implies that the friction force in the stick-slip regime is also a

non-monotonic function of the pulling velocity, but the friction maximum occurs at

a higher velocity than the maximum of the average number of active bridges.
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Chapter 3

Experiments

In this chapter, we will discuss the instruments needed for performing friction force

microscopy including calibration of the system, and the actual friction measurement

operation. First, the atomic force microscopy (AFM), including a practical overview

of how the AFM works and the underlying theory surrounding the instrument will

be discussed. In the following, a brief introduction on how to set up the instrument

for performing the measurement is provided. In section 3.3 a discussion of how to

calibrate the instrument for performing both normal and lateral force microscopy is

presented, and finally, the experimental results are provided in section 3.6.

3.1 Atomic Force Microscopy

The first Atomic Force Microscopy (AFM) was invented in 1986 by Gerd Binnig and

Calvin Forrest Quate [8]. The atomic force microscope is an instrument used to mea-

sure the surface topography of materials and the interactions between the tip at the

end of the cantilever and substrate for conductors, semiconductors, and insulators.

30



Figure 3.1: Main parts of a typical atomic force microscope.

The topography of a surface provides information about the size of the surface cor-

rugations and the surface roughness. The resolution of this instrument relies on the

size of the tip at the end of the cantilever. The smaller the size of the tip, the higher

resolution, which provides more details from the image. The main parts of an AFM

shown in Figure 3.1 are discussed below:

The probe

The probe consists of a rectangular cantilever (labeled (1) in Figure 3.1) with a
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sharp tip at the free end as shown in Figure 3.2. The size of the cantilever is on the

order of hundreds of micrometers, while the tip is a few micrometers in height. The

geometry of the tip varies based on the type of measurement to be performed. In

most cases, it is in the shape of tetrahedron, but depending on the topography and

material of the substrate the shape of the tip could be changed. The AFM probes

could be used for contact and non contact imaging modes as well as magnetic, elec-

trical and biophysical measurements.

Optical Beam Deflection System

During the operation of the instrument the deflection and twisting of the can-

tilever is monitored using an optical beam deflection system (labeled (2,3) in Figure

3.1). The laser beam is made incident on the free end of the cantilever, reflected

from the cantilever and detected by photosensitive detector (PSD). As shown in Fig-

ure 3.3, the PSD has four quadrants A,B,C, and D. When the cantilever deflects

or twists, the position of the laser beam changes correspondingly and the detected

photo-currents from the quadrants produces a voltage proportional to the intensity

as (IA + IB) − (IC + ID) or (IA + IC) − (IB + ID) for a vertical or lateral deflection

respectively.

Piezoelectric Tube and System Controller

During the imaging process, applying a force in the vertical z direction and moving

the sample in x and y direction are done by the piezoelectric tube (labeled (7) in Figure

3.1). The piezoelectric tubes used in AFMs, are produced from Lead, Zirconium,

and Titanate (PZT). Powder of each PZT component with different proportions is
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sintered to form a poly-crystalline tube-shaped object. With each crystal having a

specific dipole moment provides a large voltages across the material causes a net

contracting elongation of the tube [27]. Controlling these processes requires a very

precise controlling system. The feedback system (labeled (4,6) in Figure 3.1) is an

interface between both the RMS DC converter and the PZT tube, which applies the

control on detected voltage from one side and changing the length of the tube on the

other side, regarding the optimized adjustment of the cantilever on top of the sample.

(a) (b)

Figure 3.2: SEM image of (a) typical rectangular cantilever and (b) tip of the

cantilever [2, 3].
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(a)

(b)

Figure 3.3: Schematic representation of normal (a) and lateral (b) deflection for

cantilever.
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3.2 Measurement Preparation

Prior to performing any measurement, the AFM must first be set up. Next the

instrument needs to be calibrated for both normal and lateral forces. After that,

before to taking any measurement, the samples need to be prepared (cut and clean),

and finally measurements are performed on the samples.

3.2.1 Instrument Setup

As shown in Figures 3.4 and 3.5 the systm consists of the following list:

• Digital instrument Multimode AFM: The AFM microscope used in this work

was a Digital Instrument Multimode AFM which can perform both non-contact

(tapping) and contact (imaging) modes.

• Controller and Extender: Both the controller and extender are responsible to

exchange information between the computer and the AFM. This information

consists of applying the gain voltages as well as converting the photo currents

to voltages.

• Computer: The computer provides the software platform to control AFM and

save all acquired data.

• Control and Display monitors: The control monitor is connected to the com-

puter, which is used to display the AFM images while the display monitor is

used to observe the image of the surface.

• Camera and light: These tools are used to observe the surface and cantilever
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Figure 3.4: Measurement Instruments

3.2.2 Sample and Cantilever Loading

After setting up the instruments, the cantilever and sample need to be installed in the

AFM. The sample should be cut such as not to touch the inside wall of the AFM head.

The maximized diameter and height of the sample are 15 mm and 8 mm respectively.

It is essential to install the sample prior to mounting the probe. Otherwise, when

the sample is loaded, the cantilever could get damaged. After the sample is installed,

the cantilever is carefully mounted on the probe holder. If the cantilever is installed

correctly, the edge of the cantilever and side edge of the cantilever holder stand should

be parallel. Now, the cantilever holder is ready to be installed on the AFM head.

The above is summarized in Figure 3.7 and 3.6.
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Figure 3.5: Multimode AFM

3.2.3 Laser Alignment

Another step before performing an experiment is aligning the laser on the free end

of the cantilever. Two approaches are taken to align the laser on the cantilever. In

the first case, using the optical camera and the monitor, the laser beam is located on

the cantilever as best as possible. After that, using the x and y knobs for adjusting

the laser position, the laser beam is brought on top of the cantilever so that the sum

signal bar reaches a maximum. When the laser is aligned properly the intensity value

should be between 6.90 volt and 7.20 volt for a gold coated silicon cantilever.
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Figure 3.6: Scanner with (right) and without (left) sample [4]

3.3 Calibration

After the instrument has been properly initiated, the machine is ready to be used to

perform measurements. Since, the measured data is required to be converted properly

from units of volts to units of force in Newtons, the normal and lateral calibration

factors need to be calculated. Therefore the next step in experiment is to determine

the calibration factors.

3.3.1 Normal Load Calibration

To calculate the normal load it is necessary to produce force versus distance curve.

The force-distance curve gives information about the deflection of the cantilever and

the force between the tip and sample, which is related to the distance of the cantilever

from the surface. A cantilever can be modeled as a spring of stiffness k fixed at one

end with the tip at the other end. The applied force on the tip, deflects the cantilever

which changes its distance from the surface according to the Hook’s law (F = −kz
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(a)

(b) (c)

Figure 3.7: (a) Inserting cantilever under the spring clip, (b) Installing the probe

holder inside the AFM head, (c) Probe holder [4]
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Figure 3.8: The

plot shows how the

force is exerted onto

the surface, which

is collected from the

force calibration plot

over the sample sur-

face.

Figure 3.9: Tip-

sample interaction

during the extending

and retraction of

the piezoelectric

tube. [5]
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where z is the change in length from its equilibrium position).

Figure 3.8(a) shows the interaction force between the cantilever tip and the surface

of the sample as function of height. At point 1, the cantilever is above the surface.

Between point 1 and 2 the sample is raised towards the tip. At point 2, the tip is

pulled down and makes contact with the sample, and continues pressing the tip onto

the surface causing the cantilever to bend upward until point 3. From point 3 to

point 4, the tip still remains in contact with the surface; From point 4 to point 5, the

tip remains in contact with the surface causing the cantilever to bend downward, due

to the adhesion force between tip and surface. After further retraction of the sample,

the tip finally detaches at point 5. From point 6 the cantilever remains undeflected

till point 7. From the force-distance curve shown in Figure 3.8, the deflection of the

cantilever in the z-direction can be determined. The slope of the curve from the

inclined part of the graph (between point 3 and 5) is known as sensitivity which is

defined as:

Uv = Svz. (3.1)

The sensitivity is calculated by the Nanospcope automatically when the sloped part

of the force curve is selected. The system converts z deflection displacement in units

of volt to units of length (nm). The deflection is the amount that the cantilever bends

from its equilibrium position at the free end calculated from Equation 3.2 where set

point (Vcsmin) is the value of force distance curve at point 5 in Figure 3.8. By having

the deflection displacement and stiffness of the cantilever, the normal load can be

calculated in units of nano Newton (nN) from the Hook’s law. Equation 3.2 is used
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to determine the tip distance from the surface in nanometer (nm).

z = (Vcsmin(Volt))× (S−1
v (nm/Volt)) (3.2)

The cantilever stiffness can be calculated using theoretical or experimental meth-

ods [28–32]. We used the theoretical method base on the geometry of the cantilever

and an experimental method based on the natural resonance frequency (NRF) of the

cantilever. In the geometric method the cantilever stiffness is calculated from physi-

cal properties of the cantilever, such as length L, width w, thickness t as well as the

cantilever’s Young’s modulus E [30,33]. Equation 3.3 shows the relationship between

the cantilever normal stiffness and geometrical properties of a rectangular cantilever:

kz =
Et3w

4L3
. (3.3)

Here, Young’s modulus E depends on cantilever material, which for our experiments

was silicon.

Another method which we used to determine the cantilever stiffness is the NRF

method, which was introduced by Cleveland et al. [31]. In this approach, the stiffness

is defined as:

kz = 2πL3w

√
ρ3

E
(ω0)3, (3.4)

where ρ is the cantilever density, E is Young’s modulus, and ω0 is the unloaded

resonance frequency of the cantilever. The resonance frequency is the frequency

related to the peak of amplitude versus the drive frequency curve (see Figure 3.10).

The normal load was calculated according to Equation 3.5:
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Figure 3.10: Amplitude versus drive frequency

Fn = kzz

≈ Et3w

4L3
× Vcsmin

Sv

≈ 2πL3w(ω0)3

√
ρ3

E
× Vcsmin

Sv
.

(3.5)

It should be noted that, the cantilever stiffness calculated from the geometric and

the resonance frequency methods are not necessarily equal. A comparison of both

geometrical and NRF approaches for a typical silicon cantilever is given in Table 3.2.

Because the geometric approach has more substantial uncertainty and also as the

NRF method performed in ambient conditions, the result of the NRF method would

be close to the value when water vapor exists. In this work, the cantilever stiffness
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was calculated using the NRF method. Physical properties of the conventionally used

cantilever are listed in Table 3.1.

Physical quantity value

Thickness (t ) 2.4 ± 0.1 µm

Width (w) 51 ± 1 µm

Length (L) 450 ± 1 µm

Resonance frequency (ω0) 37.83 ± 0.01 kHz

Density (ρ) 2330 ± 1 kg/m3

Young’s Modulus (E) 165 ± 1 GPa

Table 3.1: Silicon cantilever’s physical properties (kz)

geometrical approach 0.32 ± 0.04 (N/m)

natural resonance frequency method 0.438 ± 0.004 (N/m)

Table 3.2: Calculated and measured vertical spring constant (kz)

3.3.2 Lateral Force Calibration Theory

As for the normal load calibration, there are different methods to performe the lateral

force calibration. The lateral force calibration is used to convert the lateral deflection
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in units of volts to values of force in units of Newton. The wedge method is one

calibration methods which applies a specific sample (SrTiO3) with known surface

topography to calculate the conversion factor for lateral forces [34]. Recently, Michelle

L. Gee et al. has modified this method by [35] using the calibration grating (TGF11).

In this modified method, the authers argued that adhesion force, which affects the

friction value, should be considered, which in the original wedge method was not

considered. Also for commercial AFMs, the trace and retrace signals are not equal

which leads to different values of the friction for the trace and retrace scanning [35–38].

Considering adhesion force and inequality of the trace and retrace signals were the

basic modification for their method. In the following, we will discuss all the procedures

of the calibration method. Still, before that, it is required to discuss the theory behind

the lateral calibration in details by considering the schematic diagram of hypothetical

friction data (3.11).

Friction measurements are conducted by trace and retrace scanning of the sample

in the direction perpendicular to the length of the cantilever with a constant tip

velocity. This motion leads to a twisting of the cantilever in the opposite direction

to the scan direction. Torsional deflection is detected as a lateral voltage (Vlateral) by

the PSD, which is related to the lateral force on the cantilever tip (friction force) by

the conversion factor α (not to be confused with the inverse characteristic length in

the off-rate equation (2.7)):

Flateral = αVlateral. (3.6)

For each friction loop recorded with different normal loads, two parameters, the
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Figure 3.11: (a) Schematic cross section of friction loop. (b) The calibration grating

surface on the sloped edge

half width of the friction curve W0(M, θ) and the offset of the friction curve ∆0(M, θ)

are obtained for each of the trace and retrace parts separately, which both are func-

tions of the edge angle θ and torsional moment Mu and Md. In Figure 3.11 these

parameters are shown for the trace part of the friction loop only [36]. These pa-

rameters are in units of volt and should be related to torsional moment using the

conversion factor α.

To calculate the conversion factor, α, see Figure 3.12, friction force, fu, and ef-

fective adhesion force, FA, should be balanced by the constant applied normal load,
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fload−u and lateral force, Flateral−u as written in Equations 3.7. Also, the torsional

moment should be related to Flateral−u by tip length and the cantilever thickness,

h and t according to the Equation 3.8. In addition, relation between the torsional

moment and the conversion factor is written in Equation 3.9.

Flateral−u =
Fload−usin θ + µ(Fload−ucos θ + FA)

cos θ + µsin θ

Flateral−d =
Fload−dsin θ − µ(Fload−dcos θ + FA)

cos θ − µsin θ

(3.7)

Mu = Flateral−u(h+ t/2)

Md = Flateral−d(h+ t/2)

(3.8)

W0(M, θ) =
Mu −Md

α(2h+ t)

∆0(M, θ) =
Mu +Md

α(2h+ t)
.

(3.9)

It is expected that since the deflection set-point is constant during the scanning,

the normal load during the upward motion, fload−u, be equal to the normal load during

the downward motion fload−d. However, this assumption is incorrect and fload−u and

fload−d are not equal even when the gain voltages are properly adjusted. On the

other hand, Johnson et al. showed under the constant normal load, breaking of

the junctions between the tip and the surface break non-monotonically due to the

sliding [39] which means that exerted normal load can change by motion. Based on

these two aspects of the normal load Gee et al. provided the following Equation

3.10 for W0(M, θ) and ∆0(M, θ) as measured quantities in terms of expected values

(W 0
0 (M, θ) and ∆0

0(M, θ)) with correction terms (W a
0 and ∆a

0, W b
0 and ∆b

0, W c
0 and
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Figure 3.12: Schematic diagram showing a moving cantilever on the surface of the

grating. (a) Upward scanning (b) downward scanning.

∆c
0). The first error terms W a

0 and ∆a
0 are related to the coupling of the vertical

and lateral deflection voltages, the second error terms W b
0 and ∆b

0 are related to poor

electrical feedback systems setup and the last error terms W c
0 and ∆c

0 are related to

optical interference, which produces noise in the friction loops.

W0(M, θ) = W 0
0 (M, θ) +W a

0 (M, θ) +W b
0 (M, θ) +W c

0 (M, θ)

∆0(M, θ) = ∆0
0(M, θ) + ∆a

0(M, θ) + ∆b
0(M, θ) + ∆c

0(M, θ).

(3.10)

Equations 3.10 indicate that to calculate the conversion factor, α, it is required

to subtract the errors from the measured values of half width W0(M, θ) and offset

∆0(M, θ). By replacing the W0(M, θ) and ∆0(M, θ) with W 0
0 (M, θ) and ∆0

0(M, θ) in

Equations 3.9, 3.7 and 3.8 new equations are written as:

48



αW 0
0 (M, θ) =

µ

2

(Fload−u + Fload−d + 2FA cos θ)

cos2 θ − µ2sin2 θ

+
µ2 + 1

2

(Fload−u − Fload−d)cos θsin θ
cos2 θ − µ2sin2 θ

(3.11)

α∆0
0(M, θ) =

1

2
(
(µ2 + 1)((Fload−u + Fload−d)cos θsin θ

cos2 θ − µ2sin2 θ
)

+
1

2

2µ2FA sin θ + µ((Fload−u − Fload−d)
cos2 θ − µ2sin2 θ

.

(3.12)

The normal load deviates from the set point value Fload−u by the value of ∆Fload.

The upward and downward scanning normal loads are written in the form of Equations

3.13:

Fload−u = Fload + ∆Fload

Fload−d = Fload −∆Fload.

(3.13)

Putting the Equations 3.13 into Equations 3.11 and 3.12 yields:

αW 0
0 (M, θ) =

µFload
cos2 θ − µ2sin2 θ

+
µFA cos θ + (µ2 + 1)∆Floadcos θsin θ

cos2 θ − µ2sin2 θ
.

(3.14)

α∆0
0(M, θ) =

(µ2 + 1)Floadcos θsin θ

cos2 θ − µ2sin2 θ

+
µ2FA sin θ + µ∆Fload
cos2 θ − µ2sin2 θ

.

(3.15)

Now we can rewrite the above equations in a more simple form as:

W 0
0 = SwFload + Iw

∆0
0 = S∆Fload + I∆,

(3.16)
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where,

Sw = (
1

α
)

µ

cos2 θ − µ2sin2 θ

S∆ = (
1

α
)
(µ2 + 1)cos θsin θ

cos2 θ − µ2sin2 θ

Iw = (
1

α
)
µFA cos θ + (µ2 + 1)∆Floadcos θsin θ

cos2 θ − µ2sin2 θ

I∆ = (
1

α
)
µ2FA sin θ + µ∆Fload
cos2 θ − µ2sin2 θ

.

(3.17)

Equations 3.16 show that the corrected half-width and offset are linear function

of average load, and the slope of these linear equations yield the coefficient of friction

µ and the conversion factor α respectively. Since, the adhesion force, FA, and the

normal load deviation, ∆Fload, do not contribute to Sw and S∆, the conversion factor

is not related to the adhesion force and the normal load deviation. As a consequence,

using the slopes Sw and S∆ related to the Equation 3.16 plotted with different normal

loads gives the friction coefficient µ and the conversion factor α.

3.3.3 Lateral Force Calibration Experiment

For the calibration, all experiments were performed using contact mode rectangular

silicon cantilevers with a corresponding nominal thickness of 1 µm, length of 450

µm, and stiffness of 0.2 N/m as purchased from NanoWorld AG (Switzerland). A

commercial trapezoidal calibration grating (TGF11) from NanoAndMore USA was

used for the calibration. The sidewalls are 54.7◦ from the horizontal surfaces, which is

known as the edge angle, with a steps height of 1.75 ± 0.01 µm (see Figure 3.13). The

calibration sample required to be carefully aligned such that the facets of the samples

were parallel to the length of the cantilever. Once the sample was aligned, force curve
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Figure 3.13: Schema of the trapezoidal calibration grating

measurements were conducted on the flat part of the sample to avoid any twisting of

the cantilever during the measurement. As discussed in section 3.3.1, the force curve

provides the normal load and the vertical distance from the flat surface. Changing

the deflection set-point produces different normal loads, which are required to to plot

Equations 3.16 and 3.17 in different normal loads. To produced the different normal

loads, the deflection set points was changed from -2.5 Volt to 3.0 Volt and plotted as

shown in Figure 3.14.

Each normal load would be used to produce a different friction loop. The collected

data was related to 50 different normal loads and the tip velocity was set to be 5 µm/s

for all measurements. After changing the normal load, the gain voltage was altered

such as to produce images that had acceptable quality and clearness. The scanning

direction during the data acquisition was perpendicular to the cantilever alignment.

All collected image data were exported in ASCII format to use the data in Excel

software. An example of the friction data for a given normal load is shown in Figure

3.15:
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Figure 3.14: (a) Range of the normal load between red (highest normal load) and

blue (lowest normal load). (b) Normal vs. the set points calculated from the force

curve. 52



(a)

(b)

Figure 3.15: (a) Lateral deflection, half width and offset, (b) Topography of the

sloped facet.
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(a)

(b)

Figure 3.16: (a) Measured halfwidth W0(M, θ) and offset ∆0(M, θ) versus the nor-

mal load (b) Corrected halfwidth W 0
0 (M, θ) and offset ∆0

0(M, θ) versus the normal

load. 54



From the friction data, the aim is to find the measured half width, W0(M, θ),

and offset, ∆0(M, θ), for a given normal load. Figure 3.16(a) represents the the

friction loop including the half-width, W0(M, θ), the offset, ∆0(M, θ), and deviation

error W 0
0 (M, θ). Regardless of how the data were obtained, the data needed to be

corrected according to Equations 3.10. If the laser alignment and feedback systems are

set up properly, both errors corresponding to the dynamic coupling between vertical

and lateral voltage, W b
0 and ∆b

0, and the optical interference, W c
0 and ∆c

0, can be

neglected. However, errors related to static coupling, W a
0 and ∆a

0, can not be ignored.

These errors can be evaluated from the offset values of the friction data taken from

the flat surface of the sample. Since on the flat part of the sample the offset would not

deviate from the half-width, any deviation should be considered as error, W a
0 and ∆a

0.

From Figure 3.15(a) the deviations from the half-with on the flat surface is shown

in the trace graph of the friction loop. Comparing both Figures 3.16(a) and 3.16(b)

illustrates the differences before and after the error subtraction. Fitting the data with

a linear equation yields the slope SW and S∆ defined in Equations 3.16. Using the SW

and S∆ leads to calculate the conversion factor (α) and friction coefficient (µ) from

Equations 3.17. Calculated values for these two coefficients are reported in Table 3.3.

calculated quantity value

coefficient friction (µ) 0.36 ± 0.09

Conversion factor (α) 25 ± 3 nN/V

Table 3.3: Calibration results
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3.4 Sample Cleaning

Before conducting out experiment, our samples needed to be thoroughly cleaned. Any

sample exposed to the atmosphere will be covered by airborne contaminants which

would not provide accurate measurements of friction between the sample and the Si

tip.

In this work two types of substrates were used, regular glass, and mica. To obtain

a clean surface of mica is simple. Mica has a layer structure allowing it to be cleaved

easily. The top layer of the mica surface can be exposed by applying an adhesive tape

and then pulling it off. The adhesive will peel away one or sometimes several mica

layers exposing a pristine surface free of any contaminants.

The cleaning procedure of glass is more complicated because the contaminants on

glass have usually accumulated for a long time and vary in the type of contaminant.

For this purpose, there are several methods used to clean glass [40–42]. In general,

there are three main wet-based procedures for cleaning the glass, which is accom-

plished by using different types of acidic solutions, alkaline solutions, and organic

solutions. The method used in this work for cleaning glass is the same approach

described by Ligler et al. [41]. Before staring the cleaning process, all containers were

washed using detergents and rinsed carefully using de-ionized water (DW) to make

sure all detergent residues were removed. The steps for cleaning glass are as follow:

1) The samples were suspended for 30 minutes in a mixture of 100 mL of hydrochlo-

ric acid (HCl) and 100 mL methanol (MeOH). After 30 minutes the samples were
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rinsed with DW. 2) The samples were placed in concentrated sulfuric acid (H2SO4)

for 30 minutes at 60◦ C. After 30 minutes, samples were rinsed with DW. 3) Because

sulfuric acid was concentrated, the samples were boiled in DW for 30 minuts. 4) After

this, the samples were placed for 5 to 10 minutes in a mixture of ammonium oxide

(NH4OH), hydrogen peroxide ((30%)H2O2), and water (H2O) with a ratio of 1:1:5

at a temperature of 80◦ C. 5) After rinsing the samples with DW, the samples were

placed in a mixture of hydrochloric acid (HCl), hydrogen peroxide ((30%) H2O2),

and water (H2O) with ratio of 1:1:5 for 5 to 10 minutes at 80◦ C. 6) After rinsing

the samples with DW, they were placed in a solution of 10% potassium hydroxide

(KOH) desolved in isopropyl alcohol (isopropanol) for 30 minutes. 7) For the next

step, samples rinsed with DW and placed in a one molar solution of sodium hydroxide

(NaOH) for 20 minutes. 8) The last part of the sample washing process was to clean

the samples in a piranha solution which is the mixture of sulfuric acid (H2SO4) and

hydrogen peroxide ((30%) H2O2) in a ratio of (3:1) at 80◦ C for 20 min. Finally,

the samples were rinsed thoroughly with DW and dried by blowing nitrogen gas to

remove liquid from the sample surface and become dry. Steps one, five and six were

used to clean inorganic materials, while steps two, four, seven, and eight were used

to clean organic materials. After this cleaning process, the samples were ready for

processing.

3.5 Measurements on Glass and Mica

Samples 1 cm×1 cm in size were mounted to the sample holder, using two-sided

adhesive tape and then mounted in the AFM sample mount. After mounting the
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chip holder in the AFM head, the alignment of the laser on the cantilever was done.

A properly aligned laser beam on the cantilever was indicated by a maximum signal

bar, as seen by the signal display in Figure 3.5. In the next step, the vertical and

horizontal voltages were set. The minimum value of the vertical voltage should be set

between -5 V to -3 V in order to have reproducible topography images with minimum

noise. The horizontal voltage, which corresponds to the lateral force and torsional

bending of the cantilever, was set to zero. The sample was scanned in a direction,

perpendicular to the length of the cantilever. Different scanning velocities were used

from 0.5 µm/s to 2 µm/s in steps of 0.1 µm/s. It should be noted that for each chosen

velocity, the gain voltages (integral and proportional) had to be carefully adjusted

until both the trace and retrace value of the topography were as close to each other

as possible. For a given normal load, the pulling velocity was changed from 0.5 µm/s

to 2 µm/s. The procedure was done for different normal loads in the range of -2 V

to +3 V. It is important to note that all measurements should be performed over the

same area of the sample. The Nanoscope was set to a scan an area of 32 lines and

save in one image. The analysis of the saved data is the objective of Section 3.6.

3.6 Experiment Results

A typical friction loop recorded on glass is shown in Figure 3.17. From the topography

(blue data) with the ordinate on the right-hand side, it is clear that the surface is flat.

The data show that there is no significant change in the surface over the length of

2µm. From the friction loop (red and black curves), it is seen that the friction curve is

smooth, with small fluctuations around the average friction. From this measurement,
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not only was stick-slip behavior not observed, but also there was no difference between

static and kinetic friction. The static friction force is the force required to initiate

movement while the kinetic friction is the force that keeps the motion steady and

exists while there is motion.

Figure 3.17: Friction loop over the surface of the cleaned glass. The blue curve

shows the topography of the surface of glass and the black and red curves show the

friction loop. For this particular measurement the pulling velocity is 0.8 µm/s

For a given normal load and pulling velocity, average friction can be obtained from

friction loops and plotted against the pulling velocity. Average friction is calculated

by considering both trace and retrace parts of the friction loop, excluding the static

59



friction for both trace and retrace parts of the loops. First we calculate an average

value for both trace and retrace parts of a specific interval to exclude the static

friction. Then, corresponding absolute values of the trace and retrace are added up

and divided by two. This value is the average friction.

The friction data for glass suggests that increasing the pulling velocity causes

the average friction to decrease (see Figure 3.19(a)). On the other hand, increasing

the normal load, causes the magnitude of the friction to increase for a given pulling

velocity.

The results for mica are shown in Figure 3.19(b). At lower normal loads, the

average friction is observed to increase with the pulling velocity (the blue and red

curve), while at higher normal loads it is decreasing (the black curve). Similar to the

results for glass, increasing the normal load causes an increase to the average friction

where the lowest normal load shown by the green curve and the highest normal load

is shown in black.

3.7 Comparison between simulations and experi-

ment

One conclusion that can be made from a comparison between the stiff-cantilever

approximate formula and numerical results for the average friction (see Section 2) is

that the stiff-cantilever approximation is very accurate in the steady-sliding regime.

Since the stick-slip behaviour was never observed experimentally, we will use our

stiff-cantilever approximate formula (2.31), i.e. we set κC =∞.
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Our model contains eight fit parameters: the maximal number of bridges, NB, the

stiffness of a single bridge, κB, the damping coefficient of a water bridge, ηB and of

the surface, ηS, the bridge formation rate at zero velocity, Ωon, the bridge rupture

rate at zero extension Ωoff , the characteristic velocity in the formation rate equation,

V0, and the characteristic length in the rupture rate equation, α−1.

It may be argued that with this many parameters, fitting any friction experimental

data is trivial. But it turned out that to fit the friction data obtained on glass, it

was sufficient to have all parameters fixed except for the maximal number of bridges,

NB and the characteristic velocity V0. We assumed that the maximum number of

bridges is proportional to the normal load. This assumption relies on the reason

that by increasing the normal load, the geometry of the contact area changes in a

way that allows for more bridges to be formed. Considering these two assumption,

fit parameters were produced in terms of try and error process and it was tried to

produce a group of data which was close quantitatively to the experimental graph.

However, for mica, in addition to the maximal number of bridges, we had to

also assume that at higher normal loads the characteristic velocity V0 could increase.

The reason for this assumption relies on the fact that increasing the characteristic

velocity would decrease the formation rate (ωon) which can lead to a declining function

of average friction versus pulling velocity at higher normal loads.

The fit parameters related to both mica and glass data are given in Tables 3.4

and 3.5. As can be seen from the tables, NB increases with the normal load almost

linearly (see Figure 3.18). The slopes of NB versus normal load for mica and glass

are 0.79 ± 0.14 and 3.36 ± 0.33 according the linear fit.

The model is in good quantitative agreement with experimental data. With the
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(a)

(b)

Figure 3.18: Maximal number of bridges versus the normal load (a) for glass and

(b) mica. The red lines represent the linear fits for NB versus normal load.
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Surface κC κB ηB ηS Ωon Ωoff α−1

(N/m) (N/m) ( nN
nm/ms

) ( nN
nm/ms

) (ms-1) (ms-1) (nm)

Mica ∞ 0.01 0.01 0.01 0.1 0.1 1.75

Glass ∞ 0.01 0.009 0.02 0.1 0.1 8

Table 3.4: The fixed fit parameters for the measurements on mica and glass surfaces.

Mica FN (nN) 108 159 212 –

[NB,V0 (nm
ms

)] [80 , 2] [108 , 2] [162 , 14] –

Glass FN (nN) 158 208 261 312

[NB,V0 (nm
ms

)] [787 , 2.1] [1020 , 2.1] [1180 , 2.1] [1310 , 2.1]

Table 3.5: Fit parameters for the measurements on glass and mica.

fit parameters from Tables 3.4 and 3.5, the model can reproduce the friction versus

pulling velocity curves, see solid lines in Figure 3.19, that are in quantitative agree-

ment with the the experimental data. A comparison between the two different groups

of fitting parameters related to glass and mica shows that for glass, the maximal num-

ber of bridges, NB, is higher than for mica. On the other hand, the characteristic

length α−1 in the rupture rate expression is bigger for glass than for mica. From

Table 3.5 it can be seen that characteristic velocity V0 for glass is always kept fixed

while in mica at the higher normal loads its value is larger than the lower normal

loads. According to the fitting parameters, damping coefficient ηS and characteristic

length α−1 related to the glass are larger than for mica.

It cannot be excluded that other combinations of the fit parameters may work
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just as good an agreement between the theory and experiment. Clearly, additional

measurements are needed to establish the value of those parameters more precisely.

This research is left for future work.
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(a)

(b)

Figure 3.19: Experimental (symbols) and theoretical (solid curves) average friction

force as a function of the pulling velocity for (a) mica and (b) glass substrates at

different normal loads. To each normal load value corresponds the maximal number

of bridges, NB
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Chapter 4

Conclusion

In this work, we performed the atomic force microscopy to measure the friction on

the glass and mica samples in the ambient conditions and simulated the experimental

results using the modified mechano-kinetic model. Our experimental results confirm

the earlier finding [17, 18] that AFM friction in ambient conditions is mainly due

to the formation and rupture of the water bridges between the AFM tip and the

surface. In addition, our results indicate that the material of the surface does not

have a dominant effect on friction measurement. In ambient conditions, water vapor

condensates on top of the surface and can interact with AFM tip by water bridges.

Experimental results also show that not only there is no significant difference between

static and kinetic friction, but also friction versus position curve fluctuates around

the mean friction force. Experimental results indicate that in ambient conditions,

AFM friction can increase or decrease with pulling velocity. For the glass surface, it

is always decreasing function of pulling velocity, while on the mica, in lower normal

loads, average friction increases by pulling velocity. For higher normal loads, it is
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declining. Experimental data show that the value of the average friction for both

mica and glass is in the same range (0.1 nN to 0.7 nN), and increasing the normal

load increases the level of average friction for both mica and glass.

Our modified mechano-kinetic model is capable of reproducing all these features

quantitatively. By simulation, we reproduced the same friction curve as the experi-

mental graphs. Our model is modified from the original mechano-kinetic model, and

the main difference of our model from the original formulation is that water bridge

tails can move along the surface. This modification could be considered as the es-

sential reason for the elimination of the stick-slip behavior from the friction curve,

which is more pronounced in the original MK model. The model also can be solved

analytically in the limit of the stiff cantilever, which κC is much larger than the water

bridge stiffness. In this limit, the formation and rupture of the bridges has a little

effect on the cantilever tip velocity. Surprisingly, in this limit, our model predicts

that the Coulomb friction behaviors is possible if the bond rupture rate is constant.

It predicts that when the bond rupture rate is constant, the nanoscale friction is

velocity-independent, which is one of the Coulomb friction’s features.

The comparison between the original and the modified MK model concludes that

depending on the pulling velocity of V , two friction regimes are realized. At low

pulling velocity, tip motion proceeds as a steady sliding, whereas at high pulling ve-

locity, the tip exhibits stick-slip behavior. The comparison of the analytical results

related to the stiff-cantilever approximation and the numerical results show that in

velocities lower than about 5µm/s, the analytical approximation is in perfect agree-

ment with simulation. Higher than 5µm/s, the stiff-cantilever approximation loses its

validity.
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