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Abstract 

Organizations successfully leverage information technology for the acquisition of knowledge for 

decision-making through information crowdsourcing, which is gathering information from a group 

of people about a phenomenon of interest to the crowdsourcer. Information crowdsourcing has 

been used to drive business insight and scientific research, providing crowdsourcers access to 

information outside their traditional reach. Crowdsourcers seek high-quality data for their 

information crowdsourcing projects and require contributors who can provide data that meet 

predetermined requirements. Crowdsourcers recruit contributors with high levels of relevant 

knowledge or train contributors to ensure the quality of data they collect. However, when 

crowdsourced data needs to fit more than a single usage scenario because the requirements of the 

project changed or the data needs to be repurposed for tasks other than the one(s) for which it was 

initially collected, the ability of contributors to provide diverse data that can meet multiple 

requirements is also desirable. 

In this thesis, I investigate how the domain knowledge a contributor possesses affects the 

diversity and quality of data they report. Using an experiment in which 84 students randomly 

assigned to three knowledge conditions reported information about artificial stimuli, I found that 

explicitly trained contributors provided less diverse data than either implicitly trained or untrained 

contributors.  

In addition, I looked at the longitudinal effect of knowledge on the diversity of data 

reported by contributors. Using review data from Amazon.com and organism sighting data from 

NLNature.com (a citizen science data crowdsourcing platform), I studied the impact of knowledge 

on the diversity and quality of crowdsourced data. The results show that experience reduced the 

diversity and usefulness of contributed data. The study provides insights for crowdsourcers in 
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industry and academia on how to manage and utilize their crowds effectively to collect high-

quality reusable data. 
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 Introduction 

1.1 Background and Motivation 

In 2016, information was reported to have become the world’s most valuable 

resource (The Economist, 2017). Of course, information has always been valuable to both 

public and private sector organizations, helping to guide the correct allocation of business 

resources. What has changed in recent times is the ability of businesses and individuals to 

collect and store vast amounts of data from internal and external sources and to analyze 

these data in creative ways to generate business insights. More importantly, advancements 

in our ability to analyze collected data have made it possible to use such data in contexts 

different from the ones they were originally collected, which can generate unanticipated 

insights (Günther, Mehrizi, Huysman, & Feldberg, 2017). The ability to generate insights 

through data analytics is, therefore, a major driver of competitive advantage for many 

businesses; for example, top-performing organizations use analytics “five times more” than 

lower-performing ones (LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011, p. 22). 

However, even if an organization collects large amounts of data, insights do not 

naturally follow if they are absent from the data. Therefore, researchers and practitioners 

are looking beyond the amount of data available to organizations and are instead focusing 

on the capacity for available data to produce insights when viewed from different 

perspectives through analytics. When considering the value of data, “ ‘big’ is no longer the 

defining parameter, but, rather, how ‘smart’ [data] is—that is, the insights that the volume 

of data can reasonably provide" (George, Haas, & Pentland, 2014, p. 321). Yet, 

“[r]egrettably…[m]anagement tends to think that the larger the Big Data project is (e.g., 
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the largest amount of data involved in the project), the larger benefits (e.g., the soundest 

knowledge) can be obtained” (Merino, Caballero, Rivas, Serrano,  & Piattini, 2016, p.124).  

Even though a very creative and innovative analytics team can elicit insights from 

limited data, perspectives available in data will limit the amount of insight that analytics 

can provide (Ghasemaghaei & Calic, 2019). The diversity of perspectives in collected data 

takes precedence over the depth or breadth of analytics skills available to an organization. 

Organizations seeking to gain competitive advantage through analytics, therefore, can 

benefit from collecting diverse data in the first place. Determining how to collect diverse 

data begins with understanding the data sources, i.e., humans and human-programmed 

machines that observe and report data about phenomena of interest to businesses. This 

thesis considers explicitly human data contributors who provide data to address specific 

information needs of organizations or individuals through crowdsourcing. Crowdsourcing 

is “outsourcing a task to a ‘crowd,’ rather than to a designated ‘agent’ …” (Afuah & Tucci, 

2012, p 355). Industry and research have successfully outsourced the task of information 

gathering from large groups of people1 using purpose-built integrative crowdsourcing 

systems, i.e., systems that “pool complementary inputs from the crowd” (Schenk & 

Guittard, 2011, p 98). One example is Statistics Canada, which uses crowdsourcing to map 

buildings across Canada to acquire “national-level statistics on buildings—and their 

attributes—that can be used to compare specific local areas” 

                                                 

1 Crowdsourcing systems that gather distributed information for decision making are referred to as 

integrative crowdsourcing in Schenk & Guittard (2011) and observational crowdsourcing in Lukyanenko & 

Parsons (2018). 
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(www.statcan.gc.ca/eng/crowdsourcing). Another example is the Great Sunflower Project, 

which recruits people to count the number of pollinators that visit sunflowers in their 

environments and uses these counts to investigate how the decline of the bee population is 

affecting the pollination of plants. (www.greatsunflower.org). 

When designing crowdsourcing systems, it is essential for crowdsourcers –  

organizations and individuals that use crowdsourcing to collect information – to determine 

the composition of an appropriate crowd from which to collect data (Malone, Laubacher, 

& Dellarocas, 2009). Crowdsourcers usually require potential contributors to possess 

relevant knowledge of the crowdsourcing task and implement recruitment strategies that 

favour knowledgeable contributors in order to mitigate the risk of collecting low-quality 

information. Training volunteers before they are allowed to participate and recruiting 

experienced contributors who have previously participated (or are presently participating) 

in a similar project (Gura, 2013; Wiggins, Newman, Stevenson, & Crowston, 2011) are 

strategies employed by crowdsourcers to ensure potential contributors to their projects have 

the requisite knowledge to provide quality data. Several studies in the literature support 

these strategies, based on the assumption that more knowledgeable contributors provide 

higher quality data than less knowledgeable contributors. This thesis aims to develop a 

better understanding of how knowledge affects contributors’ ability to provided diverse yet 

high-quality data.  

Erickson, Petrick, & Trauth (2012) identified several types of knowledge relevant in 

the crowdsourcing context. These are:  

http://www.greatsunflower.org/
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Situational Knowledge – refers to knowledge that comes from contributors’ access to the 

setting in which the phenomena relevant to the crowdsourcing task occurs. It does not 

necessitate any knowledge of the domain of the crowdsourcing project or how to carry 

out the crowdsourcing task. For example, citizen journalism does not require the citizen 

to be knowledgeable about journalism or the subject matter being reported. It only 

requires equipment and access to the location of the newsworthy event.  

Product/Service knowledge – refers to knowledge that is specific to the crowdsourcing 

project. This can include familiarity with the use of a crowdsourcing platform, the 

procedure required to complete a crowdsourcing task, and other details limited to a 

particular crowdsourcing project. In this thesis, this type of knowledge will be referred to 

as task knowledge. This knowledge is usually acquired in crowdsourcing by training 

potential participants on the task to be performed in the project and assesses their 

knowledge of the training. An example is the GalaxyZoo project (www.galaxyzoo.org), 

in which volunteers receive training on how to identify features of galaxies that help in 

their classification. Volunteers practice and are tested to determine if they have gained 

sufficient knowledge to be allowed to participate. Participants do not need prior 

knowledge of the domain of study. 

Domain Knowledge – refers to a priori knowledge of the topic and focus of the 

crowdsourcing project. Participants with domain knowledge have prior knowledge about 

the phenomenon under study. This knowledge may have been acquired through some 

training and is usually broad, covering more than just the particular entity or phenomenon 

http://www.galaxyzoo.org/
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to be studied in a crowdsourcing project. For example, in eBird domain knowledge 

consists of knowledge about birds, including the ability to identify species.  

Over time, as participants continue to contribute to a crowdsourcing project, 

regardless of their level or type of knowledge before participation, they gain experience. 

Our focus is on task knowledge. Task knowledge is gained by participation or training and 

can lead to task expertise, while domain knowledge refers to knowledge of the area of the 

crowdsourcing project and can lead to domain expertise (see Mukhopadhyay, Singh, & 

Kim, 2011). Understanding the impact of crowd selection strategies that prioritize some 

task  knowledge based on a desire for high quality crowdsourced data will affect design 

decisions (i.e. decisions about the recruitment, task, system and motivational strategy) 

made by crowdsourcers, especially concerning crowd recruitment (Wang & Strong, 1996; 

Wiggins et al., 2011). 

1.2 Thesis Objectives 

Our focus in this thesis is on integrative crowdsourcing systems rather than selective 

crowdsourcing systems. Unlike integrative crowdsourcing systems that pool all inputs from 

the crowd, selective crowdsourcing systems seek inputs from a crowd, rank these inputs, 

and choose the best ones (Schenk & Guittard, 2011). Integrative crowdsourcing systems 

typically have the following characteristics: (a) the goals, level of expertise, and motivation 

of members of the contributing crowd are typically unknown; (b) the types of data and ways 

in which crowd members will contribute the data are unpredictable; (c) the uses for the 

contributed data can be predetermined or emergent; (d) there is potential for high 

contributor turnover, and perhaps most importantly, (e) the events being reported may be 
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transient; in many cases, crowdsourcers may only have one chance to collect high-quality 

information from contributors. Therefore, it is essential to be sure that contributors can 

deliver high-quality multidimensional data over time.  

Significantly, the goal of selective crowdsourcing is to select the best input(s) from a 

number of competing inputs by a crowd of people, whereas integrative crowdsourcing uses 

all inputs for decision-making. In other words, the eventual outcome of the selective 

crowdsourcing process is a reflection of the “best” contributors, while integrative 

crowdsourcing is a reflection of the entire crowd. An example of a selective crowdsourcing 

project is the General Mills Worldwide Innovation Network (G-WIN) which accepts ideas 

from the public that can help the company in its areas of business, reviews them and 

depending on the outcome of their review, selects the ones to pursue and the ones to reject 

(gwin.secure.force.com). In contrast, integrative crowdsourcing considers all crowd inputs 

for decision-making. For instance, the Great Sunflower Project recruits people to count the 

number of pollinators that visit sunflowers in their environments and uses these counts to 

investigate how the decline of bee populations is “affecting the pollination of gardens, crops 

and wild lands” (www.greatsunflower.org). Success in integrative crowdsourcing projects 

is achieved when a sufficient number of people report data about the target entity that is 

usable for decision-making. 

The tasks in the integrative crowdsourcing systems we address in this thesis would 

be ill-defined, usually open-ended tasks, and require volunteers to report observations about 

their “broader environment” continuously. This types of crowdsourcing tasks are classified 

as observational crowdsourcing (Lukyanenko & Parsons, 2019, p. 4). The crowdsourcing 

http://www.greatsunflower.org/
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tasks we address in this thesis do not include small scale, well-defined tasks that may take 

place primarily online and where the workers are typically paid.  

Integrative crowdsourcing systems align with Aksulu and Wade’s (2010) framework 

depicting the properties of classes of information systems based on systems theory. The 

subclass, integrative crowdsourcing, represents systems that collect data from the crowd 

about phenomena of interest. Similar to open source software projects, integrative 

crowdsourcing systems can include loosely defined data collection projects that mature 

over time, with a lifespan that is organically defined, and are flexible to internal and 

external changes. This includes changes to data requirements and changes to contributors. 

Integrative crowdsourcing systems, therefore, represent open-source data collection 

platforms. Whether citizen science, social media platforms or online review systems, these 

shared properties include them as members of the integrative crowdsourcing systems class. 

However, the extent to which each member implement these properties vary. 

 Parsons and Wand (2014) refer to these types of information systems as operating 

in open information environments where the sources of their data are unknown, and the 

uses of their collected data can be emergent and unanticipated. They identified that such 

systems would need flexible, quality, and semantically diverse information to meet the 

needs of different information users and contributors. In order to address this need for 

flexible, semantically diverse, and high-quality data, there is a need for more understanding 

of the limitations of the traditional information quality dimensions and how diverse data 

may impact these dimensions. Consequently, we first address the following research 

question: 
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Research Question 1: What are the factors that enable or inhibit information 

diversity in integrative crowdsourcing projects? 

Researchers and practitioners would benefit from a theoretical and conceptual 

grounding of the underlying factors that drive information diversity and how they can avoid 

pitfalls that limit the ability of their crowds to provide diverse data.  

Since crowdsourcers assume that knowledgeable contributors provide better quality 

data, they resort to training potential contributors (e.g., galaxyzoo.com) to mitigate the 

scarcity of expert contributors. To test this assumption about knowledge and information 

quality, we examine how training affects the diversity of information that contributors 

provide and the relationship between diversity and traditional information quality 

dimensions. Also, recruiting knowledgeable contributors either directly or by training and 

testing them first limits the available participant pool and increases the costs of acquiring 

contributors for crowdsourcing projects. Moreover, so does restricting participation in 

crowdsourcing tasks to contributors with a predetermined level of knowledge of the task, 

such as experts. Based on the literature, we posit that crowdsourcer-provided training leads 

to the acquisition of knowledge by contributors and different types of training lead to 

different types of knowledge. Therefore, besides investigating the effect of training on the 

diversity of information contributed to crowdsourcing tasks, we also study the impact of 

contributors’ level of task knowledge on the diversity of crowdsourced data collected in 

integrative crowdsourcing projects. Correspondingly, the second research question 

addressed in this thesis is as follows: 
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Research Question 2: How does knowledge affect the diversity and quality of 

crowdsourced data? 

Answering this research question will help crowdsourcers to address the crucial 

design decision: “who should be recruited to a crowdsourcing project?”, which is a topical 

issue and a necessary research focus (Austen, Bindemann, Griffiths, & Roberts, 2016; Crall 

et al., 2011; Lukyanenko, Wiggins, & Rosser, Forthcoming; Ogunseye & Parsons, 2018). 

Crowdsourcers, including organizations, researchers, and crowdsourcing platforms like 

Amazon Mechanical Turk (MTurk), would, therefore, benefit from a better understanding 

of the effect of knowledge-based recruitment on the quality and diversity of crowdsourced 

data. 

We claim that contributor knowledge increases as a result of participating in 

crowdsourced projects, and this negatively affects information diversity. After 

volunteering, crowd members interact with the crowdsourcing system, contribute to the 

project, communicate (directly or indirectly) with other participants, and sometimes get 

more training, therefore gaining experience in the crowdsourcing task. Crowdsourcers 

concerned about the quality of crowdsourced data in their projects may recruit these 

experienced contributors outright, and exempt (or not actively pursue the recruitment of) 

inexperienced or novice contributors from their projects. This capacity to limit members of 

the crowd to experienced contributors is a central part of the business model of some crowd 

hiring and online review platforms. For example, Amazon Mechanical Turk 

(www.mturk.com) continuously ranks crowd workers (contributors) based on their 
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capacities to complete tasks, and they charge a premium for their most experienced crowd 

workers, referred to as “master workers.” At the same time, due to the cost of acquiring 

crowd members, crowdsourcers genuinely aim to keep their crowds for as long as possible, 

implying that the experience of members of crowds generally increases with participation 

on a crowdsourcing project. Crowdsourcers would benefit from a better understanding of 

the longitudinal effect of increasing knowledge of the task or task experience on the quality 

and diversity of data reported by crowds. Therefore, we ask the following research 

question: 

Research Question 3: What is the longitudinal impact of task experience on the diversity 

and quality of crowdsourced data? 

Answering this research question will shed more light on how contributor experience 

affects information quality and provide clear, empirical guidance on how crowdsourcers 

should organize their crowds. 

1.3 Organization of the Thesis 

The thesis uses a manuscript format. To address the first research question, we review the 

literature in Chapter 2 to understand information diversity in crowdsourced data more 

thoroughly. We also address how information diversity can be measured and theoretically 

link information diversity with information usefulness – a consequence of information 

quality, accuracy, and completeness. We examine from literature the effects of knowledge 

on information diversity in two types of directed integrative crowdsourcing systems: (i) 

Online reviews are a type of crowdsourcing, where members of the crowd post their 
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opinions on products and/or services (Kleemann, Voß & Rieder, 2008), and in doing so, 

they help guide future shoppers in their decision-making processes (Edelman, 2010). (ii) 

Citizen science is the “partnership between volunteers and scientists to address research 

questions” (Crall et al., 2011 p. 433), usually culminating in citizens assisting with data 

collection and analysis while gaining scientific knowledge through their involvement in the 

research. Using these exemplars of integrative crowdsourcing aids the generalizability of 

the findings of this study. For the second research question, we explore the effect of training 

on how contributors report data (Chapter 3). Using selective attention and classification 

theories from cognitive psychology, we develop and test hypotheses about how training or 

not training contributors affects the information they report in crowdsourcing projects. 

Hypotheses about training and information diversity are tested using an experiment with 

84 participants conducted over one year. Furthermore, we developed and tested a 

hypothesis about the effect of contributors’ levels of knowledge on the quality of 

information they contribute in Chapter 3. Chapter 4 reports our investigation of the effect 

of experience on information diversity, and the relationship between information diversity 

and information usefulness. The hypotheses developed in this chapter are evaluated using 

review data from Amazon.com and comments from NLNature – a citizen science project. 

We employ natural language processing and machine learning algorithms to test these 

hypotheses and answer Research Question 3.  In addition, we made recommendations about 

how to prevent the negative effects of experience in crowdsourcing projects. In Chapter 5, 

we discuss the general contributions of the thesis. A Glossary of terms used throughout the 

thesis is provided on page 188.  
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 What Information Quality Should Mean in this Era of Repurposable 

Data: A Case for the Information Diversity Dimension 

 

Abstract 

The ability to repurpose crowdsourced data through analytics leads to the generation of 

valuable insights. For large organizations, reusing data through repurposability also saves 

organizations the cost of reacquiring and storing data. To ensure crowdsourcers – 

individuals and organizations who use crowdsourcing for data collection – can collect 

insightful data, we must be able to measure insightfulness. While traditional information 

quality dimensions measure factors like accuracy and completeness, there is also a need for 

more knowledge about how to measure the quality of data based on its repurposability.  

In this chapter, we identify the limitations of traditional information quality 

dimensions for measuring insightfulness and repurposability of data and recommend the 

information diversity dimension as a solution to the identified limitations. We use ontology 

to show how information diversity can be measured, and we developed an information 

diversity framework based on three factors identified as essential for information diversity: 

the data model, the nature of the crowdsourced task, and the differences in contributors. 

Finally, we validate the information diversity dimension through requirements presented in 

Parsons and Wand (2014) and review two articles in ecology and agriculture to demonstrate 

the viability of the information diversity dimension. This study will inform research and 

practice on information diversity as a pertinent dimension for determining the quality of 

crowdsourced data today, providing a framework for gathering and measuring repurposable 

data. 
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Keywords: information diversity, repurposability, information quality, crowdsourcing, 

data analytics 

2.1 Introduction 

Information acquired from crowds can have unanticipated uses beyond the original 

purposes for which the information was collected, leading to valuable insights. For 

example, Yelp review data, which is intended to guide shoppers and merchants on the 

weaknesses and strengths of services provided by businesses, has been used to determine 

crime indexes of locations (Ballesteros, Carbunar, Rahman, Rishe, & Iyengar, 2014) and 

to identify restaurants with a high risk of health code violation and outbreaks of foodborne 

diseases (Harrison et al., 2014; Nsoesie, Kluberg, & Brownstein, 2014; Schomberg, 

Haimson, Hayes, & Anton-Culver, 2016). In conjunction with mobile check-in data from 

Foursquare, an app used to share location information with friends and family, and Yelp 

reviews have been used to accurately predict business failures (Wang, Gopal, Shankar, & 

Pancras, 2015). In the same fashion, public sentiments in Twitter data have been used to 

predict stock market price movements (Bollen, Mao, & Zeng, 2011; Mittal & Goel, 2012; 

Nisar & Yeung, 2018; Pagolu, Reddy, Panda, & Majhi, 2016). In this thesis, we refer to 

these uses of crowdsourced data—uses that deviate from the original purposes of data 

collection to meet previously unanticipated requirements—as data repurposing. 

Repurposability, also called portability, is the ability to use data for purposes other 

than those for which it was collected. The ability to repurpose data is a major factor in the 

value of collected data (Günther, Mehrizi, Huysman, & Feldberg, 2017). In discussing the 
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importance of being able to use data in different ways, the literature on data modeling and 

data quality emphasize that data are more valuable and provide more insights to users when 

they are not bound to any schema and are repurposable (e.g., see Günther, Mehrizi, 

Huysman, & Feldberg, 2017; Hunter, Alabri, & van Ingen, 2013; Parsons, 1996). 

Repurposable data can answer various questions from the same or different users, allowing 

decision-makers across an organization to answer new questions using existing data (see 

Tamm, Seddon, & Shanks, 2013), and enabling data to be useful beyond a single 

organization (Günther et al., 2017; Zuboff, 2015). Repurposable data can, therefore, 

address emerging user requirements and unanticipated needs for different consumers, 

including data procuring organizations. 

Repurposability is necessary for most data analytics: the use of data that were 

collected from the operation of a business or sourced externally by data scientists, to derive 

business insights for competitive advantage (Woodall & Wainman, 2014, 2015). Our focus 

is on the repurposability of data acquired through integrative crowdsourcing systems: that 

is, systems that collect input from an undefined group of people (rather than known 

subjects, such as employees), regarding a phenomenon of interest to information consumers 

(Schenk & Guittard, 2011). When organizations and individuals—crowdsourcers—expend 

resources in the form of time and money to acquire data from a crowd through integrative 

crowdsourcing, they naturally want to maximize its use and value. Because business needs 

may be emergent or evolving, it is inadequate to evaluate the quality of data only by its 

ability to meet anticipated requirements. In other words, repurposing information implies 

that information is used for secondary purposes with different information quality 
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requirements and “original quality levels may not be suitable for the secondary purpose” 

(Woodall & Wainman, 2015, p. 1).  

The ability to adapt data to changes in business requirements should be considered 

when assessing the quality of crowdsourced data. For example, a researcher crowdsourcing 

information about a given phenomenon might discover a need for more information than 

initially anticipated. In this case, crowdsourced information that was considered of high 

quality becomes insufficient to answer research questions. Therefore, individuals and 

businesses using, selling, and procuring data would benefit from the ability to evaluate the 

repurposability of their data. Collecting repurposable data could help increase the reuse of 

data, reducing the need to commission new crowdsourcing projects because of evolving 

business needs. 

Information quality assessment focuses on information that was acquired for a 

specific use. Information quality metrics are tied to the intended use(s) of the data (Wand 

& Wang, 1996) and cannot measure their repurposability. Traditional information quality 

assessment uses metrics such as accuracy and completeness, with a focus on the 

information consumer, typically guided by the views of known consumers about what types 

of information are needed for known tasks. However, the strategic value of information lies 

in the amount of insight that it can provide (George, Haas, & Pentland, 2014). 

Repurposability drives such insight: it increases when contributed information includes a 

variety of views, and is manifested as differences in attributes, in perspectives, and in the 

amount of information provided about the subject (Günther et al., 2017; Parsons & Wand, 
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2014; Woodall, 2017). Because repurposability is centered on accommodating unknown 

views of information users (Lukyanenko, Parsons, Wiersma, & Maddah, 2019), its pursuit 

may be antithetical to the strategies traditionally used to ensure information quality, such 

as enforcing uniformity in contributed data and requiring that potential contributors have 

prior knowledge of the crowdsourced task. Therefore, organizations seeking to derive the 

most value from crowdsourced data will need to look beyond traditional data quality 

dimensions for guidance. 

In this chapter, we refer to the number of unique attributes of entities present in 

information as information diversity, and we take a step towards better understanding 

information diversity as a metric for measuring and designing information repurposability 

in integrative crowdsourcing systems. We develop theoretical explanations for why the 

widely used top-down information quality model is inadequate for integrative 

crowdsourcing systems. Furthermore, we describe information diversity, grounding it in 

ontology, and show how it addresses the inadequacies of traditional information quality 

dimensions in the measurement and advancement of the repurposability of crowdsourced 

data. To address the inadequacies identified for traditional information quality dimensions, 

we introduce information diversity as a necessary dimension for measuring the evolving 

meaning of information quality for businesses that leverage crowds as external data 

sources. 
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2.2 Limitations of Traditional Information Quality Metrics 

Contributed data should represent the state of an observed world at a given time and should 

help information users to reproduce that state whenever necessary. In the literature and 

practice, data quality is judged by the extent to which the data fit their intended use (Sadiq 

& Indulska, 2017; Wang & Strong, 1996) and is measured on several dimensions: most 

significantly, accuracy and completeness (Wang & Strong 1996). Accuracy means the 

degree to which the data provided are “correct,” “meaningful” and “objective”; 

completeness is “the degree to which all possible states relevant to the user population are 

represented in the stored information” (Nelson et al., 2005, p. 203).  

However, many metrics for measuring information quality are ad hoc (Pipino, Lee, 

& Wang, 2002), lack any theoretical basis, and only apply to specific contexts (Wand & 

Wang, 1996). As we identify the problems of traditional information quality dimensions, 

we focus on accuracy and completeness. Wand and Wang’s described accuracy (which they 

termed correctness) as when reported data about an entity maps to a true state of the entity. 

And completeness as when the data properly represents the entity and maps back to the 

entity’s state without missing states. We adopt Wand and Wang’s (1996) view of accuracy 

and completeness, primarily because it accommodates the possibility that operationalizing 

accuracy can be automated, making it relevant as the adoption of machine learning and 

artificial intelligence by organizations is on the increase (Ransbotham, Gerbert, Reeves, 

Kiron, & Spira, 2018). Therefore, we discuss how the problems of traditional information 

quality may affect the collection and measurement of repurposable crowdsourced data, in 

the context of integrative crowdsourcing. 
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2.2.1 The Problem of Generalizability 

Before technology-enabled crowdsourcing, organizations controlled their information 

management processes to ensure high data quality. For example, knowledgeable employees 

were assigned predefined data entry tasks. The information systems used for data collection 

were also designed with controls to ensure that collected data are validated. More generally, 

the sources, users, and uses of information were generally known, which made it possible 

not only to determine the quality of information collected but also to return to these sources 

should more clarification be needed. Accordingly, it was appropriate to strive for 

consistency in the information management processes and protect against variations in data 

resulting from diversity in employees or other data sources. Consistency was achieved in 

various ways, including specifying required input types and formats through system design, 

ensuring the employment of people with the knowledge needed to perform the task, and 

training potential employees to accomplish the task.  

In the current era of crowdsourced information, the contributors of information are 

not known and may be temporary sources of data. However, the information quality 

concerns of some integrative crowdsourcing systems still center on data accuracy and 

completeness. For example, in many citizen science applications—a type of integrative 

crowdsourcing—scientists rely on citizens to gather accurate and complete data about a 

phenomenon of interest to them, defining information quality in terms of accuracy 

(McKenzie, Long, Coles, & Roder, 2000; Oldekop et al., 2011; Salk, Sturn, See, & Fritz, 

2016) or completeness (Jacobs & Zipf, 2017). We know that ordinary citizens are better at 

reporting the attributes of entities they observe than at accurately classifying them, as they 
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may not have adequate knowledge to inform their classification (Lukyanenko, Parsons, & 

Wiersma, 2014). When crowdsourcers can use machine learning to determine entities from 

reported attributes, restricting participation in crowds to knowledgeable contributors might 

become unnecessary. Furthermore, there are citizen science systems that seek to facilitate 

discoveries and novel instances of phenomena (Lukyanenko et al. 2016). For these types 

of citizen science systems, there is a need to accommodate diverse perspectives, allowing 

contributors to report novel findings even when they do not fit a predetermined 

classification schema. 

Moreover, traditional information quality metrics are less relevant for integrative 

crowdsourcing systems, such as online review systems that collect reviews from shoppers 

to guide them in their decision-making. Online reviews generally involve reporting 

experiences about products or services, and usually require classifying these products and 

services into abstract classes, such as “good” or “bad.” For example, a shopper who reviews 

a shoe purchased on Amazon as an “excellent product” (and gives it a 5-star rating) or as 

“very poor quality” (and gives it a 1-star rating), based on the shopper’s experience with 

the product, classifies the product into abstract categories of “excellent products” and 

“terrible products” that do not necessarily have well-defined inclusion criteria, but instead 

often rely on subjective criteria. The quality of the information provided by contributors to 

support such classification cannot be measured using traditional dimensions, such as 

accuracy or completeness, because it is difficult to determine whether a review is accurate. 

Instead, dimensions like usefulness, diversity, and informativeness are relevant aspects of 

information quality. 
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Information quality, therefore, means different things to different information users 

(Ardagna, Cappiello, Samá, & Vitali, 2018; De la Calzada & Dekhtyar, 2010), and in 

different crowdsourcing contexts (Hunter et al., 2013); it cannot be generalized even within 

the same class of information systems. Table 2.1 shows how crowdsourcers measure 

information quality in citizen science and online review systems. Nonetheless, while 

traditional dimensions of information quality do not apply uniformly across these 

integrative crowdsourcing systems, the perceived usefulness of contributed information—

an outcome of information quality dimensions such as accuracy and completeness —is 

measurable, as evident in the literature (DeLone & McLean, 1992; Wixom & Todd, 2005; 

Xu, Benbasat, & Cenfetelli, 2013). Specific examples include Yelp and Amazon.com, 

which allow different users to rate the usefulness (called helpfulness on Amazon.com) of 

reviews. It is not just traditional dimensions of data quality that are responsible for the 

differences in perceived usefulness of contributed information (Cheung, Sia, & Kuan, 

2012; Gobinath & Gupta, 2016; Jensen, Averbeck, Zhang, & Wright, 2013; Mudambi & 

Schuff, 2010). Table 2.1 summarizes these dimensions. 
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Table 2.1 Dimensions of information quality in two types of integrative crowdsourcing 

systems. 

 

Information Quality Dimensions Context References 

Correct identification (accuracy) Citizen science 

 

(Cox, Philippoff, Baumgartner, & 
Smith, 2012; Crall, Renz, Panke, & 
Newman, 2011; Nerbonne & 
Nelson, 2008; Salk et al., 2016) 

Fitness for use (Cox et al., 2012; Crall et al., 2011; 
Nerbonne & Nelson, 2008; Salk et 
al., 2016) 

Context-dependent (Hunter et al., 2013) 

Usefulness (Ballard, Dixon, & Harris, 2017; 
Gao, Barbier, & Goolsby, 2011) 

Essential information (Aceves-bueno et al., 2015) 

Informativeness Online review 

 

(Gobinath & Gupta, 2016; Li, Hitt, 
& Zhang, 2011) 

Expressiveness  (Korfiatis, GarcíA-Bariocanal, & 
SáNchez-Alonso, 2012) 

Subjectivity of reviews including Self-
involvement, other involvement, message 
involvement, and product involvement  

(Dellarocas, Gao, & Narayan, 
2010) 
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Table 2.1 shows that the focal aspects of information quality differ in different 

crowdsourcing contexts. Traditional information quality is tied to a specific use context 

(Nelson, Todd, & Wixom, 2005; Wang, Reddy, & Kon, 1995; Wixom & Todd, 2005), 

encouraging a shared understanding of the task requirement between the contributors and 

the project owner. Data collected with attention to traditional information quality 

dimensions might not be repurposable. Therefore, systems designed to focus on traditional 

quality dimensions might not be useful when information needs to be repurposed, requiring 

resource-intensive changes, usually involving new recruitment campaigns, restructuring 

and redesigning user interfaces and databases (e.g., see Lukyanenko et al., 2014), and 

possibly losing information because of the impermanent nature of contributors and 

observed events. 

2.2.2 The Problem of Control 

When integrative crowdsourcing projects focus on traditional dimensions of information 

quality (accuracy and completeness), design decisions such as crowd recruitment policies, 

task design, and system design strategies are guided by these dimensions. For instance, 

when developers of citizen science systems focus on accuracy, their systems design 

enforces tight controls on the types of data that can be contributed (Burgess et al., 2017; 

Ellwood, Crimmins, & Miller-Rushing, 2017). In some cases, this restrictive design limits 

the contributors who can participate to those who are familiar with the task. For instance, 

eButterfly and eBird are prominent citizen science platforms that require contributors to 

report their sightings of butterflies and birds they observed (see Figures 2.1 and 2.2). 
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Figure 2.1. Example of eButterfly’s data reporting page 
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Figure 2.2. Example of eBird’s data reporting page 
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Both platforms (shown in Figures 2.1 and 2.2) require contributors to enter the 

number and species of the organism they have observed. These systems require contributors 

to know the scientific or common names of the organisms they are reporting. If an observed 

organism is unfamiliar, a contributor might guess or abandon the attempt to report a 

sighting (Parsons, Lukyanenko, & Wiersma, 2011). Crowdsourcers, like the designers of 

these citizen science platforms, prefer contributors with relevant knowledge or experience, 

under the assumption that knowledge and experience are positively related to information 

quality (Salk et al., 2016). For example, they may recruit people who have previously 

participated (or are presently participating) in a similar project (Bonter & Cooper, 2012; 

Burgess et al., 2017; Gura, 2013; Wiggins, Newman, Stevenson, & Crowston, 2011). We 

see contributor experience prioritized on platforms like Amazon Mechanical Turk, where 

the crowdsourcers can pay a premium to recruit “master” crowd workers for their tasks 

(Paolacci & Chandler, 2014; Peer, Brandimarte, Samat, & Acquisti, 2017). Alternatively, 

some crowdsourcers train participants to perform a task at an acceptable level (Cox et al., 

2012; Hunter et al., 2013; Yang, Xue, & Gomes, 2018). Finally, active recruitment may be 

stopped when critical mass is reached while ensuring that current crowd members are 

retained (Nov, Arazy, & Anderson, 2011; Rotman et al., 2014). All these strategies assume 

that knowledgeable contributors provide more accurate and complete data, without 

considering the impact on repurposability. 

Although preference for knowledgeable contributors is evident in practice and the 

crowdsourcing literature, several studies have reported that expert crowds (i.e., highly 

knowledgeable contributors) did not provide higher quality information than novice 
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crowds. For example, three studies in an ecological context found that knowledgeable 

contributors did not provide more accurate or complete data than less knowledgeable 

contributors (Austen, Bindemann, Griffiths, & Roberts, 2016; Bloniarz & Ryan, 1996; 

Lukyanenko et al., 2014). Similar results have been reported in classifying damaged 

buildings (Staffelbach et al., 2015) and predicting movie marketing success (Escoffier & 

McKelvey, 2015). In the latter example, novices even outperformed knowledgeable 

contributors in terms of accuracy. Moreover, more accurate data are obtained when 

contributors are allowed to describe an entity they have observed in greater detail, stating 

its attributes (Lukyanenko et al., 2014). Collectively, these studies show that, contrary to 

conventional wisdom, a higher level of knowledge in a crowd does not necessarily result 

in improved information quality. This contention between conventional wisdom and the 

results of empirical tests in the literature is acknowledged by Ellwood, Crimmins, and 

Miller-Rushing (2017).  

Studies by van der Velde et al. (2017) have argued that crowd members with limited 

knowledge can provide high-quality information even though experts are more precise 

(Lukyanenko et al., 2019). Experts also use fewer attributes to make classification decisions 

(Shanteau, 1992) and think more alike (McAuley & Leskovec, 2013) than non-experts. 

These characteristics of experts can work against the gathering of repurposable data and 

may instead facilitate homogeneity in crowdsourced information. 

Crowdsourcers may attempt to ensure the reporting of only the presence of a set of 

attributes by implementing any of the control strategies already discussed. In contrast, we 
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argue that data contribution should be structured such that contributors can create different 

sets of attributes of the entity that they consider relevant, from which different 

crowdsourcers can choose attributes that align with their current data requirements. In this 

case, the ability to choose desired attributes (which may be all or some attributes) from 

different sets of attributes is what we have referred to as repurposability, and the presence 

of different sets of attributes based on different contributor perspectives on what attributes 

are relevant is what we have termed information diversity. In other words, while data with 

a unitary view may be repurposable, diverse data can support greater repurposing.  

In many cases, therefore, a focus on traditional dimensions of information quality 

inherently leads crowdsourcing systems to restrict the participation of interested crowd 

members based on their level of task-relevant knowledge (Burgess et al., 2017). Because 

traditional information quality dimensions are highly context-specific or use-specific, not 

generalizable to all types of integrative crowdsourcing projects, they cannot sufficiently 

guide the collection of repurposable data. Consequently, we propose the dimension of 

information diversity as a solution to the shortcomings of traditional information quality 

dimensions. 

2.3 Defining and Measuring Information Diversity 

Data is a crucial component of information systems, constituting “a perceptible 

representation of the real world from which a [consumer] can infer a view of the real-world 

system” (Wand & Wang, 1996, p. 89). In order to understand and adequately measure data, 

it is necessary to understand its structure. Like Wand and Wang (1996), we view data as a 



 

30 

representation of real-world things. We, therefore, view data from the perspective of 

ontology.  

Ontology helps us understand and describe things. The world is made of things, 

which are described in terms of their states and laws (Bunge, 1977; Wand & Wang, 1996). 

Humans understand and distinguish between things using attributes. For example, we 

assign a value to the colour attribute to distinguish rubies (red) from sapphires (blue). 

Things can also be composed of other things. Attributes of a thing help us define the state 

of the thing. Therefore, information about a thing may contain details of the attributes of 

the thing, the state of the thing, or other things that a thing is interacting with. Bunge’s 

ontology posits that things can be described in terms of attributes which can either be 

intrinsic, i.e., solely depending on the thing, or mutual, i.e., dependent upon more than one 

thing (Bunge, 1977; Parsons & Wand, 2000; Wand & Weber, 1990).  

Information about an entity can be expressed in terms of the attributes it possesses 

and the values of these attributes. In the example of emeralds, the shape “square” is an 

intrinsic attribute value. However, attribute values such as “precious” or “big” depend on 

the observer’s prior experience, as well as the gemstone; they may differ from one 

contributor to another. The attributes of entities constitute the data in information systems. 

Attributes provide information about the properties of the entity (Wand & Weber, 1995). 

While people may use many different words when communicating, what provides relevant 

information about the observed entity are the attributes of the entity they report. Reported 

attributes about an entity can be analyzed to accurately determine the entity (Wand & 
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Wang, 1996). Examining information from the perspective of its constituent attributes not 

only helps us estimate the completeness dimension but also addresses the accuracy 

dimension of information quality.  

The number of attributes and the types of attributes indicates the diversity within a 

dataset. Essentially, two or more pieces of (textual) information may be different from one 

another in terms of their diversity. Assuming that a piece of information can be broken 

down to sets of attributes, if A and B are two pieces of information contributors provide 

about an observed entity and A has attributes in common with B but more total attributes 

about the observed entity, then A is more diverse2 than B. In other words, A is more diverse 

than B when the conditions in equations 1 and 2 hold. 

|A| > |B|…………………………………………………………………………………………………... (1) 

|A ∪ B − A ∩ B| > |A ∩ B|………………………………………………………………………………….(2) 

Information diversity describes specifically the number and types or unique 

attributes reported in information about entities taking into consideration the similarity of 

the terms used (Ogunseye & Parsons, 2018). However, the number of attributes reported 

about an entity may differ among contributors depending on their perception of the 

requirements of the task and the differences in their knowledge of the task. For example, in 

                                                 

2 In these equations, we have assumed that all attributes contribute equally to information diversity 
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a task requiring the reporting of any sighting of gemstones such as emeralds and diamonds 

in pictures containing any of three gemstones: diamonds, emeralds, and rubies, one 

contributor may report the following information: “the emerald is big.” Another contributor 

may report their sighting of the same gemstone as “the square-shaped emerald looked big 

attached to the gold pendant.” The latter contribution is richer than the former, containing 

more attributes about the entity emerald. The overall number of distinct attributes of an 

entity mentioned in contributed information can indicate the diversity of the information in 

a contribution.  

Nevertheless, equation 1 does not necessarily mean two pieces of information A 

and B are diverse. For instance, if one contributor reports that they observed “green 

precious crystals” while two others report “green emeralds” and “emeralds,” the 

observations have been reported at different levels of precision, but they convey similar 

amounts of information. Information consumers, only interested in the presence or absence 

of emeralds, would decipher the same amount of insight from each contribution (e.g., 

emeralds imply “precious green crystals”), and the contributions are thus equally diverse, 

even though some contained more attributes than others. To understand information 

diversity, we, therefore, need to consider more than just the number of attributes and 



 

33 

include the type of attributes contributed about the entity, i.e., whether they are mutual3 or 

intrinsic attributes. 

It is also important to consider the meaning of the attributes and how different words 

may mean the same thing or describe the same attribute value. For instance, a reviewer may 

describe an item as “rare” or “scarce,” which means the same thing in this context. The 

degree of diversity between two pieces of information can be assessed by checking that the 

attributes they contain are dissimilar. Similarity has been defined as “the ratio between the 

amount of information in the commonality and the amount of information in the description 

of two objects” (Lin, 1998, p. 3). In this thesis, we consider this to mean the ratio between 

the number of attributes two datasets have in common, and the number of attributes 

available in total. Similarity has been measured by comparing the meanings of the words 

(attributes in our case) in contributed data (Deerwester, Dumais, Furnas, Landauer, & 

Harshman, 1990; Lintean & Rus, 2012; Resnik, 1995; Tversky, 1977). 

                                                 

3 Our reference to mutual attributes would focus on non-binding mutual attributes. “Non-binding mutual [attributes] are those [attributes] 

shared by two or more things that do not ‘make a difference’ to the things involved; for example, order relations or equivalence relations. 

By contrast, binding mutual [attributes]  are those [attributes]  shared by two or more things that do ‘make a difference’ to the things 

involved” (Rosemann & Green, 2002, p. 82). Kiwelekar & Joshi (2010, p. 4) further explains that non-binding mutual [attributes] are 

relational [attributes] that occur when “no interaction is involved between two related things. For example, younger than relationship 

between two persons does not show any kind of interaction”. 
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In general, two contributors are said to have provided similar contributions when 

the number of terms used to describe an entity, the frequency of terms used, the distance 

between terms, and the semantic properties of the terms used are the same (Gupta & 

Montezemi, 1997; Pirró, 2009; Tversky, 1977). Two contributions are considered diverse 

when these characteristics (the number of attributes, the types of attributes, and the degree 

of semantic diversity of these attributes) differ. We illustrate this for a case where 

information diversity is computed automatically, particularly in the case of large datasets. 

Nevertheless, information diversity can be estimated for very small datasets using simple 

statistics. 

Calculating the information diversity index involves extracting attributes from 

textual data and classifying them as either mutual or intrinsic. Two contributions, A and B, 

with respective sets of mutual attributes, AM and BM, and intrinsic attributes, AI and BI, 

may have several attributes. Comparing their diversity involves determining how different 

the attributes are, considering all of the available attributes in both texts, i.e., 
A∪B−A∩B

A∪B
. If 

we assume that AM3 = BM3 and AI2 = BI3, then (A ∪ B − A ∩ B) = {AM1, AM2, AI1, AI3, BM1, 

BI2}, and the diversity index would be {AM1, AM2, AI1, AI3, BM1, BI2}/{AM1, AM2, AM3, AI1, 

AI3, BM1, BI2, BI3}. This gives  

1 −
A∩B

A∪B
 ………………………………………………………………………………………………… (3) 

where 
A∩B

A∪B
 estimates the similarity in the number of attributes and their meaning, providing 

a similarity index. More appropriately, equation 3 can be represented as 1-SIM(A,B) where 
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SIM(A, B) is a function that maps the degree of similarity of entity attributes between 

information A and B to an index between 0 and 1 where 0 implies absolutely no similarity 

exists between the attributes and 1 implies the attributes in the two pieces of information 

are the same. There are several ways to determine in numeric terms how similar two 

attribute sets are (Gomaa & Fahmy, 2013). One example is to compute the cosine similarity 

of both attribute sets A and B. Cosine similarity is used to measure the similarity of texts 

(which are converted to vectors) based on the cosine of the angle between them (Dehak, 

Dehak, Glass, Reynolds, & Kenny, 2010; Mihalcea, Corley, & Strapparava, 2006). Cosine 

similarity places more emphasis on the meaning of the text rather than the length of texts. 

For the computations to take place, attributes are changed to numeric values (that is, 

vectorized) using word vectorization libraries that retain their contextual meanings, such as 

Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) or GloVe (Pennington, 

Socher, & Manning, 2014).  

To illustrate, consider the two reviews in Table 2.2 below. We extract the attribute 

values of the reviewed entity as adjectives – i.e., words that describe a noun, classifying 

the attributes into Mutual and Intrinsic using machine learning. To determine which 

attributes are mutual and which are intrinsic to an entity, we built on a polarity detection 

algorithm from spaCy (www.spacy.io) used in sentiment analyses. Intrinsic attributes – or 

adjectives – would not show significant polarity. E.g., three legs (three is neutral); purple 

coat (purple is neutral). In contrast, mutual attributes would show polarity, e.g., expensive 

ring (expensive may be negatively or positively polar and is dependent on the contributor); 

weak handles (weak is negatively polar and is a judgment dependent on the contributor). 

http://www.spacy.io/
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We also compute the similarity of the attributes from which we calculate the percentage 

diversity, i.e., percentageID = ((1 – SIM(A, B)) *100). However, even though the example 

in Table 2.2 addresses the determination of diversity between two pieces of contributed 

information, information diversity can be extended to two or more large datasets.  
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Table 2.2: Computing information diversity  

Review Unique Mutual and 

Intrinsic Attributes 

Number 

of 

Intrinsic 

Attribute 

values 

Number 

of 

Mutual 

Attribute 

values 

Percentage 

Similarity 

Percentage 

Information 

Diversity 

I like these tools They’re plastic and run on 

batteries but they work. Not as powerful as your 

gardener’s gas powered machines but for the 

homeowner who doesn’t plan on any heavy duty 

shrubbery cleaning these will do the trick nicely  

power, plastic, 

heavy 

1 2  

11.418 

 

88.582 

Pretty low tech item but that’s what I wanted. 

This one is small version which means if you have 

lots of leaves you’ll be cleaning often.   

low, small 0 2 
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2.4  The Information Diversity Framework 

We identify three factors that are essential for information diversity: the data model, the 

nature of the crowdsourced task, and the differences in contributors. These factors are built 

upon the collective intelligence genomes proposed by Malone, Laubacher, and Dellarocas 

(2010). They posit that four crucial questions need to be asked when making decisions 

about how to design collective intelligence projects—for which crowdsourcing is often 

used (Lukyanenko et al. forthcoming). These questions are: Who do we want in our 

crowds? What should be the problem that we pose to the crowd? Why would the crowd 

want to participate in our project? How should we structure the task? We separate these 

building blocks into human factors and system design factors and extend their model to 

include available information technology (IT) infrastructure. We explore these three 

building blocks in greater detail below, showing how they serve as a framework for 

information diversity (see Figure 2.3). 

Available IT infrastructure. First, conceptual modeling literature has long emphasized the 

limitations of context-based or view-based data modeling. Parsons and Wand (2000) 

proposed an instance-based data model that described the need to represent things and their 

properties independently of predefined classes, enabling data to be used by different 

consumers with different views. They showed that it is possible to repurpose (reclassify) 

stored data that are not tethered to any classification scheme (Asgari, Parsons, & Wand, 

2017; Saghafi, Wand, & Parsons, 2016). A data modeling strategy that is inconsistent with 

the principles of modeling data independent of a schema is seen in relational databases, 

where data schema are fixed and their evolution constrained (Codd, 1989). The relational 
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data model and systems based on it have successfully allowed users to provide information 

that is congruent with the existing conceptualization of the data requirements of the system 

(Codd, 1989). High costs may be incurred when an existing database schema is altered. 

However, the continued need for crowd-facing systems has necessitated the 

implementation of data models that are schema-free, allowing contributors to provide 

unstructured and structured data, upon which users can create need-based schemas at the 

application level (Leavitt, 2010). These database architectures—known as non-relational 

databases—are more in line with the data modeling approach proposed by Parsons and 

Wand (2008) than relational models, allowing systems built on them to inherently 

accommodate diverse information. Non-relational database architectures are used by major 

collectors of crowd data (user-generated content) like Facebook, Google, Twitter, and 

Amazon (Cattell, 2011). They are faster and scale better than traditional relational 

databases (Moniruzzaman & Hossain, 2013). Non-relational databases, facilitated by Web 

2.0, allow for the collection of data from distributed groups of people and facilitate the 

collection and storage of diverse data. 
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Figure 2.3. The Information Diversity Framework. Building blocks for information 

diversity (adapted from Malone et al., 2010). 

Human Factors. Contributor differences, which may be spatiotemporal (an extrinsic 

factor) or cognitive (an intrinsic factor), play a role in the ability of crowdsourcing systems 

to collect diverse data. Extrinsic factors, like location and time, may be indicated in the 

information provided by contributors. These factors provide context to information about 

entities and are usually measured by the completeness dimension of information quality. 

However, beyond spatiotemporal differences in crowd members, a significant source of 

information diversity is cognitive diversity—differences between people resulting from 

differences in their knowledge and experiences (Sauer, Felsing, Franke, & Rüttinger, 

2006), which can result from different training (Piven et al., 2006) or differences in 

professional and personal backgrounds (Colón-Emeric et al., 2006). 
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The ability of cognitive diversity to positively affect productivity and idea 

generation has been emphasized in the literature (Polzer, Milton, & Swarm Jr, 2002; Wu, 

Chen, Hui, Zhang, & Li, 2015), and harnessed for online review platforms (Mudambi & 

Schuff, 2010) and open innovation (Brabham, 2008). Cognitive diversity is the differences 

in how people frame and approach problems, organize and use information, and 

communicate, and the information that they produce (Kloos & Sloutsky, 2008; Mello & 

Delise, 2015). For example, Best et al. (2013) showed that infants and adults focus on 

different aspects (attributes) of the same phenomenon, because of differences in their 

knowledge. Similarly, Hoffman and Rehder (2010) and Spence and Brucks (1997) argued 

that people differ in the type of information they use or produce because of cognitive 

diversity. In agreement with Polzer, Milton, and Swarm Jr (2002) and Matzler, Füller, 

Hutter, Hautz, and Stieger (2016), we argue that cognitive diversity is an antecedent of 

information diversity and a necessity for repurposable data. We, therefore, argue that the 

cognitive diversity of crowds is a foundation for information diversity. 

Cognitive diversity may also affect the motivation of crowd members (Frey, Lüthje, 

& Haag, 2011). Motivation may be different for individuals with different personality 

factors (Lee, Crowston, Harandi, Østerlund, & Miller, 2018). The quantity of effort that 

contributors commit to a crowdsourcing project may be motivated intrinsically due to the 

level of enjoyment of the task, or extrinsically – because of incentives or pressures external 

to the task (Liang, Wang, Wang, & Xue, 2018). Antecedents of intrinsic motivation like 

cognitive diversity affect the type of information collected in crowdsourcing projects 

(Crowston & Prestopnik, 2013; Ogunseye, Parsons, & Lukyanenko, 2017). Therefore, as 
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crowdsourcers make decisions about who to recruit into crowds to ensure information 

diversity, it is necessary to consider the cognitive diversity of crowd members.  

System Design Factors. The last building block of our information diversity framework is 

task design. Task design encompasses the two categories of collective intelligence “key 

questions” espoused by Malone 2010. These include what is to be done and how it should 

be done. Research on the impact of system design on information quality reveals that the 

design of systems can be restrictive, limiting the ability of crowd members to report 

information freely, based on their perspectives, and thereby discouraging information 

diversity (Lukyanenko et al., 2019). In addition, the nature of the crowdsourced task will 

affect the diversity of information contributors can provide. The degree of structure of 

tasks, the number and complexity of the decision inputs, the ease with which inputs can be 

evaluated, the amount of noise present in the inputs, and the ease with which the task can 

be decomposed are among the factors that can impact the type of data collected (Spence & 

Brucks, 1997). A well-structured, well-defined task would create a level playing field for 

cognitively diverse contributors, whereas tasks that require some structuring before they 

can be addressed may be more suitable for contributors with prior knowledge. 

Nonetheless, the absence of this framework does not preclude the possibility of 

collecting diverse information. Systems built on relational databases could still collect 

diverse data; likewise, even though unlikely, cognitively similar crowd members may 

provide diverse data. However, we argue that the presence of one or more of these building 

blocks would impede the collection of homogeneous data. 



 

43 

2.5 Theoretical Support for the Information Diversity Dimension 

The collection of diverse data is already technologically permissible through non-relational 

databases, which serve as a framework on which we can begin to build crowd-facing 

applications that harness the benefits of information diversity and repurposability. These 

new information systems environments, in which organizations can directly access crowds 

as data sources, have been dubbed by Parsons and Wand (2014) as Open Information 

Environments—information systems environments that accommodate diverse 

contributors’ perspectives, users, and uses of data, including unanticipated uses (Parsons & 

Wand, 2014). According to Parsons and Wand (2014), information systems that operate in 

open environments should accommodate semantic diversity, ensure information quality, 

and allow for flexibility. We argue that crowd-facing information systems that can collect 

diverse information will meet these requirements. 

Ability to accommodate semantic diversity. Today’s open information systems must 

accommodate information contributors and information consumers who may have different 

views. Cognitive psychology literature shows a relationship between cognitive diversity 

and ability in a group, resulting from differences in experience and training (Colón-Emeric 

et al., 2006; Martins, Schilpzand, Kirkman, Ivanaj, & Ivanaj, 2013; Piven et al., 2006). 

Best, Yim, and Sloutsky (2013), Hoffman and Rehder (2010), and Kloos and Sloutsky 

(2008) all show that groups with cognitive diversity (people with different training or 

experience) provide data containing more distinct attributes of an entity. The presence of 

different attribute types in crowdsourced data is evidence of different perspectives, and 

such data can accommodate multiple views (Barsalou & Sewell, 1984; Parsons & Wand, 
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2000). The capacity for multiple views, usually through multidisciplinary teams, using data 

high in information diversity, is a critical success factor for big data (Günther et al., 2017). 

Ability to ensure information quality. When information is to be repurposed, there is a 

high probability that previous information quality standards will no longer apply. One 

problem identified in (Woodall & Wainman, 2015) is that the required data for the new 

task may not be available because crowdsourcers were not aware that they would need the 

data for the new task. We know that a lack of diverse data may negatively affect future 

tasks; a valid question then is, what about current tasks? How does diversity affect known 

uses of data? Parsons and Wand (2014) identify this as a requirement for open information 

environments. Information diversity should, therefore, not impede the information system’s 

ability to meet traditional requirements of information quality, such as accuracy and 

completeness. We explore the relationship between diverse data and the information quality 

dimensions identified in Wand and Wang (1996). 

Information Diversity and Accuracy. According to Wand and Wang (1996), accuracy is an 

operation on correctly identified attributes of an entity that maps back to the correct entity 

and its state in the real world. For example, if in a citizen science task, contributors are 

required to report the types of precious stones in a given location, the attributes identified 

about the precious stones observed should be sufficient to correctly determine the type of 

precious stone available. In this case, it is expected that humans or machines can correctly 

identify the type of precious stone when provided with correct information about the state 

of the entity observed. Information diversity measures and encourages the reporting of 
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different attributes of an entity in contributed information. Since contributors would be 

reporting from different perspectives, more attributes about the entity would be reported 

overall, than if the contributors had the same perspective. Most of the attributes required to 

identify an entity correctly would, therefore, be available in information high in diversity, 

more so than information pooled from only people with a singular perspective. We can, 

therefore, conclude that information diversity would support accuracy. The information 

diversity dimension does not replace the accuracy dimension but improves it, providing 

more details about the state of the real world that would lead to the correct 

operationalization of the data by the consumer. 

Information Diversity and Completeness. Information consumers assess completeness from 

the perspective of their needs and not the actual completeness of the properties of a thing 

in terms of its intrinsic properties or its mutual properties. Complete data means data 

containing all attributes required by a specific data consumer for a particular use. 

Information diversity encourages the collection of information that meets multiple views 

of the entity and will support many of these views completely, providing the attributes 

needed to make decisions from those views. Therefore, information diversity will support 

completeness. 

Figures 2.4a and 2.4b illustrate the consequence of the completeness dimension 

based on ontology. Figure 2.4a shows that, if a contributor C1 reports Attributes 1 and 2 

about an entity in the real world (RW), and if these attributes are considered sufficient for 

the task at hand by information consumer U1, the information is complete according to the 
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traditional definition of information completeness and quality. However, if Attribute 4 of 

the entity becomes relevant in the future, a new information-gathering process would have 

to be initiated, or novel insights may need to be forfeited (Bonter & Cooper, 2012). 

However, Figure 2.4b shows that if information diversity is encouraged, such that 

contributors C1 and C2 provide different perspectives to the information source, consumers 

U1 and U2 can derive multiple views from the data. 

 

 

Figure 2.4a. Completeness without information diversity. 

When completeness for a predetermined purpose is the focus of an integrative crowdsourcing task, 

contributors can report only attributes of the entity in the real-world (RW) that meet the requirements of the 

task; in this case, attribute 1 and 2 (i.e., C1) for user U1. If a new user U2 ever needs to repurpose the data 

to get insights that involve RW attribute 4, U2 will need access to the original entity, which may require 

repeating the information crowdsourcing task or may be impossible if the original phenomenon cannot be 

repeated.  
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Figure 2.4b. Completeness with information diversity. 

When information diversity is the focus of an integrative crowdsourcing task, contributors can report any 

attribute of the entity in the real-world (RW) and not only those that are relevant for an immediate task 

(e.g., C1 and C2 report different attributes of the entity). If a user U2 ever needs to repurpose the data to 

gain insight about attribute 2, 3 and 4 of the entity, the information crowdsourcing task does not need to be 

repeated, and the user does not need access to the original RW phenomena because contributors in the 

crowd will have provided ample information about it.  
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Focusing on Completeness, which is use-oriented, reduces the likelihood of 

collecting repurposable information, whereas focusing on information diversity ensures 

that complete information is collected. Therefore, information diversity subsumes the 

completeness dimension. Moreover, because accuracy is mainly an operation on the 

complete attributes of an entity, information diversity also supports the collection of 

accurate data. 

Ability to ensure information flexibility. Parsons argued, “different people (or the same 

person at different times) may organize knowledge about things according to a different set 

of classes or categories” (Parsons, 1996, p. 1436). Therefore, data that fits a single view 

may be useless soon after the view evolves, requiring more information that was not 

initially collected. What is complete at one moment, or usage instance, may not be complete 

at another. This also applies to the problem of insufficient information. The level of 

granularity applied to a thing can change, and attributes that did not matter earlier may later 

become important. Imagine that a contributor reports that a given insect can fly and that 

this information is considered enough for classification today. If we learn later that there 

are two species of this insect and that one flies with its body facing downward while another 

flies with its body facing upward, the single attribute recorded becomes insufficient and 

incapable of providing the required insight. Information diversity supports flexibility, 

allowing for emergent uses of data. This is shown in Lukyanenko et al. (2019), which 

reported the results of data collection using a citizen science system designed to allow 

people to report data freely. They found that the diverse data collected in their prototype 
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open citizen science system was also more complete than the less diverse information 

collected in a more restrictive system. 

2.6 Application of the Information Diversity Framework 

Existing literature has shown the usefulness and value of repurposing crowdsourced data. 

To illustrate the viability of information diversity, we review two articles from two separate 

research domains: ecology and agriculture. We have not set out to discuss the quality of the 

research but to discuss how they provide evidence for the benefits of diverse data for insight 

and information quality. 

The papers we discuss both employ data from Twitter—a microblogging site that 

allows registered users to post media and text of not more than 280 characters in length. 

Twitter uses a variant of the NoSQL database and IT infrastructure that allows it to collect 

and process unstructured data in petabytes per year (Lai, 2010). User-generated 

contributions to Twitter (tweets) are unrestricted and can be flexibly categorized by the 

user using hashtags. Twitter also allows anyone, regardless of their level of knowledge, to 

contribute data on any topic of interest to them. 

The first paper that we examined titled: Testing the potential of Twitter mining 

methods for data acquisition (Hart, Carpenter, Hlustik-Smith, Reed, & Goodenough, 

2018), compared mined Twitter data to the results of three previously published studies that 

used traditional citizen science methods to collect data. The first study reportedly used 

citizen science to quantify the spatiotemporal distribution and environmental triggers of ant 

mating flights (Hart, Hesselberg, Nesbit, & Goodenough, 2018). The second study used 
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citizen science to investigate the “geographical patterns, seasonal peaks daily rhythms, and 

location of spiders … within houses during the autumn” (Hart, Nesbit, & Goodenough, 

2018, p. 2195). In the third study, the focus was on monitoring the behaviour of starlings 

using citizen science to understand how predators and temperature impact them. The 

published results of these three studies, when compared to mined tweets from Twitter, 

showed that repurposed Twitter data accurately replicated the results, including spatial and 

spatiotemporal findings of the published citizen science studies. In particular, the study on 

winged ants revealed that very few tweets (5 of 597) provided unambiguous information 

identifying the species of the ants. Most of the tweets contained attributes describing the 

ants. However, twitter-derived data on the temporal patterns of the ants showed 

“remarkable agreement” with national scale temporal patterns described in existing 

research. Similarly, there was significant similarity in the location and direction of 

movement of ants as reported in twitter data and previous research.  

For spiders, there was also no significant difference in the temporal distribution of 

recorded sighting and from tweets. The time of day in which the spiders were spotted in 

research and reported on twitter differed, with twitter reports being made later than research 

results. However, the location of spider sighting was similar. The sex of the spiders 

observed showed a male bias for both twitter data and research data 75.4% and 82.3% male, 

respectively. Nonetheless, there was no significant association between both results. 
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Finally, for starlings, the spatial patterns reported in previous research were also 

detected in tweet data. The key hotspots reported on twitter coincided with those identified 

in research by Goodenough, Little, Carpenter, and Hart (2017). 

A second paper, by Zipper (2018) titled “Agricultural Research Using Social Media 

Data,” investigated the utility of social media for monitoring spatiotemporal patterns in 

agriculture. The study used Twitter data to map state-level corn and soy planting progress, 

comparing the result of their analysis with traditional survey-based monitoring 

mechanisms. Specifically, this research compared the result of their repurposing of Twitter 

data to data acquired from the US Department of Agriculture National Agriculture Statistics 

Service (NASS). They found that Twitter data was significantly similar to the NASS data. 

The discrepancy between the results was stated to be attributable to the incompleteness of 

the NASS data or some inadequacy in any of the datasets. 

Furthermore, the Twitter data provided additional contextual insights not available 

with the NASS dataset on the causes and indicators of replanting—a difficult but sometimes 

necessary decision that farmers must make to sustain their farming operations. Twitter data 

provided insights into the “extent, causes, and decision-making process related to 

replanting decisions” and agricultural management practices. Twitter data also provided 

above NASS data, contextual information regarding farmer sentiments about agricultural 

products and their shifting beliefs about agricultural practices. It allows for the tracking of 

adoption of agricultural practices and can be a source of guidance to agricultural extension 

services on which parts of the country to direct their efforts and what information or training 
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need to be intensified. Generally, Twitter data was sufficient to track planting progress 

across states, helping to measure the spatiotemporal dynamics of crop planting and would 

be useful for monitoring emerging issues in agriculture. Nonetheless, the author recognizes 

that the quantity of useful data in a purely social media approach to citizen science can be 

limited and thus problematic. 

In conclusion, both studies show that diverse information is repurposable high-

quality information, which matches that gathered using rigorous scientific and citizen 

science processes. Also, Zipper (2018) showed that the repurposing of diverse data could 

lead to insights not readily available in more targeted, non-diverse data. These studies, the 

success of online review systems, and several other studies already described here are 

indicators of the viability of information diversity not only to support information quality 

for known and predetermined uses of data but also to support high-quality decision making 

for unanticipated uses of data. 

2.7 Discussion 

The world of information systems is changing. The climate of the era is that of 

crowdsourcing, repurposable data for analytics, and unconstrained contribution. While 

there is merit in crowdsourcers instituting and maintaining stringent controls on data 

contribution for integrative crowdsourcing systems that seek to collect data for some 

purposes, other integrative crowdsourcing projects that seek to facilitate novel discoveries 

would benefit from allowing information diversity. Moreover, even when data collection 

needs to follow strict protocols, a hybrid approach, in which the contributor is also allowed 

to contribute freely after contributing data that fit the crowdsourcer’s immediate 
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requirements, may allow for the collection of crowdsourced data that can adapt to changes 

in hypotheses and business needs. 

This study contributes to the discussion on the need to go beyond traditional data 

quality measures (Lukyanenko, Parsons, & Wiersma, 2016), and to the literature on open 

information environments. The information diversity dimension introduced in this chapter 

can guide the measurement of variety and insight, both for big data research and smaller-

scale crowdsourcing projects. While humans, with their limited cognitive resources, prefer 

precision in collected data, so that they are easier to analyze, the future of data usage is 

machine-driven, with various automated analytics approaches that have been created. Our 

discussion of information diversity, therefore, seeks to extend traditional information 

quality measurements to cater to the need to easily process large unstructured data with no 

negative impact on our ability to determine accuracy or completeness for known and 

emergent data uses. 

Nevertheless, several studies already provide useful guidance on the different aspects 

of our proposed framework. For instance, Bonney et al. (2009), Cooper, Dickinson, 

Phillips, & Bonney (2007), and Wiggins & Crowston (2012) explore design decisions 

relating to the goal of the crowdsourcing project. Specifically, Wiggins and Crowston 

(2012) described the typologies of citizen science projects based on their goals. This 

typology was determined from the projects’ “characteristics and needs.” The result of their 

work reveals a “relationship between resources, geographic scale of projects, and the 

relative emphasis on different combinations of goals in citizen science projects.” It may 

serve as a framework, helping sponsors in their formulation of project goals. Similarly, the 
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motivation to contribute or reasons why crowd members will participate in a 

crowdsourcing project are discussed in (Lee, Crowston, Østerlund, & Miller, 2017; Nov, 

Arazy, & Anderson, 2011; Raddick et al., 2009; Rotman et al., 2012). For example, Lee et 

al.’s (2017) work showed that recruitment “messages appealing to learning, contribution 

and social proof were more effective than a message appealing to altruism” (p 227). 

Guidance on how crowdsourcing systems should be designed is also provided in 

Lukyanenko et al. (2017), and Lukyanenko, Parsons, Wiersma (2014), with Lukyanenko 

et. al. 2014 showing that “the practice of modeling information requirements in terms of 

fixed classes unnecessarily restricts the IQ of user-generated data sets” (p 669). This desing 

research sheds light on the implications of system design choices for the accuracy and 

dataset completeness of crowdsourced data. 

However, for insights pertaining to contributor recruitment, empirical and practical 

guidance are based on the assumption that a crowd of knowledgeable contributors will 

provide better quality data than a crowd of less knowledgeable contributors. Consequently, 

contributor selection is primarily based on the “… knowledge of contributing individuals” 

as this helps sponsors “feel comfortable with data quality” (Wiggins et al. 2011 p.17). 

Research and practice, therefore, favour recruiting knowledgeable contributors over less 

knowledgeable ones (Wiggins, Newman, Stevenson, & Crowston 2011; Budescu & Chen 

2014). For example, Budescu & Chen provide a strategy for testing and “eliminating poorly 

performing individuals from the crowd” by identifying experts in the crowd “who 

consistently outperform the crowd.” Nevertheless, an exclusively positive association 

between task proficiency or experience and data quality is unsubstantiated in several 
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research including Austen, Bindemann, Griffiths, & Roberts, (2016); Kallimanis et al. 

(2017); & Crall et al. (2011) which report that both knowledgeable and less knowledgeable 

contributors provide crowdsourced data that are accurate and usable. Therefore, current 

guidance on recruitment for crowdsourcing based on this assumption is at best 

questionable.  

Our focus will, therefore, be on human factors as it concerns the recruitment of crowds, 

and in the subsequent chapters of the thesis, we dive deeper into the effect of cognitive 

diversity on information diversity. We address how the type and level of knowledge 

contributors possess, and the longitudinal effect of contributor knowledge affects 

information diversity. In addition, we investigate the dependencies between information 

diversity and the traditional dimensions of information quality, particularly accuracy and 

completeness. Understanding how cognitive diversity impacts information diversity and 

quality would help inform crowdsourcers on who to recruit into their crowds, and 

researchers on how to design systems that harness the strengths and mitigate the 

weaknesses of contributors based on their level and type of knowledge. 

 

2.8 Conclusion 

In traditional organizations, decision-makers can control processes for information creation 

and management, choosing who will be allowed to provide data and how it will be used. In 

this setting, information consumers can assess the accuracy and completeness of 

contributed information (Parsons & Wand, 2014). Because the use of information is 

predetermined, it is sensible to define information quality as the fitness of the information 
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for its use, and more information can be requested when necessary. However, advances in 

web technology allow organizations access to data sources outside their control. Since the 

possible uses of data may be emergent and data collection is terminal, data is most valuable 

if it is applicable for purposes beyond the original intent at the time it is collected. 

Therefore, the quality of data is no longer based solely on its ability to meet anticipated 

requirements, but also on its ability to meet unanticipated needs. 

However, the definition and measurement of information quality have not evolved 

to reflect the change in information quality required for open information environments. 

The measurement of information quality has been guided by information consumers’ 

classifications, which implicitly use a consumer’s view of what information is needed for 

a task to determine who is recruited and how the crowdsourcing system and the task are 

designed. This measurement of information quality is targeted toward data that is suitable 

for predetermined uses. However, both conceptual modeling and data quality research 

emphasize that data are more valuable and provide more insights to users when it can be 

repurposed by different users, for both anticipated and sometimes unanticipated uses.  

Repurposable data can answer a variety of questions from the same or different 

users. It is useful for integrative crowdsourcing systems that operate in open information 

environments, pooling information from disparate, spatially, and temporally distributed 

volunteers about a phenomenon of interest to the crowdsourcer. Because the hypothesis 

motivating data collection may not be fully formed at the time of data collection, 

crowdsourcers interested in repurposability prefer rich datasets, adaptable to emerging user 

requirements and unanticipated needs. Moreover, now that data are increasingly traded and 
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purchased by different organizations as a resource, the need to estimate repurposability is 

even more pressing. 

 Repurposability is essentially what data science is about: transforming data from 

one form to answer new questions or to provide new insights for decision-making purposes. 

Therefore, we extend the measurement of information quality to cover the need for business 

insight from crowdsourced data. While the literature provides insight into how to measure 

and improve traditional dimensions of information quality, particularly accuracy and 

completeness, insights from repurposing data can give organizations competitive 

advantages. More knowledge is therefore needed about how to measure the repurposability 

of crowdsourced data. We posit that repurposability is a direct consequence of information 

diversity and improving the value of crowdsourced data implies encouraging information 

diversity. 

By including the information diversity dimension in the information quality 

dimension, information quality can be used to assess the value of data for repurposability. 

At the same time, the addition of an information diversity dimension will make 

information quality generalizable as a measure of information quality to all types of 

integrative crowdsourcing systems. The information diversity dimension will provide 

insights into the quality of crowdsourced information where traditional measures fall 

short and will encourage the design of inclusive crowdsourcing systems. 
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2.8.1 Limitations  

Four core impediments to information quality exist: (a) incompleteness, when there 

are states in the real world that are not represented in the data; (b) insufficiency, when 

several states of the real world are represented by the same attributes in the data; (c) 

meaninglessness, when data contain attributes that do not exist in the real world; and (d) 

inaccuracy, where attributes in data cannot be mapped to real-world states correctly. Based 

on ontology theory, incompleteness, insufficiency, and meaninglessness are design 

deficiencies of information, and they can lead to operational deficiencies such as 

inaccuracy. Wand and Wang describe accuracy to be a result of the user’s interpretation of 

the data. Inaccuracy results when operationalization of data are incorrect or based on a 

deficiency in the representation of states of the real world. We consider incompleteness and 

insufficiency to be variations of the same dimension, defined by missing states of the real 

world and have treated them as the same.  

We also do not address the meaninglessness dimension. We contend that if data 

collection is goal-directed, contributors will provide information about the states of the real 

world that they observe, which they consider relevant, matching the real world, and leading 

to a more faithful and detailed representation of the real world. Moreover, Nelson et al. 

(2005) argued that accuracy also means meaningfulness. Since diversity can support 

accuracy, it follows that diversity can support meaningfulness. Here, we have considered 

the dimension of meaningfulness (or the problem of meaninglessness) as self-evident.  
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68 

 How Knowledge Affects the Diversity of Crowdsourced Data 

Abstract 

Studies of information quality in crowdsourcing explore how to ensure that contributors 

can provide data that is fit for the intended use. These studies, to a large extent, proceed 

from a tacit assumption that knowledgeable crowds are better for data quality than less 

knowledgeable crowds. The question they ask regarding information quality in 

crowdsourcing centers around how to ensure crowdsourcing projects are accessible to only 

knowledgeable contributors who will provide data that is fit for some intended use.  

One recommended approach to ensure participants in a crowdsourcing task have 

requisite knowledge is to train potential contributors on the requirements of the task. 

However, several examples of crowdsourced data acquired from untrained crowds have 

provided high-quality information for decision-making that have met predetermined and 

unanticipated requirements. For example, Yelp’s data have been repurposed to track the 

spread of food-borne diseases. Similarly, data from twitter were repurposed to accurately 

predict the yield of crops. These real-world examples raise a different question: how likely 

are trained contributors to report high-quality repurposable information that can meet not 

just the anticipated requirements but also the unanticipated requirements of crowdsourcers? 

 In this chapter, we simulate a citizen science crowdsourcing task using artificial 

stimuli to test the effect of implicit and explicit training on the diversity of contributed data. 

We also investigate the effect of the level of contributors’ knowledge on the diversity of 

information they provide. Using 84 participants in a controlled laboratory experiment, we 

compared the results of trained and untrained contributors and found that untrained 

contributors reported more diverse data than trained contributors. In addition, we found that 
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implicitly trained contributors provided more diverse data than explicitly trained 

contributors. Finally, we found that knowledge is negatively associated with the reporting 

of diverse data.  

Since information diversity is an indicator of the repurposability of data, our results 

suggest that recruiting primarily trained contributors may actually be hurting the acquisition 

of repurposable data than opening up crowdsourcing projects to everyone.  

3.1  Background 

Advances in information technology and the web have provided opportunities to collect 

and access information from spatiotemporally distributed groups of people on topics of 

interest to both contributors and information consumers. Crowdsourcers tap into the 

availability and willingness of crowds to gather information that helps in decision making. 

Access to such external information is revolutionizing industry and research, and has been 

successfully used in diverse contexts for understanding customers, developing new 

products, improving service quality, and supporting scientific research (Castriotta & Di 

Guardo, 2011; Hosseini, Phalp, Taylor, & Ali, 2014; Tarrell et al., 2013; Tripathi, 

Tahmasbi, Khazanchi, & Najjar, 2014). 

However, organizations must consider the quality of data they can collect when 

leveraging undefined crowds as data sources. Unlike when organizations source data 

internally and can design their information management processes to generate high-quality 

data from known contributors, sourcing external data limits an organization’s ability to 

manage the data collection process and ensure the quality of crowdsourced information. 
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Because the level of expertise and motivation of members of the crowd that contribute data 

are typically unknown, crowdsourcers tend to recruit contributors who are knowledgeable 

in the domain of the phenomenon of interest as a mechanism for ensuring the quality of 

crowdsourced data (Wiggins & He, 2016; Wiggins et al., 2011; Surowiecki, 2005). When 

knowledgeable contributors are scarce, which is usually the case, crowdsourcers mitigate 

this scarcity by training potential contributors to attain desired levels of proficiency before 

allowing them to participate in crowdsourcing endeavours.  

However, although crowdsourcers assume that a knowledgeable contributor will 

provide higher quality data, repurposable data must be sourced from contributors with 

varied views, guided by the need for the collected data to meet “multiple different fitness 

for use requirements” (Woodall, 2017, p 11). In other words, repurposability is achievable 

when the crowdsourced data is diverse, containing information about different dimensions 

of the observed phenomena. Diverse data is data gathered from people with different 

perspectives about the phenomenon of interest, but people can share the same or similar 

perspectives (Barsalou & Sewell, 1984) through training or shared experiences (Chen, 

1990). Therefore, for crowdsourcers who seek high quality and repurposable data, pertinent 

questions arise about the use of knowledgeable contributors: a) How does training affect 

the ability to collect diverse data? b) Will seeking data diversity result in a trade-off of 

accuracy and completeness?  

Consequently, we take a step towards better understanding the effect of contributor 

knowledge on the diversity and quality of collected crowdsourced data. We consider 
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training by both explicit rules and implicit rules. Experimentally, we examine how the type 

of training provided affects the diversity of crowdsourced data collected from crowd 

members.  

At the same time, we recognize that even when knowledgeable contributors are 

available, crowdsourcers may recruit contributors based on their level of knowledge. 

Crowdsourcers may screen out potential contributors who do not have a certain level of 

education or score a specific point on a qualifying test (see Budescu & Chen, 2014). Tacit 

assumptions about the benefits of expert knowledge, rather than empirical facts, inform 

crowdsourcer expectations around the impact of contributors’ level of knowledge on the 

quality of crowdsourced data (Ogunseye & Parsons, 2016). However, two studies in the 

citizen science crowdsourcing context found that experts did not report higher quality data 

– as defined in the context of the studies – than novices (Austen, Bindemann, Griffiths, & 

Roberts, 2016; Lukyanenko, Parsons, & Wiersma, 2014).  

In addition to investigating how training contributors to become knowledgeable in 

a crowdsourcing task affects information quality, there is also a need for empirically 

validated theoretical insights into how contributors’ levels of knowledge affect the quality 

of information contributed, including the diversity of information they contribute. Our 

findings will be of benefit to crowdsourcers and developers of crowdsourcing systems who 

are interested in the repurposability of collected data, and those who make recruitment 

decisions intended to ensure the collection of high quality, diverse information. 
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3.2 Theoretical Foundation and Development of Hypotheses 

Humans acquire knowledge through an assimilation-accommodation cycle (Piaget & 

Inhelder, 1969). When we encounter a new instance of a phenomenon, we examine the 

instance, comparing it to previously encountered instances from memory. If we determine 

that the new instance is sufficiently similar to previous instances (i.e., it is a member of an 

existing class we have), we assimilate it, ascribing to the new instance our expectations 

from previous encounters with similar instances. On the contrary, if we find that the new 

instance is dissimilar to all other instances of phenomena we have previously encountered, 

we accommodate the new instance by creating a new schema in memory to store the 

attributes of the novel instance. In other words, we create a new class to store instances of 

novel phenomena.  

Classification (or categorization) is the process of assimilating and accommodating 

instances into classes. According to classification theory, when humans seek to identify an 

instance of a phenomenon of interest (entity), they consider its attributes and compare the 

observed attributes with the attributes they already know (Goldstone & Kersten, 2003; 

Harnad, 2005; Piaget & Inhelder, 1969; Rosch, 1973). The way we identify instances of 

phenomena is dependent on our knowledge of the phenomena. When there is existing 

knowledge, humans compare specific attributes of an observed phenomenon with their 

learned attributes from previous exposures to the phenomenon to draw inferences or 

classify it (Piaget & Inhelder, 1969). In contrast, when we do not have any prior knowledge 

of a phenomenon or if we do not have any relevant attributes to which to compare the entity, 
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we tend to pay attention to those attributes of the phenomenon that stand out4 (Katsuki & 

Constantinidis, 2014; Wolfe, 1994). Research findings on how infants, young children, and 

adults classify entities provide further evidence for how we allocate attention in the 

presence and absence of relevant knowledge. Infants (six to eight months), and young 

children who lack prior knowledge, tend to pay attention to more of an instance’s attributes 

than adults, who pay attention to a few specific attributes because of their familiarity with 

the instances (Best, Yim, & Sloutsky, 2013; Gelman & Markman, 1986; Kloos & Sloutsky, 

2008). This has also been indicated in adults who visit places for the first time and try to 

absorb as much of the new environment as they can (Gopnik, 2009).  

Classification is also how we manage our limited cognitive resources (Goldstone & 

Kersten, 2003). The amount of sensory information that exists in typical human 

environments is significantly higher than what humans can process. Because of our limited 

cognitive resources, we naturally pay selective attention to particular entities and critical 

attributes of those entities that help in classifying them (Bjorklund and Harnishfeger, 1990). 

As we attend to stimuli (or a few attributes of a stimulus) for classification purposes, we 

ignore or suppress other stimuli we do not use (Prat-Ortega & de la Rocha, 2018). This 

phenomenon is called selective attention – “the differential processing of simultaneous 

sources of information” (Johnston & Dark, 1986, p. 44). There are two broad paradigms of 

selective attention: early selection and late selection (Awh, Vogel, & Oh, 2006; Huang-

Pollock, Carr, & Nigg, 2002; Johnston & Dark, 1986). Early selection theories argue that 

                                                 

4 “attributes” used here can be replaced by stimulus or location (Katsuki & Constantinidis, 2014)  
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sensory information about a stimulus are held in a register, where they undergo pre-

attentive analysis based on any existing knowledge the contributor has about the stimulus. 

Following this analysis, selected information passes a fixed cognitive channel into 

consciousness, where semantic analysis takes place, while information that is not selected 

is filtered out (Broadbent, 1958; Lachter, Forster, & Ruthruff, 2004). 

In contrast, late selection theories argue that selectively attending to aspects of an 

information source takes place at a later stage of information processing. Attention 

allocation takes place after a message has been semantically analyzed, and during the 

response preparation stage (Deutsch & Deutsch, 1963). Proponents of the late-stage 

selection paradigm argue that we choose aspects of information about a stimulus we attend 

to based on our existing knowledge of the stimulus (Awh et al., 2006).  

Both the early and late-stage theoretical perspectives agree that the existence of 

prior knowledge shapes attention allocation. When attributes that have been committed to 

memory (i.e., have become a part of our knowledge-base) are used to guide attention, then 

attention is directed from the top-down or is knowledge-driven, i.e., the “internal guidance 

of attention based on prior knowledge…” (Katsuki & Constantinidis, 2014, p 509). 

Similarly, Buschman and Miller (2007, p. 1860) described top-down attention allocation as 

depending on “volitional shifts of attention,” which are “derived from knowledge about the 

current task (e.g., finding your lost keys).” 

On the other hand, if we have not previously committed attributes about an entity 

to memory, or we have a first-time encounter with an entity, the attributes of the entity 
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solely direct our attention, and thus, our attentional allocation is bottom-up or stimulus-

driven. In bottom-up attentional allocation, “target stimuli ‘pop out’ if they differ 

sufficiently from their background in terms of features such as colour or orientation” 

(Katsuki & Constantinidis, 2014, p 509). Bottom-up attention is “automatic” and driven by 

“properties inherent in stimuli … (e.g., a flashing fire alarm)” i.e., the salience of an entity’s 

attributes can direct our attention (Buschman & Miller, 2007).  

Specific factors that affect bottom-up and top-down attention allocation identified 

in the literature (Wickens & McCarley, 2008) are: 

1. Salience: Stimuli or attributes of stimuli that are prominent in a contributor’s visual 

space can capture the contributor’s attention and are thus said to be salient. 

Attributes of stimuli, such as their color, size, and shape, affect their capacity to 

attract an observer’s attention (Theeuwes, 2010) and are the default attention 

capture mechanism when the contributor has no prior knowledge or insufficient 

prior knowledge guiding their attention allocation (Buschman & Miller, 2007; 

Katsuki & Constantinidis, 2014). 

2. Effort: Some properties of the visual field and stimuli determine how easy it is for 

stimuli to capture attention. These properties include the organization of stimuli in 

the visual field and the need to either assimilate or accommodate an observed entity. 

Accommodating an entity may be easy, like in the case where an observer has only 

seen the entity for the first time. It may also be taxing, requiring the scrutinizing of 

an entity’s attributes to identify how they differ from known attributes. A lesser 
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effort is required to focus on the similarities between the attributes of a stimulus 

and those of previously observed stimuli stored in memory than is needed to focus 

on differences. Also, less effort is required to focus on salient attributes, or just 

familiar attributes, than to search for attributes that may lead to accommodation 

(Wickens & McCarley, 2008).  

3. Expectancy: If contributors have been cued either through experience or explicit 

instructions to expect specific attributes to be present in an observed entity, this 

expectation will inform their attentional allocation. Expectancy is, therefore, the 

provision of guiding information to contributors, which may be a description of the 

expected entity or the context of an identification task that influences the attentional 

distribution of contributors. 

4. Value: This is the utility that can be derived or lost from knowing the attributes that 

are necessary to identify a stimulus. Contributors ascribe value to diagnostic 

attributes (i.e., attributes that help classify an entity, and efficiently perform an 

identification task).  

Expectancy and value form the top-down mental factors that drive attention 

allocation, whereas effort and salience are bottom-up attentional allocation 

influencers. Bottom-up attention allocation is stimulus-driven, while top-down 

attention allocation is knowledge-driven.  
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Figure 3.1: Factors affecting contributed information 
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Figure 3.1 illustrates that attentional allocation can be bottom-up, top-down, or a 

combination of the two and determines the type of information that crowds contribute. 

Factors responsible for top-down attention allocation would manifest in contributors who 

have been trained explicitly on the attributes needed to classify an entity. On the one hand, 

explicit training – teaching contributors attributes and rules about attributes (i.e., inclusion 

rules) that can be used to identify an entity – would cause trained contributors to look out 

for familiar attributes when they observe an entity for the purpose or classifying it. On the 

other hand, factors responsible for bottom-up attention distribution such as salience and 

effort could lead to the automatic formation of inclusion rules by contributors who are 

exposed to multiple instances of a stimulus. Such exposure to instances of a stimulus would 

allow contributors to derive inclusion rules implicitly. Implicit training thus implies 

teaching contributors inclusion rules by continued exposure to instances of a stimulus and 

allowing them to learn through inferencing leading to an autonomously determined 

inclusion rule5.  

 When crowdsourcers who are interested in ensuring the collection of quality data 

train contributors implicitly, the contributors are tasked with learning unsupervised and 

inferring their own classification rules, whereas, the learning of explicitly trained 

contributors is rule-based. Nevertheless, whether explicit or implicit, training helps 

crowdsourcers transfer inclusion rules to contributors because humans can learn the 

                                                 

5 Implicit training is similar to unsupervised learning (Kloos & Sloutsky, 2008) and inference learning 

(Hoffman & Rehder, 2010) 
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attributes other people consider pertinent and perform classification tasks using these 

learned attributes (Chen, 1990). Barsalou and Sewell (1984) show this ability for humans 

to learn and use the schema of others in experiments that revealed that humans with 

diverse social or cognitive backgrounds can adopt points of view other than their own and 

accurately provide data according to the owners of the adopted point of view. For 

instance, students were able to accurately answer questions about professors like the type 

of alcoholic beverages that professors drink, their athletic activities, birthday presents, 

cars, famous people admired, important goals in life, and people to get advice from. 

Students learned the schema of professors by observing their professors; contributors can 

learn from crowdsourcers and adopt their views through either explicit or training. 

GalaxyZoo exemplifies the use of training to share crowdsourcers’ inclusion rules with 

contributors. The GalaxyZoo project trains potential contributors on how to identify stars 

and galaxies and tests them before participation.  

 Nonetheless, since explicit and implicit training requires attention to be allocated in 

different ways, the resulting contributed information will differ between contributors who 

have been exposed to these two training approaches. Training contributors to perform 

crowdsourcing tasks may, therefore, have unintended consequences for the type of data 

they contribute. Unlike trained contributors, the salience of an observed entity’s attributes 

directs the attention of untrained contributors. The information provided by untrained 

contributors who are unconstrained by inclusion rules would, therefore, differ from the 

information provided by explicitly and implicitly trained contributors.  
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 When explicitly trained, contributors in a crowd are expected to focus on (i.e., 

value) the same set of diagnostic attributes. We expect trained contributors will direct 

attention based on their knowledge of diagnostic attributes rather than attribute salience. 

On the other hand, we expect the salience of observed attributes guides the allocation of 

attention for implicitly trained contributors. Because the amount of available cognitive 

resources of contributors differ, the number of attributes implicitly trained contributors 

consider salient, and the amount of effort they put into searching out and observing 

attributes will differ. Similarly, untrained contributors will also commit different amounts 

of cognitive resources to searching-out and processing attributes. We, therefore, seek to 

understand how training or the lack thereof, affects the quality of information reported in 

crowdsourcing tasks.  

 Using the theory of selective attention, we focus on three themes of hypotheses: (a) 

we hypothesize about how training will affect information diversity. To more fully explore 

the predicted effect of knowledge on information diversity, we develop hypotheses about 

key attribute types that indicate diversity in contributor perspective. These information 

diversity components include the number of mutual and behaviour attributes reported and 

the number of attributes reported about the secondary entities present in a contributor’s 

visual space. (b) we hypothesize about how training will affect the reporting of variability 

in observed entities. And finally (c), we hypothesize about the effect of training on 

information quality dimensions, including information diversity. We also explore how 

these dimensions relate to one another. 
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3.2.1  The Effect of Training on Information Diversity 

How contributors acquire the knowledge needed to classify entities they observe will affect 

the diversity of data they report about the entity. Explicit training equips contributors to 

apply top-down attentional control. Explicit training leads contributors to expect specific 

attributes of a stimulus to be present when they observe the stimulus and helps them value 

or prioritize these expected attributes. Being exposed to explicit classification rules will 

lead contributors to focus on diagnostic attributes (i.e., attributes that help in classifying the 

entity) (Hoffman & Rehder, 2010).  

In contrast, implicit training leads contributors to attend to as many salient attributes 

as possible and may lead to more attributes being used in inclusion rules than would be 

used by explicitly trained contributors. When crowd members are required to report 

diagnostic attributes, we expect implicitly trained contributors to report salient attributes in 

their self-determined inclusion rules. At the same time, contributors who have learned the 

same explicit rules would focus mainly on these rules and therefore report similar 

diagnostic attributes. Nonetheless, the attributes of an entity considered salient by different 

contributors should be highly similar because salience of attributes is inherent in the entity 

(Buschman & Miller, 2007; Katsuki & Constantinidis, 2014). In cases where inclusion rules 

consist of salient attributes of an entity, we predict that even though implicitly trained 

contributors formulate inclusion rules themselves, they would report a similar number of 

diagnostic attributes, i.e., attributes that constitute inclusion rules, about an observed entity 

as explicitly trained. 
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In the same vein, untrained contributors are expected to apply a bottom-up, stimuli-

driven approach to attention allocation without a goal in mind or any prior knowledge of 

the diagnostic attributes. Contributors who have not received any cues about the task or 

explicit rules are therefore expected to be more likely to focus on the most salient attributes 

of the primary stimulus and other stimuli in their field of vision (Itti & Koch, 2000; Niebur 

& Koch, 1996; Wolfe, 1994). While not all diagnostic attributes may be salient, when most 

diagnostic attributes are salient, untrained contributors are therefore expected to also report 

similar numbers of diagnostic attributes as the implicitly and explicitly trained contributors. 

There will be no significant difference in the number of diagnostic attributes reported by 

untrained, implicitly trained, and explicitly trained contributors.  

H1a: Explicitly trained contributors will report a similar number of diagnostic 

attributes of a target entity as implicitly trained contributors and untrained 

contributors  

Contributors who have been trained to perform a specific task have a greater tendency than 

untrained contributors to attend selectively to attributes that fit their training and ignore 

other aspects of the phenomenon under consideration (Hoffman & Rehder, 2010). 

Knowledge of the diagnostic attributes of an entity helps to reduce the cognitive resources 

expended on identification tasks. Hence, it is more cognitively economical for an explicitly 

trained contributor to focus on these attributes when observing an entity and ignore other 

non-diagnostic attributes. Implicitly trained contributors would also be expected to 

decipher which attributes of the target entity are diagnostic and which are not by identifying 

and learning which attributes repeatedly occur in all the instances of a stimulus to which 

they are exposed. This is possible because people can learn to classify entities unsupervised 
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by studying the statistical frequency of entity attributes from repeated exposure to stimuli 

(Barlow, 1989; Kloos & Sloutsky, 2008). This process of identifying diagnostic attributes 

for implicitly trained contributors would entail first paying attention to the salient attributes 

of the entity and then revising the list of relevant attributes with each exposure to the 

stimulus until they are confident about the valuable attributes and those that are irrelevant 

to a task. The extent to which implicitly trained contributors have learned diagnostic 

attributes will be evident in the accuracy of the information they provide. Notwithstanding 

this, implicitly trained contributors, who use a bottom-up approach to arrive at their top-

down knowledge, will attend to more attributes than explicitly trained contributors. 

Implicitly trained contributors will, therefore, be more conversant with the non-diagnostic 

attributes of a primary entity than explicitly trained contributors.  

Conversely, when not implicitly or explicitly trained, contributors will not 

selectively attend to specific attributes but will instead observe salient attributes. As 

explicitly and implicitly trained crowd members use the knowledge from their training, we 

posit that they will ignore attributes of the stimulus that are outside the scope of their 

inclusion rules. However, implicitly trained contributors have a bottom-up approach to 

attentional allocation and have been cued on the objectives of the task. They will, therefore, 

pay attention to more of a primary entity’s attributes, whether diagnostic or not. Implicitly 

trained contributors will, therefore, use a top-down approach but with a broader set of 

attributes, including non-diagnostic attributes, at their disposal for deciding class 

membership. Untrained contributors will also use a bottom-up stimulus-driven approach to 

attention allocation.  
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H1b: Untrained contributors will report fewer non-diagnostic attributes of a target 

entity than implicitly trained contributors but more non-diagnostic attributes than 

explicitly trained contributors 

Trained contributors who are sensitized to the goals of a crowdsourced task and the 

attributes of the entity that are relevant to successfully performing a classification task, will 

commit their cognitive resources to determining whether a target stimulus possesses these 

attributes of the target stimulus and ignore other stimuli present in their visual field. Their 

attention is, therefore, goal-directed, aimed at expected and valuable diagnostic attributes. 

Implicitly trained contributors will differ from explicitly trained contributors in their ability 

to pay attention to the attributes of other stimuli in their visual field. Implicitly trained 

contributors will be more inclined to distribute their attention among multiple stimuli and 

attributes than explicitly trained contributors.  

However, untrained contributors will have a greater tendency to pay attention to 

other stimuli when they are present in the contributor’s field of vision because they are less 

task-directed and are more salience-driven than implicitly trained contributors. We expect 

that if any other stimuli in the contributor’s visual field are salient, then the untrained 

contributor who has not been primed to focus on any stimulus would report more of these 

stimuli’ attributes than other groups. Untrained contributors are not sensitized to attributes 

needed to perform a classification task, what the task is about, or what expected, and 

acceptable responses are. They are more likely to pay attention to salient attributes and will 

report information about these. Untrained contributors are therefore expected to provide 

more diverse data about all entities in a visual field than trained contributors. 
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H1c: Untrained contributors will report more data about secondary stimuli 

attributes than implicitly trained contributors who will, in turn, report more of these 

attributes than explicitly trained contributors  

Altogether, trained contributors will know more about the diagnostic attribute of the 

primary entity and will accurately report more of these attributes than untrained 

contributors. Whereas, untrained contributors will report more attributes in general about 

every entity in their visual field. Untrained contributors would, therefore, show less 

selective attention, reporting more diverse data in general than trained contributors. Again, 

because of their lower selective attention, implicitly trained contributors will report more 

diverse data than explicitly trained contributors who will show more selective attention to 

mainly the diagnostic attributes of a target stimulus than other attributes of stimuli present 

in their visual field. 

Based on these arguments, we hypothesize:  

H1d: Untrained contributors will report more diverse data than implicitly trained 

contributors who in turn will report more diverse data than explicitly trained 

contributors  

3.2.2 The Effect of Training on the Reporting of Variability in Instances of Stimulus 

Attributes of instances of a phenomenon can vary from one instance of the phenomenon. 

This variability may be because of differences in the number of attributes present from one 

instance to another or differences in particular attributes from one instance of an entity to 

another.  

Training can sensitize or desensitize contributors to variability in attributes. In 

addition, training can make contributors selectively attend to a specific set of attributes 
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improving their capacity to notice and report variability in instances of an entity based on 

those attributes. On the other hand, inattentional blindness or change blindness can limit 

the reporting of variability in the observed instances of an entity in trained contributors. 

Inattentional blindness occurs when a contributor fails to see some visible attributes of an 

entity in their visual field because they are selectively attending to other attributes of the 

entity (Simons, 2000). Trained contributors who attend to only attributes they were exposed 

to during their training may not report information about the presence or absence of other 

attributes (or stimuli) not covered in their training. Similarly, change blindness is said to 

occur when participants do not notice changes to attributes or stimuli because they are 

attending to other attributes or stimuli (Rensink, O’Regan, & Clark, 1997).  

The difference between change blindness and inattentional blindness is that for 

inattentional blindness, the contributor fails to attend to an attribute so they cannot notice 

its absence or presence in subsequent instances of the stimulus (Mack, 2003). For change 

blindness, the contributor may have attended to the attribute but have not permanently 

committed the information to memory, and so would notice if the attribute is missing but 

would not notice if the attribute has been modified. In other words, “[c]hanges to attended 

objects frequently go unnoticed (Wheeler & Treisman, 2002; Williams & Simons, 2000) 

particularly when the changes are unexpected” (Simons & Rensink, 2005, p17). This is 

because even though contributors may attend to an object, only the attributes of that object 

needed for their tasks are committed to consciousness (Simons & Rensink, 2005; Triesch, 

Ballard, Hayhoe, & Sullivan, 2003). 
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Trained contributors focus on diagnostic attributes. Therefore, there is a propensity 

to report variability that involves these diagnostic attributes. This effect is stronger for 

explicitly trained contributors than implicitly trained contributors. Explicitly trained 

contributors will not suffer inattentional or change blindness when the attributes involved 

are diagnostic. On the other hand, explicitly trained contributors will be prone to these types 

of blindness when the attributes involved are non-diagnostic or concern other stimuli in 

their visual field because they will mainly selectively attend to diagnostic attributes of the 

target stimulus. However, unlike explicitly trained contributors, implicitly trained 

contributors will report more variability caused by non-diagnostic attributes. They will also 

notice more variability affecting diagnostic attributes than untrained contributors. This is 

because implicitly trained contributors will distribute their attention between diagnostic and 

non-diagnostic attributes of the target stimulus as they learn diagnostic attributes from 

ground-up.  

H2a: Explicitly trained contributors will report more variability involving the 

diagnostic attributes of a target stimulus than will implicitly trained contributors 

and untrained contributors. 

H2b: Implicitly trained contributors will report more variability involving the non-

diagnostic attributes of a target stimulus than will explicitly trained contributors 

and untrained contributors. 

Untrained contributors will be most susceptible to change and inattentional 

blindness as they have not learned which attributes are pertinent to the classification task 

or which attributes to expect. They may attend to different attributes at the same time 

because they are not selectively attending to any attributes, so do not commit any attributes 
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to memory. It is, therefore, highly probable that the differences in the states of attributes 

from one instance of a stimulus to another will go unreported by untrained contributors.  

3.2.3  The Effect of Training on Information Quality Dimensions 

Crowdsourcers train contributors to ensure they provide accurate, complete, or both 

accurate and complete data (Wiggins et al., 2011). Accuracy and completeness are the two 

crucial dimensions of information quality most pertinent to information consumers (Wang 

& Strong, 1995). While training may help contributors acquire relevant knowledge for the 

crowdsourcing task, crowdsourcers also view the levels of knowledge possessed by 

contributors as relevant to information quality (Gura, 2013; Wiggins, Newman, Stevenson, 

& Crowston, 2011). Because information diversity can be a desirable outcome of an 

information crowdsourcing process, there is a need to understand how information diversity 

relates to accuracy and completeness in different training conditions.  

Accuracy is an operation on the number of attributes correctly analyzed by 

contributors, that is, contributors perceive the attributes of an entity and analyze those 

attributes matching it to diagnostic attributes in their memory to correctly classify the 

entity. When this observation of attributes, analyses, and pattern matching (i.e., operation 

on attributes) is successful, the contributor will be accurate. Otherwise, the contributor will 

report inaccurate data. Accuracy is, therefore, evidenced by the number of correct 

identifications made about an entity (Wand & Wang 1996). Explicitly trained contributors 

will provide more accurate classifications than implicitly trained contributors. We do not 

expect untrained contributors to be able to classify entities as they have no knowledge to 

guide such a classification. Nonetheless, we already know from prior research that people 
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can accurately report the attributes of entities, whether they are trained or not (Lukyanenko 

et al., 2014). 

Explicitly trained contributors will do better than implicitly trained contributors in 

the classification task because of their possession of specific rules to guide their inclusion 

and exclusion of a stimulus from the target category. Implicitly trained contributors arrive 

at an inclusion rule guided by salience and impeded by the amount of cognitive effort 

required to elicit the right sets of inclusion rules. They may or may not elicit the correct 

rule or the complete set of diagnostic attributes needed to classify a stimulus and will, 

therefore, be less accurate than explicitly trained contributors. 

H3a: Explicitly trained contributors would report more accurate data than 

implicitly trained contributors 

Completeness has been defined in the literature as the presence of information about an 

entity that is sufficient for a particular use (Nelson et al., 2005). Completeness includes the 

breadth and depth of information (or attributes) reported about an entity (Wang & Strong, 

1996). Breadth refers to the number of unique attributes reported about a stimulus, while 

the depth refers to the amount of information provided about each attribute. However, 

completeness is contextual, depending on the crowdsourcing task. Information that is 

complete in the context of one task may not be complete for another task (Wang & Strong, 

1996).  

We predict that the completeness of attributes reported in crowdsourced information 

will be affected by top-down attentional allocation such that explicitly trained contributors 

will focus on the diagnostic attributes to which they have been introduced and ignore 
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attributes that are not diagnostic, providing incomplete information about the observed 

stimuli. Implicitly trained contributors will have used a bottom-up approach to learn 

attributes during training; thus, they would have attended to non-diagnostic attributes as 

well as diagnostic attributes of the primary entity. Therefore, even though their attention 

will be allocated top-down during a classification task, the attributes they have attended to 

and committed to memory would include some of the non-diagnostic attributes they have 

previously been exposed to. Implicitly trained contributors will, therefore, report more 

complete data about the target entity than explicitly trained contributors. 

At the same time, untrained contributors have not had the opportunity to learn about 

the task or which entity is the primary entity and will distribute their attention broadly 

across all salient entities in the visual field, including the salient attributes of secondary 

entities. Why we expect untrained contributors to report more attributes in general than 

implicitly or explicitly trained contributors, the number of attributes they report per 

attribute type (e.g., diagnostic and non-diagnostic attributes) for the target entity will be 

lower than some of the trained contributors as they trade-off focusing on the target entity 

alone for focusing on all the entities in their visual field. They will, therefore, report fewer 

attributes of the target entity, whether diagnostic or non-diagnostic, than contributors who 

have learned to selectively attend to a particular attribute type. Consequently, we predict 

the following: 

H3b: Implicitly trained contributors will report more complete data about a stimulus 

than untrained and explicitly trained contributors 
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Beyond the differences in accuracy between explicitly trained and implicitly trained 

contributors, accuracy can also be used to estimate contributors’ level of knowledge of a 

crowdsourcing task. That is, accuracy can be used to assess a contributor’s expertise, 

competence, and familiarity with a task, all of which have been used to operationalize 

“level of knowledge” in the literature (Schultze & Leidner, 2002; Stein, 1992). 

Performance-based assessment of level of knowledge such as the number of accurate 

classification reported is a more reliable measure of a contributor’s knowledge than 

subjective methods such as self-reporting (Clemen, 2008; Davis-Stober, Budescu, Dana, 

& Broomell, 2014; Lin & Cheng, 2009, Bouillard, White, Jackson, Austen, & Schroeder, 

2019), 

The ability to learn rules that help classify by selectively attending to attributes of 

a stimulus comes with development and distinguishes adults from children. Experiments 

conducted by Best, Yim, & Sloutsky (2013), comparing the ability of infants and adults to 

form inclusion rules and selectively attend to attributes of instances based on such rules, 

show that infants do not have the capacity for selective attention. Infants reason about 

classes by observing all the features of individual instances without any a priori class 

inclusion rules (Gelman, Collman, & Maccoby, 1986). We contend they are naturally 

comparable to individuals who have low levels of knowledge about a task. Like infants, 

non-experts also lack a priori class-forming rules. Infants can, therefore, help us understand 

how non-experts and “expert amateurs” – people with incomplete knowledge – perceive 

instances (Keil, 2011; Kloos & Sloutsky, 2008). Gopnik explained (in an interview 

available at bigthink.com) from her research findings that adults can “functionally … tune 
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in into the mental advantages infants have” when they are exposed to something new to 

them, for which they do not have a previous schema. She states:  

“… going to a new place is an example of a situation in which you put 

yourself in the position of a baby. So if I go to Beijing for the first time, 

everything around me is brand new, everything is different. I'm soaking up 

lots of information at once, about everything going on. The doors and the 

tables and the way people look and everything about the place is new”.  

We posit that a non-expert contributors’ exposure to an instance in a citizen science 

project is also an example of a situation that activates the default bottom-up attentional 

allocation. Conversely, the tendency of adults to employ rule-based classification can 

help us understand knowledgeable contributors and expect them to selectively attend to a 

target stimulus and report only aspects of the stimulus that is related to their existing 

knowledge. Rule-based classification allows knowledgeable contributors to focus on 

relevant features for identifying instances of classes, producing cognitive economy 

(efficiency of classification). Thus, they are less likely to attend to non-diagnostic 

attributes than will novices and will report less non-diagnostic information and less 

secondary entity information. The more knowledgeable a contributor is about a 

crowdsourcing task, evidenced by their level of accuracy, the lesser the diversity of the 

data they will report.  

Therefore, when crowdsourcers are interested in traditional information quality, 

data contributors may tradeoff information diversity for accuracy as they selectively attend 

to only attributes in their inclusion rules at the expense of all other non-diagnostic attributes 
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and attributes describing the behaviour of the entity. On the other hand, the more complete 

the data a contributor reports are, the higher their tendency to report diverse data. 

Contributors who report complete data can distribute their attention to non-diagnostic 

attributes and secondary entity attributes. Thus, contributors who report complete data will 

most likely be contributors who are not strongly affected by selective attention and do not 

only focus on diagnostic attributes. When contributors have been trained, contributors who 

do not apply selective attention would be mostly less knowledgeable contributors.  

H3c: Information diversity will be negatively associated with accuracy while being 

positively related to completeness across the implicitly trained and explicitly 

trained groups 

3.3 Study Design 

We designed an experiment in the context of citizen science using artificial stimuli. 

Citizen science is a “partnership between volunteers and scientists to address research 

questions” (Crall et al., 2011, p. 433) usually culminating in citizens assisting with data 

collection and/or analysis, defining the research question, or even designing a study while 

gaining scientific knowledge through their involvement in the research. Wiggins et al. 

(2011, p. 17) argue that “most [citizen science] projects show greater concern over the 

lack of contributor expertise than the lack of analysis methods suited to the type of data 

generated in citizen science.” Many citizen science projects, therefore, seek 

knowledgeable contributors and can train contributors to acquire the desired level of 

knowledge as a means of ensuring data quality. 

The target and distractor artificial stimuli used in this study are called tyrans and 

non-tyrans, respectively. These stimuli were designed following Kloos and Sloutsky’s 
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(2008) artificial stimuli. Tyrans are a class (species) of artificial insects whose members 

meet an inclusion rule (a set of attributes and values of these attributes). Stimuli that do 

not meet this rule are non-tyrans. The inclusion rule is that tyrans have a short tail, two or 

three buttons on their light blue bodies, blue wings, and either one or two rings on each 

blue wing. Non-tyrans may look like tyrans but will fail at least one of these 

requirements. Each image was presented to participants in Powerpoint Slides. Figure 3.2 

shows a sample tyran and a sample non-tyran used in the experiment.  

We tested the materials with 12 students from the Department of Biology who are 

familiar with observing, classifying, and reporting organisms. We tested for the suitability 

of the prompt to elicit unbiased responses from contributors. We found that asking 

contributors a non-leading question like “what do you see?” was less biasing than asking 

contributors to identify the entity they have observed. So we used the prompt “What do you 

see?” in this study. We also tested for the complexity of the task and the ease of learning 

the inclusion rule. We carried out another pretest to examine the effect of changes made 

based on our initial pretest. The participants in the second pretest were fifteen business 

students who participated for course credit. All participants recorded their sightings on an 

answer sheet. Based on our findings from the pretests described in Appendix A, we set the 

display time for each image presented to participants to forty seconds. We also modified 

the inclusion rule to consist of five of the seven attributes of the target entity. The complete 

experimental material is available in Appendix B.  
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Tyran. Follows the inclusion rule: Two blue wings, 

short tail, light blue body, two or three buttons on the 

light blue body, and one or two rings on each blue 

wing 

Non-tyran because it has three rings on each 

wing. The number of legs is not diagnostic 

Figure 3.2: Sample Tyran and Non-Tyran Images 

  



 

96 

Several variations of tyrans and non-tyrans were created to test each of the three 

hypotheses specifically. We presented sixteen images (a mixture of tyrans and non-tyrans) 

to participants. All sixteen images test the capacity of contributors to report accurate and 

diverse information. However, six images were selected to be examined for variations of 

diagnostic attributes and non-diagnostic attributes – three for each attribute type. For 

example, the antennae, even though non-diagnostic, are shorter in some of the images of 

tyrans presented than the ones presented in the training/orientation phase of the experiment. 

The presence of patterns on the wings of some of the tyrans, the number and shape of 

antennae, and the number of legs on the insect are additional manipulations present in the 

images.  

 

  

Tyran (two-lobed antennae and shorter wings) 

Here a change to a non-diagnostic attribute has occurred 

Tyran (shorter wings and different coloured tail) 

Here a change to a diagnostic attribute has occurred 

Figure 3.3: Variations in Diagnostic and Non-Diagnostic Attributes 
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Four slides containing catch items were placed intermittently among the test item 

slides (tyran and non-tyran insects) to check if participants paid attention and were alert to 

the experiment. The catch items were different shapes/coloured stimuli that are not insects, 

and the participant was expected to correctly report them as non-tyrans or provide specific 

descriptions of their attributes. The image slides were presented in a non-randomized order 

to all groups. 

3.3.1 Participants 

After approval from the University’s Ethics Review Board, 93 participants recruited for the 

study were assigned randomly to 3 groups: untrained, implicitly trained, and explicitly 

trained groups. Upon preliminary examination, one report was excluded from the implicitly 

trained group for incompleteness and another report for inaccurate reporting of catch item. 

Two other reports were excluded from the untrained group for inaccurate reporting of catch 

items and one for illegibility. To make the number of reports equal across the groups, we 

excluded the last report from the implicitly trained group and the last three reports from the 

explicitly trained group, leaving a total of 84 participants across the three groups whose 

reports were used for our analysis.  

Consequently, each group had 28 participants who were all students of Memorial 

University of Newfoundland. Fourteen of the students participated for donations to their 

class graduation. In addition to these fourteen students, ten students participated solely for 

the chance to win one of two $100 gift cards. Sixty students participated for course credit. 

Thirty-six of the participants were male, and forty-eight were female. 
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Participants in the explicitly trained group were provided with an inclusion rule with 

which to classify stimuli as either tyrans or non-tyrans. They went through a training phase 

in which they were taught the rule and shown five sample tyrans to allow them to become 

familiar with applying the criteria in the classification task. Participants were also tested on 

their knowledge and received feedback on their ability to identify tyrans. This was achieved 

by presenting them with images and verbally inquiring if they thought it was a tyran or not, 

and why. After they provided their answers, we showed them the correct response and 

explained how they satisfied the inclusion rule. 

The implicitly trained group was briefed on the task to be performed and shown the 

same five target stimuli used to teach the explicitly trained group, to allow them to infer 

the inclusion criteria. However, we did not provide explicit rules to this group, nor did we 

give them feedback on their ability to determine if a stimulus is a tyran or not. Also, we did 

not show the Untrained Group any sample images. However, like the other groups, they 

were informed that we were interested in examining how people report things. More 

information about the experimental procedure is presented in Appendix B. 

3.4 Results 

Two members of the Thesis Supervisory Committee and I developed the coding scheme 

that accounts for attributes of the target entity and attributes of other stimuli reported by 

the contributor. The objective of the coding scheme is to help measure contributors’ 

degree of selective attention due to their treatment by identifying which entity attributes 
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they report and which they ignore. The attributes we coded for are presented in Table 3.1. 

We counted the number of attributes reported about the stimuli in the presented images.  

We used a one-way analysis of variance (ANOVA) and Tukey’s HSD6 test for 

post-hoc comparison of the group averages (excluding the catch item images used for 

screening purposes only) to compare the variables described in Table 3.1 below, across 

the groups. 

  

                                                 

6 Tukey’s Honestly Significant Difference (Tukey’s HSD) corrects for multiple comparisons (Homack, 

2001) 
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 Table 3.1: Variables coded for in contributed data 

Codes Description 

Accuracy Accuracy of primary entity (tyran or non-tyran) 

Diagnostic_Attr Number of primary entity diagnostic attributes mentioned 

Diagnostic_Values The number of values reported for each diagnostic attribute of the primary entity. i.e., the 

amount of information reported for each attribute. E.g., values for the diagnostic attribute 

blue wings may be “short,” or “curvy.”  

Non-diagnostic_Attr Number of primary entity non-diagnostic attributes mentioned 

Non-diagnostic_Values Number of attribute values for non-diagnostic attributes (e.g., the colour of the tail, 

where the presence of a tail is a diagnostic attribute, and length of the tail is a diagnostic 

value, but the colour of the tail is a non-diagnostic attribute value even though the tail is 

diagnostic) 

Behavior_Attr Entity behaviour: descriptions provided for the behaviour or perceived activity of the 

entity 

Mutual_Attr Entity mutual attribute: descriptions provided for the relation of the primary entity in 

terms of other entities, including its environment 

Secondary_Ent Number of secondary entities provided 

Secondary_Ent_Attr Secondary entity attribute (attributes of secondary entities) 

Secondary_Ent_Value Secondary entity attribute value 

Secondary_Ent_Mutual Secondary entity mutual attribute: description of the relationship between secondary 

entities  

Secondary_Ent_Behavior Number of descriptors of secondary entity behaviour reported  

Diagnostic_Attr_Variance Variability in diagnostic attributes reported 

Non-

Diagnostic_Attr_Variance 

Variability in non-diagnostic attributes reported 
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The components of information diversity are attributes of primary entities and secondary 

entities present in the visual field (presented image) of the contributor. As depicted in 

Figure 3.4, each image has one primary entity (except in catch images used to screen out 

inattentive participants), and either no secondary entity or one or more secondary entities. 

Salient attributes of a primary entity that can be used to classify it as a tyran or non-tyran 

are diagnostic attributes. Other salient or non-salient attributes of an entity that are not 

important for classification are non-diagnostic attributes. Also, mutual attributes and 

behavioural attributes of an entity can be diagnostic attributes or non-diagnostic. For 

instance, the statement that the female Aedes egypti mosquito swims in water may help in 

the classification of the insect as male or female, but swimming, even though diagnostic 

is not an attribute that is a part of the features inherent in the mosquito’s body.  

However, in this study, all mutual and behaviour attributes are non-diagnostic. 

We, therefore, have two categories of non-diagnostic attributes – non-diagnostic attributes 

that are inherent in the stimulus (simply referred to as non-diagnostic_attr in this thesis) 

and other non-diagnostic attributes not inherent in the stimulus, e.g., mutual and 

behaviour attributes. Secondary entities are common organisms like birds and insects, and 

we do not separate their inherent attributes into diagnostic and non-diagnostic attributes. 

To ensure the results of our analyses are not due to the inherent differences in the 

images presented to participants, we standardized the data for each variable across the 

presented images using the Robust Scaler. The Robust Scaler is a standardization and 

variance scaling technique provided in the Scikit-learn machine learning package of 

python, and it is the most accommodating of outliers since it uses data in the 1st quartile 
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and 3rd quartile to center and scale the entire data set, extremely high values do not have 

any effect on the results (www.scikit-learn.org). 

 

3.4.1 Results for the Effect of Training on Information Diversity (H1) 

To determine the difference in diversity between participants who have received different 

types of training about the entity, we compared the number of diagnostic attributes 

(Diagnostic_Attr) and non-diagnostic attributes of the primary entity (Non-

diagnostic_Attr) between the treatment conditions. These comparisons address H1, i.e., 

there will be no significant difference in the number of diagnostic attributes reported 

between trained and untrained contributors; and H2, i.e., untrained contributors will report 

fewer non-diagnostic attributes of a target entity than implicitly trained contributors but 

more non-diagnostic attributes than explicitly trained contributors. We also compared other 

non-diagnostic attributes, such as attributes describing the state of the primary entity 

(Behavior_Attr) and attributes describing the primary entity’s interaction with other entities 

or its environment (Mutual_Attr), for each image presented to the participants.  The results 

are presented in Tables 3.2 and 3.3.  

  

http://www.scikit-learn.org/
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Table 3.2: ANOVA Results for Primary Entity Attributes* 

Variable Group Mean    

 Untrained Explicit Implicit 𝑭 p-value 𝜼𝟐 

Diagnostic_Attr 1.272 1.514 1.440 0.92 0.399 0.001 

Non-diagnostic_Attr 𝟐. 𝟎𝟎𝟗 𝟎. 𝟓𝟖𝟎 𝟐. 𝟖𝟎𝟏 𝟔𝟎. 𝟒𝟎𝟓 𝟎. 𝟎𝟎𝟎 𝟎. 𝟎𝟖𝟑 

Behavior_Attr 𝟎. 𝟒𝟗𝟏 𝟎. 𝟎𝟒𝟓 𝟎. 𝟎𝟐𝟐 𝟑𝟔. 𝟖𝟐𝟎 𝟎. 𝟎𝟎𝟎 𝟎. 𝟎𝟓𝟐 

Mutual_Attr 

1.763 0.681 0.725 

𝟑𝟐. 𝟖𝟒𝟑  𝟎. 𝟎𝟎𝟎 𝟎. 𝟎𝟒𝟕 

*Significant differences are bolded (p=0.05) 

 

Table 3.3: Post-Hoc Test Results for Primary Entity Attributes* 

 A B mean(A) mean(B) Mean Diff. Std. Err T p-value 𝜼𝟐 

Diagnostic_Attr Explicit Implicit 1.514 1.440 0.074 0.183 0.407 0.900 0.000 

Explicit Untrained 1.514 1.272 0.242 0.183 1.324 0.383 0.002 

Implicit Untrained 1.440 1.272 0.167 0.183 0.917 0.718 0.001 

Non-

diagnostic_Attr 

Explicit Implicit 0.580 2.801 -2.221 0.205 -10.844 0.001 0.116 

Explicit Untrained 0.580 2.009 -1.429 0.205 -6.975 0.001 0.052 

Implicit Untrained 2.801 2.009 0.792 0.205 3.869 0.001 0.016 

Behavior_Attr Explicit Implicit 0.045 0.022 0.022 0.062 0.362 0.900 0.000 

Explicit Untrained 0.045 0.491 -0.446 0.062 -7.243 0.001 0.055 

Implicit Untrained 0.022 0.491 -0.469 0.062 -7.605 0.001 0.061 

Mutual_Attr Explicit Implicit 0.681 0.725 -0.045 0.151 -0.295 0.900 0.000 

Explicit Untrained 0.681 1.763 -1.083 0.151 -7.162 0.001 0.054 

Implicit Untrained 0.725 1.763 -1.038 0.151 -6.867 0.001 0.050 

*Significant differences are bolded (p=0.05) 
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 From Table 3.2, the number of diagnostic attributes reported, Diagnostic_Attr, is 

not significantly different across the groups with F(2,1341) = 0.92, p = 0.399 at a 5% level 

of significance. We can, therefore, conclude that the number of diagnostic attributes 

reported is equal across the groups, supporting H1a. However, Non-diagnostic_Attr is 

significantly different across the three groups with F(2,1341) = 60.405, 𝑝 < 0.0000 

at a 5% level of significance. From the post-hoc tests, we observe that all group means are 

significantly different from each other, with the average Non-diagnostic_Attr for the 

Implicitly Trained Group being the maximum and that for the Explicitly Trained Group 

being the minimum, supporting H1b.  

The number of attributes reported that describe the primary entity’s behaviour 

Behavior_Attr is also significantly different across the groups. The post-hoc test results 

suggest that the group means for the Explicitly Trained Group, and the Implicitly Trained 

Group are significantly lower than the average for the Untrained Group. However, the 

Explicitly Trained Group and the Implicitly Trained Group are not significantly different. 

The number of mutual attributes is also significantly different across the groups. From the 

post-hoc tests, we again observe that the group means of the Explicitly Trained Group and 

the Implicitly Trained Group are significantly lower than that of the Untrained Group. 

However, there is no significant difference between the Explicitly Trained Group and the 

Implicitly Trained Group. 
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For the secondary entities, we analyze the variables Secondary_Ent, 

Secondary_Ent_Attr, Secondary_Ent_Behavior, and Secondary_Ent_Mutual. Further, 

since we define information diversity as the number of unique attributes reported about an 

entity, information diversity is the sum of all the attributes reported for each image, given 

as: 

Information Diversity = Diagnostic_Attr + Non-diagnostic_Attr + Behavior_Attr + Mutual_Attr + 

Secondary_Ent_Attr + Secondary_Ent_Mutual + Secondary_Ent_Behavior + Diagnostic_Attr_Variance + 

Non-Diagnostic_Attr_Variance 

We present the results of our analyses in Tables 3.4 and 3.5. 

 

Table 3.4: ANOVA Results for Information Diversity* 

Variable Group Mean    

 Untrained Explicit Implicit 𝐹 
p-

value 
𝜂2 

Secondary_Ent_Attr 

1.730 

 

0.246 

 

1.261 

 
43.953 0.000 

 

0.062 

Secondary_Ent_Behavior 0.491 0.056 0.257 13.193 0.000 
 

0.019 

Secondary_Ent_Mutual 1.105 0.826 0.547 8.640 0.000 
 

0.013 

Information Diversity 8.984 4.070 7.433 85.967 0.000 0.114 

*Significant differences are bolded (p=0.05) 
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Table 3.5: Post-hoc Results for Information Diversity*  

*Significant differences are bolded (p=0.05) 

 

Table 3.4 shows that Secondary_Ent_Attr is significantly different across the groups. The 

post hoc test results in Table 3.5 suggest that all group means are significantly different 

from one another, with the Untrained Group being the maximum and the Explicitly Trained 

Group being the minimum. Secondary_Ent_Behavior is also significantly different across 

the three groups. The post hoc tests show that the average Secondary_Ent_Behavior for 

Untrained Group is the maximum and is significantly higher than that of the Explicitly 

Trained Group, which is the minimum. However, there is no statistically significant 

difference between the number of Secondary_Ent_Behavior reported by the Untrained 

 A B mean(A) mean(B) Mean Diff. Std. Err T p-value 𝜼𝟐 

 

Secondary_Ent_Attr 

Explicit Implicit 0.246 1.261 -1.016 0.162 -6.274 0.001 0.042 

Explicit Untrained 0.246 1.730 -1.484 0.162 -9.170 0.001 0.086 

Implicit Untrained 1.261 1.730 -0.469 0.162 -2.896 0.011 0.009 

Secondary_Ent_Behavior Explicit Implicit 0.056 0.257 -0.201 0.085 -2.368 0.047 0.006 

Explicit Untrained 0.056 0.491 -0.435 0.085 -5.131 0.001 0.029 

Implicit Untrained 0.257 0.491 -0.234 0.085 -2.763 0.016 0.008 

Secondary_Ent_Mutual Explicit Implicit 0.826 0.547 0.279 0.134 2.078 0.094 0.005 

Explicit Untrained 0.826 1.105 -0.279 0.134 -2.078 0.094 0.005 

Implicit Untrained 0.547 1.105 -0.558 0.134 -4.157 0.001 0.019 

Information Diversity  Explicit Implicit 4.070 7.433 -3.363 0.383 -8.777 0.001 0.079 

Explicit Untrained 4.070 8.984 -4.914 0.383 -12.825 0.001 0.155 

Implicit Untrained 7.433 8.984 -1.551 0.383 -4.048 0.001 0.018 
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Group and the Implicitly Trained Group. Secondary_Ent_Mutual is also significantly 

different across the groups. The post hoc tests show that the Untrained Group’s mean for 

Secondary_Ent_Mutual is highest and significantly higher than that for the Explicitly 

Trained Group and the Implicitly Trained Group. However, there is no significant 

difference between the Explicitly Trained Group and the Implicitly Trained Group for 

Secondary_Ent_Mutual. 

Furthermore, as shown in Table 3.4 information diversity is significantly different 

across the groups with 𝐹(2,81) = 85.967, 𝑝 = 0.000. Post hoc test results in Table 3.5 

shows that the group mean for the Untrained Group is significantly higher than the 

Explicitly Trained Group and the Implicitly Trained Group, while the group mean for the 

Implicitly Trained Group is significantly greater than the mean for the Explicitly Trained 

Group. 

3.4.2 Results for Hypotheses on Ability to Report Variability (H2) 

Variability in target stimulus is measured using the variables Diagnostic_Attr_Variance 

and Non-Diagnostic_Attr_Variance. To compare the difference in these variables across 

the groups, we use one-way ANOVA. For post-hoc comparison of the group means, we 

use Tukey’s HSD test. The results are presented in Tables 3.6 and 3.7.  
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Table 3.6: ANOVA Results for Variability* 

Variable Group Mean    

 Untrained Explicit Implicit 𝐹 p-value 𝜂2 

Diagnostic_Attr_Variance 

0.056 

 

0.112 

 

0.100 

 
0.890 0.411 0.001 

Non-Diagnostic_Attr_Variance 

0.067 

 

0.011 

 

0.279 

 

14.757 

 
0.000 

0.022 

 

*Significant differences are bolded (p=0.05) 

 

Table 3.7: Post-hoc test Results for Variability 

 A B mean(A) mean(B) Mean Diff. Std. Err T p-
value 

𝜼𝟐 

Diagnostic_Attr_Variance Explicit Implicit 0.112 0.100 0.011 0.044 0.252 0.900 0.000 

Explicit Untrained 0.112 0.056 0.056 0.044 1.261 0.419 0.002 

Implicit Untrained 0.100 0.056 0.045 0.044 1.008 0.664 0.001 

Non-Diagnostic_Attr_Variance Explicit Implicit 0.011 0.279 -0.268 0.052 -5.150 0.001 0.029 

Explicit Untrained 0.011 0.067 -0.056 0.052 -1.073 0.610 0.001 

Implicit Untrained 0.279 0.067 0.212 0.052 4.077 0.001 0.018 
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The ANOVA results in Table 3.6 show that Diagnostic_Attr_Variance is not significantly 

different for the three groups (𝐹(2,221) = 0.154, 𝑝 = 0.064) at the 5% level of 

significance. The post hoc tests also show that there are no significant differences in the 

pairwise group means. However, Non-Diagnostic_Attr_Variance is significantly different 

for the comparison groups with 𝐹(2,249) = 18.196, 𝑝 < 0.0001. The post hoc tests 

(Table 3.7) show that the Implicitly Trained Group is significantly higher than the 

Untrained Group and the Explicitly Trained Group, but there is no significant difference in 

the group means of Untrained Group and the Explicitly Trained Group. 

 While all groups reported variability in diagnostic attributes, the implicitly trained 

group who have attended to the attributes of the tyran reported more variability in the non-

diagnostic attributes.  

3.4.3 Results for Accuracy and Information Quality Dimensions (H3) 

We analyzed the data from our experiment to understand the relationship between training 

and information quality dimensions, including information diversity.  We also investigate 

the relationship between information quality dimensions in the presence or absence of 

training. 

Firstly, we investigated how different types of training affects accuracy and 

completeness. The response to accuracy is 0-1 valued, and there is no response to accuracy 

for the Untrained Group. Accuracy measures whether or not a contributor was able to 

correctly classify the primary entity as either a tyran or a non-tyran. When contributors 

correctly classify an entity, we enter 1 for accuracy, and when they do not, we record 0. We 
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compare the proportion of Accuracy = 1 in the Explicitly Trained Group and the Implicitly 

Trained Group using a chi-square test. 

Table 3.8: Accuracy for Explicitly and the Implicitly Trained Groups 

 Accuracy  

Group 0 1 Total 

Explicit 62 386 448 

Implicit 162 286 448 

Total 224 672 895 

 

 

From Table 3.8, the chi-squared statistic of independence is 58.339, with a p-value of 

0.0000. The proportion of accuracy in the Explicitly Trained Group is 0.861, and the 

proportion accuracy in the Implicitly Trained Group is 0.638. Thus, we can conclude that 

the proportion of accuracy in the Explicitly Trained Group is significantly higher than the 

Implicitly Trained Group. 

Secondly, to understand how training impacts traditional information quality 

dimensions, we examine the effect of training on completeness and accuracy. We 

operationalize completeness in the context of the study’s task – which is the classification 

of a target stimulus as either tyran or non-tyran – as the reporting of sufficient breadth and 

depth of diagnostic and non-diagnostic attributes about the target entity. We, therefore, 

compare the number of unique attributes reported (i.e., breadth) and the number of attribute 

values reported about each unique attribute (i.e., depth) across the groups. The results are 

presented in Table 3.9 and Table 3.10. 
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Table 3.9: ANOVA Results for Differences in Completeness*  

Variable Group Mean    

 Untrained Explicit Implicit 𝐹 p-value 𝜂2 

Completeness 

(Breadth) 

3.281 

 
2.094 

 
4.241 

 
22.327 

 
0.000 

 
0.032 

 

Completeness 

(Depth) 

 2.835 

  

1.016 

 
2.773 

 
25.507 

 
0.000 

 
0.037 

 

*Significant differences are bolded (p=0.05) 

 

Table 3.10: Post-hoc Results for Differences in Completeness* 

 A B mean(A) mean(B) Mean Diff. Std. Err T p-value 𝜼𝟐 

Completeness 

(breadth) 

 

Explicit Implicit 2.094 4.241 -2.147 0.322 -6.670 0.001 0.047 

Explicit Untrained 2.094 3.281 -1.187 0.322 -3.688 0.001 0.015 

Implicit Untrained 4.241 3.281 0.960 0.322 2.982 0.008 0.010 

Completeness 

(Depth) 

 

Explicit Implicit 1.016 2.773 -1.758 0.289 -6.077 0.001 0.040 

Explicit Untrained 1.016 2.835 -1.819 0.289 -6.289 0.001 0.042 

Implicit Untrained 2.773 2.835 -0.061 0.289 -0.212 0.900 0.000 

*Significant differences are bolded (p=0.05) 

 

Table 3.8 shows that the breadth of attributes reported is significantly different across the 

groups with 𝐹(2,1341) = 22.327, 𝑝 = 0.000. Post hoc test results from Tables 3.9 and 

3.10 show that the group means for the Explicitly Trained Group report significantly fewer 

attributes about the target entity than the Implicitly Trained Group and the Untrained 

Group, but the Untrained Group reports fewer attributes about the target entity than the 

Implicitly Trained Group. Depth is also significantly different across the groups with 
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𝐹(2,1341) = 25.507, 𝑝 < 0.0000. The post-hoc test results show that the mean for the 

Untrained Group is significantly greater than the mean for the Explicitly Trained Group. 

The Implicitly Trained Group also has a mean that is greater than that of the Explicitly 

Trained Group. However, the means of the Implicitly Trained Group is lesser than those 

for the Untrained Group.  

Finally, we report the combined effect of completeness and accuracy on the 

reporting of secondary entities and diverse data. We have used multivariate linear 

regression to determine the relationship between these variables. Table 3.11 shows the 

regression coefficients and their p-values. Multiple 𝑅2 values to determine the combined 

effect is also reported together with p-values. For the Explicitly Trained Group, accuracy 

and completeness both affect the diversity of attributes reported. However, accuracy has a 

negative relationship with diversity, whereas completeness has a positive one. However, 

accuracy and completeness are not associated with the reporting of secondary entities for 

explicitly trained contributors.  

If we consider the Implicitly Trained Group only, accuracy has no significant relationship 

to the diversity of contributed information, while completeness is negatively associated 

with the reporting of secondary entities but positively associated with the reporting of 

diverse data.  
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Table 3.11: Traditional Information Quality Dimensions and Information Diversity7  

Variable Explicit Implicit 

 Accuracy  

(p-value) 

Completeness 

(p-value) 

𝑅2(p-value) Accuracy  

(p-value) 

Completeness 

(p-value) 

𝑅2 

(p-value) 

Secondary_Ent 2.4702 

(0.096) 

-0.244 

(0.038) 

0.192(0.07) 0.2197 

(0.837) 

-0.3057 

(0.001) 

0.371(0.031) 

Information 

Diversity 

-1.7671 

(0.042) 

0.8522 

(0.00) 

0.899(0.00) -0.1365 

(0.833) 

0.857 (0.00) 0.915 (0.00) 

 

 

3.5 Discussion  

The results of this study show that training does not affect the capacity of crowds to report 

diagnostic attributes accurately. Both untrained and trained contributors were able to 

accurately report diagnostic attributes, which can be used by humans or machines to 

determine the class of a stimulus. Crowdsourcers whose projects mainly require the 

accurate classification of stimuli should therefore not have any problems using untrained 

or trained contributors when they can automate the classification of stimulus based on the 

reported attributes. For instance, machine learning algorithms can classify stimuli based on 

reported diagnostic attributes. Since there are usually more untrained contributors than 

trained contributors, using untrained contributors to collect diagnostic data may be a more 

efficient use of resources, allowing crowdsourcing projects to collect more data by 

                                                 

7 Coefficients are listed in the columns for both accuracy and completeness. Combined R2 values are 

provided in a separate column and p-values are in parentheses for each variable. 
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involving more people. However, when humans are required to carry out classification 

(pattern matching) tasks, then explicitly trained contributors are more accurate. 

Crowdsourcers may also be interested in diverse data, which is more amenable to 

repurposing and may yield more insight than uniform data (Ogunseye & Parsons, 2018). 

This study reveals that implicitly trained contributors are better at reporting complete 

attributes because they have been primed through training to attend to both diagnostic and 

non-diagnostic attributes of an entity through bottom-up attentional allocation. However, 

untrained contributors provide more information about the attributes they report than 

trained contributors (i.e., greater depth). The depth of attributes untrained contributors 

report can yield more insight into an entity. The capacity for contributors to report a 

description of attributes is important since it may be difficult for contributors or 

crowdsourcers to revisit the exact state of a phenomenon after it has occurred. Therefore, 

crowdsourcers will want to capture as much detail the first time. Furthermore, our results 

show that, although implicitly trained contributors report more inherent non-diagnostic data 

than other groups, untrained contributors report more non-diagnostic attributes in general 

(i.e., combining the primary entity’s inherent non-diagnostic attributes with its other non-

diagnostic attributes such as mutual attributes and intrinsic attributes). In the same vein, 

untrained contributors report more attributes about secondary entities in their visual space 

than any other group.  

Moreover, even though we expected explicitly trained contributors who had been 

sensitized to diagnostic attributes to report more variability in these attributes, we found 
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that explicitly trained contributors did not have any advantage over other groups as they all 

reported a significantly similar amount of variability in diagnostic attributes. Without 

learning explicit or implicit rules, untrained contributors were able to identify salient 

attributes and report variations to these attributes when they occur. Apparently, despite their 

distributed attention, untrained contributors commit enough salient attributes to memory 

and detect when these attributes changed between presented images. They are not blind to 

changes in diagnostic attributes, nor are they distracted by the presence of other stimuli in 

their visual field.  

Also, Untrained contributors perform as well as Explicitly Trained contributors 

when it comes to reporting variability in non-diagnostic attributes. Implicitly Trained 

contributors, however, report more variability in non-diagnostic attributes than any other 

group mainly because they have been sensitized to pay attention to all inherent attributes 

of a stimulus, i.e., both diagnostic and non-diagnostic and are at an advantage when there 

is a need to report changes to these attributes. Implicitly trained contributors, therefore, 

have a lower tendency to suffer from change blindness or inattentional blindness, unlike 

the other groups who have not committed sufficient non-diagnostic attributes to memory.  

 Nonetheless, if we assume that crowdsourcers are interested in variability in 

diagnostic attributes as that may in some cases imply the existence of a new species or 

another subclass of an entity, then from our results, we can state that untrained contributors 

perform as well as trained contributors. The negative effect of a lack of selective attention 

on untrained contributors becomes obvious when it comes to reporting the inherent 
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attributes of a stimulus that are non-diagnostic. Although untrained contributors perform 

better than contributors with explicit task knowledge, they do not do as well as contributors 

who have learned these attributes implicitly during training. This limitation in their capacity 

to learn non-diagnostic (and usually non-salient) attributes also manifests in their inability 

to detect changes in these attributes when they occur.  

At the same time, the level of knowledge that contributors possess, evidenced by 

their level of accuracy, is, to a large extent, negatively correlated with the reporting of 

diverse data, while information diversity is positively related to completeness. Contributors 

who report more complete attributes are more likely to report diverse data and are less 

likely to report accurate classifications. Less knowledgeable contributors are more likely, 

therefore, to report diverse data than more knowledgeable contributors. This contradicts the 

widespread assumption of a positive relationship between knowledge and information 

quality, that motivate studies such as Budescu & Chen (2014) and Yang, Xue, & Gomes 

(2018). We view this result to be a consequence of selective attention. For one, we posit 

that accurate classification – a proxy for “level of knowledge” – is an outcome of the ability 

to selectively attend to the pertinent diagnostic attributes at the expense of other attributes 

of an entity in the visual space of a contributor. Contributors who can report accurate data, 

i.e., classify phenomena based on accurately identified attributes, need to tradeoff reporting 

information diversity to do so. However, accuracy is not a significant factor in predicting 

the amount of diverse data that Implicitly Trained contributors will report. Again, accuracy 

is not tested for the Untrained Contributors who have not been intimated on the purpose of 

the task or the classifications of the entities presented to them.  
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Altogether, information diversity promotes discoveries as it enables different users 

and uses of data, which can lead to both anticipated and unanticipated insights. Many 

crowdsourcing projects require the flexibility that diverse data affords. Since attributes 

ignored today may become diagnostic in the future (Hoffman & Rehder 2010), if there is 

ever a need for particular information from crowdsourced data, data sourced from untrained 

contributors will be better suited to provide such unanticipated insights, whereas, data 

acquired from trained contributors will be inadequate. Table 3.13 summarizes our findings. 
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Table 3.12: Summary of Hypotheses and Findings 

Hypotheses Comments on Findings Supported 

H1: Explicitly trained contributors will report a 

similar number of diagnostic attributes of a target 

entity as implicitly trained contributors and 

untrained contributors 

There was no significant difference in the groups  Yes 

H1b: Untrained contributors will report fewer 

non-diagnostic attributes of a target entity than 

implicitly trained contributors but more non-

diagnostic attributes than explicitly trained 

contributors 

Implicitly Trained Group reported more than the 

Untrained Group and the Explicitly Trained Group. 

Combined, the untrained group reported more non-

diagnostic attributes than any other group  

Yes 

H1c: Untrained contributors will report more 

data about secondary stimuli and their attributes 

than implicitly trained contributors who will, in 

turn, report more of these data than explicitly 

trained contributors 

True in all cases Yes 

H1d: Untrained contributors will report more 

diverse data than implicitly trained contributors 

who will in-turn report more diverse data than 

explicitly trained contributors 

Untrained Contributors reported more diverse data 

than Implicitly Trained Contributors who in turn 

reported more diverse data than Explicitly Trained 

contributors 

Yes 

H2a: Explicitly trained contributors will report 

more variability involving the diagnostic 

attributes of a target stimulus than will implicitly 

trained contributors and untrained contributors. 

Equal across all groups No 

H2b: Implicitly trained contributors will report 

more variability involving the non-diagnostic 

attributes of a target stimulus than will explicitly 

trained contributors and untrained contributors. 

The implicitly trained group reported more 

variability in non-diagnostic attributes than 

explicitly trained and untrained contributors who 

reported a statistically similar amount of variability. 

Yes 

H3a: Explicitly trained contributors would report 

more accurate data than will implicitly trained 

contributors 

True Yes 

H3b: Implicitly trained contributors will report 

more complete data about a stimulus than 

untrained and explicitly trained contributors 

True for breadth, while untrained contributors 

reported more information about each attribute (i.e., 

Depth) 

Yes 

H3c: Information diversity will be negatively 

associated with accuracy while being positively 

related to completeness across the implicitly 

trained and explicitly trained groups 

True for the explicitly trained group. However, 

accuracy does not affect diversity in the implicitly 

trained group 

Yes 
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3.6 Conclusion 

Repurposable data is adaptable to both anticipated and previously unanticipated needs. The 

collection of repurposable data requires that crowdsourced data be complete, accurate, and 

diverse. Because knowledge of some subject matter is widely assumed necessary if one is 

to provide high-quality data about that subject, knowledgeable contributors are typically 

preferred over novice contributors in many data crowdsourcing applications. Training 

potential participants on the crowdsourcing task to be performed, therefore, provides a way 

for crowdsourcers to ensure that the data they collect is of high quality. However, because 

information diversity is a requirement for repurposability, there is a need to understand how 

training affects the collection of diverse data. Using an experiment in the context of citizen 

science involving 84 participants reporting sightings of an artificial insect, we examined 

the effect of two training approaches on the diversity of contributed information.  

Furthermore, we investigated the relationship between traditional information 

quality dimensions of accuracy and completeness and the new information quality 

dimension – information diversity. We found that teaching contributors explicit inclusion 

rules encourages knowledge-driven attentional allocation, which results in less diverse 

data. Allowing contributors to discover inclusion rules implicitly results in more diverse 

data, but not as diverse as if they are not trained at all. From this study, we can conclude 

that there is no significant advantage to restricting participation in crowds based on the type 

of training received by a contributor or the level of knowledge possessed by potential 

contributors. Every benefit to be derived from recruiting explicitly trained contributors can 

be derived from untrained contributors when classification is automated. However, when 
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crowdsourcers must train, we find that it is better to train contributors implicitly as this 

leads to the reporting of more diverse data than contributors with explicit task knowledge. 

At least, there is a possibility that data sourced from crowds who have been implicitly 

trained can be further analyzed by an expert to correct for classification deficits that may 

occur due to a lack of explicit inclusion rules. The possibility of recovering non-diagnostic 

attributes if explicitly trained contributors are used may be next to none. 

3.6.1 Limitations 

The study described in this chapter uses an experimental design and therefore inherits the 

constraints inherent in such designs. In favour of control over aspects of our experiment, 

we have sacrificed realism. For example, we assume that contributors have similar levels 

of motivation, which may not be the case in the real world. We also assumed that the 

attributes and interactions depicted in the artificial images provided are highly similar to 

what is available in nature. The experiment also suffers from selection bias seeing as we 

only used university students, particularly business students. Using university students or 

strictly business students may already create an artificial knowledge-level of contributors. 

As with all experiments, there is, therefore, a possibility that the results obtained in our 

controlled setting may differ from the result that would be obtained in the real world.  
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 Understanding the Effect of Experience on Crowdsourced Data 

 

Abstract 

Organizations and individuals who own or use crowdsourcing platforms implicitly value 

experience, expecting experienced contributors to report higher quality data than 

inexperienced contributors. Guided by selective attention theory from cognitive 

psychology, we examine this assumption in two types of crowdsourcing platforms – an 

online review platform and a citizen science platform. Using a machine-learning-based 

classification algorithm on datasets from these two crowdsourcing platforms, we find that 

the diversity of information reported in contributed data and the usefulness of contributed 

data decreases as contributors gain experience in a crowdsourcing task. Since usefulness is 

an outcome of information quality, we see from our sampled datasets that increasing 

experience from participation in crowdsourcing tasks is, in the long run, detrimental for the 

collection of diverse data. We, therefore, make recommendations for how owners and users 

of crowdsourcing platforms can keep their crowds from getting stale. 

4.1 Background 

Organizations and individuals (collectively, crowdsourcers) use crowdsourced information 

to make decisions. Integrative crowdsourcing, i.e., crowdsourcing that seeks to pool 

information about a phenomenon of interest from a distributed group of people, is a 

growing source of such decision-making information. For information consumers, the 

quality of crowdsourced information has a significant influence on the quality of insights 

it can produce. For instance, in online shopping, shoppers usually cannot evaluate products 
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before purchase and must depend on crowdsourced information about products in the form 

of reviews and product descriptions (Rust, Inman, Jia, & Zahorik, 1999; Weathers, Sharma, 

& Wood, 2007). Decisions made by shoppers from inadequate information costs the online 

shopping industry between $100 and $260 billion annually in product returns (Minnema, 

Bijmolt, Gensler, & Wiesel, 2016; Sahoo, Dellarocas, & Srinivasan, 2018). In the same 

fashion, research results derived from low-quality crowdsourced information may lead to 

invalid conclusions or bad decisions. Therefore, like practitioners, many researchers are 

skeptical in their use of information, particularly crowdsourced information (Forbes, 2018; 

Weigelhofer & Pölz, 2016). Information consumers, who may be everyday online shoppers, 

researchers in academia, or decision-makers in the industry, would, therefore, benefit from 

higher quality information collected through crowdsourcing. 

Crowdsourcers, i.e., owners of crowdsourcing projects, can proactively prevent the 

collection of low-quality information in their projects by first deciding who will be allowed 

to participate as members of the crowd. Also, crowdsourcers can ensure the quality of 

contributed data by employing assessors to evaluate contributions or by using automated 

data validation techniques after the fact (Gura, 2013; Malone, Laubacher, & Dellarocas, 

2010; Wiggins, Newman, Stevenson, & Crowston, 2011). Proactive measures of quality 

assurance, such as crowd recruitment decisions, inform all other design decisions about the 

crowdsourcing project, such as how to simplify the definition of their task to suit the level 

of knowledge of potential contributors, how to motivate potential contributors, and how to 

design the task. In addition, proactive prevention is less resource-intensive than measures 
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taken after data acquisition, saving crowdsourcers the cost of recruiting contributors, and 

collecting data that would later be classified as low quality and discarded.  

The literature gives us insights about how to recruit the best contributors to 

engender a collection of high-quality data. For example, Budescu & Chen (2014) evaluated 

the knowledge of crowd members through knowledge-test questions interspersed in the 

task to determine the level of related knowledge a crowd member has, which determines 

whether their contribution should be permitted. Yang et al. (2018) promoted the training of 

crowd members who lacked knowledge about the crowdsourced task. These studies mainly 

focus on the accuracy dimension of information quality while seeking to ensure the quality 

of crowdsourced information, and they show a preference for contributors with knowledge 

of the task. However, the literature emphasizes that data is more valuable and provides 

more insights to users when it is diverse, allowing different data consumers to use it for 

both anticipated and unanticipated uses (e.g., see Hunter et al., 2013; Parsons, 1996). It 

would, therefore, be useful also to improve our understanding of how the choice of crowd 

members affects information diversity, i.e., the number of unique attributes represented in 

data.  

The key questions that arise, therefore, are two-fold: (a) is it better for information 

diversity to only recruit people with prior experience in the data collection activity or to 

allow (or even encourage) participation by any contributor regardless of their level of 

relevant experience? (b) if there may be new uses for the collected data, should 

crowdsourcers actively recruit new participants throughout the life cycle of their projects 
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(i.e., continuous recruitment), or should recruitment be a singular event at the start of a 

project? This chapter takes a step towards better understanding the impact of experience on 

the diversity of crowdsourced information. We explore the potential limitations of relying 

on the same crowd, particularly for projects that engage crowds in discoveries or evolve to 

encompass uses of data that were not anticipated when the project was designed. 

Furthermore, we investigate the relationship between information diversity and perceived 

information quality to gain insight into how information diversity affects the usefulness of 

data. Understanding the shortcomings of engaging with the same crowds in crowdsourced 

tasks will guide crowdsourcers in the development of targeted strategies in the design of 

their projects, improving their potential to collect high-quality data. 

4.2 Crowd Member Knowledge and Information Diversity 

Crowdsourcers prefer highly experienced contributors who have a greater knowledge of 

crowdsourcing tasks, over novices or amateurs. This preference influences crowd 

recruitment (Wiggins et al. 2011, Austen et al., 2016) and is based on the assumption that 

experienced crowds will provide higher quality data than unexperienced crowds. 

Experience is a source of knowledge (Leonard & Sensiper, 1998), which is defined in the 

business context as “information that is relevant, actionable and based at least partially on 

experience” (Leonard & Sensiper, 1998, p. 112). Although explicit knowledge and other 

aspects of our cognition may remain the same over time, tacit knowledge changes with 

increasing experience. In this study, we focus on experience gained through participation 

in a crowdsourcing task.  
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In integrative crowdsourcing, participants may have no prior tacit or explicit 

knowledge, some tacit knowledge but no explicit knowledge, some explicit knowledge but 

no tacit knowledge, or, more commonly, some combination of both tacit and explicit 

knowledge (Argote & Miron-Spektor, 2011). Through continued participation, contributors 

acquire experience, which may or may not refine their explicit knowledge in cases where 

they had some previous participation. Experience is the part of a contributor’s knowledge 

that is guaranteed to change with participation, regardless of the composition or amount of 

a contributor’s prior knowledge. It is measured in terms of the “cumulative number of 

tasks” performed (Argote & Miron-Spektor 2011, p 1124) and may include successful and 

unsuccessful task performances (Denrell & March, 2001; Kim & Rehder, 2009; Sitkin, 

1992).  

Experience results from continued participation in a task or from participation in a 

novel task (Katila & Ahuja, 2002; March, 1991). At the same time, experience may vary in 

frequency and pace from one individual to another. It may be gained before a task (Carrillo 

& Gaimon, 2000), that is, from prior participation in a similar or related task. Experience 

may also be gained during or after a task (Ellis & Davidi, 2005; Morris & Moore, 2000; 

Roese & Olson, 1995). Experience is an antecedent for selective attention. For instance, 

(Schwartzstein, 2014, p. 1424) argues that an “agent needs to learn which variables are 

worth attending to through experience.” We explore the relationship between experience 

and selective attention in the next section and synthesize literature to develop hypotheses 

on how selective attention from experience will affect the diversity of information provided 

by contributors.  
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4.3 Hypotheses Development 

The tendency for selective attention and classification occurs naturally in humans as we 

gain experience by observing regularities about entities in our world (Perruchet & Pacton, 

2006; Saffran, Aslin, & Newport, 1996; Turk-Browne, Scholl, Chun, & Johnson, 2009; 

Zhao, Al-Aidroos, & Turk-Browne, 2013). As time passes, humans have more 

opportunities to be exposed to stimuli and observe these regularities, leading to the 

development of an attentional set (a set of attributes about a stimulus considered salient and 

co-occurring). Attentional sets are what guide selective attention. When the attributes of 

stimuli are encoded into memory as an attentional set, subsequent exposure to the attributes 

of a stimuli activate an attentional set, maintaining those attributes in memory and 

increasing their relevance for selective attention (Awh & Jonides, 2001; Downing, 2000; 

Postle, Awh, Jonides, Smith, & D’Esposito, 2004; Bradley R. Postle, 2006). Statistical 

frequency of exposure to stimuli, thus, impacts selective attention (Sloutsky, 2003), which 

employs recognition memory to direct our attention (Cosman & Vecera, 2013).  

 The capacity of humans to pay attention increases with time as they develop from 

infancy to adulthood (Richards & Turner, 2001). In other words, as we gain experience, we 

become more open to selectively attending to information to manage our limited cognitive 

resources. Infants are exemplars of how humans respond when they lack enough 

information about stimuli. Since many stimuli are new to infants, they cannot selectively 

attend to the attributes of those stimuli. They reason about entities by observing the salient 

features of individual stimuli and are therefore naturally comparable to novice contributors 

in an integrative crowdsourcing context (Keil, 1989; Kloos & Sloutsky, 2008). For this 
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reason, the ability to accurately and efficiently classify stimuli using their key attributes is 

a distinguishing factor between adults and infants (Best, Yim, & Sloutsky, 2013).  

Conversely, the tendency for adults to selectively attend to attributes of phenomena 

with which they have prior experience helps us understand how experienced contributors 

report data in a crowdsourced task. As experience increases, the tendency for selective 

attention increases correspondingly. Adult humans decide which attributes of stimuli to 

which to attend based on their prior experience with similar stimuli, and they continue to 

value the usefulness of those attributes the more they are exposed to similar stimuli 

(Gazzaley & Nobre, 2012).   

4.3.1 Hypothesis on Number of Attributes in Contributions 

Generally, we expect experienced contributors to use a top-down attentional distribution 

and, therefore, selectively attend to specific attributes of stimuli, reporting only data they 

consider pertinent to a task from their experience. Less experienced contributors are less 

inclined to attend selectively, and therefore consider more attributes of a stimulus with 

which they lack prior experience (Corbetta & Shulman, 2002; Itti & Koch, 2001). 

Experience also determines what attributes knowledgeable contributors prioritize when 

observing future instances of a class (Kim & Rehder, 2011).  

Several studies have tested the effect of experience on selective attention. For 

example, Pick and Frankel tested second graders and sixth graders’ capacity for selective 

attention, revealing that the capacity to attend selectively increased for both groups when 

they were exposed to the task before they were tested compared to those who had no prior 
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exposure to the task. In another study, Smith, Kemler, & Aronfreed (1975) tested the 

capacity of kindergarteners, second graders, and fifth graders to focus their attention on a 

task in the presence of distractors. Like Strutt, Anderson, and Well, (1975); Well, Lorch, 

and Anderson, (1980), and Best et al. (2013), who tested the ability of children and adults 

to classify in the presence of distractors, Smith et. al. found that young children are 

inexperienced at selectively attending to relevant attributes in the presence of irrelevant 

attributes.  

These studies reveal that experience in a task acquired by contributors will lead to 

an increase in the reporting of attributes they learned to be relevant to the task (Harnad, 

2005); thus, they are expected to be less likely to attend to irrelevant attributes compared 

to novices (Katsuki & Constantinidis, 2014; Plebanek & Sloutsky, 2017). Experienced 

contributors would also be more inclined to ignore variability in non-salient attributes of 

an entity when they occur. They are more resistant to learning something new (Plebanek & 

Sloutsky, 2017), increasing their tendency towards change blindness and impeding their 

ability to provide data that can lead to discoveries. The use of an attentional set is therefore 

expected to inhibit contributors’ ability to report minor variations not present in these 

encoded attributes. On the other hand, novices and less experienced contributors employ a 

bottom-up attentional distribution strategy and are expected to report more information 

about stimuli they observe, compared to experienced contributors.  

Entities have a finite number of attributes. These attributes may be intrinsic – an 

inherent part of the entity, or mutual – attributes that describe a relationship between two 
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or more entities (Wand, Storey, & Weber, 1999). Our reference to mutual properties refers 

to Non-binding mutual properties. “Non-binding mutual properties are those properties 

shared by two or more things that do not ‘make a difference’ to the things involved; for 

example, order relations or equivalence relations. By contrast, binding mutual properties 

are those properties shared by two or more things that do ‘make a difference’ to the things 

involved” (Rosemann & Green, 2002, p. 82). Kiwelekar & Joshi (2010, p. 4) further explain 

that non-binding mutual properties are relational properties that occur when “no interaction 

is involved between two related things. For example, younger than relationship between 

two persons does not show any kind of interaction”. 

In many cases, mutual attributes are irrelevant to the identification of the entity 

within a class, i.e., the classification task, but they may aid the diagnosis of what the entity 

is and its state. Mutual attributes are mainly adjectives that describe an entity’s relation to 

other entities. Adjectives are functions that map the meaning of a noun phrase to the 

meaning of another noun phrase, whether or not both nouns are explicitly stated (Kamp, 

2013). As intrinsic attributes are the physical attributes of an entity, mutual attributes are 

the main source of diversity as they are dependent on the contributor and can represent 

state-related information about the entity. Because the diagnostic attributes of a class are 

mostly intrinsic, experienced contributors will report fewer mutual attributes about entities 

they observe compared to inexperienced contributors. Inexperienced contributors will 

provide attributes that cover both intrinsic and mutual properties of the observed entity, 

reporting more mutual attributes compared to experienced contributors. Consequently, we 
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predict that as contributors gain experience in a task, the number of mutual attributes 

reported will decrease.  

H1: The number of mutual attributes provided will decrease as contributors gain 

experience in a task. 

Besides, contributors report data at different rates. Even when contributors report 

data at similar frequencies, the number of entities they report about may differ. Factors 

external to a crowdsourced task can cause differences in the rates at which people contribute 

data. Such external factors (e.g., online shopping systems) may include direct marketing 

pushes by online stores or seasonality. For example, people shop more and review more 

products during the holiday seasons (Smith, 1999). In citizen science projects, active 

recruitment campaigns can increase crowd member turnout during the campaign periods. 

Internal factors (those inherent to the task itself) may also be responsible for variation in 

the frequency of participation by crowd members. Such internal factors may include the 

design of the crowdsourcing platform to restrict the frequency of participation. For 

example, crowdsourcing systems that apply gamification may require control of the 

frequencies at which their participants contribute data. The nature of the crowdsourced task 

may also dictate the frequency of participation for crowd members. Crowdsourcing projects 

that involve reporting about stars in the sky at night or insects pollinating flowers in spring 

are accessible exemplars.  

To investigate how the diversity of data contributed by crowds change, we assume 

that the level of experience that crowd members have about the task increases 

monotonically. Contributors’ knowledge of a task will increase as they gain experience 
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(Harnad, 2005). An increase in experience in a task implies an increase in the tendency for 

learned inattention to attributes of entities considered by the contributor to be trivial to the 

task. Experienced contributors will only report attributes to which they have selectively 

attended and consider salient from repeated observations of an entity. As Cosman and 

Vecera (2014) argue, the frequency of exposure to a stimulus and the relationships between 

its attributes (statistical learning) is encoded into memory, contributing to the creation of 

an attentional set that inhibits the distribution of attention to other attributes of the stimulus 

considered less salient. The more contributors use their attentional set, the more likely they 

are to allocate attention to the attributes in the set alone (Awh & Jonides, 2001; Downing, 

2000; Olivers, Meijer, & Theeuwes, 2006; Ryan, Althoff, Whitlow, & Cohen, 2000; 

Woodman & Luck, 2007). However, less experienced contributors will report more 

attributes as they lack the capacity for top-down attention allocation and are less likely to 

attend selectively to specific attributes because of prior knowledge (Zhao et al., 2013).  

H2: Contributors will provide less diverse data with increasing experience  

4.3.2 Hypothesis on Usefulness of Contribution 

Precision can be a desired dimension of information quality for some crowdsourcing tasks. 

Nonetheless, when the goal of a crowdsourced task is to collect not readily accessible 

information about phenomena which may be used by more than one consumer for different 

purposes, every detail and perspective that can be represented in the crowdsourced dataset 

is potentially pertinent. Online shopping, where shoppers with different informational 

needs may access reviews and use the insights garnered from those reviews to make 

decisions about the purchase or non-purchase of a product, is a primary example of such a 
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crowdsourcing task. The primary purpose of online reviews is to guide shoppers in their 

decision-making endeavours. Therefore, reviews are helpful when they can provide 

guidance and inform decisions of users who may have similar or very different criteria 

(requirements) for their decision outcomes (Mudambi & Schuff, 2010; Poston & Speier, 

2005). When more helpful product reviews are available, the likelihood of goods being 

purchased increases, and the likelihood that they are returned after purchase decreases 

(Sahoo et al., 2018). It is thus beneficial to crowdsourcers to provide shoppers or data 

consumers with their most helpful reviews as these increase sales (Duan, Gu, & Whinston, 

2008) and reduces decision-making time and cognitive stress from searching (Todd & 

Benbasat, 2000). We predict that contributions with more mutual attributes will be 

perceived by data consumers to be more helpful than contributions with fewer mutual 

attributes.  

Other online review platforms such as Yelp use “usefulness” ratings to mean the same thing 

as “helpfulness” (McAuley & Leskovec, 2013). We also frame helpfulness as an 

operationalization of usefulness, i.e., helpful contributions are contributions that 

information consumers consider useful.  

H3: The usefulness of contributed data will be negatively related to experience  

4.4 Empirical Approach 

4.4.1 Dataset Description 

We use datasets from two integrative crowdsourcing domains to test the developed 

hypotheses. The first dataset is from a publicly available online review dataset, while the 
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second dataset is from a citizen science system developed by members of the supervisory 

committee to collect data about flora and fauna in the province of Newfoundland and 

Labrador. Using these two different types of datasets helps cover two primary types of 

integrative crowdsourcing datasets, that is, integrative crowdsourcing that considers 

accuracy to be important (e.g., citizen science crowdsourcing), and integrative 

crowdsourcing that primarily focuses on informativeness (e.g., online reviews). The use of 

both datasets makes our findings more generalizable to other integrative crowdsourcing 

systems. 

Furthermore, the datasets used also differ in the following ways: first, the review 

dataset is based on abstract categorization (Goldstone & Kersten, 2003), that is, the 

similarities between the entities in the category are not physical or concrete. An example is 

the Baby Products dataset from Amazon, which contains data about different types of baby 

products such as feeding bottles, toys, and clothes. These products have very few attributes 

in common except their use for babies. The Amazon dataset lacks information that can be 

used to subcategorize or decipher the similarity of products. Further, contributors rarely 

provide more than one review for the same product because they can edit previous reviews.  

When people make purchases on Amazon.com, they are prompted to provide 

reviews on the purchase shortly after they receive it. Contributors are also able to rate the 

product they have purchased on a scale of 1 to 5 stars, where 1 star is the lowest possible 

rating, indicating that the crowd member rates the product as being of the poorest quality, 

and 5 stars imply that the crowd member considers the product to be of excellent quality. 
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Shoppers access reviews about products they are considering and use reviews to guide their 

purchase decisions. Shoppers are also able to rate the reviews based on their helpfulness in 

the decision-making process. The Amazon datasets used were collected over 18 years (1996 

to 2014) by researchers from the University of California, San Diego (He & McAuley, 

2016). Because the Amazon dataset contains different products, the effect of selective 

attention would be lesser than if the contributors had reviewed the same product multiple 

times. For each new product they encounter, the tendency to create new attention sets (to 

act as novices) and report more attributes occurs. We use the Amazon dataset about 

products that would be used in a Patio, in the discussions in this chapter. The dataset 

contains 993,490 records.  

In contrast, datasets from citizen science projects are usually about entities that are 

of the same natural kind or more concretely similar (for more information on category types 

see Goldstone & Kersten, 2003). For this study, we use NLNature’s data. NLNature collects 

data about fauna and flora in Newfoundland from contributors around the province, 

allowing contributors to provide data about different instances of the same type of organism 

more than once. The NLNature dataset allows us to investigate the changes in the diversity 

of the data that crowd members contribute as they gain experience. The data used from this 

project was collected from 2009 to 2013 and has 12,175 records. 

Like McAuley & Leskovec (2013), we restrict the Amazon dataset contributors used 

in the analyses to those who have participated at least 50 times in the eighteen-year dataset. 

For the NLNature dataset, we analyze data from all contributors. The number of 
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contributors with 50 or more reviews in the Amazon dataset is 24, with 1749 observations. 

The maximum number of observations provided by any contributor in the Amazon dataset 

is 161. For the 12,175-record NLNature dataset, 637 contributors provided the 

contributions used in the analyses. 

4.5 Analyses 

To analyze the data, we broke them down to attributes using machine learning. First, we 

syntactically parsed every contributed textual data item into parts of speech using the spaCy 

library in order to extract the adjectives (attributes) in the text. spaCy has a 92% accuracy 

rate in parsing and producing relevant parts of speech (Honnibal & Johnson, 2015). 

Following the extraction of attributes, we classify these attributes into intrinsic attributes 

and mutual attributes using a classification algorithm we developed based on the spaCy 

framework, adapted from sentiment analyses algorithms, that checks for the polarity of the 

attributes. Intrinsic attributes, attributes that are inherent in a stimulus should not show any 

polarity; that is, they should not reflect any positive or negative sentiments but be neutral. 

E.g., red, round, three. 

On the other hand, mutual attributes show polarity — for example, beautiful, cheap, 

or full. Finally, we compare the similarity of the attributes arranged in chronological order 

for each contributor. To compare different attribute sets, we use Word2Vec to generate 

word vectors for the attributes. Word2vec “is a two-layer neural net that processes text. Its 

input is a text corpus, and its output is a set of vectors…turning text into numerical form” 

(www.skymind.ai). We then used spaCy’s neural network model, which we trained with 

over one million unique vectors we compare vectors of each piece of contribution with a 

http://www.skymind.ai/
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previous one by the same contributor. Our new similarity comparison algorithm was tested 

against the STSBenchmark – “[a] shared training and evaluation [data]set carefully selected 

from [an existing and already standardized] corpus of English shared task data” from 2012-

2017 (Cer, Diab, Agirre, Lopez-Gazpio, & Specia, 2017). Our model achieved a 71% 

accuracy in determining the similarity of attributes. Figure 4.1 illustrates the process of 

comparing the diversity of two or more contributions. The information diversity score is 

the inverse of the similarity score. 

 Table 4.1 presents all variables used in the analyses. We analyzed the datasets using 

a Linear Mixed Model Regression method to account for the longitudinal nature of the data, 

making reviewerID a random factor in our model. 
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Figure 4.1: The information diversity comparison process 
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Table 4.1 – Names and descriptions of variables used in the analyses 

Name Description 

reviewerID Reviewer subject identifier 

usefulness Derived from a tuple of values showing positive review responses and the total number of review views. 

We compute usefulness as the number of upvotes for helpfulness/number of people who viewed the 

contribution. 

reviewTime Date of review submission 

Intrinsic Number of objective attribute responses 

Mutual Number of subjective attribute responses 

textCount Length of text contained in a review 

Attr_Count Total number of attributes in review 

%Intrinsic Percentage of objective attribute responses 

%Mutual Percentage of subjective attribute responses 

Adj_Mutual Average number of mutual attributes reported by the same contributor per day 

experience Number of reviews submitted by a contributor is used to measure the contributor’s experience 

We computed the average percentage of mutual attributes (%Mutual) across each day for contributors who participated 

more than once per day in the online review crowdsourcing task and recorded the results as Adj_Mutual. 
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4.6 Results 

In our analyses, we take into consideration that multiple responses from the same 

contributor are interdependent. We describe the results of our text and statistical analyses 

below.  

4.6.1 Results for Experience and Mutual Attributes 

Analyzing the Amazon dataset containing reviews about products used in the Patio dataset 

and the NLNature dataset, we found that, as experience increased, mutual attributes 

decreased for both Amazon and NLNature datasets (See Table 4.2 and Table 4.3). 

Table 4.2: Regression Results for Percentage of Mutual Attributes (Amazon) 

======================================================== 

Model:            MixedLM Dependent Variable: Adj_Mutual 

No. Observations: 1749    Method:             REML       

No. Groups:       24      Scale:              148.7841   

Min. group size:  49      Likelihood:         -6895.2215 

Max. group size:  161     Converged:          Yes        

Mean group size:  72.9                                   

-------------------------------------------------------- 

              Coef.  Std.Err.   z    P>|z| [0.025 0.975] 

-------------------------------------------------------- 

Intercept     87.643    1.402 62.533 0.000 84.896 90.390 

Experience   -0.025    0.011 -2.248 0.025 -0.047 -0.003 

======================================================== 
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Table 4.3: Regression Results for Percentage of Mutual Attributes (NLNature) 

======================================================== 

Model:            MixedLM Dependent Variable: Adj_Mutual 

No. Observations: 12175     Method:             REML       

No. Groups:       637      Scale:              502.4432   

Min. group size:  1       Likelihood:         -1246.6490 

Max. group size:  2225      Converged:          Yes        

Mean group size:  19.1                                    

-------------------------------------------------------- 

              Coef.  Std.Err.   z    P>|z| [0.025 0.975] 

-------------------------------------------------------- 

Intercept     70.148    4.441 15.794 0.000 61.443 78.853 

Experience     0.162    0.080  2.031 0.042  0.006  0.318 

======================================================== 

 

From the results in Table 4.2 and Table 4.3, we see that for the Amazon dataset, the z-stats 

are highly significant for the experience coefficient at z= -2.248, p=0.025. The percentage 

of mutual attributes reported in data is negatively associated with experience. The slope for 

experience is -0.025. An increase in experience by one more review results in a reduction 

of the percentage mutual attributes reported by -2.5% (Supporting H1).  

For the NLNature data, experience has a coefficient of 0.162. A unit increase in 

crowd experience results in a 16.2% increase in the percentage of mutual attributes reported 

(Not supporting H1). The amount of variability accounted for by the experience variable in 

the Amazon dataset is 1% and 8% the NLNature dataset.  

4.6.2 Results for Experience and Information Diversity  

To analyze the data from contributors who have reported an entity more than once, we 

compared the diversity of attributes they report as their experience increases. Experience 
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has a slope of -0.023 significant at p<0.18, z= -1.773. For NLNature data, we find that 

experience has a slope of -0.333. The z-value of experience is -2.835 at p=0.005. A unit 

increase in experience results in a 2.3% decrease in diversity for Amazon data and a 3.3% 

decrease in diversity for NLNature data. The amount of variability accounted for by the 

experience variable in the Amazon dataset is 1.3%, and NLNature is 11.7%. Both these 

results support H2a. We show the results in Table 4.4 and Table 4.5 below. 

 

Table 4.4: Regression Results for information Diversity (Amazon) 

============================================================ 

Model:            MixedLM Dependent Variable: info_diversity 

No. Observations: 1749    Method:             REML           

No. Groups:       24      Scale:              201.0307       

Min. group size:  49      Likelihood:         -7144.8050     

Max. group size:  161     Converged:          Yes            

Mean group size:  72.9                                       

------------------------------------------------------------- 

              Coef.   Std.Err.    z     P>|z|  [0.025  0.975] 

------------------------------------------------------------- 

Intercept     91.017     1.060  85.837  0.000  88.939  93.095 

Experience    -0.023     0.013  -1.773  0.076  -0.047   0.002 

 

 

 

Table 4.5: Regression Results for Information Diversity (NLNature) 

============================================================ 

Model:            MixedLM Dependent Variable: info_diversity 

No. Observations: 12175     Method:             REML           

No. Groups:       637      Scale:              1221.5859      

Min. group size:  1       Likelihood:         -1350.4995     

Max. group size:  2225      Converged:          Yes            

Mean group size:  19.1                                        

------------------------------------------------------------ 

                  Coef.  Std.Err.   z    P>|z| [0.025 0.975] 

------------------------------------------------------------ 

Intercept         80.602    4.216 19.119 0.000 72.339 88.864 

Experience        -0.333    0.117 -2.835 0.005 -0.563 -0.103 

============================================================ 
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4.6.3 Results for Experience and Usefulness 

To understand how experience affects the usefulness of contributed data, we use the 

helpfulness score provided in Amazon.com datasets. We compute a usefulness score using 

the number of people who upvoted the review.  

Table 4.6: Regression Results for Usefulness (Amazon) 

============================================================ 

Model:            MixedLM Dependent Variable: usefulness 

No. Observations: 1749    Method:             REML           

No. Groups:       24      Scale:              302.0023       

Min. group size:  49      Likelihood:         -7501.1510     

Max. group size:  161     Converged:          Yes            

Mean group size:  72.9                                       

------------------------------------------------------------- 

              Coef.   Std.Err.    z     P>|z|  [0.025  0.975] 

------------------------------------------------------------- 

Intercept      9.892     1.323   7.477  0.000   7.299  12.485 

Experience    -0.110     0.016  -7.023  0.000  -0.141  -0.080 

============================================================ 

 

We see from the results that the variability accounted for in the Amazon dataset is 1.6%. 

z-stat is -7.023 for experience with a slope of -0.11.  

4.7 Discussion 

The level of experience of contributors to crowdsourcing projects will continue to increase 

as they participate in the project or other related projects. Using selective attention theory, 

we predicted that experience will negatively affect the number of mutual attributes 

reported, and the diversity of information contributed to integrative crowdsourcing 

projects. We considered two different types of integrative crowdsourcing: citizen science 

and online reviews.  



 

148 

For the datasets we analyzed, we found that the percentage of mutual attributes 

reported by contributors decreased in the Amazon data as contributors gained experience. 

However, the percentage of mutual attributes in the data increased for the citizen science 

project as contributors gained experience providing multiple reports of organisms. This 

outcome may be due to the differences in the entities reviewed. Perhaps, reporting a largely 

varied sub-classes of organisms under a general class (i.e., all animals or fauna in 

Newfoundland) such as the sightings of birds, foxes, and moose and in their unique 

environments prompted an increase in the number of mutual attributes reported.  

Nevertheless, despite the increase in mutual attributes in the NLNature dataset, we 

find that contributed data in both datasets became more homogeneous with increased 

experience. This decrease in diversity is indicative of the effect of knowledge-driven 

attention allocation. Contributors focus more on the same set of attributes and report these 

attributes, having learned them through repeated exposure. Interestingly, even when 

contributors reported a higher percentage of mutual attributes in their data, the meaning of 

the attributes was increasingly similar as they gained experience, which may mean they are 

focusing on the same attributes across different entities. Also, decreasing diversity in the 

attributes reported is a possible indication of blindness to the variability in attributes that 

may exist in different instances of similar or dissimilar entities. 

In online reviews, such negative effects of selective attention may be indicated by 

a reduction in the amount of subjective detail provided in reviews and the focus on only 

certain aspects of reviewed entities. If most of the reviews provided on an online review 
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site come from contributors who are strongly affected by selective attention, potential 

shoppers may not have access to a sufficient breadth of perspectives beyond what the seller 

can provide (i.e., objective information). This decline in the subjectivity of contributed data 

hurts the ability for shoppers to make informed purchase decisions (Gobinath & Gupta, 

2016; Korfiatis, GarcíA-Bariocanal, & SáNchez-Alonso, 2012; Li, Hitt, & Zhang, 2011). 

Furthermore, the results showed that experience negatively affects the helpfulness 

(usefulness) of crowdsourced data. 

Generalizing this result, we posit that it would be difficult for experienced 

contributors to report data that can lead to discoveries or novel insight. The diminishing 

quality of crowdsourced data implies crowds do go stale, and if the rate of decline in 

diversity is not met or surpassed by the rate of recruitment, then crowdsourced data may 

eventually become misleading and harmful to potential shoppers, or erroneous and 

delimiting for researchers due to the tunnel vision of experienced contributors. The notion 

that the quality of data decreases with increasing experience, as espoused in this study, 

therefore, necessitates a re-evaluation of crowd hiring practices that favour experience or 

that suggests onetime recruitments. Table 4.7 summarizes our findings. 
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Table 4.7: Summary of Findings 

 

 

4.7.1 Recommendations 

The results of this study suggest that crowdsourcers need to be put in place measures that 

prevent their crowds from becoming selectively attentive to only certain attributes if the 

crowd is expected to continue to report quality data. To guide crowdsourcers on this, we 

make the following recommendations: 

a. Test regular for homogeneity in crowdsourced data and the need to take corrective 

actions to refresh the crowd when necessary, such as recruiting more contributors 

or assigning contributors to the reporting of information about other entities they 

have not previously reported. 

b. Encourage the contribution of diverse data through the design of integrative 

crowdsourcing systems. Integrative crowdsourcing systems can be designed to be 

more accommodating of diverse data reducing rather than constraining contributors 

Hypotheses Comments Supported 

H1: The number of mutual attributes provided 

will decrease as contributors gain experience 

in a task. 

While this was the case in the review 

dataset, in our citizen science dataset, we 

found that the percentage of mutual 

attributes reported increased.  This may 

have something to do with the type of 

entity being reported about.  

Partial 

H2: Contributors will provide less diverse 

data with increasing experience 

True in all cases. Yes 

H3: The usefulness of contributed data will be 

negatively related to experience 

This was true for the Amazon dataset 

used to test it. 

Yes 
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to provide only data that meets the crowdsourcers immediate requirements. 

Principles to guide such open designs are discussed in Parsons and Wand (2014). 

c. Encourage contributors to participate in crowdsourcing projects that differ from 

their current or previous projects to reduce or eliminate the formation of inclusion 

rules and limit the effect of learned inattention to attributes. The literature discusses 

the effect of redundancy in the formation of inclusion rules and selective attention 

tendencies, so stymieing this tendency through non-redundancy of tasks will be 

beneficial to information quality. 

d. Use innovative technologies like conversational agents that can ask follow-up 

questions from contributors about the data being provided, helping them expand on 

the initial answers. Such conversational agents would behave like recommendation 

agents or customer service bots, parsing texts entered about an entity and asking 

follow-up questions based on an evolving knowledgebase about the entity. 

4.8 Conclusion 

The goal of this study is to understand how experience affects data diversity and at the same 

time, investigate if contributed data becomes homogeneous over time. In this study, we 

answered the following questions: does the diversity of crowdsourced data decline as 

crowds gain experience through participation in different projects or long-term 

participation in a single project? If so, how does this decrease in diversity affect the quality 

of crowdsourced data? To answer these questions, we showed through empirical tests how 

increasing experience might diminish the tendency for crowd members to provide diverse 
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data. We also showed that experience does indeed affect the perceived quality of data (using 

the usefulness rating as a proxy).  

This study, therefore, explored the potential limitations of relying on the same crowd, 

particularly for projects that seek to engage crowds in discoveries or evolve to encompass 

unanticipated uses of data. Furthermore, since usefulness is a consequence of information 

quality, decreased usefulness is, therefore, an outcome of decreased information quality. 

However, because mutual attributes are not attributes captured by key traditional 

information quality dimensions like accuracy and completeness, these traditional 

dimensions would be inadequate in estimating the loss of quality we have identified here. 

These results, therefore, further validate the need for the information diversity dimension 

as an antecedent of information quality.  

Understanding the benefits and shortcomings of engaging with the same crowds 

will guide crowdsourcers and crowdsourcing organizations in the development of targeted 

incentive strategies and more effective data collection implementations that are sensitive to 

the nature of the crowds involved in their projects. 

4.8.1 Limitations 

The limitations of this study revolve mainly around the data used. The amount of data that 

can be processed to test the hypotheses was constrained by hardware resources. It is 

difficult to make generalizations about the Amazon data for a particular group of product. 

Comparisons made between the Amazon and NLNature datasets are also limited in 

construct validity as the number of contributions used to estimate experience in Amazon 
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data is different for NLNature. Improvement of this study will focus on using more 

generalizable data and cloud computing and AutoML resources to analyze large datasets 

for insight extensively. 
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 Conclusion and Expected Contributions 

The value of data is in the insight it provides. Insights derived from data have 

become a significant source of competitive advantage for organizations today (Chen, 

Chiang, & Storey, 2012; LaValle, Lesser, Shockley, Hopkins, & Kruschwitz, 2011). 

Organizations derive insight for data-driven decision-making by repurposing data using 

analytics (Woodall, 2017). Crowdsourced repurposable data is “diverse data” consisting of 

different contributor views and lends itself to being used in different contexts (Ogunseye 

& Parsons, 2018). However, collecting diverse data does not just stand to provide useful 

insights; it can also reduce the resources expended on repeat data collection or acquisition 

due to changing data requirements.  

In the words of Peter Drucker, “What gets measured, gets managed” (Willcocks & 

Lester, 1996, p. 280); managing crowdsourcing processes to generate repurposable data 

begins with being able to measure the amount of diversity in data. Research and practice 

favour measuring the quality of data using key dimensions such as accuracy and 

completeness. This thesis theoretically explored the limitations of conventional information 

quality in measuring diversity and the insightfulness of data. We identified the limitations 

of traditional information quality as non-generalizability, over-dependence on contributor 

knowledge, and the lack of a metric for diversity.  

Consequently, we extended the dimensions of information quality to include 

information diversity – the number of unique attributes contained in a dataset. Furthermore, 

we developed a framework for collecting diverse data through integrative crowdsourcing 
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systems. The framework was validated using two cases from the literature with the integral 

ingredients for information diversity identified as accommodating IT infrastructure, system 

design, and human factors.  

However, because crowdsourcers may be wary of strategies that allow contributors 

to provide data without restrictions for concerns about accuracy and completeness, we 

proceeded to explore the consequences of seeking diverse data on traditional information 

quality and vice versa. Since crowdsourcers rely on the knowledge of contributors for 

information quality (Wiggins et al., 2011), we investigated how training crowds or the 

recruitment of experienced contributors affect information quality dimensions, including 

information diversity.   

Recruitment based on knowledge implies smaller crowds, fewer data sources, and 

a consistent effort to keep these contributors motivated through different stages of 

participation in a crowdsourcing project (Lee, Crowston, Østerlund, & Miller, 2017). It 

may also result in fewer perspectives being represented in crowdsourced data and fewer 

people getting the chance to learn about crowdsourcing projects, especially citizen science 

projects, which have education as one of their core tenets. In this thesis, we questioned the 

necessity of knowledge for the collection of high-quality data. By synthesizing existing 

literature on classification and selective attention, we showed that while this strategy is 

expedient for survival and the management of our mental resources, it makes it difficult to 

learn and make discoveries as knowledge increases, as we would rather assimilate than 

accommodate. In fact, “as our knowledge grows, we become less open to new ideas” 
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(Gopnik et al. 2015 p. 87), which means we are also less likely to produce data that leads 

to new ideas. 

We extend these psychology theories to the domain of data quality in 

crowdsourcing. These studies have targeted two questions: (1) How do the different levels 

and types of contributor knowledge affect the quality of crowdsourced data? and (2) How 

does experience affect the quality of crowdsourced data? To answer these questions, we 

conducted two studies using a laboratory experiment and existing real-life datasets, 

respectively. 

The results from our experiment strongly suggest that restricting participation in 

crowds through training has adverse consequences for the diversity and quality of 

information contributed to crowdsourcing projects. Trained contributors have a greater 

tendency to only focus on aspects of a stimulus that are congruent with their existing 

knowledge. In contrast, untrained contributors not only report accurate data; they also 

report diverse data about both primary and secondary stimuli in their visual fields. Chiefly, 

training did not advantage trained contributors in terms of the accuracy of attributes 

reported about a target entity but disadvantaged them when it came to reporting diverse 

data about. The level of a contributor’s knowledge also negatively affected the 

completeness and diversity of contributed data. 

In our analyses of secondary data from an online review system and a citizen science 

platform, we found that increasing experience resulted in selective attention to only specific 

attributes of diverse entities for which data was reported. Contrary to widespread 
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assumptions about the benefits of experience as seen in Amazon Mechanical Turk, which 

pays experienced high performing contributors a premium over new crowd-members, 

increasing experience hurts informativeness and the usefulness of crowdsourced data. 

We conclude that recruitment operations should ensure that people with different 

types and levels of knowledge can participate in crowdsourcing tasks, bringing their diverse 

attention allocation capabilities and prior knowledge (or lack thereof) to bear for the 

capturing of multidimensional, repurposable, and high-quality data. 

5.1 Contribution to Theory 

In the IS literature, the interaction among dimensions of data quality has been mainly 

investigated from the perspective of presented data, as seen on websites and e-commerce 

platforms (DeLone & McLean, 1992; Wixom & Todd, 2005; Xu, Benbasat, & Cenfetelli, 

2013). This thesis increases our knowledge of the interactions between data quality 

dimensions from the contributed data perspective, which is more relevant to crowdsourcing 

and other crowd-facing systems than to e-commerce platforms. Unlike previous studies, 

this thesis considers the multidimensionality of contributor knowledge in crowdsourcing 

by looking at the levels and types of contributor knowledge and how they affect the goal 

of integrative crowdsourcing – the collection of high-quality data.  

 This thesis extends the theory of selective attention to the explanation and 

prediction of the effect of knowledge on contributed data. To the best of our knowledge, it 

is the first study to examine the effect of selective attention on crowds and on the diversity 

of contributed data. It uses the components described in Wickens & McCarley (2008) to 
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explain how expectations contributors have about the attributes of a phenomenon of interest 

and the value ascribed to these attributes can inform how they allocate their attention and 

consequently the information reported about the phenomenon. At the same time, when 

contributors are not guided by knowledge, they are more open to learning the attributes of 

the phenomenon. The characteristics of the attributes of a phenomenon, including the 

amount of effort required to observe these attributes, dictate what is reported about the 

phenomenon.   

Furthermore, we learned from the studies in this thesis that while attribute salience 

and effort may control the allocation of attention when contributors have little or no 

knowledge of the phenomenon , these salient attributes themselves eventually become a 

source of selective attention, as contributors begin to expect and value them for the 

classification of future instances of the phenomenon. 

The thesis, therefore, provides predictive theory (Gregor, 2006) about how 

contributors will perform tasks related to providing information about a phenomenon, in 

the short term and long term. It emphasizes that crowdsourcers will need to 

counterbalance the tendency for knowledgeable contributors to report about only 

attributes of phenomenon aligning with their prior knowledge with the tendency for less 

knowledgeable contributors to report salient attributes requiring minimal effort to observe 

and vice versa.  

In the context of online reviews, selective attention can skew what knowledgeable 

contributors focus on an entity. If the attribute of an entity aligns with their expectations, 
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then they may provide information mainly concerning that aspect of the phenomenon. 

Also, if the attributes of an entity cause cognitive dissonance in the contributor, where 

changes in the attributes of a phenomenon are completely tangential to expected values, 

then contributors may also focus on reporting about theses disconcerting attributes.  

Finally, findings from this thesis creates empirically justified descriptive knowledge 

(Gregor & Hevner, 2013) that describes the theoretical factors that lead to the unexplained 

results in the literature about why less knowledgeable contributors report data that is as 

accurate as that reported by more knowledgeable contributor (see examples in Austen, 

Bindemann, Griffiths, & Roberts, 2016; Escoffier & McKelvey, 2015).  

5.2 Contribution to Practice  

This thesis goes beyond existing studies and seeks to provide theory-driven 

empirical evidence for how and why contributors differ and what to expect in terms of the 

quality of the data they provide. Insights from this thesis will help guide crowdsourcers on 

how to design crowdsourcing processes, especially the recruitment decisions suitable for 

particular project conditions. For example, when classification tasks can be automated, then 

crowdsourcers would be better served if they open their projects to everyone as untrained 

contributors like trained contributors can provide diagnostic attributes needed for 

classification. However, when classification is to be done by contributors, then implicitly 

trained contributors provide more diverse data than explicitly trained contributors with 

minimal sacrifice of accuracy. The thesis thus provides prescriptive knowledge about how 

to acquire high-quality repurposable data, providing an empirically validating a framework 
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to accomplish this (Gregor & Hevner, 2013). It can serve as a source of kernel theory for 

the development of integrative crowdsourcing information systems. 

On the whole, the thesis answers questions about why information diversity is 

needed, how knowledge acquired through training or experience can affect information 

diversity, and how information diversity fits into the information quality framework. The 

thesis will increase the inclusiveness of crowdsourcing, motivating the consideration of 

humans’ natural tendency for error, and selective attention in the design crowdsourcing 

system (Reason, 1990).  

To ensure the dissemination of the theory in the thesis to practitioners and lay users 

of crowdsourcing projects, we hope to publish the findings of this research in practitioner-

focused outlets. We may also seek collaboration with organizations around their data 

collection tasks to showcase the benefits of the information diversity dimension for 

information quality and data repurposing. 

 

References  

Austen, G. E., Bindemann, M., Griffiths, R. A., & Roberts, D. L. (2016). Species 

identification by experts and non-experts: Comparing images from field guides. 

Scientific Reports, 6. Retrieved from 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5028888/ 

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From 

big data to big impact. MIS Quarterly, 36(4). 

DeLone, W. H., & McLean, E. R. (1992). Information systems success: The quest for the 

dependent variable. Information Systems Research, 3(1), 60–95. 

Escoffier, N., & McKelvey, B. (2015). The Wisdom of Crowds in the Movie Industry: 

Towards New Solutions to Reduce Uncertainties. International Journal of Arts 

Management, 17(2), 52. 

Gregor, S. (2006). The nature of theory in information systems. MIS Quarterly, 611–642. 



 

166 

Gregor, S., & Hevner, A. R. (2013). Positioning and presenting design science research for 

maximum impact. MIS Quarterly, 37(2). 

LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, 

analytics and the path from insights to value. MIT Sloan Management Review, 

52(2), 21. 

Lee, T. K., Crowston, K., Østerlund, C. S., & Miller, G. (2017). Recruiting Messages 

Matter: Message Strategies to Attract Citizen Scientists. CSCW Companion, 227–

230. Retrieved from https://citsci.syr.edu/sites/crowston.syr.edu/files/cpa143-

leeA.pdf 

Lukyanenko, R., Parsons, J., & Wiersma, Y. F. (2014). The IQ of the crowd: Understanding 

and improving information quality in structured user-generated content. 

Information Systems Research, 25(4), 669–689. 

Ogunseye, S., & Parsons, J. (2018). Designing for Information Quality in the Era of 

Repurposable Crowdsourced User-Generated Content. International Conference on 

Advanced Information Systems Engineering, 180–185. Springer. 

Reason, J. (1990). Human Error (1 edition). Cambridge England; New York: Cambridge 

University Press. 

Wiggins, A., Newman, G., Stevenson, R. D., & Crowston, K. (2011). Mechanisms for Data 

Quality and Validation in Citizen Science. 2011 IEEE Seventh International 

Conference on E-Science Workshops, 14–19. 

https://doi.org/10.1109/eScienceW.2011.27 

Willcocks, L., & Lester, S. (1996). Beyond the IT productivity paradox. European 

Management Journal, 14(3), 279–290. 

Wixom, B. H., & Todd, P. A. (2005). A theoretical integration of user satisfaction and 

technology acceptance. Information Systems Research, 16(1), 85–102. 

Woodall, P. (2017). The Data Repurposing Challenge: New Pressures from Data Analytics. 

Journal of Data and Information Quality (JDIQ), 8(3–4), 11. 

Xu, J. D., Benbasat, I., & Cenfetelli, R. T. (2013). Integrating service quality with system 

and information quality: An empirical test in the e-service context. Mis Quarterly, 

37(3), 777–794. 

  



 

167 

APPENDIX A: PRETEST 

Twelve students from the Department of Biology at Memorial University of Newfoundland 

participated in the pretest exercise. The pretest was designed using a 2x3 factorial design. 

First, participants were randomly assigned to either a complex rule condition or a simple 

rule condition to help us understand the potential effect of the complexity of the inclusion 

rule on the participants’ ability to report accurate and complete information about the 

artificial stimuli. Participants in both conditions were presented one of two different 

inclusion rules to enable them to perform the identification task. Participants in the simple 

rule condition were presented with a rule that only had two attributes: A tyran is an insect 

that has 2 or 3 buttons on a light-blue body. The participants in the complex rule condition 

were presented with a five-attribute inclusion rule: A tyran is an insect with 2 or 3 buttons 

on its light blue body, 1 or 2 rings on each of its blue wings, a short curly tail. 

Secondly, we tested three different question phrasing: 

1. Report your sighting 

2. Is this a tyran? Yes___ No___ What is the reason for your response? 

3. What do you see? 

 We asked for written and verbal feedback. We found through the exercise that the four 

participants who had question type 2 regardless of the complexity of the condition 

described only the target stimuli and ignored the other stimuli present in some of the images 

they saw. These four participants reported the inclusion rules they have learned. We 

considered that the question might be too direct, priming the participants to fixate on 

whether a stimulus is a tyran or not. All four participants, who got question 1, reported 

about the tyran and its interaction with other entities. Entities that were not interacting with 

the tyran was ignored. The question, though not as direct as question 2, appeared to cause 
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the participant to fixate on the tyran and its activities. Three participants interpreted the 

question as “do you see a tyran?” and responded as such. For example, one participant 

stated, “tyran with button aligned vertically.” They viewed the other entities in the 

presented images as distractors, put there to impede their sighting of the target stimulus. 

Only one participant reported the other entities in the images. Nonetheless, this one 

participant reported only animate entities and ignored the inanimate entities in the images. 

Such entities like fence, sky or table were ignored and not considered a part of “their 

sighting” whether or not the tyran and other insects were interacting with it.  However, the 

third question, “what do you see” was the most inclusive. Of the four participants who got 

question 3, three of them listed every other stimulus present and one the last one listed the 

inclusion rules they have learned. One of the participants wrote in the feedback question 

about the clarity of the instruction, “I was unsure if I was being asked to describe the 

variations in the tyran or the entire scene.” Nonetheless, this participant reported all the 

entities available in the picture and their interaction. 

Finally, we found that the complexity of the rule did not have any effect on the 

participants' ability to identify the stimulus. However, the simple rule had a negative 

effect on the participants’ perception of the task. Some participants in the simple rule 

condition searched for additional diagnostic attributes as they considered the rule too 

simple and unrealistic. A participant in the simple rule condition stated  

“It was unclear as to whether the orientation of the buttons mattered. If the orientation of 

the button doesn’t matter, it might be a little too easy … Insect ID in the field can be 

complicated.” 
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Another participant in the simple rule condition stated,  

“Possibly test if other features of the insect affects whether or not they get marked 

as a Tyran or not, such as wings, tail, and antennae, while still having the dots.” 

Participants in the simple rule condition also stated that the task took too long, and 

they were “bored.”  

Based on the outcome of this pretest, we adjusted the materials eliminating the simple 

rule condition.  

To test these modifications, we carried out another test with fifteen students from 

the faculty of business as part of a Business Research Experience Course. Students 

participated for course credit. Using twenty images, including four catch items, we tested 

for a suitable time for completing the test. We tried 50 seconds, 40 seconds and 30 

seconds and found 40 seconds to be the most suitable across the three groups. 

Other changes made at this stage included improving the images to systematically test for 

accuracy, completeness as well as diversity, collecting biographic information from the 

participants and refining the recruitment information to be more attractive to our target 

audience. 

 

The new experimental material is presented in Appendix B. 
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APPENDIX B: EXPERIMENT PROTOCOL 

B.1. Description: 

Participants will be randomly assigned to three groups: trained, implicit learning, and 

untrained. For the first group, the inclusion rule – how to identify a tyran – will be provided 

to them. The second group will be provided with sample tyrans so they can deduce the 

inclusion rule themselves 

The third group will not be trained, and no sample will be provided to them  

The total number of images that will be presented for the test is 20. This does not include 

images used in the learning stage by the untrained contributors. The current experiment 

will require 15 minutes to complete. 5 minutes for training or learning and 10 minutes for 

the test. For the untrained group, the experiment should take 12-13 minutes in total.  
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B.2. Images Presented and Coding Schemes 

 

Figure B.1: Tests for knowledge of the inclusion rule 

This stimulus is not a tyran because it lacks a (short) tail 

The ideal contributor will report that it lacks a tail, report about the presence of 6 legs and 

give some details about the four insects in the picture. They may also choose to describe 

the intrinsic and mutual attributes of the secondary stimuli too 

Coding Scheme: 

Non-tyran Reason: lacks a short tail 

Attributes: 2 long blue wings, 2 antennae, 4 legs, 3 buttons, light blue body, slightly 

tilted, 2 rings each.  

Housefly interacting with butterfly. A bee and a butterfly underneath the non-tyran’s legs 
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Figure B.2: Tests for knowledge of the inclusion rule 

This stimulus is not a tyran because it lacks a short tail 

The ideal contributor will report that it lacks a tail and mention all the attributes of the 

stimulus. They should also report the presence of 4 wings and mention the presence of a 

bird and flowers. They may also choose to describe the intrinsic attributes of the stimuli 

 Coding Scheme: 

Non-tyran Reason: lacks a short tail 

Attributes: 4 long blue wings, 2 antennae, 4 legs, 3 buttons, light blue body, slightly 

tilted. A grey and orange-coloured bird behind. In a bush of pink flowers.  
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Figure B.3: Tests for knowledge of the inclusion rule 

This stimulus is not a tyran because it has three rings. The ideal contribution will include 

details about the attributes of the stimulus. 

Coding Scheme: 

Non-tyran Reason: because it has three rings 

Attributes: 2 long blue wings, 2 antennae, 4 legs, 3 buttons, light blue body, slightly 

tilted, short blue tail 3, rings.  
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Figure B.4: Tests for knowledge of the inclusion rule 

This stimulus is not a tyran because it lacks rings on its wings 

The ideal contribution will report the lack of rings and mention the evening sky and the 

bird flying by. It would also provide details about the attributes of the stimulus, whether 

essential or not.  

Coding Scheme: 

Non-tyran Reason: because it has no rings 

Attributes: 2 long blue wings, 2 antennae, 4 legs, 3 buttons, light blue body, slightly 

tilted, short blue tail 3, no rings. The non-tyran is flying, and a black bird is flying behind 

in the night sky. 
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Figure B.5: Tests for knowledge of the inclusion rule 

This stimulus is not a tyran because it lacks a short tail 

The ideal contribution will report that it lacks a short tail. It should also report the 

presence of 2 birds on a twig/tree and mention the presence of a butterfly on the wing of 

the tyran and flowers  

Coding Scheme: 

Non-tyran Reason: Long tail 

Attributes: 2 long blue wings, 2 antennae, 0 legs, 2 buttons, light blue body, slightly 

tilted, short blue tail 3, rings.  

The non-tyran is in a bush of red and white and pink and yellow flowers with an orange 

and black speckled butterfly on its right wing, apparently feeding. Two black birds 

(looking like ravens) are on a twig behind. 
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Figure B.6: Tests for knowledge of the inclusion rule 

This stimulus is not a tyran because it lacks rings on its wings 

The ideal contribution will report the lack of rings and discuss the fence and grasshopper 

in the picture. It should also mention the shortness of its antennae. 

Coding Scheme: 

Non-tyran Reason: No rings 

Attributes: 2 long blue wings, 2 short antennae, 0 legs, 2 buttons, light blue body, slightly 

tilted, short blue tail 0 rings instead has some hairy features where rings should be. 
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The non-tyran is behind a light-blue fence. A yellow and black locust is on the fence left 

side of the non-tyran. 

 

Figure B.7: Tests for knowledge of the inclusion rule 

This stimulus is not a typical tyran because it lacks solid blue wings 

The ideal contribution will report the colour of the wings and discuss the fence and 

grasshopper in the picture. It should mention all the essential and non-essential attributes 

of the stimuli 

Coding Scheme: 

Non-tyran Reason: Wings has white stripes 

Attributes: 2 long white and blue striped wings, 2 short antennae, 0 legs, 2 buttons, light 

blue body, slightly tilted, short blue tail, and 2 rings. 
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The non-tyran is behind a light-blue fence. A yellow and black locust is on the fence left 

side of the non-tyran 

 

Figure B.8: Tests for knowledge of the inclusion rule 

This stimulus is not a tyran because it lacks a light blue body 

The ideal contribution will report the colour of the body, and mention the other attributes  

Coding Scheme: 

Non-tyran Reason: green body 

Attributes: 2 long blue wings, 2 antennae, 4 legs, 2 buttons, green body, slightly tilted, 

short blue, and tail 2 rings. 
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Figure B.9: Tests for selective attention to rules only 

This stimulus is a tyran with a very short tail 

The ideal contribution will report the shortness of its tail and discuss the other entities in 

the picture. It should also mention the attributes of the tyran 

Coding Scheme: 

Tyran Reason:  

Attributes: 2 long blue wings, 2 antennae, 0 legs, 2 buttons, light blue body, slightly 

tilted, very short blue tail 1 rings. The tyran is hovering over a bush of flowers surrounded 

by a penguin, a bee and a housefly. The housefly is descending towards the tyran as if to 

attack it.red and yellow flowers 



 

180 

 

Figure B.10: Tests for selective attention to rules 

This stimulus is a tyran with short wings 

The ideal contribution will report the shortness of the tyran’s wings and discuss the other 

entities in the picture. It should also mention the attributes of the tyran like the split-end 

antennae 

Coding Scheme: 

Tyran Reason:  

Attributes: 2 short blue wings, 2 antennae with 2 lobbed end each, 0 legs, 3 buttons, light 

blue body, slightly tilted, short blue tail 1 ring each. The non-tyran is flying, and a black 

bird is flying behind in the night sky. 
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Figure B.11: Tests for selective attention to rules 

This stimulus is a tyran with a light blue tail 

The ideal contribution will report the colour of its tail and discuss the other entities in the 

picture. It should also mention the attributes of the tyran. 

Coding Scheme: 

Tyran Reason:  

Attributes: 2 short blue wings, 2 antennae, 0 legs, 3 buttons, light blue body, slightly 

tilted, short light blue tail, 1 ring each. The tyran is flying over a field of grass. A peacock 

and a white goose approaching on its right and left, respectively. Two birds, one black 

and another white, appear to be descending or flying bye in the sky. 
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Figure B.12: Tests for selective attention to rules 

This stimulus is a non-tyran with four wings 

The ideal contribution will report the presence of 2 extra wings and discuss the other 

entities in the picture. It should also mention the attributes of the tyran 

Coding Scheme: 

Non-tyran Reason: insufficient rings for all the wings 

Attributes: 4 blue wings, 2 antennae, 0 legs, 3 buttons, light blue body, slightly tilted, 

short blue tail 2 rings each. The tyran is behind a light-blue fence. A yellow and black 

locust is on the fence left side of the tyran 
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Figure B.13: Tests for selective attention to rules 

This stimulus is a tyran with 6 legs (where the normal stimuli contributors will be 

exposed to during the training phase will only have 4 legs).  

The ideal contribution will report the number of legs and discuss the other entities in the 

picture. It should also mention the attributes of the tyran 

Coding Scheme: 

tyran Reason:  

Attributes: 2 blue wings, 2 antennae, 6 legs, 2 buttons, light blue body, slightly tilted, 

short blue tail 1 ring each. The tyran is behind a light-blue fence. A yellow and black 

butterfly descending on it from the right and a black-and-white butterfly is attacking from 

the left. 
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Figure B.14: Tests for selective attention to rules 

This stimulus is a tyran with 2 extra antennae  

The ideal contribution will report extra antennae and discuss the other entities in the 

picture. It should also mention the attributes of the tyran 

 Coding Scheme: 

Tyran Reason:  

Attributes: 2 blue wings, 2 long antennae, and 2 small antennae, 0 legs, 3 buttons, light 

blue body, slightly tilted, short blue tail, 2 rings each.  
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Figure B.15: Tests for selective attention to rules 

This stimulus is a tyran with only two legs and a flower-like (split-end) antennae. It also 

has 2 tiny antennae. The ideal contribution will report these modifications to the non-

diagnostic attributes and discuss the other entities in the picture. It should also mention 

the attributes of the tyran 

Coding Scheme: 

tyran Reason: insufficient rings for all the wings 



 

186 

Attributes: 2 blue wings, 2 long antennae with 2 lobbed ends and 2 small antennae,2 legs, 

3 buttons, light blue body, slightly tilted, short blue tail, 2 rings each. It is surrounded by 

five mosquitoes. The tyran and small bird stands on a white snowing surface on the left. 

 

Figure B16: Tests for selective attention to rules 

This stimulus is a tyran with short antennae 

The ideal contribution will report the shorter antennae and discuss the other entities in the 

picture. It should also mention the attributes of the tyran 

Coding Scheme: 

Attributes: 2 blue wings, 2 short antennae, 0 legs,2 buttons, light blue body, slightly tilted, 

short blue tail, 2 rings each.  
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The tyran is behind a light-blue fence. A yellow and black locust is on the fence left side 

of the tyran 

 

Catch Items 

Catch Items will be placed after every 4th image. Participants should report all 4 catch 

items correctly for their data to be used in the analysis.  
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GLOSSARY 

Term Definition 

Attribute a quality or feature regarded as a characteristic or 

inherent part of someone or something 

Classification the action or process of classifying something according 

to shared qualities or characteristics 

Cognitive diversity the inclusion of people who have different styles of 

problem-solving and can offer unique perspectives 

because they think differently 

Cognitive Dissonance  cognitive dissonance is used to describe the feelings of 

discomfort that result when your beliefs run counter to 

your behaviors and/or new information 

Diagnostic Attributes Attributes that can help classify an entity. Usually 

intrinsic   

Mutual Attributes Attributes that depend on two or more entities 

Non-Diagnostic Attributes Attributes of an entity that is not essential for classifying 

it 

Selective Crowdsourcing  crowdsourcing that seeks to choose the best input(s) 

from a number of competing inputs provided by a crowd 

of people 

  

Inclusion Rule  A set of rules about the attributes of an entity that help 

determine membership of a class 

Integrative Crowdsourcing Crowdsourcing that seeks to “pool complementary input 

from the crowd” 

Intrinsic attributes Attributes inherent in a thing. A part of a thing 

 


