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Abstract

The acoustic wave is the only known effective method for long-haul underwa-

ter wireless communication, as compared to radio-frequency waves and light waves.

The demands for oceanic environment monitoring, disaster surveillance, and business

applications have propelled the growth of the underwater acoustic communication

market. However, underwater acoustic communication is still in its infancy due to the

challenge characteristic–narrow effective bandwidth. To address this challenge, under-

water cooperative communication, which introduces relay nodes to forward messages

from the source node to the destination node, can increase the effective bandwidth.

The nature of long-term operational communication networks is dynamic in time

scale. For example, energy arrivals in energy harvesting communication are stochas-

tic and the channel conditions are time-varying in wireless communication. In this

thesis, we focus on system optimization for the long-term operational communication

network. To this end, the optimization problem is formulated as maximizing or min-

imizing the accumulated utility function from the current to a future time instant.

Given that the causal information of the system is available, this type of problem

is known as stochastic optimization problem in which some parameters are random

variables, and thus, traditional optimization tools cannot directly be applied to solve

the problem. Instead, the solution is provided by the reinforcement learning technique

that describes how an agent interacts with the environment over time to maximize
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the accumulative reward.

In this thesis, the long-term operational underwater relay network is investigated,

which consists of one sensor node, one relay node, and one destination node. The

relay node operates in full-duplex mode, and can transmit and receive signals at the

same frequency and time. Also, the relay node relies on the harvested energy from the

ambient environment, whereas the source and the destination nodes have fixed power

supplies. We evaluate the network performance with respect to the end-to-end spectral

efficiency and average energy efficiency and aim to improve these performance metrics

in the long-term. Due to the stochastic characteristic of harvested energy and channel

state information, we develop adaptive transmission policies for the considered system

to optimize system performance. Considering that the practical condition in which

the causal knowledge of the system is known, the problem is then formulated as an

online sequential decision-making problem and the reinforcement learning technique

is used to obtain the transmission policies. Two major benefits of the reinforcement

learning framework are: 1) it obtains an optimal solution, and 2) it does not require the

knowledge of future information. On the other hand, one can apply the conventional

optimization approach; however, this focuses on maximizing only the current reward,

not the future reward, and hence, is not optimal. Simulation results show that the

proposed transmission policies improve the system performance when compared with

the benchmark policy.
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Chapter 1

Introduction

1.1 Introduction

About two-thirds of the planet’s surface is covered by ocean. Most of the underwa-

ter places are waiting to be explored. Many species of fish and aquatic invertebrates

use sound to communicate. For example, whales produce echoes of their own calls to

hunt and navigate underwater. It was known that acoustic waves, in comparison with

radio and light waves, are the only effective means for long-haul underwater wireless

communication [1].

The underwater acoustic communication (UWAC) global market is expected to

grow from the U.S. dollar (USD) 1.15 billion in 2016 to USD 2.86 billion by 2023.

These increasing demands are from the oil and gas industry, naval defense, environ-

mental monitoring, and academic research, thereby facilitating the development of

UWAC [2]. However, it is challenging to provide a high quality-of-service (QoS) for

UWAC. First, the UWAC is known for the low data rate due to the limited operational

bandwidth. Second, the high transmission delay resulted from the slow propagation

speed of acoustic waves (1500 m/s), e.g., the round-trip time is approximately 0.7 s
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Figure 1.1: Future merged communication networks [3, 4].

for 1 km [3].

The future communication networks will merge underwater, space, air, and terres-

trial communication networks [3, 4], as shown in Figure 1.1. The ubiquitous networks

will enable us to be networked anywhere and anytime with anybody and anything

to access desired information. This thesis focuses on UWAC networks, which consist

of sensor nodes, buoy nodes, and underwater vehicles, and aim to build a high QoS,

reliable, and intelligent network.

Underwater cooperative communication introduces the relay nodes to help forward

the message from the source node to the destination node. Compared to the point-

to-point (P2P) UWAC, the underwater relay network has several benefits: 1) the

effective operation bandwidth is wider [5]; 2) it achieves higher throughput [5]; and

3) the energy consumption is lower [6].
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1.1.1 Motivation

The research motivation of this thesis is to leverage the current popular machine

learning techniques to build an intelligent underwater network so that it improves

the QoS of the underwater relay networks. In this thesis, we focus on a long-term

operational network where the communication system is dynamic in each time instant.

Two basic performance metrics–throughput and energy efficiency (EE)–are used to

evaluate the communication system. Based on the above, the motivations of the thesis

are illustrated and detailed as follows.

Throughput

The maximum throughput (channel capacity) C describes how much information

(in bits) can be transmitted over the system bandwidth B. The equation for calcu-

lating C is

C = ΛB log2

(
1 +

S

N

)
, (1.1)

where S and N are the average signal and noise powers over the bandwidth, re-

spectively. Λ is 1 (0.5) for the single-relay network operating in the full-duplex (half-

duplex) mode. It can be seen that the choices of duplex mode, the usage of bandwidth,

and the signal-to-noise-ratio ( S
N

) affect the channel capacity C.

With increased throughput in cellular communication, more mobile phone ser-

vices—from text, voice, to data—emerge to satisfy the demand. However, the through-

put in UWAC is significantly lower than in cellular communication, and that leads

to providing limited communication services. Therefore, it is crucial to improve the

throughput in UWAC.
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EE

EE is defined as the ratio of throughput over the consumed energy. The metric

measures how much information (in bits) is transmitted for a unit consumed energy (in

Joules). The consumed energy of the transceiver has a relationship with the transmit

power. Thus, one important question is raised: “What is the optimal transmit power

to achieve maximum EE?”

Energy consumption and EE for the underwater devices should be taken into

considerable account in UWAC because most of the underwater devices are powered

by batteries with limited capacity, and the replacement of the batteries is difficult due

to the harsh oceanic environment and replacement costs.

Long-term operational network

The above two performance metrics will be improved throughout the long-term

operational network. The optimization problem in the long-term operational network

considers optimizing the current and future utility function, which is different from the

conventional static network where the utility function is optimized only in the current

time instant. Since the causal knowledge of the system is known and the long-term

optimization problem involves random variables, convex optimization tools cannot

directly be applied to solve the problem. Thus, reinforcement learning techniques are

used instead to solve the stochastic optimization problem in a long-term operational

network.

1.1.2 Thesis Outline

The outline for this thesis is as follows:
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• Chapter 2 introduces the background knowledge in the areas of cooperative

communication, energy harvesting communication, and reinforcement learning

technique.

• Chapter 3 presents an overview of underwater acoustic propagation and under-

water acoustic channels.

• Chapter 4 proposes an online transmission policy for self-sustainable underwater

full-duplex single-relay networks which is powered by ambient harvested energy.

The transmission policy is designed for the end-to-end sum rate maximization,

and the problem is formulated as an online sequential decision-making problem

and solved by reinforcement learning techniques.

• Chapter 5 designs an online stationary transmission policy for end-to-end aver-

age EE maximization under the same system model as in Chapter 4.

• Chapter 6 concludes the thesis and points out possible future research directions.

1.1.3 Research Contributions

Motivated by the need to improve the throughput and EE for the long-term op-

erational underwater relay networks, the following research contributions are made:

• In Chapter 4, a three-node underwater network that consists of one source, one

relay, and one destination is studied. In this scenario, the relay operates in the

full-duplex (FD) mode, and can transmit and receive the signals simultaneously.

Also, it is equipped with an energy harvesting (EH) unit to power the communi-

cation system. We formulate the end-to-end (source to destination) throughput
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maximization problem over a finite time-slots (finite horizon) as a Markov de-

cision process (MDP) framework. We obtain an optimal long-term operational

transmission policy by using a reinforcement learning algorithm. Simulation

results showed that the proposed policy achieves a higher throughput when

compared to the greedy policy. Also, the FD performance is determined by

the level of self-interference cancellation (SIC). The better the SIC level is, the

higher the throughput is. Moreover, we investigate the system performance for

different relay location and observe that the relay location affects the throughput

performance.

• In Chapter 5, a single-relay network with one source, one relay, and one desti-

nation, is investigated. The direct link between the source and destination has

been blocked due to obstacles; therefore, the relay forwards received data from

the source to destination. Moreover, the relay uses the FD mode and has an

EH unit. We aim to maximize the average energy efficiency of the single-relay

network in the infinite horizon, and the problem is formulated as an infinite hori-

zon average reward MDP problem. We develop a reinforcement learning-based

energy-efficient transmission framework to obtain an optimal transmission pol-

icy. According to the relay’s system state, such as the channel state information,

battery level, and self-interference power level, it can select the optimal transmit

power. Three transmission policies—optimal, greedy, and fixed—are compared

and simulation results show that optimal policy outperforms others in terms

of the average EE of the single-relay network. Further, the FD performance

is better than the half-duplex (HD) one, because FD allows the transceiver to

transmit and receive at the same time, whereas the transmit and receive oper-

ations in half-duplex are in two different time-slots.
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Chapter 2

Background

In this chapter, background knowledge on cooperative communications, energy

harvesting communications, and reinforcement learning technique are introduced, re-

spectively.

2.1 Cooperative Communications

When the P2P communications cannot meet the basic QoS requirement to the

end-users, one or more relay nodes come into play with the role of forwarding the

message to end-users, which is referred to as cooperative communications. Coopera-

tive communications can not only extend the communication range, but also improve

communication reliability[1].
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2.2 Relay-aided Communications

In a communication system, the role of the relay is to forward the received signals

from the source to the destination or another relay node. The benefits of relay are

extending the communication range and increasing the spatial diversity of the com-

munication system. For example, consider a three-node communication system with

one source, one relay, and one destination. If there is a blockage between the source

and the destination nodes, then the introduced relay node can extend the coverage

of the communication system. If the channel between the source and the destination

nodes is feasible, then the communication system gains spatial diversity by the added

relay node.

There are different processing techniques on how to process the received signals

at the relay. These techniques result in various relaying protocols, among which the

most populalr are

• amplify-and-forward: the relay re-scales the received signals and transmits

the amplified version of the signals to the destination.

• decode-and-forward: the relay decodes the received signals and sends the

re-encoded information to the destination.

In addition to these commonly used protocols, there are other relaying techniques,

such as compress-and-forward and coded cooperation [1].

2.2.1 Half-duplex (HD)

In the conventional HD mode, the transmissions are divided into two orthogonal

phases, either in time-division multiplexing or frequency-division multiplexing manner
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[1]:

• In the first phase, the source sends the signals to both destination and relay.

• In the second phase, the relay re-transmits the signals to the destination.

The disadvantage is that the system rate reduces to half, because the re-transmission

of the relay occupies an extra resource block.

2.2.2 Full-duplex (FD)

With the recent advance of self-interference cancellation (SIC) techniques, the FD

mode becomes feasible and promising in communication systems, as it allows the

transceiver to receive and transmit signals at the same frequency and time [2]. Thus,

the throughput of the communication system would be double if the self-interference

is fully suppressed, when compared to the conventional HD mode.

2.2.3 Relay-aided (UWAC)

When compared with point-to-point communication, the relay-aided underwater

communication system can increase the throughput [3, 4] and reduce energy consump-

tion [5]. The reason behind is that the effective operational bandwidth increases as

the communication distance decrease, which is due to the effect of underwater path

loss [3].
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2.3 Energy Harvesting (EH) Communications

Green communication has attracted significant attention in recent years with the

increasing carbon footprint in the Earth’s environment. EH devices can harvest en-

ergy from the ambient environment, such as solar energy, wind, tidal waves, and

radio-frequency waves, and store it in the rechargeable battery. These devices are

sustainable and self-containable from the energy supply perspective, and do not de-

pend on the conventional power grid. EH communication has numerous benefits: not

only it saves energy consumption and cost, but also it reduces the carbon footprint

[6].

2.3.1 EH Techniques in the Oceanic Environments

EH techniques have shown strong potential for powering the underwater devices

by harvesting energy from the ambient environment, such as solar energy, microbe,

and sea waves [7–9]. In [7], the authors investigated the use of solar energy to power

autonomous jellyfish vehicle. The experimental results revealed that the degree of

harvested energy decreases with the ocean depth and with increased turbidity. In [8],

the authors designed an electronic circuit to harvest energy from benthic microbes in

a littoral tidal basin. This is also called microbial fuel cell, which converts chemical

energy to electrical energy by the action of microorganisms. In [9], the piezoelectric

bimorphs elements are used to convert mechanical energy to electrical energy on the

sea bottom.
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2.4 Adaptive Communications

In a communication system, both transmitter and receiver should adopt the adap-

tive techniques against the stochastic characteristic of the channel and or any dynamic

changes occurring in the system to achieve a specific system performance goal. For

example, for a communication system in the time-varying wireless channels, the adap-

tive mechanism is the receiver estimates the channel information and feeds back to

the transmitter. Therefore, the transmission scheme can adapt to the channel char-

acteristic [10].

2.4.1 Adaptive Communications in UWAC

At the physical layer of UWAC, the authors in [11] investigated an adaptive mod-

ulation and coding (AMC) scheme with a finite number of transmission modes to

combat the fast-varying underwater channel. They proposed the effective SNR as

the indicator for the AMC scheme and showed that the performance outperforms the

benchmark ones. In [12], an adaptive modulation and power scheme is explored to

maximize the system throughput under a target average bit error rate. The results

showed that the adaptive scheme achieved a higher throughput than the non-adaptive

scheme that allocated uniform power and modulation. In [13], three power allocation

strategies and their effects on the achievable rate for the underwater system are stud-

ied.

2.4.2 Scheduling Problems in Adaptive Communications

Depending on the availability of the causal knowledge of the communication sys-

tem, there are two research approaches, offline and online settings, for the scheduling



13

problems in adaptive communications. Such knowledge could be the energy state in-

formation (ESI) in the energy harvesting communication systems and/or the channel

state information (CSI) [6, 14].

• For the offline setting, the communication system has non-causal (past and

future) knowledge of the CSI and/or ESI over a period of time at the beginning

of the transmission. Although this setting is impractical as assuming the non-

causal knowledge of the channel fading and the energy arrival, it provides the

upper-bound on the system performance.

• For the online setting, the communication system has past and current (causal)

knowledge of the CSI and/or ESI, which is realistic for most of the communi-

cation systems. Dynamic programming, which is one of reinforcement learning

algorithms, is the typical mathematical tool to solve the online setting optimiza-

tion problem [15, 16].

2.5 Reinforcement Learning

Reinforcement learning (RL) is a machine learning technique that describes an

agent interacting over time with its environment with the goal of maximizing the

cumulative rewards [16]. The Markov decision process (MDP) model [15] is used to

formulate the RL problem in terms of states, actions, and rewards, as can be seen in

Fig. 2.1. Specifically, an agent occupies a state in each time epoch, and it receives

the corresponding reward when taking a certain action. Also, the policy is the set of

state-action pairs, which is the mapping function between states and actions. RL is

a mathematical tool that can be applied to solve a class of resource management and

allocation problems [17].
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Figure 2.1: Diagram of reinforcement learning.

2.5.1 History of RL

The modern RL is developed in three threads. The first main thread is built upon

the problem of optimal control and its well-known solution dynamic programming

(DP). The second main thread concerns the trial-and-error process that started in

the psychology of animal learning. The last and less distinct thread concerns the

temporal-difference (TD) methods [16].

The term optimal control came into use in the late 1950s to describe the problem

of designing a controller to minimize a measure of a dynamical system’s behavior

over time. Richard Bellman developed one of the approaches to this problem in the

mid-1950s. This approach uses the concepts of a value function to define a func-

tional equation, called the Bellman equation. The drawback is described by Bellman

as the curse of dimensionality, which means the computational requirements grow

exponentially with the number of state variables.

TD learning is a combination of Monte Carlo ideas and DP ideas. Like Monte

Carlo methods, TD methods can learn directly from raw experience without a model
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of the environment’s dynamics. Like DP, TD methods update estimates based in part

on other learned estimates, without waiting for a final outcome.

2.5.2 RL Algorithms

Learning an efficient strategy or policy is the primary objective of the RL frame-

work. The function of RL algorithms is to obtain the strategy for the specifically

defined goal. There are two types of RL modeling: model-based and mode-free frame-

works, which rely on the availability of the prior knowledge of the environment [16].

The details are presented in the following:

• Model-based RL framework has the knowledge of the environment model.

It takes a model as input and produces or improves a policy for interacting with

the modeled environment. For example, algorithms in DP are the model-based

framework. This framework is used to solve the problems in Chapters 4 and 5

because the environmental models are known to the system.

• Model-free RL framework does not have the knowledge of the environment

model. It relies on the learning through trial-and-error experiences. For in-

stance, Q-learning and Deep Q-learning are model-free frameworks.

Q-learning

Q-learning is a model-free RL algorithm that does not need the prior knowledge

of the specific statistical or deterministic model of the environment, and it is differ-

ent from the model-based RL framework. The Q-learning algorithm can solve the

problem with the unknown environment. The policy is updated iteratively with the

combination of the past (history) and the current learned values [16].
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Q-learning works well if the state and action spaces of the problem are small, and

a look-up table can be used to obtain the updated rule. However, it is impossible

when the state-action space becomes very large. In this situation, many states may

be rarely visited, thus the corresponding Q values are seldom updated, leading to

a much longer time to converge. This can be addressed by deep RL, which will be

introduced in the following paragraph.

Deep RL

In 2013, a group of researchers in an English startup called Deepmind proposed the

deep RL algorithm to play the Atari games and achieved outstanding performance.

The principle of deep RL is that the deep learning model is adopted for function

approximation of parameters in reinforcement learning [16, 18, 19]. One of deep RL

advantages is that it can use large state and action space and get a faster convergence

rate to the optimal policy [20]. This framework could be implemented in our future

work.

2.5.3 Two Steps for Solving RL Problems

The-state-of-the-art artificial intelligent (AI) is still in its early stage. The AI/ML

business applications in the market are mapping problems, which refer to a set of

data mapping to another set of data through a certain relationship. Examples are

language translation and identification of images.

There are two basic steps to solve RL: training the model or learning the mapping

function and deploying the model. The training aims to derive the policy, which is a

set of state-action pairs. Once the policy is obtained, it can be deployed in the system

to guide it how to make a decision under a certain system state.
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Chapter 3

Underwater Acoustic Propagation

and Channel

This chapter gives a comprehensive overview of underwater acoustic propagation

and channel modeling, in terms of the physical acoustic properties, propagation phe-

nomenon, and multi-path propagation. Next, the system designing and strategy are

illustrated for the practical underwater communication system. Finally, the perfor-

mance analysis for the underwater channel is presented.

3.1 Underwater Acoustic Propagation

This section compares the acoustic waves with other underwater information prop-

agation ways and presents how the acoustic waves propagate at different underwater

layers. Finally, the section shows how to design a practical underwater communication

system.
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3.1.1 Introduction

The sea covers about two-thirds of our planet’s surface. There are promising and

developing communication techniques and scenarios within the underwater acoustic

communication field for commercial, navigation, and military use. However, how to

characterize the underwater acoustic channel is a challenge. Knowledge of the chan-

nel model will help predict the overall performance of the communication system.

As the transmission distance increases, the signal energy will inevitably decrease.

Additionally, underwater ambient noise is an issue for the signal quality. From the

communication model perspective, we ask the questions: what is the shape of trans-

mission acoustic ray in different locations and environments? What is the underwater

environments impact on transmitted signals, which are carefully addressed in this

section.

3.1.2 Transmission Ways in Underwater Communications

Similar to terrestrial communications, underwater communications can utilize both

wired and wireless ways to send information. The acoustic waves are the effective

transmission carrier for a long-haul underwater wireless communication. The advan-

tages and disadvantages of different transmission ways for underwater communications

will be described in the following paragraphs. Also, Table 3.1 compared three wireless

transmission ways with different evaluation metrics [1].

Cable (wired): The wired cables connect underwater nodes to communicate with

each other. Although it is the most reliable way to provide communication services,

the drawbacks are the high deployment and maintenance costs in the harsh oceanic

environment.
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Acoustic waves (wireless): Acoustic waves are an effective way for long-haul under-

water wireless communications, and its effective communication range is on the orders

of kilometers. Nonetheless, the disadvantages are the low data rate and high transmis-

sion latency because of the limited operational bandwidth and the slow transmission

speed for acoustic waves, respectively.

Electromagnetic waves (wireless): Seawater has a strong absorption effect on the

electromagnetic waves. Therefore, the electromagnetic waves can transmit the signals

merely up to tens of meters.

Optical waves (wireless): Optical waves can transmit a very high data rate. How-

ever, the transmission distance is short due to the scattering effect and the turbidity

of the seawater.

Table 3.1: Comparison of three wireless transmission ways in underwater communi-
cations [2].

Acoustic Electromagnetic Optical
Nominal speed (m/s) ∼ 1500 ∼ 33 333 333 ∼ 33 333 333

Power loss relatively small large ∝ turbidity
Bandwidth ∼ kHz ∼ MHz ∼ 10-150 MHz

Frequency band ∼ kHz ∼ MHz ∼ 1014-1015 Hz
Antenna size ∼ 0.1 m ∼ 0.5 m ∼ 0.1 m

Effective range ∼ km ∼ 10 m ∼ 10-100 m

3.1.3 Underwater Acoustic Propagation

The propagation of underwater acoustic waves is more complicated than that of

light in free-space, as the acoustic speed varies with time, geographical location, and

depth of the seawater. It is known that the acoustic speed depends on temperature,

salinity, and pressure. Illustrative plots of the three parameters as a function of depth
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Figure 3.1: Salinity, pressure, and temperature as a function of depth [1].

are shown in Figure 3.1. The empirical acoustic speed c can be calculated by [3]

c =1448.96 + 4.591T − 5.304× 10−2T 2 + 2.374× 10−4T 3 + 1.34(S − 35)

+ 1.63× 10−2D + 1.675× 10−7D2 − 1.025× 10−2T (S − 35)− 7.139× 10−13TD3,

(3.1)

where T is the temperature (in degrees Celsius), S is the salinity (in parts per thou-

sand), and D is the depth (in meters). Note that this equation is valid for 0 ≤ T ≤ 30◦,

30 ≤ S ≤ 40, and 0 ≤ D ≤ 8000.

Figure 3.2 shows the typical acoustic speed profile and the corresponding ray-

tracing where both transmitter (TX) and receiver (RX) are located at the depth of

1300 m (acoustic channel axis), which the ray-tracing is generated from the Bellhop

simulator.

According to Snell’s law, the acoustic ray bends toward the direction of the min-

imum acoustic speed [4]. It can be seen in the right plot of Figure 3.2 that the rays

bend toward the acoustic channel axis where there is a minimum acoustic speed.

Therefore, the transmitted shape of the acoustic ray is a bend curve, as shown in the

Figure 3.2.
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Figure 3.2: Typical acoustic speed profile and corresponding ray tracing between the
source and destination nodes.

3.1.4 Profile of the Sea

As shown in Figure 3.3, the profile of the sea can be divided into 4 layers and is

presented below [1].

• Surface layer (or mixed layer): the depth of the layer is a few tens of meters.

Acoustic speed varies with local changes, such as heating, cooling, and wind ac-

tion. Moreover, the acoustic speed is constant as both salinity and temperature

tend to be homogeneous in the layer.

• Seasonal thermocline layer: the acoustic speed has a seasonal effect and is a

negative gradient since the temperature decreases with depth.

• Main thermocline layer: the acoustic speed is decreasing because temperature

decreases with depth. Also, the increased salinity and pressure cannot compen-

sate for the decreased temperature.

• Deep isothermal layer: the temperature is nearly constant at around 4 degree

Celsius. Therefore, the acoustic speed increases with pressure.
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Figure 3.3: Typical acoustic speed profile of the sea [1].

3.1.5 The Propagation Path of Acoustic Ray

To better understand how the underwater acoustic ray propagates, the following

section will introduce several basic propagation paths. These include the surface

reflection, bottom bounce, surface duct, deep sound channel, convergence zone, and

reliable acoustic path [4]. An illustration plot is shown in Figure 3.4.

Surface reflection: The acoustic ray is reflected by the sea surface. The smoothness

of the sea surface affects the reflection performance. The transmission loss for surface

reflection is determined by carrier frequency, wind speed, and grazing angle.

Bottom bounce: Similar to the surface reflection, the acoustic ray is reflected by the

sea floor. The transmission loss is determined by the sediment type and grazing angle

of the ray. When the grazing angle is less than the critical angle, the transmission

energy will be lost.
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Surface duct: In the surface layer, the acoustic speed has a positive gradient. If

the layer is deep enough, the acoustic ray is channeled or confined in the layer and

may bend toward the surface and reflect back into the layer.

Deep sound channel: There exists a minimum acoustic speed at a certain depth,

called the acoustic channel axis, and the acoustic speed is increasing both above and

below that depth. If the acoustic ray propagates near the acoustic channel axis, then

it bends toward the channel axis back and forth. Thus, the ray is confined within

that depth and no transmission losses are caused by reflecting from the surface or the

bottom. The performance of this channel should be the best.

Convergence zone: The signal is transmitted from the shallow source and travels

into the deep sea, and then travels back to shallow water. First, the ray bends down-

ward since the acoustic speed has negative gradient due to the decreased temperature.

Second, the ray bends upward because of the positive gradient of the acoustic speed.

The depth of the sea should be deep enough to form a convergence zone.

Reliable acoustic path: If the acoustic source is located in a very deep sea and the

receiver in the shallow water, then the propagation path forms as a reliable acoustic

path since the wave is first refracted downward and refracted upward.

Shadow zone: The formation of the shadow zone is due to the acoustic ray bending.

Typically, there are no signals in the zone. Therefore, the RX should not be placed

inside the shadow zone.

3.1.6 Bellhop Simulator

The Bellhop is a ray-tracing simulator based on ray theory. It calculates the com-

munication performance, such as ray-tracing, transmission loss, power delay profile,
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Figure 3.4: Acoustic propagation paths [4].

etc, from the input parameters [5]. Note that the underwater channel simulations in

Chapters 4 and 5 are not generated from the Bellhop simulator.

Input Files

Input files are used for setting the communication scenario and system parameters.

These include the operational bandwidth, center carrier frequency, location of the

transceiver, the number of acoustic rays, inject direction of the acoustic ray, etc. For

instance, the system environment parameters include the acoustic speed profile, the

shape of the sea bed, the surface and bottom reflection coefficient, etc.
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Figure 3.5: Transmission loss plot from the Bellhop simulator.

Output Files

The ray-tracing plot can get a sense of how the acoustic rays propagate in the

channel. The eigenray represents the direct path from the TX to RX. Moreover,

the transmission loss plot describes the signal intensity in both range and depth

dimensions. Further, the signal amplitude and delay profile define the loudness and

delay for every ray in the channel. For example, Figure 3.5 shows the transmission

loss plot.

3.1.7 UWAC System Design

In order to build an efficient UWAC network, the network design should take into

account the effects of the underwater acoustic propagation and channel [6].
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Topology design

The locations of the TX and RX should be decided after the complete channel

characterization, such as the acoustic propagation path and shadow zone, is known.

Also, the physical property of the sea should be considered in the system design. Par-

ticularly, the deep sea communication performance is usually better than the shallow

water counterpart. Further, introducing the relay nodes can improve the throughput

and reduce the bit error rate. Thus, the optimal relay location should be studied

through analysis and simulation.

Operating frequency

The selection of the operating frequency affects the intensity of the received signal

because the path loss increases with the operating frequency. Also, there exists an

optimal operating frequency under a given transmission range, for which the minimum

bit error rate is achieved.

Environment-aware protocol design

The analysis revealed that the acoustic speed varies with seasons and sites. There-

fore, the propagation path of the acoustic rays changes with different seasons and

places. Thus, designing an environment-aware protocol which can adaptively adjust

the transceiver parameters according to the seasons and deployment sites becomes

essential.
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3.2 Performance Analysis in Underwater Channel

In this section, underwater path loss and ambient noise are introduced and based

on that, the signal-to-noise-ratio (SNR) is calculated for the performance analysis.

3.2.1 Underwater Path Loss Model

Path loss or transmission loss is a combination of geometric spreading loss

and attenuation loss. Geometric spreading loss is a geometrical effect that represents

the regular weakening of an acoustic signal as it spreads outward from the source.

Attenuation loss includes the effects of absorption, scattering, and leakage out of

acoustic channels.

The path loss experienced by a transmitting signal at frequency f in kHz over a

distance l in km is given by [7]

A(l, f) = A0l
ka(f)l, (3.2)

where A0 is a unit-normalizing constant, k is the spreading factor, and a(f) is the

absorption coefficient. Further, its expression in decibel (dB) is given by

10 log
A(l, f)

A0

= k × 10 log(l × 1000) + l × 10 log a(f), (3.3)

where the first term represents the spreading loss and the second term is the attenua-

tion loss. The typical values for the spreading factor k are 1.5 for practical spreading,

1 for cylindrical spreading, and 2 for spherical spreading. a(f) is the absorption
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Figure 3.6: Absorption coefficient [7].

coefficient expressed using the Thorp’s formula (in dB/km) as [7]

10 log a(f) =
0.11f 2

1 + f 2
+

44f 2

4100 + f 2
+ 2.75 · 10−4f 2 + 0.003. (3.4)

Figure 3.6 shows the absorption coefficient a(f) versus frequency. It increases

with frequency, which illustrates that the absorption loss is higher when the operating

frequency of a transmit signal is higher over a given distance.

3.2.2 Underwater Ambient Noise

Typically, the underwater ambient noise is due to four sources: turbulence, ship-

ping, waves, and thermal noise. The corresponding empirical power spectral densities
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(PSDs) of these four components in µPa per kHz are given by [7]

Nt (f) = 10((17−30 log10(f))/10),

Ns (f)= 10((40+20(s−0.5)+26 log10(f)−60 log10(f+0.03))/10),

Nw (f)= 10((50+7.5w0.5
s +20 log10(f)−40 log10(f+0.4))/10),

Nth (f) = 10((−15+20 log10(f))/10),

(3.5)

where Nt (f), Ns (f), Nw (f), and Nth (f) are the turbulence, shipping, waves, and

thermal noise PSDs, respectively. The shipping activity factor is denoted as s, while

ws is the wind speed. The overall PSDs of the ambient noise are calculated as

N (f) = Nt (f) +Ns (f) +Nw (f) +Nth (f) , (3.6)

as shown in the Fig. 3.7. Also, the approximate PSDs is Napprox(f) = 50 − 18 log f .

The underwater noise power in unit dB re µPa is calculated as

PN = 10 log10

(∫ fo+B

fo

N(f)df

)
. (3.7)

The turbulence noise affects the lower frequency as f < 10 kHz. Shipping noise

dominates in the frequency range 10 < f < 100 kHz, and the shipping activity factor

s is between 0 and 1, which represents low to high. The motion of wind-driven surface

waves influences the frequency region from 100 Hz to 100 kHz. Finally, the thermal

noise affects the frequency over 100 kHz, due to the molecular motion.

Unlike the additive white Gaussian noise in the terrestrial wireless channel in which

the PSD is flat across the band, the non-whiten nature of underwater noise should be

considered for practical performance analysis.
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Figure 3.7: Underwater ambient noise [7].

3.2.3 Signal-to-Noise Ratio (SNR)

The SNR received at a frequency f over a distance l is defined as SNR = S(l,f)
A(l,f)N(f)

,

where S(l, f) is the PSD of the transmitted signal.

Assume that the PSD of the narrow-band signal would be flat across the op-

erational bandwidth, the narrow-band SNR over a frequency f and a distance l is

calculated using (3.2) and (3.6) as

γ(l, f) =
P

A(l, f)N(f)∆f
, (3.8)

where P is the power of the transmit signal and ∆f is the narrow bandwidth around

f . The factor 1
A(l,f)N(f)

determines the SNR, and is plotted in Fig. 3.8 for different

distances l. It can be seen that there exists an optimal frequency fo(l) that gives

a maximum narrow-band SNR. Moreover, the optimal frequency fo(l) is shown in
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[7].

Fig. 3.9. We observe that the optimal frequency fo(l) decreases with increasing the

transmission distance. This suggests the importance of selecting the optimal operating

frequency at a given distance.

3-dB Bandwidth

As plotted in Fig. 3.10, the 3-dB bandwidth B3(l) is defined as a frequency range

around the optimal frequency fo(l), where the obtained narrow-band SNR is greater

than half of the SNR achieved at the optimal frequency fo(l), i.e., γ(l, f) > γ(l,fo(l))
2

or A(l, f)N(f) < 2A(l, fo(l))N(fo(l)).

Two calculation methods are used to obtain the B3(l): 1) exhaustive search is the

easiest approach to find the 3-dB bandwidth by comparing the SNR of all frequen-

cies with the optimal frequency, as illustrated in Algorithm 1 [7]; 2) the closed-form



35

0 20 40 60 80 100

Distance (km)

0

5

10

15

20

25

30

35

40

O
p

ti
m

a
l 
fr

e
q

u
e

n
c
y
  

(k
H

z
)

Figure 3.9: Optimal frequency fo(l) [7].

approximation approach uses the approximate equation to calculate 3-dB bandwidth,

B3(l) = ωl−γ, where ω = 101.4291 and γ = 0.5392 [8]. This equation is proposed in

[7] to illustrate the relationship between the system bandwidth and the transmission
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Figure 3.10: 3 dB bandwidth B3(l) [7].

distance, which comes from the examination of the numerical results.

Algorithm 1: Find the 3-dB bandwidth
Result: B3(l).

1 for l do

2 while A(l, fmax)N(fmax) < 2A(l, fo(l))N(fo(l)) do

3 fmax = fmax + 1;

4 Calculate A(l, fmax)N(fmax);

5 end

6 while A(l, fmin)N(fmin) < 2A(l, fo(l))N(fo(l)) do

7 fmin = fmin + 1;

8 Calculate A(l, fmin)N(fmin);

9 end

10 B3(l) = fmax + fmin;

11 end
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Minimum Transmission Power

In order to achieve a target SNR γ under an optimal frequency fo(l) and a 3-dB

bandwidth B3(l), the minimum transmission power Pmin can be calculated from (3.8)

as Pmin(l) = γ × A(l, fo(l)) × N(fo(l)) × B3(l). The minimum transmission power

versus transmission distance under different target SNRs is shown in Fig. 3.11.

The minimum transmission power for different frequencies and transmission dis-

tances is plotted in Fig. 3.12. It can be seen that a higher power is needed with

the increasing frequency and distance. For long-haul communication, it is better to

choose a suitable operating frequency to reduce energy consumption.
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3.2.4 Unit Conversion between Acoustic Power and Electric

Power

The acoustic signal power is measured in Pascal (Pa) or micro Pascal (µPa). The

TX will convert the electric energy in the circuit to acoustic energy and transmit

acoustic waves outwards. The conversion from the electric power P e in Watts to the

acoustic power P a in µPa and to the decibel form of the acoustic power in dB re µPa

are given respectively by [9]

Pa = P e · φ · 1017.15 ·DI,

10 log10 Pa = 10 log10 P
e + 10 log10 φ+ 171.5 + 10 log10DI,

(3.9)

where φ is the overall efficiency of the electric circuitry (power amplifier and trans-

ducer). Normally, φ < 1 indicates that the electric power P e fed into the projector
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(transmit antenna) will have some degree of losses. DI is the transmitting directivity

index of a projector and is the acoustic signal power difference from a non-directional

projector which radiates the same amount power. The DI for a non-directional (omni-

directional) projector is equal to 0.

Note that the units of the parameters in calculating the SNR should be used either

in acoustic or in electric domain, i.e.,

γ =
PeG

PN,e
=
PaG

PN,a
=

Pa · φ · 1017.15 ·DI
A(l, f)PN,a · φ · 1017.15 ·DI

, (3.10)

where G is the underwater channel gain. PN,e and PN,a are the underwater noise

powers in electric and acoustic, respectively.

3.2.5 Multi-Path Propagation

In this subsection, the time-invariant multi-path propagation and the time-varying

multi-path propagation are introduced, respectively.

Time-Invariant Multi-Path Propagation

The TX sends the acoustical signals to the RX. These acoustic rays will experience

reflection and refraction, and then, the RX will receive the superimposed multi-path

acoustic rays, as shown in Fig. 3.13. In particular, reflections usually happen at the

sea surface or bottom. In deep water, the acoustic rays will refract because of the

non-homogeneous acoustic speed.

The delay spread D represents the maximum delay difference of the propagation
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paths in the time-of-arrival model,

D = max {τi − τj} , ∀ i, j, (3.11)

where τi = li
c

is the propagation delay of the ith path, and c and l represent the

acoustic speed and propagation length, respectively. The acoustic speed, e.g., 1500

m/s, causes a very large delay spread. For instance, the time difference would be 10

ms for two acoustic rays which differ 15 meters in path length.

Time-Varying Multi-Path Propagation

The time-variability of the propagated paths is one of the most challenging char-

acteristics for UWAC. This is due to the relative motion between TX and RX or the

motion of the surface waves generated by the wind.
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The Doppler rate vi is defined as the change rate of the propagation length for the

ith path, and the Doppler spread Dd is the maximum Doppler rate difference among

the propagated paths,

Dd = max

{
vi − vj
c

}
, ∀ i, j. (3.12)

The Doppler spread results in a frequency shift in the received signal, and thus,

causes interference among different components of the signal. The Doppler frequency

shift at the system center frequency fc is fd = v
c
fc.

Statistical Channel Model

There is no consensus on a standardized statistical underwater channel model for

fading, and a number of experiments estimated the statistical channel performance

based on particular experiment locations [6].

There are a number of underwater channel experiments from which a statistical

fading model was obtained [10–12]. Chitre et. al. [10] modeled the fading of each

acoustic ray through the Rayleigh distribution. K-distribution fading was justified in

[11] for the envelope amplitude statistics. The authors in [12] measured the short-term

path gains, and findings indicated that they indicate a conditional Ricean distribution

with Bessel-type autocorrelation.
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Chapter 4

Optimal Power Allocation for

Full-Duplex Underwater Relay

Networks with Energy Harvesting:

A Reinforcement Learning

Approach

4.1 Abstract

In this chapter,1 we study the optimal power allocation problem where the goal is

to maximize the long-term end-to-end sum rate of an underwater full-duplex energy

harvesting relay network. The problem is formulated as an online sequential decision-

making problem, and a reinforcement learning algorithm is used to solve it. Simulation

1Part of this chapter has been published in IEEE Wireless Communications Letter [1].
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results show that the optimal online power allocation policy achieves a higher sum

rate than the computationally-efficient sub-optimal online greedy power allocation

policy, especially under insufficient harvested energy. Besides, we also investigate the

system performance for different relay positions in a single-relay network and observe

that the highest sum rate is obtained when the relay is placed at the mid-point of the

link.

4.2 Introduction

The demand for oceanic environment monitoring, disaster surveillance, and busi-

ness applications has propelled the growth of the underwater acoustic communication

(UWAC) market. The use of acoustic waves, in comparison with radio and light waves,

is the only known effective means for long-haul underwater communication. Due to

the limited operational bandwidth and the slow propagation speed of acoustic waves,

communication suffers from low data rates and high transmission delays, making it

challenging to provide high quality-of-service (QoS). Moreover, underwater devices

are usually powered by batteries. Owing to the high maintenance costs and the harsh

oceanic environment, it is infeasible to replace these devices regularly, so that, they

are not sustainable and reliable for long-term underwater applications [2]. To support

sustainability and reliability, the emerging energy harvesting (EH) devices, which use

harvested energy to power the communication system, have become promising for

future UWAC [3].

For a long-term communication system, it is essential to design a transmission

policy to achieve a specific system performance goal. Such an adaptive policy can be

derived using reinforcement learning (RL) techniques. One can develop an optimal
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policy with the long-term goal of maximizing the cumulative reward [4]. For instance,

a Q-learning based distributed routing protocol was proposed in [5] to prolong the

lifetime of underwater sensor networks. RL was also applied to build an anti-jamming

transmission framework that controls the transmit power and uses transducer mobility

[6].

Recent work has been done for RL-based long-term adaptive transmission at the

physical layer of UWAC [7–9]. In [7], power allocation was investigated to maximize

the transmission throughput for point-to-point communication. In [8], data forward-

ing was studied through a model-based RL approach, aiming to minimize the system

cost. Further, in [9], the Dyna-Q algorithm was explored to achieve maximum com-

munication link throughput by adapting the modulation order. However, none of

these works studied the performance of relay networks in UWAC.

In this chapter, we investigate an underwater relay network where the relay op-

erates in full-duplex (FD) amplify-and-forward (AF) mode and harvests energy from

the oceanic environment, such as benthic sources [10]. We formulate a long-term

end-to-end sum rate maximization problem and solve it through RL. The problem is

described as an agent interacting with its environment to maximize the cumulative

reward on the long-run. Optimal and sub-optimal online power allocation policies

are introduced, showing the importance of proper allocation of limited resources to

achieve the desired goal of maximizing the sum rate. In addition, it is revealed that a

highest sum rate is obtained when the relay is placed at the mid-point of the single-

relay network.

The rest of the chapter is organized as follows. Section 4.3 describes the sys-

tem model. Section 4.4 introduces the problem formulation and solutions. Section

4.5 presents the numerical results and discussion. Finally, Section 4.6 concludes the
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chapter.

Figure 4.1: Underwater relay network.

4.3 System Model

We consider an underwater relay network consisting of a sensor (S), an EH FD

relay (R), and a buoy (D), as shown in Fig. 4.1. The sensor sends the information to

the buoy via the relay. The sensor and the buoy have a fixed power supply, whereas the

relay node relies on harvested energy from the ambient environment to communicate

with the buoy. The FD relay is equipped with a self-interference cancellation (SIC)

unit. Since SIC is not perfect, we assume that there is residual self-interference (RSI)

in the system [11, 12]. Also, we consider a discrete-time data transmission model,

where data is transmitted in a slot of duration T .

4.3.1 Signal Model

The signal received at the relay in the nth time slot is given by

yR,n =
√
GSR,n

√
PSxS,n + in + wR, (4.1)
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where GSR,n is the underwater channel gain for the source-to-relay (SR) link, PS and

xS,n are the transmit power and the information symbol with average unit energy at

the source, respectively, in is the RSI, and wR denotes the additive underwater noise

at the relay. The underwater channel gain and noise are discussed in the subsequent

subsections.

Hence, the signal-to-interference-plus-noise-ratio (SINR) at the relay can be ex-

pressed as

γSR,n =
GSR,nPS

σ2
i,n + σ2

R

, (4.2)

where σ2
R is the noise power and σ2

i,n = βP λ
R,n is the RSI power with parameters β and

λ [11]. The smaller the values of β and λ are, the better the SIC performance is.

The relay node forwards the received signal to the buoy according to the AF

protocol [11]. The signal received at the destination buoy in the nth time slot is given

by

yD,n =
√
GRD,n

√
PR,nxR,n + wD, (4.3)

where GRD,n is the underwater channel gain for the relay-to-destination (RD) link,

PR,n and xR,n = αyR,n−1 are the transmit power and the information symbol with

average unit energy at the relay, respectively, with α being the amplification coef-

ficient, and wD is the additive underwater noise at the buoy. The corresponding

signal-to-noise-ratio (SNR) is expressed as

γRD,n =
GRD,nPR,n

σ2
D

, (4.4)

where σ2
D is the noise power at the buoy.

To obtain the end-to-end SINR expression, we substitute xR,n = αyR,n−1 in (4.3),
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which yields

yD,n =
√
GRD,n

√
PR,nα

× (
√
GSR,n−1

√
PSxS,n−1 + in−1 + wR) + wD.

(4.5)

Therefore, the end-to-end SINR in the nth time slot can be calculated as

γn =
GSR,n−1PR,nα

2GRD,nPS

GRD,nPR,nα2(σ2
i,n−1 + σ2

R) + σ2
D

=
γSR,n−1γRD,n

γSR,n−1 + γRD,n + 1
.

(4.6)

Further, the throughput Cn (in bits/sec) in the nth time slot is

Cn = B log2 (1 + γn) , (4.7)

where B is the system bandwidth.

4.3.2 Channel Model

There is no standardized underwater channel model for fading [13]. In this chapter,

we choose the model proposed in [14], which captures both large and small scale fading.

Accordingly, the instantaneous channel gain is expressed as

G =
1

B

∫ fo+B

fo

|H̄0(f)
∑
l

hlγ̃l(f, t)e
−j2πfτl |2df, (4.8)

where fo is the minimum operational frequency, H̄0 represents the channel filtering

effect, and hl and τl are large-scale parameters of the lth path. The small-scale fading

effect is represented by γ̃l(f, t)e
−j2πalfτl , with γ̃l being the small-scale fading coefficient
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and al being the Doppler scaling factor on the lth path.

4.3.3 Underwater Ambient Noise

Typically, the underwater ambient noise is due to four sources: turbulence, ship-

ping, waves, and thermal noise. The corresponding empirical power spectral densities

(PSDs) of these four components in µPa per kHz are given respectively by [15]

Nt (f) = 10((17−30 log10(f))/10),

Ns (f)= 10((40+20(s−0.5)+26 log10(f)−60 log10(f+0.03))/10),

Nw (f)= 10((50+7.5w0.5
s +20 log10(f)−40 log10(f+0.4))/10),

Nth (f) = 10((−15+20 log10(f))/10),

(4.9)

where s is the shipping activity factor and ws is the wind speed. The overall PSD

of the ambient noise is N (f) = Nt (f) + Ns (f) + Nw (f) + Nth (f), which is the

underwater noise power PN in dB re µPa 1 and is calculated as

PN = 10 log10

(∫ fo+B

fo

N(f)df

)
. (4.10)

The conversion from acoustic power P a in dB re µPa to electrical power P e in

Watts is given by [16]2

P e = 10
Pa−10 log10 φ−171.5

10 , (4.11)

where φ is the overall efficiency of the electric circuitry (power amplifier and trans-

ducer).

1Unit for sound pressure level (SPL), which is the logarithmic ratio of acoustic pressure A to a
reference pressure Aref = 1 µPa, multiplied by 10, i.e., SPL= 10 log10

A
Aref

.
2Here DI in equation (3.9) is considered 1.
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4.3.4 Energy Harvesting Model

The relay node harvests energy periodically and stores it in the rechargeable bat-

tery with capacity Bmax. We model the EH process as a stationary, temporally inde-

pendent and identically distributed Bernoulli process [17]. That is, a node harvests

the energy Eh
R,n in the nth time slot with probability (w.p.) p and does not with prob-

ability 1− p. Moreover, the battery’s energy level in the nth time slot is represented

by Bn, which is calculated as follows

Bn =


min

{
Bn−1 − ER,n−1 + Eh

R,n−1, Bmax

}
, w.p. p,

Bn−1 − ER,n−1, w.p. 1− p,
(4.12)

where ER,n = PR,nT is the energy consumption of the relay for transmitting in the

nth time slot. Further, we assume that the energy consumption for signal processing

and receiving at the relay is negligible.

4.4 Problem Formulation and Solutions

We aim to maximize the throughput over N time slots, and formulate the opti-

mization problem as follows:

maximize
PR,n

N∑
n=1

Cn (4.13a)

subject to 0 ≤ PR,n ≤ PR,max ,∀ n = 1, . . . , N , (4.13b)

where PR,max is the maximum transmit power of the relay.

The solution to (4.13) is an optimal power allocation policy that maximizes the
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sum rate at the end of the time slot N . Thus, we cast the problem as an online

sequential decision-making problem and apply the RL approach to obtain the optimal

policy. RL, a machine learning technique, is essentially a Markov decision process

(MDP) that defines the interaction between an agent and its environment in terms

of states, actions, and rewards [18]. Further, based on observation, problem (4.13)

is a finite-horizon discrete time MDP problem. The MDP model corresponding to

problem (4.13) is discussed in the following.

4.4.1 Markov Decision Process (MDP) Model

The MDP model consists of decision epochs, states, actions, transition probabili-

ties, and rewards [18]. Each of these elements is presented below.

Decision Epochs: We consider discrete and finite decision epochs (finite-horizon),

in which the decision is made at the beginning of the time slot. Let T = {1, 2, . . . , N}

be the set of decision epochs.

States: The relay is characterized by a state during each decision epoch. The state

space of the relay, S, is given by

S = BR × GSR × GRD × PR, (4.14)

where BR = {0, Bmax

l
, . . . , Bmax} is the set of battery levels, with l + 1 being the

number of battery levels. GSR = {g1SR, g2SR, . . . , gmSR} and GRD = {g1RD, g
2
RD, . . . , g

m
RD}

are the sets of channel states of the SR and RD links, respectively, with m being the

number of channel states. PR = {0, P1, . . . , Pk} is the set of transmit power levels,

with k + 1 being the number of transmit power levels.
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In the nth time slot, the state of the relay sn ∈ S can be expressed as

sn = {BR (n) , GSR (n− 1) , GRD (n) , PR (n− 1)} , (4.15)

where BR (n) and PR (n− 1) are the battery level and transmit power of the relay in

the nth and (n−1)th time slot, respectively, while GSR (n− 1) and GRD (n) represent

the channel states of the SR and RD links, respectively.

Actions: For a given state, the relay selects an action from the action set, which

is described as A = {0, P1, . . . , Pk}. Moreover, an ∈ A stands for the action in the

nth time slot.

Transition Probabilities: The transition probability P (sn+1 | sn, an) is expressed

in (4.16) below. This represents the probability of going to state sn+1 from sn after

taking an action an. P (BR (n+ 1) | BR (n) , PR (n)) is the relay’s battery transition

probability. P (GSR (n) | GSR (n− 1)) and P (GRD (n+ 1) | GRD (n)) are the transi-

tion probabilities of the channels SR and RD, respectively.

P (sn+1 | sn, an) = P (BR (n+ 1) , GSR (n) , GRD (n+ 1) , PR (n) | BR (n) , GSR (n− 1) , GRD (n) , PR (n− 1) , PR (n))

= P (BR (n+ 1) | BR (n) , PR (n))×P (GSR (n) | GSR (n− 1))×P (GRD (n+ 1) | GRD (n))

(4.16)

Rewards: After taking an action an in state sn, the relay receives a reward

Rn (sn, an), which is the same as (4.7)

Rn (sn, an) = B log2 (1 + γn) , ∀ n = 1, 2, . . . , N. (4.17)

The decision rule is a function dn (sn): S → A, which specifies the action selection
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when the system state is sn. Moreover, a policy π = {d1 (s1) ,d2 (s2) , . . . ,dN (sN)} is

a sequence of decision rules. The set of all policies is denoted by Π.

Let vπN(s1) denote the expected total reward over N decision epochs, if the policy

π is adopted and the beginning state of the relay is s1. The expected total reward

vπN(s1) is

vπN(s1) = Eπ
{

N∑
i=1

Ri (si, ai)

}
, (4.18)

where Eπ {·} denotes the statistical expectation, given that policy π is used. Equation

(4.18) can be solved by the backward induction algorithm,3 as shown in Algorithm 2

[18]. In this algorithm, Equations (4.19) and (4.21) provide the maximum expected

reward from the ith decision epoch under state si to the last decision epoch.

Our goal is to seek an optimal policy π∗ = {d∗1 (s1) ,d
∗
2 (s2) , . . . ,d

∗
N (sN)}, which

can be obtained through (4.20) and (4.22), that maximizes the expected cumulative

reward.

4.4.2 Proposed Solutions

The optimal policy is introduced first and followed by a computationally-efficient

sub-optimal policy.

Optimal Online Power Allocation Policy: In this policy, according to the system

state sn, the relay chooses the transmit power PR,n by applying the optimal policy π∗

at the beginning of each time slot. Therefore, the power allocation is

PR,n = d∗n(sn), ∀ n = 1, 2, . . . , N. (4.23)

3The backward induction algorithm provides an efficient method for solving finite-horizon discrete
time MDPs [18].
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Algorithm 2: The Backward Induction Algorithm

1 Set i = N and compute u∗i (si) and d∗i (si), for ∀si ∈ S by

u∗i (si) = max
ai∈A

[Ri (si,ai)] , (4.19)

Set
d∗i (si) = arg max

ai∈A
[Ri (si,ai)] (4.20)

2 Set i = i− 1 and compute u∗i (si) and d∗i (si), for ∀si ∈ S by

u∗i (si) = max
ai∈A

Ri (si,ai) +
∑

si+1∈S
P (si+1 | si,ai)u∗i+1 (si+1)

 (4.21)

Set

d∗i (si) = arg max
ai∈A

Ri (si,ai) +
∑

si+1∈S
P (si+1 | si,ai)u∗i (si+1)

 (4.22)

3 If i = 1, stop. Otherwise return to step 2.

The optimal policy π∗ is stored at the relay prior to transmission, and the complexity

of Algorithm 1 is O(N |S| |A|), where |·| denotes the cardinality of the set.

Sub-optimal Online Greedy Power Allocation Policy: At the beginning of each

time slot, the relay chooses the transmit power PR,n to maximize the current reward.

Thus, we turn to a greedy power allocation from (4.17) as

PR,n = arg max
an∈A

Rn (sn, an) , ∀ n = 1, 2, . . . , N. (4.24)

As compared to the optimal policy, this policy has a lower computational complexity

by avoiding the computation of the expected future rewards; therefore, the complexity

of this policy is O(N |A|).

4.5 The Procedure to Solve the Problem (4.13)
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As mentioned in Chapter 2.5.3, there are two steps to solve the RL problem: train-

ing the model and deploying the model. In the following, we illustrate the procedure

to solve the problem in equation (4.13).

• Training phase: In this phase, we firstly build the MDP model according to

the formulated problem (4.13), as presented in Section 4.4.1. Secondly, we run

the backward induction algorithm based on the formulated MDP model, as

illustrated in Algorithm 2. Finally, we obtain the policy π∗ from the algorithm.

• Deploying phase: In this phase, the relay (agent) deploys the obtained policy

and then uses the policy to allocate the transmit power according to the relay’s

system state.

Specifically, we explain how to define the channel states and calculate the transition

probabilities as follows:

Define channel states: we set the number of channel states to two. Accordingly, a

single threshold is applied to classify the channel gains into two states. The threshold

is set to the mean value of channel gains, which are generated from the acoustic channel

simulator made by the researchers at Northeastern University in U.S.A. [14, 19].

Calculate transition probabilities of channel states: we calculate the transition

probabilities based on references [20, 21]. The simulation parameters for calculating

the transition probabilities of channel states are listed in Table 4.1. Let there be K

channel states in the Markov model, and assume that a transition happens between

adjacent states only. The transition probability ti,j from state i to state j in the

finite-state Markov chain can be approximated as

tk,k+1 ≈
N(Ak+1)

R
(k)
t

, ∀ k = 1, 2, . . . , K − 1, (4.25)
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Table 4.1: Simulation parameters.
Parameters Value

Rt
1

104.86×10−3

fm 0.01

Transition probability of channel SR and RD

[
0.9998 0.0002

0.0002 0.9998

]

tk,k−1 ≈
N(Ak)

R
(k)
t

, ∀ k = 2, 3, . . . , K, (4.26)

where N(Ak) is the level crossing rate at a specific received instantaneous SNR level

Ak. R
(k)
t = Rt × pk is the average number of symbols transmitted per second during

which the received SNR is in state k for a symbol rate Rt and a steady-state probability

of state k pk. Further, the level crossing rate is calculated as

N(Ak) = fm

∫ ∞
0

ẏp(Ak, ẏ)dẏ, (4.27)

where the dot indicates the time derivative of the received SNR, p(Ak, ẏ) is the joint

density function of Ak and ẏ, and fm is the Doppler frequency. Moreover, the proba-

bility density function of the received SNR is given by

pY (y) =
1√

2πσ2
e

−(y−µ)2

2σ2 , (4.28)

where µ and σ are the mean and variance of the normal distribution [14].

4.6 Numerical Results and Discussion

In this section, we evaluate the performance of the optimal online and sub-optimal

online greedy power allocation policies for the considered underwater system. The
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values of simulation parameters are listed in Table 4.2.

Sum rate versus EH rate

Figure 4.2 shows the sum rate versus the EH rate for different values of λ. We

observe that the sum rate increases with the EH rate. This can be easily explained,

as more energy can be used at the relay to forward data to the buoy. In addition,

as expected, we can see that the sum rate of the optimal online policy outperforms

that of the sub-optimal online greedy policy. The gap between the solutions of the

two policies decreases in the higher EH rate region, where there are abundant energy

resources at the relay in all time slots. Thus, the local optimum approaches the global

one. Meanwhile, the sum rate of the FD mode at λ = 0 is better than that at λ = 0.35.

This is because the RSI is directly proportional to λ. Moreover, by comparing the

FD and half-duplex (HD) operating modes, we can see that FD is significantly better

than HD, especially when λ is low.

Sum rate versus relay position

Figure 4.3 illustrates the sum rate versus the relay position in the single-relay

network. We can see that the location of the relay is crucial in an underwater network,

as it determines the throughput performance. Moreover, as expected, the highest

sum rate is achieved when the relay is placed at the mid-point of the link. Also, the

optimal online policy outperforms the corresponding sub-optimal online greedy policy.

Furthermore, the FD performance is better than that of HD.
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Figure 4.2: Sum rate vs. EH rate for SR distance equal to 5 km.
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Figure 4.3: Sum rate vs. relay position for p = 0.4 and λ = 0.

Table 4.2: Simulation parameters.
Parameters Value

Height of S, R, D and sea surface (m) 0, 50, 100, and 100

SD distance (km) 10

fo and B (kHz) 15.5 and 15

PS and PR (W) 1 and {0, 1, 2}
φ, β and λ [11] 1, 1 and {0, 0.35}

p, Bmax and Eh
R (Joule) [0, 1], 5 and 3

l, m, and k 5, 2, and 2

BR (1), PR (0) 0

ws (m/s) and s [15] 10 and 0.5

T (s) and N 1 and 180
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4.7 Conclusion

In this chapter, we investigated the optimal transmission policy of a long-term

sum rate maximization problem for an underwater FD EH relay network. We for-

mulated and solved the optimization problem through the RL approach. Simula-

tion results revealed that the optimal online power allocation policy outperforms the

computationally-efficient sub-optimal online greedy one, especially when the harvested

energy is scarce. Moreover, as expected, the result showed that the highest sum rate

is achieved when the relay is placed at the mid-point of the single-relay network.
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Chapter 5

Reinforcement Learning-based

Energy-Efficient Transmission

Policy for Full-Duplex Underwater

Relay Networks with Energy

Harvesting

5.1 Introduction

Oceanic applications,1 such as environment monitoring and offshore oil and gas

extraction, drive the development of underwater acoustic communication (UWAC).

1Part of this chapter has been submitted to IEEE/MTS OCEANS 2020 Singapore.
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A major challenge of UWAC is the low throughput due to the severely limited oper-

ational bandwidth [1]. This limitation can be partially overcome by deploying full-

duplex (FD) relays, which transmit and receive signals at the same frequency and

time. Specifically, the FD relay networks can achieve higher throughput than the

half-duplex (HD) ones if the self-interference (SI) power is reduced to the noise level

by applying SI cancellation techniques [2, 3]. Moreover, underwater devices are power-

limited as they are usually powered by batteries [1]. Research on underwater energy

harvesting (EH) devices has shown that energy from the ambient environment can be

harvested, which becomes more sustainable and reliable in long-term applications [4].

Recent works for long-term adaptive communication have been limited to point-

to-point UWAC [5, 6]. Here, we propose a reinforcement learning (RL)-based trans-

mission policy to maximize the long-term energy efficiency (EE) of a single-relay

underwater network, where the relay has an EH unit and operates in FD mode.

The rest of the chapter is organized as follows: Section 5.2 presents the system

model. Section 5.3 illustrates the problem formulation and solution, and Section 5.4

provides the preliminary numerical results. Finally, Section 5.5 concludes the chapter.

Notations : SR, RD, and SD stand for sensor-to-relay, relay-to-buoy, and sensor-

to-buoy. (·)i represents the i-th time slot. log is the base-10 logarithm operation.

5.2 System Model

We consider a single-relay underwater network, where the sensor (S) sends informa-

tion to the buoy (D) via the FD EH relay (R), as shown in Figure 5.1. The underwater

channel is characterized by both path-loss (PL) and small-scale Rayleigh fading, and

is modeled as a finite-state Markov chain. Also, a time-slotted transmission model is
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considered, with each time slot of duration T .

Sensor

Acoustic
link

Self-Interference

Energy harvesting unit

Relay Buoy

Figure 5.1: Underwater single-relay network.

In the following, underwater PL, ambient noise, signal model, and EH process are

discussed.

Underwater PL: A(l, f) is the PL at frequency f (in kHz) over a distance l (in

km), which is given by 10 logA(l, f) = k10 log(1000l) + l10 log a(f), where k is the

spreading factor, and a(f) is the absorption coefficient expressed using the Thorp’s

formula (in dB/km) as 10 log a(f) = 0.11f2

1+f2
+ 44f2

4100+f2
+ 2.75 · 10−4f 2 + 0.003 [7].

Underwater Ambient Noise:2 It is modeled as a stationary, temporally independent

and identically distributed Bernoulli process[8]. That is, the battery with capacity

Emax updates as En = min
{
En−1 − ER

n−1 + EH , Emax
}

with probability p, and up-

dates as En = En−1 −ER
n−1 with probability 1− p, where ER

n−1 = PR
n−1T and EH are

the consumed and the harvested energy of the relay, respectively.

Signal Model: The achievable signal-to-noise-plus-interference-ratio (SINR) at the

relay at frequency f in the n-th time slot is

γSRn (f) =

∣∣hSRn ∣∣2 [A(lSR, f)
]−1

Sn(f)

N(f) + In(f)
, (5.1)

where hSRn is the small-scale Rayleigh fading coefficient, Sn(f) denotes the PSD of

2The underwater ambient noise is the same as in Chapter 4.
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the transmitted signal of the sensor, and In(f) = b [Rn(f)]λBλ−1 is the PSD of the

residual SI (RSI), with b and λ as the RSI parameters [3]. B and Rn(f) are the system

bandwidth and the PSD of the transmitted signal of the relay, respectively. Next, the

achievable signal-to-noise-ratio (SNR) at the buoy is expressed as

γRD
n (f) =

∣∣hRD
n

∣∣2 [A(lRD, f)
]−1

Rn(f)

N(f)
. (5.2)

Finally, the end-to-end SINR at the buoy when the relay applies the amplify-and-

forward protocols [9] is

γSDn (f) =
γSRn−1 (f) γRD

n (f)

γSRn−1 (f) + γRD
n (f) + 1

. (5.3)

Then, the EE in bits/J/Hz of this network can be calculated as

ρn =

∫ fmin+B

fmin log2

[
1 + γSDn (f)

]
df

B
(
P S
n−1 + PR

n

) , (5.4)

where fmin is the minimum operational frequency. P S
n−1 and PR

n are the transmit

power of the sensor and the relay, respectively.

EH Process:3 It is modeled as a stationary, temporally independent and identically

distributed Bernoulli process [8]. That is, the battery with capacity Emax updates

as En = min
{
En−1 − ER

n−1 + EH , Emax
}

with probability p, and updates as En =

En−1 − ER
n−1 with probability 1− p, where ER

n−1 = PR
n−1T and EH are the consumed

and the harvested energy of the relay, respectively.

3The EH process is the same as in Chapter 4.
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5.3 Problem Formulation and Solution

Our goal is to maximize the long-term EE of the single-relay network by optimizing

the power allocation at the relay. We apply the RL framework to solve it. In this

framework, the learning takes place as a result of the interaction between an agent and

the environment. The whole process can be described by a Markov decision process

(MDP). Next, we will build an MDP model of the problem, which consists of states,

actions, rewards, and transitions probabilities [10].

The relay (i.e., the agent) holds a state sn =
{
gSRn−1, g

RD
n , PR,RSI

n , Bn

}
, where

gSRn−1 and gRD
n represent the channel states of the SR and the RD links, respec-

tively. PR,RSI
n is the RSI power and Bn is the battery level. Thus, the state space

is S = GSR × GRD × PR,RSI × B, where GSR and GRD are the sets of channel states

for the SR and the RD links, respectively. PR,RSI is the set of RSI powers and B is

the set of battery levels. The relay chooses an action an ∈ PR under state sn, where

PR is the set of transmit powers. rn (sn, an) = ρn denotes the reward under state

sn after action an is chosen. The state transition probability is p (sn+1 | sn, an) =

p
(
gSRn | gSRn−1

)
p
(
gRD
n+1 | gRD

n

)
p
(
Bn+1 | Bn, P

R
n

)
, which represents the probability that

state sn+1 will be occupied, when action an is chosen under state sn.

The policy π : S → PR is a mapping from state sn to action an.

We cast the problem as an infinite-horizon average reward MDP problem and the

goal is to find an optimal policy π∗ that maximizes the expected long-term average

reward given a start state s1,

Jπ
∗
(s1) = lim

h→∞

1

h
Eπ∗

{
h∑
i=1

ri (si, ai) | s1

}
. (5.5)
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The stationary optimal policy π∗ can be derived using the value iteration algorithm4,

as shown in Algorithm 3 [11]. The span semi-norm of a vector −→x denoted by sp(−→x )

in row 4 of the Algorithm 3, is defined as sp(−→x ) = maxx − minx, where x is the

element in −→x .

The value-state function v(sn) defines how good it is for the agent to be in terms

of the expected future rewards for a given state sn,

v(sn)=max
an∈A

rn(sn, an)+
∑

sn+1∈S

p(sn+1 | sn, an)v(sn+1)

 . (5.6)

Algorithm 3: The value iteration algorithm
Result: Optimal policy π∗.

1 Input: v0 = 0, i = 0, ε = 0.01;

2 for ∀sn ∈ S do

3 Compute value-state function vi+1(sn);

4 if sp(vi+1 − vi) < ε then

5 for ∀sn ∈ S do

6 π∗ = arg maxan∈A vi+1(sn);

7 end

8 else

9 i = i+ 1;

10 end

11 end

5.4 The Procedure to Solve the Problem (5.5)

4The value iteration algorithm provides a method for solving infinite-horizon average reward
MDPs [11]. The backward induction algorithm cannot be applied to this problem, since it is the
solution for finite-horizon MDPs.



70

The procedure to solve problem (5.5) is the same as explained in Section 4.5: train-

ing the model and deploying the model. In the following, we illustrate the procedure

to solve the problem (5.5).

• Training phase: In this phase, we firstly build the MDP model according to

the formulated problem (5.5), as presented in Section 5.3. Secondly, we run

the value iteration algorithm based on the formulated MDP model, as shown in

Algorithm 3. Finally, we obtain the policy π∗ from the algorithm.

• Deploying phase: In this phase, the relay (agent) deploys the obtained policy

and then uses the policy to allocate the transmit power according to the relay’s

system state.

Next, we explain how to define the channel states and calculate transition proba-

bilities:

Define channel gain and channel states: The channel gain follows Rayleigh fading

and the corresponding probability density function is given by

pY (y) =
1

γ0
e
γ
γ0 , (5.7)

where γ0 is the average SNR.

We set the number of channel states to three. Accordingly, there exist two thresh-

olds to divide the channel gains into three states, or equivalently, three intervals. The

thresholds T1 and T2 are set respectively as

∫ T1

0

pY (y)dy = 0.2, (5.8)
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∫ T2

T1

pY (y)dy =

∫ ∞
T2

pY (y)dy = 0.4. (5.9)

Additionally, we assume that three channel states correspond to three channel gains,

chi for i = 1, 2, 3. The channel gains are derived as follows

∫ ch1

0

pY (y)dy = 0.1, (5.10)

∫ ch2

0

pY (y)dy = 0.6, (5.11)

∫ ch3

0

pY (y)dy = 0.8. (5.12)

Calculate transition probabilities of channel states: we calculate the transition prob-

abilities based on reference [12]. Let us consider K states in the Markov model, and

that a transition occurs between adjacent states only. The transition probabilities in

the finite-state Markov chain can be approximated respectively as [12]

tk,k+1 ≈
N(Ak+1)

R
(k)
t

, ∀ k = 1, 2, . . . , K − 1, (5.13)

tk,k−1 ≈
N(Ak)

R
(k)
t

, ∀ k = 2, 3, . . . , K, (5.14)

where N(Ak) is the level crossing rate at a specific received instantaneous SNR level

Ak, R
(k)
t = Rt × pk is the average number of symbols transmitted per second during

which the received SNR is in state k for the symbol rate Rt and the steady-state
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Table 5.1: Simulation parameters.
Parameters Value

Rt
1

104.86×10−3

fm 10

γ0 1

{ch1, ch2, ch3} {0.106, 0.511, 1.61}

Transition probability of channel SR and RD


0.82 0.18 0

0.09 0.81 0.1

0 0.09 0.91



probability of state k pk. The level crossing rate is calculated as

N(Ak) =

√
2πAk
γ0

fme
−Ak
γ0 , (5.15)

where fm is the Doppler frequency.

5.5 Numerical Results

In the simulation, we set T as 1 s. fmin and B are 9.5 kHz and 5 kHz, respectively.

lSR and lRD are 5 km. k, ws, and s are 2, 0, and 0.5, respectively. P S and PR are

130 and {0, 110, 120, 130, 140, 150} dB re µPa. We assume that the channel gain

|hn|2 ∈ {0.106, 0.511, 1.61} with the channel states transition matrix for the SR and

the RD are


0.82 0.18 0

0.09 0.81 0.1

0 0.09 0.91

. Further, assume that the battery has 11 levels.

Emax = 10Emin and EH = 3Emin, where Emin is the minimum energy. The values of

PR correspond to the first six battery levels. The number of time slots is 50. At the

start state, the values for B1 and PR,RSI
1 are 0.

Three policies are compared in the problem: the optimal policy, which chooses the
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transmit power based on π∗; the greedy policy, which maximizes the current reward;

and the fixed policy, which chooses the fixed transmit power equal to 110 dB re

µPa. Figure 5.2 shows the long-term average EE results. It can be seen that results

from the optimal policy outperform those from the greedy and the fixed ones. Also,

the performance of the long-term average EE is increasing with the EH probability.

Moreover, the FD mode achieves a higher average EE than the HD one, especially

as the SI cancellation improves (perfect SI cancellation is when λ = 0). Figure 5.3

illustrates that the average EE in the FD mode is decreasing as the SIC parameter λ

increases. This indicates that a better SIC cancellation technique should be applied

in the FD operation for improving the average EE. Moreover, since the SI does not

exist in the HD mode, the average EE in the HD mode remains constant as λ varies.

Figure 5.4 presents the average spectral efficiency (SE) performance versus different

EH probability values under the formulated problem that maximizes average EE.
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The greedy policy has a slightly higher average SE in the high EH region. Further,

Figure 5.5 shows the energy consumption versus the EH probability with respect to

different transmission policies and operation modes. The energy consumption for the

greedy policy is larger than the optimal and fixed policies. The fixed transmission

policy consumed the least energy, since the transmit power sets to the smallest power

level (i.e., 110 dB re µPa) in every time slot. Also, the energy consumption for the

HD mode is less than that for the FD mode, because the FD mode can transmit

the signals in every time slot, whereas the HD mode operates in a time-multiplexing

manner that the transmission and reception operate in two different time slots. Thus,

the FD mode consumed more energy than the HD mode. Figure 5.6 shows the average

EE performance versus the battery capacity. The average EE increases as the battery

capacity increases due to more energy available for data transmission.

For backward induction algorithm, the size of the optimal policy table is N×|S|×

|A|, where |·| denotes the cardinality of the set. However, the size is |S| × |A| for

value iteration algorithm, which has a lower size. This is because the value iteration

algorithm can derive a stationary policy that does not vary with time [11].

5.6 Conclusion

In this chapter, the problem of maximizing the long-term EE of an FD EH single-

relay underwater network is investigated. The RL framework is applied to obtain an

optimal energy-efficient transmission policy, which provides improved results when

compared with the greedy and fixed policies. Further, the FD performance is better

than the HD one, especially under good SI cancellation.
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Chapter 6

Conclusions and Future Works

In this chapter, conclusions are drawn by summarizing the content for each chapter,

and some possible research directions and additional works are mentioned from the

preliminary results of the thesis.

6.1 Conclusions

• Chapter 1 presented motivation, thesis outline, and contributions of the thesis.

• Chapter 2 reviewed the background knowledge, including cooperative communi-

cation, energy harvesting communication, and reinforcement learning technique.

• Chapter 3 overviewed the underwater acoustic propagation and channel. The

propagation paths of acoustic waves vary due to the non-homogeneous under-

water sound speed profile. Moreover, the path loss is transmission distance- and

operating frequency-dependent. Additionally, the standard model for underwa-

ter channel fading is still an open issue in the community. Moreover, the UWAC

system designing should consider the propagation paths of acoustic rays.
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• Chapter 4 proposed the RL-based transmission policy for the end-to-end sum

rate maximization in an FD EH single-relay underwater network over a finite

horizon. First, the signal transmission model is analyzed, and the end-to-end

SNR is given under the AF protocol of the relay node. Second, the optimization

problem is defined as maximizing the end-to-end sum rate over a finite N time

slot. Third, the RL framework is proposed to derive an optimal transmission

policy. Finally, the performance of the proposed transmission policy is compared

with the benchmark greedy policy, which shows the outstanding performance

of the proposed policy.

• Chapter 5 proposed the RL-based stationary transmission policy for the long-

term end-to-end average EE maximization in an FD EH single-relay underwater

networks. The MDP model is formulated, and the RL algorithm is used to derive

an optimal transmission policy. The policy is stored in the relay before the

start of the transmission. During the transmission, the relay selects the optimal

transmit power according to the harvested energy amount, battery level, channel

state information, and interference level.

In sum, this thesis developed the adaptive transmission policies for the long-term

operational three-node underwater relay networks. Assuming that the causal knowl-

edge of the considered system is known, the online sequential decision-making problem

is formulated. The RL technique is adopted to solve the problem and derive transmis-

sion policies. The transmission policies obtained are optimal under the formulated

model and setting, obtained through the RL framework and achieve better perfor-

mance compared with the benchmark ones.
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6.2 Future Directions of Research

According to the results of the thesis, the possible research directions and addi-

tional future work may be as follows:

• The system model in Chapters 4 and 5 is a three-node underwater relay network.

This model may be extended to multiple nodes in future work. The coordination

of the multiple underwater nodes in the long-term operational networks brings

up interesting problems.

• The system performance in Chapters 4 and 5 could further be improved by

increasing the number of states and actions. To tackle this issue, powerful deep

RL can be investigated.
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