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ABSTRACT 

Corrosion is a major cause of process equipment deterioration in the oil and gas industry. 

It represents a significant threat to asset integrity and process safety. Corrosion can lead to 

leakage, which subsequently, leads to contamination by the spill of hazardous materials, 

vapour cloud explosions or toxic releases, depending on the geolocation and nature of the 

fluid carried inside the process equipment. For metal structures, the deteriorative process 

caused by corrosion reduces the residual ultimate strength leading to structural failure when 

exceeding the total stress. Localized corrosion is reported to be the most hazardous form of 

corrosion leading to catastrophic failures. Among corrosion modes, microbiologically 

influenced corrosion (MIC) is particularly complex to predict, detect and mitigate. Hence, 

significant attention should be given to prediction of the occurrence of MIC and assessment 

of the associated risks. Several studies by microbiologists and corrosion scientists focused 

on the understanding of MIC initiation and development mechanisms. However, in-depth 

assessment of MIC susceptibility and risk quantification is still lacking.  

This thesis advances the understanding of MIC susceptibility and risk assessment by 

providing enhanced probabilistic models developed to fit the complexity of the 

microbiological corrosive process. Bayesian analysis was employed to assess the potential 

of having MIC while considering: chemical, physical, biological and molecular variables. 

A new modelling tool based on Stochastic Petri-nets enhanced with Bayesian updating 

capabilities was developed to address the main shortcomings of traditional Bayesian 

networks. This work also proposes an MIC risk assessment framework using Bow-Tie 
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analysis and a corrosion resilience model based on Stochastic Petri-nets. The application 

of the proposed methods is demonstrated using different case studies. 

The outcomes of this research provide advanced probability-based methods adapted to the 

corrosion field. Application of the proposed methods enhances the prediction and 

remediation of localized corrosion processes, especially MIC. 
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INTRODUCTION 
 

1.1 Overview 

Corrosion is defined as an irreversible interfacial reaction of a material (metal, ceramic, 

polymer) with its environment that results in the consumption of the material in dissolution 

into the material of a component of the environment [1]. In metals, the corrosive process is 

an electrochemical reaction that occurs between the metal surface and its environment 

leading to physical deterioration and/or alteration of properties. Traditionally, corrosion is 

classified as uniform corrosion and localized corrosion. In uniform or general corrosion, 

the anodic reaction occurs uniformly over the entire exposed surface. Uniform corrosion 

reduces the thickness of the material; it is the cause for iron rusting on large surfaces [2]. 

Localized corrosion manifests in a form of accelerated attack on a passive metal in a 

corrosive environment at discrete sites where the otherwise protective film is damaged [3]. 

Among different localized corrosion mechanisms, microbiologically influenced corrosion 

(MIC) is the most challenging to identify and assess due to its biological parameters and 

complex electrochemical mechanisms varying from one microbiological species to another 

(e.g. sulfate reducing bacteria versus acid producing bacteria). In addition, the sessile 

micro-organisms are difficult to assess and mitigate, and they are the ones causing MIC, 

not the planktonic population floating with the process fluid flow.   
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Currently, there is a significant need for advanced models capable of predicting MIC and 

assessing its location and potential impact on the process system in terms of deterioration 

of the asset and substantial hazards by loss of containment.  

1.2 Corrosion risk assessment 

Corrosion is a major cause of deterioration and equipment failure in the oil and gas 

production and processing facilities. Pipeline systems are particularly more vulnerable to 

localized forms of corrosion [4]. In pipeline systems, internal corrosion is due to contact of 

an aggressive fluid with a vulnerable metal surface. The corrosive process occurs under 

specific operating conditions and within a pH range favourable to one or more corrosion 

mechanisms (e.g. microbiologically influenced corrosion - MIC). The vulnerability of the 

metal surface, evaluated in terms of water wettability, surface roughness and micro-cracks 

presence, is an important factor when it comes to initiation and settlement of localized 

corrosion. The rate of localized corrosion can grow faster and cause premature corrosion-

induced failure of the asset. Failure refers typically to a leak, which leads to contamination 

by a hazardous materials spill, vapour cloud explosion, or toxic releases, depending on the 

geolocation and nature of the carried fluid inside the pipeline. 

Shabarchin and Tesfamariam [5] developed an approach to assess the risk of internal 

corrosion in pipelines using Bayesian networks [6]. The approach extracted some data from 

analytical models and combined it expert judgement to populate the conditional probability 

tables. The multiple sources of the collected data generated a significant uncertainty in the 

output parameters. Sadiq et al. [7] assessed the risk of corrosion associated failure in a 

probabilistic form using Monte Carlo simulation. The work focused on the failure 
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prediction when the factor of safety is smaller than 1. This study focused on the probability 

of failure and did not consider consequences. Several other studies [8]–[10] attempted to 

assess the risk of corrosion by considering the component of corrosion occurrence without 

any consideration to the consequences analysis part. A study by Pursell et al. [11], 

examined both the likelihood and consequences of corrosion. The likelihood of corrosion 

was estimated based on De Waard & Milliams Method [12] with a correction factor. Where 

the consequences were assessed in terms of number of persons harmed by a failure, based 

on the population exposed and likelihood of harm from the failure. Assessing the risk of 

corrosion in a conventional way requires case-specific consideration with limited 

flexibility. The proposed methodology overcomes this practicality issue by providing a 

generic method largely applicable to different process systems and corrosion mechanisms. 

Among different corrosion mechanisms, MIC is the most challenging to identify and assess 

due to high dependency on operating conditions and highly localized nature [13], [14]. Risk 

assessment of corrosion in general, and MIC specifically, has proven to be a complicated 

task [15]. To address these challenges, probabilistic methods such as Bow-Tie and 

Bayesian networks are promising tool to handle the uncertainty and the large number of 

influencing factors.  

1.3 Microbiologically Influenced Corrosion 

MIC is a result of interactions between micro-organisms attached to a metal surface, abiotic 

corrosion products, and microbiological metabolites. In most cases, MIC does not manifest 

as a single mechanism of corrosion and is often poorly understood among corrosion 

professionals. The presence of micro-organisms, at certain concentrations and forms, in 
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offshore systems has been reported as an accelerant for the corrosion rate, leading to system 

failures and loss of production. MIC is not only caused by bacteria but can also be initiated 

by other micro-organisms such as methanogenic archaea and fungi. 

MIC is in part a result of the development of biofilms on metal surfaces. Biofilms are 

communities of micro-organisms attached to metal surface in a consortium [4]. MIC 

development can be seen as a sequence of microbiological metabolic reactions, where some 

micro-organisms are taking electrons crucial to microbiological activities from the metal. 

However, the threat that can be generated by the microorganisms is not limited to the 

corrosive process. The proliferation of microorganisms in oil reservoirs, especially the 

sulphate-reducing prokaryotes (SRPs), can cause reservoir souring [5,6]. In processing 

systems, it can cause filter plugging which may lead to a loss of production [7,8]. 

The significance of MIC stems from the fact that corrosion induces processing equipment 

failures, like pipeline leakage and loss of containment. These failures lead to catastrophic 

consequences and cause high financial and reputational losses. The presence of biofilm or 

microbiological products has been reported in many cases where corrosion has caused 

failures [3,9]. However, the degree of microbiological involvement in initiating or 

accelerating the corrosive process is still difficult to predict or determine. 

1.4 Motivations 

As discussed earlier, MIC has been identified by most researchers as the most complex 

form of localized corrosion. There have been several attempts to predict the susceptibility 

of process systems to this type of corrosion and subsequently, assess the risk associated 
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with MIC. These attempts were made by either microbiologists or corrosion scientists. 

Microbiologists have focused on the biological part in terms of microbiological growth 

rate, whereas the corrosion scientists have focused on the fluid chemistry and 

electrochemical reactions happening on the metal surface. The motivation of this thesis is 

to bridge the main modelling gaps between the existing methods using probability-based 

models [16]–[18] and to develop a proper corrosion risk assessment model. The main 

modelling gaps are identified as follows: 

a. Limited understanding of MIC mechanism and its link to corrosion risk 

assessment; 

b. Time and space dependence of MIC; 

c. The synergy between influencing factors is not taken into account. This synergy 

plays a significant role in MIC occurrence and the effectiveness of mitigative 

strategies; 

d. Susceptibility of MIC in causing failures; 

e. A lack of risk assessment framework for MIC to incorporate both the 

assessment of MIC likelihood and consequences. 

1.5 Scope and Objectives 

The proposed models in this thesis perform the required corrosion threats evaluation with 

application to MIC by answering these questions: 

1- What is the probability of having corrosion in a particular process system? And how 

does the uncertainty in input data affect the estimated probability? 
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2- What factors cause corrosion in the system at a particular time? 

3-  If corrosion occurs in a system, what is the probability of a corrosion-induced 

failure? And what will be the effect of improving corrosion prevention, detection 

or mitigation capabilities have on the likelihood of corrosion and its consequences? 

4- How resilient is a pipeline to the corrosive process? And how does the change in 

input parameters affect the useful life of the pipeline system? 

To answer these questions, the following research objectives are identified for this research 

(illustrated in Figure 1.1): 

1- To develop a probability-based corrosion potential assessment model considering 

uncertainty in input data and uncertainty propagation; 

2- To develop a dynamic model for corrosion diagnosis considering the time-varying 

root-causes and time of observations (i.e. evidences); 

3- To develop a systematic framework for corrosion risk assessment considering the 

likelihood and consequences of the corrosive process; 

4- To develop a corrosion resilience assessment model for pipelines based on the 

monitoring and prediction of pipe wall thickness.  
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Figure 1. 1 Research deliverables of this thesis 

The scope of this research covers corrosion susceptibility and risk-based evaluation of MIC 

in process facilities, which may result in loss of containment of hazardous chemicals 

leading to human, environmental and equipment damage. The models developed in this 

work are suited for the evaluation of localized corrosion. The applications were mostly on 

MIC due to its complexity as a localized corrosion process.  

1.6 Contribution and Novelty 

This section highlights the contributions and significance among existing research work in 

the field of corrosion susceptibility and risk assessment. A detailed description of each 

contribution is provided in the following sections: 

Development of 
corrosion potential 
assessment model

Development of 
dynamic model for 
corrosion diagnosis

Development of 
corrosion risk 

Assessment model

Development of 
corrosion resilience 

assessment modelling
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1.6.1 MIC Potential Assessment 

The ability to predict the potential or susceptibility of having an MIC in a process system 

is key to preserving the integrity of the system [13]. The challenge that the current MIC 

susceptibility models are facing is to correlate the diverse chemical, biological and process 

parameters that influence MIC potential, while handling uncertainty in input parameters. 

Chapter 2 of this thesis proposes a probability-based network model to take into 

consideration the uncertainties associated with input data and their propagation to the 

output parameter. In the proposed model, an extension of Bayesian network called Object 

Oriented Bayesian Networks (OOBN) is employed to handle the inter-dependency between 

60 contributing factors to MIC settlement in a process circuit. The model was tested and 

verified using real data from a pipeline leakage incident that was the result of MIC. 

1.6.2 Dynamic Model for MIC Diagnosis 

MIC diagnosis requires a powerful modelling tool able to capture the time-dependency and 

dynamic changes in terms of microbiological growth, biofilm maturity, nutrient diffusion 

and changes in the conditions of operation. One of the contributions of this thesis is to 

develop a new modelling tool able to meet these requirements. The Bayesian stochastic 

Petri nets (BSPN) is graphical and uses the advanced modelling features of stochastic Petri 

nets with predicates such as the coding of mathematical variables to perform data updating 

functions [19]. Chapter 3 of this thesis introduces the new modelling tool with an 

illustrative application on a simple failure scenario.   



9 
 

1.6.3 Corrosion Risk Assessment 

The majority of existing corrosion risk assessment studies evaluate the risk of corrosion by 

considering the component of corrosion occurrence without any consideration of the 

consequences analysis part. Other studies focused on predicting the corrosion rate and 

assigned the risk qualitatively based on the predicted corrosion rate. These models are, in 

majority, case-specific and lack a systematic and clear methodology to assess the risks of 

corrosion. The novelty of this proposed methodology, presented in Chapter 4, is the 

assessment of both likelihood and consequences of corrosion using an enhanced Bow-Tie 

(BT) approach. The proposed methodology puts emphasis on the verification of the 

probabilistic model against the collected field data of corrosion and its related failures. 

1.6.4 Corrosion Resilience Modelling 

There have hardly been any studies conducted to qualify or quantify the resilience of a 

process system against the corrosive process. Chapter 5 of this thesis proposes a dynamic 

approach to quantify the resilience of pipeline systems under varying conditions. The 

approach uses Stochastic Petri-nets (SPN) coupled with Monte Carlo simulation to model 

and analyze resilience metrics. The absorptive capacity (AB) depicts the ability of the 

pipeline to absorb the disruption (i.e. pit nucleation) and decelerate the corrosive process. 

The adaptive capacity (AD) is the gain in pipeline lifetime due to the adoption of proper 

corrosion control actions. At this stage, the pipeline survives while operating on low 

performance. The restorative capacity (RS) in the case of pipeline corrosion is mainly 

represented in terms of pipeline repair or replacement. 
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1.7 Organization of the Thesis 

This thesis is written in a manuscript-based format. Overall, the outcomes of this thesis are 

four published and one submitted peer-reviewed journal papers and three conference 

papers. Figure 1.2 shows the structure of this PhD thesis. As shown in this figure, Chapters 

2 to 5 of this thesis are developed based on the paper submissions to peer-reviewed journals. 

 

Figure 1. 2 Structure of the PhD thesis and related publications 

1.8 Statement of Co-Authorship for Journal Articles 

Authors have worked with a team of researchers (or varied expertise) to complete the 

agreed research tasks. The outcome of these research tasks are published in peer reviewed 

journals with co-authors who have directly contributed to the work. Below are details of 

the contribution.  
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2. MODEL FOR MICROBIOLOGICALLY INFLUENCED 

CORROSION POTENTIAL ASSESSMENT FOR THE OIL AND GAS 

INDUSTRY 
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Abstract 

Corrosion is one of the major causes of failure in onshore and offshore oil and gas 

operations. Microbiologically influenced corrosion (MIC) is inherently more complex to 

predict, detect and measure because, for instance, the presence of biofilm and/or bacterial 

products is not sufficient to indicate active microbiological corrosion. The major challenge 

for current MIC models is to correlate factors that influence corrosion (i.e. chemical, 

https://doi.org/10.1080/1478422X.2018.1483221


16 
 

physical, biological and molecular variables) with the potential of having MIC. Previous 

work has proposed the potential for MIC as a simple product of multiple factors, without 

fully considering the synergy or the interference among the factors. The present work 

proposes a network-based approach to analyze and predict MIC potential considering the 

complex interactions among a total of 60 influencing factors and 20 screening parameters 

(SPs). The proposed model has the ability to capture the complex interdependencies and 

the synergic interactions of the factors used to assess MIC potential and uses an Object-

Oriented approach based on a Bayesian Network (BN). The model has been tested and 

verified using real data from a pipeline leakage incident that was a result of MIC. The 

proposed model constitutes a significant step in deepening the understanding of when MIC 

occurs and its predictability. 

Keywords: Microbiologically Influenced Corrosion, Metal vulnerability, Synergy analysis, 

Object-Oriented Bayesian Network, Corrosion, Risk modelling, Susceptibility, Bio-

corrosion. 

2.1 Introduction 

2.1.1. Overview of MIC and other microbiological threats 

MIC is a result of synergistic interactions between the metal surface, abiotic corrosion 

products, and microorganisms and their metabolites [1,2]. MIC is not a single corrosion 

mechanism and is often poorly understood among corrosion professionals [2]. The presence 

of microorganisms, at certain concentrations and forms, in offshore systems has been 

reported as accelerator in the corrosion rate, leading to system failures and loss of 
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production [3]. MIC is not only caused by bacteria but can also be initiated by other 

microorganisms such as methanogenic archaea and fungi.  

MIC is in part a result of the development of biofilms on metal surfaces. The biofilms are 

communities of microorganisms attached to the metal surface in a consortium [4]. MIC 

development can be seen as sequences of microbiological metabolic reactions; where some 

microorganisms are taking electrons crucial to microbiological activities, from the metal. 

However, the threat that can be generated by the microorganisms is not limited to the 

corrosive process. The proliferation of microorganisms in oil reservoirs, especially the 

sulfate-reducing prokaryotes (SRP), can cause reservoir souring [5,6]. In processing 

systems, it can cause filter plugging that may lead to a loss of production [7,8]. 

Additionally, in domestic water pipelines, the hydrogen sulfide (H2S) produced by SRP can 

cause toxicity and safety issues for humans. The significance of MIC stems from the fact 

that corrosion induces processing equipment failures; for example, pipeline leakage. These 

failures lead to catastrophic consequences and high financial losses. The presence of 

biofilm or microbiological products has been reported in many cases where corrosion has 

caused failures [3,9] . However, the degree of microbiological involvement in initiating or 

accelerating the corrosive process is still difficult to predict or determine.  

Microbiological diversity [10]  and the ability of certain microorganisms to subsist over a 

wide range of conditions make it complex and challenging to predict the MIC potential. 

Moreover, the complex nature of various factors influencing MIC occurrence and 

development adds more complexity. 
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 2.1.2. Objectives and scope of this work 

The limiting factor in MIC surveillance is not only the quality of the microbiological data, 

but also the conversion of data into a reliable risk assessment [11]. Based on the 

aforementioned statement, this work aims to relate the different factors that influence MIC 

to determine the potential of MIC occurring with an acceptable level of certainty. 

While preserving the ease of use and maintaining an inherent flexibility, the proposed 

model incorporates various MIC related factors, ranging from the operating data to the 

molecular analysis. In this work, the MIC potential is taken from the microbiological 

perspective in the ability of microorganisms to chemically attack the metal surface. This 

ability can be measured by multiple parameters, such as specific species presence and 

activity, molecular microbiological methods (MMM) and quantification, and analysis of 

bio-corrosion chemical products. The vulnerability of the metal is assessed through 

parameters such as the operating history, environmental conditions, and the surface 

proprieties. A better understanding and quantification of the interactional processes of MIC 

influencing factors allow a better deployment of the corrosion management methods. The 

proposed model takes into consideration various factors affecting the potential of MIC. 

These factors are grouped in sub-networks (instance nodes) based on their nature and their 

dependencies on one another. This model can be implemented as a part of an overall MIC 

management system. The model aims to preserve asset integrity by preventing corrosion 

during the operational life cycle of a system. The model can be performed as a key part of 

the MIC threats assessment phase. This assessment constitutes the first phase in the process 

of managing corrosion as shown in Figure 2.1.  
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Figure 2. 1 Fundamental process of managing corrosion. [12] 

2. 2 Summary of Existing Models 

For years the first step in identifying MIC was to establish the presence of bacteria 

recognised as a source of MIC or those associated with corrosion products [13]. MIC 

modelling started in the early nineties with the Checworks predictive model [14]. This 

model is based on a mathematical equation giving a ranking of MIC susceptibility from 0 

(very low potential) to 10 (high potential). This model takes into consideration chemical 

and physical parameters such as temperature, flow nature and use of biocides, and provides 

qualitative results; however, it does not incorporate any biological parameters. 
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Table 2. 1 Summary of the MIC susceptibility prediction models 

Model 

Output Species considered Factors considered 

Reference 
Qualit

ative 

Quant

itative 
Measure 

Modelling 

Approach 

used  

SRB APB 
Metha

nogens 
Others   

Not 

specified 

Chemica

l 

Physical/pr

ocess 

Biologi

cal 

Molecular 

(MMM) 

Checworks 

predictive 

model 

√  

MIC 

susceptibility 

(ranking from 

0 to 10) 

Ranking 

based 

approach 

        √ √ √     [14]  

Union 

Electric 

Callaway 

√  

Probability of 

MIC 

occurrence on 

a scale (0 to 

100) 

Indexing 

based 

approach 

√ √   CD, GN     √ √   [15]  

Luttery/Ste

in MIC 

Index 

√  
MIC 

susceptibility 

Index 

Indexing 

based 

approach 
√ √   

MeOB, 

MnOB 
    √ √   [16]  

Pots MIC 

model 
 √ MIC rate 

Analytical 

approach √         √ √     [17]   

Maxwell 

and 

Campbell 

model 

 √ 

MIC rate -

Risk of MIC 

occurrence 

(Biofilm 

initiation) 

Analytical 

approach 

√         √ √ √ √ [18]  

Sooknah 

Model 

√ 

 

Internal MIC 

Risk Factor 

(RF) 

Ranking 

based 

approach 

        √ √ √     [4]  

Allison 

Model 

√  MIC 

Potential 

Ranking 

based 

approach 

√     √   √   √   [19]  
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MIC 

Managem-

ent Model 

 √ 
 IMRF, 

PPGR Analytical 

approach 

√   √  SRA       √ √ [7,11]  

Taxén 

Model 
 √ 

MIC 

Potential 

Data 

simulation  

Approach 

√         √   √   [20]  

Kaduková 

Model 
√  

Risk of 

External MIC 

in pipelines 

Risk matrix 

(Ranking 

approach)  

        √ √ √     [21]  

Skoss 

Model 
 √ 

MIC 

development 

rate 

Monte Carlo 

simulation 

(Friday 

13th) 

          √   √   [22]  

Skovhus 

Model 
√ 

 

Ranking of 

PoF for RBI 

Logical 

modelling 

approach 

√    √ 
Specife

d groups 
  √ √ √     √ [23]  

Singh and 

Pokhrel 

model 

 √ 

MIC rate, 

optimum time 

for inspection 

Fuzzy logic 

framework 
√ √ √   √ √   [24]  

*CD: Clostridia, GN: Gallionella, MeOB: Metal oxidizing bacteria, MnOB: Manganese oxidizing bacteria, SRA: Sulfate-reducing archaea, PoF: Probability of 

failure, SRB: Sulfate-reducing bacteria, APB: Acid producing bacteria, IMRF: Integrated MIC risk factor, PPGR: Potential pit generation rate.
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Quantitative modelling of MIC susceptibility has proven to be challenging because of the 

complex nature of the biotic and abiotic interactions in both enhancing and inhibiting MIC. 

The work of Pots et al. [17] was the first attempt to quantitatively assess MIC rate as a 

function of a factor (F). Here, “F” is the product of five factors; the presence of water, the 

water wetting, pH, salinity or total dissolved solids, and temperature. This model was 

improved later by Maxwell and Campbell [18] by introducing biological parameters such 

as number of bacteria per area and bacteria kinetics. Other MIC modelling attempts such 

as the work of Allison et al. [19] and Taxén et al. [20], tend to oversimplify the system and 

incompletely screen the MIC influencing factors. Kaduková et al. [21] used a risk matrix 

to assess external MIC corrosion risk. However, this risk matrix was based on an 

oversimplification of the MIC occurrence using an incomplete inventory of the chemical 

and environmental factors.  

The use of molecular techniques to track the microorganisms responsible for the MIC 

occurrence was first introduced in the work of Larsen et al. [25]. This work demonstrated 

that the cultivation-independent techniques can provide fast results from within a few hours 

to a few days as compared to most probable number (MPN) techniques, resulting in a fast 

and accurate response. An early MMM study, for MIC and reservoir souring, Larsen et al. 

[26], used molecular tools to investigate the similarities and differences among MIC 

bacterial populations obtained from produced water and bacteria found in corrosion spots 

in a X-mas tree from a producing well. Skovhus et al. [7] showed how microbiological 

numbers were estimated based on DNA enumeration can contribute to assessing the general 
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MIC threat. For a full summary of the MIC susceptibility prediction models, the reader is 

referred to Table 2.1 

2.3 The Proposed Probabilistic Modelling Approach to MIC Potential 

In probabilistic modelling, the approach for dealing with interactions of multivariate factors 

that have complex interdependency are network-based models such as, Bayesian networks 

(BN), neural networks, Petri nets and Markov chains [27]. These network-based 

approaches demonstrate higher modelling capability than the mathematical equations or 

logical diagrams such as fault tree [28], event tree [29], and reliability block diagrams. In 

this work, the Bayesian network approach [30] was selected as the most appropriate 

modelling tool for this study. Compared to other quantitative risk analysis methods, the 

Bayesian networks provide multi-levels and allow multi-state dependencies to be taken into 

consideration. Additionally, their architecture is easily traceable to ensure the structural 

dependencies among the components. In the case where a feature is noted to be missing, it 

can be easily added to, and implemented, in the network. Similarly, the implementation of 

new information such as data from one or more additional parameters, can be done on 

mathematical basis, consistent with Bayes rule [31].  

In BN modelling, dependency is presented in two ways: vertical dependency where the 

intermediate nodes depend on the basic or the root cause nodes, and horizontal dependency 

where the basic nodes depend on each other. This horizontal dependency is what 

differentiates the BN from the logic diagram methods such as fault tree and event tree, 

where the structure is based on basic event independency. These dependencies, vertical and 

horizontal, are all dictated in the form of a conditional probabilities table based on the 
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domain expert knowledge. To consider the uncertainties, the conditional probability tables 

are built on the concept of noisy-OR and leaky noisy-OR gates [32,33]. 

The object-oriented Bayesian network (OOBN) provides a simple graphical interface, 

where the complexity is hidden within the objects. The objects are instance nodes that 

contain sub-structures (sub-networks) formed by interconnections of usual chance node 

(input and output nodes). The nodes are connected to each other, within and without the 

sub-structures. An instance node can be seen as a virtual node representing an instance of 

another network. Following standard object-oriented terminology, an object-oriented 

network is often referred to as a class. Describing a BN network in a hierarchical model 

often makes the network much less crowded, and thus provides a much better 

understanding of the graphical structure. An instance node can contain another instance 

node inside the subnet, an object-oriented network can be viewed as a hierarchical 

description (or model) of a problem domain.  

2.3.1 The Proposed Model 

The proposed model takes into consideration factors affecting the potential for MIC. These 

factors are grouped, based on nature and their implications with other factors resulting in 

seven object-oriented sub-networks: 

- Operating parameters 

- Fluid chemistry 

- Settlement parameters 

- Material parameters 

- Operating history 
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- Mitigation parameters 

- MIC presence symptoms 

The sub-networks contain MIC influencing factors and MIC SPs connected to the MIC 

potential. The MIC SPs are metrics used to capture the performances of different 

components of the system, from the design to the mitigation strategy. The MIC presence 

symptoms are those factors whom their concomitant presence in a specific layout can be 

interpreted as a strong sign of MIC occurrence such as, the concentration of 

microbiological activity products, and the biofilm content and geometry.  

2.3.2 MIC Influencing factors and screening parameters 

The decision-making process for MIC diagnosis and management lacks the availability of 

practical tools. The proposed model provides 20 SPs to help the analyst/operator assess the 

MIC potential. SPs are probabilistic metrics used to measure real-time conditions and 

trends.  These metrics assist the operator in identifying the weakest elements (or links) 

within the system that impact MIC potential. Based on the SPs assessment, the mitigation 

strategy can target then those identified factors to reduce the potential for MIC. Measuring 

these variables or factors in real-time would provide an on-line systematic screening tool 

to support the decision-making process. If monitoring of the SPs cannot be performed in 

real-time, a regular update could be defined based on the periodicity of laboratory analysis, 

for example. Some parameters, such as metallurgical and design parameters, are not 

practically modifiable if determined as a major contributor to MIC potential. However, 
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most of the SPs, such as deposition and mitigation parameters, have dynamic variation and 

relatively easy to adapt if determined as active contributors.  

Table 2. 2 Nodes functions in sub-networks and overall Bayesian model 

Nodes 

functions 
Input nodes Intermediate nodes Output (child) nodes 

Sub-networks 

● Leaf or marginal nodes 

representing the MIC 

Influencing factors (Input data)  

● Connect the marginal 

nodes to the final node 

● Can represent an SP 

● Subnetwork output (output 

data) 

● Can represent an SP 

Overall 

BN model 

● Object-oriented subnetwork 

inputs. 

● Connect the object-oriented 

subnetworks (Emitting the 

information)  

● Connection inter-

subnetworks and/or private 

nodes 

● Representation of the 

target node. 

● Object-oriented 

subnetwork output. 

● Connect the object-

oriented subnetworks 

(Receiving the information) 

MIC influencing factors are basic variables that can be monitored and recorded. In the 

proposed model, these influencing factors are presented as leaf nodes where direct input is 

required. As can be seen from Table 2.2, the SPs are the outcome of these inputs after 

processing. The SPs are summarized in Table 2.3. In the model, they represent intermediate 

nodes; however, not all the intermediate nodes are SPs, only those that have a physical 

meaning are used as SPs. At the last stage of the modelling, the output will be the 

probability of MIC occurrence (MIC potential) and the impact assessment of the MIC SPs. 

All the OOBN modelling is run using HUGIN software [34]. 

2.3.3 OOBN sub-networks 

In the OOBN figures (Figure 2.2 to Figure 2.8), the nodes with grey and dotted bounding 

are OOBN input nodes, and the nodes with a continuous grey bounding are OOBN output 

nodes. The OOBN input and output nodes allow the communication among instance nodes 
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(OOBN sub-networks). Detailed structures of the sub-networks are illustrated below in 

Figures 2.2 to 2.8.  

 Operating parameter sub-network 

The proposed sub-network considers nine operating factors, including four process 

variables: temperature, pressure, flow and pH; and two SPs : deposition, and flowing 

parameters.  
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Table 2. 3 Summary of MIC screening parameters 

 

Nº 

 

Description 

Nature of factors considered  

Measuring 

 

Figure Chemical Design Process Physical Biological 

SP1 Deposition parameter   √ √  The ability to accumulate deposits on the metal surface Fig1.2 

SP2 Flowing parameter   √   The impact of flow on deposition on the metal surface Fig1.2 

SP3 Nutritional parameter √     
The availability of nutrients favourable for the 

microbiological growth. 
Fig1.3 

SP4 Redox potential √     The availability of electron donors and acceptors. Fig1.3 

SP5 Surface parameter  √ √   
The predisposition of the metal surface for the sessile 

microbiological attachment.  
Fig1.4 

SP6 Metallurgy parameter  √    The characteristics of metal and metal surface Fig1.4 

SP7 Design parameter  √  √  The geometry affecting the fluid dynamics Fig1.4 

SP8 Operating history   √ √  
The impact of process system history and the way that 

the system was maintained on MIC potential 
Fig1.5 

SP9 
Microbiological 

activity products 
√     

The levels of chemical components produced by certain 

microorganisms 
Fig1.6 

SP10 
Microbiological 

activity 
   √ √ 

Tracking of the microbiological activity in sessile and 

planktonic forms 
Fig1.6 

SP11 
Biofilm solidity 

Parameter 
   √  

The potential of the biofilm for hosting MIC considering 

the physical structure (firmness and strength) of the 

biofilm. 

Fig1.6 

SP12 

Sessile 

microbiological 

Presence 

    √ 
The density of sessile microorganisms implicated in 

MIC. (enhancing and inhibiting). 
Fig1.6 

SP13 
Reactive mitigation 

Parameter 
   √  

Rate the mitigation actions performed in reacting to 

detection of MIC or its relevant symptoms. 
Fig1.7 

SP14 
Proactive mitigation 

Parameter 
√   √  

Rate the mitigation actions performed in response to 

some predictions or indications of a predisposition to 

MIC. 

Fig1.7 
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SP15 
Preventive mitigation 

Parameter 
  √ √  

Rate the mitigation actions performed regularly to 

prevent the system from developing an MIC process. 
Fig1.7 

SP16 

Microbiological 

monitoring  

Parameter 

√  √ √ √ 

Track the microbiological development and the 

mitigation efficiency based on biological monitoring and 

inspection techniques.   

Fig1.7 

SP17 
water wetting 

parameter 
 √  √  

The ability of water to maintain contact with the metal 

surface.  
Fig1.8 

SP18 Anchorage ability  √  √  
Rate the ability of attachment as the first step in the 

microbiological settlement process on the metal surface. 
Fig1.8 

SP19 
Biofilm degradation 

Parameter 
√  √ √  

Rate the ability to destroy the biofilm structure based on 

availability of the mitigation methods 
Fig1.9 

SP20 
Attachment 

parameter 
√ √ √ √  

Rate the ability of microorganisms to attach to the metal 

surface 
Fig1.9 
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Table 2. 4 Leaf nodes description for the operating parameter sub-network presented in Figure 2.2 

Class Subclass 
Influencing 

factors 

Variance (node’s states)  

Relevance/impact Low/Medium/

High 

Low/

High 

Yes/

No 
Specific 

Opera

-ting 

Para-

meter 

Flowing 

Paramete

r 

Flow velocity 
]0, 1[, [1, 2.5], 

above 2.5 m/s 
   

 

Impacts the microbiological deposition and 

migration. Low velocity is the best condition for 

the microbiological growth.  Flow type    

Stagnant, 

Intermittent, 

Continuous 

Deposits 

Presence 

Paramete

r 

Debris presence  X    

Their accumulation promotes the biofilm 

settlement Sand presence  X   

Deposit 

Elimination 

None, [1-3] 

per year, over 

3 times/year 

   

Counters the accumulation process of the 

deposits on the metal surface. 

- 

Operating 

temperature 
   

[15, 70[ºC, [71-

120] ºC, others 

Major role in intensifying or restraining the 

microbiological growth based on the range.  

Operating 

pressure 

[0-3[, [3-103[,    

Above 130 

MPa 

   

Impacts the microbiological activity. Most 

microorganisms are killed at high pressure 

Operating pH 
[0-5], [5-9.5[,      

[9.5-14] 
   

A pH range between 5 to 9.5 is the optimum 

range for the microbiological growth. However, 

the impact of the operating pH is depending 

upon the maturity of the biofilm consortium. 

 

Multiphase fluid   X  
A multiphase fluid offers weak spots for 

corrosion 
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Figure 2. 2 OOBN sub-network of the operating factors that influence the MIC 

potential and their interactions 

Figure 2.2 presents the OOBN sub-network of the operating factors that influence the MIC 

potential and their interactions, and Table 2.4 summarizes the variance and relevance of 

each factor. The operating temperature has a significant impact on the microbiological 

growth, and therefore a major role in enhancing or inhibiting MIC [35]. MIC related 

microorganisms grow best in the range from 15 ºC to 70 ºC. The range from 71 ºC to 120 

ºC is moderately favourable for the growth of common MIC related microorganisms. In 

general, at temperatures below 15 ºC and higher than 120 ºC, there is less potential for 

microbiological growth [36]. In this sub-network, dependencies among factors are 

considered, for example, the flow impact is assessed based on the flow velocity (i.e high, 

medium or low) and the flow type (i.e continuous, intermittent or stagnant). The flow 

impact is assessed in form of the SP, defined as “flowing parameter”.   

 Fluid chemistry sub-network 
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The proposed fluid chemistry sub-network considers sixteen factors, most of which are 

measurable. Two SPs are considered; the nutritional parameter and redox potential.  

 

Figure 2. 3 OOBN sub-network of the fluid chemical factors that influence the MIC 

potential and their interactions 

 

Table 2. 5 Leaf nodes description for fluid chemistry sub-network presented in 

Figure 2.3 

Class Subclass Influencing factors  

Variance  (node’s states)  

Relevance/impact 
Low/Me

d./High 

    Avail/ 

not-avail. Specific 

Fluid 

Chem-

istry 

Nutritio-

nal 

parame-

ter 

Carbon dioxide 

level 
X   

Corrosive gas. Common factor 

in corrosion and presence of 

microbiological growth 

Organic carbon  
Threshold

: 20mg/l 
 

Important nutrients for 

microorganisms 

Other mineral                                 

carbon 
X   

Nutrients for microorganisms 



33 
 

*TDS: total dissolved solids 

Polysulfides 

Level 
X   

Essential nutrient for MIC 

related microorganisms 

Oxygen Level X   

Corrosive gas. If present in 

naturally anaerobic 

environments, can promote 

microbiological activity 

Lactate level X   
Rich source of organic carbon 

for MIC related 

microorganisms 

Sulfate presence  
Threshold

: 10mg/l 
 

Electron acceptor for MIC 

related microorganisms 

Redox 

Potential 

Electron acceptors 

presence 
 X  

 

Enhance activity of MIC 

related microorganisms  
Electron 

Donors presence 
 X  

Oxygen Level X   See above. 

Hydrogen 

Level 
X   

Major electron donor, essential 

for the electrochemical activity 

of the MIC related 

microorganisms 

Solubi-

lity of 

Dissolved 

Oxygen 

Salinity or TDS*  
Threshold

:   60 g/l 
 

Impacts the form of the 

microbiological growth (type 

of microorganisms) 

Temperature   

[15, 70[, 

[71-

120], 

others 

Key factor in inhibiting or 

enhancing the microbiological 

growth and corrosion 

Chemical 

Propor-

tions 

C:N ratio  
Threshold

: 10 
 

Ratio key in microbiological 

growth 

Water activity 

(Aw) 

[0-0.59], 

[0.6-

0.89], 

[0.89-1] 

  

A boundary for 

microbiological life. At low 

water activity (below 0.6) 

microorganisms cannot survive 

N-S ratio  
Threshold

: 1 
 

Ratio key in microbiological 

growth 

CO2-H2S ratio              

(Sour/Sweet 

regime) 

 

Threshold

: 

pCO2/pH

2S= 20 

 

Ratio is indicator for degree of 

souring and microbiological 

growth 
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Figure 2.3. outlines the OOBN sub-network of the fluid chemical factors that influence the 

MIC potential and their interactions, and Table 2.5 summarizes the variance and relevance 

of each factor. In order to highlight the importance of the carbon dioxide, as a dominant 

mineral source of carbon and active component in the electrochemical reactions, it has been 

separated from the other mineral carbon sources. The impact of the fluid salinity or the total 

dissolved solids and the temperature are required to assess the solubility of the dissolved 

oxygen.  

 Material parameter sub-network 

The proposed material parameter sub-network considers nine factors and three SPs 

covering the metallurgy and design aspects, where the third parameter encompasses the 

surface features such as the roughness and the presence of welding marks. 

 

Figure 2. 4 OOBN sub-network of the metallurgy and the surface factors that 

influence the MIC potential and their interactions 
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Table 2. 6  Leaf nodes description for the material parameter sub-network 

presented in Figure 2.4 

Class Subclass 
Influencing 

factors 

Variance (node’s states)  

Relevance/impact Low/Medium 

/High 

Applied/ 

Not-applied 
Specific 

Material 

Parameter 

Surface 

Parameter 

Welding 

marks 
X   

 

Indicator of 

predisposition for 

microbiological 

attachment to metal 

surface 

Surface 

Waviness 
X   

Surface 

roughness 
X   

Surface 

coating 
  

Not 

existing, 

damaged, 

non-

damaged 

Protects metal 

surface 

Metallurgy 

Parameter 

Metal surface 

conductivity 
  

[-50, 

+150] 

mV, other 

Plays a major role 

in the electro-

chemical activity of 

the metal surface 

Cathodic 

protection 
 X  

Reduces the 

conductivity on the 

metal surface 

PREN Value 

[0-32], [33-

38], higher 

than 38 

  

Indicator of 

estimate of the 

corrosion 

resistance. The 

PREN-value is 

proportional to the 

corrosion 

resistance of the 

steel 

Design 

Parameter 

Bends and 

inclination 
X   

Weak spots where 

the MIC is most 

likely to manifest Discontinuities 

and dead legs 
X   

* Pitting resistance equivalent number. 

Figure 2.4 presents the OOBN sub-network of the metallurgy and surface factors that 

influence the MIC potential and their interactions, and Table 2.6 summarizes the variance 

and relevance of each factor. The Pitting resistance equivalent number (PREN) value is 

given by the formula as follows:  

                                              PREN = %Cr + 3.3 × %Mo + 16 × %N                        (1) 
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A general review of literature in which MIC is cited as the cause of corrosion shows that 

as the PREN value increases, the frequency of MIC decreases [37]. 

 Operating history sub-network 

The proposed operating history network considers six influencing factors and one screening 

parameter “operating history”. 

 

Figure 2. 5 OOBN sub-network of the operating history factors that influence the 

MIC potential and their interactions 

 

Table 2. 7 Leaf nodes description for the operating history sub-network presented in 

Figure 2.5 

Class Subclass 
Influencing 

factors 

Variance (node’s states)  

Relevance/Impact Low/Medium 

/High 
Specific 

Operating  

History  

Downtime 

 

 

Downtime 

duration 
X   

Downtime provides suitable 

conditions for the 

microbiological growth Downtime 

frequency 
X   

Abnormal 

Situations 

Internal stress X   
shifts the electrochemical 

potential by increasing the 

internal energy level of the 

metal External stress X   

  
Draining 

frequency 
  

None, [1-3] 

per year, over 

3 times/year  

Counters the accumulation 

process of the deposits on the 

metal surface. 
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Process 

equipment age 
  

[0-5] years, 

[5-15] years, 

Over 15 years  

The wearing and deterioration 

process provides weak spots 

favourable for the 

microbiological growth  

 

Figure 2.5 presents the OOBN sub-network of the operating history factors that influence 

the MIC potential and their interactions, and Table 2.7 summarizes the variance and 

relevance of each factor. Intermittent operations or downtime are mostly due to emergency 

shut-down or scheduled shut-down for inspection and maintenance; both duration and 

frequency of the downtime are considered in the model. The record of the draining 

frequency for the last five years of operations is also considered in this model. Some 

abnormal situations such as the excessive internal and external stress are also considered 

as factors affecting the MIC occurrence. The stress, either generated by applied loads or 

residual stress, can cause a shift of the electrochemical potential by increasing the internal 

energy level of the metal. Another mechanism that can be observed more likely on long 

transmission pipelines, is the generation of micro-cracks on the metal surface, or damage 

to the protective surface coating. The generated spots can potentially host the early 

microbiological deposits to form the biofilm consortium.   

 MIC-presence symptoms sub-network 

The proposed MIC presence symptoms network considers twelve factors and four SPs. 

Microorganisms are presented in two categories. The planktonic Microorganisms are 

floating microorganisms in the process fluid. The sessile microorganisms are the 

microorganisms attached to the metal surface in a biofilm structure.     
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Figure 2. 6 OOBN sub-network of the MIC presence symptoms and their 

interactions 

 

Table 2. 8 Leaf nodes description for the MIC symptoms sub-network presented in 

Figure 2.6 

Class Subclass 
Influencing 

factors 

Variance (node’s states)   

Relevance/Impact Low/ 

Med./ 

High 

High/Low Specific 

MIC 

Presence 

Symptoms 

Microbiological 

Activity 

Products 

Ferrous sulfide 

Concentration 
  X 

  

 

Indicators of the 

activity of the MIC 

related 

microorganisms  

Thio-sulfate 

Concentration 
  X 

  

Hydrogen 

Sulfide 

Concentration 

  X 

  

Microbiological 

Activity 

Concentration 

of planktonic 

microorganisms 

  X 

  

Acts as a 

regeneration 

source for the 

sessile 

microorganisms 

Biofilm 

Presence 

X   

  

Creates an 

environment 

where the MIC 

process is hosted 

Biofilm 

Thickness 

  X 

  

Indicates the 

stability and 

maturity of the 

biofilm structure 
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SRB 

Concentration 
  X 

  

Play a major role 

as MIC related 

microorganisms. APB 

Concentration 
X   

  

Other  

Microbiological 

Presence 

    

Can 

promote/ 

inhibit 

MIC, 

other 

Have a role in 

either promoting or 

inhibiting MIC 

Figure 2.6 presents the OOBN sub-network of the MIC symptoms and their interactions, 

and Table 2.8 summarizes the variance and relevance of each factor. The MIC symptoms 

are divided into two classes. In the class of the microbiological activity products, it is very 

challenging to distinguish the origin of some products, either from the process fluid or the 

microbiological activity. The microbiological activity class considers the physical presence 

of microorganisms in sessile and planktonic forms. 

 Mitigation parameter sub-network 

The proposed mitigation parameter sub-network considers twelve factors and four 

parameters. The mitigation can be preventive, proactive, or reactive. On top of that, the 

microbiological monitoring parameter, through inspection and advanced monitoring, is a 

critical parameter to assess the effectiveness of mitigation.   
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Figure 2. 7 OOBN sub-network of the mitigation strategies and factors that 

influence the MIC potential and their interactions 

 

Table 2. 9 Leaf nodes description for the mitigation parameter sub-network 

presented in Figure 2.7 

Class Subclass 
Influencing 

factors 

Variance (node’s states)  Relevance/Impact 

Low/Med. 

/High 
Specific 

Mitigation 

Parameter 

Reactive 

Mitigation 

Parameter 

Pigging 

Frequency 

None, [1, 6], 

above           

6 times/year 

  

Most common 

method for 

mechanical 

mitigation against 

biofilm 

development 

Use of 

Biocides 
X   

Chemical 

treatment method 

to prevent/mitigate 

biofilm 

development  

Use of 

Molybdate 
X  

Proactive 

Mitigation 

Parameter 

Cathodic 

Protection 
  X 

Reduces 

conductivity on the 

metal surface 

Nitrate 

Injection 
X   

Anti-souring 

treatment. Enhance 

growth of nitrate-

reducing bacteria 

(NRB) to 

outcompete SRB 

Pigging 

Frequency 

None, [1, 6], 

above           

6 times/year 

  

See above 
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Use of 

Biocides 
X  

See above 

Periodic 

draining 

None, [1-3] 

per year, 

over 3 

times/year  

 

See above                          

Preventive 

Mitigation 

Parameter 

Internal 

Coating 
  

Damaged, 

non-damaged 

Protects the metal 

surface 

Periodic 

draining 

None, [1-3] 

per year, 

over 3 

times/year  

 

 Counters the 

accumulation of 

deposits on the 

metal surface                          

Microbio-

logical 

monitoring  

parameter 

Inspection   
Periodic, 

non-periodic 

Provides a clear 

picture of the wall 

characteristics, pits 

and biofilm 

presence  

Use of                    

bio-probes 

None, 

annually, 

over 1 

time/year 

  

 

 

System monitoring 

to capture any 

change in the 

corrosive process 

and corrosion rate 
Weight-loss 

Coupons 

None, 

annually, 

over 1 

time/year 

  

Electro- 

chemical 

Monitoring 

  
Periodic, 

non-periodic 

Use of 

MMM 
  

Applicable, 

not-

applicable 

tracks the 

microorganisms 

considered 

responsible for 

the MIC potential 

 

Figure 2.7 presents the OOBN sub-network of the mitigation strategies and factors that 

influence the MIC potential and their interactions, and Table 2.9 summarizes the variance 

and relevance of each factor. The MMMs have been introduced recently to gauge the 

microbiological activity with higher accuracy. Nitrate is injected into the process system to 

control souring by promoting bio-competition between SRB and NRB, in favour of NRB. 
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However, nitrate has the potential to also cause corrosion as demonstrated by heavy 

corrosion in an oil installation in the North Sea [38].  

  Settlement parameter sub-network 

The proposed settlement parameter sub-network considers six factors, and two SPs: water 

wetting parameter and anchorage ability. The water wetting parameter is a critical element 

that directly affects the MIC potential.  

 

Figure 2. 8 OOBN sub-network of the settlement factors that influence the MIC 

potential and their interactions 

 

Table 2. 10 Leaf nodes description for the settlement parameter sub-network 

presented in Figure 2.8 

Class Subclass 
Influencing 

factors 

Variance (node’s states) Relevance/Impact 

Low/Med. 

/High 

High/Low 
Specific 

Settlement 

Parameter 

Water 

wetting 

parameter 

Water presence  

X 

 

 

Essential and 

limiting element for 

the microbiological 

growth 

Surface 

predisposition 
X    

See “Surface 

Parameter sub-

class” in Table 2.6 

Surface 

coating 
  

 Not 

applicable, 

Protects the metal 

surface 
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damaged, 

non-

damaged 

Anchorage 

ability 

Rust bubble 

Presence 
  X  

Provides surface for 

the microbiological 

attachment on the 

metal surface 
Abiotic  

general 

corrosion 

X    

Pit presence   X  

Surface 

predisposition 
X    

See “Surface 

Parameter sub-

class” in Table 2.6 

  
Nutritional 

parameter 

  

 
Favorable, 

Non-

favorable  

Essential and 

limiting parameter 

for microbiological 

growth 

 

Figure 2.8 presents the OOBN sub-network of the settlement factors that influence the MIC 

potential and their interactions, and Table 2.10 summarizes the variance and relevance of 

each factor. The microbiological anchorage can be promoted by material related factors, 

such as the surface roughness and welding marks, or corrosion related factors such as the 

presence of pit and rust bubbles.  

 The overall MIC potential network 

The structure of the proposed MIC potential model is provided in Figure 2.9 showing the 

connections among the seven sub-networks. The overall OOBN in Figure 2.9 presents the 

structural aspect of the OOBN. The network structure is showing the different level of 

dependencies and factors affiliations.  

2.4 Testing and Verification of the Model 

The proposed model was applied to a case study of a liquid hydrocarbon pipeline. This case 

study investigated a hydrocarbon leak and determined that the failure was due to MIC [9]. 

It is worth noting that the same case study has been used by Sooknah et al. [39] to validate 

a MIC susceptibility model. In this pipeline most of the water had been removed before the 
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hydrocarbon entered the pipeline; however, some water carried over and collected at the 

bottom of the pipeline under low flow conditions. High number of SRB and APB were 

present in the water as well, examination of the pipeline also revealed a few other pits that 

were similar to but smaller than the one that leaked.



45 
 

 

 

Figure 2. 9 The overall OOBN model for the MIC potential assessment showing the interactions among the sub-network
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At the end of the investigation, the experts’ diagnosis concluded that MIC caused the 

damage. For this reason and the data availability, in this case, the model validation was 

built based on data from this case study. Table 2.11 summarizes the main field and 

laboratory parameters for this case and the pieces of evidence used to validate the model. 

For more details about this case study, the reader is referred to [9]. 

Table 2. 11 Records of the field and laboratory parameters  

Case study Main parameters Evidence (for verification) 

Liquid 

hydrocarbon line 

[9] 

Operating temperature: 21 ºC 

Operating pressure: 100 psi (0.69 MPa) 

pH: 6.8 

Fluid nature: liquid hydrocarbon 

Operating mode: Continuous 

Steel type: Carbon steel  

Debris presence: Low 

Water presence: 1% 

Start operating: 1986 (never replaced) 

SRB presence: Yes 

APB presence: Yes 

Pit presence: Yes 

Pipeline piggable: Partially 

Internal coating: No 

General corrosion: No 

- Status: MIC confirmed 

- Failure occurred: yes 

- Failure type: leak 

- Failure location: non-

pigged potion 

- Clock position in the 

pipe:      6 O’clock 

- Biofilm samples: 

Sulfide: High 

pH: 3.4 

Sessile SRB cell number: 

>100,000 CFU/mL 

Sessile APB cell number: 

10,000 CFU/mL 

Bacterial activity: Viable 

- Experts’ diagnosis: MIC 

The available field and laboratory data were input to the OOBN model and the generated 

results are presented in Table 2.12 and Table 2.13. The data from the case study was 

provided in detail; however, some data necessary for the model were not specified, for 

example, the biofilm thickness, usage of biocides, etc. In those cases where the information 

is not available, the model assumes equal probability distribution of all the node states of 

the missing information. For example, a node with two states will have a 50% chance of 
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being in state 1 and a 50% chance of being in state 2. The same rule is applied to a node 

with three states where the chances are eventually divided among the states. For example, 

the information about the biofilm thickness is not available in this case. The model assumes 

a 33% chance of having a biofilm with a high thickness, a 33% chance of a medium biofilm 

thickness, and a 33% chance of a low biofilm thickness. The equally distributed probability 

is considered as uncertainty in the model. Thereby, the results of the case, in Table 2.13, 

are built using this averaging method. To quantify the impact of these uncertainties, the 

model calculates a lower limit, the “Ideal case”, where the unavailable information is 

assumed at the levels that cause the lowest chance of MIC potential. The upper limit, the 

“worst case”, considers the unavailable information is assumed at the levels that cause the 

highest chance of MIC potential. Consequently, the more information that is available for 

the model, the narrower the difference is between the upper and lower limits, which reflects 

the accuracy of the model.      

Table 2. 12 Results – MIC potential and sub-networks 

Sub-network Ideal case 

(Lower limit) 

Practical case 

(Average) 

Worst case 

(Upper limit) 

Operating parameter 94% 99% 99% 

Fluid chemistry 75% 86% 95% 

Material parameter 62% 76% 85% 

Operating history 69% 83% 99% 

Settlement parameter 78% 87% 91% 

Mitigation parameter 28% 18% 4% 



48 
 

MIC symptoms 69% 84%  98% 

MIC potential 71% 82% 96% 

 

The results in Table 2.12 show the MIC potential in this case study to be 82% with the 

worst-case scenario to be 96%. Comparing these results with the field data, where the MIC 

process has been identified with certainty to be the main cause confirms that the 82% 

reflects a high likelihood of MIC which was confirmed as the source of failure by [9]. 

 2.5 Sensitivity Analysis of the Screening Parameters 

The SPs were further analyzed for their sensitivities towards MIC potential assessment. 

The results of their sensitivity analysis are shown in Table 2.12. The SPs in each of the 

categories are further analyzed in Figure 2.10 and Figure 2.11.  

Table 2. 13 Screening parameters and their lower and upper limits 

SPs Reference Ideal case 

(Lower limit) 

Practical case 

(Average) 

Worst case 

(Upper limit) 

Deposition 

parameter 

SP1 65% 79% 90% 

Flowing parameter SP2 82% 82% 82% 

Nutritional 

parameter 

SP3 70% 84% 86% 

Redox potential SP4 40% 72% 95% 

Surface parameter SP5 50% 71% 90% 

Metallurgy 

parameter 

SP6 60% 68% 75% 

Design parameter SP7 60% 80% 80% 
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Operating history SP8 69% 83% 99% 

Microbiological 

activity products 

SP9 25% 56% 95% 

Microbiological 

activity 

SP10 81% 91% 98% 

Biofilm solidity 

parameter 

SP11 30% 71% 99% 

Sessile 

microbiological 

presence 

SP12 90% 96% 99% 

Reactive mitigation 

parameter 

SP13 19% 18% 8% 

Proactive mitigation 

parameter 

SP14 60% 52% 20% 

Preventive 

mitigation 

SP15 0% 0% 0% 

Microbiological 

monitoring 

parameter 

SP16 50% 25% 3% 

Water wetting 

parameter 

SP17 99% 99% 99% 

Anchorage ability SP18 68% 80% 92% 

Biofilm degradation 

parameter 

SP19 10% 5% 2% 

Attachment 

parameter 

SP20 85% 90% 94% 

Abiotic parameters are represented by process variables and operations, design, and fluid 

chemistry aspects. Biotic parameters are the microbiological-related parameters. The 

mitigation inefficiency assesses all the different types of mitigation strategies along with 
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the microbiological monitoring and the biofilm degradation parameter. It is worth noting 

that the microbiological monitoring can be performed by using different techniques; the 

most efficient method reported in the literature is the MMM such as the qPCR [40].  

 

 

Figure 2. 10 Percentages of the abiotic SPs favourable to MIC potential (Part 1 and 

Part 2) 

60%

69%

99%

68%

85%

80%

83%

99%

80%

90%

80%

99%

99%

92%

94%

0% 20% 40% 60% 80% 100%

DESIGN PARAMETER

OPERATING HISTORY

WETTABILITY PARAMETER

ANCHORAGE FLUENCY

ATTACHMENT PARAMETER

Abiotic screening parameters (Part 2)

Worst case (Upper limit) Practical case (Average) Ideal case (Lower limit)
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Figure 2.10 part 1 and part 2 show the percentages of the abiotic SPs being favourable to 

MIC potential. From those figures, the critical parameters can be extracted as follows: 

1- The water wetting parameter (99 % favourable to MIC occurrence). The water 

wetting can be mainly improved by applying a coating to the metal surface and 

reducing the presence of water by water purging or draining. 

2- The attachment parameter (90% favourable to MIC occurrence). The 

microbiological attachment is mainly due to the ability of the microorganisms 

causing MIC to settle and remain attached to the metal surface. Acting to minimize 

the deposition process by periodic draining and pre-treatment along with water 

filtration and pigging could be appropriate strategies to lower the microbiological 

attachment capability. 

 

Figure 2. 11 Percentages of the microbiological SPs favourable to MIC occurrence 

25%

81%

30%

90%

56%

91%

71%

96%

95%

98%

99%

99%

0% 20% 40% 60% 80% 100%

MICROBIAL ACTIVITY PRODUCTS

MICROBIAL ACTIVITY

BIOFILM SOLIDITY PARAMETER

SESSILE MICROBIAL PRESENCE

Biotic screening parameters

Worst case (Upper limit) Practical case (Average) Ideal case (Lower limit)
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Figure 2.11 shows the percentages of the microbiological SPs being favourable to the MIC 

occurrence. From this figure, the critical parameters can be extracted as follows: 

1- Sessile microbiological presence (96 % favourable to MIC occurrence). Targeting 

the biofilm structure hosting the sessile microorganisms would be the appropriate 

strategy to lower the sessile microbiological presence. 

2- Microbiological activity (91 % favourable to MIC occurrence). The microbiological 

activity can be reduced by targeting the microbiological regeneration in sessile and 

planktonic forms.  

 

Figure 2. 12 Efficiency of the mitigation practices for MIC attenuation 
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50%
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0%
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REACTIVE MITIGATION PARAMETER

PROACTIVE MITIGATION PARAMETER

PREVENTIVE MITIGATION

MICROBIAL MONITORING  PARAMETER

BIOFILM DESOLATION PARAMETER

Mitigation screening parameters

Worst case (Upper limit) Practical case (Average) Ideal case (Lower limit)
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Figure 2.12 shows the percentages of the mitigation SPs being efficient in attenuating the 

MIC. The lower in the efficiency of the mitigation, the more critical this parameter 

becomes. The critical parameters are: 

1- Preventive mitigation parameter (0 % efficiency). The preventive mitigation can be 

improved by applying an internal coating and performing period draining to the 

pipeline.  

2- Biofilm degradation parameter (5 % efficiency). The success of the biofilm 

degradation depends on two factors; (i) assessment of the location and solidity of 

the biofilms, (ii) a proper correlation between the mechanical mitigation (pigging) 

and the chemical mitigation (use of biocides). Thereby, the improvement of the 

biofilm degradation parameter should be based on a proper analysis of those three 

factors as a systematic strategy to struggle the biofilm development.  

 2.6 Conclusions 

This chapter presented a new model for assessing the potential for MIC. The model is built 

upon 60 influencing factors that form 20 SPs. The synergies and dependencies among the 

parameters are considered in modelling the MIC potential. The model is developed in an 

object-oriented Bayesian framework that is adaptive and easy to follow. The graphical 

illustration of the model as interconnected instance nodes provides a clear understanding 

of interactions of factors and SPs. The conditional dependency of parameters in a node is 

defined considering the opinion of subject matter experts and past studies.  
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The model was tested against most cited MIC induced failure of a pipeline study available 

in the public domain. The model estimated MIC potential of the given case study (using 

the available data) was 82% with the worst scenario being 96%. This provided initial 

validity of the model and projects its usability in real life situations. This model will be 

further tested and validated against several types of environmental archetypes such as:  

 Crude systems 

 Produced water re-injection (PWRI) – systems 

 Seawater  

 Multiphase  

 Storage 

 Transmission 

The accuracy of the model is highly dependent on the reliability of data from the field 

and the laboratory tests. Nevertheless, the model is able to adapt to missing data and also 

able to consider new data as evidence to update an earlier prediction. Application of the 

model will help promote better understanding and management of MIC in onshore and 

offshore process operations. Based on the promising findings of this work, efforts related 

to the evaluation of the impact of the MIC on processing systems is continuing and will be 

presented in future papers. 
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3. Bayesian Stochastic Petri Nets (BSPN) - A New Modelling Tool for 

Dynamic Safety and Reliability Analysis 
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Abstract 

An efficient formalism for safety analysis should be: (i) able to consider the failure 

behaviour of complex engineering systems, and (ii) dynamic in nature to capture changing 

conditions and have wider applicability. The current formalisms used for safety analysis 

are lacking in one of the above-listed criteria. Bayesian network (BN) allows the modelling 
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of failure of systems where the inter-nodal dependencies are represented exclusively by 

constant conditional probabilities. Stochastic Petri nets (SPN) enable the study of the 

dynamic behaviour of complex systems; however, they lack the ability to adapt to changes 

in the data and operating conditions. This chapter proposes a hybrid formalism that 

strengthens SPN with BN capabilities. The proposed formalism is graphical and uses 

advanced modelling features of SPN with predicates such as the codding of mathematical 

variables to perform the data updating functions. This ability enables the analysis of 

continuous input data without the necessity of time-slice discretization process. The 

emergent formalism is termed “Bayesian Stochastic Petri Nets” (BSPN). It provides a 

dynamic assessment of safety by capturing additional sets of data rends. In BSPN, the 

conditional probability is captured as a time-dependent function to allow consideration of 

the cumulative effect of the failure scenario (e.g. fatigue). The BSPN implementation is 

demonstrated with an example illustrating the modelling capabilities. An extensive 

comparative analysis is performed against other probabilistic techniques.  

Keywords: Petri Nets, Bayesian network, Dynamic modelling, Data updating, Hybrid 

formalism, Risk analysis. 

 3.1 Introduction  

Process systems are subject to deterioration over time due to natural and human-made 

causes [41], [55]. During service, this deterioration can manifest suddenly as a failure of 

one or more components. Primary component failures can trigger a series of events with an 

increasing degree of complexity. If safety barriers fail to control the hazard, the failure 

mechanism can lead to an accident with potential harm to humans, the environment, and 
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asset integrity. Despite the technological evolution of complex process systems, failure and 

associated risk continue to increase.  

Safety analysis aims to investigate and predict the failure of process systems and its 

repercussions on operations and safety of systems. Uncertainty in the output of safety 

analysis studies is mainly due to initial assumptions and limited knowledge about the failure 

mechanisms and sub-systems interactions. This results in: (i) misrepresentation of dynamic 

behaviours, (ii) ignorance of dependencies, (iii) and over-simplification system structure. 

Several models have been proposed to perform safety analysis. One of the early studies on 

safety analysis using a Petri nets (PN) approach is the work of Leveson and Stolzy [56]. 

This work focused on the use time Petri nets to design and analyze a safety critical system 

such as the modelling of faults and failures. Nyvlt et al. [57] used SPN with predicates to 

model the sequence of complex accidents. The proposed methodology proved to be 

efficient and superior compared to an event tree based approach. 

Conventional safety analysis techniques such as fault tree analysis (FTA) [58]–[61], event 

tree analysis (ETA) [62], failure mode and effects analysis (FMEA), and reliability block 

diagrams (RBD) suffer from severe limitations of static structures, and basic event’s 

independency, or simplified dependency. These techniques have undergone many 

improvements over the last decades, such as dynamic fault tree [63], dynamic event tree 

[64]–[66], and fault tree driven Markov process [41], [67]–[69]. However, despite these 

improvements, logical diagrams still suffer from poor handling of uncertainty [70]. To 

understand the features of the main categories of failure analysis techniques, a review of 

the modelling capabilities of FTA, BN and SPN is given in Table 3.1. 
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Table 3. 1 Review of the modelling capabilities of FTA, BN and SPN 

Techniqu

e 
Questions to answer Strong points Limitations 

 

 

Fault 

Tree 

Analysi

s (FTA) 

What are all the possible 

scenarios leading to the 

undesired event? 

 

Traceable logical 

diagram 

Cannot handle the multi-state 

variables; and provides simplified 

sequences 

What is the probability 

that the top event 

occurs? 

Ease of computation 
Connections are limited to simple 

logical gates 

What is the most 

probable sequence 

leading to this top event? 

Qualitative and 

quantitative results 
Subject to multiple assumptions 

 

 

Bayesia

n 

Networ

k 

(BN) 

What is the probability 

of an event to occur? 

Conditional 

dependencies 

considered 

Limited knowledge about 

transitional mechanism 

How are the elements of 

a system conditionally 

dependent? 

Numerically presented 

in tables (CPT) 

Based on estimated absolute 

values 

What is the impact of 

data evidence on the 

other variables? 

Founded on 

mathematical base 

(Bayes’ rule) 

Absence of a standard approach 

for CPTs and input data 

implementation 

Stocha-

stic 

Petri 

Nets 

(SPN) 

What is the behaviour of 

the system? 

Ample capacity to 

closely imitate the real 

behaviour of complex 

systems 

Need extensive data 

What are the possible 

failure mechanisms? 

Fewer assumptions 

compared to other 

formalisms 

Difficult to track large sized 

models 

When do we expect an 

event to happen and 

what are the 

probabilities? 

Handling deterministic 

and stochastic events 

Need to be coupled with Monte 

Carlo simulation to provide 

accurate results 

Table 3.1 shows how the current failure analysis techniques answer relevant questions of 

safety analysis. However, the range of limitations challenges their accuracy and 

practicability. FTA is the easiest and most commonly used technique in safety analysis 

[59], [71]. FTA is a top-down deductive method that aims to compute the top event 

probability as a function of basic events probabilities. The latter represent the likelihood of 
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component failures. Representing the probability of these events by a constant probability 

will lead to a misjudgement of top event likelihood [41]. 

3.2 Background and Novel Contributions 

Several researchers prefer to use BN as an alternative to the conventional logical diagram 

methods. BN, also called Bayesian belief network, have been widely used in recent years 

as a powerful data mining technique for handling uncertainty and incomplete data sets. The 

use of BN in safety analysis has recently increased; this is due to the abovementioned 

benefits, the ease of use that these formalisms provide for the analyst, and the nature of 

their input data. The inputs are originally subjective and based on domain expert 

knowledge, making them less exposed to the criticisms of accuracy and validation. Many 

researchers have used BN to express the causal relationships among the different 

components of a system. In reliability analysis, Wilson et al. [44] showed the capability of 

BN for modelling interference from multilevel data in cases of unknown conditional 

probabilities and the impact of implementing new information on the reliability model. 

With respect to safety analysis, Boudali and Duga [72] proposed a formalism for reliability 

analysis based on temporal Bayesian networks to solve dynamic fault trees, they concluded 

that BN could be used as an alternative solution for dynamic fault tree without resorting to 

the Markov chain generation. Langseth et al. [73] focused on the difficulties encountered 

while using discrete BN, and how the hybrid Bayesian networks, through coupling discrete 

and continuous BN, can solve part of those issues. Weber et al. [74] presented a complete 

overview on the use of BN in dependability, maintenance, and risk assessment. Recently, 

Deyab et al. [75] used BN to perform failure analysis of offshore systems based on a novel 
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sensitivity analysis framework. Taleb-Berrouane et al. [12] used an extended BN, called 

object-oriented Bayesian networks (OOBN), to estimate the likelihood of a complex 

corrosion process, known as microbiologically influenced corrosion,  for the oil and gas 

industry.  

Petri nets [76], through a variety of their extended formalisms such as timed, stochastic and 

coloured PN, are widely used as modelling tools in several technical fields including 

computer engineering, electronics and control systems. The wide range of PN application 

is due to their unique modelling characteristics including concurrency, conflict 

management, synchronization, and resources sharing [41], [76]–[79]. However, even 

though they have shown excellent modelling capabilities for safety and risk analysis, they 

are not as widely used as the logical diagram methods (FTA, ETA and RBD) or BN because 

of their non-explicit graphical presentation. 

In recent years, some hybrid techniques have been developed and described in the literature. 

One of those techniques is the Bayesian Neural Network (BNN) [80]. The idea behind the 

development of BNNs is to recast the task of training a network as a problem of inference, 

which is solved using Bayes’ theorem [81]. As a probabilistic formalism, it is a robust 

method. However, BNN suffers from poor uncertainty handling and requires large data 

sets. Elidan [82] proposed another kind of hybrid model, called the Copula Bayesian 

Network (CBN), which combines the modelling capacity of complex distributions provided 

by the Copula function and the conditional probability distribution provided by BN. 

Prior studies have paid considerable attention to the comparison between BN and SPN, as 

seen in the work of Halim et al. [83] and Weber et al. [74]. In the latter study, the authors 
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have identified the incapability of integrating evidence as one of the severe weaknesses of 

SPN use in risk analysis. This fact encouraged the authors to undertake this step and 

develop a hybrid modelling tool that embeds the modelling power of BN into the SPN 

formalism. It is worth noting that the authors failed to discover any attempt to combine the 

modelling features of both Petri nets and BNs. In this chapter, the authors aim to explore 

the integration of Bayes theorem to SPN. The detailed approach is presented here and 

demonstrated through several cases of dependent structures. The objective is to propose 

and test an efficient formalism for dynamic safety analysis with potential application to 

dynamic reliability, availability, maintainability and safety analysis (i.e. RAMS analysis).  

The current work is developing a new hybrid concept following innovative considerations. 

The novelties listed are as follows: 

 The Bayes theorem rules are coded as mathematical variables for SPN with 

predicates formalism. This enables full use of the data updating capability on an 

SPN with predicates model. 

 The BSPN is capable of generating time-dependent functions of the conditional 

probabilities and posterior probabilities. The benefit of these generated data is 

highlighted in detail in step 3 of sub-section 3.1. 

 Compared to the dynamic capabilities of the SPN, the BSPN conditional probability 

functions and posterior probability functions can be resultant of dynamic processes 

while considering the parallelism, concurrency and synchronization of the events. 

 The BSPN uses the block based-modelling technique where the system is divided 

into several sub-systems (i.e. SPN blocks) physically separated. The changes in the 
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predicates and assertions (mathematical variables) convey the message among the 

SPN blocks. This feature is explained in detail in step 6 of the BSPN framework in 

section 3 of the chapter 

For this work, the authors have used a performant modelling software called GRIF [84]. Its 

Petri nets module developed by SATODEV and TOTAL [85] covers the requirements of 

the presented formalism. This tool uses stochastic Petri nets with predicates and assertions 

incorporated with a Monte Carlo simulation engine. Relevant applications of this formalism 

can be found in Taleb-Berrouane et al. [41] and Nývlt et al. [57]. 

The remaining of this chapter is organized as follows: Section 3 is dedicated to the 

framework and the step-by-step development of the Bayesian stochastic Petri nets 

formalism from the input data acquisition to the analysis of generated output data. Section 

4 deals with a comparison between the modelling capabilities of the BSPN formalism and 

the currently used techniques for safety analysis such as FTA, DBN, and SPN. Section 5 

summarizes the main features of this work and draws conclusions and recommendations 

for future work.  

3.3 Model Building: Bayesian Stochastic Petri Nets (BSPN) 

The building of a BSPN to model the behaviour of a process system comprises multiple 

steps. The BSPN formalism is an extended SPN with additional features of BN, such as 

conditional probability, and the capability to generate posterior probabilities. The steps to 

build a BSPN model are presented in Figure 3.1 For illustration purpose, the steps in 
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building a BSPN are illustration on a pump failure scenario starting from a FT. The same 

analogy can be applied on different failure scenarios. 

 

Figure 3. 1 Framework of the BSPN 

 Step 1: Failure mechanism identification 

The first step in building the BSPN model is to identify the failure mechanism subject to 

study. This step may be achieved using a hazard identification technique such as HAZOP 
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[86], HAZID [87], or FMEA [88]. In this work, a pump failure scenario is taken as an 

example to illustrate the capabilities of the proposed BSPN formalism. 

In process systems, failure of a circulation pump can lead to a significant disturbance of the 

process operations. This disturbance could escalate and cause a hazardous situation 

affecting the system safety. Figure 3.2 depicts, in a simplified fault tree, some potential 

sequences leading to failure scenarios of circulation pump trained by electrical power. 

Table 3.2 provides the meaning of the symbols used in the FTA and their assumed 

probabilities based on expert opinion.  

          
Figure 3. 2 Illustrative fault tree for pump failure scenario 
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Table 3. 2 Summary of the events, symbols and failure probabilities over the first ten 

years of operation 

 Events Symbol Probability of failure  
In

p
u

ts
 

Excessive vibration EV 0.2 

Shaft misalignment SM 0.1 

Fluid fluctuation FF 0.2 

Electrical surge ES 0.05 

O
u

tp
u

ts
 

Mechanical unbalance MU 0.28 

Hydraulic surge HS 0.056 

Pump failure PF 0.103 

Figure 3.2 shows that a pump can fail by a combination of mechanical unbalance and fluid 

fluctuation, or by an electrical surge as a common cause failure (CCF). The mechanical 

unbalance may be caused by excessive vibration or misalignment of the pump shaft.  

 Step 2: Real-time data acquisition 

Once the potential failure mechanisms are expressed in an FT structure, the basic causes 

should be monitored in real-time. This real-time data acquisition will draw a time-varying 

function that can be plotted into a probability distribution. 

 Step 3: Stochastic Petri nets development 

The basic understanding of SPN model is required to follow the transition to the new 

concept of BSPN formalism. Compared to conventional Petri nets, when SPN transitions 

are enabled at a specific marking “m”, the tokens remain in the input places during the 

firing time delay. At the end of the firing time, the tokens move from input places to output 

places, and the number of tokens in a flow depends on the input and output functions [89]. 
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The same concept is extended to include two notations; immediate transitions with no delay 

required for the firing, and inhibitor arcs where the absence of tokens enables transition 

instead of their presence [90]. An SPN is considered for the description of concurrency and 

synchronization [91]. In a recent extension of SPN, the activation of a transition can be 

conditioned by one or more mathematical variables through the use of predicates and 

assertions [92]. The predicates or guards, as defined by IEC 61508-6 [93], are conditions 

which may be true or false, and control the transition firing, as is shown in Figure 3.3 

Assertions or assignments are the mathematical variables that receive predefined updates 

such as incrementation or state switching as consequences of the transition firing. The 

simple SPN with predicates and assertions in Figure 3.3 illustrates the abovementioned 

firing mechanism. The transition “t” in the depicted state is only fired if the variable “A” is 

true, denoted as “?A”. As a consequence, the variable “A” changes to the state “false” 

denoted as “!Ac”. The behaviour of these mathematical variables can be monitored and 

used as outcomes of SPN modelling using instantaneous, average by time intervals, 

transition firing frequencies, or mean time in a place. 

 

Figure 3. 3 Simple example of SPN with predicates and assertions 

To deal with systems involving stochastic and deterministic events in an efficient way, a 

simulation-based approach can be adopted. Monte Carlo simulation is a powerful tool 

dedicated to these situations. It is based on the use of random numbers to animate system 

behaviour. According to the standard IEC 61508-6 [93], SPN formalism provides very 
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efficient support for performing Monte Carlo simulation. The latter produces a large 

statistical sample from which statistical results are obtained.  

 

 

Figure 3. 4 Display of the characteristics of the SPN with predicates and assertions 

In SPN modelling, tokens that move from one place to another must pass through a 

transition; this movement is termed transition firing, as showing in Figure 3.4 and denoted 

as (1). This movement obeys a firing law, denoted as (5), which defines the transition 

distribution such as exponential, Weibull, and lognormal distributions. It can also obey a 

timing through determination of firing delay (2). The firing mode (3) affects the 

downstream places. It can be either equitably or on demand where each downstream place 

has its specific probability law. Guards (6) are Boolean expressions that condition transition 

firing. Assignments (7) are mathematical variables that receive predefined changes. In this 

article, the authors used SPN with predicates and assertions. For more details, readers can 

refer to our previous work, Taleb-berrouane et al. [41]. 

The imitation process from BN to SPN with predicates starts by imitating the nodes as 

shown in Figure 3.5 The probabilities, noted in this example as C1a, C1b, C1c and  C1d, 

are represented in the SPN equivalent model by the downstream places 2, 3, 4 and 5. The 
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firing law noted as “sol2” shows the probability attributions to the downstream places as 

the following: the probability of being in place 2 (noted as #2) is 0.4, 0.3 for place #3, 0.2 

for place #4, and place #5 will take the remaining probability, in a way that the sum of the 

probabilities should be equal to 1. 

 

Figure 3. 5 Bayesian single node imitation to an SPN model 

After imitating the single nodes, the next step is to imitate the BN with connections 

considering each ascendance of nodes as a step. This distinction between the ascendance 

levels is important for the SPN part where each level should be executed with a different 

firing priority based on the function “PRIOR” as shown in Figure 3.6. In this chapter, all 

BNs are modelled using the HUGIN software [48].    
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Figure 3. 6 BN connection imitation to an SPN model 

Figure 3.6 demonstrates the conversion of a BN to the equivalent SPN model starting with 

the node imitations as described earlier in Figure 3.5. The ascendant level should have a 

higher firing priority to ensure proper execution of the SPN simulation. The CPT is replaced 

by a mathematical variable type called “ite”, for “if, then, else”. Equation (1) in Figure 3.6 

can be read as “if the place 2 has one token, then the function “Funct_C2a” will take the 

value (W), otherwise it will take the value (Y)”, which has the same meaning as the 

conditional probabilities “C2a|C1a = W and C2a|C1b = Y”. The variables (X) and (Z) 

complete the other cases, where “C2b|C1a = X and C2b|C1b = Z”. Equations (4) and (5) in 

Figure 3.6 are used to extract the output data from places 5 and 6 respectively. Here, the 

probabilities of C2a and C2b are simply the probabilities of a token being in place 5 and 6 

respectively.    

 Step 4: Bayesian model development 
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The Bayesian model is developed in every inter-nodal connection of the network based on 

Bayes theorem [94]. It allows data updating as shown in (Equation 1). 

𝑃(𝑋|𝐸) =
𝑃(𝐸|𝑋)  ×  𝑃(𝑋)

𝑃(𝐸)
                                           (1) 

Where P(X) is the prior probability (i.e. prior believe), P(E) is the probability of an 

observation (i.e. evidence) and P(X|E) is the posterior probability of the event X given the 

evidence of presence of event E. The probability P(E|X) is the likelihood of the event E 

given the presence of event X. Using the conditional independence assumptions of BN, the 

joint probability distribution of a set of random variables {X_1,X_2,X_3,…,X_(n-1),X_n 

}, can be determined using a chain rule as equation 2: 

                                       𝑃(𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑛−1, 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))𝑛
𝑖=1                         (2)                       

Table 3. 3 Explanation of probability in BN modelling 

Tool Corresponding nodes Symbol Examples 

Marginal probability (MP) Orphan nodes (Nodes without 

parent nodes) 

P(A) P(V), P(MA), 

P(PO), P(EF) 

Conditional probability 

table (CPT) 

Child nodes  

(nodes having parent nodes) 

P(A|Pi) P(MD|V,MA), 

P(PF|MPF,EF) 

Joint probability (JP) All nodes   P(A,B) P(MPF,MD,PO) 

 

Table 3.3 provides an explanation of the different kinds of probabilities used in BN 

modelling. The conditional dependency is shown in the CPTs and JPTs. Estimation of the 

CPT was fully considered for the first time by Spiegelhalter and Lauritzen [95], who 

demonstrated the feasibility of posterior data acquisition. The updated or posterior data can 

be obtained over the parameter-space in closed form solution.  
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In the Bayesian approach, a CPT offers a comprehensive specification of conditional 

dependency as shown in table 3.4. This feature has great significance in the sense of 

providing the ability to model probabilistic dependency as a unique constant value between 

0 to 1 [94].  

Table 3. 4 Conditional probability table for mechanical unbalance based on the BN 

in Figure 3.12 

EV 

SM 

EVT EVF 

SMT SMF SMT SMF 

MU 
MUT MUT|EVT,SMT MUT|EVT,SMF MUT|EVF,SMT MUT|EVF,SMF 

MUF MUF|EVT,SMT MUF|EVT,SMF MUF|EVF,SMT MUF|EVF,SMF 

 

 Occurrence probability of a mechanical unbalance: 

P(MUT) = ∑ P(MUT, EVi, SMi)

𝑛

𝑖

                                                (3) 

 The generated posterior probabilities: 

P(EVT|MUT) =
P(EVT , MUT)

P(MUT)
=

P(MUT|EVT) × P(EVT)

P(MUT)
                                (4) 

P(SMT|MUT) =
P(SMT , MUT)

P(MUT)
=

P(MUT|SMT) × P(SMT)

P(MUT)
                           (5) 

Where, 

P(MUT |EVT) = [P(MUT, EVT, SMT) + P(MUT, EVT, SMF)] / P(EVT)                        (6)                           

P(MUT |SMT) = [P(MUT, EVT, SMT) + P(MUT,EVF, SMT)] / P(SMT)                       (7) 

The nodes V and MA are independents, so:  
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P (MUT, EVT, SMT) = P(MUT|EVT, SMT) × P(EVT) × P(SMT)                                   (8) 

P (MUT,EVF, SMT) = P(MUT|EVF, SMT) × P(EVF) × P(SMT)                                    (9) 

P (MUT, EVT, SMF) = P(MUT|EVT, SMF) × P(EVT) × P(SMF)                              (10) 

Bayes theorem is applied to calculate updated (i.e. posterior) probabilities when new 

information becomes available [96]. The evidence on a given node means that the actual 

node’s state is known. In other words, “there is a belief in that” so the probability of this 

state will be 1, and 0 for the other states. This evidence can update the probabilities of the 

ascendant nodes. This change is called data updating and the resultant probabilities are 

termed posterior probabilities. This data updating represents a prediction.  

 Step 5: Definition of appropriate probability distributions 

The trends of the real-time data taken during system operations should be fitted to a 

probability distribution function such as Weibull, exponential or log-normal. For 

illustration purposes and for the pump failure scenario, we have simulated the variation of 

the obtained data into Weibull probability distributions. For more details about fitting data 

into probability distributions, the reader is referred to the work of Delignette-Muller  and 

Dutang [97]. 

 Step 6: Bayesian stochastic Petri nets model development 

The BSPN formalism is an extended SPN with additional features of BN, such as 

conditional probabilities and posterior probabilities. The BSPN model is developed based 

on the imitation process described below. 
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Figure 3. 7 Mapping process from a binary state of BN to SPN, and SPN to BSPN 

models 

Figure 3.7 presents a two-step mapping process from a binary state BN to SPN, then from 

the resultant SPN to a BSPN model. In addition to the imitation capability, the BSPN 

through the guards and assignments can handle the timing (e.g., instantaneous or delayed 

actions), the sequential order, and any other condition of firing. The BSPN can model multi-

state variables with different configurations. A three-states illustrative example is 

demonstrated in Figure 3.8. 
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Figure 3. 8 BN mapping to BSPN in different cases of multi-states variables 

Figure 3.8 presents the possible dependency configurations between three-state output. The 

first case models the case where the evolution of the states (b) and (c) is dependent on state 

(a) following a regular sharing rule type “sol2” without competition. However, case 3 can 

be used where competition exists between two states following one or two different 

distributions. 
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Figure 3. 9 BSPN model for the pump failure scenario
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Figure 3.9 presents the BSPN model for the pump failure scenario. This model is generated 

following the imitation process demonstrated in Figure 3.7 and Figure 3.8 From the 

graphical point of view, distinct structural forms are adopted to differentiate between the 

initiator events or basic events (house or pentagon shape) and the intermediate and top 

event (hexagonal shape). The conditional probabilities are presented as a separate part of 

the model. Additionally, the nodes are presented in layers consisting of initiator events, 

intermediate events, and the top event with decreasing transition firing priority to allow 

proper execution of the model.  

From the modelling point of view, every event is presented in a node or a block form. The 

nodes are physically separated to avoid a congested structure. The mathematical variables 

capture the dynamic changes in places and transitions. This monitoring capability allows 

information transfer or communication among the different nodes. The Bayesian model, 

discussed in step 4, is embedded in the computational part of the model. After the 

accomplishment of the graphical and mathematical set-put, the time-varying behaviour of 

the selected variables should be observed by using the statistical computation parameters. 

The statistical parameter “TR 3” is preferably used in most cases. It observes the probability 

of having a token in a specific place at each moment. The output analysis and discussion 

are provided in steps 7 and 8 of the BSPN modelling framework.  

 Steps 7 & 8: BSPN model analysis and dynamic risk/failure probability profiles 

After fitting of the real-time input data into probability distributions, the parameters of each 

distribution should be embedded in the BSPN model. Table 3.5 summarizes the input data 

for the model. 
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Table 3. 5 Summary of the input probability distributions used in the BSPN model 

 Variables Descriptions 
Probability 

distribution 

Scale Par. (n) 

(hours) 
Shape Par. (B) 

M
ar

g
in

al
 

p
ro

b
ab

il
it

ie
s 

(M
P

) EV Excessive vibration Weibull 8x105 0.7 

SM Shaft misalignment Weibull 1x105 2.5 

FF Fluid fluctuation Weibull 9x105 0.3 

ES Electrical surge Weibull 12x105 1 

D
y

n
am

ic
 c

o
n
d

it
io

n
al

 p
ro

b
ab

il
it

ie
s 

(D
C

P
) 

MUT|EVT, SMT Mechanical unbalance (true) given excessive vibration (true) 

and shaft misalignment (true) 
Weibull 1x103 0.4 

MUT|EVT, SMF Mechanical unbalance given excessive vibration and no shaft 

misalignment 
Weibull 5x105 0.2 

MUT|EVF, SMT Mechanical unbalance given shaft misalignment and no 

excessive vibration  
Weibull 2x104 0.3 

MUT|EVF, SMF Mechanical unbalance given no excessive vibration and no 

shaft misalignment 
Weibull 2x105 2.5 

HST|MUT, FFT Hydraulic surge given mechanical unbalance and fluid 

fluctuaction 
Weibull 5x102 0.3 

HST|MUT, FFF Hydraulic surge given mechanical unbalance and no fluid 

fluctuation 
Weibull 1x103 1.5 

HST|MUF, FFT Hydraulic surge given no mechanical unbalance and true fluid 

fluctuation 
Weibull  6.5x104 2.5 

HST|MUF, FFF Hydraulic surge given no mechanical unbalance and no fluid 

fluctuation 
Weibull 2x105 3 

PFT|HST, EST Pump failure given hydraulic surge and electrical surge Weibull 1.2x103 0.6 

PFT|HST, ESF Pump failure given hydraulic surge and no electrical surge Weibull 1.2x104 0.3 

PFT|HSF, EST 
Pump failure given no hydraulic surge failure and true 

electrical surge 
Weibull 1.2x106 0.4 

PFT|HSF, ESF Pump failure given no hydraulic surge and no electrical surge Weibull 1x106 1 

T: true, F: false.  
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Table 3.5 provides a summary of the probability distribution functions used in the BSPN 

model to analyze the pump failure scenario. Based on the nature of variation of the initiator 

events (e.g. increasing failure rate), the Weibull distribution was selected to model the 

behaviour of those variables. Once the BSPN model is entirely built, the MCS can be set 

with a large number of histories. In the current work, the simulation runs on 100.000 

histories. The BSPN model runs using SPN computational software coupled with MCS, 

and the obtained results are outlined in Figure 3.10. 

 

Figure 3. 10 BSPN output data for the pump failure scenario 

The posterior failure probability profiles explain the dynamicity of the system failure. It 

also provides an updated cause-effect relationship between variables that may be changing 

with time. For example, at an early age (e.g., less than six years of operation), the 

mechanical unbalance is more likely to be caused by excessive vibration than by a 

misalignment of the pump’s shaft. After around seven years of operation, the mechanical 
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unbalance would be most likely caused by misalignment of the pump shaft as shown in 

Figure 3.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 11 Trends of posterior probabilities of excessive vibrations versus shaft 

misalignment 

Another observation from Figure 3.10, is the slight oscillation of the updated probability of 

the fluid fluctuation over time. This slight variation can be interpreted as the actual fluid 

fluctuation level is not contributing in the performance deterioration of the pump, thereby 

not increasing the failure probability of the pump.  

P
ro

b
ab

ili
ty

 

- Excessive vibration (Black)  
- Shaft misalignment (White) 
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The updated probability of electrical surge increases with time; however, its impact is still 

lower compared to the hydraulic surge in terms of causing the failure of the pump in ten 

years of operation. 

In summary, the benefit of being able to generate a time-dependent function to represent 

the conditional probability is to capture the effect of duration of the evidence on the 

conditional probability trend. In other words, using the proposed BSPN modelling tool the 

effect of disruptive event (e.g. excessive vibration) is captured in terms of the continuous 

trend and the continuous trend of the conditional probability capturing the evidence. 

3.4 Comparison of the Modelling Capabilities of BSPN with Other Techniques 

 3.4.1 Fault tree analysis 

To compare the modelling capabilities of BSPN, the same scenario of pump failure was 

analyzed using FTA and BN techniques. The FTA diagram was provided earlier in Figure 

3.2 and the results of the fault three analysis were summarized in Table 3.2 The most 

probable sequence (MPS) is the probability of the highest minimal cut set. Subsequently, 

the MPS is identified to be excessive vibration along with pump overloading. Based on 

equations 11 and 12, the MPS has a probability of 0.04, which is responsible for 39% of 

the cases of pump failure. 

P (MPS) = P (V) × 𝑃 (𝑃𝑂)                                                     (11)                                                 

Ratio (MPS) =
P (MPS)

P (PF)
                                                          (12) 
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The fault tree analysis has provided useful insight into the scenario of pump failure; 

however, the analysis is static, and does not incorporate any dynamic behaviour of the 

variables. 

3.4.2 Bayesian network 

(a) Static Bayesian network 

Static Bayesian network [96], [98] is the conventional form of discrete-time Bayesian 

network (DTBN) where the computation, based on step 4 in section 3, is founded on the 

Bayes theorem in a time-independent manner. 

 

Figure 3. 12 Bayesian network for pump failure scenario. 

In section 2, Figure 3.2 shows that a pump can fail by a combination of mechanical 

unbalance and overloading operations. The mechanical unbalance can be due to excessive 

vibration or misalignment of the pump shaft. However, other factors may cause a 
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mechanical unbalance or pump failure. The FTA is not able to capture the presence of those 

other factors. Using the leaky noisy-OR gate, BN can capture those other factors. Figure 

3.12 depicts the same pump failure scenario based on BN modelling. The conditional 

probability tables are attached to Figure 3.12. 

Table 3. 6 Summary of the BN modelling results 

 

The results presented in Table 3.6 illustrate the BN performances to capture the uncertainty 

and data updating capability. From the posterior probabilities, we can determine the 

contributing factors to the pump failure. The results reveal that mechanical and process 

failure is a significant contributor to failure of the pump compared to electrical failure. As 

well, excessive vibration has a major role in causing mechanical unbalance of the pump; 

coupled with pump overloading, these two root causes constitute the highest contribution 

to the pump failure scenario. 

(b) Dynamic Bayesian network 

 
Events Symbol 

Probability 

of failure 

Posterior 

probability 

In
p

u
ts

 

Excessive Vibration EV 0.20 0.34 

Shaft misalignment SM 0.10 0.19 

Fluid fluctuation FF 0.20 0.31 

Electrical surge ES 0.05 0.20 

O
u

tp
u

ts
 

Mechanical unbalance MU 0.24 0.57 

Hydraulic surge HS 0.21 0.68 

Pump failure PF 0.24 1 
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Dynamic Bayesian networks (DBN) are extended DTBN [96], [99], [100] that supports the 

modelling of the temporal evolution of random variables over a discretized timeline (i.e. 

time slices). The temporal evolution is presented by the dependency between the node in 

time (t) and its copy in time (t+△t). The joint probability at time (t+△t) is P (Ut+△t) as 

follows: 

𝑃(𝑈𝑡+△𝑡) = 𝑃(𝑋1
𝑡+△𝑡, 𝑋2

𝑡+△𝑡 , … , 𝑋𝑛
𝑡+△𝑡) 

                                        = ∏ 𝑃 (𝑋𝑖
𝑡+△𝑡|𝑋𝑖

𝑡, 𝑝𝑎 (𝑋𝑖
𝑡), 𝑝𝑎 (𝑋𝑖

𝑡+△𝑡))      𝑛
𝑖=1         (13) 

Where 𝑋𝑖
𝑡+△𝑡 and 𝑋𝑖

𝑡are the consecutive time slices of Xi with a time interval of △t, and 

 𝑝𝑎 (𝑋𝑖
𝑡+△𝑡) and 𝑝𝑎 (𝑋𝑖

𝑡) are the parents sets of Xi  at the time slices (t + △t) and (t), 

respectively.   

 

Figure 3. 13 Dynamic Bayesian network for pump failure scenario 
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Figure 3.13 depicts a DBN as multiple layers of replica of the static BN in Figure 3.12 The 

temporal arcs, represented in red colour, connect the copies of a same node in consecutive 

time slices. In this case study, the DBN was built based on discretisation of conditional 

probability distributions as illustrated in Table 3.7 The discretisation allows to extract a 

new value of the conditional probability at each time slice. 

3.4.3 Stochastic Petri nets 

The SPN in Figure 3.14 models the scenario of pump failure considering the occurrence 

of root causes following exponential distributions. The time-dependent variation of the 

intermediate and top events are collected at each moment. 

 

Figure 3. 13 SPN model for the pump failure scenario 
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Compared to other techniques, the SPN, in Figure 3.14, captures the continuous function 

of the variables instead of connecting discrete points to draw the continuous variables. This 

capability gives the model accuracy in capturing the input data and generating the output 

data. However, the SPN tracks back the effect of evidence in the output on the probabilistic 

variables, which is commonly known as data updating.  

 3.4.4 Comparative analysis of the generated models 

Initially, it is worth noting that the static models such as FT and static BN can perform 

time-dependent analysis by choosing some time steps. Each time step has to be small 

enough to nearly fit the continuous function representing the real trend of the variable. 

Unfortunately, this is not feasible when monitoring systems during a medium to large 

periods. In this case study, the system is monitored for a period of ten years of operation. 

Thereby, technically the static models on multiple time slices cannot provide good 

performances in dealing with such data variation on a large period. For the presented case 

study, which is a small-sized model, the CPTs for the DBN model are generated on each 

time-slice based on the analogy presented in Table 3.7, where the variables (λ1,λ2, β1,β2, 

µ1,µ2,Ω1) are generated by data fitting. In certain cases, the variation of the conditional 

probabilities may follow complex distributions and mapping this behaviour in a set of 

discretized clones with small time steps for each variable would be a challenging and time-

consuming task. Although the BSPN present some uncertainties due to the use of Monte 

Carlo simulation, it is clear that it explicitly captures the time dependency of the conditional 

probabilities, which reflects the real complexity of dynamic systems much better than the 

discretization based methods. 
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Table 3. 7 Discretized time dependant conditional probabilities table for DBN, example: P(MUat t+Δt) 

 

Table 3. 8 Summary of selected results from BSPN and other modelling techniques 

   

Available/used  

data type 
Pump operating duration (years) 

   

Time 

step 
Continuous 1 2 3 4 5 6 7 8 9 10 

P
ri

o
r
 

p
ro

b
a
b

il
it

ie
s 

Initiator 

events 

Excessive Vibration   √ 0.234 0.253 0.269 0.284 0.298 0.31 0.322 0.333 0.343 0.353 

Shaft misalignment   √ 0.102 0.111 0.131 0.163 0.207 0.262 0.329 0.402 0.481 0.561 

Fluid fluctuation   √ 0.375 0.41 0.432 0.449 0.464 0.476 0.486 0.495 0.503 0.511 

Electrical surge    √ 0.057 0.064 0.07 0.077 0.084 0.09 0.097 0.104 0.11 0.116 

In
te

rm
ed

ia
te

 n
o
d

es
 

Mechanical 

unbalance 

FTA (time step) √   0.312 0.336 0.365 0.401 0.443 0.491 0.545 0.601 0.659 0.716 

DBN √   0.260 0.270 0.290 0.320 0.350 0.380 0.430 0.470 0.520 0.570 

SPN   √ 0.030 0.061 0.090 0.117 0.144 0.167 0.189 0.208 0.228 0.245 

BSPN   √ 0.169 0.204 0.238 0.277 0.323 0.374 0.433 0.493 0.557 0.619 

Hydraulic 

surge 

FTA (time step) √   0.117 0.138 0.158 0.180 0.206 0.234 0.265 0.298 0.331 0.366 

DBN √   0.260 0.270 0.290 0.320 0.340 0.360 0.400 0.430 0.470 0.500 

SPN   √ 0.001 0.003 0.006 0.011 0.016 0.023 0.030 0.038 0.047 0.057 

BSPN   √ 0.357 0.396 0.44 0.494 0.558 0.626 0.694 0.754 0.807 0.85 

E
n

d
 s

ta
te

 

n
o

d
e Pump 

failure 

FTA (time step) √   0.167 0.193 0.217 0.243 0.272 0.303 0.336 0.371 0.405 0.439 

DBN √   0.290 0.300 0.320 0.340 0.360 0.380 0.410 0.440 0.470 0.490 

SPN   √ 0.006 0.013 0.021 0.031 0.041 0.053 0.064 0.078 0.092 0.106 

BSPN   √ 0.246 0.307 0.36 0.418 0.481 0.545 0.608 0.664 0.714 0.754 

EVat t+Δt 

SMat t+Δt 

MUat t 

EVT EVF 

SMT SMF SMT SMF 

T F T F T F T F 

MUat t+Δt T exp(-λ1xΔt) exp(-λ2xΔt) exp(-β1xΔt) exp(-β2xΔt) exp(-µ1xΔt) exp(-µ2xΔt) exp(-Ω1xΔt) 0 

 F 1- exp(-λ1xΔt) 1- exp(-λ2xΔt) 1- exp(-β1xΔt) 1- exp(-β2xΔt) 1- exp(-µ1xΔt) 1- exp(-µ2xΔt) 1- exp(-Ω1xΔt) 1 
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Figure 3. 14 Temporal evolution of updated probabilities using DBN (red dots) and 

BSPN (blue line) 

Table 3. 9 Comparison of the modelling capabilities of BSPN against FTA, BN, and 

SPN 

 Variable FTA DBN SPN BSPN 

B
as

ic
 e

v
en

ts
 

Excessive 

Vibration 

Constant 

or 

time-

sliced 

time-slices 
Continuous 

function 

Continuous 

function 

Shaft 

misalignment 

Constant 

or 

time-

sliced 

time-slices 
Continuous 

function 

Continuous 

function 

Fluid fluctuation 

Constant 

or 

time-

sliced 

time-slices 
Continuous 

function 

Continuous 

function 

Electrical surge 

Constant 

or 

time-

sliced 

time-slices 
Continuous 

function 

Continuous 

function 
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In
te

rm
ed

ia
te

 

an
d
 t

o
p
 e

v
en

t Mechanical 

unbalance 
OR gate 

Leaky noisy-OR 

gate 

Continuous 

function 

Continuous 

function 

Hydraulic surge OR gate 
Leaky noisy-OR 

gate 

Continuous 

function 

Continuous 

function 

Pump failure AND gate 
Leaky noisy-OR 

gate 

Continuous 

function 

Continuous 

function 

M
o
d
el

 c
ap

ab
il

it
ie

s 

Conditional 

probabilities 
- 

Discretized time 

dependant 
- 

Continuous 

function 

Updated 

probabilities 
- 

Discretized time 

dependant 
- 

Continuous 

function 

Dynamicity Low Low High High 

Graphical 

structure 
Explicit 

Explicit only if 

there is limited 

number of 

connections 

Non-explicit at 

medium and 

large model 

sizes 

Explicit with 

no physical 

connection 

between nodes 

 

Table 3.8 and Table 3.9 provide a comprehensive comparison between the modelling 

capabilities of BSPN formalism against FTA, DBN and SPN techniques. Figure 3.15 

depicts the time varying behaviour of the updated probabilities. It can be seen that the BSPN 

has captured more variation in the trend of the probabilities compared to the DBN. The 

results are be captured in continuous time-dependent form instead of discrete points 

assumed to be linearly connected. As with the inputs, the output data are continuous and 

dynamic in nature. Additionally, the BSPN is endorsed with the capacity to handle dynamic 

processes, time-dependent data updating along with the explicit (i.e. non congested) 

graphical structure.  

In other words, the basic conditional probability, in BSPN, is considered time-dependent 

because of the cumulative effect of the failure scenario for example fatigue is a cumulative 

function, thereby the dependency itself is a varying function. The dependency changes 

when the time changes. Similarly, an argument can be made toward the vibration effect and 

the process disturbance events such as high fluctuations of fluid flow.  
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Furthermore, a discrete model can run multiple times in time slices fashion; however, this 

remains to be discrete time form. Where continuous model, by defining the conditional 

dependencies, which is the focus of the work, the model can run in any interval of time, it 

does not have to be discrete. Furthermore, if the system is running for a period of medium 

to large period of time, the discrete model has to run at the same frequency as you wish to 

see the outcome. Additionally, the relationship between the discrete values are considered 

to be independent. In other words, the dependency remains the same moving forward 

except the time dependency. Where in BSPN, the variables and the dependencies both are 

running in a time-dependent form. 

3.5 Conclusions and Further Work 

This chapter introduced the BSPN as an innovative modelling tool that combines the 

concepts of BN and SPN in an interactive way. Compared to conventionally used 

techniques, BSPN offers higher features for modelling complex and dynamic systems with 

time-varying behaviour. As demonstrated, BSPN relies on, and adopts to, the dynamic data 

updating as a new concept. Additionally, BSPN can be used as an advanced formalism with 

ample potential for application in availability and safety analysis. The BSPN has hybridized 

SPN and BN in one formalism by integrating Bayes theorem into the transition variables. 

This was established by codding the Bayes rules equations (see equations 1 to 10) in form 

of mathematical variables that will be concurrently executed while running the SPN 

simulation. The objective is to strengthen the modelling capabilities of SPN with 

continuous data updating. This modelling tool, or formalism, takes into account multiple 

interactions that cannot be considered in either conventional SPN or DBN. The three most 
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commonly used techniques, FTA, DBN and SPN are used to estimate the failure probability 

of a scenario. The estimated probability is dependent on a constant logic (i.e. dependency) 

and changes in the prior probability. Where in BSPN, it is accounting for changes in the 

prior probability but also in continuous changes of the conditional probabilities. This 

capability has significant importance for failure diagnosis. This formalism has shown a 

relevant capability to meet the requirements for efficient safety analysis, such as: 

a. Ability to handle failure behaviour of complex systems,  

b. Dynamic in nature to capture changes in safety and risk-related parameters,  

c. Large-scale applicability, and 

d. Explicit graphical structure. 

Further work needs to be done to test, verify, and optimize the BSPN formalism. For 

example, the equations and the computational complexity increases with the number of 

parents’ nodes (e.g. over four parent nodes), and the levels of ascendency. This area is 

subject of further improvement. It is worth noting that no attempt has been made here to 

perform uncertainty analysis; this will be incorporated in an upcoming paper. 
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4. CORROSION RISK ASSESSMENT MODEL WITH 

APPLICATION 
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Kelly Hawboldt contributed through support in improving the work. Kelly Hawboldt also 
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Abstract 

Corrosion is one of the main threats to asset integrity in the oil and gas production and 

processing facilities. This chapter presents a practical quantitative corrosion risk 

assessment methodology with a specific focus on microbiologically influenced corrosion. 

This includes details of Bow-Tie (BT) corrosion risk model development. The proposed 

Bow-Tie model is statistically verified against an existing corrosion database, including 

cases of corrosion occurrences and corrosion-induced failures. The methodology also 
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provides opportunity to run root-cause contribution analysis, estimation of the probability 

of corrosion, corrosion-induced failures, and highly probable sequences leading to failure. 

The methodology is demonstrated using an oil transportation pipeline system. The study 

identifies and quantifies parameters that help to prioritize the actions needed to prevent and 

control corrosion and avoid failures. Once implemented, the proposed methodology would 

serve an important mechanism to identify, assess, and manage corrosion threat to an asset. 

Keywords: Corrosion risk assessment, Bow-Tie, Risk, Corrosion, Biocorrosion, 

microbial influenced corrosion. 

4.1 Introduction to Corrosion Risk Assessment (CRA) 

Corrosion is a major cause of deterioration and failure of process equipment in the oil and 

gas industry. Pipelines are particularly susceptible to localized corrosion [4]. In pipeline 

systems, external corrosion is due to contact with the environment through; (i) acidic 

atmosphere in above ground pipelines, (ii) corrosive soils in buried pipelines, and (iii) 

marine life and seawater temperature in submerged pipelines. Internal corrosion takes place 

when a corrosive fluid comes in contact with a vulnerable metal surface. This process 

occurs under specific operating conditions and within a pH range favourable to corrosion 

(e.g. microbiologically influenced corrosion (MIC)). The vulnerability of the metal surface 

(i.e. wettability, roughness and micro-cracks) is an important factor when it comes to 

localized corrosion. The rate of localized corrosion can grow faster and cause premature 

corrosion-induced failure (CIF) of the asset. CIF is typically a leak, which leads to 

contamination by a hazardous materials spill, vapour cloud explosion (VCE), or toxic 

releases, depending on the geolocation and nature of the carried fluid inside the pipeline. 
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Sadiq et al. [6] assessed the risk of corrosion associated failure in a probabilistic form using 

Monte Carlo simulation. The work focused on the failure prediction when the factor of 

safety is smaller than 1. This study focused on the probability of failure and did not consider 

consequences. Several other studies [7]–[9] attempted to assess the risk of corrosion by 

considering the component of corrosion occurrence without any consideration to the 

consequences analysis part. A study by Pursell et al. [10], examined both the likelihood and 

consequences of corrosion. The likelihood of corrosion was estimated based on De Waard 

& Milliams Method [11] with a correction factor. Where the consequences were assessed 

in terms of number of persons harmed by a failure, based on the population exposed and 

likelihood of harm from the failure. Assessing the risk of corrosion in a conventional way 

requires case-specific consideration with limited flexibility. The proposed methodology 

overcomes this practicality issue by providing a generic method largely applicable to 

different process systems and corrosion mechanisms. 

Among different corrosion mechanisms, MIC is the most challenging to identify and assess 

due to high dependency on operating conditions and highly localized nature [12], [13]. Risk 

assessment of corrosion in general, and MIC specifically, has proven to be a complicated 

task [14]. This chapter, in its application part, focuses on assessing the risk of MIC; 

however, the proposed methodology can be applied to different corrosion modes. Table 4.1 

summarizes the main contributions to MIC risk assessment in the literature. 
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Table 4. 1 Review existing of MIC risk models 

Model 

Output Factors considered 

Ref 

Q
u

a
li

ta
ti

v
e 
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Measure 
Modelling 

approach 
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si
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l/
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B
io
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ic

a
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M
o
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cu
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Maxwell 

and 

Campbell 

model 

 ✓ 

MIC rate  -Risk 

of MIC 

occurrence 

(Biofilm 

initiation) 

Analytical 

approach 

✓ ✓ ✓ ✓ [32] 

Sooknah 

Model ✓ 
 

Internal MIC 

Risk Factor (RF) 

Ranking based 

approach ✓ ✓ 
  [18] 

MIC 

Managem

ent Model  ✓ 

Integrated MIC 

Risk Factor 

(IMRF),  

Potential Pit 

Generation Rate 

(PPGR). 

Analytical 

approach 

  ✓ ✓ 
[21], 

[25] 

 

Kaduková 

Model ✓ 
 

Risk of External 

MIC in 

transmission 

pipelines 

Risk Matrix  

(Ranking 

approach) ✓ ✓ 
  [101] 

Skovhus 

Model ✓ 
 

Ranking of PoF 

for RBI 

Logical 

modelling 

approach 
✓ ✓ ✓ 

 [14] 

Neuro-

Fuzzy 

Model  ✓ 

Biofouling 

probability and 

directly link it to 

the MIC 

probability 

A combination 

of Fuzzy logic 

with Neural 

Networks 
✓ ✓ ✓ 

 [102] 

 

The work by Maxwell and Campbell [32] was the first attempt to quantitatively assess the 

risk of MIC. However, the term “risk” was defined and used  as the probability of corrosion 

occurrence leading to failure with known impact. The proposed model assessed the MIC 

rate by improving a previous study done by Pots et al.[31]. Maxwell and Campbell 

considered biological parameters such as number of bacteria per area and bacteria kinetics 

in assessing the MIC rate; however, no attempt was done to assess the consequences and 
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combine the two measures to properly analyze the risk of MIC in a given system. The work 

by Skovhus et al. [14] was the only study on MIC that acknowledged the need for 

consequence analysis and its probabilistic nature to draw the risk profile for MIC in a given 

system. The study did mention the importance of the consequence analysis, but provided 

qualitative risk based on known MIC damage information and cannot be used for predicting 

the MIC risk based on collected data. In addition, the study ignored the probabilistic nature 

and dependencies of input parameters. Introduction and further discussions on the proposed 

methodology to overcome the limitations stated above will be discussed in the following 

sections. 

4.2 MIC Induced Failure (MICIF) Database 

Studies have shown that MIC is most likely to occur in specific parts of the process circuit 

due to favourable conditions for microbiological settlement [17]. As stated in the scientific 

literature: “the lack of a public database of MIC related incidents and accidents limits the 

understanding of its full impact” [103]. A comprehensive database, named “MIC Induced 

Failure (MICIF) database” is currently under development. It serves as a tool to gather field 

data on MIC occurrences and the resulting failures. This database is a living document that 

will gather as much data as possible from investigation reports, scientific literatures and 

data from operators and servicing companies. For the purpose of the current study, only 

MIC cases in pipeline systems are shown and statistically analyzed in Table 4.2. 
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4.3 The Proposed Methodology  

A proper CRA study should target a specific corrosion mode, and combine the assessment 

of likelihood of the corrosion mode (i.e. root-causes analysis) with the analysis of 

subsequent outputs (i.e. consequence analysis) in terms of CIF. Figure 4.1 depicts the 

proposed generic diagram to assess the MIC risk in a process system, where PoC is the 

block assessing the probability of corrosion, and CoC is the block assessing the 

consequences. 

 

Figure 4. 1 Schematic presentation of the proposed analysis 

 

The logical structure presented in Figure 4.1 is known as the Bow-Tie (BT) diagram [118]. 

In the present work, the BT diagram is enhanced with the following features: 
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 Employs auxiliary FTs to assess the probability of consequence barriers (i.e. 

successful corrosion detection and mitigation). These auxiliary FTs capture the 

logical relationship between the detection techniques and corrosion mitigation 

strategies to allow for more accurate assessment. 

 Uses a deterministic gate to model the effect of limiting factors. The gate LF works 

as an inhibitor gate and eliminates the false positive corrosion likelihood when one 

of the limiting factors is not permitting any ignition of the corrosive process (e.g. 

microbiological growth in case of MIC). 

 Employs the voting gate KooN, where the output event occurs if at least K inputs 

out of N inputs occur. This gate is introduced to allow more flexibility. The output 

probability of a 2oo3 voting gate can be calculated as follows: 

 P(O2oo3) = P(I1) × P(I2) + P(I1) × P(I3) + P(I2) × P(I3) – 2 P(I1) × P(I2) × P(I3)   (1) 
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Table 4. 2 Pipeline cases from MICIF Database 

Reported Cases X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 Ref. 

Case 1: offshore 

pipeline Nigeria 
          ✓ ✓       ✓       ✓     [104] 

Case 2: Pipeline in 

Halfdan field 
          ✓         ✓             [105] 

Case 3: Subsea 

water injection 

pipeline offshore 

Denmark 

    ✓         ✓                   [25] 

Case 4: pipe in 

Halfdan production 

platform 

          ✓ ✓                     [106] 

Case 5: Carbon steel 

Alaskan pipeline 
            ✓               ✓     [107] 

Case 6: Pipeline in 

Otter Production 

System 

  ✓     ✓         
 

              [108] 

Case 7: Subsea 

pipeline in offshore 

Denmark 

          ✓   ✓                   [109] 

Case 8: Crude oil 

pipelines 
      ✓         ✓                 [26] 

Case 9: Eider Alpha 

pipelines 
            ✓     ✓               [13] 

Case 10: Pipes in 

Alaskan North 

Slope 

            
 

    ✓           ✓   [110] 

Case 11: pipeline 

from the Halfdan 

HBA platform 

          ✓           ✓           [111] 

Case 12: synthetic 

produced water 
          ✓     ✓           ✓     [112] 
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Case 13: water 

distribution system 

in Wisconsin USA 

✓     ✓     ✓   ✓       ✓ ✓     ✓ [113] 

Case 14: oil 

pipelines in Iran 
    ✓   ✓ ✓   ✓                   [114] 

Case 15: pipes in 

Lost Hills Oilfield, 

California 

✓       ✓ ✓               ✓       [115] 

Case 16: Pipeline in 

offshore India 
              ✓ ✓                 [116] 

Case 17: oil dispatch 

pipeline 
          ✓ ✓     ✓               [117] 

Contribution ratio 4.3% 2.1% 4.3% 4.3% 6.4% 19.1% 12.8% 8.5% 8.5% 6.4% 4.3% 2.1% 2.1% 4.3% 6.4% 2.1% 2.1%  
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The proposed methodology is an extension of a conventional BT analysis method. Adaption 

was required due to the complex nature of the corrosion phenomena. The adaptation was 

performed by adding a verification step against the historical incident of corrosion in 

similar assets and under similar conditions. The verification allows a reduction in the 

model-based uncertainty, which is one of the main drawbacks of the conventional BT 

analysis. The verification step was made possible by separating the probability of root-

cause events, which is case-specific, and its contribution as a component of the failure 

sequences. The newly proposed root-cause contribution (RCC) analysis allowed the 

consideration of the single contribution of each root-cause in the occurrence of the top 

event. This analysis uses the minimal cut sets (MCSs) analysis to link the root-cause as an 

element, independently of its probability, to the top event based on equation (2) given that 

the MCSs occur independently. 

 
𝑃(𝑇𝐸) = ∑ 𝑃(𝑀𝐶𝑆𝑗)

𝑚

𝑗=1

 (2) 

Where P(TE) represents the probability of the top event, in this case, the targeted corrosion 

mode; P(MCSj) is the probability of the Jth MCS, and m is the number of MCSs in the 

analysis. Figure 4.2 depicts, step-by-step, the proposed methodology. It is a three-step 

process, where each step contains several operations. Details on each step are provided as 

follows: 
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Figure 4. 2 Corrosion risk assessment flowchart 
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4.3.1 Step 1: Root-causes analysis 

Root-causes analysis is the first step in the corrosion risk assessment process. The simplest 

and most common way to link the root-causes to the occurrence of the unwanted event is 

to build a fault tree (FT) [59], [119], [120]. FT is a deductive top-down method to calculate 

the occurrence probability of an unwanted event, called the top event, as a function of the 

causal events or root-causes leading to it [75], [78], [121], [122]. In this study, the unwanted 

event is the “targeted corrosion mode”. The corrosion modes are different in terms of their 

mechanisms, root-causes and operating conditions that allow for their development. 

Therefore, assessing the risk of corrosion without first specifying its mode is technically 

incorrect. The proper FT structure should be based on a deep understanding of the corrosion 

mechanism and failure processes. This understanding should be supported by field data 

extracted from corrosion failure investigation reports by established institutions. In 

addition, corrosion-induced failure database should be constructed, as shown in section 4.2.  

In the proposed methodology, assessing the risk of corrosion is based on two sets of causal 

events: (i) causal events that increase the vulnerability of the metal surface to the corrosive 

process, and (ii) operational and design related specifications that fail to prevent the 

corrosive process from taking place. This type of classification channels the top-down 

thinking process while constructing the FT structure and also when performing the BT 

analysis. 
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 Microbiological Growth Allowance (MGA) Test: 

MIC is a complex process and the limiting parameter for its development is microbiological 

growth, which in this study is evaluated in terms of microbiological growth allowance 

(MGA) test. The limiting factors are grouped in a deterministic gate directly 

communicating with the top event. MGA can take either value 1 (i.e. open gate), which 

means that a microbiological growth is expected in the system. If there is no clearance from 

the limiting factors, the deterministic gate remains closed (i.e. MGA = 0), and the MIC is 

not expected to occur in the system. This MGA test is run as a pre-processing step of the 

corrosion threat assessment. Figure 4.3 depicts the MGA and its five components. 

 

Figure 4. 3 Microbiological Growth Allowance (MGA) Test and its components 

 

Table 4. 3 Microbiological Growth Allowance for each limiting factor 

Limiting factor MGAi 

Water presence > 5 ppm 
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Operating pressure < 5 MPa 

Microbiological exposition > 10 CFU/ml 

Nutrients sources > 5 ppm  

Operating temperature < 150 °C 

Table 4.3 presents threshold-based MGA for each limiting factor. The operating 

temperature has a significant impact on microbiological growth. In the literature, studies 

(e.g. [49], [53]) have assessed the effect of variation of temperature on the likelihood of 

microbiological growth. A temperature of 150°C was selected as the extreme value for MIC 

related microorganisms growth. Similar methods, along with SME opinion were used to 

assess the value of the remaining limiting factors. Figure 4.4 is the FT structure generated 

by applying Step 1 of the proposed methodology on MIC risk assessment. 

 

Figure 4. 4 FT model for MIC likelihood 
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In total, 17 root-causes are identified. Table 4.4 provides the description, category and 

method to be employed to assess the probability of each root-cause when applied to a given 

pipeline system. 

Table 4. 4 Summary of root-causes, their categories and assessment methods 

Root-

cause 
Description 

Design 

shortcoming 

Operational 

Anomaly 

Poor 

servicing 
Other Assessment method 

X1 Welding defects  
  

✓ 

 
Revealed by inspection 

X2 Rust bubbles 

presence 

   

✓ 
Revealed by inspection 

X3 Excessive residual 

stress 

 

✓ 

  
Monitored operations 

and asset integrity data 

X4 Frequency of bends 

and discontinuities 
✓ 

   
Asset specification 

X5 buckling and micro-

cracks 

 

✓ 

  
Monitored/assessed 

from asset integrity data 

X6 High surface 

wettability 
✓ 

   
Asset specification 

X7 Poor pigging 

operations 

  

✓ 

 
Assessed from 

operations and asset 

integrity data 

X8 Damage of internal 

coating  

 

✓ 

  
Assessed/revealed by 

inspection 

X9 Low flow velocity 
 

✓ 

  
Assessed from 

operations data 

X10 Poor electrochemical 

protection 

  

✓ 

 
Assessed from 

operations and asset 

integrity data 

X11 poor equipment 

draining 

 

✓ 

  
Assessed from 

operations data 

X12 Intermittent flow 

regime 

 

✓ 

  
Assessed from 

operations data 

X13 Inaccessibility for 

pigging 
✓ 

   
Asset specification 

X14 Poor anti-corrosion 

coating 
✓ 

   
Assessed from 

operations and asset 

integrity data 

X15 Low metal PREN 

value 
✓ 

   
Asset specification 

X16 Dead flow zones ✓ 

   
Asset specification 

X17 Inaccessibility for 

inspection 
✓ 

   
Asset specification 

The classification of the root-causes by category will allow generating results for each root-

cause and for each category. For example, the contribution of operational anomalies in the 
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development of the corrosive process in a given system is calculated based on the sum of 

the contributions of the root-causes that are part of this category.  

In the top part of the FT, the MIC occurrence is seen as the result of a combination of two 

main elements (i.e. AND gate) within the limiting factors (i.e. MGA gate). The first element 

is the vulnerability of metal surface characterized by its wettability and roughness. The 

second element is the MIC prevention measures during both operations and design phases. 

In Table 4.5, this logic is demonstrated in a qualitative form for the sake of simplicity. 

Root-causes such as welding defects and rust bubbles create spots for microbiological 

attachment and therefore contribute to biofilm initiation. Additionally, a low flow velocity 

and an intermittent flow regime contribute to the microbiological deposition on the metal 

surface and the nutrient diffusion to the biofilm. 

Table 4. 5 Illustration of MIC likelihood assessment at the top of the FT 

Surface vulnerability Failure to prevent MIC MGA MIC Likelihood 

Low Low 1 Very Low 

Low High 1 Low 

High Low 1 Low 

High High 1 High 

Low/High Low/High 0 Null 

The logic breaks down the root-causes into the metal surface susceptibility to a specific 

corrosion mode and the prevention measures against it, which captures most of the factors 

affecting MIC presence. In addition, the logic illustrated in Table 4.5 is an efficient way to 

eliminate the false positive corrosion likelihood when one of the limiting factors is 

negative. An example of a false positive assessment is when MIC  likelihood is assessed to 
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be “high” when the extreme operating pressure does not allow for any microbiological 

existence in the system.  

4.3.2 Step 2: RCC analysis and verification 

In modelling-based analysis, verification against field data is a highly valued element. The 

methodology, presented in this work, reduces the model-based uncertainty by proposing a 

simple statistical verification process. RCC analysis is based on the interference that root-

causes form MCSs, and that the MCSs lead to the top event occurrence. Therefore, 

quantification of the number of times each root-cause is present in a MCS, regardless of its 

probability, can determine the contribution of the root-cause in the top event occurrence. 

The contribution of each root-cause or causal event is then checked with the corrosion 

failure database for verification purpose. If the results of RCC analysis match the data on 

the CIF database. 

 Root-causes contribution (RCC) analysis  

After generation of the MCSs, the contribution of each root-cause is calculated based on 

equation (2). See appendix A for the full list of MCSs along with the generated 

contributions for each root-cause.  

 
Ci=

∑ MCSji in j

T
 

 

(2) 

Ci is the root-cause contribution factor, MCSj is the minimal cut set containing the root-

cause “i”, T is the total number of all occurrences (for this application there are 747 

occurrences). Depending on the size of the FT, the count of MCSs containing each root-
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cause can be calculated manually or it can be automatically generated on MS Excel using 

the following command: 

 ∑ MCSj

i in j

=COUNTIF(RANGE, Xi) (3) 

Table 4.6 presents the results of contribution of each root-cause using RCC analysis and 

the contribution ratio from the MICIF database. Table 4.8 presents the contributions by 

category based on RCC analysis. 

Table 4. 6 Statistical verification of root-causes contribution based RCC analysis 

Root-

cause 
Description 

Ci from RCC 

analysis 

Contribution ratio 

from MICIF 

database 

X1 Welding defects  3.61% 4.3% 

X2 Rust bubbles presence 3.61% 2.1% 

X3 Excessive residual stress 3.61% 4.3% 

X4 Frequency of bends and 

discontinuities 

3.61% 4.3% 

X5 buckling and micro-cracks 3.61% 6.4% 

X6 High surface wettability 14.46% 19.1% 

X7 Poor pigging operations 9.64% 12.8% 

X8 Damage of internal coating  9.64% 8.5% 

X9 Low flow velocity 9.64% 8.5% 

X10 Poor electrochemical 

protection 

4.82% 6.4% 

X11 poor equipment draining 4.82% 4.3% 

X12 Intermittent flow regime 4.82% 2.1% 

X13 Inaccessibility for pigging 4.82% 2.1% 

X14 Poor anti-corrosion coating 4.82% 4.3% 

X15 Low metal PREN value 4.82% 6.4% 

X16 Dead flow zones 4.82% 2.1% 

X17 Inaccessibility for inspection 4.82% 2.1% 

 

Table 4. 7 Contribution to the TE by category of root-causes 

Category Root-causes Contribution 

Design shortcoming X4,X6,X13,X14,X15,X16,X17 42.17% 

Operational Anomaly X3,X5,X8,X10,X11,X12 31.33% 
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Poor servicing X1,X7,X9 22.89% 

Other X2 3.61% 

 

Figure 4. 5 Statistical verification of root-causes contribution based RCC analysis 

If the two sets of contributing factors (i.e. from the model and the MICIF database) are 

statistically close enough, the FT structure is verified and can be applied to assess the MIC 

risk on a process system. If the verification is not satisfactory, the revision of the FT 

structure should be performed as shown in Figure 4.2. The results from RCC analysis 

presented in Table 4.6 reveal that the high surface wettability is the most significant factor 

contributing to MIC occurrence. In the second rank, the effects of flow velocity, pigging 

and internal coating were also highlighted as significant causal factors. Based on the results 

depicted in Figure 4.5, the FT structure is verified by comparing the RCC results with 

investigations of MIC cases reported on the database. As the database is a living document, 
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the contribution ratios should be updated and compared again to the RCC results. This 

updating process will allow for dynamic process of risk assessment based on progresses 

and findings on MIC occurrences and its resulting failures. 

4.3.3 Step 3: Probable sequence analysis 

After verification of the FT structure, the barriers between the corrosion occurrence and the 

CIF should be investigation using the same methodology described above. Tables 4.8 and 

4.9 are generated using Step 2 of the proposed methodology. For the corrosive process, 

corrosion detection and mitigation constitute the barriers between the corrosion and its 

damaging consequences in terms of CIF. 

Table 4. 8 Ranking of root-causes based on their contribution to the detection 

barrier 

Contribution Rank Root-causes Individual Ci 

1 Y4, Y5, Y6 16.67% 

2 Y1, Y2, Y3 11.11% 

3 Y6, Y7 8.33% 

 

Table 4. 9 Ranking of root-causes based on their contribution to the mitigation 

barrier 

Contribution Rank Root-causes Individual Ci 

1 Z1, Z2 25% 

2 Z3, Z4,Z5 16.67% 

 

4.4 Application of the Methodology to a pipeline system 

The verified FT structure is now applied to a case study of a pipeline system carrying oil 

products. The probabilities in Table 4.10 are generated based on an interview with SMEs 

from the Canadian company operating the pipeline system.  
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Figure 4. 6 BT of MIC risk assessment
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Table 4. 10 The probabilities assigned for the basic causes to a pipeline 

Sub-

model 

Symbol Description Probability 

of 

occurrence  
M

IC
 L

ik
el

ih
o
o
d

 
X1 Welding defects  1.00E-01 

X2 Rust bubbles presence 3.00E-01 

X3 Excessive residual stress 7.00E-01 

X4 Frequency of bends and discontinuities 1.00E-01 

X5 buckling and micro-cracks 5.00E-02 

X6 High surface wettability 3.00E-01 

X7 Poor pigging operations 2.00E-01 

X8 Damage of internal coating  3.00E-01 

X9 Low flow velocity 2.50E-01 

X10 Poor electrochemical protection 2.00E-01 

X11 poor equipment draining 1.00E-01 

X12 Intermittent flow regime 1.00E-01 

X13 Inaccessibility for pigging 4.00E-01 

X14 Poor anti-corrosion coating 3.00E-01 

X15 Low metal PREN value 7.00E-01 

X16 Dead flow zones 4.00E-01 

X17 Inaccessibility for inspection 2.00E-01 

M
IC

 D
et

ec
ti

o
n

 

Y1 Reliability of sessile population identification 6.00E-01 

Y2 Capability to monitor biofilm growth 2.00E-01 

Y3 Biofilm composition identification 3.00E-01 

Y4 Capability to detect MIC products 6.00E-01 

Y5 MIC mechanism identification 6.00E-01 

Y6 Corrosion Coupons reliability 7.00E-01 

Y7 Smart pigging reliability (ILI) 7.50E-01 

Y8 Radiographic inspection reliability 1.00E-01 

M
IC

 C
o
n
tr

o
l 

an
d
 M

it
ig

at
io

n
 

Z1 Biocides injection and monitoring 3.00E-01 

Z2 pH stabilizer injection and monitoring 2.50E-01 

Z3 Mitigative pigging reliability 5.00E-01 

Z4 Equipment draining reliability 4.00E-01 

Z5 Water treatment reliability 3.00E-01 

 

The probability of the most probable sequence (MPS) was calculated as 5.19E-02. The 

expression of the MPS is given as in equation (4). 
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 MPS = {X3, X6, X7, X9, X10, X14, X15} (4) 

 
Rj=

P(MCSj)

P(MPS)
 

(5) 

 

The conventional risk assessment methods considers the MPS only. The proposed 

methodology considers the remaining sequences as highly probable sequences (HPS) based 

on their MCS ranking factor (Rj). Table 4.11 summarizes the top five probable sequences 

leading to MIC occurrence along with the lowest probable sequence (LPS). 

Table 4. 11 Summary of relevant probable sequences leading to the corrosive 

process 

Title MCSj 

Rank 

Root-causes in the MCSj P(MCSj) Rj 

MPS 1 X3, X6, X7, X9, X10, X14, X15 5.19E-02 1 

HPS2 2 X3, X6, X7, X9, X10, X13 4.94E-02 95% 

HPS3 3 X3, X6, X7, X8, X10, X14, X15 3.46E-02 67% 

HPS4 4 X3, X6, X8, X9, X10, X14, X15 3.46E-02 67% 

HPS5 5 X3, X6, X7, X8, X10, X13 3.29E-02 63% 

LPS 108 X4, X5, X6, X8, X9, X12, X16,X17 6.72E-06 0.013% 

The obtained results from the case study application (i.e. input data in Table 4.10 and BT 

structure in Figure 4.6) are provided in Table 4.12.  

Table 4. 12 Summary of the BT modelling results 

Parameters Probability 

MIC likelihood (occurrence) 2.10E-01 

MIC detection 1.30E-01 

MIC control and mitigation 3.70E-01 

Near miss (C1) 1.00E-02 

CIF probability (C2+C3) 2.00E-01 

Near miss, or corrosion without failure, means that MIC occurred in the system, but it was 

successfully eradicated (i.e. there was successful detection and mitigation). The probability 
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of having a near miss is estimated to be 1.00E-02, which represents 5% of the expected 

MIC probability. The remaining 95% of the expected MIC probability is estimated to be 

MIC leading to failure of the pipeline system. This MIC induced failure will mostly 

manifest in the form of a pinhole in the pipeline wall leading to leakage. In the case of 

communicating MIC pits, which is a more complex form of MIC, the failure may lead to 

pipeline burst when the total stress exceeds the residual ultimate strength of the pipe. 

The MCS ranking factor (Rj) reveals that: P(MPS) ≈ P(HPS1). Therefore, it has to be taken 

into consideration as the same as the MPS. The probability of each remaining sequence 

from the top five (HPS3, HPS4 and HPS5) constitute two-third of the probability of the MPS. 

The analysis also revealed that the likelihood of MIC presence in the system in not high. 

However, if MIC did occur, there is a 95% chance of it leading to pipeline failure. This 

requires a revaluation of MIC detection techniques and mitigation strategies with more 

focus on the detection component (failure probability estimated as 87%). 

4.4 Conclusions 

This chapter presents a detailed methodology and model for corrosion risk assessment. The 

methodology has adopted the Bow-tie analysis approach. The corrosion risk model is 

developed using an improved logic-based causation approach (improved fault tree). The 

proposed model is verified using the collected field data on corrosion and its related 

failures. Where previous studies had relied on analytical approaches to predict the corrosion 

rate or its occurrence, the present study has built on the probabilistic approach. The 
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methodology, along with the model, is applied for MIC. The novelties of the current work 

include: 

 A new Bow-tie model for corrosion risk assessment in the probabilistic framework 

that minimizes the model-based uncertainties. 

 RCC analysis allows the assessment of the probability of root-causes and their 

contribution to the minimum cut sets and the top event occurrence.   

 Conventional FT analysis solely considers the MPS as a unique qualitative and 

quantitative parameter extracted from the MCS analysis. The proposed approach 

considers the set of highly probable sequences and compares them with the MPS 

using the proposed Rj factor. 

 Assessing the risk of corrosion based on two sets of causal events: (i) causal events 

increasing the vulnerability of the metal surface to the corrosive process, and (ii) 

operational and design-related specifications that fail to prevent the corrosive 

process from taking place. This classification channels top-down thinking processes 

while performing the BT analysis. 

 A pre-processing step is also implemented in this analysis to increase its efficiency 

and eliminate some of the false-positive assessments.  

It is worth noting that even though this methodology reduces uncertainties while assessing 

the corrosion risk, uncertainty handling is still a factor that requires further improvement. 

Also, other aspects, such as sensitivity analysis could be further investigated. The proposed 

methodology and model can be used to assess and monitor corrosion threats.  
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5. CORROSION RESILIENCE MODELLING 

5.1 Dynamic RAMS Analysis Using Advanced Probabilistic Approach 

Preface 1 

A version of this manuscript has been accepted and will be published in volume 77 of the 

Journal of Chemical Engineering Transactions. I am the primary author of this paper. Along 

with the co-authors Faisal Khan and Zaid Kamil. I developed the conceptual model and 

subsequently translated this to a reliability-availability-maintainability and safety model 

using generalized stochastic Petri nets (GSPN). I carried out most of the literature review, 

data collection and analysis. I prepared the first draft of the manuscript and subsequently 

revised the manuscript based on the co-authors’ feedback. The co-author Faisal Khan 

helped in developing the concepts/models and their testing, reviewed and corrected the 

models and results, and contributed in preparing, reviewing and revising the manuscript. 

The co-author Zaid Kamil contributed through support in data collection. Zaid Kamil also 

assisted in reviewing the manuscript. 

Abstract 1 

The increasing complexity of modern socio-technical systems has raised new challenges to 

analyze the reliability, availability, maintainability, and safety (RAMS) of oil and gas 

processing facilities. This chapter presents a new approach to perform RAMS analysis 

using stochastic Petri nets modelling blocks. Those blocks are small-sized Petri nets (PN) 
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that independently represent every component of the system. Depending on the component 

nature, such as repairable component periodically tested, non-repairable/replaced 

component, or standby component with the probability of failure to start, the PN block 

models the behaviour and the life cycle changes of the component and subsequently of the 

entire system. The PN blocks communicate through Boolean variables without being 

physically connected; this provides a less congested and easily trackable structure. It is 

observed that the proposed approach provides a robust and reliable mechanism of RAMS 

analysis. This work constitutes a significant step toward an integrated dynamic model for 

RAMS analysis. The proposed RAMS model is composed of three strong characteristics: 

time dependency, robustness, and explicit graphical structure. 

5.1.1 Introduction 

Reliability, availability, maintainability and safety (RAMS) analysis was first developed 

for determining the integrity of engineering design. Later on, it came to be used for 

performance evaluation of the installation and operations. The process facilities always 

considered to be complex systems due to the involvement of hazardous chemicals, pipeline 

clusters, assemblies, sub-systems and components, all of which are subject to failure. 

Therefore, it requires regular maintenance to maintain its integrity and performance [123]. 

Due to technological and cost limitation, it is not feasible to design a maintenance free 

installation or equipment. Installation or equipment deteriorate with time due to usage, wear 

and tear (Eti et al., 2007).  
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In recent decades, RAMS analysis influenced various industries and facilities, and served 

as an integral part of the systems’ design. It constitutes a useful tool for reliability analysis 

[125] and availability of systems (Komal et al., 2010). As far as availability is concerned, 

it is one of the most important performance measures, especially for those industries or 

facilities where equipment repair is possible (Komal et al., 2010). However, each facility 

or plant is subject to failures due to the lack of strategic maintenance procedures or the 

inability to predict the potential hazard, thus resulting in an accident. To avoid the potential 

hazards, periodic maintenance strategies must be applied. Therefore, maintenance is also 

considered to be a key factor in enhancing system performance [127]. Any activity that 

ensures the performance of equipment to perform its intended work is termed as 

maintenance (Komal et al., 2010). Failure rate and repair time are the key elements that 

may result in improving both reliability and maintainability of the system. Further, 

improving both may result in the improvement of system availability too (Nepal and 

Monplaisir, 2007).  

The oil and gas industries have highly complex technological systems that require a 

strategic approach from the provider for the availability of equipment to meet the increasing 

demand criteria. Therefore, to implement a strategic approach to RAMS, they require deep 

knowledge about the system to implement probabilistic tools and methods for identifying 

the system performance (Corvaro et al., 2017). To evaluate the performances of a system, 

various methods are available, among them RAMS analysis can be used to measure key 

performance metrics of the system that may include MTTF (mean time to failure), MTTR 
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(mean time to repair), MTBF (mean time between failure), EDT (equipment down time) 

and system availability which provides the need of the maintenance to meet the desired 

objectives (Sharma and Kumar, 2008).  

Unlike any other probabilistic technique available, PN blocks can easily represent a large 

variety of component types, whether it’s periodic testing, standby system with failure to 

start condition, or repaired component. PN is proved to be a robust technique to study safety 

instrument systems (SIS) (Wu et al., 2018). In the present study, the PN blocks provide the 

life cycle behaviour of components and subsequently the entire system. 

The novelty of the work is to illustrate how PN blocks can represent each component and 

its behavioural changes in continuous and time-dependent form. Moreover, the new 

information obtained from the system can be used to update the model and subsequently, 

resulting in updated failure profile of the system. The updated system profile can be used 

for decision making in maintenance strategies.  

5.1.2 Stochastic Petri Nets with Predicates: Definition and Basic Concept 

Stochastic Petri nets (SPN) are bipartite graphs which can provide intuitive illustrations of 

each component state in a system. It was first introduced in Carl Adam Petri’s dissertation 

(David and Alla, 2010). PN is a promising tool to study and model the relationships 

between asynchronous, co-current, distributed, parallel, non-deterministic, and/or 

stochastic systems [133]. The glossary notation of SPN is shown in Figure 5.1.1. As can be 

seen the places are drawn as circles, and transitions as rectangular bars. Arcs, connecting 
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the former to later, are known as input directed arcs while those connecting the latter to 

former are known as output directed arcs.  

 

Figure 5.1. 1 Simple example of SPN with predicates and assertions 

The primitives of the above notations are as follow; 

 The places represent the state or conditions of a component. 

 The transitions represent the change in the state/condition of a component from 

initial, intermediate, to final place. It is capable of modelling the dependencies 

between the components. 

 Transition firing only occur when the multiplicity of tokens is at least equal to 

multiplicity of the associated input arc. 

 Tokens create the dynamicity and trackability of the model 

 Directed arcs decide the token from place to transition or transition to place. 

 Predicates are the variables represented by “?” (e.g ?A), resulting in validation of 

the transition. 

 Assertions (e.g.!A) are variables which update as a result of transition firing. 
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5.1.3 Dynamic Modelling Capability of SPN with Predicates and Assertions 

To model the complex system behaviour for RAMS analysis, GRIF’s Petri nets module 

[84] has been used in the present study. The PN blocks are capable enough to show both 

working and dysfunctional states of equipment. Depending on the component nature, such 

as, repairable systems periodically tested, non-repairable/replaced systems, or standby 

systems with the probability of failure to start, the PN block models the behaviour and the 

life cycle changes of the component and subsequently of the entire system. Further, each 

transition in SPN is capable for reflecting the dependencies among the equipment using 

stochastic or deterministic variables [131]. The SPN with predicates and assertations 

suggested in IEC 61508 [93]. It has pre-programmed continuous distributions available to 

specify the transition configuration, such as Weibull distribution, which is useful to provide 

installation/equipment time-dependent life cycle.  

A transition can be enabled when the input place has at least equal or greater number of 

tokens than the multiplicities of the input arc associated with the transition. Once transition 

is enabled, the token moves from the input place and resides in the output place. It is worth 

noting that the token only resides at places, and transition defines the firing time of them. 

The firing time is based on the transition specifications and the token migration from input 

to output place depends upon the input and output functions (Zhou et al., 1990). If there are 

two or more output arcs from transition to places, then the token migration depends on the 

priority given for each arc. It is a useful feature which can be used for assigning priorities 

for working, repairing or testing of equipment. This simple notation is to provide better 
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understanding for the reader about the capability of the PN blocks driven by SPN with 

predicates and assertion. However, in the next section, its application using a 

comprehensive case study will be shown.   

5.1.4 Petri Nets Modelling Blocks 

A PN is constituted of places, transitions, arcs and tokens. Modelling large and complex 

accident scenarios or reliability assessment models based on these elementary constituents 

can be a tremendous task for the risk or reliability analyst. This explains why the PN models 

are less popular, and they require an expert in modelling to build, adjust and track the 

models.  

Table 5.1. 1 Main modelling features of SPN block-based model compared to the 

conventional techniques 

Element 

of the 

model 

FT BN Conventional SPN SPN block-

based model 

Root cause 

element 

Basic event 

(binary state) 

Marginal 

node 

(multistate) 

Embedded in the 

overall model (not 

specified) 

A physically 

separated sub-

network 

The logic Logic gates 

(AND, OR, 

KooN) 

Conditional 

probability 

table (CPT) 

One or more 

stochastic 

transitions 

Mathematical 

variable or 

Boolean 

function 

Connection Directed arcs 

(acyclic) 

Directed 

arcs 

(acyclic) 

Directed arcs 

(cyclic) 

Directed arcs or 

Boolean 

variables 

Table 5.1.1 summarizes the main modelling features of the proposed model and compares 

it with the conventional techniques such as fault tree [59], Bayesian networks [12], [75] 
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and the conventional SPN [132]. In total, six PN blocks are capable to model most of the 

risk and/or reliability process components. 

 

Figure 5.1. 2 RPT and PE bocks and their virtual connections through the Boolean 

functions 

Figure 5.1.2 depicts RPT and PE blocks and highlights some of the virtual connections 

established through the use of Boolean functions such as “Test_run_S1”. This function 

communicates the time when the period test (i.e. planned event) will start and when it will 

end. The transition firing law “ifa”, which means “in advance appointed time” is used to 

generate a token at the appointed time. The two variables of the law are delay between two 

fires and delay of first fire respectively. The rest of the Boolean variables and parameters 

are summarized in Table 5.12 and Table 5.1.3 respectively. 
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Table 5.1. 2 Summary of the mathematical variables and Boolean functions used in 

the PN blocks 

Variable Type Function Involved 

in 

blocks 

Test_run_S1 Boolean 

function 

Captures the starting time and ending time 

of the test (i.e. periodic maintenance) 

PE and 

RPT 

Reliability_Ci Mathematical 

variable 

Observes the probability of having a token 

in the dormant failure state (e.g. places #2, 

#5 and #153). See equations 1 and 5. 

RPT and 

RFS 

Availability_Ci Mathematical 

variable 

Observes the probability of having a token 

in states where the component is available 

(e.g. running and standby) 

RPT and 

RFS 

Maintaina-

bility_Ci 

Mathematical 

variable 

Observes the probability of having a token 

in states where the component waiting for 

repair or under-repair. 

RPT and 

RFS 

High_level Boolean 

function 

This function triggers some transition to 

fire following the occurrence of a high 

level in a specific drum. This can be 

replaced with the appropriate function 

depending on the process system. 

RPT and 

RFS 

UE Mathematical 

variable 

This variable calculates the probability of 

TE at each moment based on the variation 

of the root cause elements. 

TE 

Table 5.1. 3 Summary of the parameters in the PN blocks mostly taken from 

OREDA database [134]  

Parameter Meaning Value/rate 

(h-1) 
Appears 

in 

Parameter 

Lambda_Ci Failure rate of 

component i 

5.70E-07 Figures 

5.1.2 and 

5.1.4 

Lambda_Ci 

Mu_Ci Repair rate of component 

i 

0.1667 Figures 

5.1.2 and 

5.1.4 

Mu_Ci 

Lambda_test_Ci Failure rate during test of 

component i 

5.70E-07 Figure 

5.1.2 

Lambda_test_Ci 

Gamma_Ci Probability of failure to 

start 

0.001 Figure 

5.1.4 

Gamma_Ci 

Gamma_test_Ci Probability of failure due 

to starting the test 

0.001 Figure 

5.1.2 

Gamma_test_Ci 
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Sigma_test_Ci Probability of detection 

failure 

0.8 Figure 

5.1.2 

Sigma_test_Ci 

Omega_test_Ci Probability of 

maintenance failure 

0.001 Figure 

5.1.2 

Omega_test_Ci 

 

Figure 5.1. 3 TE and ET bocks and their virtual connections through the Boolean 

functions 

 

Figure 5.1. 4 RE and RFS bocks and the resource sharing between two RFS blocks 

(redundant system) 
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Figures 5.1.3, 5.1.4 and 5.1.5 depict the various types of PN blocks. These figures are 

adapted and modified from our previous work. The reader interested in learning more about 

the case study can refer to the work of Taleb-berrouane et al. (2016). The resource sharing 

shown on Figure 5.1.2 and Figure 5.1.4 model the availability of the maintenance team (i.e. 

resource) to repair the failing component. Based on the PN block-based model, RAMS 

parameters for each component can be calculated in the form of mathematical variables as 

follows: 

 RPT block (one component only) in Figure 5.1.2: 

Reliability: R(t) = 1 – Pc (#2) 

Operational availability: A =
Time (#1) + Time (#22)

Overall observed time 
 

Maintainability: M = Time (Authorization) + Time (#3) 

Safety index: S = Pc (#2) × Criticality index 

(1) 

(2) 

(3) 

(4) 

Where “Pc” is the cumulative probability of having a token in a specific place. In the 

example “#153” means “place number 153”. Time (#143) means the cumulative average 

time, calculated based on Monte Carlo simulation, of a token in place number 143. The 

criticality index is a parameter, not included in this model, that assesses the level of 

criticality subsequent to the failure (i.e. failure consequences). In Figure 5.1.3, the 

consequences C3 and C6 are considered to be the hazardous situations that alter the plant 

safety and/or integrity. 

 RFS block in Figure 5.1.4: 
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Reliability: R(t) = 1 – Pc (#153) 

Operational availability: A =
Time (#144) + Time (#154)

Overall observed time 
 

Maintainability: M = Time (#247) + Time (#143) 

Safety index: S = Pc (#153) × Criticality index 

(5) 

(6) 

(7) 

(8) 

RAMS parameters for the overall system can be extracted from the TE block in Figure 

5.1.3: 

Reliability: R(t) = 1 – Pc (#79)                (9) 

Operational availability: A =
1 − Time (#78) 

Overall observed time 
 

 

(10) 

 

Maintainability: M = ∑ Time (C1_Authorization)  +
𝑛

𝐶=1

 Time (C1_under_repair) 
(11) 

Safety index: S = [Pc (#246) + Pc (#244)] × Criticality index (12) 

Some specific details may need to be adjusted to suit some process systems; but the 

conceptual design of the PN blocks have a large applicability for process systems.  

5.1.5 Conclusions and Future Directions 

In this chapter, a new approach for RAMS analysis using a PN block-based model was 

proposed. In total, six block types were developed to model repairable component 

periodically tested, random and planned events’ occurrence, standby component with the 

probability of failure to start, end-state event or top event and the event tree structure. The 

PN blocks communicate through Boolean variables without being connected by any arcs 
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and transitions. This arrangement results in a less congested and easily trackable model. In 

addition, it was demonstrated how an extended form of stochastic PN can be used to 

overcome the structural complexity and state explosion limiting the use of PN for risk and 

reliability modelling. In upcoming work, the proposed modelling approach will be applied 

for a complex process system for extended testing and verification. 
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5.2 Dynamic Resilience Modelling of Process Systems 

Preface 2 

A version of this manuscript has been accepted and will be published in volume 77 of the 

Journal of Chemical Engineering Transactions. I am the primary author of this paper. Along 

with the co-author Faisal Khan. I developed the conceptual model and subsequently 

translated this to a dynamic resilience assessment model using generalized stochastic Petri 

nets (GSPN). I carried out most of the literature review, data collection and analysis. I 

prepared the first draft of the manuscript and subsequently revised the manuscript based on 

the co-author’ feedback. The co-author Faisal Khan helped in developing the 

concepts/models and their testing, reviewed and corrected the models and results, and 

contributed in preparing, reviewing and revising the manuscript. 

Abstract 2 

The hazards in complex process systems evolve at an accelerated rate. It is extremely 

difficult if not impossible to identify and assess all potential hazards and develop strategies 

to manage them. This demands next generation of process system that is, intelligent to learn 

faults and prevent them from further propagating, adaptive to evolving conditions, and 

quick to recover in case failures take place in a component of part of the system. Resilience 

engineering is a comprehensive term that captures these three (absorptive, adaptive, and 

recovery) important characteristics of a system. There are limited tools to qualify or 
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quantify the resilience of a system. There have been hardly any studies conducted on 

dynamic resilience assessment. This chapter proposes a dynamic approach to quantify 

resilience under varying conditions. The approach uses Stochastic Petri-nets (SPN) coupled 

with Monte Carlo simulation to model and analyze resilience metrics. The proposed 

approach is tested on a crude oil pipeline system. The test results demonstrate a clear 

understanding of the resilience characteristics of the system and its evolving nature. This 

work puts forward a clear pathway for an integrated dynamic model for resilience 

engineering.  

5.2.1 Introduction  

Resilience engineering is a comprehensive term that captures the system’s characteristics 

beyond the fundamental concept of reliability. The resilience of a process system is its 

capability to handle a disruptive event and avoid failure. This can be satisfied by lessening 

the impact of the disruption on the system performance and/or reducing the disruption 

duration. According to Bruneau and Reinhorn (2007), a resilient engineering system should 

operate with reduced failure probability, reduced potential consequences subsequent to 

failures and reduced restoration time. The U.S National Institute of Standards and 

Technology [136] defines resilience in term of economic saving by minimizing the cost of 

a disaster and the ability to return to a state as good as or better than the initial level of 

performance. Resilience has been largely studied in the field of natural disaster risk 

reduction by Bruneau and Reinhorn (2006) and (2007) and Ayyub (2014) and (2015). 
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There is limited work that has attempted to qualify or quantify the resilience of process 

systems. Sarwar et al. (2018) have assessed resilience as a function of reliability, 

vulnerability and maintainability. They applied a Bayesian network (BN) approach [12], 

[47] to analyze the response of a remote offshore vessel in a scenario of a hydrocarbon 

release during offloading operation. Attoh-okine et al. (2009) define a resilience index as 

follows: 

Resilience=
∫ Q(t)

t2

t1
dt

100 (t1-t2)
 (1) 

Where Q is the performance or quality of a system, t1 is the disruption initiation or the time 

of incident that causes the decrease in the performance of the system, and t2 is the disruption 

termination or the time after recovery.  The resilience index or resilience measurement as 

shown in equation (1) is not sufficient to assess the resilience capacity of an engineering 

system. Other metrics are developed by researchers in the field of natural disaster 

management. The main resilience metrics are: 

(i) The absorptive capacity or robustness which is defined by Bruneau and 

Reinhorn in [135] as the strength, or the ability to withstand a given level of 

stress or demand without suffering degradation or loss of function. This 

concept has been further developed to cover the capability to absorb the 

impact of the disruptive event through inherent and/or adaptive 

mechanisms.  
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(ii) The adaptive capacity is demonstrated in term of the effect of the mitigative 

and control actions that will temporarily stabilize the performance of the 

system and afterwards allow the restoration to the new stable level. 

(iii) The restorative or recovery capacity is demonstrated in term of corrective 

actions such as equipment replacement or system reset that will bring the 

system from a temporary stabilized stage to a fully operational stage in as 

good as new or other stable levels of performance. 

 

Figure 5.2. 1 The proposed resilience lifecycle model (bathtub curve) 

Figure 5.2.1 displays the five stages or bathtub curve of resilience. Stage 1 presents the 

phase where the system is monitored and stable. Point A is the incident that triggers the 

disruption, and it can be modeled using a Poisson process. The incident can be a failure of 

a critical component in the system, an external factor or any event that lowers the 

performance of the system. Stage 2 expresses the effect of the disruption on the measurable 
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performance. It settles at point B where the control operations react and take effect. Stage 

3 shows a temporal stability of the system at a lower performance level. Part BC presents 

the performance degradation of the system in case no control actions are taken or failure of 

the control actions. Stage 4 shows the effect of corrective actions that aim to return the 

performance to the initial stage or a long-term stable level. Stage 5 is the new stable level 

of performance that can be higher than, equal to or lower than the initial level depending 

on the adopted maintenance strategy. 

The five stages of the bathtub curve are a function of dynamic factors and time-varying 

processes. This chapter aims to build a dynamic resilience model able to capture those 

dynamic factors and time-varying processes. The present chapter implements the proposed 

dynamic model in the field of pipeline corrosion engineering where the pipeline wall 

thickness is identified to be the practical measurement of system performance. 

5.2.2 Background on the modelling technique 

Petri networks (PNs) were first proposed in 1962 by Carl Adam Petri, as a new 

mathematical and graphical model to connect events and conditions [76]. A Petri Net is a 

weighted bipartite graph (P,T,A,w) [142] with two functional parts, a static and a dynamic.  
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Figure 5.2. 2 Glossary of Petri nets notations adapted from Talebberrouane et al. 

(2016) 

Figure 5.2.2 displays the static part of the PN represented by places (P), transitions (TR) 

and oriented arcs that connect places to transitions (i.e. input arcs, IA) and transitions to 

places (i.e. output arcs, OA). (W) represents the weight function on the arcs. For example, 

an inhibitor arc weights (-1). The dynamic part is expressed by movements of tokens (TO) 

following firing transitions (i.e. tokens’ migration from one or more input places to one or 

more output places). The marking represents the tokens’ number in a place. In addition to 

the conventional PN, a stochastic Petri Net (SPN) [144] also has non-deterministic firing 

delays associated with transitions. In a recent extension of SPN, the activation of a 

transition can be conditioned by one or more mathematical variables through the use of 

predicates and assertions [92]. The predicates or guards, as defined by IEC 61508-6 [93], 

are conditions which may be true or false, and control the transition firing. Assertions or 

assignments are the mathematical variables that receive predefined updates such as 

incrementation or state switching as consequences of the transition firing. In this chapter, 
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the SPN is coupled with Monte Carlo simulation to enhance its modelling capability. For 

more details, readers can refer to our previous work,. Taleb-berrouane et al. (2016). 

 

5.2.3 Dynamic resilience model for pipeline corrosion 

As pipeline ages, the integrity faces multiple and complex threats. Corrosion is the main 

threat to the pipeline systems [12], [145]. In this chapter, an SPN model is used to assess 

the dynamic resilience of crude oil pipeline (e.g. illustrative case). Figures 5.2.3 depicts the 

proposed SPN model that captures the main dynamic processes that influence the corrosion 

occurrence, control and mitigation. 

 

Figure 5.2. 3 SPN overall network for the pipeline resilience modelling 

 

Figure 5.2.3 displays the overall SPN model. The model is built on the interactions between 

six SPN blocks or sub-networks. The first three blocks (A, B, C) are the model’s interface 

for stage 1, stage 2 and stage 3 (according to Figure 5.2.1 definitions), respectively. Block 
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“B1” models the erosion process and its impact on the internal coating degradation which 

accelerates the corrosive process. Block “C1” is assigned to the corrosion control and 

mitigation actions. It captures the scheduling of pipeline servicing such as pigging and 

draining, as well as corrosion mitigation such as the cathodic protection and chemical 

treatment. The variation of the interval between operations and their first-time 

commencements will cause changes in the model variables. Subsequently, rates such as 

corrosion rate (CR) and corrosion control rate (CCR) will change accordingly. These 

changes make the model dynamic to the variations of the coating damage level, erosion 

process and pipeline servicing and inspection. Table 5.2.1 summarizes the dependencies 

between the PN main evolutive rates. 

Table 5.2. 1 Summary of the main evolutive rates and their details 

 
Main 

Evolutive 

rates 

Meaning Estimated 

value 

Variables affecting the rates Relevant sources 

CDR Coating 

degradation 

rate 

1 × 10-5 CDR = ƒ (residual stress, flow, fluid 

viscosity and composition, surface 

roughness, penetration resistance) 

(Papavinasam et al. 

2004) 

EMR Erosion 

mitigation 

rate 

1 × 10-4 EMR = ƒ (fluid turbulence, shear stress) [147] 

AGR Aggravation 

rate 

6 × 10-5 AGR = ƒ (residual stress, fluid 

turbulence, shear stress) 

(Islam et al. 2013; 

Ossai 2012; 

Papavinasam et al. 

2004) 

DER Debris 

entrance 

rate 

1 × 10-4 DER = ƒ (debris source, fluid turbulence) [149] 

CR Corrosion 

rate 

1 × 10-4 CR = ƒ (metal conductivity, fluid 

chemistry, coating, temperature) 

[150] 
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CMR Corrosion 

mitigation 

rate 

1 × 10-3 CMR = ƒ (cathodic protection, chemical 

treatment) 

[151] 

CCR Corrosion 

control rate 

1.6×10-4 CCR = ƒ (corrosion rate, process 

anomalies, servicing, cathodic 

protection, chemical treatment) 

[151] 

 

Figure 5.2.4 provides a schematic presentation of the system performance in term of 

decrease in pipeline wall thickness. The latter is a measurable performance, and it provides 

a clear understanding of the level of corrosion. The generated data from the SPN model, 

illustrated in Figure 5.2.4, allows the calculation of dynamic resilience metrics. The control 

mitigation point (CMP) corresponds to the moment when the corrosion control actions 

successfully reduce the corrosion rate, thereby decelerating the loss in wall thickness. The 

CMP and the following trend capture the positive effect of the corrosion control strategy in 

term of pipeline life extension as demonstrated in Figure 52..4. 

 

 

Figure 5.2. 4 Resilience curve for pipeline corrosion control 
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The absorptive capacity (AB) depicts the ability of the system to absorb the disruption and 

decelerate the corrosive process. It is expressed in Figure 5.2.4 by the area limited between 

the “S” and “M” scenarios following equation (2). The developed formulas are inspired 

from the work of Ayyub (2015). 

The adaptive capacity (AD) is the gain in pipeline lifetime due to the adoption of proper 

corrosion control actions. At this stage, the pipeline survives while operating on low 

performance. The restorative capacity in the case of pipeline corrosion is mainly 

represented in terms of pipeline replacement. 

Table 5.2. 2 Generated results in term of Resilience metrics 

Resilience metrics Calculated 

value 

Absorptive capacity 

Adaptive capacity 

Restorative capacity 

Resilience 

13.3% 

8.7% 

83.3% 

22.9% 

The obtained resilience metrics, in Table 5.2.2, reveal good performances of the system. 

Those metrics should be analyzed and compared in terms of cost of investment and return 

Absorptive capacity =
∫ S(t)

t𝑐

t𝑒
dt - ∫ M(t)

t𝑐

t𝑒
dt

∫ W(t)
t𝑐

t𝑒
dt

 (2) 

Dynamic adaptive capacity =
∫ S(t)

t𝑟

t𝑐
dt - ∫ M(t)

t𝑟

t𝑐
dt

∫ W(t)
t𝑟

t𝑐
dt

 (3) 

Restorative capacity =
∫ S(t)

t𝑡

t𝑟
dt 

∫ W(t)
t𝑡

t𝑟
dt

 (4) 

Dynamic Resilience =
𝑇𝑛 +  𝐷𝐴𝐵 △ 𝑇𝑐𝑒 + 𝐷𝐴𝐷 △ 𝑇𝑟𝑐 + 𝐷𝑅𝑆 △ 𝑇𝑡𝑟

𝑇𝑛 + △ 𝑇𝑐𝑒 +△ 𝑇𝑟𝑐 +△ 𝑇𝑡𝑟
 (5) 
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or savings in potential direct and indirect losses such as pipeline replacement at an early 

age (e.g. M scenario) or pipeline failure (e.g. F scenario). This part is discussed in.[139]. 

For more details, the reader is directed to aforementioned paper. 

5.2.4 Conclusion and Further Work 

This chapter introduced the concept of dynamic resilience modelling as a dynamic 

approach to quantify resilience and resilience metrics under varying conditions while 

handling the stochastic processes that interact with the system and can impact its 

performances. The application of the proposed approach to the pipeline corrosion control 

problem demonstrated its applicability and efficiency. The approach would help prioritize 

action to prevent and control corrosion prior to the failure stage or the equipment 

replacement at an early age. Further work needs to be done to optimize this SPN based 

approach. It is worth noting that the uncertainty analysis and the economical aspect of 

resilience engineering were not discussed in this work. This will be incorporated in an 

upcoming paper.  
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6. CONCLUSION 

6.1 Overall Conclusion  

Overall, it has been shown in this thesis that the evolving, complex and uncertain 

microbiological corrosion mechanisms requires advanced risk-based decision-making tools 

to capture the diverse factors contributing to MIC development in a process system. This 

thesis has made a significant step toward development of such tool by providing new 

methods, insights and guidance to:  

 Improve the understanding on how to correlate diverse chemical, physical, 

biological and molecular factors to assess the potential of MIC occurrence in a 

process system; 

 Develop an advanced tool able to diagnostic timely MIC occurrence under dynamic 

conditions;  

 Help corrosion specialists to perform a systematic MIC risk assessment study on 

their process facilities; 

 Provide metrics to assess the resilience of process equipment against the corrosive 

process. 

6.2 MIC Potential Assessment 

As discussed in this thesis, modelling the correlation of diverse influencing factors in the 

MIC occurrence is the key element in any susceptibility or potential assessment of MIC in 

process systems. Since not all the factors are deterministic and some of them can only be 
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assessed subjectively by a subject matter expert, it was concluded that the probabilistic 

approaches are the most suitable techniques to address the uncertainties in input data. In 

addition, the use of Bayesian analysis allows for adaption to missing data and also able to 

consider new data as evidence to update an earlier prediction. 

6.3 Dynamic Model for MIC Diagnosis 

When MIC occur in a system, the trends of condition of operations, microbiological 

analysis and process data constitute significant pieces to build the history of the system and 

diagnosis the root-causes leading to each stage. The timeline of occurrences reveal the 

cause-effect and correlation relationships. Therefore, a powerful modelling tool such as the 

BSPN is needed to capture the dynamic behaviours with respect to time. Even though, the 

capabilities of BSPN where demonstrated in this thesis, the step-by-step application of 

BSPN on a case of MIC that has led to equipment failure and the investigation provided 

sufficient data on the root-causes leading to the failure.  

6.4 Corrosion Risk Assessment 

A proper corrosion risk assessment framework should be adaptable enough for other cases 

or other process equipment (i.e. non case specific). The corrosion risk is a combination of 

likelihood and consequences of corrosion. The two elements and the combination should 

be assessed in a clear way. Verification of the model is also a critical step before making 

decisions based on the model outputs, either qualitative or quantities outputs. Reliable data 

is still a critical element in these data-driven models. Therefore, considerable effort should 

be make to build multi-sources database. 
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6.5 Corrosion Resilience Modelling 

As reliability assessment is an important analysis in asset integrity management of process 

facilities, resilience assessment is of equal or higher importance as it measures the 

characteristics of the system when facing a disturbance. For instance, absorptive, adaptive 

and restorative capacities are the resilience metrics to be assessed. The study in this thesis 

shows that corrosion prevention measures contribute toward higher absorptive capacity, 

while the detection and mitigation strategies contribute toward higher adaptive capacity. 

The restorative capacity is not very much affected by any of the conventional corrosion 

management strategies.  

6.6 Recommendations 

This research work introduces new concepts and overcomes some of the limitations of 

existing techniques in the field of corrosion engineering with a focus on MIC. This study 

can be extended further by addressing the following main limitations: 

 Consideration of time dependency in MIC potential assessment: 

It is worth noting that the proposed model for MIC potential assessment only estimates the 

potential of having MIC at a single moment. It does not assess the development of the 

potential of having MIC over time. This can be done by improving the existing model (i.e. 

OOBN model) into dynamic OOBN model. The latter supports the modelling of the 

temporal evolution of variables over a discretized timeline (i.e. time slices). The temporal 

evolution is modeled by the dependency (i.e. dependency arc) between the node in time (t) 

and its copy in time (t+△t). 
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 Consideration of competing and synergic processes: 

In some field cases, multiple corrosion modes might be present at the same time. For 

instance, MIC can occur simultaneously with stress cracking corrosion (SCC). The stress 

can cause a shift to the electrochemical potential by increasing the internal energy level of 

the metal. SCC generates micro-cracks that damage the protective layer on the metal 

surface leading to microbiological settlement to later form the biofilm consortium. Erosion 

can be seen as a competing process by removing early biofilm consortiums from the metal 

surface. A framework should be developed for cases where multiple corrosion mechanisms 

are present to capture the overall effect of active mechanisms on MIC development and 

equipment failure. 

 Test and validation of the BSPN tool on MIC diagnosis case study: 

This thesis proposed a modelling tool able to capture complex dynamic behaviour for 

diagnosis purposes. The modelling tool was initially tested and verified using a simple 

pump failure scenario. This modelling tool should be tested on a case study of MIC that 

has led to equipment failure and the investigation has revealed the exact root-causes leading 

to the failure. This work will be conducted when sufficient data from an MIC failure 

investigation report is available for the study. 

 Development of a dynamic model for corrosion risk assessment: 

This thesis identified the factors and parameters that should be taken into consideration 

when assessing the risk of MIC. The methodology provided in the MIC risk assessment 

chapter can be further improved by converting the Bow-Tie model into a dynamic model. 
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In future work, dynamic Bayesian networks will be introduced to allow for dynamic 

modelling for corrosion risk assessment. 

 Development of Corrosion failure database: 

As can be seen, the proposed models in this thesis require a high amount of data which are 

often difficult to obtain. Extracting data from existing experiment and literature can be 

challenging and is subjected to high uncertainties.  To overcome this challenge, the 

development of corrosion failure database using multi-sourcing data collection is required. 

In the MIC risk assessment chapter, an attempt was made to initiate such database and also 

illustrates the usefulness of this kind of database in extracting useful data necessary to 

conduct corrosion analysis studies.  

 Development of a commercial tool: 

Several modelling software tools were used in this thesis for the development and 

implementation of the proposed models. These tools are not freely available and requires 

modelling skills to operate them. Therefore, there is a need to develop an MIC dedicated 

commercial and user-friendly software tool for implementation of the proposed models for 

practical application. The developed software tool could be used as a comprehensive tool 

of an MIC threat assessment study. 


