Lithofacies and Alteration of the Hurricane Zone, of the Boomerang volcanogenic massive sulphide deposit, Tulks Belt, Central Newfoundland, Canada

By Michelle English

A thesis submitted to the School of Graduate Studies in partial fulfillment of the requirements for the

degree of

Master of Science

Department of Earth Sciences

Memorial University of Newfoundland

October 28th, 2019

St. John's, Newfoundland and Labrador

Abstract

The Hurricane zone of the Boomerang volcanogenic massive sulphide (VMS) deposit is part of the VMShosting Cambro-Ordovician Tulks volcanic belt. The Hurricane zone is one of three lenses in the deposit and consists of a sub-horizontal (semi-)massive sulphide lens with combined resources of 55,100 tonnes @ 13.4% Zn, 7.0% Pb, 1.20% Cu, 159.0 g/t Ag, and 2.00 g/t Au. Mineralization is hosted in intermediate to felsic volcaniclastic rocks of the ca. 488 Ma Pats Pond Group (Victoria Lake supergroup) and consists of banded sphalerite, galena, chalcopyrite, and pyrite, which are interpreted to have formed below the seafloor within subseafloor sediments. Four alteration assemblages are identified: intense sericite-quartzpyrite, sericite-quartz-chlorite-pyrite, intense chlorite and chaotic carbonate. Whole-rock lithogeochemistry and short-wave infrared spectroscopy are useful in identifying key elements/element ratios and variations in white mica chemistry/mineralogy associated with each alteration assemblage and are useful vectors to mineralization.

Acknowledgements

This thesis has greatly improved through the help of many. First and foremost, I would like to thank my supervisor, Dr. Stephen J. Piercey for his endless support, guidance and mentorship over the years. His passion and excitement for teaching and research are infectious and played a large role in my development as a geologist and a person. I would also like to thank Dr. Luke Beranek for being on my committee, providing me with advice and reviewing my manuscript. I would also like to thank the following people for providing me with valuable advice and support: Jean-Luc Pilote, Stefanie Brueckner, Marie-Eve Lajoie, Jonathan Cloutier, John Jamieson, Michael Buschette, Steve Delgaudio, and Alex Hutter.

This project was made possible by Canadian Zinc Corp., who provided logistical support and allowed me to study the Hurricane zone. I would especially like to thank Gerry Squires, Andrew Hussey, Alexandria Marcotte, Mike Vande Gutche, and Dianne Fost for providing me with countless resources and support.

Financial support for this project was provided by the National Sciences and Engineering Research Council (NSERC) Discovery Grant and IRC to S.J. Piercey. Additional funding was provided by NSERC-Altius Industrial Research Chair in Mineral Deposits (supported by NSERC, Altius Resources Inc and the Research and Development Corporation of Newfoundland and Labrador), and an SEG Canada Graduate Fellowship to Michelle English.

Last but certainly not least, I would like to thank my friends and family back home and the numerous of amazing friends I've met during my time at MUN. Special thanks to my parents, Paul and Robin, and brothers, Alex and Kurtis, for constantly supporting me and providing me with motivation to pursue my graduate degree. I am incredibly thankful for the opportunities and experiences that moving to Newfoundland has brought me.

Table of Contents

Abstract	ii
Acknowledgements	iii
List of Tables	vi
List of Figures	vii
Chapter 1: Introduction to the Hurricane Zone of the Boomerang Volcanogenic Mas Deposit, Central Newfoundland, Canada	ssive Sulphide 16
1.1 Introduction and Purpose of Study	
1.2 Previous Studies and Exploration History	17
1.3 Regional Geology and Tectonic Setting	19
1.4 Overview on Volcanogenic Massive Sulphide Deposits	21
1.5 Geology of the Tulks Volcanic Belt	25
1.6 Geology of the Boomerang-Domino-Hurricane Deposit	27
1.7 Objectives	
1.8 Methodology	
1.8.1 Drill Core logging and Sampling	
1.8.2 Major and Trace Lithogeochemistry	
1.8.3 Petrography	
1.8.4 Short Wave Infrared (SWIR) Spectroscopy	
1.9 Thesis Presentation	
2. Lithofacies and Alteration of the Hurricane Zone, of the Boomerang volcanogenie deposit, Tulks Belt, Central Newfoundland, Canada	c massive sulphide 41
2.1 Abstract	41
2.2 Introduction	
2.3 Regional Geology and Metallogenic Framework	
2.4 Local and Deposit Geology	44
2.4.1 Deposit Geology	
2.5 Stratigraphy and Lithofacies	
2.5.1 General stratigraphy	46
2.5.2 Lithofacies	
2.5.3. Mineralization and Alteration	
2.6 Lithogeochemistry	
2.6.1 Sampling and Analytical Methods	
2.6.2 Primary Immobile Element Lithogeochemistry	53
2.6.3 Mobile Element Lithogeochemistry	

2.7 Short Wave Infrared Spectroscopy	59
2.7.1 SWIR Results	61
2.8 Discussion	61
2.8.1 Tectonic and depositional setting of volcaniclastic rocks	61
2.8.2. Characteristics and controls on hydrothermal alteration	63
2.8.3 Implications for subseafloor replacement	66
2.8.4 Comparison between Boomerang zone and Hurricane Zone	69
2.9 Conclusions	71
2.10 Acknowledgements	72
2.11 References	73
Chapter 3: Conclusion	112
3.1 Summary	112

List of Tables

Chapter 1	
Table 1.1. Classification of VMS deposits based on six lithotectonic settings	

Chapter 2

Table 2.1a.	Representative	Whole-Rock	Geochemistry	of the HW	Samples in the Hurr	icane zone	.83
Table 2.1b	Representative	Whole-Rock (Geochemistry	of the FW s	samples in the Hurri	cane zone	.85

List of Figures

Chapter 1

Figure 1-1. Simplified tectonostratigraphic map of Newfoundland Appalachians with peri-Laurentia
(Notre Dame) and peri-Gondwana (Exploits) subzones based on Williams et al. (1988). VMS deposits
classification based on lithotectonic settings after Barrie and Hannington (1999) and Franklin et al. (2005)
(modified from Piercey, 2007)
Figure 1-2. Detailed tectonostratigraphic map of the Canadian Appalachians (after van Staal, 2007) with
distributions of Early Paleozoic tectonostratigraphic zones, subzones and other major tectonic elements
(in color). Thick lines to the west of the Notre Dame Subzone represents the Red Indian Line
Figure 1-3. Location and geology of the area surrounding the Red Indian Lake, including the Victoria
Lake Supergroup (VLSG). Relevant deposits indicated in northern and southern parts of the VLSG. TVB-
Tulks volcanic belt, VLIS- Valentine Lake intrusive suite, TPB- Tally Pond belt, CLIS- Crippleback Lake
intrusive suite (modified from Rogers et al., 2006)
Figure 1-4. Idealize cross-section of bimodal-felsic volcanic massive sulphide deposit (from Galley et al.,
2007)
Figure 1-5. Cross section of idealized hydrothermal alteration assemblage in bimodal-felsic VMS deposit
(from Galley et al., 2007)
Figure 1-6. Geological map of the southern Tulks volcanic belt illustrating the various rock types with
known base-metal and precious metal VMS deposits and prospects indicated (from Hinchey, 2011a) 38
Figure 1-7. Geological map of the northern Tulks Volcanic Belt with known base-metal and precious
metal VMS deposits indicated (from Hinchey, 2011a)
Figure 1-8. (A) Schematic model illustrating the two types environments in which VMS deposits form in
the TVB (from Hinchey, 2011). (B) Diagram of conventional model for VMS deposits in deep water
(from Galley et al., 2007); (C) model for formation of shallow water VMS deposits TVB40
Chapter 2

Figure 2-1. Location and geology of the area surrounding the Red Indian Lake, including the Victoria
Lake Supergroup (VLSG). Relevant deposits indicated in northern and southern parts of the VLSG. TVB-
Tulks volcanic belt, VLIS- Valentine Lake intrusive suite, TPB- Tally Pond belt, CLIS- Crippleback Lake
intrusive suite (modified from Rogers et al., 2006)
Figure 2-2. Geological map of the southern Tulks volcanic belt with known base-metal and precious
metal VMS deposits indicated (modified from Hinchey, 2011)
Figure 2-3. Geological map of the Boomerang-Domino-Hurricane deposit from surface mapping
completed by Canadian Zinc. Ore zones of the Boomerang and Domino deposits and Hurricane zone are
projected to surface
Figure 2-4. Major lithofacies that make up the hanging wall stratigraphy in the Hurricane zone. (A)
VCL1: Weak to moderately ser-sil-chl altered medium-grained, plagioclase-bearing crystal tuff.
(B)VCL2: Normally graded medium-grained crystal-bearing tuff to lapilli tuff with thin chert interbeds.
(C) VCL3: Bedded fine- to coarse-grained lapilli tuffs with block-sized fragments. (D) VCL3: Normally
graded heterolithic coarse-grained lapilli tuff to thinly bedded argillite. (E) VCL4: Plagioclase-bearing
crystal tuffs. (F) VCL4: Quartz ± plagioclase crystal-bearing tuffs. (G) CL1a: Plagioclase-quartz
porphyritic felsic volcanics. (H) CL1b: Aphyric felsic (rhyolite) volcanics. Plag- plagioclase crystals, lap-
lapilli fragment, LT- lapilli tuff, qtz- quartz crystal90
Figure 2-5. Intermediate to mafic intrusive rocks in the Hurricane zone. (A) Intermediate dyke within
footwall, strongly sericite-quartz altered. (B) Fine to medium-grained mafic sills overlying footwall with
0.5 to 2 cm thick carbonate-quartz veins. (C) Fine-grained, dark green-grey mafic dykes, sharp chilled
margins along contact with CL1a and CL1b. (D) Close-up of mafic dyke with mm-scale carbonate

amygdules and 1 cm calcite-chlorite veins. Carb-chl- carbonate-chlorite veins, carb amy- carbonate

Figure 2-8. Photomicrograph of the footwall mineralization and alteration at the Hurricane zone. (A) Banded sphalerite, chalcopyrite, pyrite and lesser galena. (B) Sharp contact between bedded massive sulphide (chalcopyrite, sphalerite, pyrite and lesser galena) and VCL1 with rare massive sulphides in finegrained volcaniclastic matrix. (C) Cross-polarized photomicrograph of Fig 2-8a highlighting quartzsericite alteration associated with massive sulphide. (D) Cross-polarized photomicrograph of Fig. 2-8b

illustrating sharp contact between massive sulphide and fine-grained volcaniclastic rock (VCL2), as well
as ser-carb-qtz alt and relic quartz crystals in massive sulphide. (E) Moderately sericite-quartz-pyrite
altered fine-grained lapilli tuff with rare carbonate alteration (F) Moderate to strongly sericite-chlorite-
quartz-pyrite altered lapilli tuff. (G) Strong sericite-quartz-pyrite altered tuff with medium-grained
chalcopyrite and sphalerite. (H) Distal chaotic carbonate and sericite alteration
Figure 2-9. Simplified stratigraphic section illustrating the relationship between the five lithofacies,
intrusive units and the mineralization horizon in the Hurricane zone
Figure 2-10. Simplified cross section illustrating the relationship between lithofacies and the alteration
assemblages in the Hurricane zone101
Figure 2-11. Simplified cross section of section 4050 with alteration intensities indicated. Legend is
shown in Figure 2-7. Qtz-Quartz; Ser- Sericite; Chl- Chlorite; Sul- Sulphide; Carb- Carbonate; Mud-
Mudstone; Lap- Lapilli Tuff; TB- Tuff Breccia; Int-Intrusive; SMS- semi-massive sulphide; MS- Massive
Sulphide102

Figure 2-12. Immobile element discrimination diagrams of the volcanic and intrusive rocks from the Hurricane zone. (A) Modified Winchester and Floyd (1977) Zr/TiO₂ vs. Nb/Y discrimination diagram for rock type classification (from Pearce, 1996). (B) Zr vs Y magmatic affinity discrimination diagram (from Ross and Bedard, 2009). (C) Immobile element ratio plot Th/Al₂O₃ vs. Zr/TiO₂ highlighting the geochemical group distinction for Group A-C and Group D in VCL1 in the Hurricane zone. (D) Nb vs. Y discrimination diagram for determining tectonic environments (from Pearce 1984). (E) Zr vs. Nb discrimination diagram for determining juvenile environments from evolved environments (from Piercey, 2009). (F) La/Ybcn-Ybcn FI-FIV rhyolite discrimination diagram (chondrite-normalized CN) to the values of McDonough and Sun (1995); diagram from Lesher et al., 1986 and Hart et al., 2004).......103

Figure 2-13. Rare earth element (REE) plots of the major lithofacies and geochemical units of the Hurricane zone (primitive mantle-normalized to the values of McDonough and Sun 1995). (A) Coherent

Figure 2-16. Mass balance plots showing the gains and losses of key alteration elements.(A)Immobile element plot Al_2O_3 vs Zr and (B) Zr vs TiO₂ highlighting the linear relationship between groups A-C, D and VCL2. (C) Mass change plot of CaO + Na₂O versus Fe₂O₃ +MgO showing the association of between the destruction of feldspars and secondary micas (loss of Na and Ca) and the development of chlorite. (D) Mass change plot of K₂O versus Na₂O indicating the development of sericite alteration with the destruction of feldspars. (E) Mass change plot of Fe₂O₃ +MgO versus SiO₂ showing the development

List of Abbreviations

AI	Hashimoto Alteration Index		
alt	Alteration, altered		
Arg	Argillite		
Carb	Carbonate		
CC	Chaotic Carbonate		
Сср	Chalcopyrite		
CCPI	Chlorite-carbonate-pyrite index		
Chl	Chlorite		
DH	Down Hole		
Dis	Disseminated		
Е	Easting		
Ер	Epidote		
f.g, m.g, c.g	fine-grained, medium-grained, coarse-grained		
Fe	Iron		
Fig(s)	Figure(s)		
Flow	Volcanic Flow		
Fol	Foliation		
Frags	Fragments		
FW	Footwall		
g/t	grams per ton		
HFSE	High field strength elements		
HREE	Heavy rare earth elements		
HW	Hanging wall		
ICP-ES	Inductively coupled emission- mass spectrometry		
ICP-MS	Inductively coupled plasma-mass spectrometry		
Int	Intrusion		
Int	Intense		
km	Kilometer		
Lap	Lapilli		
LC	Lower Contact		
LREE	Light rare earth elements		
LT	Lapilli Tuff		
mm	millimeter		
m	Meter		
Mod	Moderate		

MS	Massive Sulphide		
Mud	Mudstone		
Ν	Northing		
Pheno(s)	Phenocryst(s)		
ppb	parts per billion		
ppm	parts per million		
Ру	Pyrite		
Qtz	Quartz		
REE	Rare earth element		
RIL	Red Indian Line		
Ser	Sericite		
SMS	Semi-massive Sulphide		
Sph	Spheralerite		
Sul	Sulphide		
SWIR	Short-wave infrared		
TB	Tuff Breccia		
UC	Upper Contact		
UTM	Universal Transverse Mercator		
VMS	Volcanogenic massive sulphide		
xstals	Crystals		
Zn	Zinc		

List of Appendices

Chapter 1: Introduction to the Hurricane Zone of the Boomerang Volcanogenic Massive Sulphide Deposit, Central Newfoundland, Canada

1.1 Introduction and Purpose of Study

The Tulks volcanic belt (TVB) within the Victoria Lake supergroup (VLSG), central Newfoundland, is host to several volcanogenic massive sulphide (VMS) and epithermal/orogenic Au deposits (Fig. 1-1). Previous work by Hinchey (2007, 2011a) focused primarily on VMS deposits in the TVB (e.g., Boomerang, Tulks Hill, Tulks East) at the deposit-scale, using diamonddrill core for lithological, metallogenic, geochemical and alteration studies. The most recent discovery in the TVB is the Boomerang cluster (Boomerang-Domino-Hurricane sulphide lenses; referred to as the Boomerang deposit), a felsic siliciclastic VMS deposit located in the southern part of the belt (Hinchey, 2007). The Boomerang deposit is located approximately 3 km northeast of Pats Pond and 17.5 km southwest of the southern tip of Red Indian Lake (Fig. 1-2; Hinchey, 2007; 2011a). The Boomerang and Domino deposits were discovered by Messina Minerals Inc. (now a subsidiary of NorZinc Ltd.) in 2004 and 2006, respectively (De Mark and Dearin, 2007). Indicated resources at Boomerang are estimated at 1.36 Mt grading 7.09 wt. % Zn, 3.00 wt. % Pb, 0.51 wt. % Cu, 110.43 g/t Ag, and 1.66 g/t Au with inferred resources at 0.69 Mt grading 6.5 wt. % Zn, 2.8 wt. % Pb, 0.4 wt. % Cu, 95 g/t Ag, and 0.9 g/t Au (De Mark and Dearin, 2007). The inferred resources at Domino are estimated at 411,200 tonnes grading 6.3 wt. % Zn, 2.8 wt. % Pb, 0.4 wt. % Cu, 94 g/t Ag, and 0.6 g/t Au (De Mark and Dearin, 2007). While there has been extensive geological work on the Boomerang and Domino lenses, little research has been undertaken on the Hurricane zone (prospect), located 500 m to the east of the Boomerang lens (Hinchey, 2007). The Hurricane prospect is the smallest lens in the Boomerang-Domino deposit(s) with non-NI-43-101 compliant resources estimated at 55,100 tonnes grading 13.40 wt. % Zn, 7.0 wt. % Pb, 1.20 wt. % Cu, 159.0 g/t Ag and 2.90 g/t Au (A. Marcotte, personal communication, 2015).

The goals of this project are to conduct the first detailed study of the Hurricane zone by characterizing the lithostratigraphy, chemostratigraphy, and hydrothermal alteration of its host volcanic and sedimentary packages, and provide a potential genetic model for the Hurricane zone. This will expand on the work completed by Hinchey (2007, 2011a) and provide a more complete understanding of the Boomerang deposit.

This thesis consists of three chapters and supplementary appendices. Chapter 1 is an introductory chapter that presents the purpose of this thesis and provides background information on the regional and local geology, exploration history, previous work on the deposit and methods used during this study. Chapter 2 is the main body of the thesis and is a research manuscript that is intended for future publication in a scientific journal. This chapter presents detailed descriptions of the lithology and alteration assemblages, as well as lithogeochemistry and hyperspectral data, to reconstruct the volcanic and hydrothermal evolution of the Hurricane zone. Chapter 3 is a summary of the conclusions of the thesis and provides directions for future research.

1.2 Previous Studies and Exploration History

The VMS potential and mineralization in the Tulks volcanic belt have been investigated since the late 1950s. Riley (1957) and Williams (1970) conducted the first regional mapping in the belt. More detailed mapping was completed by the Newfoundland Department of Mines and Energy (Kean, 1977, 1979a, b, 1982, 1983; Kean and Jayasinghe, 1980, 1982; Kean and Mercer, 1981;

17

Evans et al., 1994a, b, c). Evans and Kean (2002) provided an in-depth regional synthesis of the area focusing on the geology, geochemistry, tectonic setting and mineralization of the VLSG. Hinchey (2007, 2011a) expanded the work of Evans and Kean (2002) and provided new information regarding the geology and mineralization of the VLSG and the northern and southern portions of the TVB, as well as providing new lithogeochemical and U-Pb geochronology data.

Numerous exploration projects have been conducted in the southern TVB. ASARCO led one of the first exploration programs in the belt, which consisted of prospecting and stream and soil sampling, and sequentially led to the discovery of the Tulks Hill deposit in 1961. Follow-up exploration by Abitibi-Price led to the discovery of the Tulks East prospect in 1977. Noranda Mining and Exploration continued to explore in the southern part of the belt from 1993-1998 utilizing geophysical surveys, mapping, surficial geochemistry and lithogeochemistry. The majority of their efforts were focused on additional diamond drilling on Tulks East and Curve Pond (an iron formation) prospects but also included examining a section of the Boomerang alteration zone, that is now interpreted to be part of the Domino lens (Hinchey, 2011a). Initial holes in the Boomerang alteration zone discovered hydrothermal alteration and sulphide stringers, and further drilling intersected massive Pb-Zn-rich sulphide grading 0.46 wt. % Cu, 2.63 wt. % Pb, 7.4 wt. % Zn, 76.5 g/t Ag and 0.67 g/t Au over 1.8 m (hole GA-97-05; Banville et al., 1998; Noranda, 1998). Since this discovery, several companies have explored the southern TVB, most notably Messina Minerals Inc., which discovered the Boomerang deposit in 2004. Further delineation of the Boomerang deposit led to the discovery of the Hurricane and Domino lenses in 2006. The Domino VMS zone is located 200 m northeast and approximately 100 m deeper than the Boomerang deposit, whereas the Hurricane zone is located 500 m east of the Boomerang zone, but is hosted by the same stratigraphic horizon (De Mark and Dearin, 2007). The BoomerangDomino deposit has been the main focus of exploration and research in this region with little work concentrated on the Hurricane zone. In 2012, Canadian Zinc Corporation acquired Paragon Minerals and their 10 base metal and precious metal VMS projects in the South Tally Pond area. In 2013, NorZinc Ltd., formally known as Canadian Zinc Corp, also acquired all Messina Minerals Inc. and are currently exploring the southern TVB including Tulks South, Long Lake and the Boomerang-Domino-Hurricane deposits.

1.3 Regional Geology and Tectonic Setting

In Newfoundland, the Appalachian orogenic belt is divided into four distinct tectonostratigraphic zones based upon lithology, age, geophysical signatures and metallogeny. From west to east these zones are: the Humber Zone, the Dunnage Zone, the Gander Zone and the Avalon Zone (Figs. 1-1 and 1-2; Williams, 1979; van Staal, 2007; van Staal and Barr, 2012). The Humber Zone represents part of the eastern Laurentian continental margin; the Dunnage Zone represents vestiges of the Iapetus Ocean and consists of arc, back-arc, and ophiolitic rocks of various affinities (Williams, 1978, 1979; Swinden et al., 1997; van Staal and Barr, 2012). The Gander and Avalon Zones are peri-Gondwanan microcontinental blocks that were sequentially accreted onto the margin of Laurentia during the mid-Paleozoic (450-380 Ma; Williams et al., 1988; van Staal, 2007; van Staal and Barr, 2012).

The Dunnage Zone (also known as the Central Mobile Belt) forms the central part of the Newfoundland Appalachians. It represents the vestiges of Cambrian-Ordovician continental and intra-oceanic arcs, back-arc basins and ophiolites that formed within the Iapetus Ocean and its peri-continental seaways (Kean et al., 1981; Swinden, 1990; Williams, 1995; Zagorevski et al., 2006; van Staal, 2007; van Staal and Barr, 2012). The Dunnage Zone can be further subdivided into the Notre Dame and Exploits subzones that consist of volcanic and sedimentary rocks that

formed along the peri-Laurentian and peri-Gondwana margins, respectively (Williams, 1995; Zagorevski et al., 2006; Zagorevski et al., 2007; van Staal, 2007). The Notre Dame and Exploits subzones were accreted to the Laurentian and Gondwanan margins during the Taconic and Penobscot orogenies, respectively, in the Early to Middle Ordovician and subsequently to each other during the late stages of the Taconic orogeny in the Late Ordovician (van Staal, 2007; Zagorevski, 2007). The subzones are separated by a suture zone called the Red Indian Line (RIL; Williams, 1995). In addition to the separation of the RIL, these two sub-zones have very distinct stratigraphic, structural, faunal and isotopic characteristics (Williams et al., 1988; Zagorevski et al., 2007; Hinchey, 2011a).

The Victoria Lake supergroup (VLSG) is situated east of the Red Indian Line within the Exploits subzone (Fig. 1-3). It is bounded to the east by the Noel Pauls Line and is overlain by or is in fault contact with the Ordovician to Silurian sedimentary rocks of the Badger Group to the northeast (Kean and Jayasinghe, 1980; Rogers et al., 2005; Zagorevski et al., 2007). The VLSG was originally divided into two major volcanic belts: the Tally Pond and Tulks Hill volcanic belts (Kean and Jayasinghe, 1980, 1982; Kean et al., 1981; Rogers et al., 2006). Further lithological, geochronological, and geochemical studies resulted in the VLSG being subdivided into six distinct fault-bounded belts (Fig. 1-3). From east to west these include: the Tally Pond group (c. 513 Ma; Dunning et al., 1991; McNicoll et al., 2010), Long Lake group (c. 514-506 Ma; Zagorevski et al., 2007; Hinchey and McNicoll, 2016), Tulks group (c. 498 Ma; Evans et al., 1980; Evans and Kean, 2002; Zagorevski et al., 2007), Sutherlands Pond group (c. 462 Ma; Dunning et al., 1987), and the Pats Pond and Wigwam Brook groups (488 Ma and 453 Ma, respectively; Zagorevski et al., 2007). The TVB herein is used to delineate the broader VMS-hosting stratigraphy of the Tulks Valley area, and is not a stratigraphic entity per se, as the TVB is comprised of westward-younging

tectonostratigraphic units that include the Tulks, the Pats Pond, the Sutherlands Pond, and the Wigwam Brook groups (Hinchey, 2011a).

1.4 Overview on Volcanogenic Massive Sulphide Deposits

Volcanogenic massive sulphide (VMS) deposits are strata-bound to stratiform lenses of polymetallic sulphide minerals that form by precipitation of metalliferous fluids on or just below the seafloor, and in spatial, temporal and genetic association with contemporaneous volcanism (Franklin et al., 2005). VMS deposits are the products of hydrothermal convection of seawater driven by magmatic heat flow, typically above subvolcanic intrusions in rift and arc environments (e.g., Franklin et al., 1981, 2005; Ohmoto, 1996; Galley et al., 2007). The deposit size, morphology and composition depends on the lithologies of the footwall and hanging wall host rocks, nature of synvolcanic faulting, basement rock composition, water depth, duration of hydrothermal circulation, temperature gradients, and degree of preservation (Galley et al., 2007). Several classification schemes have been suggested based on geological setting (i.e. tectonic regime; Sawkins, 1976; Eremin et al., 2000) and host-rock composition and stratigraphy (Morton and Franklin, 1987; Barrie and Hannington, 1999). These classifications will be discussed below and used mutually since host lithologies and assemblages are largely controlled by geodynamic processes (e.g., Barrie and Hannington, 1999). The lithological classification of VMS deposits includes a six-fold subdivision, including (Table 1.1): 1) bimodal-mafic; 2) mafic; 3) pelitic-mafic; 4) bimodal-felsic; 5) felsic-siliciclastic; and 6) hybrid bimodal-felsic. This six-fold classification is described in more detail by Barrie and Hannington (1999) and Franklin et al. (2005) with the addition of the high-sulfidation bimodal-felsic type by Galley et al. (2007), a hybrid between bimodal-felsic VMS deposits and high-sulfidation epithermal deposits. The lithological- and stratigraphic-based classification of deposits broadly defines the geological setting of VMS

deposits and is the one most accepted by the geological community because it provides the best understanding of the geological characteristics of the VMS deposits, the processes and environment where it forms, and collectively this information can be used as an exploration tool (Franklin et al., 2005). Piercey (2011) summarized the various petrochemical signatures of VMS deposit environments.

Table 1.1. Classification of VMS deposits based on six lithotectonic settings (modified from Franklin et al., 2005 and Galley et al., 2007).

Туре	Lithology	Tectonic Setting	Examples	
Bimodal-Mafic	Dominantly mafic flows with up to 25% felsic volcanics	Oceanic rifted arc	Abitibi, Canada; Flin Flon, Canada	
Mafic-Back Arc	Dominantly mafic flows with minor felsic flows or domes. Up to 50% synvolcanic mafic dykes and/or sills	Mature intra-oceanic back-arc	Central Newfoundland, Canada; Troodos, Cyprus	
Pelitic-Mafic	Subequal basalt and pelites or pelites are dominant with up to 25% mafic sills. Felsic volcanics (volcaniclastics, sills, or flows) are typically absent	Juvenile and accreted back- arcs, oceanic mature back-arcs	Windy Craggy, BC, Canada; Besshi district, Japan	
Bimodal-Felsic	Felsic volcanic rocks range from 30- 75% of volcanic strata, basalts range from 20-50% and terrigenous sedimentary strata ~15%. Intermediate flows and sills are common	Continental margin arcs and related back-arcs, continental rifted arc	Eskay Creek, Canada; Dunnage Zone, Canada	
Felsic- Siliciclastic	Siliciclastic rocks dominant ~80% with minor flows, domes, and extrusive equivalents making up the remainder 25% with minor mafic flows, sills and volcaniclastic rocks (~10%)	Mature epicontinental back- arcs	Iberian Pyrite Belt, Spain and Portugal; Bathurst, Canada	
Hybrid Bimodal- Felsic	Felsic volcaniclastics and siliciclastic rocks	Combination of shallow water VMS and epithermal mineralization	Manus Basin, Pacific Ocean	

Franklin et al. (2005) suggested a further subdivision of the lithostratigraphic types into three lithofacies end-members: flows, volcaniclastic rocks and sedimentary rocks. The lithofacies control the morphology of the deposit and the associated alteration distribution. Understanding lithofacies architecture allows for a better characterization of deposit architecture, the mechanisms of sulphide emplacement, and the nature and style of the hydrothermal alteration assemblages (Franklin et al., 2005).

There are two mechanisms by which sulphides are interpreted to have formed: precipitation directly on the seafloor (exhalation or exhalative mineralization) or via subseafloor replacement (Franklin et al., 2005). Exhalative sulphide formation is the classic model for VMS deposits (e.g. Fig. 1-4; Hutchinson, 1973; Lydon, 1984; Ohmoto, 1996; Franklin et al., 1981, 2005). Exhalation entails hydrothermal venting onto the seafloor producing growth of a sulphide chimney and sequential collapse, cementation and replacement of chimney debris (Lydon, 1984, 1988; Hannington et al., 1995; Ohmoto, 1996; Franklin et al., 2005). In long-lived exhalative systems there is often semi-continuous hydrothermal activity and multiple stages of chimney growth and evolution that often results in large chemical and mineralogically zoned sulphide mounds (Fig. 1-4; Franklin et al., 2005; Galley et al., 2007).

The process of subseafloor replacement occurs when metal-bearing hydrothermal fluids infiltrate and precipitate into porous volcanic and sedimentary rocks, infilling open spaces and replacing host material (Doyle and Allen, 2003; Franklin et al., 2005; Piercey, 2015). The Boomerang-Hurricane-Domino cluster deposit is interpreted to be a replacement-style siliciclastic felsic VMS deposit, as are most of the VMS deposits in the southern TVB, although local examples of bimodal-felsic and high-sulphidation bimodal felsic deposits are present (Hinchey, 2011a). These three types of felsic-hosted deposits are polymetallic and typically exhibit elevated base-metal grades, especially Zn and Pb (Barbour and Thurlow, 1982; Dearin, 2006).

Volcanogenic massive sulphide deposits are typically underlain by extensively hydrothermally-altered footwall volcanic rocks in pipe-like or discordant zones that contain

23

sulphide-silicate stockwork mineralization (Riverin and Hodgson, 1980; Franklin et al., 1981, 2005; Gemmell and Large, 1992; Hannington, 2014). In some cases, hydrothermal alteration can be present in the immediate hanging wall (Gemmell and Fulton, 2001; Franklin et al., 2005; Piercey et al., 2014). Discordant stockwork zones can extend down to several hundreds of meters vertically below the massive sulphide. Hanging wall alteration, when present, can form as either semi-conformable halos tens of meters thick or extend several tens to hundreds of meters above the deposit as discordant alteration zones. Massive sulphide lenses can be stacked due to synchronous and/or sequential phases of ore formation during volcanic quiescence. In this case, proximal alteration halos and stockwork mineralization are connected (Knuckey et al., 1982; Gibson and Watkinson, 1990, Franklin et al., 2005).

Hydrothermal alteration in VMS deposits exhibits distinct mineralogical zoning related to the intensity of hydrothermal alteration in the upflow and recharge zones of the deposit (Fig. 1-4; Franklin et al., 2005; Galley et al., 2007; Hannington et al., 2014). Proximal alteration underlying the massive sulphide horizon is associated with high temperature mineral assemblages consisting of chlorite-quartz-sulphide \pm sericite \pm talc and are restricted to the core/upflow zone where fluids are rising and discharging (Zones 1 and 2; Fig. 1-5). Lower temperature alteration assemblages of chlorite-sericite \pm phengite are associated with the envelope around the main upflow zone (e.g. Hellyer; Gemmell and Large, 1992; Gemmell and Fulton, 2001). Laterally continuous lower temperature fluids result in the formation of sericite, phengite, chlorite \pm albite \pm carbonate \pm barite (Zones 3-4; Fig. 1-5; Galley et al., 2007). The lateral and spatial distribution of alteration assemblages can be used, if well defined, as vectors toward VMS mineralization (Franklin et al., 2005).

1.5 Geology of the Tulks Volcanic Belt

The Tulks volcanic belt is bounded to the north by the Red Indian Line and the sedimentary and volcaniclastic rocks of the Harbour Round belt, and to the south by the Roebuck's Intrusive Suite, which also separates it from the Long Lake belt (Fig 1-6 and 1-7; Hinchey, 2007, 2011a). The age of the TVB was originally constrained by a single age date of 498 ± 6 Ma from a subvolcanic porphyry located near the Tulks Hill VMS deposit (Hinchey, 2007, 2011a), but recent studies suggest a westward-younging of tectonostratigraphic units that make up the stratigraphy of the belt. These include the Tulks (ca. 498 Ma), the Pats Pond (ca. 487 Ma), the Sutherlands Pond (ca. 462 Ma; Dunning et al., 1987) and the Wigwam Brook groups (ca. 453 Ma; van Staal et al., 2005; Zagorevski et al., 2007). The TVB hosts seven significant zones of base-metal mineralization that are hosted within various stratigraphic elements (Figs. 1-6 and 1-7) these include: Bobbys Pond, Daniels Pond, Jacks Pond, Tulks Hill, Tulks East and the Boomerang-Domino-Hurricane deposits. The Hurricane zone is a satellite lens within the same stratigraphic horizon as the Boomerang deposit, which located in the southern part of the TVB within the Pats Pond group (De Mark and Dearin, 2007; Hinchey, 2011a).

The TVB deposits are further subdivided into southern and northern regions based on lithology (Figs. 1-6 and 1-7) and inferred depositional environment (see below; Fig. 1-8; Hinchey, 2011a). The main deposits in the southern TVB, particularly Boomerang, Tulks Hill and Tulks East, are bimodal-felsic to felsic-siliciclastic deposits. These deposits predominantly consist of felsic volcanic and volcaniclastic rocks, and lesser siliciclastic rocks; minor intermediate-mafic and intrusive rocks are also present. It should be noted that in some circumstances there are locally abundant siliciclastic sedimentary rocks (e.g., black shales, graphitic argillites and felsic to mafic lithic greywackes). The general stratigraphy for the southern TVB includes thick felsic volcaniclastic units intercalated with sedimentary rocks of varying thicknesses. These sedimentary and volcaniclastic rocks display fining-upwards turbiditic sequences, which are locally associated with mineralization (Hinchey, 2007; 2011a). This type of stratigraphic succession is conducive for the genesis of Zn-rich ore, which often forms via subseafloor replacement within the felsic volcaniclastic and sedimentary rocks (see discussion; e.g., Piercey, 2015).

The stratigraphy of the northern part of the TVB is dominated by rhyolite flows and breccias. This suggests a vent-proximal environment and shallow-water conditions (<1500m interpreted water depth) that transition into a deep-water (>1500m water depth), volcanosedimentary-dominated environment in the southern TVB (Hinchey, 2007, 2011a). The northern TVB deposits, most notably Bobbys Pond and Daniels Pond, are bimodal felsic VMS deposits. However, they also have features similar to bimodal felsic VMS-high sulphidation (hybrid) deposits. The Jacks Pond deposit is interpreted to represent the transition from a deep-water VMS deposits (Boomerang-Domino-Hurricane, Tulks Hill) to the shallow water, vent-proximal, bimodal VMS-epithermal style deposit (Daniels Pond; Hinchey, 2011a). Bimodal volcanic sills occur synchronously with volcanic, volcaniclastic, and sedimentary rocks throughout the entire belt (Hinchey, 2011a). Many of the basaltic sills have amygdaloidal tops with chilled margins along the basal contact. Evidence of active volcanism and synchronous sedimentation indicate an extensional environment, most likely a rifted basin with back-arc affinities (Hinchey, 2011a). Such an environment is supported by previous lithogeochemical studies (e.g., Swinden et al., 1989; Swinden, 1991; Evans and Kean, 2002), which indicate a change in chemical signatures within the belt that suggests a transition from an active arc environment to a non-arc or back-arc rifting environment (extensional regime; Hinchey, 2011a).

1.6 Geology of the Boomerang-Domino-Hurricane Deposit

The Boomerang-Domino-Hurricane deposit cluster consists of three massive sulphide lenses: Boomerang, Domino and Hurricane. Although the focus of this project is on the Hurricane zone, the deposit geology is similar throughout the three lenses and will be discussed as one unit (i.e., the Boomerang deposit). The stratigraphy of the deposit is divided into three segments: hanging wall, mineralized horizon, and footwall.

The hanging wall rocks are comprised of undifferentiated, locally fining upwards, felsic to intermediate volcaniclastic and epiclastic rocks, predominantly quartz \pm feldspar tuffs; finegrained sedimentary rocks, such as black shales, argillite, greywacke, and chert; volcaniclastic conglomerates/breccias; and locally amygdaloidal, bimodal sills (Squires et al., 2005; Hinchey, 2007, 2011a). The fine-grained sedimentary rocks (shales and black argillites) typically cap the felsic tuffaceous rocks (Hinchey, 2011a). Most of the hanging wall has been affected by sericite-quartz-chlorite-carbonate alteration. Sericite, chlorite, and quartz occur as fine-grained laths in the groundmass of the volcaniclastic hanging wall rocks, whereas carbonate alteration occurs either as 0.5-1 mm glomeroporphyrocysts or as euhedral rhombohedral crystals (Hinchey, 2011a). The footwall sequence consists of felsic volcanic rocks, most commonly fine-grained, crystal-bearing tuffs, with base-metal stringer sulphides, local lapilli tuff, fine-grained sedimentary rocks and bimodal sills (Hinchey, 2007; 2011a). The tuffs are highly sericite altered and strongly foliated, locally displaying a crenulation cleavage (Hinchey, 2011a).

The mineralized horizon consists of several lenses in highly-altered felsic aphyric tuff and crystal tuffs, along with fine-grained sedimentary units, all which are intimately associated with massive sulphide mineralization. Sericite is the dominant alteration mineral with lesser chlorite, quartz and carbonate. The sulphides consist of fine- to medium-grained banded to wispy intergrowths of red and yellow sphalerite, chalcopyrite, galena and pyrite (Hinchey, 2011a).

The Boomerang deposit is interpreted to be a subseafloor replacement deposit (Squires, 2006; Hinchey, 2011a). This is evident from locally preserved original bedding within the massive sulphides, relict host rock clasts (i.e. felsic ash, crystal tuffs, quartz crystals) and hydrothermal alteration and stringer sulphides in hanging wall and footwall stratigraphy (Hinchey, 2011a). According to Hinchey (2011a), the fine-grained sedimentary packages that overlay the porous and permeable tuffaceous felsic rocks acted as a potential barrier that inhibited fluid migration and aided in the entrapment and replacement of the host rocks, thus enabling the precipitation of sulphides in the mineralized horizon.

1.7 Objectives

Since Messina's discovery of the Boomerang-Domino-Hurricane cluster of deposits between 2004 to 2006, the majority of the exploration efforts have been focused on delineating the Boomerang deposit with little research conducted on characterizing the architecture and genesis of the Hurricane zone. The Hurricane zone provides an excellent natural laboratory to study replacement-style mineralization and the controls on the associated alteration assemblages in a volcaniclastic rock dominated VMS deposit. This project will provide an in-depth study of the stratigraphy, the nature and distribution of alteration assemblages and the lithogeochemistry of the Hurricane zone in order to reconstruct its volcanic and hydrothermal architecture. The main objectives are as follows:

- build upon the stratigraphic framework proposed by Squires et al. (2005) and Hinchey (2007, 2011a) and evaluate the volcanic, plutonic, sedimentary, and alteration facies

and mineralized horizons through core logging, stratigraphic sections and cross sections;

- characterize representative lithologies of the main stratigraphic units by core logging,
 petrography and lithogeochemistry;
- characterize alteration assemblages by petrography, lithogeochemistry and short-wave infrared (SWIR) spectroscopy. Specific attention will be placed on compositional and textural variations in micas, chlorite, silica and carbonates within the different alteration assemblages. This will in turn help to delineate and better understand the genesis of the alteration mineralogy;
- develop a chemostratigraphic framework for the deposit using lithogeochemistry. Mass balance calculations will be used to quantify elemental gains or losses associated with individual alteration assemblages;
- combine the lithostratigraphy and chemostratigraphy of the Hurricane zone to characterize the geodynamic environment, the nature of volcanism, and the genesis of mineralization; and
- combine primary geochemistry and stratigraphy to understand the tectonic setting of the deposit formation and the genesis of the volcanic host rocks within the Appalachians.

Overall, the results of this project will provide insight on ore-forming processes occurring by subseafloor replacement in volcaniclastic rock dominated domains. The project will also provide information on the controls on the associated alteration processes. The data should serve as an analogue for similar replacement-style deposits within the Appalachian orogenic belt and deposits worldwide.

1.8 Methodology

1.8.1 Drill Core logging and Sampling

Two and a half months of detailed core logging, lithogeochemical and petrographic sampling were completed in the Fall 2014 and Summer of 2015 using the Canadian Zinc Corporation exploration office in Buchans Junction, Newfoundland. In total, 22 of the 27 drill holes completed in the Hurricane zone were selected for logging based on the reconstruction of the stratigraphy and alteration of the deposit carried out by Canadian Zinc Corporation and Messina Minerals Inc.. Drill holes were selected to: a) provide the best representation of the stratigraphy within the entire study area; and b) to study the proximal and distal relationships of the alteration associated with the VMS mineralization. The company provided drill logs, a plan view map, and a long and cross sections that indicated holes that had anomalous base metal and precious metal, holes that had massive pyrite and holes that lacked anomalous base metals; these were also used in picking drill holes to log. A total of 445 samples were collected for alteration and lithological references. One hundred and forty-seven subsamples were selected for geochemical and petrographic analyses. These samples were selected to: a) provide representative geochemical signatures for each lithofacies and to aid in chemostratigraphic/lithological correlation between sections; and to b) provide geochemical signatures to characterize alteration assemblages and to determine elemental mass gains and losses for the various assemblages.

1.8.2 Major and Trace Lithogeochemistry

Samples were collected roughly every 20-25 m based on major lithological or alteration changes; sample lengths ranged from 20-30 cm. Samples that displayed characteristic hydrothermal alteration (e.g. sericite alteration, chlorite alteration and quartz alteration) were of primary interest. Alteration related to secondary hydrothermal overprinting or regional metamorphism were not sampled. One hundred and forty-seven core samples were collected from 22 drill holes for major and trace element analyses. Representative samples were cut in half and washed to avoid cross contamination before being individually bagged and sent to ActLabs in Ancaster, Ontario for analysis. The other half remained at Memorial University and were used as reference samples and for shortwave infrared spectral analysis.

Lithogeochemical samples were crushed and pulverized prior to analysis using mild steel at Actlabs. Samples were analyzed using lithium metaborate/tetraborate fusion, the resultant molten bead was rapidly digested in a weak nitric acid. Fusion ensures that the entire sample was digested. The digested sampled was then analyzed using inductively coupled plasma emission spectroscopy (ICP-ES). Mercury analysis was also undertaken at ActLabs using cold vapour flow injection mercury spectrometer (CV-FIMS) following digestion of the samples with aqua regia to leach out soluble compounds.

1.8.3 Petrography

Thirty-three samples were sent to Vancouver Petrographics in Winter 2014 and 2015 for polished thin sections (30 microns). The samples were chosen based on major lithofacies, textures and alteration assemblages (i.e., representative of host rock variability and alteration). Petrography involved utilization of both transmitted and reflected light microscopy.

1.8.4 Short Wave Infrared (SWIR) Spectroscopy

Short wave infrared (SWIR) spectrometry was used to map mineralogical variations in drill core samples and determine compositional variations in micas, chlorite and carbonate throughout the deposit. Spectral results from this study only proved to be effective for white micas. This data helped to define alteration assemblages associated with hydrothermal fluid alteration pathways and potentially allow targeting new prospects in the vicinity. Data points were collected approximately every 5 m to capture the spectral variation down hole. Every 20 samples, a duplicate point was taken and two reference materials (pyrophyllite and chlorite) were taken. A TerraSpecTM 2 instrument was used and following the methodology of Buschette and Piercey (2015).

1.9 Thesis Presentation

This research project was designed by Dr. Stephen J. Piercey. The author conducted the primary research, which included core logging, sample collection, geochemical and hyperspectral analysis. The primary editor of this manuscript was Dr. Stephen J. Piercey with secondary editing by Dr. Luke Beranek.

Figure 1-1. Simplified tectonostratigraphic map of Newfoundland Appalachians with peri-Laurentian (Notre Dame) and peri-Gondwana (Exploits) subzones based on Williams et al. (1988). VMS deposits classification based on lithotectonic settings after Barrie and Hanngington (1999) and Franklin et al. (2005) (modified from Piercey, 2007).

Figure 1-2. Detailed tectonostratigraphic map of the Canadian Appalachians (after van Staal, 2007) with distributions of Early Paleozoic tectonostratigraphic zones, subzones and other major tectonic elements (in color). Thick lines to the west of the Notre Dame Subzone represents the Red Indian Line (RIL).

Figure 1-3. Location and geology of the area surrounding the Red Indian Lake, including the Victoria Lake Supergroup (VLSG). Relevant deposits indicated in northern and southern parts of the VLSG. TVB- Tulks volcanic belt, VLIS-Valentine Lake intrusive suite, TPB- Tally Pond belt, CLIS- Crippleback Lake intrusive suite (modified from Rogers et al., 2006).

Figure 1-4. Idealized cross-section of felsic-siliciclastic volcanic massive sulphide deposit (modified from Galley et al., 2007).

Figure 1-5. Cross section of idealized hydrothermal alteration assemblages from bimodal-felsic VMS deposit (from Galley et al., 2007).

Figure 1-6. Geological map of the southern Tulks volcanic belt illustrating the various rock types with known base-metal and precious metal VMS deposits and prospects indicated (from Hinchey, 2011a).

Figure 1-7. Geological map of the northern Tulks Volcanic Belt with known base-metal and precious metal VMS deposits indicated (from Hinchey, 2011a).

Figure 1-8. (A) Schematic model illustrating the two types environments VMS deposits form in the TVB (from Hinchey, 2011a). (B) Diagram of conventional model for VMS deposits in deep water (from Galley et al., 2007); (C) model for formation of shallow water VMS deposits TVB.

2. Lithofacies and Alteration of the Hurricane Zone, of the Boomerang volcanogenic massive sulphide deposit, Tulks Belt, Central Newfoundland, Canada

2.1 Abstract

The Hurricane zone of the Boomerang volcanogenic massive sulphide (VMS) deposit is part of the Cambro-Ordovician Tulks volcanic belt, in central Newfoundland. The Hurricane zone is one of three lenses in the deposit and consists of a sub-horizontal (semi-)massive sulphide lens, with combined resources of 55,100 tonnes @ 13.4% Zn, 7.0% Pb, 1.20% Cu, 159.0 g/t Ag, and 2.00 g/t Au. Mineralization is hosted in intermediate to felsic volcaniclastic rocks of the ca. 488 Ma Pats Pond group (Victoria Lake supergroup). The Hurricane zone consists of three distinct stratigraphic packages: the (1) hanging wall; (2) mineralized zone; and (3) footwall. The footwall consists of felsic to intermediate intercalated quartz-bearing crystal tuff and lapilli tuff. The hanging wall consists of felsic to intermediate volcaniclastic rocks, including aphyric to quartz/plagioclase-bearing tuff, lapilli tuff and breccias, locally intercalated and interbedded with sedimentary rocks. Two generations of mafic dykes and sills intrude the entire stratigraphic package. The mineralized zone occurs between the footwall-hanging wall interface and consists of (semi-)massive sulphide with fine- to medium-grained bands of red and yellow sphalerite, pyrite and galena with coarse blebs of chalcopyrite. The footwall rocks contain four dominant alteration assemblages, including: intense chlorite, chlorite-carbonate, sericite-quartz-chlorite ±pyrite, and intense sericite. Both the hanging wall and footwall have strong Na₂O depletions, enrichments in K₂O-Fe₂O₃-SiO₂-MgO-Ba, high alteration index values (chlorite-carbonate-pyrite index (CCPI), alteration index (AI), Ba/Sr), and enrichments in base (e.g., Zn, Pb, Cu) and volatile metals (e.g., Hg). Short-wave infrared spectral analyses conducted on white micas show systematic changes in AlOH wavelength with proximity to the mineralized horizon, with the hanging wall micas having phengitic compositions (> 2210 nm), whereas proximal to the hanging wall-footwall contact the mica species is paragonitic (<2195 nm).

The majority of the mineralization in the Hurricane zone shows evidence to have formed below the seafloor. This is indicated by relict quartz crystals and lapilli fragments in the bedded sulphides, rapidly emplaced volcaniclastic rocks, replacements fronts in the host lithofacies, and hydrothermal alteration in the lower hanging wall. The deposit likely formed as hot metal-laden fluids ascended towards the seafloor, percolating through permeable semi-consolidated volcaniclastic material and mixing with ambient seawater entrained in pore space until it reached an semi-impermeable mud boundary. The impermeable boundary played a crucial role in promoting subseafloor replacement, and in part may be a factor in the high Zn grades in the deposit.

Immobile element systematics of felsic to intermediate rocks within the entire stratigraphic package have subalkaline, tholeiitic to calc-alkaline $(2 \le Zr/Y \le 25)$ affinities, and are characterized by slightly enriched LREE, flat HREE, and negative anomalies in Nb, Eu, and Ti on primitive normalized plots. The Hurricane zone is interpreted to represent a subseafloor replacement-style VMS lens that formed in a back-arc rift basin, adjacent to a volcanic arc, allowing synchronous deposition of volcanogenic sediments concurrent with hydrothermal activity. This study is a contribution to the understanding of replacement-style VMS mineralization environments rich in volcaniclastic rocks.

2.2 Introduction

Volcanogenic massive sulphide (VMS) deposits are an important source for base and precious metal mineralization both globally (Lydon, 1984; Ohmoto, 1996; Franklin et al., 2005; Hannington, 2014) and in the Newfoundland Appalachians (e.g., Piercey and Hinchey, 2012). These deposits form in some cases by exhalation on the seafloor (e.g., Lydon, 1988) and in other cases form by subseafloor replacement of permeable strata below the seafloor (Doyle and Huston, 1999; Doyle and Allan, 2003; Piercey, 2015). In the Newfoundland Appalachians there are numerous VMS deposits of varying styles and with varying formation mechanisms (e.g., Swinden et al., 1989; Hinchey, 2011a; Piercey et al., 2014), and is a natural laboratory for studying VMS deposits given this diversity of styles and types of deposits.

The Victoria Lake supergroup in central Newfoundland contains numerous deposits including past-producing (e.g., Duck Pond and Boundary) as well as deposits with advanced prospects with confirmed resources (e.g., Boomerang). The Tulks volcanic belt within the Victoria Lake supergroup hosts numerous deposits with varying styles (e.g., Hinchey, 2011a); however, the Boomerang deposit (and its associated lenses – Boomerang, Domino, and Hurricane) represent a type example of an Appalachian sediment- and volcaniclastic-hosted VMS deposit. Since the deposits discovery in 2004, the majority of exploration has been focused on delineating the Boomerang and Domino zones, with little research conducted on characterizing the architecture and genesis of the associated Hurricane zone. Although the area has experienced moderate deformation, the Hurricane stratigraphic sequence is largely intact, making it an ideal area to study VMS mineralization and the controls on associated alteration assemblages within a volcano-sedimentary-hosted VMS deposit. The objective of this paper is to build upon the previous stratigraphic framework of the Boomerang deposit (e.g., Squires et al., 2005; Hinchey 2007; 2011a) and expand it to include a detailed description of the lithofacies, hydrothermal alteration, and primary and secondary geochemical characteristics of host rocks to the Hurricane zone. This paper will thus: (1) document the stratigraphy, lithofacies, and alteration of the deposit; (2) use immobile

element geochemistry to understand the chemostratigraphy and tectonic setting of the deposit; (3) characterize the alteration assemblages using petrography, lithogeochemistry and short-wave infrared spectroscopy (SWIR); and (4) combine the lithostratigraphy and chemostratigraphy to reconstruct the volcano-sedimentary history of the deposit, and the related VMS mineralization and alteration. Overall, the results from this project will provide insight to VMS-forming processes and controls associated with alteration occurring in volcaniclastic-rich basins and outline proximal and distal vectors to help explore for this style deposit within the Canadian Appalachians and worldwide.

2.3 Regional Geology and Metallogenic Framework

In Newfoundland, the Canadian Appalachians are divided into four tectonostratigraphic zones: the Humber, Dunnage, Gander and Avalon zones (Fig. 2-1; Williams, 1979; Williams et al., 1988; Van Staal, 2007; van Staal and Barr, 2012). The Hurricane zone is located within the Dunnage zone, which represents vestiges of Cambrian-Ordovician continental and intra-oceanic arcs, back-arcs and ophiolites that formed along the margins of Laurentia (Notre Dame subzone) and Gondwana (Exploits subzone), within the Iapetus ocean (Kean et al., 1981; Swinden, 1990; Williams, 1995; Zagorevski et al., 2006; van Staal, 2007; van Staal and Barr, 2012). The Notre Dame subzone was accreted to the Laurentian margin as a result of the initial closure of the Iapetus ocean during the Taconic orogeny (475-459 Ma; van Staal, 2007; van Staal and Barr, 2012), whereas the Exploits subzone was accreted to the Gondwana during the Penobscot orogeny (486-478 Ma; van Staal, 2007; Zagorevski et al., 2007, 2010). The two subzones were juxtaposed to each other during the final stages of the Taconic orogeny in the late Ordovician (455-450 Ma;), resulting in their juxtaposition along the Red Indian Line (RIL; van Staal, 2007; Zagorevski et al., 2007, 2010; van Staal and Barr, 2012).

The Hurricane zone is located southeast of the RIL in the Victoria Lake supergroup (VLSG), part of the Exploits subzone. The VLSG contains Neoproterozoic to Silurian volcanic and sedimentary rocks that was originally divided into two informal belts: the Tally Pond and Tulks volcanic belts (TPB and TVB, respectively; Kean and Jayasinghe, 1980; Kean et al., 1981; Evans and Kean, 2002; Rogers et al., 2006). Further lithological, geochronological and geochemical studies resulted in the subdivision of the VLSG into six fault-bounded packages (Fig. 2-1). With a general westward younging direction these groups include: the Tally Pond Group (~513-509 Ma; Dunning et al., 1991; McNicoll et al., 2010); the Long Lake Group (~514-506 Ma; Zagorevski et al., 2007; Hinchey and McNicoll, 2016); the Tulks Group (~498-487 Ma; Evans et al., 1990; Evans and Kean, 2002); the Sutherlands Pond Group (~462 Ma; Dunning et al., 1987); and the Pats Pond and Wigwam Brook groups (~488 and ~453 Ma, respectively; Zagorevski et al, 2007). Volcanogenic massive sulphide deposits are present in Tally Pond belt, the Long Lake belt and the informally defined Tulks volcanic belt, which comprises the Tulks, Pats Pond, the Sutherlands Pond, and the Wigwam Brook groups (Hinchey, 2007, 2011a).

2.4 Local and Deposit Geology

The Tulks volcanic belt (TVB) is a northeast-southwest trending bimodal belt dominated by felsic volcanic rocks with varying amounts of mafic volcanic, and mafic and felsic volcaniclastic rocks, which are all intruded by mafic and felsic intrusive rocks (Fig. 2-2; Hinchey, 2007; 2011a). The stratigraphy of the belt strikes northeast and dips steeply to the northwest and is transected by shear zones and faults (Hinchey and McNicoll, 2009). The TVB has undergone lower to middle greenschist facies metamorphism and shows moderate to strong deformation. Many primary textures are obliterated due to deformation and display well developed, bedding parallel regional foliations defined by the alignment of sericite and chlorite (Hinchey, 2007, 2011a). Despite this deformation, local low strain windows preserve primary lithostratigraphy, volcanic and sedimentary facies, and primary VMS-related hydrothermal alteration assemblages.

There are five VMS deposit clusters in the TVB, as well as numerous prospects and areas of alteration. The deposits are associated with sericite, quartz and pyrite with lesser chlorite and carbonate alteration, and formed by both exhalation on the seafloor and subseafloor replacement (e.g., Hinchey, 2007, 2011a). The environment these formed in trend from north to south from shallow water (<1500m water depth), vent proximal areas that display exhalative mineralization styles (e.g., Bobbys Pond and

Daniels Pond) to deeper (>1500m water depth), and distal replacement-style mineralization (e.g., Tulks East, Tulks Hill and Boomerang; Fig. 2-2; Hinchey, 2011a).

2.4.1 Deposit Geology

The Boomerang deposit is located in the southern tip of the TVB, 17 km southwest of the Red Indian Lake (Fig. 2-1). The Hurricane zone is one of three lenses within the Boomerang deposit, which also contains the Boomerang and Domino lenses. The Hurricane lens lies along strike and within the same stratigraphic panel as the Boomerang lens, whereas Domino lies down dip and stratigraphically below the other lenses. (Fig. 2-3). The Hurricane lens has a strike length of 250 m and a thickness of 15.3 m with a non-compliant 43-101 resources of 55,100t @ 13.4% Zn, 7% Pb, 1.2% Cu, 159g/t Ag, and 2g/t Au (Alexandra Marcotte, personal communication, 2015). Stratigraphically, the footwall of the lens is dominated by altered felsic to intermediate volcanic and sedimentary rocks, including quartz and feldspar crystal tuffs, lapilli tuffs, and lesser massive flows, siltstones, and shales (Figs. 2-3 to 2-8; Hinchey, 2011a). The mineralization occurs within the crystal and lapilli tuffs where the sulphides contain abundant fragments of host rocks, including relict quartz crystal and altered lapilli fragments. A similar volcaniclastic lithofacies overlies the footwall unit, but the package contains thin chert layers and no shale units. The latter package is further overlain by undifferentiated normally graded volcaniclastic and sedimentary rocks, crystal tuffs and massive aphyric to plagioclase-quartz phyric felsic flows. The entire stratigraphy is locally intruded by narrow, altered intermediate and mafic sills (Figs. 2-7 to 2-8).

2.5 Stratigraphy and Lithofacies

The stratigraphy, lithofacies, alteration and mineralization of the Hurricane zone were documented by logging drill core and creating graphic logs and stratigraphic sections.

2.5.1 General stratigraphy

The Hurricane zone stratigraphy can be divided into three distinct stratigraphic packages: (1) the hanging wall; (2) mineralized zone; and (3) footwall. Each of these packages has distinct lithological and geochemical lithofacies, which are described below.

2.5.2 Lithofacies

The Hurricane zone consists of five main lithofacies, including the massive sulphide horizon, all which are intruded by at least three generations of geochemically distinct intermediate and mafic dykes and sills. The lithofacies and their relationships are illustrated with representative photographs and photomicrographs in Figures 2-4 to 2-8 and in stratigraphic sections and drill core logs in Figures 2-9 to 2-11. The volcaniclastic lithofacies within the Hurricane zone are classified using the updated classification of Fisher (1966) by White and Houghton (2006). The updated classification focuses on naming volcaniclastic rocks based on their clast size, abundance and depositional process, rather than mode of fragmentation (i.e., descriptive and not process-oriented classification; White and Houghton, 2006). The basic rock type classification of the lithofacies is undertaken using the immobile element Zr/TiO₂-Nb/Y diagram of Pearce (1996; modified from Winchester and Floyd, 1976; Fig. 2-12a). Further details on the geochemistry of the lithofacies and analytical methods will be outlined in section 2.6.

2.5.2.1 Volcaniclastic lithofacies 1 (VCL1): intermediate lithic, crystal tuff to lapilli tuff. Volcaniclastic lithofacies 1 is found at the lowest part of the stratigraphy in the Hurricane zone and encompasses the entire footwall (Fig. 2.9). It falls within the andesite field on the Pearce (1996) diagram (Fig. 2-12a) and consists of normally graded crystal-lithic lapilli tuffs to crystal tuffs that are locally capped with silt and mudstone beds. Volcaniclastic lithofacies 1 is the host rock sequence to the massive sulphides, and the volcaniclastic rocks immediately underlying the massive sulphide have the highest degree of alteration, which often makes it difficult to discern primary volcanic/volcaniclastic features and textures. The semi-massive to massive sulphides progressively grade into or completely replace VCL1. The alteration in this unit ranges from moderate to strong sericite-quartz-pyrite-(±chlorite) alteration to localized areas of

strong chlorite-carbonate alteration, particularly near massive sulphide mineralization. Fine-grained sericite, quartz, and lesser chlorite replaces the matrix of the lapilli and crystal tuffs and locally alter the lapilli fragments (Fig. 2-4a and Fig. 2-6a). Alteration assemblages and distribution are discussed further below.

2.5.2.2 Volcaniclastic lithofacies 2 (VCL2): felsic to intermediate lithic, crystal lapilli tuff to tuff. Volcaniclastic lithofacies 2 falls within the rhyodacite/ rhyolite field on the Pearce (1996) diagram (Fig. 2-12a) and consists of volcaniclastic rocks dominated by lithic-crystal lapilli tuff to tuff with lesser silt and chert layers. This unit lies stratigraphically above VCL1 and is the lowest stratigraphic unit in the hanging wall (Fig. 2.9). This unit is similar to volcaniclastic lithofacies 3 (VCL3) and VCL1, with the exception that the clasts are monomictic, it contains chert layers, and lacks mudstone. The lapilli tuffs are light grey and contain rounded, elongated monomitic felsic clasts with 1-5 mm plagioclase, K-feldspar and quartz crystals that are hosted in a fine-grained matrix consisting predominantly of quartz and plagioclase (Fig. 2-4b and Fig. 2-6b); thin, 1-5 cm chlorite laths are abundant in VCL2 (Fig 2-6b). The tuffaceous layers are fine-grained with 10-25%, 1-5 mm subangular to rounded plagioclase crystals with lesser quartz and K-feldspar crystals and felsic lithic fragments. The lapilli tuff and tuff fine upwards into thinly laminated interbeds of very fine-grained tuff and chert. Chert is more dominant in the lower half of the stratigraphy and is commonly associated with thin bands of pyrite (Fig. 2-4b). The lapilli tuff and tuff display weak to moderate sericite, quartz and patchy chlorite alteration with local pyrite veins and/or clasts (Fig. 2-6b).

2.5.2.3 Volcaniclastic lithofacies 3 (VCL3): normally graded, heterolithic lapilli tuff to tuff.

Volcaniclastic lithofacies 3 ranges from andesite/basalt to the rhyolite/dacite fields on the Pearce (1996) diagram (Fig. 2-12a) and consists of a sequence of normally graded, heterolithic, lapilli tuffs (30-50%) and tuff (30-50%) with local thinly bedded mudstones (10%). Volcaniclastic lithofacies 3 lies between volcaniclastic lithofacies two and four (Fig. 2-9). The lapilli tuffs are light to medium grey in color and contain >50% subangular to subrounded, elongated heterolithic clasts. Clast composition ranges from

felsic to intermediate with lesser mafic, chert, and mudstone rip up clasts, and plagioclase and quartz crystals (Fig. 2-4c and 2-4d). The matrix consists of fine-grained intermediate to felsic volcaniclastic rocks with <15% thin shards of chlorite and wispy sericite that are parallel to foliation (Fig. 2-6c and Fig. 2-6d). Rare block-sized fragments occur within the SW side of the Hurricane zone and consist of chlorite rimmed amygdaloidal basalt and altered intermediate volcanic rocks (Fig. 2-4c). The tuff is medium grey in color and consists of 65% matrix with small (1-2 mm) elongated felsic to intermediate clasts and lesser sub-rounded, 0.2-5 mm plagioclase and quartz crystals (Fig. 2-6c and Fig. 2-6d). This unit forms a repetitive, normally graded sequence from lapilli tuff to tuff with 1-10 cm thick units of thinly bedded silt and mudstones (Fig. 2-4d).

2.5.2.4 Volcaniclastic lithofacies 4 (VCL4): crystal-bearing felsic to intermediate tuff. Volcaniclastic lithofacies 4 consists of two crystal-rich end-members: a plagioclase-rich end member, which has a gradational relationship with the overlying quartz-rich end member (Fig. 2-4e and Fig. 2-4f). Volcaniclastic lithofacies 4 sits between volcaniclastic lithofacies three and five (Fig 2-9). They have signatures that range from basaltic-andesite to andesitic on the Pearce (1996) diagram (Fig. 2-12a), but the plagioclase dominated tuffs are more mafic in composition, whereas the quartz-rich tuffs are more intermediate in composition. Plagioclase- and quartz-bearing crystal tuffs are dark grey to blue-grey in color with 1-15 mm sized white to grey, glassy plagioclase and quartz crystals hosted in a fine-grained quartz and plagioclase matrix (Fig. 2-6e). Crystal content ranges from 5 to 20%, with localized areas of up to 40% to areas barren of crystals. The crystal content increases downhole with crystal-poor and -rich repetitive intervals occurring on the cm- to m-scale. The plagioclase-dominated intervals are typically display weak to moderate chlorite alteration (Fig. 2-4e), whereas the quartz-dominated intervals are typically more sericite-quartz altered (Fig. 2-4f).

2.5.2.5 Coherent volcanic lithofacies 1a (CL1a): plagioclase and/or quartz phyric rhyolite flow. Coherent volcanic lithofacies 1 consists of two end members: aphyric rhyolitic flows and plagioclase-quartz phyric rhyolitic flows and breccias; all units are rhyolite/dacite (Fig. 2-12a). Coherent volcanic lithofacies 1a lies

within the uppermost part of the stratigraphy at the top of the hanging wall sequence (Fig. 2-9). Coherent volcanic lithofacies 1a consists of a weakly to moderately foliated, plagioclase-quartz-K-feldspar phyric flows that are pale grey to beige in color with 10% to 25%, 1 to 8 mm plagioclase, quartz and lesser K-feldspar phenocrysts in a very fine-grained, siliceous matrix (Fig. 2-4g and Fig. 2-6f). Locally, towards their lower margins the massive flows are brecciated and grade into jigsaw-fit breccia with interstitial sericite and chlorite in the matrix. Typically, lower contacts are gradational with the underlying tuffaceous unit of VCL4 or in sharp, abrupt contacts with cross cutting mafic dykes. The matrix within the brecciated zones along the margins is typically infilled with sericite and lesser chlorite in thin wispy bands.

2.5.2.6 Coherent volcanic lithofacies 1b (CL1b) - massive aphyric rhyolite flow. Coherent volcanic lithofacies 1b is a relatively uncommon and thin unit and occurs in the uppermost part of the stratigraphic sequence. This unit is pale grey to pale pink in color, very fine-grained and siliceous with rare (1-3%) quartz-plagioclase phenocrysts (Fig. 2-4h and Fig. 2-6g). Locally it exhibits brecciation along margins with chlorite or sericite preferentially infilling the matrix. Typically, contacts are gradational with plagioclase-quartz phyric rhyolitic flows (CL1a), but locally are sharp and abrupt with cross-cutting mafic dykes. The unit is massive, with little to no foliations and displays strong quartz alteration, with lesser weak sericite and chlorite.

2.5.2.7 Intermediate to mafic intrusive dykes and sills

Two types of intrusions have been identified in the Hurricane zone, including: intermediate dykes and mafic intrusive rocks (IN1- IN2). The first intrusive unit (IN1) is intermediate in composition and falls within the andesite/basalt field on the Pearce (1996) diagram (Fig. 2-12a; IN1). IN1 cross-cuts the footwall volcaniclastic rocks (VCL1) and is beige, fine-grained, and massive with sharp upper and lower contacts displaying chilled margins (Fig 2-5a). The IN1 lacks primary textures due to strong sericite and pyrite alteration, which suggests emplacement prior to, or during, the hydrothermal alteration of the footwall.

The most common intrusive unit (IN2) are mafic dykes (IN2a) and sills (IN2b), which are fineto medium-grained, dark green, and contain 5-15%, 1-25 mm carbonate filled amygdules. They typically have 5-10% thin (few mm) cross-cutting carbonate veins and within the lower parts of the stratigraphy contain 5-25%, 5-20 mm euhedral pyrite cubes (Fig. 2-5b and Fig. 2-6h). The mafic sills are locally strongly overprinted by 1-5 mm euhedral (rhombohedral) iron carbonate crystals. The mafic sills are the dominant intrusive unit, forming in thick 10-50 m sequences immediately above the footwall and hanging wall contact within VCL2. Lower contacts are usually sharp, whereas the upper contacts are can be diffuse or interfingered with overlying volcaniclastic rocks, indicating that the emplacement of the sills was likely synchronous with the deposition of volcaniclastic material. The mafic dykes are 0.5 to 10 cm thick, dark green in color, range in grain size from very fine-grained to coarse-grained, and have distinct chilled margins (Fig. 2-5c). They have 5-10%, 1-20 mm carbonate or epidote filled amygdules, <5%, 1-2 mm euhedral pyrite cubes and are cross-cut by thin to thick (0.5-5 cm) carbonate-chlorite veins (Fig. 2-5d). Mafic dykes occur in the upper part of the stratigraphy and crosscut volcaniclastic lithofacies 1 to 3 and typically occur within several clusters.

2.5.3. Mineralization and Alteration

2.5.3.1 Mineralization

Mineralization in the Hurricane zone is up to 15 m thick and consists of dominantly bedding parallel Zn-Pb ± Cu massive sulphide (Fig. 2-7a; Fig. 2-8a and Fig. 2-8b). The sulphides are in fine- to mediumgrained bands and contain wispy intergrowths of red and yellow sphalerite, pyrite, and galena with coarse-grained chalcopyrite blebs (Fig. 2-8a and Fig. 2-8b); the massive sulphides contain abundant relict quartz crystals and intermediate altered volcaniclastic fragments or lapilli of VCL1 (Fig. 2-7a and Fig. 2-8c). The massive sulphide horizon displays metal zonation with thick lenses of bedded sphalerite, galena and pyrite that are usually flanked by semi-massive to massive pyrite dominated intersections. The semimassive lenses directly underlie the massive sulphides for up to 10 m and occur as discontinuous 1-4 cm bands of yellow sphalerite, pyrite and galena associated with chlorite, sericite and/or quartz alteration (Fig. 2-7b and Fig. 2-8c to Fig. 2-8g). Locally, semi-massive sulphides overlie the massive sulphide horizon indicating potentially stacked sulphide horizons or replacement zones (De Mark and Dearin, 2007; Hinchey, 2011a).

2.5.3.2 Alteration

Hydrothermal alteration is pervasive throughout the footwall of the Hurricane lens and within the lower 70- 100 m of the hanging wall rocks. Alteration intensity in the footwall increases proximal to the mineralized horizon and decreases stratigraphically upwards into the hanging wall.

There are four major alteration assemblages present within the Hurricane zone: intense sericitequartz-pyrite, sericite-quartz-chlorite-pyrite, intense chlorite, and chlorite and chaotic carbonate (Fig. 2-7c to Fig. 2-7h). Intense sericite-quartz-pyrite alteration occurs within the lowest part of the stratigraphy and envelopes the deposit. This style of alteration occurs up to 350 m below the massive sulphide horizon and is laterally extensive for the entire strike length of the deposit (250 m; Fig. 2-10). It is beige to silver and is associated with disseminated pyrite and pyrite stringers and rarer base-metal/chlorite stringers (Fig. 2-7c and Fig. 2-8e).

Sericite-quartz-chlorite-pyrite alteration typically lies above the intense sericite-pyrite alteration and forms an envelope around the intense chlorite alteration (see below) a few meters below the massive sulphide horizon (Fig. 2-10). It ranges in thickness from 10-30 m thick directly below the massive sulphide horizon and thins laterally to less than 5 m, eventually transitioning into the sericite-quartz alteration assemblage. The sericite and quartz alteration is typically light to dark grey in color, and predominantly affects the volcaniclastic rocks, where the lapilli fragments are quartz and lesser sericite altered and surrounded by a matrix containing fine-grained, wispy bands of sericite and lesser chlorite (Fig. 2-7e and Fig. 2-8f to Fig. 2-8g). Within the finer-grained tuffaceous layers, fine-grained sericite and quartz are dominant, whereas chlorite manifests itself either as thin cross-cutting stockwork veins, locally associated with pyrite and base-metal (sphalerite-galena) stringers, or as centimeter-scale tabular laths in a sericite-quartz matrix (Fig. 2-7d and Fig. 2-7e).

51

Intense chlorite alteration typically underlies and/or is associated with the massive sulphides and, in most cases, completely replaces the original host rock (Fig. 2-7f). Chlorite alteration occurs as narrow, less than 10 m thick, strata-bound sheets, rather than cross-cutting pipes, similar to other volcaniclastic-rich deposits (Fig. 2-7; e.g., Large et al., 2001a; Piercey et al., 2014; Buschette and Piercey, 2015) and locally as isolated pods.

Chaotic carbonate alteration (e.g., Squires et a., 2001; Squires and Moore, 2004; Piercey et al., 2014) is dominated by dolomite and is milky white and associated with the intense chlorite alteration. It occurs 0.5 to 5 m below the intense chlorite zone and is laterally restricted to directly below the semi-massive to massive sulphides. Proximal to mineralization the carbonate occurs as clusters or elongated bulbous spheres that are typically barren of sulphides, whereas distally it manifests as more dendritic webs and is associated with semi-massive sulphide mineralization (Fig. 2-7g to 2-7h and Fig. 2-8h).

Weak to moderate sericite and quartz alteration is present within the hanging wall volcaniclastic rocks with localized patchy to lath-like chlorite alteration directly above the massive sulphide horizon (up to 60 m above; Fig. 2-4a and Fig. 2-8b). Fine-grained disseminated and bedded pyrite is present in siliceous chert and silt layers a few meters above the footwall.

Overprinting all other types of alteration are millimeter-scale iron-rich carbonate spots that are common throughout the Boomerang deposit and most other VMS deposits in the Victoria Lake Supergroup (e.g., Boundary). These spots have been interpreted to be associated with Silurian regional metamorphism (e.g., van Staal 2007; Piercey et al., 2014; Buschette et al., 2016). Changes in alteration types and intensities can be further demonstrated by lithogeochemistry in Section 2.6 below.

2.6 Lithogeochemistry

2.6.1 Sampling and Analytical Methods

A total of 147 drill core samples were collected for geochemical analysis from 22 representative drill holes in the Hurricane zone. Samples were collected every ~ 20 m or whenever there was a

52

significant change in alteration or stratigraphy. Core samples that were faulted and fractured or exhibited widespread quartz and/or carbonate veining were avoided. Drill core samples were cut in half, with one half preserved at Memorial University of Newfoundland as a representative sample with the other having been analyzed. All samples were analyzed for major oxide elements (SiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, Na₂O, K₂O, TiO₂, P₂O₅), base metals (Zn, Cu, Pb), transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), high field strength elements (HFSE), low field strength elements (LFSE), REE, and volatiles (As, Bi, Hg, Cd, Sn, Sb, Tl) at Activation Laboratories Ltd (ActLabs) in Ancaster, Ontario. At Actlabs, all samples were crushed and pulverized in mild steel before undergoing a lithium metaborate/tetraborate fusion, followed by dissolution in a weak nitric acid. The samples were subsequently analysis by inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled emission-mass spectroscopy (ICP-MS). The complete geochemical results can be found in Table 2.1a and 2.1b in Appendix B.

2.6.2 Primary Immobile Element Lithogeochemistry

2.6.2.1 Element mobility and magmatic affinity monitors.

The volcanic rocks of the Hurricane zone have been affected, to some degree, by seafloor hydrothermal alteration and subsequent regional greenschist-facies metamorphism. Due to the mobility of most major elements (except Al₂O₃ and TiO₂), LFSE, volatile elements and metals during hydrothermal alteration (Spitz and Darling, 1978; Saeki and Date, 1980; Barrett and MacLean, 1994; Jenner, 1996; Large et al., 2001a), it is essential to use elements that would be considered immobile under these conditions. Many studies of VMS deposits have determined the HFSE and REE (except Eu) to be immobile, except under intense hydrothermal alteration where they may become mobile (especially the LREE; e.g., MacLean, 1988). To determine the primary geochemical signatures of the volcanic rocks of the Hurricane zone Al₂O₃, TiO₂, HFSE, and some REE were used as immobile affinity monitors.

2.6.2.2 Footwall Geochemistry

Due to the highly-altered nature of the footwall volcanic rocks, it is difficult to distinguish different facies based on lithology and petrography alone, whereas immobile element ratios and binary plots can remove the effects of alteration and provide a useful method in distinguishing different chemical rock types (e.g., Barrett et al., 2001).

The footwall of the Hurricane zone has five geochemically distinct and correlative "andesitic" units based on immobile element ratios (Groups A-E; VCL1; Fig. 2-12a). Groups A to C are subalkaline and have La/Yb, Th/Yb, Th/Yb, and Zr/Y ratios that range from tholeiitic to transitional (Fig. 2-12b), accompanied by low Zr/Al₂O₃ (2.3-3.1) and Zr/TiO₂ (62-75) ratios (Fig. 2-12c). Group D is subalkaline, with transitional to calc-alkaline magmatic affinities, but has higher Zr/Al₂O₃ (6.6) ratios (Fig. 2-12c). Group E are anomalous samples that include a pyritic mudstone and strongly altered tuff that are not discussed further given their anomalous geochemistry. Immobile compatible vs. immobile incompatible plots of Zr vs Al₂O₃ and Th vs Al₂O₃ in Figure 2-16a and 2-16b show near-linear trends indicating that the various footwall lithogeochemical groups above had similar magma sources (e.g., MacLean and Barrett, 1993; Barrett et al., 2001).

2.6.2.3 Hanging wall felsic to intermediate geochemistry

The majority of the tuffaceous rocks fall within the intermediate (andesitic/basaltic) field on the Zr/ TiO₂ vs Nb/Y ratios, with the exception of volcaniclastic lithofacies 2 (VCL2), which is predominantly rhyolitic in composition. The coherent felsic volcanic rocks of lithofacies 5 (CL1a and b) tightly cluster within the rhyolite field and the mafic sills cluster within the basalt field (Fig. 2-12a). The Hurricane rocks are typically subalkaline and have La/Yb, Th/Yb, and Th/Yb ratios that range from tholeiitic to calc-alkaline (Fig. 2-12b; Barrett and MacLean, 1999; Ross and Bedard, 2009). The rocks from both the footwall (VCL1) and most of the hanging wall have low Nb and Y values and plot within the M-type field, with the exception of volcaniclastic lithofacies 2 and 3 (VCL2 and VCL3) that plot within the OR-field (Fig. 2-12c; Pearce, 1984). This suggests either, mixing of mafic material within the

more felsic volcaniclastic rocks or that they were derived from melting of a mafic source (Fig. 2-12d; Piercey, 2009). Nearly all the samples fall with FIV field (Fig 2-12e), indicating that partial melting must have occurred at shallow levels in the crust (< 15 km) and implies derivation from potentially melting a juvenile or mafic source (Lesher et al, 1986; Hart et al., 2004; Piercey, 2011).

2.6.2.4 Primitive mantle normalized plots

Primitive mantle normalized plots from all the hanging wall rocks (VCL2-4 and CL1) are moderately LREE-enriched with relatively flat HREE profiles and negative Nb and Ti anomalies with low contents of Sc and V (Fig. 2-13). The footwall rocks (VCL1; Groups A to D) are similar to the hanging wall; however, they have lower REE concentrations and have negative Eu anomalies (Fig. 2-12b and 2-10d), with the exception of Group D, which has similar LREE values as the hanging wall samples (Fig. 2-12d). The large amount of scatter in the footwall samples is likely due to mobility of the LREE, or due to mass gains or loss during hydrothermal alteration (see below).

2.6.2.5 Mafic Intrusion Geochemistry

There are two groups of geochemically distinct intrusive mafic to intermediate units within the Hurricane zone: they consists of andesitic dykes (IN1) and a unit of basaltic dykes and sills (IN2a and b). IN1 plot within the andesitic field on the Pearce (1996) plot (Fig. 2-14a). They have subalkaline Nb/Y ratios and have transitional to calc-alkaline magmatic affinities (Fig. 2-12b). They plot within the alkaline and the arc basalt fields on the Ti-V discrimination diagram and the Th-Zr-Nb plot, respectively (Fig. 2-14b-c). IN1 is moderately enriched in LREE and MREE on primitive mantle normalized plots and have moderate Nb and Ti depletions and low contents of compatible elements (Al, V, Sc), which are characteristics of basaltic rocks with calc-alkaline to island-arc tholeiitic affinities (Fig. 2-13f).

IN2 mafic rocks are the most common intrusive unit and are subalkaline with tholeiitic magmatic affinities with primitive mantle-normalized patterns similar to island-arc tholeiites or back-arc basin basalts (BABB; Fig. 2-13b). The primitive mantle-normalized signatures of these mafic rocks have weak LREE enrichment with flat HREE, and are moderately depleted in Nb (Fig. 2-13f). On the Th-Zr-Nb

diagram they plot within the arc-basalts field and on the Ti-V diagram they plot within the island-arc tholeiite (IAT), with one anomalous sample plotting in the MORB field (Fig. 2-14b-c)

2.6.3 Mobile Element Lithogeochemistry

2.6.3.1. Mobile element systematics

It has been well documented in numerous VMS deposits that hydrothermal alteration is responsible for the destruction of primary igneous phases and glass, resulting in replacement with secondary alteration minerals (e.g., Ohmoto, 1996; Riverin and Hodgson, 1980). The volcanic rocks of the Hurricane zone display strong to intense hydrothermal alteration within the footwall and lower hanging wall. At the footwall-hanging wall contact there is a distinct depletion in Na_2O (typically $Na_2O <$ 0.94%) coupled with high Spitz-Darling index values (Al₂O₃/Na₂O > 25; Fig. 2-15a). The majority of the rocks have moderate to high Ishikawa alteration index (AI) and the chlorite-carbonate-pyrite index (CCPI) and plot towards the upper right-hand corner on the alteration box plot. The footwall rocks in the Hurricane zone follow four main trends on the alteration box plot (Fig. 2-15b): sericite-chlorite-pyrite, chlorite-pyrite-(sericite), chlorite-carbonate, and chlorite pyrite. Moreover, volcaniclastic rocks of volcaniclastic lithofacies 2 also trend along the chlorite-pyrite-(sericite) and sericite-chlorite-pyrite line, indicating the hanging wall rocks are hydrothermally altered (Fig. 2-15b; see below). The four alteration assemblages within the footwall and lower hanging wall are also clearly defined using bivariate plots of MgO-Al₂O₃ and K₂O-Al₂O₃ (Fig. 2-15c and 2-15d). All altered rocks have elevated concentrations of Hg, and high Hg/Na₂O and Ba/Sr ratios (Fig. 2-15e), typical of rocks found in the Tally Pond and Tulks volcanic belts (Collins, 1989; Buschette et al., 2016). However, they do not exhibit significant enrichments in Tl-Sb, like other volcaniclastic-hosted deposits globally (Fig. 2-15f; e.g., Rosebury; Large et al., 2001a,b).

2.6.3.2- Mass Balance

Mass balance calculations were used to quantify the absolute gains and losses associated with hydrothermal alteration for Groups A to D in the footwall (VCL1) and the lowest hanging wall unit

(VCL2), which are the units that experienced the most widespread hydrothermal alteration. Although there is evidence of hydrothermal alteration in VCL3, due to the heterogeneous nature of the lithic clasts, it makes it difficult to determine a precursor composition for the unit and calculations were not performed.

Least altered precursors from VCL1 and VCL2 were selected based on samples that displayed minimal Na₂O loss (2-5 wt%), low loss of ignition (LOI) and low base metal values (i.e., <100ppm, ideally). The single precursor method implies that rocks were from an originally homogenous volcanic unit and had a common homogenous parent that was variably altered. In single precursor systems when immobile, incompatible elements are plotted against one another the samples from a single precursor system will plot along a linear array that projects through the origin reflecting apparent elemental gains and losses due to mass losses and gains, respectively (Fig. 2-16a and 2-16b; e.g., Barrett and Maclean, 1991; MacLean and Barrett, 1993; Barrett and MacLean, 1994).

The three chemically distinct units that were identified based on immobile-incompatible diagrams and immobile binary plots are: Groups A to C, Group D and VCL2 (Fig. 2-16a and 2-16b). Groups A to C are grouped for mass balance calculations due to nearly linear trends in immobile-immobile and binary plots and have distinct tholeiitic to transitional magmatic affinities in comparison to the more calcalkaline overlying Group D, which was group separately for mass balance calculations. Since the three groups display little variation in their immobile element ratios, the single precursor method (e.g., MacLean and Kranidiotis, 1987; MacLean, 1990; Barrett and MacLean, 1991; MacLean and Barrett, 1993) is appropriate to use to determine mass change.

2.6.3.3- Results of mass balance calculations

The major element oxides that are affected by hydrothermal alteration are SiO₂, Fe₂O₃, MgO, CaO, K₂O, and Na₂O, which express significant gains and losses relative to their proximity to the massive sulphide horizon. Intense sericite-pyrite alteration in the footwall is associated with K₂O (\sim 2.5%) and SiO₂ (up to 26%) gains and losses of Na₂O (\sim -2%), with some samples exhibiting gains in MgO (1-10%), with a loss

of K₂O and SiO₂ (-0.5% and up to -60%), reflecting either a change in white mica composition or the formation of chlorite. Sericite-quartz-chlorite alteration exhibits mass gains in SiO₂ (up to 43%), Fe₂O₃ (1-14%), and MgO (up to 12%), coupled with relative losses of Na₂O and K₂O. The quartz-sericite alteration within both the hanging wall and footwall, display gains in SiO₂ (2-50%), K₂O (up to 2.6%), and locally has gains in Fe₂O₃ and MgO (up to 6% and 8%, respectively, if chlorite is present), and losses in Na₂O (approximately between -1% and -3%). The exception to these trends are samples from the volcaniclastic assemblage in the upward extent of the hanging wall alteration in volcaniclastic lithofacies 2 where there is a relative gain in Na₂O (up to ~1%). Rocks with intense chlorite alteration have mass gains in Fe₂O₃ (0.3 to 13%) and MgO (0.1 to 19%), with relative increases in CaO (up to 16%), depending on presence or absence of chaotic carbonate. This chlorite-chaotic carbonate assemblage typically has significant mass losses in SiO₂ (up to -39.5%), Na₂O (up to -2.5%), and K₂O (up to -1.5%). In additional to gains in Fe₂O₃, MgO and CaO, in the strongly altered chloritic zones in VLC1, this assemblage also displays gains in SiO₂ and K₂O, attributed to locally containing minor quartz-sericite alteration.

Certain LFSE elements, such as Ba, Sr, Rb, and trace elements, like Hg, Tl and Sb, that are related to alteration and mineralization also show significant gains associated with specific alteration assemblages. Barium and Rb are strongly elevated within the sericite-dominated altered footwall rocks (up to 2055 ppm and 61 ppm, respectively), with the exception of some of the intensely chlorite altered rocks. However, Rb is also elevated in the lower hanging wall (up to 25 ppm), whereas Ba displays significant losses above the mineralized zone. Mercury is elevated throughout the footwall within all alteration assemblages, proximal and distal to the deposit, and in lower hanging wall rocks directly above the massive sulphide horizon (up to 6305 ppb). Transition metals (Ni, V, Cr) are elevated in the footwall and display the greatest mass gains in the sericite-chlorite-quartz-pyrite alteration assemblage associated with chlorite stringers. Elevated Cu is associated with intense chlorite, chaotic carbonate and sericite-chlorite-pyrite stringer alteration. Zn and Pb are elevated in almost all alteration assemblages in both the

footwall and lower hanging wall, with the exception of the intense sericite assemblage. Zinc is most strongly elevated in the intense chlorite alteration assemblage (up to 7796 ppm), whereas Pb has the greatest gains in sericite-chlorite-pyrite assemblage (up to 11,576 ppm). Both Zn and Pb have elevated values, up to 20 ppm, in the most distal lower hanging wall volcaniclastic rocks.

To better illustrate the relationship between elemental gains and losses associated with mineralization and alteration downhole profiles of drill cores GA-07-208 and GA-10-272 in Figures 2-17 and 2-18 were chosen to display the key elemental variations, including base metals, key mobile elements and alteration indexes. These holes were selected because they highlight the elemental gains and losses associated with each alteration assemblage and display how they changed downhole with varying proximity to the mineralization. Hole GA-07-208 illustrates common footwall alteration assemblages that are marked by low Na₂O contents at the footwall/hanging wall contact, coupled with high alteration indices, and elevated Hg-Cu-Pb-Zn contents. There are also elevated Fe₂O₃, MgO, which can be attributed to chlorite and pyrite alteration. GA-10-272 has similar footwall alteration assemblages, with elevated CaO associated with Fe₂O₃, which can be attributed to the presence of chaotic carbonate alteration. Within both sections, there is evidence of alteration within the lower part of the hanging wall sequence with elevated levels of K₂O, Fe₂O₃, MgO, Hg, and high CCPI and AI.

2.7 Short Wave Infrared Spectroscopy

Short wave infrared spectroscopy (SWIR) data provides the ability to identify the presence and composition of some alteration minerals associated with mineral deposits in real time, and has been demonstrated to be very effective in characterizing alteration in VMS deposits (e.g., Herrmann et al., 2001; Jones et al., 2005). SWIR spectroscopy uses a light source to measure infrared wavelengths absorbed by certain bonds within the crystal structure of a mineral, such as the OH, H₂O, CO₃, NH₄, AlOH, FeOH, and MgOH molecular bonds (Thompson et al., 1999; AusSpec International, 2008). This

method is particularly useful for identification of VMS alteration-associated hydrous minerals such as white micas and chlorite (Hermann et al., 2001; Hinchey, 2011b).

For the Hurricane zone, the most useful SWIR features are the AIOH absorption features between 2190 and 2225 nm, which, in the case of the Hurricane zone, correspond to variations in white mica compositions (AusSpec International, 2008). FeOH and MgOH bonds, corresponding to chlorite absorption features, show little systematic variations and are not a useful vector towards mineralization in the Hurricane zone, and therefore are not be discussed further. Sericite ($[(K, Na)_2(Al, Fe, Mg)_4(Si, Na)_2(Al, Fe, Mg)_2(Al, Fe, Fg)_2(Al, F$ Al)₈(OH)₂]) has a deep absorption features that ranges from 2180 and 2228 nm (Herrmann et al., 2001). Compositional variations are caused by relative proportions of major cations, mainly in the octahedral site, and these produce differences in wavelengths and absorption features. The exact location of the wavelength is related to the compositional variation of the major cations in the octahedral site, mainly Al, Si, Fe and Mg, which are caused by Tschermark substitution $(Al^{VI}+Al^{IV}\leftrightarrow (Fe, Mg, Mn)^{VI}+Si^{IV})$ or by the interlayer cation substitution between K and Na (e.g., Velde, 1978; Herrmann et al., 2001; Yang et al., 2011). Shorter wave lengths (2180-2195 nm) correspond to high Al contents in the octahedral site and are characteristic of sodic mica (paragonite), whereas longer wave lengths (2210-2228 nm) correspond to low Al levels and increases in Si and Fe+Mg characteristic of Fe-Mg mica (phengite; Herrmann et al., 2001; Yang et al., 2011). Potassic mica (muscovite) produces absorption features around 2200 and 2204 nm, and intermediate wavelengths are the result of mixed white micas or an intermediate composition (Herrmann et al., 2001).

Hyperspectral analysis were carried out at ~5 m intervals in each drill hole that was logged using a TerraSpec[™] mineral spectrometer with a hand held Hi-Brite light wand. Samples were collected from each core box to get an accurate downhole representation of compositional variation with depth and proximity to mineralization. Samples required minimal preparation, as they were collected from dry, clean drill core. To ensure accuracy and avoid instrument drift, optimization, white reference and mineral references (e.g., pyrophyllite) were taken every 40 samples and at every hour. Analyses were completed in dark or naturally lit rooms to avoid interference from artificial lighting. Spectral data were collected using RS³ spectral acquisition software and processed using "The Spectral Geologist Hotcore" v. 7.1.55 software. This program interprets and compares the analyzed spectra to a reference library of mineral standards to determine the exact location of the specific absorption feature to identify the mineral in the sample and allows for numerical extraction of various spectral information (e.g., absorption wavelengths, depths of absorption hulls).

2.7.1 SWIR Results

The SWIR data from the Hurricane zone illustrates a systematic variation in white mica spectral composition from 2189 nm to 2226 nm as a function to proximity to mineralization (Fig. 2-17 and Fig. 2-18). Within the Hurricane stratigraphy, downhole profiles indicate that phengitic micas (> 2210 nm) are the most common mineral species in the hanging wall volcaniclastic rocks. This likely partly reflects regional background micas associated with greenschist metamorphism and partly locally low temperature, distal hydrothermal alteration mica. The exception to this is directly above the mineralized horizon where the hanging wall exhibits strongly sericite-chlorite-pyrite alteration, which is associated with a decrease in wavelength to muscovite (<2195 nm). Within the mineralized zone and footwall, two mica species are present and reflect proximity to mineralization. Muscovite is associated with chlorite-sericite-pyrite alteration assemblage and directly underlies and extends laterally from the mineralized zone. Below this, paragonite is the dominant mica species, which is associated with the strong sericite-pyrite alteration that underlies the deposit.

2.8 Discussion

2.8.1 Tectonic and depositional setting of volcaniclastic rocks

The tectonic setting of the Tulks volcanic belt (TVB) has been the focus of previous studies (e.g., Evans and Kean, 2002, and references therein; Zagorevski et al., 2007, 2010). Most authors suggest that the TVB formed during development of the peri-Gondwanan Penobscot-Victoria arc-back-arc system on the leading edge of Ganderia during the Cambrian to early Ordovician (Zagorevski et al., 2007, 2010). The evolution of this arc-back-arc system was punctuated by multiple episodes of extension and/or incipient rifting accompanied by changes in magma compositions, volcanic and sedimentary facies, and VMS deposit formation (Evans and Kean, 2002; Zagorevski et al., 2010; Hinchey, 2007, 2011a). The results of this work are consistent with these previous models. For example, the textures in volcano-sedimentary facies present in the deposit, consist of well-defined, fining-upward turbiditic sequences of felsic to mafic volcaniclastic rocks intercalated with fine-grained sedimentary rocks, coupled with interfingered mafic and felsic sills. These textures are consistent with formation of sill-sediment complexes with high sedimentation rates coupled with coeval bimodal magmatism (Einsele et al., 1980; Einsele, 1986; Boulter, 2004). Further, the bimodal compositions of the sedimentary rocks suggest a mixed mafic and felsic provenance, likely from nearby arcs (e.g., Zagorevski et al., 2010; Hinchey, 2011a). The lithogeochemical signatures of these rocks are also partly supportive of a rifted arc origin, as well. For example, mafic sills and dykes show a transition in affinity upwards in the Hurricane stratigraphic sequence from transitional calc-alkaline basalts to island-arc tholeiites/back-arc basin basalts (Fig. 2-14b). The primitive mantle normalized patterns for IN1 and IN2 indicate an upward progression in host stratigraphy from island-arctype to back-arc rift-type magmas (Fig. 2-13f), which would be consistent with shifts from magmatism derived from deeper sources (calc-alkalic) to shallower sources (e.g., tholeiites) associated with extension and back-arc asthenospheric upwelling. Similar geochemical results and progressions were observed regionally by Swinden et al. (1989) and Zagorevski et al. (2007).

The rifting of the Penobscot-Victoria arc was critical in the development of the volcanosedimentary basin as periods of arc development and rifting are conducive for the formation of VMS deposits (e.g., Swinden, 1991; Lentz, 1998; Piercey, 2011). During extension, crustal thinning and asthenospheric mantle upwelling result in basaltic under plating of the overlying arc, leading to the production of bimodal magmatism, related elevated heat flow, and emplacement of a localized heat sources (i.e. magma chambers and/or intrusions) that could drive hydrothermal circulation (e.g., Lesher et

62

al., 1986; Swinden, 1991; Lentz, 1998; Galley, 2003; Hart et al., 2004; Piercey 2009, 2011). While the Hurricane zone and Boomerang deposit do not have an exposed subvolcanic intrusion, the deposit contains abundant, multi-generational sills of mafic and felsic material, which were likely fed from an underlying magma chamber. This suggests that the deposit formed within a "thermal corridor" with elevated heat flow, and that this heat was responsible for driving the hydrothermal circulation that formed the deposit (e.g., Lentz, 1998; Galley, 2003; Piercey, 2011). Rifting would have also resulted in extensional faults and fractures that created porosity, permeability and conduits for fluid recharge and upwelling (Franklin et al., 1981, 2005; Lentz, 1998; Barrie and Hannington, 1999; Galley et al., 2007; Piercey 2009, 2011). The combination of these two features were critical in the formation of the Hurricane zone and the Boomerang deposit.

2.8.2. Characteristics and controls on hydrothermal alteration

Hydrothermal alteration in the Hurricane zone consists of proximal, pervasive stratabound alteration that transitions downward and laterally into broad, semi-pervasive alteration. The nature and geometry of alteration in the Hurricane zone was likely due to the original porosity and permeability present in the host rocks during formation of the deposit. For example, the volcaniclastic rocks were likely porous and unconsolidated to partially unconsolidated, which would have resulted not just in vertical hydrothermal fluid flow, but also lateral flow into the unconsolidated material (e.g., Piercey et al. 2014; Piercey, 2015). The interpreted high permeability of the volcaniclastic/volcano-sedimentary host rocks would have allowed for hydrothermal fluids to migrate along multiple paths resulting in alteration both discordant and also semi-concordant to stratigraphy, as fluids would have percolated through the permeable footwall rocks until they encountered a semi-permeable to impermeable boundary (e.g., Gibson et al., 1990; Franklin et al., 2005; Gibson, 2005). There are several lithostratigraphic units that could have acted as impermeable boundaries and influenced the distribution of alteration assemblages and replacement-style mineralization. For example, muddy or silty units at the top of the mineralized sequence likely had low porosities that would impede and trap ascending hydrothermal fluids, resulting in the downward and

lateral growth of sulphide deposition and associated high temperature alteration in host rocks in the subseafloor. In addition, in areas where a mudstone cap is absent (i.e. from depositional erosion or lateral facies change) synchronous and rapid deposition of volcaniclastic material may have impeded venting of hydrothermal fluids onto the seafloor and would have resulted in pervasive and laterally extensive hydrothermal alteration into the lower hanging wall stratigraphy. This is similar to other replacement-style VMS deposits globally, such as the Rosebery and Mattabi deposits (Morton et al., 1991; Allen, 1994).

Despite the likely permeable control on the geometry of alteration, the mineralogical variations and elemental gains and losses of mobile elements are similar to global VMS deposits (Franklin et al., 2005; Galley et al., 2007). The Hurricane zone has four main alteration assemblages that systematically change with proximity to the mineralization. Intense chlorite and local chaotic carbonate directly underlie and are intimately associated with the mineralization (i.e., within 1-10 m of mineralization). Strong to moderate sericite-chlorite-pyrite alteration extends above and below the deposit into the hanging wall and footwall, with the strongest alteration occurring directly above (and below) the mineralization zone (within 0.5-5 m) and decreases in intensity laterally up to several 100 m transitioning into sericite-quartzpyrite alteration that envelopes the deposit (Fig. 2-10).

These alteration assemblages are also associated with characteristic elemental gains and losses that can be explained by the modification of seawater and leaching of felsic/intermediate wall rock during hydrothermal alteration (e.g., Franklin et al., 2005; Hannington et al., 2005). There is strong Na₂O depletion throughout most of the footwall and within the lower half of the hanging wall indicating destruction of feldspars during hydrothermal alteration (Fig. 2-16c; e.g., Riverin and Hodgson, 1980; Date et al., 1983; Barrett and MacLean, 1994). The loss of Na (and Ca) and gains of K and Si (Fe and Mg) correlate with quartz-sericite alteration (Fig. 2-16d). Locally, this alteration assemblage has moderate gains in Fe and Mg, which are associated with either Mg-Fe chlorite laths and/or pyrite in the sericite matrix. The sericite in this alteration assemblage has a paragonitic composition with elevated Ba-Rb, and

64

low base metal content (<150 ppm). The chlorite-sericite-pyrite and intense chlorite alteration assemblages have a net gain of Mg and Fe coupled with the loss of K (±Si and Na) that are attributed to the continual destruction of primary feldspars and previously formed micas with the addition of Mg and Fe to form chlorite (e.g., Riverin and Hodgson, 1980; Knuckey et al., 1982; Table 2.1b and Fig. 2-16c-f). However, the increase in chlorite content does not fully account for the mass gains of Fe and Mg (+Ca) alone, requiring additional Fe-Mg-Ca-rich phases. Such Fe-Mg-Ca-enrichment can be attributed to chaotic carbonate alteration associated within semi-massive sulphides, pyrite stringers, and intense chlorite alteration (Fig. 2-16c). Sericite within chlorite-sericite-pyrite zone is K-rich muscovite and the whole-rock samples exhibit gains in Ba-Rb and losses in Sr. The presence of Zn-Pb enrichment associated with the sericite-rich assemblages, and the occurrence of chlorite in the proximal alteration assemblage, reflects the evolution of the hydrothermal system, from lower temperature (~200°C) Zn-Pb-Ba-rich mineralization associated with sericite to higher temperature (>300°C) Cu-Hg-As-Sb-rich mineralization associated with chlorite and chaotic carbonate (e.g., Large et., 2001b; Franklin et al., 2005). Moreover, the stratabound geometry of some of the alteration illustrates that there was not only upward flow reflected by the presence of discordant chlorite alteration, but also lateral flow that was controlled by permeability of footwall strata.

In addition to footwall alteration, there is well-developed hanging wall alteration in the Hurricane zone. The presence of sericite-quartz (±chlorite) alteration in the hanging wall illustrates that the hydrothermal system continued to operate while the hanging wall was deposited (e.g., Gemmell and Fulton, 2001; Shanks, 2011). Furthermore, the phengitic mica composition in the hanging wall, coupled with gains of Si, Na, Pb, Rb, and Sr (±Fe-Mg, if chlorite is present), and losses of K, Ba directly above the mineralized horizon, are consistent with sericite-quartz alteration that is more Na-rich compared to footwall muscovite alteration. This likely represents a distal signature and potentially a lower temperature alteration associated with the potential waning of the Hurricane hydrothermal system (e.g., Gemmell and Fulton, 2001).

Alteration assemblages in both the hanging wall and footwall have distinctive geochemical signatures that can be used as potential exploration vectors in determining proximity to ore. The most useful proximal vectors are enrichments in Zn, Pb, Cu, Hg, and transition metals; high AI, CCPI, Al₂O₃/Na₂O, Hg/ Na₂O, and Ba/Sr indexes; and the presence of K-rich muscovite or paragonite. These vectors are useful for at least 100 m along strike and 10-60 m into the footwall. Distal vectors include Zn, Pb, Hg enrichments; losses in Ba and K; and phengitic mica, and are detectable along strike for 250 m from mineralization.

2.8.3 Implications for subseafloor replacement

Many modern and ancient seafloor hydrothermal systems form from the exhalation and accumulation of sulphides on the seafloor (e.g. Ohmoto, 1996; Franklin et al., 2005; Galley, 2007; Hannington, 2014). In the ancient geological record; however, there are a sub-set of deposits that formed via replacement in the subseafloor environment, and these deposits are often large and/or high grade (e.g., Galley et al., 1995; Doyle and Allen, 2003; Piercey, 2015). Modern seafloor systems are remarkably inefficient and only 5-10% of metals are precipitated at the seawater interface (Converse et al., 1984), leading to deposits that are generally small (Hannington et al., 2005 and references therein). In contrast, replacement-style systems are much larger and often exhibit higher grades due to the efficiency of precipitation and the enhancement of zone refining processes (e.g., Doyle and Allen, 2003; Piercey, 2015). The Hurricane zone displays well preserved textures and features that suggest formation by subseafloor replacement processes, including many of the criteria outlined by Doyle and Allen (2003). The five features that Doyle and Allen (2003) used to distinguish subseafloor replacement-type VMS deposits, include: (1) the massive sulphides are enclosed in rapidly emplaced lithofacies (i.e. mass-flow deposits, volcaniclastic rocks); (2) relicts of the host lithofacies (i.e. sedimentary, volcaniclastic, or coherent volcanic rocks) are preserved within the massive sulphides; (3) replacements fronts can be identified between the massive sulphide and the host rock; (4) evidence of similar types of hydrothermal alteration and intensity is present in the overlying hanging wall succession; and (5) discordant alteration with enclosing lithofacies. The first three criteria are diagnostic of replacement-style mineralization, whereas criteria 4 and 5 are considered supportive but not diagnostic.

Within the Hurricane zone the first four of these characteristics are present. For example, the Hurricane zone is hosted in and overlain by normally graded, lithic crystal tuffs and lapilli tuffs with local, thin beds of chert and/or mudstone. The rounded nature of the lithic fragments implies that these are most likely reworked volcaniclastic debris and the fining-upward turbiditic sequence indicates that these were likely emplaced rapidly by subaqueous sediment gravity flows (e.g. McPhie et al., 1993; criteria 1). Evidence of hydrothermal alteration in the overlying hanging wall volcaniclastic rocks and locally within the mafic sills provides further evidence for synchronous high temperature hydrothermal fluids, mafic volcanism coupled with rapid emplacement of volcaniclastic rocks (criteria 1 and 4). Textural and stratigraphic relationships also support formation of the Hurricane zone by subseafloor replacement, including the presence of clasts having similar alteration and textures as the surrounding footwall lapilli tuffs, along with relict quartz crystals in bedded sulphides (Fig. 2-19a; criteria 2). There are also replacement fronts that vary from sharp to gradational with the graded volcaniclastic rocks depending on the presence or absence of a cap rock (i.e. mud), as well as occurrences of sulphides lenses at different stratigraphic levels (Fig. 2-19b; criteria 3). In addition, pervasive sericite-quartz-chlorite-(+/- pyrite) alteration, similar to the footwall alteration, occurs in the hanging wall volcaniclastic rocks directly above the massive sulphide horizon which extends up to 10-40 m above mineralization and continues laterally for several 10s of meters (criteria 4; Fig. 2-19c). This is also geochemically evident as there are elevated alteration index values, anomalous base metal enrichments, and mobile elements proportional to the alteration mineral assemblages (Figs. 2-17 and 2-18). This alteration clearly suggests that the hanging wall volcaniclastic rocks were emplaced prior to and/or synchronous with the hydrothermal system that formed the Hurricane zone. Collectively, the criteria above are strong indicators that the Hurricane zone formed predominantly by subseafloor replacement processes.

The style of mineralization and alteration of the Hurricane zone is a function of the semiconsolidated to unconsolidated nature of the volcaniclastic, sedimentary rocks and overlying mudstone unit. It is interpreted that hot, metalliferous fluids initially flowed along synvolcanic structures and permeated through the relatively porous and permeable, fluid-saturated footwall volcaniclastic rocks until it encountered an impermeable mud unit, resulting in mixing of cooler seawater and inter-pore fluids which ultimately lead to the progressive precipitation of sulphides in a subseafloor setting (e.g., Piercey, 2015). Multiple sulphide horizons and alteration in the hanging wall are supportive of this hypothesis and suggest that there was variable permeability in both the footwall and hanging wall volcaniclastic rocks that was controlled by lithology (i.e. normally graded or massive volcaniclastics). In particular, within the normally graded sequences, the massive sulphide preferentially replaced the coarser beds with lesser sulphides in the finer grained beds (i.e., mudstone or siltstone; Fig. 2-8a, Fig. 2-8d and Fig. 2-16a). This was accompanied by an increase in alteration and mineralization upwards in stratigraphy proximal to mineralization and in more permeable units (e.g., Fig. 2-7b and Fig 2-19d). A similar case is observed in the hanging wall where coarser beds are more strongly altered, suggesting that the coarser units were more permeable, allowed greater fluid flow, and provided a nucleation site for sulphide and hydrothermal alteration (e.g., Piercey, 2015).

Even though there is strong evidence for subseafloor replacement, the Hurricane zone, like other similar volcaniclastic-hosted replacement style VMS deposits, the deposit shows evidence for local mineralization that occurred on the seafloor. For example, the presence of thinly bedded fine-grained sedimentary rocks interbedded with fine-grained pyrite suggests potential exhalative seafloor mineralization during a decline in volcaniclastic input (Fig. 2-4). Also, there are regional iron formations that are interpreted to have been formed contemporaneous with the Boomerang deposit (e.g., Curve Pond, Dragon Pond occurrences; Hinchey, 2011a); these units are generally considered to form from exhalative processes (Peter, 2003).

68

Despite the Hurricane zone and Boomerang deposit being relatively small, it has excellent grades, particularly for Zn. This is partly due to the subseafloor replacement processes, coupled with zone refining. Numerous workers have illustrated that zone refining can lead to increased grade if done within a semi-permeable cap rock or semi-permeable interface at the seawater interface (Hodgson and Lydon, 1977; Campbell et al., 1984; Barriga and Fyfe. 1988; Large, 1992; Schardt and Large, 2009; Piercey, 2015). A semi-permeable cap of mud or volcaniclastic rocks, like in the Hurricane zone, would have hindered the dissipation of hydrothermal fluids into the overlying water column, which would have provided a thermal and chemical gradient, and would have allowed cold seawater to ingress into the subseafloor into permeable volcaniclastic and sedimentary rocks. This would have created a thermal and chemical gradient with upwelling hydrothermal fluids (i.e., it would be cold, high fO₂, fluid-rich), thereby inducing sulphide precipitation both upon and beneath the seafloor as hydrothermal fluids mixed at the seawater interface with seawater, and beneath the seafloor with cool fluids trapped in the pore spaces within volcaniclastic and sedimentary material (e.g., Campbell et al. 1984, Lydon, 1988, Piercey, 2015). Moreover, this type of environment would have resulted in a semi-permeable interface that would have facilitated zone refining, coarsening of sulphides, and metal upgrading beneath the semi-permeable interface, leading to the observed metal zoning and Zn-enrichment found in the deposit (e.g. Large, 1992; Ohmoto, 1996; Dearin and DeMark, 2007; Hinchey, 2011a; Piercey, 2015)

2.8.4 Comparison between Boomerang zone and Hurricane Zone

There are many similarities in lithology, mineralization styles, whole-rock geochemistry and SWIR data between the Hurricane zone and Boomerang zone. There have been several studies completed outlining the lithological, geochemical and spectral characteristics of the Boomerang zone (Hinchey, 2007; 2011a and 2011b; Hinchey and McNicoll, 2009), and outlined below are comparisons between the various geological, mineralogical, and lithogeochemical attributes between the Hurricane and Boomerang zones.

The Hurricane zone is located 500 m north east of and along strike with the Boomerang zone and has been interpreted to lie within the same stratigraphic horizon as Boomerang zone (DeMark and Dearin, 2007). For example, the hanging wall stratigraphy of the Boomerang zone with undifferentiated, locally fining upwards felsic to intermediate volcaniclastic and epiclastic rocks that are dominated by ash- and quartz-feldspar crystal tuff (i.e., VCL4), black shale, argillite, greywacke, chert and volcaniclastic conglomerate/breccia and bimodal, locally amygdaloidal sills (i.e., IN2a; Hinchey, 2011a) are identical to the VCL2, VCL3, VCL4 and IN2 facies present at Hurricane. Similarly, the footwall fine-grained crystal-ash tuffs and local lapilli tuff and fine-grained sedimentary rocks are similar to VCL1 in the Hurricane zone (i.e., VCL1). Alteration and mineralization styles are also similar between the two zones. The intense sericite alteration with local moderate to strong chlorite-silica-carbonate alteration and "chaotic" carbonate in the Boomerang zone are similar to that present in the Hurricane zone; both zones also contain similar hanging wall alteration (Hinchey, 2011a). Furthermore, the subseafloor replacement style mineralization in both zones are similar.

In addition to stratigraphy, mineralization, and alteration similarities, the Hurricane and Boomerang zones have similar lithogeochemical and hyperspectral attributes. For example, the volcaniclastic host rocks have HFSE and REE signatures that are identical with volcanic-arc to oceanridge type (or mixed-type) signatures, and similar primitive mantle normalized patterns (e.g., Hinchey, 2011a). Likewise, the primitive-mantle-normalized plots for the mafic sills in the Boomerang are identical to the mafic sills within the Hurricane zone (Hinchey, 2011a). Lastly, short-wave infrared spectroscopy data from the Boomerang zone shows the same systematic decrease in wavelength of the Al-OH absorption features in footwall white micas from phengite ranging to muscovite (>2000 nm) distal to mineralization and paragonite (< 2000 nm) proximal to the ore, and with a significant drop in wavelength from >2000 nm to <2000 nm occuring at, or just above, the hanging wall-footwall contact (Hinchey, 2011a), similar to the downhole profiles in the Hurricane zone (Fig. 2-17 and Fig. 2-18). Taken together, various geological, geochemical, and spectral elements suggest that the Boomerang and Hurricane zones represent stratigraphic and mineralized equivalents within the broader Boomerang deposit.

2.9 Conclusions

The Hurricane zone is a subseafloor replacement-style VMS deposit hosted in thick packages of turbiditic felsic to intermediate volcaniclastic rocks, thinly interbedded with fine-grained sedimentary rocks and locally intruded by felsic and mafic sills. The nature of the volcaniclastic rocks and sills implies synchronous sedimentation and magmatism in a rifted arc to back-arc formed on the leading edge of Ganderia. The mineralized zone consists of massive to semi-massive bedded sphalerite-galenachalcopyrite-pyrite lenses enveloped by strongly altered volcaniclastic rocks in both the footwall and hanging wall. Four main alteration assemblages are present in the Hurricane zone that correspond to increases in alteration intensity towards the massive sulphide horizon. They consist of widespread sericite-quartz alteration and sericite-chlorite-pyrite underlying the semi-massive to massive sulphide horizon and intense chlorite and chaotic carbonate alteration intimately associated with the massive sulphides (i.e., within meters). The alteration styles and their geometry reflect the permeability of host rock lithologies and physicochemical attributes of the hydrothermal fluids during deposit formation. Results from whole-rock lithogeochemistry and mass balance calculations indicate that net gains and losses of major mobile elements (e.g. SiO₂, MgO, Na₂O, Fe₂O₃, K₂O), base metals, and LFSE (e.g. Ba) vary within each alteration assemblage. Results from SWIR analysis of white micas indicate a systematic change from phengite (Mg-rich) in the weakly altered hanging wall rocks to muscovite (K-rich) in the strongly altered volcanic rocks proximal to mineralization, progressing to more Na-rich paragonite in the sericite-quartz alteration assemblage immediately below the mineralized horizon. The combination of mass balance calculations of major and trace elements, coupled with alteration indices, such as CCPI, AI and the Collins index (Hg/Na₂O-Ba/Sr), can be used as vectors towards mineralization.

The Hurricane zone is interpreted to have formed via subseafloor replacement. Four diagnostic features of replacement style mineralization are apparent in the Hurricane stratigraphy (see Doyle and Allen, 2003), including: relicts of the host lithofacies (i.e. crystals and lapilli fragments) in the bedded massive sulphides; replacement fronts with the host lithofacies and the massive sulphide; rapid emplacement of the host lithofacies; and evidence of strong alteration in the hanging wall. It is interpreted that replacement was important for both the geometry of the deposit and likely influenced the high Zn-grades found within the mineralization. The Hurricane zone shows similar characteristics to other volcaniclastic hosted replacement-style VMS deposits globally (e.g. Rosebery, Hercules, Scuddles). Results from this study provide further insight to understanding the processes associated with subseafloor replacement in volcano-sedimentary basins and outlines the characteristics and controls of the alteration assemblages associated with these types of deposits. The multi-technique approach (i.e. lithostratigraphy, geochemistry, hyperspectral) provide valuable exploration techniques and results to better explore for VMS deposits in the Victoria Lake supergroup and in similar volcano-sedimentary belts globally.

2.10 Acknowledgements

Financial support for this project was provided by the National Sciences and Engineering Research Council of Canada (NSERC) Collaborative Research and Development Grant to S.J. Piercey. Additional funding was provided by NSERC-Altius Industrial Research Chair in Mineral Deposits (supported by NSERC, Altius Resources Inc and the Research and Development Corporation of Newfoundland and Labrador), and SEG Canada Graduate Fellowship to English. Logistics and support provided by Canadian Zinc Corporation, with special thanks to Diane Fost, Alexandria Marcotte, Andrew Hussey and Gerry Squires for their field and technical support.
2.11 References

Allen, R.L. 1994. Synvolcanic, subseafloor replacement model for Rosebery and other massive sulfide ores. In: Cook, D.R., Kitto, P.A. (Eds.), Contentious Issues in Tasmania Geology. *Geological Society of Australia Abstracts*, v. 39. p. 107-108.

AusSpec International, 2008. Spectral Interpretation Field Manual: GMEX, Edition 3, Volumes 1-10.

- Banville, R., Huard, A., Sheppard, D., Woods, G., and Drolet, B., 1998. Assessment report on geological, geochemical, geophysical and diamond drilling exploration for 1997 submission for the Anglo-Newfoundland Development Limited Charter, Reid Lots 227, 229, 234 and 247 and fee simple grants. Volume 1 folio 61 and volume 2 folio 29 in the Victoria Lake-Red Indian Lake areas, central Newfoundland, 10 reports. [012A/1015]
- Barbour, D.M., and Thurlow, J.G., 1982. Case histories of two massive sulphide discoveries in central Newfoundland. *In* Prospecting in Areas of Glaciated Terrain. Canadian Institute of Mining and Metallurgy, p. 300-320.
- Barrett, T.J., and MacLean, W.H., 1991. Chemical, mass, and oxygen isotope changes during extreme hydrothermal alteration of an Archean rhyolite, Noranda, Quebec: *Economic Geology*, v. 86, p. 406-414.
- Barrett, T.J., and MacLean, W.H., 1994. Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstones and younger rocks: in Lentz, D. R., ed., Alteration and Alteration Processes Associated with Ore-Forming Systems: Geological Association of Canada, Short Course Notes, v. 11, p. 433-467.
- Barrett, T.J. & MacLean, W.H. 1999. Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems: *Reviews in Economic Geology*, 8, p. 101–131.
- Barrett, T. J., MacLean, W. H., & Tennant, S. C. 2001. Volcanic sequence and alteration at the Parys Mountain volcanic-hosted massive sulfide deposit, Wales, United Kingdom: Applications of immobile element lithogeochemistry. *Economic Geology*, v. 96, p. 1279-1305.
- Barrie, C.T., and Hannington, M.D., 1999. Introduction: classification of VMS deposits based on host rock composition, in volcanic-associated massive sulfide deposits: *Reviews in Economic Geology*, v. 8, p. 2-10.
- Barrie, C.T., and Hannington, M.D., 1999. Classification of volcanic-associated massive sulphide deposits based on host-rock composition: *Reviews in Economic Geology*, v. 8, p. 1–11.
- Barriga, F.J.A.S., and Fyfe, W.S., 1988. Giant pyritic base-metal deposits: The example of Feitais (Aljustrel, Portugal): Chemical Geology, v. 69, p. 331-343.
- Boulter, C. A., Hopkinson, L. J., Ineson, M. G., & Brockwell, J. S. 2004. Provenance and geochemistry of sedimentary components in the Volcano-Sedimentary Complex, Iberian Pyrite Belt: discrimination

between the sill-sediment-complex and volcanic-pile models. *Journal of the Geological Society*, v. 161, p. 103-115.

- Buschette, M.J. and Piercey, S.J., 2016. Hydrothermal alteration and lithogeochemistry of the Boundary volcanogenic massive sulphide deposit, central Newfoundland, Canada. *Canadian Journal of Earth Sciences*, v. 53, p. 506-527.
- Bradshaw, G. D., Rowins, S. M., Peter, J. M., & Taylor, B. E., 2008. Genesis of the Wolverine volcanic sediment-hosted massive sulfide deposit, Finlayson Lake district, Yukon, Canada: mineralogical, mineral chemical, fluid inclusion, and sulfur isotope evidence: *Economic Geology*, v. 103, p. 35-60.
- Campbell, I.H., McDougall, T.J., and Turner, J.S., 1984. A note on fluid dynamic processes which can influence the deposition of massive sulfides: *Economic Geology*, v. 79, p. 1905-1913.
- Collins, C.J., 1989. Report on lithogeochemical study of the Tally Pond Volcanics and associated alteration and mineralization, Unpublished Report for Noranda Exploration Company Limited (Assessment File 012A/1033 Newfoundland Department of Mines and Energy, Mineral Lands Division): St. John's, Newfoundland, p. 87.
- Converse, D.R., Holland, H.D. and Edmond, J.M., 1984. Flow rates in the axial hot springs of the East Pacific Rise (21 N): Implications for the heat budget and the formation of massive sulfide deposits. *Earth and Planetary Science Letters*, v. 69, pp.159-175.
- Date, J., Watanabe, Y., and Saeki, Y., 1983. Zonal alteration around the Fukazawa Kuroko deposits, Akita Prefecture, northern Japan: *Economic Geology Monograph*, v. 5, p. 365-386.
- De Mark, P., and Dearin, C., 2007. Technical report on Tulks South Property. Map stake licenses: 11924 M and 11925 M and Ried Lot 228. Red Indian Lake area, central Newfoundland, Canada. NTS 12A/06 and 12A/11, p. 97.
- Dearin, C., 2006. Technical report on the Tulks South Property. Map stake licenses: 11924M, 1925M and Ried Lot 228. Red Indian Lake area, central Newfoundland, Canada. NTS 12A/06 and 12A/11, p. 158.
- Doyle, M.G., and Allen, R.L., 2003. Subsea-floor replacement in volcanic hosted massive sulfidedeposits: *Ore Geology Reviews*, v. 23, p. 183–222.
- Doyle, M. G., & Huston, D. L. 1999. The subsea-floor replacement origin of the Ordovician Highway-Reward VMS deposit, Mount Windsor Subprovince, northern Queensland: *Economic Geology*, vol. 94, p. 825-844.
- Dunning, G.R., Kean, B.F., Thurlow, J.G., Swinden, H.S., 1987. Geochronology of the Buchans, Roberts Arm, and Victoria Lake Supergroups and Mansfield Cove Complex, Newfoundland: *Canadian Journal of Earth Sciences*, v. 24, p. 1175-1184.
- Dunning, G.R., Swinden, H.S., Kean, B.F., Evans, D.T.W., and Jenner, G.A., 1991. A Cambrian island arc in Iapetus: Geochronology and geochemistry of the Lake Ambrose volcanic belt, Newfoundland Appalachians: *Geological Magazine*, v. 128, p. 1–17.
- Einsele, G., 1986. Interaction between sediments and basalt injections in young Gulf of California-type spreading centers: *Geologische Rundschau*, v. 75, p.197-208.

- Einsele, G., Gieskes, J.M., Curray, J., Moore, D.M., Aguayo, E., Aubry, M.P., Fornari, D., Guerrero, J., Kastner, M., Kelts, K. and Lyle, M., 1980: Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. *Nature*, v. 283, p. 441.
- Evans, D.T.W., and Kean, B.F., 2002. The Victoria Lake Supergroup, central Newfoundland: its definition, setting and volcanogenic massive sulfide mineralization: Newfoundland and Labrador Department of Mines and Energy, Geological Survey, Open File NFLD/2790, p. 1-68.
- Evans, D.T.W, Kean, B.F., and Jayasinghe, N.R., 1994a. Geology and mineral occurrences of Noel Paul's Brook. Map 94-222. Scale: 1:50 000. Newfoundland Department of Mines and Energy, Geological Survey Branch, Open File 012A/09/0685.
- Evans, D.T.W, Kean, B.F., and Jayasinghe, N.R., 1994b. Geology and mineral occurrences of Badger. Map 94-224. Scale: 1:50 000. Newfoundland Department of Mines and Energy, Geological Survey Branch, Open File 012A/16/0687.
- Evans, D.T.W., Kean, B.F., and Mercer, N.L., 1994. Geology and mineral occurrences of Lake Ambrose. Map 94-223. Scale: 1:50 000. Newfoundland Department of Mines and Energy, Geological Survey Branch, Open File 012A/10/0686. Blueline paper. GS# 012A/10/0686.
- Eremin, N.I., Dergachev, A.L., Sergeeva, N.E., and Pozdnyakova, N.V., 2000. Types of volcanic-hosted massive sulphide deposits: *Geology of Ore Deposits*, v. 42, p. 160–171.
- Fisher, R.V., 1966, Rocks composed of volcanic fragments and their classification: *Earth-Science Reviews*, v. 1, p. 287-298.
- Franklin, J.M., Lydon, J.W., and Sangster, D.F., 1981. Volcanic-associated massive sulfide deposits: *Economic Geology 75th Anniversary Volume*, p. 485–627.
- Franklin, J.M., Gibson, H.L., Jonasson, I.R., and Galley, A.G., 2005. Volcanogenic massive sulphide deposits. *In* 100th Anniversary volume, 1905-2005: *Economic Geology*, v. 100, p. 523-560.
- Galley, A. G. 1993. Characteristics of semi-conformable alteration zones associated with volcanogenic massive sulphide districts: *Journal of Geochemical Exploration*, v. 48, p. 175-200.
- Galley, A.G. 1995. The subsea-floor formation of volcanic-hosted massive sulfide: Evidence from Ansil Deposit, Royun-Noranda, Canada. *Economic Geology*, v. 90, pp. 2006-2017.
- Galley, A. G., Hannington, M. D., & Jonasson, I. R., 2007. Volcanogenic massive sulphide deposits. Mineral deposits of Canada: A synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods: Geological Association of Canada, Mineral Deposits Division, Special Publication, v. 5, p. 141-161.
- Gemmell, J.B., and Fulton, R., 2001. Geology, genesis, and exploration implications of the footwall and hanging-wall alteration associated with the Hellyer volcanic-hosted massive sulphide deposit, Tasmania, Australia: *Economic Geology*, v. 96, p. 1003–1035.
- Gemmell, J.B., and Large, R.R., 1992. Stringer system and alteration zones underlying the Hellyer volcanogenic massive sulphide deposit, Tasmania, Australia: *Economic Geology*, v. 87, p. 620–649.

- Gibson, H.L., and D.H. Watkinson, 1990. Volcanogenic massive sulphide deposits of the Noranda cauldron and shield volcano, Quebec, in M. Rive, P. Verpaelst, Y. Gagnon, J.-M. Lulin, G. Riverin, A. Simard, eds., The Northwestern Quebec polymetallic belt: a summary of 60 years of mining exploration: Canadian Institute of Mining and Metallurgy Special Volume 43, v. 43, p. 119-132.
- Hannington, M. D., 2014. Volcanogenic massive sulphide deposits, *In* Holland HD, Turekian KK (ed), Treatise on Geochemistry, 2nd ed.: Oxford, Elsevier, p. 463-488.
- Hannington, M.D., Jonasson, I.R., Herzig, P.M., and Peterson, S., 1995. Physical and chemical processes of sea floor mineralization at mid-ocean ridges. Seafloor hydrothermal systems: Physical, chemical, biological, and geological interactions: *American Geophysical Union*, v. 91, p. 115-157.
- Hannington M.D., Poulsen K.H., Thompson J.F.H., and Sillitoe R.H., 1999. Volcanogenic gold in the massive sulphide environment: *Reviews in Economic Geology*, v. 8, p. 325-356.
- Hannington, M.D., de Ronde, C.D. and Petersen, S., 2005. Sea-floor tectonics and submarine hydrothermal systems: *Economic Geology*, 100th Anniversary Volume, v. 100, p. 111-142.
- Hart, T.R., Gibson, H.L., and Lesher, C.M., 2004. Trace element geochemistry and petrogenesis of felsic volcanic rocks associated with volcanogenic massive Cu-Zn-Pb sulphide deposits: *Economic Geology*, v. 99, p. 1003–1013.
- Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N. and Pontual, S., 2001. Short wavelength infrared (SWIR) spectral analysis of hydrothermal alteration zones associated with base metal sulfide deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland: *Economic Geology*: v. 96, p. 939–955.
- Hinchey, J.G., 2007. Volcanogenic massive sulphides of the southern Tulks volcanic belt, central Newfoundland: Preliminary findings, overview of styles and environments of mineralization, *in* Pereira, C.P.G., and Walsh, D.C., eds., St. John's, Newfoundland, Geological Survey Branch: *Current Research Report 2007-1*, p. 117-142.
- Hinchey, J.G., 2011a. The Tulks volcanic belt, Victoria Lake Supergroup, central Newfoundland: Geology, tectonic setting, and volcanogenic massive sulfide mineralization, St. John's, NL, Canada, Newfoundland and Labrador Department of Natural Resources, Geological Survey: *Current Research Report 2011-02*, p. 167.
- Hinchey, J.G., 2011b. Visible/infrared spectroscopy (VIRS) of volcanogenic massive sulphide hydrothermal alteration products, Tulks volcanic belt, Central Newfoundland: An additional exploration technique? Newfoundland and Labrador Department of Natural Resources, Geological Survey: *Current Research Report 2011-1*, p. 97-108.
- Hinchey, J.G., McNicoll, V., Pereira, C.P.G. and Walsh, D.G., 2009. Tectonostratigraphic architecture and VMS mineralization of the southern Tulks Volcanic Belt: new insights from U-Pb geochronology and lithogeochemistry. Newfoundland and Labrador Department of Natural Resources, Geological Survey: *Current Research Report 2009-1*, p. 13-42.
- Hinchey, J.G., McNicoll, V. 2016. The Long Lake group: an update on U-Pb geochronological studies. Current Research. Newfoundland and Labrador Department of Natural Resources Geological Survey: Current Research Report 2016-1, p. 27-38.

- Hodgson, C.J. and Lydon, J.W., 1977. Geological setting of volcanogenic massive sulphide deposits and active hydrothermal systems: some implications for exploration. *Canadian Institute of Mining and Metallurgy Bulletin*, v. 70, pp.95-106.
- Hutchinson, R.W., 1973. Volcanogenic sulphide deposits and their metallogenic significance: *Economic Geology*, v. 68, p. 1223-1246.
- Jenner, G.A., 1996. Trace element geochemistry of igneous rocks: Geochemical nomenclature and analytical geochemistry: *in* Wyman, D.A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulfide Exploration: Geological Association of Canada, Short Course Notes, v. 12, p. 51–77.
- Jones, S., 2005. Short wavelength infrared spectral characteristics of the HW horizon: Implications for exploration in Myra Falls volcanic-hosted massive sulfide camp, Vancouver Island, British Columbia, Canada: *Economic Geology*, v. 100, p. 273-94.
- Kean, B.F., 1977. Geology of the Victoria Lake map area (12A/06), Newfoundland. Newfoundland Department of Mines and Energy, Mineral Development Division: *Current Research Report 1977-4*, p. 11.
- Kean, B.F., 1979a. Star Lake, Newfoundland. Map 79-001. Scale 1:50,000. Newfoundland Department of Mines and Energy, Mineral Development Division (with descriptive notes).
- Kean, B.F., 1979b. Buchans, Newfoundland. Map 79-125. Scale 1:50,000. Newfoundland Department of Mines and Energy, Mineral Development Division (with descriptive notes).
- Kean, B.F., 1982. Victoria Lake, Newfoundland. Map 82-009. Scale: 1:50,000. Government of Newfoundland and Labrador, Department of Mines and Energy, Mineral Development Division.
- Kean, B.F., 1983. King George IV Lake, Grand Falls district, Newfoundland. Map 82-051. Scale 1:50,000. In Geology of the King George IV Lake map area (12A/4). Newfoundland Department of Mines and Energy, Mineral Development Division: Report 1983-04, p. 1-74.
- Kean, B.F., Dean, P.L., and Strong, D.F., 1981. Regional geology of the Central Volcanic Belt of Newfoundland: Geological Association of Canada Special Paper, v. 22, p. 65-78.
- Kean, B.F., and Jayasinghe, N.R., 1980. Noel Pauls Brook, Newfoundland. Map 80-019. Scale: 1:50,000.
 Geology of the Lake Ambrose (12-A/10) Noel Pauls Brook (12-A/9) map areas, central Newfoundland: Newfoundland Department of Mines and Energy, Mineral Development Division, Report v. 80-02, p. 33. 2 maps.
- Kean, B.F., and Jayasinghe, N.R., 1982. Geology of the Badger map area (12-A/16), Newfoundland. Newfoundland Department of Mines and Energy, Mineral Development Division: *Current Research Report 1981-2*, p. 42.
- Kean, B.F., and Mercer, N.L., 1981. Grand Falls, Newfoundland. Map 81-099. Scale 1:50,000 Newfoundland Department of Mines and Energy, Mineral Development Division.
- Knuckey, M.J., Comba, C.D.A., and Riverin, G., 1982. Structure, metal zoning and alteration at the Millenbach deposit, Noranda, Quebec: Geological Association of Canada Special Paper 25, v. 25, p. 255–295.

- Large, R.R., 1992. Australian volcanic-hosted massive sulphide deposits: features, styles and genetic models: *Economic Geology*, v. 87, p. 471-510.
- Large, R. R., McPhie, J., Gemmell, J. B., Herrmann, W., & Davidson, G. J. 2001a. The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: some examples from Australia: *Economic Geology*, v. 96, p. 913-938.
- Large, R. R., Allen, R. L., Blake, M. D., & Herrmann, W. 2001b. Hydrothermal alteration and volatile element halos for the Rosebery K lens volcanic-hosted massive sulfide deposit, western Tasmania: *Economic Geology*, v. 96, p. 1055-1072.
- Lentz, D.R., 1998. Petrogenetic evolution of felsic volcanic sequences associated with Phanerozoic volcanic-hosted massive sulphide systems: The role of extensional geodynamics: Ore Geology Reviews, v. 12, p. 289–327.
- Lesher, C.M., Goodwin, A.M., Campbell, I.H., and Gorton, M.P., 1986. Trace-element geochemistry of ore-associated and barren, felsic metavolcanics rocks in the Superior province, Canada: *Canadian Journal of Earth Sciences*, v. 23, p. 222–237.
- Lydon, J.W., 1984. Ore deposits models: Volcanogenic massive sulfide deposits. Part 1: A descriptive model: *Geoscience Canada*, v. 11, p. 195-202.
- Lydon, J.W., 1988. Volcanogenic sulphide deposits. Part 2: Genetic models: *Geoscience Canada*, v. 15, p. 43-65.
- MacLean, W.H., 1988. Rare earth element mobility at constant inter-REE ratios in the alteration zone at the Phelps Dodge massive sulphide deposit, Matagami, Quebec: *Mineralium Deposita*, v. 23, p. 231–38.
- MacLean, W, H., 1990. Mass change calculations in altered rock series: *Mineralium Deposita*, v. 25, p. 44-49.
- MacLean, W. H., and Barrett, T. J., 1993. Lithogeochemical techniques using immobile elements: *Journal of geochemical exploration*, v. 48-2, p. 109-133.
- MacLean, W.H., and Kranidiotis, P., 1987. Immobile elements as monitors of mass transfer in hydrothermal alteration: Phelps Dodge massive sulfide deposit, Matagami, Quebec: *Economic Geology*, v. 82, p. 951-962.
- McNicoll, V., Squires, G., Kerr, A., and Moore, P.J., 2010. The Duck Pond and Boundary Cu–Zn deposits, Newfoundland: New insights into the ages of host rocks and the timing of VHMS mineralization: *Canadian Journal of Earth Sciences*, v. 47, p. 1481–1506.
- McPhie, J., Doyle, M., and Allen, R.L., 1993. Volcanic textures: A guide to the interpretation of textures in volcanic rocks: Centre for Ore Deposit and Exploration Studies, University of Tasmania, Hobart, Australia, p. 198.

- Morton, R.L., and Franklin, J.M., 1987. Two-fold classification of Archean volcanic-associated massive sulphide deposits: *Economic Geology*, v. 82, p. 1057–1063.
- Ohmoto, H., 1996. Formation of volcanogenic massive sulfide deposits: The Kuroko perspective: *Ore Geology Reviews*, v. 10, p. 135-177.
- Pearce, J., 1996. A users guide to basalt discrimination diagrams. *In* Wyman, D.A., ed., Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration: Geological Association of Canada, Short Course Notes: v. 12, p. 79-113.
- Pearce, J.A., Harris, N.B. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: *Journal of petrology*, v. 25 p. 956-983.
- Piercey, S.J. 2007. Volcanogenic Massive Sulphide (VMS) Deposits of the Newfoundland Appalachians, Canada: An Overview of their Setting, Classification, Grade-Tonnage Data, and Unresolved Questions. Newfoundland and Labrador Department of Natural Resources Geological Survey: *Current Research Report 2007-1*, p.169–178.
- Piercey, S.J., 2009. Lithogeochemistry of volcanic rocks associated with volcanogenic massive sulfide deposits and applications to exploration, *in* Submarine Volcanism and Mineralization: Modern through ancient, (eds.) B. Cousens and S.J. Piercey: Geological Association of Canada, Short Course, p. 15-40.
- Piercey, S., 2011. The setting, style, and role of magmatism in the formation of volcanogenic massive sulfide deposits: *Mineralium Deposita*, v. 46, p. 449–471
- Piercey, S. J. (2015). A semipermeable interface model for the genesis of subseafloor replacement-type volcanogenic massive sulfide (VMS) deposits: *Economic Geology*, v. 110, p. 1655-1660.
- Piercey, S.J., Squires, G.C., and Brace, T.D., 2014. Lithostratigraphic, hydrothermal, and tectonic setting of the Boundary volcanogenic massive sulfide deposit, Newfoundland Appalachians, Canada: Formation by subseafloor replacement in a Cambrian rifted arc: *Economic Geology*, v. 109, p. 661– 687.
- Piercey, S. J., and J. Hinchey., 2012. Volcanogenic massive sulphide (VMS) deposits of the Central Mineral Belt, Newfoundland. *In* Geological Association of Canada–Mineralogical Association of Canada Joint Annual Meeting, Field Trip Guidebook B4. Newfoundland and Labrador Department of Natural Resources, Geological Survey, Open File NFLD/3173.
- Peter, J. M., 2003. Ancient iron formations: their genesis and use in the exploration for stratiform base metal sulphide deposits, with examples from the Bathurst Mining Camp, *in* Lentz, D. R., ed., Geochemistry of Sediments and Sedimentary Rocks: Secular Evolutionary Considerations to Mineral Deposit-Forming Environments, Geological Association of Canada, GEOtext v. 4, p. 145-176.
- Riley, G.C., 1957. Red Indian Lake (west half), Map 8-1957. Scale: 1: 125,000. Newfoundland. Geological Survey of Canada, (with descriptive notes).
- Riverin, G., and Hodgson, C.J., 1980. Wall-rock alteration at the Millenbach Cu-Zn mine, Noranda, Quebec: *Economic Geology*, v. 75, p. 424-444.

- Rogers, N., van Staal, C. R., Pollock, J., and Zagorevski, A., 2005. Map NTS 12-A/10 and part of 12-A/15. Scale 1:50,000. Geology, Lake Ambrose and part of Buchans, Newfoundland.
- Rogers, N., van Staal, C., McNicoll, V., Pollock, J., Zagorevski, A., & Whalen, J., 2006. Neoproterozoic and Cambrian arc magmatism along the eastern margin of the Victoria Lake Supergroup: A remnant of Ganderian basement in central Newfoundland?: Precambrian Research, v. 147, p. 320-341.
- Ross, P.S., and Bédard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminat diagrams: Canadian Journal of Earth Science, v. 46, p. 823-839.
- Ruks, T.W., Piercey, S.J., Ryan, J.J., Villeneuve, M.E. and Creaser, R.A., 2006. Mid-to late Paleozoic K-feldspar augen granitoids of the Yukon-Tanana terrane, Yukon, Canada: Implications for crustal growth and tectonic evolution of the northern Cordillera: *Geological Society of America Bulletin*, v. 118 p. 1212-1231.
- Saeki, Y., and Date, J., 1980. Computer application to the alteration data of the footwall dacite lava at the Ezuri Kuroko deposits, Akito Prefecture: *Mining Geology*, v. 30, p. 241–250.
- Sawkins, F.J., 1976. Massive sulphide deposits in relation to geotectonics: *Geological Association of Canada Special Paper 14*, p. 222–240.
- Schardt, C., and Large, R.R., 2009. New insights into the genesis of volcanic-hosted massive sulfide deposits on the seafloor from numerical modeling studies: *Ore Geology Reviews*, v. 35, p. 333-351.
- Shanks, W.,C. 2001. Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes: *Reviews in Mineralogy and Geochemistry*, v. 43, p. 469-525.
- Shervais, J.W., 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas: *Earth and planetary science letters*, *v.* 59, p. 101-118.
- Spitz, G., and Darling, R., 1978. Major and minor element lithogeochemical anomalies surrounding the Louvem copper deposit, Val d'Or, Quebec: *Canadian Journal of Earth Sciences*, v. 15, p. 1161–1169.
- Squires, G.C., and Moore, P.J., 2004. Volcanogenic massive sulphide environments of the Tally Pond Volcanics and adjacent area: Geological, lithogeochemical and geochronological results, *in* Pereira, C.P.G., Walsh, D.G., and Kean, B.F., eds., St. John's, Newfoundland, Geological Survey Branch: *Current Research Report 2004-1*, p. 63-91.
- Squires, G.C., Brace, T.D., and Hussey, A.M., 2001. Newfoundland's polymetallic Duck Pond deposit: Earliest Iapetan VMS mineralization formed within a sub-seafloor, carbonate-rich alteration system, *in* Evans, D.T.W., and Kerr, A., eds., Geology and mineral deposits of the northern Dunnage zone, Newfoundland Appalachians: St. John's, Newfoundland, Geological Association of Canada-Mineralogical Association of Canada: *Field Trip Guide A2*, p. 167–187.
- Squires, G., Tallman, P., Sparkes, K., Hyde, D., House, F, and Regular, K., 2005. Messina Minerals' new Boomerang VMS discovery: Preliminary evaluation of a sub-seafloor replacement-style massive sulphide deposit. CIMM Newfoundland Branch Meeting: Program with Abstracts p. 15.

- Squires, G., Sparkes, K., House, F., Lodge, R., 2008. Ninth year assessment report on prospecting, metallurgical testing, resource estimation and geochemical, geophysical, and diamond drilling exploration for licenses 11924M-11925M on claims Tulks River area, central Newfoundland, 5 reports, N.T.S. 12A/06 for Messina Minerals Incorporated, Newfound and Labrador Geological Survey, p. 1-1149.
- Swinden, H.S., 1990. Regional geology and metallogeny of central Newfoundland. *In* Metallogenic Framework of Base and Precious Metal Deposits, Central and Western Newfoundland. *Edited by* H.S. Swinden, D.T.W. Evans and B.F. Kean. Eighth IAGOD Symposium Field Trip Guidebook. Geological Survey of Canada: Open File 2156, p. 1-27.
- Swinden, H.S., Jenner, G.A., Kean, B.F., and Evans, D.T.W., 1989. Volcanic rock geochemistry as a guide for massive sulfide exploration in central Newfoundland: Newfoundland Department of Mines: Current Research Report 1989-1, p. 201–219.
- Swinden, H.S. 1991. Paleotectonic settings of volcanogenic massive sulphide deposits in the Dunnage Zone, Newfoundland Appalachians: *Canadian Institute of Mining and Metallurgy Bulletin*, v. 84, p. 59–89.
- Swinden, H. S., Jenner, G. A., and Szybinski, Z. A., 1997, Magmatic and tectonic evolution of the Cambrian-Ordovician Laurentian margin of Iapetus: Geochemical and isotopic constraints from the Notre Dame subzone, Newfoundland, *in* Sinha, A. K., Whalen, J. B., and Hogan, J. P., eds., The Nature of Magmatism in the Appalachian Orogen: Boulder, Colorado: *Geological Society of America Memoir*, v. 191, p. 337-365.
- Tallman, P., 2006. Block modeling and grade variance of Messina Minerals' Boomerang massive sulphide deposit, central Newfoundland. Canadian Institute of Mining, Metallurgy and Petroleum, Newfoundland Branch. 53rd Annual Conference and Trade Show, Abstract volume, p. 18.
- Thompson, A. J., Hauff, P. L., & Robitaille, A. J. 1999. Alteration mapping in exploration: application of short-wave infrared (SWIR) spectroscopy. *SEG Newsletter*, v. 39, p. 16-27.
- van Staal, C.R., 2007, Pre-Caroniferous tectonic evolution and metallogeny of the Canadian Appalachians, *in* Goodfellow, W.D., ed., Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods: Geological Association of Canada, Mineral Deposits Division, Special Publication No. 5, p. 793-818.
- van Staal, C.R. and Barr, S.M. 2012. Lithospheric architecture and tectonic evolution of the Canadian Appalachians and associated Atlantic margin. Chapter 2 *In* Tectonic Styles in Canada: the LITHOPROBE Perspective. *Edited by* J.A. Percival, F.A. Cook, and R.M. Clowes. Geological Association of Canada, Special Paper 49, v. 49, p. 41-96.
- Velde, B., 1978. Infrared spectra of synthetic micas in the series muscovite-MgAl celadonite: *American Mineralogist*, v. 63, p. 341-349.
- White, J.D.L., and Houghton, B.F., 2006, Primary volcaniclastic rocks: Geology, v. 34, p. 677-680.

Williams, H., 1970, Red Indian Lake (east half), Newfoundland. Geological Survey of Canada, Map 1196A

- Williams, H. 1979. Appalachian Orogen in Canada: Canadian Journal of Earth Sciences, v. 16: p. 792–807.
- Williams, H., 1995, Geology of the Appalachian-Caledonian Orogen in Canada and Greenland. Geological Survey of Canada: *Temporal and Spatial Divisions*; Chapter 2, v. 6, p. 21-44.
- Williams, H., Colman-Sadd, S.P., and Swinden, H.S., 1988., Tectonicstratigraphic subdivisions of central Newfoundland. *In Current Research*, Part B. Geological Survey of Canada, Paper 88-1B, p. 91–98.
- Winchester, J.A. and Floyd, P.A., 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks: *Earth and Planetary Science Letters*, v. 28, p. 459-469.
- Yang, K., Huntington, J.F., Gemmell, J.B., Scott, K.M., 2011. Variations in composition and abundance of white mica in the hydrothermal alteration system at Hellyer, Tasmania, as revealed by infrared reflectance spectroscopy: *Journal of Geochemical Exploration*, v. 108, p. 143-156.
- Zagorevski, A., Rogers, N., van Staal, C.R., McNicoll, V., Lissenberg, C.J., and Valverde-Vaquero, P., 2006, Lower to Middle Ordovician evolution of peri-Laurentian arc and back-arc complexes in the Iapetus: constraints from the Annieopsquotch Accretionary Tract, Central Newfoundland: *Geological Society of America Bulletin*, v. 118, p. 324–362.
- Zagorevski, A., van Staal, C.R., McNicoll, V.J., and Rogers, N., 2007, Upper Cambrian to Upper Ordovician peri-Gondwanan island arc activity in the Victoria Lake Supergroup, central Newfoundland: Tectonic development of the northern Ganderian margin: *American Journal of Science*, v. 307, p. 339–370.
- Zagorevski, A., van Staal, C.R., Rogers, N., McNicoll, V.J. and Pollock, J., 2010. Middle Cambrian to Ordovician arc-backarc development on the leading edge of Ganderia, Newfoundland Appalachians: *Geological Society of America Memoirs*, v. 206, p. 367-396.

Sample ID:	32178	32177	14521	25424	14535	14496
Hole ID:	GA-14-278	GA-14-278	GA-07-208	GA-07-254	GA-07-208	GA-06-147
Depth (m):	60.9	42.91	59.95	157.1	169.1	125.35
L ocation:	Hanging wall	Hanging wall	Hanging wall	Hanging wall	Hanging wall	Hanging
Location.	Coherent Felsio	Dorphyritic Felsic	manging wan	Hatarolithia	Crystal Lithia	wall
Lithology:	Flow	Flow	Crystal Tuff	Tuff	Tuff	Mafic Sill
SiO ₂ (wt %)	83.72	67.16	<u> </u>	64.17	61.16	50.27
SIO_2 (wt 70)	0.62	12 27	49.02	15.67	16.67	16.10
$A_{12}O_3 (wt 70)$	9.02	5.00	19.15	5.51	5.67	10.19
$\operatorname{Fe}_2 O_3 (\operatorname{wl} \%)$	0.71	5.99	9.65	5.51	5.07	10.97
MiO(wt 76)	0.01	0.04	0.12	0.03	0.00	0.17
MgO (wt %)	0.07	4.5	/.1/	0.51	5.25	0.3
CaO (wt %)	0.13	0.3	2.08	0.19	0.61	3.1
Na_2O (wt %)	5.03	3.39	4.72	0.48	2.33	5.36
K ₂ O (wt %)	0.27	1.2	1.41	3.32	3.2	0.03
TiO ₂ (wt %)	0.23	0.53	0.74	0.57	0.85	0.99
P ₂ O ₅ (wt %)	0.04	0.06	0.06	0.07	0.11	0.09
LOI	0.22	3.54	5.87	4.6	4.12	7.21
Total	100	99.98	100.6	100.9	100.0	100.7
Hg (ppb)	2.5	6.0	2.5	2.5	2.5	2.5
Sc (ppm)	3	22	27	18	18	37
Be (ppm)	0.5	0.5	1	2	2	1
V (ppm)	15	164	223	45	50	380
Cr (ppm)	50	40	30	< 20	< 20	30
Co (ppm)	2	18	21	6	4	25
Ni (ppm)	10	10	< 20	< 20	< 20	< 20
Cu (ppm)	5	5	20	5	5	50
Zn (ppm)	15	90	90	60	110	90
Ga (ppm)	5	13	19	19	19	15
Ge (ppm)	0.25	0.25	1	1	1	1.3
As (ppm)	2.5	29	< 5	< 5	5	8
Rb (ppm)	3	15	24	51	54	< 1
Sr (ppm)	27	28	46	10	33	188
Y (ppm)	15.3	10.7	24.6	54.6	48.3	13.7
Zr (ppm)	88	59	104	212	171	42
Nb (ppm)	1.3	0.6	1.2	1.6	1.4	0.6
Mo (ppm)	3	1	< 2	< 2	< 2	< 2
Ag (ppm)	0.25	0.25	< 0.5	< 0.5	< 0.5	< 0.5
In (ppm)	0.05	0.05	< 0.1	< 0.1	< 0.1	< 0.1
Sn (ppm)	0.5	0.5	< 1	1	< 1	< 1
Sb (ppm)	0.1	0.1	< 0.2	< 0.2	0.4	0.7
Cs (ppm)	0.05	0.1	0.2	0.4	0.4	< 0.1
Ba (ppm)	173	227	538	1390	414	33
La (ppm)	7.44	4.7	8.6	20.3	17.9	4.36
Ce (ppm)	15.8	9.12	18.8	48.6	43.4	8.87
Pr (ppm)	1.75	1.00	2.32	6.47	5.85	1.16

Table 2.1a. Representative Whole-Rock Geochemistry of the HW Samples in the Hurricane Zone

Nd (ppm)	6.66	4.32	9.88	29.9	27.1	5.97
Sm (ppm)	1.69	1.1	2.82	8.08	7.16	1.7
Eu (ppm)	0.35	0.32	0.91	1.96	2.28	0.59
Gd (ppm)	1.84	1.33	3.67	9.05	8.53	2.08
Tb (ppm)	0.34	0.27	0.69	1.62	1.5	0.4
Dy (ppm)	2.41	1.89	4.5	10.3	9.25	2.57
Ho (ppm)	0.56	0.39	0.97	2.15	1.91	0.56
Er (ppm)	1.73	1.19	2.85	6.5	5.67	1.66
Tm (ppm)	0.29	0.20	0.44	0.99	0.85	0.24
Yb (ppm)	2.04	1.53	3.11	6.66	5.59	1.58
Lu (ppm)	0.34	0.26	0.52	1.06	0.91	0.25
Hf (ppm)	2.4	1.4	2.1	4.1	3.5	1
Ta (ppm)	0.03	0.005	0.18	0.18	0.18	0.1
W (ppm)	0.9	0.25	0.5	< 0.5	< 0.5	1.2
Tl (ppm)	0.025	0.06	< 0.05	0.12	0.09	< 0.05
Pb (ppm)	2.5	12	< 5	2.5	9	2.5
Bi (ppm)	0.05	0.05	< 0.1	< 0.1	< 0.1	< 0.1
Th (ppm)	5.2	3.07	4.63	4.6	3.75	0.77
U (ppm)	1.3	0.79	1.25	1.59	1.58	0.23

Sample ID:	14547	31769	14544	32200	14800
Hole ID:	GA-07-208	GA-10-273	GA-07-208	GA-14-278	GA-14-276
Depth (m):	328.3	267.8	273.6	309.3	311.6
Deposit Location:	Footwall	Footwall	Footwall	Footwall	Footwall
Lithology:	Crystal tuff	Tuff	Tuff	Tuff	Lapilli tuff
Alteration Type:	Least Altered	Sericite-quartz-chlorite-	Sericite-pyrite	Chlorite	Chaotic carbonate-
		pyrite	F)		chlorite
S1O ₂ (wt %)	61.09	49.67	69.15	31.9	25.42
Al ₂ O ₃ (wt %)	14.87	11.71	10.90	16.15	11.87
Fe ₂ O ₃ (wt %)	5.64	14.42	7.12	12.31	4.39
MnO (wt %)	0.43	0.18	0.03	0.41	0.75
MgO (wt %)	3.89	7.31	0.31	18.6	12.86
CaO (wt %)	2.41	0.35	0.42	3.05	15.29
Na ₂ O (wt %)	2.56	0.13	0.52	0.63	0.25
K ₂ O (wt %)	1.49	1.61	2.52	0.53	2.43
TiO ₂ (wt %)	0.57	0.49	0.40	0.75	0.46
P_2O_5 (wt %)	0.13	0.05	0.03	0.12	0.19
LOI	7.07	10.47	6.13	14.14	24.25
Total	100.20	96.37	97.52	98.60	98.16
Hg (ppb)	12	5010	479	454	23
Sc (ppm)	11	11	15	17	11
Be (ppm)	< 1	< 1	0.5	< 1	< 1
V (ppm)	91	133	108	142	79
Cr (ppm)	< 20	< 20	40	< 20	< 20
Co (ppm)	10	13	8	20	5
Ni (ppm)	< 20	< 20	10	< 20	< 20
Cu (ppm)	30	930	640	30	< 10
Zn (ppm)	400	> 10000	7680	3580	200
Ga (ppm)	14	16	11	21	13
Ge (ppm)	0.7	0.6	1.3	< 0.5	< 0.5
As (ppm)	21	335	136	55	19
Rb (ppm)	35	29	55	11	45
Sr (ppm)	39	9	28	35	138
Y (ppm)	19.9	24.7	20	16.9	24
Zr (ppm)	85	25	32	106	76
Nb (ppm)	2.3	< 0.2	0.1	3.1	1.8
Mo (ppm)	< 2	24	< 2	12	6
Ag (ppm)	< 0.5	7.5	1.7	0.6	< 0.5
In (ppm)	0.2	0.4	0.2	0.3	< 0.1
Sn (ppm)	< 1	10	1	2	5
Sb (ppm)	1.2	12.2	10	4.2	< 0.2
Cs (ppm)	0.30	0.20	0.30	0.10	0.30
Ba (ppm)	201	833	425	383	4466
La (ppm)	8.46	4.34	4.98	3.9	4.8
Ce (ppm)	18.00	10.80	10.50	11.50	13.30
Pr (ppm)	2.29	1.56	1.32	1.65	1.98

Table 2.1b. Representative Whole-Rock Geochemistry Samples in the FW of the Hurricane Zone

Nd (ppm)	9.51	7.44	5.7	8.12	9.74
Sm (ppm)	2.63	2.42	1.71	2.01	3.33
Eu (ppm)	0.79	0.29	0.35	0.25	0.74
Gd (ppm)	2.81	3.25	2.2	2.5	4.19
Tb (ppm)	0.54	0.66	0.45	0.45	0.7
Dy (ppm)	3.41	4.33	3.21	2.85	4.22
Ho (ppm)	0.74	0.92	0.69	0.62	0.85
Er (ppm)	2.22	2.55	2.08	1.96	2.51
Tm (ppm)	0.36	0.38	0.33	0.32	0.39
Yb (ppm)	2.51	2.42	2.14	2.38	2.54
Lu (ppm)	0.42	0.36	0.34	0.40	0.39
Hf (ppm)	1.8	< 0.1	0.7	2.9	2
Ta (ppm)	0.22	< 0.01	0.06	0.32	0.1
W (ppm)	1.1	15	2.3	3.5	1.1
Tl (ppm)	0.24	1.62	0.82	1.08	1.94
Pb (ppm)	19	9300	3990	2340	17
Bi (ppm)	< 0.1	9.6	< 0.1	0.3	0.4
Th (ppm)	2.45	1.48	0.4	2.36	1.93
U (ppm)	0.7	6.76	0.97	6.34	0.72

Figure 2-1. Location and geology of the area surrounding the Red Indian Lake, including the Victoria Lake supergroup (VLSG). Relevant deposits indicated in northern and southern parts of the VLSG. TVB-Tulks volcanic belt, VLIS- Valentine Lake intrusive suite, TPB- Tally Pond belt, CLIS- Crippleback Lake intrusive suite (modified from Rogers et al., 2006).

Figure 2-2. Geological map of the southern Tulks volcanic belt with known base-metal and precious metal VMS deposits indicated (modified from Hinchey, 2011a).

Figure 2-3. Geological map of the Boomerang-Domino-Hurricane deposit from surface mapping completed by Canadian Zinc Corporation. Ore zones of the Boomerang and Domino deposits and Hurricane zone are projected to surface (D. Copeland, personal communication, 2019).

Figure 2-4. Major lithofacies that comprise the footwall and hanging wall stratigraphy in the Hurricane zone. (A) VCL1: weak to moderately sericite-silica-chlorite altered medium-grained, plagioclase-bearing crystal tuff. (B) VCL2: normally graded, medium-grained crystal-bearing tuff to lapilli tuff with thin chert interbeds. (C) VCL3: bedded fine- to coarse-grained lapilli tuffs with block-sized fragments. (D) VCL3:

normally graded, heterolithic, coarse-grained lapilli tuff to thinly bedded argillite. (E) VCL4: plagioclasebearing crystal tuffs. (F) VCL4: quartz ± plagioclase crystal-bearing tuffs. (G) CL1a: plagioclase-quartz porphyritic felsic volcanic rocks (H) CL1b: aphyric felsic (rhyolite) volcanics. Abbreviations: plagplagioclase crystals, lap- lapilli fragment, LT- lapilli tuff, qtz- quartz crystal.

Figure 2-4. Intermediate to mafic intrusive rocks in the Hurricane zone. (A) Strongly sericite-quartz altered intermediate dyke within footwall. (B) Fine- to medium-grained mafic sills overlying footwall volcaniclastics with 0.5 to 2 cm thick carbonate-quartz veins. (C) Fine-grained, dark green-grey mafic dykes with sharp chilled margins along contact with CL1a and CL1b. (D) Close-up of mafic dyke with mm-scale carbonate amygdules and 1 cm calcite-chlorite veins. Abbreviations: carb-chl- carbonate-chlorite veins, carb amy- carbonate amygdules.

Figure 2-5. Photomicrographs of the volcaniclastic and volcanic lithofacies in the Hurricane zone. (A) Weakly altered footwall volcaniclastic (VCL1). Lapilli fragments and lesser quartz crystals within a finegrained groundmass consisting of quartz-sericite alteration and rare medium-grained anhedral pyrite. (B) Moderately altered lithic, crystal tuff (VCL2) in the hanging wall above the mineralized horizon. The

sample contains wispy, banded sericite-chlorite-quartz alteration with rare anhedral pyrite. (C) Fine- to medium-grained crystal tuff with weak sericite alteration in the hanging wall (VCL3). (D) Medium- to coarse-grained crystal, lithic tuff (VCL3) with weak sericite alteration. (E) Plagioclase-quartz-bearing crystal tuff (VCL4). Weak sericite alteration is present in wispy thin bands parallel to foliation. (F) Quartz-plagioclase-phyric felsic volcanic rocks with fine-grained sericite within the matrix (CL1a). (G) Fine-grained felsic volcanic with rare fine-grained plagioclase and quartz phenocrysts (1CLb). (F) Medium-grained mafic dyke. All photomicrographs are in cross-polarized light except Fig. 2-6H, which is in plane-polarized light.

Figure 2-6. Mineralization and alteration from the Hurricane zone. (A) Banded pyrite with yellow and red sphalerite and lesser galena; note relict quartz grains in sulphide matrix. (B) Weakly banded pyrite, yellow and red sphalerite, and galena in strongly sericite and chlorite altered matrix with moderate chaotic carbonate and chlorite alteration. (C) Intense sericite-pyrite alteration. (D) Strong sericite-quartz alteration

with patchy-lath-like and stockwork chlorite. (E) Strong sericite and quartz alteration with chlorite-pyrite stockwork veins. (F) Intense chlorite and pyrite alteration. (G) Intense chaotic carbonate and chlorite alteration. (H) Dentritic chaotic carbonate alteration with disseminated pyrite, yellow and red sphalerite in chlorite-sericite matrix. Abbreviations: qtz- quartz, py- pyrite, sp- sphalerite, gn- galena, ser- sericite, chl-chlorite, CC- chaotic carbonate, cp- chalcopyrite.

Figure 2-7. Photomicrographs of the footwall mineralization and alteration at the Hurricane zone. (A) Banded sphalerite, chalcopyrite, pyrite and lesser galena. (B) Sharp contact between bedded massive sulphide (chalcopyrite, sphalerite, pyrite and lesser galena) and VCL1 with rare massive sulphides in fine-grained volcaniclastic matrix. (C) Cross-polarized photomicrograph of Fig. 2-8a highlighting quartz-

sericite alteration associated with massive sulphide. (D) Cross-polarized photomicrograph of Fig. 2-8b illustrating sharp contact between massive sulphide and fine-grained volcaniclastic rock (VCL2), as well as sericite-carbonate-quartz alteration and relict quartz crystals in massive sulphide. (E) Moderately sericite-quartz-pyrite altered fine-grained lapilli tuff with rare carbonate alteration. (F) Moderate to strong sericite-chlorite-quartz-pyrite altered lapilli tuff. (G) Strong sericite-quartz-pyrite altered tuff with medium-grained chalcopyrite and sphalerite. (H) Distal chaotic carbonate and sericite alteration.

Figure 2-8. Simplified stratigraphic section illustrating the relationship between the five lithofacies, intrusive units and the mineralized horizon in the Hurricane zone.

Figure 2-9. Simplified cross section illustrating the relationship between lithofacies and the alteration assemblages in the Hurricane zone.

Figure 2-10. Simplified stratigraphic cross section of section 4050 with alteration intensities indicated. Legend is shown in Figure 2-7. Abbreviations Qtz- quartz; Ser- sericite; Chl- chlorite; Sul- sulphide; carb- carbonate; mud-mudstone; Lap- lapilli tuff; TB- tuff breccia; Int- Intrusive; SMS- semi-massive sulphide; MS- massive sulphide.

Figure 2-11. Immobile element discrimination diagrams of the volcanic and intrusive rocks from the Hurricane zone. (A) Modified Winchester and Floyd (1977) Zr/TiO₂ vs. Nb/Y discrimination diagram for rock type classification (from Pearce, 1996). (B) Zr vs. Y magnatic affinity discrimination diagram (from Ross and Bedard, 2009). (C) Immobile element ratio plot Th/Al₂O₃ vs. Zr/TiO₂ highlighting the geochemical group distinction for Group A-C and Group D in VCL1 in the Hurricane zone. (D) Nb vs. Y discrimination diagram for determining tectonic environments (from Pearce 1984). (E) Zr vs. Nb discrimination diagram for determining juvenile environments from evolved environments (from Piercey, 2009). (F) La/Yb_{cn}-Yb_{cn} FI-FIV rhyolite discrimination diagram (chondrite-normalization (CN) values from McDonough and Sun (1995); diagram from Lesher et al., 1986 and Hart et al., 2004).

Figure 2-12. Primitive mantle normalized multi-element plots for the major lithofacies and geochemical units of the Hurricane zone (primitive mantle-normalized to the values of McDonough and Sun 1995). (A) Coherent lithofacies 1a and 1b (Cl1a and Cl1b). (B) Volcaniclastic lithofacies 1 (VCL1; Group A to C). (C) Volcaniclastic lithofacies 4 (VCL4). (D) Volcaniclastic lithofacies 1 (VCL1; Group D). (E) Volcaniclastic lithofacies 2 and 3 (VCL2 and VCL3). (F) Mafic intrusives (IN1 and IN2a and IN2b). Legend indicated in Figure 2-12.

Figure 2-13. Immobile element discrimination diagrams for mafic intrusive volcanic rocks of the Hurricane zone. (A) Zr/TiO₂ vs. Nb/Y discrimination diagram modified from Winchester and Floyd (1977) to determine rock type (from Pearce, 1996). (B) Ti/1000 vs. V diagram (from Shervais, 1982). (C) Th-Zr-Nb plot (from Wood 1980). Abbreviations: ARC- arc-related basalts; BABB- back-arc basin basalts; IAT- island-arc tholeiite; OIB- ocean island basalt; N -MORB- normal mid-ocean ridge basalt; E-MORB- enriched mid-ocean ridge basalt; BON- boninite.

Figure 2-14. Mobile element plots for hanging wall, footwall and intrusive rocks of the Hurricane zone. (A) Splitz-Darling (Spitz and Darling, 1978) index vs. Na₂O (modified from Ruks et al., 2006). (B) Alteration box plot (from Large et al., 2001a). (C) Diagram of MgO vs. Al₂O₃ defining main alteration assemblages in Hurricane zone (from Buschette et al., 2016). (D) Diagram of K₂O vs. Al₂O₃ defing alteration assemblages in the Hurricane zone (from Buschette et al., 2016). (E) Diagram of Hg/Na₂O vs. Ba/Sr indicating the "Duck Pond alteration signature" in the ore proximal field (from Collins, 1989; Buschette et al., 2016). (F) Diagram of Tl vs. Sb (from Large et al., 2001a). Abbreviations: Qtz- quartz; Ser- sericite; Chl- chlorite; Kspar– K-feldspar; Carb- carbonate; Py- pyrite.

Figure 2-15. Mass balance plots showing the gains and losses of key alteration influenced elements. (A) Immobile element plot Al_2O_3 vs. Zr. (B) Zr vs. TiO₂ highlighting the linear relationship between groups A-C, D (VCL1) and VCL2 suggesting derivation from single precursors. (C) Mass change plot of CaO + Na₂O vs. Fe₂O₃ + MgO showing the association between the destruction of feldspars and the formation of hydrothermal mica and chlorite. (D) Mass change plot of K₂O vs. Na₂O indicating the development of sericite alteration associated with the destruction of feldspars. (E) Mass change plot of Fe₂O₃ + MgO vs. SiO₂ showing the development of chlorite, pyrite and quartz. (F) Mass change plot of K₂O vs. Si₂O showing the development of sericite, quartz and chlorite.

Figure 2-16. Geochemical strip log of GA-07-208 indicating the elemental gains and losses related to mineralization and alteration in the hanging wall and footwall. Short-wave infrared spectroscopy results for Al-OH wave-length shows systematic change downhole towards the mineralized horizon and in footwall volcaniclastic rocks. Abbreviations: HW- hanging wall; FW- footwall, MZ- mineralized zone.

Figure 2-17. Geochemical strip log of GA-10-272 indicating the elemental gains and losses related to mineralization and alteration in the hanging wall and footwall. Short-wave infrared spectroscopy results for Al-OH wave-length shows systematic change downhole towards mineralized horizon and in footwall volcaniclastic rocks. Abbreviations: HW- hanging wall; FW-footwall, MZ- mineralized zone.

Figure 2-18. Evidence for replacement style VMS mineralization in the Hurricane zone. (A) Relict host lapilli fragments and quartz crystals from volcaniclastic lithofacies 1 in massive (sphalerite-pyrite-galena-chalcopyrite) sulphides. (B) Replacement fronts between the host lithofacies (VCL1) and the massive sulphide horizon. (C) Moderate sericite-quartz-chlorite-pyrite alteration in volcaniclastic lithofacies 2 displays evidence for alteration in the hanging wall. (D) Gradational replacement front between strongly chlorite altered semi-massive sulphide and the bedded massive sulphide.

Figure 2-19. Schematic diagram illustrating the alteration assemblages, mass gains and losses and hyperspectral data in the Hurricane zone. Lithology in hanging wall (HW) is VCL2 and in mineralized zone (MZ) and footwall is VCL1.

Chapter 3: Conclusion

3.1 Summary

The Hurricane zone consists of Zn-Pb-Cu (± Au and Ag) felsic siliciclastic replacement-style VMS mineralization within the Boomerang deposit hosted within the Pats Pond group Newfoundland, Canada. The Hurricane zone is an ideal location to study the controls and distribution of mineralization and alteration of a replacement-style VMS deposit, as it experienced moderate deformation, with the majority of the deposit's stratigraphy and alteration distribution intact. Furthermore, lithogeochemical and hyperspectral data provide insight into the deposition and evolution of the hydrothermal alteration system. The major conclusions from this study are:

- The Hurricane zone formed on the leading edge of Ganderia within a volcano-sedimentary basin formed during Ordovician back-arc rifting. This is supported by lithological relationships in drill core and furthered supported by immobile element lithogeochemistry and previous studies undertaken in the Tulks volcanic belt.
- 2. The Hurricane zone contains four alteration assemblages: intense sericite-quartz-pyrite, sericite-quartz-chlorite-pyrite, intense chlorite and chaotic carbonate, each which have distinct geochemical signatures and hyperspectral signatures. The alteration assemblages and their distributions are controlled by the porosity and permeability of the host volcanic rocks, host rock composition, and past hydrothermal fluid conditions.

3. Useful vectors that indicate proximity to mineralization include enrichments in Zn, Pb, Cu, Hg and transition metals, coupled with elevated alteration indices, such as the Hashimoto alteration index (AI), chlorite-carbonate-pyrite index (CCPI), Al₂O₃/Na₂O, Hg/ Na₂O, and Ba/Sr indexes, and K-rich muscovite or paragonite. Distal vectors include weak Zn, Pb, Hg (50-100 ppm) enrichments; losses in Ba and K; and phengitic mica.

- 4. Quantitative mass change calculations illustrate that major oxides (e.g., SiO₂, K₂O, Fe₂O₃, MgO, CaO), base metals, transition metals (e.g., V, Ni), and alkaline earth (e.g., Ba, Sr) vary between each alteration assemblage. Proximal alteration assemblages which include intense chlorite, chlorite-chaotic carbonate and sericite-chlorite-pyrite have relative increases in major oxides such as K₂O, Fe₂O₃, CaO and MgO coupled with gains in transition metals such as Ni, V, and Cr and base metals including Cu, Zn, Pb. Distal alteration assemblages which include sericite-quartz-pyrite and intense sericite-pyrite display gains in major oxides such as: K₂O, SiO₂, and locally Fe₂O₃. These assemblages also display gains in LFSE elements including Ba, Sr and Rb and in base metals including Zb and Pb. All alteration assemblages display losses of Na₂O and gains in Hg.
- 5. The genesis and evolution of the volcano-sedimentary basin and hydrothermal system lead to development of the replacement-style mineralization present at the Hurricane zone. Initial large-scale faulting associated with back-arc rifting created a primary pathway for hydrothermal fluids to travel through lower footwall lapilli tuffs. The highly permeable volcaniclastic host rocks allowed both vertical and lateral fluid flow creating multiple pathways for fluid movement and subsequent alteration and mineralization. This resulted in mineralization and alteration that is both discordant and semi-concordant to stratigraphy. The impermeable boundary (e.g., fluid-saturated mud) initiated replacement-style mineralization by capping the hydrothermal system, which resulted in the downward and lateral movement of sulphide mineralization and high temperature alteration below the seafloor. Synchronous deposition of volcaniclastic material with hydrothermal activity likely prevented venting of hydrothermal fluids on the seafloor and would have resulted in the pervasive and laterally extensive alteration into the lower hanging wall.

3.2 Future Research

Research completed on the Hurricane provides a framework for exploring for similar VMS systems within the Tulks volcanic belt, but there are still several unanswered questions that would greatly benefit

the understanding of the Hurricane zone. Potential future research could include: (1) refined U-Pb dating within the Tulks volcanic belt to better define the evolution of the belt, including a better understanding of the stratigraphy, timing and longevity of the hydrothermal activity, which in turn would provide a better chronostratigraphic framework for mineralization within the overall tectonostratigraphic framework of the Victoria Lake supergroup; (2) a comphensive study of the mineralization including detailed microscopy and scanning electron microscopy, and other microbeam methods, to determine the mineralogy, paragenesis of sulphide minerals, and sulfur and lead isotope composition of the sulfide minerals to determine the source of metals and fluids in the deposit; (3) related to (2) detailed mineral chemistry, mineralogy, stable isotopes and physiochemical modeling of the sulphides and associated hydrothermal fluids to determine temperature, conditions of formations and metal and fluid origins; and 4) electron microprobe analysis of the sericite and chlorite compositions to compare with compositions from Terraspec measurements to determine variation in compositions and to their relationship to infrared spectral wavelengths.

A.1- Graphic Logs

Fieldwork at the Hurricane deposit consisted of detailed logging and sampling of hanging wall, mineralization zone, and footwall rocks of the deposit in diamond drill core. Logging of drill core focused mainly on lithology, alteration assemblages and mineralization at the Hurricane deposit. Drill core logging took place during September to October 2014 and June to July 2015 at the Canadian Zinc field office in Buchan's Junction, Newfoundland. A total of 22 drill holes were logged and 445 samples were collected and 147 representative samples were analyzed for whole-rock lithogeochemistry. Samples denoted by (S) on the stratigraphic logs represent where samples were taken for lithogeochemistry. A complete sample list is available in Appendix F including sample intervals, lengths and descriptions. A total of 33 thin sections were made of representative lithologies and alteration facies.

A Legend (fig. A.2.1) and Abbreviation Key (table A.2.1) in Appendix A.2 is below for the 22 graphic logs completed (Appendix A.3). Drill holes are labeled using the following nomenclature: GA-XX-YYY, where GA stands for Glitter Anomaly, XX stands for the last two digits of the year the hole was drilled, and YYY represents the hole number drilled in the overall drill program (i.e. GA-07-214 was drilled at the Hurricane deposit in 2007 and is the 214th hole drilled at the deposit).

A.2- Abbreviation Key and Legend for Graphic Logs

Table A.2.1- Abbreviation Key for Graphic Logs

General				
Е	Easting			
m	Meter			
Ν	Northing			
UTM	Universal Transverse Mercator			
Alteration Types				
Ер	Epidote			
Qtz	Quartz			
Ser	Sericite			
Chl	Chlorite			
Sul	Sulphide			

Carb	Carbonate					
Host Rocks						
Arg	Argillite					
Mud	Mudstone					
Flow	Volcanic Flow					
Int	Intrusion					
LT	Lapilli Tuff					
ТВ	Tuff Breccia					
SMS	Semi-massive Sulphide					
MS	Massive Sulphide					
(Other (in description)					
alt	Alteration, altered					
CC	Chaotic Carbonate					
Сср	Chalcopyrite					
DH	Downhole					
Dis	Disseminated					
Int	Intense					
Fe	Iron					
f.g, m.g, c.g	fine-grained, medium-grained, coarse-grained					
Frags	Fragments					
FW	Footwall					
HW	Hanging wall					
LC	Lower Contact					
UC	Upper Contact					
Fol	Foliation					
Lap	Lapilli					
Mod	Moderate					
Pheno(s)	Phenocryst(s)					
Py	Pyrite					
Sph	Sphalerite					
xstals	Crystals					
Zn	Zinc					

Figure A.1.2 Legend for Graphic Logs

Project: Hurricane Drill Hole: GA-06-147 Date: Oct 27th, 2014			
Alteration		Facies	Descriptions
 Epidote Quartz Sericite Chlorite Sulphide Carbonate 	210	 Mudstone Ash Tuff Lapilli Lapilli Tuff breccia Flow Dyke/sill Semi-massive 	
twk-qtz-py	220 —	S	
ώ	230 —	S	
	240 -		
	250 -		
	260 -	<u> </u> 9	
	270 –		
	280 -	S	
	290 —		
-chi-py	300 -		
stwk-si	310 —		
× ε	320 -		
y-sp-vei	330 -	<u>S</u>	
stv carb-p	340 —		
I .	350 —		
	360 -	<u> </u>	
	370 –		
	380 —	S	
	390 -		
	400-		
	410-		
	420 -		

Project: Hurricane Drill Hole: GA-06-153 Date:			
Alteration		Facies	Descriptions
ote tz ite ite onate		i i oreccia /sill -mass	
- Epido - Cuar - Seric - Seric - Chlor - Sulph	420	 Muds Ash Ash Tuff Lapill Lapill Flow Semi Mass 	
	120		
	430 —		
	440 —	(S)	
	450 —		
	460 —		
	470 —	S S	
	480 —		
I	490 —	-	
	500 —		

Project: Hurricane				UTM	Azimuth: 140.6
Date:			47	74163E	Dip: -46.0
			5	364780N	Depth: 383.1 m
Alteration		Facies		Description	S
 Epidote Quartz Sericite Chlorite Sulphide Carbonate 	210	 Mudstone Ash Ash Tuff Lapilli Lapilli Tuff brecci Flow Dyke/sill Semi-mass Massive 			
	220 —				
	230 —				
	240 —				
	250 -				
	260 —				
	270 —				
	280 -				
	290 —				
	300 —				
	310 —				
i i ¹	320 —	S			
	330 —	S			
	340 —				
	350 —				
	360 —				
	370 —				
	380 —				
	390 —				
	400 —				
	410 —				
	420 —				

Project: Hurricane				UTM	Azimuth:
Date:			E		Dip:
					Depth:
Alteration				Description	IS
ote tz iite rite onate		stone li precci '/sill -massive			
- Epid - Cuai - Chlo - Chlo - Sulpl	0	Muds Ash Tuff Lapil Flow Dyke Semi			
	0				
	10 —				
	20 —	S			
	30 —				
	40 —	- S			
	50 —				
	60 —				
	70 —	9			
	80 —	S			
	90 —	-			
	100 —	S			
	110 —	S			
	120				
	130-				
	140 —				
	150 —	S			
	160 —	xenoliths			
' I	170-				
	180-				
	190 —				
	200 —	S			
I	210-	S			

Project: Hurricane Drill Hole: GA-07-209 Date: Oct 4th to 5th, 2014		
Alteration - Epidote - Sericite - Carbonate - Carbonate - 510	- Mudstone - Ash - Tuff - Lapilli - Tuff breccia - Flow - Dyke/sill - Massive - Massive	Descriptions
220 - 230 - 240 - 240 - 250 - 260 - 260 - 260 - 260 - 260 - 260 - 260 - 260 - 270 - 280 - 290 - 300 -		 229.45 to 235.0: ser alt fu tuff with few fl plag xstals (white). 235.0 to 250.8: Dyke (grey/brown); f.g; few fe-carb filled amyguldes, some round qtz xstals, mod fol, wl chl alt. Could be tuff? 250.8 to 261.25: tuff (ser); light-med grey, med-gr tuff with few white xtals, finer version of above, sandy-ish. Not really fol. 261.25 to 266.55: Banded red sp.py.gn, cp with str chl alt and chaotic carb- can see py replacing xstals (qtz?) 266.55 to 269.8: super mineralized, banded red sp. py, ccp, few qtz blebs 269.8 to 272.3: chl matrix with sulphides, py, patches of gn, bands of qtz (or carb?) 272.3 to 283.4: Dominantly mod to str sil-ser-py alt with localized zones of chl stwk.

Project: Hurricane Drill Hole: GA-07-218 Date: Oct 19th to 22nd,	, 2014	
 Epidote Quartz Sericite Chlorite Sulphide Carbonate 	Particle Field Fie	Descriptions
	220 - 230	 234. 4 to 248.8: graded tuff (mu/cl>f.g);py in thin bands; mod ser alt, chl bands 248.8 to 259.4: med-grey f.g tuff, vuggy? Could be dyke, thin carb veins 259.4 to 275.2: sil alt tuff f.g ± few qtz xstals 275.2 to 291.1: wkly foliated mafic dyke. 291.1 to 299.4: sil alt/ ser alt tuff f.g ± few qtz xstals; well fol 299.4 to 315.9: Dark grey-green mafic sill. fine-grained, only slightly coarsening inward. Local spotty fe-carb spotting up to 30-40%. 315.9 to 319.9: ash tuff with sil and ser alt 319.9 to 328.6: tuff with chi alt >sil+ser 328.6 to 329.2: Semi-massive sulphides, banded and spotty red and yellow sp, cp. py, gn with chi-ser matrix. 329.9 to 335.4: mod-strong ser< chi; thin bands of py (10-15%) in chl + disem py, trace sp? 335.7 to 362.5: ser-sil alt tuff with chi attwk and local bands of fine- to med-grained py. 362.5 to 371.6: stwk alt; f.g tuff w/ chl and ser alt; patches of more chi alt w/ py. 371.6 to 380: Ser-sil alt intermediate dyke 380 to 400.5: v.ser alt tuff. Fm-gr w/ some thin black clasts

Project: Hurricane Drill Hole: GA-07-254 Date:			
 Epidote Quartz Sericite Chlorite Carbonate 	210	 Mudstone Ash Tuff Lapilli Lapilli Luff breccia Dyke/sill Semi-massive 	Descriptions
	220 230 240 250 260 270 280 300 300 310 320 330 330 330 340 350 360 370 380 380 390 400 410 420		 260.81 to 271.53: Contact is fractured, but appears to be abrupt with overlying sill. Light to med grey, fine to med-grained, plag-bearing tuff. Local chert and ash intervals. Ser-sil all tincreases downhole. 271.53 to 274: Upper contact is highly veined and weakly fractured. Normally graded, siltstone to fine-grained tuff. Mod-str ser-sil alt with thin blk chl laths with diseminated py. 274 to 274.5: Semi-massive sulphide, fine-grained py with lesser sp. cp. and gn 274.5 to 287.9: Similar to above, with stwk py-chl. From 275 to 279.5 intensely chl alt (black) related to qtz-carb veining (CC). 287.9 to 293.4: light grey with white bands, rare 1 cm qtz, bands of py (10%) and rare cp. 293.4 to 322.2 m: strongly sericite altered tuff with chl stwk associated with py and lesser BM stringers.

Project: Hurricane Drill Hole: GA-07-255 Date: Sept 11th to Sept 12th. 20

Date: Sept 11th to Sept 1	12th, 2014	
Epidote Quartz Sericite Chlorite Sulphide Carbonate	Mudstone Ash Tuff Lapilli Lapilli Flow Dyke/sill Semi-massive Massive	Descriptions
	210	202.75 to 216.55: erosional contact b/t units. Cl/cu lapilli tuff (massive) minor grading1-2% euhedral pyrite. "foilated". Minor 1-3cm chlorotized clasts. Top of unit chlorotized (dark grey) transitions into more epidote/sericite rich alt (greeny/yellow color). 216.55 to 245.0: gradational contact: small euhedral 0.5 pyrite in coarser grained upper unit. Unit is typically mu-ml ± fu and massive + highly chlorite alt (90%). Few 10-30 cm cu->vcl ± mu matrix that abruptly grades into mu/ml unit (1%). Dark grey-green in color: coarser unit grey with white lapilli. @226.3:231.85 (dt veined zone?)- euhedral py above and below dtz veins in mu-fu lapilli tuff. some smaller dtz veins above red horizon (on strat log?). rare chalco on margins of large qt lapilli. @228.3:0; dt-carb veining increase till end of unit. all f.g (ml-fu± m) chlorotized lapilli tuff. some smaller dtz veins above red horizon (on strat log?). rare chalco on margins of large qtz lapilli. @228.3:0; dt-carb veining increase to acorso-acorsal. Repetitive grades deguence of cu/cl wim matrix ± vd grains into vfu> ash or 16. Grading appears to be very abrupt. Fl units have pale green mineral associated with it (also highly sericitized). Fine-grained unit is more alt then coarse-grained (or appears to be) sulphide staining in c.g where has fug=sericite and/or chl silic. upper part of unit is coarse-grained (~4m; sulphide staining the-carb) which grades into ~1m of v.g> fine-grained units moderately fissile and sericitzed. Thickness of 'beds' of coarse vs fine decreases moving downhole where fa units become thicker then c.g. Top of unit is "cg" lapilli tuff twits some fa chlorotized d.g. (20.98m disseminated veinels compared veins intervedded with further the carbo veins intervedded with some fa chlorotized d.g. (21.68m) some are elongated visey bands. The bands are functional withing the interbadded with furthers that appeare to do unit. 3263.70 co268.8 tz even with carbo bedding. 327.15 contact mas unit grade samply wolonding. We coarse cruters of

Project: Hurricane			UTM	Azimuth: 140.0
Date:			474095E	Dip: -66.0
	1 1		5364630IN	Depth: 308.5
- Epidote - Quartz - Sericite - Carbonate - Carbonate	0	 Mudstone Ash Ash Tuff Lapilli Lapilli Tuff breccia seive Pyke/sill Semi-massive Massive 	Descriptior	15
	10 - 20 - 30 - 30 - 30 - 30 - 30 - 30 - 3			

Project: Hurricane Drill Hole: GA-07-256 Date:			
Alteration		Facies	Descriptions
idote artz ricite lorite phide rbonate		dstone ff silli silli ke/sill mi-mass ssive	
Cault Character Cault	210	Mu Asl Mu Mu Ma Ma Ma Ma Ma	
	220 —	S	
	230 —		
	240 —	8	
	250 —		
	260 —		
	270 —		
1 1 1 I I I	280 -		
	290 —	S	
	300 —		
111	310 —		
	320 —		
	330 —		
	340 —		
	350 —		
	360 —		
	370 —		
	380 —		
	390 —		
	400-		
	410-		
	420 —		

Project: Hurricane			UTM	Azimuth: 140.0
Drill Hole:GA-07-257 Date:			474092E	Dip: -66.0
			5364630N	Depth: 308.5 m
Alteration	eration Facies		Descriptions	
ate	cccia assiv			
dote artz orite bona	dstor f f illi f bree w v ce/sill ni-mä			
	- Muc - Ash - Tuff - Tuff - Tuff - Dyk - Dyk			
420-				
430-				
440				
450 -				
460 -				
470-				
	(S)			
480-				
490-	S			
500-				

Project: Hurricane		UTM	UTM	Azimuth: 141.0
Date:		47	4097E	Dip: -60.0
	1	53	0402011	Depth: 317.9 m
Alteration	Facies		Description	IS
 Epidote Quartz Sericite Chlorite Sulphide Carbonate 	 Mudstone Ash Tuff Lapilli Lapilli Tuff brecci Flow Dyke/sill Semi-mass Massive 			
10-				
20-				
30-				
	©			
40	©			
50	<u>S</u>			
70-	<u> </u>			
70-				
80-				
90 -				
100-				
	6			
120-	S			
130-	S int?			
140-	S			
150-	<u>S</u>			
160-				
170-				
180-	S			
190-				
200-	S			
210-				

Project: Hurricane Drill Hole: GA-10-273 Date: October 11, 2015			UTM 474130E 5364660N	Azimuth: 141.0 Dip: -61.0	
 Epidote Auartz Sericite Chlorite Sulphide Carbonate 	Ash Tuff 710 - Tuff	 Lapilli Tuff breccia saios Flow saios Dyke/sill Semi-massive Massive 		Description	ns
	220 - 230 - 230 - 230 - 230 - 230 - 230 - 230 - 230 - 230 - 230 - 230 - 230 - 330		235 to 239.47: Grada round plagioclase xs tops. 239.47 to 260.25: da near UC. 5-15% carl 260.25 to 276.64: stu fg-mg. stwk veins ard sp 276.64 to 281.32: sa chaotic carbonate. 281.32 to 282.64: sa pervasive. Increase 282.64 to 286.14: Qu 286.14 to 286.33: fin 286.33 to 286.86: se 288.86 to 290.9: seri 290.9 to 298.3: seric 298.3 to 298.58: seri 298.58 to 301.65: sa 301.65 to 309.1: alte fuchsite. Thin chl-carl	ed tuff: med grey, me stals. and 5% felsic la ark grey-green, massi b overprint and 1% di rongly altered tuff; mo e 1-5 cm thick (15% of ame as above, except ume as above, except ume as above, chaotic f to mg py mineraliza uartz vein with 30% a lely laminated tuff with ricite altered dyke icite altered dyke icite altered dyke icite altered dyke as a bred graded tuff to lap rb alteration; mod to s	d- to coarse-grained tuff with 10% white, p; mod ser, wk-mod chl. Local vgf to ash ive, mafic sill. <1% euhedral 2 cm py isaggregated qv-carb veins. of to str with chl stwk veins with py. py is of unit). locally stwk veins have 10% gn- t dominated by str ser- py only. Locally c carbonate more is thicker and more tion (up to 30%) in thin bands near LC. Intered tuff xenoliths. h chaotic carb alt. I chevron folding and fault gouge. 10% thin bands of f to mg py. above with disem clusters of py iilli tuff. str to locally int ser with local str fol and 15-20% thin py bands.

Project: Hurricane				UTM	Azimuth: 141.0
Date:				474155E	Dip: -59.0
	1			5364686IN	Depth: 320.6
- Epidote - Quartz - Culorite - Sulphide - Carbonate	0	- Mudstone - Ash - Tuff - Lapilli - Lapilli - Lapilli - Lapilli - Lapilli - Lapilli - Cuff breccia - Flow - Dyke/sill - Semi-massive - Massive	Descriptions		
Carl	0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150		 1.5 to 37: Beige grey Mod to str sil alt. Phy Locally zone are aphrange in size from 10 mod fol. This unit co 37 to 38.25: Fault go 38.25 to 50.78: Sam grey vuggy LT/ or po 50.78 to 70.78: Over interleaved with 0.5 with 5-15% white plat thick Qvs. They are end Mafic dykes are dark flows. 70.78 to 74.73: Med grained tuff, felsic to 74.73 to 80.4: Mafic e pepperitic with tufa 80.4 to 89.86: Med go fines downhole sligh 89.86 to 96.35:Dark erratic veining. 96.35 to 117.43: Dar sheared/ripped up co 117.43 to 144.98: Lot to LT. Lapilli fragmer grey. Locally grades tuffaceous. Locally in 144.98 to 158.13: Sa sandy. 	y to grey in color with enocrystas increase in hyric. Multiple Qvs fro D-15 cm. Local dis py nsists of interbedded e as 1.5 to 37 m. Fro orphyritic felsic flow. rall, unit consists of pl to 2 m mafic dykes. F ag phenocrysts or are strongly sil alt and ha c green-grey, fine-gra grey, med to str sil al intermediate. dyke, dark green -gre aceous fragments. grey, med- to coarse-of ty. Downhole xstals to green-grey mafic dyk k grey, str fol with 3-1 arb veins. Could be s ocally tuff breccia, gra ths are mafic to interm into thin mudstone la ntruded by mafic dyke ame tuff as above. Tu	10-15% white plag xstals/phenocrysts. n size downhole from 1-2 mm to 2-5 mm m 22.4 to 22.8 and 24.7 to 25.3, they (6%) starting at 22 m. Mod to str sil, porphyritic felsic flows and lapilli tuffs. m 48 to 48.8 fine-grained, creamy white- lag porphyritic to aphyric felsic flows felsic units are pale grey to pinkish-white aphryic. Locally, they have 1-3% 1-2 cm ve wk ser alt within weak brecciation. ined and have sharp contacts with felsic t, wk ser. Fine-grained LT or coarse- ey, sharp contacts, but appears to locally grained, str fol, 30-35% plag-qtz xstals, become more qtz-rich. te. Coarsen inwards from margins. Local 10% plag>qtz xstals. 5-15% heared amy or boudinage carb veins. des down hole into normally graded tuff rediate in composition. Matrix is fg, dark yers and mud clasts in coarser a. ffcaeous layers are qtz crystal-rich and
	160		158.13 to 161.78: Fe margins. 161.78 to 162.4: Fau 162.4 to 207.71: Ove felsic dykes?) and m consists of fine to co grade into mudstone associated with them The altered dykes an lower contacts and a mm in size. Locally of Could be pepperitic	elsic dyke or altered n ult gouge? black argill erall this unit consists formally graded tuffs th varse-grained, qtz-rich es. These mudstones n. Shear within the mi- re beige to greenish b are fine-grained. They contacts appear to be contacts?	nafic dyke? Sharp upper and lower ite? Strongly qtz-veined. of interleaved altered mafic dykes (or o locally LT. Similar to tuff unit above, it n, sandy normally graded tuffs that locally typically have fine-grained banded py udstones is also locally apparent. beige in color, they have sharp upper and have 1-5% carb amy that range in 1-3 interfingering with tuffaceous units.

Project: Hurricane				UTM	Azimuth: 141.0			
Date: June 18th, 2015				474097E	Dip: -50.0			
				53040ZON	Depth: 254.0 M			
Alteration		Facies		Description	าร			
 Epidote Quartz Sericite Chlorite Sulphide Carbonate 	0	 Mudstone Ash Tuff Lapilli Lapilli Lapilli Tuff breccis Flow Dyke/sill Semi-mass Massive 						
		S	0.5 to 11.1: Sil alt tut	f with plag xstals				
	10 -		11.1 to 22.3: Pale to porphyritic felsic flow	creamy grey-white, p v. Ser alt in selvages	olag-phyric, LT interbedded with of weak brecciation in felsic flow			
	30 -	S	22.3 to 37.8: Aphyric phenocrysts. Contac	coherent felsic flow ts are brecciated.	with localized zones with 1-5% plagio			
	40 -		37.8 to 45.1: Hetero	lithic tuff to LT, mod s	il and chl.			
	50 —		45.1 to 52.3: Heterol 52.3 to 54: Mafic dyl 54 to 92.3: Quartz-fe	lithic LT, similar to abo ke, dark green-grey, f eldspar xstal tuff. Fine	ove. ine-grained. -grained matrix, blue-grey with 20-35%			
	60 -			s become more qız-u	ommant down noie.			
	80 -	S I						
	90 — 100 — 110 —	S S graded tuff to A.T	92.3 to 94.7: Heterol 94.7 to 100.6: Mafic and lower contacts. 100.6 to 116.8: Norn coarse-grained and	lithic, normally graded dyke, dark green-gre nally graded, heteroli sandy, locally granule	d tuff. y, fine-grained, massive, sharp upper hic tuff. Grades from locally ash tuff to e sized.			
	120 -	9	116.8 to 121.3: Beig margins. 121.3 to 124.2: Sam 124.3 to 131.5: Inter	e to grey, fine-grained e tuff as above bedded argillite and r	d, plag-phyric, sharp upper and lower normally graded tuff. 5% dis py.			
	130-	S	131.5 to 145.5: Over grained plag xsals, 1 similar to above.	rall, several mafic dył I-3% concordant carb	es, greenish-grey, fine-grained, fine- veinlets. Thin tuffaceous xenolith,			
	150 —	S	145.5 to 150.1: Hete rounded, white plag 150.1 to 156.4: Ove	rolithic tuff, pale grey xstals, mod ser with rall, this unit consists	, locally thin lap fragments, 1-5% chl laths. of several. 0.5 to 2 m mafic dykes with			
	160-	9	interleaved graded to 156.4 to 188.8: Mafi	uffs. c sill, dark green-grey	η, fine to med-grained, massive.			
	180-	0	188.8 to 189.2: Norr	nally graded xstal tuff	. Pale grey, white. round plag xtals. Mod			
1	190 —	<u>S</u>	ser alt, wk chl laths. 189.2 to 195.2: Sam	e mafic sill as above	2 with this chart interhode			
	200-		195.2 to 196.2: same 196.2 to 207.3: Ser- 207.3 to 208.1: Serie	sil alt tuff. 5% py strin cite altered mafic dyk	e			
•	210-							

Project: Hurricane Drill Hole: GA-14-275 Date:			
Alteration		Facies	Descriptions
 Epidote Quartz Sericite Chlorite Sulphide Carbonate 	210	 Mudstone Ash Ash Tuff Lapilli Lapilli Tuff breccia Flow Dyke/sill Semi-massiv Massive 	
	220 —	S	208.1 to 243.6: pale grey to beige, intensely ser-sil alt tuff with discont py stringers.
	230 —		
	240 —	S S	243.6 to 249.9: Two strongly sericite altered mafic dykes 249.9 to 254.0: Intensely sericite-sil altered tuffs with BM-stringers
111 11	250 -		
	260		
	280-		
	290 -		
	300 —		
	310-		
	320 —		
	330 —		
	340 —		
	350 -		
	370 -		
	380 —		
	390 —		
	400 —		
	410-		
	420 —		

Project: Hurricane			UTM	Azimuth: 141.0
Date: July 9th-10th, 2015			474166E 5364689N	Dip: -47.0
				Depth: 266.0 m
- Epidote - Carbonate - Carbonate	 Mudstone Ash Tuff Tuff Lapilli Lapilli Lapilli Tuff breccia Saizet Byke/sill Semi-massive Massive 		Description	ns
10 - 20 - 30 -	- S S	could be due to local lapilli and/or brecciat color. Mod to strong	I, weak brecciation in ion is mod ser and lo sil alt, and mod fol. L	flow, giving pseudo-lapilli look. Matrix of bcally chl. pale grey to pinkish white in ocal carb overprinting.
40 - 50 - 60 - 70 - 80 - 90 -		43.09 to 43.84: Gree 43.84 to 45.72: Stror xstals. 45.72 to 69.14: Porp flows are very strong Mafic dykes are dark replaced by ep. 5% e Sharp, abrupt contact 69.14 to 70.2: Fine to py. 70.2 to 77: Fine to co 77 to 108: Crystal tu upper half of unit and greyish blue. Local li	en-grey mafic dyke ng sil alt lapilli tuff, do hyritic felsic flow inte ly sil alt with 5-10% of green-grey, fine-gra ep veinlets. Mafic uni cts between mafic dyl o coarse-grained tuff, parse-grained tuff, gra ff, mod to str fol with d become more plag thic fragments at 107	minantly felsic fragments with plag rleaved with 1 to 5 m mafic dykes. Felsic qtz-feldspar xtals. Same as unit above. ined, 1-3% calcite amygdules, locally t from 60 to 65 could be pillow basalt. kes and felsic flow. , heterolithic fragments with dis clustered ading into heterolithic lapilli tuff. mod chl alt. qtz xstals are more dom in xstal rich down hole. Matrix is fg, dark 7. 7 m with 1-5% dis py.
100 - 110 - 120 - 130 -		108 to 110.53: hetero 110.53 to 112.94: Ma 112.94 to 126.9: San of massive, sandy tu into thinly bedded fin 126.9 to 132.88: Maf 132.88 to 138.5: Ver displays similar grad	olithic lapilli tuff. Lowe afic dyke Idy, normally graded iff, locally contains lap le-grained tuff to ash fic dyke with xenolith y xstal-rich and weak ing. 15% carb veins.	er contact has pepperitic textured. tuff. Classic turbidite, lower unit consists pilli sized fragments. Grades upwards tuff. Approximately 4-6 events. of previous unit. dy fol, similar to tuffaceous unit above, Locally unit becomes very chl alt (132.7
140- 150- 160- 160- 170- 180- 190-	S S	to 133 m). 138.5 to 141.59: Nor tuff capped with argil 141.59 to 144.72: Ve 144.72 to 149.45: Da 149.45 to 150.15: Sh 150.15 to 160: Mafic have thin chert thinly 160 to 167.92: Sil alt 167.92 to 168.51: Pa 168.51 to 171.5: Inte 171.5 to 178.63: Beig rich with dise black o 178.63 to 203.45: Da veins, locally xenolith distinguish difference	mally graded. Interbe lite. Local mudclasts ary strongly sil alt fels ark green-grey mafic hear zone? vfg dark g dykes interleaved wi interbedded. QV ar t mafic dyke. 3% sheat ale grey, heterolithic L erleaving of altered m ge to grey, fine to coat that laths, strong fol. ark green-grey mafic his or thin interbeds o e, one appears more	edded fine to med-grained tuff and ash in tuffcaeous units. Potential fault zone? ic flow? dyke, porphyritic with pyroxene laths. grey with undulating pale grey-pink zones ith normally graded tuffs. Tuffs locally id shear zone from 157.65 to 157.78 m. ared amys, <5% carb veins. .T, strongly fol. afic dyke and normally graded tuff. arse-grained tuff, sandy, locally qtz xstal sill. Mostly massive with sheared carb- f intermediate chl alt tuff, but hard to strongly fol.
200-		203.45 to 207.06: Gr 207.06 to 207.65: pa 207.65 to 208. 46: da	reenish-grey, chl alt tu ale grey LT with white ark green grey, str fol	uff with 5-10% qtz xstals, str fol. round plag xstals, str fol, mod ser-chl , rare sheared carb veins.

Project: Hurricane			UTM	Azimuth: 141.0		
Date: July 12th, 2015			474166E	Dip: -64.0		
	1		55040051	Depth: 344.0 m		
 Epidote Epidote Carbonate Carbonate 	 Mudstone Ash Ash Tuff Lapilli Lapilli Lapilli Lapilli Lapilli Semi-massive Massive 	Descriptions				
10 - 20 -	- S	0.4 to 50.41: Overall lapilli tuffs. They are plag xstals/phenocry from 1-2 mm to 2-5 28.5 m. Mod to str si	I, this unit consists of beige grey to grey to ysts. Mod to str sil alt. mm. Locally zone are il, mod fol.	interbedded porphyritic felsic flows and pinkish-white in color with 10-15% white Phenocrystas increase in size downhole aphyric Local dis py (6%) starting at		
30 - 40 -		From 30.34 to 31.87 brecciated felsic flow	' appears to be clast s v. fine-grained py in m	supported tuff breccia or strongly natrix.		
60 -	©	50.41 to 64.91: Over 0.5-1 m mafic dykes white, str sil, locally	rall, aphyric to plag-po . Felsic units are char brecciated along mar	orphyritic felsic flow, locally intruded by racterized by being white to pinkish- gins.		
70 - 80 -	S	64.91 to 74.05: Mafii coarsens inwards, th selvages, could be p 74.05 to 102.66: Firs Downhole, transition xstal-poor and fine-g	c sill, dark green-grey rree 5-8 cm thick con billow basalt? st 10 m is heterolithic is in qtz-plag xstal ricl grained, likely showing	v, fine-grained along margins and cordant qtz-carb veins. Locally see vfg LT with clusters of py in matrix. h, med-grained tuff. Locally, areas are g grading.		
100 - 110 -		2 cm fault at 100 m. 102.66 to 107.43: M concordant carb veir 107.43 to 118.76: Sa 15% dis py.	afic dyke, massive, da ns with ep rims. Pyro ame tuff as above, loc	ark green to grey, fine-grained,10% kene and weakly plag porphyritic. cal lap-sized fragments of felsic flow?		
120 - 130 - 140 -	S S S	118.76 to 130.6: Gra with bomb-sized frag sudrounded, poorly graded. 130.6 to 143.86: Ver sized lap, but still co	adational upper contac gments. Matrix is fine- sorted and range in c ry similar to above, bu parse-grained.	ct, increases in gs to matrix supported LT -grained, grey, with 7% fg py, lap are omposition from felsic to mafic. weakly ut more str sil alt, gs decreases, no bomb		
150 -		amy. 146.88 to 158.15: fir carb veins.	ie to med-grained tuff	f, mod to str fol, 15% dis py. 6% sheared		
170 - 180 - 190 - 200 -		 158.15 to 171.45: Gradational upper contact, but unit differs by increase in xstal content. Mostly qtz-rich (30-45%), mod chl alt matrix. 171.45 to 174.5: Similar to above, but appears to be weakly faulted or sheared 174.5 to 177: volcanic breccia? 177 to 181.03: Arg interbedded with tuff. Arg are mod sheared with Qvs. Tuffs are strongly sil alt. 181.03 to 183.43: Fine-grained mafic dyke 183.43 to 188.22: Overall, tuff interbedded with arg. Similar to above. 188.22 to 212.3. Overall, these units dominantly consist of weak to mod alt mafic dykes. They are beige to grey, fine-grained, have sharp upper and lower contact Two the tuff openies of mod to contact the professional to contact the profession. 				
210-			aan, chert and arg.			

Project: Hurricane		UTM	Azimuth: 141.0
Date:		474307E	Dip: -65.0
		5500001	Depth: 236.0 m
 Epidote Epidote Quartz Sericite Carbonate Carbonate 	Mudstone Ash Tuff Lapilli Lapilli Tuff breccia Plow Plow Semi-massive Massive	Descriptior	ns
10 -			
20 -	©		
30 -	9		
40 -	S		
50 -	S ?		
80 -			
90 -	S		
100 -	?		
110 -			
120-	9		
130-			
140 -	S		
150-	9		
160-			
190-			
200-			
210-			

Project: Hurricane Drill Hole: GA-14-279 Date:			
Alteration		Facies	Descriptions
e e de nate		one eccia sill massiv	
Epidot Quart: Sericit Chlorit Sulphi Carbo Carbo		Mudst Ash Tuff Lapilli Tuff br Dyke/s Semi-r Massi	
	210		
	220-	- <u>9</u>	
	230 —		
	240 —		
	250 -		
	260 -		
	270-		
	280-		
	290-		
	300-		
	310-		
	320 -		
	330-		
	340 —		
	350-		
	360		
	370-		
	380-		
	390 -		
	400-		
	410-		
	420-		

Project: Hurricane Drill Hole: GA-14-283				UTM	Azimuth: 141.0			
Date: June 11th to 12th,			474016E	Dip: -61				
			Depth: 272.0 m					
Alteration		Facies		Descriptio	ns			
ote tz rite rite onate		stone li orecci sive						
Epid Quai Seric Chlo Sulpl Carb		Muds Ash Tuff Lapil Dyke Semi Mass						
			0.5 to 10.53: Light gr plagioclase phenocr	rey porphyritic felsic ysts. Thin wispy pale	flow with 5-8% 2-5 mm quartz and beige sericite veinlets and dark grey			
	10		chlorite veinlets. Stro chlorite and sericite 10 53 to 23 3. Brown	ong to moderately fol alteration.	liated. Strong quartz alteration, weak			
	20 —	S	(±plagioclase) crysta downhole from 10 to	als. Quartz crystal co 35% and < mm to 1	-4 mm, respectively. Quartz crystals are			
	30 —		Crystals are matrix-s Strong to moderately	supported in a fine-gr y foliated. Weak quar	rained pale to medium grey ash matrix. rtz and sericite alteration.			
	40 —	S	35%) 3-5 mm milky in very fine-grained l	white plagioclase cry pluish grey matrix. N	se bearing crystal tuil. Addition (20- rstals with lesser (5-10%) quartz crystals loderately foliated. Weak quartz			
	50 —		carbonate veins (app m, 54.81-54.86, and	proximately 2% of un 55.81-55.58 m. High	it) are most abundant between 33.5-34.8 nly veined area is weakly foliated.			
	60 -		and sharp chilled up 59.81 to 61.21: Light	per margins and diffu t grey , fine-grained t	uff. Rare (3%) subrounded, white quartz			
	70	S	crystals throughout u contact. 61.21 to 62.58: same	unit. Moderately folia e dyke as above	ted. Very weakly altered. Sharp lower			
	70-		62.58 to 74.56: Norn medium- to coarse-g cms. Finer-grained u	nally graded fine-gra grained (±lapilli) tuff. (inits range from 5-20	ined (ash) tuff to matrix-supported Graded beds range from 1mm to 10's of) cm thick. Locally, fine-grainded units			
	80	S	have thin to discontine moderate quartz alter 74.56 to 77.23: Grey	ncuous bands of f.g. eration with local wea v, homogenous intern	pyrite. Strongly foliated. Weak to ak chlorite alteration. nediate (felsic?) dyke with rounded to			
I	90 —		subrounded 1-5cm p 77.23 to 78.56: Sam medium tuff. Thin dis	pervasive (15%) calci e as 62.58-74.56. Do scontinous bands of	ite amygdules. Sharp contacts. ominant by ash tuff (v.f.g tuff) grading to f.g. py common in v.f.g. tuffaceous layers.			
	100 -	S	78.56 to 85.65: Sam (3%). Strong to mod margin. Lower margin	e as 74.56-77.23. Pa erate quartz alteratio in is sharp but undula	ale beige/grey. Diseminated py veins on. Sharp contacts with chilled upper atory- appears to have load structure with			
	110 -		underlying thin grade 85.65 to 88.91: Sam graded sequence.	ed tuff to mudstone. e as 62.58-74.56. Ve	ery thin (few mm thick) argillite cap			
	120-		88.91 to 89.61: Dark white 2-5 mm feldsp	grey to black argillite ars crystals. Abrupt le	e. First 40 cm have abundant (40-60%) oss in crystals at 89.31 m to v.f.g black eights 1-2 cm thick quartz-carb vein			
	130-		near lower contact. 89.61 to 91.96: same structures) in fine-gr	e as 62.58-74.56. So	off sediment deformation (flame			
	140 —	(S)	91.96 to 92.62: Pinki erosion/undulatory. T	ish beige f.g. dyke. L Thin black discontinu	Jpper contact is sharp, lower is ous veinlets/brecciation infilled with			
	150 —	9	92.62 to 93.98: fine- 93.98 to 95.3: Faulte	grained tuff, str sil alt ed argillite? discordar	t, str fol, locally cg clusters of py. nt Qvs and fragments of felsic flow from			
	160-		95.3 to 108: Normall units range from fine	y graded heterolithic - to coarse-grained,	tuff with mudstone interbeds. Tuffaceous locally xstal-bearing. Mudstones down			
	170-		108 to 182.4: Overal thin intervals of pale	ll, thick, massive, fine grey, plag-bearing tu	e-grained, dark green-grey mafic sills with uffs. Tuffaceous units increase in			
	180-		chl laths. 182.4 to 184.4: Norn	nally graded, pale gr	ey tuff with local LT intervals and lap			
	100	<u>(</u>)	consists of ser-chl w 184.4 to 191.0: dark	-grained tuπ units. W ith lesser sil. green grey mafic dy	nite, round, piaglociase xtals. Alteration ke, vfg margins, coarsens inwards, mod			
	190-	Š	tol, sheared amy. 191 to 199.86: Norm sulphide consisting o	nally graded tuff, sam of fine-grained bande	e as above, thin 1 m semi-massive			
	200 –	S	199.86 to 205.64: Lig 205.64 to 206: Semi 206 to 215: Normally	ght brown to beige, fi massive sulphide, fi / graded, pale grev. t	ine-grained, ser-sil altered mafic dyke ne-grained, thinly banded py, sp ruff with white, round plag xstals. Grades			
	210-	6	into chert.					

Project: Hurricane Drill Hole: Date:		
Alteration	Facies	Descriptions
٩	ssix a	
onate onate	stone ii orec orec -ma	
Epide Seric Seric Sulpl	Auds Ash Luff Luff Low Semi Semi	
430	_	
440	_	
450	_	
460	_	
470	_	
480	_	
490	_	
500		

Appendix B: Whole-Rock Geochemistry

Alterati	ion
Bm	Base Metals
Carb	Carbonate
Chl	Chlorite
Pyr	Pyrite
Ser	Sericite
Sil	Silica
Litholo	gy
CL1a	Coherent lithofacies 1a: plagioclase and/or quartz phyric rhyolite flow
CL1b	Coherent lithofacies 1b: massive aphyric rhyolite flow
VCL1	Volcaniclastic lithofacies 1: intermediate lithic, crystal tuff to lapilli tuff
VCL2	Volcaniclastic lithofacies 2: felsic to intermediate lithic, crystal lapilli tuff to tuff
VCL3	Volcaniclastic lithofacies 3: normally graded, heterolithic lapilli tuff to tuff
VCL4	Volcaniclastic lithofacies 4: crystal-bearing felsic to intermediate tuff
IN1	Intermediate Intrusive
IN2a	Mafic Intrusive (dyke)
IN2b	Mafic Intrusive (sill)
Geoche	mical Differentiation of VCL1
A-C	Groups A-C
D	Group D
Е	Group E- Outliers

Table B1.1. Abbreviation list for whole-rock geochemistry

Sample ID			25415	25417	25418	25419	25420	25422	25424	25425
Hole ID			GA-07-254							
Depth (m)			18.83	45.44	77.75	86.05	101.7	133.45	157.1	184.1
Lithology			CL1a	VCL4	IN2a	VCL4	VCL3	VCL3	VCL2	VCL2
Alteration			sil	chl	unaltered	unaltered	unaltered	chl	ser	ser-sil
SiO ₂	%	FUS-ICP	69.63	51.09	47.16	51.82	48.07	43.72	64.17	67.2
Al_2O_3	%	FUS-ICP	13.93	18.17	17.34	20.55	16.87	19.55	15.67	14.3
Fe ₂ O ₃	%	FUS-ICP	1.90	9.15	10.18	9.17	8.38	11.46	5.51	4.38
MnO	%	FUS-ICP	0.04	0.12	0.13	0.09	0.19	0.13	0.05	0.05
MgO	%	FUS-ICP	1.73	3.41	6.20	4.03	3.48	8.09	6.31	3.46
CaO	%	FUS-ICP	1.59	3.31	4.39	1.68	7.28	2.71	0.19	0.41
Na ₂ O	%	FUS-ICP	1.50	6.90	5.68	4.83	4.96	3.20	0.48	1.75
K ₂ O	%	FUS-ICP	4.21	0.33	0.17	2.66	1.41	1.94	3.32	3.6
TiO ₂	%	FUS-ICP	0.32	0.74	0.96	1.05	1.16	0.99	0.57	0.68
$P_2 O_{\epsilon}$	%	FUS-ICP	0.03	0.07	0.15	0.2	0.16	0.03	0.07	0.11
	0/0	FUS-ICP	3.70	5.28	6.74	4.63	8.84	8.48	4 60	3.87
Total	2/0 2/0	FUS-ICP	98 58	98.57	99.11	100 70	100.80	100 30	100 90	99 79
Ho	nnh	CV-FIMS	< 5	< 5	< 5	< 5	< 5	< 5	< 5	8
Be	npm	FUS-ICP	1	< 1	< 1	1	1	<1	2	2
V	npm	FUS-ICP	19	243	345	248	233	280	45	34
Cr	ppm	FUS-MS	< 20	30	70	< 20	< 20	110	< 20	< 20
Co	ppm	FUS-MS	2	22	34	17	19	44	6	3
Ni	ppm	FUS-MS	< 20	20	40	< 20	< 20	60	< 20	< 20
Cu	ppm	FUS-MS	< 10	20	50	30	30	30	< 10	< 10
Zn	ppm	FUS-MS	30	110	170	110	90	100	60	110
Ga	ppm	FUS-MS	13	20	16	21	17	19	19	18
Ge	ppm	FUS-MS	1.2	0.8	1.1	0.8	0.6	0.9	1	1
As	ppm	FUS-MS	6	< 5	11	12	7	55	< 5	7
Rb	ppm	FUS-MS	86	6	3	44	20	31	51	56
Sr	ppm	FUS-ICP	22	78	117	51	95	57	10	20
Y	ppm	FUS-MS	29.20	19.00	16.50	23.20	27.30	15.80	54.60	48.90
Zr	ppm	FUS-ICP	168	85	29	79	58	64	212	196
Nb	ppm	FUS-MS	2.60	0.90	< 0.2	1.20	0.50	0.30	1.60	1.80
Mo	ppm	FUS-MS	< 2	< 2	< 2	< 2	< 2	< 2	< 2	< 2
Ag	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1
Sn	ppm	FUS-MS	< 1	< 1	< 1	< 1	< 1	< 1	1	1
Sb	ppm	FUS-MS	0.5	< 0.2	0.8	< 0.2	0.2	0.5	< 0.2	0.9
Cs	ppm	FUS-MS	0.6	0.1	0.1	0.3	0.2	0.2	0.4	0.5
Ba	ppm	FUS-ICP	512	104	76	571	240	350	1390	1216
La	ppm	FUS-MS	19.3	7.47	4.82	5.35	7.15	4.39	20.3	19.9
Ce	ppm	FUS-MS	37.9	17.6	10.8	14	17.7	10.5	48.6	47
Pr	ppm	FUS-MS	4.32	2.18	1.5	2.04	2.57	1.4	6.47	6.17
Nd	ppm	FUS-MS	16.5	9.44	7.27	10.2	13	7.01	29.9	27.7
Sm	ppm	FUS-MS	4.13	2.52	2.06	3.28	4.27	2.14	8.08	7.22
Eu	ppm	FUS-MS	0.75	0.73	0.81	0.97	1.49	0.662	1.96	2.09
Gd	ppm	FUS-MS	4.65	2.99	2.59	4.05	4.98	2.71	9.05	8.08
Tb	ppm	FUS-MS	0.83	0.54	0.47	0.73	0.9	0.5	1.62	1.46
Dy	ppm	FUS-MS	5.32	3.53	3.07	4.72	5.61	3.24	10.3	9.37
Ho	ppm	FUS-MS	1.09	0.75	0.67	0.96	1.11	0.67	2.15	1.96
Er	ppm	FUS-MS	3.36	2.2	1.88	2.88	3.21	2.01	6.5	5.88
Tm	ppm	FUS-MS	0.53	0.35	0.27	0.44	0.48	0.30	0.99	0.90
Yb	ppm	FUS-MS	3.83	2.5	1.76	2.95	3.13	2.08	6.66	6.12
Lu	ppm	FUS-MS	0.64	0.44	0.28	0.47	0.52	0.33	1.06	0.99
Hf –	ppm	FUS-MS	3.40	1.80	0.60	1.70	1.30	1.40	4.10	3.80
Та	ppm	FUS-MS	0.31	0.16	0.06	0.16	0.12	0.11	0.18	0.2

W	ppm	FUS-MS	1.6	< 0.5	< 0.5	2.4	< 0.5	< 0.5	< 0.5	< 0.5
T1	ppm	FUS-MS	0.47	< 0.05	< 0.05	0.11	< 0.05	0.08	0.12	0.1
Pb	ppm	FUS-MS	14	< 5	< 5	< 5	< 5	< 5	< 5	8
Bi	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Th	ppm	FUS-MS	8.69	3.64	0.66	1.12	0.59	1.17	4.6	4.29
U	ppm	FUS-MS	2.37	1.14	0.93	0.8	0.72	0.58	1.59	1.6

		Appen	uix D: Ta	DIE DI.I.	w noie-roe	K Litiloge	ochemistr	y Data		
Sample ID			24526	24529	24531	24532	31751	31752	31753	31755
Hole ID			GA-07-254	GA-07-254	GA-07-254	GA-07-254	GA-07-255	GA-07-255	GA-07-255	GA-07-255
Depth (m)			197.4	267.9	300	320.8	4.12	21.6	47.61	100.5
Lithology			VCL2	VCL2	VCL1	VCL1	CL1b	VCL4	VCL4	VCL3
Alteration			chl	ser-sil	ser-sil-chl	ser-sil-chl	sil	ser-sil	chl	ser
SiO_2	%	FUS-ICP	50.34	66.70	62.43	70.60	83.46	70.90	56.68	49.92
Al_2O_3	%	FUS-ICP	15.88	15.41	9.97	10.07	8.67	13.78	15.4	15.16
Fe ₂ O ₃	%	FUS-ICP	9.77	3.87	5.31	5.28	0.57	2.30	5.94	8.95
MnO	%	FUS-ICP	0.16	0.06	0.45	0.24	0.02	0.03	0.14	0.16
MgO	%	FUS-ICP	6.48	2.57	7.24	5.93	0.36	1.87	3.03	3.94
CaO	%	FUS-ICP	4.04	1.05	3.72	0.4	1.36	1.1	5.59	5.5
Na ₂ O	%	FUS-ICP	4.67	1.90	0.83	0.81	3.15	2.32	6.24	3.48
K ₂ O	%	FUS-ICP	0.10	3.51	0.42	0.75	1.25	3.57	0.42	2.15
TiO ₂	%	FUS-ICP	0.89	0.41	0.26	0.27	0.19	0.30	0.61	1.00
P_2O_5	%	FUS-ICP	0.07	0.04	0.05	0.05	0.01	0.03	0.09	0.13
LOI	%	FUS-ICP	6.61	4.44	8.87	5.19	1.92	3.48	6.24	9.85
Total	%	FUS-ICP	99.00	99.93	99.54	99.57	100.90	99.67	100.40	100.20
Hg	ppb	CV-FIMS	< 5	9	17	7	< 5	< 5	10	< 5
Sc	ppm	FUS-ICP	33	14	6	5	4	7	24	26
Be	ppm	FUS-ICP	< 1	2	< 1	< 1	< 1	1	< 1	< 1
V	ppm	FUS-ICP	331	19	43	37	9	19	170	205
Cr	ppm	FUS-MS	30	< 20	< 20	< 20	40	30	40	< 20
Co	ppm	FUS-MS	21	< 1	3	3	2	3	21	21
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Cu	ppm	FUS-MS	30	< 10	180	< 10	< 10	< 10	50	30
Zn	ppm	FUS-MS	90	130	320	160	< 30	40	60	100
Ga	ppm	FUS-MS	15	20	12	9	8	14	14	15
Ge	ppm	FUS-MS	0.7	1.4	1	0.7	1.1	1.5	0.7	0.7
As	ppm	FUS-MS	< 5	12	25	26	< 5	< 5	7	14
Rb	ppm	FUS-MS	1	62	9	14	24	76	8	26
Sr	ppm	FUS-ICP	83	33	32	11	27	21	98	67
Y	ppm	FUS-MS	16.90	50.90	11.20	9.60	19.60	31.80	25.30	20.60
Zr	ppm	FUS-ICP	40	204	74	68	99	149	69	58
Nb	ppm	FUS-MS	0.4	0.8	< 0.2	< 0.2	2.1	2.7	1.2	1.2
Mo	ppm	FUS-MS	< 2	< 2	< 2	2	< 2	3	< 2	< 2
Ag	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ln	ppm	FUS-MS	< 0.1	0.1	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sn	ppm	FUS-MS	< 1	1	< 1	< 1	3	3	< 1	< 1
Sb	ppm	FUS-MS	0.8	0.5	0.8	0.2	0.6	0.8	0.9	0.3
Cs D-	ppm	FUS-MS	< 0.1	0.5	< 0.1	0.1	0.2	0.5	0.2	0.2
Ба	ppm	FUS-ICP	42	0/0	88	289	385 12.9	443	129	5 00
La	ppm	FUS-MS	5.05 8.60	20	5.07 8.42	4.02	15.8	22.7 45.70	10.0	12.00
Dr	ppin	FUS MS	1.25	40.5	0.43 1.07	1 10	27.70	5.02	22.20	1 03
Nd	ppm	FUS-MS	6.07	30.6	4.87	4 84	11 1	18 7	2.02	0.7
Sm	ppm	FUS-MS	1.97	8 69	1.35	1 17	2 28	4 27	3 23	2.86
Eu	nnm	FUS-MS	1.04	2.36	0.21	0.15	0.54	0.70	1 10	0.96
Gd	npm	FUS-MS	2.56	9.35	1.59	1.27	2.27	3.80	3.55	3.50
Th	npm	FUS-MS	0.46	1.63	0.28	0.23	0.41	0.72	0.69	0.62
Dv	ppm	FUS-MS	3.15	10.20	1.91	1.54	2.82	4.93	4.48	4.07
Но	ppm	FUS-MS	0.66	2.09	0.41	0.36	0.63	1.09	0.95	0.84
Er	ppm	FUS-MS	1.95	6.22	1.31	1.21	2.09	3.4	2.81	2.43
Tm	ppm	FUS-MS	0.3	0.94	0.21	0.20	0.34	0.54	0.44	0.34
Yb	ppm	FUS-MS	1.95	6.31	1.54	1.45	2.29	3.82	3.04	2.4
Lu	ppm	FUS-MS	0.316	1.04	0.28	0.26	0.38	0.65	0.5	0.39
Hf	ppm	FUS-MS	0.8	4	1.5	1.4	2.2	3.3	1.4	1.3
Та	ppm	FUS-MS	0.08	0.17	0.13	0.12	0.19	0.29	0.14	0.13
W	ppm	FUS-MS	1.40	< 0.5	0.90	< 0.5	0.90	2.10	0.70	< 0.5
T1	ppm	FUS-MS	< 0.05	0.85	0.15	0.27	0.12	0.35	0.05	0.05
Pb	ppm	FUS-MS	< 5	6	35	16	8	10	8	< 5
Bi	ppm	FUS-MS	< 0.1	< 0.1	0.6	0.5	< 0.1	< 0.1	< 0.1	< 0.1
Th	ppm	FUS-MS	0.64	4.02	1.88	1.74	5.32	8.14	3.1	0.88
U	ppm	FUS-MS	0.22	1.04	0.97	1.56	1.34	2.38	1.44	0.52

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

Shample ID JJ789 JJ799 JJ790 JJ764 JJ776 JJ376 JJ776 JJ3764 JJ7764 JJ7764 JJ776 JJ3764 JJ7764 JJ7764 JJ777 JJ3764 JJ7764 JJ7764 JJ7777 JJ3764 JJ7777 JJ3764 JJ7777 JJ3764 JJ777 JJ3764 JJ7764 JJ7774 JJ77777 JJ7777			Appe		DIC D1.1.	W HUIC-I U	ck Litilogo	coencinisti	y Data		
Hole ID GA-07-255 GA-07-257 GA-07-257 <thga-07-257< th=""> <thg< th=""><th>Sample ID</th><th></th><th></th><th>31758</th><th>31759</th><th>31760</th><th>31761</th><th>31764</th><th>31768</th><th>31769</th><th>14488</th></thg<></thga-07-257<>	Sample ID			31758	31759	31760	31761	31764	31768	31769	14488
Depth (m) 12.98 156.4 187.2 20.87 247.9 27.44 2.81.2 32.7 Alleration ehl unalterid chl ser-ebry ser-eb	Hole ID			GA-07-255	GA-07-255	GA-07-255	GA-07-255	GA-07-255	GA-07-255	GA-07-255	GA-06-147
	Depth (m)			129.8	156.4	187.2	208.7	247.9	274.4	281.2	32.7
	Lithology			VCL3	IN2a	VCL3	VCL2	VCL2	VCL1 (A-C)	VCL1 (D)	VCL4
Sio. % FUS-ICP 60.15 47.57 49.33 64.7 64.53 65.00 56.39 70.33 ALO, % FUS-ICP 17.4 16.45 15.52 15.49 15.56 14.29 15.3 13.85 FegO, % FUS-ICP 40.8 6.20 0.18 0.05 61.5 0.21 0.04 MagO % FUS-ICP 40.8 6.20 2.83 3.01 0.31 0.26 1.05 Nao. % FUS-ICP 0.06 0.47 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.07 0.09 0.03 3.84 10.1 0.16 0.5 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 0.57 0.56 <	Alteration			chl	unaltered	chl	ser-ep	ser	ser-chl-py	ser-sil-chl	ser-sil
	SiO ₂	%	FUS-ICP	60.15	47.57	49.33	64.7	64.53	63.60	56.59	70.53
	Al_2O_3	%	FUS-ICP	17.4	16.45	15.52	15.49	15.56	14.29	15.3	13.85
	Fe ₂ O ₂	%	FUS-ICP	4.75	11.86	10.01	4.39	4.56	6.65	7.81	2.60
	MnO	%	FUS-ICP	0.05	0.20	0.18	0.05	0.05	0.15	0.21	0.04
	MgO	%	FUS-ICP	4.08	6.39	5.57	3 24	2.98	4.88	8 47	1 70
Na ₂ O $\%$ FUSACP 4.10 4.95 5.52 3.83 3.01 0.31 0.26 1.05 K ₂ O $\%$ FUSACP 0.60 1.01 0.86 0.59 0.56 0.57 0.56 0.33 P ₂ O ₅ $\%$ FUSACP 0.60 1.01 0.86 0.59 0.56 0.57 0.56 0.33 LOI $\%$ FUSACP 4.16 0.70 0.09 0.07 0.09 0.11 0.03 LOI $\%$ FUSACP 4.66 93.33 98.45 98.29 98.85 99.63 98.44 100.1 Sc ppm FUSACP 1.7 1 2 2 2 1 2.1 2 V ppm FUSACP 2.7 371 2.29 48 33 1.41 1.31 1.7 Cr ppm FUSAWS 2.01 <2.0 2.0 2.0 2.0 2.0 2.0 2.0	CaO	%	FUS-ICP	0.66	3.65	3.77	0.19	0.66	0.19	0.17	1.70
Ng0 π FUSACP2.571.030.510.100.250.570.101.03FiO2%FUSACP0.601.010.660.590.560.570.560.33P.O5%FUSACP0.410.060.070.090.070.090.010.03LO1%FUSACP9.460.060.070.090.070.090.010.03LO1%FUSACP9.469.9339.8459.8299.8839.96339.84100.1HgppbCV-FIMS<5	Na.O	0/2	FUS ICP	4.10	4.95	5.52	3.83	3.01	0.15	0.26	1.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Na ₂ O	/0	FUS-ICI	4.10	4.95	1.01	3.83	3.01	0.51	0.20	1.05
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	K ₂ O	%0 0.(FUS-ICP	2.57	0.18	1.81	2.58	2.8	2.52	1.//	4.75
P.O. % FUS-ICP 0.14 0.06 0.07 0.09 0.11 0.03 LOI % FUS-ICP 88.66 99.33 98.45 98.29 98.85 99.63 98.44 100.1 Hig ppb CV-FMS < 5	1102	%	FUS-ICP	0.60	1.01	0.86	0.59	0.56	0.57	0.56	0.33
	P_2O_5	%	FUS-ICP	0.14	0.06	0.07	0.09	0.07	0.09	0.11	0.03
	LOI	%	FUS-ICP	4.16	7.03	5.82	3.14	4.07	6.37	7.15	3.48
HgppbCV-EMS<5<5<5666169ScppmFUS-ICP11<1	Total	%	FUS-ICP	98.66	99.33	98.45	98.29	98.85	99.63	98.4	100.1
Se ppm FUS-ICP 1 1 <1 2 2 <1 <1 2 V ppm FUS-ICP 27 371 329 48 33 141 131 17 Cr ppm FUS-MS 20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20 <20	Hg	ppb	CV-FIMS	< 5	< 5	< 5	6	6	6	16	9
Be ppm FUS-ICP 1 1 < 1 2 2 < < V ppm FUS-KS <20	Sc	ppm	FUS-ICP	18	38	35	18	18	16	17	7
V ppm FUS-KCP 27 371 329 48 33 141 131 17 Cr ppm FUS-MS 2 31 25 3 3 9 5 2 Ni ppm FUS-MS <10	Be	ppm	FUS-ICP	1	1	< 1	2	2	< 1	< 1	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V	ppm	FUS-ICP	27	371	329	48	33	141	131	17
$ \begin{array}{c cccc} Co & ppm & FUS-MS & < 2 & 31 & 25 & 3 & 3 & 9 & 5 & 2 \\ Ni & ppm & FUS-MS & < 20 & < 20 & < 20 & < 20 & < 20 & < 20 & < 20 & < 20 \\ Cu & ppm & FUS-MS & < 10 & 40 & 50 & < 10 & < 10 & < 10 & 20 & 20 \\ Zn & ppm & FUS-MS & 90 & 90 & 90 & 110 & 110 & 110 & 300 & 70 \\ Ga & ppm & FUS-MS & 18 & 16 & 15 & 20 & 20 & 14 & 16 & 14 \\ Ge & ppm & FUS-MS & 12 & 17 & < 5 & 10 & 14 & 32 & 86 & < 5 \\ Rb & ppm & FUS-MS & 12 & 17 & < 5 & 10 & 14 & 32 & 86 & < 5 \\ Rb & ppm & FUS-MS & 12 & 17 & < 5 & 10 & 14 & 32 & 86 & < 5 \\ Rb & ppm & FUS-MS & 12 & 17 & < 5 & 10 & 14 & 32 & 86 & < 5 \\ Rb & ppm & FUS-MS & 12 & 17 & < 5 & 10 & 14 & 32 & 86 & < 5 \\ Rb & ppm & FUS-MS & 3.80 & 15.80 & 15.00 & 50.20 & 53.10 & 14.80 & 17.70 & 29.90 \\ Y & ppm & FUS-KS & 53.80 & 15.80 & 16.10 & 50.20 & 53.10 & 14.80 & 17.70 & 29.90 \\ Zr & ppm & FUS-KS & 53.80 & 15.80 & 16.10 & 50.20 & 52 & 89 & 166 \\ Nb & ppm & FUS-MS & <0.5 & < 0.5 & < 0.5 & < 0.5 & < 0.5 & < 0.5 & < 0.5 \\ In & ppm & FUS-MS & <0.5 & < 0.5 & < 0.5 & < 0.5 & < 0.5 & < 0.5 \\ Ag & ppm & FUS-MS & <0.2 & < 0.2 & < 0.2 & < 0.1 & < 0.1 & < 0.1 \\ Sh & ppm & FUS-MS & <0.2 & < 0.2 & < 0.8 & 1.1 & 0.9 & < 0.7 & 0.7 \\ Cs & ppm & FUS-MS & <0.2 & < 0.2 & < 0.8 & 1.1 & 0.9 & 0.7 & 0.7 \\ Cs & ppm & FUS-MS & 5.88 & 1.34 & 1.24 & 6.27 & 6.33 & 1.66 & 3.39 & 4.13 \\ Nd & ppm & FUS-MS & 5.41 & 6.6 & 6.34 & 28.6 & 30.3 & 5.26 & 14.4 & 16.2 \\ Sm & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.66 & 3.39 & 4.13 \\ Nd & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Dr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Dr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Dr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Dr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Dr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Dr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.66 & 1.96 & 2.38 & 3.395 \\ Lu & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.66 & 1.96 & 2.38 $	Cr	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	30	30	20
NippmFUS-MS<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20<20 <th< td=""><td>Co</td><td>ppm</td><td>FUS-MS</td><td>2</td><td>31</td><td>25</td><td>3</td><td>3</td><td>9</td><td>5</td><td>2</td></th<>	Co	ppm	FUS-MS	2	31	25	3	3	9	5	2
$ \begin{array}{c cccc} Cu & ppm & FUS-MS & <10 & <10 & <10 & <10 & <10 & 20 & 20 \\ Zn & ppm & FUS-MS & 18 & 16 & 15 & 20 & 20 & 14 & 16 & 14 \\ Ge & ppm & FUS-MS & 1 & 1.1 & 1.1 & 0.9 & 1.3 & 0.9 & 1 & 1.5 \\ Ge & ppm & FUS-MS & 12 & 17 & <5 & 10 & 14 & 32 & 86 & <5 \\ Rb & ppm & FUS-MS & 42 & 6 & 55 & 39 & 48 & 49 & 35 & 86 \\ Sr & ppm & FUS-MS & 42 & 6 & 55 & 39 & 48 & 49 & 35 & 86 \\ Sr & ppm & FUS-MS & 3.0 & 15.80 & 16.10 & 50.20 & 53.10 & 14.80 & 17.70 & 29.90 \\ Zr & ppm & FUS-MS & 3.6 & 0.3 & <0.2 & 1.1 & 1.3 & <0.2 & 1 & 3.7 \\ Mo & ppm & FUS-MS & 3.6 & 0.3 & <0.2 & 1.1 & 1.3 & <0.2 & 1 & 3.7 \\ Mo & ppm & FUS-MS & 3.6 & 0.3 & <0.2 & 1.1 & 1.3 & <0.2 & 1 & 3.7 \\ Mo & ppm & FUS-MS & 3.6 & 0.1 & <0.1 & 0.1 & 0.1 & <0.1 & <0.1 & <0.1 \\ Sn & ppm & FUS-MS & 1 & <1 & <1 & 1 & 1 & 4 & 1 \\ Sb & ppm & FUS-MS & 1 & <1 & <1 & 1 & 1 & 4 & 1 \\ Sb & ppm & FUS-MS & 1 & <1 & <1 & 1 & 1 & 4 & 1 \\ Sb & ppm & FUS-MS & 1. & <1 & <1 & 1 & 1 & 4 & 1 \\ Sb & ppm & FUS-MS & 0.3 & 0.4 & 3.8 & 0.3 & 0.4 & 0.4 & 0.3 & 0.8 \\ Ba & ppm & FUS-MS & 1.22 & 81 & 3.63 & 15.77 & 3998 & 1165 & 1411 \\ La & ppm & FUS-MS & 0.3 & 0.4 & 3.8 & 0.3 & 0.4 & 0.4 & 0.3 & 0.8 \\ Ba & ppm & FUS-MS & 1.22 & 8.83 & 46.10 & 48.40 & 7.90 & 27.40 & 36.60 \\ Pr & ppm & FUS-MS & 5.88 & 1.34 & 1.24 & 6.27 & 6.53 & 1.06 & 3.39 & 4.13 \\ Ce & ppm & FUS-MS & 5.88 & 1.34 & 1.24 & 6.27 & 6.53 & 1.06 & 3.39 & 4.13 \\ La & ppm & FUS-MS & 1.41 & 0.73 & 0.76 & 2.22 & 2.41 & 0.19 & 0.42 & 0.70 \\ Gd & ppm & FUS-MS & 1.41 & 0.73 & 0.76 & 2.22 & 2.41 & 0.19 & 0.42 & 0.70 \\ Gd & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Fr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Fr & ppm & FUS-MS & 1.54 & 0.46 & 0.48 & 1.52 & 1.68 & 0.40 & 0.54 & 0.70 \\ Fr & ppm & FUS-MS & 0.12 & 0.5 & 0.55 & 0.5 & 7 & 8 & 128 & 2.77 & 0.9 \\ Fr & ppm & FUS-MS & 0.15 & 0.05 & 0.35 & 0.14 & 0.16 & 0.11 & 0.17 & 0.33 \\ Fr & ppm & FUS-MS & 0.32 & 0.08 & 0.66 & 0.14 & 0.16 & 0.1 & 0.17 & 0.33 \\ Fr & ppm & FUS-MS & 0.32 & 0.08 & 0.66 & 0.14 & 0.16 & 0.1 & 0.17 & 0.33 \\ Fr &$	Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	20	< 20	< 20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu	ppm	FUS-MS	< 10	40	50	< 10	< 10	< 10	20	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn	ppm	FUS-MS	90	90	90	110	110	110	300	70
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ga	ppm	FUS-MS	18	16	15	20	20	14	16	14
AsppmFUS-MS1217<510143286<55RbppmFUS-MS426553948493586SrppmFUS-MS341531503535161434YppmFUS-MS53.8015.8016.1050.2053.1014.8017.7029.90ZrppmFUS-MS3.60.3<0.2	Ge	ppm	FUS-MS	1	1.1	1.1	0.9	1.3	0.9	1	1.5
RbppmFUS-MS426553948493586SrppmFUS-MS53.8015.8016.1050.2053.1014.8017.7029.90ZrppmFUS-MS3.60.3<0.2	As	ppm	FUS-MS	12	17	< 5	10	14	32	86	< 5
SrppmFUS-ICP341531503535161434YppmFUS-ICP20815.8016.1050.2053.1014.8017.7029.90ZrppmFUS-MS3.60.3<0.2	Rb	ppm	FUS-MS	42	6	55	39	48	49	35	86
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sr	ppm	FUS-ICP	34	153	150	35	35	16	14	34
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Y	ppm	FUS-MS	53.80	15.80	16.10	50.20	53.10	14.80	17.70	29.90
NbppmFUS-MS 3.6 0.3 < 0.2 1.1 1.3 < 0.2 1 3.7 MoppmFUS-MS < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	Zr	ppm	FUS-ICP	208	41	36	184	200	52	89	166
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nb	ppm	FUS-MS	3.6	0.3	< 0.2	1.1	1.3	< 0.2	1	3.7
AgppmFUS-MS < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Мо	ppm	FUS-MS	< 2	< 2	< 2	< 2	< 2	< 2	3	4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ag	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	In	ppm	FUS-MS	0.1	< 0.1	< 0.1	0.1	0.1	< 0.1	< 0.1	< 0.1
SbppmFUS-MS < 0.2 < 0.2 < 0.2 < 0.8 1.1 0.9 0.7 0.7 CsppmFUS-MS 0.3 0.4 3.8 0.3 0.4 0.4 0.3 0.8 BappmFUS-MS 0.2 81 236 869 1577 3998 1165 1411 LappmFUS-MS 19.90 3.81 3.63 18.70 19.90 2.81 11.10 18.40 CeppmFUS-MS 44.70 9.27 8.83 46.10 48.40 7.90 27.40 36.60 PrppmFUS-MS 5.88 1.34 1.24 6.27 6.53 1.06 3.39 4.13 NdppmFUS-MS 26.1 6.6 6.34 28.6 30.3 5.26 14.4 16.2 SmppmFUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 GdppmFUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 GdppmFUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 DyppmFUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 DyppmFUS-MS 1.02 2.95 3.15 9.84 10.7 2.72 3.35 4.73 HoppmFUS-MS	Sn	ppm	FUS-MS	1	< 1	< 1	1	1	1	4	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sb	ppm	FUS-MS	< 0.2	< 0.2	< 0.2	0.8	1.1	0.9	0.7	0.7
BappmFUS-ICP 402 81 236 869 1577 3998 1165 1411 LappmFUS-MS 19.90 3.81 3.63 18.70 19.90 2.81 11.10 18.40 CeppmFUS-MS 44.70 9.27 8.83 46.10 48.40 7.90 27.40 36.60 PrppmFUS-MS 5.88 1.34 1.24 6.27 6.53 1.06 3.39 4.13 NdppmFUS-MS 26.1 6.6 6.34 28.6 30.3 5.26 14.4 16.2 SmppmFUS-MS 7.12 1.95 2.02 7.74 8.33 1.53 3.22 3.48 EuppmFUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 GdppmFUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 DyppmFUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 DyppmFUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 DyppmFUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 DyppmFUS-MS 1.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 Tmppm<	Cs	ppm	FUS-MS	0.3	0.4	3.8	0.3	0.4	0.4	0.3	0.8
La ppm FUS-MS 19.90 3.81 3.63 18.70 19.90 2.81 11.10 18.40 Ce ppm FUS-MS 44.70 9.27 8.83 46.10 48.40 7.90 27.40 36.60 Pr ppm FUS-MS 5.88 1.34 1.24 6.27 6.53 1.06 3.39 4.13 Nd ppm FUS-MS 26.1 6.6 6.34 28.6 30.3 5.26 14.4 16.2 Sm ppm FUS-MS 7.12 1.95 2.02 7.74 8.33 1.53 3.22 3.48 Eu ppm FUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 Gd ppm FUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 Dy ppm FUS-MS 1.02 2.95 3.15 9.84 10.7 2.72 <	Ba	ppm	FUS-ICP	402	81	236	869	1577	3998	1165	1411
Ce ppm FUS-MS 44.70 9.27 8.83 46.10 48.40 7.90 27.40 36.60 Pr ppm FUS-MS 5.88 1.34 1.24 6.27 6.53 1.06 3.39 4.13 Nd ppm FUS-MS 26.1 6.6 6.34 28.6 30.3 5.26 14.4 16.2 Sm ppm FUS-MS 7.12 1.95 2.02 7.74 8.33 1.53 3.22 3.48 Eu ppm FUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 Gd ppm FUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 Dy ppm FUS-MS 1.02 2.95 3.15 9.84 10.7 2.72 3.35 4.73 Ho ppm FUS-MS 1.02 2.95 0.66 2.1 2.19 0.60 0.7	La	ppm	FUS-MS	19.90	3.81	3.63	18.70	19.90	2.81	11.10	18.40
PrppmFUS-MS5.881.341.246.276.531.063.394.13NdppmFUS-MS26.16.66.3428.630.35.2614.416.2SmppmFUS-MS7.121.952.027.748.331.533.223.48EuppmFUS-MS1.410.730.762.222.410.190.420.70GdppmFUS-MS8.552.682.698.599.272.013.253.87TbppmFUS-MS1.540.460.481.521.680.400.540.70DyppmFUS-MS1.540.460.481.521.680.400.540.70DyppmFUS-MS1.022.953.159.8410.72.723.354.73HoppmFUS-MS2.190.630.662.12.190.600.701.05ErppmFUS-MS1.040.280.290.990.280.350.55YbppmFUS-MS7.151.861.946.146.681.962.383.95LuppmFUS-MS7.151.861.946.146.681.962.383.95LuppmFUS-MS0.320.080.060.140.160.10.170.33WppmFUS-MS0.15<0.5	Ce	ppm	FUS-MS	44.70	9.27	8.83	46.10	48.40	7.90	27.40	36.60
Nd ppm FUS-MS 26.1 6.6 6.34 28.6 30.3 5.26 14.4 16.2 Sm ppm FUS-MS 7.12 1.95 2.02 7.74 8.33 1.53 3.22 3.48 Eu ppm FUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 Gd ppm FUS-MS 8.55 2.68 2.69 8.59 9.27 2.01 3.25 3.87 Tb ppm FUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 Dy ppm FUS-MS 1.02 2.95 3.15 9.84 10.7 2.72 3.35 4.73 Ho ppm FUS-MS 2.19 0.63 0.66 2.1 2.19 0.60 0.70 1.05 Er ppm FUS-MS 1.04 0.28 0.99 0.28 0.35 0.55	Pr	ppm	FUS-MS	5.88	1.34	1.24	6.27	6.53	1.06	3.39	4.13
Sm ppm FUS-MS 7.12 1.95 2.02 7.74 8.33 1.53 3.22 3.48 Eu ppm FUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 Gd ppm FUS-MS 8.55 2.68 2.69 8.59 9.27 2.01 3.25 3.87 Tb ppm FUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 Dy ppm FUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 Dy ppm FUS-MS 1.02 2.95 3.15 9.84 10.7 2.72 3.35 4.73 Ho ppm FUS-MS 6.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 Tm ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 </td <td>Nd</td> <td>ppm</td> <td>FUS-MS</td> <td>26.1</td> <td>6.6</td> <td>6.34</td> <td>28.6</td> <td>30.3</td> <td>5.26</td> <td>14.4</td> <td>16.2</td>	Nd	ppm	FUS-MS	26.1	6.6	6.34	28.6	30.3	5.26	14.4	16.2
EuppmFUS-MS 1.41 0.73 0.76 2.22 2.41 0.19 0.42 0.70 GdppmFUS-MS 8.55 2.68 2.69 8.59 9.27 2.01 3.25 3.87 TbppmFUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 DyppmFUS-MS 10.2 2.95 3.15 9.84 10.7 2.72 3.35 4.73 HoppmFUS-MS 2.19 0.63 0.66 2.1 2.19 0.60 0.70 1.05 ErppmFUS-MS 6.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 TmppmFUS-MS 1.04 0.28 0.29 0.93 0.99 0.28 0.35 0.55 YbppmFUS-MS 7.15 1.86 1.94 6.14 6.68 1.96 2.38 3.95 LuppmFUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 HfppmFUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17 0.33 WppmFUS-MS 0.15 < 0.5 < 0.5 < 0.5 < 2.7 2.7 0.9 ThppmFUS-MS 0.15 < 0.05 0.36 0.12 1.13 1.65 1.00 0.35 PhotheredPhothered $< $	Sm	ppm	FUS-MS	7.12	1.95	2.02	7.74	8.33	1.53	3.22	3.48
Gd ppm FUS-MS 8.55 2.68 2.69 8.59 9.27 2.01 3.25 3.87 Tb ppm FUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 Dy ppm FUS-MS 10.2 2.95 3.15 9.84 10.7 2.72 3.35 4.73 Ho ppm FUS-MS 2.19 0.63 0.66 2.1 2.19 0.60 0.70 1.05 Er ppm FUS-MS 6.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 Tm ppm FUS-MS 1.04 0.28 0.29 0.93 0.99 0.28 0.35 0.55 Yb ppm FUS-MS 7.15 1.86 1.94 6.14 6.68 1.96 2.38 3.95 Lu ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.1	Eu	ppm	FUS-MS	1.41	0.73	0.76	2.22	2.41	0.19	0.42	0.70
Tb ppm FUS-MS 1.54 0.46 0.48 1.52 1.68 0.40 0.54 0.70 Dy ppm FUS-MS 10.2 2.95 3.15 9.84 10.7 2.72 3.35 4.73 Ho ppm FUS-MS 2.19 0.63 0.66 2.1 2.19 0.60 0.70 1.05 Er ppm FUS-MS 6.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 Tm ppm FUS-MS 1.04 0.28 0.29 0.93 0.99 0.28 0.35 0.55 Yb ppm FUS-MS 1.04 0.28 0.29 0.93 0.99 0.28 0.35 0.55 Yb ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8	Gd	ppm	FUS-MS	8.55	2.68	2.69	8.59	9.27	2.01	3.25	3.87
Dy ppm FUS-MS 10.2 2.95 3.15 9.84 10.7 2.72 3.35 4.73 Ho ppm FUS-MS 2.19 0.63 0.66 2.1 2.19 0.60 0.70 1.05 Er ppm FUS-MS 6.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 Tm ppm FUS-MS 1.04 0.28 0.29 0.93 0.99 0.28 0.35 0.55 Yb ppm FUS-MS 7.15 1.86 1.94 6.14 6.68 1.96 2.38 3.95 Lu ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17	Tb	ppm	FUS-MS	1.54	0.46	0.48	1.52	1.68	0.40	0.54	0.70
Ho ppm FUS-MS 2.19 0.63 0.66 2.1 2.19 0.60 0.70 1.05 Er ppm FUS-MS 6.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 Tm ppm FUS-MS 1.04 0.28 0.29 0.93 0.99 0.28 0.35 0.55 Yb ppm FUS-MS 7.15 1.86 1.94 6.14 6.68 1.96 2.38 3.95 Lu ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17	Dv	ppm	FUS-MS	10.2	2.95	3.15	9.84	10.7	2.72	3.35	4.73
Er ppm FUS-MS 6.67 1.91 1.97 6.12 6.52 1.82 2.17 3.32 Tm ppm FUS-MS 1.04 0.28 0.29 0.93 0.99 0.28 0.35 0.55 Yb ppm FUS-MS 7.15 1.86 1.94 6.14 6.68 1.96 2.38 3.95 Lu ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17 0.33 W ppm FUS-MS 0.5 <0.5	Ho	ppm	FUS-MS	2.19	0.63	0.66	2.1	2.19	0.60	0.70	1.05
Tm ppm FUS-MS 1.04 0.28 0.29 0.93 0.09 0.28 0.35 0.55 Yb ppm FUS-MS 7.15 1.86 1.94 6.14 6.68 1.96 2.38 3.95 Lu ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17 0.33 W ppm FUS-MS 0.5 <0.5	Er	ppm	FUS-MS	6.67	1.91	1.97	6.12	6.52	1.82	2.17	3.32
Yb ppm FUS-MS 7.15 1.86 1.94 6.14 6.68 1.96 2.38 3.95 Lu ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17 0.33 W ppm FUS-MS 0.5 <0.5	Tm	ppm	FUS-MS	1.04	0.28	0.29	0.93	0.99	0.28	0.35	0.55
Lu ppm FUS-MS 1.18 0.30 0.33 0.97 1.09 0.31 0.40 0.66 Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17 0.33 W ppm FUS-MS 0.5 < 0.5	Yh	npm	FUS-MS	7.15	1.86	1.94	6.14	6.68	1.96	2.38	3.95
Hf ppm FUS-MS 4.3 0.9 0.9 3.5 4 1.2 1.8 3.4 Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.11 0.17 0.33 W ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17 0.33 W ppm FUS-MS <0.5 <0.5 <0.5 <0.5 2.7 2.7 0.9 T1 ppm FUS-MS 0.15 <0.05 0.36 0.12 1.13 1.65 1.00 0.35 Pb ppm FUS-MS <5 <5 <5 7 8 128 27 Bi ppm FUS-MS <0.1 <0.1 <0.1 <0.1 <0.1 0.4 0.5 0.2 Th ppm FUS-MS <0.34 0.66 0.53 3.5 3.8 1.38 4.5 9.05 U ppm FUS-MS 2.22 0.2 0.15 1.2 1.24 1.14 2.59	Lu	nnm	FUS-MS	1.18	0.30	0.33	0.97	1.09	0.31	0.40	0.66
Ta ppm FUS-MS 0.32 0.08 0.06 0.14 0.16 0.1 0.17 0.33 W ppm FUS-MS <0.5 <0.5 <0.5 <0.5 <0.5 2.7 0.7 0.9 T1 ppm FUS-MS 0.15 <0.05 0.36 0.12 1.13 1.65 1.00 0.33 Pb ppm FUS-MS <1.5 <0.05 0.36 0.12 1.13 1.65 1.00 0.35 Pb ppm FUS-MS <5 <5 <5 5 7 8 128 27 Bi ppm FUS-MS <0.1 <0.1 <0.1 <0.1 <0.1 0.4 0.5 0.2 Th ppm FUS-MS <0.34 0.66 0.53 3.5 3.8 1.38 4.5 9.05 U ppm FUS-MS 2.22 0.2 0.15 1.2 1.24 1.14 2.59 2.65	Hf	ppm	FUS-MS	43	0.9	0.9	3 5	4	12	1.8	3.4
W ppm FUS-MS <0.5 <0.5 <0.5 <0.6 0.14 0.16 0.17 0.05 W ppm FUS-MS <0.5 <0.5 <0.5 <0.5 <0.7 0.17 0.19 TI ppm FUS-MS 0.15 <0.05 0.36 0.12 1.13 1.65 1.00 0.35 Pb ppm FUS-MS <5 <5 <5 7 8 128 27 Bi ppm FUS-MS <0.1 <0.1 <0.1 <0.1 0.4 0.5 0.2 Th ppm FUS-MS 6.34 0.66 0.53 3.5 3.8 1.38 4.5 9.05 U ppm FUS-MS 2.22 0.2 0.15 1.2 1.24 1.14 2.59 2.65	Тэ	nnm	FUS-MS	0.32	0.08	0.06	0.14	016	0.1	0.17	0 33
Ti ppm FUS-MS 0.15 < 0.05 0.36 0.12 1.13 1.65 1.00 0.35 Pb ppm FUS-MS < 5 < 5 < 5 7 8 128 27 Bi ppm FUS-MS < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.4 0.5 0.2 Th ppm FUS-MS 6.34 0.66 0.53 3.5 3.8 1.38 4.5 9.05 U ppm FUS-MS 2.22 0.2 0.15 1.2 1.24 1.14 2.59 2.65	N/	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.7	27	0.00
Pb ppm FUS-MS < 5 < 5 < 5 7 8 128 27 Bi ppm FUS-MS < 0.1	TI	nnm	FUS-MS	0.15	< 0.05	0.36	0.12	1 13	1.65	1.00	0.35
Bi ppm FUS-MS < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.4 0.5 0.2 Th ppm FUS-MS 6.34 0.66 0.53 3.5 3.8 1.38 4.5 9.05 U ppm FUS-MS 2.22 0.2 0.15 1.2 1.24 1.14 2.59 2.65	Ph	PPIII	FUS-MS	< 5	< 5	< 5	5	7	8	128	0.55 77
Dr ppm FUS-MS Cli Cli </td <td>Ri</td> <td>PPIII</td> <td>FUS-MS</td> <td>< 0.1</td> <td>< 0.1</td> <td>< 0.1</td> <td>< 0.1</td> <td>< 0.1</td> <td>0.4</td> <td>0.5</td> <td>0.2</td>	Ri	PPIII	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	0.5	0.2
U nnm FUS-MS 2.22 0.2 0.15 1.2 1.24 1.14 2.50 2.65	Th	PPIII	FUS-MS	6 34	0.66	0.53	3 5	3.8	1 38	4 5	9.05
	IT	ppm	FUS-MS	2 22	0.00	0.55	1.2	1 24	1.56	2 59	2.65

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

Sample ID			14489	14490	14492	14494	14496	14498	14500	32002
Hole ID			GA-06-147	GA-06-147	GA-06-147	GA-06-147	GA-06-147	GA-06-147	GA-06-147	GA-06-147
Depth (m)			49.2	62.2	94.9	110.6	125.35	189.8	220.45	250.1
Lithology			VCL4	VCL4	VCL3	VCL3	IN1	IN2a	VCL1 (D)	IN2a
Alteration			chl	chl	ser	ser-chl	unaltered	sil-ser	sil-ser	sil-ser
SiO ₂	%	FUS-ICP	46.84	57.86	60.72	62.79	50.27	48.84	64.86	61.33
Al_2O_3	%	FUS-ICP	19.05	14.42	12.81	16.79	16.19	14.72	13.58	14.97
Fe ₂ O ₂	%	FUS-ICP	13.56	6.01	5.93	5.36	10.97	10.2	8.27	4.94
MnO	%	FUS-ICP	0.11	0.13	0.11	0.02	0.17	0.26	0.05	0.16
MgO	%	FUS-ICP	7.6	2 58	2 51	4 34	63	5.87	1 48	1 54
CaO	%	FUS-ICP	0.94	4.88	4.13	0.61	3.1	4.82	0.43	3.47
Na ₂ O	%	FUS-ICP	4 94	6.41	4 95	1.88	5 36	3 57	0.39	4.08
K ₂ O	0/0	FUS-ICP	0.84	0.54	0.96	3 3 5	0.03	0.55	3 29	1.68
TiO	0/2	FUS ICP	0.04	0.58	0.70	0.68	0.09	0.92	0.56	1.05
110 ₂	/0	FUS-ICI	0.90	0.58	0.72	0.08	0.99	0.92	0.50	0.27
F ₂ O ₅	70 0/	FUS-ICP	0.10	0.09 5.25	0.07	0.08	0.09	0.07	0.00	0.37
LOI Tatal	%0 0/	FUS-ICP	5.40	5.35	/.20	4.90	/.21	9.38	0.18	0.74
I otal	%0 1	FUS-ICP	100.30	98.80	100.20	100.80	100.70	99.20	99.17	100.30
Hg	рро	CV-FIMS	< 5	< 5	8 19	< 5	< 5 27	< 5 25	81	< 5
Sc D-	ppm	FUS-ICP	39	24	18	21	3/	55	24	14
Ве	ppm	FUS-ICP	1	< I 100	< I 157	1	1	< 1	< I 152	2
v Cr	ppm	FUS-ICP	284	188	157	/1	380	530 < 20	155	82 < 20
Cr	ррш	FUS-MS	00 22	40	30	20	30	< 20	10	< 20
C0	ррш	FUS-MS	32	10	14	< 20	23 < 20	< 20	- 20	< 20
Cu	ppin	FUS-MS	20	< 20	~ 20	< 10	< 20 50	< 20	< 20	< 10
Zn	ppm	FUS-MS	20	40	20	< 10	50	80	40 600	< 10
Ca	ppin	FUS-MS	20	13	110	18	90	80 15	12	17
Ga	ppm	FUS-MS	20	15	15	16	130	1.20	15	17
de Ac	ppin	FUS-MS	1.10	0.80	0.00	1.00	1.30	1.20	160	1.10
AS Dh	ppin	FUS-MS	17	14	12	27 60	0	10	68	< 3 40
KU S.	ppin	FUS-MS	17	14	13	24	< I 199	10	17	40
V	ppin	FUS MS	18 20	10.20	17.10	46 50	13 70	18 50	20.30	29.00
1 7r	ppin	FUS ICP	18.20	68	76	100	13.70	34	20.30	183
Nb	ppin	FUS MS	1.50	1.40	1 30	0.30	42	0.50	43	185
Mo	ppm	FUS-MS	< 2	< 2	4	2	< 2	< 2	3	
Δσ	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.5	< 0.5	0.1	< 0.1
Sn	ppm	FUS-MS	< 1	< 1	< 1	2	< 1	< 1	1	1
Sh	ppm	FUS-MS	0.60	0.60	1 20	1 50	0.70	0.80	3 40	2 00
Cs	ppm	FUS-MS	0.00	0.60	0.10	0.40	< 0.1	0.00	0.50	0.40
Ba	nnm	FUS-ICP	265	147	126	981	33	126	494	568
La	ppm	FUS-MS	5.93	8.10	5.00	7.60	4.36	4.17	4.00	23.8
Ce	ppm	FUS-MS	12.00	16.50	11.50	19.60	8.87	9.90	8.96	49.00
Pr	ppm	FUS-MS	1.48	1.93	1.57	2.94	1.16	1.42	1.21	5.75
Nd	ppm	FUS-MS	6.15	8.33	7.46	14.6	5.97	6.94	6.00	24.30
Sm	ppm	FUS-MS	1.60	2.16	2.20	5.12	1.70	2.26	1.98	5.56
Eu	ppm	FUS-MS	0.47	0.70	0.67	1.37	0.59	0.93	0.32	1.54
Gd	ppm	FUS-MS	2.33	2.47	2.41	6.52	2.08	2.99	2.61	5.32
Tb	ppm	FUS-MS	0.48	0.47	0.52	1.27	0.4	0.53	0.53	0.89
Dv	ppm	FUS-MS	3.23	3.1	3.11	8.44	2.57	3.45	3.6	5.42
Ho	ppm	FUS-MS	0.67	0.67	0.64	1.69	0.56	0.72	0.79	1.11
Er	ppm	FUS-MS	2	2.08	1.88	4.97	1.66	2.05	2.33	3.28
Tm	ppm	FUS-MS	0.31	0.34	0.32	0.74	0.24	0.31	0.37	0.48
Yb	ppm	FUS-MS	2.09	2.38	2.04	4.8	1.58	2.05	2.45	3.09
Lu	ppm	FUS-MS	0.32	0.39	0.35	0.76	0.25	0.31	0.41	0.49
Hf	ppm	FUS-MS	1.30	1.40	1.50	2.60	1.00	0.80	1.00	3.40
Та	ppm	FUS-MS	0.12	0.13	0.16	0.07	0.1	0.08	0.09	0.4
W	ppm	FUS-MS	1.1	0.6	1	0.9	1.2	1.6	2	3.6
Tl	ppm	FUS-MS	0.1	0.09	0.07	0.6	< 0.05	0.11	0.98	0.3
Pb	ppm	FUS-MS	< 5	10	6	6	< 5	< 5	297	8
Bi	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	< 0.1
Th	ppm	FUS-MS	1.87	3.24	1.66	1.81	0.77	0.65	1.17	6.51
U	ppm	FUS-MS	0.81	1.12	1.28	1.32	0.23	0.23	0.9	2.28

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		Ар	penuix D: 1	able D1.1 :	w noie-roc	k Litinogeot	chemistry D	<i>vala</i>		
Sample ID			32004	32005	32006	32007	32008	14514	14516	14520
Hole ID			GA-06-147	GA-06-147	GA-06-147	GA-06-147	GA-06-147	GA-07-208	GA-07-208	GA-07-208
Depth (m)			285.1	316.97	336.2	363.6	380.4	7.3	24.1	44.8
Lithology			VCL1 (A-C)	VCL1 (A-C)	VCL1 (D)	VCL1 (A-C)	VCL1 (A-C)	CL1a	CL1a	VCL4
Alteration			ser-sil-py	ser-sil-py	ser-chl	ser	ser	sil	sil	sil-chl
SiO ₂	%	FUS-ICP	62.43	48.79	50.54	60.23	51.21	81.01	81.99	66.56
Al_2O_3	%	FUS-ICP	14.92	14.59	18.50	14.76	17.94	8.40	10.01	14.19
Fe ₂ O ₃	%	FUS-ICP	6.88	7.05	8.68	7.06	8.47	1.69	1.09	4.4
MnO	%	FUS-ICP	0.17	0.49	0.42	0.20	0.47	0.01	0.01	0.07
MgO	%	FUS-ICP	3.31	11.09	8.93	5.93	6.19	0.19	0.59	2.09
CaO	%	FUS-ICP	0.62	4.17	1.91	1.20	3.07	0.75	0.23	2.80
Na ₂ O	%	FUS-ICP	2.33	0.44	0.49	2.10	1.46	3.05	2.29	4.39
K_2O	%	FUS-ICP	2.18	1.28	2.15	1.28	2.14	1.45	2.07	1.57
TiO ₂	%	FUS-ICP	0.73	0.59	0.84	0.61	0.76	0.19	0.19	0.43
P_2O_5	%	FUS-ICP	0.12	0.05	0.10	0.05	0.06	0.01	0.02	0.05
LOI	%	FUS-ICP	5.64	10.85	8.16	6.50	8.55	1.73	1.44	4.27
Total	%	FUS-ICP	99.31	99.39	100.70	99.93	100.30	98.50	99.92	100.80
Hg	ppb	CV-FIMS	23	12	< 5	9	33	169	< 5	6
Sc	ppm	FUS-ICP	18	21	32	20	24	4	5	15
Be	ppm	FUS-ICP	< 1	< 1	< 1	< 1	1	< 1	1	1
V	ppm	FUS-ICP	148	149	235	157	194	14	12	96
Cr	ppm	FUS-MS	< 20	30	50	50	100	30	< 20	20
Co	ppm	FUS-MS	14	16	25	16	17	1	< 1	13
Ni	ppm	FUS-MS	< 20	< 20	20	< 20	30	< 20	< 20	< 20
Cu	ppm	FUS-MS	30	20	40	10	20	< 10	< 10	20
Zn	ppm	FUS-MS	270	400	190	180	140	340	< 30	50
Ga	ppm	FUS-MS	15	13	17	13	17	5	9	13
Ge	ppm	FUS-MS	0.60	0.60	0.80	0.70	0.80	0.90	1.10	0.80
As	ppm	FUS-MS	101	56	55	64	53	15	< 5	17
Rb	ppm	FUS-MS	50	29	49	29	49	14	35	27
Sr	ppm	FUS-ICP	34	54	40	35	37	64	47	69
Y	ppm	FUS-MS	18.70	15.40	22.90	19.60	20.40	14.70	18.40	19.60
Zr	ppm	FUS-ICP	90	52	49	52	58	81	84	96
Nb	ppm	FUS-MS	1.80	0.40	1.00	0.30	0.30	0.40	0.70	0.90
Мо	ppm	FUS-MS	< 2	< 2	4	< 2	< 2	5	< 2	< 2
Ag	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ln	ppm	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sn	ppm	FUS-MS	2 20	2	1	1	< 1	< 1	< 1	< 1
Sb	ppm	FUS-MS	2.30	1.40	1.40	1.60	1.60	0.30	0.30	0.20
Cs Da	ppm	FUS-MS	0.40	0.30	0.30	0.30	0.80	< 0.1	0.40	0.30
Ба	ppm	FUS-ICP	6 97	109	291	103	200	4914	10.10	981
La	ppm	FUS-MS	0.87	4.15	3.39 12.7	5.35 8 5 4	5.08	15 7	20.2	14.40
Dr.	ppin	FUS MS	2.01	10.1	1.02	0.04	0.00	1.81	20.3	29.7
Nd	ppm	FUS-MS	9.09	7.42	9.41	6.18	7.00	6.78	2.23 8.47	13.40
Sm	ppm	FUS-MS	2.36	2.21	2.41	1.96	7.00	1.54	1.76	2 94
Fu	ppm	FUS-MS	0.46	0.33	0.49	0.37	0.52	0.46	0.34	0.79
Gd	nnm	FUS-MS	2 57	2 39	3 38	2.58	2.78	1.76	2.1	3.12
Th	nnm	FUS-MS	0.50	0.42	0.63	0.51	0.54	0.34	0.40	0.57
Dv	nnm	FUS-MS	3 29	2 73	4 22	3 53	3 55	2 38	3.07	3.6
Но	ppm	FUS-MS	0.72	0.59	0.89	0.76	0.75	0.55	0.74	0.77
Er	ppm	FUS-MS	2.17	1.8	2.66	2.22	2.4	1.78	2.37	2.32
Tm	ppm	FUS-MS	0.34	0.29	0.40	0.35	0.37	0.29	0.39	0.38
Yb	ppm	FUS-MS	2.29	1.95	2.62	2.38	2.53	2.01	2.82	2.81
Lu	ppm	FUS-MS	0.37	0.32	0.41	0.38	0.43	0.35	0.48	0.46
Hf	ppm	FUS-MS	1.90	1.20	1.00	1.30	1.30	1.60	2.00	2.00
Ta	ppm	FUS-MS	0.21	0.09	0.12	0.08	0.09	0.16	0.19	0.18
W	ppm	FUS-MS	1.60	1.60	1.50	2.50	1.20	1.10	0.80	1.40
T1	ppm	FUS-MS	0.43	0.16	0.22	0.16	0.34	< 0.05	< 0.05	< 0.05
Pb	ppm	FUS-MS	36	188	54	146	34	73	< 5	7
Bi	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Th	ppm	FUS-MS	1.95	0.8	1.21	0.69	0.7	4.36	5.82	4.8
U	ppm	FUS-MS	0.63	0.35	0.40	0.20	0.20	1.28	1.52	1.43

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		Appen	uix D. Ta	DIE D1.1.	w noie-i oc	K Litiloge	ochemisti	y Data		
Sample ID			14521	14523	14526	14529	14532	14535	14538	14540
Hole ID			GA-07-208	GA-07-208	GA-07-208	GA-07-208	GA-07-208	GA-07-208	GA-07-208	GA-07-208
Depth (m)			44.8	83.5	103.4	124	156.5	169.1	202.8	218.5
Lithology			VCL4	VCL4	VCL4	VCL3	IN1	VCL2	IN2a	VCL2
Alteration			chl	chl	least alt?	chl	unaltered	ser-sil	carb	ser-sil
SiO ₂	%	FUS-ICP	49.62	55.47	53.15	48.4	48.86	61.16	51.71	66.27
Al_2O_3	%	FUS-ICP	19.13	15.75	19.67	20.13	16.59	16.67	16.71	14.75
Fe ₂ O ₃	%	FUS-ICP	9.65	6.07	8.73	8.84	11.11	5.67	9.93	5.25
MnO	%	FUS-ICP	0.12	0.12	0.06	0.06	0.19	0.06	0.20	0.04
MgO	%	FUS-ICP	7.17	3.31	5.91	10.8	6.14	5.23	5.64	2.91
CaO	%	FUS-ICP	2.08	5.56	0.48	0.19	4.34	0.61	2.97	0.49
Na ₂ O	%	FUS-ICP	4.72	6.87	7.19	4.84	5.42	2.33	6.75	4.85
K ₂ O	%	FUS-ICP	1.41	0.09	0.12	0.37	0.14	3.2	0.1	1.19
TiO ₂	%	FUS-ICP	0.74	0.60	1.02	0.84	1.03	0.85	0.90	0.47
P_2O_5	%	FUS-ICP	0.06	0.06	0.12	0.06	0.12	0.11	0.13	0.04
LOI	%	FUS-ICP	5.87	6.73	4.10	6.12	6.92	4.12	5.26	3.37
Total	%	FUS-ICP	100.60	100.60	100.60	100.60	100.90	100.00	100.30	99.63
Hg	ppb	CV-FIMS	< 5	< 5	< 5	5	< 5	< 5	< 5	< 5
Sc	ppm	FUS-ICP	27	23	24	26	37	18	33	15
Be	ppm	FUS-ICP	1	< 1	< 1	< 1	< 1	2	< 1	1
V	ppm	FUS-ICP	223	190	199	206	373	50	299	23
Cr	ppm	FUS-MS	30	30	< 20	< 20	30	< 20	30	< 20
Co	ppm	FUS-MS	21	15	15	19	26	4	21	2
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Cu	ppm	FUS-MS	20	40	< 10	< 10	20	< 10	30	< 10
Zn	ppm	FUS-MS	90	60	70	80	90	110	90	70
Ga	ppm	FUS-MS	19	13	20	18	16	19	16	16
Ge	ppm	FUS-MS	1	1	1	0.9	1.4	1	0.9	0.8
As	ppm	FUS-MS	< 5	7	11	21	5	5	< 5	12
Rb	ppm	FUS-MS	24	< 1	2	6	4	54	2	21
Sr	ppm	FUS-ICP	46	134	119	32 15.00	137	33	151	42
Y Zu	ppm	FUS-MS	24.60	15.20	27.50	15.80	19.90	48.30	18.00	51.50
Zr	ppm	FUS-ICP	104	80	/8	81	4/	1/1	50 1.00	220
Mo	ppin	FUS MS	1.20 < 2	0.70	0.90	0.20 < 2	0.90 < 2	1.40 < 2	< 2	1.00
Δα	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.1
Sn	ppm	FUS-MS	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Sh	ppm	FUS-MS	< 0.2	< 0.2	0.2	0.9	0.7	0.4	1.7	1
Cs	ppm	FUS-MS	0.2	< 0.1	< 0.1	< 0.1	0.2	0.4	< 0.1	0.2
Ba	ppm	FUS-ICP	538	45	46	85	59	414	54	484
La	ppm	FUS-MS	8.60	11.50	5.50	3.89	4.48	17.90	4.57	18.50
Ce	ppm	FUS-MS	18.80	22.50	12.40	9.69	10.70	43.40	10.50	46.40
Pr	ppm	FUS-MS	2.32	2.48	1.73	1.38	1.56	5.85	1.54	6.28
Nd	ppm	FUS-MS	9.88	9.64	8.73	6.38	7.26	27.1	6.87	29.4
Sm	ppm	FUS-MS	2.82	2.30	3.02	1.91	2.25	7.16	2.13	7.68
Eu	ppm	FUS-MS	0.91	0.65	1.05	0.66	0.89	2.28	0.78	1.72
Gd	ppm	FUS-MS	3.67	2.52	4.66	2.62	2.91	8.53	2.81	8.04
Tb	ppm	FUS-MS	0.69	0.44	0.88	0.46	0.53	1.5	0.51	1.45
Dy	ppm	FUS-MS	4.50	2.85	5.68	2.88	3.49	9.25	3.29	9.88
Но	ppm	FUS-MS	0.97	0.62	1.14	0.62	0.74	1.91	0.69	2.13
Er	ppm	FUS-MS	2.85	1.96	3.25	1.95	2.18	5.67	2.14	6.59
Tm	ppm	FUS-MS	0.44	0.31	0.46	0.31	0.32	0.85	0.33	1.02
Yb	ppm	FUS-MS	3.11	2.16	2.88	2.1	2.08	5.59	2.18	6.92
Lu	ppm	FUS-MS	0.52	0.37	0.47	0.36	0.34	0.91	0.35	1.11
Hf	ppm	FUS-MS	2.10	1.70	1.60	1.80	0.90	3.50	1.10	4.30
Ta	ppm	FUS-MS	0.18	0.16	0.16	0.14	0.09	0.18	0.10	0.18
W T1	ppm	FUS-MS	0.5	0.7	< 0.5	0.8	0.9	< 0.5	2.5	< 0.5
11 D1-	ppm	FUS-MS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	< 0.05	0.23
Р0 D:	ppm	FUS-MS	< 5	< 5	< 5	19	< 5	9	< 5	0
DI Th	ppin	FUS MS	 √ 0.1 √ 62 	~ 0.1	< 0.11.00	~ 0.1 2 2	0.10.77	~ 0.1 2 75	0.10.89	\ 1 26
TT T	ppin	FUS-MS	1.05	5.54 1.11	0.53	2.5	0.77	1.58	0.00	1.50

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

Sample ID			14544	14545	14547	14450	14453	14457	14459	14460
Hole ID			GA-07-208	GA-07-208	GA-07-208	GA-07-208	GA-07-208	GA-07-218	GA-07-218	GA-07-218
Depth (m)			273.6	295	328.3	242.4	258.3	20.2	50.01	69.5
Lithology			VCL1 (A-C)	IN2a	VCL1 (D)	VCL1 (E)	VCL1 (A-C)	IN2a	CL1a	CL1a
Alteration			ser-sil-pv	ser-sil	ser-sil	chl-pv	sil-ser-chl-py	unaltered	sil-ser	sil-ser
SiO ₂	%	FUS-ICP	69.15	53.40	61.09	46.22	41.78	50.16	77.64	78.42
	%	FUS-ICP	10.90	14.48	14.87	9.09	12.24	15.20	11.10	11.14
Fe ₂ O ₂	0/0	FUS-ICP	7 12	10.49	5 64	24.27	15.49	8 75	1.52	1 34
MnO	70 0/-	FUS ICD	0.02	0.36	0.43	24.27	0.22	0.14	0.04	0.03
MaQ	/0 0/-	FUS-ICF	0.03	0.30	2.80	0.03	0.32	6.80	0.04	0.03
MgO	/0 0/	FUS-ICF	0.31	4.41	2.69	2.49	1.00	6.51	0.30	0.37
CaO Na O	/0	FUS-ICF	0.42	5.40	2.41	0.17	0.02	0.51	1.10	0.7
Na ₂ O	%0 0 (FUS-ICP	0.52	0.42	2.56	0.20	0.03	3.08	3.22	3.93
K ₂ O	%	FUS-ICP	2.52	2.32	1.49	1.69	0.04	0.86	2.86	1.88
T_1O_2	%	FUS-ICP	0.40	0.70	0.57	0.24	0.59	1.50	0.26	0.24
P_2O_5	%	FUS-ICP	0.03	0.18	0.13	0.03	0.10	0.36	0.02	0.02
LOI	%	FUS-ICP	6.13	9.69	7.07	13.48	13.49	5.34	2.27	2.07
Total	%	FUS-ICP	97.52	99.93	100.2	97.92	98.38	99.4	100.6	100.3
Hg	ppb	CV-FIMS	479	6	12	62	114	< 5	< 5	15
Sc	ppm	FUS-ICP	15	26	11	9	12	23	6	6
Be	ppm	FUS-ICP	< 1	< 1	< 1	< 1	< 1	2	< 1	< 1
V	ppm	FUS-ICP	108	199	91	10	102	205	13	16
Cr	ppm	FUS-MS	40	50	< 20	< 20	20	260	< 20	40
Co	ppm	FUS-MS	8	30	10	< 1	16	32	1	2
Ni	ppm	FUS-MS	< 20	20	< 20	< 20	< 20	120	< 20	< 20
Cu	ppm	FUS-MS	640	20	30	3610	780	40	< 10	< 10
Zn	ppm	FUS-MS	7680	260	400	280	1810	80	< 30	40
Ga	ppm	FUS-MS	11	14	14	12	17	15	10	10
Ge	ppm	FUS-MS	1.3	0.7	0.7	4.7	1	1.4	1	1.6
As	ppm	FUS-MS	136	57	21	64	38	< 5	< 5	16
Rb	ppm	FUS-MS	55	56	35	30	< 1	17	32	27
Sr	ppm	FUS-ICP	28	70	39	9	5	572	37	38
Y	ppm	FUS-MS	20.00	20.30	19.90	28.80	25.70	20.20	23.00	25.10
Zr	ppm	FUS-ICP	32	52	85	135	86	164	131	110
Nb	ppm	FUS-MS	< 0.2	1.6	2.3	0.9	1.9	5.8	1.2	1.7
Mo	ppm	FUS-MS	< 2	< 2	< 2	6	5	< 2	< 2	3
Ag	ppm	FUS-MS	1.7	0.6	< 0.5	2.7	0.8	< 0.5	< 0.5	< 0.5
In	ppm	FUS-MS	0.2	< 0.1	0.2	0.3	0.9	< 0.1	< 0.1	< 0.1
Sn	ppm	FUS-MS	1	< 1	< 1	24	2	1	< 1	2
Sb	ppm	FUS-MS	10.00	1.20	1.20	13.40	5.20	1.70	0.20	0.70
Cs	ppm	FUS-MS	0.30	0.40	0.30	0.20	< 0.1	0.60	0.20	0.20
Ba	ppm	FUS-ICP	425	360	201	2758	31	246	3032	871
La	ppm	FUS-MS	4.98	4.59	8.46	11.2	6.25	29.6	16.1	15.2
Ce	ppm	FUS-MS	10.50	11.00	18.00	27.00	16.90	60.00	31.80	30.30
Pr	ppm	FUS-MS	1.32	1.56	2.29	3.58	2.36	6.94	3.42	3.33
Nd	ppm	FUS-MS	5.7	7.51	9.51	16.4	11.3	27.4	13.2	12.5
Sm	ppm	FUS-MS	1.71	2.31	2.63	4.54	2.85	5.12	2.83	2.87
Eu	ppm	FUS-MS	0.35	0.58	0.79	1.18	0.40	1.62	0.64	0.57
Gd	ppm	FUS-MS	2.2	2.92	2.81	4.43	3.32	4.4	3.24	2.87
Tb	ppm	FUS-MS	0.45	0.55	0.54	0.83	0.64	0.67	0.59	0.52
Dy	ppm	FUS-MS	3.21	3.66	3.41	5.52	4.29	4.01	3.99	3.85
Но	ppm	FUS-MS	0.69	0.79	0.74	1.1	0.94	0.77	0.87	0.83
Er	ppm	FUS-MS	2.08	2.38	2.22	3.23	2.82	2.15	2.64	2.62
Tm	ppm	FUS-MS	0.33	0.33	0.36	0.51	0.45	0.29	0.43	0.42
Yb	ppm	FUS-MS	2.14	2.24	2.51	3.49	3.09	2.04	3.06	2.88
Lu	ppm	FUS-MS	0.34	0.36	0.42	0.56	0.51	0.33	0.52	0.51
Hf T	ppm	FUS-MS	0.70	1.10	1.80	2.60	1.80	2.80	2.50	2.50
Ta	ppm	FUS-MS	0.06	0.15	0.22	0.15	0.3	0.43	0.24	0.23
W	ppm	FUS-MS	2.30	2.00	1.10	0.80	7.20	2.40	< 0.5	1.80
11	ppm	FUS-MS	0.82	0.41	0.24	1.46	0.17	0.09	0.05	0.24
Pp D	ppm	FUS-MS	3990	43	19	148	41	8	5	5
B1	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	0.10	3.20	< 0.1	< 0.1	< 0.1
Th	ppm	FUS-MS	0.40	1.17	2.45	3.07	2.07	3.83	6.69	6.21
U	ppm	FUS-MS	0.97	0.65	0.7	0.85	1.91	1.17	2.02	1.6.3

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		Appen	dix B: Ta	ble B1.1:	Whole-ro	ck Lithoge	eochemisti	y Data		
Sample ID			14461	14462	14465	14466	14467	14469	14472	14474
Hole ID			GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218
Depth (m)			86.1	104.6	125.8	148.3	162.5	182.2	199.1	239.4
Lithology			CL1a	VCL4	VCL4	VCL4	VCL3	VCL3	VCL3	VCL3
Alteration			sil-chl-ser	sil-ser	chl	unaltered	chl-ser	chl-py	chl-py	ser-chl
SiO ₂	%	FUS-ICP	78.09	70.89	54.21	53.29	56.17	39.85	68.21	79.84
Al ₂ O ₂	%	FUS-ICP	11.30	13.95	16.32	20.23	21.72	19.14	7.13	7.48
Fe ₂ O ₂	0/0	FUS-ICP	1.61	2.28	7.83	8 65	4 20	12.84	10.57	4 35
MnO	/0 0/2	FUS ICP	0.03	0.04	0.12	0.09	0.02	0.06	0.02	0.03
MaQ	70 0/-	FUS ICD	0.03	1.42	5.40	0.08	2.30	14 77	0.02	1.50
MgO	/0 0/	FUS-ICF	0.09	0.71	2.71	4.42	0.22	0.20	2.74	0.37
CaO No O	/0	FUS-ICF	2.46	0.71	3.71	6.77	0.23	0.20	0.18	0.57
Na ₂ O	70	FUS-ICP	5.40	2.75	4.91	0.77	2.09	2.05	0.28	0.51
K ₂ O	%	FUS-ICP	2.25	3.74	0.48	0.88	5.64	0.13	1.40	2.14
TiO ₂	%	FUS-ICP	0.23	0.35	0.66	1.05	0.63	0.84	0.34	0.29
P_2O_5	%	FUS-ICP	0.03	0.03	0.08	0.12	0.07	0.08	0.04	< 0.01
LOI	%	FUS-ICP	1.76	2.79	6.33	4.17	4.32	8.34	7.66	2.47
Total	%	FUS-ICP	99.79	98.93	100.10	100.80	99.09	98.89	98.56	99.08
Hg	ppb	CV-FIMS	11	25	< 5	< 5	23	< 5	14	9
Sc	ppm	FUS-ICP	5	8	26	23	15	24	11	8
Be	ppm	FUS-ICP	< 1	2	1	< 1	2	< 1	< 1	1
V	ppm	FUS-ICP	24	44	200	237	83	315	230	186
Cr	ppm	FUS-MS	< 20	< 20	30	< 20	< 20	30	50	< 20
Co	ppm	FUS-MS	2	3	21	17	8	33	12	4
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	30	30	< 20
Cu	ppm	FUS-MS	< 10	< 10	20	50	< 10	20	20	10
Zn	ppm	FUS-MS	60	50	70	90	40	120	40	100
Ga	ppm	FUS-MS	9	16	16	20	22	19	10	9
Ge	ppm	FUS-MS	0.90	1.10	0.80	1.30	0.80	1.10	1.00	0.70
As	ppm	FUS-MS	16	10	< 5	10	21	40	83	23
Rb	ppm	FUS-MS	29	58	7	14	87	2	21	34
Sr	ppm	FUS-ICP	33	37	96	106	33	16	6	10
Y	ppm	FUS-MS	20.00	26.20	17.80	21.60	33.80	22.00	23.50	21.70
Zr	ppm	FUS-ICP	79	142	77	78	169	92	44	73
Nb	ppm	FUS-MS	0.80	1.80	0.50	1.50	2.20	1.80	1.50	< 0.2
Мо	ppm	FUS-MS	< 2	< 2	< 2	< 2	5	3	12	4
Ag	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sn	ppm	FUS-MS	< 1	< 1	< 1	< 1	1	< 1	1	< 1
Sb	ppm	FUS-MS	0.30	0.60	0.50	0.30	1.10	0.60	4.60	1.30
Cs	ppm	FUS-MS	0.40	0.70	0.10	0.10	0.80	< 0.1	0.20	0.30
Ba	ppm	FUS-ICP	2438	1418	427	497	1184	38	425	332
La	ppm	FUS-MS	14.30	16.90	7.20	3.92	13.70	4.79	13.50	13.10
Ce	ppm	FUS-MS	28.20	33.40	15.00	9.90	31.50	10.80	29.50	29.20
Pr	ppm	FUS-MS	3.21	3.80	1.84	1.44	4.00	1.45	3.52	3.76
Nd	ppm	FUS-MS	12.1	14.5	7.74	7.28	17.5	6.84	14.8	16.9
Sm	ppm	FUS-MS	2.71	3.27	2.10	2.40	4.51	2.10	3.36	4.19
Eu	ppm	FUS-MS	0.63	0.81	0.64	0.73	1.10	0.75	1.04	1.39
Gd	ppm	FUS-MS	2.78	3.39	2.65	3.26	5.19	3.15	3.28	4.31
Tb	ppm	FUS-MS	0.51	0.64	0.46	0.6	0.99	0.61	0.57	0.71
Dv	ppm	FUS-MS	3.41	4.49	3.12	4.06	6.56	4.03	3.68	4.33
Ho	nnm	FUS-MS	0.76	1.01	0.69	0.86	1.37	0.89	0.77	0.88
Fr	nnm	FUS-MS	2 37	3.05	2.12	2.58	4 03	2.82	2 36	2.69
Tm	ppm	FUS-MS	0.38	0.49	0.33	0.39	0.61	0.44	0.35	0.42
Yh	nnm	FUS-MS	2.65	3 52	2 25	2 49	3.98	2.93	2 36	2.99
Lu	ppm	FUS-MS	0.47	0.59	0.38	0.40	0.66	0.50	0.39	0.48
Hf	nnm	FUS-MS	2.00	3.00	1.60	1.60	3.60	2.00	0.90	1 40
Тя	PPIII	FUS-MS	0.10	0.27	0.13	0.14	0.20	0.16	0.20	0.15
W	ppm	FUS-MS	< 0.19	< 0.5	33	< 0.5	< 0.5	1.6	0.10	< 0.15
TI	ppm	FUS-MS	0.06	0.15	< 0.05	< 0.0	0.33	< 0.05	0.3	< 0.05
Ph	PPIII	FUS MS	< 5	Q.15	< 5	< 5	7	< 5	16	30.05
R;	ppin	FUS MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Th	ppm	FUS.MS	5 37	7 12	2 22	1 11	× 0.1 A 7A	24	2 47	2 44
I II I I	ppin	FUS MS	1.80	7.12	J.20 1 19	0.45	7./4	∠. 4 1.37	2.47 5.04	2.44 1 85
U	ווועע	100-1013	1.07	2.03	1.10	0.40	5.70	1.5/	5.04	1.00

		Арре		IDIC D1.1.	W HOIC-10	ck Litilogu	ochemisti	y Data		
Sample ID			14477	14478	14480	14482	14483	14485	32128	32131
Hole ID			GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-10-272	GA-10-272
Depth (m)			294.8	318.1	323.3	344.5	363.9	394.8	43.1	89.8
Lithology			VCL2	VCL2	VCL2	VCL1 (D)	VCL1 (D)	VCL1 (A-C)	VCL3	VCL4
Alteration			ser-chl	ser-sil	ser-chl-py	ser-chl-py	ser-chl-py	ser-chl-py	sil-chl	chl
SiO ₂	%	FUS-ICP	66.44	76.3	59.34	53.31	62.42	49.27	68.24	58.15
Al_2O_3	%	FUS-ICP	15.54	9.70	14.42	12.49	12.89	17.92	12.60	16.08
Fe ₂ O ₃	%	FUS-ICP	4.31	4.22	7.63	10.43	6.35	7.53	3.80	7.21
MnO	%	FUS-ICP	0.047	0.02	0.10	0.42	0.33	0.23	0.10	0.12
MgO	%	FUS-ICP	3.21	2.00	5.72	13.03	9.60	3.74	1.31	4.30
CaO	%	FUS-ICP	0.49	0.38	0.30	0.20	0.23	5.45	3.38	2.77
Na ₂ O	%	FUS-ICP	3.12	3.51	0.23	0.13	1.83	0.85	1.86	4.73
K ₂ O	%	FUS-ICP	3.09	0.65	2 74	0.15	0.14	2.96	3 67	1.52
TiO.	0/0	FUS-ICP	0.54	0.09	0.59	0.13	0.34	0.85	0.36	0.64
P.O.	0/		0.07	0.23	0.13	0.06	0.08	0.05	0.06	0.08
1 ₂ 05	70 07	FUS-ICF	2.51	0.04	0.13	0.00	6.22	0.03	0.00	0.08
LOI Tatal	%0 0/	FUS-ICP	3.51	2.92	/.50	9.73	0.33	10.94	4.41	4.30
I otal	%0 1	FUS-ICP	100.40	100.00	98.72	100.20	100.50	99.78	99.79	99.9
Hg	рро	CV-FIMS	/	11	135	14	< 5	0	303	5
Sc D-	ppm	FUS-ICP	18	8	12	5	- 1	55	10	20
Ве	ppm	FUS-ICP	2	< 1	< 1	< 1	< 1	< 1	1	< 1
v Cr	ррш	FUS-ICP	40	23	- 20	63 < 20	< 20	235	- 20	192
Ci	ppm	FUS-MS	30	20	< 20	< 20	< 20	80 22	< 20	30
N;	ppin	FUS-MS	- 20	- 20	10 < 20	- 20	< 20	23	< 20	20 < 20
	ppin	FUS-MS	< 20	< 20	< 20 100	< 20	< 10	30	< 20	~ 20
Zn	ppin	FUS-MS	< 10	< 10	1520	300	< 10	120	< 10	20
ZII	ppin	FUS-MS	21	10	1320	18	130	120	90	110
Ge	ppm	FUS-MS	1 70	160	0.50	0.60	0.80	1 20	0.50	< 0.5
As	ppm	FUS-MS	12	1.00	16	92	26	47	23	< 5
Ph	ppm	FUS MS	58	17	10	3	20	47 65	59	23
Sr.	ppm	FUS-ICP	38	24	15	5	11	46	59	65
V	ppm	FUS-MS	64.90	17.50	20.70	20 70	13 20	13.60	21.70	21.80
1 7r	ppm	FUS-ICP	183	76	94	20.70	90	51	100	76
Nh	ppm	FUS-MS	1 7	< 0.2	0.9	0.4	04	< 0.2	1.8	1.8
Mo	ppm	FUS-MS	< 2	5	< 2	10	< 2	< 2	< 2	< 2
Δσ	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	ppm	FUS-MS	0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sn	ppm	FUS-MS	2	< 1	1	< 1	< 1	< 1	< 1	< 1
Sh	ppm	FUS-MS	0.90	1 10	2 60	0.60	0.50	0.90	1 70	< 0.2
Cs	ppm	FUS-MS	0.90	0.10	0.40	< 0.1	< 0.1	0.90	0.60	0.50
Ba	ppm	FUS-ICP	598	309	2188	74	38	159	1599	1161
La	nnm	FUS-MS	21.20	6 19	9.11	2 24	3 28	3.04	10.5	7 28
Ce	nnm	FUS-MS	51.20	15.4	22.6	5.87	8 84	8 38	22.5	15.7
Pr	nnm	FUS-MS	6 69	2 14	2 75	0.81	1 21	1.27	2.66	1.90
Nd	ppm	FUS-MS	30.60	10.10	12.75	3.94	5 74	6.48	10.9	8.63
Sm	ppm	FUS-MS	8.03	2.49	3.02	1.32	1.44	2.20	2.58	2.43
Eu	ppm	FUS-MS	2.63	0.81	0.70	0.14	0.13	0.60	0.74	0.69
Gd	ppm	FUS-MS	8.61	2.30	3.32	2.31	1.78	2.52	3.04	2.93
Th	ppm	FUS-MS	1.62	0.37	0.59	0.47	0.32	0.44	0.53	0.53
Dv	ppm	FUS-MS	10.80	2.58	3.71	3.29	2.20	2.97	3.38	3.38
Но	ppm	FUS-MS	2.26	0.59	0.78	0.74	0.49	0.61	0.74	0.72
Er	nnm	FUS-MS	6.76	2.06	2 42	2 34	1 54	1.80	2.28	2 35
Tm	ppm	FUS-MS	1.02	0.36	0.37	0.40	0.26	0.27	0.35	0.38
Yh	npm	FUS-MS	6.89	2.64	2.58	2.61	1.91	1.84	2.6	2.64
Lu	ppm	FUS-MS	1.10	0.47	0.44	0.46	0.33	0.30	0.45	0.44
Hf	npm	FUS-MS	4.10	1.60	2.00	2.00	1.90	1.20	2.60	2.10
Ta	ppm	FUS-MS	0.12	0.06	0.18	0.16	0.18	0.09	0.13	0.11
W	ppm	FUS-MS	0.60	1.10	< 0.5	< 0.5	< 0.5	< 0.5	1.00	< 0.5
 Tl	ppm	FUS-MS	0.41	0.29	1.42	0.18	< 0.05	0.42	1.02	0.13
Pb	ppm	FUS-MS	7	7	724	160	8	26	42	17
Bi	ppm	FUS-MS	< 0.1	< 0.1	0.10	0.70	< 0.1	< 0.1	< 0.1	< 0.1
Th	ppm	FUS-MS	3.55	0.92	1.99	2.53	2.32	0.5	4.39	3.6
U	ppm	FUS-MS	1.20	0.96	2.03	1.17	1.42	0.21	1.27	1.00

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		<u></u>						y Data	221.10	
Sample ID			32134	32136	32137	32145	32146	32147	32148	32152
Hole ID			GA-10-272	GA-10-272	GA-10-272	GA-10-272	GA-10-272	GA-10-272	GA-10-272	GA-10-272
Depth (m)			119.6	134.7	142.3	255	262.2	280.4	292.5	237
Lithology			IN1	IN1	VCL4	VCL1 (D)	VCL1 (A-C)	VCL1 (A-C)	VCL1 (A-C)	VCL1 (D)
Alteration			unaltered	sil-carb	sil	ser-py	ser-chl-carb	ser-chl-carb	ser-py	carb-chl
SiO ₂	%	FUS-ICP	51.78	49.44	63.17	70.51	53.81	39.71	62.58	22.69
Al ₂ O ₂	0/0	FUS-ICP	16.5	16 31	16.14	11.96	14 34	12 51	14.84	13.45
Fa O	0/		0.00	10.51	4 70	5.72	7 79	0.91	(74	0.0
re_2O_3	%0	FUS-ICP	9.96	12.44	4.79	5.72	1.78	9.81	0.74	9.9
MnO	%	FUS-ICP	0.17	0.07	0.06	0.04	0.30	0.68	0.20	0.81
MgO	%	FUS-ICP	3.83	8.21	2.17	0.83	3.93	5.33	2.11	20.75
CaO	%	FUS-ICP	4.73	0.96	0.55	0.42	5.08	9.18	2.01	10.24
Na ₂ O	%	FUS-ICP	5.97	3.70	4.40	0.33	0.61	0.42	0.47	0.09
K ₂ O	%	FUS-ICP	0.12	0.41	2.60	3.04	2.41	2.73	3.32	0.62
TiO ₂	%	FUS-ICP	0.91	1.63	0.75	0.50	0.61	0.56	0.65	0.50
PaOr	0/0	FUS-ICP	0.08	0.26	0.14	0.05	0.07	0.05	0.05	0.09
101	0/2	FUS ICP	6.04	7.11	5.24	5.05	0.67	17.51	6.55	19.05
LOI Tatal	70 0/	FUS-ICI	100.10	100 50	100.00	00.25	9.05	08.40	0.55	19.05
I Otal	70	CV EDAS	100.10	100.30	100.00	99.33	98.39	96.49	99.32	98.21
Hg	рро	CV-FIMS	< 5	< 5	< 5	2070	15	13	38	148
Sc	ppm	FUS-ICP	34	35	21	12	30	22	26	15
Be	ppm	FUS-ICP	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
V	ppm	FUS-ICP	299	204	83	93	191	157	189	99
Cr	ppm	FUS-MS	< 20	< 20	< 20	< 20	110	60	70	< 20
Co	ppm	FUS-MS	24	15	10	8	24	25	18	3
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	30	20	< 20	< 20
Cu	ppm	FUS-MS	40	20	10	20	30	30	50	1070
Zn	ppm	FUS-MS	110	110	50	< 30	130	80	200	1440
Ga	ppm	FUS-MS	16	23	17	13	14	12	14	22
Ge	ppm	FUS-MS	0.7	0.8	< 0.5	< 0.5	0.7	< 0.5	< 0.5	0.7
As	ppm	FUS-MS	16	30	17	97	38	83	373	147
Rb	ppm	FUS-MS	1	6	40	66	54	60	74	11
Sr	nnm	FUS-ICP	161	46	46	21	45	44	28	77
V	nnm	FUS-MS	21.40	54.80	28 50	15.60	20.20	12 30	15.20	12 30
7r	nnm	FUS-ICP	52	125	104	70	40	33	40	77
Nh	ppm	FUS MS	1.30	6.40	2 20	1 10	40	< 0.2	< 0.2	1.50
Mo	ppin	EUS MS	- 2	0. 4 0	< 2	0	0.50 < 2	< 0.2	< 0.2	< 2
NIO A ~	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	9	< 0.5	< 0.5	< 0.5	1 10
Ag	ррш	FUS-MS	< 0.3	< 0.3	< 0.5	0.00	< 0.5	< 0.3	< 0.3	1.10
In	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2
Sn	ppm	FUS-MS	< 1	< 1	< 1	< 1	< 1	< 1	< 1	5
Sb	ppm	FUS-MS	< 0.2	< 0.2	< 0.2	18.40	0.40	2.00	2.60	68.00
Cs	ppm	FUS-MS	< 0.1	< 0.1	0.40	0.40	0.40	0.30	0.40	0.10
Ba	ppm	FUS-ICP	85	63	3176	640	244	187	249	588
La	ppm	FUS-MS	4.92	10.6	6.02	5.36	3.79	2.02	2.06	4.08
Ce	ppm	FUS-MS	11.70	26.40	15.30	12.00	8.83	5.29	5.60	8.44
Pr	ppm	FUS-MS	1.63	3.78	2.21	1.50	1.20	0.78	0.85	1.00
Nd	ppm	FUS-MS	7.26	18.70	10.70	6.17	5.89	4.13	4.46	4.82
Sm	ppm	FUS-MS	2.39	6.01	3.28	1.58	1.88	1.39	1.56	1.34
Eu	ppm	FUS-MS	0.75	1.9	0.779	0.229	0.665	0.469	0.421	0.442
Gd	ppm	FUS-MS	3.32	8.56	4.43	2.11	2.64	1.79	2.21	2.02
Tb	ppm	FUS-MS	0.57	1.51	0.79	0.39	0.48	0.32	0.41	0.35
Dy	ppm	FUS-MS	3.75	9.35	4.96	2.56	3.30	2.11	2.75	2.19
Ho	ppm	FUS-MS	0.78	1.95	1.01	0.54	0.71	0.47	0.58	0.44
Er	ppm	FUS-MS	2.37	5.78	3.08	1.81	2.15	1.47	1.73	1.33
Tm	nnm	FUS-MS	0.36	0.84	0.46	0.30	0.34	0.23	0.26	0.22
Yh	nnm	FUS-MS	2.39	5.34	2.99	2.06	2.24	1.62	1.73	1.49
In	PP ^{III}	FUS-MS	0.37	0.83	0.48	0.32	0.34	0.27	0.27	0.24
Цf	ppm	FUS-MS	1.50	3 50	2 60	1 70	1 10	1 10	1 10	2 20
111 To	ppm	LIC WC	0.02	0.20	2.00	0.07	1.10 < 0.01	2.10	1.10 < 0.01	2.20
18	ррш	FUS-MS	0.02	0.38	0.12	0.07	< 0.01	~ 0.01	< 0.01 1 20	4.70
۷۷ 1	ppm	FUS-MS	< 0.5 < 0.05	2.30	0.90	5.10	< 0.5 1 00	0.70	1.20	4./0
11 D1.	ppm	FUS-MS	< 0.05 0	< 0.05	0.28	0.90	1.08	0.80	1.01	0.69
PD.	ppm	FUS-MS	9	< 3	5	106	23	94	201	2180
Bi	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	1.1	< 0.1	< 0.1	< 0.1	0.8
Th	ppm	FUS-MS	1.04	1.41	2.31	1.88	1.04	0.37	0.43	1.67
U	ppm	FUS-MS	0.31	0.70	0.74	3.44	1.52	0.46	0.16	2.20

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

			Арре	nuix d: 12	idle d1.1:	w noie-ro	CK LITHOGE	eochemistry	Data		
	Sample ID			32154	14769	14770	14772	14774	14775	14776	14778
	Hole ID			GA-10-272	GA-14-275	GA-14-275	GA-14-275	GA-14-275	GA-14-275	GA-14-275	GA-14-275
	Depth (m)			240.4	148.8	163.8	196.5	213.6	239.6	248.1	253.1
	Lithology			VCL1 (D)	VCL2	IN2a	VCL2	VCL1 (A-C)	VCL1 (D)	IN1	VCL1 (A-C)
_	Alteration			chl-ser-pyr	ser-chl	unaltered	sil-ser	ser-sil-py	ser-sil-py	sil	ser-chl-py
	SiO ₂	%	FUS-ICP	44.83	66.06	51.85	77.8	72.83	64.34	59.92	51.98
	Al_2O_3	%	FUS-ICP	14.6	14.93	16.56	10.58	11.92	12.28	14.95	15.78
	Fe ₂ O ₂	%	FUS-ICP	10.30	4.60	10.11	2.77	5.56	5.86	5.51	11.69
	MnO	%	FUS-ICP	0.34	0.06	0.18	0.03	0.05	0.39	0.13	0.53
	MgO	%	FUS-ICP	13.38	3.33	5.93	2.96	0.53	3.24	1.49	6.32
	CaO	%	FUS-ICP	0.38	1.00	2.72	0.22	0.30	2.02	4.05	0.40
	Na ₂ O	%	FUS-ICP	0.1	2.96	6.26	0.33	0.34	0.94	3.49	0.74
	K.O	%	FUS-ICP	1.16	2.70	0.58	2.28	3.16	2.03	1 39	1 78
	T:O	0/		0.61	0.68	0.56	0.25	0.54	0.41	1.00	0.64
	110 ₂	/0	FUS-ICF	0.01	0.08	0.00	0.23	0.34	0.41	0.22	0.04
	P_2O_5	%	FUS-ICP	0.07	0.14	0.08	0.05	0.05	0.09	0.33	0.08
	LOI	%	FUS-ICP	11.46	3.68	5.20	2.77	4.57	8.05	7.64	8.78
	Total	%	FUS-ICP	97.24	100.20	100.30	100.00	99.86	99.63	99.9	98.71
	Hg	ppb	CV-FIMS	1790	< 5	< 5	< 5	55	98	< 5	239
	Sc	ppm	FUS-ICP	14	16	34	11	22	11	13	22
	Be	ppm	FUS-ICP	< 1	1	< 1	1	< 1	< 1	1	< 1
	V	ppm	FUS-ICP	105	28	301	11	162	70	61	183
	Cr	ppm	FUS-MS	< 20	< 20	< 20	< 20	80	< 20	< 20	50
	Co	ppm	FUS-MS	10	5	26	< 1	20	8	. 20	19
	N1	ppm	FUS-MS	< 20	< 20	< 20	< 20	20	< 20	< 20	< 20
	Cu	ppm	FUS-MS	110	< 10	50	< 10	50	50	< 10	150
	Zn	ppm	FUS-MS	6990	80	90	50	340	2200	/0	5520
	Ga	ppm	FUS-MS	19	17	16	14	12	11	17	16
	Ge	ppm	FUS-MS	1	< 0.5	0.8	0.9	< 0.5	< 0.5	0.8	< 0.5
	As	ppm	FUS-MS	187	< 5	< 5	< 5	114	59	7	67
	Rb	ppm	FUS-MS	22	48	14	44	73	48	31	41
	Sr	ppm	FUS-ICP	11	49	143	9	16	5/	178	39
	Ŷ	ppm	FUS-MS	24.00	53.60	19.50	58.50	14.20	19.90	30.60	21.90
	Zr	ppm	FUS-ICP	96	184	49	179	34	10	178	57
	Nb	ppm	FUS-MS	2	2.6	0.9	1.3	< 0.2	1.2	3.8	0.5
	Мо	ppm	FUS-MS	11	< 2	< 2	< 2	< 2	< 2	< 2	< 2
	Ag	ppm	FUS-MS		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	ln	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.5	< 0.1	2.1
	Sn	ppm	FUS-MS	10	< 1	< 1	1	< 1	< 1	< 1	1
	Sb	ppm	FUS-MS	26.1	< 2	0.8	< 0.2	1.7	0.4	< 0.2	2.4
	Cs	ppm	FUS-MS	0.20	< 3	1.00	0.30	0.40	0.40	0.30	0.30
	Ва	ppm	FUS-ICP	997	< 4	237	214	469	259	381	217
	La	ppm	FUS-MS	6.79	< 5	4.1/	19	2.35	6.95 15.50	25.2	4.09
	Ce	ppm	FUS-MS	16.50	< 6	10.20	45.50	5.96	15.50	51.80	11.00
	Pr	ppm	FUS-MS	2.08	< /	1.49	6.13	0.80	1.91	6.12 24.6	1.68
	Nd	ppm	FUS-MS	8.97	< 8	7.25	28.1	4.11	8.38	24.6	7.81
	Sm	ppm	FUS-MS	2.39	< 9	2.09	7.79	1.35	2.33	5.62	2.44
	Eu	ppm	FUS-MS	0.27	< 10	0.76	2.02	0.21	0.33	1.5/	0.32
	Ga	ppm	FUS-MS	3.2	< 11	2.98	8.01	1.80	2.99	5.78	3.08
	10	ppm	FUS-MS	0.60	< 12	0.52	1.48	0.35	0.52	0.90	0.58
	Dy	ppm	FUS-MS	4.04	< 13	3.3 0.72	9.97	2.45	5.57 0.72	5.85	3.79
	Но	ppm	FUS-MS	0.88	< 14	0.72	2.13	0.53	0.72	1.12	0.80
	Er	ppm	FUS-MS	2.62	< 15	2.19	6.56	1.56	2.13	3.25	2.42
	Im	ppm	FUS-MS	0.41	< 16	0.33	1.02	0.24	0.34	0.50	0.35
	Y b	ppm	FUS-MS	2.89	< 17	2.19	6.93	1.70	2.31	3.36	2.36
		ppm	FUS-MS	0.4/	< 18 < 10	0.335	1.12	0.283	1.00	0.512	0.388
	HI T-	ppm	FUS-MS	2.50	< 19 < 20	1.30	4.50	0.90	1.90	4.50	1./0
	18	ppm	FUS-MS	0.1	< 20	0.04	0.03	< 0.01	0.04	0.28	< 0.01
	W Tl	ppm	FUS-MS	5.10	< 21	< 0.5	< 0.5	1.90	1.20	/.10	1.20
	11 D1	ppm	FUS-MS	2.83	< 22	0.15	0.62	0.70	0.39	0.26	0.54
	PD D:	ppm	FUS-MS	4000	< 23	/	< 5	234	/1	9	19
	В1 ть	ppm	FUS-MS	< U.I 0.12	< 24 < 25	< 0.1 0.74	< 0.1 4 07	< 0.1 0.42	< 0.1	< 0.1 6 57	0.10
	IN T	ppm	FUS-MS	2.13	< 23 < 26	0.74	4.07	0.43	1.8/	0.5/	0.92
	U	naa	103-1415	1.//	~ 20	0.27	1.52	0.65	0.50	2.13	0.27

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

			nuix D. T.		vi noie ro	ck Ennog	coentennise	y Data		
Sample ID			14781	14787	14797	14799	14800	32051	32053	32208
Hole ID			GA-10-276	GA-10-276	GA-10-276	GA-10-276	GA-10-276	GA-10-276	GA-10-276	GA-07-257
Depth (m)			46.8	131.2	259.3	307.5	311.63	333	368.1	424.8
Lithology			CL1a	VCL4	VCL2	VCL2	VCL1 (D)	VCL1 (D)	VCL1 (A-C)	VCL2
Alteration			sil-chl	unaltered	ser-chl	chl-carb	sil-carb	ser-chl-pyr	sil-ser-pyr	ser-chl
SiO ₂	%	FUS-ICP	75.12	69.80	64.94	27.32	25.42	40.5	43.96	64.61
Al ₂ O ₃	%	FUS-ICP	12.87	13.81	16.3	17.41	11.87	16.03	14.09	15.51
Fe ₂ O ₂	%	FUS-ICP	1.80	3 49	4 78	6.96	4 39	12.7	7 64	5 59
MnO	0/0	FUS-ICP	0.03	0.05	0.06	0.68	0.75	0.41	0.35	0.07
MaO	0/2	FUS ICP	0.05	1.42	3.00	24.95	12.86	18.06	2.18	3.49
CaO	0/2	FUS ICP	0.37	1.42	0.38	3 76	15.20	0.25	11.56	0.78
CaO Na O	/0	FUS-ICF	0.74	1.23 5 (0	0.38	3.70	13.29	0.23	0.70	0.78
Na ₂ O	%	FUS-ICP	4.12	5.69	5.1	0.05	0.25	0.08	0.79	2.85
K ₂ O	%	FUS-ICP	2.7	1.16	1.91	0.03	2.43	0.07	2.61	2.29
TiO ₂	%	FUS-ICP	0.29	0.39	0.60	0.80	0.46	0.32	0.55	0.66
P_2O_5	%	FUS-ICP	0.03	0.05	0.09	0.17	0.19	0.1	0.16	0.1
LOI	%	FUS-ICP	1.95	2.04	3.16	16.34	24.25	11.73	15.56	3.81
Total	%	FUS-ICP	100.3	99.15	100.30	98.48	98.16	100.30	99.44	99.76
Hg	ppb	CV-FIMS	< 5	< 5	9	12	23	54	47	7
Sc	ppm	FUS-ICP	7	12	19	21	11	9	22	21
Be	npm	FUS-ICP	1	< 1	1	< 1	< 1	< 1	< 1	2
V	nnm	FUS-ICP	19	85	41	148	79	85	139	60
Ċr	nnm	FUS-MS	< 20	30	< 20	< 20	< 20	< 20	40	< 20
Co	ppm	FUS-MS	20	6	3	7	5	14	26	5
Ni	ppm	FUS MS	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
INI Cu	ppm	FUS MS	< 10	~ 20	< 10	< 10	< 10	< 20 620	< 20 80	< 10
Cu 7.	ррш	FUS-MS	< 10	20	< 10	< 10	< 10	030	80	< 10
Zn	ppm	FUS-MS	< 30	40	120	200	200	470	//0	130
Ga	ppm	FUS-MS	11	12	19	19	13	24	13	20
Ge	ppm	FUS-MS	0.60	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.80
As	ppm	FUS-MS	6	< 5	8	20	19	105	438	10
Rb	ppm	FUS-MS	32	12	32	< 1	45	1	56	46
Sr	ppm	FUS-ICP	35	61	51	49	138	4	58	32
Y	ppm	FUS-MS	24.00	19.70	55.60	13.80	24.00	15.90	21.70	68.80
Zr	ppm	FUS-ICP	122	84	184	107	76	91	41	193
Nb	ppm	FUS-MS	2.30	1.50	1.90	2.50	1.80	1.30	0.50	1.70
Mo	ppm	FUS-MS	< 2	< 2	< 2	3.00	6.00	< 2	< 2	< 2
Ag	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	2.60	< 0.5	< 0.5
In	ppm	FUS-MS	< 0.1	< 0.1	0.10	< 0.1	< 0.1	0.40	0.10	< 0.1
Sn	ppm	FUS-MS	1	< 1	1	1	5	2	< 1	< 1
Sb	ppm	FUS-MS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.40	1.90	< 0.2
Cs	ppm	FUS-MS	0.20	0.40	0.20	< 0.1	0.30	< 0.1	0.40	0.30
Ba	ppm	FUS-ICP	1315	1130	488	66	4466	76	163	185
La	ppm	FUS-MS	15.10	13.50	18.30	4.98	4.80	1.26	4.26	18.70
Ce	ppm	FUS-MS	30.20	26.60	44.60	14.50	13.30	3.28	10.30	46.30
Pr	ppm	FUS-MS	3.32	2.79	6.07	1.94	1.98	0.46	1.37	6.21
Nd	ppm	FUS-MS	11.80	11.10	28.40	8.46	9.74	2.67	6.59	28.30
Sm	ppm	FUS-MS	2.68	2.45	7.36	2.21	3.33	0.95	2.03	7.79
Eu	ppm	FUS-MS	0.54	0.68	2.67	0.42	0.74	0.13	0.65	2.45
Gd	npm	FUS-MS	2.65	2.75	8.79	2.58	4.19	1.73	2.91	9.58
Th	nnm	FUS-MS	0.52	0.49	1.46	0.40	0.70	0.34	0.51	1 79
Dy	ppm	FUS-MS	3.73	3.25	9.50	2 43	4.22	2 29	3 50	11.79
Но	ppm	FUS MS	0.82	0.73	2.00	0.53	0.85	0.50	0.77	2 42
Er.	ppin	FUS MS	0.82	0.73	5.00	1.64	0.85	1.66	2.26	2.42
LI Tm	ppin	FUS-MS	2.01	0.34	0.00	0.27	2.31	0.27	2.30	1.10
1 III Vh	ppm	FUS-MS	0.40	0.34	6.19	0.27	0.39	0.27	0.38	1.12
1 U 1	ppm	FUS-MS	5.20	2.48 0.27	0.18	2.00	2.34	2.03	2.43	1.2/
Lu	ppm	FUS-MS	0.51	0.3/	0.9/	0.35	0.39	0.35	0.38	1.11
Ht	ppm	FUS-MS	3.00	2.20	4.70	2.80	2.00	2.40	1.20	4.90
Та	ppm	FUS-MS	0.17	0.08	0.06	0.14	0.10	0.09	< 0.01	0.03
W	ppm	FUS-MS	0.60	< 0.5	< 0.5	1.60	1.10	0.70	< 0.5	< 0.5
Tl	ppm	FUS-MS	0.18	< 0.05	0.15	0.11	1.94	0.14	0.52	0.52
Pb	ppm	FUS-MS	5	< 5	< 5	19	17	87	111	< 5
Bi	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	0.30	0.40	1.00	< 0.1	< 0.1
Th	ppm	FUS-MS	7.37	5.17	4.01	2.17	1.93	2.52	0.95	4.30
U	ppm	FUS-MS	1.97	1.46	1.34	0.57	0.72	1.73	1.20	1.33

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		7 1 PF	Churk D.		• •• none-i	ock Litilog	coenemiser	y Data		
Sample ID			32212	32214	32216	32217	32218	32219	32220	32076
Hole ID			GA-07-257	GA-10-273	GA-10-273	GA-10-273	GA-10-273	GA-10-273	GA-10-273	GA-10-274
Depth (m)			482.9	248.2	281.7	297.6	304.8	267.8	273	270.9
Lithology			VCL1	IN2a	VCL1	IN2a	VCL1 (A-C)	VCL1 (A-C)	VCL1 (A-C)	VCL2
Alteration			ser-chl-pyr	carb	ser-carb-pyr	ser	ser-sil-pyr	ser-chl-pyr	ser-chl-pyr	chl-ser
SiO ₂	%	FUS-ICP	46.35	49.13	51.3	63.03	55.58	49.67	24.88	35.9
Al ₂ O ₂	%	FUS-ICP	6.45	16.36	9.82	13.42	14.82	11.71	15.40	17.98
Fe-O	0/2	FUS ICP	0.01	12.94	6.40	5.05	5.42	14.42	21.74	10.72
1 C ₂ O ₃	70 07	FUS-ICI	9.91	0.15	0.40	0.12	0.45	0.19	21.74	0.29
MiO	70	FUS-ICP	0.32	0.13	0.52	0.12	0.43	0.18	0.32	0.58
MgO	%0 0/	FUS-ICP	5.93	/.30	4.88	3.30	5.30	/.31	18.7	19.55
CaO	%0	FUS-ICP	1.68	1.86	/.60	3.38	5.41	0.35	1.63	1.62
Na ₂ O	%	FUS-ICP	0.41	5.54	0.40	1.15	0.57	0.13	0.01	0.06
K ₂ O	%	FUS-ICP	0.38	0.05	2.26	1.50	3.23	1.61	0.03	0.48
TiO ₂	%	FUS-ICP	0.13	1.017	0.429	0.755	0.613	0.488	0.493	0.821
P_2O_5	%	FUS-ICP	< 0.01	0.08	0.12	0.17	0.14	0.05	0.10	0.20
LOI	%	FUS-ICP	10.57	5.25	15.21	7.02	10.76	10.47	16.65	11.54
Total	%	FUS-ICP	82.11	99.74	98.74	100.10	100.40	96.37	100.20	99.24
Hg	ppb	CV-FIMS	7250	< 5	313	< 5	10	5010	133	16
Sc	ppm	FUS-ICP	3	43	10	21	25	11	11	19
Be	nnm	FUS-ICP	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
V	ppm	FUS-ICP	33	444	79	52	169	133	118	148
Cr	ppm	FUS-MS	80	< 20	< 20	< 20	30	< 20	< 20	< 20
Co	ppin	FUS MS	20	35	~ 20	< 20	13	13	20	11
Ni	ppin	FUS MS	29	< 20	< 20	< 20	< 20	< 20	< 20	< 20
INI Cu	ppin	FUS-MS	> 10000	< <u>20</u>	< 20	< 20	< 20	< 20	< 20	< 20
Cu Z	ррш	FUS-MS	> 10000	50	10	< 10	30	930	60	10
Zn	ppm	FUS-MS	> 10000	90	90	110	/0	> 10000	450	420
Ga	ppm	FUS-MS	10	16	11	14	13	16	23	24
Ge	ppm	FUS-MS	0.50	1.00	< 0.5	0.80	< 0.5	0.60	0.90	1.00
As	ppm	FUS-MS	92	< 5	43	< 5	144	335	193	58
Rb	ppm	FUS-MS	9	< 1	48	32	69	29	1	10
Sr	ppm	FUS-ICP	19	76	49	64	40	9	10	17
Y	ppm	FUS-MS	5.40	17.50	12.90	29.80	17.70	24.70	23.60	19.70
Zr	ppm	FUS-ICP	18	37	65	90	41	25	35	125
Nb	ppm	FUS-MS	< 0.2	0.70	0.90	2.10	0.40	< 0.2	< 0.2	3.50
Mo	ppm	FUS-MS	7	< 2	2	< 2	< 2	24	15	2
Ag	ppm	FUS-MS	42.9	< 0.5	< 0.5	< 0.5	< 0.5	7.50	2.20	< 0.5
In	ppm	FUS-MS	11.9	< 0.1	< 0.1	< 0.1	< 0.1	0.40	< 0.1	< 0.1
Sn	ppm	FUS-MS	25	< 1	< 1	< 1	< 1	10	1	3
Sb	ppm	FUS-MS	26	1.30	2.40	< 0.2	0.90	12.20	3.70	0.70
Cs	ppm	FUS-MS	0.10	< 0.1	0.30	0.20	0.40	0.20	< 0.1	< 0.1
Ba	ppm	FUS-ICP	75	39	392	477	268	833	10	293
La	ppm	FUS-MS	0.95	3.14	2.37	8.76	3.50	4.34	3.32	5.08
Ce	ppm	FUS-MS	2.40	7.82	6.89	20.4	7.74	10.80	11.20	12.5
Pr	ppm	FUS-MS	0.32	1.13	0.94	2.68	1.06	1.56	1.67	1.73
Nd	ppm	FUS-MS	1.60	6.07	4.68	12.7	5.14	7.44	7.77	8.15
Sm	ppm	FUS-MS	0.58	1.91	1.49	3.69	1.77	2.42	2.46	2.29
Eu	ppm	FUS-MS	0.09	0.74	0.26	1.28	0.61	0.29	0.31	0.23
Gd	ppm	FUS-MS	0.49	2.74	1.82	4.68	2.38	3.25	2.83	2.76
Th	nnm	FUS-MS	0.10	0.48	0.33	0.81	0.44	0.66	0.54	0.49
Dv	nnm	FUS-MS	0.78	3.02	2 24	5 20	3.02	4 33	3.85	3 24
Ho	ppm	FUS-MS	0.19	0.64	0.47	1.07	0.64	0.92	0.82	0.73
Er	ppm	FUS-MS	0.15	1.96	1.48	3 21	1 91	2.55	2.54	2 35
Tm	ppm	FUS-MS	0.05	0.30	0.25	0.52	0.30	0.38	0.43	0.40
Vh	PPm	FUS-MS	0.11	2.04	1.82	3 52	2.08	0.30 2 42	2.4J	2 75
10	Phil	ELIC WC	0.00	0.31	0.20	0.56	0.32	0.36	0.44	0.44
LU LL	ppin	LIC WC	0.14 < 0.1	1.00	1.60	0.50	1.10	< 0.1	0.44	2 20
ПI Т-	ppm	FUS-MS	< 0.1 < 0.01	1.00	1.00	2.20	1.10	< 0.1	0.00	5.50
18	ppm	FUS-MS	< 0.01 10.0	< 0.01	< 0.011.00	0.08	< 0.01	∨ 0.0115.00	0.01	2.00
W	ppm	FUS-MS	10.9	< 0.5	1.80	0.80	< 0.5	15.00	5.50	3.00
11	ppm	FUS-MS	0.4/	< 0.05	1.54	0.43	0.83	1.62	0.14	0.07
Pp	ppm	FUS-MS	> 10000	< 5	57	/	52	9300	248	225
Bi	ppm	FUS-MS	94.80	< 0.1	1.20	< 0.1	< 0.1	9.60	6.10	1.30
Th	ppm	FUS-MS	1.13	0.59	1.51	2.11	1.08	1.48	1.74	2.79
U	ppm	FUS-MS	0.66	0.16	1.98	0.62	0.52	6.76	2.5	1.22

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		Appe	liuix D. Ta	DIE D1.1. V	INTE-IOCK	Litilogeo	chemisti y	Data		
Sample ID			32079	32080	32157	32162	32174	32175	32177	32178
Hole ID			GA-10-274	GA-10-274	GA-10-277	GA-10-277	GA-10-277	GA-10-278	GA-10-278	GA-10-278
Depth (m)			307.2	319.4	45.8	81.5	243.2	18.5	42.9	60.9
Lithology			VCL1 (D)	VCL1 (A-C)	VCL4	CL1a	VCL1 (D)	CL1a	CL1a	CL1b
Alteration			ser-carb-pyr	ser-carb-pyr	sil-ser	sil-chl	ser-sil-pyr	sil-ser-pyr	sil-pyr	sil
SiO ₂	%	FUS-ICP	44.87	45.07	77.81	67.00	67.30	61.89	67.16	83.72
Al_2O_3	%	FUS-ICP	12.85	11.62	10.38	12.78	14.73	13.70	13.27	9.62
Fe ₂ O ₂	%	FUS-ICP	5.71	8.83	1.62	2.47	4.07	4.14	5.99	0.71
MnO	%	FUS-ICP	0.25	0.64	0.05	0.07	0.05	0.12	0.04	0.01
MaO	0/0	FUS-ICP	6.41	3.89	0.65	0.07	0.00	2.13	4 50	0.07
CaO	0/0	FUS-ICP	0.41	10.08	0.03	4 53	1.26	3.69	0.30	0.13
Na O	70 0/.	FUS ICP	0.60	0.60	2.40	5.21	0.62	4.50	3 20	5.03
Na ₂ O	/0	FUS-ICF	0.00	0.09	3.49	3.21	0.02	4.39	3.39	5.03
K ₂ O	%	FUS-ICP	3.11	2.67	1.73	2.06	4.22	1.93	1.2	0.27
T ₁ O ₂	%	FUS-ICP	0.58	0.52	0.24	0.36	0.62	0.53	0.53	0.23
P_2O_5	%	FUS-ICP	0.11	0.06	0.04	0.05	0.15	0.07	0.06	0.04
LOI	%	FUS-ICP	15.26	15.54	2.30	4.40	5.07	7.05	3.54	0.22
Total	%	FUS-ICP	98.95	99.6	99.26	99.87	98.99	99.86	99.98	100.00
Hg	ppb	CV-FIMS	24	48	< 5	< 5	15	6	6	2.5
Sc	ppm	FUS-ICP	15	21	6	12	15	22	22	3
Be	ppm	FUS-ICP	< 1	< 1	< 1	< 1	1	0.50	0.50	0.50
V	ppm	FUS-ICP	116	149	19	75	106	159	164	15
Cr	ppm	FUS-MS	< 20	50	< 20	20	< 20	30	40	50
Co	ppm	FUS-MS	11	16	2	6	10	10	18	2
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	10	10	10
Cu	ppm	FUS-MS	10	10	< 10	20	< 10	30	5	5
Zn	ppm	FUS-MS	50	70	< 30	< 30	70	30	90	15
Ga	ppm	FUS-MS	14	12	9	11	15	12	13	5
Ge	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	0.5	0.25	0.25	0.25
As	ppm	FUS-MS	23	59	7	< 5	88	8	29	2.5
Rb	ppm	FUS-MS	67	56	21	26	86	20	15	3
Sr	ppm	FUS-ICP	70	49	37	80	31	69	28	27
Y	ppm	FUS-MS	21.90	16.00	22.00	22.70	27.50	17.00	10.70	15.30
Zr	ppm	FUS-ICP	86	37	123	100	104	63	59	88
Nb	ppm	FUS-MS	2.30	0.50	2.40	1.80	2.20	0.80	0.60	1.30
Мо	ppm	FUS-MS	< 2	< 2	7	< 2	< 2	1	1	3
Ag	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.25	0.25	0.25
In	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.05	0.05	0.05
Sn	ppm	FUS-MS	< 1	< 1	< 1	< 1	< 1	0.5	0.5	0.5
Sb	ppm	FUS-MS	1.10	0.60	< 0.2	< 0.2	1.10	0.10	0.10	0.10
Cs	ppm	FUS-MS	0.50	0.40	0.20	0.50	0.60	0.20	0.10	0.05
Ba	ppm	FUS-ICP	392	155	441	880	631	299	227	173
La	ppm	FUS-MS	7.01	2.71	16.00	12.40	9.85	7.22	4.70	7.44
Ce	ppm	FUS-MS	16.00	6.65	31.60	25.50	21.00	15.80	9.12	15.80
Pr	ppm	FUS-MS	2.08	1.02	3.50	2.80	2.70	1.89	1.00	1.75
Nd	ppm	FUS-MS	9.59	5.45	13.40	11.20	12.20	7.78	4.32	6.66
Sm	ppm	FUS-MS	2.81	1.91	2.98	2.66	3.19	2.10	1.10	1.69
Eu	ppm	FUS-MS	0.56	0.66	0.51	0.67	0.40	0.70	0.32	0.35
Gd	ppm	FUS-MS	3.46	2.52	2.99	3.01	3.82	2.52	1.33	1.84
Tb	ppm	FUS-MS	0.58	0.44	0.52	0.55	0.68	0.43	0.27	0.34
Dy	ppm	FUS-MS	3.67	2.80	3.32	3.65	4.40	2.72	1.89	2.41
Ho	ppm	FUS-MS	0.79	0.59	0.76	0.80	0.92	0.58	0.39	0.56
Er	ppm	FUS-MS	2.37	1.79	2.54	2.41	2.88	1.85	1.19	1.73
Tm	ppm	FUS-MS	0.37	0.27	0.42	0.39	0.47	0.29	0.20	0.29
Yb	ppm	FUS-MS	2.66	1.80	3.08	2.74	3.07	1.98	1.53	2.04
Lu	ppm	FUS-MS	0.42	0.28	0.52	0.43	0.48	0.31	0.26	0.34
Hf	ppm	FUS-MS	2.20	1.00	2.90	2.50	2.60	1.50	1.40	2.40
Та	ppm	FUS-MS	0.21	0.06	0.27	0.19	0.17	0.02	0.005	0.03
W	ppm	FUS-MS	2	2.8	4.5	< 0.5	2	0.25	0.25	0.9
T1	ppm	FUS-MS	0.97	0.67	0.14	0.14	1.45	0.10	0.06	0.03
Pb	ppm	FUS-MS	18	21	15	< 5	15	9	12	2.50
Bi	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.05	0.05	0.05
Th	ppm	FUS-MS	1.88	0.38	6.56	4.90	2.41	3.14	3.07	5.20
U	ppm	FUS-MS	0.95	0.27	2.11	1.34	2.90	1.01	0.79	1.30

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		Appen	iuix D. Ta	ole D1.1.	w noie-i oc	K Litiloge	ochemisti	y Data		
Sample ID			32180	32182	32185	32187	32189	32192	32193	32196
Hole ID			GA-10-278	GA-10-278	GA-10-278	GA-10-278	GA-10-278	GA-10-278	GA-10-278	GA-10-278
Depth (m)			84 NGL 4	111.4	138.3	163.5	183.7	215.3	234.4	280.1
Lithology			VCL4	VCL4	VCL3	VCL3	VCL2	VCL2	VCL2	VCL2
Alteration	0/	EUS ICD	ser-chi	54.52	SII 71.76	52 49	ser	ser-chi	51.01	chi-ser
SIO ₂	70	FUS-ICP	07.05	14.00	/1./0	10.50	15.00	14.92	17.22	12.29
Al_2O_3	%	FUS-ICP	13.33	14.80	11.62	19.50	15.08	14.82	17.32	13.38
Fe_2O_3	%	FUS-ICP	4.03	8.45	2.14	7.73	4.17	5.47	11.35	5.32
MnO M-O	%	FUS-ICP	0.05	0.14	0.09	0.09	0.05	0.04	0.12	0.07
MgO	%0 0/	FUS-ICP	1.98	0.07	0.85	3.69	5.58	5.99	/.14	3.22 0.62
CaO No O	70 0/	FUS-ICP	2.43	5.0 2.65	5.40	2.01	1./1	0.54	5.01	0.05
Na ₂ O	/0	FUS-ICF	4.0	0.00	0.27	3.38	2.26	2.05	0.42	4.19
K ₂ O	70 0/	FUS-ICP	0.26	0.90	0.37	2.02	5.50	2.25	0.42	1.50
110 ₂	%0 0/	FUS-ICP	0.30	0.64	0.24	0.97	0.51	0.70	0.91	0.58
P_2O_5	%0 0/	FUS-ICP	0.05	0.07 5.00	0.04	0.13	0.08	0.13	0.09	0.09
LOI Tatal	%0 0/	FUS-ICP	3.99	5.90 00.01	3.84	4.45	4.8/	3.89	4.08	3.14 100.20
Total	70 nnh	CV EIMS	99.47	99.01	100.00	99.03	100.70	99.0	100.70	100.50
ng Sc	ppo	FUS-ICP	12	29	10	24	15	17	36	18
Be	nnm	FUS-ICP	< 1	< 1	< 1	<1	2	2	< 1	1
V	ppm	FUS-ICP	91	238	13	244	27	40	336	68
Cr	ppm	FUS-MS	20	40	20	20	< 20	< 20	< 20	< 20
Со	ppm	FUS-MS	13	25	2	17	2	7	27	7
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Cu	ppm	FUS-MS	20	40	10	40	40	< 10	50	20
Zn	ppm	FUS-MS	50	70	40	80	60	70	100	150
Ga	ppm	FUS-MS	13	15	9	21	17	17	17	16
Ge	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	1	0.7	0.5	0.6	0.7
As	ppm	FUS-MS	15	< 5	< 5	13	9	< 5	< 5	237
Rb	ppm	FUS-MS	18	10	5	28	51	42	11	26
Sr	ppm	FUS-ICP	41	75	82	67	35	25	105	41
Ŷ	ppm	FUS-MS	19.30	15.40	41.80	26.80	55.80	61.10	18.20	48.90
Zr	ppm	FUS-ICP	97	27 220	129	83	188	188	45	142
NO	ppm	FUS-MS	5.40 < 2	2.50	5.50	5.00	4.50	5.80	1.50 < 2	2.00
Δσ	ppm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
In	nnm	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Sn	ppm	FUS-MS	<1	< 1	< 1	<1	1	< 1	< 1	<1
Sb	ppm	FUS-MS	0.60	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	0.50	0.50
Cs	ppm	FUS-MS	0.20	0.20	< 0.1	0.30	0.40	0.30	0.60	0.30
Ba	ppm	FUS-ICP	241	287	65	354	2200	546	102	293
La	ppm	FUS-MS	10.90	5.31	13.50	3.67	17.10	19.40	4.12	13.20
Ce	ppm	FUS-MS	22.80	12.00	29.80	9.30	40.20	46.00	9.96	34.80
Pr	ppm	FUS-MS	2.55	1.51	3.54	1.33	5.05	5.99	1.40	4.79
Nd	ppm	FUS-MS	9.68	6.47	14.80	6.66	23.00	27.20	7.20	22.00
Sm	ppm	FUS-MS	2.52	1.92	4.24	2.49	6.37	7.53	2.21	6.71
Eu	ppm	FUS-MS	0.68	0.71	1.02	0.77	1.26	2.10	0.79	2.45
Gd	ppm	FUS-MS	2.77	2.38	5.28	3.78	7.63	9.23	2.76	8.32
1b D	ppm	FUS-MS	0.48	0.41	0.99	0.71	1.38	1.66	0.48	1.37
Dy	ppm	FUS-MS	3.14	2.54	0.82	4.61	9.24	10.6	3.05	8.24
H0 Er	ppm	FUS-MS	0.09	0.55	1.48	1.02	1.92 5.91	2.27	0.04	1.72
Tm	ppin	FUS-MS	2.13	0.26	4.51	2.89	0.94	0.39	0.30	0.75
Vh	ppm	FUS-MS	2 37	1 79	5.05	2.81	6 29	6.52	1.94	5.08
Lu	ppm	FUS-MS	0.39	0.31	0.78	0.46	1.01	0.98	0.29	0.81
Hf	ppm	FUS-MS	2.60	1.60	3.60	2.30	5.20	4.90	1.20	3.60
Ta	ppm	FUS-MS	0.32	0.24	0.37	0.23	0.34	0.30	0.12	0.15
W	ppm	FUS-MS	0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5
Tl	ppm	FUS-MS	0.11	< 0.05	< 0.05	0.18	0.39	0.23	0.1	0.37
Pb	ppm	FUS-MS	15	< 5	< 5	< 5	< 5	< 5	< 5	17
Bi	ppm	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2
Th	ppm	FUS-MS	4.94	2.32	7.28	1.50	5.97	4.62	0.7	2.95
U	ppm	FUS-MS	2.35	0.70	2.10	0.79	1.95	1.70	0.22	1.03

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

		Apper	iuix D. Ta		W HOIE-I OC	k Litiloge	Jenemisti y	Data		
Sample ID			32199	32200	32202	32203	32087	32088	32091	32098
Hole ID			GA-10-278	GA-10-278	GA-10-278	GA-10-278	GA-06-180	GA-06-180	GA-06-180	GA-06-180
Depth (m)			306.7	309.3	328.2	332.6	111.2	123.7	187.4	261.1
Lithology			VCL1 (D)	VCL1 (D)	VCL1 (D)	VCL1 (D)	VCL4	CL1b	VCL4	VCL3
Alteration			ser-chl-pyr	chl-carb-bm	chl-carb	ser-sil-pyr	sil-chl	sil	sil	unaltered
S1O2	%	FUS-ICP	40.33	31.90	25.14	65.01	56.49	74.52	46.07	66.34
Al_2O_3	%	FUS-ICP	14.48	16.15	17.37	11.56	13.33	10.85	15.54	14.85
Fe ₂ O ₃	%	FUS-ICP	12.56	12.31	11.87	6.48	4.89	2.06	8.52	4.67
MnO	%	FUS-ICP	0.37	0.41	0.54	0.15	0.15	0.07	0.19	0.06
MgO	%	FUS-ICP	13.27	18.60	19.75	6.26	2.81	0.93	5.03	4.06
CaO	%	FUS-ICP	2.66	3.05	5.72	1.03	5.43	1.96	6.65	0.54
Na ₂ O	%	FUS-ICP	0.48	0.63	0.71	0.32	4.47	4.33	3.21	4.46
K ₂ O	%	FUS-ICP	1.16	0.53	0.45	1.52	2.41	1.49	2.92	1.55
TiO ₂	%	FUS-ICP	0.58	0.75	0.75	0.33	0.52	0.27	0.66	0.50
P_2O_5	%	FUS-ICP	0.11	0.12	0.12	0.05	0.06	0.03	0.07	0.07
LOI	%	FUS-ICP	12.53	14.14	16.18	6.63	9.13	3.46	10.68	3.20
Total	%	FUS-ICP	98.52	98.6	98.58	99.34	99.69	99.98	99.56	100.30
Hg	ppb	CV-FIMS	69	454	108	< 5	< 5	< 5	< 5	5
Sc	ppm	FUS-ICP	14	17	17	8	22	8	31	19
Be	ppm	FUS-ICP	< 1	< 1	< 1	< 1	< 1	< 1	< 1	2
V	ppm	FUS-ICP	118	142	166	68	163	29	234	43
Cr	ppm	FUS-MS	< 20	< 20	< 20	< 20	30	< 20	40	< 20
Co	ppm	FUS-MS	14	20	15	6	15	3	22	4
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20	< 20	< 20	< 20	< 20
Cu	ppm	FUS-MS	20	30	10	< 10	40	< 10	40	< 10
Zn	ppm	FUS-MS	150	3580	380	130	80	< 30	100	110
Ga	ppm	FUS-MS	18	21	20	13	13	11	15	19
Ge	ppm	FUS-MS	0.7	< 0.5	0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
As	ppm	FUS-MS	76	55	34	25	8	< 5	9	< 5
Rb	ppm	FUS-MS	24	11	10	32	25	18	32	25
Sr	ppm	FUS-ICP	34	35	59	19	97	38	100	44
Y	ppm	FUS-MS	18.80	16.90	29.70	14.90	20.30	25.10	20.60	60.10
Zr	ppm	FUS-ICP	104	106	109	77	76	117	67	230
Nb	ppm	FUS-MS	2.60	3.10	3.10	1.30	1.40	2.20	1.30	2.50
Mo	ppm	FUS-MS	14	12	2	< 2	< 2	4	< 2	< 2
Ag	ppm	FUS-MS	< 0.5	0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
ln Su	ppm	FUS-MS	< 0.1	0.3	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Sn	ppm	FUS-MS	2	4 20	2	1	< 1	< 1	< 1	1
SD	ppm	FUS-MS	1.50	4.20	0.90	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Cs Pa	ppm	FUS-MS	0.20	0.10	< 0.1 04	0.20	1040	0.20	0.50 504	0.20
Ба	ppin	FUS-ICF	1214	303	94 8.05	270 485	7 20	15.5	7 10	10 00
La	ppin	FUS MS	4.77	5.9 11.50	23 30	4.65	15.80	31.30	15.00	19.90
Dr	ppin	FUS MS	1.64	1.50	23.30	1 42	1 01	3 51	2.00	636
Nd	ppin	FUS-MS	7.62	8.12	15 20	6.26	8 25	13.6	2.00 9.32	28.2
Sm	ppin	FUS-MS	2.25	2.01	4 06	1.72	0.23 2.42	3 26	9.32 2.73	7 99
Eu	nnm	FUS-MS	0.27	0.25	0.67	0.22	0.83	0.85	0.83	1 74
Gd	npm	FUS-MS	2.68	2.5	4.55	2.05	2.99	3.75	3.43	9.32
Th	nnm	FUS-MS	0.49	0.45	0.77	0.36	0.52	0.65	0.57	1.57
Dv	npm	FUS-MS	3.3	2.85	4.76	2.32	3.34	4.06	3.56	10.3
Ho	ppm	FUS-MS	0.72	0.62	1.00	0.51	0.69	0.87	0.76	2.13
Er	ppm	FUS-MS	2.25	1.96	3.07	1.61	2.08	2.86	2.23	6.36
Tm	ppm	FUS-MS	0.35	0.32	0.48	0.25	0.32	0.47	0.34	1.00
Yb	ppm	FUS-MS	2.53	2.38	3.36	1.73	2.22	3.25	2.32	6.95
Lu	ppm	FUS-MS	0.42	0.40	0.54	0.28	0.36	0.51	0.38	1.06
Hf	ppm	FUS-MS	2.70	2.90	2.80	1.90	2.00	3.00	1.70	5.40
Та	ppm	FUS-MS	0.27	0.32	0.29	0.21	0.14	0.22	0.09	0.15
W	ppm	FUS-MS	4.70	3.50	2.50	2.00	< 0.5	< 0.5	< 0.5	< 0.5
Tl	ppm	FUS-MS	1.58	1.08	0.65	0.65	0.20	0.06	0.11	0.15
Pb	ppm	FUS-MS	70	2340	128	29	< 5	< 5	22	13
Bi	ppm	FUS-MS	1.80	0.30	1.00	0.30	< 0.1	< 0.1	< 0.1	< 0.1
Th	ppm	FUS-MS	2.11	2.36	2.35	1.95	3.34	6.46	2.57	5.06
U	ppm	FUS-MS	5.17	6.34	1.49	0.77	0.96	2.27	0.75	1.65

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

			i inole i oe		oenemiser,	y D'ata
Sample ID			32101	32102	32103	32108
Hole ID			GA-06-180	GA-06-180	GA-06-180	GA-06-180
Depth (m)			321.68	327.2	338.4	397.9
Lithology			VCL3	VCL1 (D)	VCL1 (D)	VCL1 (D)
Alteration			ser-chl	ser-sil-pyr	ser-sil-pyr	sil-ser-pyr
SiO_2	%	FUS-ICP	66.07	49.92	49.13	35.56
Al_2O_3	%	FUS-ICP	14.77	11.25	12.01	4.28
Fe ₂ O ₃	%	FUS-ICP	4.81	15.52	13.48	7.49
MnO	%	FUS-ICP	0.09	0.13	0.13	0.97
MgO	%	FUS-ICP	2.84	6.87	7.11	9.46
CaO	%	FUS-ICP	1.31	0.31	0.22	16.70
Na ₂ O	%	FUS-ICP	3.72	3.09	0.20	0.20
K_2O	%	FUS-ICP	2.24	0.16	2.12	1.01
TiO ₂	%	FUS-ICP	0.58	0.57	0.53	0.18
P_2O_5	%	FUS-ICP	0.10	0.11	0.10	0.08
LOI	%	FUS-ICP	3.94	10.36	10.79	22.34
Total	%	FUS-ICP	100.50	98.28	95.82	98.27
Hg	ppb	CV-FIMS	10	443	1850	160
Sc	ppm	FUS-ICP	19	14	11	5
Be	ppm	FUS-ICP	2	< 1	< 1	< 1
V	ppm	FUS-ICP	59	108	99	41
Cr	ppm	FUS-MS	< 20	< 20	< 20	< 20
Co	ppm	FUS-MS	4	13	9	8
Ni	ppm	FUS-MS	< 20	< 20	< 20	< 20
Cu	ppm	FUS-MS	< 10	30	700	30
Zn	ppm	FUS-MS	160	1840	> 10000	740
Ga	ppm	FUS-MS	17	13	13	6
Ge	ppm	FUS-MS	< 0.5	< 0.5	0.90	< 0.5
As	ppm	FUS-MS	306	57	132	45
Rb	ppm	FUS-MS	41	3	39	19
Sr	ppm	FUS-ICP	58	25	6	81
Y	ppm	FUS-MS	55	16.50	17	15.20
Zr	ppm	FUS-ICP	164	84	72	30
Nb	ppm	FUS-MS	1.6	1.5	2.4	0.5
Mo	ppm	FUS-MS	< 2	3	2	2
Ag	ppm	FUS-MS	< 0.5	< 0.5	1.3	< 0.5
In Sm	ppm	FUS-MS	< 0.1	0.2	0.4	< 0.1
SII	ррш	FUS-MS	< 0.2	1 20	22.20	~ 1
SU Cs	ppm	FUS-MS	< 0.2 0.4	< 0.1	23.30	0.2
Ba	ppm	FUS-ICP	507	46	0.4 948	184
La	nnm	FUS-MS	18	3.65	4 08	4 37
Ce	npm	FUS-MS	44.1	9.21	9.78	9.91
Pr	ppm	FUS-MS	5.81	1.18	1.28	1.33
Nd	ppm	FUS-MS	27.2	5.58	6.16	6.87
Sm	ppm	FUS-MS	7.55	1.62	1.86	2.21
Eu	ppm	FUS-MS	2.37	0.32	0.36	0.35
Gd	ppm	FUS-MS	8.59	2.2	2.16	2.63
Tb	ppm	FUS-MS	1.52	0.4	0.42	0.45
Dy	ppm	FUS-MS	9.87	2.7	2.93	3.13
Ho	ppm	FUS-MS	2.06	0.6	0.64	0.6
Er	ppm	FUS-MS	6.04	1.85	2.06	1.72
Tm	ppm	FUS-MS	0.94	0.30	0.34	0.27
Yb	ppm	FUS-MS	6.31	2.19	2.41	1.73
Lu	ppm	FUS-MS	0.97	0.37	0.41	0.27
Hf	ppm	FUS-MS	4.00	2.50	1.70	0.70
Та	ppm	FUS-MS	0.11	0.12	0.13	< 0.01
W	ppm	FUS-MS	< 0.5	1.00	3.70	1.00
Tl	ppm	FUS-MS	0.82	0.27	2.03	1.62
Pb	ppm	FUS-MS	10	682	4250	247
Bi	ppm	FUS-MS	< 0.1	1.10	0.30	1.20
Th	ppm	FUS-MS	3.84	1.69	1.64	0.72
U	ppm	FUS-MS	1.22	1.49	1.5	2.30

Appendix B: Table B1.1: Whole-rock Lithogeochemistry Data

Appendix C: Mass Change Calculations

Mass balance calculations were performed using the single precursor method after MacLean (1990). This method utilizes elements with high degrees of immobility (i.e., Al₂O₃, Zr, TiO₂) during hydrothermal alteration to determine the composition of the parent rock and the associated quantitative changes in elements as the result of hydrothermal alteration. In order to discern chemically different volcaniclastic rock units in the Hurricane zone several immobile compatible vs. immobile incompatible binary plots were created (e.g., Al₂O₃, vs. Zr, TiO₂ vs. La). Rocks with similar magmatic affinities and alteration precursors will lie along linear "alteration lines" that pass through the origin in immobile-immobile element plots (MacLean, 1990).On these linear plots a least altered precursor sample is often denoted and variations from this precursor location are due to mass gains and losses during the alteration processes. Three chemically distinct groups were identified from VCL1 and VCL2; these include Groups A-C (VCL1; Fig. 2-9e and 2-9f) Group D (VCL1; Fig. 2-9e and 2-9f) and VCL2. In these plots, least altered samples from each of the distinct groups were selected based on having minimal losses of Na₂O (2-5 wt %), low loss of ignition (LOI) and low base metal values (i.e., <100 ppm). Plots of Al₂O₃, TiO₂, and Zr illustrate linear relationships (not shown), as would be expected for immobile elements and for single precursors that had various mass changes during the alteration process.

The mass change of any mobile element can be calculated based on the dilution or concentration of an immobile component (MacLean and Kranidiotis, 1987). The steps in calculating the mass changes, using Al_2O_3 as the immobile element, are the following:

- Calculate the enrichment factor (EF) for a given immobile element for each sample: EF= Al₂O₃precursor/ Al₂O₃altered.
- Calculate the reconstructed composition (RC) of the rock by multiplying the enrichment factor by wt% or ppm of the component in the altered sample: RC=EF x %component_{altered}. The RC is the actual corrected mass of the sample after alteration.
- 3. Calculate the mass change for the various elements: MC=RC- precursor composition.

Calculations explained above were completed using excel. Only samples that contained detectable levels were used in the calculations. LOD in the tables below indicate samples that were below detection limit.

Table C.1 Calculated Mass Changes

Appendix C: Table C1.1: Mass Change for samples at the Hurricane Deposit									
Sample ID	25424	24529	24531	24532	31761	31764	31768	14494	32004
Hole ID	GA-07-254	GA-07-254	GA-07-254	GA-07-254	GA-07-255	GA-07-255	GA-07-255	GA-06-147	GA-06-147
Depth (m)	157.1	267.9	300	320.8	208.7	247.9	274.4	110.6	285.1
Lithology	VCL2	VCL2	VCL1	VCL1	VCL2	VCL2	VCL1	VCL3	VCL1
Alteration	ser	ser-sil	ser-sil-chl	ser-sil-chl	least altered	ser	ser-chl-py	ser-chl	ser-sil-py
SiO2	8.09	2.35	32.02	43.16	0.00	-0.46	5.46	-6.77	1.13
A12O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	0.35	-0.50	2.28	2.16	0.00	0.15	-0.19	0.55	1.22
MnO	0.01	0.01	0.23	-0.09	0.00	0.00	-0.04	-0.02	-0.27
MgO	0.51	-0.66	6.91	4.87	0.00	-0.27	-0.89	0.76	-0.59
CaO	0.25	0.87	3.14	-1.82	0.00	0.47	-1.00	0.37	-1.79
Na2O	-1.93	-1.92	-1.32	-1.36	0.00	-0.83	-1.78	-2.10	-0.24
K2O	1.32	0.95	-0.86	-0.38	0.00	0.21	1.32	0.51	0.68
TiO2	0.14	-0.18	-0.18	-0.17	0.00	-0.03	-0.02	0.04	0.16
P2O5	0.03	-0.05	-0.06	-0.06	0.00	-0.02	0.04	-0.02	-0.01
LOI	1.05	1.32	6.16	0.59	0.00	0.91	0.08	1.44	-1.45
Total	9.80	2.16	48.26	46.83	0.00	0.12	2.98	-5.29	-1.22
Hg	2.67	3.05	13.36	-1.66	0.00	-0.03	-2.80	-3.69	10.92
Sc	-1.75	-3.93	-2.05	-3.62	0.00	-0.08	-3.47	1.37	6.94
Be	0.17	0.01	0.25	0.24	0.00	-0.01	0.02	-1.08	0.00
V	-11.17	-28.90	-26.87	-36.36	0.00	-15.15	-11.36	17.50	56.50
Cr	0.83	0.05	4.91	4.77	0.00	-0.04	-19.01	8.45	-0.03
Co	0.25	-2.50	-5.53	-5.57	0.00	-0.01	-6.70	2.54	3.95
Ni	0.83	0.05	4.91	4.77	0.00	-0.04	10.66	-0.77	-0.03
Cu	0.42	0.03	238.47	-22.62	0.00	-0.02	-4.84	-0.39	-0.10
Zn	9.15	20.67	77.27	-163.73	0.00	-0.49	-66.38	-54.65	-130.90
Ga	-0.50	0.10	3.90	-0.71	0.00	-0.09	1.46	-3.39	0.95
Ge	0.18	0.51	0.79	0.33	0.00	0.39	0.23	0.58	-0.10
As	-2.42	2.06	16.29	17.39	0.00	3.94	-30.95	14.91	79.66
Rb	21.66	23.32	-21.58	-14.33	0.00	8.78	21.61	16.35	14.83
Sr	-13.34	-1.83	8.73	-22.76	0.00	-0.16	-18.47	-12.86	-5.11
Y	2.77	0.96	-3.20	-5.72	0.00	2.66	-4.31	-7.30	-1.26
Zr	28.31	21.06	25.37	15.41	0.00	15.10	1.71	-91.74	4.70
Nb	0.85	-0.30	-2.15	-2.15	0.00	0.19	-0.20	-0.82	-0.51
Mo	0.08	0.01	LOD	LOD	0.00	0.00	LOD	0.85	LOD
Ag	0.02	0.00	LOD	LOD	0.00	0.00	LOD	-0.02	LOD
In	0.01	0.00	-0.05	LOD	0.00	0.00	LOD	-0.05	-0.10
Sn	0.08	0.01	LOD	LOD	0.00	0.00	0.03	0.85	LOD
Sb	0.17	-0.30	-0.01	-0.90	0.00	0.30	-0.67	0.58	1.09
Cs	0.24	0.20	LOD	-0.15	0.00	0.10	0.11	0.07	0.10
Ba	448.19	-195.52	-69.75	225.76	0.00	700.91	3964.49	36.04	71.09
La	2.86	1.40	-2.99	-1.64	0.00	1.11	-0.63	-11.69	-1.61
Ce	4.81	2.65	-5.43	-2.79	0.00	2.08	-0.38	-28.02	-2.75
Pr	0.41	0.32	-0.69	-0.53	0.00	0.23	-0.14	-3.56	-0.29
Nd	1.41	2.16	-2.25	-2.36	0.00	1.56	-0.75	-15.13	-0.45
Sm	0.08	1.00	-0.62	-0.90	0.00	0.55	-0.38	-3.02	-0.28
Eu	0.04	0.15	-0.48	-0.57	0.00	0.18	-0.17	-0.96	-0.34
Gd	0.16	0.81	-0.44	-0.93	0.00	0.64	-0.50	-2.57	-0.25
Tb	0.06	0.12	-0.12	-0.20	0.00	0.15	-0.10	-0.35	-0.04
Dy	0.31	0.41	-0.56	-1.14	0.00	0.81	-0.72	-2.05	-0.13
Ho	0.02	0.00	-0.13	-0.21	0.00	0.08	-0.14	-0.54	-0.02
Er	0.25	0.13	-0.27	-0.43	0.00	0.37	-0.34	-1.53	-0.06
Tm	0.04	0.01	-0.04	-0.07	0.00	0.05	-0.06	-0.25	-0.02
Yb	0.49	0.20	-0.21	-0.37	0.00	0.51	-0.36	-1.71	-0.23
Lu	0.10	0.07	0.00	-0.03	0.00	0.11	-0.06	-0.27	-0.05
Hf T	0.62	0.52	0.44	0.27	0.00	0.48	-0.06	-1.10	0.09
Ta	0.08	0.03	-0.03	-0.04	0.00	0.02	0.02	-0.08	-0.01

W	0.02	0.00	0.24	LOD	0.00	0.00	0.29	0.58	0.49
T1	-0.01	0.73	-0.02	0.16	0.00	1.00	1.54	0.43	0.19
Pb	3.67	1.03	33.20	4.63	0.00	1.97	-137.74	0.54	16.88
Bi	0.00	0.00	LOD	LOD	0.00	0.00	LOD	0.00	LOD
Th	1.15	0.54	0.35	0.12	0.00	0.28	0.74	-1.83	-0.51
U	0.53	-0.15	0.75	1.60	0.00	0.03	0.98	0.02	-0.07
6 I ID								11107	
------------	----------------	-----------	-----------	-----------	------------	------------	------------	------------	-----------
Sample ID	14453	14469	14477	14478	14480	14482	14483	14485	32145
Hole ID	GA-07-208	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-07-218	GA-10-272
Depth (m)	258.3	182.2	294.8	318.1	323.3	344.5	363.9	394.8	255
Lithology	VCL1	VCL3	VCL2	VCL2	VCL2	VCL1	VCL1	VCL1	VCL1
Alteration	sil-ser-chl-py	chl-py	ser-chl	ser-sil	ser-chl-py	ser-chl-py	ser-chl-py	ser-chl-py	ser-py
SiO2	10.27	-32.45	1.53	57.14	0.10	2.38	10.92	-19.65	26.58
A12O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	1.93	6.00	-0.09	2 35	2.23	6.78	1.69	-0.86	1 47
MnO	0.14	0.00	-0.09	0.01	0.22	0.78	0.05	-0.00	0.20
MIO	-0.14	0.00	0.00	-0.01	-0.33	0.07	-0.05	-0.02	-0.39
MgO	-4.32	8.71	-0.04	-0.05	2.01	11.62	/.18	-2.85	-2.86
CaO	-0.73	-0.03	0.30	0.42	-2.10	-2.17	-2.14	3.29	-1.89
Na2O	-1.68	-1.70	-0.72	1.78	-2.32	-2.41	-0.45	-1.40	-2.15
K2O	2.30	-2.47	0.50	-1.54	1.34	-1.31	-1.33	1.16	2.29
TiO2	0.00	0.09	-0.06	-0.12	0.04	-0.25	-0.17	0.09	0.05
P2O5	0.02	-0.03	-0.02	-0.03	0.00	-0.06	-0.04	-0.01	-0.07
LOI	0.22	3.61	0.36	1.52	0.66	4.51	0.23	2.51	0.33
Total	7.86	-18.26	1.79	61.40	1.60	19.09	15.74	-17.75	23.32
Ha	79.04	-3.98	0.98	11.57	127.21	4 67	-9.12	-4.06	2561.65
ng So	6.00	1.42	0.06	5 22	1 27	5.05	2.02	7.19	2.02
D	0.09	1.42	-0.00	-5.22	1.37	-5.05	-2.92	7.18	3.92
Ве	0.04	-1.60	-0.01	-1.20	0.02	0.10	0.08	-0.09	0.12
V	9.29	206.93	-8.13	-8.08	6.96	7.82	-20.63	34.91	24.63
Cr	15.21	14.28	19.90	21.94	0.31	1.91	1.54	15.89	2.43
Co	4.65	23.71	0.99	1.79	0.31	1.91	-3.08	2.94	-0.05
Ni	0.87	14.28	-0.03	5.97	0.31	1.91	1.54	14.71	2.43
Cu	33.48	11.19	-0.02	2.98	165.93	5.72	-24.23	14.71	-5.13
Zn	472.14	-12.88	19.58	-30.15	1167.43	64.32	-250.03	-81.16	-381.35
Ga	1 13	-4 62	0.93	-4.03	0.44	7 43	2.15	1.00	2.16
Ge	0.17	-0.01	0.79	1.65	-0.18	0.01	0.22	0.29	-0.39
4.0	100.00	-0.01	1.06	17.15	-0.10	0.01	8.00	25.20	-0.57
AS	109.90	22.37	1.90	17.13	-4.50	00.33	0.99	-23.29	99.00
Kb	44.91	-37.38	18.81	-19.84	14.50	-31.43	-31.54	24.54	47.06
Sr	-16.52	-22.05	2.88	3.33	-23.53	-33.05	-26.31	2.89	-12.89
Y	2.46	-32.40	14.49	-22.25	1.45	4.74	-4.67	-8.40	-0.50
Zr	-5.26	-109.54	-1.59	-62.64	11.93	28.10	18.82	-9.99	2.03
Nb	0.24	0.36	0.59	-0.94	-1.37	-1.82	-1.84	-0.22	-0.93
Мо	LOD	1.43	0.00	6.98	LOD	LOD	LOD	LOD	LOD
Ag	LOD	-0.05	0.00	0.15	LOD	LOD	LOD	LOD	LOD
In	LOD	-0.06	0.00	-0.02	4.96	LOD	LOD	LOD	-0.14
Sn	0.09	-0.60	0.99	-0.20	LOD	LOD	LOD	LOD	LOD
Sh	2.10	0.31	0.10	0.26	1.48	0.49	0.62	0.86	21.68
30 C-	2.10	-0.31	0.10	0.90	0.11	-0.49	-0.02	-0.80	21.08
Cs D	0.24	-0.26	0.10	-0.14	0.11	LOD	LOD	0.03	0.20
Ва	371.92	-838.25	-272.92	-375.56	2055.28	-112.90	-157.16	-34.04	594.72
La	0.82	-14.82	2.43	-8.82	0.93	-5.79	-4.68	-1.03	-1.80
Ce	1.20	-37.36	4.94	-21.51	5.31	-11.01	-7.80	-1.64	-3.08
Pr	0.09	-5.10	0.40	-2.85	0.55	-1.33	-0.89	-0.18	-0.43
Nd	0.34	-23.06	1.90	-12.47	3.07	-4.82	-2.89	-0.84	-1.84
Sm	0.19	-6.04	0.26	-3.76	0.48	-1.06	-0.97	-0.15	-0.67
Eu	-0.02	-1.61	0.40	-0.93	-0.07	-0.63	-0.64	0.12	-0.51
Gd	0.26	-6.04	-0.01	-4.92	0.61	-0.06	-0.76	-0.50	-0.19
Tb	0.07	-1.03	0.09	-0.93	0.07	0.02	-0.17	-0.15	-0.06
Dv	0.38	-6 58	0.93	-5 72	0.42	0.51	-0.87	-1.08	-0.23
Но	0.10	-1.38	0.15	-1.16	0.06	0.14	-0.17	-0.26	-0.07
П0 Г.	0.10	-1.30	0.15	-1.10	0.00	0.14	-0.17	-0.20	-0.07
Er	0.31	-3.64	0.02	-2.85	0.28	0.37	-0.44	-0.74	0.03
Im	0.05	-0.57	0.08	-0.36	0.02	0.11	-0.05	-0.12	0.01
Yb	0.28	-3.77	0.73	-1.92	0.15	0.60	-0.31	-0.86	0.05
Lu	0.06	-0.57	0.12	-0.23	0.03	0.12	-0.04	-0.14	-0.02
Hf	-0.21	-1.88	0.59	-0.94	0.26	0.58	0.39	-0.31	0.31
Ta	0.02	-0.01	-0.02	-0.04	-0.03	-0.03	-0.01	-0.01	-0.13
W	-0.33	1.04	0.35	1.51	-0.84	LOD	LOD	LOD	2.75
Tl	0.91	-0.10	0.29	0.34	1.22	-0.03	LOD	0.19	8.34
Ph	176.81	-2.98	1.98	6.18	727.59	171.49	-9.77	-124.58	112.79
Ri	LOD	-0.01	0.00	0.03	LOD	LOD	LOD	LOD	LOD
Th	0.58	-1 56	0.00	_2 03	-0.40	0.56	0.23	-0.28	-0.11
111 11	0.50	-1.50	0.04	-2.03	1 20	0.50	0.23	-0.20	-0.11
U	0.78	-0.09	0.00	0.55	1.39	0.69	0.94	-0.03	3.38

Appendix C: Table C1.1: Mass Change for samples at the Hurricane Deposit

	Append	IX C: Table	CI.I: Ma	ss Change	for sample	es at the n	urricane L	reposit	
Sample ID	32005	32006	32007	32008	14535	14540	14544	14545	14547
Hole ID	GA-06-147	GA-06-147	GA-06-147	GA-06-147	GA-07-208	GA-07-208	GA-07-208	GA-07-208	GA-07-208
Depth (m)	316.97	336.2	363.6	380.4	169.1	218.5	273.6	295	328.3
Lithology	VCI 1	VCI 1	VCI 1	VCI 1	VCL2	VCL2	VCI 1	IN2a	VCI 1
Altoration	veli or cil nv	ver ahl	loost altered	V CEI	vel2	v CL2	v cL1		loost altered
Alteration	10.97	10.01		18.10	7.97	4.80	22.41	5 80	
5102	-10.87	-19.91	0.00	-18.10	-/.8/	4.89	33.41	-5.80	0.00
AI2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	0.07	-0.13	0.00	-0.09	0.88	1.12	2.58	3.63	0.00
MnO	0.29	0.13	0.00	0.18	0.01	0.00	-0.16	0.16	0.00
MgO	5.29	1.19	0.00	-0.84	1.62	-0.18	-5.51	-1.43	0.00
CaO	3.02	0.32	0.00	1.33	0.38	0.32	-0.63	2.35	0.00
Na2O	-1.65	-1.71	0.00	-0.90	-1.66	1.26	-1.40	-1.67	0.00
K2O	0.01	0.44	0.00	0.48	0.39	-1.33	2.13	1.08	0.00
TiO2	-0.02	0.06	0.00	0.01	0.20	-0.10	-0.07	0.10	0.00
P2O5	0.00	0.03	0.00	0.00	0.01	-0.05	-0.01	0.13	0.00
LOI	4.48	0.05	0.00	0.53	0.69	0.05	1.80	3 38	0.00
LOI Total	4.40	10.50	0.00	0.55	5.27	6.24	22.12	1.02	0.00
I Uta	0.02	-19.39	0.00	-1/.41	-3.37	0.34	32.12	1.93	0.00
Hg	3.14	-7.01	0.00	18.15	-3.08	-3.37	039.03	-2.88	0.00
Sc	1.24	5.53	0.00	-0.25	-1.27	-2.25	0.31	6.50	0.00
Be	0.01	-0.10	0.00	0.32	-0.14	-0.95	0.18	0.01	0.00
V	-6.26	30.49	0.00	2.61	-1.54	-23.85	-10.75	45.85	0.00
Cr	-19.65	-10.11	0.00	32.27	-0.71	0.50	4.17	0.97	0.00
Co	0.19	3.95	0.00	-2.01	0.72	-0.90	-5.17	14.58	0.00
Ni	0.12	5.96	0.00	14.68	-0.71	0.50	3.54	10.39	0.00
Cu	10.23	21.91	0.00	6.45	-0.35	0.25	856.64	10.39	0.00
Zn	224.66	-28.41	0.00	-64.82	-7.79	-36.49	10219.71	85.03	0.00
Ga	0.15	0.56	0.00	0.99	-2.34	-3.20	1.90	1.27	0.00
Ge	-0.09	-0.06	0.00	-0.04	0.03	-0.06	1.06	0.01	0.00
As	-7.35	-20.12	0.00	-20.39	-5 35	2 60	120.16	-5.90	0.00
Rb	0.34	10.09	0.00	11.31	11.18	-16.95	45.48	28.08	0.00
Sr	19.63	-3.09	0.00	-4 56	-4 34	9.11	2 92	36.35	0.00
V	4.02	1 33	0.00	-4.50	5 3 2	3.88	7.48	1.09	0.00
1	-4.02	-1.55	0.00	-2.82	-5.52	5.88	7. 4 0	1.09	0.00
	0.01	-12.91	0.00	-4.28	-23.10	47.04	-8.07	1.01	0.00
IND	0.10	0.50	0.00 LOD	-0.05	0.20	-0.05	-0.16	1.33	0.00 LOD
Mo	LOD	LOD	LOD	LOD	-0.07	3.20	LOD	LOD	LOD
Ag	LOD	LOD	LOD	LOD	-0.02	0.01	LOD	LOD	LOD
ln	LOD	LOD	LOD	LOD	-0.05	0.01	LOD	LOD	0.00
Sn	1.02	-0.20	0.00	LOD	-0.54	-0.47	0.35	LOD	LOD
Sb	-0.18	-0.48	0.00	-0.28	-0.43	0.25	11.94	-0.38	0.00
Cs	0.00	0.10	0.00	0.36	0.07	-0.09	0.11	0.11	0.00
Ba	5.97	67.17	0.00	48.91	-484.31	-360.72	410.50	201.96	0.00
La	0.65	0.93	0.00	-1.00	-2.07	0.73	3.21	1.15	0.00
Ce	1.68	2.39	0.00	-1.89	-5.77	2.63	5.68	2.67	0.00
Pr	0.26	0.30	0.00	-0.15	-0.83	0.33	0.56	0.36	0.00
Nd	1.33	1.33	0.00	-0.42	-3.42	2.27	1.54	1.48	0.00
Sm	0.28	0.39	0.00	0.06	-1.09	0.33	0.36	0.39	0.00
Eu	-0.04	0.03	0.00	0.06	-0.10	-0.41	0.10	0.22	0.00
Gd	-0.16	0.12	0.00	-0.29	-0.66	-0.15	0.40	0.40	0.00
Th	-0.09	-0.01	0.00	-0.07	-0.13	0.00	0.10	0.05	0.00
Dv	-0.77	-0.16	0.00	-0.61	-1.24	0.54	0.82	0.20	0.00
Ho	-0.16	-0.05	0.00	-0.14	-0.33	0.14	0.17	0.05	0.00
Fr.	-0.10	-0.05	0.00	-0.14	-0.33	0.14	0.17	0.05	0.00
LI	-0.40	-0.10	0.00	-0.23	-0.83	0.80	0.00	0.21	0.00
1 111	-0.06	-0.03	0.00	-0.04	-0.13	0.14	0.11	-0.01	0.00
Ϋ́D	-0.41	-0.29	0.00	-0.30	-0.95	1.13	0.52	-0.10	0.00
Lu	-0.06	-0.05	0.00	-0.03	-0.13	0.19	0.08	-0.01	0.00
Hť	-0.09	-0.50	0.00	-0.23	-0.25	1.02	-0.35	-0.18	0.00
Та	0.01	0.02	0.00	-0.01	0.03	0.05	0.00	0.07	0.00
W	-0.88	-1.30	0.00	-1.51	-0.02	0.01	0.61	-0.46	0.00
T1	0.00	0.02	0.00	0.12	-0.04	0.12	0.95	0.26	0.00
Pb	44.19	-102.92	0.00	-118.03	3.36	1.30	5256.97	-102.17	0.00
Bi	LOD	LOD	LOD	LOD	0.00	0.00	LOD	LOD	LOD
Th	0.12	0.28	0.00	-0.11	-0.02	1.08	-0.15	0.50	0.00
U	0.15	0.12	0.00	-0.04	0.27	0.01	1.11	0.46	0.00

Appendix C: Table C1.1: Mass Change for samples at the Hurricane Deposit

Sample ID	22146	221.47	22148	22152	22154	14760	14772	14774	14775
	GA 10 272	GA 10 272	GA 10 272	GA 10 272	GA 10 272	GA 14 275	14772 GA 14 275	14774 GA 14 275	14773 GA 14 275
Douth (m)	GA-10-272	GA-10-272	GA-10-2/2	GA-10-272	GA-10-272	UA-14-275	GA-14-275	GA-14-275	GA-14-275
Depth (m)	202.2 VCL 1	280.4 VCL 1	292.3 VCL 1	257 VCL 1	240.4 VCL 1	140.0 VCL2	190.5 VCL 2	215.0 VCL1	259.0 VCL 1
Lithology	VCLI	VCLI	VCLI	VCLI	VCLI	VCL2	VCL2	VCLI	VCLI
Alteration	ser-chl-carb	ser-chl-carb	ser-py	carb-chl	chl-ser-pyr	ser-chl	sil-ser	ser-sil-py	ser-sil-py
S1O2	-4.84	-13.38	2.01	-36.00	-15.43	3.84	49.21	29.95	16.82
Al2O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	0.95	4.51	-0.36	5.31	4.85	0.38	-0.33	-0.18	1.46
MnO	0.11	0.60	0.00	0.46	-0.08	0.01	-0.01	-0.14	0.03
MgO	-1.88	0.36	-3.83	19.05	9.74	0.21	1.09	-5.27	0.03
CaO	4.03	9.63	0.80	8.91	-2.02	0.85	0.13	-0.83	0.04
Na2O	-1.47	-1.60	-1.63	-2.46	-2.46	-0.76	-3.35	-1.68	-1.42
K2O	1.20	1.94	2.02	-0.80	-0.31	0.23	0.76	2.63	0.97
TiO2	0.02	0.05	0.03	-0.01	0.05	0.11	-0.23	0.06	-0.07
P2O5	0.02	0.01	0.00	-0.03	-0.06	0.06	-0.02	0.01	-0.02
LOI	3.43	14.16	0.01	13.99	4.60	0.68	0.92	-0.84	2.68
Total	1.55	16.27	-0.95	8.38	-1.16	5.67	48.12	23.72	20.44
Hg	6.44	6.34	28.80	151.63	1811.10	-3.41	-2.34	59.10	106.67
Sc	10.88	5.96	5.86	5.58	3.26	-1.40	-1.90	7.24	2.32
Be	LOD	LOD	LOD	0.05	0.01	-0.96	-0.54	LOD	LOD
V	39 59	28.24	30.98	18 45	15 94	-18.95	-31.90	43.60	-6.24
Ċr	63.22	20.21	19.62	1.06	0.18	0.38	4 64	49.06	2.11
Co	8 70	13.50	1 90	-6.68	0.18	2.19	-2.27	8 77	-0.31
NG	20.88	13.50	LOD	-0.08	0.18	0.38	-2.27	14 77	2 11
INI Cu	20.88	15.00	20.72	1152.07	82.02	0.38	4.04	51.01	2.11
Cu Zn	20.88	25.40	19.73	1102.02	62.03	0.19	2.32	241.01	2264.01
Zn	-40.19	-85.01	18.92	1192.05	5.25	-27.00	-30.80	241.01	2204.01
Ga	1.41	1.16	0.92	10.32	5.35	-2.36	0.50	1.86	-0.68
Ge	0.02	LOD	LOD	0.07	0.32	-0.64	0.42	LOD	LOD
As	-24.89	33.93	306.99	141.52	169.46	-7.41	-6.34	77.16	50.44
Rb	26.58	41.79	44.60	-22.84	-12.59	10.80	25.42	61.39	23.12
Sr	11.32	16.91	-7.15	46.13	-27.80	15.84	-21.82	-15.19	30.02
Y	1.19	-5.09	-4.48	-6.30	4.54	5.41	35.45	-2.02	4.20
Zr	-10.83	-13.06	-12.22	0.13	12.78	6.90	78.07	-9.90	8.24
Nb	0.21	-0.18	-0.20	-0.64	-0.26	1.60	0.80	-0.18	-0.85
Mo	LOD	LOD	LOD	LOD	LOD	0.04	0.46	LOD	LOD
Ag	LOD	LOD	LOD	LOD	LOD	0.01	0.12	LOD	LOD
In	LOD	LOD	LOD	0.02	LOD	-0.05	-0.03	LOD	0.41
Sn	LOD	LOD	LOD	LOD	LOD	-0.48	0.46	LOD	LOD
Sb	-1.19	0.76	0.99	73.98	25.38	-0.70	-0.65	0.51	-0.72
Cs	0.11	0.05	0.10	-0.19	-0.10	0.01	0.14	0.20	0.18
Ba	86.15	55.63	82.66	449.08	814.44	-396.93	-555.69	415.74	112.63
La	0.37	-1.15	-1.48	-3.95	-1.54	-0.44	9.12	-0.62	-0.04
Ce	0.55	-2.30	-2.97	-8.67	-1.19	-2.32	20.52	-1.16	0.77
Pr	0.01	-0.31	-0.38	-1.18	-0.17	-0.44	2.70	-0.24	0.02
Nd	-0.12	-1.31	-1.74	-4.18	-0.37	-1.94	12.54	-1.09	0.64
Sm	-0.02	-0.32	-0.41	-1.15	-0.20	-0.47	3.67	-0.29	0.19
Eu	0.32	0.19	0.05	-0.31	-0.52	-0.14	0.74	-0.10	-0.39
Gđ	0.14	-0.47	-0.38	-0.58	0.45	-0.61	3.14	-0.28	0.81
Th	-0.02	-0.13	-0.10	-0.15	0.07	-0.08	0.65	-0.08	0.09
Dv	-0.13	-1.04	-0.79	-0.99	0.70	-0.36	4 76	-0.50	0.67
Но	-0.03	-0.21	-0.18	-0.25	0.16	-0.11	1.02	-0.10	0.13
Er	0.01	0.49	0.10	0.25	0.10	0.12	3.48	0.20	0.15
Tm	-0.01	-0.49	-0.50	-0.73	0.45	-0.12	0.56	-0.29	0.30
1 III Vh	0.00	-0.07	-0.08	-0.12	0.03	-0.01	0.30	-0.03	0.00
1 U T	-0.07	-0.4/	-0.00	-0.00	0.43	0.07	4.01	-0.27	0.29
	-0.03	-0.07	-0.11	-0.15	0.06	0.01	0.6/	-0.03	0.04
HI	-0.17	0.00	-0.21	0.63	0.75	1.07	3.09	-0.19	0.50
Ta	LOD	LOD	LOD	-0.14	-0.12	-0.06	-0.10	LOD	-0.17
W	LOD	-1.67	-1.31	4.10	4.09	0.01	0.12	-0.15	0.35
Tl	0.95	0.85	0.84	0.74	2.64	0.23	0.79	0.71	0.23
Pb	-122.33	-35.09	53.92	2391.16	4727.18	7.45	-1.34	143.75	66.97
Bi	LOD	LOD	LOD	LOD	LOD	0.00	0.02	LOD	LOD
Th	0.38	-0.25	-0.26	-0.60	-0.28	1.37	2.46	-0.16	-0.19
U	1.36	0.34	-0.04	1.73	1.10	0.45	0.73	0.85	-0.02

Appendix C: Table C1.1: Mass Change for samples at the Hurricane Deposit

	Appendix	C: Table	C1.1: Ma	ss Change	for samp	les at the I	Hurricane	Deposit	
Sample ID	14778	14797	14799	14800	32051	32053	32208	32216	32218
Hole ID	GA-14-275	GA-10-276	GA-10-276	GA-10-276	GA-10-276	GA-10-276	GA-07-257	GA-10-273	GA-10-273
Depth (m)	253.1	259.3	307.5	311.63	333	368.1	424.8	281.7	304.8
Lithology	VCL1	VCL2	VCL2	VCL1	VCL1	VCL1	VCL2	VCL1	VCL1
Alteration	ser-chl-py	ser-chl	chl-carb	sil-carb	ser-chl-pyr	sil-ser-pyr	ser-chl	ser-carb-pyr	ser-sil-pyr
SiO2	-11.61	-2.99	-37.76	-29.25	-23.52	-14.18	-0.17	16.59	-4.88
A12O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	3.87	0.15	0.30	-0.14	6.14	0.94	1.19	4.05	-1.66
MnO	0.29	0.01	0.14	0.51	-0.05	0.16	0.02	0.05	0.25
MgO	-0.02	-0.39	17.42	12.22	12.86	-3.65	0.25	3.50	-2.58
CaO	-0.83	0.17	0.80	16.74	-2.18	10.91	0.59	9.10	4.19
Na2O	-1.41	1.02	-2.52	-2.25	-2.49	-1.27	-0.98	-1.95	-1.53
K2O	0.38	-0.76	-1.46	1.55	-1.43	1.45	-0.29	1.93	1.94
TiO2	-0.02	-0.03	0.12	0.01	-0.27	-0.04	0.07	0.08	0.00
P2O5	0.02	0.00	0.02	0.11	-0.04	0.12	0.01	0.05	0.09
LOI	1.71	-0.14	6.89	23.31	3.81	9.80	0.67	15.96	4.22
Total	-7.60	-2.97	-16.09	22.77	-7.16	4.24	1.34	49.32	0.06
Hg	214.55	2.55	-1.75	16.81	38.09	40.23	0.99	461.96	0.96
Sc	0.58	0.06	6.94	2.78	-2.65	3.05	2.97	4.14	4.90
Be	LOD	-1.05	-0.07	0.13	-0.04	LOD	0.00	0.26	LOD
V	14.17	-9.04	35.41	7.97	-12.15	-11.39	11.92	28.63	11.32
Cr	-3.23	-0.50	-1.46	2.53	-0.72	-8.10	-0.01	5.14	-20.12
Co	1.77	-0.15	-4.02	-3.74	2.99	11.24	1.99	0.60	-3.05
Ni	LOD	-0.50	-1.46	2.53	-0.72	LOD	-0.01	5.14	LOD
Cu	130.30	-0.25	-25.73	-23.74	554.41	73.80	-0.01	-14.86	19.88
Zn	4983.19	4.04	-229.18	-149.45	35.99	626.61	19.83	-263.72	-110.28
Ga	1.97	-1.94	2.23	2.29	8.26	0.62	-0.03	2.66	-0.05
Ge	LOD	-0.66	-0.49	-0.39	-0.47	LOD	-0.10	-0.40	LOD
As	-1.33	-2.40	-3.92	2.80	76.40	394.83	-0.01	44.11	79.42
Rb	9.35	-8.59	-34.57	21.37	-34.07	29.66	6.94	37.68	39.72
Sr	1.48	13.47	2.85	133.88	-35.29	25.76	-3.04	35.20	4.84
Y	0.88	2.64	-8.11	10.17	-5.15	3.13	18.51	-0.37	-1.97
Zr	1.32	-9.14	6.39	10.21	-0.59	-9.05	8.75	13.43	-11.17
Nb	0.17	0.71	-0.16	-0.05	-1.09	0.22	0.60	-0.94	0.10
Mo	LOD	-0.05	LOD	LOD	LOD	LOD	0.00	LOD	LOD
Ag	LOD	-0.01	LOD	LOD	LOD	LOD	0.00	LOD	LOD
In	LOD	-0.05	-0.16	LOD	0.17	LOD	-0.05	-0.12	LOD
Sn	-0.06	-0.05		LOD		LOD	-0.50	2.42	LOD
Sb	0.64	-0.70	-1.11		-0.83	0.39		2.43	-0.70
US D-	-0.02	-0.11	-0.26	0.08	LOD 120.50	0.12	0.00	0.15	0.10
ва	5/.9/	-405.25	-144.65	5595./5 2 45	-130.50	5.75	-084.24	392.39	101.91
La	0.30	-1.51	-4.21	-2.45	-7.29	0.93	-0.02	-4.8/	-0.04
D-	1.75	-3.72	-3.02	-1.54	-14.90	2.23	0.14	-/.3/	-0.83
PT NJ	0.54	-0.30	-0.03	0.19	-1.80	0.21	-0.07	-0.8/	-0.1/
ING	1.15	-1.01	-2.28	2.69	-/.03	0.72	-0.54	-2.42	-1.06
Sm	0.52	-0.75	-0.74	1.54	-1./3	0.1/	0.04	-0.3/	-0.20
EU C4	-0.07	0.52	-0.44	0.14	-0.08	0.52	0.25	-0.40	0.24
Gu Th	0.50	-0.24	-0.01	2.44	-1.21	0.47	0.98	-0.03	-0.21
	0.03	-0.15	-0.20	1 99	-0.22	0.02	0.27	-0.04	-0.07
Бу Но	0.02	-0.01	-1.55	1.00	-1.29	0.14	0.32	-0.02	-0.52
П0 Е.	-0.01	-0.20	-0.29	0.52	-0.28	0.05	1.05	-0.03	-0.12
Eľ Tm	0.04	-0.45	-0.62	0.92	-0.08	0.23	0.10	0.02	-0.32
1 m VL	-0.02	-0.07	-0.13	0.13	-0.10	0.05	0.19	0.02	-0.05
Ϋ́D	-0.1/	-0.27	-0.75	0.07	-0.01	0.19	1.12	0.20	-0.31
LU Uf	-0.02	-0.05	-0.12	0.07	-0.09	0.01	0.14	0.02	-0.07
	0.29 LOD	0.9/	0.39	0.71	0.45	-0.04 LOD	0.11	0.02 LOD	-0.20 LOD
18	1.29	-0.08	-0.10	-0.09	-0.14	LOD	-0.11		LOD
W TI	-1.38	-0.01	0.27	0.28	-0.45	LUD 0.29	0.00	1.05	
11 DL	0.55	0.02	-0.15	2.19	-0.11	0.58	0.40	2.09	04.01
ro D:	-128.25	-2.62	-2.//	2.30 LOD	01./U	-29.72	-2.50	37.03 LOD	-94.21
В1 ТЬ	0.17	0.00	0.40	0.02	0.11	LUD 0.21	0.00	LUD 0.14	0.20
111 TT	0.1/	0.51	-0.00	-0.03	-0.11	0.51	0.79	-0.10	0.39
U	0.05	0.07	-U.∠I	0.20	0.90	1.00	0.1.5	2.50	0.52

	Appendi	x C: Table	e CI.I: Ma	iss Change	for sample	es at the H	urricane I	Deposit	
Sample ID	32219	32220	32076	32079	32080	32174	32196	32199	32200
Hole ID	GA-10-273	GA-10-273	GA-10-274	GA-10-274	GA-10-274	GA-10-277	GA-10-278	GA-10-278	GA-10-278
Depth (m)	267.8	273	270.9	307.2	319.4	243.2	280.1	306.7	309.3
Lithology	VCL1	VCL1	VCL2	VCL1	VCL1	VCL1	VCL2	VCL1	VCL1
Alteration	ser-chl-pyr	ser-chl-pyr	chl-ser	ser-carb-pyr	ser-carb-pyr	ser-sil-pyr	chl-ser	ser-chl-pyr	chl-carb-bm
SiO2	2.38	-36.38	-31.40	-9.17	4.82	6.85	14.50	-19.67	-31.72
A12O3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fe2O3	11.12	13.78	3.23	0.97	3.70	-1.53	1.77	7.26	5.69
MnO	0.02	0.29	-0.12	-0.14	0.39	-0.39	0.04	-0.06	-0.05
MgO	3.28	11.99	12.26	3 53	1.93	-2.98	0.49	9 74	13.24
MgO CaO	0.76	0.36	1 07	8.33	2 70	-2.98	0.54	0.32	0.40
Na2O	-0.70	2.00	-1.07	1.87	2.70	-1.14	1.02	2.07	1.08
Na2O K2O	-1.94	-2.09	-2.51	-1.07	-0.23	-1.93	1.02	-2.07	-1.98
K20	0.73	-1.23	-1.09	2.11	1.44	2.77	-1.07	-0.30	-1.00
1102 1205	0.00	-0.14	0.11	0.10	0.35	0.05	0.08	0.03	0.12
P205	0.01	0.05	0.04	0.00	0.03	0.02	0.01	-0.02	-0.02
LOI	6.70	9.46	2.47	10.59	4.36	-1.95	0.50	5.80	5.95
Total	21.54	-3.89	-18.13	14.30	27.47	-0.27	17.83	0.97	-9.41
Hg	6305.91	118.47	1.23	15.77	51.97	3.14	0.95	58.86	406.02
Sc	-6.13	-9.46	4.71	6.36	10.49	4.14	2.84	3.38	4.65
Be	LOD	LOD	-0.09	0.08	0.77	0.00	-0.84	0.01	-0.04
V	10.64	-43.90	31.40	43.24	89.42	16.01	30.72	30.18	39.75
Cr	LOD	LOD	-1.73	1.57	77.02	0.10	1.58	0.27	-0.79
Co	0.39	7.96	-0.90	2.73	5.59	0.10	5.10	4.38	8.41
Ni	LOD	LOD	-1.73	1.57	28.11	0.10	1.58	0.27	-0.79
Cu	1162.23	47.51	-21.73	-18.43	15.40	-24.95	18.15	-9.46	-2.38
Zn	LOD	251.30	-52.65	-342.14	-2.17	-329.33	63.65	-245.96	2896.26
Ga	7.17	9.04	5.85	2.20	8.59	1.14	-1.48	4.48	5.34
Ge	0.06	0.16	0.13	-0.41	0.32	-0.20	-0.09	0.02	-0.47
As	358.25	120.98	26.97	5.62	3.32	67.84	264.37	57.05	29.64
Rb	7.55	-28.04	-26.73	42.53	33.24	51.82	-8.90	-10.35	-24.87
Sr	-23.66	-25.42	-24.94	42.00	12.00	-7.71	12.47	-4.08	-6.77
Y	11.53	3.02	-3.61	5.44	6.31	7.86	6.41	-0.59	-4.34
Zr	-20.49	-18.45	18.38	14.52	21.67	19.99	-19.61	21.80	12.60
Nb	-0.17	-0.20	0.59	0.36	0.08	-0.08	1.22	0.37	0.55
Mo	LOD	LOD	LOD	LOD	LOD	LOD	0.16	LOD	LOD
Ao	LOD	LOD	LOD	LOD	LOD	LOD	0.04	LOD	LOD
In	LOD	LOD	-0.16	-0.14	LOD	LOD	-0.04	-0.15	0.08
Sn	11.60	-0.04	LOD	LOD	LOD	LOD	-0.42	LOD	LOD
Sh	13.78	1.95	-0.62	0.07	0.43	-0.09	-0.22	0.34	2.67
Cs.	0.05	LOD	0.02	0.28	0.45	0.31	0.05	0.09	0.21
Cs Po	-0.05	155 42	-0.20	252.62	165.26	436.00	520.70	1045 70	-0.21
Ба	1.04	-135.42	41.52	0.25	0.28	430.00	-529.79	2 56	191.04
La	1.94	-0.35	-4.20	-0.33	0.38	1.40	-3.42	-3.30	-4.67
De De	0.74	2.19	-7.00	0.52	0.42	5.20	-5.81	-4.90	-7.41
	0.74	0.37	-0.80	0.12	0.43	0.44	-0.72	-0.01	-0.77
Na	3.20	1.27	-2.77	1.59	2.71	2.81	-3.13	-1.08	-2.03
Sm	1.09	0.40	-0./4	0.62	1.16	0.59	0.03	-0.32	-0.78
Eu	0.00	-0.07	-0.60	-0.14	0.29	-0.39	0.62	-0.51	-0.56
Gd	1.52	0.13	-0.53	1.19	0.95	1.05	1.04	-0.06	-0.51
Tb	0.32	0.01	-0.13	0.13	0.18	0.15	0.07	-0.04	-0.13
Dy	1.93	0.16	-0.73	0.84	0.98	1.03	-0.30	-0.02	-0.79
Но	0.40	0.03	-0.14	0.17	0.19	0.19	-0.11	0.00	-0.17
Er	0.99	0.21	-0.28	0.52	0.83	0.69	-0.29	0.09	-0.42
Tm	0.13	0.06	-0.03	0.07	0.13	0.11	-0.06	0.01	-0.06
Yb	0.67	0.34	-0.24	0.57	0.83	0.59	-0.26	0.09	-0.32
Lu	0.08	0.04	-0.05	0.07	0.17	0.07	-0.04	0.01	-0.05
Hf	LOD	-0.72	0.93	0.75	0.35	0.82	0.67	0.97	0.87
Та	LOD	-0.07	0.08	0.02	0.03	-0.05	0.03	0.06	0.07
W	16.41	2.77	1.38	1.21	-0.98	0.92	0.04	3.73	2.12
T1	1.88	-0.03	0.31	0.88	0.27	1.22	0.31	1.38	0.75
Pb	11576.29	91.69	167.08	1.83	-102.81	-3.86	14.68	52.89	2135.54
Bi	LOD	LOD	LOD	LOD	LOD	LOD	0.18	LOD	LOD
Th	1.18	0.98	-0.14	-0.27	0.20	-0.02	-0.08	-0.28	-0.28
U	8.32	2.20	0.31	0.40	0.05	2.23	-0.01	4.61	5.14

Appendix C: Table C1.1: Mass Change for samples at the Hurricane Deposit

_	11	ppenuix C		1.1. WI435	Change 10	i sampies	at the murn	Ľ
	Sample ID	32202	32203	32101	32102	32103	32108	
	Hole ID	GA-10-278	GA-10-278	GA-06-180	GA-06-180	GA-06-180	GA-06-180	
	Depth (m)	328.2	332.6	321.68	327.2	338.4	397.9	
	Lithology	VCL1	VCL1	VCL3	VCL1	VCL1	VCL1	
	Alteration	chl-carb	ser-sil-pyr	ser-chl	ser-sil-pyr	ser-sil-pyr	sil-ser-pyr	
	SiO2	-39.57	22.53	4.59	4.89	-0.26	62.46	
	Al2O3	0.00	0.00	0.00	0.00	0.00	0.00	
	Fe2O3	4.52	2.70	0.65	14.87	11.05	20.38	
	MnO	0.03	-0.25	0.05	-0.27	-0.27	2.93	
	MgO	13.02	4 16	-0.26	5.19	4 91	28.98	
	CaO	2 49	1.00	-0.20	2.00	2.14	55.61	
	Na2O	1.05	-1.09	0.07	-2.00	-2.14	1.97	
	Na2O K2O	-1.95	-2.13	0.07	1.52	-2.31	-1.67	
	K20	-1.10	0.47	-0.23	-1.20	1.13	2.02	
	1102	0.08	-0.14	0.02	0.18	0.09	0.07	
	P205	-0.03	-0.07	0.01	0.02	-0.01	0.15	
	LOI	6.78	1.46	0.99	6.62	6.29	70.55	
	Total	-15.81	27.58	7.11	29.70	18.44	241.22	
	Hg	80.46	-8.78	4.49	573.55	2278.55	543.89	
	Sc	3.55	-0.71	1.93	7.50	2.62	6.37	
	Be	-0.07	0.14	0.10	0.16	0.12	1.24	
	V	51.11	-3.53	13.88	51.75	31.58	51.45	
	Cr	-1.44	2.86	0.49	3.22	2.38	24.74	
	Co	2.84	-2.28	1.19	7.18	1.14	17.79	
	Ni	-1.44	2.86	0.49	3.22	2.38	24.74	
	Cu	-21.44	-23.57	0.24	9.65	836.69	LOD	
	Zn	-74.69	-232.78	57.80	2032.07	LOD	2170.98	
	Ga	3.12	2.72	-2.17	3.18	2.10	6.85	
	Ge	-0.27	-0.38	-0.64	LOD	0.41	0.17	
	As	8.11	11.16	310.92	54.34	142.43	135.34	
	Rb	-26.44	616	4 00	-31.03	13.29	31.01	
	Sr	11.51	-14 56	25.83	-5.96	-31.57	242 42	
	V	5 53	-0.73	7 48	1.91	1 15	32.91	
	1 7r	8 21	-0.75	12.01	26.02	4.15	10.22	
	ZI	0.31	0.62	-12.01	20.03	4.13	0.56	
	IND M-	0.33	-0.05	0.38	-0.32	0.07 LOD	-0.30	
	Mo	LOD	LOD	0.05	LOD	LOD	LOD	
	Ag		LOD	0.01		0.20	LOD	
	In	-0.16	LOD	-0.05	0.06	0.30	LOD	
	Sn	LOD	LOD	-0.48	LOD	LOD	LOD	
	Sb	-0.43	LOD	-0.70	0.52	27.65	12.00	
	Cs	-0.26	-0.04	0.12	-0.23	0.20	0.39	
	Ba	-120.53	156.60	-337.29	-140.20	972.75	438.27	
	La	-1.57	-2.22	0.18	-3.64	-3.41	6.72	
	Ce	1.95	-3.85	0.15	-5.83	-5.89	16.43	
	Pr	0.70	-0.46	-0.18	-0.73	-0.71	2.33	
	Nd	3.50	-1.46	-0.07	-2.13	-1.88	14.36	
	Sm	0.85	-0.42	0.18	-0.49	-0.33	5.05	
	Eu	-0.22	-0.51	0.27	-0.37	-0.35	0.44	
	Gd	1.09	-0.17	0.42	0.10	-0.14	6.33	
	Tb	0.12	-0.08	0.07	-0.01	-0.02	1.02	
	Dy	0.66	-0.43	0.51	0.16	0.22	7.46	
	Но	0.12	-0.08	0.06	0.05	0.05	1.34	
	Er	0.41	-0.15	0.21	0.23	0.33	3.76	
	Tm	0.06	-0.03	0.05	0.04	0.06	0.57	
	Yb	0.37	-0.28	0.48	0.38	0.47	3.50	
	Lu	0.04	-0.06	0.05	0.07	0.09	0.53	
	Hf	0.60	0.64	0.69	1.50	0.30	0.63	
	Та	0.03	0.05	-0.02	-0.06	-0.06	LOD	
	W	1.04	1.47	0.01	0.22	3 48	2 37	
	 TI	0.32	0.60	0.01	0.12	2.40	5 39	
	Ph	90.52	18 20	5 /0	882.45	5243.07	839.15	
	го в:	100	10.50	0.00	10D	J2+3.07	10D	
	DI Th	0.44	0.06	0.00	0.22	0.42	0.05	
	111 11	-0.44	0.00	0.55	-0.22	-0.42	7.20	
	U	0.58	0.79	0.08	1.27	1.10	1.1.7	

Appendix C: Table C1.1: Mass Change for samples at the Hurricane Deposit

Appendix D: Quality Control and Quality Assurance

Quality control and quality assurance were monitored using internal certified references materials (Appendix D.1) and duplicates performed by Actlabs (Appendix D.2). Internal reference materials include a matrix matched basalt (BAMAP-01) and granodiorite (GSP-2) standard from the USGS. The reference materials were sent as pulps and inserted as unknowns after every 25th sample. Precision and accuracy calculations were completed using relative standard deviation (RSD_i (%); Jenner, 1996) and percent relative difference (RD_i (%) and used to monitor the laboratories performance.

(1)
$$RSDi$$
 (%) = 100 * $\frac{Si}{\mu i}$

(2)
$$RDi$$
 (%) = 100 * ($\frac{\mu i - ci}{ci}$)

Table D.1: Internal Certified Reference Material

Analyte	Unit	Detection	Analysis	BAMAP-	BAMAP-	BAMAP-	BAMAP-	BAMAP-	Accepted	Accuracy
Symbol	Symbol	Limit	Method	01	01	01	01	01	Values	Accuracy
SiO ₂	%	0.01	FUS-ICP	48.42	48.17	48.27	48.16	49.4	-	-
Al_2O_3	%	0.01	FUS-ICP	14.84	15.31	15.16	15.74	15.18	15.24	0.00
Fe ₂ O ₃	%	0.01	FUS-ICP	12.02	12.5	12.15	12.63	11.98	12.34	-0.03
MnO	%	0.001	FUS-ICP	0.153	0.157	0.151	0.155	0.156	0.16	-0.18
MgO	%	0.01	FUS-ICP	8.08	8.16	7.8	7.8	8.08	8.18	-0.12
CaO	%	0.01	FUS-ICP	8.24	8.3	8.25	8.32	8.5	8.33	0.00
Na ₂ O	%	0.01	FUS-ICP	3.8	3.79	3.79	3.76	3.77	4	-0.27
K ₂ O	%	0.01	FUS-ICP	1.57	1.51	1.47	1.47	1.5	1.57	-0.21
TiO ₂	%	0.001	FUS-ICP	2.236	2.306	2.329	2.44	2.339	2.31	0.04
P ₂ O ₅	%	0.01	FUS-ICP	0.44	0.47	0.52	0.5	0.51	0.45	0.42
LOI	%		FUS-ICP	-0.33	-0.4	-0.11	-0.35	-0.49	_	_
Total	%	0.01	FUS-ICP	99.48	100.3	99.78	100.6	100.9	_	_
Но	ppb	5	CV-FIMS	< 5	< 5	< 5	< 5	< 5	_	_
Sc	nnm	1	FUS-ICP	19	18	18	18	18	20.1	-0.47
Be	nnm	1	FUS-ICP	2	2	2	2	2		_
V	nnm	5	FUS-ICP	217	221	223	230	234	216	0.21
Cr	nnm	20	FUS-MS	270	221	250	250	250		-
	ppin	1	FUS-MS	48	48	46	43	44	40	_0.33
Ni	ppm	20	FUS MS	100	190	100	170	180	197	_0.33
	ррш	20	FUS-MS	50	50	50	50	50	10/	-0.13
75	ppin	20	FUS MC	110	110	110	120	110	170	-0.01
Zn	ррш	30	FUS-MS	22	22	22	21	21	178	-1.85
Ga	ppm	1	FUS-MS	22	22	1.4	21	21	22	-0.09
Ge	ppm	0.5	FUS-MS	1	0.9	1.4	1.2	1.4	_	_
As	ppm	5	FUS-MS	< 5	< 5	< 5	< 5	< 5	-	-
Rb	ppm	1	FUS-MS	21	21	20	20	19	26.1	-1.13
Sr	ppm	2	FUS-ICP	621	620	627	622	617	<450	-
Y	ppm	0.5	FUS-MS	18.9	19.1	16.5	16.8	16.9	21.3	-0.86
Zr	ppm	1	FUS-ICP	165	168	170	169	170	178	-0.27
Nb	ppm	0.2	FUS-MS	24.2	26	23.4	23.5	24.4	31.13	-1.10
Mo	ppm	2	FUS-MS	< 2	2	< 2	2	2	3	-
Ag	ppm	0.5	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	-	-
In	ppm	0.1	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	-
Sn	ppm	1	FUS-MS	1	1	1	2	2	1.8	-1.11
Sb	ppm	0.2	FUS-MS	< 0.2	< 0.2	< 0.2	0.4	0.5	-	-
Cs	ppm	0.1	FUS-MS	0.3	0.3	0.3	0.3	0.3	0.37	-0.95
Ba	ppm	3	FUS-ICP	301	296	294	292	297	399	-1.29
La	ppm	0.05	FUS-MS	24	24.5	23.5	22.9	22.8	25.2	-0.33
Ce	ppm	0.05	FUS-MS	48.8	50	47.4	45.9	45.9	47.7	-0.01
Pr	ppm	0.01	FUS-MS	5.85	5.88	5.68	5.51	5.57	6.78	-0.80
Nd	ppm	0.05	FUS-MS	24.7	25.4	23.9	23.3	23.2	26	-0.37
Sm	ppm	0.01	FUS-MS	5.66	5.71	5.27	5.31	5.24	5.77	-0.29
Eu	ppm	0.005	FUS-MS	1.95	2.01	1.8	1.77	1.81	1.95	-0.21
Gd	ppm	0.01	FUS-MS	5.16	5.77	4.95	4.55	4.73	5.25	-0.21
Tb	ppm	0.01	FUS-MS	0.73	0.8	0.71	0.71	0.75	0.81	-0.43
Dy	ppm	0.01	FUS-MS	3.95	4.26	3.8	3.85	3.86	4.37	-0.49
Но	ppm	0.01	FUS-MS	0.71	0.74	0.66	0.66	0.67	0.85	-0.95
Er	ppm	0.01	FUS-MS	1.72	1.84	1.73	1.72	1.65	2.09	-0.86
Tm	ppm	0.005	FUS-MS	0.219	0.258	0.225	0.23	0.212	0.27	-0.76
Yb	ppm	0.01	FUS-MS	1.3	1.55	1.33	1.34	1.24	1.41	-0.21
Lu	ppm	0.002	FUS-MS	0.197	0.215	0.19	0.185	0.189	0.23	-0.76
Hf	ppm	0.1	FUS-MS	3.7	3.9	2.9	3	3	4.5	-1.33
Та	ppm	0.01	FUS-MS	1.64	1.77	1.68	1.62	1.66	2	-0.82
W	ppm	0.5	FUS-MS	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.39	-
 Т1	ppm	0.05	FUS-MS	< 0.05	0.06	< 0.05	0.12	0.08	<0.3	-
Ph	nnm	5	FUS-MS	< 5	< 5	< 5	< 5	< 5	3.1	_
Ri	nnm	0.1	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	_	_
Th	npm	0.05	FUS-MS	2.48	2.47	2.32	2.57	2.57	2.91	-0 74
II	nnm	0.03	FUS-MS	0.6	0.67	0.61	0.71	0.7	0.77	_0.73
0	Phu Phu	0.01	100-100	0.0	0.07	0.01	0.71	0.7	0.77	0.75

Appendix D.1 Internal Certified Reference Material (BAMAP-01)

Analyte	Unit Symbol	Detection	Analysis Method	GSP-2	GSP-2	GSP-2	GSP-2	GSP-2	Accepted	Accuracy
SiO.	3y11001	0.01	FUS-ICP	66 51	66.76	64.83	65.01	66.2	- values	_
Al-O-	%	0.01	FUS-ICP	15.02	14.96	15 39	15.72	14.92	14.9	0.10
Fe ₂ O ₂	%	0.01	FUS-ICP	4 86	4 97	5.01	5.17	4.89	49	0.08
MnO	%	0.001	FUS-ICP	0.042	0.042	0.042	0.041	0.043	-	-
MgO	%	0.01	FUS-ICP	0.94	0.93	0.91	0.92	0.93	0.96	-0.18
CaO	%	0.01	FUS-ICP	2.09	2.09	2.11	2.08	2.13	2.1	0.00
Na ₂ O	%	0.01	FUS-ICP	2.75	2.67	2.72	2.7	2.72	2.78	-0.12
K ₂ O	%	0.01	FUS-ICP	5.64	5.35	5.36	5.24	5.31	5.38	0.00
TiO ₂	%	0.001	FUS-ICP	0.678	0.663	0.708	0.736	0.69	0.66	0.27
P_2O_5	%	0.01	FUS-ICP	0.27	0.28	0.29	0.28	0.29	0.29	-0.14
LOI	%		FUS-ICP	1.11	0.96	1.24	1.13	0.94	-	_
Total	%	0.01	FUS-ICP	99.91	99.67	98.62	99.92	99.06	-	_
Hg	ppb	5	CV-FIMS	17	15	16	15	16	-	-
Sc	ppm	1	FUS-ICP	7	6	7	7	6	6.3	0.24
Be	ppm	1	FUS-ICP	2	2	2	2	2	-	-
V	ppm	5	FUS-ICP	57	56	60	61	62	52	0.69
Cr	ppm	20	FUS-MS	30	30	20	30	30	20	2.00
Co	ppm	1	FUS-MS	7	7	7	7	6	7.3	-0.34
N1	ppm	20	FUS-MS	< 20	< 20	< 20	< 20	20	17	-
Cu Zn	ppm	10	FUS-MS	40	40	40	40	40	43	-0.35
Ga	ppin	30	FUS MS	22	23	24	23	23	22	-0.42
Ge	ppin	0.5	FUS-MS	1	11	1.8	1.6	17	-	-
As	ppm	5	FUS-MS	< 5	< 5	< 5	< 5	< 5	_	_
Rb	ppm	1	FUS-MS	237	239	234	231	228	245	-0.23
Sr	ppm	2	FUS-ICP	251	240	248	249	241	240	0.12
Y	ppm	0.5	FUS-MS	25.1	26.2	23.2	23.6	23.2	28	-0.67
Zr	ppm	1	FUS-ICP	552	544	566	569	567	550	0.09
Nb	ppm	0.2	FUS-MS	17.6	19.3	19.3	20.6	19.8	27	-1.42
Mo	ppm	2	FUS-MS	2	2	2	3	3	-	-
Ag	ppm	0.5	FUS-MS	1.5	1.6	0.9	1.4	1.1	-	-
In	ppm	0.1	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	-	_
Sn	ppm	1	FUS-MS	6	6	6	7	9	-	-
Sb	ppm	0.2	FUS-MS	< 0.2	< 0.2	0.2	0.7	0.6	-	-
Cs	ppm	0.1	FUS-MS	1.1	1	1.1	1.1	1	6.3	-4.16
Ва	ppm	3	FUS-ICP	1425	1372	1354	1324	1340	1340	0.09
La	ppm	0.05	FUS-MS	190	193	185	181	182	180	0.17
Dr Dr	ppin	0.03	FUS-MS	431 55.4	55.1	53.1	51.9	52.3	410	- 0.33
Nd	ppin	0.01	FUS-MS	203	202	199	195	195	200	-0.03
Sm	ppm	0.03	FUS-MS	26.1	26.6	25.3	24.7	24.5	200	-0.29
Eu	ppm	0.005	FUS-MS	2.32	2.38	2.15	2.2	2.21	2.3	-0.10
Gd	ppm	0.01	FUS-MS	12.1	13.2	11.7	10.4	10.4	-	_
Tb	ppm	0.01	FUS-MS	1.21	1.28	1.27	1.13	1.16	-	-
Dy	ppm	0.01	FUS-MS	5.49	5.63	5.45	5.34	5.22	-	-
Но	ppm	0.01	FUS-MS	0.88	0.95	0.86	0.87	0.88	-	-
Er	ppm	0.01	FUS-MS	2.3	2.45	2.23	2.3	2.25	-	-
Tm	ppm	0.005	FUS-MS	0.296	0.303	0.283	0.277	0.274	-	-
Yb	ppm	0.01	FUS-MS	1.61	1.65	1.58	1.57	1.56	1.6	-0.02
Lu	ppm	0.002	FUS-MS	0.218	0.228	0.233	0.24	0.234		_
Hf	ppm	0.1	FUS-MS	13	14.1	10.6	10.8	10.7	-	-
Ta	ppm	0.01	FUS-MS	0.74	0.85	0.78	0.84	0.84		_
W	ppm	0.5	FUS-MS	< 0.5	< 0.5	< 0.5	1.8	< 0.5	-	-
11 DL	ppm	0.05	FUS-MS	1.06	1.28	0.91	1.06	0.99	- 42	- 1.26
PD D:	ppm) 0.1	FUS-MS	51	>>	28	50	51	42	-1.30
Th	ppin	0.1	FUS-MS	102	102	< 0.105.9	105	105	105	
II	ppin	0.03	FUS-MS	2 3 2	2 42	2 24	2 54	2 56	2.4	-0.14
0	Phu	0.01	1.02-1413	2.32	∠.≒∠	2.24	2.34	2.50	∠.+	0.05

Appendix D.1: Internal Certified Reference Material (GSP-2)

Table D.2: Duplicates

Appendix D.2 Duplicates

Analyte Symbol	Unit Symbol	LOD	LOI	Analysis Method
SiO2	%	0.01	0.03	FUS-ICP
Al2O3	%	0.01	0.03	FUS-ICP
Fe2O3(T)	%	0.01	0.03	FUS-ICP
MnO	%	0.00	0.00	FUS-ICP
MgO	%	0.01	0.03	FUS-ICP
CaO	%	0.01	0.03	FUS-ICP
Na2O	%	0.01	0.03	FUS-ICP
K2O	%	0.01	0.03	FUS-ICP
TiO2	%	0.00	0.00	FUS-ICP
P205	%	0.01	0.03	FUS-ICP
LOI Tetel	%0 0/	0.01	0.00	FUS-ICP
1 otal	%0	0.01	0.03	FUS-ICP
Hg	рро	5.00	10.50	CV-FINIS
Bo	ppm	1.00	2.30	FUS-ICP
De V	ppin	5.00	5.50	FUS-ICP
V Cr	ppin	20.00	66.00	FUS MS
	ppin	1.00	3 30	FUS-MS
Ni	ppin	20.00	66.00	FUS-MS
Cu	ppm	10.00	33.00	FUS-MS
Zn	ppm	30.00	99.00	FUS-MS
Ga	ppm	1 00	3 30	FUS-MS
Ge	ppm	0.50	1.65	FUS-MS
As	ppm	5.00	16.50	FUS-MS
Rb	ppm	1.00	3.30	FUS-MS
Sr	ppm	2.00	6.60	FUS-ICP
Y	ppm	0.50	1.65	FUS-MS
Zr	ppm	1.00	3.30	FUS-ICP
Nb	ppm	0.20	0.66	FUS-MS
Мо	ppm	2.00	6.60	FUS-MS
Ag	ppm	0.50	1.65	FUS-MS
In	ppm	0.10	0.33	FUS-MS
Sn	ppm	1.00	3.30	FUS-MS
Sb	ppm	0.20	0.66	FUS-MS
Cs	ppm	0.10	0.33	FUS-MS
Ba	ppm	3.00	9.90	FUS-ICP
La	ppm	0.05	0.17	FUS-MS
Ce	ppm	0.05	0.17	FUS-MS
Pr	ppm	0.01	0.03	FUS-MS
Nd	ppm	0.05	0.17	FUS-MS
Sm	ppm	0.01	0.03	FUS-MS
Eu	ppm	0.01	0.02	FUS-MS
Gd	ppm	0.01	0.03	FUS-MS
1b D	ppm	0.01	0.03	FUS-MS
Dy Ua	ppm	0.01	0.03	FUS-MS
П0	ррш	0.01	0.03	FUS-MS
Er Tm	ррш	0.01	0.03	FUS-MS
1 III Vh	ppm	0.01	0.02	LIC WC
10 11	ppill	0.01	0.03	FUS MC
Lu Цf	ppill	0.00	0.01	FUS MC
Ta	npm	0.10	0.03	FUS-MS
W	nnm	0.50	1.65	FUS-MS
T1	nnm	0.05	0.17	FUS-MS
Ph	nnm	5.00	16.50	FUS-MS
Bi	ppm	0.10	0.33	FUS-MS
Th	ppm	0.05	0.17	FUS-MS
U	ppm	0.01	0.03	FUS-MS
	1 PP***	·		

Appen	dix D.2		25419			25422			STAN-2	
Analyte Symbol	Unit Symbol	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)
SiO ₂	%	—	—	—	43.45	43.98	-1.21	_	-	-
Al ₂ O ₃	%	_	-	_	19.73	19.37	1.86	-	_	-
Fe ₂ O ₃	%	-	-	—	11.61	11.32	2.56	_	_	-
MnO	%	—	-	-	0.129	0.123	4.88	_	-	_
MgO	%	—	—	—	8.1	8.08	0.25	_	-	—
CaO	%	_	_	-	2.72	2.7	0.74	_	_	_
Na ₂ O	%	_	_	-	3.22	3.17	1.58	_	_	_
K ₂ O	%	—	—	—	1.93	1.95	-1.03	-	-	—
TiO ₂	%	—	_	-	0.986	0.984	0.20	-	_	_
P_2O_5	%	-	-	-	0.02	0.04	-50.00	-	-	-
LOI	%	_	_	-	8.48	8.48	0.00	_	_	_
Total	%	—	-	-	100.4	100.2	0.20	_	-	—
Hg	ppb	< 5	9	-	_	_	_	< 5	< 5	_
Sc	ppm	—	—	_	35	36	-2.78	_	_	_
Be	ppm	_	_	_	< 1	1	_	_	_	_
V	ppm	_	_	_	278	282	-1.42	_	_	_
Cr	ppm	_	_	_	110	110	0.00		_	_
Co	ppm	_	_	—	44	43	2.33	_	_	_
Ni	ppm		_	_	60	60	0.00	_	_	
Cu	ppm	—	-	-	30	30	0.00	_	—	—
Zn	ppm	-	-	_	100	100	0.00	_	-	_
Ga	ppm	—	-	—	18	19	-5.26	-	_	—
Ge	ppm	—	—	—	0.9	1	-10.00	-	-	_
As	ppm	—	—	—	55	55	0.00	-	-	—
Rb	ppm	—	—	—	31	31	0.00	-	-	—
Sr	ppm	_	_	-	58	56	3.57	-	_	_
Y	ppm	_	_	-	16.8	14.8	13.51	_	_	_
Zr	ppm	_	_	-	64	64	0.00	_	_	_
Nb	ppm	-	-	-	0.3	0.3	0.00	_	_	_
Mo	ppm	—	-	-	< 2	< 2	—	_	_	—
Ag	ppm	—	-	-	< 0.5	< 0.5	—	_	_	—
In	ppm	_	_	-	< 0.1	< 0.1	_	_	_	_
Sn	ppm	_	_	-	< 1	< 1	-	_	_	_
Sb	ppm	_	_	-	0.5	0.5	0.00	_	_	_
Cs	ppm	_	_	-	0.2	0.2	0.00	_	_	_
Ba	ppm	—	-	_	347	353	-1.70	_	_	—
La	ppm	_	_	_	4.53	4.25	6.59	_	_	_
Ce	ppm	_	_	_	10.7	10.3	3.88	_	_	_
Pr N 1	ppm	—	—	—	1.42	1.39	2.16	—	—	—
INd Sur	ppm		_	_	/.10	0.85	4.55			
5m Ev	ppm			_	2.21	2.07	0./0			
EU	ppm			_	0.082	0.042	0.23			
Ua Th	ppm	_			2.8 0.52	2.01	/.28 8.22			_
	ppin	_		_	2 11	2.05	0.33			_
Но	ppm	_	_	_	0.72	0.62	14.79			_
Fr	ppill	_	_	_	2.12	1.05	13.30			_
Tm	ppin	_	_	_	0 317	0.201	8 02			_
Vh	ppin	_	_	_	2.16	1 00	8.55 8.54			_
Iu	ppm	_	_	_	0 342	0 321	6.54			_
Hf	nnm	_	_	_	1 4	1 4	0.04			_
Тя	nnm	_	_	_	0.11	0.1	10.00			_
W	nnm	_	_	_	< 0.5	< 0.1				_
T1	pnm	_	_	_	0.09	0.06	50.00		_	_
Ph	nnm	_	_	_	< 5	< 5	-	_	_	_
Bi	nnm	_	_	_	< 0.1	< 0.1	_	_	_	_
Th	ppm	_	_	_	1.19	1.16	2.59	_	_	_
U	ppm	-	—	_	0.59	0.57	3.51	_	_	_

Appen	dix D.2		14469			14474			14516	
Analyte Symbol	Unit Symbol	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)
SiO ₂	%	39.85	41.47	-3.91	80.18	79.5	0.86	-	-	-
Al_2O_3	%	19.14	18.87	1.43	7.35	7.62	-3.54	-	-	-
Fe ₂ O ₃	%	12.84	12.79	0.39	4.27	4.42	-3.39	-	-	-
MnO	%	0.058	0.059	-1.69	0.031	0.032	-3.13	-	-	-
MgO	%	14.77	14.64	0.89	1.58	1.6	-1.25	-	-	-
CaO	%	0.2	0.21	-4.76	0.37	0.37	0.00	-	-	-
Na ₂ O	%	2.63	2.74	-4.01	0.51	0.51	0.00	_	_	_
K ₂ O	%	0.13	0.12	8.33	2.13	2.15	-0.93	-	-	-
TiO ₂	%	0.837	0.857	-2.33	0.282	0.29	-2.76	-	-	-
P_2O_5	%	0.08	0.1	-20.00	0.03	< 0.01	-	-	-	-
LOI	%	8.34	8.25	1.09	2.47	2.47	0.00	-	-	-
Total	%	98.89	100.1	-1.21	99.19	98.97	0.22	_	-	-
Hg	ppb	< 5	< 5	-	-	-	-	< 5	< 5	-
Sc	ppm	24	25	-4.00	8	8	0.00	-	-	-
Be	ppm	< 1	< 1	-	1	1	0.00	_	-	_
V	ppm	315	316	-0.32	185	186	-0.54	-	-	_
Cr	ppm	30	40	-25.00	< 20	< 20	-	-	-	-
Co	ppm	33	33	0.00	4	4	0.00	-	-	-
Ni	ppm	30	30	0.00	< 20	< 20	-	-	-	-
Cu	ppm	20	20	0.00	10	10	0.00	_	-	_
Zn	ppm	120	120	0.00	100	100	0.00	_	-	-
Ga	ppm	19	18	2.26	9	9	0.00		_	_
Ge	ppm	1.1	0.9	22.22	0.6	0.7	-14.29		_	_
AS Dh	ppm	40	30	0.00	24	24	9.09			
KU Sr	ppin	16	16	0.00	11	10	10.00	_	_	_
V	npm	22	21.7	1.38	21.7	21.6	0.46	_	_	_
Zr	ppm	92	95	-3.16	76	70	8.57	_	_	_
Nb	ppm	1.8	1.8	0.00	0.3	< 0.2	-	_	_	_
Мо	ppm	3	3	0.00	4	4	0.00	_	-	_
Ag	ppm	< 0.5	< 0.5	_	< 0.5	< 0.5	_	_	_	_
In	ppm	< 0.1	< 0.1	-	< 0.1	< 0.1	-	-	-	-
Sn	ppm	< 1	< 1	-	< 1	< 1	-	-	-	_
Sb	ppm	0.6	1.1	-45.45	1.3	1.2	8.33	-	-	-
Cs	ppm	< 0.1	< 0.1	-	0.3	0.3	0.00	-	-	-
Ba	ppm	38	41	-7.32	331	332	-0.30	-	-	_
La	ppm	4.79	4.77	0.42	12.8	13.4	-4.48	-	-	-
Ce	ppm	10.8	10.6	1.89	28.8	29.7	-3.03	_	-	_
Pr	ppm	1.45	1.39	4.32	3.73	3.8	-1.84	-	-	-
Nd	ppm	6.84	6.46	5.88	17	16.8	1.19	_	-	_
Sm	ppm	2.1	1.88	11.70	4.21	4.17	0.96	-	-	-
Eu	ppm	0.754	0.694	8.65	1.39	1.39	0.00	_	-	—
Gd	ppm	3.15	2.87	9.76	4.32	4.3	0.47	-	-	_
10	ppm	0.61	0.57	/.02	0.72	0.71	1.41	_	_	_
Dy Ua	ppm	4.03	5.79	0.33	4.55	4.32	0.23		_	_
П0 Er	ppm	2.82	2.61	5.95 8.05	0.88	0.88	1.87			
Er Tm	ppm prm	2.82	2.01	8.03 6.75	2.72	2.0/	1.8/			
T III Vh	ppin	2 02	28	0.75 4.64	3 02	2 05	2.04	_	_	_
IU	ppin	0.405	0.48	3.13	0.488	0.478	2.37	_	_	_
Hf	npm	2	2	0.00	14	13	7.69	_	_	_
Та	ppm	0.16	0.19	-15.79	0.16	0.14	14.29	_	_	_
W	ppm	1.6	4.3	-62.79	< 0.5	< 0.5	-	_	_	_
Tl	ppm	< 0.05	< 0.05	-	< 0.05	< 0.05	_	_	_	_
Pb	ppm	< 5	< 5	-	30	33	-9.09	-	_	-
Bi	ppm	< 0.1	< 0.1	-	< 0.1	< 0.1	_	-	-	-
Th	ppm	2.4	2.77	-13.36	2.43	2.44	-0.41	-	-	-
U	ppm	1.37	1.62	-15.43	1.87	1.84	1.63	_	_	_

Appen	dix D.2		14540			14547		S	TANDARD	-2
Analyte Symbol	Unit Symbol	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)
SiO ₂	%	66.83	65.71	1.70	61.09	61.51	-0.68	_	-	-
Al ₂ O ₃	%	14.73	14.76	-0.20	14.87	14.59	1.92	-	-	-
Fe ₂ O ₃	%	5.24	5.26	-0.38	5.64	5.55	1.62	-	-	-
MnO	%	0.041	0.042	-2.38	0.434	0.436	-0.46	-	-	-
MgO	%	2.89	2.93	-1.37	3.89	4.03	-3.47	-	-	-
CaO	%	0.48	0.49	-2.04	2.41	2.44	-1.23	-	-	-
Na ₂ O	%	4.86	4.84	0.41	2.56	2.64	-3.03	_	-	_
K ₂ O	%	1.19	1.2	-0.83	1.49	1.59	-6.29	-	-	-
TiO ₂	%	0.474	0.466	1.72	0.566	0.539	5.01	-	-	-
P_2O_5	%	0.05	0.04	25.00	0.13	0.11	18.18	I	_	1
LOI	%	3.37	3.37	0.00	7.07	7.1	-0.42	-	-	-
Total	%	100.1	99.11	1.00	100.2	100.5	-0.30	_	-	-
Hg	ppb	-	-	-	12	12	0.00	< 5	< 5	-
Sc	ppm	15	15	0.00	11	13	-15.38	-	-	-
Be	ppm	1	1	0.00	< 1	< 1	-	-	-	-
V	ppm	24	23	4.35	91	94	-3.19	_	-	-
Cr	ppm	< 20	< 20	-	< 20	< 20	-	-	_	-
Co	ppm	2	2	0.00	10	11	-9.09	-	-	-
N1	ppm	< 20	< 20	-	< 20	< 20	-	_	-	_
Cu	ppm	< 10	< 10	-	30	30	0.00	_	_	_
Zn	ppm	/0	/0	0.00	400	390	2.56	_	_	_
Ga	ppm	10	10	0.00	14	14	0.00	_	_	_
Δe	ppin	12	12	0.00	21	23	-8 70		_	
Rh	ppm	21	21	0.00	35	35	-0.70		_	
Sr	nnm	42	42	0.00	39	40	-2 50		_	
Y	nnm	51.6	51.4	0.00	19.9	20	-0.50	_	_	_
Zr	ppm	232	209	11.00	85	95	-10.53	_	-	_
Nb	ppm	1.1	0.9	22.22	2.3	2	15.00	_	-	_
Мо	ppm	4	4	0.00	< 2	< 2	-	-	-	-
Ag	ppm	< 0.5	< 0.5	_	< 0.5	< 0.5	-	_	-	_
In	ppm	0.1	0.1	0.00	0.2	0.1	100.00	_	-	-
Sn	ppm	1	< 1	—	< 1	< 1	_	-	-	_
Sb	ppm	1.1	0.9	22.22	1.2	1.3	-7.69	-	-	-
Cs	ppm	0.2	0.2	0.00	0.3	0.3	0.00	-	-	-
Ba	ppm	482	487	-1.03	201	212	-5.19	-	-	-
La	ppm	18.6	18.4	1.09	8.46	8.15	3.80	-	-	-
Ce	ppm	46.4	46.5	-0.22	18	17.5	2.86	-	-	-
Pr	ppm	6.27	6.29	-0.32	2.29	2.13	7.51	-	-	-
Nd	ppm	29.2	29.7	-1.68	9.51	9.25	2.81	-	-	-
Sm Ev	ppm	/.59	/./8	-2.44	2.63	2.40	0.91		_	
Eu Cd	ppm	1./1	1./3	-1.10	0./94	0./84	1.28		-	
- Ga Th	ppm	0.01	0.07	-0./4	2.81	2.83	-1.40	_	_	_
Dv	ppin	0.03	9.84	0.91	3.41	3 30	0.59	_	_	_
Но	npm	2.11	2.15	-1.86	0.74	0.75	-1.33	_	_	_
Er	nnm	6.5	6.67	-2.55	2 22	2.28	-2.63	_	_	_
Tm	ppm	1.02	1.03	-0.97	0.358	0.365	-1.92	_	_	_
Yb	ppm	7	6.83	2.49	2.51	2.61	-3.83	_	_	_
Lu	ppm	1.1	1.11	-0.90	0.418	0.428	-2.34	_	_	_
Hf	ppm	4.5	4.1	9.76	1.8	1.9	-5.26	-	-	-
Та	ppm	0.2	0.17	17.65	0.22	0.2	10.00	-	-	-
W	ppm	< 0.5	< 0.5	-	1.1	3.8	-71.05	-	-	-
Tl	ppm	0.22	0.24	-8.33	0.24	0.19	26.32	-	-	-
Pb	ppm	6	6	0.00	19	12	58.33	_	—	_
Bi	ppm	< 0.1	< 0.1	_	< 0.1	< 0.1		_	_	
Th	ppm	4.32	4.41	-2.04	2.45	2.43	0.82	_	_	_
U	ppm	1.12	1.18	-5.08	0.7	0.77	-9.09		_	_

Appen	dix D.2		14500			32005			14498	
Analyte	Unit Sumb al	Original	Duplicate	Prec (CV-	Original	Duplicate	Prec (CV-	Original	Duplicate	Prec (CV-
SiO ₂	Symbol %	64.86	64.68	0.28	49.19	48.39	av %)	_	_	av %) _
Al ₂ O ₂	%	13.58	13.44	1.04	14.41	14.77	-2.44	_	_	_
Fe ₂ O ₂	%	8.27	8.21	0.73	7.01	7.08	-0.99	_	_	_
MnO	%	0.053	0.054	-1.85	0.486	0.492	-1.22	_	_	_
MgO	%	1.48	1.47	0.68	11.02	11.17	-1.34	_	_	_
CaO	%	0.43	0.43	0.00	4.15	4.2	-1.19	-	_	-
Na ₂ O	%	0.39	0.39	0.00	0.44	0.44	0.00	-	-	-
K ₂ O	%	3.29	3.25	1.23	1.28	1.28	0.00	_	_	_
TiO ₂	%	0.562	0.557	0.90	0.593	0.587	1.02	_	_	-
P2O5	%	0.06	0.08	-25.00	0.04	0.06	-33.33	-	_	_
LOI	%	6.18	6.19	-0.16	10.85	10.85	0.00	_	_	_
Total	%	99.17	98.76	0.42	99.46	99.31	0.15	-	-	-
Hg	ppb	81	83	-2.41	_	_	_	< 5	< 5	-
Sc	ppm	24	23	4.35	21	21	0.00	-	-	-
Be	ppm	< 1	< 1	-	< 1	< 1	-	-	-	-
V	ppm	153	159	-3.77	148	151	-1.99	-	-	-
Cr	ppm	60	50	20.00	30	30	0.00	-	I	_
Co	ppm	19	19	0.00	16	16	0.00	-	-	-
Ni	ppm	< 20	20	-	< 20	< 20	-	-	-	-
Cu	ppm	40	40	0.00	20	20	0.00	-	-	-
Zn	ppm	600	620	-3.23	400	410	-2.44	-	-	-
Ga	ppm	13	13	0.00	13	13	0.00	-	-	-
Ge	ppm	0.8	0.9	-11.11	0.6	0.6	0.00	_	_	-
As	ppm	160	228	-29.82	23	20	-8.62	_	_	_
KD Su	ppm	08 17	17	0.00	28	29	-3.45	_		_
	ppin	20.3	10.0	2.01	15.3	15.5	1.20			
1 7r	ppm	43	40	7.50	54	51	5.88	_	_	_
Nh	nnm	0.5	0.4	25.00	0.4	0.4	0.00	_	_	_
Mo	ppm	3	3	0.00	< 2	< 2	-	_	_	_
Ag	ppm	< 0.5	< 0.5	-	< 0.5	< 0.5	-	-	-	_
In	ppm	0.1	< 0.1	-	< 0.1	< 0.1	-	-	-	-
Sn	ppm	1	2	-50.00	2	2	0.00	_	_	_
Sb	ppm	3.4	3.9	-12.82	1.5	1.4	7.14	-	-	-
Cs	ppm	0.5	0.5	0.00	0.3	0.3	0.00	-	1	-
Ba	ppm	494	496	-0.40	168	170	-1.18	-	-	-
La	ppm	4	4.06	-1.48	4.06	4.21	-3.56	-	_	_
Ce	ppm	8.96	9.17	-2.29	10.2	9.97	2.31	-	-	-
Pr	ppm	1.21	1.19	1.68	1.47	1.46	0.68	-	-	-
Nd	ppm	6	5.65	6.19	7.27	7.57	-3.96	_	_	_
Sm E.,	ppm	1.98	0.220	0.00	2.14	2.28	-0.14	_		
Gd	ppin	2.525	0.339	-4.72	2 34	0.522 2 42	_3 70	_	_	_
Th	ppm	0.53	0.52	1 92	0.42	0.43	-3.70			
Dv	ppm	3.6	3.47	3.75	2.73	2.72	0.37	_	_	_
Но	ppm	0.79	0.79	0.00	0.59	0.6	-1.67	_	-	-
Er	ppm	2.33	2.42	-3.72	1.77	1.82	-2.75	_	_	-
Tm	ppm	0.366	0.369	-0.81	0.287	0.283	1.41	-	-	-
Yb	ppm	2.45	2.39	2.51	1.99	1.9	4.74	_	_	_
Lu	ppm	0.405	0.373	8.58	0.328	0.311	5.47	-	-	-
Hf	ppm	1	0.9	11.11	1.2	1.1	9.09	_	-	-
Ta	ppm	0.09	0.08	12.50	0.1	0.09	11.11	_	_	_
W	ppm	2	2.1	-4.76	1.6	1.6	0.00	_	_	
Tl	ppm	0.98	1.13	-13.27	0.18	0.13	38.46		_	
Pb	ppm	297	380	-21.84	181	196	-7.65	_	-	_
Bi	ppm	0.3	0.4	-25.00	< 0.1	< 0.1	-	_	_	_
Th	ppm	1.17	1.18	-0.85	0.8	0.79	1.27	_	_	
U	ppm	0.9	0.91	-1.10	0.34	0.35	-2.86	-	-	—

Appen	dix D.2		32002			32152			14769	
Analyte Symbol	Unit Symbol	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)
SiO ₂	%	61.49	61.18	0.51	-	-	-	66.39	65.74	0.70
Al ₂ O ₃	%	15.24	14.71	3.60	-	-	-	15.12	14.74	1.80
Fe ₂ O ₃	%	5.03	4.86	3.50	-	-	-	4.64	4.57	1.07
MnO	%	0.162	0.156	3.85	-	-	_	0.06	0.06	1.21
MgO	%	1.57	1.52	3.29	-	-	_	3.36	3.31	1.06
CaO	%	3.5	3.44	1.74	_	_	_	1.01	1.00	0.70
Na ₂ O	%	4.11	4.04	1.73	-	-	-	2.98	2.93	1.20
K ₂ O	%	1.69	1.66	1.81	-	-	-	2.74	2.68	1.57
TiO ₂	%	1.077	1.031	4.46	-	-	-	0.69	0.67	1.56
P ₂ O ₅	%	0.36	0.37	-2.70	-	-	-	0.14	0.14	0.00
LOI	%	6.74	6.74	0.00	-	-	-	3.68	3.68	0.00
Total	%	101	99.72	1.28	-	-	-	100.80	99.50	0.92
Hg	ppb	-	_	-	146.00	150.00	1.91		-	-
Sc	ppm	14	14	0.00	_	-	-	16.00	16.00	0.00
Be	ppm	2	2	0.00	-	-	-	2.00	1.00	47.14
V	ppm	83	82	1.22	-	_	_	28.00	27.00	2.57
Cr	ppm	< 20	< 20	-	-	-	-	< 20	< 20	-
Co	ppm	6	6	0.00	-	-	-	5.00	5.00	0.00
Ni	ppm	< 20	< 20	-	-	-	-	< 20	< 20	-
Cu	ppm	20	< 10	-	_	-	-	< 10	< 10	-
Zn	ppm	70	70	0.00	_	-	-	80.00	80.00	0.00
Ga	ppm	1/	17	0.00		_	_	17.00	17.00	0.00
Ge	ppm	1.1	1.2	-8.33		_	_	< 0.5	< 0.5	_
As	ppm	< 3	< 3	-			_	< 3	< 5	-
K0 Sr	ppm	40	40	0.00				48.00	48.00	1.42
V SI	ppin	20	28.0	4.32	_	_	_	52.80	49.00 54.40	2.11
7r	nnm	184	182	1 10	_	_	_	183.00	186.00	1.15
Nb	ppm	4.5	4.8	-6.25	_	_	_	2.50	2.70	5.44
Mo	ppm	< 2	< 2	-	_	_	_	2.00	< 2	-
Ag	ppm	< 0.5	< 0.5	-	_	-	-	< 0.5	< 0.5	_
In	ppm	< 0.1	< 0.1	_	-	-	-	< 0.1	< 0.1	_
Sn	ppm	1	1	0.00	-	-	-	1.00	< 1	-
Sb	ppm	2	1.9	5.26	-	-	-	0.50	< 0.2	-
Cs	ppm	0.4	0.4	0.00	-	-	-	0.30	0.30	0.00
Ba	ppm	572	563	1.60	-	-	-	458.00	451.00	1.09
La	ppm	23.9	23.7	0.84	-	-	-	17.80	17.40	1.61
Ce	ppm	49.5	48.5	2.06	-	-	-	42.90	41.50	2.35
Pr	ppm	5.79	5.72	1.22	_	-	-	5.69	5.55	1.76
Nd	ppm	24.7	23.8	3.78	-	-	-	25.80	25.70	0.27
Sm	ppm	5.67	5.46	3.85	-	_	_	6.93	7.09	1.61
Eu	ppm	1.55	1.53	1.31	-	-	-	1.99	2.02	1.06
Gd	ppm	5.26	5.38	-2.23	-	-	-	7.73	7.66	0.64
Tb	ppm	0.88	0.9	-2.22	_	_	_	1.37	1.42	2.53
Dy	ppm	5.46	5.38	1.49	-	-	-	8.97	9.31	2.63
Ho	ppm	1.11	1.11	0.00		_	_	1.88	1.97	3.31
Er	ppm	3.32	3.23	2.79	-	_	_	5.65	5.91	3.18
1 m VI-	ppm	0.484	0.469	3.20	_	-	-	0.87	0.91	3.11
rb L::	ppm	3.05	5.12 0.491	-2.24			_	3.90	0.09	2.24
Lu µғ	ppm	3.4	2.481	2.29				4.20	0.90	6.42
П	ppin	5.4 0.4	0.30	2.00	_	_	_	4.20	4.00	35 36
Ta W/	ppin	2.2	2.0	_17.05	_	_	_	< 0.00	< 0.10	
	ppm	0.32	0.29	10.34	_	_	_	0.37	0.3	14 78
Ph	ppm	8	8	0.00	_	_	_	11.00	13.00	11 70
Ri	npm	< 0.1	< 0.1	-	_	_	_	< 0.1	< 0.1	
Th	npm	6.58	6.43	2.33	_	_	_	4,59	4,79	3.02
U	ppm	2.23	2.34	-4.70	_	_	_	1.56	1.62	2.67
		2.25	2.2 1		L		1	1.00	1.02	2.07

Appen	dix D.2		STAN-2			31935			32178	3	
Analyte Symbol	Unit Symbol	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)	
SiO ₂	%	-	-	-	62.06	62.84	0.88				
Al_2O_3	%	-	-	-	13.52	13.78	1.35				
Fe ₂ O ₃	%	-	-	-	8.31	8.52	1.76				
MnO	%	-	-	-	0.30	0.31	2.53				
MgO	%	-	-	-	4.94	5.06	1.70				
CaO	%	-	-	-	0.90	0.93	2.32				
Na ₂ O	%	—	-	—	0.77	0.79	1.81				
K ₂ O	%	-	-	-	1.66	1.70	1.68				
TiO ₂	%	-	-	-	0.60	0.61	1.40				
P_2O_5	%	-	-	-	0.05	0.04	15.71				
LOI	%	-	-	-	5.90	5.90	0.00				
Total	%	-	-	-	99.01	100.50	1.06				
Hg	ppb	< 5	< 5	-	-	-	-	< 5	< 5		
Sc	ppm	-	_	-	21.00	21.00	0.00				
Be	ppm	-	-	-	< 1	< 1	-				
V	ppm	-	-	-	176.00	183.00	2.76				
Cr	ppm	-	-	-	50.00	60.00	12.86				
Со	ppm	-	-	-	17.00	17.00	0.00				
Ni	ppm	-	-	—	< 20	< 20	-				
Cu	ppm	-	-	—	40.00	40.00	0.00				
Zn	ppm	-	-	—	360.00	370.00	1.94				
Ga	ppm	-	-	_	13.00	13.00	0.00				
Ge	ppm	-	-	—	< 0.5	< 0.5	-				
As	ppm	-	-	-	74.00	76.00	1.89				
Rb	ppm	-	-	-	39.00	40.00	1.79				
Sr	ppm	-	-	-	18.00	19.00	3.82				
Y	ppm	-	-	-	19.10	19.60	1.83				
Zr	ppm	-	-	-	34.00	36.00	4.04				
Nb	ppm	-	-	-	< 0.2	< 0.2	-				
Mo	ppm	-	-	-	< 2	< 2	-				
Ag	ppm	-	-	-	< 0.5	< 0.5	-				
In	ppm	-	-	-	< 0.1	< 0.1	-				
Sn	ppm	-	_	-	< 1	< 1	-				
Sb	ppm	-	_	_	0.80	1.00	15.71				
Cs	ppm	-	-	-	0.30	0.30	0.00				
Ва	ppm	-	_	-	270.00	276.00	1.55				
La	ppm	_	-	_	2.92	2.92	0.00				
Ce D:	ppm	_	-	-	/.46	/.64	1.69				
PT NJ	ppm		-		5.25	1.14	3.1/				
Sm	ppm				3.33	1.09	6.24				
Fu	ppill	_	_	_	0.28	0.24	11.22				
Gd	ppill	_	_	_	2 42	2.24	10.80				
Th	npm	_	_	_	0.46	0.52	8.66				
Dv	ppm	_	_	_	3.26	3.46	4.21			1	
Но	nnm	_	_	_	0.67	0.71	4 10				
Er	ppm	_	_	_	1.93	2.08	5.29			1	
Tm	ppm	-	-	-	0.31	0.32	4.04				
Yb	ppm	-	_	-	2.09	2.23	4.58			1	
Lu	ppm	—	-	—	0.30	0.34	7.54				
Hf	ppm	—	-	—	0.90	1.00	7.44				
Та	ppm	-	-	-	< 0.01	< 0.01	-				
W	ppm	-	-	-	0.70	0.70	0.00				
Tl	ppm	-	-	-	0.33	0.30	6.73				
Pb	ppm	-	-	-	108.00	111.00	1.94				
Bi	ppm	-	-	-	< 0.1	< 0.1	-				
Th	ppm	_	-	-	0.41	0.42	1.70				
U	ppm	_	-	-	0.12	0.13	5.66				

Appen	dix D.2		32152			14769			STAN-2	
Analyte Symbol	Unit Symbol	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)
SiO ₂	%	-	-	-	66.39	65.74	0.70	-	-	-
Al_2O_3	%	-	-	-	15.12	14.74	1.80	-	-	-
Fe ₂ O ₃	%	_	1	-	4.64	4.57	1.07	I	_	-
MnO	%	-	-	-	0.06	0.06	1.21	-	-	-
MgO	%	-	-	-	3.36	3.31	1.06	-	-	-
CaO	%	_	-	-	1.01	1.00	0.70	_	-	-
Na ₂ O	%	-	-	-	2.98	2.93	1.20	-	-	-
K ₂ O	%	-	-	-	2.74	2.68	1.57	-	-	-
TiO ₂	%	-	-	-	0.69	0.67	1.56	-	-	-
P_2O_5	%	-	-	-	0.14	0.14	0.00	-	-	-
LOI	%	-	-	-	3.68	3.68	0.00	-	-	-
Total	%	_	_	-	100.80	99.50	0.92	_	-	-
Hg	ppb	146.00	150.00	1.91	-	-	-	< 5	< 5	-
Sc	ppm	-	-	-	16.00	16.00	0.00	_	-	-
Be	ppm	-	-	-	2.00	1.00	47.14	-	-	-
V	ppm	-	-	-	28.00	27.00	2.57	-	-	-
Cr	ppm	-	-	-	< 20	< 20	-	-	-	-
Co	ppm	-	-	-	5.00	5.00	0.00	-	-	-
Ni	ppm	-	-	-	< 20	< 20	-	-	-	-
Cu	ppm	-	-	-	< 10	< 10	-	-	-	-
Zn	ppm	_	1	-	80.00	80.00	0.00	-	-	-
Ga	ppm	-	_	-	17.00	17.00	0.00	-	-	-
Ge	ppm	-	-	-	< 0.5	< 0.5	-	_	-	-
As	ppm	-	-	-	< 5	< 5	-	-	-	-
Rb	ppm	-	-	-	48.00	48.00	0.00	_	-	-
Sr	ppm	-	-	-	50.00	49.00	1.43	-	-	-
Y	ppm	-	-	-	52.80	54.40	2.11	-	-	-
Zr	ppm	-	-	-	183.00	186.00	1.15	-	-	-
Nb	ppm	-	-	-	2.50	2.70	5.44	-	-	-
Mo	ppm	-	-	-	2.00	< 2	-	-	-	-
Ag	ppm	-	-	-	< 0.5	< 0.5	-	-	-	-
In	ppm	-	_	-	< 0.1	< 0.1	-	-	_	-
Sn	ppm	-	_	-	1.00	<1	-	-	_	-
Sb	ppm	_	-	-	0.50	< 0.2	-	_	-	-
Cs	ppm	_	-	-	0.30	0.30	0.00	_	-	-
Ва	ppm	-	-	-	458.00	451.00	1.09	_	-	-
La	ppm	-	-	-	17.80	17.40	1.61	-	-	-
Ce	ppm	-	_	-	42.90	41.50	2.35	-	_	_
PT NJ	ppm			_	3.09	25.20	1.70			
Sm	ppm				23.80 6.02	23.70	0.27			
- Sill En	ppin				1.00	2.09	1.01			
Eu Gd	ppin	_	_		1.99	2.02	0.64		_	
Th	ppill	_	_	_	1.75	1 42	2 53	_	_	_
Dv	npm			_	8.97	9.31	2.55		_	
Но	npm			_	1.88	1.97	3 31		_	_
Fr	npm			_	5.65	5.91	3.18		_	
Tm	npm	_	_	_	0.87	0.91	3.11	_	_	_
Yb	ppm	_	_	-	5.90	6.09	2.24	_	_	_
Lu	ppm	_	_	-	0.93	0.96	2.39	_	_	_
Hf	ppm	_	_	_	4.20	4.60	6.43	_	_	_
Ta	ppm	_	_	_	0.06	0.10	35.36	_	_	_
W	ppm	_	_	-	< 0.5	< 0.5	-	_	_	_
Tl	ppm	-	-	-	0.37	0.30	14.78	-	-	-
Pb	ppm	-	-	-	11.00	13.00	11.79	-	-	-
Bi	ppm	_	_	-	< 0.1	< 0.1	_	_	_	-
Th	ppm				4.59	4.79	3.02			_
U	ppm	-	-	-	1.56	1.62	2.67	-	-	-

Appen	dix D.2		31935			32178	
Analyte Symbol	Unit Symbol	Original	Duplicate	Prec (CV- av %)	Original	Duplicate	Prec (CV- av %)
SiO ₂	ppb	-	-	-	< 5	< 5	-
Al_2O_3	%	62.06	62.84	0.88	-	-	-
Fe ₂ O ₃	%	13.52	13.78	1.35	-	-	-
MnO	%	8.31	8.52	1.76	-	-	-
MgO	%	0.30	0.31	2.53	-	-	-
CaO	%	4.94	5.06	1.70	-	1	-
Na ₂ O	%	0.90	0.93	2.32	-	-	-
K ₂ O	%	0.77	0.79	1.81	-	-	-
TiO ₂	%	1.66	1.70	1.68	_	_	-
P ₂ O ₅	%	0.60	0.61	1.40	-	-	-
LOI	%	0.05	0.04	15.71	_	_	_
Total	%	5.90	5.90	0.00	_	_	_
Hg	%	99.01	100.50	1.06	_	_	_
Sc	ppm	21.00	21.00	0.00	_	_	_
Be	ppm	< 1	< 1	_	_	_	_
V	ppm	176.00	183.00	2.76	-	-	-
Cr	ppm	50.00	60.00	12.86	_	_	_
Со	ppm	17.00	17.00	0.00	-	-	-
Ni	ppm	< 20	< 20	-	_	-	-
Cu	ppm	40.00	40.00	0.00	_	-	-
Zn	ppm	360.00	370.00	1.94	_	_	_
Ga	ppm	13.00	13.00	0.00	_	-	-
Ge	ppm	< 0.5	< 0.5	-	-	-	-
As	ppm	74.00	76.00	1.89	-	-	-
Rb	ppm	39.00	40.00	1.79	-	-	-
Sr	ppm	18.00	19.00	3.82	-	-	-
Y	ppm	19.10	19.60	1.83	-	-	-
Zr	ppm	34.00	36.00	4.04	-	-	-
Nb	ppm	< 0.2	< 0.2	-	-	-	-
Mo	ppm	< 2	< 2	-	-	-	-
Ag	ppm	< 0.5	< 0.5	-	-	-	-
In	ppm	< 0.1	< 0.1	-	-	-	-
Sn	ppm	< 1	< 1	-	-	-	-
Sb	ppm	0.80	1.00	15.71	-	-	-
Cs	ppm	0.30	0.30	0.00	-	-	-
Ba	ppm	270.00	276.00	1.55	-	-	-
La	ppm	2.92	2.92	0.00	-	-	-
Ce	ppm	7.46	7.64	1.69	-	-	-
Pr	ppm	1.09	1.14	3.17	-	-	-
Nd	ppm	5.35	5.59	3.10	-	-	_
Sm	ppm	1.81	1.98	6.34	-	-	-
Eu	ppm	0.28	0.24	11.22	_		
Gd	ppm	2.42	2.82	10.80	-	-	-
Tb	ppm	0.46	0.52	8.66	-	-	-
Dy	ppm	3.26	3.46	4.21	_	_	_
Ho	ppm	0.67	0.71	4.10	-	-	-
Er	ppm	1.93	2.08	5.29			
I M VL	ppm	0.31	0.32	4.04			
10	ppm	2.09	2.23	4.38	_		
LU	ppm	0.50	0.54	7.54	_		
	ppm	0.90	1.00	/.44	_		
1 a W/	ppin	0.01	0.01	0.00		_	_
TI	ppin	0.70	0.70	6.73	_	_	_
Dh	ppm	108.00	111.00	1.0/	_	_	_
Ri	ppm	< 0.1	< 0.1	-	_	_	_
Th	ppm	0.1	0.1	1 70	_	_	_
II	ppm	0.12	0.42	5.66		_	_
U	hhm	0.12	0.15	5.00			

Appendix E: TerraSpec[™] Data

Duill Holo	CA 07 254	Et Tuble Et	Drill	Holo: CA (7 255	Drill	Hole: CA 1	1 283
Drill Hole:	: GA-07-254	225531	Dim	noie: GA-u	22553	Dim	2200W	225511
Depth	2200W	2255W	Depth	2200 W	2255W	Depth	2200W	2255W
11.7	2218.72	NULL		2217.87	NULL	4.8	2217.2	NULL
11.7	2217.43	NULL	6.2	2219.41	NULL	0.9	2210.01	NULL
10.7	2217.07	NULL	10.2	2219.31	NULL	17.1	2210.01	NULL
22.0	2219.43	NULL	10.5	2210.99	NULL	21.4	2220.34	NULL 2252-18
23.9	2219.94	NULL	14.5	2217.00	NULL	21.4	2221.30	2255.10
27.9	2219.42	NULL 2254 1	18.7	2218.39	NULL	23.5	2219.85	2232.41
32.2	2224.9	2234.1	22.7	2219.8	NULL	29.2	2221.92	2255.05
30.5	2220.51	2253.08	26.5	2219.1	NULL	33.3	2223.11	2253.42
40.6	2223.46	2255.26	30.7	2224.15	2254.39	37.7	2223.2	2251.68
44.8	2223.92	2255.57	34.9	2220.53	2254.46	41.9	NULL	2255.57
49.2	2224.02	2255.62	39.1	2224.63	2255.37	44.2	NULL	2255.29
53.3	2223.29	2252.45	43.5	2222.89	2255.21	50.3	NULL	2254.78
57.6	NULL	2254.13	47.8	2222.71	2253.56	54.7	2226.35	2256.71
61.4	NULL	2254.19	51.8	NULL	2254.12	59	NULL 2222 45	2252.44
66.2	NULL	2254.4	56.2	2223.26	2252.53	63.2	2222.45	2253
/0.4	NULL	2254.2	60.3	NULL	2256.15	67.5	2221.1	NULL
74.2	NULL	2254.05	64	NULL	2254.73	71.6	2222.54	2254.15
78.5	2225.26	2252.9	68	NULL	2253.68	75.2	NULL	2256.89
82.8	NULL	2254.12	72	NULL	2254.62	79.5	NULL	2256.71
87	2222.56	2253.2	76.2	NULL	2254.03	83.5	2215.79	2256.2
91.1	2221.98	2253.8	80	NULL	2254.78	87.3	2201.97	NULL
95.1	2220.6	NULL	83	2222.87	2252.58	91.3	2201.74	2255.47
99.5	2220.78	NULL	87.4	2219.64	2254.87	95.3	2200.95	2249.46
103.7	NULL	2252.44	91.4	2221.17	NULL	99.5	NULL	2252.4
108.1	2213.4	2255.26	95.7	2220.97	2250.41	103.6	2214.65	2249.59
112.3	2208.58	2253.96	99.8	2219.77	2254.59	107.8	NULL	2256.28
116.2	NULL	2255.26	103.9	2212.64	2254.18	111.8	NULL	2256.26
120.1	2203.71	2250.34	108	2211.26	2254.57	115.9	NULL	2260.38
128.6	NULL	2253.43	112	NULL	2252.72	120.1	NULL	2255.63
132.9	2217.48	2252.75	115.8	NULL	2253	124.2	NULL	2254.45
141.2	2213.93	2250.26	120	2220.55	2252.45	128.4	2221.44	2249.02
145.4	2216.29	2251.64	124.2	2215.13	2249.14	132.5	NULL	2255.83
149.7	2211.29	NULL	136	2214.36	2248.88	140.7	NULL	2252.56
161.5	2216.15	NULL	139.6	2215.37	NULL	145.1	NULL	2253.54
165.1	NULL	2254.81	143.1	2214.75	2251.43	149.3	NULL	2253.44
169.4	2222.47	NULL	146.5	2213.58	2250.83	153.6	NULL	2253.69
173.5	2222.43	NULL	150.6	NULL	2255.61	157.9	NULL	2255.24
178	2220.84	NULL	154.7	NULL	2255.83	162.1	NULL	2254.75
182.1	2221.56	NULL	158.5	NULL	2255.41	166.3	NULL	2254.92
186.2	2221.46	NULL	162.3	NULL	2254.76	17.4	NULL	2254.99
190.1	2222.78	2248.82	166.2	NULL	2253.59	174.6	NULL	2255.56
193.7	NULL	2252.59	170.2	NULL	2255.49	178.9	2219.88	2248.53
197.8	NULL	2254.39	174.1	NULL	2254.85	185	NULL	2255.68
202.3	NULL	2254.48	178.2	2222.17	2249.23	186.9	NULL	2256.57
206.2	NULL	2253.3	181.9	NULL	2254.86	190.9	2208.34	2253.59
210	NULL	2255.01	186.6	NULL	2255.05	194.9	2208.63	NULL
214.3	NULL	2253.56	190.5	NULL	2255.5	199	2194.38	2257.31
218.3	NULL	2254.65	194.6	NULL	2253.63	203	2202.7	2252.75
222.6	NULL	2254.27	198.8	NULL	2254.17	207.2	2201.74	2254.97
226.8	NULL	2253.99	203.1	NULL	2253.14	211.3	2198.25	NULL
231.1	NULL	2253.96	206.4	NULL	2255.23	215.6	2195.83	NULL
235.3	NULL	2252.71	210.1	NULL	2254.29	219.9	2196.71	NULL
239.2	NULL	2253.72	214.3	2221.6	NULL	224.3	2192.16	2257.3
243.2	NULL	2254.12	218.1	2222.41	2251.04	228.5	2195.6	2257.62
247.3	NULL	2251.86	222.3	NULL	2255.38	232.1	2196.68	2254.96
251.5	NULL	2254.18	226.4	NULL	2255.25	236.9	2197.65	2253.71
255.7	NULL	2254.62	230.4	NULL	2254.08	241.2	2197.16	2253.94
260.1	NULL	2255.2	234	NULL	2255.19	245.8	2197.54	NULL
263.7	NULL	2252.77	238.1	NULL	2254.03	254.1	2197.03	2253.79
271.5	2215.56	NULL	242.2	NULL	2254.5	258.5	2197.08	2250.86
275.5	2207.04	2249.43	246.3	NULL	2254.78	262.8	2196.57	2253.53
279.8	2205.18	2249.82	250.3	2212.43	2253.02	267	2196.89	2253.27
283.8	NULL	2250.74	257.1	2203.49	2254.3	271.1	2198.1	2253.29
287.9	NULL	2250.7	260.1	2209.93	2249.41	272	2196.87	2252.5
292.1	NULL	2250.37	276.2	NULL	2251.51			
296.4	2200.09	2251.13	280.5	2199.75	2252.02			
300	2199.46	2251.43	284.7	2199.26	2250.98			
304.3	2200.52	2251.94	287.1	NULL	2252.95			
308.3	NULL	2252.69						
312.6	NULL	2252.86						
316.8	NULL	2253.41]					
320.9	2194.97	2252.66						
322.2	2192.22	2252.39]					

Appendix E: Table E.1: TerraSpecTM Data for Hurricane Zone

Appendix E: Table E.1: TerraSpec TM Data for Hurricane Zone											
D 1	GA-06-147	2255777	D 1	GA-07-208	225577	D 1	GA-07-209	000000			
Depth	2200W 2205 74	2255W	5 9	2200W 2208.37	2255W	Depth 5.2	2200W	2255W			
10.2	2214.92	NULL	10.1	2202.92	NULL	9.3	2218.98	NULL			
14.3	2220.28	NULL	14.1	2219.51	NULL	13.7	2218.82	NULL			
18.4	2220.84	NULL	18.3	2221.23	NULL	17	2221.13	NULL			
22.55	2221.16	2252.12	22.4	2220.99	NULL	21.3	2222.07	NULL			
30.8	2218.56	2255.08 NULL	20.0	2220.49	2252.58	29.5	2221.11	2252.24			
34.95	2219.54	NULL	35.1	NULL	2253.28	33.8	NULL	2253.74			
39.15	2221.65	NULL	39.5	2218.88	NULL	38	2219.51	NULL			
42.7	2220.31	2251.16	43.5	2220.11	NULL	42.3	2219.98	NULL			
47.5	2223.26	2252.46	47.8	2222.3	2251.53	46.6	2220.78	2249.45			
55.1	2226.88	2253.6	56	2223.38	2254.01	54.8	2223.18	2253.5			
63.9	2223.71	2247.92	60.2	2226.13	2253.03	58.8	NULL	2253.87			
68.1	NULL	2256.25	64.3	NULL	2253.31	63	NULL	2252.8			
76.4	NULL	2255.91	68.3	2224.02	2252.09	66.5	2222.39	2249.62			
84.9	NULL	2254.59	76.6	NULL	2253.32	74.2	2224.9	2252.46			
89.1	2216.7	2256	80.8	NULL	2255.59	78.2	NULL	2253.74			
97.5	2217.1	NULL	85.1	NULL	2255.25	82.4	2217.77	2250.45			
101.5	2202.5	2253.82	89.4	NULL	2256.5	86.7	2215.02	2253.09			
121.6	2206	2256.93	93.6	NULL	2256.22	90.85	2215.65	2254.15			
129.3	NULL	2255.38	102.1	2221.66	2256.85	99.4	2222.77	2255.13			
133.3	NULL	2255.13	106	2215.54	2255.41	103.4	2224.21	2255.09			
137.7	2219.76	2251.84	109.6	2209.58	2257.64	107.8	2218.99	2253.2			
141.1	2219.88	2248.85	113.9	2214.81	2250.82	112	2214.88	2256.25			
145.1	NULL	2254.28	118.1	2199.71	2248.64	115.55	2203.12 MITT	2255.71			
140.4	NULL	2253.57	125	NULL.	2253.44	119.7	NULL	2253.67			
156.2	NULL	2254.76	130.3	2210.9	2252.3	128.2	2200.91	NULL			
161	NULL	2256.05	134.2	2210.34	2252.74	132.25	2204.16	2253.74			
165.2	NULL	2255.48	142	NULL	2256.16	136.5	2207.3	NULL			
169.4	NULL	2254.22	146.3	NULL	2255.35	140.4	2210.96	NULL 2251.05			
173.3	NULL	2255.41	154.6	NULL	2257.08	144.3	2211.99	NULL			
181	2218.66	NULL	159	NULL	2255.04	151.95	NULL	2255.81			
184.9	NULL	2256.03	163	NULL	2254.51	156	NULL	2255.14			
188.1	NULL 2200.08	2257.34	167.1	NULL 2220.20	2255.17	164	NULL	2255.04			
191.9	2200.08	2256.96	170.8	2220.29	NULL	168.4	NULL	2255.82			
200	2200.33	2255.09	179	2220.54	2250.85	176.8	NULL	2255.47			
204.4	2200.51	NULL	183.2	NULL	2253.44	181.2	2222.55	2251.19			
212.3	2197.81	2253.23	187.3	NULL	2256.04	185.15	2220.94	NULL			
216.2	2197.66	NULL 2252.12	191.5	NULL	2255.43	189.1	2221.51	NULL 2252.44			
220.3	2197.53	2252.72	200.1	NULL	2252.34	195	NULL	2253.44			
228.3	2197.22	2251.81	204.1	NULL	2251.95	200.1	NULL	2255.09			
232.7	2197.45	NULL	208.4	NULL	2253.69	204.1	NULL	2254.61			
236.85	2197.06	2250.59	212.5	NULL	2255.99	208.25	NULL	2255.27			
241.2	2196.34	2255.54	216.2	2218.98	NULL	212.2	NULL	2255.43			
249.6	2195.95	2254.43	222.4	NULL	2255.05	219.9	NULL	2255.61			
253.3	2194.69	NULL	226	2200.74	2255.71	223.2	NULL	2255.44			
257.45	2195.85	2254.13	230.1	NULL	2256.48	226.2	NULL	2254.02			
265.75	2196.62	2252.38	233.6	NULL 2192.42	2256.39	230.6	2219.61	2250.64			
274	2195.91	2253.6	275.1	2195.66	2255.78	237.55	NULL	2256.67			
278.2	NULL	2252.55	279.1	2196.52	NULL	241.85	NULL	2254.99			
282.25	2197.21	2252.96	283.3	2196.14	2254.52	245.7	NULL	2254.47			
286.3	2197.64	2252.29	287.6	2196.1	2254.61	250	NULL	2257.33			
290.5	2197.59	2251.83	291.7	2195.67	2256.53	254.55 258.5	2204.6	2250.55 NULL			
298.8	2195.55	2252.57	300.1	2196.06	NULL	262.3	2203.92	NULL			
302.7	NULL	2251.7	304.3	2195.86	2255.45	266.5	2203.48	NULL			
306.4	NULL	2251.77	308.4	2195.8	2253.86	270.75	NULL	2250.22			
310.1	2197.03	2251.9	312.6	2195.42	2254.99	274.8	2198.47	2251.15			
318.2	NULL	2253.02	321	2195.54	2252.43	283.4	2197.22	2252.64			
321.9	2197.73	2251.68	324.9	2195.69	2253.44	287.8	2193.31	2252.33			
325.8	NULL	2252.54	329.1	2195.81	2253.77	292	2192.96	2252.06			
330.1	NULL	2252.11	332.2	2196.44	2253.62	296.2	2194.26	2251.77			
334.5	2197.06 NI/I I	2251.9				297.2	2193.72	2238.11			
343.3	2197.4	2252.84									
347.5	2197.83	2252.61									
351.2	NULL	2252.22									
355.4	2196.9	2252.21									
363.6	2196.77	2251.5									
367.8	2193.93	NULL									
372	2196.99	2252.39									
376.1	2199.23	2252.36									
384.5	2190.74	2253.88									
388.7	2198.36	2252.96									
343.1	2202.46	2252.94									
397.3	2198.1	2253.36									

А	ppendiv	E: Table	e E.1: Te	rraSpec ¹	^M Data f	or Hurri	icane Zor	ıe
	GA-07-214			GA-07-218			GA-07-256	
Depth	2200W	2255W	Depth	2200W	2255W	Depth	2200W	2255W
10.9	2210.65	NULL	11.8	2220.6	NULL	0.8	2220.08	2249.06 NULL
15	2217.24	NULL	15.4	2219.36	2249.4	15.2	2221.9	NULL
19.1	2222.17	NULL	19.4 23.6	NULL	2253.58	19.2	2221.79	NULL
27.3	2222.36	NULL	27.3	NULL	2253.57	27.3	2221.61	NULL
31.4	2223.07	NULL	31.2	2220.93	NULL	31.4	2220.66	NULL
39.6	2219.17	NULL	39.6	2222.38	NULL	39.8	2219.71	NULL
43.7	2218.67	NULL	43.6	2219.88	NULL	43.8	2219.33	NULL
47.8 51.9	2218.68	2252.91	48 52.3	2220.33	NULL	48.1 52.3	2220.73	2253.49
56	2221.51	2251.35	56.6	2220.91	NULL	56.4	2221.5	NULL
60.1	2219.15 NULL	2251.08	60.5	2220.69	NULL	60.6	2221.8	NULL
68.3	2224.35	2254.98	68.7	2218.04	NULL	68.7	2221.33	NULL
72.4	NULL	2254.18	72.8	2216.7	NULL	72.7	2221.02	NULL
80.6	2223.16	2252.55	80.8	2219.76	NULL	80.9	2217.86	2252.87
84.7 88.8	2221.55	2253.58	84.9 89.2	2220.22	NULL	84.9 88.7	2222.84	2251.59 NULL
92.9	2218.62	2254.27	93.2	2220.37	NULL	92.8	2219.93	NULL
97	2219.66	2252.11	97.2	2220.68	NULL 2253.69	96.6	2222.4	2252.94
101.1	NULL	2255.43	101.0	2223.91	NULL	100.5	2223.08	2252.66
109.3	NULL	2254.54	110	2222.34	NULL	108.8	2222.97	2252.61
113.4	2222.48	2254.49 NULL	113.9	2221.95	2255.22 NULL	113	2214.45	2253.22 2249.64
121.6	2217.44	NULL	122.3	2220.53	NULL	121.3	2202.53	2254.97
125.7	2208.56	2252.07 2255.1	126.6	2221.95	2253.27 2253.57	125.6	2219.24 NULL	2252.29
133.9	2201.28	2258.53	135.1	NULL	2254.07	133.4	2217.73	2256.13
138	2199.26	2253.9	139.3	2218.83 NULL	2254.06	137.3	2216.53	2251.13
146.2	NULL	2252.81	147.6	NULL	2254.12	145.1	NULL	2254.83
150.3	2206.37	NULL	152	2223.97	2253.95	148.7	NULL	2252
158.5	2214.40	2255.41	160.3	NULL	2255.78	157.1	2200.38	2245.62
162.6	2215.05	NULL 2255.5%	164.3	2220	NULL	161.2	2210.01	NULL
170.8	NULL	2255.27	171.3	NULL	2255.2	168.7	2213.42	2250.04
174.9	2211.38	NULL	175.6	NULL	2253.98	172.4	2201.73	2256.75
183.1	2209.39 NULL	2256.13	1/9./	NULL	2255.65	1/6.8	2213.27 2213.75	2252.64
187.2	NULL	2255.49	194.4	2212.29	2256.09	184.9	NULL	2254.98
191.3	NULL	2255.9	202.4	2213.07 2210.51	2249.94 2253.08	188.2	NULL	2254.63
199.5	NULL	2254.12	206.6	NULL	2257.16	195.6	NULL	2255.07
203.6	NULL	2254.58	211.1	NULL	2254.1	199.7	NULL 2199.38	2256.15
211.8	NULL	2254.13	219.6	NULL	2255.36	205.4	2201.88	2255.51
215.9	NULL	2254.59	223.7	NULL	2254.79	209.3	2216.64	2253.35 NULL
224.1	NULL	2254.24	232.4	NULL	2255.55	216.9	2218.9	NULL
228.2	2222.6	2250.82	236.3	NULL 2221 69	2259.85 NULL	220.7	2206.53 NULL	2252.46
236.4	NULL	2255.19	244.3	2220.35	NULL	228.6	NULL	2253.46
240.5	NULL 2219 78	2254.68	248	2221.16	NULL 2254 24	232.5	NULL	2253.91
248.7	2219.78	NULL	256.3	NULL	2255.4	2540.2	NULL	2254.98
252.8	2218.99	2248.75	260.5	NULL	2256.9	243.8	NULL	2255.72
230.9	NULL	2254.58	268.5	2222.30	NULL	240.9	NULL	2255.27
265.1	2213.99	2251.5	272.6	2222.08	NULL	262.5	2200.25	2256.5
209.2	NULL	2256.08	276.7	NULL	2255.38	200.0	NULL	2255.01
277.4	NULL	2256.47	285.3	NULL	2255.93	279.1	2205.41	NULL
281.5	NULL 2201.25	2254.25 NULL	289.6	NULL	2255.88	283.3	2211.33 2208.99	NULL 2247.5
289.7	2202.84	NULL	298.1	2222.22	NULL	291.8	NULL	2249.94
293.8	NULL	2251.32	301.9	2220.9 NULL	2248.14	296.1 300.4	NULL	2249.29
302	2199.54	2251.8	310	NULL	2255.56	304.6	NULL	2250.19
306.1	2198.79	2251.55	313.5	NULL	2254.23	308.5	NULL	2250.73
314.5	NULL	2254.47	320.3	2208.81	2253.64			
318.8	2195.85	2253.49	324.5	2202.75	NULL 2249.91			
322.0	2190./1	2254.21	332.6	NULL NULL	2250.22			
331.1	2191.15	NULL 2250.57	336.8	NULL 2100.20	2250.5			
339.5	2195.08	2259.57	345.4	NULL	2251.17			
340.8	2195.26	NULL	349.5	NULL	2251.51			
			355.0	2189.39	2250.52			
			361.9	2196.78	2251.49			
			370.1	2198.07	2251.52			
			374.6	2193.81	2251.82			
			382.9	2193.03	2258.8			
			387.2	2195.1	2258.27			
			395.8	2195.12	NULL			
			400 5	2195.08	2258.96			

A	Appendix	E: Table	e E.1: Te	rraSpec ¹	^M Data f	for Hurricane Zone		
	GA-10-272	2		GA-14-275			GA-14-276	
Depth	2200W	2255W	Depth	2200W	2255W	Depth	2200W	2255W
3.98 8.2	2220.43	NULL	4.8 Q	2220.48	2248.55 NI/I I	4	2220.27	2250.83 NI/III
0.2 12.2	2220.98	NULL	13.3	2218.71	NULL	12.3	2219.03	NULL
16.2	2218.51	NULL	17.7	2220.41	NULL	16.3	2221.51	NULL
20.3	2220.74	NULL	21.9	2220.52	NULL	20.4	2220.5	NULL
24.3	2218.61	NULL	26	2218.85	NULL	24.5	2220.83	NULL
28.3	2220.97	NULL	30.2	2215.61	NULL	28.7	2221.12	NULL
32.7	2220.39	NULL	34.1	2219.07	NULL	32.9	2220.64	NULL
36.9	2219.04	NULL	38.3	2221.75	NULL	37.2	2220.47	NULL
40.9	2220.08	NULL	42.6	2220.97	NULL	41.3	2220.1	NULL
45.2	2221.28	NULL	46.8	2220.74	NULL	45.75	2219.63	NULL
49.5	2224.78	2254.96	55.2	2220.19	NULL 2240.74	54.2	2219.64	NULL
57.8	2220.07	NULL	59.5	NULLI	2249.74	58.6	2219.30	NULL
62	2220.17	2252.67	64	NULL	2253.61	62.9	2220.33	NULL
66.3	2220.57	2251.66	68.1	NULL	2253.65	67.2	2221.97	NULL
70.6	2226.4	2252.12	72.6	NULL	2253.51	71.5	2221.09	NULL
74.7	2224.22	2252.11	76.5	2224.92	2252.25	75.7	2221.79	NULL
78.9	NULL	2254.1	80.7	NULL	2253.9	80	2220.16	NULL
83.1	NULL	2254.75	85	NULL	2255	84.5	2221.67	NULL
87.3	2223.46	2250.58	89.3	NULL	2254.85	88	2221.4	NULL
91.5	2224.29	2251.88	93.4	NULL	2255.57	92.2	2222.71	2251.2
95.7	NULL	2254.25	97.7	NULL 2222.15	2254.85	97.5	NULL 2221 71	2254.28
100	NULL	2255.03	102.1	2225.15	2254.85	101.6	2221.71	2247.52 MULT
104.1	NULL	2253.45	110.4	NI// I	2255 54	105.9	2221.09	NIIII
112.5	2223.68	2254.19	115.1	2203.13	2255.59	114.5	2221.66	2248.44
116.7	NULL	2256.08	119.4	NULL	2256.33	118.7	2220.69	NULL
121	NULL	2257.56	123.8	2199.68	NULL	122	2221.75	2248.39
125.3	2215.74	NULL	132.2	NULL	2255.04	127.2	2221.41	2249.6
129	NULL	2253.26	136.6	NULL	2255.96	131.4	2219.94	2252.05
133.4	NULL	2255.23	140.4	NULL	2255.69	135.6	NULL	2254.16
137.1	2202.39	2251.7	145.1	2218.08	2247.77	139.9	2216.7	NULL
141.1	2207.25	NULL	149.2	2217.62	2249.18	144	2200.37	2256.06
145.4	2206.02	NOLL 2252.72	157.5	2218.47 MULL	2230.93	148.4	2199.17 MULT	2252 47
149.4	2204.89	2250.41	161.8	NULL	2255.25	156.8	2212.89	NULLI
157.9	NULL	2255.98	166	NULL	2253.26	161	2208.51	2256.32
162	NULL	2255.65	170.3	NULL	2251.73	165	NULL	2255.3
166	NULL	2256.31	174.7	NULL	2253.07	169.1	2200.8	NULL
169.3	NULL	2254.09	179	NULL	2254.15	173	2200.93	2251.74
173.4	2207.72	2253.81	183.2	NULL	2252.99	180.9	NULL	2252.46
177	2213.99	NULL	187.5	2219.14	NULL	185	2210.83	2253.14
181	2217.58	2247.5	191.8	NULL	2255.74	189.4	2214.96	NULL
185.2	2217.99	2247.3	196.1	2203.89	NULL 2252.95	193.2	2213.38	2253.18
189.7	NULL	2255.35	200.2	2199.33	2252.85	201.7	2217.09	2252.5
193.0	NULL	2253.40	204.3	2190.33	2234.23 NULL	201.7	2209.01 NULL	2255.1
202.2	NULL	2253.92	212.8	2197.64	2251.21	213.7	NULL	2254.51
206.3	NULL	2252.87	217.2	2196.98	2255.04	218	2220.44	NULL
210.3	NULL	2255.01	221.5	2196.94	2253.79	222.3	NULL	2253.72
214.6	NULL	2254.87	226.8	2197.45	2254.85	226.1	NULL	2253.29
218.7	2218.23	NULL	230	2196.81	2254.48	230.2	NULL	2254.28
222.6	2217.08	NULL	234.4	2195.86	2254.55	234.6	NULL	2253.89
226.7	NULL	2256.04	238.7	2194.67	2252.58	238.8	NULL	2256.05
231.2	2215.95	2246.76	242.9	2194.08	NULL	243	NULL	2254.41
235.4	2200.49	2248.61 NUU I	247.2	2194.14	NULL 2254 22	247.1	NULL 2220.02	2233.87
243.7	2203.08	2250.41	251.5	2192.67	2254.14	254.4	2220.95	2246.86
247.9	2197.79	2250.42				258.5	2219.98	2248.29
252	2198.82	NULL				262.6	NULL	2254.48
256.1	2198.45	2250.03				266.3	2217.07	NULL
260.2	2192.51	2258.03	1			270.2	2215.78	2251.92
264.4	2196.33	NULL	1			274.5	2211.97	2255.96
268.5	2195.94	2257.8				278	NULL	2255.79
2/1.7	2196.49	2257.47				281.4	NULL	2255.21
281.2	2190.07	2250./1	1			283.0	NULL 2203-21	2255.40
289.2	2195.92	2259.19	1			207.7	2203.21	NI// I
293.4	2195.93	2256.42				298.8	2205.74	2250.85
297.6	2196.5	2257.89				302.2	2207.55	2248.11
301.8	2192.87	NULL				306.6	NULL	2249.45
305.9	2196.39	2254.54	1			311	2203.9	2248.33
309.9	2196.41	2255.83	1			315	2202.24	2249.07
314.2	2196.18	2254.21				319.3	NULL	2250.29
						323.5	2200.04	2251.14
						327.7	2198.45	2250.6
						336.2	2191.27	2231.03
						340.4	2190.03	2251.50
						344.7	2190.74	2251.36
						348.8	2190.3	2255.2
						353	2189.38	2253.29
						357.3	2194.23	NULL
						361.5	2195.31	NULL
						365.6	2194.32	NULL

А	ppendix	E: Table	E.1: Te	rraSpec ^T	^M Data f	or Hurri	cane Zoi	ne
Depth	GA-07-257 2200W	2255W	Depth	GA-06-153 2200W	2255W	Depth	GA-10-274 2200W	2255W
423.3	NULL	2254.23	7	2214.5	NULL	5	2212.94	NULL
427/	2212.52 2202.93	2255.19 2257.67	11.3	NULL 2217.39	2256.79 NULL	8.7	2215.96 2208.61	NULL 2254.93
435.6	2200.9	NULL 2240.25	19.1	2215.61	NULL 2240.84	16.9	2214.02	NULL
443.8	2199.51 2199.5	2249.25 NULL	23.2	2217.45 NULL	2249.84 2252.24	20.7	2199.05	NULL
448	2199.34 2199.99	NULL NULL	30.4	NULL 2204 96	2255.5 2251.81	28.5	2210.89	NULL NULI
456.2	2199.06	2251.74	37.1	NULL	2252.65	36.8	2219.78	NULL
460.1 464	2198.85 2199.49	2251.73 2251.89	41.7 44.9	2202.51 2200.11	2252.13 2251.33	40.7 44.7	2219.06 NULL	2251.27 2252.39
468.2	NULL 2104.52	2251.61	49.1	2199.68	2251.67	48.8	2218.67	2253.64
474.8	2194.32 2197.89	2250.67	55.5	2200.7	2250.94	57	2218.03	NULL
478.5 482.3	2196.37 NULL	2251.13 2251.44	60.5 64.8	2202.73 2200.23	2251.57 NULL	61.3 65.4	2219.64 2219.76	NULL
485.5	2193.24	2251.47	68.8	2205.12	NULL 2256.47	69.7	2219.24	2255.2
493	2197.9	2250.84	76.8	NULL	2255.32	78	NULL	2254.64
495.9	2197.9	2251.06	80.9 85.1	NULL	2254.2 2255.36	82.3 86.4	2222.54 2221.85	NULL
			89.4	NULL	2256.15	90.6	2225.71	2251.84
			96.8	NULL	2254.7	99	2222.36	2251.43
			100.8	NULL 2220.23	2254.54 2254.7	103.1	2223.18 NULL	2251.89 2254.09
			109.1	2218.49	NULL	111.3	NULL	2253.74
			117.4	NULL	2253.47	115.4	2220.54	2255.79 NULL
			121.4	2215.05 2217.53	2252.78 NULL	123.7	2220.95 NULL	NULL 2255.34
			129.8	2216.69	NULL	131.7	2221.98	2250.99
			138.3	2220.24	2251.20	135.0	2220.73	2250.6
			146.5 150.7	2220.04 2220.02	NULL	143.9 147.3	2220.16 2222.01	2249.09 2254.88
			155	2219.56	NULL	152.8	2218.84	2252.11
			158.9	2220.53	NULL	156	2206.04	2256.35
			166.7 171	2219.35 2220.86	NULL NULL	163.9 168.1	2202.55 2200.22	2256 2256.21
			175.3	2222.34	2251.46	171.8	2211.01	2251.89
			1/9.5 183.7	2226.05	2255.09 2248.9	1/6	2215.26 2216.81	2252.89 2254.71
			187.7 191.1	2220.52 2216.04	NULL	184.6 188	2203.17 2210.42	2255.69 2249.3
			195.9	2217.69	NULL 2251.52	192.4	NULL	2254.65
			201 205	2214.4/	2256.9	201.4	NULL	2255.03
			208.8 212.7	2215.24 2219.46	2255.37 2254.63	205.5 209.7	2217.16 NULL	2250.9 2255.01
			216.8	2215.02	NULL	214	NULL	2254.18
			225.4	2218.01	2252.47	210.2	NULL	2254.13
			229.5 233.7	NULL 2216.8	2254.51 2254.08	226 230	NULL NULL	2254.36 2253.99
			237.9	2204.13	2253.97	234.3	NULL	2254.4
			242.4	2208.55	2252.22	242.4	NULL	2255.93
			249.7 253.6	2216.36 2218.09	2251.82 2254.96	246.7 250.6	2220.32 NULL	NULL 2255.85
			257.8	NULL 2210.58	2252.08	254.4	NULL	2253.15
			265.5	NULL	2255.42	262.8	NULL	2254.79
			269.6 273.9	NULL	2255.55 2253.24	266.7 270.6	2214.3 2211.81	NULL NULL
			278.1	NULL 2215.02	2254.41	275	2199.91	2248.77
			286.6	2213.02	2255.52	219.5	2199./1	2250.94 NULL
			291.1 294.4	NULL 2201.47	2253.35 2255.55	292 296.1	2198.25 2198.16	NULL NULL
			298.4	NULL	2251.41	300.1	2197.49	NULL
			302.5	NULL	2253.67	304.4	2197.32	NULL
			311 315	NULL NULL	2254.56 2255.42	312.8 317.1	2194.67 2196.53	2255.99 NULL
			319.2	2220.32	2247.52	320.6	2194.47	NULL
			327.7	2219.72	2250.9			
			331.7 336.1	NULL	2253.74 2253.89			
			340.3 344 5	NULL	2255.76			
			349.1	2195.49	NULL			
			353.2 357.4	2196.69 2195.64	2251.56 2251.56			
			361.2	2196.7	2252.14			
			368.9	2193.15	2253.08			
			374.1 378.3	2193.99 2195.72	2256.83 NULL			
			382.2 386.4	2195.73	NULL 2261 76			
			390.7	2195.53	2255.27			
			394.8 398.9	2195.69 2196.06	2256.8 2256.1			
			403.1	2196.14	2259.5			
			411.6	2194.4	NULL			
			415.5 420.9	2196.36 2196.35	2255.75 2255.43			
			424.2 428 1	2195.96	2254.35 2254.11			
			432.1	2196.72	2254.31			
			436.5 440.6	2196.9 2196.89	2254.45 2254.09			
			444.6 448 7	2196.88	2253.59 2254.5			
			453.1	2196.47	2255.31			
			461 465.2	2196.98 2196.94	2254.21 2253.8			
			469.5 473.8	2196.82	2254.26			
			477.6	2196.12	2254.89			

Г

		GA-14-277	1		GA-14-278		GA-06-17		
I	Depth	2200W	2255W	Depth	2200W	2255W	Depth	2200W	2255W
	5.5	2215.95	NULL	20.1	2203.34	NULL	251.5	NULL	2256.37
	9.5	2219.27	2250.25	23.4	NULL	2253.25	255.5	NULL	2256.54
	13.3	2219.89	2248.17	27.5	2204.89	NULL	259.1	NULL	2256.63
	17.6	2218.93	NULL	31.8	NULL	2250.02	263	NULL	2253.82
	21.2	2219.61	2253.4	35.6	NULL	2253.22	266.95	NULL	2253.52
	24.9	2211.55	NULL	39.7	2216.63	2248.82	271.1	NULL	2255.16
	29.1	2212.04	2252.25	43.3	NULL	2251.85	275.3	NULL	2254 42
	33.1	2212.01	2252.20	47	NULL	2254.28	279.5	NULL	2257.49
	36.7	2210.01	2252.09	51.1	2217.43	NULL	283.1	NULL	2257.17
	41	2217.21	2251.40	54.0	2217.45	NULL	205.1	NULL	2255.12
	45.2	2219.3	NULLI	50.1	2210.09	NULL	207.4	NULL	2250.95
	40.2	2219.77	NULL	62	2210.47	NULL	291.5	NULL	2253.90
	49	2211.31	2256 16	66.0	2214.40	2255.95	293.4	2210.54	2233.89
	57 1	2217.09	2230.10	71.2	NULL	2255.85	299.8	2219.34 MULL	2249.21
	57.1	2220.20	NULL	71.2	NULL 2220.02	2233.5	208.1	NULL	2255.45
	61.3	2219.63	NULL	/5.6	2220.93	NULL 2250.00	308.1	NULL	2255.74
	65.6	2220.44	NULL	/9.6	2222.12	2250.99	312.3	NULL	2253.51
	69.6	2221.5	2250.2	83.4	2222.43	2250.55	336.2	NULL	2254.14
	73.9	2221.94	2251.84	88.1	2221.71	NULL	339.5	NULL	2257.07
	77.4	2222.22	NULL	92.3	2223.35	2252.45	342.9	NULL	2254.86
	84.4	2221.04	NULL	96.5	NULL	2253.08	347.1	2219.82	2251.12
	86	2221.77	2250.95	100	NULL	2252.2	399.8	NULL	2255.26
	90.2	2222.65	2252.25	100.1	2224.05	2250.81			
	94.5	2221.51	2250.65	108.4	NULL	2253.74			
	98.7	NULL	2254.19	112.6	2224.71	2252.83			
	103.1	NULL	2253.24	121	2221.31	NULL			
	107.4	NULL	2254.6	124.2	2222.27	NULL			
	111.6	2222.25	NULL	128.3	2220.89	NULL			
	115.8	2221.29	2254.46	132	2218.78	2253.71			
	120.8	2221.13	2254.79	136.3	2220.26	2253.52			
	124.4	2220.39	2252.08	140.5	2220.28	2253.66			
-	128.6	NULL	2252.00	144 7	NULL	2255.00			
	133	2216.47	2250.52	149	2219.48	2253.27			
	137.3	2210.47	NULLI	152.4	2217.40	2232.07			
-	141.4	2200.04 MULL	2251.41	156.6	2220.10	2249.21			
-	141.4	NULL	2251.41	150.0	2220.20	2230.23			
-	143.1	NULL	2230.87	160.9	2220.39	2235.67			
-	155.5	NULL 2217.95	2230.14	165	2218.88	2255.4			
_	157.1	2217.85	2255.08	169.2	2208.75	2254.62			
_	161.9	NULL	2254.94	1/3.4	NULL	2254.52			
	165.4	NULL	2256.22	177.5	NULL	2255.86			
	169	NULL	2255.47	189.8	2213.45	NULL			
	173.6	NULL	2256.5	194	2217.66	2251.18			
	177.7	NULL	2253.42	198.1	2216.83	NULL			
	185.9	NULL	2254.22	202.3	2217.62	NULL			
	185.9	NULL	2253.82	206.3	NULL	2254.84			
	190	NULL	2253.2	210.4	NULL	2255.94			
	194.4	NULL	2253.47	214.4	2219.8	2250.01			
	198.6	NULL	2253.27	218.5	NULL	2254.76			
	202.9	NULL	2253.68	222.1	NULL	2253.54			
	207.2	NULL	2257	225.8	NULL	2256.32			
	211.4	2220.23	NULL	229.6	NULL	2256.31			
	215.5	NULL	2254.45	233.7	NULL	2253.2			
	228.1	NULL	2256.85	237.9	NULL	2253.82			
	232.1	2201.45	NULL	242.2	NULL	2253.77			
	236.3	2200 54	2249 45	246.5	NULL	2253 34			
	240 5	2199 24	NULL	250.9	NULL	2253.61			
H	244 7	2197.24	NULL	255.2	NULL	2255.01			
	2 4 4 . /	210/ 02	2256 40	255.2	NIIII	2251.07			
- H	2+0./ 252.9	2194.93	2230.49	203.8	2220 57	2230.03 MI/I I			
-	252.0	2190.43	2233.37 MUTT	200	2220.37	2247 55			
\vdash	233.0	2190.28	INULL 2252.00	212.2	2220.11	2247.33			
\vdash	259.8	2196.97	2253.09	280.5	2220.38	2251.35			
\vdash	203.4	2197.04	NULL	284.3	NULL	2253.73			
	266	2197.26	NULL	300.7	2199.75	2255.87			
				305	NULL	2250.24			
				309.1	2203.27	2251.15			
				313.4	2204.04	2249.65			
				317.5	2191.65	2250.98			
				321.6	2196.29	NULL			
				325.6	2200.59	2250.84			
				329.7	NULL	2250.42			
				333.9	2196.94	2250.73			
				338	2197.4	2251.48			
				342.2	2197.75	2253.44			
				344	2197.5	2252.99			
						. =			

Appendix E: Table E.1: TerraSpecTM Data for Hurricane Zone

	GA-06-180			GA-14-279		GA-07-196		
Depth	2200W	2255W	Depth	2200W	2255W	Depth	2200W	2255W
9	2215.13	NULL	12.3	2216.4	NULL	334.1	NULL	2255.76
12.8	2214.69	2252.46	16.3	2218.45	2249.74	338.1	2214.82	NULL
16.4	NULL	2251.04	19.2	2219.85	NULL	342.2	NULL	2256.87
19.8	2214.85	2248.58	23.1	2220.06	NULL	346.3	NULL	2254.93
23.1	2215.63	2251.39	27.3	2218.29	2253.22	350.5	NULL	2255.07
26.6	NULL	2252.34	31.6	2221.37	2251.42	354.5	NULL	2255.09
30.6	2217.56	NULL	35.8	2221.51	2253.73	358.6	NULL	2255.75
35.2	2220.56	2254.21	39.6	2220.45	2253.83	362.8	NULL	2254.9
39.1	2220.98	2250.33	43.3	NULL	2255.12	367.1	NULL	2255.35
43	2219.63	NULL	47.4	2214.89	2254	371.2	2220.1	2253.22
47.2	2217	NULL	51.1	NULL	2255.32	375.3	NULL	2253.83
51.3	2212.1	NULL	54.4	2211.12	2253.65	379.2	NULL	2255.23
55.6	2209.16	NULL	58.7	2204.36	2252.12			
59.5	2204.92	2251.7	62.7	2200.56	2249.35			
63.75	2199.67	NULL	66.2	2199.95	2257.43			
67.9	2204.17	NULL 2252.00	70.2	NULL	2258.18			
72.2	2206	2252.99	/4.1	NULL 2202.09	2255.01			
/6.5	2217.04	NULL	//.4	2203.98	2254.63			
80.5	2218.08	NULL	80.9	2204.54	2254.38			
84.6	2218.75	NULL	84.4	2205.46	2250.86			
02.5	2220.23	NULL	05 5	2208.58 NUU I	2248.45			
92.3	2220.07	NULL	93.3	NULL	2234.02			
100.0	2218.4	NULL	102	2200 1	2252.05			
100.9	2219.41	NIIII	105	2209.1	2234.32			
109.45	2217.41	2250.15	110.4	NULL	2252.7			
113.3	2210.70	NULI	114.6	NULL	2253.94			
117.9	2215.01	NULL	118.1	NULL	2254 72			
121.9	2217.99	NULL	121.8	NULL	2254 7			
126.2	2207.87	NULL	125.2	NULL	2255.13			
130.2	2215.54	NULL	128.6	NULL	2253.13			
134.3	2213.31	NULL	131.1	2210.53	2254 59			
138.6	2216.83	NULL	135.3	2205.42	2247.15			
142.6	2218.27	2251.24	138	2201.1	2254.33			
147.1	2218.87	2252.4	141.9	2201.15	NULL			
151.4	2214.19	2252.06	145.5	2201.31	NULL			
154.9	NULL	2253.52	149	NULL	2256.17			
159	NULL	2255.43	150.8	NULL	2256.33			
162.8	2215.53	2255.01	153.7	2203.07	2253.93			
166.5	2216.21	2255.44	157.9	NULL	2254.68			
169.6	NULL	2255.22	160.9	NULL	2254.31			
173.2	NULL	2254.63	164	NULL	2254.84			
176.9	2215.3	2256.24	166.8	NULL	2255.07			
181.3	2220.12	2250.29	170	2205.85	2253.33			
185.15	2219.5	NULL	173	NULL	2254.23			
189.25	2221.13	NULL	176.9	NULL	2253.49			
193.5	2219.85	NULL	181.9	2223.54	2252.72			
197.7	2220.91	2250.37	185	2220.14	NULL			
201.65	2219.29	2253.7	189.1	2219.95	NULL			
205.7	2208.2	NULL	193.7	NULL	2254.06			
210	2200.9	2254.79	197.8	2219.58	2251.91			
214.1	2202.54	NULL	202	2220.35	2251.01			
218.5	2202.72	2255.94	206.1	2216.96	2255.21			
222.7	2204.92	NULL	214.5	2198.13	2258.45			
226.55	2210.02	2254.89	218	2197.48	NULL			
2306	NULL	2256.8	222	2198.41	2252.94			
235.1	2204.4	2247.61	226	2197.29	2258.97			
239.1	2209.66	2252.58	230.2	2195.8	2259.74	I		
243	2208.11	NULL 2254.05						
246.9	NULL	2254.85						
252.4	NULL	2203.0						
253.6	NULL	2255.73						
257.55	2218 49	2233.20						
201.5	2210.48 NUU I	2231.83						
260.5	NULL	2250.73						
209.7	2217.71	2233.39						
213.9	2217.71	NUI I						
282.6	2210.39	2255 22						
286.15	NULLI I	2255.55						
310.15	2217.7	2254.45						
322.6	2218 73	2247 64						
327.2	NULL	2250 17						
331 3	NULL	2255.15						
335.33	2215.9	2255.98						
339.2	2213.17	NULL						
343.5	NULL	2251.11						
347.75	2213.83	2251.28						

Appendix E: Table E.1: TerraSpecTM Data for Hurricane Zone

Appendix F: Drill Hole Intervals and Samples

Section 3850

GA-07-255

					Thin
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo	Section
		felsic tuff or dyke; v.sil alt; few qtz pheno;		4898-	5525-
31751	4.12-4.34	some ser veins	Geochem	4900	5526
		well foliated lapilli tuff; mu/cl; qtz eyes;		4901-	
31752	21.6-21.88	mod ser>sil	Geochem	4903	
		amygdule diabase or xstal tuff, dark grey			
		w/ white qtz pheno (10-15%). Some fe-		4904-	
31753	47.61-47.8	carb staining, minor wk chl alt (v.black)	Geochem	4906	
				4907-	
31754	64.82-65.04	mineralized diabase mod chl alt	geochem	4909	
				4910-	
31755	100.45-100.76	lapilli tuff; wk ser alt	geochem	4912	
				4913-	
31756	106.29-106.49	K-alt tuff/lapilli tuff		4914	
				4915-	
31757	111.83-112.00	chlorotoid tuff, black speckled	TS?	4916	
		foliated lapilli tuff; graded fl> fu/ml; 3%		4917-	
31758	129.82-130.02	py; weak chl alt	geochem	4920	
		massive ash tuff and/or mafic; 1% po, py;		4921-	
31759	156.41-156.66	least alt?	geochem	4924	
		massive black/chlorite tuff; v.f mod fol;		4925-	
31760	187.2-187.48	mod chl alt	geochem	4926	
				4927-	
31761	208.7-208.9	ser+ep lapilli tuff; wk alt, yellow staining	geochem	4930	
		massive dark tuff (chloritic); could be			
		mafic volcanics? V.dark; v.f.g well fol,		4931-	
31762	232.1-232.29	v.black; wk-mod chl alt	geochem	4932	
		foliated lapilli tuff; fu w/ ml>cl; wk-mod		4933-	
31764	247.98-248.28	ser	geochem	4935	
		foliated lapilli; v.f.g ser/sil alt; partially		4940-	
31765	251.12-251.35	graded; only a little part.	geochem	4942	
			-	4936-	
31766	264.54-264.8	massive sulphide		4939	
31767	266.52-266.8	vein and sulphide		4943	
		minor chl + sulphides alt: elongated			
		lapilli; strong ser; med-coarse-gr L.T.: lap		4944-	
31768	274.39-274.69	mu (0.5cm)-~2cm; ~7% disem py.	geochem	4947	
		ser+py elongated lap; chl in interstial	-	4948-	
31769	281.15-281.33	space; ~5-7% py	geochem	4950	
		chl alt lapilli tuff with sulphides: contact			
		b/t ser and chl alt. w/ chl stringers in ser		4951-	
31770	285.19-285.49	sulphides dom in chl alt zone	geochem	4952	
GA-07-254				1	

				Photo	Thin
Tag	Depth (m)	Rock Type (initial)	Purpose	number	Section
		felsic ash tuff or felsic dyke; biege/grey			
		smalllglassy 1-2mm glassy qtz phenos		4953-	
31800	6.04-6.32	(3%), small black flecks (py; 1-2%).		4955	
		felsic tuff; light grey, 20-25% qtz <plg< td=""><td></td><td></td><td></td></plg<>			
		xstals, ml/fu + mu> VCL (incl qtz) mod		4956-	
25415	18.83-19.23	ser alt		4958	
		sil alt) xstal tuff approx 25-30% qtz			
		(could be some plag) some ri[up qtz/carb		4959-	
25416	31.23-31.55	cveins		4962	
		x-stal tuff; chl alt; dark grey w/white			
		qtz/plag xstals 25-30% wk chl alt rip up of			
		carbonate veins and qtz irreguarly shaped		4963-	5531-
25417	45.44-45.7	(3-4%)		4966	5532
		mafic dyke; very dark grey/black carb			
		belbs (1-3mm) carb discont veinlets.,		4967-	
25418	77.75-78.05	disem py (1%), clustered py and po (1%)		4969	
		x-stal tuff w/ pale phenocrysts; dark grey		4970-	
25419	86.05-86.25	25-30% subrounded		4972	
		graded lapilli tuff> ash (v.f.u) tuff; least			
		alt, minor carb veins in mu, mod fol, , no		4973-	
25420	101.7-101.8	carb clasts in v.f.g, sharp contact		4975	
		pyritic mudstone w/ brecciation; graded			
		v.f.u> mud clasts; interbeds mud			
		increases down hole. Py in both. Clasts			
		are light grey, vf.g, mod sil, sub angular,		4976-	
25421	119.9-120.1	near tpo some irregular qtz veining		4979	
		med lapilli tuff \pm bombs;; ML matrix w/			
		1mm-6mm (rare 1 cm), plag and qtz		4980-	
25422	133.45-133.69	grains, elongate chl alt clasts/ MC		4983	
		deformed mudstone;w/ v.f.l tuff, clsuters			
		of disem py (~10%) mostly in v.f.g but		4984-	
25423	140.4-140.64	some along margins of mud.		4988	
		mod sericitic lapilli tuff; well fol, fl w/		4989-	
25424	157.1-157.33	fu/ml white qtz+plag (20%)		4991	
		f.gr. Felsic tuff + sericite; elongated black		4992-	
25425	184.1-184.36	clasts (10%) disem py (5%)		4994	
				4995-	
25426	197.38-197.62	mafic unit; f.g. dark v. chl alt		4996	
		compositional layering; mod-st black and		4997-	
25427	231.9-232.2	green chl alt, larger sample but big gap		4998	
				4999-	
25428	238.76-238.97	felsic tuff; similar to 184 ser and chl		5001	
		tuff fl+/- fu w/ fu +/- cl white plag and qtz			
		(20%). V. simiar to above +184 strong-		5002-	
25429	267.89-268.09	mod ser alt		5004	

r						
			mineralized, sericite felsic tuff? Well fol,			
			ml, sul in chl bands, disem in ser/sil or		5005-	
2:	5430	286.07-286.29	cert elong clasts		5006	
			felsic lapilli tuff with mudclasts?1% in py		5007-	
2:	5431	300.05-300.25	in right corner		5008	
			elongated felsic tuff; some elongated			
			chert clasts, other could be ser alt plag		5009-	
2:	5432	3208-321.0	chl>ser strong		5010	
2:	5433	155.58-155.80	chlorotized A.T	geochem		
				geochem/		
2:	5434	160.6-160.83	felsic dyke? Massive tuff?	TS		
Sectio	on 39	00				
GA-0	6-14	7	1			
						Thin
Tag		Depth (m)	Rock Type (initial)	Purpose	photo	Section
			ash tuff; v.sil alt, beige, py; white x-			
14	4486	5.17-5.3	cutting+ concordant qtz veinlets	geochem	5028-5030)
			kind of xstal tuff >20% xtals but xtasl are			
			lap. M-coarse-gr tuff w/ some lap sized			
			frags. Some fe-carb over print "infilling"			
			between lap, almost L.T w/ some lap			
			clasts, more sandy than sil; mod-wk sil \pm			
14	4487	16.28-16.55	ser.	geochem	5024-5027	7
14	4488	32.7-32.90	sil	geochem	5037-5039)
				rep litho,		
				geochem,		
14	4489	49.2-49.35	Chlorotized xstal tuff	TS	5043-5044	1
			ash xstal tuff, carb blebs, chl alt; med-dark			
14	4490	62.2-62.45	grey	geochem	5033-5034	1
14	4491	77.05-77.32	felsic mineralized "breccia"	neat	5031-5032	2
			med-grained tuff; mod-wk ser alt; "sandy"			
			tuff, med-light grey; fe-carb overprint w/ 2-			
			5% subangular white (milky; plag?)			
			grains; 1-3% black grains, mod fol; wk sil	geochem/T		
14	4492	94.9-95.1	> ser?;some concordant carb veining.	S	5046-5048	3
			mudstone w/ thin abnds of f.g py (\sim 7%)	mud		
14	4493	102.59-102.69	host in thin interbeds of f.g tuff	stuff/TS	5050-505	1
			med-grained tuff with interbedded			
			mudstone; f-med-gr tuff w/ v.thin			
			undulating interbeds of chl alt mud. Tuff			
			is med-dark grey; mod-wk chl alt; dis py			
14	4494	110.6-110.8	in thin bands <5%	mud stuff	5055-5056	5
			layered mudstone+py + chert? Or v.f.g	mud		
14	4495	114.1-114.2	tuff; mod chl alt	stuff/TS	5035-5036	5
			intrusive unit (alt mafic?) +carb blebs;			
14	4496	125.35-125.55	dark grey, f.g; fe-carb overprint	geochem	5062-5063	3

		+ thin bands chloritzied clasts, lap are light grey ranging from mu-1cm; there are			
		white round-subround xstals w/ finer			
		Chill is in interactivel space. Mod served			
14407	134 80 135 0	alt	geochem	5068 5060)
1777	134.00-133.0	silified matic dyke: light mad gray beigde	geoenem	5000-500.	/
		arey f a 1% boudinage at "veins" or			
14498	189 8-189 9	nieces of veins 20% fe-carb overprint	geochem		
14499	200 55-200 7	sericite altered tuff stwk	geochem		
14500	220.45-220.65	sericite altered tuff stwk half cor. fissile	geochem		
11000	220.13 220.03	altered tuff stwk: sil>ser w/ hands of chl:	Seconom		
		clustered bands of $py + thin bands fine po.$			
32001	232.2-232.2	some carb veins.	geochem		
32002	250.1-250.2	altered dyke	geochem		
		altered tuff stwk; chl>ser; ser is bluish	8		
32003	263.60-263.70	green; cherty clasts or boudinage veins	geochem		
		f-c tuff; disem m-gr py \pm bands/clasts of	0		
32004	285.10-285.23	chl	geochem	5582-5584	1
		altered tuff stwk mix of ser and sil \pm chl	0		
32005	316.97-317.09	(broken pieces)	geochem		
		altered tuff strong sericite weak chl	C		
32006	336.19-336.35	(broken pieces)	geochem		
		sericite altered tuff stwk> could be TS 4			
32007	363.6-363.96	broken pieces	geochem		
32008	380.4-380.6	intensely altered tuff, v.f.g stwk	geochem		
GA-07-208					
					Thin
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Section
		felsic flow; v.sil alt; light bright grey, v.f.g			
		with 1-4 cm thick discont and discordant			
14514*	7 33-7 55	qtz veins (can appear almost brecciated-	geochem		
11011	1.55 1.55	looking); thin med-gr py veins, some 1-	Section		
		4% dis py (f-med-grained), trace gn; 1-3%			
		round white qtz xtstals.		5179-5182	2
		f.g tuff; med grey; fl with fu clear, glassy			
		qtz xtals (20%); mu (could have been			
14515	16.42-16.65	plag, now carb overprinted) white-beige	geochem	5183-5185	5
		(5%), subangular; vuggy, has dark brown			
		Weathering			
		sil alt xstal tuff;light grey, v.f.g sil alt tuff			
		sil alt xstal tuff;light grey, v.f.g sil alt tuff (or flow?) with thin (1mm) discordant and			
14516	24.08-24.28	sil alt xstal tuff;light grey, v.f.g sil alt tuff (or flow?) with thin (1mm) discordant and irregular chl (black) veins; 7-10% qtz	geochem	5186-5189)
14516	24.08-24.28	sil alt xstal tuff;light grey, v.f.g sil alt tuff (or flow?) with thin (1mm) discordant and irregular chl (black) veins; 7-10% qtz xstals (fu-cl)± plag (rare).; wk ser alt in thin spider-like veins: minor carb	geochem	5186-5189)
14516	24.08-24.28	sil alt xstal tuff;light grey, v.f.g sil alt tuff (or flow?) with thin (1mm) discordant and irregular chl (black) veins; 7-10% qtz xstals (fu-cl)± plag (rare).; wk ser alt in thin spider-like veins; minor carb overprint (1%)	geochem	5186-5189)

14517	20.21.20.40	mafic dyke; v.f.g dark grey green dyke with v.f golden beige flakes of ? Prob fe-	aaaham	5100 510 5510
14317	30.21-30.40		geochem	5190-519 5510
		sil alt+ wispy chl (tuff?); light grey f.g		
		turi w/ mi-vcu qtz xtsais (10%); thin black		
		as well: discondorant 1 cm atz vein		
		xcutting core: mod-strong sil: wk chl. mod		
		fol. Cut in half, f-gr xstal tuff. 15-20% qtz		
		xtals (clear and glassy or pale and white-		
14518	35.38-35.58	round to subround).	geochem/ co	5192-5195
		increase chl alt in xstal tuff \pm sil; could be		
		fine-med-gr L.T with qtz xstals in it.		
		Could be graded unit. Because downhole		
		is finer (even just in sample) but it could		
14510	20 (2 20 0(be weather that makes it look like lap.	1	5106 5201
14519	38.03-38.80	watel tuff with share least alt2, clear	geochem	5196-5201
		glassy and creamy white atz pheno (30%:		
		mu: subrounded) in light-med-grev fine-gr		5661-
14520	44.83-44.98	matrix; wk sil, v.wk chl	geochem	5202-520-5663
		xstal tuff with pheno chl increase; dark		
		grey green f.g tuff w/ 25-30% pale		
		subrounded qtz xstals, mu-cl; irregular qtz		
14521	59.95-60.2	bleb; mod chl alt	geochem	5203-5208
		weird black pheno; med grey with dark		
		black subangular xstals, thought were qtz		
		but can scratch. 3-4% qtz veins		
14522	69 3-69 54	wk chl alt, wk sil	TS?	5209-5212
11022		xtal tuff with pheno increase chl: dark	101	0209 0212
		grey f.g tuff with qtz plag pheno 20%		
		subrounded-rounded; some pale grey		
		elongate "lap"; some sulphide staining;		
14523	83.47-83.6	mod chl alt	geochem	5213-5214
		mafic unit? Massive; few carb veins;		
1 1 50 1		vuggy thin veins and blebs, dark brown in		
14524	88.25-88.4	color.	geochem/ rej	5215-5216
		pyhotite in sample; v.f.g dark		
		grey/blackish dyke with thin veinlets/		
		and some disem py: irregular carb veining		
14525	95.84-96.0	discordant 0.5-1.2 cm; mod chl alt	geochem/ re	5217-5219
11020		xstal tuff; med grev with fine matrix and		
		pale white subrounded fu-cu qtz xstals		
14526	103.41-10.61	(35%); massive; least alt?	least alt?	5220-5221 5537

		light grey tuff; fine-grained with fl qtz		
14527	108.15-108.41	xstals, subangular.	geochem	5223-5227
		v.chl alt, effed up; almost everything is		
		replaced by chl, euhedral fe-carb xstals		
		disseminated throughout (<30%),		5666-
14528	117.76-117.94	weathered on outer surface	geochem	5228-52315668
		graded f.g tuff with chl laminae/ discont		
14529	124.0-124.23	thin v.f.g beds.	geochem	5233-5236
		thin interbedded mud/ v.f.u tuff with med-		
		coarse-grained cubic disseminated py in		
		tuff layers (5%). Mud layers are approx		
14530	132.45-132.64	0.2-1cm	TS/geochem	5237-524 5515
		intrusive unit (intermediate?); fu/ml with		
		mu black pellets, some subrounded qtz		
		grains (fl-cu; rare; 5%); thin fe-carb veins		
14531	139.91-140.1	(1%); beige grey in color	geochem	5241-5243
		intrusive unit (intermediate?) increase chl		
14532	156.48-156.67	alt	geochem	5244-5246
		L.T with minor chl and fe-carb; fine-med-		
		grained L.T w/ fu-ml plag and qtz xtals.		
		Lap are light grey and elongated; thin		
		bands of black chl in interstial space.		
14533	161.93-162.18	Reddish-yellow staining	geochem	5247-525 5579
		intermediate intrusive?; fu/ml with mu		
		black pellets, some subrounded qtz grains		
		(fl-cu; rare; 5%); thin fe-carb veins (1%);		
14534	164.11-164.29	beige grey in color	geochem	5251-5253
		fine-med L.T ser < chl alt, similar to		
		14533, but finer, same mineralogy. Could		
		be considered coarse-grain tuff, kind of		
		sandy, med-light grey in color. Lap aren't		
		elongated or as obvious as last sample; wk		
14535	169.1-169.24	ser, wk chl.	geochem	5254-525 5544
14536	176.1-176.3	v.chl alt A.T?	geochem	
		mafic dyke; fine-grained dark grey green;		
		thin carb veins (2%) and carb blebs (1%);		
14537	182.82-183.04	rare euhedral py	geochem	5257-5259
14538	202.88-203.06	mafic dyke	geochem	5260-5262
		tuff; same as 14535; med-coarse-grained		
		tuff; plag and qtz xstals, rare chl bands,		
14540	218.45-218.6	minor fe-carb overprint; mod-wk ser	geochem	5263-5264
14541	220.34-220.47	A.T with pinkish white flecks> carb	geochem/ co	5265-5266
14542	231.15-231.29	A.T with increase ?similar to above	geochem	5267-5268
14543	225.66-225.8	qtz vein with mus/ep \pm kspar?	cool	5269-5270

		car alt tuff + mineralizatized Strong to				
		internals on alt L T (f access?)				
		licensing set all L. I (I-coarse?);				
		diseminated bands of med-gr py with rare			5672	
14544	777 6 777 70	tabular minoral	aaaham	5071 507	5676	
14344	213.0-213.18		geochem	32/1-32/.	3070	
1 4 5 4 5	205.0.205.20	ser alt tull + mineralizatized close to	1	5074		
14545	295.0-295.20	dyke; a.t with strong ser \geq or = to chi	geochem	5274	<u> </u>	
14546	306.75-306.92	chl, carb, ser tuff; fine-gr disem py	rep litho	5275-5270	5	
		$chl < ser \pm py$; fine-grain light grey tuff	_			
14547	328.33-328.49	with strong-mod ser alt.	geochem	5277-5278	8	
		muddy looking py banded tuff; v.f.g py in				
		matrix with v.f.g tuff (brownish gold)?				
		Discont bands of f.g py (10% is bands of				
		py) approx 2-3 cm long and 0.5-1.5 cm				
		thick, parallel with fol; 7% elongated				
14548	236.98-237.21	chert/qtz fragments (3mm) in f.g matrix.	geochem, TS	5282-5283	3	
14549	241.73-241.88	banded py, sp, gn; folded	TS, geochem	5279-528	1	
		py undulatory band in tuff (muddy?);				
		same v.f.g matrix of golden brown py with				
		tuff? But this has very thin bands of cont				
		undulating py bands (brighter golden				
		color); possible sp, rare coarser grains of				
		ccp in boundinage band (3cm long). Some				
14450	242.41-242.58	qtz blebs in matrix.	geochem, TS	5284-528	5	
		grav v fl (appears more si rich thin				
		bands appears on tons? Of beds, some				
		loading structures (flames) with lower				
		dark grey fl unit) Med grey beds				
		(thickest) that are y f l-fl with disem				
		$(f_{\alpha}, 2\%)$ in between med_area beds are				
		dark-grey fl-fu more sandy looking thin-				
		med bedded, could be base and grade into				
		lighter grey but not always, mod to strong				
14451	248 14-248 3	ser alt.	geochem, TS	5286-5289)	
11.01		y chl alt (VMS?): y black y f σ (no grains	8,	0200 020		
		in black can be seen chl replacing				
		original tuff) w/ small bleds (1-2mm) of				
		atz (white, or carb??): 2-3% carb veins				
14452	253 34-253 56	with py, trace ccp and possible sp. $(<5\%)$	geochem	5290-529	,	
17732	255.57-255.50	$p_{\rm rel} \pm dt_{\rm r}$ value or $p_{\rm rel}$ in a possible sp. ((376)	Scothem	5270-5292	_	
		$py \pm qtz$ verifs are integriar; class of chi alt				
		"alost"); mod strong car alt in light group				
14452	750 7 750 15	o t	analy T	5202 520	5677	
14433	230.3-238.43	a.t.	geochem, 13	5295-529.	3077	
			ser/sil tuff \pm py \pm thin chl bed; light grey			
-----	--------	---------------	--	-----------	-----------	-------
			a.t with thin dark (chl alt?) blebs; thin			
			layers of darker of (chl alt?) with fine-med			
			gr py; v.f.g py is diseminated throughout			
			the sample; 4% of randomly distrubuted			
	14454	264.96-265.14	qtz fragments, typically subrounded.	geochem	5296-529	9
	14455	254.23-254.37	mud + py? + qtz lap	TS	5300-5302	2
GA-	07-209					
Tag		Depth (m)	Rock Type (initial)	Purpose	Photo	TS
		• • •	Felsic flow or A.T; v.f.g; light grey/ beige	geochem,		
			with irregular white gtz veins (5%): v.sil	TS, rep		
	25437	4.3-4.48	alt: 3% dis py: few minor sericite veins	litho	5303-5304	4
	20.07					
			<u>I</u> -m.gr L. I w/ strong sil \pm ser/chl; light to			
			med grey in color. Lapilli are light to dark			
			grey in color with finer matrix. Qtz and			
			plag xtals in interstial space, some chl			
			infilling interstial space, appear as dark			
			grey elongated fragments (rare). Lapilli			
			are subangular and slight elongated			
	25438	22.38-22.54	looking. mod fol.	geochem	5305-530	6
			1st mafic dyke; med-gr dark grey green			
			mafic dyke. Appears granular looking,			
			green, black and white "grains". Rare			5682-
	25439	34.81-34.98	v.thin carb vein; massive; wk chl alt	geochem	5307-530	5686
			A.T increase alt (hydrothermal breccia?):	0		
			mix of white and light grev: worm like			
			texture: both have mu-sized atz stals:			
			white is sil alt whereas grey is more ser	geochem		5687-
	25440	10 08 10 23	alt: white grey 60:40: strong sil wk ser	ren litho	5210 521	5693
	23440	40.08-40.23	art, white grey 60.40, strong sit, we set.		5510-551	5075
			xstal tull; med-grey if with m-cu white qtz	1		
	05441	50 7 50 0	xtais (40%); rare carb clast/amygdule;	geochem,	5212 521	-
	25441	50.7-50.9	rare disem py; strong sil	rep litno	5313-531	5
			matrix is dark grey; there is more			
			red/brown staining (fe-carb) which is kind			
			of replacing xtals (maybe some plag then)			
			still mod-strongly sil alt w/ wk-med chl			
	25442	58.72-58.8	alt.	geochem	5316-532	0
			(xstal) tuff; dark grey- almost black fl-			
			v.f.u matrix with fl-mu qtz and plag xstals			
			(15%). Not an obvious xstal tuff. More			
			sandy in apperance. 5% carb over print:			
	25443	73.78-73.9	mod chl alt.	geochem	5320-532	3
	25444	83.12-18.36	xstal tuff: dark grey to blackish green fu wi	geochem	5324-532	8

		sil tuff breccia; clasts are subangular. Some large rhyolite clasts are fractures with carb infilling interstitial space. Most		
		piece (I think?), some chert/qtz fragments		
		and some thicker carb veins, few darker	geochem,	
25445	98.47-98.65	grey blebs. strong sil alt.	rep litho	5329-5332
		amygdaloidal dyke; med-grey green; oval		
		0.5-1 cm carb amygdule; possibly		
		elongated, seems to wk-mod fol; cluster of		5502
25446	104 09-104 33	veinlets	geochem	5333-533 5507
25110	101.09 101.33	fu-ml tuff, well fol.: fe-carb overprint	geoenem	0000 000 000 000
		pervasive, rare carb concordant veinlet;	geochem,	
25447	113.32-113.49	least alt? Or wk chl alt	rep litho	5337-5339
		sil ash tuff with chaotic carb and chl alt in		
25448	124.57-124.73	a 3 cm discont band	rep litho	5340-5341
		sil with wispy chl/mud beds; med-light fl		
		grey tuff with v.thin wispy layers of v.f.g		
		dark grey (pos chl alt; 5%) and thin layers		5579
25449	125 2-125 4	sequence of 25447	geochem	5342-534 5530
25450	127.56-127.74	chl mud with crazy veining	mud stuff (T	5345-5346
23 13 0	127.30 127.71	sil+ chl alt I. T or tuff breccia: some areas	inua starr (1	00100010
		appear hydrothermally brecciated: med-gr		
		L.T with some rare coarse lapilli; lapilli		
		are darker grey whereas interstial space is		
14501	146.52-146.67	light grey; mod chl and sil alt.	geochem	5347-5349
		part; also diseminated py in v.black, f.g	mud stuff/	
14502	153.69-153.9	chl.	geochem?	5350-5353
		dark grey green mafic dyke; ml; wk fol to		
		massive; rare carb amydgules, thin pin		
14502	174 44 174 69	like black minerals (20-30%), rare thin	aaaham	5251 5256
14303	1/4.44-1/4.08		geochem	5554-5550
		mod ser, wk chl alt fine-gr L. I w/ some		
		lanilli coarse lan are med (darker) grey		
		and massive, fu-mu gtz and plag xtals.		
		thin elongated dark grey fragments, some		
		sulphide staining. Matrix is mu light-med		
14504	188.79-189	grey; sulphide staining	geochem	5357-5358
		dark green/black mafic dyke; f.g wk fol,		
14505	200.8-201.02	rare py.	geochem	5359-5361
14506		dark green/black matic dyke; f.g wk fol,	1.	52(2) 52(4
14506	223.00-223.84	rare carb vein; v.I carb over print	geochem	5302-5304 5265 5267
14507	233.03-233.23	other dyke (grey/brown): f g: few fe-carb fi	geochem	5368-5371
14000	212.0J-272.21	outer ayne (5109/010 will), 1.8, 10 w 10-0410 11	Secondin	2200 2271

			tuff (ser): light-med grey, med-gr tuff with			
			few white xtals, finer version of above.			
	14509	257.46-257.6	sandy-ish. Not really fol	geochem	5372-537	5
-	14510	291.3-291.6	chl alt and chaotic carb- can see py replacin	geochem	5376-538	5521
			super mineralized, banded red sp, py, ccp,	geochem?		
	14511	261.55-261.81	few qtz blebs	TS?	5382-538	7
			chl matrix with sulphides, py, patches of			
-	14512	269.36-269.59	gn, bands of qtz (or carb?)	representativ	5388-5392	2
	14513	273.45-273.7	chl matrix with sulphides	representativ	5393-539	5
GA-	07-214		<u> </u>			
Tag		Depth (m)	Rock Type (initial)	Purpose	Photo	
		· · · ·	Felsic flow/ ash tuff; v.sil alt. Light			
			grey/beige in color; <5% dis anhedral py;			
			discordant qtz veins (white); thin disem			
	31775	5.71-6.12	sericite veining; few qtz white xtals.	geochem	5397-539	9
			f.g med-grey tuff with white round to			
			subround white qtz xtals; appears to be			
			discont banded or web-like with light grey			
			(v.sil alt) and med-dark grey (w/ vein-like			
			more chl rich zones, v.thin, ropey			5633-
,	31776	17.55-17.82	looking); strong sil alt, wk chl.	geochem	5400-5404	5636
			light-med grey mod sil, wk ser alt ash- fu			
			tuff with few qtz phenos; irregular qtz			
			veining (less then above); few 1-2 cm			
-	31777	30.58-30.85	chert-looking fragments.	geochem	5405-540	9
			mafic dyke; fu/ml-gr dark grey-green			
			dyke; somewhat granular looking; black			
			specs, some carb-over print, v.g.f golden			
			yellow flecks; few carb amygdules (round			
			to rod-like), thick qtz-carb vein, rare qtz			
	31778	40.55-40.87	discordant qtz veins; rare disem py	geochem, TS	5410-541	3
			felsic xtal tuff; light-med grey fu-mu-gr;			
			fu-cu pale white and clear glassy qtz xtals			
			(20-25%); 2-4% elongate (oval-like) and			
			irregular shaped carb lap; carb may be			
			infilling some of interstitial space (in			
			photos light grey/white area in middle);			5640-
	31779	47.53-4.9	mod fol, mod sil alt, wk chl	geochem, TS	5414-541	5644
			felsic tuff; med-dark grey fl tuff with fu-m			
			white qtz xtals (rounded-subrounded); 1-			
			2% subangular carb lap; patches of v.f.g			
			py, wk carb overprint (5%); few lap sized			
	31780	65.48-65.83	qtz fragments; wk-mod chl alt; mod fol.	geochem	5420-5424	4

		lapilli/ash tuff; dark-grey, fl/fu w/ fu-mu		
		pale white subrounded qtz xstals (20%),		
		mod-strong fol, mod-str chl alt, mod fe-		
		carb overprint; 2-3% lap sized qtz		
31781	81.7-82.0	fragments (or chert).	geochem	5425-5428
		felsic flow? Or fl tuff? Dark-grey f-gr with		
		few (5%) qtz xtals, rare rod-like carb		
31782	108.2-108.5	amygdules, 3% carb veinlets, mod chl alt.	geochem	5429-5433
		Light grey, fl-gr, well fol, 15% reddish-		
		dark brown flecks (prob py), orange		
		sulphide staining, few quartz frags; mod-		5648-
31783	118.67-118.97	strong ser	geochem	5434-543 5651
		felsic flow? Or sil alt ash tuff. Light pale		
		grey with discont bands of beige; v.f.g w/		
		<10% qtz xtals, 3-4% lap sized carb		
		fragments, mod fol, strong sil alt, wk chl?		
31784	130.27-130.52	Orange staining.	geochem	5437-5439
		mafic dyke; pale grey with black flecks, f-		
		m-grained, with 10% carb amygdules.		
31785	150.83-151.07	Rare carb veinelts. Sil alt?	geochem	5440-5441
		mudstone/siltstone; black v.f.g w/ thin		
		concondrant veinlets of carb; thin		
		interbeds of sil-grey light grey ash tuff (1-		
		3cm) down hole. Mod chl, small patches (
31786	157.07-157.27	<5mm) of v.f.g py.	geochem	5442-5444
		mafic dyke (look for chilled margins); ml-		
		gr with black shards (5%), 0.5-1.5 cm carb		
		filled amygdules; rare qtz and plag xtals;		
		3% carb veining (discordant and		
31787	176.98-177.3	irregular); wk chl alt.	geochem	5445-5447
		fine-grained mafic; dark grey green in		
		color. Rare cubic py; massive- wk fol, wk-		
31788	207.09-204.31	mod chl alt.	geochem	5448-5449
		fine-grained alt dyke; light grey-green;		
		disem py (5%), x-cutting qtz vein with py		
		in and around veinlet (3mm thick); wk-		
31789	242.68-243.03	mod chl, mod ep, massive.	geochem	5450-5453
		felsic med-gr tuff + sericite alt; 10% white		
31790	243.74-244.05	pheno, wk fol, wk-mod ser alt	geochem	5454-5455
		mafic unit; fu/ml, dark grey green with		
		strong fe-carb overprint (speckled), few		
		fragments of broken-up carb veins and		
31791	257.99-258.22	some carb veins.	geochem	5456-5459
		felsic lapilli tuff; fine-med-gr L.T; light-		
31792	267.73-268.11	med grey, mod fol, mod ser and chl.	geochem	5460-5462

		med-light grey f-gr tuff with fine-gr py disem (70%); thin bands < 1cm of chl alt (black) tuff?; fine-coarse-grained py clusters in these bands: discont atz vains 1		
		1.5 cm thick also contain abundant f-c-gr		
31771	270.13-270.4	py.	geochem	5472-5475
31770	280 22 281 05	contact b/t chl alt fine-gr tuff w/ disem y and bedded sulphides (py, red sp, cp, gn); fine-gr tuff fragments are in interstitial space between py and rare ccp until hit massive sulphide.; well foliated. 2nd sample is similar except thick bladed barite fragment 7 cm long 4-2 cm thick with 0.5 cm ccp vein through centre	geochem,	5476 5478
51772	200.33 201.03	thin (<1cm-2cm) thick pinch and swell and discont chl (black) alt f.g tuff with disem fine-med-gr py. Sulphides are dominately py (50%) with 15% gn, 7% sp		5170 5170
31773	292.68-292.94	and 2% ccp. All bedded sulphides are f.g. Few blebs of barite (1 v. large one 6x3 cm), and few qtz lap. bedded sulphides wrap barite fragment.	rep geo of mineralizati on	5479-5483
		massive to semi-massive sulphide, almost bedded, parallel with fol; coarse-fine-gr py with stringers of ccp, rare small clusters of sp; with black chl alt matrix (v.f.g) some white specks of qtz?? Sulphides are in cluser bands or diseminated throughout the black matrix.		
31774	293.6-293.9	few coarse qtz veins, thin rare barite vein?	geochem?	5484-5487
31794	295.2-295.42	py-chl alt f-gr tuff \pm cp outside massive sulphide zone; fine-coarse gr-py in clusters and disem bands in chl alt tuff. Fragments of light grey mu-gr sil alt tuff ranging in size from 1-7cm x 0.5-2cm. Rare ccp with py. Py is rarely euhedral.	geochem	5467-5471
31793	297.2-297.48	coarse-gr L.T; lapilli are elongated and light grey f.g; chl is in interstitial space; some black elongated lapilli (1-2%; 1.5 cm x1cm); rare bands of fine-coarse-gr clustered py. + disem py (1-2%), speckled mod carb overprint; strong ser; wk-mod chl.	geochem	5463-5466

			felsic graded med tuff \pm lapilli> v.fine- grained tuff; fu/ml light grey felsic tuff with thin (1-2cm) discont hands of med-gr			
			black chl alt tuff with white subrounded			
			qtz grains; rare dis py. Elongate black			
			clasts in light grey tuff. Grey could be			
	31795	309.71-309.90	elongated lapilli; strong ser alt.	geochem	5488-549	0
			med-gr py parallel to fol (80%); bands of			
			light grey f.g sil alt tuff with thin			
			elongated dark grey fragments (15%)			
			blebs of qtz (or chert) subrounded (0.3-			_
	31796	316.96-317.24	lcm).	geochem	5491-549	5
			sil alt tuff (or qtz veins) with thin discont			
			bands of chl alt tuff? Or infilling			
			interstitial space. Sil alt tuff has ml qtx			
			xtals in lap fragmets with rare dis py.			
			bands/blabs of chl alt. Euhedral py is			
			disem throughout whereas fine-or py is			
			clusterd in thicker bands, milky white			
	31797	321.59-321.85	veins pinch and swell 5mm thick, discont.		5496-549	9
			chaotic carbonate+vein contact+v.f.g chl			
			alt tuff; with disem f.g p; rare red sp near			
			veins, blebs of qtz/ chaotic carb fragments			
			in matrix, larger clusters of coarse qtz			
			fragments milky white to clear white in			
	31798	322.2-322.41	color; wk to mod fol; strong chl alt.		5500-5502	2
	25435	160.96-161.2	alt dyke?	geochem		
	25436	171.1-171.26	alt f.g mafic?	geochem		
GA-	07-218		1			
_				-		Thin
Tag	1 4 4 5 6	Depth (m)	Rock Type (initial)	Purpose	Photo	Section
	14456	5.79-5.93	Telsic tuff? \pm py, sil alt, carb overprint	geochem/ TS	5078-508	0
	14457	20.22.20.42	med-grained matic dyke; chi alt green in	an alter		
	1445/	20.23-20.42	color	geochem/ma		
	14458	30 4-30 67	(q_1z_1) or cli all clast: thin ny veinlets we sil alt	n litho	5081-508	5
	1++50	50.4-50.07	mod sil alt f g tuff with gtz ystals +	geochem/re	5001-500.	5
	14459	50 01-50 17	atz/carb veins	n litho/TS	5086-508	9
	11107	50.01 50.17	mod sil alt f g tuff with g_{x} stals + ser	p miller 10	2000 200	,
	14460	69.5-69.68	veinlets	geochem	5090-509	5
			lapilli tuff with qtz xstals (0.5-1cm) chl	geochem/re		
	14461	86.17-86.38	veinlets + mod sil alt	p litho	5096-5102	2
			f.g tuff with pale white qtz and glassy			
	14462	104.65-104.9	xstals, minor chl veinlets, sil alt		5103-510	9
			patchy tuff, $chl + sil alt \pm ccp$? Some	geochem/		
	14463	112.2-112.46	white + glassy xstals.	TS?		

14464	111 21 111 46	fine/med-grained (fl/ml), graded grey tuff,	geochem/re		
14404	111.31-111.40	f a votal tuff nale white at z some plag			
		some pulled atz voins, shear zone? +wk	ran litha/		
14465	125 8 126 10	mod chl alt	geochem	5110 511	5
14403	123.8-120.10	y stal tuff massive? Dale white atz ystals	ron litho/	5110-5110)
14466	140 24 140 57	(<1mm 7mm)	geochem	5117 5120)
14400	140.34-140.32		ron litho/	5117-5120)
14467	162 51-162 76	graded tuff with chl alt interbeds	geochem	5121-512	5
14468	174 55-174 77	y Sil alt ystal ash tuff or felsic dyke	geochem	5121-5120	J
14400	1/7.33-1/7.77	v. Sh ult Astul ush tull of felsie dyke	geochem/T		
14469	182 21-182 41	mm interbeds of chl alt silt? $+$ ash tuff	S?	5127-5132	,
11107	102.21 102.11	mm interbeds of chl alt silt? $+$ ash tuff $+$	geochem/T	5127 5152	_
14470	192 22-192 39	ny med-grained tuff	S	5133-513	7
11170	172.22 172.37	med-grained tuff (sandvish) with chl	~	0100 010	,
14471	195.65-195.85	clasts, mod sil alt	geochem	5138-514	3
111/1	190100 190100		geochem/	0100 01 1	5545-
14472	199,15-199,37	mudstone v alt	mud stuff		5550
111/2	177110 177101		geochem/T		
14473	200.90-201.16	mafic tuff?	S?		
11110		graded tuff ($mu/cl \rightarrow f.g$); pv in thin bands:			
14474	239.44-237.72	mod ser alt, chl bands	geochem	5144-515	5527
		med-grey f.g tuff, vuggy? Could be dyke ,	0		
14475	252.05-252.2	thin carb veins	geochem>	5151-5154	1
14476	266.4-266.55	sil alt tuff f.g \pm few qtz xstals	geochem		
		sil alt/ ser alt tuff f.g \pm few qtz xstals;	geochem/T		
14477	294.81-295.01	well fol	S	5155-5158	3
14478	318.05-318.20	ash tuff with sil and ser alt	geochem		
14479	327.61-327.86	tuff with chl alt >sil+ser	geochem		
		mod-strong ser< chl; thin bands of py (10-			
14480	332.3-32.48	15%) in chl + disem py, trace sp?	geochem	5175-5178	3
		semi-massive sulphide with alt chl and			
		"un-alt" patches; ser alt too, chl > ser, 2%			
14481	335.6-335.85	py, tr sp	geochem	5159-5162	2
			geochem/T		
14482	344.55-344.79	bands of chl matrix with sil?ser? Lap?	S	5163-516	5515
		stwk alt; f.g tuff w/ chl and ser alt; patches			
14483	363.9-364.14	of more chl alt w/ py.	geochem	5167-5170)
14484	376.54-376.74	alt mafic dyke?	geochem		
		v.ser alt tuff; f-m-gr w/ some thin black	TS?		
14485	394.87-395.1	clasts	Geochem	5170-5174	1
Section 39	950				
GA-07-256	j				
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo	

r				
31937	10.76-11.04	grey veinlets (few mm). White round to subrounded qtz xstals or blotches with clear qtz xstals in them. Approx 10-15% clear qtz xstals. Med grey in color with few light grey botches. White blotches/ xstals are <10%. approx 5% disem py. f -m- gr tuff.	GC	4188-4195
31938	32.25-35.45	mod sil alt L.T. or tuff ser alt; if it is a lap then lap would be light grey color, elongated few cm each. With darker grey making up fine0-gr matrix, however some of the matrix is lighter grey/white which is probably siliceous alt or replacement. <1% disem py. approx 8% pale white xtsls and 3% clear qtz xstals.	GC	4196-4202
31939	53.12-53.32	L.T (new?) hetero wk chl?; looks more like a xstal bearing tuff with round to subrounded qtz xstals with 0.5-1.5 cm med grey laps that are elongated with a fine dark grey matrix, look lath-like. Cut side looks like described above but none- cut side does look like LT/tuff. dark grey matrix is discont and appears lath like, could be chl alt. weaky ser alt. similar to two above samples with less sil alt and more defined crystals and lap. rare clusters of fine py +1-2% disem py.	GC	4203-4209
31940	77.61-77.84	f-m grey tuff (graded seq), mostly f-g. 5- 7% v.f.g disem py. 5% black round qtz xstals in v.f.g matrix, wk ser? Mod fol	GC (TS?)	4210-4215
31941	83.82-84.02	f.g dark grey green mafic dyke; 4% disem p	GC	4216-4220
31942	103.91-104.15	xstal tuff wk-mod chl, dark grey in color with 20-25% white dominantly plagioclase xstals. Xstals are typically subround to tabular however some are lath- life and others are round. Rare qtz blobs and 5% qtz clear xstals. Matrix is v.f.g. 2 qtz veins, one which has chl alt? blotchy green patch. could be porphyrtici felsic? flow. wkly chl alt.	GC	4221-4230
51742	105.71-107.15	Mafic dyke (carb overprint?) f-m-gr MD.		1221-7230
31943	126.62-126.90	Rare py grain (not in geochem side)	GC	4231-4237

		f-m tuff mod sil/ser + tr ccp/py; py			
		stringers of f-m-gr py xstals, some			
		boudinage some are just straight with fol,			
		all are concordant. <1mm clear qtz xstals			
		>40% v.f.g. could be sheared carb veins			
		(creamy white bleds that pretty much			
		follow fol) can be associated with py			
		stringers. they range in size from 1 cm to			
31944	146.2-146.46	> mm elongated blebs.	GC	4238-4245	5
		felsic dyke sil alt, with 7% qtz xstals			
31945	169.65-169.87	mostly round few mm.	GC	4246-4250)
		L.T hetero; mostly composted of MC?			
		With some grey felsic lap clasts, strongly			
		fol, mod ser, f-gr speckled and disem py.			
		Clasts are 1x0.5 - 1.5-4 cm. could be			
31946	175.09-175.32	considered a greywacke	rep litho/TS	4251-4254	1
31947	176.16-176.61	nice graded seq	rep litho/TS		
		f. tuff with wk-mod ser alt, 2 thin beds of			
		arg, rare m-c-gr py in matrix. 8% f.g. py in			
		thin laths, look like could be replacing			
		tuffaceous grains. Incorporated in matrix			
31948	186.02-186.24	and with fol.	GC	4255-4259)
		mud interbeds; f.g tuff with thin arg			
		interbeds, mostly continuous. Some are			
		faulted? Or scoured. Obvious load			
		structures with f.g arg and slightly coarser			
		tuffs (m.g). 3% m-c-gr py mostly in			
		tuffaceous beds but can cut through arg.			
		<10% v.f.g py in fol in tuffaceous lavers.			
		similar to above, get some clustering of pv			
31949	189.62-189.84	in elongated pods.	GC	4260-4263	5
31950	206.57-206.72	felsic dyke? F.gr light grey, 4 0.5 cm white	GC	4266-4270)
14751	214.41-214.58	hetero tuff/L.T. <5% euhedral py xstals.	GC/TS?	4271-4274	1
14752	242.25-242.49	mafic sill + chl	GC	4275-4276	5
		L.T ser + chl; heterolithic tuff with mostly			
		grey lap, light grey, dark grey (v. thin).			
14753	272.48-272.69	And 5% white round xstals (plag).	GC (TS?)	4277-4280)
		weird qtz veins/stwk; par tof MS? 25% sp,			
		15-20% gn, 15% py, 3% cp. White veins			
14754	213.58-213.76	are irregular, 10% veins, rest is gangue.	rep litho/TS	4281-4285	5
		chl/ser stwk py; sericite alt tuff with			
14755	289.37-289.59	chl+py stringers few mm thick.	GC	4286-4289)
		chl/ser stwk py; chl=ser alt tuff with 45%			
		py. Semi massive sulphide. F-c gr py. Can			
14756	305.15-305.45	see some relic qtz xstals in matrix.	GC	4290-4296	5
GA-10-272					
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	

		xstal tuff; xstal bearing tuff/l.t could be		
		due to alt; mod sil +ser/chl veinlets with 1-		
		2% disem py. If lap is fine, would be		
		elgonated light grey laps. Xstals (15%) are		
		tabular (rare) to round, white qtz with		
32125	1.84-2.12	lesser plagioclase, lesser clear qtz	GC	3535-3541
		ash tuff or L.T (homo) sil; homo L.T, lap		
		are pale grey and sil alt with darker (chl?)		
		alt in matrix f.g. with few mm qtz (clear)		
		xstals in it. <5% white 5-6 mm white qtz		
		xtals (round) in pale grey lap. Some lap		
		appear "fractured" or broken up within the		
32126	20.64-20.87	lap fragments., could be autoclastic?	GC/REP	3542-3549
		are pale grey with chl+ disem py (rare sp		
		+ silverly colored vein) veinlets with		
		lesser ser veinlets (5-7% veinlets). Few		
		mm clear round qtz xtstals throughout		
		~10% in pale grey laps. Mod-strong sil		
32127	34.4-34.66	alt, wk chl>ser	GC	3350-3556
		chl alt hetero tuff/LT; disem med-gr py,		
		<10% clear/dark qtz crystals, lap are grey		
		with some darker grey, but dark grey		
		mostly makes up matrix which is very f.g.		
		lap are elongated. Some subrounded qtz		
		crystals ~1cm pale white (<3%). Wk-mod		
32128	43.1-43.44	sil/ wk-mod chl.	GC/REP	3557-3568
		sil/chl alt L.T w/ f.g in matrix; 0.5-1cm		
		white qtz xtals (5%). Could also be a		
		flow?? Ale grey and black		
		elongated/boudinaged lap?? Pale grey is		
		thicker + dark grey appears to be making		
32129	55.57-55.8	up matrix. Similar to above, no sulphides	GC	3569-3576
32130	64.8-65.03	matic dyke (1); f.g. dark green grey	GC	3577-3580
		either mafic or chl alt xstal tuff; pretty		
		sure chl alt xstal tuff. ~20% qtz xstals		
		both white and clear, >1% thin (mm-		
		scale) carb veinlets and some carb		
32131	89.8-90.04	replacement along xstal faces?	GC/TS (PIC	3581-3588
		xstal tuff w/ ch alt (could be the same -		
		above), same as above but this has		
		plagioclase xstals, where I don't think the		
		one above does. Plag $>$ qtz; white and		
		clear qtz and white tabular to subrounded		
		plagioclase. F.g, approx 20-25% xstals,		
32132	104.32-104.5	strong chl alt.	GC/TS	3589-3594
32133	111.6-111.1	chl alt TB/LT w/ py	TS?-cool sar	3595-3599
32134	119.59-119.8	matic dyke (2); f.g. dark grey	GC	3600-3605

		v. chl alt tuff w/ disem py (change in alt)		
		possible sheared qtz veins? Pieces of		
22125	104 24 104 59	white qtz, 2 contacts, one with disem	CC	2606 2612
32133	124.34-124.38		GC	3000-3012
		intermediate dyke (prob maile); pale grey		
		autting corb? Voing + cubadral mad or py		
		(<5%) + 3% pyrhotite in black (chl?)		
32136	134 70-134 95	veinlets	GC	3613-3619
52150	10 11/0 10 100	Lots of atz crystals all different sizes		5015 5017
		From fu-cl. With rare granule size		
		particles. Strongly ser/sil alt? 1-2%		
32137	142.3-142.55	clusters of py.	GC	3620-3627
32138	152.06-152.3	m.gr tuff + MC + py (6%), wk-mod ser	GC	3628-3634
		intermediate dyke? Or MD (3) f.g. 1%		
32139	167.8-168.0	carb mm-scale amy	GC	3635-3639
		mod ser + wk chl f.g L.T/ m-c- tuff (2%		
		py) w/ mud clasts, heterolithic, rare (1%)		
32140	172.08-172.3	pyrhotite.	GC	3640-3645
32141	177.34-177.76	sil alt +ser/chl tuff (change in alt)	GC- good ex	TS?
		ser + chl tuff (coarse) sim to above,		
		coarser then previous, but similar		
		composition of pale grey with black mud		
221.42		clasts and white plag xstals + murky white	~~	
32142	181.8-181.98	coarse qtz xstals. Rare py	GC	3646-3652
22142	201 75 202 02	matic sill, f.g massive, f.g black xstals	CC	2652 2650
32143	201.75-202.02	rad aar/ahl f/m tuff + white round arguing	GC	2660 2264
32144	220.7-221.0	strong ser alt +py tuff EW	GC	2665 2672
32145	255-255.19	ser/chl/carb tuff FW	GC	3673-3681
32140	280 37-280 57	set alt $\pm chl/pv$ bands FW $\pm chaotic carb$	GC	3682-3686
32148	292,47-292,66	ser w/ discont py bands	GC/TS	5002 5000
32149	298.3-298.58	fold ser tuff +pv	NEATO	
32151	224.46-224.8	chl + MS	TS	
32152	237.01-237.15	chaotic carb	TS	
32153	240.22-240.26	bands of py, gn, sp in ser	TS	
32154	240.43-240.65	chl/ser alt tuff + py	GC	
GA-14-275		•		
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo
		sil alt tuff w/ xstals, looks like a tuff		
		because look like lap fragments, but could		
		potentially be a flow fragments look		
14757	5.87-6.06	coherent	GC	5322-5327
		probably a flow, felsic, with wormy		
		looking qtz veins and silverly thick veins.		
1 / = = 0		Very coherent looking, few xstals, some	66	5220 5222
14758	23.4-23.64	sericite veins.	GC	5328-5332

14759	39.61-39.82	heterolithic tuff/L.T mod sil/chl	GC	5333-5336
14760	58.83-59	qtz-felds tuff wk chl	GC	5337-5339
14761	63.79-63.9	mafic dyke	GC	5340-5344
14762	77.23-77.43	qtz-felds tuff mod chl	GC	5345-5347
14763	98.83-99.14	mafic dyke	GC	5348-5349
14764	105.63-105.89	graded tuff> chert/A.T	TS/REP/GC	5350-5355
14765	109.62-109.94	fine tuff/A.T? (1% py)	GC	5356-5358
14766	118.44-118.7	felsic dyke? Wk chl	GC	5359-5362
		mudstone, few pieces ; arg with f-m gr		
		grey tuffs with disem m-g py disem and f-		
14767	126.5-126.83	m-gr in veins in arg	GC	5363-5364
14768	140.28-140.49	felsic dyke/ alt mafic or int?	GC	5365-5367
		hetero tuff w/ MC (or thin black elongated		
14769	148.8-149	clasts) 2% f.g disem po	GC/REP	5368-5376
14770	163.81-164	mafic sill	GC	5377-5382
14771	180.71-180.89	mafic sill	GC	5383-5385
14772	196.54-196.74	finely lam sil/ser A.T	GC	5386-5387
14773	198.3-198.5	ser alt hetero tuff	GC	5388-5390
14774	213.58-213.76	ser/sil (v) alt tuff w/ py	GC	5391-5401
		ser/sil (v) w/qtz xstals tuff +py chl		
		stringers (py is more concentrated in), can		
14775	239.6-239.88	see relict qtz xstals!!	GC/TS	5402-5411
14776	248.17-24.37	alt dyke	GC?	5412-5414
		ser/sil alt tuff + py+ 4% sp, 2% gn - seem		
		to be assocaited with more sil alt lap, can		
14777	250.71-250.89	see relict qtz xstals!	GC/REP	5415-5426
14778	253.15-253.35	ser/ sil atl w/ sheared chl stringers + py	GC/REP	5427-5438
GA-14-276				
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo
		qtz-felds (15%) mod sil alt tuff; light-med		
		grey in color. Qtz-feldspar xstals are 1-		
		3mm. Matrix is fu/ml, ser veinlets are		
		parallel to fol, f.g py is disem (5%) and		
		(1%) f-m gr py is in thin ser veinlets.		
14779	6.9-7.13	Qtz>felds	GC	4644-4648
		tuff?);white to pale grey in color, with		
		reddish-orange staining (fe-carb or		
		sulphide staining?) 0.5- 3mm round clear		
		qtz xstals, looks coherent, thin sericite		
14780	23.4-23.64	veinlets (2%).	GC/rep	4649-4655
		sil xstal bearing L.T + ser; light grey with		
		med/dark grey matrix. Lap are ghostly		
14781	46.88-46.98	looking and pale grey	GC	4456-4463
14782	58.56-58.92	sil xstal bearing L.T + ser w/ chl veins?	GC	4664-4669
14783	75.10-75.37	heterolithic L.T (chl) f-m gr.	GC/rep	4670-4674
		Qtz- (>)felds bearing f-gr tuff mod chl,		
14784	95.22-95.44	med grey greenish	GC	4675-4679

14785	97.77-98	mafic dyke, f.g dark green grey.	GC	4680-4683
		xstal tuff (qtz>felds); disem clusters of f-		
		m gr py in matrix, some of matrix is chl		
14786	115.85-116	alt, some sheared qtz veins?	GC	4684-4690
14787	131.25-134.47	felds+qtz xstal tuff	GC	4691-4698
		with carb? Get bleached zone. Overall m-		
		gr, few white qtz phenocrysts. Wek-mod		
14788	147.47-148	sil	GC	4699-4703
		f-m pale grey/white tuff with f-m disem		
14789	154.55-154.75	py throughout. Rare po vein	unsure?	4704-4713
		arg interbeds +p.y. v.f-f-gr		
14790	171.14-171.36	tuffs/greywackes? Boudinage qtz veins	GC?	4714-4719
		arg w/ py- deformed, fault zone? Py is		
14791	177.29-177.42	prob remobilized.	GC	4720-4725
		strong sil L.T hetero?some clasts? Look		
		aphantic whereas others look		
		crstallize/granular and there is black in		
		between some fragments which is v.f.g		
		but not continous. 1% disem clusters of		
		f.g. py. F.g flecks of white/silver v.f.g, in		
		one lap(?) there are round black xstals		
		surround inside. looks somewhat		
14792	183.45-183.65	deformed, could potentially be flow??	GC	4726-4731
		felsic dyke? w/carb alt; carb amygdules,		
		5% qtz xstals. Looks like dyke. But light		
		grey. Thin x-cutting vein with po (5%)		
14793	194-194.23	and py (2%).	GC	4732-4737
		Fine elongated anhedral py in matrix		
		>1mm (5%), rare po, 2nd gen is euhderal		
		(1%) m-gr disem throughout (even in		
14794	217.47-217.74	clasts) OP?	GC	4738-4743
		arg w/ qtz veins, qtz veins are erratic,		
		probably fault zone, v.v.f-gr py in fol		
		(35)? Or is aligned, there are also f.g		
14795	224-224.2	clusters of py (1%).	GC?	4744-4746
		mafic sill, v.v.f (common) and ml carb		
14796	238.6-238.8	amygdules	GC	4747-4753
		med tuff w/ round white felds xstals; 2%		
14797	259.29-259.57	disem v.f.g py, mod ser alt, wk chl.	GC	4754-4759
		ser alt tuff; white round qtz xstals, pretty		
		xstal rich, fu/ml, few darker grey thin		
		discont bands, v.v.f.g pale yellow flecks		
14798	295.70-295.93	disem everywhere (10%).	GC	4760-4765
		chl alt tuff? With erratic qtz veins wormy		
		looking and carb OP and f.g disem		
		throughout (7%) but closer more close to		
14799	307.54-307.71	the QTZ veins.	GC	4766-4772

		alt tuff with blobs of chaotic carb and			
		qtz?? Thin py veins in chl alt (5%) OR			
		they could be clasts of rhyolite??? Can see			
		similar fragments/ lithologies in the upper			
14000	211 (2 211 04	part of the footwall (try and find what	0.00	4772 477	D
14800	311.63-311.84	section)	GC?	4//3-4//8	8
		stwk chl/ser py; grey laps of felsic			
22051	222 222 40	material (mod ser alt?) with chl replacing	00	4770 470	
32051	333-333.48	matrix. F-m/c-gr disem in chl stwk veins.	GC	4//9-4/8	2
		strongly ser alt tuff with v. siliceous globs			
22052	252.00.252.2	and possible carb overprint?? (orange). Py	00	4702 470	2
32052	352.09-352.3	Veinlets and m-gr clusters	GC	4/83-4/8	9
32053	368.14-368.34	ser+py (clusters of m-gr, 10%). Lap fragme	GC	4/90-4/9	8
Section 4	000				
GA-07-25	7	1		1	
-				D1	Thin
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Section
		matic dyke or could be int or ser alt MD.			
		3% finely disem py, and fe-carb OP	~ ~		
32207	421.11-421.31	(upwards of 15%).	GC	6158-616	3
		heterolithic felsic dom tuff w/ white plag			
		+ py wk ser, wk py mineralization (f.g			
32208	424.79-424.99	disem <1%)	GC	6164-617	1
		stringers, rare sp in veinlets not associated			
32209	435.01-435.18	with chl	GC	6172-617	9
		strong sil/ser w/ py (15%) tuff rare golden			
32210	451.0-451.25	sp.	GC	6179-619	0
32211	472.97-473.14	maybe ff? str sil, wk py	GC	6191-619	4
		mod ser/sil +cp +py+ gn (sp and gn are			
		f.g. in thin bands whereas py and cp are			6209-
32212	482.97-483.25	coarse grained and more disemminated)	GC	6195-6204	6213
		mod-str ser+ sil + sp +py wk chl - thin			
32213	489.5-489.7	veins of sp and py together and py alone	GC	6205-620	8
GA-10-273	3	-		1	
					Thin
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Section
32214	248.24-248.46	dark green grey md with carb OP	GC	6214-621	7
32215	277.58-277.83	ser alt tuff	GC	6218-622	3
32216	281.72-281.92	ser + cc (?) tuff	GC	6224-622	8
32217	297.68-298.88	alt MD	GC	6229-623	2
		ser alt with intense ser alt stringers?? + py			
32218	304.79-305.03	+ wk chl tuff and partial flow??	GC	6233-623	9
		ser alt w/ py + sp stringers + gn +chl			6244-
32219	267.8-268.09	stringers	GC	6240-624	6248
32220	273.00-273.2	mostly chl alt + py and chl	GC	6249-625	1
GA-06-153	3				

					Thin
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Section
21016		felsic x stal sil alt; felsic xstal-bearing f-m .g light grey tuff. Mod sil alt, 5% plag xstals. Lap are grey and very light grey, elongated few mm. 3% f.g disem py stringers. Some areas are more strongly sil		1205 100	0
31916	17.60-17.6	alt ie. white blotches.	geochem	4297-430	0
31917	26.64-26.84	sil alt tuff with plag xstals; could be felsic flow Strongly sil alt with light grey. Or could be homogenous/autoclastic L.T. chl/ser veinlets are outlining lap fragments. Py in chl veinlets (only just 10%). 2 mm white plagoclase xstals (7%).	geochem	4301-430	3
31918	44.25-44.5	mafic dyke; f.g with v.f.g disem py (<5%).	geochem	4304-430	8
21010	05.05.00.15	mod sil xstal tuff; med grey f.g with some darker grey wavy blotches. 10% white plagioclase xstals 2-3 mm. and lesser finer clear qtz xstals. Rare m.g anhedral py, < 10% y f.g disem py		4000 401	
31919	97.95-98.17	<1070 v.i.g diselii py.	geochem	4309-431	4
		xstal tuff? Feldspar xstals; mod sil alt ; could be porphyritic felsic flow with 15% plagioclase xstals, light/med grey matrix, <10% qtz xstals clear/grey, light creamy beige blotches that look like they could be replacing plagioclase xstals, some places it looks like sp (3%). blotches are			
31920	135.82-136.04	elongated few mm.	geochem	4315-431	9
		sil alt L.T. feldspar xstals; xstals are clear and round qtz xtals(7%), (3% white subround xstals, lap fragmetns are typically light to me dgrey with fewer			
31921	163.61-163.83	darker grey laps. Felsic L.T (f.g)	geochem	4320-432	3
31922	179.79-180.02	chl alt xstal tuff; soft to cut. Plag (white,< 10%) and qtz (clear <10%) (5% carb rhombs). F.g matrix is dark grey somewhat green (chl alt), carb overprint is evident on outside.	geochem	4324-432	8
31923	197.62-197.84	sil alt L.T ser or FF?; appears to look like L.T because of dark grey chl? Alt in filling space or could just be felsic flow with chl alt veinlets with f.g py. Dark grey chl veinlets or blotches. 3% py dises in veinlets. Light grey in color.	geochem	4329-433	2

		mod sil alt A T: f a AT with thin veinlets			
		of my and sor (5%) Most vainlats are			
		of py and set (5%). Wost vennets are			
21024	226 24 226 71	concordant, i fare one is discordant all x-	h	1222 122	7
31924	220.34-220.71	mafic dyke, f.g. dark green grey	geochem	4333-433	/
51925	230.7-230.83	In The literation of the liter	geochem	4336-434	0
		L. I mod sil MC; light grey lap tuff with			
		dark grey blotches of elongated lap-			
		looking fragments or could be chi alt,			
		pretty sure it's just alteration of different			
31926	246.94-247.09	fragments. Pale white round xstals (<5%).	geochem	4341-434	4
		alt dyke? Or felsic dyke, f.g light grey,			
		dark f.g speckles, clear/white qtz			
		amygdules? Some void vesicles with py in			
31927	263.1-263.32	it.	geochem* (7	4345-434	8
		hetero L.T ser>chl alt; pale grey, grey,			
		thiner dark grey laps, some armored			
		clasts, 10% round white plag (?) xstals.			
31928	284.06-284.3	F.g lath-like po.	geochem	4349-4352	2
		tuff?! Wk sil?; chl alt f.g tuff. Some			
31929	305.75-305.95	visible qtz xstals.	geochem (TS	4353-435	6
		graded tuff; mod ser alt, rare MC			
		(elongated), m-gr tuff with fine ash layer,			
31930	321.72-321.91	white round <1mm-2mm plag (?) xstals.	geochem	4357-435	9
31931	336.1-336.3	mafic dyke; f.g with f.g carb laths in it.	geochem	4360-436	3
		VMS chl alt with py: ser alt tuff with	- -		
		dentritic carb/qtz veining (15%) with			
		chl+py stringer veinlets (15%), gn (4%)			
		and sp $(>10\%)$ is assocaited with py			
31932a	354.69-354.92	veinlets with rare cp.	geochem	5458-546	6
019024		ser alt tuff with dentritic carb/atz veining	8		0
31932b		(15%) with chl+pv stringer veinlets (5%).	geochem	4364-436	8
31933	390.7-390.92	ser $>$ sil alt and py (10%) stwk	geochem	5439-544	6
01700		ser and sil alt stwk with ny stringers and	0100110111		-
31934	407 5-407 70	pods of clustered py $(m-g)$ in darker halo	geochem	5447-545	2
51751	107.5 107.70	ser alt stwk - more grey then 2 above just	geoenem	5117 515	_
		ser alt maybe which as well with disem f			
21025	118 7 118 05	set all, maybe we chi as wen with disem i-	gaacham	5152 515	5
31935	448.7-448.95	g py ser alt styk	geochem	5455-545	7
Section 4		Set all SlWK	Scochem	5450-545	/
CA 10 274					
GA-10-2/4	r 				Thin
					1 IIIN Soution
Tee	Danth (m)	Deale True (initial)	D		Dhote #
1 ag	Deptn (m)		Furpose	Pnoto #	r11010 #
		flow This kinda looks like it says			
		tragments of felsic flow. See other			
32054	6.18-6.37	pictures	GC	5179-518	2

		sil alt tuff with plag xstals, same with this,		
32055	26.64-26.84	but has clusters of f-m-gr py	GC	5183-5188
		tuff and xstals of felds mod sil and ser,		
32056	44.64-44.84	with disem py (fg)	GC	5189-5192
		v. sil alt L.T; new unit change in alt; but it		
		could also be a felsic flow Has wormy		
32057	53.24-53.41	ghostly qtz veins	GC	5193-5195
		MD; beige; could be intermediate?? Has		
32058	55.96-55.24	round clusters of f-m-gr py	GC	5196-5202
		sil alt L.T. white dry, could be flow with		
32059	66.46-66.71	alt in cracks	GC	5203-5205
		hetero L.T; clusters of py in elongated		
32060	74.06-74.36	discont veins (5%)	GC	5206-5214
32061	87.84-88.06	hetero tuff wk chl and sil	GC	5215-5219
32062	95.7-95.91	MD; green wk chl	GC	5220-5221
32063	115.1-115.3	tuff with 10% qtz-feld xstals mod chl	GC	5222-5227
32064	120.16-120.33	hetero L.T mod ser/sil graded	GC/rep	5228-5230
32065	125.66-125.94	ash tuff cont' of L.T	GC/rep	5231-5235
		hetero L.T (compare); disem py f-g.		
		matrix support, matrix is light grey and		
		f.g, lap are grey and apantihic, py is		
32066	141.46-141.73	mostly in matrix but is also in some clasts	GC	5236-5244
		tuff? Wk chl?; looks like xstal rich tuff,		
32067	154.9-155.1	sandy like. Mostly qtz xstals. Wk alt	GC	5245-5249
32068	166.28-166.51	f.g. tuff mod sil	GC	5250-5254
32069	179.84-179.99	alt dyke? Or FD	GC	5255-5257
		arg beds and m-gr sub-euhedral py in mg.		
32070	186.15-186.35	tuff	GC/rep/TS?	5258-5262
32071	197.35-197.63	felsic dyke?	GC	5263-5267
		hetero L.T ser alt mod/wk chl, 5% disem f-		
32072	198.75-199.03	m gr py	GC	5268-5273
32073	222.68-222.89	mafic sill	GC	5274-5276
		tuff w/ wk sil/ser; in contact with mD;		
32074	250.1-250.32	could make coool TS to see contact	GC	5277-5284
32075	261.05-261.32	mafic sill	GC	5285-5287
32076	270.9-271.1	chl alt (VMS) tuff;	GC	5288-5296
		ser alt tuff w/ chl stringers, f.g- py is		
		assoicated with chl stringers (30%) (with		
		rare gn, and possible 5-10% sp-unsure)		
		but f.g disem py is also in ser alt (15-20%)		
32077	272.23-27.5	tuffs, lower is GC sample	GC	5297-5304
32078	296.34-296.54	v. ser alt FW	GC	5305-5309
		v. ser alt FW; popcorn looking lap?? Py;		
		some green micas in footwall sericite		
32079	307.2-307.4	altered rocks	GC	5310-5317
		v. ser alt FW; had qtz vein, cut most of it		
32080	319.36-319.56	out I think	GC	5318-5321

GA-14-277	1				
					Thin
					Section
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Photo #
32155	6.7-6.92	x-stal bearing tuff mod sil	GC	4975-4982	2
		xstal tuff or porphyritic flow? Fe-carb			
32156	29.5-29.73	rhombs	GC/TS	4983-499	0
		felsic flow? Or sil alt tuff, contact? 15%			
32157	45.8-46.0	sericite veinlets, v sil.	GC/TS	4991-4993	5
		mafic dyke (could be AT??) light olive			
32158	51.0-51.18	green run off	GC	4996-499	9
		sil alt L.T. or felsic flow (pretty sure) v.			
32159	56.16-56.44	sil, v. hard	GC	5000-5003	5
		felsic flow? Or sil alt L.T vil sil alt, very			
32160	67.57-57.97	hard to cut, wormy qtz veins	GC (REP LI	5006-501	0
32161	70.02-70.2	mafic dyke	GC	5011-501	5
32162	81.5-81.7	porphyritic felsic flow?	GC/TS	5016-502	1
32163	93.96-94.2	chl alt xstal tuff	GC	5022-502	8
32164	114.41-114.63	xstal rich tuff	GC	5029-503	7
32165	136.14-136.32	felsic dyke? Or A.T	GC	5038-5042	2
32166	139.04-13.22	arg	GC	5043-504	7
		graded At w/ wrg +MC+chert+ clusters of			
32167	139.29-139.5	m-gr py (3%) in veinish	TS	5048-505	3
32168	153.27-153.5	mafic dyke	GC	5054-505	8
		mod ser alt tuff + m-c disem py (<5%)			
32169	159.36-159.56	with wk chl	GC	5059-5062	2
32170	165-165.22	mafic dyke beige	GC	5063-506	6
32171	190.52-190.74	mafic sill	GC	5067-507	0
32172	209.24-209.54	felsic tuff, white round xstals	GC	5071-507	6
32173	232.72-232.96	ser alt tuff w/ bands of py+chl stringers	GC	5082-508	8
32174	243.2-243.45	ser alt tuff w/ bands of py	GC	5077-508	1
GA-14-278	8				
					Thin
					Section
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Photo #
		sil alt xstal bearing tuf/ porphyritic flow ;			
		pale beige grey in color, mod sil alt, 15%			
		plag xstals 2mm, coherent, felsic, f.g.			
		discont bands of anhedral f -m py (2-3 cm			
		in lenth, 1-2mm in width, 7%). Resembles			
		a porphyritic flow rather then a tuff,			
		however, could be "homo" LT? but most			
32175	18.5-18.7	likely porphyritic flow	GC/rep(TS)	4462-446	8

		tuff w/ sil/beige; plagiclase xstals, light-		
		med grey in color, 10% plag xstals.lap are		
		Few more white bands of more sil alt.		
32176	38.51-38.73	strong sol, mod sil, wk ser.	GC/ts	4469-4472
		porphyritic felsic flow; light/med/pinky		
		grey, 10% 1-3mm plag xstals, clusters of		
		m-gr py. Could be lap tuff, laps looks		
		made of qtz and felsic fragments. There		
		are also smaller clear qtz xstals (few mm)		
22177	42 01 43 00	does look like 75 ASK	CC/te	1173 1178
52177	42.71-43.09	felsic flow: nale nink coherent f g few	UC/IS	44/3-44/8
		spaced out gtz xstals, 3% pv, v, sil alt.		
32178	60.90-61.15	massive, wormy qtz veins	rep litho	4479-4485
		mafic dyke/pillow basalt; possible multi		
		gen MD, with selvages of v.f.g green/grey		
		in wavy bands in f.g mafic dyke? Or could		
		be chl alt tuff? Possible ts? F.g clusters of		
32179	70.51-70.81	disem py. Mod chl alt	GC?	4486-4490
		xstal tuff w/ ser and chl wk; approx 45%		
		xstals total. With 25% clear/ dark qtz,		
		nlag xstals Rare wormy gtz veins matrix		
32180	84.0-84.24	is grey and f.g. mod sil, wk ser, wk chl.	GC	4491-4498
		tuff, visibile qtz xstals, mostly clear, some		
		pale white, matrix is replaced by chl, dark		
		green grey in color, f.g, 3% carb		
32181	94.81-95.02	amygdules	ts	4499-4505
32182	111.39-111.63	chl alt tuff see qtz xstals; same as above.	GC	4506-4513
		awesome graded med-gr L.T-ash, could		
22192	110 24 110 62	be considered "sandy" looking, but is a	ron lithe/TS	1511 1521
52185	117.34-119.03	y sil alt could be I. T or felsic flow or		4314-4321
32184	130.69-130.9	autoclastite	GC	4522-4525
52101		same unit, colors are pale grey and dark		
32185	138.28-138.52	grey in "matrix", strong sil, wk chl?	GC	4526-4529
		wk alt A.T?; v.f.g tuff, pale grey, matrix		
		looks replaced by ser? Can see fl qtz		
		xstals but has patchy light grey matrix.		
		Thin dark grey veinlets of chl? 3% fine	a a	4520 4525
32186	153.63-153.84	discont veinlets of f.g py clusters.	GC	4530-4535
		same unit? Xstal tuff w/ chl alt, similar to		
		above, but with bands of more black chl		
		more ser alt tuff. Chl alt is difficult to see		
32187	163.51-163.71	on cut side?	GC/ts?	4536-4541

_					
			either A.T or dyke w/ fe-carb; still not		
			sure, f.g pale beige grey in color, looks		
			granular, black 0.5-1mm somewhat		
	32188	176.41-176.62	concordant veins. Ask	GC	4542-4547
			wk-mod ser alt tuff thin A.T/chert; med-gr		
			tuff into chert layer, below chert layer		
			there is a fine-gr darker layer only a few		
			mm Looks like gn?? But probably not		
			Above chert layer is fu/ml light grey tuff,		
	32189	183.72-183.92	with 1% euhdral f-m py. Wk-mod ser	GC	4548-4555
			ser/sil alt MD; light grey, coherent, m-c-		
			gr. Very siliceous, looks like round xstals		
			all together With few thin black cont and		
	32190	190.48-190.64	discont veinlets.	GC	4556-4560
			mod ser alt med hetero tuff; med grey in		
			color with light grey elongated felsic lap		
			fragments (5%), black thin and elongated		
			(3%), clear and pale white qtz xstals.		
			Matrix is grey and f-m gr. And disem f.g		
	32191	201.54-201.78	py (<5%).	GC	4561-4566
			mod chl ser alt hetero tuff; similar to the		
			unit above but more chl alt. dark grey in		
			color this one has 2-6mm mud clasts in		
			0.5-3mm round pale white qtz xstals.		
			Matrix is fu, approx 25% xstals. Rare		
	32192	215.31-215.48	euhedral py xstals. Mod chl + wk ser.	GC+change	4567-4571
			xstal rich v chl alt? dark green grey ml/mu		
			xstal tuff, strongly chl alt. clear dark and		
	32193	234.41-234.58	pale white qtz xstals.	GC	4572-4577
			chl alt tuff or sill?; does look like it has		
			very fine (fl) dark clear qtz xstals but it		
			also has clusters of plagioclase xstals or		
			they could be broken up. Overall, f.g		
			(fl/fu) with patches of pale white (could		
	32194	263263.22	be carbonate because very soft) ask!	GC	4578-4584
			ser alt tuff above sill; pale grey in color,		
			fu/ml tuff with <10% creamy white round		
			(1mm) plag xstals? Band of f.g py xstals,		
			still has clear dark qtz xstals, (15%). Mod	~~	
	32195	269.82-270.0	ser alt, wk chl.	GC	4585-4591
			ser alt tuff above sill w/ white xstals; med-		
			c gr tuff, v.f -m-gr py disem clusters (3%)		
	32196	280.08-280.29	med grey > darker grey lap.	GC/TS	4592-4599

		mafic sill; or chl alt tuff. F.g dark green			
		grey, granular -looking, black laths (could			
		be MC? Or mafic minerals?, very soft),			
		>5% plag and qtz xstals (few mm), could			
3219	7 300.01-300.30	be sill F.g subhedral py xstals.	GC/rep litho	4600-4604	4
3219	8 305.4-305.52	L.T w/ sulphide chl replacement in matrix	GC	4605-460	8
		chl + py + ser stringer in L.T/tuff; chl alt			
		is more dominant in left hand side			
		whereas ser alt is dominant on left. But			
		get irregular chl/py stringers in ser alt			
		zone. Approx 35-40% py. Get thin discont			
2210	206 7 206 05	blands of chi in ser all part as well. Patchy	CC	4600 461	5
5219	9 300.7-300.93	y chi alt tar true yoin of an aurrounded	GC .	4009-401.)
		v. cni all +sp+py; vein of gn surrounded			
3220	0 309 3-309 51	soft) and discont hands of sn	GC/ replithe	4616-462	1
5220	507.5-507.51	strongly set alt $\pm carb and ny broken in a$		4010-402	T
3220	1 320 36-320 53	bunch of small pieces	GC	4625-462	6
5220	1 520.50 520.55	y chl alt + carb and py (15%) However	00	1023 102	0
		looks like there are still plagiclase ystals			
		in matrix. I think that cut in half it's			
		chalked full of qtz and plag xstals with the			
3220	2 328.28-328.51	matrix completely altered to chl.	GC (TS)	4627-463	8
3220	3 332.65-332.83	ser alt tuff +py stringer + chl	GC	4639-464	3
Section 4	100				
GA-06-17	16		-	-	
					Thin
					Section
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Photo #
3222	2 314.11-314.31	mafic sill	GC	6263-626	8
3222	1 329.99-330.12	MS w/ weird black mineral	rep litho	6269-627	4
GA-06-18	30	Ι	1	1	
					Thin
т			D	D1 / //	Section
lag	Depth (m)	Rock Type (initial)	Purpose	Photo #	Photo #
		strong sil alt + ser tuff (white round xstals			
		of qtz) 8% f-m gr anendral py in thin			
2208	1 20 25 20 47	instrusive		4700 480	2
5208	1 20.23-20.47	strong sil alt \pm ser tuff ser vainlate rare		4/33-400.	5
		chl-looking veinlets, white round atz			
3208	2 40 79-41 08	stals rare wormy atz vein		4804-480	9
5200	- 10.77-71.00			100	,
		f_{1}			
		strong sil alt + ser L. 1 this is probably a flow pale white/grey/ink 10% ser			
		flow, pale white/grey/ink, 10% ser			
		flow, pale white/grey/ink, 10% ser veinlets, white round and tabular qtz and plag xtals, looks coherent, 3% f.gr pv			

1	1			
		chl + ser + strong sil L.T; lap fragments look like they're made of coherent rhyolite		
		with plag xstals. Kind of look similar to		
22004		above or other felsic flows in the area.	4017 4001	
32084	69.56-69.37	Matrix is altered to chl.	4817-4821	
		fragments as above (pink coherent with		
		white plag xstals but has more of a f-m-gr		
		like its why chi altered and is chalked full		
		of f-m-gr anhedral py parallel to fol.		
		double check for other sulphide minerals.		
		tuff with lap sized fragments (above) py is		
		in la fragments as well, must be late? even		
		a mud clast. this would be heterolithic		
32085	87 96-83 7	tuil. probably re-worked but could be	4822-4826	
52005	02.70-05.2	dyke (mafic?) chalked full of pale white		
		rhombs of carb (60%), check photos for		
		contacts, could be felsic Or be AT b/c		
		wasn't green when cut But is v.f.g. and		
32086	99.02-99.22	dark. 2% f.g. py disem clusters	4827-4831	
		tuff wk chl; mod-strong sil alt in pale grey		
		l.tuff? Pale grey is lap frags with dark		
		grey/black thin bands in matrix space which is probable alt y f g py (7%) is in		
		chl bands. Some plag \pm qtz xstals 20%) in		
		lap fragments. Could be potentially part of		
32087	111.19-111.44	a flow. carb rhomb OP (20-30%)??	4832-4839	
		sil alt L.T lap fragments are rhyolitic,		
		look like flow fragments. Clear round qtz		
		xstals in fragments but in "matrix" too,		
		altered causing the colors to appear to		
32088	123.77-124.04	look lie diff lap fragments.	4840-4848	
		chl plag- bearing tuff/porphyritic felsic		
		volcanic, mod-strong sil alt, 3% cluster		
32089	146.69-146.94	1cm veinlets of f.g py	4849-4855	
		wk chl, mod sil alt tuff, f.g tuff with few		
		lap in it and plag and qtz xstals. Pinkish		
32090	163.72-163.95	contain same xstals as matrix. Carb OP	4856-4859	
52070	100.72 100.00	wk chl alt tuff + fe-carb OP +clustered f.g		
32091	187.4-187.59	py (5%) in distcon veinlets (2-5mm thick)	4860-4864	

		wk chl mu/ml tuff with 10% lap size	
		fragments of dork grow enhantic metarial	
		and encourse white also geted blacks (less	
		and creating white elongated blobs (less $10/2$) define the formula of figure alusters o	
22002	105 54 105 01	1%) del a tull. 5% disem clusters of i.g.	4965 4971
32092	195.54-195.81		4865-4871
		telsic dyke? 3% f.g disem py, qtz amy, qtz	
32093	210.49-210.66	vein	4872-4878
		felsic dyke? Xstals - int? prob massive	
		xstal tuff, def a tuff, mu/ml, pale grey,	
32094	219.79-219.93	qtz xstals.	4880-4882
		tuff w/ AT or silt beds topped with arg	
		and thin arg beds. Subhedral py xstals	
		mostly f.g with rare m usually in finer	
		beds or in arg (disem) with lesser in	
		tuffaceous beds. Some of the args beds	
		could be slightly deforme giving them a	
		wavy/wormy apperance compared to the	
32095	236 22-236 45	more compotent tuffs	4883-4890
52075	250.22-250.45		+005-+070
		fl/vfu tuff?? Or just sed rock	
		(greywacke?)With elgonated MC in it,	
		capped by arg with discont fl tuff in	
		between with chert layers?/ then more	
		thinly bedded arg with v.f.l tuff seq. arg	
		layers are hard,, tuff is only soft one eu-	
		subhedral py (3%) mostly in arg units or	
32096	236.73-236.92	chert	4891-4901
		sil/ser alt felsic dyke?; pale grey pink,	
		looks coherent with small qtz xstals in it,	
32097	242.67-242.89	mod sil, possible wk ser?	4902-4904
		wk-mod ser alt \pm chl heterolithic tuff with	
32098	261.1-261.32	lap fragments	4905-4910
32099	285.15-285.45	xstal rich M sill? Wk chl + amy	4911-4916
32100	300.4-300.6	mafic sill chl alt	4917-4921
22100		heterolithic tuff with white round ystlas	
32101	321 68-321 91	mod ser alt 5% mc wk ny	4922-4926
52101	521.00-521.71	nu stringer f e ny 1 5em ny hende hested	7722-7720
		in our olt tuff. Con see reliet sta vetals in	
22102		in ser alt turi. Can see renet qtz xstais in	4027 4040
32102	521.2-321.4		4937-4949
		ser alt tuff + chl py (f-m lesser c)(25%)	
		stringers, py mostly contained in chl	
		stringers but can be finely disem in ser alt	
32103	338.39-38.58	tuffs, rare gn +cp (1%) asso w/ py	4927-4932
		ser alt tuff+ chl py stringers py (20%) is	
		mostly f.g , there aren't as many veinlets	
		in this one but mostly finely disem py in	
32104	339.67-339.87	ser alt with few chl stringers.	4933-4936

		MS ; bands of sp (20%- red and gold) and		
		py (30%) (dominant, f-c) with lesser (1-		
		2%) cp and gn (8%). Gn is hosted within		
		sp bands and cp looks later in interstitial		
32105	341.85-342.05	space. Still reliect qtz veins and few xstals		4950-4961
32106	361.9-362.14	mafic sill strong chl alt		4962-4965
32107	391.9-392.18	ser alt tuff/ fault B		4966
32108	397.9-398.08	ser alt tuff/ fault B		4967-4970
		ser/chl py stwk; 5cm chl stwk vein with f-		
		c py (15%) sp (5%) , rest of ser alt with		
32150	341.01-341.26	thin veins of py and disem f.g py (25%).		4971-4974
Section 415	50			
GA-14-279				-
Tag	Depth (m)	Rock Type (initial)	Purpose	Photo #
		fragments, average gr size is 0.5-2 cm with larger lap fragments up to 3-4 cm (light grey, med grey and clustered fragments of py). With darker grey matrix of fu/ml (85:15). Contact with light grey f.g mu with 2-5mm qtz xstals (oval; 15%). looks like sharp contact on cut side but not as obvious on rounded side, < few mm to few mm py xstals subhedral disem		
		could be replacing??) we to mod set/ wk		
32109	17.35-17.65	chl.	G.C	4370-4374
		Mafie?; xstal tuff- qtz-rich felsic xstal tuff. Qtz xstals are white and clear. Clear ones seem to be more fl/fu whereas white are fu/ml/mu with some being CL (<5%). Approx 60% xstals. Very xstal rich . <5% plag xstals. Qtz xstals are round to oval/subrounded. matrix is v.f.u. light		
32110	31.11-31.29	grey in color. wk ser alt most likely.	G.C	4375-4380
22111	41.00.40.10	Mafic dyke; f.g. MD dark green grey in color. <2% clusters of anhedral py (0.5		4201 4204
32111	41.92-42.13	mm- 2mm). Wk chl alt	G.C	4381-4384
32112	56.29-56.53	f.g qtz-bearing tuff. Mod ser alt wk sil. Wk chl. qtz xstals are v.f.u. with rare CU. light grey in color, pale beige ser veinlets are crenulated and are 45 from fol. Get some bands of slightly darker grey (2 cm in width).	G.C	4385-4390

				1
		Could be autoclastic rhyloite? Pictures		
		from section resemble that 1-2%		
		plagioclase xstals subhedral and 2-5 mm,		
		black v. thin veinlets (<1mm) could be		
		outlining autoclastic clasts? Rare py		
		(euhedral-subhedral), thin qtz vein (or		
32113	70.17-70.47	carb). mod ser	G.C	4391-4398
		sil/ser tuff: heterolithhic felsic tuff/LT		
		(med grain) clast range in size from mu-		
		granule (1-1.5 cm). 7% plag xstals and 5%		
		gtz xstals, clast supported. 5% 1mm		
32114	90.14-90.34	subhedral py in lap fragments.	G.C	4399-4405
		chl tuff: chl altered with $qtz > plag xstals$		
		(20%) and fine $(0.5-1 cm)$ lap felsic		
		fragments. Matrix supported, matrix is		
		altered to chl. could have some arg		
		particles. When cut had "oily" run off like		
32115	100-100.23	arg beds. Xstal fragments are 1-3 mm.	G.C	4406-4410
		felsic dyke? Could be felsic dyke it's fa		
		nale beige grey however there are small		
		(mm_scale: vfl) atz vstals (clear) in		
		(11111-scale, VII) qt2 Astais (clear) III matrix And $\leq 5\%$ larger (mu/cu) pale		
		white atz elongated ystals. V thin black		
22116	103 82 103 08	lats/speckles. Mod ser alt	GC	1111 1116
52110	105.82-105.98	and speckes. Wou set all	0.0	4411-4410
		this looks like it could be an oblightered		
		unis looks like it could be all chi altered		
22117	120 0 120 20	A SKal-bearing turnaceous lock. Both qtz		4417 4425
32117	120.0-120.30		0.0 (15!!)	4417-4423
		ser>sil L.T.; f-m gr L.T with plagiclase		
		xstals (15%) and qtz xstals (25%) most		
		lap fragments are filled with xstals		
		fragments. Chl is in filling f.g matrix,		
22110	1 4 1 0 4 1 4 1 5 0	looks mostly clast support though. Lap		1106 1100
32118	141.24-141.50	fragments are felsic. Mod ser and chi alt.	G.C	4426-44 <i>33</i>
		mafic sill; again part of mafic sill but very		
		crystal-rich. Xstals are fu-cl with rare		
		granule sized tragments. Qtz> plag again,		
		35% qtz, 10% plag, dark green grey in		
		color. V. chl alt. looks tuffaceous. ASK.		
32119	155.62-156.0	Also, broken up clast.	G.C	4434-4442
		mafic sill; same as above, less xstals and		
		finer grained. And very fissile. Broken in		
32120	176.48-176.73	a bunch of pieces when cut. V. chl alt.	G.C	4443-4446
		ser alt tuff; looks similar to 18, xstal-		
		bearing tuff. Xstals are in lap fragments		
		though, no in matrix. Like 18 Very ser		
32121	195.67-195.87	alt with chl in filling matrix. Very fissile.	G.C	4447-4450

		felsic dyke? Light grey, very		
		fragmental/broken up. Hard to tell Strong		
32122	217.34-217.64	sericite alteration	G.C	4451-4453
		black tuff; strongly chl alt? arg beds??		
		Fault zone, strongly gouged (lowered).		
32123	220.5-220.3	Black and f.g. rare py cubes.	G.C	4454-4457
		tuff? Fault zone, felsic tuff? Strongly		
32124	223.223.25	sericite alt, wk chl.	G.C	4458-4461