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Abstract

Many fisheries are successfully managed using reference points (RPs) based

on the maximum sustainable yield (MSY), in particular fMSY , the fishing

mortality rate that achieves MSY. Typically, fMSY is derived assuming fish

are homogeneously distributed in space. However, fishing should be spatially

allocated to optimize yields and reduce stock depletion, and fMSY should

be derived assuming fish are heterogeneously distributed. In this thesis,

we apply a deterministic, age-structured model to derive spatially-explicit

MSY RPs. We develop a metapopulation model with a source-sink, larval-

advection dynamic to calculate fMSY and other related RPs for a two-box

model. We also derive MSY RPs for a three-box model for several unique

connectivity patterns, and develop a framework to derive RPs for an n-box

model. We conclude that spatially-explicit MSY RPs can be more sustainable

than values derived through a one-box model RPs, but usually provide less

yields.
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Chapter 1

Introduction

1.1 Fisheries Management and Management

Reference Points

One of the critical concerns of fisheries scientists is the sustainability of com-

mercial fisheries. Generally, this refers to the long-term maintenance of both

the industry and the stock being fished, while optimizing returns in revenue

or yields (i.e. annual catch biomass). To do this, the fisheries are regulated

through management practices that promote sustainability. What is ‘sus-

tainable’ is typically defined by management reference points (RPs), and a

fundamental objective for fisheries scientists is to estimate these RPs, which

are then used by managers to limit catches of commercial fisheries. As a

result, RPs are widely considered an essential part of well-managed fisheries

(Hilborn and Stokes, 2010; Hutchings and Rangeley, 2011).

A variety of RPs are available to fisheries managers to control harvesting,
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and management strategies may use different RPs depending on the goals of

the fishery. Fisheries and Oceans Canada (DFO), for example, use RPs based

on a precautionary approach (DFO, 2006), which uses risk management pro-

tocols to maintain stock status at healthy levels (Figure 1.1). Other fisheries

management organizations use similar precautionary approach frameworks

with RPs for stock harvest (e.g., ICES, 2018; NAFO, 2004).

RPs are used to inform fisheries managers on how to adjust harvest

rates to maintain a sustainable and healthy stock status. To define RPs,

researchers rely on statistical, algorithmic population models, commonly re-

ferred to as stock assessment models, to quantify fish stocks (e.g., Beverton

and Holt, 1957; Quinn and Deriso, 1999; Haddon, 2010).

Stock assessment models are typically used to gauge or assess the status of

a fish stock, but they are also used to derive management RPs. To do this,

these models require measures of fish abundance, as well as stock-specific

traits like growth and maturation rates, which are often referred to as life

history characteristics. It is vital to have accurate estimates of these life his-

tory characteristics to effectively manage a fish stock. These characteristics,

however, can vary substantially over time and space, and management RPs

may not be conducive to a sustainable fishery if life history characteristics,

along with stock abundances, are not properly measured.

The most apt models for deriving management RPs are equilibrium mod-

els, which calculate stead-state yields for fixed harvest strategies, and are

most commonly used to calculate the Maximum Sustainable Yield (MSY),

which is considered an essential element of modern fisheries management

(e.g., Worm et al., 2009; ICES, 2016; EC, 2010). In theory, MSY is the
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maximum amount of stock that may be sustainably harvested annually, and

indefinitely (see Beverton and Holt, 1957); that is, the maximum yield that

is sustainable. Yield is the total catch biomass obtained from a predeter-

mined level of fishing. This level of fishing, known as the fishing mortality

rate, F, is related to the proportion of stock fished (see Chapter 2). Many

management strategies are based on a long-term, average yield, referred to

as equilibrium yield, Yeq, that is obtained from fishing at a constant level, F,

each year, i.e. Yeq(F ). Annual yields may change between years from fluc-

tuations in annual stock abundance, even under constant F s, but average

yields are expected to stabilize over long periods of time. Equilibrium yield

Yeq(F ) is a quasi-concave function (see Figure 1.2), meaning the function

has a single maximum within a particular domain, F ∈ [0,∞), and at least

one minimum at one of the endpoints (i.e. Yeq = 0). Obviously, equilibrium

yield where there is no fishing Yeq(0) = 0. However, equilibrium yield where

F is too great, Yeq(Ftoogreat) = 0, because the population is extirpated in

the long-term. There is, therefore, some F, denoted FMSY , that maximizes

the equilibrium yield. The maximum potential yield that can be harvested

without compromising the stock’s status is defined as MSY = Yeq(FMSY )

(e.g. Figure 1.2). Most management practices tend to focus on using RPs

like FMSY rather than MSY to define appropriate harvest levels, so we will

focus primarily on determining MSY-based RPs like FMSY .

A simple stock assessment model that may be used to derive MSY RPs is

the Schaefer surplus production model (SPM; e.g., MacCall, 1990; Quinn and

Deriso, 1999; Hilborn and Walters, 2013). SPMs are the simplest model used

to derive MSY RPS. We present an SPM to introduce the general methods
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used to derive these RPs, and discuss some issues with using these models

to derive RPs.

1.2 Surplus Production Model

MSY is the maximum, average, long-term yield, and is a result of manage-

ment strategies that set F = FMSY . FMSY is typically used in age-structured

models, which we discuss in Chapter 2. Alternatively, it is common for equi-

librium yields to be expressed in terms of the harvest rate, H. The harvest

rate represents the proportion of stock biomass that is fished (i.e. harvested)

annually. For example, a harvest rate of H = 0.2 indicates 20% of stock

biomass is fished each year. A harvest rate of HMSY is the proportion of

stock biomass that can be fished annually, indefinitely, to maximize long-

term yields. In some cases, MSY RPs can be calculated using H instead of

F, for example in SPMs.

SPMs aggregate total stock abundance or biomass by year, and are often

described by the time-discrete expression

Bt+1 = Bt + rBt

(
1− Bt

K

)
−HBt, (1.1)

where B denotes the biomass, K is the carrying capacity, r is the growth rate,

and t indicates the year.. From some initial biomass, subsequent biomasses

are sequentially calculated.

SPMs are density dependent functions, meaning annual stock growth is

affected by current stock biomass, and stock biomass has an equilibrium, Beq,
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where total biomass will approach Beq over time under constant harvest rates.

When used for stock assessments, SPMs fit biomass data to estimate trends

in biomass, but when deriving management RPs biomass values are projected

forward until biomass reaches equilibrium. Equilibrium solutions to SPMs

can be derived one of two ways: by forecasting biomass values forward in time

using Equation 1.1 until values are stable, or deriving them through analytic

equations. Forecasting biomass values requires initial values of biomass to

begin the projection, and must be projected long enough for biomass to reach

equilibrium. This forecast method is detailed more in Chapter 2

Deriving Beq analytically is more efficient, and does not require starting

values like the forecast method. Equilibrium biomass is defined as Beq =

Bt+1 = Bt. In the absence of harvesting (H = 0), the equilibrium biomass is

K. When the stock is harvested (H > 0), the equilibrium biomass depends

on H (Figure 1.3). It can be shown that equilibrium biomass occurs when

r(1 − Beq

K
) − H = 0, that is Beq = K(1 − H

r
) where H ≤ r. It can also be

shown that the optimal harvest rate (the harvest rate that achieves MSY) is

HMSY = r/2 and the optimal equilibrium biomass is BMSY = K/2, where

the optimal equilibrium yield is MSY = BMSYHMSY = rK/4.

SPMs are simple in structure and only rely on biomass data to estimate

stock productivity parameters and calculate MSY RPs. However, SPMs may

not provide reliable RPs for sustainable fisheries management. For example,

Zhang (2013) calculated MSYs using an SPM and compared them to a “true”

value for MSY (calculated using an age-structured model) and found that,

in the presence of observation and process error, SPMs tended to overesti-

mate MSY. Biased estimates for RPs may also be introduced by the error
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associated with estimations of K and r.

Furthermore, SPMs conceal important information about the stock’s age-

structure. SPMs are a data-limited assessment method and they do not ac-

count for age-varying attributes such as maturation and growth rates, in such

a way that stocks comprised primarily of older, slow-growing fish will have

lower annual increases in biomass compared to stocks consisting of mostly

younger fish. In spatially heterogeneous frameworks, it is common for differ-

ent age-classes to occupy different habitats, for example juveniles and recruits

may aggregate in nursery areas along coastlines (e.g., Walsh et al., 2004), or

movement patterns may depend on age, as detailed in later this thesis. Age-

aggregated SPMs cannot account for these age-segregated distributions, and

in such cases age-structured models are ideal. We detail the methods for

deriving MSY RPs using an age-structured model in Chapter 1.

1.3 Practical Issues with Contemporary Mod-

els

Recent studies indicate that global abundances of fish stocks are declining

(Berkes et al., 2006; FAO, 2018; Worm et al., 2009). According to FAO

(2018), 33.1% of fished stocks in 2015 were considered to be at a biologically

unsustainable level; that is to say, they are ’overfished’ (outside ‘Healthy

Zone’; see Figure 1.1). This is a 23.1% increase of overfished stocks since

1974. In Canada alone, 13.4% of stock are overfished, 11% of which have
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management plans in place to help their recovery, yet only a small fraction

of these plans have achieved their goals, and only 34% of fish Canadian fish

stocks are known to be healthy (Oceana, 2018).

It is debated whether or not the prevalence of overfishing is attributed to

the inability of contemporary management practices to produce sustainable

outcomes as predicted by stock assessments (Larkin, 1977; Botsford et al.,

1997; Hilborn and Ovando, 2014). For instance, Hilborn and Stokes (2010)

propose that this prevalence may be a result of fisheries managers’ definition

of ‘overfished’, which sets biomass limits too high relative to true sustainable

levels. The use of pre-determined harvest strategies based on reliable RPs is

considered the best practice for recovering depleted and maintaining healthy

stocks (Murawski, 2010), yet, this practice has had its share of failures. For

example, since the adoption of MSY-based management procedures, North

West Atlantic cod stocks have had little to no recovery in terms of biomass

and provide consistently low landings (Shelton and Morgan, 2014). This

may suggest that contemporary stock models are faulty and may provide

unreliable indicators for sustainable fisheries management, for instance by

not accounting for ecological process, as Shelton and Morgan (2014) point

out.

To gain insight into the causes for declining fish stocks, fisheries scientists

must consider alternative methods to model fish population dynamics. It is

important to develop models which are cognizant of the stock’s environment,

unique species characteristics, and inter- and intra-specific interactions to

understand how fish stocks vary through time and space, and how human

intervention (e.g. fishing) may affect these changes. There is often trouble
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deciding on an appropriate model structure, since both model under- and

over-specification can lead to less accurate results (e.g., Goethel and Berger,

2017), and sensitivity analyses are sometimes recommended to decide the

most appropriate formulation (Punt et al., 2015).

1.4 Spatial Models

Among other innovations, some research has adapted population dynam-

ics models to include spatial variation in life history characteristics, as well

as explicit spatial movement within or between populations. Models which

incorporate these types of spatial structures are sometimes referred to as

spatially heterogeneous models. Studies that have incorporated spatial het-

erogeneity into stock models have, for example, used telemetric tagging data

to monitor individual fish movements over time (e.g., Goethel et al., 2014),

or integrated oceanographic processes, like currents, that may effect fish

distributions (e.g., Munroe et al., 2012; Pineda et al., 2007). These stud-

ies have provided vital information on species- and stock-specific dynamics,

and Fogarty and Botsford (2007) gave an overview of recent developments

in population connectivity models and spatial stock management. Cadrin

and Secor (2009) conducted an extensive literature review on how spatial

population structure has been accounted for in stock assessment and con-

cluded, with some exceptions, that spatial aspects of demographic structure

have been relatively ignored compared to other aspects like size, sex, matu-

rity, etc. However, problems of exploiting sympatric populations, preventing

local depletions, conserving essential fish habitats, and the designation of

8



marine-protected areas require the incorporation of spatial structure in stock

assessments. Goethel et al. (2011) provided additional review of movement

modelling in marine fish population dynamics.

Ignoring spatial structure or misdiagnosing appropriate connectivity dy-

namics in population models can provide inaccurate management goals which

may lead to overharvesting. Goethel and Berger (2017) conducted a simula-

tion for a metapopulation that considered different population connectivity

structures, among other scenarios, to quantify the implications of structural

misdiagnosis, and emphasized that population structure strongly influences

outcomes and should be regularly integrated into population dynamics mod-

els when deriving management RPs.

Contemporary management practices involve determining FMSY for a

closed system. Population dynamics models typically assume that emigration

and immigration between local populations are negligible, and only birth and

death rates affect changes in local abundances (Gaines and Lafferty, 1995;

Punt et al., 2015). In fact, the traditional concept of a fish ‘stock’ follows this

definition (e.g., Quinn and Deriso, 1999). Stock models also typically assume

that, within a population, fish are sympatric (i.e. randomly distributed in

space) and have a panmictic nature (i.e. randomly mate). These assump-

tions, however, do not hold true most of the time. For example, fish may

aggregate where food is abundant, and some species like Atlantic salmon

are philopatric, meaning they return to their birth location to reproduce.

In practice, it may be too simplistic to describe the complexities of stock

dynamics under uniform conditions, and many studies suggests that models

used to derive RPs should consider more realistic and accurate assumptions
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about stock dynamics, either regarding ecological conditions, stock-specific

characteristics, or both (Lipcius et al., 2008; Luzeńczyk, 2017). In this thesis,

we consider how the inclusion of a spatial structure into stock models may af-

fect management RPs, how spatially-varying life history characteristics may

affect these RPs, and how these RP values differ from standard non-spatial

model results.

Some studies have extended SPMs to include spatial heterogeneity and

calculate spatial harvest goals, but there are issues in doing this, as well. Car-

ruthers et al. (2011) ran simulations of a spatially explicit SPM for a variety

of motile Atlantic species and concluded that these spatial models tend to

provide precautionary management goals because they underestimate stock

sizes and MSY. This can be beneficial for management strategies aimed at

stock recovery, but spatially explicit SPMs can provide widely varying MSY

estimates depending on the degree of mixing between local populations, the

size and scale of the managed region, and the management regime used to

determine MSY (Takashina and Mougi, 2015). In some cases, SPMs may be

useful for precautionary approaches to fisheries management, but it is rec-

ommended (Zhang, 2013) that age-structured models be used when possible.

Additionally, Bosley et al. (2019) recently investigated optimal harvest

rates (i.e. HMSY ) for homogeneous, heterogeneous and metapopulation stocks.

They note that ignoring age-structure may not be appropriate for com-

plex age-based movement patterns. Moreover, ignoring connectivity patterns

could result in substantial overfishing and local population depletion, which

could affect overall stock resiliency.

The integration of spatial heterogeneity into population dynamics models
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has become more common in recent literature, but despite the increasing

use of spatially structured models to describe population dynamics, little

research has been published on providing spatial harvest advice and defining

spatially-explicit RPs using an age-structured population model. Exceptions

include Hintzen et al. (2015), who studied herring west of the British Isle,

explicitly modelling mixing between local populations, and concluded that

ignoring mixing effects can bias abundance estimates and provide inaccurate

RPs. Ralston and O’Farrell (2008) investigated the effects various larval

transport pathways had on spatially allocated harvests rates and MSY. They

noted, among other things, that certain larval pathways allowed for higher

total yields than that for a well-mixed population, provided F was large

enough. Aside from the studies mentioned above, however, few others have

considered management strategies that maximize spatially-allocated harvest,

that is deriving MSY RPs, for an age-structured population.

Management RPs that take into account the movement of various age-

groups are much more reliable indicators for sustainable harvests. Thus,

it may be useful to develop a framework for a spatially explicit, age-based

population that may be integrated into future stock assessment models to

derive such RPs.

1.5 Source-Sink Metapopulations

Two commonly used spatial population dynamics models are the reaction-

diffusion model and the metapopulation model (see Tyler and Rose, 1994).

Reaction-diffusion models are useful for mapping continuous fish movements
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and typically model random movements of individual fish. However, a weak-

ness of reaction-diffusion models is that they are unable of addressing envi-

ronmental heterogeneity in populations, i.e. diffusion coefficients are usually

constant and spatially invariant.

Metapopulation models, on the other hand, are predicated on spatial

aggregations of fish called ’sub-populations’, which are typically grouped

based on spatial boundaries or genetic structure. Metapopulation models are

useful when assessing fish stocks of highly-motile species (e.g. Pacific tuna),

for species that rely on the mobility of early-life stages for habitat selection

(for example, when mature fish are sedentary), and where local hydrographic

processes like currents and gyres influence fish distributions. More relevantly,

metapopulation models are useful for assessing the distribution of resources,

e.g. for exploitation by fisheries; further, metapopulations model long-term

dynamics, upon which equilibrium yields are predicated. Therefore, in this

thesis, we find it appropriate to develop a spatial equilibrium yield model

using a metapopulation structure to derive area-specific MSY RPs.

Furthermore, we assume our metapopulation has a source-sink layout. It

is well understood that a variety of species and fish stocks exhibit a source-

sink dynamics structure (Kritzer and Sale, 2010). Source-sink populations

are spatially segregated sub-populations which assume a highly productive

source sub-population supplies the less productive sink sub-population with

recruits to sustain the metapopulation. Models for such populations explic-

itly differentiate between source and sink fish, and often assume interconnec-

tivity occurs via larval advection. Larval advection describes the movement of

young fish (usually larvae, but we assume it refers to any fish pre-recruitment)
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to more suitable locations for growth, like nurseries (Walsh et al., 2004).

Some literature relays the efficacy of using larval advection dynamics to

model fish population connectivity. For example, Smedbol and Wroblewski

(2002) analysed the spatial structure of the Northern Atlantic cod stocks

using concepts of metapopulation theory, and proposed that using a spa-

tially explicit metapopulation model with larval retention dynamics may aid

in the recovery of those Northern cod stocks. Cowen and Sponaugle (2009)

provided an overview of the ecological significance of larval advection for pop-

ulation persistence, and commented that population persistence, over long

time scales, is fundamentally linked to rates of larval delivery and recruit-

ment among populations. Larval advection is an essential mechanism for

sustainability and population interconnectivity for many species, and should

be frequently included in stock models that suggest any degree of stock mix-

ing, especially at younger ages.

Often, larval advection is assumed to occur due to currents, since larvae

are capable of adjusting their depth in the water column to take advantage of

such waterways (e.g., Hart, 2003) to locate suitable habitats. Our model as-

sumes fish are approximately sedentary over large scales, and therefore their

only movement occurs at young ages via this larval advection process. Using

this larval advection, metapopulation model, MSY RPs will be calculated to

observe how different amounts of transferring larvae (henceforth pre-recruits)

affect population sustainability and total fishery yields.

The objective of this thesis is to develop a heuristic age-structured model

that can be used to calculate spatially-explicit MSY RPs for a metapopu-

lation, and compare these values to spatially-implicit MSY RPs for a sym-
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patric, panmictic population. In Chapter 2, we detail the established frame-

work used to calculate RPs for a single, sympatric population through an

age-structured model, and discuss how uncertainties can affect RP values.

Although our models are deterministic, we discuss uncertainties to tie into

the idea of structural uncertainties, and from it create motivation to develop

new models to reduce potential errors in RP estimates. In Chapter 3, the

one-box framework is modified to model two separate but connected popula-

tions of fish. Doing so allows fish to have varying characteristics depending on

their resident location, and movement of fish between regions can be explic-

itly modelled. RPs are also calculated under various model parametrizations

to demonstrate the robustness of these estimates. Finally, in chapter 4 we

explicitly model three separate but connected populations to derive MSY

RPs, and in chapter 5 we present a theoretical framework to calculate RPs

for an n-dimensional metapopulation structure.
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1.6 Figures

Figure 1.1: Precautionary approach as described by DFO (2006). Higher
harvest rates are acceptable for healthy stocks. When stocks are healthy,
harvest rates are set at a limit harvest reference point to optimize sustain-
able catches. As stock status deteriorates beyond an upper reference point
due to overharvesting, harvest rates are reduced to allow the stock to re-
cover. Reference points indicate when a stock’s status transitions from the
‘Healthy Zone’ to the ‘Caution Zone’, and from the ‘Caution Zone’ to the
‘Critical Zone’, as well as the level of fishing permitted by a fishery given
the stock’s status. Management strategies aim to maximize harvests with-
out exceeding predetermined reference points to avoid overexploitation and
stock depletion. Recovering stocks (i.e. stocks in the Caution or Critical
Zones) require reduced harvest rates to avoid further deterioration of the
stock’s health, whereas Healthy stocks can be harvested at the limit harvest
reference point.
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Figure 1.2: Equilibrium yield, Yeq, for varying fishing mortality rates, F s.
Equilibrium yield is maximized (i.e. MSY) for F = FMSY . No fishing (F = 0)
or too much fishing (F = Ftoogreat) will result in an equilibrium yield of zero.
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Figure 1.3: Surplus production model equilibrium harvest (Yeq = BeqH)
depends on the harvest rate, H, growth rate, r, and carrying capacity, K.
Changes in r results in changes in both MSY and HMSY (top left); changes
in K only results in changes in MSY (top right). Over time biomass, Bt,
approaches an equilibrium value when harvest rates are constant (bottom).
Dashed lines indicate the respective Beq for biomass projections under fixed
harvest rates (solid), and the dashed grey line indicates BMSY .
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Chapter 2

MSY RPs for an

Age-Structured Model

2.1 Cohort Model

Age-structured models are commonly applied to describe the population dy-

namics of fish stocks that support important commercial fisheries. Age-

structured models are responsive to changes in age-class composition of a

population, and can account for age-dependent traits like maturation and

growth rates. However, they require more data regarding the age distribu-

tion of the population. Rings on the fish ear-bones (i.e. otoliths), or scales,

are used to measure age, which are then associated with fish size (i.e. length).

These markers are time-consuming and difficult to measure, but when such

age-length information is available, a more comprehensive understanding of

a stock’s age-composition is provided.

Age-structured models allow for the tracking of cohorts, that is, fish which
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are born or recruited in the same year. Recruits are fish of the age at which

they become liable to ‘encounters’ with the fishing or survey gears (Beverton

and Holt, 1957); that is, fish at the youngest age caught by the gear. Each

year, new recruits add to total stock abundance, and mortalities decrease

total stock abundance. Mortalities consist of both fishing and natural deaths,

and are often age- and year-dependent. Without an explicit age structure, net

abundance (or biomass) increase would be condensed into a general growth

rate term, e.g. r in Equation 1.1. Age-structured models expand the stock

into individual age-class components, and separate cohorts can be modelled

through an algorithmic cohort model. Age structured models allow for a

decomposition of the growth rate term into reproduction and mortality. A

cohort only declines in size due to mortality processes as time (i.e. age)

increases.

Age-structured models are essentially constructed by a cohort model,

which project forward abundances-at-age by year. The basic cohort model

is motivated from the generic decay formula

dN(t)

dt
= −Z ·N(t), (2.1)

where N(t) is cohort abundance at time t, and Z is the instantaneous total

mortality rate. Solving this ordinary differential equation for N(t) gives

N(t) = N0e
−Zt, (2.2)

where N0 is some initial condition. The model assumes cohort abundance
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decays in size over time, and Equation 2.1 assumes continuous time. However,

it is common for total mortality to also vary in time (i.e. Z ≡ Z(t)), and

this would make solutions to Equation 2.1 more complicated. In such cases,

using a discrete time formulation of Equation 2.2 is more effective, which is

expressed as

Ny+1,a+1 = Ny,ae
−Zy,a , (2.3)

where time is reflected in years y, and a is age.

Total mortality rate, Zy,a, is usually divided into two components: the loss

of fish by natural causes (i.e. natural mortality), and the losses due to fishing

(i.e. fishing mortality). It is common to assume the natural mortality rate,

m, is known when deriving management RPs, and is usually constant over

time for all ages. However, in later sections of this paper, natural mortality

will be allowed to vary by age (see Section 2.2), therefore it will be denoted

ma. The fishing mortality rate, however, will generally vary between ages

and years. Total mortality rate, Z, can be expressed as

Zy,a = Fy,a +ma. (2.4)

When projecting abundances forward in time, F is assumed to be constant

over time (i.e. Fy,a ≡ Fa), and is further separated into the fully selected

fishing mortality rate, f, and fishing selectivity, sa, such that Fa = f · sa,

where 0 ≤ f <∞, 0 ≤ sa ≤ 1, and maxasa = 1. Although the fishery selec-

tivity is important in determining sustainable yields and RPs (e.g., Scott and

Sampson, 2011), in this thesis, for simplicity, it is assumed that selectivity,

sa, is fixed and known for all ages. Selectivity is typically stratified by age or
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length, where only fish above a certain age or length are caught. We assume

selectivity is an age-based effect, and only fish above the age of recruitment,

ar, are caught. That is, selectivity for ages a < ar is zero.

MSY RPs are derived from long-term projections and the cohort model

is used for the projections based on a values of f, sa, and ma. As Figure

2.1 illustrates, the initial abundance-at-age in the first year of the projection

(i.e. N1,a, a = 1, ..., A) and the abundances at the first age for all projection

years (i.e. Ny,1, y = 1, ....) are required. The initial abundances (Ny,1) are

derived using a stock-recruit model which is described below. Values for the

initial abundance-at-age in the first year usually do not matter for long-term

projections because equilibrium results will be independent of the starting

value. We illustrate this feature later in this chapter. This is also true for

the SPM, where equilibrium biomass as a function of H (i.e. Beq(H) =

K(1 − H/r)) is independent of B0. Starting values for abundances for the

cohort projection are set at arbitrary values, but abundances at the first age

(i.e. youngest model age; usually called recruitment) play a direct role in

determining MSY RPs.

In fisheries, it is common to assume initial cohort abundance, Ny,a0 , is

related to parental spawning stock biomass (SSB) through functional rela-

tionships (Beverton and Holt, 1957) called stock-recruit (SR) relationships.

Initial abundance is typically referred to as recruitment, R, where recruit-

ment is modelled using a SR relationship as a function of SSB, and is typically

expressed R(S), where S ≡ SSB. The recruitment for a year is depen-

dent on the SSB the year a cohort was born, in this case a0 years ago, and

Ny,a0 = R(S = SSBy−a0). Recruitment is assumed to depend on parental
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biomass (i.e. weight) rather than abundance (numbers) because total egg

production is more related to total stock biomass than numbers. An SR

relationship is essential for deriving MSY RPs because it provides informa-

tion on stock reproduction rates, that is, how well the stock can maintain

abundances through reproduction. The SR models used in this study are

appropriate for an iteroparous species, meaning fish reproduce annually and

contribute to the overall abundance increase so long as mature stock remains.

The SR models are detailed in Section 2.2.

Modelling the relationship between parental stock size and reproduction

and subsequent recruitmentof juveniles to a fishery is widely recognized as

a fundamental component of sustainable fisheries management (Quinn and

Deriso, 1999). SR functions are used to project stock size in response to pro-

posed management actions, and to determine management RPs (e.g., Needle,

2001). Some RPs are derived directly from the SR relationship. An example

of this is the spawning stock size corresponding to 50% of maximum recruit-

ment which may be taken as a biomass limit (Myers et al., 1994). This RP is

usually estimated using an SR model. Other RPs take into account other as-

pects of stock productivity, including MSY RPs like fMSY . However, the SR

model is still very important in determining MSY RPs. Reliable SR models

are therefore important for successful fisheries management.

Stock biomass increases each year as fish grow in size (i.e. length) and

weight increases. In age-based models, stock growth is calculated using stock

abundances-at-age and their respective weights-at-age. It is assumed that

most fishing occurs between spring and autumn, while spawning occurs at the

beginning or end of each year. Therefore, stock biomass By,a is measured at
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the beginning of each year, and is calculated using beginning-of-year weights.

This is different from catch biomass, Ly,a, referred to as landings, which

use mid-year weights. Mid-year weights, Wm, are modelled using the same

growth distribution as beginning-of-year weights ,W b, but instead of using

ages ab, use ages am = ab + 0.5 (i.e. half a year older; see Section 2.2).

Alongside fMSY , BMSY which is the equilibrium SSB from fishing at

fMSY , and biomass depletion which is the ratio of BMSY to the unfished

equilibrium SSB (i.e. BMSY /B0), are commonly used for fisheries manage-

ment. This thesis will focus on deriving these three RPs.

Using an age-structured model, there are two methods through which

these MSY RPs can be derived: a forecast projection, or per-recruit func-

tions. The former method involves iterative calculations of quantities like

yield over a long range of years through a numerical, algorithmic projec-

tion. The projection is re-initiated using different values for f ’s to determine

which f (i.e. fMSY ) will provide the greatest equilibrium (i.e. long-term)

yield (MSY). The method that uses per-recruit functions, on the other hand,

uses explicit functions to directly solve for equilibrium solutions via a numer-

ical optimization, assuming f does not vary over time. Furthermore, both

the forecast and per-recruit methods require an SR model to calculate MSY

RPs. There are benefits and drawbacks to using either method to estimate

RPs: the projection method elucidates inter-annual changes in stock values,

but can be time-consuming when projecting over a large number of years,

whereas the method that uses per-recruit functions is preferred in situations

which opt for brevity, but do not allow intermittent adjustments in life his-

tory traits.
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Both a forecast projection (Section 2.3) and per-recruit functions (Section

2.4) are used to calculate fMSY , BMSY , and biomass depletion to demonstrate

that both methods provide the same results. Of course, both methods should

provide identical results if they are defined properly. The projection method

is methodical, and its application in higher dimension is relatively simplistic

and uninteresting. We primarily focus on the per-recruit method because our

focus is to define closed-form functions for deriving MSY RPs for a spatially

explicit population, and our use of the projection method will be purely

demonstrative rather than heuristic.

2.2 Parameter Choices

In this thesis, MSY RPs are calculated under fixed biological and fishing

effects, that is, we assume the age-distributions of various stock and fish-

eries characteristic are consistent over time. These characteristics include

the selectivity (s), the natural mortality rate (m), the maturity-at-age (µ),

and the weight-at-age (W ). To understand the impact each of these charac-

teristics have on RP estimates, a variety of different parametrizations and

age-distributions were considered. An SR relationship is also required to es-

timate MSY RPs, and several are considered. The age-distributions of these

characteristics range from starting age a0 = 5 to the max age of A = 20.

For each unique pair of characteristics and SR models, fMSY , BMSY , and

biomass depletion are calculated. Changes for parameters were mutually ex-

clusive, meaning they were changed independently, to emphasize the effect

each characteristic has on RP results. The age-distributions of each charac-
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teristic (Table 2.1) were calculated as follows:

• Selectivity, s. Selectivity is flat (constant) for ages a ≥ ar, where fish

of ages a ≥ ar are considered fully selected (s=1), and fish below this age

are not selected (s=0). This is referred to as knife-edged selectivity. Two

selectivity curves were used: (1) s6, such that ar = 6; (2) s8 such that

ar = 8.

• Maturity, µ. Maturities are described by an age-dependent model,

µ(a) =
eθ0+θ1a

1 + eθ0+θ1a
, (2.5)

where θ0 and θ1 are derived from fixing age-at-percent-maturities. Two

maturity distributions (i.e. maturity ogives) were used: (1) µ8,10, where

the age at 50% maturity (that is, the age for which 50% of fish are mature)

A50% = 8, such that µ(8) = 0.5, and the age at 95% maturity A95% = 10,

such that µ(10) = 0.95 (θ0 ≈ −11.78, θ1 ≈ 1.472); (2) µ10,12, where

A50% = 10, and A95% = 12, (θ0 ≈ −14.72, θ1 ≈ 1.472).

• Weight, W. Weights are described by a Von Bertalanffy age-dependent

equation (Haddon, 2010),

W (a) = W∞(1− e−k·(a−a′))3, (2.6)

where k is the growth rate, the asymptotic weight (i.e. lim
a→∞

W (a)) W∞ =

2, and a′ is defined by W (0) = 0.001W∞ (a′ ≈ −1.054). Three weight

distributions were used: (1) W0.1, such that k = 0.1; (2) W0.05, such that

k = 0.05; (3) W0.15, such that k = 0.15.
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• Natural Mortality Rate, m. Two distributions for the natural mortal-

ity rate were used: (1) mconstant, where ma = 0.2 for all ages and years;

(2) mlorenz, where the natural mortality rate is described by an age-based

distribution known as a Lorenzen mortality rate, expressed as a function

of weight-at-age,

m(a) = m∞

(
W (a)

W∞

)c
, (2.7)

where m∞ is the asymptotic natural mortality rate, W∞ is the asymptotic

weight (see Equation 2.6), W (a) is the weight-at-age, and c = −0.305 (see

Powers, 2014), where m∞ is defined by m(a)|W (a)=0.5W∞ = 0.2 (m∞ ≈

0.162).

• Stock-Recruitment. Two SR relationships are considered, as well as

alternative parametrizations for both models: (1) The most commonly

used SR relationship, the Beverton-Holt (BH) model (Beverton and Holt,

1957), is

R(S) =
αS

β + S
, (2.8)

where α and β are parameters and S ≡ SSB. For this model, lim
S→∞

R(S) =

α, and the stock size that provides half the max recruitment S50% = β,

where R(S50) = 0.5Rmax. The slope at the origin (SaO) is dR
dS
|S=0 =

α
β
. We assume a constant SaO = 1, for simplicity, so α = β. Two

parametrizations were considered: (i) α = β = 100; (ii) α = β = 300.

(2) The second most commonly used SR relationship is the Ricker (RK)

model (Ricker, 1958),

R(S) = αSe−βS, (2.9)
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where α and β are parameters and S ≡ SSB. For this model, it can be

shown that lim
S→∞

R(S) = 0, and Rmax = α/(e · β) when S = 1/β, and

SaO = dR
dS
|S=0 = α. We assume a constant SaO = 1, and β is defined

based on Rmax; since we fix α = 1, β = 1/(e ·Rmax). Two parametrizations

were considered: (i) β = 0.00368 for Rmax = 100; (ii) β = 0.00123 for

Rmax = 300.

Both SR relationships were also re-parametrized in terms of the steepness

parameter, h (see Francis, 1992; Punt and Cope, 2017). Steepness is a

measure of stock productivity, and represents the ratio of unfished recruit-

ment, R0, to 20% unfished SSB, S0. (1) The steepness version of the BH

SR relationship is

Rh(S) =
R0

S0

4hS

(1− h+ (5h− 1)S/S0)
. (2.10)

(2) The steepness version of the RK SR relationship is

Rh(S) =
R0

S0

S · eln(5h)(1−S/S0)/0.8. (2.11)

For both Equations 2.10 and 2.11, R0 = 100 and S0 = R0 ·SPR(0). SPR is

a function that provides the ratio of SSB to recruitment with respect to f,

and is defined in Section 2.4. Three steepness values are used to model the

SR relationship. These values were taken from Shertzer and Conn (2012),

who performed a meta-analysis of steepness for 94 stocks and calculated

a median (inter-quartile range) of 0.78 (0.69-0.86). Similar results for

steepness were found for pleuronectiformes by Myers et al. (1999) and
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various species by Hilborn (2010). SR relationships were modelled using

(i) the median value (med, h = 0.78), (ii) the lower quartile value (low,

h = 0.69), and (iii) the upper quartile value (up, h = 0.86).

Initially, parameters are set as: s6, µ8,10, W0.1, and mconstant; these are con-

sidered the base conditions. When parameters were changed to calculate

RPs for alternative life history characteristics, all parameters, other than

that which is specified to change, followed these configurations.

2.3 Forecast Projection

The forecast requires initial conditions to calculate subsequent values. We

assume the initial abundance for any year y, Ny,a, depends on SSB for the

year they were born through an SR relationship. Our initial age a0 = 5, and

therefore, the relationship between spawning stock and recruitment entails

a 5-year lag, where Ny,a0 = R(SSBy−5). Due to this five-year lag, initial

abundances must be set for the first five years to calculate subsequent abun-

dances.

Forecast projections are structured similar to SPMs, where stock values

are calculated iteratively, and over time abundances will eventually reach

a stable state (Figures 2.2 and 2.3). To initialize the forecast projection,

abundances-at-age for the first five years were all set at Ny,a = 20. It can be

shown that equilibrium solutions for forecast projections are independent of

initial abundances for the BH (Figure 2.2) and RK (Figure 2.3) SR models.

Biomass, SSB, catch, and landings were calculated from abundances-at-age

for each year (see Table 2.2 for equations) for ages 5 to 20 (a ∈ [5, 20]), over
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500 years (y ∈ [6, 500]; values for the first five years are not forecasted because

abundances were fixed). The forecast projections are reiterated for f ∈

[0, 0.5] in increments of 0.001. The f that maximizes total annual landings

(yield) is denoted fMSY , the yield for the final year from fishing at fMSY

is MSY (i.e. Yfi=fMSY ,y=500 = MSY ), and the SSB for the final year from

fishing at fMSY is BMSY (i.e. SSBfi=fMSY ,y=500).

2.4 Per-Recruit Functions

Equilibrium biomass and yield for an SPM can be found by simply finding

the solution Beq to Equation 1.1 when Bt+1 = Bt = Beq. This equilibrium

biomass is a function of H (also r and K ); that is, Beq(H) = K(1 − H/r).

The same procedure can be used for age-structured models. At equilibrium

the stock abundances-at-age do not change from year to year. In particular,

the SSB is the same each year, and is also the same as the SSB produced by

a cohort over its lifespan (see Figure 2.4). The basic quantities involved to

derive equilibrium results for a cohort model are the fishery yield-per-recruit

(YPR), the spawner-biomass-per-recruit (SPR), and the SR function. The

per-recruit quantities are functions of f and give the total SSB per unit of

recruitment produced by a cohort over its lifespan, or the total yield produced

per unit of recruitment. Equations for SPR(f) and YPR(f) are developed

below.

Equilibrium yield can be calculated using these per-recruit functions. To

elaborate, let Req(f) and SSBeq(f) denote the equilibrium values of recruit-

ment and SSB, respectively, that we project at some specific f. At equilib-

29



rium, the sum of the mature biomass for all ages each year (i.e. SSB) is the

same as the sum of mature biomass produced by a cohort over its lifespan.

That is, SSBeq(f) = SPR(f)Req(f). Using the SR function and the fact

that SSBeq(f) is the same each year, SSBeq(f) = SPR(f) · R(SSBeq(f)).

Since SPR(f) is a fixed value for a given f, SSBeq(f) may be obtained as the x

solution to x = SPR(f)R(x). Also, Req(f) = R(SSBeq(f)) and equilibrium

yield is Yeq(f) = Y PR(f)Req(f).

Values for SSBeq are also sometimes conceptualized as the intersect of the

SR curve and a replacement line. The replacement line indicates the capacity

for a stock to replace, and therefore sustain, itself through reproduction. The

replacement is defined as R = S/SPR(f) where the slope of the replacement

line 1/SPR(f) depends on f (Figure 2.5). The values for SSBeq(f) and

Req(f) are the x and y values of the point of intersection, respectively.

Solutions for SSBeq are simple to derive for the standard, spatially homo-

geneous BH and RK SR functions. Derivations become more complicated,

however, when spatial dimensions are considered (see Chapter 3).

YPR is the ratio of landings with respect to abundance of recruits as a

function of f. A discrete formulation for YPR is provided by Haddon (2010),

Y PR(f) = Wm
arPar(f) +

A

Σ
i=ar+1

Wm
i Pi(f)e

−
(

i−1
Σ

j=ar
fsj+mj

)
, (2.12)

and

Pa(f) = (1− e−Zy,a)
Fy,a
Zy,a

, (2.13)

is the proportion of stock fished. The term (1 − e−Zy,a) in Equation 2.13 is

the amount of fish lost through total mortality, and it is assumed Fy,a/Zy,a is
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the proportion of those losses that are a result of fishing (see Baranov, 1918).

SPR is calculated as

SPR(f) = W b
arµar +

A

Σ
i=ar+1

W b
i µie

−
(

i−1
Σ

j=ar
fsj+mj

)
. (2.14)

The SSBeq needed to calculate equilibrium yield will depend on the SR

model used. For the BH model, for example, SSBeq is defined as

SSBeq(f) = SPR(f) · αSSBeq(f)

β + SSBeq(f)
. (2.15)

Solving Equation 2.15 for SSBeq provides the following,

SSBeq(f) = αSPR(f)− β. (2.16)

Doing the same for the RK model, where

SSBeq(f) = SPR(f) · αSSBeq(f)e−βSSBeq(f), (2.17)

SSBeq can be expressed as

SSBeq(f) = ln(αSPR(f))/β. (2.18)

Solving for SSBeq for the steepness formulation of the BH model in the same

way provides

SSBeq(f) =
S0

5h− 1

(
4hR0SPR(f)

S0

+ h− 1

)
, (2.19)
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and for the steepness RK model provides

SSBeq(f) = S0

(
1− 0.8

ln(S0/(R0SPR(f)))

ln(5h)

)
. (2.20)

Equilibrium yield, for some f is defined as

Yeq(f) =
Y PR(f)

SPR(f)
SSBeq(f). (2.21)

Equilibrium yield using the BH SR model is then

Yeq(f) =
Y PR(f)

SPR(f)
(αSPR(f)− β), (2.22)

and for the RK SR model is

Yeq(f) =
Y PR(f)

SPR(f)

log(αSPR(f))

β
. (2.23)

Optimizing equilibrium yield with respect to f will provide fMSY , such that

Yeq(fMSY ) = MSY . To elaborate, fMSY is the f that maximizes Yeq, such

that d
df
Yeq(f)|f=fMSY

= 0. For the BH,

d

df
Yeq(f) =

d

df

[
Y PR(f)

SPR(f)
(αSPR(f)− β)

]
. (2.24)

The root (i.e. fMSY ) for Equation 2.24 is dependent on both α and β.

However, because we assume α = β, fMSY is independent of α and β, since
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it is a scalar term for the equilibrium yield. For the RK,

d

df
Yeq(f) =

d

df

[
Y PR(f)

SPR(f)

log(αSPR(f))

β

]
. (2.25)

Here, β is a scalar and does not affect the value of f that maximizes Equation

2.25, so fMSY is independent of β, but is dependent on α.

It is important to note that the YPR function itself is responsible for the

quasi-concavity of the equilibrium yield curve mentioned previously. When

there is no fishing (f = 0) the yield is zero, and when fishing is at too large a

value, reproduction is insufficient to sustain the population where any further

fishing would also provide zero yield. It is generally understood that YPR,

as well as equilibrium yield, are dome-shaped and concave down, where yield

increases with f until some point, then decreases until yield is zero. This

is primarily a result of the Baranov catch proportion (i.e. Equation 2.13).

Both SSBeq and SPR functions are monotonically decreasing function with

respect to f and effectively scale the optimal f and Yeq values. Therefore, it

is simple to conclude equilibrium yield is maximized for some value of f.

Values for fMSY are found by using nlminb in R to optimize the equi-

librium yield equations, and the optimized yield MSY = Yeq(f = fMSY ) is

recorded. Values for BMSY are also calculated by using the equilibrium SSB

equations, where BMSY = SSBeq(f = fMSY ), and biomass depletion (i.e.

BMSY /B0) is derived using BMSY and B0 = SSBeq(f = 0).
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2.5 Results

The long-range forecast and the per-recruit/SR methods provide relatively

equal outputs, and the discrepancy between the forecast and per-recruit re-

sults are due to the limited precision in f for the forecast projection (0.001).

The results derived through the per-recruit method are assumed to be the

correct RP values. For all further calculations, the per-recruit functions were

used for higher precision and quicker calculations.

Equilibrium yield and SSB were also calculated for different maturity

ogives (Figure 2.6), natural mortality rate distributions (Figure 2.7), se-

lectivity curves (Figure 2.8), and weight-at-age distributions (Figure 2.9).

Equilibrium yield and SSB were also calculated for different SR relationships

(Figures 2.10 and 2.11). Values for fMSY , BMSY , BMSY /B0, and MSY were

calculated for each alternative parametrization and compared to the RP out-

puts under the base parametrizations (Figure 2.12). Percent changes in RP

values were calculated as

%∆x =

(
x− x0

x0

)
· 100%, (2.26)

where x0 are RP values under the base conditions, and x are RP values from

alternative parametrizations.

Values for fMSY , MSY, and BMSY were larger for the steepness SR mod-

els than the standard SR models, and values for the RK models (standard

and steepness) were always larger than their BH counterparts (Table 2.3).

Biomass depletion from fMSY had larger values (i.e. less biomass was de-

pleted) for the standard BH and RK models, and using the steepness SR

34



models resulted in more depleted biomass compared to the standard SR

models. In general, for fMSY and MSY, values ordered (smallest-largest):

standard BH, standard RK, steepness BH, and steepness Ricker. For BMSY

and biomass depletion, this order was reversed. It is clear that stock pro-

ductivity (e.g. h) has a relationship with MSY RP values; increasing repro-

duction rates allows larger f s and total yields, but results in lower SSBeq.

Estimates of fMSY are known to have an approximately linear relationship

with steepness (see Punt and Cope, 2017), and our results for both the BH

and RK models show a similar trend (see Figure 2.11).

As fMSY and MSY increase, BMSY and BMSY /B0 usually decrease, al-

though there are exceptions to this as a result of our choices for α and β. For

the standard BH SR relationship, changes in α and β did not affect fMSY or

biomass depletion (see Table 2.3). For a BH SR relationship, changes in α

and β each may have separate effects on fMSY (see Zheng et al., 2019, Ap-

pendix 7.2), but because α = β, changes only affect the scale of SSBeq and

BMSY without affecting fMSY of biomass depletion. For the standard RK SR

relationship, changes in β did not affect fMSY or biomass depletion, similar

to the BH model (Table 2.3). When using the RK SR model, changes in

either α or β can affect BMSY , and changes in α can affect fMSY . However,

α is constant for our calculations, resulting in a stable fMSY between RK

models. Biomass depletion for both the standard SR models did not change

from increases in α and β (BH) or increases in β (RK), because these SR pa-

rameters only scale the SSBeq (see Section 2.4) and the unfished equilibrium

biomass, SSBeq(f = 0), scales equivalently with BMSY .

Overall, MSY RPs were most sensitive to factors that affected biomass
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increase, like the steepness h (see Table 2.3), and the growth rate, k (Figure

2.12). Values for all MSY RPs were zero for the standard BH and RK SR

models when k = 0.05, implying fish did not grow quickly enough to allow

sustainable harvesting. Meanwhile, fMSY was largest for each SR model when

k = 0.15, likely because faster fish growth can compensate for larger harvest

rates, but this growth rate provided the lowest (non-zero) values for biomass

depletion (see Figure 2.12). Harvest RPs rely on accurate estimations of

growth rates, and small estimation errors in k can be fatal for a fish stock

by promoting unsustainable harvest rates.

Changes in the maturation rate decreased all MSY RP estimates except

for values for biomass depletion under the standard BH and RK SR models

(Figure 2.12), and these deviations were unsubstantial (%∆x ≤ 5%; e.g.

Equation 2.26). This suggest that the presence of less mature fish results in

a decrease in total harvest and lower harvest rates, which leaves higher levels

of SSB as a result of decreased fishing.

Typically, increases in fMSY result in decreases in BMSY (and increased

biomass depletion) because more of the spawning stock is fished, and this

is reflected in all parameter changes, except for the age of recruitment (i.e.

selectivity). When age of recruitment was increased for a knife-edged fish-

ing selectivity, fMSY and BMSY increase, likely because only selecting older

fish leaves younger fish with more time to mature (higher SSB) and more

time to increase in size (higher biomass). Increasing the age of recruitment

also increased MSY and reduced biomass depletion (i.e BMSY /B0 increased).

Changing the age of selectivity provided only positive results in terms of

MSY RPs, but changes in the selectivity curve can have unpredictable effects
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on harvest rates. Moreover, knife-edged selectivity curves are not realistic.

Fishing selectivity is usually described by a sigmoid curve, where selectiv-

ity increases with age, or a dome-shaped curve, where selectivity increases

with age but decreases at the oldest ages (see Figure 2.13). For example, a

dome-shaped selectivity can be seen in gill-nets which may allow younger,

smaller fish to pass through, while older fish are too large to be captured,

and so mostly middle-aged fish are captured. Selectivity can be difficult (i.e.

expensive) to estimate since it is usually a component of the total fishing

mortality rate, F, in stock assessment models, and is often estimated outside

the assessment models. Further, fishing selectivity is related to the type of

fishing gear used (e.g. mesh size) or the haul time for the gear (e.g. for purse

seines), and several such factors may simultaneously affect the selectivity

age-distribution. However, when possible, fishing selectivity can be used to

directly constrain fishing rates, and is often considered an effective means of

harvest control (e.g., Kanik et al., 2015).

Using a Lorenzen natural mortality rate almost always reduced MSY RP

estimates. Biomass was less depleted when using the standard BH and RK

model, and MSY was slightly greater when using the steepness SR mod-

els, likely due to relative stock productivity. Otherwise, using a Lorenzen

natural mortality rate provided lower RPs compared to a constant ma. How-

ever, changes in the Lorenzen natural mortality rate parameters, primarily

the asymptotic mortality m∞, can produce varying responses in RP outputs.

For example, the Lorenzen natural mortality rate we used (m∞ ≈ 0.161) pro-

duces lower fMSY values compared to estimates that use a constant natural

mortality rate of ma = 0.2. Some choices in of m∞, however, will produce
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an fMSY greater than that for the constant m = 0.2. Therefore, for some

value of m∞, model outputs from both natural mortality rate distributions

are equal. Using a Lorenzen natural mortality rate when m∞ ≈ 0.154 and

k = 0.1—since the Lorenzen natural mortality rate depends on weight—MSY

RP results are about equal to those calculated using the natural mortality

rate ma = 0.2. It is important to be aware of the adverse effects a Lorenzen

natural mortality rate can have on RP outputs, and to note that RPs can

be much more sensitive to age-based natural mortality rates compared to

constant ones.

2.6 Discussion

As we have demonstrated, changes in parameters used to describe stock char-

acteristics can have significant impacts on MSY RPs. Deviations in outputs

are relevant when considering associated uncertainties in parameters, which

makes it difficult to accurately define management RPs. It is standard for

stock models to incorporate some form of uncertainty, for example in pro-

ductivity parameters, and several studies have explored the impact stochas-

ticity may have on RP estimates. Okamura et al. (2014) calculated MSY for

BC lingcod using both a stochastic and deterministic delay-difference model.

MSY results showed large variances, with 90% confidence intervals in most

cases ranging from ∼ 50% of the estimated median MSY (5th percentile)

to ∼ 200% of the median MSY (95th percentile). Horbowy and Luzeńczyk

(2012) derived FMSY and various alternative RPs through per-recruit func-

tions using stochastic simulations. They showed that relative error in RP val-
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ues can increase as process error increases in SR relationships, up to ∼ 50%

for the RK model and ∼ 30% for the BH. Cadigan (2013) also examined the

error in FMSY and BMSY estimates through simulations using per-recruit

functions and several SR models, and showed that RP confidence intervals

could be large when using the BH and RK SR models.

Estimates of fMSY and BMSY can be highly sensitive to changes in pa-

rameters which may be associated with uncertainty in one or more life his-

tory characteristics, as well as SR parameter estimates, since recruitment

can be difficult to accurately estimate, assuming a relationship exists at all.

Horbowy and Luzeńczyk (2012) performed stochastic simulations to derive

f RPs using per-recruit functions, and noted that when the SR relationship

is unknown, RPs which rely on stock recruitment had large associated error

(∼ 70%− 130% of estimates).

Due to the inevitability of errors in model outputs, some management

plans utilize RP ‘estimators’ in lieu of direct estimates to approximate RPs,

but these estimators can result in an even greater deviance from the true

value compared to RPs that are calculated directly (Haltuch et al., 2008).

Alternatives to using fixed RPs are also considered in some fisheries. Assess-

ing and configuring management strategies according to previously employed

management tactics and recent trends in fish stocks (i.e. grandfathering)

is one (Geromont et al., 1999). Some stocks are reasonably well-managed

without the use of population models, provided policy makers and fisheries

scientist reach a consensus on appropriate parameters regarding total allow-

able catches (TACs; often a landings limit per fisherman or percentage of

total MSY). Management goals and procedures that result from stock mod-
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els may perform poorly due to biases in estimations. Simple decision-based

rules are sometimes sufficient for setting harvest goals and protocol (Parma,

2002). Conversely, Goethel and Berger (2017) recommend using operating

models for deterministic RP calculations, because they can test several RP-

based harvest strategies at a time and allow managers to choose the strategy

that is most effective. Sethi (2010) outlines a number of operating mod-

els used specifically for risk appraisal for fisheries management procedures,

like mulitcriteria decision making (MCDM) and management strategy eval-

uations (MSEs), which may be applied to standard stock models to narrow

down the most appropriate management options.

A variety of methods, like those mentioned above, have been developed to

circumvent or mitigate the prevalent effect uncertainties have on estimates

of harvest objectives. Nevertheless, if stock assessments are frequent and

management procedures are responsive to changes in recent stock trends, i.e.

a precautionary approach, RP-based management strategies can be highly

effective (Nowlis and Bollermann, 2002). Although life history characteris-

tics can have substantial associated errors, stock models may still provide

inaccurate results even when these errors are small. In such cases, the model

itself may be flawed by providing unreliable outputs. Thus, for our purposes,

forgoing a stochastic model for a simpler, deterministic model is sufficient to

present the methods for deriving MSY RPs and, in the upcoming chapters,

to develop a framework for deriving area-specific MSY RPs.

For fisheries scientists, one of the main objectives is to construct and

apply population dynamics models to quantify fish stocks and derive man-

agement RPs. Before developing novel frameworks and applying them to
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fish stocks, it is important for stock assessors to understand and implement

existing models for RP derivations. As shown in this chapter, the meth-

ods for calculating MSY RPs using an age-structured model for a spatially

homogeneous stock are well-defined, yet within this framework, defining reli-

able management RPs can be difficult due to parameter uncertainties. How-

ever, structural misdiagnosis of a population dynamics can also reduce the

accuracy of RP estimates substantially (Bosley et al., 2019; Goethel and

Berger, 2017). Therefore, constructing more appropriate models to describe

fish population dynamics, in particular adding spatial components to stock

structures, may improve the reliability of RP estimates.

In the next chapter, the per-recruit and equilibrium SSB functions are

adjusted to consider a spatial structure and used to derive area-specific RPs

for a two-area system. More specifically, a theoretical and deterministic

spatial population dynamics model will be constructed, taking into account

a movement pattern known as larval advection, and MSY RPs will be derived

for two distinct regions in space. Movement patterns like larval advection are

common for many fish, even those that are approximately sedentary as adults,

and these movement patterns should be accounted for in stock assessment

models. Developing such a model may encourage the use of spatially explicit

RPs for future management practices.
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2.7 Tables

Table 2.1: Values for stock characteristic used to estimate RPs. Weight are
calculated as Wk, where k = 0.1, k = 0.05, and k = 0.15; selectivity are
defined sar , where ar = 6 and ar = 8; natural mortality rates are describe by
mconstant = 0.2 and the Lorenzen natural mortality mlor; and maturity ogives
µ defined by A50% = 8 and A95% = 10, and A50% = 10 and A95% = 12.

Age W0.1 W0.05 W0.15 s6 s8 mconstant mlor µ8,10 µ10,12

5 0.187 0.054 0.380 0.000 0.000 0.200 0.333 0.012 0.001
6 0.259 0.074 0.510 1.000 0.000 0.200 0.302 0.050 0.003
7 0.338 0.098 0.643 1.000 0.000 0.200 0.278 0.187 0.012
8 0.423 0.125 0.775 1.000 1.000 0.200 0.260 0.500 0.050
9 0.510 0.155 0.901 1.000 1.000 0.200 0.246 0.813 0.187
10 0.599 0.187 1.021 1.000 1.000 0.200 0.234 0.950 0.500
11 0.687 0.222 1.132 1.000 1.000 0.200 0.224 0.988 0.813
12 0.775 0.259 1.234 1.000 1.000 0.200 0.216 0.997 0.950
13 0.860 0.298 1.326 1.000 1.000 0.200 0.209 0.999 0.988
14 0.942 0.338 1.409 1.000 1.000 0.200 0.204 1.000 0.997
15 1.021 0.380 1.483 1.000 1.000 0.200 0.199 1.000 0.999
16 1.096 0.423 1.549 1.000 1.000 0.200 0.194 1.000 1.000
17 1.167 0.466 1.607 1.000 1.000 0.200 0.191 1.000 1.000
18 1.234 0.510 1.659 1.000 1.000 0.200 0.188 1.000 1.000
19 1.296 0.554 1.704 1.000 1.000 0.200 0.185 1.000 1.000
20 1.355 0.599 1.743 1.000 1.000 0.200 0.182 1.000 1.000
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Table 2.2: Stock values calculated in the forecast projection and their re-
spective equations.

Value Equation

Abundance, Ny,a Ny−1,a−1e
−Zy−1,a−1

Biomass, By,a Ny,aW
b
a

Spawning Biomass, SBy,a By,aµa
Total Annual Abundance, Ny Σ

a
Ny,a

Total Annual Biomass, By Σ
a
By,a

Spawning-Stock Biomass, SSBy Σ
a
SBy,a

Catch, Cy,a Ny,a(1− e−Zy,a)Fy,a

Zy,a

Total Annual Catch, Cy Σ
a
Cy,a

Landings, Ly,a Cy,aW
m
a

Total Annual Landings (Yield), Yy Σ
a
Ly,a

Table 2.3: RP estimates using the forecast projection method (FP) and
through the per-recruit functions (PR), using the s6, µ8,10, W0.1, and mconstant

parametrizations (see Table 2.1 for parameter definitions). PR values were
rounded to 3 significant figures to maintain the same precision as FP values.

fMSY MSY BMSY BMSY /B0

FP PR FP PR FP PR FP PR
BH100 0.047 0.047 2.42 2.42 39.0 39.1 0.437 0.438
BH300 0.047 0.047 7.26 7.26 117 117 0.437 0.438
RK100 0.051 0.051 5.60 5.60 82.8 82.4 0.477 0.475
RK100 0.051 0.051 16.8 16.8 248 247 0.477 0.475
BHlow 0.167 0.167 14.1 14.1 55.3 55.3 0.292 0.292
BHmed 0.206 0.206 15.9 15.9 48.1 48.0 0.254 0.254
BHup 0.255 0.255 17.7 17.7 40.3 40.3 0.213 0.213
RKlow 0.148 0.148 17.7 17.7 80.3 80.1 0.424 0.423
RKmed 0.169 0.169 20.2 20.2 78.0 78.1 0.412 0.412
RKup 0.186 0.186 22.3 22.3 76.7 76.5 0.405 0.404
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2.8 Figures

A
ge

Year
1 2 3 4 5 6

1 N1,1 N2,1 N3,1 N4,1 N5,1 N6,1

2 N1,2 N2,2 N3,2 N4,2 N5,2 N6,2

3 N1,3 N2,3 N3,3 N4,3 N5,3 N6,3

4 N1,4 N2,4 N3,4 N4,4 N5,4 N6,4

5 N1,5 N2,5 N3,5 N4,5 N5,5 N6,5

6 N1,6 N2,6 N3,6 N4,6 N5,6 N6,6

Figure 2.1: Cohort model with abundance denoted as Nyear,age. Abundances
are dependent on initial cohort abundance, i.e. recruitment, and abundance-
at-age for the first year (green). Annual cohort abundances are projected
forward following arrows, such that Ny+1,a+1 = Ny,ae

−Zy,a for all y and a.
Total mortality decreases abundance of each cohort by year, and recruitment
increases annual abundance each year by adding a new cohort.
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Figure 2.2: Bubble plot of abundances for a 500 year illustrative forecast
projection (f = 0.05) using the BH100 SR model. (Top) Bubbles rep-
resent positive (blue) and negative (black) deviation of the standardized
proportion abundance-at-age, py,a = Ny,a/ΣaNy,a, from the standardized
mean proportion abundance-at-age, p̄y = Σypy,a/500, with standard devi-
ation σa =

√
V ar(py,a|a). That is, size = |py,a−p̄y

σa
|. Bubbles appear as solid

lines in places where they are constant over time, i.e. line thickness is size,
and colour is the sign of the deviation. Over time, all abundances-at-age and
total abundances stabilize. (Bottom) Abundance of recruits (left) and total
annual abundance (right) over time from forecast projection for five different
initial abundances, Ny0,a0 : 5 (solid), 15 (dashed), 25 (dotted), 35 (long-dash),
and 45 (dot-dash).

45



Figure 2.3: Abundances for a 500 year forecast projection (f = 0.05) using
the RK100 SR model. Additional details are provided in caption for Figure
2.2.
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A
ge

Year
1 2 3 4 5 6

1 N1,1 N2,1 N3,1 N4,1 N5,1 N6,1

2 N1,2 N2,2 N3,2 N4,2 N5,2 N6,2

3 N1,3 N2,3 N3,3 N4,3 N5,3 N6,3

4 N1,4 N2,4 N3,4 N4,4 N5,4 N6,4

5 N1,5 N2,5 N3,5 N4,5 N5,5 N6,5

6 N1,6 N2,6 N3,6 N4,6 N5,6 N6,6

Figure 2.4: Cohort model where abundances are denoted Nyear,age. Cohort
abundances are typically projected forward from previous cohort abundance,
Ny−1,a−1. However, per-recruit functions assume a stable state has been
reached, such that Ny−1,a = Ny,a = Ny+1,a for all years. The abundance at
each age for a cohort is the same as the abundance at each age in a year
(blue circle).
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Figure 2.5: Replacement lines for various f ’s with respect to the BH100 SR
curve. The replacement lines intersect the SR curve at R = Req(f) and
S = SSBeq(f), for some f. As f increases, the slope of the replacement
line, 1/SPR(f), increases, and Req and SSBeq strictly decrease for a BH SR
model. When the slope of the replacement line is equal to the slope at the
origin (i.e. at SSBeq(f) = 0), the stock is unsustainable and collapses. Any
greater f also results in stock collapse.
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Figure 2.6: Maturity ogives and corresponding equilibrium yield and SSB
curves. Maturities are defined by the µ8,10 (black) and µ10,12 distributions.
Equilibrium yields and SSBs are calculated using per-recruit and the BH100

SR function. Dotted lines indicate fMSY for the respective equilibrium
curves.
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Figure 2.7: Natural mortality rate distributions and corresponding equilib-
rium yield and SSB curves. Natural mortality rates are described by the con-
stant m = 0.2 (black) and the Lorenzen natural mortality rate (blue). Equi-
librium yields and SSBs are calculated using per-recruit and the BH100 SR
function. Dotted lines indicate fMSY for the respective equilibrium curves.
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Figure 2.8: Selectivity curves and corresponding equilibrium yield and SSB
curves. Selectivities are knife-edged, and fish are fully selected for ages a ≥
ar, where ar = 6 (black) and ar = 8 (blue). Equilibrium yields and SSBs
are calculated using per-recruit and the BH100 SR function. Dotted lines
indicate fMSY for the respective equilibrium curves.
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Figure 2.9: Weight-at-age distributions and corresponding equilibrium yield
and SSB curves. Weights are modelled using a growth rate of k = 0.1
(black), k = 0.05 (blue), and k = 0.15 (red). Beginning-of-year weights
(solid) use ages a ∈ [5, 20], and mid-year weights (dashed) use ages a ∈
[5, 20] + 0.5. Equilibrium yields and SSBs are calculated using per-recruit
and the BH100 SR function. Dotted lines indicate fMSY for the respective
equilibrium curves.
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Figure 2.10: Stock-Recruitment using the BH (left) and RK (right) SR re-
lationship, and corresponding equilibrium yield and SSB curves. Included
are the BH100 and RK100 models (black), and the BH300 and RK300 models
(blue). Equilibrium yields are calculated using per-recruit functions and equi-
librium SSBs are calculated using the appropriate SR relationships. Dotted
lines indicate fMSY for the respective equilibrium curves.
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Figure 2.11: Stock-Recruitment using the BH (left) and RK (right) steepness
re-parametrizations, and their respective equilibrium yield and SSB curves.
Stock-recruitment is modelled using a steepness of h = 0.69 (blue), h = 0.78
(red), and h = 0.86 (green). The BH100 and RK100 models (black) are also
displayed for comparison. Equilibrium yields are calculated using per-recruit
functions, and equilibrium SSBs are calculated using the appropriate SR rela-
tionships. Dotted lines indicate fMSY for the respective equilibrium curves.
Inset plots display the approximate linear relationship between fMSY and
steepness for both the BH and RK SR models (f ∈ [0.2, 0.6], h ∈ [0.6, 0.9]).
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Figure 2.12: Percent deviation of RP outputs for alternative parametrizations
with respect to outputs for base parametrizations. Row values are calculated
using the following SR models: 1. BH100, 2. BH300, 3. RK100, 4. RK300,
5. BHlow, 6. BHmed, 7. BHup, 8. RKlow, 9. RKmed, 10. RKup. Base RP
outputs (i.e. 0%) are indicated by dashed line.
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Figure 2.13: A knife-edged (solid), sigmoid (dashed), and dome-shaped (dot-
ted) selectivity curve, with their corresponding equilibrium yield curves.
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Chapter 3

The Two-Box Model

3.1 Methods

Transforming models from a spatially homogeneous to a spatially heteroge-

neous framework can be complicated because it requires a priori assump-

tions about the population structure and the connectivity and movement

patterns of the stock. Further, spatial data is often limited and the applica-

tion of spatial models is rare as a result. Although most stocks exhibit clear

spatially-varying behaviour and characteristics, obtaining the required data

and developing the appropriate models to fit the data has hitherto been un-

dermined; this is no different for management RP calculations. Nevertheless,

it is important to develop and a framework within which to incorporate such

spatial data for when it is available. Understanding the base mechanisms

of heterogeneous populations from spatial models beforehand may help with

future implementations of these models.

In this chapter, we extend upon the one-box model framework for deriv-
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ing MSY RPs to account for possible spatial variation in recruitment and

life history characteristics, among other things, and investigate its impact on

sustainability and yields. We do this assuming the stock has a true metapop-

ulation structure with a source-sink dynamic, where the source and sink are

distinct sub-populations within the stock, and fish transfer from source to

sink via a larval advection process. Alongside the optimal two-box RPs,

we also investigate the affects of alternative harvest strategies and compare

them to the affects of one-box RPs when the stock is misdiagnosed as a single

sympatric, panmictic population.

For our metapopulation model, we assume that fish move between at

least two areas, and any movement of fish between areas is instantaneous

(similar to the total mortality rate each year). We will start with a two-

box model where fish transfer between two sub-populations. We consider

a source-sink model, which is a commonly used two-box model (Lindegren

et al., 2014; Wilberg et al., 2008) where fish flow unidirectionally from one

region to the other (Figure 3.1a). That is, fish are only allowed to move

from the source (typically higher reproduction rates and unfished) to the

sink (typically lower reproduction rates and fished). We allow both sub-

populations to be fished, and we initially assume both areas have equivalent

reproduction rates, although later we allow for spatially-varying reproduction

rates between the source and sink.

We use the transfer proportion, p, to denote the percentage of recruits

that are advected annually, and we assume this percentage remains stable

over time. For example, p = 0.2 means that 20% of recruits move from

source to sink each year. We also assume that the SR relationships are
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known, where transfer proportion, p, does not affect the SR relationships

and only affects the SSBeq and Req for each sub-population. To clarify,

SR parameters are often estimated using abundance of recruits and total

SSB, and transferring recruits would therefore affect how these parameters

are estimated. However, equilibrium equations provide long-term solutions

based on initial SR equations. We assume p is accounted for in SR parameter

estimates and the initial SR relationships use the true parameters.

For a two-box model stock-recruitment is defined separately for each

region. The SR relationships for each area are modelled via a density-

dependent recruitment function, where the local recruitment is determined

by the area occupied by the sub-population. Assume density dependence

occurs via fish density in the stock area and only indirectly in terms of the

total biomass of parents. Let ρR denote the density of recruits (i.e. number

of recruits per unit area) and let ρS denote the density of adult biomass. The

SR model is

ρR(ρS) = f(ρS;α, β).

For example, the simple spatial BH model is

ρR(ρS) =
αρS
β + ρS

.

The total number of recruits in an area of size A is R = ρRA and the total

biomass of parents is S = ρSA. The relationship between R and S is

R(S;A,α, β) = Af(µS = S/A;α, β).
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For the BH model,

R(S;A,α, β) =
αρSA

β + S/A
=

AαS

Aβ + S
.

Consider a two-box model in which the density-dependent recruitment

parameters are the same in each box. If the total area of the two boxes is A

then the total BH model can be written

R(S;A,α, β) =
αoS

βo + S
, αo = αAand βo = βA.

If the area of the first box is qA and the area of the second box is (1− q)A

then the BH model for box 1 has parameters α1 = qαo and β1 = qβo and

the model for box 2 has parameters α2 = (1 − q)αo and β2 = (1 − q)βo.

For example, if the area of both boxes is half the total area then the BH

parameters for each box are half of the parameters for both boxes. For a RK

SR model, the density-dependent recruitment can be written

R(S;α, β) = αρSAe
−βS/A = αSe(−βo)S, βo = β/A.

We assume areas A1 = A2, where q = 1 − q = 0.5, and the density of

SSB, ρS, for the source and sink are equal to the SSB density for the one-

box model. This is done to formulate a two-box SR model that has a total

SSB and total recruitment equivalent to that of the one-box model, where

is S1 = S2 = S and R1(S1) = R2(S2) = R(S) for some S. Note, the sum of

recruitment R(S1) + R(S2) is typically not the same as R(S1 + S2) because

recruitment is non-linear, but for our model R(S1) + R(S2) = R(S1 + S2) if
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S1 = S2.

If the SR parameters for each sub-population are defined based on the

total area of the box (e.g. α1 = αoA1 and α2 = αoA2) where A1 = A2, it can

be shown that the BH SR parameters α and β for the two-box model will

be half that for the one-box model, and the RK SR parameter α will be the

same as that for the one-box model while β will be twice that for the one-box

model. For example, the one-box SR model BH100 where α = β = 100 is

equivalent to the two-box BH50 model where α = β = 50, and the RK model

RK100 where α = 1 and β = 1/(e · 100) is equivalent to the two-box RK50

model where α = 1 and β = 1/(e · 50). For the steepness models, unfished

recruitment and SSB for the two-box model will be half that for the one-box

model (R0 = 50, S0 = 50 · SPR(0)).

Recall the per-recruit functions, like SPR, depend on the life history char-

acteristics of a population. For a two-box model, we assume the life history

characteristics, and therefore per-recruit functions, vary spatially. We as-

sume the SPR functions are defined based on the region the recruits reside

and grow in. That is, we assume the source and sink have distinct life history

characteristics, and once recruits advect from the source they adapt the life

history characteristics of the sink. We denote the per-recruits functions for

the source as SPR1 and Y PR1, and SPR2 and Y PR2 for the sink. How-

ever, we initially assume life history characteristics in the source and sink are

equal, and SPR1 = SPR2 and Y PR1 = Y PR2.

Equilibrium SSB for a one-box model may be derived as

SSBeq = SPR(f)Req(f),
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where equilibrium recruitment Req = R(SSBeq). For a two-box model,

the source and sink have different equilibrium recruitment functions, and

the equilibrium SSB for each sub-population depends on the transfer pro-

portion, p. For the source, a proportion p of the recruits are advected

out of the area each year, and equilibrium recruitment, Req,1, is defined as

Req,1(f1) = (1−p)R1(SSBeq,1(f1)), where (1−p) recruits are left in the source

after advection and f1 is the fishing mortality rate in the source. That is,

R1(SSBeq,1(f1)) is the pre-advection (i.e. local) equilibrium recruitment, and

(1 − p)R1(SSBeq,1(f1)) is the post-advection (i.e. residual) equilibrium re-

cruitment for the source. Similar to the one-box model, equilibrium SSB in

the source using the BH model is

SSBeq,1(f1) = (1− p)α1SPR1(f1)− β1, (3.1)

where α1 and β1 are the SR parameters for the source, and SPR1(f1) is the

SPR function for the source.

Equilibrium recruitment in the sink component, Req,2, depends on both

local recruitment, R2, and recruitment in the source, R1, since some pro-

portion of recruits from the source immigrate into the sink annually. For

example, if R1 = R2 = 100 and p = 0.1, then the post-advection recruitment

in the source is 10% less than what was locally produced, i.e. R1 = 90, and

recruitment in the sink increases by the the amount, i.e. R2 = 110. The def-

inition for equilibrium recruitment generally assumes Req = R(SSBeq), but

for the sink this definition is incomplete because the sink may rely on the

source for recruits. Equilibrium recruitment in the sink is the sum of local
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recruitment, R2(SSBeq,2), and a proportion p of equilibrium recruitment in

the source, pR1(SSBeq,1). Using a BH SR model, SSBeq,2 is

SSBeq,2 =
α2SSBeq,2

β2 + SSBeq,2

SPR2(f2) + p
α1SSBeq,1

β1 + SSBeq,1

SPR2(f2), (3.2)

where SSBeq,1 = SSBeq,1(f1) and SSBeq,2 = SSBeq,2(f1, f2), and α2 and

β2 are the sink SR parameters. Recall, initially SPR1(f) = SPR2(f). In

Appendix A we show that the solution to Equation 3.2 is

SSBeq,2(f1, f2) =
−B(f1, f2)±

√
B(f1, f2)2 + 4β2 · p ·R(SSBeq,1(f1))SPR2(f2)

2
,

(3.3)

where

B(f1, f2) = β2 − α2SPR2(f2) + p ·R1(SSBeq,1(f1))SPR2(f2). (3.4)

This is different than the one-box result because the sink population is af-

fected by recruitment and consequently fishing in the sink and source regions.

For the BH model, SSBeq,2 relies on the quadratic formula, meaning there

are two solutions. However, it can be shown that the negative-root solu-

tion always returns a negative SSBeq, and the only plausible solution is the

positive-root (see Appendix A).

Equilibrium SSB for the RK model is

SSBeq,1(f1) =
ln((1− p)α1SPR1(f1))

β1

, (3.5)

for the source, which is similar to equilibrium SSB for the one-box model.
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Equilibrium SSB for the sink has no analytic solution when using the RK

SR model. We derive the values for SSBeq,2 numerically, which is detailed

below.

For the steepness version of the BH model,

SSBeq,1(f1) =
S0

5h1 − 1

(
(1− p) · 4h1R0SPR1(f1)

S0

+ h1 − 1

)
, (3.6)

for the source, where h1 is the steepness for the source,

SSBeq,2(f1, f2) =
−B(f1, f2) +

√
B(f1, f2)2 + 4C(f1, f2)(5h2 − 1)/S0

2(5h2 − 1)/S0

,

(3.7)

for the sink, where h2 is the steepness for the sink,

B(f1, f2) = (1−h2)−4h2R0

S0

SPR2(f2)−p·5h2 − 1

S0

Req,1(SSBeq,1(f1))SPR2(f2),

(3.8)

and

C(f1, f2) = p · SPR2(f2)(1− h2)Req,1(SSBeq,1(f1)). (3.9)

For the steepness version of the RK SR model,

SSBeq,1(f1) = S0

(
1 + 0.8

ln((1− p) ·R0SPR1(f1)/S0)

ln(5h)

)
, (3.10)

for the source. No analytic equation can be derived for equilibrium SSB

for the sink using either the conventional or steepness versions of the RK

SR model. Instead, numerical solutions are calculated from the definition of
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equilibrium SSB. For the standard RK model, equilibrium SSB is defined as

S2 = α2S2e
−β2S2SPR2(f2) + p · α1S1e

−β1S1SPR2(f2), (3.11)

where S2 ≡ SSBeq,2(f1, f2) and S1 ≡ SSBeq,1(f1). Numerical solutions for

equilibrium SSB in the sink for any f1 and f2 can be found by solving for the

roots of Equation 3.11. For some values of f1 and f2, two Real roots exists,

one of which is zero, and in such cases the non-zero root is used. A similar

numerical solution is found for SSBeq,2 for the steepness RK model, where

equilibrium SSB for the sink is defined as

S2 =
R0

S0

S2e
ln(5h2)(1−S2/S0)/0.8SPR2(f2) + p

R0

S0

S1e
ln(5h1)(1−S1/S0)/0.8SPR2(f2).

(3.12)

As described above, we illustrate our two-box equilibrium results using

the BH50 and RK50 SR models. When using the steepness formulations

BHh and RKh, we assume a constant steepness of h1 = h2 = h = 0.78.

Furthermore, we assume a a set of base conditions for life history character-

istics for both boxes, where the selectivity curve is defined by s6, the natural

mortality rate mconstant = 0.2, the maturity ogive µ8,10, and the growth rate

k = 0.1 (see Table 2.1 for values). We assume these life history character-

istics, along with the SR relationships, are consistent between both regions

unless specified otherwise.

In Chapter 2, we calculated equilibrium yields using both a forecast pro-

jection and per-recruit functions, and derived MSY RPs to confirm both

methods produce the same values. We perform the same comparison for
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two-box model RPs. The forecast model is modified to calculate values for

each sub-population separately, and recruitment advection is explicitly mod-

elled. The two-box forecast model includes a tertiary region component, r,

e.g. Ny,a,r, where r = 1 indicates values for the source and r = 2 indi-

cates values for the sink. For the one-box model, we defined abundance

at the first age, Ny,a0 = R(SSBy−5). For the two-box model, we have

two arrays of abundances, calculated as Ny,a0,1 = (1 − p)R1(SSBy−5,r=1)

and Ny,a0,2 = R2(SSBy−5,r=2) + pR(SSBy−5,r=1). All other stock values

for each sub-population are calculated according to Table 2.2. Optimal

MSY RPs are based on the sum of yields from both sub-populations, i.e.

Yy=500,r=1 +Yy=500,r=2. We use the forecast projection method to verify MSY

RP outputs are equal to those derived through the per-recruit function ap-

proach.

Equilibrium yield is calculated for each region. When using the per-

recruit and SR function method, equilibrium yield for the source is

Yeq,1(f1) =
Y PR(f1)

SPR1(f1)
SSBeq,1, (3.13)

equilibrium yield for the sink is

Yeq,2(f1, f2) =
Y PR(f2)

SPR2(f2)
SSBeq,2(f1, f2), (3.14)

and the total equilibrium yield is

Yeq,tot(f1, f2) = Yeq,1(f1) + Yeq,2(f1, f2). (3.15)
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Equilibrium yields, as well as SSB and recruitment, are calculated for a

range of f1 and f2 to demonstrate the effects spatially-varying f ’s have on

total yield. Moreover, we use the equilibrium yield functions to derive MSY

RPs. Our interest is to maximize total yield with respect to both f1 and f2,

simultaneously, and observe how these f ’s change as the transfer proportion,

p, changes. The f ’s that optimize total yield will be denoted fMSY,1 and

fMSY,2 for the source and sink, respectively. MSY, total BMSY , and total

biomass depletion will also be calculated for the two-box model using the

appropriate SSBeq equations. Total BMSY = BMSY,1 + BMSY,2 and total

biomass depletion is BMSY /B0 = (BMSY,1 + BMSY,2)/(B0,1 + B0,2), where

B0,r is the unfished equilibrium SSB for the source (r=1) and sink (r=2).

We also calculated these RPs for alternate parametrizations of life history

characteristics, similar to in Chapter 2. In this case, MSY RPs are calculated

from independent changes in source and sink parameters, to see how these

changes can affect estimates for both areas. Similar to in Chapter 1, we

optimize Yeq,tot and derive fMSY using the nlminb function in R.

Many fisheries are restricted by the presence of Marine Protected Areas

(MPAs). MPAs are regions in which fishing is either limited or prohibited to

protect marine habitats or vulnerable fish species. However, on the bound-

aries of these areas where spillover occurs, fish are transferred into fished

waters, creating a dynamic similar to the source-sink system discussed above

(Figure 3.1b). Source-sink dynamics are often discussed alongside MPA and

marine reserve implementation (e.g., Neubert, 2003; Crowder et al., 2000).

Understanding the effects of spillover from MPAs is important to account for

when defining spatial management RPs. If the metapopulation model above
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assumes fishing does not occur in the source (i.e. f1 = 0), an MPA-like sys-

tem is replicated. Of course, we assume that only recruits spillover to the

fished area, and the spillover is unidirectional. We define fMPA as the f2 that

maximizes Yeq,tot when no fishing occurs in the MPA. RPs for an MPA-like

system are compared to the optimal RPs for the two-box model to investi-

gate how MPAs affect MSY RPs. In our simple setting an MPA-like harvest

strategy has to be sub-optimal compared to fishing with optimal f ’s in both

regions, and we investigate the loss of fishery efficiency caused by the MPA

(i.e. compared Yeq,tot(f1 = 0, f2 = fMPA)/Yeq,tot(f1 = fMSY,1, f2 = fMSY,2)).

We also investigate the optimal f assuming the fishing mortality rates in

both sub-populations are uniform, i.e. f1 = f2 = fU . This harvest strategy

is investigated to examine the consequences of a spatially balanced harvest

strategy, which is consistent with advice sometimes given in stock assess-

ments that catches should not be concentrated in ways that result in high

exploitation rates on any stock components (e.g., DFO, 2014). Even with-

out setting separate f RPs for each region, incorporating a spatial structure

into stock models can affect RP values. If the objective of a fishery is to

sustain a fish stock and avoid sub-population extirpation, then fU may be

valuable. Similar to above, this harvest strategy is sub-optimal, and we in-

vestigate the loss of fishery efficiency (i.e. the ration of Yeq,tot(f1 = fU , f2 =

fU)/Yeq,tot(f1 = fMSY,1, f2 = fMSY,2)).

So far we have assumed that both sub-populations have equal reproduc-

tion rates. We will refer to this as an Equivalent (EQ) system. However, it is

common for source-sink systems, and also typical when designating MPAs,

for the source (or MPA) to have higher reproduction rates than the sink. We
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emulate a similar High-to-Low (HL) system, where recruitment is relatively

greater in the source, by giving the source and sink different SR relationships:

1. For a BH SR model, the density-independent parameter (i.e. α) typi-

cally does not vary spatially (White, 2010), and we only vary β between

the source and sink. For the BH50 model, we maintain α = β = 50 in

the sink, but let α = 50 and β = 40 in the source, since a lower density-

dependent term will increase recruitment. Changing β in a BH model

does not affect the asymptotic (as S → ∞) max recruitment. Since

SaO = α/β for a BH model with the above SR parameters, SaO = 1.25

for the source and SaO = 1 for the sink, while Rmax = α = 50 is con-

stant for both.

2. Extending this rationale to the RK SR model, we assign the source the

same SaO and Rmax for the RK50 as the BH50 model, where SaO = α

and Rmax = α/(e ·β). Therefore, we let α = 1.25 and β = 1.25/(e ·50),

since we define β as β = α/(e · Rmax). Scaling β equally with α will

force Rmax to remain constant, while changing the SaO.

We also apply similar changes to the BHh and RKh models.

3. Steepness is directly related to the SaO, where SaO = 4h/(1 − h)

for the BH (see White, 2010) and SaO = α = eln(5h)/0.8 for the RK

(derived from the recruitment function; see Punt and Cope, 2017).

Proxy values of steepness can be calculated for the BH50 and RK50 SR

models as h = SaO/(4 + SaO) and h = e0.8ln(SaO))/5 for the BH and

RK, respectively. For the BH, hsource = 0.24 and hsink = 0.2, where

hsource is 1.2 times greater than hsink. If we increase the SaO in the
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source for the steepness models by the same amount as the standard

models (that is, by 1.2), and hsink = 0.78, then hsource = 1.2hsink =

0.93.

4. For the RK, hsource = 0.24 and hsink = 0.2, as well, and the source

steepness is 1.2 times greater than the sink, so hsink = 0.78, then

hsource = 1.2hsink = 0.93, identical to the BH. We calculate the same

RPs as above (e.g. fMSY,1 & fMSY,2, fMPA, and fU) using these spatially

varying reproduction rates, and compare values to those for the EQ

system.

A Downstream Advection (DA) is also common in source-sink systems,

where recruits transfer from a colder, northern area into warmer waters in

the south. It is well known that colder temperatures promote slower growth

rates, and similarly warmer waters promote faster growth rates. Assuming

that the reproduction rates in the source and sink are equal, we calculate

MSY RPs with a spatially varying growth rates, where ksource = 0.075 and

ksink = 0.1. Model outputs are compared to values for the two-box EQ and

HL systems..

Lastly, we calculate the same MSY RPs assuming a high-to-low repro-

duction system with a downstream advection (HL & DA). MSY RP outputs

from this model will be compared to the previous three (i.e EQ, HL, and

DA).
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3.2 Results

3.2.1 Verification of the Two-Box Forecast Projection

Method

A forecast projection (2000 years) was iterated for a range of f1 and f2

values, where f1, f2 ∈ [0, 0.5] and p = 0.2. Stock values, e.g. abundances,

for both sub-populations approach an equilibrium over time, similar to a

one-box forecast projection (Figure 3.2), and the sum of source and sink

abundances (and all other values) also stabilize. We calculated MSY RPs

for the two-box model using the forecast projection and compared them

to results using the per-recruit functions (Table 3.1). Results from both

methods provide approximately equal outputs. The discrepancies between

values are due to the precision of f in the forecast projection (0.005), and

values derived through the per-recruit functions are assumed to be the exact

values. For all further RP estimations, we exclusively use the per-recruit

functions.

3.2.2 EQ System Equilibrium Results

Equilibrium yield, SSB, and recruitment for the source and sink were cal-

culated under an EQ system for a range of f1 and f2 values, and for sev-

eral values of p, using the BH50 (Figure 3.3), RK50 (Figure 3.4), BHh

(Figure 3.5), and RKh (Figure 3.6) SR models. Total equilibrium values

were also calculated as the sum of equilibrium values for the source and

sink. Note, equilibrium recruitment was calculated as Req,1 = R1(SSBeq,1)
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for the source and Req,2 = R2(SSBeq,2) for the sink. This is the pre-

advection (i.e. local) recruitment, as opposed to the post-advection recruit-

ment, which would be calculated as Req,1 = (1−p)R1(SSBeq,1) for the source

and Req,2 = R2(SSBeq,2) + pR1(SSBeq,1) for the sink (see Figure 3.7). How-

ever, the total equilibrium recruitment remains constant before and after

advection.

Generally, equilibrium values had a larger scale when using the steepness

SR relationships compared to the conventional SR models. That is, both the

source and sink could provide larger yields, and could provide non-zero yields

for a larger range of f1 and f2 values. This is because the steepness models

had higher reproduction rates and could sustain higher harvest rates.

When p = 0, equilibrium values in the source for any f1 = f were the

same for equilibrium values for the same f2 = f in the sink. For example,

using the BH50 SR model, Yeq,1(f1 = 0.05) = Yeq,2(f2 = 0.05) = 1.21, when

p = 0. Also when p = 0, equilibrium SSB and recruitment were greatest

when f1 = f2 = 0, while equilibrium yield was greatest (i.e. maximized)

for some non-zero f1 = fMSY,1 and f2 = fMSY,2, where fMSY,1 = fMSY,2 (see

section 3.2.4). Equilibrium values in the source were independent of f2 for all

p. When p = 0, equilibrium values for the sink were independent of f1. This

is to be expected, since the source and sink are unconnected when p = 0.

For any p > 0, equilibrium values in the sink were dependent on f1 and f2.

Furthermore, equilibrium values in the source generally decreased and values

in the sink generally increased for larger p’s, although this depends on the

value of p and the sustainability of the source (see section 3.2.3).

It is difficult to discern changes in equilibrium values from changes in
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f1, f2, and p in Figures 3.3 to 3.6. To further elucidate these changes, we

calculated the equilibrium yields for fixed p’s for a range of f1’s and f2’s

(Figure 3.8), as well as for fixed f1’s and f2’s for a range of p’s (Figure

3.9). Equilibrium yields for these figures were calculated using the BH50 SR

model for illustration purposes, since all other SR models produce similar

trends in equilibrium results. We also calculated equilibrium yields, SSB,

and recruitment over a range of p’s for f1 = f2 for the BH50 model (Figure

3.10). The corresponding equilibrium results for the RK50, BHh, and RKh

SR models are also provided (Figures B.1 to B.3; Appendix B).

For a fixed value of f2, equilibrium yields in the source decreased as p

increased, and the equilibrium yield for some f, Yeq,1(f1 = f) when p = 0

was greater than the yield for the same f for any p > 0 (Figure 3.8a). For

certain f ’s, equilibrium yield in the source was zero because the source did

not persist. Equilibrium yields in the sink typically increased as p increased

(Figure 3.8b), but if the source did not persist, equilibrium yields in the sink

were constant because f2 was constant. For a fixed value of f1, equilibrium

yields in the source did not change with f2 because the source was indepen-

dent from the sink. However, equilibrium yields still decreased as p increased

(Figure 3.8d) when f1 was constant.

Equilibrium yields in the sink may increase or decrease with increases

in p (e.g. Figures 3.8b & 3.8e) depending on the value of p. Furthermore,

equilibrium yield in the sink for large f2’s was zero when p = 0, but if

p > 0 (and the source persists) equilibrium yield in the sink was never be

zero (Figure 3.8e). This is because the source provides a constant supply of

recruits to the sink, and even if fishing temporarily depletes the sink, the
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sink sub-population will be restored by the advecting recruits. Depending

on p, the equilibrium yield in the sink from large f ’s may be insubstantial,

but they cannot be zero, i.e. lim
f2→∞

Yeq,2(f1, f2) > 0.

3.2.3 Source and Sink Persistence

Increases in p decreased Req and subsequently SSBeq and Yeq in the source,

but increased Req, SSBeq and Yeq in the sink (e.g. Figure 3.10) for low p’s.

As p increased, more recruits were advected out of the source each year. This

advection can be thought of as an increase in local recruitment in the sink

and a decrease in local recruitment in the source, where the source has a

lower reproduction rate than the sink. Indeed, the BH SSBeq for the source

has a negative linear relationship with p (see Equations 3.1 and 3.6), and the

RK SSBeq for the source has a negative logarithmic relationship with p (see

Equations 3.5 and 3.10). As a result, p directly affected the sustainability of

the source. As p increased, equilibrium recruitment and SSB in the source

strictly decreased.

If p was large enough, the source could not be sustainably fished, where

even a low fishing rates could deplete the source (e.g. Figure 3.8a). For

certain values of p, the source became depleted even with no fishing. The

conditions of source depletion are detailed below. Meanwhile, the sink could

still allow fishing as p increased, despite the source being unfishable (e.g.

Figures 3.8b). When p was low, the sustainability of the sink (i.e. SSBeq,2)

increased with p (e.g. Figure 3.10), and increasing p allowed greater sustain-

able harvest rates (e.g. Figures 3.8b & 3.8e). However, there are exceptions
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to this–where increasing p does not necessarily increase harvest rates–which

are also discussed below.

For any p where the source sub-population persisted, there was some

f that would lead to extirpation (see Figure 3.8a). That is, there is some

f where the equilibrium SSB in the source goes to zero. The f for which

SSBeq = 0 is the upper limit for sustainable fishing, and fishing rates be-

yond this threshold are unsustainable (i.e. overfishing). This value is some-

times denoted fcrash in fisheries science (see Cook, 1998). We denote this as

fcrash,1(p), since its value depends on p. Values for fcrash,1(p) can be derived

numerically, where

SSBeq,1(fcrash,1(p)) = 0, (3.16)

for any p. This may also be derived as SaO = 1/((1 − p)SPR1(fcrash,1)),

where the slope of the replacement line cannot exceed slope of the SR curve

at the origin (refer to Figure 2.5). The value for fcrash,1(p) decreases as p

increases, where the upper limit of fishing in the source decreases when more

fish transfer out each year, and fcrash,1(p) is greatest when p = 0 such that

fcrash,1(p > 0) < fcrash,1(p = 0). Sustainable yields can be obtained from the

source as long as f1 < fcrash,1(p) for any p (see Figure 3.11). That is, the

source can sustain more fishing when no recruits transfer to the sink (Figure

3.8a).

As p increased, equilibrium SSBeq in the source decreased, and fcrash,1(p)

decreased with it since less fishing was required to deplete the source pop-

ulation. When fcrash,1(p) = 0, the source is extirpated regardless of fishing

because too many recruits transfer from the source to allow the population
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to persist. The p value for which fcrash,1(p) = 0 is denoted pex, where the

sub-population in the source is effectively extirpated when p = pex. Also,

fcrash,1(p) = 0 for any p ≥ pex. Values for pex can be derived analytically

from the SSBeq equation for the source. The value for pex is defined as the p

for which SSBeq,1(f1 = 0) = 0. For example, consider the BH model, where

equilibrium SSB is expressed by Equation 3.1. The value for pex is defined

as

(1− pex)α1SPR1(0)− β1 = 0 (3.17)

Solving Equation 3.17 for pex gives pex = 1− β1/(α1SPR1(0)).

Using the RK model where SSBeq is expressed by Equation 3.5, it can

be shown that pex = 1−1/(α1SPR1(0)). Values for pex were derived for each

SR model (Table 3.2). For our choices of α1 and β1, pex will be the same for

the BH50 and RK50 SR models, because β1/α1 = 100/100 for the BH model

and 1/α1 = 1/1 for the RK model (and SPR1(0) is constant).

Equilibrium values in the sink depended on f1 when p > 0 provided

f1 < fcrash,1(p) and p < pex. If f1 ≥ fcrash,1(p) or p ≥ pex, equilibrium

values in the sink were independent of f1, since the source sub-population

was extirpated. There were no values of p that resulted in sink extirpation

the same way that p ≥ pex lead to extirpation in the source (see Figures

3.9b and 3.9e). As long as the source persisted and the sub-populations were

connected, there were no values of p for which the sink sub-population was

depleted, regardless of f. If the source did not persist, however, the sink was

effectively a one-box system which could be depleted. In fact, the equilibrium

SSB for the sink when the source is extirpated, that is when Req,1 = 0 (i.e.
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when p = 0, p ≥ pex, or f1 ≥ fcrash,1(p)), is the same as the equilibrium

SSB for the one-box model. The value of f that depletes the sink when no

recruits advected from the source is denoted fcrash,2, and can be derived from

SSBeq,2 where SSBeq,2(f1, fcrash,2) = 0, and f1 is irrelevant since the source

is depleted. For, example, for the BH SR model, fcrash,2 can be derived as

SSBeq,2(fcrash,2) = α2SPR2(fcrash,2)− β2 = 0. (3.18)

Note, fcrash,2 does not depend on p since the sink can only crash if there are

no transferring recruits.

3.2.4 EQ MSY RP Results

MSY RPs were calculated for various p’s for each SR model, and RPs were

tabulated for select values of p (Table 3.3). Recall that MSY RPs are calcu-

lated by optimizing the total equilibrium yield, rather than the equilibrium

yield of each sub-population, independently. When p ≥ pex, all MSY RPs in

the source are zero, since the source is extirpated. In this case, because of our

choices for SR parameters, and because recruitment in the source and sink

were equal, MSY and BMSY for the sink were half the values for MSY and

BMSY when p = 0, while fMSY,2 and biomass depletion when p ≥ pex were the

same as the values when p = 0 (see Table 3.3). For example, for the BH50 SR

model, pex = 0.48 (Table 3.2), so for a value of p = 0.6 > pex, MSY = 1.211

which is half MSY = 2.421 when p = 0; also BMSY /B0 = 0.438 when p = 0

and when p = 0.6, and fMSY,2 = 0.047 when p = 0 and when p = 0.6 (Table

3.3).
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When p = 0, fMSY , BMSY , and biomass depletion were the same for both

regions (Table 3.3); MSY was also the same for both regions. This was also

the case for equilibrium values (e.g. Figure 3.3). When populations were

unconnected, they behaved as isolated, independent populations. Moreover,

when p = 0, the total MSY, BMSY , and biomass depletion from both sub-

populations were equal to that of the one-box model, assuming life history

characteristics and SR relationships were the same for both regions (see Table

3.3). That is to say, MSY, BMSY , and biomass depletion for each area can

be derived from one-box model results if the populations are unconnected.

For some p values, obtaining the optimal sustainable yield involves fishing

in the source, that is fMSY,1 6= 0. This is typical for moderate to low p’s but

for high p’s, the source cannot be fished for yields to be optimized. At some

p, and for all larger p values, fMSY,1 = 0; this p value is denoted pf0. Our

MSY RPs are derived by maximizing the total equilibrium yield with respect

to f1 and f2. When fMSY,1 = 0 the optimal sustainable yield is obtained by

exclusively fishing in the sink. The source may still persist when p ≥ pf0

as long as p < pex, and the source may still be fished so long as it persists,

but fishing in the source when p ≥ pf0 provides sub-optimal yields. In other

words, the upper limit of fishing fcrash,1(p = pf0) > 0 and fishing in the

source is possible, but not recommended. Values for pf0 were calculated for

each SR relationship (Table 3.2), alongside values for pex. Generally, pf0 and

pex increase concomitantly with productivity, and both values were larger

when using the steepness SR models compared to the values for the standard

SR models. This is because the steepness models had greater reproduction

rates, and greater reproduction rates can accommodate larger harvest rates
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as well as reduce the risk of extirpation.

When p = 0, fMSY,1 = fMSY,2 (see Table 3.3). As p increased, fMSY,1

decreased and fMSY,2 increased until p = pf0 (Figure 3.12), where fMSY,1 = 0.

For values of p where p ≥ pf0, fMSY,2 decreased, and the total yield was only

dependent on f2 because the source was not fished. As p increased further

(to pex), the source sub-population became extirpated. Once the source was

extirpated, increases in p no longer affected fMSY,2, and fMSY,2 remained at

a constant value, which was the same value for fMSY,2 when p = 0. For all

values of p, fMSY,2 was greater than or equal to fMSY for the one-box model,

and fMSY,1 was always equal to it or less (see Table 3.3).

Total BMSY strictly decreased as p increased until it reached half of the

BMSY when p = 0 (Figure 3.13); B0 also decreased to half the B0 when p = 0.

MSY decreased as p increased, and was largest when p = 0 (see Table 3.3).

Biomass depletion changed very little as p increased (Figure 3.13). This is

because BMSY and B0 changed approximately the same with p, where SSBeq

scaled with p. Values for biomass depletion peaked (i.e. biomass was least

depleted) when p = pf0 for each SR model, otherwise it remained at or close

to the biomass depletion for the one-box model.

When p ≥ pex and the source sub-population is effectively extirpated, the

sink sub-population behaves as a spatially homogeneous population, i.e. a

single population stock. Therefore, we must assume p < pex when using a

spatially explicit model to derive MSY RPs. That is to say, there would not

be two populations if p ≥ pex. For some RP calculations, we considered a

constant, moderate transfer proportion of p = 0.2 (see Table 3.4). At this p,

the source was still fishable (i.e. p < pf0) for all SR models (see Table 3.2).
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3.2.5 EQ MSY RPs for Alternative Harvest Strategies

Values for fMSY,1 and fMSY,2 are the optimal values for f, and total BMSY and

biomass depletion for these f ’s were also derived. MSY RPs were derived

under MPA-like conditions, i.e. f1 = 0, where f2 = fMPA is the f that

optimizes equilibrium yield when the source is not fished. MSY RPs were

also calculated assuming fishing effort was uniform for both regions, i.e. f1 =

f2 = fU . Values for these sub-optimal f ’s were calculated for a range of p’s

and were compared to the optimal f ’s and fMSY,1box (Figure 3.14). Values for

BMSY and biomass depletion for the sub-optimal harvest strategies were were

also compared to the optimal results (Figure 3.15); B0 (i.e. SSBeq(f = 0))

for the two-box model was calculated as well for completeness. MSYs were

calculated for each harvest strategy for comparison (Table 3.4).

The unfished SSB and B0, for the two-box model was always less than

unfished SSB for the one-box model, except when p = 0 at which point they

were equal. This is because the SR relationships are density-dependent, and

overall productivity decreases as the density of SSB in each area decreases.

The optimal, MPA-like, and uniform harvest strategies used the same un-

fished SSB since they are all two-box harvest strategies.

When p was low, fMPA (Figure 3.14) and the total BMSY from fMPA

(Figure 3.15) were larger compared to the optimal harvest strategy. This

is because the source would retain more SSB and provide more recruits to

the sink, but fishing in the sink would have to increase to compensate for

the loss of yields in the source. Biomass was less depleted from fishing at

fMPA than the optimal harvest strategy when p was low. MSY from fMPA,
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Yeq,tot(f1 = 0, f2 = fMPA), was less than MSY from the optimal harvest

strategy (Table 3.4). We calculated the efficiency of yields as the ratio of

MSY from alternative harvest strategies to the optimal MSY (Figure 3.16).

When p was large enough (i.e. p ≥ pf0), the efficiency was 100% and both the

optimal and MPA harvest strategies produced equal yields, since fMSY,1 = 0

for the optimal strategy when p ≥ pf0. Otherwise, yields were lost and were

reduced by up to 50% percent (when p = 0).

Values for fU were always less than fMSY for the one-box model, ex-

cept when the source was extirpated or unconnected to the sink (Figure

3.14). Furthermore, source extirpation occurred at a p < pex for the fU har-

vest strategy. Recall that fcrash,1(p) depends on p (see Figure 3.11), where

fcrash,1(p) decreases as p increases. Since f1 = fU > 0 for any p, f1 = fcrash(p)

when fcrash,1(p) > 0 for some p < pex. At the p that the source is extirpated,

the yields in the source are zero even though f1 = fU 6= 0, and any amount

of fishing in the source will provide zero catch. Once the source is extirpated,

f1 is irrelevant and the sink is fished as an independent population. When

the source persisted, BMSY from fishing at fU was always lower than the op-

timal BMSY for the standard SR models, but higher for the steepness models

(Figure 3.15). Furthermore, fishing at fU resulted in greater biomass deple-

tion than the optimal harvest strategy for the standard SR models, but the

steepness models resulted in less depleted biomass than the optimal strategy

(Figure 3.15). Also, fU ≥ fMSY,1 and fU ≤ fMSY,2 for all p. Using a uniform

harvest strategy usually resulted in underfishing in the sink and overfishing

in the source. As a result, the fU harvest strategy was sub-optimal (Fig-

ure 3.16). Fishing at fU reduced total yields by more than 50% for some
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p’s, and yields were only 100% efficient when the source was extirpated or

unconnected.

3.2.6 EQ MSY RPs for Alternative Parametrizations

MSY RPs were calculated under alternative parametrizations of life history

characteristic distributions, and therefore using different SPR and YPR func-

tion for the source and sink. The alternative parameters include the selectiv-

ity, s8, weights-at-age W0.05 and W0.15, the natural mortality rate mlor, and

the maturity ogive µ10,12 (see Table 3.5). Most notably, the source was un-

fishable when its growth rate was ksource = 0.05 and when its maturation rate

was described by the µ10,12 ogive, as well as when using the Lorenzen natural

mortality rate (Table 3.5). Interestingly, biomass was less depleted when us-

ing the Lorenzen natural mortality rate or µ10,12 ogive in the sink compared

to the base conditions, while MSY for these alternative parametrizations was

significantly lower compared to the base conditions. Most parameter changes

in the sink resulted in larger results for MSY RPs, with the major exceptions

being BMSY and biomass depletion for ksink = 0.05 and BMSY using the

µ10,12 ogive. The largest increase in MSY from the base conditions was from

an increase in the growth rate for either sub-population, while the largest de-

crease was from using the Lorenzen mortality which made both populations

nearly unfishable. In general, MSY RPs were most sensitive to growth rates

and natural mortality rates.

The affects these parameter changes had on MSY RPs were made am-

biguous by the division of the stock into segregated sub-populations, and
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more importantly their connection through larval advection. For example, al-

though harvesting in the sink did not directly affect harvesting in the source,

changing source parameters affected how RPs were calculated to optimize

MSY. Changing one parameter in the sink, like ksink = 0.05 may increase

fMSY,1 yet reduce total MSY (Table 3.5). It is difficult to fully understand

how parameter perturbations affect two-box model RPs, since RPs for each

area are dependent on one another. A detailed analyses of these perturbation

effects in spatial models may be left to future research.

3.2.7 MSY RPs for a HL System

Equilibrium yields, SSB and recruitment were calculated under a HL system,

where the reproduction rate in the source was higher than that in the sink.

Results were very similar to the EQ system, with the main difference being

the increase in yield, SSB, and recruitment in the source. Equilibrium results

for the HL system can be found in Appendix B (see Figures B.4 to B.7).

Values for pf0 and pex were derived using each SR models (Table 3.2).

Increasing source recruitment increased pf0 and pex for all SR models.

MSY RPs were calculated for various p values. Values for fMSY,1 were

significantly affected by the increase in reproduction rate, where fMSY,1 >

fMSY,2 for very low values of p (Figure 3.17). Furthermore, the scales of the

f ’s increased, for example fMSY,2 at p = pf0 (fMSY,2 ≈ 0.10) was greater

then the fMSY,2 at p = pf0 for the EQ system (fMSY,2 ≈ 0.08). Values for

fU changed significantly under this system, where harvest rates in the source

could allow more fishing in both regions for low p values, similar to fMSY,1
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for to the optimal harvest strategy (Figure 3.17).

Total BMSY increased with the increased recruitment in the source, and

B0 increased for the standard SR models at low p (Figure 3.18). However,

BMSY and B0 for the BHh SR model were lower than that for the EQ system

when p was low. Biomass estimates changed very little for the RKh SR

model.

Total MSY was calculated for the HL system and compared to total MSY

for the EQ system (Figure 3.19). Relative to the EQ system, the increased

recruitment in the HL system provided substantially greater yields. Both the

MPA and uniform harvest strategies still provided sub-optimal harvests, or

equal harvests at best (Figure 3.20).

3.2.8 MSY RPs for a DA System

Equilibrium yields, SSB and recruitment were calculated under a DA sys-

tem, where the growth rate in the sink is higher than that in the source.

Results are provided in Appendix B. The main difference in equilibrium

values was the decrease in the scale for the BH50 and RK50 SR model (Fig-

ures B.8 and B.9), while having little difference for the steepness models

(Figures B.10 and B.11). This is likely due to the higher recruitment rates

from the steepness models which can compensate for the reduced growth

with high recruitment.

Values for pf0 and pex were derived using each SR models (Table 3.2). For

the DA system, pf0 and pex decreased for the BH50 and RK50 SR models,

but did not change for the BHh and RKh models.
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MSY RPs were calculated for various p values. Both fMSY,1 and fMSY,2

were greatly reduced for all p (Figure 3.21), although fMSY,2 was still always

greater than fMSY,1box. Values for fMPA were also greatly reduced for the

standard SR models compared to the EQ system, while fU = 0 regardless of

p.

For the standard SR models, total BMSY and B0 decreased dramatically

until p = pex, since values for pex were small. Values for BMSY and B0 were

much lower than that for EQ system, and biomass was more depleted, as

well (Figure 3.22). For the standard SR models, biomass was significantly

more depleted under the uniform harvest strategy compared to the EQ sys-

tem when p was small. BMSY was constant for changes in p because fU

was constant. For the steepness SR models, BMSY and B0 decreased slightly

compared the EQ system results, and changes in biomass depletion com-

pared to EQ results were negligible, likely due to high reproduction rates

compensating for the reduction of growth in the source.

MSYs were substantially lower for the DA system compared to the EQ

and HL systems, but MSY increased as p increased for low p’s (Figure 3.19)

because as recruits advected into the sink, they obtained higher growth rates

which resulted in a larger total biomass . Furthermore, changes in p resulted

in minimal changes in fMPA and fU , and therefore provide minimal reduc-

tions in yield efficiency (Figure 3.23). That is, aside from at very low p’s, all

harvest strategies provided approximately equal yields.
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3.2.9 MSY RPs for a HL & DA System

Finally, for the HL & DA system, equilibrium yields, SSB, and recruitment

were calculated where the source had higher reproduction rates but slower

growth rates than the sink. Results are provided in Appendix B (Figures B.12

to B.15). Values for pf0 and pex were also calculated (Table 3.2).

MSY RPs for various p values were calculated. Since this system is a

combination of both the HL and DA systems, its RP results resemble results

from both. Values for fMSY,1 and fMSY,2 decreased from the reduction in

growth rate, but increased from the increase in reproduction rate (Figure

3.24), although the negative effects from the reduced growth rate was more

prominent than from the increase in source reproduction rate.

For the standard SR models, BMSY and B0 from the conventional SR

models decreased rapidly similar to the the DA system; biomass depletion

showed similar trends (Figure 3.25). BMSY , B0, and biomass depletion from

the steepness SR models, however, did not change much compared to that

for the DA system.

The alternative harvest strategies always provided sub-optimal harvests

to the optimal harvest strategy (Figure 3.26), but provided greater yields

than the DA system alone, although not as great as the EQ or HL systems

(Figure 3.19). Moreover, MSY increased with p similar to the DA system

because recruits from the source grew quicker once advected into the sink,

and the increase in MSY was greater than that for the DA system because

higher reproduction rates in the source provide more recruits to the sink to

grow.
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It should be noted that, for all systems (i.e. EQ, HL, DA, and HL &

DA), once p ≥ pex, MSY, BMSY , and B0 for all SR models and all harvest

rules were half their value for the one-box model. Changes in the system

structure, e.g. to have higher reproduction rates in the source, only affected

the source. Once the source was extirpated, these changes did not manifest

in the sink MSY RP values because the sink behaved as a one-box system.

3.3 Discussion

A two-box population, particularly a source-sink system can result in sub-

stantially more complex dynamics than a standard one-box system. With

the added spatial dimension, the degrees of freedom increase and allow for

more variation within a stock in the form of spatially-varying life history

characteristics, the transfer proportion, and local recruitment. Variation

may also be allowed for in the applied harvest strategy, but to optimize

yields and maintain a sustainable harvest, implementing a spatially-explicit

harvest strategy with area-specific RPs is necessary. Moreover, the transfer

proportion directly impacts the fishability and sustainability of the source

sub-population, and remaining aware of metapopulation interconnectivity is

imperative for effective fisheries management.

For a source-sink system with a larval advection process, the sink sub-

population can accommodate a greater f than the source due to the constant

supply of recruits transferring from the source. However, this heavily depends

on the reproductive rates of each sub-population. If reproduction in the

source is high and net flux of fish out of the source is low, the source may
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accommodate higher harvest rates (see Lundberg and Jonzén, 1999). The

optimal harvest rates and optimal sustainable harvest heavily depend on the

SR relationship and sub-population life history characteristics (e.g. Figure

3.19).

Source extirpation occurred at much lower p’s for the conventional BH

or RK SR model than when using the steepness models, for all systems

(Table 3.2), and MSY and BMSY for the steepness models were far greater

than the values for the conventional SR models for most p’s (see Table 3.3).

This is because the steepness versions of our the SR relationships had higher

reproduction rates compared to the conventional SR relationships.

Moreover, when reproduction rates in the source were greater than the

sink (e.g. HL system), MSY and BMSY for low p’s were larger than values

for the EQ system (e.g. Figures 3.15, 3.18 and 3.19). When growth rates

in the source were lower than that in the sink (DA), MSY and BMSY were

much lower than estimates for the EQ system (e.g. Figures 3.16 and 3.22).

Higher source reproduction rates were unable to compensate for slow fish

growth rates for our choices of ksource and SR parameters (HL & DA system),

and the MSY is always lower than EQ estimates (Figure 3.19), while BMSY

was almost always lower than EQ estimates (see Figures 3.15 and 3.26).

Choices of local reproduction and growth rates can have drastic effects on RP

values, and perturbations of source parameters can have significant impacts

on results for sink RPs (also see Table 3.5).

Optimal harvest rates are sensitive to the transfer proportion, and usually

to differ substantially from one-box model values. If a stock consists of

two connected sub-populations, contemporary harvest strategies which base
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harvest rates on a one-box model may promote over-harvesting in the source

and under-harvesting in the sink. Furthermore, fisheries may continue to fish

at levels indicated by a one-box model, even if one-box model RPs are not

sustainable harvest objectives, because results for MSY are usually greater

for a one-box model. Unless fishing concentrates in areas where abundances

are higher, i.e. the sink, overexploitation and even extirpation is possible

using one-box model RPs.

To maximize overall catch, fishing effort tends to increase in areas with

relatively higher local abundances (Branch et al., 2006). Ying et al. (2011),

who simulated three mixing sub-populations to derive management RPs, con-

cluded that fishing in these high-abundance areas can cause over-exploitation,

and concentrating fishing in places where abundances were highest could lead

to local depletion. To reduce the chances of overexploiting a sub-population,

sub-optimal harvest rates can be implemented, e.g. fMPA. However these

options can further reduce yields (see Figure 3.16). The priority of fish-

ery should be to sustain populations, and although focusing fishing where

abundances are largest will produce the greatest yields, they may not be

sustainable if mixing between sub-populations is not properly accounted for

in RP derivations. Using spatial RPs like the two-box model MSY RPs will

ensure fishing is properly spatially allocated and will reduce the chances of

overexploitation.

MPAs can be used as an effective way to conserve populations, but they

tend to decrease total yields (e.g. Figure 3.16). When spillover is minimal

(i.e, p < pf0), MPAs are an effective means of sustaining stock levels where

biomass is far less depleted compared to the optimal harvest strategy (see
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Figure 3.15). However, when spillover is high, their efficacy diminishes, al-

though Takashina and Mougi (2014) argue they can also be effective for stock

recovery if spillover is sufficiently large. Notwithstanding, our results show

that if the advection of recruits between regions (i.e. p) is low, MPAs provide

a considerable sustainable harvest, albeit sub-optimal. An MPA-like harvest

rule can provide more risk-averse management RPs, but allowing an opti-

mized harvest in both sub-populations can provide a greater total harvest

(see Figure 3.16).

A uniform harvest strategy (i.e. fU), designed to maintain a constant

fishing mortality rate in both regions, has no benefit over the other har-

vest strategies. A uniform harvest rule always provides lower yields and f

RPs than the optimal harvest rule, and almost always a lower yield and f

RPs than the MPA-like harvest rule (see Figure 3.16). Employing a uni-

form harvest rate has very few benefits over spatially-allocated harvest rates.

Although a uniform fishing mortality rate can be used as a measure for pre-

venting overfishing in some cases, it is sub-optimal to the other tested harvest

strategy.

Measurements of life history characteristics directly affect RP values, as

we’ve noted in Chapter 2. Spatially-explicit RPs are no exception (Table

3.5), and reliably estimating stock parameters, like growth and maturation

rates, for both sub-populations is critical. Life history characteristics tend to

vary spatially, and may differ due to local temperatures (e.g. a DA system),

for example. Accounting for these distinctions in life history characteristics

is important to derive reliable MSY RPs, and parameter estimates can affect

RP values in both the source and sink if population are connected.
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To derive spatially-explicit RPs and properly allocate fishing to different

areas, measurements of p are required. Not only does p affect RP values

but also affects SR parameter estimation. Hintzen et al. (2015) performed a

simulation and MSE on mixing populations of British herring, and concluded

that without knowledge of the proportion of mixing, spatial RPs would result

in overexploitation due to biased estimates of productivity. Having accurate

information on pre-recruit movement may not only reduce the chances of

overexploitation, but may also improve a fishery’s yields. Botsford et al.

(2009) found that modelling explicit larval advection provides yields higher

than that from conventional (one-box) models when the connectivity patterns

are known, even with the presence of MPAs. Spatial harvesting can provide

higher MSYs in some cases, but requires knowledge of the connectivity of

the populations.

There is difficulty in accurately estimating stock-recruitment for larval

advection spatial models due to the lack of data for juvenile and larval move-

ment. Spatial variation in productivity and movement of spawners may be

entangled with movement of pre-recruits, which complicates the task of mea-

suring local recruitment (Thorson et al., 2015). The transfer proportion, p,

relies on the dispersal distance of larvae or the larval phase duration (pelagic

larval duration, PLD; see Cowen and Sponaugle, 2009), and may also require

information on ocean current pathways and current speeds, along with water

depth (Cowen et al., 2006; Werner et al., 2007) because larvae take advan-

tage of local waterways by repositioning themselves within water columns.

Without data on the movement of pre-recruits like larvae, values for p cannot

be estimated, and it is not possible to effectively apply this two-box model,
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since RP results tend to depend on p. There has been some recent devel-

opment of technologies designed to measure larval transportation processes,

for example by monitoring waterway trajectories (see Gawarkiewicz et al.,

2007). However, there are still many gaps in knowledge of pre-recruit disper-

sion processes, and accurately defining the transfer proportions is a necessary

prerequisite for deriving spatially-explicit harvest RPs.

We assume pre-recruits move unidirectionally and consider a metapop-

ulation to model explicit larval advection. Future studies could permit

broader assumptions about overall stock dynamics by allowing more (or

all) age-classes to move between sub-populations, allowing bidirectional (or

philopatric) movements, and even modelling dispersal dynamics to further

develop an understanding of how spatial dynamics of fish stocks influence

management RPs for source-sink systems. These alternative conditions,

alongside potential spatial variability life history characteristics and recruit-

ment, may produce more reliable and possibly different conclusions about

source-sink persistence and sustainable harvests.

It is also worth mentioning the effect uncertainties in parameter estimates

may have on RP results, for example SR parameters, since the methods

described herein rely heavily on productivity and pre-recruit movement. We

noted in Chapter 1 that small deviations in parameters used to describe life

history characteristics and SR relationships can have substantial effects on

RP model outputs. This is no different for spatial models, and we performed a

similar analysis on parameters for the two-box model. However, augmenting

this model to allow errors in parameter estimates, or performing a stochastic

simulation, may provide a more detailed understanding of source-sink harvest
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RPs. Nonetheless, developing a simple, deterministic model provides a solid

basis from which to extend the framework used to derive spatially explicit

management RPs, and builds an understanding of how spatial variability and

movement may affect these values.

The mobility of a species determines the significance of the indirect effects

of fishing (Jonzén et al., 2001), and most MSY RPs are significantly affected

by the amount of recruits that advect from source to sink. Although a

two-box model may provide unreliable outputs if the transfer proportion

is unknown or uncertain, a one-box model is insufficient to estimate MSY

RPs for fisheries management, especially when the primary objective of the

fishery is sustainability. One-box model values of fMSY,1box usually promoted

overfishing in the source (i.e. fMSY,1box > fMSY,1), and employing a one-box

model harvest rate could extirpate the source and reduce overall long-term

yields. When deriving management RPs, it is critical that stock models are

structured to account for spatial variability and population connectivity to

optimize yields and avoid unnecessary stock depletion .
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3.4 Tables

Table 3.1: MSY RP outputs for a two-box model using a forecast projection
(FP) and the per-recruit functions (PR) under base conditions. Precision
of PR outputs are rounded based on the precision FP outputs (3 significant
figures).

SR model
fMSY,1 fMSY,2 MSY BMSY BMSY /B0

FP PR FP PR FP PR FP PR FP PR
BH50 0.015 0.016 0.070 0.072 2.365 2.367 39.680 38.561 0.480 0.467
RK50 0.020 0.020 0.075 0.077 5.476 5.478 82.196 81.447 0.505 0.501
BHh 0.170 0.169 0.240 0.238 15.904 15.905 47.367 47.809 0.251 0.253
RKh 0.130 0.130 0.200 0.202 20.119 20.121 78.463 77.865 0.415 0.412

Table 3.2: Transfer proportions when fMSY,1 = 0 (pf0) and SSBeq,1 = 0
(pex). Values for pf0 and pex are affected by changes in life history character-
istics and SR models, and values for the equivalent (EQ), High-to-Low (HL),
Downstream Advection (DA), and High-to-Low with Downstream Advection
(HL & DA) will be different.

BH50 RK50 BHh RKh

EQ
pf0 0.30 0.31 0.77 0.68
pex 0.48 0.48 0.93 0.82

HL
pf0 0.38 0.41 0.89 0.73
pex 0.58 0.58 0.99 0.86

DA
pf0 0.12 0.13 0.77 0.68
pex 0.22 0.22 0.93 0.82

HL & DA
pf0 0.22 0.23 0.89 0.73
pex 0.37 0.37 0.99 0.86
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Table 3.3: MSY RPs for various transfer proportions. The transfer propor-
tion, p does not affect one-box model results.

BH50 RK50 BHh RKh

One-box

fMSY 0.047 0.051 0.206 0.169
BMSY 39.1 82.4 48.0 78.1
B0 89 174 189 189

BMSY /B0 0.438 0.475 0.254 0.412
MSY 2.42 5.60 15.9 20.2

p = 0

fMSY,1 0.047 0.051 0.206 0.169
fMSY,2 0.047 0.051 0.206 0.169
BMSY 39.1 82.4 48.0 78.1
B0 89.4 174 189 189

BMSY /B0 0.438 0.475 0.254 0.412
MSY 2.42 5.60 15.9 20.2

p = 0.2

fMSY,1 0.016 0.020 0.169 0.130
fMSY,2 0.072 0.077 0.238 0.202
BMSY 38.6 81.4 47.8 77.9
B0 82.6 163 189 189

BMSY /B0 0.467 0.501 0.253 0.412
MSY 2.37 5.48 15.9 20.1

p = 0.3

fMSY,1 0.000 0.002 0.148 0.108
fMSY,2 0.080 0.087 0.251 0.217
BMSY 37.2 80.2 47.5 77.5
B0 74.0 147 188 188

BMSY /B0 0.502 0.544 0.253 0.412
MSY 2.30 5.33 15.8 20.0

p = 0.6

fMSY,1 0.000 0.000 0.069 0.026
fMSY,2 0.047 0.051 0.286 0.255
BMSY 19.6 41.2 45.7 75.2
B0 44.7 86.8 181 176

BMSY /B0 0.438 0.475 0.252 0.426
MSY 1.21 2.80 15.5 19.2

p = 1

fMSY,1 0.000 0.000 0.000 0.000
fMSY,2 0.047 0.051 0.206 0.169
BMSY 19.6 41.2 24.0 39.1
B0 44.7 86.8 94.7 94.7

BMSY /B0 0.438 0.475 0.254 0.412
MSY 1.21 2.80 7.97 10.1
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Table 3.4: MSY RPs under various two-box f harvest rules for an EQ system
(p = 0.2), and a one-box f harvest rule.

MSY RP BH50 RK50 BHh RKh

One-box
fMSY 0.047 0.051 0.206 0.169
BMSY 39.1 82.4 48.0 78.1

BMSY /B0 0.438 0.475 0.254 0.412
MSY 2.42 5.60 15.9 20.2

Two-box
fMSY,1 0.016 0.020 0.169 0.130
fMSY,2 0.072 0.077 0.238 0.202
BMSY 38.6 81.4 47.8 77.9

BMSY /B0 0.467 0.501 0.253 0.412
MSY 2.37 5.48 15.9 20.1
MPA
fMSY 0.078 0.084 0.243 0.201
BMSY 46.5 99.8 99.6 122

BMSY /B0 0.586 0.637 0.532 0.646
MSY 2.22 4.98 10.4 12.9

Uniform
fMSY 0.039 0.041 0.201 0.159
BMSY 37.8 80.3 48.8 80.0

BMSY /B0 0.458 0.494 0.258 0.424
MSY 1.91 4.35 15.7 19.3
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Table 3.5: MSY RPs from alternative parametrizations (p = 0.2). The first
row displays RP values for the base assumptions (s6, W0.1, mconstant, and
µ8,10). A Lorenzen mortality rate is applied to both the source and sink,
simultaneously. All other parameters changes are applied to the source and
sink independently, and are tabulated based on which sub-population is re-
parametrized. Values for BMSY , B0, BMSY /B0 and MSY are the sum of
source and sink values.

fMSY,1 fMSY,2 BMSY B0 BMSY /B0 MSY
— 0.016 0.072 38.6 82.6 0.467 2.37

mlorenz 0.000 0.014 5.09 10.6 0.482 0.098

Source

s8 0.021 0.081 37.9 82.6 0.459 2.54
W0.15 0.053 0.105 57.3 143 0.402 5.79
W0.05 0.000 0.047 19.6 44.7 0.438 1.21
µ10,12 0.000 0.056 28.0 56.6 0.495 1.51

Sink

s8 0.018 0.093 39.1 82.6 0.474 2.44
W0.15 0.015 0.099 57.4 134 0.429 5.98
W0.05 0.019 0.341 17.7 39.2 0.453 0.980
µ10,12 0.011 0.077 30.1 63.2 0.476 1.81
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3.5 Figures

Source Sink
p

(a)

Fishing Zone

MPA

(b)

Figure 3.1: Two-box models for (a) a source-sink system and (b) an MPA
system. In (a) advection is a unidirectional flow between regions and in (b)
advection is a result of spillover from MPAs into the fished region.
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Figure 3.2: Abundances by age and year from a spatially-explicit forecast
projection for p = 0.2, where f1 = f2 = 0.05. Over time, abundances for
both the source and sink stabilize. Refer to the caption for Figure 2.2.
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Figure 3.3: Equilibrium values for an EQ system using the BH50 SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. Equilibrium recruitment is
measured as the pre-advection recruitment (i.e. Req,2 = R(SSBeq,2)). The
value of p varies by row.
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Figure 3.4: Equilibrium values for an EQ system using the RK50 SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. Equilibrium recruitment is
measured as the pre-advection recruitment (i.e. Req,2 = R(SSBeq,2)) The
value of p varies by row.
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Figure 3.5: Equilibrium values for an EQ system using the BHh SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. Equilibrium recruitment is
measured as the pre-advection recruitment (i.e. Req,2 = R(SSBeq,2)) The
value of p varies by row.
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Figure 3.6: Equilibrium values for an EQ system using the RKh SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. Equilibrium recruitment is
measured as the pre-advection recruitment (i.e. Req,2 = R(SSBeq,2)) The
value of p varies by row.
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Figure 3.7: The pre-advection (left) and post-advection (right) equilibrium
recruitment for the source and sink from SSBeq = BMSY , i.e. R(BMSY ).
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Figure 3.8: Equilibrium curves for the source (a & d) and sink (b & e), and
the total yield (c & f). Equilibrium yields were calculated using the BH50

SR model for select p values, with a constant f2 with a varying f1 (a, b, & c),
and a constant f1 with a varying f2 (d, e, & f). The dots (a) indicate when
f1 = fcrash,1(p) (i.e. Yeq,1(fcrash,1(p)) = 0) for the respective yield curves.
The vertical lines indicate fMSY,1 (a) and fMSY,2 (e) for the respect yields
curves.
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Figure 3.9: Equilibrium curves for the source (a & d) and sink (b & e), and
the total yield (c & f). Yields are calculated for a constant f2 = 0.05 (a, b, &
c) and select f1 values, and for a constant f1 = 0.05 (d, e, & f) and select f2

values. Equilibrium yields were calculated using the BH50 SR model. The
dots (a & b) indicate the p for which f1 = fcrash,1(p) for the respective yield
curves. Equilibrium yield in the source does not change with f2 (d), and so
all curves overlap. The value for fcrash,1(p) do not change with f2 and occurs
at the p where fcrash(p) = 0.03 (a).
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Figure 3.10: Contour plots of the source, sink, and total equilibrium yield
(blue), SSB (red), and local recruitment (green) for f = f1 = f2. Yields were
calculated using the BH50 for an EQ system.
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Figure 3.11: Equilibrium yield contours for the source sub-population. Equi-
librium yields (blue) are non-zero for any f1 and p where f1 < fcrash,1(p).
Values for fcrash,1(p) (purple) decrease as p increases, and the source is sus-
tainable as long f1 < fcrash,1(p). Once fcrash,1(p) = 0 at p = pex, the source
is extirpated.
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Figure 3.12: The optimal fMSY ’s at different p’s, for a EQ system using the
BH50 (top-left), RK50 (top-right), BHh (bottom-left), and RKh (bottom-
right) SR models. The vertical lines indicate pf0 (grey) and pex (black).
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Figure 3.13: Total BMSY , B0, and biomass depletion at different p’s, for a
EQ system using the BH50 SR model. The vertical lines indicate pf0 (grey)
and pex (black).
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Figure 3.14: fMSY at different p’s for an EQ system using the BH50 (top-left),
RK50 (top-right), BHh (bottom-left), and RKh (bottom-right) SR models.
The optimal f ’s (brown) are displayed separately as f1 (dashed) and f2 (solid)
(Refer to Figure 3.12). The vertical lines indicate pf0 (grey) and pex (black).
Once p = pf0, the fMPA curve overlaps with the optimal fMSY,2 curve because
fMSY,1 = 0 and fMSY,2 = fMPA.
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Figure 3.15: Total BMSY , B0, and biomass depletion at different p’s, for an
EQ system using the BH50 (row 1), RK50 (row 2), BHh (row 3), and RKh

(row 4) SR models. The vertical lines indicate pf0 (grey) and pex (black).
Also see Figure 3.13.
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Figure 3.16: Efficiency of sub-optimal harvest strategies at different p’s for an
EQ system, using the BH50 (top-left), RK50 (top-right), BHh (bottom-left),
and RKh (bottom-right) SR models. The vertical lines indicate pf0 (grey)
and pex (black).
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Figure 3.17: fMSY at different p’s for a HL system using the BH50 (top-left),
RK50 (top-right), BHh (bottom-left), and RKh (bottom-right) SR models.
The vertical lines indicate pf0 (grey) and pex (black).
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Figure 3.18: Total BMSY , B0, and biomass depletion at different ps, for a
HL system using the BH50 (row 1), RK50 (row 2), BHh (row 3), and RKh

(row 4) SR models. The vertical lines indicate pf0 (grey) and pex (black).
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Figure 3.19: Total MSY from the optimal harvest strategy (i.e. f1 = fMSY,1

and f2 = fMSY,2) using the BH50 (top-left), RK50 (top-right), BHh (bottom-
left), and RKh (bottom-right) SR models.
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Figure 3.20: Efficiency of sub-optimal harvest strategies at different ps for a
HL system, using the BH50 (top-left), RK50 (top-right), BHh (bottom-left),
and RKh (bottom-right) SR models. The vertical lines indicate pf0 (grey)
and pex (black).
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Figure 3.21: fMSY at different p’s, for a DA system using the BH50 (top-left),
RK50 (top-right), BHh (bottom-left), and RKh (bottom-right) SR models.
The vertical lines indicate pf0 (grey) and pex (black).
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Figure 3.22: Total BMSY , B0, and biomass depletion at different p’s, for a
DA system using the BH50 (row 1), RK50 (row 2), BHh (row 3), and RKh

(row 4) SR models. The vertical lines indicate pf0 (grey) and pex (black).
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Figure 3.23: Efficiency of sub-optimal harvest strategies at different ps for a
DA system, using the BH50 (top-left), RK50 (top-right), BHh (bottom-left),
and RKh (bottom-right) SR models. The vertical lines indicate pf0 (grey)
and pex (black).
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Figure 3.24: fMSY at different p’s, for a HL & DA system using the BH50

(top-left), RK50 (top-right), BHh (bottom-left), and RKh (bottom-right) SR
models. The vertical lines indicate pf0 (grey) and pex (black).
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Figure 3.25: Total BMSY , B0, and biomass depletion at different ps, for a HL
& NS system using the BH50 (row 1), RK50 (row 2), BHh (row 3), and RKh

(row 4) SR models. The vertical lines indicate pf0 (grey) and pex (black).
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Figure 3.26: Efficiency of sub-optimal harvest strategies at different p’s for
a HL and DA system, using the BH50 (top-left), RK50 (top-right), BHh

(bottom-left), and RKh (bottom-right) SR models. The vertical lines indi-
cate pf0 (grey) and pex (black).
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Chapter 4

The Three-Box Model

4.1 Methods

A model was developed in Chapter 3 to calculate spatially-explicit MSY RPs

for a two-box, source-sink system. This framework can be expanded to model

higher-dimension larval-advection dynamics. The two-box model involved a

unidirectional advection pathway, where recruits transferred from source to

sink. This resulted in a significant increase in complexity from the one-box

model through the addition of the transfer proportion, spatially-segregated

f ’s, and SR parameters and life history characteristics for each box. As the

number of spatial dimensions increase, fish stocks may exhibit more complex

connectivity patterns and variability between sub-populations. In this chap-

ter, a three-box model will be developed to derive MSY RPs. However, model

parameters must be heavily constrained to adequately present the dynamics

of the metapopulation.

First, we define the SR relationships of each box to be proportional to
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the area occupied by the sub-population, similar to the two-box model. We

assume all sub-populations have the same areas, where A1 = A2 = A3, and

the density of SSB, ρS, and α and β are equal for all boxes, so all boxes

have equal stock-recruitment relationships. Although this assumption isn’t

realistic, it provides a reasonable constraint and reduces complexity, and

results that follow from the model will be optimistic by assuming recruitment

is spatially invariant. Future research could expand on this to analyse the

effect spatially-varying recruitment may have on RP estimates for each sub-

population.

We only consider the BH SR model, since the effect of different SR models

generally affects the scale of RPs, as demonstrated in Chapter 3. It can be

shown that, for the BH model, α and β will be one third that for the one-box

model. We assume α = β = 33 (i.e. BH33) and the total reproduction of all

three boxes is equivalent to a one-box BH100 scenario.

For the three-box model, we simply assume all life history characteris-

tics and SPR functions (and YPR functions) are equal for all boxes, where

SPR1 = SPR2 = SPR3 = SPR. We do this for two reasons: 1) we inves-

tigated spatially varying life history characteristics sufficiently in Chapter 3

and proceed by focusing primarily on the effects of population connectivity

and overall stock persistence and harvest, and 2) a three-box model has far

more degrees of freedom than the two-box model, and considering all possible

assumptions and dynamics of three distinct sub-populations is too ambitious

and beyond the scope of this thesis. Future studies may investigate spatially

varying stock parametrizations and their impact on interconnectivity and

management procedures, but we will focus mainly on developing and testing
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the model for deriving such values.

There are five unique metapopulation advection patterns that can exist

for a three-box larval advection model, assuming advection is unidirectional.

These patterns are illustrated in Figure 4.1. The simplest one is a Chain

Advection pattern (Figure 4.1a), where the SSBeq depends on the Req of the

sub-population before it in the chain. Let the transfer proportion from area

i to j be denoted pi→j. Equilibrium SSB is defined as

SSBeq,1(f1) = (1− p1→3)Req,1(f1)SPR(f1), (4.1)

for sub-population P1,

SSBeq,2(f1, f2) = (1− p2→3)Req,2(f1, f2)SPR(f2) + p1→2Req,1(f1)SPR(f2),

(4.2)

for P2, and

SSBeq,3(f1, f2, f3) = Req,3(f1, f2, f3)SPR(f3) + p2→3Req,2(f1, f2)SPR(f3),

(4.3)

for P3. This model is an extension of the source-sink model described in

Chapter 3, where P1 is a source, P3 is a sink, and P2 behaves as a sink for

P1 and a source for P3.

Next is the Converging Advection pattern (Figure 4.1b). For this pattern,

sub-populations P1 and P2 are reproductively isolated (i.e. sources), and

recruits transfer from both sub-populations to P3 (i.e. the sink). Therefore,

the equilibrium recruitment for sub-populations P1 and P2 are independent
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of all other sub-populations, but P3 is dependent on the other two other

sub-populations. Equilibrium SSB is defined as

SSBeq,1(f1) = (1− p1→3)Req,1(f1)SPR(f1), (4.4)

for P1,

SSBeq,2(f2) = (1− p2→3)Req,2(f2)SPR(f2), (4.5)

for P2, and

SSBeq,3(f1, f2, f3) = Req,3(f1, f2, f3)SPR(f3) + p1→3Req,1(f1)SPR(f3) (4.6)

+p2→3Req,2(f2)SPR(f3), (4.7)

for P3.

In a Branching Advection pattern (Figure 4.1c), recruits from one sub-

population, P1, transfer to more than one other sub-population, in this case

both P2 and P3. That is, sub-populations P2 and P3 are sinks to a single

source sub-population, P1. Equilibrium SSB is defined as

SSBeq,1(f1) = (1− p1→2 − p1→3)Req,1(f1)SPR(f1), (4.8)

for P1,

SSBeq,2(f1, f2) = Req,2(f1, f2)SPR(f2) + p1→2Req,1(f1)SPR(f2), (4.9)
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for P2, and

SSBeq,3(f1, f3) = Req,3(f1, f3)SPR(f3) + p1→3Req,1(f1)SPR(f3), (4.10)

for P3.

A Detouring Advection pattern (Figure 4.1d) models advection of recruits

one sub-population, P1, to more than one other sub-population, P2 and P3,

but recruits from P1 also transfer to P2. Equilibrium SSB is defined as

SSBeq,1(f1) = (1− p1→2 − p1→3)Req,1(f1)SPR(f1), (4.11)

for P1,

SSBeq,2(f1, f2) = (1− p2→3)Req,2(f1, f2)SPR(f2) + p1→2Req,1(f1)SPR(f2),

(4.12)

for P2, and

SSBeq,3(f1, f2, f3) = Req,3(f1, f2, f3)SPR(f3) + (4.13)

p1→3Req,1(f1)SPR(f3) + p2→3Req,2(f1, f2)SPR(f3), (4.14)

for P3.

The last unique three-box connectivity pattern is the Cyclical Advection

pattern (Figure 4.1e). This pattern is different from the previous patterns

because equilibrium SSB and recruitment for any sub-population depends on

itself, i.e. S1 = f(S1) = (f ◦h◦g◦f)(S1) = f(h(g(f(S1)))). To elaborate, for

all other advection patterns, we assumed at least one sub-population was a
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source, and SSBeq of this source was independent of the SSBeq for all other

sub-populations. For the cyclical pattern, however, this independence does

not exist, and all sub-populations act as either a source or sink to the other

connected sub-populations. The equilibrium SSB for sub-population P1 is

defined as

SSBeq,1 = (1− p1→2)Req,1(f1, f2, f3)SPR(f1) + p3→1Req,3(f1, f2, f3)SPR(f1),

(4.15)

where SSBeq,1 depends on SSBeq,3, SSBeq,3 depends on SSBeq,2, SSBeq,2

depends on SSBeq,1, and so on. The Equilibrium SSB for the other sub-

populations are defined as

SSBeq,2 = (1− p2→3)Req,2(f1, f2, f3)SPR(f2) + p1→2Req,1(f1, f2, f3)SPR(f2),

(4.16)

for P2, and

SSBeq,3 = (1− p3→1)Req,3(f1, f2, f3)SPR(f3) + p2→3Req,2(f1, f2, f3)SPR(f3),

(4.17)

for P3.

Equilibrium SSB values can be calculated from the above definitions for

each pattern. Analytic equations can be derived for the BH SR model, but

the RK must be numerically derived. In general, if the SSBeq of the sub-

population is independent of all other sub-populations and no recruits advect

into the area, SSBeq will be similar to Equation 3.1 (i.e. a source). However,

for a three-box model, the amount of advecting recruits, p, will instead be
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the sum of all transfer proportions of advecting recruits (e.g. p = p1→2 +

p1→3). If the SSBeq of the sub-population depends on at least one other

sub-population, SSBeq will be similar to Equation 3.3 (i.e. a sink). In this

case, the recruits transferring in will be the sum of all recruits transferring

in. To be succinct, we calculated values for SSBeq numerically rather than

deriving explicit equations.

Total equilibrium yield can be calculated as

Yeq,tot(f1, f2, f3) =
3∑
i

Y PR(fi)

SPR(fi)
SSBeq,i, (4.18)

where SSBeq,i will depend on the connectivity pattern for the population

and may depend on f1, f2, and f3. Values for fMSY for each area can be

derived by optimizing the total equilibrium yield with respect to all f ’s,

simultaneously. The optimal results will depend on the connectivity pattern

and transfer proportions between each sub-population. Again, optimization

is done using the nlminb function in R.

For each of the three-box model connectivity patterns, MSY RPs (e.g.

fMSY , BMSY and biomass depletion) and MSY were calculated for each sub-

population for varying transfer proportions. Values for total BMSY , biomass

depletion, and MSY were also calculated. RPs were derived using the BH33

SR model. The metapopulation for each pattern was modelled based on

Figure 4.1.
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4.2 Results

MSY RPs were derived for the five unique patterns for a three-box model.

RPs were calculated for a range of p1→2, p1→3, and p2→3 for each pattern.

Transfer proportions changes were mutually exclusive, where only one trans-

fer proportion was allowed to vary at a time. The transfer proportions that

did not change were fixed at a constant p = 0.1. The transfer proportions

were changed one at a time to highlight the effect each proportion has on RP

results.

The optimal f ’s for each sub-population were derived by optimizing the

total equilibrium yield. BMSY for each sub-population was calculated as the

SSBeq from the optimal f ’s. For example, SSBeq,2 for the chain advection

pattern depends on f1 and f2, so BMSY,2 is calculated using fMSY,1 and

fMSY,2. The total BMSY is the sum of BMSY for all sub-populations. Biomass

depletion is calculated as the ratio of BMSY to the unfished biomass for the

sub-population, for example biomass depletion for P2 for the chain advection

pattern is SSBeq,2(f1 = fMSY,1, f2 = fMSY,2)/SSBeq,2(f1 = 0, f2 = 0). The

total biomass depletion is the ratio of total BMSY to the sum of unfished

biomasses for each sub-population. The MSY for each sub-population is

the equilibrium yield from the optimal f ’s, for example MSY2 = Yeq,2(f1 =

fMSY,1, f2 = fMSY,2) for the chain advection pattern. Total MSY is the

optimized total yield and also the sum of the MSYs for all sub-populations.

Like the two-box model, the three-box model has values of p for which

fMSY is zero (i.e. pf0) and SSBeq(f = 0) = 0 (i.e. pex). However, these

values only exist for exclusive source sub-populations, since any amount of
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immigrating recruits will make extirpation impossible, or populations that

act as both a ource and sink if its respective source is depleted. These p values

depend on the connectivity pattern, as well as the life history characteristics

and SR relationships for each sub-population.

For several connectivity patterns, RP results exhibited trends similar to

that of the two-box model RPs. For example, fMSY for the two-box model

(see Figure 3.12) strictly decreased in the source and increased in the sink

as p increased, until p = pf0 and fMSY,1 = 0. Once the source was unfished,

fMSY,2 decreased until p = pex, and fMSY,2 remained constant for all further

increases in p. For some connectivity patterns, fMSY results for the three-box

model followed a similar trend. We refer to this reoccurring trend in results

as a “source-sink trend”.

4.2.1 Chain Pattern

MSY RPs were derived for a chain advection pattern, where sub-populations

are connected in a sequential order (see Figure 4.1a). Values for fMSY,1,

fMSY,2 and fMSY,3 were derived by optimizing the total equilibrium yield

(Figure 4.2). Values for fMSY,1 and fMSY,2 exhibited a source-sink trend

with respect to p1→2, where sub-population P1 was the source and P2 was

the sink. Values for fMSY,2 and fMSY,3 had a similar trend with respect to

p2→3, but the scales were larger and fMSY,3 remained high when p2→3 was

high. Also, p1→2 had slight effects on fMSY,3 and p2→3 had slight effects on

fMSY,1.

Unsurprisingly, p1→3 had no effect on fMSY values since sub-populations
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P1 and P3 were not directly connected, and all MSY RPs are unaffected by

changes in p1→3. Populations P1 and P2 are not connected and, although we

include a p1→3 panel to facilitate comparisons with other figures below, this

parameter has no effect on fMSY for the chain advection pattern.

For the chain advection pattern, BMSY for any sub-population was only

significantly affected by recruits advecting out (Figure 4.3). For example,

changing p1→2 reduced BMSY,1 until BMSY,1 = 0, but BMSY,2 and BMSY,3

hardly changed. Also, BMSY,2 decreased as p2→3 increased, but BMSY,2 > 0

even when p2→3 = 1.

Biomass only became completely depleted for sub-population P1 (Figure

4.4). Biomass depletion in sub-population P2 decreased as p2→3 increased and

increased as p1→2 increased, until sub-population P1 was completely depleted.

Biomass depletion in sub-population P3 and the total biomass depletion were

hardly affected by any transfer proportion.

Optimized yields followed similar trends to fMSY for each sub-population

(Figure 4.5). MSY1 decreased and MSY2 increased as p1→2 increased, until

the fMSY,1 = 0, while MSY2 decreased and MSY3 increased as p2→3 in-

creased, until the fMSY,2 = 0. The net change in total yields were always

negative. The total MSY always decreased as any transfer proportion in-

creased, and MSY was greatest when no recruits advected.

4.2.2 Converging Pattern

Sub-populations P1 and P2 behaved as sources for a single sink, P3. MSY

RPs showed a source-sink trend (see Figure 4.1b), where P2 was the source
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with respect to p2→3 and P1 was the source with respect to p1→3. All MSY

RPs were independent of p1→2 because sub-populations P1 and P2 were un-

connected.

Values for fMSY,1 were independent of changes in p2→3 and values for

fMSY,2 were independent of p1→3 (Figure 4.6). Values for fMSY,2 with respect

to changes in p2→3 were identical to values for fMSY,1 with respect to changes

in p1→3, and fMSY,3 responded equally from changes in p1→3 and p2→3 . Values

for fMSY,3 were always higher than fMSY,1 or fMSY,2. This is because sub-

population P3 was supplied with recruits from two independent sources, and

could allow more fishing than either sources. Similar to the chain advection

connectivity pattern, p1→2 had no affect because sub-populations P1 and P2

were not connected in the converging advection connectivity pattern.

BMSY,1 strictly decreased as p1→3 increased and BMSY,2 decreased as p2→3

increased. BMSY,1 and BMSY,2 decreased more than BMSY,3 increased from

increasing transfer proportions, and BMSY,3 changed very slightly from in-

creases in either p1→3 or p2→3. Therefore, the total BMSY strictly decreased

with transfer proportions, and any amount of advecting recruits resulted in

reduced total BMSY .

Biomass became less depleted in the sources (i.e. P1 and P2) as the

transfer proportions increased (Figure 4.8) until the source were extirpated.

Biomass depletion for P3, and total biomass depletion hardly changed for

any changes in transfer proportions.

MSY for all sub-populations followed similar trends as fMSY (Figure 4.9).

Yields decreased in the sources (i.e. P1 and P2) as their respective transfer

proportions increased, and yields in the sink (i.e. P3) were increased as
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long either source persisted to supply recruits. However, any amount of

transferring recruits between sub-populations reduced the total MSY.

4.2.3 Branching Pattern

The branching advection pattern (Figure 4.1c) behaved as a source-sink sys-

tems with two sinks (P2 and P3) and once source (P1). Of course, MSY RPs

were independent of p2→3 because sub-populations P2 and P3 were uncon-

nected.

Values for fMSY,1 strictly decreased with p1→2 and p1→3, and fMSY,2 and

fMSY,3 increased as p1→2 and p1→3 increased, respectively (Figure 4.10). Sub-

population P1 provide both other sub-populations with recruits, and if p1→2

increased, for example, fMSY,3 would decrease because less recruits were

available to advect from P1 to P3. The optimization of f ’s for both sink

sub-populations depended on both sub-populations even though P2 did not

directly depend on p1→3 and P3 did not directly depend on p1→2. Both sinks

relied on the same source, and recruits advecting into one sink had indirect

effects on the other.

Only BMSY,1 was significantly affected by increases in any transfer pro-

portions. BMSY,2 and BMSY,3 remained relatively constant, and the total

BMSY strictly decreased with any transfer proportion due to the decrease in

BMSY,1 (Figure 4.11).

Biomass depletion changed significantly with p1→2 and p1→3 for P1, while

biomass depletion for P2 and P3, as well as the total biomass depletion,

changed very little for any transfer proportion (Figure 4.12).
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Yields, similar to the optimal f ’s, followed the source-sink trend (Figure

4.13). Most MSYs decreased as any transfer proportion increased, the excep-

tions being MSY2 for p1→2 when p1→2 was low and MSY3 for p1→3 when p1→3

was low. The total MSY always decreased as transfer proportions increased.

4.2.4 Detouring Pattern

The detouring advection pattern (Figure 4.1d) is one of two fully intercon-

nected connectivity patterns, where all sub-populations are directly con-

nected, and all transfer proportions affected MSY RPs. In this case, sub-

population P1 is a source to sub-populations P2 and P3, while P2 is also a

source to P3.

Sub-population P3 could allow higher f ’s than P2, and P2 could allow

higher f ’s than P1 (Figure 4.14). Both sink sub-populations allowed higher

f ’s because they both had an influx of recruits from P1. Values for fMSY,1

(source) and fMSY,2 (sink) followed the source-sink trend with respect to

p1→2, and fMSY,3 decreased with p1→2. Also, fMSY,1 (source) and fMSY,3

(sink) followed a source-sink trend with respect p1→3, and fMSY,2 decreased

with p1→3. The transfer proportion p2→3 hardly affected fMSY,1 because

p2→3 did not directly affect sub-population P1. Values for fMSY,2 and fMSY,3

followed a somewhat source-sink trend, but with higher sustainable f ’s, and

fMSY,3 was higher when p2→3 = 1 than when p2→3 = 0.

BMSY,1 decreased as p1→2 and p1→3 increased, and BMSY,2 decreased as

p2→3 increased (Figure 4.15). Otherwise, BMSY values changed minimally

with transfer proportions. The totalBMSY strictly decreased with an increase
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in any transfer proportion.

Sub-population P1 became depleted if p1→2 or p1→3 was high enough, and

P2 became less depleted as p2→3 increased and P1 persisted (Figure 4.16).

However, in most cases, sub-population biomass depletion and total biomass

depletion changed minimally with any transfer proportions.

Yields for each sub-population followed the same trends as fMSY (Figure

4.17), and total MSY strictly decreased with an increase in any transfer

proportion.

4.2.5 Cyclical Pattern

For a cyclical advection pattern (Figure 4.1e), all sub-populations are con-

nected similar to the detouring pattern. However, all sub-populations behave

as either a source or sink to the other sub-populations, and no sub-population

is reproductively independent. Note, recruits transfer from P3 to P1 and not

from P1 to P3, and so p1→3 instead denotes the transfer proportion of recruits

from P3 to P1.

MSY RPs for each sub-population followed the same trends between

changing transfer proportions because all sub-population were essentially

identical. To elaborate, fMSY,1 with respect to p1→2 had the same values as

fMSY,2 with respect to p2→3 and fMSY,3 with respect to p1→3 (Figure 4.18).

The same is true for all fMSY values, BMSY values (Figure 4.19), biomass de-

pletion (Figure 4.20), and yields (Figure 4.21). No one population is distinct,

and all sub-populations are identical in how they respond to the emigrating

proportions (e.g. p1→2 for P1) assuming reproduction rates and life history
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characteristics are the same.

Furthermore, no sub-population became depleted even when transfer pro-

portions were p = 1. A cyclical connectivity pattern would create a hyper-

stable stock, where sub-populations could only be depleted if all sub-populations

were depleted, which could only occur from overfishing in all areas since there

is no p that would result in population extirpation.

4.3 Discussion

Augmenting a two-box spatial equilibrium yield model to feature three di-

mensions increases the precision and complexity of the dynamics, and pre-

forming an overall analysis of these dynamics and the effects population

connectivity have on MSY RPs is difficult. Therefore, the investigation of

three-box model RPs requires constraints to glean practical information.

MSY RP results depended heavily on the connectivity pattern of the

metapopulation, and RPs for each sub-population responded differently to

each transfer proportion. Some RPs behaved similarly to the two-box source-

sink model, while many RPs for the three-box model were unresponsive to

transfer proportions.

In general, RPs are typically unaffected by transfer proportions that do

not exist within their respective connectivity patterns, for example p2→3 did

not affect fMSY,1 for a branching pattern (see Figure 4.10). In several cases,

however, transfer proportions (and therefore MSY RPs) had indirect effects

on populations not directly linked to their particular sub-population con-

figuration. For example, increasing p1→3 in a Branching pattern decreased
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fMSY,2 (Figure 4.10). Indeed, when assessing fish stocks, the metapopulation

must be considered as a whole rather than a composition of its constituents

to account for these indirect effects of interconnectivity.

Similar to the two-box model, the total BMSY and MSY strictly decreased

with the increases of any transfer proportion, for any connectivity pattern,

and the total biomass depletion remained about constant with the increase

of any transfer proportion. That is, for both the two- and three-box model,

total RP values (and MSY) had similar trends with respect to the amount

of transferring recruits.

Although values for MSY RPs were dependent on the transfer propor-

tions, results were constrained by forcing transfer proportions to be p = 0.1.

Exact RP results may be situational to these constraints, and the general

trends in RPs may not be consistent, for example, if sub-populations be-

come extirpated. When deriving MSY RPs for a three-box model, results

will depend heavily on the assumptions made about the connectivity of the

sub-populations.

RP values change based on the connectivity pattern of the sub-populations

and depend on the transfer proportion between sub-populations. Overall,

total yield relies on the f ’s of each sub-population (3) and the transfer pro-

portion between each sub-population (3), and MSY has 6 degrees of freedom.

When deriving MSY RPs, constraints must be placed on these variables to

visualize how they change in response to one another. It is also difficult to

clearly visualize how equilibrium values (e.g. Yeq and SSBeq) respond to f1,

f2, f3, p1→2, p2→3, and p1→3 simultaneously.

Although RP results may be analysed based on SSBeq and Yeq equations,
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deriving these functions for each sub-population with specific connectivity

patterns can be tedious, and is only possible for the BH SR model. Deriving

equilibrium solutions and MSY RPs numerically is quicker and does not

require explicit equations, which can be overwhelming to derive, especially

when more than two sub-populations are present. In the next chapter, we

develop a matrix model to numerically derive MSY RPs for n boxes, for any

connectivity pattern, and for any SR model.
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4.4 Figures

P1

P2P3

(a)
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Figure 4.1: Three-box metapopulation structures with unidirectional trans-
fer, where sub-populations P1, P2, and P3 are connected through a (a) chain,
(b) converging, (c) branching, (d) detouring, and (e) cyclical advection pat-
tern.
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Figure 4.2: Values for fMSY for a three-box model with a chain advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1a. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.

142



P1

P2P3

Figure 4.3: Values for BMSY for a three-box model with a chain advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1a. Total BMSY is the sum of all BMSY values for each sub-
population. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.4: Biomass depletion for a three-box model with a chain advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1a. Biomass depletion is the ratio of BMSY to unfished biomass
for each sub-population, and total biomass depletion is the ratio of the sum
of all BMSY values to the sum of all unfished biomasses. Changes in trans-
fer proportions are mutually exclusive, where only one transfer proportion
changes at a time (indicated by row). All non-changing transfer proportions
a fixed at a constant p = 0.1.
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Figure 4.5: MSY for a three-box model with a chain advection connectivity
pattern. Values for MSY are calculated for each sub-population according to
Figure 4.1a. Total MSY is the sum of optimized yields for all sub-populations.
Changes in transfer proportions are mutually exclusive, where only one trans-
fer proportion changes at a time (indicated by row). All non-changing trans-
fer proportions a fixed at a constant p = 0.1.
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Figure 4.6: Values for fMSY for three-box model with a converging advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1b. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.7: Values for BMSY for three-box model with a converging advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1b. Total BMSY is the sum of all BMSY values for each sub-
population. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.8: Biomass depletion for a three-box model with a converging ad-
vection connectivity pattern. Values are calculated for each sub-population
according to Figure 4.1b. Biomass depletion is the ratio of BMSY to unfished
biomass for each sub-population, and total biomass depletion is the ratio of
the sum of all BMSY values to the sum of all unfished biomasses. Changes
in transfer proportions are mutually exclusive, where only one transfer pro-
portion changes at a time (indicated by row). All non-changing transfer
proportions a fixed at a constant p = 0.1.
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Figure 4.9: MSY for a three-box model with a converging advection con-
nectivity pattern. Values for MSY are calculated for each sub-population
according to Figure 4.1b. Total MSY is the sum of optimized yields for
all sub-populations. Changes in transfer proportions are mutually exclusive,
where only one transfer proportion changes at a time (indicated by row). All
non-changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.10: Values for fMSY for three-box model with a branching advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1c. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.11: Values for BMSY for three-box model with a branching advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1c. Total BMSY is the sum of all BMSY values for each sub-
population. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.12: Biomass depletion for a three-box model with a branching ad-
vection connectivity pattern. Values are calculated for each sub-population
according to Figure 4.1c. Biomass depletion is the ratio of BMSY to unfished
biomass for each sub-population, and total biomass depletion is the ratio of
the sum of all BMSY values to the sum of all unfished biomasses. Changes
in transfer proportions are mutually exclusive, where only one transfer pro-
portion changes at a time (indicated by row). All non-changing transfer
proportions a fixed at a constant p = 0.1.
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Figure 4.13: MSY for a three-box model with a branching advection con-
nectivity pattern. Values for MSY are calculated for each sub-population
according to Figure 4.1c. Total MSY is the sum of optimized yields for all
sub-populations. Changes in transfer proportions are mutually exclusive,
where only one transfer proportion changes at a time (indicated by row). All
non-changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.14: Values for fMSY for a three-box model with a detouring ad-
vection connectivity pattern. Values are calculated for each sub-population
according to Figure 4.1d. Changes in transfer proportions are mutually ex-
clusive, where only one transfer proportion changes at a time (indicated by
row). All non-changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.15: Values for BMSY for a three-box model with a detouring ad-
vection connectivity pattern. Values are calculated for each sub-population
according to Figure 4.1d. Total BMSY is the sum of all BMSY values for
each sub-population. Changes in transfer proportions are mutually exclu-
sive, where only one transfer proportion changes at a time (indicated by
row). All non-changing transfer proportions a fixed at a constant p = 0.1.

155



P1

P3 P2

Figure 4.16: Biomass depletion for a three-box model with a detouring ad-
vection connectivity pattern. Values are calculated for each sub-population
according to Figure 4.1d. Biomass depletion is the ratio of BMSY to unfished
biomass for each sub-population, and total biomass depletion is the ratio of
the sum of all BMSY values to the sum of all unfished biomasses. Changes
in transfer proportions are mutually exclusive, where only one transfer pro-
portion changes at a time (indicated by row). All non-changing transfer
proportions a fixed at a constant p = 0.1.
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Figure 4.17: MSY for a three-box model with a detouring advection con-
nectivity pattern. Values for MSY are calculated for each sub-population
according to Figure 4.1d. Total MSY is the sum of optimized yields for
all sub-populations. Changes in transfer proportions are mutually exclusive,
where only one transfer proportion changes at a time (indicated by row). All
non-changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.18: Values for fMSY for a three-box model with a cyclical advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1e. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.19: Values for BMSY for a three-box model with a cyclical advection
connectivity pattern. Values are calculated for each sub-population according
to Figure 4.1e. Total BMSY is the sum of all BMSY values for each sub-
population. Changes in transfer proportions are mutually exclusive, where
only one transfer proportion changes at a time (indicated by row). All non-
changing transfer proportions a fixed at a constant p = 0.1.
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Figure 4.20: Biomass depletion for a three-box model with a cyclical ad-
vection connectivity pattern. Values are calculated for each sub-population
according to Figure 4.1e. Biomass depletion is the ratio of BMSY to unfished
biomass for each sub-population, and total biomass depletion is the ratio of
the sum of all BMSY values to the sum of all unfished biomasses. Changes
in transfer proportions are mutually exclusive, where only one transfer pro-
portion changes at a time (indicated by row). All non-changing transfer
proportions a fixed at a constant p = 0.1.
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Figure 4.21: MSY for a three-box model with a cyclical advection connec-
tivity pattern. Values for MSY are calculated for each sub-population ac-
cording to Figure 4.1e. Total MSY is the sum of optimized yields for all
sub-populations. Changes in transfer proportions are mutually exclusive,
where only one transfer proportion was change at a time (indicated by row).
All non-changing transfer proportions a fixed at a constant p = 0.1.
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Chapter 5

Multiple dimensions and the

n-Box Model

5.1 Theory

Explicit spatial models which include two or three separate populations can

be complex and inefficient when used to derive MSY RPs, as demonstrated

in Chapters 3 and 4, which may deter their implementation. Therefore, in

this chapter we present a concise, numerical method to derive MSY RPs for

spatial models of any dimension via the per-recruit method. Matrix repre-

sentations of key values, which can be far more effective for analysing overall

stock dynamics, are formulated and illustrated using a mock metapopulation.

Multi-dimensional larval advection models have various potential popu-

lation dynamic structures, and some of the general patterns are outlined in

Figure 4.1. An n-box model can be a combination of several of these pop-

ulation dynamics patterns, and the number of possible patterns depends on
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n. However, among these connectivity patterns, population connectivity can

be described using two general components: an emigration component and

an immigration component.

• Emigration: Assume P1 is connected to m other sub-populations,

denoted P2, P3, ...Pm, with transfer proportions p1→2, p1→3, ...p1→m, and

assume recruits from P1 advect into all other sub-populations. The

equilibrium SSB for P1 is defined as

SSBeq,1 = (1−
m

Σ
i=2
p1→i)Req,1SPR1(f1), (5.1)

where
m

Σ
i=2
p1→i ≤ 1 and p1→i ∈ [0, 1].

• Immigration: Assume P1 is the sink for sub-populations P2, P3, ...Pm,

where the transfer proportions are p2→1, p3→1, ...pm→1. The equilibrium

SSB for P1 is then defined as

SSBeq,1 = Req,1SPR1(f1) +
m

Σ
i=2

(pi→1 ·Req,iSPR1(f1)), (5.2)

where pi→1 ∈ [0, 1].

Closed-form solutions for equilibrium SSB may be derived from Equations 5.1

and 5.2 using the BH SR model. However, numerical solutions are necessary

for the RK SR model, and are preferred for higher-dimension models. Also,

to maintain generality, we assume the SPR and YPR functions are defined

as SPRi and Y PRi for some sub-population Pi.

To elaborate, assume we have a metapopulation of n = 6 sub-populations

that has the population structure illustrated in Figure 5.1. The equilibrium
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SSB equations for each sub-population are defined as:

SSBeq,1 = (1− p1→3)Req,1SPR1(f1), (5.3)

SSBeq,2 = (1− p2→3)Req,2SPR2(f2), (5.4)

SSBeq,3 = (1− p3→4 − p3→5)Req,3SPR3(f3)

+ p1→3 ·Req,1SPR3(f3)

+ p2→3 ·Req,2SPR3(f3),

(5.5)

SSBeq,4 = (1− p4→6)Req,4SPR4(f4) + p3→4 ·Req,3SPR4(f4), (5.6)

SSBeq,5 = Req,5SPR5(f5) + p3→5 ·Req,3SPR5(f5), (5.7)

and

SSBeq,6 = Req,6SPR6(f6) + p5→6 ·Req,5SPR6(f6). (5.8)

For any n-box model, equilibrium SSB for each sub-population can in-

stead be expressed as a matrix equation. That is,

A~R = ~S, (5.9)

where A is an nxn matrix, and ~R and ~S are vectors of length n for the

recruitment, R(S), and SSB, S, for each sub-population, expressed as

~R =



R1(S1)

R2(S2)

...

Rn(Sn)


, ~S =



S1

S2

...

Sn


. (5.10)
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Matrix A is a matrix representation of the transferring spawning potential

of each sub-population, and is defined as

A =


(1− Σ

j,j 6=1
p1→j)SPR1(f1) p2→1SPR1(f1) ... pn→1SPR1(f1)

p1→2SPR2(f2) (1− Σ
j,j 6=2

p2→j)SPR2(f2)
...

...
...

p1→nSPRn(fn) ... (1− Σ
j,j 6=n

pn→j)SPRn(fn)

,
(5.11)

where j is the sub-population into which recruits are advecting.

In matrix A, the diagonal terms represent the emigration component of

equilibrium SSB (or residual recruits) for each sub-population, while all re-

maining terms are the immigration components of equilibrium SSB for the

sub-populations. For example, the diagonal term in row five, A5,5, repre-

sents spawning potential of recruits remaining in (i.e. not advecting from)

sub-population P5, while the remaining terms in row five represent the im-

migration of spawning potential into sub-population P5. Naturally, if there

is no connection between any two sub-populations Pi and Pj (i 6= j), then

Ai,j = 0 since pi→j = pj→i = 0. Matrix diagonal terms are only zero if the net

emigration Σ
j,j 6=i

pi→j = 1 for sub-population Pi. Moreover, if net emigration

Σ
j,j 6=i

pi→j = 0, the matrix diagonal term for sub-population Pi is SPRi(fi). If

we assume unidirectionality for transferring recruits, A could be expressed

as a lower or upper triangular matrix, where transfer proportions p ∈ [−1, 1],

and the sign of the transfer proportion indicates the advection direction (e.g.

p1→2 = −p2→1).

The steady-state matrix, A, can be expressed as product of a transfer
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matrix, P , and a SPR diagonal matrix, Sn,

A = SnP . (5.12)

The transfer matrix is a matrix representation of the transfer proportions

between each region,

P =



p1→1 p2→1 . . . pn→1

p1→2 p2→2 . . . p2→2

...
...

. . .
...

p1→n p2→n . . . pn→n


, (5.13)

where any transfer proportion pi→i = (1 − Σ
j,j 6=i

pi→j). This connectivity ma-

trix may be represented by a stochastic matrix describing the probabilistic

exchange of recruits between regions, where pi→j is the probability of re-

cruits advecting from region i to j. Further, this may be described as a left

stochastic matrix, where the terms of each column sum to 1, i.e. Σ
j
pi→j = 1.

The SPR matrix is the diagonal matrix

Sn =



SPR1(f1) 0 . . . 0

0 SPR2(f2) . . . 0

...
...

. . .
...

0 0 . . . SPRn(fn)


, (5.14)

where n defines the dimensions of the SPR matrix (i.e. nxn). Equilibrium

SSB for each area can be derived numerically (or analytically for the BH SR

model) from Equation 5.9 for some set of f ’s.

166



To demonstrate this matrix format, the transfer matrix for the metapop-

ulation illustrated in Figure 5.1 is

P =



(1− p1→3) 0 0 0 0 0

0 (1− p2→3) 0 0 0 0

p1→3 p2→3 (1− p3→4 − p3→5) 0 0 0

0 0 p3→4 (1− p4→6) 0 0

0 0 p3→5 0 1 0

0 0 0 0 p5→6 1


,

(5.15)

and A = S6P . Note, the immigration transfer proportions in the matrix P ,

denoted pi→j, are always placed in column i and row j. Expressing definitions

for SSBeq in this matrix form is much easier to write and visualize compared

to closed-form equations typically used (e.g. Equations 5.3 to 5.8).

The equilibrium yield for a sub-population would be

Yeq,i(~fi) =
Y PRi(fi)

SPRi(fi)
Si (5.16)

where Si is the equilibrium SSB for sub-population Pi. The total equilibrium

yield for a metapopulation of n sub-populations is the sum of equilibrium

yields of each sub-population,

Yeq,tot(~f) = Σ
i
Yeq,i(~fi), (5.17)

where ~f is the vector of f ’s for all sub-populations in the metapopulation, and

~fi is the vector of f ’s upon which equilibrium yield for some sub-population,
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Pi, depends. For example, if a metapopulation is comprised of four sub-

populations,

~f =



f1

f2

f3

f4


, (5.18)

and if sub-population P1 has recruits immigrating in from sub-populations

P3 and P4,

~f1 =


f1

f3

f4

 , (5.19)

because sub-population P1 depends on fishing in sub-populations P3 and P4.

Values for fMSY can be derived by optimizing the sum of equilibrium yields

with respect to all f ’s, simultaneously.

This framework allows quick numerical calculations of MSY RPs for any

n-box model (n ≥ 1) for any SR model. It is recommended that this frame-

work be used to derive spatial MSY RPs for any system that explicitly models

larval advection between sub-populations.
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5.2 Figures

P1

P2

P3

P5

P4

P6

Figure 5.1: A six-box metapopulation model with several advection connec-
tivity patterns between sub-populations.
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Chapter 6

Conclusion

6.1 Future Research

In this thesis, we assume that recruits move between areas through a uni-

directional larval advection process. Future studies could extend on this to

allow movement of more age-classes and bidirectional movement of fish be-

tween sub-populations. Goethel and Berger (2017) used simulations to study

the effects of misdiagnosing spatial complexity and connectivity dynamics of

populations in source-sink systems. They noted that the movement of adults

was a more important factor on BMSY results than just larval movements,

yet when movement was bidirectional, BMSY results were nearly identical to

results from a unidirectional model when productivity was different between

populations. Nevertheless, bidirectional larval advection and the advection of

older age classes may have significant effects on fMSY and other RPs, as well.

Including these alternative assumptions into the deterministic, metapopula-

tion model detailed in this thesis may provide more insight on these effects.
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Implementing such changes in to the proposed model would be minimalistic

using the matrix model structure by adjusting P appropriately.

Our model also assumes that the annual transfer of recruits (i.e. p) is

consistent over time. The proportion of transferring recruits may not only

change between year, but also vary inter-annually (see Rice et al., 1999).

Future research could analyse MSY RPs and the robustness of these results

when p varies in time. Additionally, our model could be modified to allow

stochastic variation in the transfer proportion p, as well as in the parame-

ters for SR relationships and life history characteristics. Doing so may also

provide insight into the robustness of spatially-explicit RPs

6.2 Final Remarks

Spatially-explicit MSY RPs depend on the movement of fish, the life history

characteristics and SPR and YPR functions of each population, and their

SR relationships. The amount of transferring pre-recruits directly affects the

sustainability of populations, and allowing life history characteristics and SR

relationships to vary by area can substantially affect RP results.

Incorporating unidirectional pre-recruit movement into population dy-

namics models results in a lower MSY and BMSY compared to when pre-

recruits are stationary because the survival of fish in early-life stages are

assumed to be density-dependent. Any amount of advecting pre-recruits

reduces overall stock-recruitment, and as a result lowers the total sustain-

able spawning biomass and yield. Additionally, implementing an MPA-like

or uniform harvest strategy always provides sub-optimal yields compared to
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the optimal fMSY ’s, but can potentially increase BMSY when only a small

proportion of pre-recruits transfer between populations. Nonetheless, RPs

like fMSY must be properly spatially allocated for yields to be optimized.

It is clear that spatially-explicit RPs are important for sustainable fish-

eries management. Not only is it important to account for the spatial distri-

butions and movements of fish, but neglecting fish movements can be detri-

mental to a stock’s status. In particular, larval advection processes can have

significant impacts on MSY RPs, and RP derivations that do not account

for these movements may result in overfishing.

When deriving spatially-explicit MSY RPs, it is important to consider

sub-population interconnectivity. In the future, fisheries managers and sci-

entists alike should be mindful of potential metapopulation structures of

stocks, especially when deriving MSY RPs for management purposes, and

should develop an appropriate stock-specific spatial model to do so.
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Appendix A

Equilibrium SSB for the sink using the BH model is

S2 =
α2S2

β2 + S2

SPR2(f2) + p
α1S1

β1 + S1

SPR1(f2),

where S2 ≡ SSBeq,2(f1, f2) and S1 ≡ SSBeq,1(f1). The equilibrium SSB from

the source is constant in terms of f2, so we can rewrite it as

S2 =
α2S2

β2 + S2

SPR2(f2) + cSPR1(f2),

where c = pR(SSBeq,1(f1)).This can be expanded and rearranged as

S2(β2 + S2) = α2S2SPR2(f2) + cSPR1(f2)(β2 + S2),

S2
2 + β2S2 − SPR2(f2)α2S2 − cSPR1(f2)S2 − cSPR1(f2)β2 = 0,

S2
2 + [β1 − SPR2(f2)α2 − cSPR1(f2)]S2 − cSPR1(f2)β2 = 0.
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We can solve for S2 by using the quadratic formula, where A = 1, C =

cSPR2(f2)β2, and B is

B(f1, f2) = β2 − SPR2(f2)α2 + p ·R(SSBeq,1(f1))SPR1(f2).

The solution to the quadratic formula is provided by Equation 3.3.

The quadratic formula provides two roots (i.e. two solutions) for SSBeq,2.

One solution derives from the positive-root and the other from the negative-

root. The solution, however, must be greater than zero, since SSBeq < 0 is

not possible. If we use the negative-root, then the solution is

−B(f1, f2)−
√
B(f1, f2)2 + 4β2 · p ·R(SSBeq,1(f1))SPR(f2)

2
> 0.

Removing the denominator and rearranging, we get

−B(f1, f2) > −
√
B(f1, f2)2 + 4β2 · p ·R(SSBeq,1(f1))SPR1(f2).

Since we know the magnitude of the root is always greater than or equal to

B(f1, f2), that is,

B(f1, f2)2 + 4β · p ·R(SSBeq,1(f1))SPR(f2) ≥ B(f1, f2)2,

because

4β · p ·R(SSBeq,1(f1))SPR1(f2) ≥ 0,

the negative-root solution for SSBeq,2 ≤ 0 for any p ≥ 0, and the positive-

root solution for SSBeq,2 ≥ 0 for any p ≥ 0. Therefore, the positive-root is
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the only plausible solution.
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Appendix B
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Figure B.1: Contour plots of the source, sink, and total equilibrium yield
(blue), SSB (red), and local recruitment (green) for f = f1 = f2. Yields were
calculated using the RK50 under an EQ system.
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Figure B.2: Contour plots of the source, sink, and total equilibrium yield
(blue), SSB (red), and local recruitment (green) for f = f1 = f2. Yields were
calculated using the BHh under an EQ system.
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Figure B.3: Contour plots of the source, sink, and total equilibrium yield
(blue), SSB (red), and local recruitment (green) for f = f1 = f2. Yields were
calculated using the RKh under an EQ system.
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Figure B.4: Equilibrium values for a HL system using the BH50 SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.5: Equilibrium values for a HL system using the RK50 SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.6: Equilibrium values for a HL system using the BHh SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.7: Equilibrium values for a HL system using the RKh SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.8: Equilibrium values for a DA system using the BH50 SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.9: Equilibrium values for a DA system using the RK50 SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.10: Equilibrium values for a DA system using the BHh SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.11: Equilibrium values for a DA system using the RKh SR model.
Shown are the equilibrium yield (blue), SSB (red), and recruitment (green)
for the source and sink, and the total of both. The value of p varies by row.
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Figure B.12: Equilibrium values for a HL & DA system using the BH50 SR
model. Shown are the equilibrium yield (blue), SSB (red), and recruitment
(green) for the source and sink, and the total of both. The value of p varies
by row.
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Figure B.13: Equilibrium values for a HL & DA system using the RK50 SR
model. Shown are the equilibrium yield (blue), SSB (red), and recruitment
(green) for the source and sink, and the total of both. The value of p varies
by row.
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Figure B.14: Equilibrium values for a HL & DA system using the BHh SR
model. Shown are the equilibrium yield (blue), SSB (red), and recruitment
(green) for the source and sink, and the total of both. The value of p varies
by row.
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Figure B.15: Equilibrium values for a HL & DA system using the RKh SR
model. Shown are the equilibrium yield (blue), SSB (red), and recruitment
(green) for the source and sink, and the total of both. The value of p varies
by row.
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